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2.1 Introduction

Artificial Intelligence is nowadays one of the most important scientific and techno-
logical areas, with a tremendous socio-economic impact and a pervasive adoption
in every field of the modern society. High-profile applications such as medical
diagnosis, spam filtering, autonomous vehicles, voice assistants, and image recog-
nition are based on Artificial Intelligence (AI) systems. These AI systems reach
their impressive performance mainly through obscuremachine learning models that
“hide” the logic of their internal decision processes to humans because they are not
humanly understandable. Black box models are tools used by AI to accomplish a task
for which either the logic of the decision process is not accessible or it is accessible
but not human-understandable. Examples of machine learning black box models
adopted by AI systems include neural networks, deep neural networks, ensemble
classifiers, SVMs, but also compositions of expert systems, data mining, and hard-
coded proprietary software. The choice of using not interpretable machine learning
models in AI systems is due to their high performance in terms of accuracy [71].
As a consequence, we have witnessed the rise of a black box society [54], where AI
systems adopt obscure decision-making models to carry on their decision processes.

The missing of interpretability on how black box models make decisions and
fulfill their tasks is a crucial issue for ethics and a limitation to AI adoption in
socially sensitive and safety-critical contexts such as healthcare and law. Also, the
problem is not only for lack of transparency but also for possible biases inherited
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by the black boxes from prejudices and artifacts hidden in the training data used
by the obscure machine learning models. Indeed, machine learning models are
built through a learning phase on training data. These training datasets can contain
data coming from the digital traces that people produce while performing daily
activities such as purchases, movements, posts in social networks, etc., but also
from logs and reports generated in business companies and industries. These “Big
Data” can inadvertently contain bias, prejudices, or spurious correlations due to
human annotation or the way they are collected and cleaned. Thus, obscure biased
models may inherit such biases, possibly causing wrong and unfair decisions. As
a consequence, the research in eXplainable AI (XAI) has recently caught much
attention [1, 7, 32, 49].

The rest of this chapter is organized as follows. First, Sect. 2.2 shows theoretical,
ethical, and legal motivations for the need of an explainable AI. Section 2.3 illus-
trates the dimensions to distinguish XAI approaches. Then, Sect. 2.4 presents the
most common types of explanations and provides some details on the state-of-the-art
explanators returning them. Finally, Sect. 2.5 concludes this chapter by discussing
practical usability of XAI methods, explanations in real-world applications, and the
open research questions.

2.2 Motivations for XAI

Why do we need XAI? In the following, we analyze some real cases depicting
how and why AI equipped with black box models can be dangerous both for the
possibility of discrimination and for the unavailability of justification after incorrect
behaviors.

Prejudices and preconceptions on training datasets can be adopted by machine
learning classifiers as general rules to be replicated [56]. Automated discrimination
is not necessarily due to black box models. In St. George’s Hospital Medical School,
London, UK, a program for screening job applicants was used during the 1970s
and 1980. The program used information from candidates without any reference
to ethnicity. However, such a program was found to discriminate against ethnic
minorities and women by inferring this information from surnames and place of
birth and lowering their chances of being selected for interview [44]. A more
recent example is related to Amazon. In 2016, the AI software used by Amazon
to determine the areas of the USA to which Amazon would offer free same-day
delivery accidentally restricted minority neighborhoods from participating in the
program (often when every surrounding neighborhood was allowed).1 In the same
year, the COMPAS score, a predictive model for the “risk of crime recidivism”
(proprietary secret of Northpointe), was shown to have a strong ethnic bias from

1http://www.techinsider.io/how-algorithms-can-be-racist-2016-4.
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the journalists of propublica.org.2 The journalists proved that, according to the
COMPAS score, a Black who did not re-offend was classified as “high risk” twice
as much as Whites who did not re-offend. On the other hand, White repeat offenders
were classified as “low risk” twice as much as Black repeat offenders.

These kinds of biases are tied with the training data. For example, in [15], it
is proved that the word embeddings [11] trained on Google News articles exhibit
female/male gender stereotypes. Indeed, it is shown that for the analogy “Man
is to computer programmer as woman is to X,” the variable X was replaced by
“homemaker” by the trained obscure model. The problem was the literature and
texts used to train the model repeating that a woman does the housework. Similarly,
in [58], it is shown that a classifier trained to recognize wolves and husky dogs
was basing its predictions to distinguish a wolf solely on the presence of snow
in the background. This was happening because all the training images with a
wolf had snow in the background. These spurious correlations, biases, and implicit
rules, hidden in the data, besides discriminating, can also cause wrong and unfair
decisions. Unfortunately, in various cases, machine errors could have been avoided
if the AI would not have been obscured. In particular, accessing the reasons for
the AI decisions is especially crucial in safety-critical AI systems like medicine
and self-driving cars, where a possible erroneous outcome could even lead to the
death of people. For example, the incident that involved a self-driving Uber car that
knocked down and killed a pedestrian in Tempe, Arizona, in 2018.3 An appropriate
XAI method would have helped the company to understand the reasons behind the
decision and manage their responsibilities.

Precisely to avoid these cases, the European Parliament turned into law in
May 2018 the General Data Protection Regulation (GDPR) containing innovative
clauses on interpretability for automated decision-making systems. For the first
time, the GDPR introduces a right of explanation for all individuals to obtain “mean-
ingful explanations of the logic involved” when automated decision-making takes
place. Despite conflicting opinions among legal scholars regarding the real scope of
these clauses [27, 47, 73], a joint agreement on the need for the implementation of
such a principle is crucial, and it is nowadays a big open scientific challenge. Indeed,
without a technology able to explain black box models, the right to explanation will
remain a “dead letter.” How can companies trust their AI products without fully
validating and understanding the rationale of their obscure models? And in turn, how
can users trust AI services and applications? It would be unthinkable to increase the
trust of people and companies in AI without explaining to humans the logic followed
by black box models. For these reasons, XAI is at the heart of responsible, open data
science across multiple industry sectors and scientific disciplines involving robotics,
economics, sociology, and psychology besides computer science.

2http://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.
3https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html.
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2.3 Dimensions of XAI

The goal of XAI is to interpret AI reasoning. To interpret means to give or provide
the meaning or to explain and present in understandable terms some concepts.4

Therefore, in AI, interpretability is defined as the ability to explain or to provide
the meaning in understandable terms to a human [7, 21]. These definitions assume
that the concepts composing an explanation and expressed in the understandable
terms are self-contained and do not need further explanations. An explanation is an
“interface” between a human and an AI, and it is at the same time both human-
understandable and an accurate proxy of the AI.

We can identify a set of dimensions to analyze the interpretability of AI systems
that, in turn, reflect on the existing different types of explanations [32]. Some of
these dimensions are related to functional requirements of explainable Artificial
Intelligence, i.e., requirements that identify the algorithmic adequacy of a particular
approach for a specific application, while others to the operational requirements,
i.e., requirements that take into consideration how users interact with an explainable
system and what is the expectation. Some dimensions instead derive from the need
of usability criteria from a user perspective, while others derive from the need of
guarantees against any vulnerability issues. Recently, all these requirements have
been analyzed [68] to provide a framework allowing the systematic comparison of
explainability methods. In particular, in [68], the authors propose Explainability
Fact Sheets that enable researchers and practitioners to assess capabilities and
limitations of a particular explainable method. As an example, given an explanation
method m, we can consider the following functional requirements. (i) Even though
m is designed to explain regressors, can we use it to explain probabilistic classifiers?
(ii) Can we employ m on categorical features even though it only works on
numerical features? On the other hand, as an operational requirement, can we
consider which is the function of the explanation? Provide transparency, assess the
fairness, etc.

Besides the detailed requirements illustrated in [68], in the literature, it is
recognized as a categorization of explanation methods among fundamental pil-
lars [1, 32]: (i) black box explanation vs. explanation by design, (ii) global vs.
local explanations, and (iii) model-specific vs. model-agnostic explainers. In the
following, we present details of these distinctions and other important features
characterizing XAI methods. Figure 2.1 illustrates a summarized ontology of the
taxonomy used to classify XAI methods.

Black Box Explanation vs. Explanation by Design We distinguish between black
box explanation and explanation by design. In the first case, the idea is to couple an
AI with a black box model with an explanation method able to interpret the black
box decisions. In the second case, the strategy is to substitute the obscure model with
a transparent model in which the decision process is accessible by design. Figure 2.2

4https://www.merriam-webster.com/.
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Fig. 2.1 A summarized ontology of the taxonomy of XAI methods

Fig. 2.2 (Top) Black box explanation pipeline. (Bottom) Explanation by design pipeline

depicts this distinction. Starting from a dataset X, the black box explanation idea is
to maintain the high performance of the obscure model b used by the AI and to
use an explanation method f to retrieve an explanation e by reasoning over b and
X. This kind of approach is the one more addressed nowadays in the XAI research
field [20, 45, 58]. On the other hand, the explanation by design consists of directly
designing a comprehensible model c over the dataset X, which is interpretable by
design and returns an explanation e besides the prediction y. Thus, the idea is to use
this transparent model directly into the AI system [61, 62]. In the literature, there are
various models recognized to be interpretable. Examples are decision tree, decision
rules, and linear models [24]. These models are considered easily understandable
and interpretable for humans. However, nearly all of them sacrifice performance in
favor of interpretability. In addition, they cannot be applied effectively on data types
such as images or text but only on tabular, relational data, i.e., tables.

Global vs. Local Explanations We distinguish between global and local explana-
tions depending on whether the explanation allows understanding the whole logic
of a model used by an AI system or if the explanation refers to a specific case, i.e.,
only a single decision is interpretable. A global explanation consists in providing a
way for interpreting any possible decision of a black boxmodel. Generally, the black
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Fig. 2.3 Explanation examples in the form of decision tree, decision rule, and feature importance

box behavior is approximated with a transparent model trained to mimic the obscure
model and also to be human-understandable. In other words, the interpretable model
approximating the black box provides a global interpretation. Global explanations
are quite difficult to achieve and, up to now, can be provided only for AI working on
relational data. A local explanation consists in retrieving the reasons for the outcome
returned by a black box model relatively to the decision for a specific instance. In
this case, it is not required to explain the whole logic underlying the AI, but only
the reason for the prediction on a specific input instance. Hence, an interpretable
model is used to approximate the black box behavior only in the “neighborhood”
of the instance analyzed, i.e., with respect only to similar instances. The idea is
that in such a neighborhood, it is easier to approximate the AI with a simple and
understandable model. Regarding Fig. 2.2 (top), a global explanation method f

uses many instances X over which the explanation is returned. Figure 2.3 (left)
illustrates an example of global explanation e obtained by a decision tree structure
for a classifier recommending to play tennis or not. The overall decision logic is
captured by the tree that says that the classifier recommends playing tennis or not
by first looking at the Outlook feature. If its value is Overcast, then the prediction
is “not to play.” Otherwise, if its value is Sunny, the classifier checks the Humidity
feature and recommends “not to play” if the Humidity is High and “to play” if it
is Normal. The same reasoning applies to the other branches of the tree. Still with
reference to Fig. 2.2 (top), a local explanation method f returns an explanation only
for a single instance x. Two examples of local explanations are shown in Fig. 2.3
(right). The local rule-based explanation e for a given record x says that the black
box b suggested to play tennis because the Outlook is Sunny and the Humidity is
Normal. On the other hand, the explanation e formed by feature importance says
that the black box b suggested playing tennis because the Outlook has a large
positive contribution, Humidity has a consistent negative contribution, andWind has
no contribution in the decision.

Interpretable Models for Explaining AI To explain obscure AI systems or to
replace the black box components, often interpretable models are learned. The
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most largely adopted interpretable models are briefly described in the following.
A decision tree exploits a graph-structure like a tree and composed of internal nodes
representing tests on features or attributes (e.g., whether a variable has a value lower
than, equal to, or greater than a threshold) and leaf nodes representing a decision.
Each branch represents a possible outcome [57]. The paths from the root to the
leaves represent the classification rules. The most common rules are if-then rules,
where the “if” clause is a combination of conditions on the input variables. If the
clause is verified, the “then” part reveals the AI action. For a list of rules, given an
ordered set of rules, the AI returns as the decision the consequent of the first rule
that is verified [76]. Finally, linear models allow visualizing the feature importance:
both the sign and the magnitude of the contribution of the attributes for a given
prediction [58]. If the sign of an attribute value is positive, then it contributes by
increasing the model’s output, and otherwise, it decreases it. Higher magnitudes of
attribute values indicate a higher influence on the prediction of the model. Examples
of such explanations are illustrated in Fig. 2.3.

User’s Desiderata Since interpretable models are required to retrieve explana-
tions, some desiderata should be taken into account when adopting them [24].
Interpretability consists of evaluating to what extent a given explanation is human-
understandable. An approach often used for measuring the interpretability is the
complexity of the interpretable surrogate model. The complexity is generally
estimated with a rough approximation related to the size of the interpretable model.
For example, the complexity of a rule can be measured with the number of clauses
in the condition; for linear models, it is possible to count the number of non-zero
weights, while for decision trees the depth of the tree.

Fidelity consists in evaluating to which extent the interpretable model is able to
accurately imitate, either globally or locally, the decision of the AI. The fidelity can
be practically measured in terms of accuracy score, F1-score, etc. [71] with respect
to the decisions taken by the black box model. The fidelity has the goal to determine
the soundness and completeness of explanations.

Another important property for the user’s point view is the usability: an
interactive explanation can be more useful than a textual and static explanation.
However, machine learning models should also have other ordinary important
requirements such as reliability [42], robustness [34], causality [28], scalability,
and generality [55]. Reliability and robustness request that an explanation method
should have the ability to maintain certain levels of performance independently from
small variations of the parameters or of the input. Causality assumes that controlled
changes in the input affect the black box behavior in an expected way, known by the
explainer. Generality requires that explanation models are portable to different data
(with similar nature) without special constraints or restrictions. Finally, since most
of the AI systems need “Big Data,” it is opportune to have explainers able to scale
to large input data.

Moreover, a fundamental aspect is that every explanation should be personalized
coherently with the user background. Different background knowledge and diverse
experiences in various tasks are tied to different notions and requirements for the
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usage of explanations. Domain experts can be able to understand complex explana-
tions, while common users require simple and effective clarifications. Indeed, the
meaningfulness and usefulness of an explanation depend on the stakeholder [12].
Taking as an example the aforementioned COMPAS case, a specific explanation
for a score may make sense to a judge who wants to understand and double-
check the suggestion of the AI support system and possibly discover that it biased
against Blacks. On the other hand, the same explanation is not useful to a prisoner
who cannot change the reality of being Black, while he can find the suggestion
meaningful that when he will be older then he would lower his risk down. Moreover,
besides these features strictly related to XAI, an interpretable model should satisfy
other important general desiderata. For instance, having a high accuracy that
consists in evaluating to what extent the model accurately takes decisions for unseen
instances.

Model-Specific vs. Model-Agnostic Explainers We distinguish between model-
specific and model-agnostic explanation methods depending on whether the tech-
nique adopted to retrieve the explanation acts on a particular model adopted by an
AI system or can be used on any type of AI. The most used approach to explain AI
black boxes is known as reverse engineering. The name comes from the fact that
the explanation is retrieved by observing what happens to the output, i.e., the AI
decision, when changing the input in a controlled way. An explanation method is
model-specific or not generalizable [48], if it can be used to interpret only particular
types of black box models. For example, if an explanation approach is designed to
interpret a random forest [71] and internally use a concept of distance between trees,
then such an approach cannot be used to explain the predictions of a neural network.
On the other hand, an explanation method ismodel-agnostic, or generalizable, when
it can be used independently from the black box model being explained. In other
words, the AI’s internal characteristics are not exploited to build the interpretable
model approximating the black box behavior.

Time Limitations The time that the user is allowed to spend on understanding an
explanation or is available to do it is a crucial aspect. Obviously, the time availability
of a user is strictly related to the scenario where the predictive model has to be
used. In some contexts where the user needs to quickly take the decision, e.g.,
a surgery or an imminent disaster, it is preferable to have an explanation simple
and effective. While in contexts where the decision time is not a constraint, such
as during a procedure to release a loan, one might prefer a more complex and
exhaustive explanation.

Safety Desiderata Explainability methods providing interpretable understanding
may reveal partial information about the training data, the internal mechanisms of
the models, or their parameters and prediction boundaries [14, 65]. Thus, desiderata
such as privacy [52], secrecy, security, and fairness [56] should be considered to
avoid skepticism and increase trust. Fairness and privacy are fundamental desiderata
to guarantee the protection of groups against (direct or indirect) discrimination [60]
that the interpretable model does not reveal sensitive information about people [3].
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2.4 Explanations and Explanators

Increasing research on XAI is bringing to light a wide list of explanations and
explanation methods for “opening” black box models. The explanations returned
depend on various factors such as the type of task they are needed for and on which
type of data the AI system acts, who is the final user of the explanation, if they
allow to explain the whole behavior of the AI system (global explanations) or reveal
the reasons for the decision only for a specific instance (local explanations). In this
section, we review the most used types of explanations and show how some state-
of-the-art explanation methods are able to return them. The interest reader can refer
to [1, 32] for a complete review of the literature in XAI.

2.4.1 Single Tree Approximation

One of the first approaches introduced to explain neural networks is TREPAN [20].
TREPAN is a global explanation method that is able to model the whole logic of
a neural network working on tabular with a single decision tree. The decision tree
returned by TREPAN as explanation is a global transparent surrogate. Indeed, every
path from the root of the tree to a leaf shows the reasons for the final decision
reported in the leaf. An example of a decision tree returned by TREPAN is illustrated
in Fig. 2.4. This global explanation reveals that the black box first focuses on the
value of the feature rest ECG and depending on its degree (abnormal, normal,
hypertrophy) takes different decisions depending on additional factors such as sex or
cholesterol. In particular, TREPAN queries the neural network to induce the decision

Fig. 2.4 Example of global tree-based explanation returned by TREPAN
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tree by maximizing the gain ratio [71] on the data with respect to the predictions
of the neural network. A weakness of common decision trees like ID3 or C4.5 [57]
is that the amount of data to find the splits near to the leaves is much lower than
those used at the beginning. Thus, in order to retrieve how a neural network works
in detail, TREPAN adopts a synthetic generation of data that respect the path of each
node before performing the splitting such that the same amount of data is used for
every split. In addition, it allows flexibility by using “m-of-n” rules where only
m conditions out of n are required to be satisfied to classify a record. Therefore,
TREPAN maximizes the fidelity of the single tree explanation with respect to the
black box decision. We highlight that even though TREPAN is proposed to explain
neural networks, in reality it is model-agnostic because it does not exploit any
internal characteristic of neural networks to retrieve the explanation tree. Thus, it
can be theoretically employed to explain every type of classifier, i.e., it is model-
agnostic.

In [16] is presented an extension of TREPAN that aims to keep the tree explanation
simple and compact by introducing four splitting approaches aimed at finding the
most relevant features during the tree construction. In [36], genetic programming
is used to evolve a single decision tree that approximates the behavior of a
neural network ensemble by considering additional genetic features obtained as
combinations of the original data and the novel data annotated by the black box
models. Both methods described in [16, 36] return explanations in the form of a
global decision tree. The readers interested can refer to the papers for more details.

2.4.2 Rules List and Rules Set

A decision rule is generally formed by a set of conditions and by a consequent, e.g.,
if conditions, then consequent. Given a record, a decision rule assigns to the record
the outcome specified in the consequent if the conditions are verified [2]. The most
common rules are if-then rules that take into consideration rules with clauses in
conjunction. On the other hand, for m-of-n rules given a set of n conditions, if m of
them are verified, then the consequence of the rule is applied [51]. When a set of
rules is used, then there are different strategies to select the outcome. For a list of
rules, the order of the list is considered and the model returns the outcome of the
first rule that verifies the conditions [76]. For instance, falling rule lists are if-then
rules ordered with respect to the probability of a specific outcome [75]. On the other
hand, decision sets are unordered lists of rules. Basically each rule is an independent
classifier that can assign its outcome without regard for any other rule [39]. Voting
strategies are used to select the final outcome.

List of rules and set of rules are adopted as explanation both from explanation
methods and from transparent classifiers. In both cases, the reference context is
tabular data. In [8], the explanation method RXREN unveils with rules list the logic
behind a trained neural network. First, RXREN prunes the insignificant input neurons
and identifies the data range necessary to classify the given test instance with a
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Fig. 2.5 Example of the list of rules explanation returned by RXREN

Fig. 2.6 Example of the list of rules explanation returned by CORELS

specific class. Second, RXREN generates the classification rules for each class label
exploiting the data ranges previously identified and improves the initial list of rules
by a process that prunes and updates the rules. Figure 2.5 shows an example of rules
returned by RXREN. A survey on techniques extracting rules from neural networks
is [4]. All the approaches in [4], including RXREN, are model-specific explainers.

As previously mentioned, an alternative line of research to black box explanation
is the design of transparent models for the AI systems. The CORELS method [5] is
a technique for building rule lists for discretized tabular datasets. CORELS provides
an optimal and certifiable solution in terms of rule lists. An example of rules list
returned by CORELS is reported in Fig. 2.6. The rules are read one after the other,
and the AI would take the decision of the first rule for which the conditions are
verified. Decision sets are built by the method presented in [39]. The if-then rules
extracted for each set are accurate, non-overlapping, and independent. Since each
rule is independently applicable, decision sets are simple, succinct, and easily to be
interpreted. A decision set is extracted by jointly maximizing the interpretability and
predictive accuracy by means of a two-step approach using frequent itemset mining
and a learning method to select the rules. The method proposed in [63] merges local
explanation rules into a unique global weighted rule list by using a scoring system.

2.4.3 Partial Dependency

Another global XAI method for inspecting the behavior of black box models is the
partial dependence plot ( PDP). In [32], the black box inspection problem is defined
as providing a representation for understanding why the black box returns certain
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predictions more likely than others with particular inputs. The PDP visually shows
the relationship between the AI decision and the input variables in a reduced feature
space clarifying whether the relationship is linear, monotonic, or more complex.

In particular, a PDP shows the marginal effect of a feature on the AI decision [25].
Shortly, a feature is selected and it is varied in its domain. Then, instances are built
with values of the selected feature and values from the other features of a given
training data. The PDP for a value of the selected feature is the mean probability of
classification over the training data or the average regression value. An assumption
of the PDP is that the selected feature is not correlated with the other features.
Generally, PDP approaches are model-agnostic and used on tabular datasets. In [38],
the PROSPECTOR method implementing a PDP is proposed to observe how the
output of a black box varies by varying the input changing one variable at a time with
an effective way to understand which are the most important features. Figure 2.7
shows the PROSPECTOR PDP for the feature age and a black box that predicts the risk
of churn. In this example, the PROSPECTOR PDP shows the marginal effect (black
line) of the feature Age on the predicted outcome Risk of a black box classifier. In
particular, in this case, the higher is the Age, the higher is the probability of Risk
of Churn. We highlight that for Age greater than fifty five this probability markedly
increases.

Fig. 2.7 Example of partial dependence plot
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Fig. 2.8 Example of local factual and counterfactual explanation returned by LORE

2.4.4 Local Rule-Based Explanation

Despite being useful, global explanations can be inaccurate because interpreting a
whole model can be complex. On the other hand, even though the overall decision
boundary is difficult to explain, locally, in the surrounding of a specific instance,
it can be easier. Therefore, a local explanation rule can reveal the factual reasons
for the decision taken by the black box of an AI system for a specific instance. The
LORE method is able to return a local rule-based explanation. LORE builds a local
decision tree in the neighborhood of the instance analyzed [30] generated with a
genetic procedure to account for both similarity and differences with the instance
analyzed. Then, it extracts from the tree a local rule revealing the reasons for the
decision on the specific instance (see the green path in Fig. 2.8). For instance, the
explanation of LORE for the denied request of a loan from a customer with “age=22,
race=black, and income=800” to a bank that uses an AI could be the factual rule if
age ≤ 25 and race = black and income ≤900 then deny. ANCHOR [59] is another
XAI approach for locally explaining black box models with decision rules called
anchors. An anchor is a set of features with thresholds indicating the values that
are fundamental for obtaining a certain decision of the AI. An ANCHOR efficiently
explores the black box behavior by generating random instances exploiting a multi-
armed bandit formulation.

2.4.5 Feature Importance

A widely adopted form of local explanation, especially for tabular data, consists of
feature importance. Local explanations can also be returned in the form of feature
importance that considers both the sign and the magnitude of the contribution of
the features for a given AI decision. If the value of a feature is positive, then it
contributes by increasing the model’s output; if the sign is negative, then the feature
decreases the output of the model. If a feature has a higher contribution than another,
then it means that it has a stronger influence on the prediction of the black box
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outcome. The feature importance summarizes the decision of the black box model
providing the opportunity of quantifying the changes of the black box decision for
each test record. Thus, it is possible to identify the features leading to a certain
outcome for a specific instance and how much they contributed to the decision.

The LIME model-agnostic local explanation method [58] randomly generates
synthetic instances around the record analyzed and then returns the feature impor-
tance as the coefficient of a linear regression model adopted as a local surrogate.
The synthetic instances are weighted according to their proximity to the instance
of interest. The Lasso model is trained to approximate the probability of the
decision of the black box in the synthetic neighborhood of the instance analyzed.
Figure 2.9 shows the feature importance returned by LIME (central part of the
figure) toward the two classes. In this example, the feature odor=foul has a positive
contribution of 0.26 in the prediction of a mushroom as poisonous, stack-surface-
above-ring=silky has a positive contribution of 0.11, spore-print-color=chocolate
has a positive contribution of 0.08, stack-surface-below-ring=silky has a positive
contribution of 0.06, while gill-size=broad has a negative contribution of 0.13.
Another widely adopted model-agnostic local explanation method is SHAP [45].
SHAP connects game theory with local explanations exploiting the Shapely values of
a conditional expectation function of the black box to explain the AI. Shapley values
are introduced in [64] with a method for assigning “payouts” to “players” depending
on their contribution to the “total payout.” Players cooperate in a coalition and
receive a certain “profit” from this cooperation. The connection with explainability
is as follows. The “game” is the decision of the black box for a specific instance.
The “profit” is the actual value of the decision for this instance minus the average
values for all instances. The “players” are the feature values of the instance that
leads toward a certain value, i.e., collaborate to receive the profit. Thus, a Shapley
value is the average marginal contribution of a feature value across all possible
coalitions, i.e., combinations [50]. Therefore, SHAP returns the local unique additive
feature importance for each specific record. The higher is a Shapely value, and the
higher is the contribution of the feature. Figure 2.10 illustrates an example of SHAP

explanation, where the feature importance is expressed in the form of a force plot.
This explanation shows for each feature the level of the contribution in pushing
the black box prediction from the base value (the average model output over the

Fig. 2.9 Example of explanation based on feature importance by LIME



2 Principles of Explainable Artificial Intelligence 23

Fig. 2.10 Example of explanation based on feature importance by SHAP

Fig. 2.11 Example of saliency maps returned by different explanation methods. The first column
contains the image analyzed and the label assigned by the black box model b of the AI system

dataset, which is 24.41 in this example) to the model output. The features pushing
the prediction higher are shown in red; those pushing the prediction lower are shown
in blue. Under appropriate settings, LIME and SHAP can also be used to explain the
decisions of AI working on textual data and images.

2.4.6 Saliency Maps

The most used type of explanation for explaining AI systems working on images
consists of saliency maps. A saliency map is an image where each pixel’s color
represents a value modeling the importance of that pixel for the prediction, i.e.,
they show the positive (or negative) contribution of each pixel to the black box
outcome. Thus, saliency maps are returned by local explanation methods. In the
literature, there exist different explanation methods locally explaining deep neural
networks for image classification. The two most used model-specific techniques are
gradient attribution methods like SAL [67], GRAD [66], INTG [69], ELRP [9], and
perturbation-based attribution methods [23, 77]. Without entering into the details,
these XAI approaches aim to assign an importance score to each pixel such that
the probability of the deep neural network of labeling the image with a different
outcome is minimized, if only the most important pixels are considered. Indeed, the
areas retrieved by these methods are also called attention areas.

The aforementioned XAI methods are specifically designed for specific DNN
models, i.e., they are model-specific. However, under appropriate image transforma-
tions that exploit the concept of “superpixels” [58], the model-agnostic explanation
methods such as LIME, ANCHOR, and LORE can also be employed to explain
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AI working on images for any type of black box model. The attention areas
of explanations returned by these methods are tied to the technique used for
segmenting the image to explain and to a neighborhood consisting of unrealistic
synthetic images with “suppressed” superpixels [29]. On the other hand, the local
model-agnostic explanation method ABELE [31] exploits a generative model, i.e.,
an adversarial autoencoder[46], to produce a realistic synthetic neighborhood that
allows retrieving more understandable saliency maps. Indeed, ABELE’s saliency
maps highlight the contiguous attention areas that can be varied while maintaining
the same classification from the black box used by the AI system. Figure 2.11 reports
a comparison of saliency maps for the classification of the handwritten digits “9”
and “0” for the explanation methods ABELE [31], LIME [58], SAL [67], GRAD [66],
INTG [69], and ELRP [9].

2.4.7 Prototype-Based Explanations

Prototype-based explanation methods return as explanation a selection of particular
instances of the dataset for locally explaining the behavior of the AI system [50].
Prototypes (or exemplars) make clear to the user the reasons for the AI system’s
decision. In other words, prototypes are used as a foundation of representation
of a category, or a concept [26]. A concept is represented through a specific
instance. Prototypes help humans in constructing mental models of the black box
model and of the training data used. Prototype-based explainers are generally
local methods that can be used independently for tabular data, images, and text.
Obviously, prototype-based explanations only make sense if an instance of the
data is humanly understandable and makes sense as an explanation. Hence, these
methods are particularly useful for images, short texts, and tabular data with few
features.

In [13], prototypes are selected as a minimal subset of samples from the training
data that can serve as a condensed view of a dataset. Naive approaches for selecting
prototypes use the closest neighbors from the training data with respect to a
predefined distance function, or the closest centroids returned by a clustering algo-
rithm [71]. In [43], we designed a sophisticated model-specific explanation method
that directly encapsulates in a deep neural network architecture an autoencoder and
a special prototype layer, where each unit of that layer stores a weight vector that
resembles an encoded training input. The autoencoder permits to make comparisons
within the latent space and to visualize the learned prototypes such that besides
accuracy and reconstruction error, the optimization has a term that ensures that
every encoded input is close to at least one prototype. Thus, the distances in the
prototype layer are used for the classification such that each prediction comes with
an explanation corresponding to the closest prototype. In [18], prototypical parts
of images are extracted by a PROTOPNET network, such that each classification is
driven by prototypical aspects of a class.
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Fig. 2.12 Example of
exemplars (left) and
counter-exemplars (right)
returned by ABELE. On top of
each (counter-)exemplar is
reported the label assigned by
the black box model b of the
AI system

Although prototypes are representative of all the data, sometimes they are not
enough to provide evidence for the classification without instances that are not well
represented by the set of prototypes [50]. These instances are named criticisms
and help to explain what is not captured by prototypes. In order to aid human
interpretability, in [37], prototypes and criticisms are selected by means of the
Maximum Mean Discrepancy (MMD): instances in highly dense areas are good
prototypes, and instances that are in regions that are not well explained by the
prototypes are selected as criticisms. Finally, the ABELE method [31] enforces the
saliency map explanation with a set of exemplar and counter-exemplar images,
i.e., images similar to the one under investigation classified for which the same
decision is taken by the AI, and images similar to the one explained for which
the black box of the AI returns a different decision. The particularity of ABELE is
that it does not select exemplars and counter-exemplars from the training set, but it
generates them synthetically exploiting an adversarial autoencoder used during the
explanation process [40]. An example of exemplars (left) and counter-exemplars
(right) is shown in Fig. 2.12.

2.4.8 Counterfactual Explanations

A counterfactual explanation shows what should have been different to change the
decision of an AI system. Counterfactual explanations are becoming an essential
component in XAI methods and applications [6] because they help people in reason-
ing on the cause–effect relations between analyzed instances and AI decision [17].
Indeed, while direct explanations such as feature importance, decision rules, and
saliency maps are important for understanding the reasons for a certain decision, a
counterfactual explanation reveals what should be different in a given instance to
obtain an alternative decision [73]. Thinking in terms of “counterfactuals” requires
the ability to figure a hypothetical causal situation that contradicts the observed
one [50]. Thus, the “cause” of the situation under investigation are the features
describing the situation and that “caused” a certain decision, while the “event”
models the decision.

The most used types of counterfactual explanations are indeed prototype-based
counterfactuals. In [74], counterfactual explanations are provided by an explanation
method that solves an optimization problem that, given an instance under analysis,
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a training dataset, and a black box function, returns an instance similar to the input
one and with minimum changes, i.e., minimum distance, but that reverts the black
box outcome. The counterfactual explanation describes the smallest change that
can be made in that particular case to obtain a different decision from the AI.
In [72] is proposed the generation of diverse counterfactuals using mixed integer
programming for linear models. As previously mentioned, ABELE [31] also returns
synthetic counter-exemplar images that highlight the similarities and differences
between images leading to the same decision and images leading to other decisions.

Another modeling for counterfactual explanations consists of the logical form
that describes a causal situation like: “If X had not occurred, Y would not have
occurred” [50]. The local model-agnostic LORE explanation method [30], besides
a factual explanation rule, also provides a set of counterfactual rules that illustrate
the logic used by the AI to obtain a different decision with minimum changes. For
example, in Fig. 2.8, the set of counterfactual rules is highlighted in purple and
shows that if income >900 then grant, or if race = white then grant, clarifying
which particular changes would revert the decision. In [41] is proposed a local
neighborhood generation method based on a Growing Spheres algorithm that can
be used for both finding counterfactual instances and acting as a base for extracting
counterfactual rules.

2.5 Conclusions

This chapter has discussed the problem of interpretability of AI-based decision
systems that typically are opaque and hard to understand by humans. In particular,
we have analyzed the different dimensions of the problem and the different types
of explanations offered by methods proposed by the scientific community. The
opportunity to explain complex AI-based systems is fundamental for the diffusion
and adoption of those systems in critical domains. One of the most critical ones is
the healthcare field where the question of interpretability is far from just intellectual
curiosity. The point is that these systems should be used as a support for physicians
who have important responsibilities when taking decisions that have a direct impact
on health status of humans. For instance, a XAI system, providing details in
the form of logical rules or feature importance, could be extremely useful to
medical experts who have to monitor and predict the disease evolution of a patient
(diabetes detection [70], Alzheimer progression [53], etc.) while understanding the
reason for a specific evolution, progression, and complication. Exactly for studying
progression and complication, prototype-based explanations and counterfactual
explanations can play a crucial role. On the other hand, exemplars and counter-
exemplars could be fundamental for identifying brain tumor by comparing with
images from magnetic resonance scans [10] and for highlighting through saliency
maps the areas of the brain responsible for the decision of the AI system. These are
the only examples because there are many other different cases where the knowledge
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of the medical staff can be augmented by the knowledge acquired by the machine
learning system able to elaborate and analyze myriad of the available information.

Another important field where explainability is applicable is in the context of
recommendation systems for getting explainable e-commerce recommendations,
explainable social recommendations, and explainable multimedia recommenda-
tions. In this context, the goal is to inscribe transparency in the systems but
also to provide explanations to final users or system designers who are naturally
involved in the loop. In e-commerce, the goal is to explain the ranking of specific
recommendations of products [19, 35]. Explainable recommendations also apply
to social networks for friend recommendations, recommendation of music, news,
travels, tags in images, etc. A useful explanation for recommendation systems could
be based on feature importance revealing which are the items contributing positively
or negatively to the recommendation. Explainability in social environments is
important to increase the users’ trustworthiness in the recommendations that is
fundamental for the social network sustainability. For instance, in [33], a classifier
for predicting the risk of car crash of a driver is equipped with the SHAP explainer
that reveals the importance of the features recognizing the risk of collision.
Understanding the reasons of recommendations is crucial because it makes the user
aware about the technology he/she is using and also about his/her online behavior
that enabled the specific recommendation.

Unveiling and interpreting the lending decisions made by an AI-based system
is fundamental for the legal point of view and for increasing the social acceptance
of these systems. Indeed, these systems based on machine learning models pick
up biases from the training data. This can lead to learn possible discriminatory
behavior against protected groups. In these contexts, interpretability can help in
the debugging aimed at detecting those biases and to understand how to have a
model able to minimize loan defaults, but also to avoid the discrimination due to
certain demographics biases [22]. As a consequence, explainable AI in this setting
has a double goal: providing clarification to end user about the reason of the final
decisions and providing automated feedback to constantly improve the AI system to
eliminate possible ethical issues.

The application domains just discussed are only some of the possible applications
of explainable AI. With the AI research advancements, the need of explainability
will tend to increase more and more because the complexity of the models could
jeopardize their usability. Clearly, the research on explainable AI requires still some
effort especially in terms of personalized and interactive explanations, i.e., in the
study of methods able to provide explanations adaptable to the user background and
enabling the human interaction creating the beneficial loop human-machine that
could lead the machine to learn from humans and humans from machine.
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