
torchdistill: A Modular,
Configuration-Driven Framework

for Knowledge Distillation

Yoshitomo Matsubara(B)

University of California, Irvine, CA 92697, USA
yoshitom@uci.edu

Abstract. While knowledge distillation (transfer) has been attracting
attentions from the research community, the recent development in the
fields has heightened the need for reproducible studies and highly gen-
eralized frameworks to lower barriers to such high-quality, reproducible
deep learning research. Several researchers voluntarily published frame-
works used in their knowledge distillation studies to help other interested
researchers reproduce their original work. Such frameworks, however, are
usually neither well generalized nor maintained, thus researchers are still
required to write a lot of code to refactor/build on the frameworks for
introducing new methods, models, datasets and designing experiments.
In this paper, we present our developed open-source framework built on
PyTorch and dedicated for knowledge distillation studies. The framework
is designed to enable users to design experiments by declarative PyYAML
configuration files, and helps researchers complete the recently proposed
ML Code Completeness Checklist. Using the developed framework, we
demonstrate its various efficient training strategies, and implement a
variety of knowledge distillation methods. We also reproduce some of
their original experimental results on the ImageNet and COCO datasets
presented at major machine learning conferences such as ICLR, NeurIPS,
CVPR and ECCV, including recent state-of-the-art methods. All the
source code, configurations, log files and trained model weights are pub-
licly available at https://github.com/yoshitomo-matsubara/torchdistill.

Keywords: Knowledge distillation · Open source framework ·
Reproducibility

1 Introduction

Deep learning methods have been achieving state-of-the-art performances, con-
tributing to the rapid development of applications for a variety of tasks such as
image classification [11,23,41,43] and object detection [4,10,35]. One of the crit-
ical problems with such state-of-the-art models is their complexity, thus the com-
plex models are difficult to be deployed for real-world applications. In general,
there is a trade-off between model complexity and inference performance (e.g.,
c© Springer Nature Switzerland AG 2021
B. Kerautret et al. (Eds.): RRPR 2021, LNCS 12636, pp. 24–44, 2021.
https://doi.org/10.1007/978-3-030-76423-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76423-4_3&domain=pdf
http://orcid.org/0000-0002-5620-0760
https://github.com/yoshitomo-matsubara/torchdistill
https://doi.org/10.1007/978-3-030-76423-4_3

torchdistill: A Modular, Configuration-Driven Framework 25

Table 1. Knowledge distillation frameworks. torchdistill supports modules in
PyTorch and torchvision such as loss, datasets and models. ImageNet: ILSVRC
2012 [37], YT Faces: YouTube Faces DB [47], MIT Scenes: Indoor Scenes dataset [32],
CUB-2011: Caltech-UCSD Birds-200-2011 [45], Cars: Cars dataset [18], SOP: Stanford
Online Products [27]. P: Pretrained models, M: Module abstraction, D: Distributed
training.

Framework Supported datasets Models P M D

Zagoruyko & Komodakis [52] CIFAR-10, ImageNet Hard-coded �
Passalis & Tefas [29] CIFAR-10, YT Faces Hard-coded

Heo et al. [12] CIFAR-10, MIT scenes Hard-coded �
Park et al. [28] Cars, CUB-2011, SOP Hard-coded

Tian et al. [42] CIFAR-100 Hard-coded �
Yuan et al. [51] CIFAR-10, -100, Tiny ImageNet Hard-coded �
Xu et al. [49] CIFAR-100 Hard-coded �
torchdistill torchvision* torchvision* � � �
* torchdistill supports those implemented with PyTorch. In this paper, our focus
is on torchvision.

measured as accuracy), and there are three different types of method to make
models deployable: 1) designing lightweight models, 2) model compression/prun-
ing, and 3) knowledge distillation. Lightweight models such as MobileNet [14,38],
MnasNet [40] and YOLO series [33,34] often sacrifice inference performance to
reduce inference time, compared to complex models e.g., ResNet [11] and Mask
R-CNN [10]. Model compression and pruning [9,21] techniques reduce model size
by quantizing parameters and pruning redundant neurons, and such methods are
covered by Distiller [54], an open-source library for model compression.

In this paper, our focus is on the last category, knowledge distillation, that
trains a simpler (student) model to mimic the behavior of a powerful (teacher)
model. Knowledge distillation [13] stems from the study by Buciluǎ et al. [3],
that presents a method to compress large, complex ensembles into smaller models
with small loss in inference performance. Interestingly, Ba and Caruana [2] report
that student models trained to mimic the behavior of the teacher models (soft-
label) significantly outperform those trained on the original (hard-label) dataset.
Following these studies, knowledge distillation and transfer have been attracting
attention from the research communities such as computer vision [36] and natural
language processing [39].

As summarized in Table 1, some researchers voluntarily publish their knowl-
edge distillation frameworks e.g., [12,28,29,42,49,52] to help other researchers
reproduce their original studies. However, such frameworks are usually not either
well generalized or maintained to be built on. Besides, Distiller [54] supports only
one method for knowledge distillation, and Catalyst [17] is a framework built on
PyTorch with a focus on reproducibility of deep learning research. To support
various deep learning methods, these frameworks are well generalized, yet require
users to hardcode (reimplement) critical modules such as models and datasets,

26 Y. Matsubara

even if the implementations are publicly available in popular libraries, to design
complex knowledge distillation experiments. As pointed out by Gardner et al. [6],
reference methods and models are often re-implemented from scratch, and this
makes it difficult to reproduce the reported results. For further advancing the
deep learning research, a new generalized framework is therefore needed, and
the framework should be able to allow researchers to easily try different modules
(e.g., models, datasets, loss configurations), implement various approaches, and
take care of reproducibility of their work.

The concept of our framework, torchdistill,1 is highly inspired by
AllenNLP [6], a platform built on PyTorch [30] for research on deep learning
methods in natural language processing. Similar to AllenNLP, torchdistill sup-
ports the following features:

– module abstractions that enable researchers to write higher-level code for
experiments e.g., model, dataset, optimizer and loss;

– declarative PyYAML configuration files, which can be seen as high-level sum-
maries of experiments (training and evaluation), enable to use anchors and
aliases in the file to refer to the same object (e.g., file paths) and simplify
themselves, and make it easy to change the abstracted components and hyper-
parameters; and

– generalized reference code and configurations to apply knowledge distillation
methods to PyTorch and torchvision models pretrained on well-known com-
plex benchmark datasets: ImageNet (ILSVRC 2012) [37] and COCO 2017 [22].

Furthermore, torchdistill supports 1) seamless multi-stage training, 2)
caching teacher’s outputs, and 3) redesigning (pruning) teacher and student
models without hard-coding (reimplementation). To the best of our knowledge,
this is the first, highly generalized open-source framework that can support a
variety of knowledge distillation methods, and lower barriers to high-quality,
reproducible deep learning research [8]. Researchers can explore methods and
shape new approaches, building on this generalized framework that makes it
easy not only to customize existing methods and models, but also introduce com-
pletely new ones. Using some of our reimplemented methods, we also reproduce
the experimental results on ILSVRC 2012 and COCO 2017 datasets reported in
the original studies.

2 Framework Design

Our developed framework, torchdistill, is an open source framework dedicated
for knowledge distillation studies, built on PyTorch [30]. For vision tasks such as
image classification and object detection, the framework is designed to support
torchvision, that offers a lot of options for datasets, model architectures and
common image transformations. The collection of supported reference models
and datasets in our framework are dependent on the version of user’s installed

1 https://github.com/yoshitomo-matsubara/torchdistill.

https://github.com/yoshitomo-matsubara/torchdistill

torchdistill: A Modular, Configuration-Driven Framework 27

torchvision. For instance, when users find new models in the latest torchvision,
they can shortly try the models simply by updating the torchvision and config-
uration files for their experiments with our framework.

2.1 Module Abstractions

An objective of module abstractions in our framework is to enable researchers to
experiment with various modules by simply changing a PyYAML configuration
file described in Sect. 2.3. We focus abstraction on critical modules to experi-
ment, specifically model architectures, datasets, transforms, and losses to be min-
imized during training. These modules are often hard-coded (See Appendix A)
in authors’ published frameworks [12,28,29,42,49,52], and many of the hyper-
parameters are hard-coded as well.

Model Architectures: torchvision offers various model families for vision tasks
from AlexNet [20] to R-CNNs [10,35], and many of them are pretrained on large
benchmark datasets. Specifically, the latest release (v0.8.2) provides about 30
image classification models pretrained on ImageNet (ILSVRC 2012) [37] and 4
object detection models pretrained on COCO 2017 [22]. As our framework sup-
ports torchvision for vision tasks, researchers can use such pretrained models
as teacher and/or baseline models (e.g., student trained without teacher). In
addition to the pretrained models available in torchvision, they can use their
own pretrained model weights and any model architectures implemented with
PyTorch. Moreover, torchdistill supports PyTorch Hub2 and enable users to
import modules via the hub by specifying repository names in a PyYAML con-
figuration file.

Datasets: As described above, torchvision also supports a variety of datasets,
and previous studies [1,12,16,24,28,29,31,36,42,44,46,50,52] use many of them
to validate proposed distillation techniques such as ImageNet [37], COCO [22],
CIFAR-10 and -100 [19], and Caltech101 [5]. Similar to model architectures,
torchdistill supports such datasets and can collaborate with any datasets imple-
mented with PyTorch.

Transforms: In vision tasks, there are de facto standard image transform tech-
niques. Taking image classification on the ImageNet dataset as an example, a
standard transform pipeline for training with torchvision3 consists of 1) making
a crop of random size of the original size and with a random aspect ratio of the
original aspect ratio, 2) horizontal reflection with 50% chance for data augmen-
tation to reduce a risk of overfitting [20], 3) PIL-to-Tensor conversion, and 4)
channel-wise normalization using (0.485, 0.456, 0.406) and (0.229, 0.224, 0.225)
as means and standard deviations, respectively. In torchdistill, users can define
their own transform pipeline in a configuration file.

2 https://pytorch.org/hub/.
3 https://github.com/pytorch/vision/blob/master/references/classification/train.py.

https://pytorch.org/hub/
https://github.com/pytorch/vision/blob/master/references/classification/train.py

28 Y. Matsubara

Losses: In distillation process, student models are trained using outputs from
teacher models, and the research community has been proposing a lot of unique
losses with/without task-specific losses such as cross entropy loss for classification
tasks. PyTorch [30] supports various loss classes/functions, and simple distilla-
tion losses can be defined in a configuration file by combining such supported
losses using torchdistill’s customizable loss module (See Sect. 2.6).

2.2 Registry

The registry is an important component in torchdistill as abstracted modules
are instantiated by mapping strings in the configuration file to the objects in
code. Furthermore, it would make it easy for users to collaborate their imple-
mented modules/functions with this framework. Similar to AllenNLP [6] and
Catalyst [17], this can be done even outside the framework by using a Python dec-
orator. The following example shows that a new model class, MyModel, is added
to the framework by simply using @register model (defined in the framework),
and the new class can be instantiated by defining “MyModel” with required
parameters at designated places in a configuration file.
@register model
class MyModel(nn.Module):

def init (self, ∗args, ∗∗kwargs):
super(). init ()
self.conv1 = nn.Conv2d(∗∗kwargs[’conv1 kwargs’])
...

2.3 Configurations

An experiment can be defined by a PyYAML configuration file (See Appendix B),
that allows users to tune hyperparameters, and change methods/models with-
out hard-coding. With PyYAML’s features, configuration files allow users to
leverage anchors and aliases, and these features would be helpful to simplify the
configurations in cases that users would like to reuse parameters defined in the
configuration file such as root directory path for datasets, parameters and model
names as part of checkpoint file paths for better data management. In a configu-
ration file, there are three main components to be defined: datasets, teacher and
student models, and training. Each of the key components is defined by using
abstracted and registered modules described in Sects. 2.1 and 2.2. A configura-
tion file gives users a summary of the experiment, and shows all the parameters
to reproduce the experimental results except implicit factors such as hardware
specifications used for the experiment.

The following example illustrates how to define a global teacher model
declared in a PyYAML configuration file. As described in the previous sections,
various types of modules are abstracted in our framework, and such modules
(classes and functions) in user’s installed torchvision are registered. In this exam-
ple, ’resnet34’ function4 is used to instantiate an object of type ResNet by using
4 https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.resn

et34.

https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.resnet34
https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.resnet34

torchdistill: A Modular, Configuration-Driven Framework 29

a dictionary of keyword arguments (**params). i.e. num classess = 1000 and
pretrained = True are given as arguments of ’resnet34’ function. For image clas-
sification models implemented in torchvision or those users add to the registry
in our framework, users can easily try different models by changing ’resnet34’
e.g., ’densenet201’ [15], ’mnasnet1 0’ [40]. Besides that, ckpt indicates the file
path of checkpoint, that is ’./resnet34.pt’ in the example defined by leveraging
some of YAML features: anchors (&) and aliases (*). For teacher model, the
checkpoint will be used to initialize the model with user’s own model weights if
the checkpoint file exists. Otherwise, ’resnet34’ in this example will be initialized
with torchvision’s pretrained weights for ILSVRC 2012.
teacher model :

name: &teacher ’ r e sne t34 ’
params:

num classes : 1000
pre t ra ined : True

ckpt: ! j o i n [’ . / ’ , ∗ teacher , ’ . pt ’]

Furthermore, torchdistill offers an option to generate log files that monitor
the experiments. For instance, a log file presents what parameters were used,
when executed, the trends of training behavior (e.g., training loss, learning rate
and validation accuracy) at a frequency set in the configuration file, and evalu-
ation results.

These configuration and log files5 will also help the researchers complete ML
Code Completeness Checklist,6 that was recently proposed to facilitate repro-
ducibility in the research community as part of the official code submission pro-
cess at major machine learning conferences e.g., NeurIPS, ICML and CVPR.

2.4 Dataset Wrappers

To support a wide variety of knowledge distillation methods, dataset is an impor-
tant module to be generalized. Usually, the dataset module in PyTorch and
torchvision returns a pair of input batch (e.g., collated image tensors) and tar-
gets (ground-truth) at each iteration, but some of the existing knowledge dis-
tillation approaches require additional information for the batch. For instance,
contrastive representation distillation (CRD) [42] requires an efficient strategy to
retrieve a large number of negative samples in the training session, that requires
the dataset module to return an additional object (e.g., negative sample indices).
To support such extensions, we design dataset wrappers to return input batch,
targets, and a supplementary dictionary, that can be empty when not used. For
the above case, the additional object can be stored in the supplementary dictio-
nary, and used when computing the contrastive loss. This design also enables us
to support caching teacher model’s outputs against data indices in the original
dataset so that teacher’s inference can be skipped by caching (serializing) out-
puts of the teacher model given a data index at the first epoch, and reading and
collating the cached outputs given batch of data indices at the following epochs.
5 Available at https://github.com/yoshitomo-matsubara/torchdistill/tree/master/

configs/.
6 https://github.com/paperswithcode/releasing-research-code.

https://github.com/yoshitomo-matsubara/torchdistill/tree/master/configs/
https://github.com/yoshitomo-matsubara/torchdistill/tree/master/configs/
https://github.com/paperswithcode/releasing-research-code

30 Y. Matsubara

(a) Knowledge distillation [13] using ResNet-
34 and ResNet-18 as teacher and student mod-
els, respectively.

(b) Hint-training with an auxiliary module
(convolutional regressor) as stage 1 of FitNet
method [36]. Its stage 2 is knowledge distilla-
tion as illustrated in Figure 1a.

Fig. 1. Knowledge distillation and FitNet methods. Yellow and blue modules indicate
that their parameters are frozen and trainable, respectively (Color figure online).

Table 2. Epoch-level training speed improvement by caching teacher’s outputs at
the 1st epoch, using ResNet-18 as student model for knowledge distillation [13].

Teacher ResNet-34 ResNet-50 ResNet-101 ResNet-152

No cache 801 sec 1,030 sec 1,348 sec 1,944 sec

Cache (1st) 859 sec 1,079 sec 1,402 sec 1,966 sec

Cache (2nd) 651 sec 649 sec 656 sec 917 sec

To demonstrate that caching improves training efficiency, we perform an
experiment with knowledge distillation [13] illustrated in Fig. 1a that caches
outputs of the teacher model at the first epoch for training ResNet-18 (student)
on ILSVRC 2012 dataset, and skips the teacher model’s inference by loading
and feeding the outputs cached on disk to the loss module. Table 2 suggests that
spending an extra one-minute at the 1st epoch to serialize teacher’s outputs, the
caching strategy makes the following training process (i.e. from the 2nd epoch)
approximately 1.23 – 2.11 times faster at epoch-level when using 3 NVIDIA
GeForce RTX 2080 Ti‘s with batch size of 256. Also, this improvement becomes
more significant when using a larger teacher model such as ResNet-152 (approx-
imately 2.11 times faster than training without cache). The ILSVRC 2012 train-
ing dataset consists of approximately 1.3 million images, and the cached files
consumes only 10GB whereas the original training dataset uses about 140GB.
Note that caching may not improve the training efficiency if teacher’s outputs
to be cached are much larger e.g., hint-based training [36] requires intermediate

torchdistill: A Modular, Configuration-Driven Framework 31

(a) 1st stage: training paraphraser for teacher model.

(b) 2nd stage: training student model and translator, using labels and outputs
of paraphraser’s middle layer.

Fig. 2. Factor transfer with two auxiliary modules.

outputs from teacher and student models. Also, this mode should be turned off
when applying data augmentation strategies.

2.5 Teacher and Student Models

Teacher-Student pairs are keys in knowledge distillation experiments, and
recently proposed approaches [1,12,31,36,42,49,50,52,53] introduce auxiliary
modules, which are used only in training session. Such auxiliary modules use
tensors from intermediate layers in models, and introducing the modules to the
models often results in branching their feedforward path as shown in Figs. 1
and 2. This paradigm, however, is also one of the backgrounds that researchers
decide to hard-code the models (e.g., modify the original implementations of
models in torchvision every time they change the placement of auxiliary mod-
ules for preliminary experiments) to introduce such auxiliary modules used for
their proposed methods, and make it difficult for other researchers to build on
the published frameworks [12,28,29,42,49,52].

Taking an advantage of forward hook paradigm in PyTorch [30], torchdis-
till supports introducing such auxiliary modules without altering the original

32 Y. Matsubara

implementations of the models. Specifically, users can register the framework’s
provided forward hooks to specific modules to store its input and/or output in
a I/O dictionary by specifying the module paths (e.g., “conv1” for a MyModel
object in Sect. 2.2) in the configuration files. The I/O dictionaries for teacher and
student models will be fed to a generalized, customizable loss module described
in Sect. 2.6.

For methods that not only require to extract the intermediate outputs (See
Fig. 1) but also feed the extracted outputs to trainable auxiliary modules in
different branches to be processed (See Fig. 2b), we define a special module
in the framework, that is designed to have a post-forward function. In Fig. 1,
for instance, the framework first executes ResNet-18 and extracts intermediate
output by a registered forward hook, and then the extracted output stored in
the student’s I/O dictionary will be fed to the regressor as part of the post-
forward process. The concept of the special module gives users more flexibility in
designing training methods while leaving the original implementations of models
(ResNet-34 and ResNet-18 in Fig. 2) unaltered.

2.6 Customizable Loss Module

Leveraging the I/O dictionaries that contain input/output of specific modules
with registered forward hooks, torchdistill provides a generalized customizable
loss module that allows users to easily combine different loss modules with bal-
ancing factors by configuration files such as those in Fig. 2b. Given a pair of
input x and ground-truth y, the I/O dictionaries consist of a set of keys J and
the values zSj and zTj (j ∈ J) extracted from student and teacher models respec-
tively. Using the I/O dictionaries and the ground-truth, the generalized loss is
defined as

L =
∑

j∈J

λj · Lj(zSj , zTj , y), (1)

where λj is a balancing weight (hyperparameter) for Lj , which is either a loss
module implemented in PyTorch [30] or user’s defined loss module in registry.

For instance, the loss function to train student model on ILSVRC 2015
dataset [37] at the 2nd stage of factor transfer (Fig. 2b) can be defined as:

L = λcls · Lcls(zScls, z
T
cls, y) + λFT · LFT(zSFT, zTFT, y) (2)

Lcls(zScls, z
T
cls, y) = CrossEntropyLoss(zScls, y)

LFT(zSFT, zTFT, y) =

∥∥∥∥∥
zSFT∥∥zSFT

∥∥
2

− zTFT∥∥zTFT
∥∥
2

∥∥∥∥∥
p

,

where λcls = 1, λFT = 1, 000 and p = 1, following [16].

torchdistill: A Modular, Configuration-Driven Framework 33

2.7 Stage-wise Training Configuration

In the previous sections, we describe the main features of torchdistill, and what
modules are configurable in the framework. We emphasize that all the training
configurations described above can be defined stage-wisely.

Seamless Multi-stage Training Configurations: Specifically, the framework is
designed to enable users to configure critical components such as 1) number
of epochs, 2) training and validation datasets, 3) teacher and student models, 4)
modules (layers) to be trained/frozen, 5) optimizer, 6) learning rate scheduler,
7) loss module. These components can be re-defined at each of training stages,
otherwise the framework reuses those from the previous stage. Notice that these
training configurations can be declared in a configuration file, and this design
enables to support not only two-stage training strategies [12,16,36,50], but also
more complicated distillation methods such as teacher assistant knowledge distil-
lation (TAKD) [26], that trains TAs to fill the gap between student and teacher
models. Transfer learning also can be supported by changing models and datasets
from stage to stage, and users would execute code with a configuration file only
once. Therefore, they will not need to execute code multiple times to perform
multi-stage training, including transfer learning.

Redesigning Models for Efficient Training: Furthermore, our framework gives
users an option to redesign teacher and student models at each stage by specify-
ing the required modules in a configuration file. Specifically, users are allowed to
rebuild models by reusing modules in the models optionally with auxiliary mod-
ules. Figure 1 shows an example that modules after the 8th and the 5th blocks
of the teacher and student models respectively can be pruned as the outputs of
the modules are not used in the hint-training (1st stage), thus not required to
be executed. In this specific case, the redesigned student model will consist of
the trainable (blue) modules and a regressor (auxiliary module) as illustrated
in Fig. 3, and the teacher and student architectures at the 2nd stage will be
reverted to the original ones (Fig. 1a) with parameters learnt at the 1st stage.
Also, the redesigned teacher/student model can be an empty module to save
execution time. In Fig. 2a, for instance, there is no need to feed input batch to
the student model (thus, can be empty) as at the 1st stage of factor transfer,
only the teacher model is executed to train the paraphraser.

As introduced in Sect. 2.4, when the teacher’s outputs are cacheable (e.g., in
terms of available disk space), teacher’s inference can be skipped by loading the
cache files produced at previous epoch. Redesigning models help users shorten
training sessions even when teacher’s outputs are not cacheable. Note that stu-
dent model’s outputs, however, cannot be cached as the model’s parameters are
updated every iteration. Table 3 suggests that redesigning models using only
modules to be executed for training would be an effective approach to saving
training time, and this improvement would be more critical for training mod-
els on large datasets and/or with a lot of epochs. We emphasize that users can
redesign (minimize) the models by specifying the required modules in a config-
uration file rather than hardcode (reimplement) the pruned models.

34 Y. Matsubara

Fig. 3. Hint-training with teacher and student models pruned simply by specifying
required modules in a configuration file for further efficient training, compared to a
naive configuration in Fig. 1.

3 Reference Methods

Here, we describe the reimplementations of knowledge distillation methods and
experiments to reproduce the reported results on ImageNet and COCO datasets.

Table 3. Epoch-level training speed improvement by redesigning teacher and stu-
dent (ResNet-18) models with required modules only for hint-training shown in
Fig. 3.

Teacher ResNet-34 ResNet-50 ResNet-101 ResNet-152

Original 934 sec 1,175 sec 1,468 sec 1,779 sec

Minimal 786 sec 929 sec 936 sec 1,022 sec

3.1 Reimplementations

Given that the pretrained models in torchvision are trained on large bench-
mark datasets, ImageNet (ILSVRC 2012) [37], and COCO 2017 [22], we focus
our implementations on these datasets as the pretrained models can be used
as teacher models and/or baseline student models (naively trained on human-
annotated datasets). Note that some of the methods are not validated on these
datasets in their original work.

torchdistill: A Modular, Configuration-Driven Framework 35

Table 4 shows a brief summary of reference distillation methods reimple-
mented with torchdistill, and indicates what additional modules were imple-
mented and added to the registry for reimplementing the methods. We emphasize
that methods without any check marks (�) in the Required additional modules
columns such as KD, AT, PKT, RKD, HND, SPKD, Tf-KD, GHND and L2 can
be reimplemented simply by adding the new loss modules to the registry in the
framework (Sect. 2.2).

Different from the existing frameworks [12,28,29,42,49,52], all the methods
in Table 4 are reimplemented independently from models in torchvision so that
users can easily switch models by specifying a model name and its parameters in a
configuration file. Taking image classification as an example, the shapes of inputs
and (intermediate) outputs for the models are often fixed (e.g., 3×224×224 and
1,000 respectively, for models trained on ImageNet dataset), that makes it easy
to match the shape of student’s output with that of teacher when computing
loss values to be minimized.

3.2 Reproducing ImageNet Experiments

In this section, we attempt to reproduce some experimental results with
their proposed distillation methods. In particular, we choose the attention
transfer (AT), factor transfer (FT) [16], contrastive representation distillation
(CRD) [42], teacher-free knowledge distillation (Tf-KD) [51], self-supervised
knowledge distillation (SSKD) [49], L2 and prime-aware adaptive distillation
(PAD-L2) methods [53] for the following reasons:

– these methods are validated with the ImageNet datasets for ResNet-34 and
ResNet-18 as teacher and student models in their original work;7

– the hyperparameters used in the ImageNet experiments are described in the
original studies and/or their published source code; and

– we did not have time to tune hyperparameters for other methods that are
not validated on the ImageNet dataset in their original papers.

In addition to the methods, we apply knowledge distillation (KD) [13] to the
same teacher-student pair. Note that except KD8, we reuse the hyperparameters
(e.g., number of epochs) for ImageNet given in their original work to reproduce
their experimental results, and we provide the configuration and log files, and
trained model weights (See footnote 5).

We also should note that Zagoruyko and Komodakis [52] propose attention
transfer (AT), and define the following total loss function for their ImageNet
experiment:

LAT = L(WS , x) +
β

2

∑

j∈I

∥∥∥∥∥∥
Qj

S∥∥∥Qj
S

∥∥∥
2

− Qj
T∥∥∥Qj
T

∥∥∥
2

∥∥∥∥∥∥
p

, (3)

7 The teacher model for Tf-KD is the pretrained ResNet-18 [51].
8 For KD, we set hyperparameters as follows: temperature T = 1 and relative weight

α = 0.5.

36 Y. Matsubara

Table 4. Reference knowledge distillation methods implemented in torchdistill.

Methods Multi-stage training
Required additional modules

AuxiliarySpecial Custom dataset

KD [13]

FitNet [36] � �
FSP [50] � �
AT [52]

PKT [29]

FT [16] � � �
DAB [12] � � �
RKD [28]

VID [1] � �
CCKD [31] � �
HND [24]

SPKD [44]

CRD [42] � � �
Tf-KD [51]

GHND [25]

SSKD [49] � � � �
L2 [53]

PAD-L2 [53] � � �

where L(WS , x) is a standard cross entropy loss, and Qj
S and Qj

T denote the vec-
torized forms of the j-th pair of student and teacher attention maps, respectively
(Refer to their work [52] for more details). In their published framework9, they
set β and p to 1,000 and 2 respectively. However, we find a discrepancy between
their defined loss function (Eq. (3)) and their implemented loss function (Eq.
(4)), that computes mean squared error (MSE) between the teacher and student
attention maps.

LAT = L(WS , x) +
β

2

∑

j∈I
MSE

(Qj
S∥∥∥Qj
S

∥∥∥
2

,
Qj

T∥∥∥Qj
T

∥∥∥
2

)
(4)

In our preliminary experiment with hyperparameters the authors provide,
the student model did not train well with the loss module based on Eq. (3). For
this reason, we used Eq. (4) instead for AT in our experiments.

Table 5 summarizes the results of the experiments with the training config-
urations (e.g., teacher-student pair, hyperparameters) described in each of the
original studies and/or verified by the authors. In addition to experiments with
a single GPU, we perform experiments with a distributed training strategy sup-
ported by PyTorch (reported with a dagger mark †) to demonstrate that our
framework supports the strategy for saving training time. As for the L2 and

9 https://github.com/szagoruyko/attention-transfer.

https://github.com/szagoruyko/attention-transfer

torchdistill: A Modular, Configuration-Driven Framework 37

Table 5. Validation accuracy of ResNet-18 (student) trained on ILSVRC 2012 dataset
with ResNet-34 (teacher), using eight different distillation methods. With the hyperpa-
rameters (e.g., # Epochs) either described in the original work or given by the authors,
all the reimplemented methods outperform the student model trained without teacher.

Accuracy[%]
Epochs Training time

Top-1 Diff.

Teacher: ResNet-34 73.31 +3.56 N/A N/A

Student: ResNet-18 69.75 0.00 N/A N/A

KD 71.23 +1.48 100 60 hr 04 min

KD † 71.37 +1.62 100 23 hr 07 min

AT 70.90 +1.15 100 59 hr 07 min

AT † 70.55 +0.80 100 23 hr 11 min

FT 71.56 +1.81 91 55 hr 06 min

FT † 71.13 +1.38 91 22 hr 15 min

CRD 70.81 +1.06 100 356 hr 31 min

CRD ‡ 70.93 +1.18 100 179 hr 12 min

Tf-KD 70.52 +0.77 90 46 hr 34 min

Tf-KD † 70.21 +0.46 90 18 hr 50 min

SSKD ‡ 70.09 +0.34 130 113 hr 12 min

L2 ‡ 71.08 +1.33 90 21 hr 25 min

PAD-L2 ‡ 71.71 +1.96 (90 +) 30 28 hr 34 min

† Distributed training on 3 GPUs with linear scaling rule [7]: Learn-
ing rates are modified according to the number of distributed training
processes. (i.e. multiplied by the number of GPUs).
‡ Distributed training on 3 GPUs with total batch size used in original
work.

PAD-L2 methods, the original study [53] uses batch size of 512 for their Ima-
geNet experiments, which did not fit in our single GPU. Thus, we split the batch
size into 171 per GPU, and report only the results with the distributed training
(marked with ‡). The same strategy is applied to SSKD (total batch size of 256
and 768 for normal and augmented samples, respectively [49]) as it takes at least
4 times as long at epoch-level to train a model, compared to the other methods
due to their 4x augmented training data, and our batch size per GPU is 85 (for
normal samples + 255 for augmented samples). Similarly, we apply the same
strategy for CRD due to the limited time. We also note that Zhang et al. [53]
applied their proposed PAD-L2 to the student model trained with their proposed
L2 as a pretrained model, and train the student model with the PAD-L2 method
for 30 more epochs (i.e., 120 epochs).10

Based on the methods we reimplemented with torchdistill, we successfully
reproduce the results on the ILSVRC 2012 dataset for the teacher-student pair

10 The configuration is not described in [53], but verified by the authors.

38 Y. Matsubara

reported in the original papers of AT [52], Tf-KD [51], L2 and PAD-L2 [53] meth-
ods, and the result of PAD-L2 was recently reported as the state-of-the-art per-
formance for the teacher-student pair on the ILSVRC 2012 dataset [53]. All the
results outperform the baseline performance (S: ResNet-18) which is trained with
human-labels only, and the pretrained model is provided by torchvision. Note
that FT was validated on ILSVRC 2015 dataset in their original work [16], and
we confirm the FT’s improvement over a baseline using ILSVRC 2012 dataset
as the teacher model (ResNet-34) in torchvision is pretrained on the dataset.
The result with the reimplemented CRD is almost comparable to the accuracy
reported in the original study [42]. In CRD, both positive and negative samples
are leveraged for learning representations, thus turns out to be the most-time
consuming method in Table 5. The reimplemented SSKD outperforms the base-
line model although the accuracy does not match the reported result [49]. A
potential factor may be a different training configuration forced by our lim-
ited computing resource (e.g., different batch size per GPU whereas 8 parallel
GPUs were used in their work) since we simply refactored and made the authors’
published code compatible with the ILSVRC 2012 dataset. As pointed out by
Tian et al. [42], KD [13] is still a powerful method. Our reimplemented KD out-
performed their proposed state-of-the-art method, CRD (71.17%), and achieved
the comparable accuracy with their CRD+KD (71.38%) method.

3.3 Reproducing COCO Experiments

To demonstrate that our framework can 1) be applied to different tasks, and 2)
collaborate with model architectures that are not implemented in torchvision, we
apply the generalized head network distillation (GHND) to bottleneck-injected
R-CNN object detectors for split computing [25], using COCO 2017 dataset.
Their proposed bottleneck-injected Faster and Mask R-CNNs with ResNet-50
and FPN are designed to be partitioned into head and tail models which will be
deployed on mobile device and edge server respectively, for reducing inference
speed in resource-constrained edge computing systems. Following the original
work on GHND, we apply the method to a pair of the original and bottleneck-
injected Faster R-CNNs as teacher and student respectively, and conduct the
same experiment for Mask R-CNN as well. As shown in Table 6, the reproduced
mean average precision (mAP) match those reported in the original study [25].

Table 6. Validation mAP of bottleneck-injected R-CNN models for split computing
(student) trained on COCO 2017 dataset by GHND with original Faster/Mask R-CNN
models (teacher). Reproduced results match those reported in the original work [25].

Backbone: ResNet-50 and FPN
mAP

Epochs Training time
BBox Mask

Faster R-CNN w/ Bottleneck 0.359 N/A 20 24 hr 13 min

Mask R-CNN w/ Bottleneck 0.369 0.336 20 24 hr 21 min

torchdistill: A Modular, Configuration-Driven Framework 39

4 Conclusions

In this work, we presented torchdistill, an open-source framework dedicated
for knowledge distillation studies, that supports efficient training and configura-
tions systems designed to give users a summary of the experiments. Researchers
can build on the framework (e.g., by forking the repository) to conduct their
knowledge distillation studies, and their studies can be integrated to the frame-
work by sending a pull request. This will help the research community ensure
the reproducibility of the work, and advance the deep learning research while
supporting fair method comparison on benchmarks. Specifically, researchers can
publish the log, configuration, and pretrained model weights for their champion
performance, that will help them ensure the champion performance for specific
datasets and teacher-student pairs.

Furthermore, the configuration files for and log files produced by torchdistill
will help researchers complete the ML Code Completeness Checklist (See foot-
note 6), and we provide the full configurations (hyperparameters), log files and
checkpoints including model weights for experimental results shown in Tables 5
and 6 in our code repository (See footnote 1). We provide reference code and
configurations for image classification and object detection tasks, and plan to
extend our framework for different tasks using popular packages e.g., Transform-
ers [48] for NLP tasks. Our framework will be maintained and updated along
with the new releases of PyTorch and torchvision so that users can save time for
coding and use it as a standard framework for reproducible knowledge distillation
studies.

Acknowledgments. We thank the anonymous reviewers for their comments and the
authors of related studies for publishing their code and answering our inquiries about
their experimental configurations. We also thank Sameer Singh for feedback about
naming the framework.

A Hard-Coded Module and Forward Hook
Configurations

For lowering barriers to high-quality knowledge distillation studies, it would be
important to enable users to collaborate with models implemented in popular
libraries such as torchvision. However, all the models in the existing frameworks
described in this study are reimplemented to extract intermediate representa-
tions in addition to the models’ final outputs. Figure 4 shows an example of
original and hard-coded (reimplemented) forward functions in ResNet model for
knowledge distillation experiments. As illustrated in the hard-coded example,
the authors [42,49] unpacked an existing implementation of ResNet model and
re-designed interfaces of some modules to extract additional representations (i.e.,
“f0”, “f1 pre”, “f2”, “f2 pre”, “f3”, “f3 pre”, and “f4”).

Furthermore, the modified interfaces also require those in the downstream
processes to be modified accordingly, that will need extra coding cost. We empha-
size that users are required to repeat this procedure every time they introduce

40 Y. Matsubara

def forward impl(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)

x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)

x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)

return x

def forward(self, x):
return self. forward impl(x)

def forward(self, x, is feat=False, preact=False):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
f0 = x

x, f1 pre = self.layer1(x)
f1 = x
x, f2 pre = self.layer2(x)
f2 = x
x, f3 pre = self.layer3(x)
f3 = x

x = self.avgpool(x)
x = x.view(x.size(0), −1)
f4 = x
x = self.fc(x)

if is feat:
if preact:

return [f0, f1 pre, f2 pre, f3 pre, f4], x
else:

return [f0, f1, f2, f3, f4], x
else:

return x

Fig. 4. Forward functions in original (left, torchvision-style) and
hard-coded (right, [42,49]) implementations of ResNet. Only “x” from “self.fc”
is used for vanilla training and prediction.

new models for experiments, and the same issues will be found when intro-
ducing new schemes implemented as other types of module (e.g., dataset and
sampler) required by specific methods such as CRD [42] and SSKD [49]. Using a
forward hook manager in our framework, we can extract intermediate represen-
tations from the original models (e.g., Fig. 4 (left)) without reimplementation
like Fig. 4 (right), and help users introduce such schemes with wrappers of the
module types so that they can apply the schemes simply by specifying in a
configuration file used to design an experiment.

The following example illustrates how to specify the input to or output
from modules we would like to extract from ResNet model whose forward func-
tion is shown in Fig. 4 (left). “f0”, “f1 pre”, “f2 pre”, and “f3 pre” in Fig. 4
(right) correspond to the output from the first ReLU module “relu”, and pre-
activation representations in “layer1”, “layer2”, and “layer3” modules, which are
the inputs to their last ReLU modules (i.e., “layer1.1.relu”, “layer2.1.relu”, and
“layer3.1.relu”). “f4” is the flatten output from average pooling module “avg-
pool”. Similarly, we can define a forward hook manager for teacher model, and
reuse the module paths such as “layer1.1.relu” to define loss functions in the
configuration file.
student :

. . .
forward hook:

input : [’ l aye r1 . 1 . r e l u ’ , ’ l aye r2 . 1 . r e l u ’ , ’ l aye r3 . 1 . r e l u ’ , ’ f c ’]
output: [’ r e l u ’]

torchdistill: A Modular, Configuration-Driven Framework 41

B Example PyYAML Configuration

Figure 5 shows an example PyYAML configuration file (See footnote 5) to instan-
tiate abstracted modules for an experiment with knowledge distillation by Hinton
et al. [13].

datasets:
ilsvrc2012:
name: &dataset name ’ilsvrc2012’
type: ’ImageFolder’
root: &root dir !join [’˜/dataset/’, *dataset name]
splits:
train:
dataset id: &imagenet train !join [*dataset name, ’/train’]
params:
root: !join [*root dir, ’/train’]
transform params:
− type: ’RandomResizedCrop’
params:
size: &input size [224, 224]

− type: ’RandomHorizontalFlip’
params:
p: 0.5

− &totensor
type: ’ToTensor’
params:

− &normalize
type: ’Normalize’
params:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]

val:
dataset id: &imagenet val !join [*dataset name, ’/val’]
params:
root: !join [*root dir, ’/val’]
transform params:
− type: ’Resize’
params:
size: 256

− type: ’CenterCrop’
params:
size: *input size

− *totensor
− *normalize

models:
teacher model:
name: ’resnet34’
params:
num classes: 1000
pretrained: True

ckpt: ’/path/to/your own checkpoint if you have’
student model:
name: ’resnet18’
params:
num classes: 1000
pretrained: False

ckpt: ’./imagenet/kd/ilsvrc2012−resnet18 from resnet34.pt’

train:
log freq: 1000
num epochs: 100
train data loader:
dataset id: *imagenet train
random sample: True
batch size: 256
num workers: 16
cache output:

val data loader:
dataset id: *imagenet val
random sample: False
batch size: 128
num workers: 16

teacher:
sequential: []
wrapper: ’DistributedDataParallel’
requires grad: False

student:
sequential: []
wrapper: ’DistributedDataParallel’
requires grad: True
frozen modules: []

apex:
requires: False
opt level: ’01’

optimizer:
type: ’SGD’
params:
lr: 0.1
momentum: 0.9
weight decay: 0.0001

scheduler:
type: ’MultiStepLR’
params:
milestones: [30, 60, 90]
gamma: 0.1

criterion:
type: ’GeneralizedCustomLoss’
org term:
criterion:
type: ’KDLoss’
params:
temperature: 1.0
alpha: 0.5
reduction: ’batchmean’

factor: 1.0
sub terms:

test:
test data loader:
dataset id: *imagenet val
random sample: False
batch size: 1
num workers: 16

Fig. 5. First (left) and second (right) halves of an example PyYAML configuration to
design a knowledge distillation experiment with hyperparameters using torchdistill.

42 Y. Matsubara

References

1. Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information
distillation for knowledge transfer. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 9163–9171 (2019)

2. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Advances in Neural
Information Processing Systems, pp. 2654–2662 (2014)

3. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 535–541 (2006)

4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.M. (eds.) ECCV 2020, vol. 12346. LNCS. Springer, Heidelberg (2020).
https://doi.org/10.1007/978-3-030-58452-8 13

5. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE
Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

6. Gardner, M., et al.: AllenNLP: a deep semantic natural language processing plat-
form. ACL 2018, 1 (2018)

7. Goyal, P., et al.: Accurate, large minibatch SGD: Training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677 (2017)

8. Gundersen, O.E., Kjensmo, S.: State of the art: reproducibility in artificial intel-
ligence. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32
(2018)

9. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and Huffman coding. In: Fourth Inter-
national Conference on Learning Representations (2016)

10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

12. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activa-
tion boundaries formed by hidden neurons. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, pp. 3779–3787 (2019)

13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
Deep Learning and Representation Learning Workshop: NIPS 2014 (2014)

14. Howard, A., et al.: Searching for MobileNetV3. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1314–1324 (2019)

15. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

16. Kim, J., Park, S., Kwak, N.: Paraphrasing complex network: network compression
via factor transfer. In: Advances in Neural Information Processing Systems, pp.
2760–2769 (2018)

17. Kolesnikov, S.: Accelerated DL R&D (2018). https://github.com/catalyst-team/
catalyst. Accessed 28 Sept 2020

18. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-
grained categorization. In: Proceedings of the IEEE International Conference on
Computer Vision Workshops, pp. 554–561 (2013)

19. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

https://doi.org/10.1007/978-3-030-58452-8_13
http://arxiv.org/abs/1706.02677
https://github.com/catalyst-team/catalyst
https://github.com/catalyst-team/catalyst

torchdistill: A Modular, Configuration-Driven Framework 43

20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

21. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. In: Fourth International Conference on Learning Representations (2016)

22. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

23. Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In:
Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. Exploring
the limits of weakly supervised pretraining, vol. 11206, pp. 185–201. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01216-8 12

24. Matsubara, Y., Baidya, S., Callegaro, D., Levorato, M., Singh, S.: Distilled split
deep neural networks for edge-assisted real-time systems. In: Proceedings of the
2019 Workshop on Hot Topics in Video Analytics and Intelligent Edges, pp. 21–26
(2019)

25. Matsubara, Y., Levorato, M.: Neural Compression and Filtering for Edge-
assisted Real-time Object Detection in Challenged Networks. arXiv preprint
arXiv:2007.15818 (2020)

26. Mirzadeh, S.I., Farajtabar, M., Li, A., Ghasemzadeh, H.: Improved knowledge dis-
tillation via teacher assistant. In: Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 5191–5198 (2020)

27. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted
structured feature embedding. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 4004–4012 (2016)

28. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3967–3976 (2019)

29. Passalis, N., Tefas, A.: Learning deep representations with probabilistic knowledge
transfer. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018.
LNCS, vol. 11215, pp. 283–299. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01252-6 17

30. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, pp. 8024–8035
(2019)

31. Peng, B., et al.: Correlation congruence for knowledge distillation. In: Proceedings
of the IEEE International Conference on Computer Vision, pp. 5007–5016 (2019)

32. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 413–420. IEEE (2009)

33. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271
(2017)

34. Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

35. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99 (2015)

36. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fit-
Nets: hints for thin deep nets. In: Third International Conference on Learning
Representations (2015)

https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-030-01216-8_12
http://arxiv.org/abs/2007.15818
https://doi.org/10.1007/978-3-030-01252-6_17
https://doi.org/10.1007/978-3-030-01252-6_17
http://arxiv.org/abs/1804.02767

44 Y. Matsubara

37. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

38. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

39. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter. In: The 5th Workshop on Energy Effi-
cient Machine Learning and Cognitive Computing (2019)

40. Tan, M., et al.: Mnasnet: platform-aware neural architecture search for mobile. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2820–2828 (2019)

41. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning, pp. 6105–6114 (2019)

42. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. In: Eighth
International Conference on Learning Representations (2020)

43. Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution
discrepancy. In: Advances in Neural Information Processing Systems, pp. 8250–
8260 (2019)

44. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings
of the IEEE International Conference on Computer Vision, pp. 1365–1374 (2019)

45. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 Dataset (2011)

46. Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-
grained feature imitation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4933–4942 (2019)

47. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with
matched background similarity. In: CVPR 2011, pp. 529–534. IEEE (2011)

48. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45 (2020)

49. Xu, G., Liu, Z., Li, X., Loy, C.C.: Knowledge distillation meets self-supervision.
In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12354, pp. 588–604. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58545-7 34

50. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast opti-
mization, network minimization and transfer learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4133–4141 (2017)

51. Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J.: Revisiting knowledge distillation
via label smoothing regularization. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3903–3911 (2020)

52. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the
performance of convolutional neural networks via attention transfer. In: Fifth Inter-
national Conference on Learning Representations (2017)

53. Zhang, Y., Lan, Z., Dai, Y., Zeng, F., Bai, Y., Chang, J., Wei, Y.: Prime-aware
adaptive distillation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.)
ECCV 2020. LNCS, vol. 12364, pp. 658–674. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58529-7 39

54. Zmora, N., Jacob, G., Zlotnik, L., Elharar, B., Novik, G.: Neural Network
Distiller: A Python Package for DNN Compression Research. arXiv preprint
arXiv:1910.12232 (2019)

https://doi.org/10.1007/978-3-030-58545-7_34
https://doi.org/10.1007/978-3-030-58545-7_34
https://doi.org/10.1007/978-3-030-58529-7_39
https://doi.org/10.1007/978-3-030-58529-7_39
http://arxiv.org/abs/1910.12232

	torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation
	1 Introduction
	2 Framework Design
	2.1 Module Abstractions
	2.2 Registry
	2.3 Configurations
	2.4 Dataset Wrappers
	2.5 Teacher and Student Models
	2.6 Customizable Loss Module
	2.7 Stage-wise Training Configuration

	3 Reference Methods
	3.1 Reimplementations
	3.2 Reproducing ImageNet Experiments
	3.3 Reproducing COCO Experiments

	4 Conclusions
	A Hard-Coded Module and Forward Hook Configurations
	B Example PyYAML Configuration
	References

