
Reproducing the Sparse Huffman Address
Map Compression for Deep Neural

Networks

Giosuè Cataldo Marinò , Gregorio Ghidoli , Marco Frasca ,
and Dario Malchiodi(B)

Dipartimento di Informatica, Università degli Studi di Milano,
Via Celoria 18, 20133 Milan, Italy

{giosue.marino,gregorio.ghidoli}@studenti.unimi.it,
{marco.frasca,dario.malchiodi}@unimi.it

Abstract. Deploying large convolutional neural networks (CNNs) on
limited-resource devices is still an open challenge in the big data era.
To deal with this challenge, a synergistic composition of network com-
pression algorithms and compact storage of the compressed network has
been recently presented, substantially preserving model accuracy. The
proposed implementation, which we describe in this paper, offers dif-
ferent compression schemes (pruning, two types of weight quantization,
and their combinations) and two compact representations: the Huffman
Address Map compression (HAM ), and its sparse version sHAM. Taken
as input a model, trained for a given classification or regression problem
(as well as the dataset employed, which is necessary for the fine-tuning
of weights after network compression), the procedure returns the cor-
responding compressed model. Our publicly available implementation
provides the source code, two pre-trained CNN models (retrieved from
third-party repositories referring to well-established literature), and four
datasets. This implementation includes detailed instructions to execute
the scripts and reproduce the obtained results, in terms of the figures
and tables included in the original paper.

Keywords: CNN compression · Weight pruning · Weight sharing ·
Probabilistic quantization · Entropy coding

1 Introduction

This paper focuses on the reproducibility of results obtained in [5]. The aim of
the original work is twofold: a) to evaluate the impact of lossy CNN compres-
sion techniques (pruning and quantization) on prediction accuracy, and b) to
provide a compressed and compact representation of a given trained CNN for
classification or regression problems. Step a) has been carried out by consider-
ing two publicly available CNNs (see Sect. 2.2) trained respectively for image
classification and for protein-ligand affinity prediction (regression). The weights

c© Springer Nature Switzerland AG 2021
B. Kerautret et al. (Eds.): RRPR 2021, LNCS 12636, pp. 161–166, 2021.
https://doi.org/10.1007/978-3-030-76423-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76423-4_12&domain=pdf
http://orcid.org/0000-0003-1386-6770
http://orcid.org/0000-0002-0421-8512
http://orcid.org/0000-0002-4170-0922
http://orcid.org/0000-0002-7574-697X
https://doi.org/10.1007/978-3-030-76423-4_12


162 G. C. Marinò et al.

Fig. 1. Sketch of the proposed compression framework. The last level reports the best
representation format for the corresponding weight compression strategy. For pruning
and quantization both HAM and sHAM are shown, meaning that the format achieving
the best compression rate depends on the proportion of original connection pruned
(with low pruning HAM is preferred).

of these models have been pruned and/or quantized, considering in particular
two different quantization procedures, namely weight sharing and probabilistic
quantization (cfr. Sect. 2.3). The prediction performance of the compressed mod-
els has been assessed on four benchmark data sets: MNIST [4], CIFAR-10 [3],
DAVIS [2] and KIBA [8] (see Sect. 2.1). Step b) leverages two novel compression
formats specifically designed to benefit from the pruning and quantization of
the connection weights, called HAM and sHAM, described in Sect. 2.4. Finally,
Sect. 3 describes how to run the experiments discussed in the original paper,
depicted in Fig. 1 and consisting of:

– input data retrieval (pre-trained CNN, as well as the corresponding training
set);

– network pruning and/or quantization;
– model retraining;
– model transformation to HAM or sHAM formats;
– assessment of the compressed model performance.

2 Implementation

In this section we describe all stages of the processing pipeline underlying the
results in [5]. Namely, Sect. 2.1 briefly introduces the processed datasets, while



Reproducing Sparse HAM Compression for Deep Neural Networks 163

Table 1. Structure of the processed datasets.

Size Resolution

MNIST 70 k 28 × 28, grayscale

CIFAR 60 k 32 × 32, color

(a) Classification

Proteins Ligands Interactions

DAVIS 442 68 30056

KIBA 229 2111 118254

(b) Regression

Sect. 2.2 describes the models of neural networks used to test the performances
of three compression schemes. The latter are detailed in Sect. 2.3, while Sect. 2.4
depicts the representation format of the compressed models.

2.1 Dataset

We validated our methodology on two problems, respectively in the classification
and regression realms, employing in both cases two distinct datasets (see also
Table 1).

Classification. The first application concerns the multiclass classification of
handwritten digits, carried out on the MNIST [4] and CIFAR-10 benchmarks [3].
MNIST contains 70 k 28 × 28 grayscale images, whereas CIFAR-10 consists of
60 k 32 × 32 color images.

Regression. We considered the problem of predicting the affinity between drug
(ligand) and targets (proteins), processing the DAVIS [2] and KIBA [8] datasets.
Proteins and ligands are both represented through strings, respectively using the
aminoacid sequence and the SMILES (Simplified Molecular Input Line Entry
System) representation. DAVIS and KIBA contain, respectively: i) 442 and 229
proteins, ii) 68 and 2111 ligands, and iii) 30056 and 118254 total interactions.

2.2 State-of-the-art Models

We considered two state-of-the-art CNN models as part of the input of our
processing pipeline:

– VGG19 [7], containing 16 convolutional layers and a fully-connected block,
trained on the CIFAR-10 and MNIST datasets; we assumed that this model is
likely over-dimensioned for the digit classification task, and indeed we showed
that we can obtain a succinct version (requiring significantly less than 1% of
the original space) without accuracy loss;

– DeepDTA [6], composed of two convolutional blocks (three convolutional lay-
ers followed by a MaxPool layer) to process proteins and ligands separately,
which are then joined through three fully-connected hidden layers; the net-
work is trained in turn on the DAVIS and KIBA datasets: although the orig-
inal network was specifically tailored for the considered problem, also in this
case we obtained a remarkable compression rate, still preserving model per-
formance.



164 G. C. Marinò et al.

2.3 Network Compression

In this section we shortly describe the considered compression schemes, namely
pruning, weight sharing, and probabilistic quantization.

Pruning. Activation functions process the sum of the neuron inputs, each weight-
ed according to its connection; a straightforward compression technique consists
therefore in “cutting” all connections whose weight has a small absolute value.
Indeed, nullifying such negligible weights should not sensibly change the above
mentioned signal, as well as the global network output. We parameterized this
technique on the threshold p used in order to deem a connection as negligible:
in turn, this threshold was defined by considering a suitable set of empirical
quantiles of connection weights. As a post-processing phase, we retrained the
network, now ignoring the erased connections (that is, clamping the correspond-
ing weights to zero).

Weight Sharing. In analogy with the observations at the basis of network prun-
ing, when several weights are close one another, they can all be set to a common
value without significantly affecting network performance. We clustered all learnt
weights using the k-means algorithm, obtaining k representative centroids which
we used to replace the weight values. Also in this case, we subsequently retrained
the network, now updating centroids through cumulative gradient. Note that this
algorithm, in its original form, outputs a table of representative weights, as well
as a matrix storing indices to this table, rather than the weights themselves. We
substituted this format with those described in the next section.

Probabilistic Quantization. An alternative approach to weight sharing is that
of selecting the representative weights through a probabilistic algorithm. We
adapted a technique used in the realm of bandwitdh reduction, having the desir-
able property that the above mentioned representative values can be thought as
an unbiased estimate of the original weights. For this technique we used the same
retraining process and parameterization used for the weight sharing technique.

2.4 Compact Network Representation

In order to appropriately exploit the characteristics of the compressed connec-
tion matrices, the latter are stored by means of two novel formats, respectively
called HAM and sHAM. Both formats represent each matrix element through
Huffman coding, subsequently concatenating the corresponding codewords by
column order, thus obtaining a unique binary string. HAM encodes all weights,
and the lower the number of distinct weights in the matrix, the lower the average
codeword length. To benefit also from the matrix sparsity, sHAM applies Huff-
man coding only to non zero elements, stored through Compressed Sparse Col-
umn (CSC) format. In both HAM and sHAM cases, the generated bit sequence
is organized as a succession of machine words, interpreted as an array of integers.
Figures 2 and 3 show an example of encoding for both formats, highlighting the
various phases of the involved conversion.



Reproducing Sparse HAM Compression for Deep Neural Networks 165

Fig. 2. Example of HAM storage format.

Fig. 3. Example of sHAM storage format. The additional 0 marked in red is the effect
of padding required in order to work with machine words.

3 Reproducibility

The results illustrated in [5] can be fully replicated by running the code in the
repository freely available on GitHub1. Once this repository has been cloned,
the user can launch the runner.sh shell script (available in the root directory),
which automatically creates a virtual environment within which all required
libraries are installed, to subsequently run all the experiments. As a result, sev-
eral text files are created in the time_space/results/ directory. These files
can be postprocessed by the notebook time_space/plot_from_file.ipynb to
get the best compression results and to generate summary plots. It is worthy
pointing out that, however, some small fluctuations in the results are inherently
due to the GPU utilization [1]. Running the experiments requires the avail-
ability of at least 10 GB of RAM, in order to load the selected CNN mod-
els; the execution time took roughly two weeks using a computing environ-
ment equipped with an Nvidia RTX 2060 GPU and an i7-9750H CPU. Note,
however, that this time refers to the execution more than 860 different exper-
iments, each involving compression and retraining of a CNN. To reproduce
a single compression experiment and to quickly check its reproducibility, the
reader can refer to the script runner_single_exp.sh in the repository root.
Whereas, the implementation of specific compression schemes is available in the
compressionNN_package/compressionNN folder of the above mentioned repos-
itory. More precisely, the scripts in files pruning.py, weightsharing.py, and

1 https://github.com/giosumarin/ICPR2020 sHAM.

https://github.com/giosumarin/ICPR2020_sHAM


166 G. C. Marinò et al.

stochastic.py, respectively implement pruning, weight sharing, and probabilis-
tic quantization; analogously, the considered joint techniques are implemented
in pruning_weightsharing.py and pruning_stochastic.py scripts.

Acknowledgements. This work has been supported by the Italian MUR PRIN
project “Multicriteria data structures and algorithms: from compressed to learned
indexes, and beyond” (Prot. 2017WR7SHH).

References

1. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2012)

2. Davis, M.I., et al.: Comprehensive analysis of kinase inhibitor selectivity. Nat.
Biotech. 29, 1046–1051 (2011)

3. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s the-
sis, University of Toronto (2009)

4. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

5. Marinò, G., Ghidoli, G., Frasca, M., Dario, M.: Compression strategies and space-
conscious representations for deep neural networks. In: International Conference on
Pattern Recognition, ICPR 2020 (2020). arxiv:2007.07967

6. Öztürk, H., Özgür, A., Ozkirimli, E.: DeepDTA: deep drug-target binding affin-
ity prediction. Bioinformatics 34(17), i821–i829 (2018). https://doi.org/10.1093/
bioinformatics/bty593

7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: International Conference on Learning Representations (2015)

8. Tang, J., et al.: Making sense of large-scale kinase inhibitor bioactivity data sets: a
comparative and integrative analysis. J. Chem. Inf. Model. 54(3), 735–743 (2014).
https://doi.org/10.1021/ci400709d

http://arxiv.org/abs/2007.07967
https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1021/ci400709d

	Reproducing the Sparse Huffman Address Map Compression for Deep Neural Networks
	1 Introduction
	2 Implementation
	2.1 Dataset
	2.2 State-of-the-art Models
	2.3 Network Compression
	2.4 Compact Network Representation

	3 Reproducibility
	References




