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Abstract. Estimating the quality of standing trees or roundwood after
felling is a crucial step in forest production trading. The on-going revo-
lution in the forest sector resulting from the use of 3D sensors can also
contribute to this step. Among them the terrestrial lidar scanning is a
reference descriptive method offering the possibility to segment defects.
In this paper, we propose a new reproducible method allowing to auto-
matically segment the defects. It is based on the construction of a relief
map inspired from a previous strategy and combining with a convolu-
tional neural network to improve the resulting segmentation quality. The
proposed method outperforms the previous results and the source code
is publicly available with an online demonstration allowing to test the
defect detection without any software installation.

Keywords: Wood surface defects · Defect segmentation · Relief map ·
LIDAR · Centerline · U-Net

1 Introduction

In the domain of biological image processing, the wood structures are often
exploited to address various objectives, for instance, species identification [2],
wood quality estimation [7], tree microhabitats identification [21], tracability
[23], or plant growing analysis [6]. These various applications rely on differ-
ent image acquisition modalities such as classical 2D bitmap images (including
hyperspectral images), 3D point cloud (from multi-view stereo 3D or LiDAR
scan) or 3D volumetric images (medical X-Ray CT scanner [14] or ultra sound
[5]).
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(a) Input point cloud (b) Input mesh (c) Relief map (d) U-Net result (e) Detection
& comparison

Fig. 1. Overview of the proposed method: input LiDAR 3d points (a) and its recon-
structed mesh (b) are used to construct the relief map (c) which is exploited in U-Net
(d). The defects are segmented and compared to ground truth (e).

The aim of this work is to detect defects located on the trunk surface of
living tree (see teasing Fig. 1). Various types of defects are identified by biology
experts (also called singularity) depending on their origins and their development
stages (burls, branch scar, picot, . . . ). Figure 2 illustrates samples of defects
on beech and oak species. The detection of such a structure is a key point
for the value determination and the optimization of the transformation taking
knotiness or aesthetics into consideration. The defect detection on living tree is
not an easy task in the image processing domains, since each type of singularities
presents numerous geometric variations both inter or intra species. Figure 2 (a,
b) illustrates a same defect type on a same species but presenting a very different
geometric shape.

(a) Branch scar (beech) (b) Branch scar (beech) (c) Bud cluster (oak)

Fig. 2. Examples of defects: scar and picot. Defect areas are highlighted in red. (Color
figure online)

In this work, the defect detection is addressed by using 3D scan of trunk (as
illustrated in Fig. 1). Schütt et al. can be considered as the pioneers to exploit
the terrestrial LiDAR data for tree defect detection [24]. The authors proposed
to localise singularity by combining 3D terrestrial LiDAR with 2D images. After
using a cylindrical coordinate transformation, a neural network is trained and
used to extract the singularity areas. The method was promising, however the
extraction process needs a potential interactive correction and no details are
given to reproduce the method nor the result quality measures. Thomas et al.



82 F. Delconte et al.

proposed later an automatic method to detect severe surface defects by using a
2D circle fitting algorithm [27]. The method was then improved with a parallel
implementation in order to reduce execution time [28]. One of the limitation of
such an approach, was the minimum detectable defect size was 12.7 cm and with
a relief higher than 1.27 cm. Answering to the previous limitation, Kretschmer
et al. [13] added more geometry in the singularity detection by using a cylin-
der fitting based approach. Using a tree reconstruction method [19], a series of
cylinders is fitted according to the wood main axis and each 3D point is asso-
ciated to its cylinder part. Such an association allows to generate a distance
map that is used to extract manually the defects. The proposed strategy is not
automatic, however it allows to detect smaller defects with near 4.3 cm for the
minimal size and 2 cm for the relief height. Observing that the wood trunk does
not always fit perfectly a cylinder, Nguyen et al. [18] proposed an automatic
patch-based method that allows to better follow the trunk geometry. The main
algorithm relies on the recovering of the trunk centerline [10] allowing to avoid
the cylinder fitting step of previous works.

The methods described in the previous part are designed specifically for the
wood defect estimation but it could be interesting to mention other general
approaches that are exploited for surface-crack detection in an industrial context.
For instance, Tabernik et al. [25] proposed a segmentation-based deep-learning
method to detect surface anomaly. Even if the considered images differ from
the tree defect context, their strategy could be interesting to adapt since the
proposed architecture does not request training with numerous images. In other
context of the train industry, the defect on rail surface were analysed through [4].
Like the previous works, their approach was based on the deep learning and can
detect various defects like weld, squat or joint. Finally, we can refer to another
application of micro cup surface inspection from a confocal laser microscopy
images that exploits neural network to detect defects on very textured images
[30].

Following the previous strategy introduced by Nguyen et al. [18], we propose
a new method based on the construction of a new relief map image combined
with a convolutional neural network (CNN) to precisely segment tree defects.
The main overview of the method is given on Fig. 3. The relief map is constructed
from the input mesh (upper part of Fig. 3) and the convolutional neural network
is exploited to segment defect area (lower part of Fig. 3) that can be visualized
on the original input mesh.The first step of the new approach is described in
the following section (Sect. 2) with the overview of the centerline detection, fol-
lowed by relief map image construction. Associated to this representation, the
segmentation process based on the U-Net architecture is introduced in Sect. 3.
The experiment part presenting the main results and reproducibility links are
addressed in Sect. 4 before concluding.

2 Geometric Tools

The proposed method relies on three geometric tools: (i) the centerline of the
wood log, (ii) the reference and delta distances and (iii) the relief map. The first
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Fig. 3. Pipeline of the proposed method.

two tools are introduced in [10,18] and summarized in following sections. The
third tool, the relief map, is defined in Sect. 2.3. It permits to represent the input
3D points with a 2D map characterising the relief of the points, relatively to the
centerline of the wood log and from a fitted tangent plane.

2.1 Centerline of the Wood Log

In [10] a method is presented to extract the centerline of 3D shapes using solely
partial mesh scans of the shapes. The centerline is a polyline with several small
segments (see Fig. 4 (b, c)). It is obtained by constructing an accumulation map
from input faces and normal vectors (see Fig. 4 (a)) and by filtering it with a
confidence vote. Since the method inputs are only a set of faces, the centerline
can also be recovered both from full and partial mesh (see Fig. 4 (b, c)). The
details of the algorithm are available in the associated reference [11] and on the
GitHub repository:

https://github.com/kerautret/CDCVAM

Due to the non constant diameter of wood logs, a process of optimization
must be done to obtain a smooth centerline of the wood logs. In [18], the authors
used a smoothing process based on cubic spline. Note that the implementation
details and reproductive evaluation can be found in the complementary work
[17] with the GitHub repository:

https://github.com/vanthonguyen/treelogdefectsegmentation

https://github.com/kerautret/CDCVAM
https://github.com/vanthonguyen/treelogdefectsegmentation
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(a) accumulation (c) centerline result (red) on full mesh

(b) tracking step (d) centerline result (red) on partial mesh

Fig. 4. Illustration of the main idea of the centerline extraction algorithm: (a) accu-
mulation step from surface faces fk and fj in the direction of their normal vectors (−→nj

and −→nk); (b) example of tracking step from the 3D accumulation values. Images (c) and
(d) show the centerline extraction respectively on full and partial mesh. (Color figure
online)

2.2 Reference and Delta Distances

In order to easily access the neighborhood of each point on the wood log surface,
we work in cylindrical coordinates. A local coordinate system (Ci, ui, vi, wi) is
defined for each segment Si of the centerline. A point P (x, y, z) in Cartesian
coordinates corresponds to the cylindrical coordinates (rP , θP , zP ) with:

– rP is the distance between P and P ′, the projection of P on the segment Si

of the centerline.
– zP is the height of P along the centerline.
– θP is the angle formed between the segment PP ′ and the axis vi of local

coordinate system associated to Si.

For more details of transformation in cylindrical coordinate, we refer the readers
to [18]. To correctly detect the local relief variation around each point P of
the wood log, a rectangular neighborhood is studied, named patch PP , it is
proportional to the size and circumference of the wood log (see Fig. 5 (a) and
[18] for details). PP characterizes the shape of the log around the point P . The
central straight line fitting the points of PP is calculated by a RANSAC based
linear regression. The delta distance, noted by deltaP , is defined as the distance
from P to the fitting line. It represents the relief of the tree at P (see Fig. 5 (b)).
We use the delta distance in the next section to generate the relief maps.
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(a) Rectangular patch PP centered on P (b) Delta distance

Fig. 5. (a) A patch in blue, associated to the red point, is used to compute the reference
distance of this point. (b) Computation of the reference distance for the red point. See
[18] for more details. (Color figure online)

2.3 Relief Map

A relief map is a 2D representation of the tree mesh. It is obtained by firstly
discretizing the cylindrical point space and by secondly, completing the missing
information with a multi-resolution analysis. This map is used to segment the
defects. It must also allow a reverse operation, i.e., compute from pixels of the
map the corresponding 3D points of the mesh.

Cylindrical Space Discretisation. The relief map represents the unfolding of
the wood log. The width of the map is the circumference of the trunk, i.e., 2π∗rm
with rm the average radius of the trunk. The height of the map is the height
of the trunk, obtained by subtracting the z component of the point having the
maximum height and the one of minimum height. Each point of the tree mesh
is associated to a cell of the relief map. We then calculate a value to represent
all the points of a cell. The chosen value is the maximum value of the delta
distances of the points associated to the cell. An illustration is given in Fig. 6.
The two maps are generated from the same input mesh. On the left, intensity of
the pixels is calculated from the distance to the centerline. On the right, intensity
of the pixels is calculated from the delta distances. With the map obtained by
the distance to the centerline, we can observe the artefacts, the yellow and red
traces, due to the non-cylindrical tree, while using the delta distance, these
traces disappear and the defects become more visible. Figure 7, on the first line,
provides several relief maps deduced from this process.
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(a) Distances to the centerline (b) Relief map

Fig. 6. Difference between the distance map (a) and the relief map (b).

Fig. 7. Examples of relief maps. Red color for the stronger reliefs. Blue color for the
lower reliefs. The upper row is not improved with a multi-resolution analysis. (Color
figure online)

Multi-resolution Analysis. It is possible that some cells of the relief map do
not contain a value because no point is associated with them. To handle this, we
propose a multi-resolution analysis to improve the obtained relief map. In the
proposed process, for every empty cell, we reduce the resolutions by a factor 1

2n ,
with n ∈ N, until the cell contains at least one point. It should be noticed that if
n is too high, we may lost information of delta distance for the defect detection.
Therefore, during the multi-resolution analysis, we fix the limite of n to four.
Figure 8 illustrates the multi-resolution analysis to obtain a value in an empty
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cell. We consider in this example an array T with a resolution of 10 × 10. Some
cells contain black dots, corresponding to the points previously discretized. In
others, there is none, like the cell located in (2, 2). The multi-resolution analysis
is illustrated by the colors of the borders of the table. Respectively, the black,
red and blue borders correspond to resolutions reduced by a factor of 1

1 , 1
21 , 1

22 .
We look for the information in the cell (2, 2), then (1, 1) of the red discretiza-
tion, then (0, 0) of the blue discretization, etc. ... The value in the (2, 2) cell is
then the maximum of the delta distances of the points in the (0, 0) cell of the
blue discretization. To represent the discretization in the form of an image we
associate a gray intensity to the delta distance. This intensity is distributed on a
fixed scale: 1cm equals ten gray levels starting from −5. The colored relief maps
in this article are obtained by applying a color scheme from blue to red. The
bottom row in Fig. 7 shows the improvement brought to the relief maps with
the multi-resolution analysis. We can see in Fig. 9, results of the multi-resolution
analysis centered on a branch scar type defect.

3 Segmentation with U-Net Architecture

Hereafter, we process the detection of defects on tree barks using the previously
obtained relief map. Note that the 3D problem of defect detection on tree bark
surfaces becomes a 2D problem of relief map segmentation. More precisely, it is a
binary-image-classification in which each pixel of the relief map will be classified
as defect or not. We can observe in Fig. 7, that the defects on tree barks may
have arbitrary size, shape and orientation. Furthermore, the roughness of the
tree bark, the variability of the defects on the same species and between the
different species make the detection task difficult to automate by conventional
segmentation algorithms.

Over the past few years, the deep-learning methods are becoming common
and successful for the segmentation task with remarkable performance improve-
ments. Indeed, they often achieve the highest accuracy rates on popular seg-
mentation benchmarks comparing to the classical computer-vision approaches.
Furthermore, the deep-learning algorithms can be adapted to different problems
as they can learn the hidden high-level features from the image directly, and
have capacity to represent and recognize the complex structures.

In this paper, we use a deep learning-based segmentation method, namely
U-Net [22], to detect tree bark defects with the relief maps as input. It should
be mentioned that in the context of surface-singularity detection, several neural
network architectures have been proposed (see Sect. 1). As stated in [22], U-Net
enables the model to be trained using a small number of samples, and to create
a precise pixel-wise mask of interest objects in the images. Thus, it is a well-
suited architecture for our segmentation problem. In the following, we describe
a modified version of the original U-Net [22] for detecting tree bark defects, and
the generation of training data from the relief maps.
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Fig. 8. Illustration of the multi-resolution analysis on an example of size 10 × 10.
Ajouter description

Fig. 9. Effect of multi-resolution analysis. Left: Without multi-resolution processing,
we can see the missing pixels. Right: A relief map completed with multi-resolution
analysis.

3.1 Segmentation Network

The U-Net was first introduced in [22] as a fully convolutional network (FCN)
architecture for biomedical image segmentation, and it was designed for a precise
pixel-wise segmentation. Recently, many variants of U-Net architecture have
been proposed to address the segmentation of medical images, satellite images
such as U-Net++ [31], KU-Net [29], TernausNet [8], . . . U-Net is well-known for
its performance to be trained with very few training images.

U-Net is an auto-encoder architecture. The encoder stage takes the input
images and extracts features from objects in the image, then condenses them into
smaller layers. These features are propagated in the decoder stage to produce a
segmentation.

The original U-Net proposes to use convolution layers followed by max pool-
ing for down-sampling in encoding part, while the decoding part consists of up-
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Fig. 10. The architecture for tree bark defect detection based on U-Net [22].

sampling followed by concatenation with the corresponding layer of the encoding
part. Each layer is followed by the rectify linear unit (ReLu) activation function,
except the last one. This final layer is a 1× 1 convolution followed by a pixel-wise
soft-max over the final feature map. The cross entropy loss function is used to
update weights of the network. The soft-max function redistributes the weights
of the final layer of the network in the interval of [0, 1] modeling a probability dis-
tribution over predicted output classes. In total the network has 23 convolutional
layers. More details of U-Net can be found in [22].

In this paper, to address our problem of detecting tree bark defects which
is defined as two-class segmentation, we made several changes to the original
U-Net. In order to reduce the over-fitting of the considered neural network, we
apply a regularization technique, called drop-out. More precisely, we add two
dropout layers in the encoder and decoder, with probability 0.5, to randomly
drop some of the connections between layers. In addition, due to the dying ReLU
problem [16] –i.e., the ReLU neurons become inactive and only output 0 for any
input– the Leaky ReLu activation function is employed instead of ReLU from
the original architecture. Finally, in the last layer, we use a Sigmoid activation
function instead of soft-max function to ensure the output pixel values range
between 0 and 1. For the training, we use input image of size 320× 320 pixels.
The proposed network architecture is illustrated in Fig. 10.

3.2 Training Data

The training dataset for U-Net framework is built from the relief maps gener-
ated from tree bark surfaces by the process described in Sect. 2. It should be
mentioned that we only have 25 annotated meshes –i.e., 25 relief maps with
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Fig. 11. Illustration of extracting patches of size 320 × 320 pixels from the relief and
the annotated maps.

ground-truths– of tree bark surfaces for the learning process (for more details,
see Sect. 4.1). Due to this limited number of samples, two strategies have been
adopted to augment the existing data while keeping the significant characteris-
tics of learning objects which are tree bark defects. First and foremost, we split
each relief map into patches of same size. For this, we carry out two types of
cutting (see Fig. 11). The first one aims to obtain samples centered on defects.
More precisely, we perform the splitting of relief map according to the barycen-
ter of the connected component associated to the defect in the annotated image.
Note that if a defect is close to the border, a translation is applied to obtain
a patch containing the defect and being included in the map. The second one
collects samples that do not contain any defect so that the network can learn
tree bark without defect. Some samples of extracted patches with and without
defects are given in Fig. 12. It should be mentioned that the size of the gener-
ated patches is limited by the width and height of our relief maps. As observed
in Fig. 7, the relief maps may have different sizes because of the discretization
being made with respect to the circumference and height of the tree bark (see
Sect. 2). For our framework, the patches are of size 320× 320 pixels which is the
largest size that could be extracted from the relief maps. The obtained images
are then randomly separated into two subsets with a ratio of 7:3 for the training
and validation of the network.

After this splitting process, different transformation techniques have also
been used on the obtained patches for data augmentation. In particular, we
consider the operations: rotation, vertical and horizontal flip, zoom and deletion
of rectangular area randomly [3]. Note that this data augmentation is performed
on the fly, i.e., during the training time.
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(a) Extracted patches with defects from relief maps

(b) Extracted patches with defects from annotated maps

(c) Extracted patches without defect from relief maps

Fig. 12. Some samples from training data.

4 Experiments

4.1 Dataset

We have two datasets for our experiments: INRAE1a and INRAE1b.
INRAE1a contains 10 trunks of different species: beech (1), birch (1), elm (1),
fir (2), red oak (2), wild cherry (2) and service wood (1). INRAE1b contains 15
meshes including alder (4), aspen (4), beech (1), birch (2), horn beam (1), lime
(1), red oak (2). The first dataset was used in [18], experiments were carried
out on INRAE1a to compare performance and robustness of our method with
[13] and [18] on different tree species. The relief maps of INRAE1a are given in
Fig. 14. The second dataset is used for the training and illustrated in Fig. 13.

Both datasets have the ground-truths being made by hand-labeling defects.
The ground-truth is given as a set of point indices associated to the defect. These
indices are then used to generate the annotated maps for training the network.

4.2 Network Training

The training process was first performed on the relief maps generated from 15
meshes of INRAE1b. We used the parameters recommended in [17] for computing
these maps. After splitting the obtained relief maps into patches (see Sect. 3.2),
we divide the patches of each map into two subsets: 70% for training and 30% for
validation. This subdivision allows to have the same bark variability on training
and validation. To summarize, the whole dataset has 265 images of size 320× 320
pixels, it is partitioned into 204 images for training and 61 images for validation.

The training process is done on GPU (geforce RTX 2080Ti with 12Go RAM).
The modified U-Net is implemented using Tensorflow 2.2 [26] and Keras [9]. Dur-
ing the training, data augmentation was applied randomly to the input images,
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WildServiceTree Alder1 Alder2 Alder3 Alder4 Birch2 Birch Birch4

Hornbeam4 Red oak2 Redoak3 Redoak4 Redoak1 Beech Beech3 Linden

Fig. 13. Illustration of input 3D points of the mixed test.

including rotation, vertical and horizontal flip, zoom and deletion of rectangular
area randomly [3]. We used the Adam optimiser [12], and set the learning rate
at 0.0001, the two parameters β1 = 0.9 and β2 = 0.99 (default values in Tensor-
flow 2.2). We trained our network for 40 epochs, each epoch comprised 63 steps
with 10 images per batch. About the parameters of dropout rate δ and Leaky
ReLu activation α, several values have been tested, and we come out with δ = 0.5
and α = 0.01 for the smallest loss function (binary cross entropy) on the valida-
tion. It should be mentioned that our training is quite fast, it takes about 14 s
per epoch. In other words, the proposed architecture allows a high-quality seg-
mentation and very fast training –about 10min for the whole training process–
with very small dataset. In particular, the prediction takes, on average, 451 ms
per map.

4.3 Experimental Results

The first experiments were performed on INRAE1a. More precisely, the relief
maps were generated for the 10 meshes of the dataset, then predicted by our
network which is previously trained on INRAE1b. The output prediction is a
gray-level image. We threshold this image at 0.5 to obtain a binary image in
which the white pixels indicate the tree defect and black is not. The results are
given in Fig. 14.

To evaluate and compare the methods, we used the classic metrics: precision,
recall and F measure (F1). For a fair comparison, we performed the evaluation
measures on the mesh points, as done in [18], but not the predicted maps. As
described in Sect. 2.3, from pixel positions, we can easily retrieve the mesh point
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indices associated to the pixel, and identify those points for localizing the defects
on the mesh.

Fig. 14. Results on INRAE1a. First row: relief maps, second row: ground-truths, Third
row: predictions by our network.

Table 1 shows the obtained results. Generally, the proposed method outper-
forms both cylindrical-based [13] and patch-based [18] methods. We improve the
detection performance, about 41% and 8% better in F1 measure comparing to
[13] and [18], respectively. Figure 15 shows a visual comparison on meshes of the
results obtained by the proposed method and the patch-based method [18]. We
can see in Fig. 15 (a) that our method tends to produce fewer false positives,
but sometimes miss small defects. This may due to the fact that the network
has not been trained with samples containing small defects. Figure 15 (b) is an
example where the detection by our method covers better the form of defects
than patch-based method [18].

We carried out a second experiment to demonstrate the generalization of
the network. Using the same parameters, we trained our CNN on mixed data
of INRAE1a and INRAE1b, i.e., 25 meshes in total. We generated 5 different
folds, each of which contains 20 meshes for training and 5 for validation. Table 2
summarizes the distribution of data and the results obtained. For each fold in
Table 2, the meshes indicated in Mesh id correspond to test data, and the others
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Table 1. Comparison results: Overall row is computed from the sum of TP ,TN ,FP
and FN on all the tested meshes.

INRAE1a Patch method [18] Cylinder method [13] Our method

Prec Recall F1 Prec Recall F1 Prec Recall F1

Fir1 0.747 0.769 0.757 0.137 0.937 0.238 0.746 0.857 0.797

Fir2 0.673 0.775 0.719 0.353 0.452 0.395 0.792 0.801 0.795

WildCherry1 0.696 0.765 0.728 0.683 0.512 0.584 0.757 0.881 0.813

WildCherry2 0.846 0.711 0.771 0.661 0.822 0.732 0.799 0.955 0.870

Redoak1 0.749 0.742 0.744 0.479 0.444 0.459 0.866 0.696 0.770

Redoak2 0.428 0.833 0.564 0.061 0.400 0.104 0.730 0.428 0.538

Beech 0.670 0.604 0.634 0.360 0.289 0.320 0.863 0.591 0.701

Birch 0.733 0.756 0.744 0.607 0.421 0.496 0.774 0.726 0.748

Elm 0.694 0.755 0.721 0.494 0.309 0.378 0.881 0.642 0.741

WildServiceTree 0.247 0.741 0.370 0.057 0.463 0.100 0.856 0.504 0.633

Overall 0.685 0.740 0.710 0.289 0.563 0.380 0.793 0.789 0.790

are used for training. In this way, we ensure to test and compare our method
with the others on all available data. It can be observed that, over the 5 folds,
we generally obtain the best F1 measure, and almost better on the precision
comparing to [13] and [18]. The worst scoring result by the proposed method is
Beech3 in the fold 5, we are at 0.336 for F1. Though, this score is comparable
to the best score of 0.493 obtained by [18].

Note that the measured results of the methods [18] and [13] for the dataset
INRAE1a (see Table 2) are from [18], while the results on the new dataset in
Table 2 are obtained by using the source code from the GitHub repository with
the recommended parameters described in [17,18].

An online demonstration for testing the proposed method is available at:
https://kerautret.github.io/TLDDC/

5 Source Code to Reproduce Results

5.1 Global View

The source code to reproduce the results presented in the article, includ-
ing relief map and segmentation, is available at the GitHub repository:

https://github.com/FlorianDelconte/TLDDC
The repository is composed of different files and directories:

– The directory Centerline contains the centerline code.
– The directory examples contains INRAE1e and INRAE1b meshes, each

mesh is accompanied by two files indicating the ground-truth location of

https://kerautret.github.io/TLDDC
https://github.com/FlorianDelconte/TLDDC
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Our method Patch method [18] Our method Patch method [18]

(a) Redoak2 (b) WildServiceTree

Our method Patch method [18] Our method Patch method [18]

(c) WildCherry1 (d) WildCherry2

Fig. 15. Comparison on mesh. Yellow is true positive, red is false negative and green
is false positive compared to the ground-truth. (Color figure online)

defects using mesh faces and mesh points, suffixed by -groundtruth.id and
-groundtruth-points.id respectively.

– The directory models contains the trained models in the paper: five files of
.hdf5 extension for the corresponding k-fold, and one named KFoldAssocia-
tion for a relation file between mesh example and the k-fold.

– The directories mesures and run contain python and bash scripts to directly
reproduce the results of this article.

– The code for generating the relief maps is found in UnrolledMap.h,
UnrolledMap.cpp, DefectSegmentationUnroll.h and DefectSegmentationUn-
roll.cpp.
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Table 2. Comparison results on mixed dataset. Overall row is computed from the sum
of TP ,TN ,FP and FN on all the tested meshes.

Fold number Mesh id Patch method [18] Cylinder method [13] Our method

Prec Recall F1 Prec Recall F1 Prec Recall F1

1 Beech 0.872 0.511 0.643 0.325 0.316 0.318 0.853 0.655 0.740

Birch 0.647 0.843 0.731 0.577 0.445 0.500 0.818 0.692 0.749

Alder1 0.089 0.746 0.158 0.044 0.380 0.075 0.798 0.391 0.524

Aspen1 0.462 0.721 0.562 0.174 0.671 0.274 0.831 0.794 0.811

Hornbeam4 0.308 0.802 0.445 0.016 0.954 0.030 0.779 0.589 0.669

Overall 0.480 0.687 0.563 0.089 0.484 0.150 0.831 0.687 0.750

2 Elm 0.771 0.669 0.715 0.158 0.670 0.253 0.889 0.578 0.699

Fir1 0.600 0.824 0.693 0.107 0.758 0.187 0.831 0.819 0.824

Alder2 0.446 0.796 0.571 0.283 0.530 0.366 0.612 0.843 0.707

Aspen2 0.666 0.619 0.641 0.352 0.303 0.323 0.917 0.419 0.574

Birch4 0.673 0.572 0.616 0.509 0.532 0.518 0.694 0.819 0.750

Overall 0.618 0.674 0.643 0.199 0.527 0.286 0.759 0.673 0.712

3 Fir2 0.656 0.814 0.725 0.279 0.514 0.360 0.820 0.822 0.820

Redoak1 0.706 0.743 0.723 0.487 0.373 0.420 0.834 0.681 0.748

Alder3 0.414 0.556 0.474 0.352 0.431 0.385 0.775 0.381 0.510

Aspen3 0.544 0.523 0.532 0.116 0.386 0.175 0.892 0.579 0.701

Linden 0.791 0.600 0.681 0.154 0.950 0.264 0.874 0.644 0.740

Overall 0.624 0.648 0.635 0.189 0.565 0.281 0.845 0.635 0.724

4 Redoak2 0.428 0.827 0.562 0.062 0.474 0.108 0.802 0.350 0.486

WildCherry1 0.680 0.772 0.721 0.679 0.593 0.632 0.826 0.805 0.814

Alder4 0.901 0.625 0.737 0.782 0.489 0.601 0.952 0.756 0.841

Aspen4 0.897 0.454 0.602 0.341 0.729 0.463 0.953 0.632 0.759

Redoak4 0.479 0.760 0.587 0.086 0.271 0.12 0.815 0.431 0.563

Overall 0.749 0.617 0.676 0.379 0.589 0.460 0.904 0.699 0.787

5 WildCherry2 0.788 0.744 0.765 0.807 0.674 0.733 0.852 0.943 0.894

WildServiceTree 0.262 0.732 0.384 0.051 0.479 0.090 0.856 0.559 0.675

Beech3 0.497 0.491 0.493 0.143 0.192 0.16 0.867 0.231 0.364

Birch2 0.395 0.595 0.474 0.083 0.175 0.108 0.804 0.454 0.580

Redoak3 0.563 0.618 0.587 0.143 0.656 0.232 0.862 0.622 0.722

Overall 0.564 0.638 0.597 0.222 0.480 0.301 0.851 0.627 0.721

5.2 Installation

For compilation process, the program requires this libraries to be installed:

– DGtal 1 1 0 or later: https://github.com/DGtal-team/DGtal
– Eigen3: https://eigen.tuxfamily.org/dox/GettingStarted.html
– GNU GSL: https://www.gnu.org/software/gsl/
– PCL: https://pointclouds.org/downloads/

To use the segmentation models, these following dependencies are necessary:

– Tensorflow2.2: https://www.tensorflow.org/install/pip
– tensorflow-addons: https://www.tensorflow.org/addons/overview

https://github.com/DGtal-team/DGtal
https://eigen.tuxfamily.org/dox/GettingStarted.html
https://www.gnu.org/software/gsl/
https://pointclouds.org/downloads/
https://www.tensorflow.org/install/pip
https://www.tensorflow.org/addons/overview
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– openCV: https://pypi.org/project/opencv-python/

Instructions for installing on ubuntu 20.04 and debian 10 have been tested
and are detailed on GitHub. Once the dependencies are installed and the sources
downloaded, the code is built by using the following commands:

cd TLDDC
mkdir build
cd build
cmake .. -DDGtal DIR=/path/to/DGtalSourceBuild
make

Two executable files are generated in the build directory:

– segunroll allows to generate relief maps from meshes.
– segToMesh allows to project the segmentation of the defects of the relief map

towards the mesh.

5.3 Usage

To generate the relief map, run the following command from build:

./segunroll -i InputMesh [-h] [-n] [CenterlineParameters] [ReliefMapParameters]

With

– InputMesh is the path to a trunk mesh.
– -h is the option for the command line helper.
– -n is the option allows to invert the normals of the faces of the meshes1.
– CenterlineParameters contains the parameters of centerline computation (--

accRadius, --trackStep, --binWidth, --patchWidth, --patchHeight, --voxelSize).
They are set by default with the recommended values in [17].

– ReliefMapParameters contains the parameters for the relief map (--
decreaseFactor, --grayscaleOrigin, --intensityPerCm). They are also set with
default values.

The following files are created after executing the command:

– centerline.off : the generated centerline.
– discretisation.txt : the discretization map.
– output.pgm: the generated relief map.

To segment the bark tree defects, run the following command from build:

python3 ../run/predict.py InputReliefMap PathToModel Threshold

With

– InputReliefMap contains the path to the relief map.
1 The normals must be directed towards the interior of the tree.

https://pypi.org/project/opencv-python/
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– PathToModel contains the model file, one of the five in the models directory.
– Treshold contains the threshold ([0; 255]) to apply on the network prediction.

The following files are created after executing the command:

– outputSEG.pgm: the prediction result by the network.
– outputSEGTRESH.pgm: the segmented image after thresholding.

To project the segmented result on the input mesh, run the following command
from build:

./segToMesh -i InputMesh

With InputMesh contains the path to the same mesh used to generate the relief
map. The following files are created after executing the command:

– output-defect.id : the file containing the id of the points of the mesh belonging
to a defect (to compare with groundTruth).

– Poutputdefect.off : the output mesh with the segmented defects in green.

To execute these three scripts in succession, run the command from run:

./deep-segmentation.sh PathToModel InputMesh Treshold

To reproduce the measurements in Table 1, run the following command from
mesures:

./testINRAE1A.sh

This command fill the results.tex file which contains the performance measure
presented in this article.
To reproduce the Table 2 table, run the following command from mesures:

./testK folds.sh

After executing this command, five files are created: resultsN.tex (with N =
1...5) containing the performance measure corresponding to the lines in Table 2.

6 Conclusion

From the difficult problem of tree defect detection, new contributions is proposed
in this work with first a new relief map able to locally adapt itself on global shape
of the trunk. Such an adaption is important since the trunk geometry may appear
with significant variations which make wrong the segmentation of the defect. The
second contribution, is to propose a segmentation process based on the U-Net
architecture allowing to outperform the previous works. The results, source code
and dataset are all available on a git repository allowing the reproduction of the
results together with an online demonstration.

In future works, we plan to address the defect classification. Such features
will be interesting to get a finer estimation of the wood quality. Other perspec-
tives consist in investigating the 3D point cloud semantic segmentation such as
PointNet [20], ConvPoint [1], PointCNN [15], . . .
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