
A Heuristic-Based Decision Tree
for Connected Components Labeling

of 3D Volumes: Implementation
and Reproducibility Notes

Federico Bolelli(B), Stefano Allegretti, and Costantino Grana

Dipartimento di Ingegneria “Enzo Ferrari”,
Università degli Studi di Modena e Reggio Emilia, Modena, Italy

{federico.bolelli,stefano.allegretti,costantino.grana}@unimore.it

Abstract. This paper provides a detailed description of how to install,
setup, and use the YACCLAB benchmark to test the algorithms pub-
lished in “A Heuristic-Based Decision Tree for Connected Components
Labeling of 3D Volumes,” underlying how the parameters affect and
influence experimental results.

1 Introduction

Although introduced many decades ago [31], the task of labeling objects inside
binary images is still employed in several scenarios, whenever an identification
of segmented visual objects or image regions is required. This procedure, usually
identified as Connected Components Labeling or CCL in short, has a unique and
exact solution which provides a description of the objects inside binary images,
represented by an output symbolic image where pixels of a connected component
are assigned the same integer identifier.

As a matter of fact, many state-of-the-art image processing and computer
vision pipelines exploit CCL as a fundamental pre- or post-processing step. The
fields of application of such an algorithm range from Object Tracking [18] to Doc-
ument Restoration [10,25], including Image Segmentation [1,29], Medical Imag-
ing [13,19,30] and many others [6,17]. For this reason, having a fast and efficient
algorithm, able to minimize its impact on image analysis tasks, is undoubtedly
very advantageous. This is why the research efforts in labeling techniques have
such a very long story, full of different strategies and improvements targeting
both sequential [8,9,20,22,23,34] and parallel architectures [2,3,5,24,28,32,35].
Among them, some of the most promising techniques that led to major break-
throughs in the field consist in the usage of Decision Trees (DTrees), combined
with the 2 × 2 block-based approach. A detailed description of the algorithms
based on these paradigms is provided in [7]. Moreover, algorithmic solutions rely-
ing on DTrees have demonstrated their effectiveness even when applied, with the
necessary variations, to parallel architectures [4,12].

c© Springer Nature Switzerland AG 2021
B. Kerautret et al. (Eds.): RRPR 2021, LNCS 12636, pp. 139–145, 2021.
https://doi.org/10.1007/978-3-030-76423-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76423-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-76423-4_9


140 F. Bolelli et al.

Unfortunately, existing techniques for the generation of DTrees become
quickly unfeasible when the size of the mask used to scan the input image
increases. This prevented the application of block-based trees to 3D scenarios.
In order to compensate for this limitation a novel heuristic algorithm, based on
decision tree learning and named Entropy Partitioning Decision Tree (EPDT),
has been presented in [33]. This algorithm allows to compute near-optimal deci-
sion trees for large scan masks, overtaking the limitations of existing approaches.

This paper describes the benchmark used to evaluate the performance of
EPDT-generated algorithms, focusing on how to configure it to reproduce the
experiments reported in [33].

2 The Evaluation Framework

YACCLAB, Yet Another Connected Components Labeling Benchmark, has been
originally released in [21] with the aim of providing a fair comparison and evalua-
tion of CCL algorithms. The benchmark has been later improved with additional
datasets, tests and with an extension to 3D and GPU algorithms [5,11]. After
its first appearance in 2016, it has been used by many authors [14,15,36] to
compare the performance of novel proposals with state-of-the-art solutions, thus
setting a de-facto standard.

When measuring the performance of an algorithm several details should be
taken into account, as they could significantly influence the performance. How-
ever, CCL is a well-defined problem and the burden of evaluation can be reduced
to the measure of execution “speed”.

The main elements that affect execution speed can be resumed as follows:
data on which tests are performed, implementation details, hardware capabili-
ties, and code optimization provided by the compiler. YACCLAB takes all these
aspects into account; the benchmark is open-source and provides an implemen-
tation of state-of-the-art algorithms, directly including the source code released
together with the scientific papers whenever available. Given its open-source
nature, anyone can verify literature claims testing the algorithms with any com-
bination of hardware architecture, operating system and build tools.

The public dataset provided with the benchmark covers most of CCL fields
of application, including 2D images and 3D volumes of both real world and syn-
thetically generated domains. A detailed description of the YACCLAB dataset is
available in [5]. Because experimental results reported in [33] concern 3D EPDT-
generated algorithms, the general properties of 3D datasets are summarized in
Table 1 and a brief description follows:

– OASIS is a dataset of medical MRI data taken from the OASIS project [27],
binarized with the Otsu threshold;

– Mitochondria is the Electron Microscopy Dataset [26], which contains binary
sections taken from the CA1 hippocampus;

– Hilbert consists of the 3D Hilbert curve, which is a fractal space-filling curve,
obtained at different iterations (1 to 6) of the construction method.



A Heuristic-Based Decision Tree for Connected Components Labeling 141

Table 1. Properties of 3D datasets in terms of foreground pixel density, number of
connected components (objects), number of volumes, and resolution.

Density Objects Volumes Resolution

μ σ μ σ

Hilbert 0.055291 0.0873024 1 0 373 256 × 256 × 128

Mitochondria 0.0588272 0.00599026 40 5.09902 3 1024 × 768 × 165

OASIS 0.198208 0.0245339 3199 1027.79 6 128 × 128 × 128

The source code of the EPDT-generated algorithms as well as the bench-
marking suite is available at https://github.com/prittt/YACCLAB.

3 How to Test EPDT-Generated Algorithms

In order to correctly install and run the current version of the YACCLAB bench-
mark, the following packages, libraries and utilities are required:

– CMake 3.13 or higher (https://cmake.org);
– OpenCV 3.0 or higher (http://opencv.org);
– Gnuplot (http://www.gnuplot.info);
– A C++ compiler supporting C++14.

The installation procedure is well detailed in the aforementioned GitHub repos-
itory; the main steps can be resumed as follows:

– Clone the repository;
– Generate the YACCLAB project using CMake;
– Set the configuration file config.yaml placed in the installation folder;
– Open the project folder, build and run.

When configuring the project through CMake the flags YACCLAB ENABLE 3D
and YACCLAB ENABLE EPDT * must be enabled in order to set-up the benchmark
for 3D algorithms and to include EPDT implementations. The CMake file should
automatically find the OpenCV installation path, otherwise it must be manually
specified. The flag YACCLAB DOWNLOAD DATASET 3D must be enabled if the user
wants CMake to automatically download the YACCLAB 3D dataset. CMake
will automatically generate the C++ project for the selected compiler.

YACCLAB allows to perform multiple tests: correctness is an initial valida-
tion of the algorithms; average runs algorithms on every image of a dataset, mea-
suring the average run-time; average with steps measures separated run-times for
the different steps each algorithm is composed of, including multiple scans over
the input image and allocation/deallocation of data structures; granularity uses
synthetic images to evaluate the performance of different approaches in terms
of scalability on the number of pixels, foreground density and pattern granular-
ity; memory reports the expected number of memory accesses required by an
algorithm on a reference dataset.

https://github.com/prittt/YACCLAB
https://cmake.org
http://opencv.org
http://www.gnuplot.info


142 F. Bolelli et al.

YACCLAB stores experimental results in the output path specified by the
configuration file. Multiple output formats including plain text, bar chart and
LATEX table will be produced.

CCL algorithms are independent of the Union-Find strategy employed. For
this reason YACCLAB provides a Union-Find templated implementation for
most of the algorithms, thus being able to compare each algorithm (but those for
which the label solver is built-in) with different label solving strategies: standard
Union-Find (UF), Union-Find with Path Compression (UFPC) [34], Interleaved
Rem’s algorithm with splicing (RemSP) [16] and Three Table Array (TTA) [22].
This standardization reduces code variability, allowing to separate label solving
data structures from CCL strategies, and provides fair comparisons without
negatively impacting execution time.

4 Experiments Reproducibility

1 CPU 3D 26-way connectivity:

2 execute: true

3 perform:

4 correctness: true

5 average: true

6 average_with_steps: true

7 density: false

8 granularity: false

9 memory: true

10 algorithms:

11 - EPDT_3D_19c_RemSP

12 - EPDT_3D_22c_RemSP

13 - EPDT_3D_26c_RemSP

14 - LEB_3D_TTA

15 - RBTS_3D_TTA

Listing 1. Excerpt of the YAML
configuration file.

The EDPT algorithms were tested on
an Intel(R) Core(TM) i7-4790 CPU @
3.60 GHz with Windows 10.0.17134 (64
bit) OS and the MSVC 19.15.26730 com-
piler. The benchmark was compiled for x64
architecture with optimizations enabled.
It is worth noticing that most compil-
ers need several minutes to build EPDT
algorithms; in particular, some of them
actually fail to compile EDPT 26c. For
these reasons, aforementioned algorithms
are optional and must be singularly enabled
with CMake, as described in Sect. 3.

The performance of EPDT-generated
algorithms have been compared to state-
of-the-art solutions over the collection of
3D datasets included in YACCLAB and
described in Sect. 2. In order to repro-

duce the same experiments reported in [33], the CPU 3D 26-way connectivity
section of the configuration file must have its execute, perform and algorithms
fields set as in Listing 1. The other fields can remain as default. Finally, 2D tests
can be disabled to avoid useless experiments.

5 Conclusion

We described how to reproduce the experimental results reported in [33]. The
environment employed for testing the algorithms can significantly affect perfor-
mance. Cache size and RAM speed can change absolute results while preserving
relative performance. Operative System and compiler are likely to heavily influ-
ence the outcome.



A Heuristic-Based Decision Tree for Connected Components Labeling 143

References

1. Abramov, A., Kulvicius, T., Wörgötter, F., Dellen, B.: Real-time image segmenta-
tion on a GPU. In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the Multicore-
Challenge. LNCS, vol. 6310, pp. 131–142. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16233-6 14

2. Allegretti, S., Bolelli, F., Cancilla, M., Grana, C.: Optimizing GPU-based con-
nected components labeling algorithms. In: 2018 IEEE International Conference
on Image Processing, Applications and Systems (IPAS), pp. 175–180. IEEE (2018)

3. Allegretti, S., Bolelli, F., Cancilla, M., Grana, C.: A block-based union-find algo-
rithm to label connected components on GPUs. In: Ricci, E., Rota Bulò, S., Snoek,
C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 271–
281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8 25

4. Allegretti, S., Bolelli, F., Cancilla, M., Pollastri, F., Canalini, L., Grana, C.:
How does connected components labeling with decision trees perform on GPUs?
In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11678, pp. 39–51.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29888-3 4

5. Allegretti, S., Bolelli, F., Grana, C.: Optimized block-based algorithms to label
connected components on GPUs. IEEE Trans. Parallel Distrib. Syst. 31, 423–438
(2019)

6. Berka, T.: The generalized feed-forward loop motif: definition, detection and sta-
tistical significance. Procedia Comput. Sci. 11, 75–87 (2012)

7. Bolelli, F., Allegretti, S., Baraldi, L., Grana, C.: Spaghetti labeling: directed acyclic
graphs for block-based connected components labeling. IEEE Trans. Image Pro-
cess. 29(1), 1999–2012 (2019)

8. Bolelli, F., Allegretti, S., Grana, C.: One DAG to rule them all. IEEE Trans.
Pattern Anal. Mach. Intell. 1–12 (2021)

9. Bolelli, F., Baraldi, L., Cancilla, M., Grana, C.: Connected components labeling on
DRAGs. In: International Conference on Pattern Recognition, pp. 121–126 (2018)

10. Bolelli, F., Borghi, G., Grana, C.: XDOCS: an application to index historical doc-
uments. In: Serra, G., Tasso, C. (eds.) IRCDL 2018. CCIS, vol. 806, pp. 151–162.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73165-0 15

11. Bolelli, F., Cancilla, M., Baraldi, L., Grana, C.: Toward reliable experiments on the
performance of Connected Components Labeling algorithms. J. Real-Time Image
Proc. 17(2), 229–244 (2018). https://doi.org/10.1007/s11554-018-0756-1

12. Bolelli, F., Cancilla, M., Grana, C.: Two more strategies to speed up connected
components labeling algorithms. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F.
(eds.) ICIAP 2017. LNCS, vol. 10485, pp. 48–58. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68548-9 5

13. Canalini, L., Pollastri, F., Bolelli, F., Cancilla, M., Allegretti, S., Grana, C.: Skin
lesion segmentation ensemble with diverse training strategies. In: Vento, M., Per-
cannella, G. (eds.) CAIP 2019. LNCS, vol. 11678, pp. 89–101. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29888-3 8

14. Chabardès, T., Dokládal, P., Bilodeau, M.: A labeling algorithm based on a forest
of decision trees. J. Real-Time Image Proc. 17(5), 1527–1545 (2019). https://doi.
org/10.1007/s11554-019-00912-8

15. Chen, J., Nonaka, K., Sankoh, H., Watanabe, R., Sabirin, H., Naito, S.: Efficient
parallel connected component labeling with a coarse-to-fine strategy. IEEE Access
6, 55731–55740 (2018)

https://doi.org/10.1007/978-3-642-16233-6_14
https://doi.org/10.1007/978-3-642-16233-6_14
https://doi.org/10.1007/978-3-030-30645-8_25
https://doi.org/10.1007/978-3-030-29888-3_4
https://doi.org/10.1007/978-3-319-73165-0_15
https://doi.org/10.1007/s11554-018-0756-1
https://doi.org/10.1007/978-3-319-68548-9_5
https://doi.org/10.1007/978-3-319-68548-9_5
https://doi.org/10.1007/978-3-030-29888-3_8
https://doi.org/10.1007/s11554-019-00912-8
https://doi.org/10.1007/s11554-019-00912-8


144 F. Bolelli et al.

16. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

17. Dinneen, M.J., Khosravani, M., Probert, A.: Using OpenCL for implementing sim-
ple parallel graph algorithms. In: Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA) (2011)

18. Dubois, A., Charpillet, F.: Tracking mobile objects with several Kinects using
HMMs and component labelling. In: Workshop Assistance and Service Robotics in
a Human Environment, International Conference on Intelligent Robots and Sys-
tems, pp. 7–13 (2012)

19. Eklund, A., Dufort, P., Villani, M., LaConte, S.: BROCCOLI: software for fast
fMRI analysis on many-core CPUs and GPUs. Front. Neuroinform. 8, 24 (2014)

20. Grana, C., Baraldi, L., Bolelli, F.: Optimized connected components labeling with
pixel prediction. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Sche-
unders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 431–440. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48680-2 38

21. Grana, C., Bolelli, F., Baraldi, L., Vezzani, R.: YACCLAB - yet another connected
components labeling benchmark. In: 2016 23rd International Conference on Pattern
Recognition (ICPR), pp. 3109–3114. Springer (2016)

22. He, L., Chao, Y., Suzuki, K.: A linear-time two-scan labeling algorithm. In: Inter-
national Conference on Image Processing, vol. 5, pp. 241–244 (2007)

23. He, L., Zhao, X., Chao, Y., Suzuki, K.: Configuration-transition-based connected-
component labeling. IEEE Trans. Image Process. 23(2), 943–951 (2014)

24. Komura, Y.: GPU-based cluster-labeling algorithm without the use of conven-
tional iteration: application to the Swendsen-Wang multi-cluster spin flip algo-
rithm. Comput. Phys. Commun. 194, 54–58 (2015)

25. Lelore, T., Bouchara, F.: FAIR: a fast algorithm for document image restoration.
IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2039–2048 (2013)

26. Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate
subgradient descent with working sets. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1987–1994. IEEE (2013)

27. Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open
access series of imaging studies (OASIS): longitudinal MRI data in nondemented
and demented older adults. J. Cognitive Neurosci. 22(12), 2677–2684 (2010)

28. Perri, S., Spagnolo, F., Corsonello, P.: A parallel connected component labeling
architecture for heterogeneous systems-on-chip. Electronics 9(2), 292 (2020)

29. Pollastri, F., Bolelli, F., Paredes, R., Grana, C.: Improving skin lesion segmentation
with generative adversarial networks. In: IEEE 31st International Symposium on
Computer-Based Medical Systems (CBMS), pp. 442–443. IEEE (2018)

30. Pollastri, F., Bolelli, F., Paredes, R., Grana, C.: Augmenting data with GANs
to segment melanoma skin lesions. Multimed. Tools Appl. 79(21), 15575–15592
(2019). https://doi.org/10.1007/s11042-019-7717-y

31. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J.
ACM 13(4), 471–494 (1966)

32. Spagnolo, F., Frustaci, F., Perri, S., Corsonello, P.: An efficient connected com-
ponent labeling architecture for embedded systems. J. Low Power Electron. Appl.
8(1), 7 (2018)

33. Söchting, M., Allegretti, S., Bolelli, F., Grana, C.: A heuristic-based decision tree
for connected components labeling of 3D volumes. In: 2020 25th International
Conference on Pattern Recognition (ICPR). IEEE (2021)

https://doi.org/10.1007/978-3-319-48680-2_38
https://doi.org/10.1007/s11042-019-7717-y


A Heuristic-Based Decision Tree for Connected Components Labeling 145

34. Wu, K., Otoo, E., Suzuki, K.: Two strategies to speed up connected component
labeling algorithms. Technical report. LBNL-59102, Lawrence Berkeley National
Laboratory (2005)

35. Zavalishin, S., Safonov, I., Bekhtin, Y., Kurilin, I.: Block equivalence algorithm for
labeling 2D and 3D images on GPU. Electron. Imaging 2016(2), 1–7 (2016)

36. Zhang, D., Ma, H., Pan, L.: A gamma-signal-regulated connected components
labeling algorithm. Pattern Recogn. 91, 281–290 (2019)


	A Heuristic-Based Decision Tree for Connected Components Labeling of 3D Volumes: Implementation and Reproducibility Notes
	1 Introduction
	2 The Evaluation Framework
	3 How to Test EPDT-Generated Algorithms
	4 Experiments Reproducibility
	5 Conclusion
	References




