
Implementation of Genetic Pseudo
Rehearsal

Bhasker Sri Harsha Suri and Kalidas Yeturu(B)

Indian Institute of Technology Tirupati, Tirupati 517506, Andhra Pradesh, India
{cs18s506,ykalidas}@iittp.ac.in

Abstract. Deep neural networks suffer from catastrophic forgetting
problem when they are deployed in a continual learning scenario. In our
main work, we proposed Genetic Pseudo rehearsal, where we generated
synthetic data of the previous task using Genetic Algorithms and pseudo
rehearsed the neural network on it. We demonstrated the computational
and memory efficiency offered by our proposed method. In this work, we
discuss the implementation details of our proposed algorithm and the
experimental setup in detail.

1 Introduction

1.1 Catastrophic Forgetting

Deep neural networks suffer from Catastrophic forgetting problem when deployed
in a continual learning scenario [1]. Robins [3] proposed the concept of pseudo
rehearsal, where a generator synthetically generates the data for the previous
task on which the neural network is rehearsed. Generative replay [4] is a good
example of pseudo rehearsal where the training data for the previous task is
synthetically generated using a Generative adversarial network(GAN).

1.2 Genetic Pseudo Rehearsal

In our main work [5], we proposed to generate synthetic data using Genetic
Algorithms instead of GANs. We demonstrated that we could achieve higher
efficiencies in computational and memory resource consumption by forgoing the
data’s photo-realism. In this work, we try to explain the implementation details
of our main work.

1.3 Organization of the Paper

The paper has been divided into five main sections. In Sect. 2, we give insights
into the implementation of operations like Mutation, cross-over functions, which
are an integral part of the Genetic algorithm. We also explain the Enrichment
function used to enrich the data generated after the genetic algorithm phase.

c© Springer Nature Switzerland AG 2021
B. Kerautret et al. (Eds.): RRPR 2021, LNCS 12636, pp. 167–172, 2021.
https://doi.org/10.1007/978-3-030-76423-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76423-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-76423-4_13


168 B. S. H. Suri and K. Yeturu

To increase the work’s availability to a broader audience, we implemented our
work in 3 different formats. In the first format, the entire code has been made
available in ready-to-run Google Colab notebooks. A detailed description of this
implementation is provided in Sect. 3 of the paper. In the second format, the
proposed algorithm has been implemented as a Python function call(.py file).
A function called Generate Genetic data has been implemented where the user
can pass their respective models and parameters as arguments, and the function
returns the generated synthetic data as output. The file also gives access to
other functions that are part of our main work, like mutation, cross-over, and
Enrichment phase and Agreement score. A detailed description of this format is
given in Sect. 4 of the paper.

In order to make our work available to users who build neural networks using
frameworks other than Tensorflow, we implemented the work as an service as
well. The proposed algorithm can be deployed on a local server, and users can
generate synthetic data for neural networks that were implemented in any Deep
learning framework. The description of this work is present in Sect. 5 of the
paper.

2 Overview of the Code

The proposed algorithm was implemented in Python 3 with NumPy [2] library
handling all the vector operations that arose at various points in the algorithm.
The experiments in the main work used neural networks implemented using
Keras with Tensorflow in the backend. The code is made available at the following
Github link: https://github.com/BhaskerSriHarsha/Genetic-Pseudo-Rehearsal.

2.1 Representation of Images

The experimentation took place in an image classification setting; hence, it is
essential to understand how images were represented in the Genetic Algorithm.
The algorithm’s crux lies in the process of evolving genes of organisms in a
population through iterative selection using a fitness function. Each image was
considered an organism, and the vector format representation of the pixel values
of the generated images was considered the genes in the algorithm. So, instead
of taking the images in standard picture formats like .jpg or .png, they were
considered as numpy arrays.

2.2 Fitness Function

Each synthetically generated image was given to the neural network for classifi-
cation. The softmax confidence of the neural network at the final layer for the
target class was considered the fitness score of each organism. The fittest 25%
of the organisms in a given generation were propagated to the next generation
for evolution.

https://github.com/BhaskerSriHarsha/Genetic-Pseudo-Rehearsal


Implementation of Genetic Pseudo Rehearsal 169

2.3 Mutation Function

The mutation function is responsible for perturbating the synthetic images’ pix-
els with a probability “p”. To implement this, np.random.choice() function was
used. The function generated a vector of size same as that of the given image,
in which each element has a probability p of being a value between 0 and 1.
The mutation magnitude of each pixel was decided using np.random.normal()
function, which generated a value between 0 and 1 by sampling a normal distri-
bution.

2.4 Crossover Function

In addition to the mutation function, the cross-over operation was also used to
create the next generation of organisms. The cross-over function accepts two
NumPy arrays as inputs and the index through which the arrays will be crossed
over. The NumPy arrays (images) are clipped at the given index and the second
half of the arrays are exchanged. The arrays that were passed as arguments are
crossed over and ready to be used, and the function does not return anything as
it uses the “Call by Object reference” property of the Python language.

2.5 Enrichment Phase

Sklearn package was used to implement the Gaussian mixture models that was
critical in the enrichment phase of the algorithm. The GaussianMixture model
can be imported from sklearn.mixture package and it accepts the number-of-
components and data as arguments. The function fits N number of centers to
the data where N=number-of-components. All the functions mentioned above
were used in all the three formats in which our work was implemented. Though
the environment changes for the three implementations, the core logic and code
for the functions mentioned above remained constant.

3 Colab Notebooks

All the experiments that were reported in the main paper were run on Google
Colab notebooks. The experiments used a Tesla P100 GPU and an Intel Xeon
Dual Core 2.5 GHz processor. The Neural network was implemented in Keras
with Tensorflow in the backend. Numpy was used to represent the images in a
vector form; however, Matploblib library was used to display the images and gen-
erate the final graphs for the experiments. The experiments discussed in the main
paper are made available in a ready-to-run form in the Jupyter Notebooks
folder of our Github repository. The notebooks can be executed directly without
any modifications on the Google Colaboratory platform. Genetic Rehearsal.py
file, which is also present in the folder, needs to be present in the working direc-
tory as it contains the supporting functions to run the algorithm. However,
the main code to create the synthetic data using the Genetic algorithm and the



170 B. S. H. Suri and K. Yeturu

Enrichment phase is written in the notebook. It has to be noted that the purpose
of these Google Colab notebooks is to aid in the reproducibility of experiments
that were described in the main work. The notebooks generate the synthetic
data for networks that are already declared in the notebooks. In case the reader
wants to generate synthetic data for their neural network, it is required that the
user swaps the default neural network in the notebook with their network.

4 Python Library Files

For users who wish to run the code on their local systems instead of Google
Colab environment, the proposed algorithm has been implemented as a python
library and can be accessed as a function call. To run it, visit the official GitHub
repository and download the Genetic Rehearsal.py file in the folder .py files to
your working directory. A requirements file (requirements.txt) has been provided
to aid the users in creating the virtual environment required to run the code.
The main Genetic algorithm that generates the synthetic data is implemented
in the function Genetic data Generator(). It accepts the model, shape of the
image sample in the dataset, target classes for which the synthetic data is to be
generated, size of population in a given generation, number of cultures, number
of generations for which the evolution continues, pixel mutation probability and
finally the pixel mutation type as input arguments. The function returns the
generated synthetic data and the respective labels for the individual samples in
the form of a list with the first element as data and the second element as labels.

The Enrichment() function performs the enrichment operation that was
described in the main work using Gaussian mixture models from Sklearn library.
The function takes the target data, labels of the data, target model, number
of centers for the Gaussian mixture model, number of classes and number of
samples to be generated as parameters. For Step 1 of the Enrichment phase,
the number of centers is set equal to the number of classes, and for Step 2 of
the Enrichment phase, the number of centers is set to 1. The explanation for
this can be found in our main work. Please note that to avoid memory over-
flows, set the default datatype of the NumPy arrays as float32 instead of the
default float64. Since we are dealing with images in this particular application,
a Numpy array with float32 as datatype is sufficient and memory-efficient. In
addition to the main functions, the file also has additional functions like dupli-
cate remover(), duplicate counter(), agreement score() etc. which were used in
the Ablation studies section of the main paper.

An in-situ documentation of each function can be obtained using the help()
function. For example, the command help(duplicate remover) will print the doc-
umentation for the duplicate remover function when executed.

5 Data Generation as a Service

To extend our algorithm’s availability to users who have already developed their
neural network models using frameworks other than Tensorflow, we are offering



Implementation of Genetic Pseudo Rehearsal 171

the proposed algorithm as a service which can be deployed on a local server.
Neural networks developed using any deep learning framework can access our
proposed algorithm as a service using HTTP methods.

The Genetic algorithm that generates synthetic data runs on a local server
and will be referred to as GA-service. The Neural network is deployed on the local
machine and will be called as model-service from here on. A continuous interac-
tion between the GA-service and model-service generates the desired synthetic
samples. The entire process of generating synthetic data has been split between
the GA service and model-service. Whenever the GA-service requires the neural
network predictions, the model-service requests the current generation of images
and returns the softmax confidence for each image to the GA-service as a string.
The predictions received by the GA-service are used by the fitness function to
select the fittest individuals for the next generation. The whole process continues
until the generated synthetic data reaches a threshold level of fitness.

The algorithm at the model-service is described in Algorithm 1. The “/”
symbol describes the path from where the server-side script was deployed.

Algorithm 1: Algorithm at the model-service
status flag = 0;
target labels = ”1,2,3”;
POST(’/’, data = target labels, timeout = 1);
status flag = GET(’/training’);
while status flag == 1 do

images flag = GET(”/flag”);
if images flag == 1 then

images = GET(’/images’);
predictions = model(images);
POST(’/predictions’,data = predictions);
POST(’/reset flag’,data = 0);
POST(’/ready’,data = 1);

end
status flag=GET(’/training’);

end
synthetic data=GET(’/synthetic data’);

The synchronization between the two services is achieved by monitoring three
variables: status flag, images flag and ready flag on the server by the client.
status flag is responsible for letting the model-service know that the generation
of synthetic images is still active and on-going. When the GA-service flips the
status flag to 0, it means that the required synthetic data is ready, and the
evolution procedure can be stopped. images flag variable says that the GA-
service has prepared the current generation of images, and the model-service
can acquire them using the GET method. ready flag is used by GA-service to
know whether predictions for the previously sent images are ready to be collected
by the GA-service from the model-service.



172 B. S. H. Suri and K. Yeturu

The model-service starts the synthetic data generation process by sending
POST command to the GA-service. The POST command carries the target labels
for which the synthetic data is to be generated as data. The model-service then
monitors the status flag on the GA-service using the GET command. As soon as
the status flag is set to 1, the procedure to generate the synthetic images begins.
The GA-service begins by generating random images as the first generation. It
then sets the images flag variable to 1, indicating the model-service to collect
the images. The model-service collects those images using a GET command and
returns the softmax predictions of each image to the GA-service in the form of a
string. This process continues till a generation reaches a certain threshold level
of fitness. The GA-service ends the procedure by setting the status flag back to
0. Finally, the model-service collects the generated synthetic data using a GET
method.

To install the setup, download the GA-service.py file available in the API
folder of the Github repository. The requirements file (requirements.txt) is also
provided in the folder, which can be used to set up the virtual environment
required to run the GA-service and model side codes. A template (model-
service.py) for the model-service side is provided, which can be used by any
deep learning framework in Python. If the user uses any language other than
Python, the reference algorithm (Algorithm 1) provided on the Github page can
be used to write the model-service’s code. Currently, the target labels can be
sent as parameters to the GA-service from the model-service. The package will
be updated to send more parameters concerning the genetic algorithm soon.

6 Conclusion

In this work, we discussed the implementation details of Genetic Pseudo
Rehearsal. The proposed algorithm was implemented in three different formats
to increase the work’s availability to the research community. All the formats
were discussed in the current work to aid the reproducibility of the research.

References

1. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci.
3(4), 128–135 (1999)

2. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362
(2020)

3. Robins, A.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci.
7(2), 123–146 (1995)

4. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay.
In: Advances in Neural Information Processing Systems, pp. 2990–2999 (2017)

5. Suri, B.S.H., Yeturu, K.: Pseudo rehearsal using non photo-realistic images. In:
International Conference on Pattern Recognition (ICPR) (2020)


	Implementation of Genetic Pseudo Rehearsal
	1 Introduction
	1.1 Catastrophic Forgetting
	1.2 Genetic Pseudo Rehearsal
	1.3 Organization of the Paper

	2 Overview of the Code
	2.1 Representation of Images
	2.2 Fitness Function
	2.3 Mutation Function
	2.4 Crossover Function
	2.5 Enrichment Phase

	3 Colab Notebooks
	4 Python Library Files
	5 Data Generation as a Service
	6 Conclusion
	References




