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Preface

Explainable Artificial Intelligence (XAI) aims at producing explainable models that
enable human users to understand and appropriately trust the obtained results. The
produced explanations allow to reveal how the model functions, why it behaves that
way in the past, present, and future, why certain actions were taken or must be taken,
how certain goals can be achieved, how the system reacts to certain inputs or actions,
what are the causes for the occurrence of a certain fault and how this occurrence can
be avoided in the future, etc. The need for explanations is increasingly becoming
necessary in multiple application domains, such as smart grids, autonomous cars,
smart factory or industry 4.0, telemedicine and healthcare, etc., in particular within
the context of digital transformation and cyber-physical systems.

This book gathers research contributions aiming at the development and/or the
use of XAI techniques, in particular within the context of digital transformation and
cyber-physical systems. This book aims to address the aforementioned challenges
in different applications such as healthcare, finance, cybersecurity, and document
summarization.

The discussed methods and techniques cover different kinds of designed explain-
able models (transparent models, model agnostic methods), evaluation layout and
criteria (user-expertise level, expressive power, portability, computational complex-
ity, accuracy, etc.), and major applications (energy, industry 4.0, critical systems,
telemedicine, finance, e-government, etc.). The goal is to provide readers with an
overview of advantages and limits of the generated explainable models in different
application domains. This allows to highlight the benefits and requirements of using
explainable models in different application domains and to provide guidance to
readers to select the most adapted models to their specified problem and conditions.

Making machine learning-based AI explainable faces several challenges. Firstly,
the explanations must be adapted to different stakeholders (end users, policy
makers, industries, utilities, etc.) with different levels of technical knowledge
(managers, engineers, technicians, etc.) in different application domains. Secondly,
it is important to develop an evaluation framework and standards in order to measure
the effectiveness of the provided explanations at the human and the technical
levels. For instance, this evaluation framework must be able to verify that each
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vi Preface

explanation is consistent across similar predictions (similar observations) over time,
is expressive in order to increase the user confidence (trust) in the decisions made,
promote impartial and fair decisions, and improve the user task performance.

Finally, the editor is very grateful to all authors and reviewers for their valuable
contribution. He would like also to acknowledge Mrs. Mary E. James for estab-
lishing the contract with Springer and supporting the editor in any organizational
aspects. The editor hopes that this book will be a useful basis for further fruitful
investigations for researchers and engineers as well as a motivation and inspiration
for newcomers in order to address the challenges related to energy transition.

Douai, France Moamar Sayed-Mouchaweh
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Chapter 1
Prologue: Introduction to Explainable
Artificial Intelligence

Moamar Sayed-Mouchaweh

1.1 Explainable Machine Learning

Machine learning methods, especially deep neural networks, are becoming increas-
ingly popular in a large variety of applications. These methods learn from observa-
tions in order to build a model that is used to generalize prediction (classification
or regression) to unknown data. For instance in the healthcare domain, a model
is learned in order to decide whether a patient has a cancer or not by treating its
microscopic radio images as input. Other example is credit scoring where a model
is used to decide whether a candidate may obtain a loan or not.

Machine learning methods generate or learn a highly effective mapping between
input and output. Hence, they behave as “black box” entailing a huge difficulty for
humans to understand how and why the prediction (output) was made. However in
many applications, it is important to explain to users how the decision (prediction)
was made by the model and its meaning using understandable terms. Indeed,
explainable models allow users to trust them and to better use them thanks to the
detailed information (explanation) on how and why they arrived to the provided
prediction. Therefore, making machine learning models transparent to human
practitioners or users leads to new types of data-driven insights.

Explainable Artificial Intelligence (XAI) [1] aims at producing explainable
models that enable human users to understand and appropriately trust the obtained
results. The produced explanations allow to reveal how the model functions, why it
behaves that way in the past, present and future, why certain actions were taken
or must be taken, how certain goals can be achieved, how the system reacts to
certain inputs or actions, what are the causes for the occurrence of a certain fault
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2 M. Sayed-Mouchaweh

and how this occurrence can be avoided in the future, etc. The need for explanations
is increasingly becoming necessary in multiple application domains, such as smart
grids [2], autonomous cars [3], smart factory or industry 4.0 [4, 5], telemedicine
and healthcare [6], etc., in particular within the context of digital transformation
and cyber-physical systems [7]. For instance in credit scoring or loan approval
system, providing an explanation why a loan was refused to applicants allows bias
detection. In cybersecurity [8], explanations may help to ensure the security and
safety of a system by determining abnormal changes in its output. These changes
were generated by hackers in order to fool the model. Indeed, model transparency
allows assessing the quality of output predictions and warding off adversaries [9].
However, explanation is required for critical systems where a mistake may have
serious consequences such as for self-drive cars.

Making machine learning-based AI explainable faces several challenges. Firstly,
the explanations must be adapted to different stakeholders (end users, policy
makers, industries, utilities, etc.) with different levels of technical knowledge
(managers, engineers, technicians, etc.) in different application domains. Secondly,
it is important to develop an evaluation framework and standards in order to measure
the effectiveness of the provided explanations at the human and the technical
levels. For instance, this evaluation framework must be able to verify that each
explanation is consistent across similar predictions (similar observations) over time,
is expressive in order to increase the user confidence (trust) in the decisions made,
promote impartial and fair decisions, and improve the user task performance. In
order to address these challenges, several questions need to be answered:

• How explanations can be integrated into new and already existing AI systems
and models?

• How effective user explanation interfaces can be designed?
• How the social (e.g., user requirements, user confidence) and ethical (e.g., bias

detection, fairness) aspects of explainability can be guaranteed and evaluated in
the designed XAI models?

• How objective benchmarks, standards, and evaluation strategies can be developed
in order to measure the effectiveness of XAI models for different applications,
uses, and stakeholders of different expertise levels?

Explanations can be generated either to explain the model output (prediction)
or its parameters. For instance for the cancer detection model, explanations can be
a map of the microscopic image’s pixels that contribute the most to the provided
decision or prediction. It can also be the features or activation functions’ parameters
that contributed or related the most to the provided prediction.

Explanations can be generated either during the system design or during opera-
tion in order to ensure its quality and reliability. Explainable systems can be either
self-explainable or user-triggered. Self-explainable systems are able to generate
explanation whenever something requires to be explained in particular at run-time.
User-trigger explanation provides explanation whenever a user requests it. For both
cases, a model is required allowing to understand the system’s internal dynamics,



1 Prologue: Introduction to Explainable Artificial Intelligence 3

its goals and requirements, its surrounding environments (contextual knowledge),
and the recipient of the explanation.

In general, XAI approaches can be categorized in terms of their scope, method-
ology, and usage [9]. The scope indicates the focus of the explanation on a local
instance [10] or on the model as a whole [11]. The methodology refers to the focus
of the used approach on the input data instance [10] or the model parameters [12].
Finally, the usage concerns how the explainability is integrated to the model either
to a specific model (intrinsic) or to any model as a post hoc explanation (model-
agnostic) [10]. Each of the previous approaches has its advantages and drawbacks.
For instance, local explanation is much easier than global explanation since it is
easier to provide an explanation about a local instance than for a whole model.
Moreover, post hoc agnostic models have the advantage to be dependent of the
machine learning algorithm used to train the model and therefore can be applied
to any already existing model.

1.2 Beyond State-of-the-Art: Contents of the Book

The following chapters in this book overview, discuss, and propose different
explainable AI structures, tools, and methods in order to address the aforementioned
challenges in different applications (healthcare, finance, cybersecurity, document
summarization).

1.2.1 Chapter 2: Principles of Explainable Artificial
Intelligence

This chapter presents a state of the art around the major explainable machine
learning (XAI) methods and techniques. It starts firstly by highlighting the moti-
vation of XAI in particular when it is used in automated decision-making process
for critical systems such as healthcare or autonomous vehicles. Then, the chapter
presents a set of dimensions that can be used to analyze or evaluate the capacity of
XAI to explain in understandable terms to a human, so-called interpretability. The
chapter divides XAI methods into categories according to their capacity to provide
global or local explanations, if the explanation is related to a specific machine
learning model or model-agnostic explainers, to the time that a user is allowed to
spend on understanding an explanation as well as their capacity to guarantee the
safety desiderata such as privacy, secrecy, security, and fairness. Then, the chapter
evaluates some well-known explainers according to the aforementioned dimensions
and categories, such as Trepan, Rxren, Corels, Lore, and Anchor, explainers based
on the use of a saliency map, prototype-based explanations, and counterfactual
explanations.

http://dx.doi.org/10.1007/978-3-030-76409-8_2
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1.2.2 Chapter 3: Science of Data: A New Ladder for Causation

This chapter proposes a theoretic framework to create an explainable AI tool that
is capable of reasoning. The chapter starts by discussing how deep neural networks
explain the decision they made by finding the causes generating the current events
or situations. To this end, the chapter proposes a cognitive architecture (Learning
Intelligent Distributed Agents (LIDA)) equipped with probabilistic fuzzy logic and
graphical neural networks for reasoning. Probabilistic fuzzy logic treats three types
of uncertainty: randomness, probabilistic uncertainty, and fuzziness. Therefore, it
can manage the uncertainty of our knowledge (by the use of probabilities) and the
vagueness inherent to the world’s complexity (by data fuzzification). It is integrated
with graphical neural networks for learning since it cannot learn by itself and needs
experts to define intervals before applying fuzzification.

1.2.3 Chapter 4: Explainable Artificial Intelligence for
Predictive Analytics on Customer Turnover

This chapter presents an interactive explainable artificial intelligence web interface
that integrates and enhances the state-of-the-art techniques in order to produce more
understandable and practical explanations to nontechnical end users. It is applied
for the prediction of a financial institution’s customer churn rate. The Churn is
the rate of customers who stopped using a service or product in a given time
frame. It is used in business sector such as banking, retail, telecommunications,
and education. The proposed explainable web interface combines visualization and
verbalization. The visual screens display local and global features importance in
order to provide users with the relevance of each feature to the decision made on a
certain instance or on the global model. The verbalization is used as an alternative
explanation other than the one provided by the visual screens. In addition, it is used
as a recommendation to what to do in order to prevent a customer from leaving
the company. The proposed explanation web interface is evaluated and compared
with some well-known similar explanation tools, such as GAMUT, TELEGAM,
and XAI Clinical Diagnostic Tool, using the following criteria: global explanation,
local explanation, interactive (contrastive), search table, target instance capability,
and the targeted audience.

http://dx.doi.org/10.1007/978-3-030-76409-8_3
http://dx.doi.org/10.1007/978-3-030-76409-8_4
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1.2.4 Chapter 5: An Efficient Explainable Artificial
Intelligence Model of Automatically Generated
Summaries Evaluation

This chapter handles the problem of the evaluation of automatically generated
summaries. The latter is used for facilitating the selection process for a document
and index documents more efficiently, in particular when dealing with massive
textual datasets. The chapter presents the most important cognitive psychology
models for text comprehension such as the Resonance Model, Landscape Model,
Langston and Trabasso Model, and the Construction Integration Model. Then, it
proposes a cognitive protocol for Automatically Generated Summaries Evaluation
(AGSE) based on a cognitive psychology model of reading comprehension. The
originality of this protocol is that it takes into consideration the extent to which an
abstract is a good abstract by using three criteria: retention, fidelity, and coherence.
The retention checks whether the generated output covers all the concepts reported
in the source document, the fidelity gives insights into the extent to which the
generated summary accurately reflects the author’s point of view by focusing on
salient concepts conveyed in the source text, and the coherence checks if the
automatically generated summary is semantically meaningful. The retention and
fidelity scores are modeled using three linguistic variables, “low,” “medium,” and
“high” represented as membership functions. Then the score combining both the
retention and fidelity through operators OR and AND is calculated as fuzzy score
using three rules. For instance, If the retention score is low and the fidelity score is
also low, then, the R-F score is low. Finally, text units having the highest R-F scores
after defuzzification will present candidate sentences of an ideal summary. Three
datasets containing articles and extractive summaries about different topics, such as
crisis or protest or war in some Middle East countries, are used for the evaluation of
the presented protocol.

1.2.5 Chapter 6: On the Transparent Predictive Models for
Ecological Momentary Assessment Data

This chapter describes the use of some well-known classification methods (Bayesian
Network, Gradient-boosted trees, Naïve Bayes, Multi-Layer Perceptron, Random
Forest, and Decision Tree) in order to assess individuals’ eating behavior. The
goal of this classification is to predict the future eating behavior of an individual
regarding eating healthy or unhealthy in order to intervene just in time if the
future behavior is eating unhealthy. The chapter explains the different steps used in
order to perform this prediction as well as its interpretation. The dataset represents
samples collected from 135 overweight participants over 8 weeks. The goal of the
interpretation step is to understand the triggers that lead users to make a choice,
which is less healthy than the others are. The extracted features are categorical, such

http://dx.doi.org/10.1007/978-3-030-76409-8_5
http://dx.doi.org/10.1007/978-3-030-76409-8_6
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as the location of eating, and continuous, e.g., craving. These features’ capacity
to discriminate a certain class from the others is used for the interpretation. Each
individual is represented by a circle with a size, color, and edges. The color indicates
the cluster type, while the size represents how much the corresponding individual
shares behavior patterns with the other individuals belonging to the same cluster.
The edges correspond to the links between the different individuals belonging to the
same clusters.

1.2.6 Chapter 7: Mitigating the Class Overlap Problem
in Discriminative Localization: COVID-19
and Pneumonia Case Study

This chapter treats the problem of distinguishing COVID-19 from other pneumonia
within a single model trained to detect both diseases using computed tomography
(CT) scans, lung ultrasonography (LUS) imagery, and chest X-rays. The challenge
is that both diseases are very close entailing to have overlapped classes in the
feature space. In addition, there are much fewer COVID-19 labels to learn from
entailing class imbalance problems. Therefore, this chapter proposes an approach,
called Amplified Directed Divergence, that works with ensembles of models to
deal with class overlap and class imbalance while ensuring confident predictive
assessments. This approach does not require localized labels, since they can be
labor-intensive, but rather exploits the Class Activation Maps (CAMs) computed
at the final convolutional layer for each class in a Convolutional Neural Network
(CNN) model. The goal is to perform the classification and localization of COVID-
19 Regions of Interest (RoI) from CT scans, LUS imagery, and chest X-rays. The
salient regions in the COVID-19 CAMs can then be unsampled to the size of the
original image in order to localize the features most conducive to the classification
of the chosen class. In order to mitigate aleatoric uncertainty, related to overlapped
classes, a kernel method is used. It accepts two class activation maps from expert
models, each trained on specific overlapped classes, and extracts activations that
are relevant to one of them, i.e., target class (COVID-19). The result is a new
class activation map that better localizes objects of interest in the presence of class
overlap. The proposed approach is validated using COVID-19 and Viral Pneumonia
imagery. The obtained results show that the proposed approach enables machine
learning practitioners and subject matter experts in various domains in order to
increase their confidence in predictions provided by models trained on image-level
labels when object-level labels are not available.

http://dx.doi.org/10.1007/978-3-030-76409-8_7
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1.2.7 Chapter 8: A Critical Study on the Importance of Feature
Selection for Diagnosing Cyber-Attacks in Water Critical
Infrastructures

This chapter proposes the use of feature selection techniques in order to improve
the cyber-attack detection and classification system. This improvement is achieved
thanks to the elimination of irrelevant and redundant features from the original data,
in particular when they are described by high dimensional and low-quality feature
space. In addition, this elimination allows to reduce learning time and prevent
overfitting. The chapter proposes the comparison of 12 feature selection techniques
in order to effectively select the optimal set of features for detecting intrusion. Then,
the selected features are used by two different supervised classification methods k-
Nearest Neighbors (kNN) and Decision Trees (DT) in order to perform the intrusion
(cyber-attack) classification. The proposed intrusion detection system is applied
to a water storage system. The latter is a cyber-physical system vulnerable to
seven different types of attacks. The chapter compares the performance of the 12
feature selection techniques and the impact of selected features on the kNN and DT
intrusion detection and classification accuracy. The feature selection and analysis
can be seen as a way to identify the features that contribute the most to detect a
cyber-attack. Then, these features can be used in order to explain the nature, type,
and behavior of that detected type of attack.

1.2.8 Chapter 9: A Study on the Effect of Dimensionality
Reduction on Cyber-Attack Identification in Water
Storage Tank SCADA Systems

This chapter proposes the use of dimensionality reduction techniques (Locally Lin-
ear Embedding, Isomap, Linear Discriminant Analysis, Multidimensional Scaling,
Principal Component Analysis, etc.) in order to improve the cyber-attack detection
and classification system. This chapter is complementary to the previous chapter in
the sense that feature selection usually works when at least a number of features
possesses very useful information, while dimensionality reduction tries to rectify
the feature space and obtain an improved distribution. Indeed, dimensionality
reduction can be very helpful in the design of intrusion detection systems (IDS). For
instance, if a cyber-attack can be detected by monitoring a large number of features,
dimensionality reduction can yield a feature space in which only one or a very small
number of features are enough to explain a change that indicates a cyber-attack.
In contrast, other techniques such as feature selection may not result in the same
efficiency, as the features may not have enough information to only select a small
number of them to detect a cyber-threat. The chapter discusses the benefit of using
dimensionality reduction to provide an explanation of the detected intrusion and

http://dx.doi.org/10.1007/978-3-030-76409-8_8
http://dx.doi.org/10.1007/978-3-030-76409-8_9
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confidence of the obtained decision (detected intrusion). Indeed, the feature space
may contain hidden characteristics that are dormant to human eye. Dimensionality
reduction techniques improve the explainability by capturing the complex structure
of the original data, and then transforming it into a low-dimensional space, which
facilitates visualization, revealing relationships between samples, understanding and
monitoring the dynamics of the system.
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Chapter 2
Principles of Explainable Artificial
Intelligence

Riccardo Guidotti, Anna Monreale, Dino Pedreschi, and Fosca Giannotti

2.1 Introduction

Artificial Intelligence is nowadays one of the most important scientific and techno-
logical areas, with a tremendous socio-economic impact and a pervasive adoption
in every field of the modern society. High-profile applications such as medical
diagnosis, spam filtering, autonomous vehicles, voice assistants, and image recog-
nition are based on Artificial Intelligence (AI) systems. These AI systems reach
their impressive performance mainly through obscuremachine learning models that
“hide” the logic of their internal decision processes to humans because they are not
humanly understandable. Black box models are tools used by AI to accomplish a task
for which either the logic of the decision process is not accessible or it is accessible
but not human-understandable. Examples of machine learning black box models
adopted by AI systems include neural networks, deep neural networks, ensemble
classifiers, SVMs, but also compositions of expert systems, data mining, and hard-
coded proprietary software. The choice of using not interpretable machine learning
models in AI systems is due to their high performance in terms of accuracy [71].
As a consequence, we have witnessed the rise of a black box society [54], where AI
systems adopt obscure decision-making models to carry on their decision processes.

The missing of interpretability on how black box models make decisions and
fulfill their tasks is a crucial issue for ethics and a limitation to AI adoption in
socially sensitive and safety-critical contexts such as healthcare and law. Also, the
problem is not only for lack of transparency but also for possible biases inherited
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by the black boxes from prejudices and artifacts hidden in the training data used
by the obscure machine learning models. Indeed, machine learning models are
built through a learning phase on training data. These training datasets can contain
data coming from the digital traces that people produce while performing daily
activities such as purchases, movements, posts in social networks, etc., but also
from logs and reports generated in business companies and industries. These “Big
Data” can inadvertently contain bias, prejudices, or spurious correlations due to
human annotation or the way they are collected and cleaned. Thus, obscure biased
models may inherit such biases, possibly causing wrong and unfair decisions. As
a consequence, the research in eXplainable AI (XAI) has recently caught much
attention [1, 7, 32, 49].

The rest of this chapter is organized as follows. First, Sect. 2.2 shows theoretical,
ethical, and legal motivations for the need of an explainable AI. Section 2.3 illus-
trates the dimensions to distinguish XAI approaches. Then, Sect. 2.4 presents the
most common types of explanations and provides some details on the state-of-the-art
explanators returning them. Finally, Sect. 2.5 concludes this chapter by discussing
practical usability of XAI methods, explanations in real-world applications, and the
open research questions.

2.2 Motivations for XAI

Why do we need XAI? In the following, we analyze some real cases depicting
how and why AI equipped with black box models can be dangerous both for the
possibility of discrimination and for the unavailability of justification after incorrect
behaviors.

Prejudices and preconceptions on training datasets can be adopted by machine
learning classifiers as general rules to be replicated [56]. Automated discrimination
is not necessarily due to black box models. In St. George’s Hospital Medical School,
London, UK, a program for screening job applicants was used during the 1970s
and 1980. The program used information from candidates without any reference
to ethnicity. However, such a program was found to discriminate against ethnic
minorities and women by inferring this information from surnames and place of
birth and lowering their chances of being selected for interview [44]. A more
recent example is related to Amazon. In 2016, the AI software used by Amazon
to determine the areas of the USA to which Amazon would offer free same-day
delivery accidentally restricted minority neighborhoods from participating in the
program (often when every surrounding neighborhood was allowed).1 In the same
year, the COMPAS score, a predictive model for the “risk of crime recidivism”
(proprietary secret of Northpointe), was shown to have a strong ethnic bias from

1http://www.techinsider.io/how-algorithms-can-be-racist-2016-4.

http://www.techinsider.io/how-algorithms-can-be-racist-2016-4
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the journalists of propublica.org.2 The journalists proved that, according to the
COMPAS score, a Black who did not re-offend was classified as “high risk” twice
as much as Whites who did not re-offend. On the other hand, White repeat offenders
were classified as “low risk” twice as much as Black repeat offenders.

These kinds of biases are tied with the training data. For example, in [15], it
is proved that the word embeddings [11] trained on Google News articles exhibit
female/male gender stereotypes. Indeed, it is shown that for the analogy “Man
is to computer programmer as woman is to X,” the variable X was replaced by
“homemaker” by the trained obscure model. The problem was the literature and
texts used to train the model repeating that a woman does the housework. Similarly,
in [58], it is shown that a classifier trained to recognize wolves and husky dogs
was basing its predictions to distinguish a wolf solely on the presence of snow
in the background. This was happening because all the training images with a
wolf had snow in the background. These spurious correlations, biases, and implicit
rules, hidden in the data, besides discriminating, can also cause wrong and unfair
decisions. Unfortunately, in various cases, machine errors could have been avoided
if the AI would not have been obscured. In particular, accessing the reasons for
the AI decisions is especially crucial in safety-critical AI systems like medicine
and self-driving cars, where a possible erroneous outcome could even lead to the
death of people. For example, the incident that involved a self-driving Uber car that
knocked down and killed a pedestrian in Tempe, Arizona, in 2018.3 An appropriate
XAI method would have helped the company to understand the reasons behind the
decision and manage their responsibilities.

Precisely to avoid these cases, the European Parliament turned into law in
May 2018 the General Data Protection Regulation (GDPR) containing innovative
clauses on interpretability for automated decision-making systems. For the first
time, the GDPR introduces a right of explanation for all individuals to obtain “mean-
ingful explanations of the logic involved” when automated decision-making takes
place. Despite conflicting opinions among legal scholars regarding the real scope of
these clauses [27, 47, 73], a joint agreement on the need for the implementation of
such a principle is crucial, and it is nowadays a big open scientific challenge. Indeed,
without a technology able to explain black box models, the right to explanation will
remain a “dead letter.” How can companies trust their AI products without fully
validating and understanding the rationale of their obscure models? And in turn, how
can users trust AI services and applications? It would be unthinkable to increase the
trust of people and companies in AI without explaining to humans the logic followed
by black box models. For these reasons, XAI is at the heart of responsible, open data
science across multiple industry sectors and scientific disciplines involving robotics,
economics, sociology, and psychology besides computer science.

2http://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.
3https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html.

http://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
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2.3 Dimensions of XAI

The goal of XAI is to interpret AI reasoning. To interpret means to give or provide
the meaning or to explain and present in understandable terms some concepts.4

Therefore, in AI, interpretability is defined as the ability to explain or to provide
the meaning in understandable terms to a human [7, 21]. These definitions assume
that the concepts composing an explanation and expressed in the understandable
terms are self-contained and do not need further explanations. An explanation is an
“interface” between a human and an AI, and it is at the same time both human-
understandable and an accurate proxy of the AI.

We can identify a set of dimensions to analyze the interpretability of AI systems
that, in turn, reflect on the existing different types of explanations [32]. Some of
these dimensions are related to functional requirements of explainable Artificial
Intelligence, i.e., requirements that identify the algorithmic adequacy of a particular
approach for a specific application, while others to the operational requirements,
i.e., requirements that take into consideration how users interact with an explainable
system and what is the expectation. Some dimensions instead derive from the need
of usability criteria from a user perspective, while others derive from the need of
guarantees against any vulnerability issues. Recently, all these requirements have
been analyzed [68] to provide a framework allowing the systematic comparison of
explainability methods. In particular, in [68], the authors propose Explainability
Fact Sheets that enable researchers and practitioners to assess capabilities and
limitations of a particular explainable method. As an example, given an explanation
method m, we can consider the following functional requirements. (i) Even though
m is designed to explain regressors, can we use it to explain probabilistic classifiers?
(ii) Can we employ m on categorical features even though it only works on
numerical features? On the other hand, as an operational requirement, can we
consider which is the function of the explanation? Provide transparency, assess the
fairness, etc.

Besides the detailed requirements illustrated in [68], in the literature, it is
recognized as a categorization of explanation methods among fundamental pil-
lars [1, 32]: (i) black box explanation vs. explanation by design, (ii) global vs.
local explanations, and (iii) model-specific vs. model-agnostic explainers. In the
following, we present details of these distinctions and other important features
characterizing XAI methods. Figure 2.1 illustrates a summarized ontology of the
taxonomy used to classify XAI methods.

Black Box Explanation vs. Explanation by Design We distinguish between black
box explanation and explanation by design. In the first case, the idea is to couple an
AI with a black box model with an explanation method able to interpret the black
box decisions. In the second case, the strategy is to substitute the obscure model with
a transparent model in which the decision process is accessible by design. Figure 2.2

4https://www.merriam-webster.com/.

https://www.merriam-webster.com/
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Fig. 2.1 A summarized ontology of the taxonomy of XAI methods

Fig. 2.2 (Top) Black box explanation pipeline. (Bottom) Explanation by design pipeline

depicts this distinction. Starting from a dataset X, the black box explanation idea is
to maintain the high performance of the obscure model b used by the AI and to
use an explanation method f to retrieve an explanation e by reasoning over b and
X. This kind of approach is the one more addressed nowadays in the XAI research
field [20, 45, 58]. On the other hand, the explanation by design consists of directly
designing a comprehensible model c over the dataset X, which is interpretable by
design and returns an explanation e besides the prediction y. Thus, the idea is to use
this transparent model directly into the AI system [61, 62]. In the literature, there are
various models recognized to be interpretable. Examples are decision tree, decision
rules, and linear models [24]. These models are considered easily understandable
and interpretable for humans. However, nearly all of them sacrifice performance in
favor of interpretability. In addition, they cannot be applied effectively on data types
such as images or text but only on tabular, relational data, i.e., tables.

Global vs. Local Explanations We distinguish between global and local explana-
tions depending on whether the explanation allows understanding the whole logic
of a model used by an AI system or if the explanation refers to a specific case, i.e.,
only a single decision is interpretable. A global explanation consists in providing a
way for interpreting any possible decision of a black boxmodel. Generally, the black
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Fig. 2.3 Explanation examples in the form of decision tree, decision rule, and feature importance

box behavior is approximated with a transparent model trained to mimic the obscure
model and also to be human-understandable. In other words, the interpretable model
approximating the black box provides a global interpretation. Global explanations
are quite difficult to achieve and, up to now, can be provided only for AI working on
relational data. A local explanation consists in retrieving the reasons for the outcome
returned by a black box model relatively to the decision for a specific instance. In
this case, it is not required to explain the whole logic underlying the AI, but only
the reason for the prediction on a specific input instance. Hence, an interpretable
model is used to approximate the black box behavior only in the “neighborhood”
of the instance analyzed, i.e., with respect only to similar instances. The idea is
that in such a neighborhood, it is easier to approximate the AI with a simple and
understandable model. Regarding Fig. 2.2 (top), a global explanation method f

uses many instances X over which the explanation is returned. Figure 2.3 (left)
illustrates an example of global explanation e obtained by a decision tree structure
for a classifier recommending to play tennis or not. The overall decision logic is
captured by the tree that says that the classifier recommends playing tennis or not
by first looking at the Outlook feature. If its value is Overcast, then the prediction
is “not to play.” Otherwise, if its value is Sunny, the classifier checks the Humidity
feature and recommends “not to play” if the Humidity is High and “to play” if it
is Normal. The same reasoning applies to the other branches of the tree. Still with
reference to Fig. 2.2 (top), a local explanation method f returns an explanation only
for a single instance x. Two examples of local explanations are shown in Fig. 2.3
(right). The local rule-based explanation e for a given record x says that the black
box b suggested to play tennis because the Outlook is Sunny and the Humidity is
Normal. On the other hand, the explanation e formed by feature importance says
that the black box b suggested playing tennis because the Outlook has a large
positive contribution, Humidity has a consistent negative contribution, andWind has
no contribution in the decision.

Interpretable Models for Explaining AI To explain obscure AI systems or to
replace the black box components, often interpretable models are learned. The
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most largely adopted interpretable models are briefly described in the following.
A decision tree exploits a graph-structure like a tree and composed of internal nodes
representing tests on features or attributes (e.g., whether a variable has a value lower
than, equal to, or greater than a threshold) and leaf nodes representing a decision.
Each branch represents a possible outcome [57]. The paths from the root to the
leaves represent the classification rules. The most common rules are if-then rules,
where the “if” clause is a combination of conditions on the input variables. If the
clause is verified, the “then” part reveals the AI action. For a list of rules, given an
ordered set of rules, the AI returns as the decision the consequent of the first rule
that is verified [76]. Finally, linear models allow visualizing the feature importance:
both the sign and the magnitude of the contribution of the attributes for a given
prediction [58]. If the sign of an attribute value is positive, then it contributes by
increasing the model’s output, and otherwise, it decreases it. Higher magnitudes of
attribute values indicate a higher influence on the prediction of the model. Examples
of such explanations are illustrated in Fig. 2.3.

User’s Desiderata Since interpretable models are required to retrieve explana-
tions, some desiderata should be taken into account when adopting them [24].
Interpretability consists of evaluating to what extent a given explanation is human-
understandable. An approach often used for measuring the interpretability is the
complexity of the interpretable surrogate model. The complexity is generally
estimated with a rough approximation related to the size of the interpretable model.
For example, the complexity of a rule can be measured with the number of clauses
in the condition; for linear models, it is possible to count the number of non-zero
weights, while for decision trees the depth of the tree.

Fidelity consists in evaluating to which extent the interpretable model is able to
accurately imitate, either globally or locally, the decision of the AI. The fidelity can
be practically measured in terms of accuracy score, F1-score, etc. [71] with respect
to the decisions taken by the black box model. The fidelity has the goal to determine
the soundness and completeness of explanations.

Another important property for the user’s point view is the usability: an
interactive explanation can be more useful than a textual and static explanation.
However, machine learning models should also have other ordinary important
requirements such as reliability [42], robustness [34], causality [28], scalability,
and generality [55]. Reliability and robustness request that an explanation method
should have the ability to maintain certain levels of performance independently from
small variations of the parameters or of the input. Causality assumes that controlled
changes in the input affect the black box behavior in an expected way, known by the
explainer. Generality requires that explanation models are portable to different data
(with similar nature) without special constraints or restrictions. Finally, since most
of the AI systems need “Big Data,” it is opportune to have explainers able to scale
to large input data.

Moreover, a fundamental aspect is that every explanation should be personalized
coherently with the user background. Different background knowledge and diverse
experiences in various tasks are tied to different notions and requirements for the
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usage of explanations. Domain experts can be able to understand complex explana-
tions, while common users require simple and effective clarifications. Indeed, the
meaningfulness and usefulness of an explanation depend on the stakeholder [12].
Taking as an example the aforementioned COMPAS case, a specific explanation
for a score may make sense to a judge who wants to understand and double-
check the suggestion of the AI support system and possibly discover that it biased
against Blacks. On the other hand, the same explanation is not useful to a prisoner
who cannot change the reality of being Black, while he can find the suggestion
meaningful that when he will be older then he would lower his risk down. Moreover,
besides these features strictly related to XAI, an interpretable model should satisfy
other important general desiderata. For instance, having a high accuracy that
consists in evaluating to what extent the model accurately takes decisions for unseen
instances.

Model-Specific vs. Model-Agnostic Explainers We distinguish between model-
specific and model-agnostic explanation methods depending on whether the tech-
nique adopted to retrieve the explanation acts on a particular model adopted by an
AI system or can be used on any type of AI. The most used approach to explain AI
black boxes is known as reverse engineering. The name comes from the fact that
the explanation is retrieved by observing what happens to the output, i.e., the AI
decision, when changing the input in a controlled way. An explanation method is
model-specific or not generalizable [48], if it can be used to interpret only particular
types of black box models. For example, if an explanation approach is designed to
interpret a random forest [71] and internally use a concept of distance between trees,
then such an approach cannot be used to explain the predictions of a neural network.
On the other hand, an explanation method ismodel-agnostic, or generalizable, when
it can be used independently from the black box model being explained. In other
words, the AI’s internal characteristics are not exploited to build the interpretable
model approximating the black box behavior.

Time Limitations The time that the user is allowed to spend on understanding an
explanation or is available to do it is a crucial aspect. Obviously, the time availability
of a user is strictly related to the scenario where the predictive model has to be
used. In some contexts where the user needs to quickly take the decision, e.g.,
a surgery or an imminent disaster, it is preferable to have an explanation simple
and effective. While in contexts where the decision time is not a constraint, such
as during a procedure to release a loan, one might prefer a more complex and
exhaustive explanation.

Safety Desiderata Explainability methods providing interpretable understanding
may reveal partial information about the training data, the internal mechanisms of
the models, or their parameters and prediction boundaries [14, 65]. Thus, desiderata
such as privacy [52], secrecy, security, and fairness [56] should be considered to
avoid skepticism and increase trust. Fairness and privacy are fundamental desiderata
to guarantee the protection of groups against (direct or indirect) discrimination [60]
that the interpretable model does not reveal sensitive information about people [3].
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2.4 Explanations and Explanators

Increasing research on XAI is bringing to light a wide list of explanations and
explanation methods for “opening” black box models. The explanations returned
depend on various factors such as the type of task they are needed for and on which
type of data the AI system acts, who is the final user of the explanation, if they
allow to explain the whole behavior of the AI system (global explanations) or reveal
the reasons for the decision only for a specific instance (local explanations). In this
section, we review the most used types of explanations and show how some state-
of-the-art explanation methods are able to return them. The interest reader can refer
to [1, 32] for a complete review of the literature in XAI.

2.4.1 Single Tree Approximation

One of the first approaches introduced to explain neural networks is TREPAN [20].
TREPAN is a global explanation method that is able to model the whole logic of
a neural network working on tabular with a single decision tree. The decision tree
returned by TREPAN as explanation is a global transparent surrogate. Indeed, every
path from the root of the tree to a leaf shows the reasons for the final decision
reported in the leaf. An example of a decision tree returned by TREPAN is illustrated
in Fig. 2.4. This global explanation reveals that the black box first focuses on the
value of the feature rest ECG and depending on its degree (abnormal, normal,
hypertrophy) takes different decisions depending on additional factors such as sex or
cholesterol. In particular, TREPAN queries the neural network to induce the decision

Fig. 2.4 Example of global tree-based explanation returned by TREPAN
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tree by maximizing the gain ratio [71] on the data with respect to the predictions
of the neural network. A weakness of common decision trees like ID3 or C4.5 [57]
is that the amount of data to find the splits near to the leaves is much lower than
those used at the beginning. Thus, in order to retrieve how a neural network works
in detail, TREPAN adopts a synthetic generation of data that respect the path of each
node before performing the splitting such that the same amount of data is used for
every split. In addition, it allows flexibility by using “m-of-n” rules where only
m conditions out of n are required to be satisfied to classify a record. Therefore,
TREPAN maximizes the fidelity of the single tree explanation with respect to the
black box decision. We highlight that even though TREPAN is proposed to explain
neural networks, in reality it is model-agnostic because it does not exploit any
internal characteristic of neural networks to retrieve the explanation tree. Thus, it
can be theoretically employed to explain every type of classifier, i.e., it is model-
agnostic.

In [16] is presented an extension of TREPAN that aims to keep the tree explanation
simple and compact by introducing four splitting approaches aimed at finding the
most relevant features during the tree construction. In [36], genetic programming
is used to evolve a single decision tree that approximates the behavior of a
neural network ensemble by considering additional genetic features obtained as
combinations of the original data and the novel data annotated by the black box
models. Both methods described in [16, 36] return explanations in the form of a
global decision tree. The readers interested can refer to the papers for more details.

2.4.2 Rules List and Rules Set

A decision rule is generally formed by a set of conditions and by a consequent, e.g.,
if conditions, then consequent. Given a record, a decision rule assigns to the record
the outcome specified in the consequent if the conditions are verified [2]. The most
common rules are if-then rules that take into consideration rules with clauses in
conjunction. On the other hand, for m-of-n rules given a set of n conditions, if m of
them are verified, then the consequence of the rule is applied [51]. When a set of
rules is used, then there are different strategies to select the outcome. For a list of
rules, the order of the list is considered and the model returns the outcome of the
first rule that verifies the conditions [76]. For instance, falling rule lists are if-then
rules ordered with respect to the probability of a specific outcome [75]. On the other
hand, decision sets are unordered lists of rules. Basically each rule is an independent
classifier that can assign its outcome without regard for any other rule [39]. Voting
strategies are used to select the final outcome.

List of rules and set of rules are adopted as explanation both from explanation
methods and from transparent classifiers. In both cases, the reference context is
tabular data. In [8], the explanation method RXREN unveils with rules list the logic
behind a trained neural network. First, RXREN prunes the insignificant input neurons
and identifies the data range necessary to classify the given test instance with a



2 Principles of Explainable Artificial Intelligence 19

Fig. 2.5 Example of the list of rules explanation returned by RXREN

Fig. 2.6 Example of the list of rules explanation returned by CORELS

specific class. Second, RXREN generates the classification rules for each class label
exploiting the data ranges previously identified and improves the initial list of rules
by a process that prunes and updates the rules. Figure 2.5 shows an example of rules
returned by RXREN. A survey on techniques extracting rules from neural networks
is [4]. All the approaches in [4], including RXREN, are model-specific explainers.

As previously mentioned, an alternative line of research to black box explanation
is the design of transparent models for the AI systems. The CORELS method [5] is
a technique for building rule lists for discretized tabular datasets. CORELS provides
an optimal and certifiable solution in terms of rule lists. An example of rules list
returned by CORELS is reported in Fig. 2.6. The rules are read one after the other,
and the AI would take the decision of the first rule for which the conditions are
verified. Decision sets are built by the method presented in [39]. The if-then rules
extracted for each set are accurate, non-overlapping, and independent. Since each
rule is independently applicable, decision sets are simple, succinct, and easily to be
interpreted. A decision set is extracted by jointly maximizing the interpretability and
predictive accuracy by means of a two-step approach using frequent itemset mining
and a learning method to select the rules. The method proposed in [63] merges local
explanation rules into a unique global weighted rule list by using a scoring system.

2.4.3 Partial Dependency

Another global XAI method for inspecting the behavior of black box models is the
partial dependence plot ( PDP). In [32], the black box inspection problem is defined
as providing a representation for understanding why the black box returns certain



20 R. Guidotti et al.

predictions more likely than others with particular inputs. The PDP visually shows
the relationship between the AI decision and the input variables in a reduced feature
space clarifying whether the relationship is linear, monotonic, or more complex.

In particular, a PDP shows the marginal effect of a feature on the AI decision [25].
Shortly, a feature is selected and it is varied in its domain. Then, instances are built
with values of the selected feature and values from the other features of a given
training data. The PDP for a value of the selected feature is the mean probability of
classification over the training data or the average regression value. An assumption
of the PDP is that the selected feature is not correlated with the other features.
Generally, PDP approaches are model-agnostic and used on tabular datasets. In [38],
the PROSPECTOR method implementing a PDP is proposed to observe how the
output of a black box varies by varying the input changing one variable at a time with
an effective way to understand which are the most important features. Figure 2.7
shows the PROSPECTOR PDP for the feature age and a black box that predicts the risk
of churn. In this example, the PROSPECTOR PDP shows the marginal effect (black
line) of the feature Age on the predicted outcome Risk of a black box classifier. In
particular, in this case, the higher is the Age, the higher is the probability of Risk
of Churn. We highlight that for Age greater than fifty five this probability markedly
increases.

Fig. 2.7 Example of partial dependence plot
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Fig. 2.8 Example of local factual and counterfactual explanation returned by LORE

2.4.4 Local Rule-Based Explanation

Despite being useful, global explanations can be inaccurate because interpreting a
whole model can be complex. On the other hand, even though the overall decision
boundary is difficult to explain, locally, in the surrounding of a specific instance,
it can be easier. Therefore, a local explanation rule can reveal the factual reasons
for the decision taken by the black box of an AI system for a specific instance. The
LORE method is able to return a local rule-based explanation. LORE builds a local
decision tree in the neighborhood of the instance analyzed [30] generated with a
genetic procedure to account for both similarity and differences with the instance
analyzed. Then, it extracts from the tree a local rule revealing the reasons for the
decision on the specific instance (see the green path in Fig. 2.8). For instance, the
explanation of LORE for the denied request of a loan from a customer with “age=22,
race=black, and income=800” to a bank that uses an AI could be the factual rule if
age ≤ 25 and race = black and income ≤900 then deny. ANCHOR [59] is another
XAI approach for locally explaining black box models with decision rules called
anchors. An anchor is a set of features with thresholds indicating the values that
are fundamental for obtaining a certain decision of the AI. An ANCHOR efficiently
explores the black box behavior by generating random instances exploiting a multi-
armed bandit formulation.

2.4.5 Feature Importance

A widely adopted form of local explanation, especially for tabular data, consists of
feature importance. Local explanations can also be returned in the form of feature
importance that considers both the sign and the magnitude of the contribution of
the features for a given AI decision. If the value of a feature is positive, then it
contributes by increasing the model’s output; if the sign is negative, then the feature
decreases the output of the model. If a feature has a higher contribution than another,
then it means that it has a stronger influence on the prediction of the black box
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outcome. The feature importance summarizes the decision of the black box model
providing the opportunity of quantifying the changes of the black box decision for
each test record. Thus, it is possible to identify the features leading to a certain
outcome for a specific instance and how much they contributed to the decision.

The LIME model-agnostic local explanation method [58] randomly generates
synthetic instances around the record analyzed and then returns the feature impor-
tance as the coefficient of a linear regression model adopted as a local surrogate.
The synthetic instances are weighted according to their proximity to the instance
of interest. The Lasso model is trained to approximate the probability of the
decision of the black box in the synthetic neighborhood of the instance analyzed.
Figure 2.9 shows the feature importance returned by LIME (central part of the
figure) toward the two classes. In this example, the feature odor=foul has a positive
contribution of 0.26 in the prediction of a mushroom as poisonous, stack-surface-
above-ring=silky has a positive contribution of 0.11, spore-print-color=chocolate
has a positive contribution of 0.08, stack-surface-below-ring=silky has a positive
contribution of 0.06, while gill-size=broad has a negative contribution of 0.13.
Another widely adopted model-agnostic local explanation method is SHAP [45].
SHAP connects game theory with local explanations exploiting the Shapely values of
a conditional expectation function of the black box to explain the AI. Shapley values
are introduced in [64] with a method for assigning “payouts” to “players” depending
on their contribution to the “total payout.” Players cooperate in a coalition and
receive a certain “profit” from this cooperation. The connection with explainability
is as follows. The “game” is the decision of the black box for a specific instance.
The “profit” is the actual value of the decision for this instance minus the average
values for all instances. The “players” are the feature values of the instance that
leads toward a certain value, i.e., collaborate to receive the profit. Thus, a Shapley
value is the average marginal contribution of a feature value across all possible
coalitions, i.e., combinations [50]. Therefore, SHAP returns the local unique additive
feature importance for each specific record. The higher is a Shapely value, and the
higher is the contribution of the feature. Figure 2.10 illustrates an example of SHAP

explanation, where the feature importance is expressed in the form of a force plot.
This explanation shows for each feature the level of the contribution in pushing
the black box prediction from the base value (the average model output over the

Fig. 2.9 Example of explanation based on feature importance by LIME
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Fig. 2.10 Example of explanation based on feature importance by SHAP

Fig. 2.11 Example of saliency maps returned by different explanation methods. The first column
contains the image analyzed and the label assigned by the black box model b of the AI system

dataset, which is 24.41 in this example) to the model output. The features pushing
the prediction higher are shown in red; those pushing the prediction lower are shown
in blue. Under appropriate settings, LIME and SHAP can also be used to explain the
decisions of AI working on textual data and images.

2.4.6 Saliency Maps

The most used type of explanation for explaining AI systems working on images
consists of saliency maps. A saliency map is an image where each pixel’s color
represents a value modeling the importance of that pixel for the prediction, i.e.,
they show the positive (or negative) contribution of each pixel to the black box
outcome. Thus, saliency maps are returned by local explanation methods. In the
literature, there exist different explanation methods locally explaining deep neural
networks for image classification. The two most used model-specific techniques are
gradient attribution methods like SAL [67], GRAD [66], INTG [69], ELRP [9], and
perturbation-based attribution methods [23, 77]. Without entering into the details,
these XAI approaches aim to assign an importance score to each pixel such that
the probability of the deep neural network of labeling the image with a different
outcome is minimized, if only the most important pixels are considered. Indeed, the
areas retrieved by these methods are also called attention areas.

The aforementioned XAI methods are specifically designed for specific DNN
models, i.e., they are model-specific. However, under appropriate image transforma-
tions that exploit the concept of “superpixels” [58], the model-agnostic explanation
methods such as LIME, ANCHOR, and LORE can also be employed to explain
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AI working on images for any type of black box model. The attention areas
of explanations returned by these methods are tied to the technique used for
segmenting the image to explain and to a neighborhood consisting of unrealistic
synthetic images with “suppressed” superpixels [29]. On the other hand, the local
model-agnostic explanation method ABELE [31] exploits a generative model, i.e.,
an adversarial autoencoder[46], to produce a realistic synthetic neighborhood that
allows retrieving more understandable saliency maps. Indeed, ABELE’s saliency
maps highlight the contiguous attention areas that can be varied while maintaining
the same classification from the black box used by the AI system. Figure 2.11 reports
a comparison of saliency maps for the classification of the handwritten digits “9”
and “0” for the explanation methods ABELE [31], LIME [58], SAL [67], GRAD [66],
INTG [69], and ELRP [9].

2.4.7 Prototype-Based Explanations

Prototype-based explanation methods return as explanation a selection of particular
instances of the dataset for locally explaining the behavior of the AI system [50].
Prototypes (or exemplars) make clear to the user the reasons for the AI system’s
decision. In other words, prototypes are used as a foundation of representation
of a category, or a concept [26]. A concept is represented through a specific
instance. Prototypes help humans in constructing mental models of the black box
model and of the training data used. Prototype-based explainers are generally
local methods that can be used independently for tabular data, images, and text.
Obviously, prototype-based explanations only make sense if an instance of the
data is humanly understandable and makes sense as an explanation. Hence, these
methods are particularly useful for images, short texts, and tabular data with few
features.

In [13], prototypes are selected as a minimal subset of samples from the training
data that can serve as a condensed view of a dataset. Naive approaches for selecting
prototypes use the closest neighbors from the training data with respect to a
predefined distance function, or the closest centroids returned by a clustering algo-
rithm [71]. In [43], we designed a sophisticated model-specific explanation method
that directly encapsulates in a deep neural network architecture an autoencoder and
a special prototype layer, where each unit of that layer stores a weight vector that
resembles an encoded training input. The autoencoder permits to make comparisons
within the latent space and to visualize the learned prototypes such that besides
accuracy and reconstruction error, the optimization has a term that ensures that
every encoded input is close to at least one prototype. Thus, the distances in the
prototype layer are used for the classification such that each prediction comes with
an explanation corresponding to the closest prototype. In [18], prototypical parts
of images are extracted by a PROTOPNET network, such that each classification is
driven by prototypical aspects of a class.
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Fig. 2.12 Example of
exemplars (left) and
counter-exemplars (right)
returned by ABELE. On top of
each (counter-)exemplar is
reported the label assigned by
the black box model b of the
AI system

Although prototypes are representative of all the data, sometimes they are not
enough to provide evidence for the classification without instances that are not well
represented by the set of prototypes [50]. These instances are named criticisms
and help to explain what is not captured by prototypes. In order to aid human
interpretability, in [37], prototypes and criticisms are selected by means of the
Maximum Mean Discrepancy (MMD): instances in highly dense areas are good
prototypes, and instances that are in regions that are not well explained by the
prototypes are selected as criticisms. Finally, the ABELE method [31] enforces the
saliency map explanation with a set of exemplar and counter-exemplar images,
i.e., images similar to the one under investigation classified for which the same
decision is taken by the AI, and images similar to the one explained for which
the black box of the AI returns a different decision. The particularity of ABELE is
that it does not select exemplars and counter-exemplars from the training set, but it
generates them synthetically exploiting an adversarial autoencoder used during the
explanation process [40]. An example of exemplars (left) and counter-exemplars
(right) is shown in Fig. 2.12.

2.4.8 Counterfactual Explanations

A counterfactual explanation shows what should have been different to change the
decision of an AI system. Counterfactual explanations are becoming an essential
component in XAI methods and applications [6] because they help people in reason-
ing on the cause–effect relations between analyzed instances and AI decision [17].
Indeed, while direct explanations such as feature importance, decision rules, and
saliency maps are important for understanding the reasons for a certain decision, a
counterfactual explanation reveals what should be different in a given instance to
obtain an alternative decision [73]. Thinking in terms of “counterfactuals” requires
the ability to figure a hypothetical causal situation that contradicts the observed
one [50]. Thus, the “cause” of the situation under investigation are the features
describing the situation and that “caused” a certain decision, while the “event”
models the decision.

The most used types of counterfactual explanations are indeed prototype-based
counterfactuals. In [74], counterfactual explanations are provided by an explanation
method that solves an optimization problem that, given an instance under analysis,
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a training dataset, and a black box function, returns an instance similar to the input
one and with minimum changes, i.e., minimum distance, but that reverts the black
box outcome. The counterfactual explanation describes the smallest change that
can be made in that particular case to obtain a different decision from the AI.
In [72] is proposed the generation of diverse counterfactuals using mixed integer
programming for linear models. As previously mentioned, ABELE [31] also returns
synthetic counter-exemplar images that highlight the similarities and differences
between images leading to the same decision and images leading to other decisions.

Another modeling for counterfactual explanations consists of the logical form
that describes a causal situation like: “If X had not occurred, Y would not have
occurred” [50]. The local model-agnostic LORE explanation method [30], besides
a factual explanation rule, also provides a set of counterfactual rules that illustrate
the logic used by the AI to obtain a different decision with minimum changes. For
example, in Fig. 2.8, the set of counterfactual rules is highlighted in purple and
shows that if income >900 then grant, or if race = white then grant, clarifying
which particular changes would revert the decision. In [41] is proposed a local
neighborhood generation method based on a Growing Spheres algorithm that can
be used for both finding counterfactual instances and acting as a base for extracting
counterfactual rules.

2.5 Conclusions

This chapter has discussed the problem of interpretability of AI-based decision
systems that typically are opaque and hard to understand by humans. In particular,
we have analyzed the different dimensions of the problem and the different types
of explanations offered by methods proposed by the scientific community. The
opportunity to explain complex AI-based systems is fundamental for the diffusion
and adoption of those systems in critical domains. One of the most critical ones is
the healthcare field where the question of interpretability is far from just intellectual
curiosity. The point is that these systems should be used as a support for physicians
who have important responsibilities when taking decisions that have a direct impact
on health status of humans. For instance, a XAI system, providing details in
the form of logical rules or feature importance, could be extremely useful to
medical experts who have to monitor and predict the disease evolution of a patient
(diabetes detection [70], Alzheimer progression [53], etc.) while understanding the
reason for a specific evolution, progression, and complication. Exactly for studying
progression and complication, prototype-based explanations and counterfactual
explanations can play a crucial role. On the other hand, exemplars and counter-
exemplars could be fundamental for identifying brain tumor by comparing with
images from magnetic resonance scans [10] and for highlighting through saliency
maps the areas of the brain responsible for the decision of the AI system. These are
the only examples because there are many other different cases where the knowledge
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of the medical staff can be augmented by the knowledge acquired by the machine
learning system able to elaborate and analyze myriad of the available information.

Another important field where explainability is applicable is in the context of
recommendation systems for getting explainable e-commerce recommendations,
explainable social recommendations, and explainable multimedia recommenda-
tions. In this context, the goal is to inscribe transparency in the systems but
also to provide explanations to final users or system designers who are naturally
involved in the loop. In e-commerce, the goal is to explain the ranking of specific
recommendations of products [19, 35]. Explainable recommendations also apply
to social networks for friend recommendations, recommendation of music, news,
travels, tags in images, etc. A useful explanation for recommendation systems could
be based on feature importance revealing which are the items contributing positively
or negatively to the recommendation. Explainability in social environments is
important to increase the users’ trustworthiness in the recommendations that is
fundamental for the social network sustainability. For instance, in [33], a classifier
for predicting the risk of car crash of a driver is equipped with the SHAP explainer
that reveals the importance of the features recognizing the risk of collision.
Understanding the reasons of recommendations is crucial because it makes the user
aware about the technology he/she is using and also about his/her online behavior
that enabled the specific recommendation.

Unveiling and interpreting the lending decisions made by an AI-based system
is fundamental for the legal point of view and for increasing the social acceptance
of these systems. Indeed, these systems based on machine learning models pick
up biases from the training data. This can lead to learn possible discriminatory
behavior against protected groups. In these contexts, interpretability can help in
the debugging aimed at detecting those biases and to understand how to have a
model able to minimize loan defaults, but also to avoid the discrimination due to
certain demographics biases [22]. As a consequence, explainable AI in this setting
has a double goal: providing clarification to end user about the reason of the final
decisions and providing automated feedback to constantly improve the AI system to
eliminate possible ethical issues.

The application domains just discussed are only some of the possible applications
of explainable AI. With the AI research advancements, the need of explainability
will tend to increase more and more because the complexity of the models could
jeopardize their usability. Clearly, the research on explainable AI requires still some
effort especially in terms of personalized and interactive explanations, i.e., in the
study of methods able to provide explanations adaptable to the user background and
enabling the human interaction creating the beneficial loop human-machine that
could lead the machine to learn from humans and humans from machine.
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Chapter 3
Science of Data: A New Ladder for
Causation

Usef Faghihi, Sioui Maldonado Bouchard, and Ismail Biskri

3.1 Introduction

Deep learning (DL) algorithms are at the center of weak artificial intelligence (AI)
technology. Among others, they are used for traffic forecasting [1, 2], sentiment
analysis [3], and face detections [4].

Although much effort has been invested in integrating reasoning and explainabil-
ity in DL algorithms recently [5], this AI continues to lack in both explainability
(we do not understand how any particular DL algorithm achieves its tasks) and
reasoning (it cannot reason by finding causes of events or situations), as Faghihi
[6, 7] and Pearl [8] have pointed out. For the purpose of this chapter, our working
definition of causality is the connections (elements) that explain result.

DL algorithms need large amounts of data to learn [8], and without explainability
and reasoning, one cannot decide why and how DL algorithms make decisions. This
allows no room for improvement in AI [5]. On the other hand, inferential and fuzzy
logic are very effective for reasoning [6, 8]. However, they cannot learn and most of
the examples given by logicians work perfectly only in a laboratory setting [7].

Spontaneous human reasoning is autonomous yet in constant interactions with
its environment. Humans use different types of memory, learning, and logic in
their interactions with their environment and among themselves for reasoning.
Cognitive architectures simulate the functionality of the human mind [9–11]. They
use different types of memories for learning and reasoning. They are equipped
with the detailed implementation of the theory of mind such as attention [12].
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However, current cognitive architectures are not equipped with neural networks, so
they cannot perform detailed and precise image detection. We think that this is time
to integrate neural networks into cognitive architectures to create a more transparent
(read explainable) AI that can reason.

In the following sections, we briefly review cognitive architectures, inferential
logic, probabilistic fuzzy logic (PFL), and neural networks. We then give a brief
overview of graph neural networks. We finally suggest a cognitive architecture
that, in addition to its current machine learning algorithms, will be equipped with
Probabilistic Fuzzy logic and Graph Neural Networks for reasoning.

3.2 Related Works

3.2.1 Cognitive Architectures

Humans use different types of memory, learning, and logic in their interactions with
their environment and among themselves for reasoning. Cognitive architectures [10,
13–16] implement a theory of mind according to the neuroscience theories of cog-
nition [17]. The most famous cognitive architectures are Newell’s Soar architecture
[16, 18], Anderson’s ACT-R architecture [11], Sun’s CLARION architecture [10],
and Franklin’s LIDA architecture [13]. These cognitive architectures each have their
strengths and weaknesses when implementing and explaining a theory of mind
[14]. Current cognitive architectures are limited to meta-reasoning. Theoretically,
cognitive architectures are capable of reasoning about the relationship between two
persons in a photo. However, they cannot compete with neural networks such as
Attentive Graph Convolutional Neural Networks for detecting objects in a photo.
Conversely, Attentive Graph Convolutional Neural Networks detect objects in a
photo but have a limited ability to reason about their relationship [19].

In 2018, Canadian governmental research agencies invested $125 million in AI
[20]. Part of these funds has gone to the creation of attentional neural networks
based on cognitive neuroscience theory [21–23]; yet all the while, and for more than
a decade, cognitive architectures have already had working attentional mechanisms
[12].

One could argue that it would be great to integrate DL algorithms with cognitive
architectures [24]. In addition to DL algorithms, we suggest that cognitive architec-
tures need to be equipped with nonclassical logic such as inferential logic and/or
probabilistic fuzzy logic.

3.2.2 Inferential Logic

Pearl proposes inferential logic as the ideal framework for reasoning [8]. He sug-
gests three levels for causality: (1) association—to identify interrelated phenomena;
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Fig. 3.1 P(y|x) �= P(y|do(x). The probability of a patient having lung cancer Y = y, given that we
intervene and ask the person to smoke a pack of cigarette per day (set the value of X to x) and
subsequently observe what happens [8]

(2) intervention—to predict the consequences of an action (i.e., how does my
life expectancy change if I became a vegetarian?); (3) counterfactual—to reason
about hypothetical situations and possible outcomes (i.e., would my grandfather
still be alive if he had not smoked?). However, Pearl’s approach to causation does
not allow to simulate real-life problems nor does it allow for reasoning in cases
of degrees of certainty. With Pearl’s approach, to simulate real-life problems, we
need to use Directed Acyclic Graphs (DAGs). In DAGs, nodes cannot perform two-
way communications. However, real-life problems almost always require two-way
communication. For instance, finding a faulty node in a network where every node
sends and receives data from/to other nodes. Another problem with Pearl’s approach
is the do operators which cut the relation between two nodes in DAGs. For instance,
suppose we have four nodes in a DAG: Cancer Gene, Smoke, Tar, Cancer (Fig. 3.1).
In this example, suppose the Cancer Gene node has an arrow to the Smoke node
and the Cancer node but no arrow to the Tar node. Further, the Smoke node has a
direct arrow to the Tar node, and the Tar node has a direct arrow to the Cancer node.
The do operator cuts the arrow between the Cancer Gene node and Smoke node and
fixes the Smoke node’s value (Fig. 3.1).

This is akin to forcing a smoker to smoke a packet of cigarettes a day and then
observing whether the Cancer node’s value changes [8]. However, Pearl’s approach
to causality cannot answer gradient questions such as: given that you smoke a
little, what is the probability that you have cancer of a certain severity? [6, 7]. An
alternative to inferential logic is probabilistic fuzzy logic.

3.2.3 Probabilistic Fuzzy Logic (PFL)

PFL, on the other hand, excels at reasoning with degrees of certainty and in
real-life problems [25]. Importantly, this allows for degrees of dependency and
membership. In PFL, Zadeh [26] proposes that a set of elements always has a
degree of membership between [0,1]. PFL processes three types of uncertainty:
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randomness, probabilistic uncertainty, and fuzziness [7]. PFL can both manage
the uncertainty of our knowledge (by the use of probabilities) and the vagueness
inherent to the world’s complexity (by data fuzzification) [25]. PFL has been used
to solve many engineering problems, such as security intrusion detection [27, 28]
and finding the causes of events [6, 7]. Faghihi et al. in [6, 7] showed that PFL
outperforms inferential logic. However, PFL cannot learn by itself and needs experts
to define intervals before applying fuzzification [6, 7]. Among others, one can
integrate PFL with Neural Networks for learning.

3.2.4 Neural Networks (NN)

Neural Networks (NN) outperform humans in specific tasks such as Google
AlphaGo [29]. However, they are mostly single-task tools and behave differently
when the nature of data changes [30]. We can consider NNs as predominantly
Microscopic or Macroscopic; they each have their advantages, but also their
limitations. In the next two subsections, we will very briefly explain them.

3.2.4.1 Microscopic Neural Network (NN)

Microscopic NNs are considered Structural Causal Models and seek to be inter-
pretable. The problem with most of the Microscopic NN is that since most of the
nodes in NNs are interrelated, a small change in any node’s weight results in changes
in the weights of almost all the nodes. Implementing causality with such NNs is a
challenge [31]. Given an input, we need to understand why NNs make particular
errors and identify the nodes responsible for the output errors. To do so, some
researchers use game theories such as Shapley [32–34]. However, given a specific
data type, these techniques assign importance to certain nodes or features that may
never be used by the technique [30].

Furthermore, given a NN, some researchers use the Dropout [35, 36] technique
to find the most influential neurons that cause NN’s output. However, using
the Dropout method to find the cause(s) of an event in a NN will result in a
combinatorial explosion [31]. In [31], the authors tried to implement a very simple
causality model using an inner and outer loop. The inner loop captures the local
distribution changes for a specific node given its neighbors. The outer loop learns
the model’s meta-parameters [31]. However, although in [31] the authors claimed
that their model captures intervention a la Pearl [8], the authors failed to implement
a real-life problem.
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3.2.4.2 Macroscopic Neural Network (NN)

The idea for Macroscopic NN comes from neuroscience evidence of brain activity
when faced with tasks or images [37]. That is, for a given task, one or more regions
of the brain are activated [38].Macroscopic NNAI efforts are undertaken to imitate
cognitive architectures, such as adding attention to neural networks. However,
efforts may be better served by restructuring neural nets to use them within cognitive
architecture [24]. Recently, Graph Neural Networks1 (GNNs) got much attention in
the AI community [39–44]. In the next section, we will briefly introduce GNNs.
We then explain how one can integrate inferential or fuzzy logics and deep learning
algorithms with cognitive architectures.

3.2.4.3 Graph Neural Networks

Many real-world problems can be simulated with graphs [45–47]. For instance,
predicting node relationships and their behaviors on Facebook or Pinterest. A graph
represents a data structure consisting of the nodes and edges (Fig. 3.2). In a Directed
Graph, there is an order between the pair of the nodes and the edges, whereas in an
Undirected Graph, there is no specific direction between nodes. One can represent a
graph using an adjacency matrix. Graphs are considered as non-Euclidian geometry,
which means the shortest path between two nodes may not be represented with a
straight line [45]. This makes graph interpretation rather challenging.

Another challenge with the graphs is their permutation invariance/equivariance
feature. Two graphs may seem visually different but have the same adjacency
matrix representation [44]. This also makes node classifications and nodes’ behavior
predictions difficult.

Fig. 3.2 How GNNs process graph nodes [45]. The graph structure is on the left. The aggregation
between the graph’s nodes is shown on the right

1A graph represents a data structure consisting of the nodes and edges.
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To overcome these problems when analyzing graphs, researchers use Graph Neu-
ral Networks (GNNs) [39]. GNNs’ nodes are connectionist models. They are defined
according to their relationships with their neighbors and connections between them
[39, 40]. As opposed to neural networks, GNNs’ architecture represents the state
of every node according to the messages they receive from their neighborhood
nodes. In GNNs, each node contains its unique features, the edges connecting it
to other nodes in the graph, information regarding the state, and the features of the
neighboring nodes. Being highly connected, some nodes have more connections to
other nodes in the graph. This makes them more important than other nodes in the
graph in the learning and prediction steps [41].

To overcome this problem, among others, researchers use the following archi-
tectures [41, 42]: (1) Recurrent graph neural networks, where every node
in the graphs has a connection to itself which makes them recurrent. Nodes
simultaneously receive messages from their neighbors until the graph converges
to a stable state. The recurrent nature of this graph prevents any data loss in
the nodes; (2) Convolutional graph neural networks (ConvGNNs), where every
node aggregates its information with the incoming information from its neighbors.
ConvGNNs usually use many hidden layers to classify nodes or graphs; (3) Graph
autoencoders (GAEs), where the model encodes/graphs into a latent vector space.
The model then decodes or reconstructs the graph using encoded hidden space.
GAE is an unsupervised model; (4) Spatial-temporal graph neural networks
(STGNNs), where the model encodes spatial and temporal features of the real-life
objects into graph’s nodes; for instance, human action recognition [43].

To do reasoning with graph neural networks (GNNs), among others, one needs
to use asynchronous message passing between nodes. This is important because for
instance in causality, the ordering of the nodes in GNNs matters [48]. Furthermore,
instead of average or sum message passing methods for each node, one needs to add
logical rules similar to [6, 7] to find the causes in GNNs. Another alternative for
reasoning with neural networks is hybrid Neural Networks. Unlike GNNs, Hybrid
Neural Networks integrate different tools for reasoning. As such, they are similar to
what we suggest for reasoning and causality in this study.

3.2.4.4 Hybrid Neural Networks for Reasoning

Among others, the authors in [5, 49] suggest a hybrid architecture consisting of
a Graph Neural Network (GNN) and two Multi-Layer Perceptron (MLP) acting
as its modules, applied to pairs of objects, capable of solving some specific type
of relational reasoning such as dynamic programming. MLPs are great in learning
and predictions of a single object but cannot generalize facing aggregated nodes in
GNNs. However, the authors did not discuss how to apply counterfactual reasoning
as explained by Faghihi et al. [6, 7] or how to perform reasoning when we are facing
unknown structures.
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As we can see here, GNNs alone are not sufficient for reasoning [5, 14, 24, 44,
46]. We need to use different techniques and algorithms to create a successful AI
tool for reasoning.

We suggest our combining cognitive architectures, PFL, and GNNs as a theoret-
ical model for reasoning.

3.3 Cognitive Architecture Equipped with PFL and GNNs

The reality is that merely integrating PFLs with NNs or GNNs will not be a
successful combination for reasoning [24, 50, 51]. Similar to humans, to reason,
cognitive architectures need to use different types of memory, neural networks,
and/or GNNs, inferential/fuzzy logic, and machine learning algorithms such as
breadth-first search (BFS) in order for their reasoning processes to be explainable
[24, 52].

Among different cognitive architectures, we select here Learning Intelligent
Distributed Agents (LIDA) [13, 53]. LIDA is based on the Global Workspace
Theory (GWT). GWT is one of the most widely accepted theories on how the mind
works in the field of neuroscience [13, 54]. LIDA’s architecture, equipped with dif-
ferent modules such as artificial motivation [13], makes decisions and learns using
its cognitive cycles (Fig. 3.3). A cognitive cycle starts by perception/understanding
[55] of its environment, an attending phase [12], and an action selection/learning
phase [12, 56, 57]. The full explanation of LIDA’s architecture is out of the scope
of this chapter.

Roughly speaking, each module may have one or more codelets. Codelets are
small pieces of code each conceived to do a specific task such as detecting a car.
In every cognitive cycle, after sensing the environment, once LIDA’s perceptual
nodes are activated, they go to a temporary place called Current Situational Model
(CSM) (Fig. 3.3). LIDA’s Attention module decides what portion of the represented
nodes in CSM is most in need of LIDA’s Attention; it determines what nodes are
most salient [6, 13]. It then creates a coalition(s) of codelets from the most activated
codelets. This portion of codelets (the graphs in NN language), considered the most
important/appropriate to the current situation, is broadcast to the rest of the system,
making it the current contents of consciousness to reasoning and action selection
[9].

Although they are not the same, codelets can be seen as nodes or combinations
of the nodes in GNNs—one can replace codelets with neurons. In the following, we
will briefly explain how to integrate association/causal PFL rules with GNNs into
LIDA’s Attention and Reasoning modules. With this integration, explainable and
detailed AI becomes possible.

Attention Module: Similarly to [5], to create coalitions of neurons in CSM,
LIDA’s classic Attention module performs as follows: for every neuron activated in
perception and having arrived in the Current Situational Model (CSM), the Attention
module updates the states of the node with the activation of its neighbors (similar to
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Fig. 3.3 LIDA’s cognitive cycle

graphs [5] receiving messages from other nodes). In our model, we also use LIDA,
but add a fuzzification step as explained in [6, 7].

Similarly to [31], but using probabilistic Fuzzy logic rules [6, 7], for all the nodes
pointing to node I in CSM, our model uses fuzzification of association rules as
follow:

fuzz xl
i = Fuzzification

(
x

(l−1)
i←j , ai←j , where j �= i

)
: ai, aj ∈ N,

l correspond to graph’s layer, xi is a vector for each node vi, ai ← j is the activation
of node i in CSM.

Using the above strategy, our modified Attention module (AM) creates a graph
for every node (i.e., node x in Fig. 3.2) in the CSM. To compute the most activated
graph in the CSM, our modified AM then compares outputs for the fuzzification of
the nodes. Our modified AM then finds the graph with the most activated nodes in
CSM and sends it for conscious competition.

Upon receiving the graph, in our model, LIDA’s conscious module broadcasts it
to all LIDA’s modules. This may result in LIDA’s modules adding extra nodes to the
broadcast graph (for instance LIDA’s Episodic memory can add nodes to the graph).
This alters the graph previously created by the AM. The modified graph is broadcast
again by the conscious module to all other LIDA’s modules until a decision is made
by LIDA.
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Reasoning module (RM): One of LIDA’s modules that receives the graph
broadcast by the consciousness module is the Reasoning module (RM). To find
the causal nodes in the graph, in our model, LIDA’s RM uses PFL’s defuzzification
techniques, such as applying min max rules from [6, 7] to the graph’s nodes.

To do so, LIDA’s module calculates every node’s influence on its neighbors as
follows:

1. To calculate how a specific node s influences node i, the RM applies fuzzy dual
max rule a la [6, 7]: Suppose node s ∈ (1, . . . , s, . . . j) is one of the incoming
nodes to a node i. Similarly to [31] but using probabilistic Fuzzy logic rules [6,
7],

defuzz max xl
s =Dual

((
max

(
1− s

(l−1)
i←s , ai

)
: where s �= i, vi ∈ N∗

i

))
,

ai is the activation of node i, l corresponds to graph’s layer.
2. Step 1 is repeated for the incoming node s to the node i; except this time, our

model uses the Dual minimum rule to minimize the influence of node s:

defuzz min xl
sDual

((
min

(
1− s

(l−1)
i←s , ai

)
: where s �= j, vj ∈ N∗

i

)
, vi

)
,

ai is the activation of node i.
3. Similarly to [5], in our model, LIDA’s RM uses MLPs, to compute and learn the

discrepancies between applying Dual min and max for the incoming node s to
node i. If there is a significant difference between the graph’s output for Dual
min and max, RM then tags node s as a possible cause. Learning occurs by using
MLP as follow: outputs:

h
(l)
i =

∑
t∈J

MLP(l)
1

(
fuzz xl−1

i , fuzz xl
j

)
, hi = MLP2

(∑
i∈J

h
(L)
i

)
,

where hi is the graphs’ output.
4. RM applies steps 1–3 to all nodes in the graph received by RM and tags possible

causal nodes. RM then sends the graph again to compete for consciousness and
action selection. We are aware, as pointed out by [5], that using MPLs as modules
for GNNs may lead to the overparameterized2 problem. This can be solved using
simple polynomial functions such as gradient descent [5].

In the above Attention and Reasoning mechanisms, we briefly explained a
theoretical framework in which by combining different types of logic, graph neural
networks can be integrated into a cognitive architecture and bring more clarity on
how a system makes decisions. This is in part possible because LIDA architecture
allows a detailed implementation of all its modules [12].

2That is, when the number of parameters in a learned network has more parameters than the target.
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That is, for instance, if a node is tagged as a possible cause by RM, we can know
why RM tagged that node as a cause. This, if needed, gives us the possibility of
changing or modifying the graph selection mechanism in LIDA’s AM. Furthermore,
thanks to logic, one can interpret why a specific node in a graph is tagged as
a possible cause and why a specific graph is selected by AM to broadcast for
conscious competition. Using, for instance, reinforcement learning, one can correct
LIDA’s decision-making module’s mistakes.

The above framework is a clear step toward creating a reasoning—and conse-
quently explainable—AI tool.

3.4 Conclusion

Recently, researchers in the domain of artificial intelligence have sought to use
neuroscience evidence of how the brain works to create more sophisticated neural
networks, such as attentional neural networks [21, 58]. Yet, all the while, cognitive
architectures are already equipped with, for instance, attention and attentional
learning modules [12, 15].

In this chapter, we suggested a theoretical framework to create an explainable
AI tool that is capable of reasoning. To do so, among others, the AI tool needs
to be equipped with different types of logic, Neural Networks, and Graph Neural
Networks integrated with cognitive architectures.
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Chapter 4
Explainable Artificial Intelligence for
Predictive Analytics on Customer
Turnover: A User-Friendly Interface for
Non-expert Users

Joglas Souza and Carson K. Leung

4.1 Introduction

Nowadays, data—which can be considered as valuable as the “new oil”—are
everywhere. Artificial intelligence [3] (especially, deep learning [13, 33] within the
area of machine learning) techniques, together with data mining [9, 17, 31] and
big data science [27, 29, 30] solutions, have become critical for decision-making
mechanisms in numerous real-life applications and service domains. Examples
include critical systems, cyber-physical systems (CPS) [7], digital transformation
[8], e-government [4], finance [35], healthcare [42], industry 4.0 [43], justice [5],
predictive maintenance [38], smart energy management [6], smart factory [51],
and smart grids [19]. Analyses of big data from these domains—from census
analysis [11] to social network analysis [18, 24]; from music analytics [16, 53]
to movie analytics [20, 34]; from disease analytics [10, 45, 48] to transporta-
tion/urban analytics [32, 36]—have led to valuable knowledge and information.
However, recommendations made by these techniques and analyses, as well as their
logical reasoning behind these recommendation decisions, are often not easy to
be comprehended by humans. Good-quality explanations are needed for humans
to trust and collaborate with such intelligent systems [1]. The more impact a
machine learning decision has on customer’s or people’s lives, the higher is the
necessity for its explanation [40]. The need for explanation is not only a demand
from end users but also a regulatory requirement in some countries. For instance,
the General Data Protection Regulation (GDPR) that has been implemented in
European countries recently states that customers have the right of explanation for
decisions made through automated systems [21]. Explanations are also a means
of detecting model bias as it can reveal when the model is making decisions

J. Souza · C. K. Leung (�)
University of Manitoba, Winnipeg, MB, Canada
e-mail: kleung@cs.umanitoba.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Sayed-Mouchaweh (ed.), Explainable AI Within the Digital Transformation and
Cyber Physical Systems, https://doi.org/10.1007/978-3-030-76409-8_4

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76409-8_4&domain=pdf
https://orcid.org/0000-0002-7541-9127
mailto:kleung@cs.umanitoba.ca
https://doi.org/10.1007/978-3-030-76409-8_4


48 J. Souza and C. K. Leung

based on incorrect assumptions. The enhancement of models also relies on how
comprehensive the model outcome is to propose the appropriate improvements [1].
EXplainable Artificial Intelligence (XAI) [12, 15], the research area that studies how
to make models transparent and explainable, is now in the spotlight for keeping the
adoption of machine learning growing.

In general, explanations for machine learning models can be broadly classified
into two main types:

1. Global explanation, which aims to give a general explanation considering the
whole data population

2. Local explanation, which focuses on answering specific questions (e.g., “Why a
loan was not approved for the customer John?”)

The tools available for explanations follow concepts and theories of these two
main types. Although there are a plenty of tools available for these two types of
explanations, most of the output visualization and verbalization provided are not
of easy understanding by non-expert users. To address this issue (i.e., to enable
non-expert users to understand the output visualization and verbalization), we
present an explainable artificial intelligence solution for providing human-friendly
explanations to predictive analytics on big data for both expert and non-expert users.

Machine learning models are commonly classified into two different categories
regarding their interpretability:

1. Crystal-clear models—such as linear regression and decision trees—which are
self-explanatory and do not require the application of XAI techniques to explain
them.

2. Black-box models—such as random forest and artificial neural network (ANN)—
which can be complex to explain themselves. Consequently, they need XAI
techniques to explain the results. The complexity of the black-box models makes
them achieve higher accuracy when solving complex problems. Thus, XAI may
serve to make black-box models more interpretable and avoid the trade-off
between accuracy and interpretability.

To evaluate the practicality and usefulness of our XAI solution, we conduct a case
study on applying the explanations to a random forest customer churn predictive
model. Churn is the rate of customers who stopped using a service or product
in a given time frame. The possibility of predicting customer churn can bring a
competitive advantage to the business in many different domains such as banking,
telecommunications, retail, and education. This kind of strategic knowledge can
raise the possibility to prevent and retain potential attrition of customers. Machine
learning models have the power to automate the process of identifying those
customers, learning from historical data the nuances that differentiate the ones who
stopped using a service or product from those who are still loyal. In our particular
case study, we used data from customers of a financial institution.

Our solution involves two main components: (i) a back-end component where
the machine learning model runs and the explanations’ processing occurs and (ii) a
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front-end component that comprehends the explanation web interface. Hence, in this
chapter, our key contributions include:

• Creation of a solution that integrates different techniques to facilitate the use and
understanding of machine learning reasoning for non-expert users.

• Enhancements in the way explanations are processed and presented for some of
the state-of-the-art techniques.

The remainder of this chapter is organized as follows. The next section explains
important background concepts for understanding the remaining sections. Sec-
tion 4.3 describes related works. Section 4.4 presents our explainable AI web
interface and its application for a customer churn predictive model. Section 4.5
shows the results of evaluation on our web interface XAI. Finally, conclusions are
drawn in Sect. 4.6.

4.2 Background

4.2.1 Shapley Values

Shapley values [46] is a method based on cooperative game theory that calculates
the contribution each player had in the final score of a game. In the context of
machine learning, each feature is a player of this game and has a contribution to the
final prediction. The contribution of each feature is determined based on its average
marginal contribution, calculating how the feature affects the result of the prediction
when it is present or not for different coalitions of the remaining features [40]. The
average marginal contributions are calculated with the following equation:

φi(N, v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!
N ! [v(S ∪ {i}) − v(S)] , (4.1)

where:

• φi is the average marginal contribution of player i.
• N is the number of players.
• v represents the game.
• S are sets of different coalitions.

To better illustrate Eq. (4.1), we adapted an example that elucidates the Shapley
formula and theory for explaining a taxi fare [26]. Imagine that three riders (A,
B, and C) share a taxi, and the fare varies according to the distance from the
starting point to each home, as illustrated in Fig. 4.1. Consider that the riders pay
their portion of the fare right at the beginning, when they first get in the car. The
payment order can vary. For instance, (i) A pays, then B and C, or (ii) B then A and
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Fig. 4.1 Shapley values illustration for a taxi fare

Table 4.1 Fare share for
different coalitions of
payment

S A B C

(A, B, C) $10 $10 $20

(A, C, B) $10 $0 $30

(B, A, C) $0 $20 $20

(B, C, A) $0 $20 $20

(C, A, B) $0 $0 $40

(C, B, A) $0 $0 $40

Table 4.2 Average marginal
contribution for each rider

A B C

φ $3.33 $8.33 $28.33

C, representing the different coalitions of Eq. (4.1). Table 4.1 depicts what would
happen with the fare for each different coalition:

1. For a first coalition, if the riders pay in the order of distance, then A pays $10,
B pays $10, and C pays $20 given the total of $40 that comprehends the amount
charged by the taxi driver from the start point to the final destination where is C’s
home.

2. For a second coalition (A, then C and B), A pays $10, C pays $30 but B pays $0.
3. For a third coalition (B, then A and C), B pays $20, A pays $0, and C pays $20.
4. For a fourth coalition (B, then C and A), B pays $20, C pays $20 but A pays $0.
5. For a fifth coalition (C, then A and B), C pays $40, but A pays $0 and B also

pays $0.
6. For a sixth and final coalition (C, then B and A), C pays $40, but B pays $0 and

A also pays $0.

The average payment for the different coalitions of each rider is what constitutes
their marginal contribution. Table 4.2 shows each rider’s marginal contribution and
the fair amount each one has to pay according to the Shapley values.

As a preview, we use the Shapley values in the current work for global and local
explanations. We also adapt the SHapley Additive exPlanations (SHAP) package
[37], which applies the theory based on these Shapley values.

4.2.2 Types of Explanation Techniques

There are two key types of explanation techniques:
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• Local explanation addresses the interpretability of a specific instance of the
dataset. The idea is to understand the reasoning that the model applied to a
particular instance. This kind of explanation answers questions (e.g., “Why the
loan was refused to customer John?”).

• Global explanation comprehends explanations of the reasoning adopted by the
model for most of the patterns learned during the training process. It is useful
in cases where explanations in regards to the whole data population are needed
(e.g., climate change, economic predictions [54]).

4.3 Related Works

4.3.1 Shapley Additive Explanations

Shapley values have applications to global and local interpretation techniques,
which we adapt in this chapter. To elaborate, Lundberg and Lee [37] proposed
an extensively used method for interpreting machine learning models with the
application of Shapley values theory. Their proposed SHapley Additive exPlanations
(SHAP) serve as a unified method of identifying feature importance on the
predictions, considering other related works (e.g., LIME [44], DeepLIFT [47]).
They compared their SHAP with LIME and DeepLIFT in terms of computational
efficiency and how intuitively the explanations were to humans. To measure the con-
sistency with human intuition, they compared the explanations given by the methods
with the explanations given by users who understand the data under the experiment.
The closer the explanation method has to the humans’ explanation, the better the
method in terms of accuracy. Results showed that the new approximation method
proposed in SHAP uses fewer evaluations to calculate the feature importance, and
it has high accuracy. Human subjects’ evaluation also showed that SHAP was more
intuitive to human understanding than the other previous methods.

Recently, Kumar et al. [28] argued that Shapley values do not provide human-
friendly explanations, which are better satisfied with contrastive explanations.
Kaur et al. [25] evaluated the level of understanding of interpretability tools by
data scientists. Evaluation results revealed that most participants had a wrong
interpretation of results and did not use the tools in the way researchers had in mind
when they designed them.

In this chapter, we also used the freely available SHAP package. Recall that
SHAP was demonstrated to be superior to other approaches in terms of explanation
accuracy and computational efficiency [37]. However, Kumar et al. [28] and Kaur
et al. [25] observed that SHAP can still be challenging for non-expert users to
understand SHAP. This partially motivate our current work on improving SHAP
to be more human-friendly. See Sect. 4.4.



52 J. Souza and C. K. Leung

4.3.2 Contrastive Explanations

Contrastive or counterfactual explanations refer to the set of techniques that explain
the outcome of a specific instance based on what should be done differently for
changing the current prediction. It infers the smallest number of changes necessary
in the values of the features to modify the prediction outcome. This technique
is human-friendly because humans naturally tend to use counter-facts in order to
explain facts [40].

Wachter et al. [50] revealed that, for some real-world problems, the counterfac-
tual explanation with the smallest number of changes may not be feasible to turn
into action. They ensured that, for these scenarios, a higher number of alternative
counterfactuals must be available to make possible selecting the one that better fits
the reality. Mothilal et al. [41] extended Wachter et al.’s work and focused on a
method of generating a high number of counterfactual explanations that are feasible
and respect real-world constraints.

Dhurandhar et al. [14] proposed an approach called contrastive explanations
method (CEM) for contrastive explanations in neural networks that has two main
components:

• Pertinent negatives (PN), which highlights the features that are missed in the
instance prediction that would change the model outcome.

• Pertinent positives (PP), which highlights the critical features that contributed to
the current outcome

Image and tabular data were inputs for their experiments. Human subjects analyzed
explanations for the tabular data outcome, and they evaluated CEM as superior to
LIME and Layerwise Relevance Propagation (LRP).

Jia et al. [23] observed that most works in the literature generate the counter-
factual instance—also called synthetic neighbour—with the perturbation of some
of the features and calculating the distance between the counterfactual instance and
the original one. However, given that some synthetic instances were observed to
be of “bad” quality that would result in inadequate explanations, they proposed
a framework for generating good-quality synthetic neighbours and consequently
better model explanations.

van der Waa et al. [49] proposed a method—called local foil trees—for finding
contrastive explanation using decision trees. The approach has two main compo-
nents: the fact (the true output class) and the foils (the contrastive class). Considering
the case study of churning prediction used in our current work, imagine that we
have the class boundary showed in Fig. 4.2(a) and the data point highlighted by the
green square is the instance we want to generate the explanations. The first step
consists of training a decision tree, using the foil class data points (representing
loyal customers). This training method is the one-versus-all approach, in which the
decision tree will learn to classify loyal or churn. The data points closer to the point
of interest (fact) have a high weight on the decision tree. With the decision tree
trained, the selected data point (highlighted by the green square) should be input into
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Fig. 4.2 Local foil tree method. (a) Dataset class boundaries. (b) Decision tree: fact leaf, foil leaf,
and decision nodes

the trained model and then located in the tree, as shown in Fig. 4.2(b). Then, the foil
leaf (as highlighted by a dashed blue square in the figure) with the shortest path from
the fact leaf is chosen as the foil. The last step checks the differences between the
two selected paths’ rules and only accounts for the common features between the
two, and all the same parent decision nodes are removed. In our example shown
in Fig. 4.2(b), decision node 2 would be excluded, and decision node 1 would
be considered to generate the contrastive explanation. The explanation consists of
contrasting the values of the fact and foil used on their decision nodes, and the output
is in the form “The model predicted A instead of B because feature x is greater than
〈number〉 and feature y is smaller than 〈number〉.”

4.3.3 XAI User Interfaces

Hohman et al. [21, 22] proposed interactive user interfaces (Gamut, as well as
TeleGam) to explain local and global explanations of classification predictions
generated by Generalized Additive Models (GAM). The evaluation of the interface
was done through human subjects, recruiting machine learning experts, and practi-
tioners. Results showed that the interface improved data professionals’ capacity to
interpret the model results. Most participants expressed a high interest in having a
tool like the one proposed in their daily activities.

Adams and Hagras [2] used a proprietary tool called Temenos to explain the
outcome of the predictions of their fuzzy logic model. However, their Temenos
appears to be business-specific with a focus on the banking sector.

Wang et al. [52] proposed a theoretical framework that aims to guide model
explanations following human reasoning concepts. The framework has four main
divisions:

1. Human reasoning and necessity of explanations
2. Ways that people actually reason
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3. Ways that XAI generates explanations
4. Ways that XAI supports reasoning

To test their theoretical framework’s effectiveness, they developed an XAI explana-
tion dashboard applied to a medical diagnosis model. As they had domain-expert
clinicians to test their interface, they had a practical experiment of the proposed
theoretical framework. With the user’s evaluation, they could see the flaws and
improvements needed on the explanations provided. We will refer to this framework
as the XAI Diagnostic in the remainder of this chapter.

4.4 Our Explainable AI Web Interface

Recall from Sect. 4.3 that some researches have shown that many existing explain-
able AI tools may not provide easy of understanding explanations. Moreover, these
tools may also require programming knowledge to manipulate the libraries that the
techniques were implemented. To address these problems, we present a solution
that integrates different explainable approaches in a web interface that creates an
abstraction layer between the methods and the non-expert users. We also enhance
the generation of explanations for some available state-of-the-art techniques.

As an overview, our explainable artificial intelligence (XAI) system in the current
work consists of two main parts:

1. The back-end component, which comprehends the background solution’s archi-
tectural piece, where the processing and generation of the explanations happen

2. The front-end component, which brings the interface that the users interact for
understanding the model reasoning

4.4.1 Back-End Component

Figure 4.3 shows the overall architecture of our XAI system, in which the back-
end component links several pieces to reside the data, preprocess, and run the
model, compute explanations, store the results, and have a web framework for the
integration of front and back ends. Specifically:

1. The machine learning model and prediction, which attest our proposed
solution’s explanation capabilities. It predicts a financial institution’s customer
churn as a case study. We build a data pipeline to get the data ready for the model
predictions, which involved data exploration, labelling, cleaning, engineering,
and data re-sampling. We apply a random forest algorithm because it is a black-
box model but led to good performance in various applications. We also measure
the model’s performance through the recall and precision metrics, which were
80% and 72%, respectively.
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Fig. 4.3 The proposed solution architecture

2. The explanation engine, which computes the explanations. The two main
processing are:

• The Shapley values, which generates local and global explanations
• The contrastive explanations, which aim for the model recommendation

3. The storage, which is a database to store the computed explanations. These
explanations can then be retrieved by the front-end interface.

4. The web framework, which integrates the explanation engine storage results
with the front-end interface. The web framework is also responsible for applying
any necessary rule on the data before presenting it to the front-end component.
One of the well-known paradigms to decouple each one of these parts of the web
framework is the Model, View, and Template (MVT), where:

• Model represents the database component.
• View contains logic and actions performed by the server. This layer interacts

with the model, applies any necessary logic to the data, and returns the results
to the templates.

• Template contains the interfaces.

4.4.2 Front-End Component

The front-end component contains the web interface itself where the users can
interact and search for interpretations of specific instances or global explanations.
As described earlier, this corresponds to the abstraction layer between the users and
the techniques. The front-end component provides the following screens:
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1. Home and Expected Loss
2. Local Feature Importance
3. Global Feature Importance
4. Model Recommendation

4.4.2.1 Home and Expected Loss

For most business domains, a machine learning model that only classifies obser-
vations is not enough. For instance, knowing that a customer will churn or if an
employee is going to leave the company is not sufficient for setting a strategic plan
of action. There is a need to set strategies and priorities based on the probability of an
event to happen and its monetary impact in case it turns into reality (e.g., list Client
X with $20M investment and having 80% churn probability before Client Y with
$0.2M investment having 90% churn probability). Visual colours to differentiate
observations based on the event probability serve to elucidate the appropriate kind
of actions.

The Home and Expected Loss screens allow decision-makers to prioritize their
actions according to the expected loss, which results from the product of the
probability of churn predicted by the model and the monetary value the customer
has for the company. Figures 4.4 and 4.5 show the screens applied to our case study,
grouping customers according to the risk of churn—which is high (as highlighted by
the red colour), medium (as highlighted by the amber colour), or low (as highlighted

Fig. 4.4 The Home screen. Boxes 1©, 2©, and 3© with summaries of customers in each group
of risk and the total monetary value they represent. These boxes are also clickable leading to the
corresponding tab in the Expected Loss screen (as shown in Fig. 4.5)
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Fig. 4.5 The Expected Loss screen. 1© Tabs to separate the instances according to the group of
risk. 2© There are links for each of the instances leading to the corresponding explanation in the
Local Explanation screen (as shown in Fig. 4.6). 3© The search function enables users to search for
specific instances

by the green colour). As a preview, in our case study, the group of customers
highlighted in red has 80% or higher probabilities to churn, whereas the group of
customers highlighted in amber has between 50% and 79% probabilities to churn.
The group of customers highlighted in green has lower than 50% probabilities to
churn. These values can be parameterized according to specific needs.

4.4.2.2 Local Feature Importance

Recall from Sect. 4.2 that local explanation techniques aim to explain decisions
made for specific instances. As a preview, in our case study, we use this screen
to explain why the model predicted a particular customer has high (or medium
or low) probabilities of churning. The Local Feature Importance screen brings for
each instance the attributes that contributed positively and negatively to the model
prediction outcome. We limit the number of features used for explanations because
researches have shown that people have better comprehension with explanations
that have fewer causes. Thus, we apply a feature selection technique to select the
most important features, which are shown in decreasing order of importance in the
y-axis of the tornado plot as shown in the top 1© of Fig. 4.6. The user can also
search for specific instances or switch between them as shown in the bottom table
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Fig. 4.6 The Local Feature Importance screen. 1© The tornado plot displays the positive and
negative features contributing to the model outcome. 2© The table allows users to change the
explanation to another instance and also visualize the feature values for the instances. 3© The
search function enables users to search for specific instances

2© of the figure. This bottom table facilitates the interaction between the user and
the interface, allowing them to access the raw data to understand a customer profile
and change between instances easily.

The computation of the Local Feature Importance for each instance in this
screen is based on Shapley values. Recall from Sect. 4.3 that the SHAP package
computes the importance of the features based on their marginal contribution. When
presenting the SHAP value results for end users, they were observed to have a
hard time following the meaning of the numbers without understanding the intuition
behind the Shapley values theory. Also, the labelling style and the shape of the chart
available in the current library bring challenges for them to interpret it. Hence, a
more straightforward way to comprehend the numbers and the graph was necessary.
First, we normalize the marginal contribution results for the features set for each
one of the instances i. The normalization scaled the values in a range between −1
and 1, as shown in Eqs. (4.2) and (4.3):

standardi = Features List[i] − Features List.min()

Features List.max() − Features List.min()
(4.2)
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scalei = standardi × (maxRange − minRange) + minRange. (4.3)

On this scale, −1 means a high negative contribution, and 1 a high positive
contribution. Although the Shapley values’ calculation results are presented using a
distinct approach for enhancing interpretability, each feature’s degree of importance
in a given explanation is preserved. Moreover, we create a tornado plot with the
new range of values in the x-axis, showing the negative or positive contributions the
features had in the model prediction outcome. For comparison, Fig. 4.7(a) shows the
original plot available in the current library, and Fig. 4.7(b) shows an example of our
modified version.

Fig. 4.7 Comparison between the available SHAP chart and our modified version. (a) The Shapley
values chart in SHAP package. (b) The modified Shapley values chart
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4.4.2.3 Global Feature Importance

The Global Feature Importance screen gives the user a general panorama regarding
each feature’s relevance for the model when reasoning the classification decisions.
This screen gives quick information on the set of features, from the most to the least
important, that the model reasoned its decisions. It can also serve as an agile way to
identify biased models.

The computation of the importance of the features is also based on the Shapley
values theory. The normalization of the values follows the same explanation given
in Sect. 4.4.2.2, with the only modification being in the range of the values that
in this case ranges from 0 to 1 (where 0 meaning no contribution, and 1 a high
contribution). Figure 4.8 shows details of this screen.

4.4.2.4 Model Recommendation

In the Model Recommendation screen, no visualization is used. Instead, verbal-
ization is used for explaining the instances. The information given on this screen
can serve two different purposes. First, it can be used as an alternative explanation
other than the one provided by the Local Feature Importance screen. Second, as the
screen’s name states, it can serve as model recommendations to the end users. As
the output explanation is given with the necessary changes to modify a prediction
outcome, it can be used by users—when possible—as a recommendation for action
(e.g., what to do to prevent a customer from leaving the company). The example
is shown in Fig. 4.9, where it says that one of the factors the model predicted the
customer as churn is due to the “growth rate ratio” lower than 1.37. This ratio
measures the growth in the customer’s investments. Such an explanation could

Fig. 4.8 Global Feature Importance screen
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Fig. 4.9 Model Recommendation screen. 1© The verbalization explanation contrasting the fact
and the foil. 2© The table allows users to change the explanation to another instance and also
visualize the feature values for the instances. 3© The search function enables users to search for
specific instances

trigger the financial advisor to give the customer a call to check if he was satisfied
with his investments’ growth level or if he wanted to make changes in his portfolio.
This kind of proactive action has the potential to prevent a customer from leaving
the company.

The recommendations given in this screen are based on contrastive explanation
using the local foil trees technique described in Sect. 4.3. Among the different
techniques presented in Sect. 4.3, we chose to enhance and integrate the local
foil trees method because it is model-agnostic, which means we can apply the
technique for a diversity of models. Second, there is no synthetic data points
generation, as it uses the contrastive class’s actual data points. Lastly, the form of
explanations is easy to understand. In our proposed solution, we improved some
aspects of the local foil trees method’s explanation. We formatted the numerical
features’ values and adapted the output explanation for categorical variables that
were also previously based on numbers. The explanations for categorical features
are now in the format “The model predicted X instead of Y because the customer is
〈is or is not〉 categorical feature value.”

4.5 Evaluation

To evaluate our proposed web interface that integrates and enhances the state-
of-the-art machine learning explanation techniques, we compared the number of
functionalities available and its differences between our solution and the existing
ones.
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Table 4.3 Comparison between our proposed solution and the existing ones

Functionality

Solution
Global
expl.

Local
expl.

Contrastive
explanation

Search
table

Target instance
capability Audience

TeleGam [21]
√ √ √ √

Experts

Gamut [22]
√ √ √ √ √

Experts

XAI Diagnostic
[52]

√ √ √
Non-
experts

Our proposed
solution

√ √ √ √ √
Non-
experts

As we can observe from Table 4.3, we compare the solutions based on the
different types of explanations available, target instances capability, search func-
tionalities, and audience. For instance, Wang et al.’s XAI Diagnostic solution [52]
is the one that also focused on non-expert users when producing the explanations.
However, it does not provide global explanation techniques in the interface. For local
explanations, it uses Shapley values to show feature importance (which is the same
technique we used in our solution). The model used for explanation is a multi-class
model, with five different classes. Unlike our solution, labelling and order based on
the features’ importance are not presented. Moreover, Wang et al. [52] observed that
some users felt that each feature in isolation was responsible for a prediction, which
can be attributed to the lack of appropriate labels. Moreover, there are counterfactual
explanations in the bottom part of the dashboard, which shows many different
scenarios that could be formed with different feature values. In contrast, our solution
focused on a technique that shows only one contrasting scenario for each instance,
making it not overwhelming to the end users. Furthermore, the XAI Diagnostic
solution does not have an easy way of selecting instances based on feature values or
filtering capabilities as the interactive table in our solution provides.

Hohman et al.’s Gamut [22] offers the same set of functionalities as our
solution, but with differences in how the explanations are given and focused on
data scientists and machine learning practitioners. Specifically, Gamut gives the
global explanation by partial dependence plots (PDP), which are a visual approach
to show the interaction between one or more features and the model target outcome.
Gamut shows for each feature its interaction with the model outcome. In the same
charts used for the Global Explanations, Gamut presents the possibility of creating
counterfactual explanations built by their users. For instance, if a user wants to
check how a different value for a specific feature would affect the model, he could
select the desired value in the chart and check its effect. For the Local Explanation,
Gamut uses a waterfall chart that shows how each feature contributed to the specific
outcome. The explanations are for a regression model to predict house prices, and
they showed how much a feature value added or subtracted to the house predicted
price. Although they tested their interface in classification models, but they do
not mention how it affects the explanations. Gamut’s solution was observed to
require more technical expertise because users need to understand PDP plots and
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hypothesize counterfactuals they want to test. Hohman et al. [22] also observed that
some users were initially confused when first started using their Gamut regarding
local or global explanations.

In contrast, our solution shows all the features and their level of contribution in
a single chart. In our solution, we already present counterfactuals with the set of
features and values that would change a prediction. Moreover, we use a tornado
plot and show the degree of contribution, either positively or negatively, each
feature had for the model outcome. We divide the screens for the specific kind of
explanations, making it clear to the users the kinds of explanations they are using.
We apply feature selection techniques to show only the most important features as
explanations because other studies have shown that explanations based on a high
number of causes are not effective for humans [39].

TeleGam [21] is a continuation of the work done in Gamut but with a focus
on more verbalization explanations using natural language techniques. The global
explanations are now primarily explained by verbal explanations, and PDP plots
are shown as an additional resource. The local instance explanation is the same as
Gamut. The interactive table is not presented in TeleGam.

From the comparisons, we observe that our solution delivers a satisfying number
of functionalities and focuses on explanations for non-expert users. Recall from
Sect. 4.3 that we adapt the state-of-the-art techniques to facilitate comprehension
by non-expert users, such as normalizing Shapley values to a comprehensible range
that do not require an understanding of game theory concepts. We also adapt the
visualizations, labelling, and colours. For the contrasting explanations, we adapt
the verbalization explanations produced for categorical features and formatted the
numerical feature’s values. Our interface also serves as an abstraction layer for
the non-expert users, who do not need to learn how to code to use the available
explanation libraries.

4.6 Conclusions

In this chapter, we presented an explainable artificial intelligence web interface
that integrates and enhances the state-of-the-art techniques to produce more under-
standable and practical explanations to end users. We have shown that the existing
methods could be enhanced to facilitate the interpretation of explanations by non-
expert users. The results showed that our solution has a satisfying number of
functionalities when compared to similar approaches. As ongoing and future work,
to further evaluate and demonstrate the effectiveness of our presented solution, we
conduct more comprehensive and exhaustive human subject evaluation. Moreover,
we incorporate more interactive visualizations to further enhance the easiness of
understanding.
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Chapter 5
An Efficient Explainable Artificial
Intelligence Model of Automatically
Generated Summaries Evaluation: A Use
Case of Bridging Cognitive Psychology
and Computational Linguistics

Alaidine Ben Ayed, Ismaïl Biskri, and Jean-Guy Meunier

5.1 Introduction

5.1.1 Automatic Text Summarization

Automatic summarization has been adopted for the daily running of affairs. Book
abstracts on digital bookstores, show trailers, and headlines on TV broadcasts are
samples of summaries we deal with regularly [1, 2]. Automatic summarization has
commonly been defined as the process of condensing a piece of media form to a
shorter version while preserving key informational elements [3]. The spectrum of
its application ranges from texts to audio and video media forms. The particular
case of automatic text summarization (ATS) refers to creating a concise, reliable,
and fluent abstract from a more extended reference text [4].

Following technological improvements, an enormous volume of textual records
is publically accessible [5–8]. This massive amount of the available data calls for
automatic text summarization, enabling access to only relevant information. [9]
argues that automated summarization has concerns deserving addressing despite
having been a target of academic research for more than five decades. Also, it states
six main arguments why we need automated text summarization. First, abstracts
lessen the time spent on reading a more extended text. They make it possible
to consume content efficiently. Second, they facilitate the selection process when
searching for a document. Third, automatic summarization can likewise make
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the indexing process more effective when dealing with massive textual databases.
Fourth, it provides us with less biased summaries than those made by humans. Fifth,
automatically generated abstracts carry much personalized information, which can
be a valuable supplement to question answering frameworks. Finally, automatic text
summarization increases the number of texts that can be processed by commercial
abstract services.

Depending on the angle of perception, there are many taxonomies of automatic
text summarization [10]. One critical criterion to consider when analyzing ATS
approaches is the type of the generated output. The latter can be either an extract
or an abstract of a source document. Extractive summarization implies that the
original text’s most significant segments are excerpted to make the abstract. On
the flip side, abstractive summarization uses paraphrasing techniques to present the
original format’s significant issues logically. It produces the original summaries;
that is why it is a more challenging task than extractive summarization. The number
of documents to summarize is another criterion that categorizes the summarization
process into mono-document and multi-document ATS. When taking language as
an angle of view, we can distinguish three variants of ATS: (1) mono-lingual
automatic text summarization, when the source input and the final output are in
the same language; (2) multi-lingual automatic summarization, when the original
text is written in more than one language, thus, the final output would be in the
corresponding languages; and (3) cross-lingual automatic text summarization, when
the generated summary is not in the same language of the source text. The authors
in [11] have pointed out key challenges associated with automatically generated
summaries evaluation.

5.1.2 Evaluation Protocols of Automatically Generated Text
Summaries

Significant advances in the AGSE research area have been made during the last two
decades. Various evaluation protocols have been proposed in this context. Further-
more, many evaluation campaigns have been led since early 1996. SUMMAC (the
TIPSTER Text Summarization Evaluation) [12], DUC (Document Understanding
Conference) [13], and TAC (Text Analysis Conference) [14] are the most far-
reaching ones. Notice that the evaluation process can be carried out in reference to
a human-made summary. It can also be conducted without an ideal reference [15].

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is the standard
metric for automatically generated summaries evaluation purposes [16]. It compares
the generated output to a set of reference human-produced summaries. There are five
main variants of the ROUGE metric:

• ROUGE-N [16]: captures the n-gram overlap between the input and output texts;
for instance, ROUGE-1 refers to the overlap of unigrams between system and
summary references. ROUGE-2 refers to the overlap of bigrams.
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• ROUGE-L [16]: measures the longest matching sequence of words using LCS.
LCS does not require consecutive matches since it uses in-sequence matches
that reflect sentence-level word order. In this case, there is no need to fix
a predefined n-gram length since LCS automatically includes the longest in-
sequence common n-grams.

• ROUGE-W [16]: is a bunch of weighted LCS-based statistics that hold serial
LCSes.

• ROUGE-S [16]: is a skip-gram co-occurrence metric. It captures any pair of
words in a sentence in order, allowing for arbitrary gaps. For instance, skip-
bigram measures word pairs’ overlap with a maximum of two gaps between
sentence tokens.

• ROUGE-SU [16]: is a set of skip-bigram plus unigram-based co-occurrence
statistics.

Ramirez-Noriega et al. [17] proposed a new variant of the ROUGE protocol that
does not involve human-built model summaries (ASHuR). ASHuR checks whether
the most informative sentences of the original text were extracted. Informative
sentences are selected based on the frequency of concepts they encode, the presence
of cue words, and sentence length. RETENTION is another metric of automatically
generated summaries evaluation [18]. It has been used in DUC evaluations [13]. It
gives insights on to which extent the extracted summary conveys critical information
present in the source text. RESPONSIVENESS has also been used in focus-based
summarization tasks of DUC and TAC evaluation campaigns [19]. It uses a 5-
point ranking scale, indicating how well the summary satisfied many predefined
information criteria. The PYRAMID evaluation is another approach that was built
upon the same intuition. It uses SCUs (Summarization Content Units) to compute a
set of weighted scores [20]. An automatically generated summary containing units
with higher weights would have a high PYRAMID score. An SCU weight for a
given text unit is relative to its frequency in the human-made summaries. FRESA is
another approach that does not involve human-produced reference summaries [21].
It computes a set of divergences among probability distributions. Another evaluation
of text summaries without human references approach was recently proposed by
Jonathan et al. [22]. It is based on the linear optimization of content metrics using a
genetic algorithm.

Lloret et al. [23] give an overview of challenging issues related to summary
evaluation research that remains an effortless task. Notice that all of the previously
proposed AGSE models were designed according to a classical natural language
processing view that involves computer science, mathematical, and linguistic
backgrounds. In this chapter, we present a new cognitive and explainable protocol
of AGSE. The proposed approach relies on a reading comprehension model that
emerged from cognitive psychology research. In the next section, we review the
most critical cognitive psychology models of reading comprehension.
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5.1.3 Cognitive Psychology Models for Text Comprehension

Several theories about reading comprehension have been proposed since early
1973 [24]. The proposed models tend to analyze different cognitive processes
involved in the reading comprehension activity, including recognizing letters and
words and getting their meaning, syntactic parsing of sentences, making predictions
and inferences, etc. Below, we make a short review of the most crucial cognitive
psychology models of text comprehension.

5.1.3.1 The Resonance Model

The reader’s mental presentation is the center of focus of the resonance model. It
may be accessible in part as the reading progresses. This intuition is exemplified
by the fact that sand propositions may remain in the working memory since they
are essential to the text, and those concepts considered secondary are forgotten. The
latter ones may be reinstated through reactivation: being instigated by a sentence
that is being read. Reinstatement is either top-down or bottom-up. The top-down
interpretation precedes the argument that readers try to establish a relationship
between incoming text statements and earlier ones. When a connection cannot
be established between the working memory and mental representation of a text,
it calls for earlier reinstatement of the reader’s working memory to ensure a
link. The bottom-up interpretation claims that there is nothing like active search
processes. Hence, “elements from current sentences activate previous statements
when reinstating them to the working memory.” The latter assumption has been
affirmed by an earlier study, which found out that a reader’s mental presentation of
a text is prone to resonate with the elements of a sentence being processed [25]. The
latter finding led to the establishment of the resonance model [26].

5.1.3.2 The Landscape Model

The landscape model focuses on the construction of a relatively stable memory
representation of a text, which is an essential facet of the comprehension process
[27]. The landscape model simulates how prominent text items are being activated,
stored, and retention strengthened in memory.

5.1.3.3 The Langston and Trabasso Model

It has been argued that statements having a robust causal relation to previous story
events are usually read faster [28]. They are further often recalled as well as rated
as relevant to the text [29]. It has further been argued that when a story is read, the
reader can relate it to causal events. The resonance and landscape models have been
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found to incorporate causality in their explanations. However, they do not simulate
it. The Langston and Trabasso model simulates all of the causality-based effects
[30, 31].

5.1.3.4 The Construction–Integration Model

The construction–integration model is one of the most influential reading com-
prehension theories [32]. It simulates many cognitive processes ranging from
recognizing words to constructing a representation of text elements. Kintsch
assumes that readers build three different mental representations: (i) a literatim
representation of the manuscript, (ii) a semantic one that illustrates the essence of
the text, and (iii) a situational representation of the situation to which the manuscript
holds. The construction–integration model treats the reading comprehension process
as much more than just relationships between explicitly mentioned information
printed in the text. It casts light on the inferencing sub-process, which either brings
relevant background knowledge into someone’s subconscious thoughts or generates
new knowledge based on what was read.

5.1.3.5 The Predication Model

The predication model was designed to address issues relating to subjectivity [33].
It employs a distributed representation of words as well as propositions. The main
idea is to represent discourse as a network made up of connected nodes. The nodes
represent discourse items, and the connections give insights into relations between
them. Generally, in a localist model, items and relations are presented separately,
while in a distributed representation, there is no clear line between them. Therefore,
items are represented as vectors, which determine the relations between them. The
predication model relies on Latent Semantic Analysis [34] to automatically acquire
an objective vector representation of discourse units.

5.1.3.6 The Gestalt Models

Gestalt’s model offers an alternative view of Kintsch’s external world knowledge
that the world of knowledge is formed by accumulating experiences of event
sequences in a microworld. The model has proposed that world knowledge is an
amalgamation of experiences in a microworld. The model has been criticized for
harboring two issues. One, there is no representation of the order of story events.
Two, the processing of a story propositional way requires an equal number of
computations, which paves the way for the lack of processing time [35, 36].
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5.1.3.7 The Golden and Rumelhart Model

Inferencing is one of the most critical sub-processes involved in reading compre-
hension. Usually, it involves the reader’s general knowledge to activate (retrieve)
not explicitly mentioned information in a text. The abovementioned models differ
in their view toward inferencing. In the construction–integration model, text propo-
sitions typically retrieve a set of associated propositions from the reader’s world
knowledge net. Then at the integration phase, the propositions that are considered
most appropriate to the text are selected. Here inference is taken as a result of
a search process through the reader’s world knowledge. However, it has been
identified that one setback for the construction–integration model is the subjectivity
involved in defining the world knowledge net that is included in the model. To
overcome this problem as well as issues related to the order of story events and the
Gestalt model’s processing time, Golden and Rumelhart view the inference as a form
of pattern completion. Even though it seals the loopholes created by Gestalt’s model,
it has been criticized for involving a switchback from the distributed representation
to the localist one [37, 38].

5.1.3.8 The Distributed Situation Space Model

Kintsch and Welsch [32], Kintsch and Dijk [39], and Kintsch [40] argued that there
are three levels of text: a surface text level, the textbase level, and the situational
level. Considering texts at situational levels has been criticized as it focuses on
knowledge instead of text. Comprehension of texts calls for concepts or propositions
that originate from the reader’s knowledge and not from the text that is being
processed.

Gestalts and Distributed Situation Space Models have similarities in that the
amount of knowledge to be implemented is made manageable by letting stories
take place in a microworld and that situations are represented distributively. Also,
the Distributed Situation Space and the Golden and Rumelhart Models share most
architectural assumptions and their mathematical basis from which it follows how
world knowledge concerning relations between storytime steps is implemented and
how the knowledge is applied to the story representation to result in inferences. It
is also important to note that both models take the issue of situation space very
seriously, and it is from the distributed nature of the space that the Distributed
Situation Space Model gets its name [41].

5.1.3.9 The Structure Building Model

The structure building model focuses on casting light on the involved processes
in the comprehension of various media such as texts and pictures [42]. It divides
the comprehension process into three broad sub-processes: (a) setting a foundation
(base) for the text’s mental representations, (b) mapping information onto that base,
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and (c) shifting the new structures when dealing with new ideas or when new
information is not incongruity with the existing one.

5.1.4 Originality of Our Work

The salient outcome of this research is that:

1. It proposes a cognitive protocol of AGSE since it is built upon a cognitive
psychology model of reading comprehension.

2. The proposed AGSE protocol gives insights on to which extent criteria of a good
summary are met instead of merely focusing on the N-gram overlaps between
the original text and the generated output.

Most of the summary evaluation protocols described in Sect. 5.1.2 were designed
according to a pure classical natural language processing view that involves
computer science, mathematical, and linguistic backgrounds. This chapter presents
a new cognitive and explainable AGSE model. The proposed approach relies on a
reading comprehension theory that emerged from cognitive psychology research.
Furthermore, classic AGSE protocols only focus on N-gram overlaps between the
original text and the generated summary. They do not give any insight on to what
extent the criteria of a fair resume are met, namely:

• Retention (coverage): The generated output should cover all the concepts
reported in the source document.

• Fidelity: The summary should accurately reflect the author’s point of view by
focusing on salient concepts conveyed in the original text.

• Coherence: The generated summary should be semantically meaningful.

Since previously proposed AGSE protocols merely focus on the N-gram overlaps
between the original text and the generated summary, they only reflect on the
retention ratio. They cannot check whether the fidelity criterion is met or not: If
a newspaper article reports events related to five concepts and a given automatically
generated summary focuses on the three marginal ones. It gets a higher relevancy
score than another overview focusing on the two most crucial concepts present in
the source text despite it is merely focusing on nonessential events.

This chapter presents a cognitive evaluation protocol of automatically generated
text summaries. The proposed approach casts light on to which extent both retention
and fidelity are met. The technical and mathematical details of the proposed AGSE
protocol are detailed in the next section. The conducted experiments and obtained
results are reported in the third section. Conclusion and future work are exposed in
the fourth section.
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5.2 CATSE: A Cognitive Automatic Text Summarization
Evaluation Protocol

5.2.1 The Main Idea

The construction–integration (C-I) model of text comprehension comprises two
ordered steps: knowledge construction and knowledge integration. During the con-
struction phase, the C-I model generates a propositional network made up of nodes
and connections that encode a crude mental representation of the discourse. The
connections are meant to reflect any relationship between the discourse elements
(Fig. 5.1). Next, we will consider text sentences as elementary discourse elements.

The mental representation is not refined at this stage. An elaborated propositional
network is needed to interpret salient knowledge and infer hidden concepts. In the
above example, the elaborated propositional network should reflect, in a condensed
way, that the civil war is the dominant concept. It should also reveal the hidden
semantic link between sentences (a) and (d). In other words, it should help to
infer that “many people are dead in Libya because of civil war.” In this way, the
mind is stimulated as a network, and the comprehension process refers to activating
salient knowledge. This activation begins in the construction phase. The integration
process refers to the spread of this activation of salient concepts and marginal ones’
deactivation across the network (Fig. 5.2).

The propositional network’s set of propositions and their associated connections
(semantic links) form what we call the microstructure (Fig. 5.3). According to [39],
the CRUD semantic representation of the text being read (the microstructure made

Fig. 5.1 An example of expressing the crude mental representation of the discourse as a
propositional network

Fig. 5.2 The whole text comprehension process according to the construction–integration model
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Fig. 5.3 Application of the macro-rules to generate the macrostructure from the microstructure

up of micro-propositions) is too complex to be manipulated and memorized. Thus,
the human brain tends to use a set of strategies (macro-rules) that aim to build a more
abstracted semantic structure (the elaborated propositional network) containing the
text’s gist and known as the macrostructure (Fig. 5.3). The macrostructure, made up
of macro-propositions, is better suited for memorization or for manipulations that
operate on it due to cognitive constraints like the memory size and the complexity
of representations.

From a computational perspective, the proposed CATSE protocol generates a
feature vector for each input text sentence. Feature vectors encode the different
concepts stated by their associated sentences. This representation is better than
the propositions-based encoding proposed by the original construction–integration
model (described in detail in Sect. 5.2.2.2) as it provides semantic relations between
text units. Also, it makes it possible to represent a text unit as a linear combination
of concepts. The microstructure is made up of a set of feature vectors encoding
text units. Latent Semantic Analysis is used to construct the macrostructure, the
compressed form of the microstructure containing salient concepts stored in the
semantic memory. Building the macrostructure is a mathematical transformation
that consists of mapping feature vectors of the microstructure onto a lower-
dimensional space whose unitary vectors encode critical concepts stated in the text.
The macrostructure will be stored in the episodic memory.

The integration phase consists of activating text units that encode the salient
concepts of the macrostructure. The reader’s intention guides this activation process;
the CATSE protocol mainly focuses on the retention and fidelity criteria. Coherence
is out of the scope of this research. A score assessing the quality of the generated
abstract will be produced by the end of the integration phase. It is equal to the
average of the activation weights relating to the original text’s sentences reported
in the generated summary. The activation process will be explained in detail in
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Sect. 5.2.3.2. Note that the construction–integration model of text comprehension
[32, 40] relies on three different memory structures:

• The semantic memory is simulated by LSA (Latent Semantic Analysis); the
semantic similarity between text units is meant to model human associations in
semantic memory.

• The working memory audits the mapping between salient concepts and their
associated text units.

• The episodic memory keeps track of all concepts or propositions that occur in
working memory and their activation values.

5.2.2 Levels of Representation

When we read a text, our mind processes it at three levels:

• The surface structure level
• The intermediate level: the textbase
• The cognitive level: the situation model

Below we describe each level of representation, and we explain how we encode
it in our summary evaluation protocol.

5.2.2.1 The Surface Level

The surface structure level is simply the text’s words and how they relate to each
other at a syntactic level. When we read a sentence, our mind initially understands it
at a grammatical level. It checks whether words are in the correct order according to
the grammatical rules of a given language. Also, it assesses the level of cohesion in
the structure. At this superficial level of representation, our brain tries to understand
the information conveyed by sequences of words. If it encounters a text in a language
it does not know, it will reject it at the surface structure level. In other words, if we
are not familiar with the sequence of terms printed in the text and their syntactic
structure, our brain will not waste its cognitive processing time on them. The surface
structure level can be considered the first “test” a printed text must go through to be
deemed worthwhile for processing. Our CATSE protocol assumes that the summary
to evaluate already passed this test since we deal with a by-extraction summary.
Furthermore, the goal is to assess the quality of the generated summary, not the
original text’s quality.
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Fig. 5.4 Text unit
codification in the
construction–integration
model

5.2.2.2 The Intermediate Level: The Textbase

The textbase is the second level of information processing in which a proposition
codes a basic unit of text. Each proposition refers to a given idea (or concept). Below
we present an example of this from [24].

The example (Fig. 5.4) illustrates a sentence (1) and its atomic propositions (2).
A complete proposition can replace any variable Xi . Therefore, (ii) could also
be written HAVE WON(FASCISTS, ELECTIONS). The theoretical construction–
integration model assumes that the whole text is transformed into atomic propo-
sitions before the next stage. The CRUD natural language is not suitable for
computational processing since it serves many purposes other than the expression of
meaning. Kintsch argues that: “propositions are designed to capture those semantic
relations that are most salient in text comprehension” [40]. One drawback of the
construction–integration model is that it does not technically describe how those
propositions would be generated from the CRUD text [40]. Furthermore, when we
deal with a long text, we generate many complex propositions, which would explode
the processing time and affect the quality of the final output [43].

The central intuition is to break down the text into propositions to get into the
essential meaning encoded by each unit (sentence) of the text. Thus, our CATSE
protocol encodes each sentence by a feature vector whose coordinates are the tf-idf
of relevant tokens (words) printed in the text. In this way, each text unit is encoded
as a weighted linear combination of cue words (meaning concepts). As a result,
instead of breaking down our sentence into n propositions, we encode it by a unique
weighted feature vector. Semantic relations between text units can be assessed by
computing cosine distance between feature vectors.

5.2.2.3 The Cognitive Level: The Situation Model

The situation model (SM) integrates basic meanings derived from the textbase
into our knowledge. Kintsch claims that the SM is continually changing as we
read. At any given time, it generally depends on someone’s background knowledge
and/or the reader’s intentions when summarizing a text ranging from achieving
given compression ratios to maximizing retention, fidelity, and coherence of the
generated summary. In the coming sections, we will suppose that we are working
in a closed reasoning word since the goal is to automatically assess the quality
of the generated summaries, which are, by construction, supposed only to contain
extracted sentences from the text to summarize. They are not supposed to integrate
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the reader’s background knowledge since we are dealing with a “by extraction”
summary evaluation protocol. We literally are in an encapsulated knowledge
and rote memorization mode; thus, we only limit our focus on the automatic
summarizer’s intention to generate a fair summary. Modeling the comprehension
processes that forge the situation model should be done at the semantic level,
especially cognitive modeling. Thus, our CATSE protocol relies on LSA, a powerful
model for representing the meaning of words and sentences.

5.2.3 The CATSE Protocol

First, the text to summarize is segmented into units (sentences). Then, a lexicon
is built and filtered to discard all universal expressions and terms. Next, the text
is coded as an s × t matrix; s refers to the number of sentences, while t refers to
the number of significant unique tokens. We initially map the propositional network
(the microstructure) onto a random space during the construction phase. Then, we
build the elaborated propositional network (the macrostructure). The latter will be
used later to compute a score assessing the generated abstract’s quality during the
integration phase.

5.2.3.1 The Construction Phase

Each sentence Si is coded by a sentence feature vector ζi of t components. ζi

components refer to the tf-idf s associated to tokens present in a given sentence
Si . The set of ζi vectors encodes the micro-propositions, and the feature text
matrix, obtained by stacking sentence feature vectors ζi as its lines, encodes the
microstructure. Afterward, redundant information is coded as ω; the mean sum of
sentence feature vectors is ζi (Eq. (5.1)). We normalize each sentence feature vector
to excrete redundant information since the brain tends not to waste its cognitive
processing time (Eq. (5.2)).

ω = 1

s

s∑
i=1

ζi (5.1)

�i = ζi − ω. (5.2)

The macrostructure (the new space in which we map the elaborated propositional
network) is built by first computing the covariance matrix described in Eq. (5.3).
A singular value decomposition will then be performed as described by Eq. (5.4)
to construct the macro-propositions (eigenvectors of ℵ associated with the highest
eigenvalues).
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ℵ = 1

s

s∑
n=1

�n�
T
n = χχT (5.3)

χ = δ.S.γ T (5.4)

χ = [�1, . . . , �s] in Eq. (5.3). Also, ℵ and χ are, respectively, t × t and t ×s matrix.
Also, dimensions of matrix δ, S, and γ in Eq. (5.4) are, respectively, t × t , t × s, and
s×s. Note that, δ and γ are orthogonal (δδT = δT δ = Idt and γ γ T = γ T γ = Ids).
Additionally:

1. Eigenvectors of χT χ are columns of γ .
2. Eigenvectors χχT are columns of δ.
3. Eigenvalues σk of χχT and χT χ are squares of singular values sk of S.

Eigenvalues σk of χχT are null when k > s and their associated eigenvectors are
unnecessary since s < t . So, matrix δ and S can be truncated, and dimensions of δ,
S, and γ in (5.4) become, respectively, t×s, s×s, and s×s. Next, the macrostructure

K will be built using K eigenvectors δi (macro-propositions), belonging to the
highest K eigenvalues as shown in Eq. (5.5):


K = [δ1, δ2, . . . , δK ]. (5.5)

The construction–integration theory claims that the construction stage refers to
(1) building the microstructure (the CRUD semantic representation of the text
being read) and (2) transforming it into a macrostructure coding the text’s gist.
The microstructure and the macrostructure form the textbase, the second level of
knowledge processing by our minds. The shifting from the microstructure to the
macrostructure is performed by applying a mathematical transformation that maps
the original space in which we projected the initial propositional network onto a
compressed, more relevant space (the macrostructure) whose unitary vectors are the
macro-propositions (constructed vectors that better encode salient concepts yarned
by sentences of the text to summarize). The mathematical transformation simulates
the macro-rule that aims to build a more abstract semantic structure.

5.2.3.2 The Integration Phase

The integration phase consists of activating text units (sentences) that encode
the macrostructure’s salient concepts. The reader’s intention guides this activation
process; the CATSE protocol mainly focuses on the retention and fidelity criteria.
Our CATSE protocol’s primary concern is to assess the quality of the generated
abstract. In other words, it will compute a score that approximates to which extent
sentences of the original text are covering all the concepts conveyed in the source
text while focusing on the most salient ones. Thus, sentence feature vectors are
projected onto the constructed macrostructure and encoded as a linear combination
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Fig. 5.5 The retention–fidelity tensor

of K macro-propositions as described by Eq. (5.6): the vector ℵ�i
(k) = δT

k �i

provides coordinates of a sentence Si in the conceptual space.

�
proj
i =

∑
k

ℵ�i
(k)δk. (5.6)

Next, the Euclidean distance between a given macro-proposition m and any
projected sentence onto the macrostructure is defined and computed as described
by Eq. (5.7)

di(�m) = ‖�m − �i
proj‖. (5.7)

Next, we construct the retention–fidelity tensor (Fig. 5.5) as follows: First, we
fix a W window size. W is proportional to the compression ratio. In the below
example, W is set to 4. The tensor’s first line gives the four text units having the
smallest distances to the vector, encoding the first macro-proposition (the most
salient concept). The second line shows the same information relative to the second
most important concept (macro-proposition). Note here that the order of a given
text unit in a given window W depends on its cosine distance to a given macro-
proposition. For instance, the first sentence is the best one to encode the first most
salient concept, while the eighth sentence is the last one to encode it in a window
of four text units. Also, the first macro-proposition is encoded by the eigenvector
related to the highest eigenvalue. Thus, it encodes the most salient concept. The
second macro-proposition encodes the second most salient concept, and so on. The
retention–fidelity tensor simulates the working memory. It will be used later to infer
a unified fuzzy retention–fidelity score for each sentence of the source text: First, a
retention score is computed to each text unit projected onto the macrostructure. It
is defined as the number of times it occurs in the retention–fidelity tensor divided
by the number of macro-propositions to be bounded between 0 and 1. The central
intuition behind it is that a given sentence having a high retention sore should encode
as much as possible of the K macro-propositions of the macrostructure.
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Rkw(s) = 1

k

k∑
i=1

αi (5.8)

αi = 1 if s occurs in the ith window. If not, it is equal to zero.
Next, we compute a fidelity score, defined as shown in the ninth equation, as

the averaged sum of summary sentences’ retention coefficients. The fidelity score’s
central intuition is that text units whose fidelity score is high should encode the most
salient concepts stated in the source text. So, they should have minimum distances
from the macro-propositions in Eq. (5.7). In other words, the fidelity score gives
insights on to which extent a given sentence encodes concepts present in the original
text (the macro-propositions) while taking into consideration the salience degree of
each one of them. Mathematically, the fidelity score is defined as follows:

Fkw(s) = 1

k

k∑
i=1

αi[1 + 1 − ψi

w
] (5.9)

αi = 1 if s occurs in the ith window of the retention–fidelity tensor. If not, it is
equal to zero. ψi is the rank of s in the ith window.

Next, we use fuzzy logic to compute a unified retention–fidelity score (R-F) for
each sentence of the source text. Text units having the highest (R-F) scores will
be activated by the end of the integration phase. They will remain in the episodic
memory, and they will present candidate sentences of an ideal summary. We opt for
the fuzzy logic to compute the unified retention–fidelity score because the brain is a
“fuzzy machine.” Linguistic variables are input and output variables in simple words
(Fig. 5.6). “Low,” “medium,” and “high” are the linguistic terms used to model the
retention and fidelity scores. Afterward, we build a set of rules into the knowledge
base in the form of IF-THEN-ELSE structures:

• Rule 1: If the retention score is high or the fidelity score is high, then the R-F
score is high.

• Rule 2: If the fidelity score is medium, then the R-F score is medium.
• Rule 3: If the retention score is low and the fidelity score is also low, then the

R-F score is low.
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Fig. 5.6 Defining linguistic variables and membership functions
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Fig. 5.7 Fuzzy R-F score

Next, fuzzy set operations evaluate the previously defined rules to infer the fuzzy
values of R-F sores. Here, the used operations for “OR” and “AND” are “Max”
and “Min,” respectively. Afterward, we combine all evaluation results to form final
fuzzy R-F scores (Fig. 5.7).

Defuzzification is performed according to the membership function for output
variables, as shown in Fig. 5.7. A unified retention–fidelity (R-F) score is computed
for every sentence of the source text. Text units having the highest R-F scores will
be activated (integrated into the situation model) and stored in the episodic memory.
Sentences with low R-F scores will be deactivated and forgotten (Fig. 5.8). The
CATSE score is equal to the averaged sum of retention–fidelity (R-F) scores of
sentences chosen to be included in the actual summary.

5.3 Experiments and Results

5.3.1 Datasets

In this chapter, we mainly used three datasets:

• The Timeline17 dataset [44]: It consists of 17 manually created timelines and
their associated news articles. They mainly belong to 9 broad topics:

– BP Oil Spill
– Michael Jackson Death (M-J)
– Haiti Earthquake (H-E)
– H1N1 (Influenza)
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– Financial Crisis (F-C)
– Syrian Crisis (S-C)
– Libyan War (L-W)
– Iraq War (I-W)
– Egyptian Protest (E-P)

Original texts belong to news agencies, such as BBC, Guardian, CNN, Fox
News, and NBC News.

• Crisis dataset [45]: It consists of 20463 news articles dealing with the crisis in
Egypt, Libya, Yemen, and Syria. Famous news agencies produced the original
texts.

• The EASC dataset [45]: Contains 153 Arabic articles and 765 human-generated
extractive summaries of those articles.

5.3.2 Experimental Results

To evaluate the proposed protocol of CATSE, we computed the Spearman correla-
tion between ROUGE and CATSE scores using the three abovementioned datasets.
Note that the Spearman correlation of two variables equals the Pearson correlation
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between their associated rank values: In contrast to the Pearson correlation that
assesses linear relationships, Spearman correlation assesses monotonic relationships
(whether linear or not). A perfect Spearman correlation of +1 or −1 occurs when
each variable is a perfect monotone function of the other. Those correlations
were computed using reference texts and automatically generated ones using three
summarizers:

• The Luhn summarizer [46]: Luhn summarizer is a naive approach based on tf-
idf. It extracts “salient” sentences of the source text. A given sentence’s saliency
depends on a bunch of meta-heuristics, including cue terms, sentence position in
the text, and many other indicators.

• The TextRank summarizer [47]: TextRank builds an undirected graph using text
units as vertices. The degree of semantic or lexical similarity between text units
is attributed as a weight to vertices edges. The constructed graph is used to build
a stochastic matrix. Next, the ranking over vertices is obtained by finding the
eigenvector corresponding to the eigenvalue that gives a stationary distribution
of the random walk on the graph.

• The LexRank summarizer [48]: It is also a graph-based summarizer. Measured
semantic similarities or content overlaps between sentences are defined as
weights to graph edges. LexRank uses the cosine similarity of tf-idf vectors in
contrast to the TextRank approach that uses a very comparable weight based on
the number of shared words between two sentences (generally normalized by the
sentences’ lengths).

The obtained results are reported in Tables 5.1, 5.2, and 5.3. Notice that if the
Spearman correlation score is positive, it means that the two studied variables are
positively correlated; if the first variable increases, the second increases. If the first
variable decreases, it will be the same scenario for the second one. In contrast, if the
Spearman correlation score is negative, it means that the two variables are negatively
correlated. Also, if the Spearman correlation score is superior to 0.5, it means that
the two variables are highly positively correlated. The obtained results from the
24 experiments led on the eight subsets of the Timeline17 dataset show that the
ROUGE and CATSE scores are highly positively correlated in 20 scenarios. They
are moderately positively correlated in three scenarios and negatively correlated in

Table 5.1 Spearman
correlation between CATSE
and ROUGE scores in the
Timeline17 dataset

Sub-dataset Support Luhn TextRank LexRank

BP-Oil 1415 0.74 0.66 0.57

E-P 563 0.81 0.62 0.64

H1N1 215 0.31 0.59 0.61

H-E 125 0.52 0.73 0.88

I-W 125 0.76 0.82 0.81

L-W 325 −0.16 0.23 0.19

S-C 214 0.82 0.86 0.91

M-J 124 0.79 0.83 0.86
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Table 5.2 Spearman
correlation between CATSE
and ROUGE scores in the
Crisis dataset

Sub-dataset Support Luhn TextRank LexRank

Egypt 5110 0.72 0.66 0.64

Libya 5665 0.83 0.79 0.83

Syria 5355 0.51 0.81 0.82

Yemen 4333 0.74 0.69 0.39

Table 5.3 Spearman
correlation between CATSE
and ROUGE scores in the
EASC dataset

Sub-dataset Luhn TextRank LexRank

Art and music 0.11 0.42 0.16

Education 0.31 0.56 0.33

Environment 0.33 0.51 0.52

Finance 0.29 0.61 0.74

Health −0.21 0.02 0013

Politics 0.16 0.29 0.24

Science and technology 0.52 0.49 0.32

Tourism 0.39 0.58 −0.25

Politics 0.53 0.50 −0.11

Sports 0.34 −0.21 0.41

only in one scenario. The obtained Spearman correlation results using all subsets of
the second dataset show that the ROUGE and CATSE scores are highly positively
correlated. Better results are obtained when using long texts with many concepts.
Our approach assumes that the source text to summarize reports at least two
concepts. Thus, it is more suitable for long texts. Experiments conducted on the
third dataset show that our method needs more parameter tuning to obtain a realistic
assessment of the quality of generated summaries in Semitic languages.

5.4 Conclusion

This chapter focused on a sub-task of ATS, namely automatically generated sum-
maries evaluation (AGSE). We proposed a cognitive and explainable approach of
AGSE. The proposed model relies on the Kintsch theory of reading comprehension.
Our evaluation protocol is tested and compared to Recall-Oriented Understudy for
Gisting Evaluation (ROUGE): a standard approach used to evaluate automatically
generated summaries. Conducted experiments on the Timeline17, Crisis, and EASC
datasets show that our approach’s scores are generally highly positively correlated
to the state-of-the-art ROUGE ones. Best results are obtained when using long
texts. A refined parameter tuning is needed when assessing the quality of generated
summaries in Semitic languages. This research’s salient outcome is that it proposes
a cognitive and explainable model of AGSE, and it pushes toward cognitive natural
language processing. It also demonstrates how cognitive psychology can be used



88 A. Ben Ayed et al.

for an explainable artificial intelligence (XAI) approach to justify an AGSE model’s
scores.

The current version of the proposed evaluation protocol only works with
extractive summarization tasks. Now, we are implementing the abstractive oriented
version of it. The main idea is the following: after identifying important sentences
in the text, the next variant of our CATSE approach will tend to detect the reader’s
strategy to build the summary, which is viewed as applying adequate macro-rules.
Macro-rules are the core of the cognitive processes involved in the summarization
activity. [39]. Note that the construction–integration model states three types of
macro-rules:

• Deletion: Each text unit containing minor redundant or unrelated details may not
be considered part of the summary.

• Generalization: A generic segment may substitute a bunch of text units.
• Construction: Salient text units from retention and fidelity perspectives are stored

in the episodic memory and activated later on to be part of an ideal summary.

The CATSE protocol should infer that a particular sentence in the text has been
deleted given a text and its summary. In the same way, it should infer whether a
sentence is a generalization, and so on. The selection (construction) macro-rule
is already simulated using LSA: Each sentence of the summary is semantically
compared with each source text sentence. A sentence of the source text will be
considered deleted for the deletion macro-rule if no generated output sentence is
sufficiently close to it. Similarly, a generalized sentence is a summary sentence close
enough to more than one source text sentence.
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Chapter 6
On the Transparent Predictive Models for
Ecological Momentary Assessment Data

Kirill I. Tumanov and Gerasimos Spanakis

6.1 Introduction

At present, user activity and behaviour are being tracked in a number of contexts.
Including, for instance, tracking of smartphone usage, mobility, and communica-
tion [1], as well as food intake and activity type [2]. Behaviour monitoring is also
performed for medical purposes using sensors, for example, to detect development
of Parkinson or Alzheimer disease [3]. The common goal of behaviour tracking
is identification of the drivers behind the observed activity. Once the drivers
are identified, the behaviour can serve, for instance, to predict a person’s life
outcomes based on personality traits inferred from the behaviour [1] or to provide
recommendations to caregivers based on behavioural patterns [3].

Obesity is one of the challenges the modern society is facing [4]. Among other
factors, obesity is linked to the: (1) cheapness and availability of the energy-dense
food high in sugar, fat, and salt; and (2) clever marketing strategies used by the food
manufacturers [4]. Although it is not in the hands of an individual to rule out these
two factors, the individual can be supported in adapting own behaviour to cope with
them. The adaptation can be achieved by making own informed choices related to
food intake and a desired level of physical activity.

However, the process of informing the user about a need to take action to
change their behaviour is still not optimal. Once the user behaviour is analysed
by an algorithm and a model of the behaviour is constructed, the model itself
remains invisible to the user, who only obtains an outcome from the model. In
the case of eating behaviour, which is covered in this work, the outcome is an
indication whether the user is expected to consume something which is considered
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an unhealthy option. In this case, the user does not obtain an insight of the context
in which the decision is made. This means that the inference process incorporated in
the behaviour model does not trigger an equivalent inference response on the user’s
side.

In this work, we analyse how the behavioural data, obtained via Ecological
Momentary Assessment (EMA) can be used to build transparent models for
prediction of user behaviour type. We argue that the use of the transparent models
can help extending the feedback provided to the user based on the collected EMA
data. Below, the relevant concepts are introduced and a brief overview of prior work
is provided.

6.1.1 Ecological Momentary Assessment (EMA)

A study of human behaviour requires observation. Normally, the observation cannot
be continuously performed by a specialist. Thus, often a person is asked to “log”
their own behaviour over a specified period of time on their own. The simplest
form of logging is keeping a diary [5] in which the behavioural characteristics of
interest are captured. However, the use of simple diaries possesses problems related
to the data validity [5]. Namely, the diaries require a person to: (1) remember own
behaviour characteristics, (2) accurately fill them retroactively, and (3) fill them
regularly [5].

A concept of EMA was introduced by Stone and Shiffman in 1994 to refer
to “monitoring or sampling strategies to assess phenomena at the moment they
occur in natural settings” [6]. Performing a repeated sampling of behaviour in a
typical environment of each participant was hypothesized to improve validity of
the collected data and to reduce the participant’s need to remember and recall their
activity [6]. Therefore, the use of EMA is aimed to avoid the problems linked to the
traditional logging with diaries and questionnaires [5].

Rapid development of the digital tools and mobile devices allows automation of
the EMA procedures. Meaning that the data can be collected with a smartphone
[2, 7]. The use of electronic devices allows automatically reminding a person to
report own behaviour without involving a human experimenter [2, 7]. Moreover, the
use of a personal mobile device provides a potential to perform covert (or passive)
data collection about the person’s behaviour [1]. Therefore, management of EMA
studies becomes easier and human factors during data entry are reduced.

The EMA data can be successfully used not only for monitoring per se. The
data can be used to train models of human behaviour for the use in an Ecological
Momentary Intervention (EMI) [8]. During EMI, a person receives real-time
feedback based on the analysis of the behaviour data collected until now. The
EMI-based Cognitive Behavioural Therapy (CBT) was successfully implemented
to change the eating behaviour of overweight adults [7, 9]. It is also imperative for
the success of any EMI method that the feedback provided to users is transparent.
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6.1.2 Classification of EMA Data

Multilevel modelling [10], logistic regression [11], decision trees [10–13], random
forest and bagged boosted trees [11, 14], Hidden Markov Models (HMMs) [15]
and Recurrent Neural Networks (RNNs) [16] were previously used for classification
of EMA data. The choice of a particular method is largely dependant on the use
case and the type of data being acquired through the EMA. Nevertheless, the
importance of the ability to explain the classification model was brought up by
several authors [10, 13, 15].

EMA data is typically classified post hoc in a Cross-Validation (CV) setting
with a sample hold-out strategy. This approach to classification is determined by
a common need to test a hypothesis of whether some construct (e.g. depression as
in [11]) can be predicted based on the collected data. However, this approach lacks
flexibility as: (1) the results can only be obtained at the end of the data collection,
(2) all data of a participant is assumed to be available and static, and (3) limited
argumentation can be made about the case when new participants are added (which
would require testing a participant hold-out strategy). A more flexible alternative,
capable of addressing the mentioned limitations, is training/testing the prediction
models incrementally, as described in this work.

6.1.3 Model Transparency

Providing a precise and relevant definition of transparent algorithms continues to
puzzle researchers [17]. Nevertheless, transparency is acknowledged to be one of
the key elements constituting user trust in Artificial Intelligence (AI) systems [18].
Availability of the source code and ensuring that the algorithm is following a set of
regulatory and societal norms are suggested to provide transparency [17]. However,
from the user perspective, these factors are not helpful, and an alternative is to ensure
transparency without the source code [17]. Can the predictive models produced by
an algorithm be made transparent instead?

One approach to making the models transparent is the use of the network
structure to explain relations between variables or user states. Such an approach,
for instance, gained popularity in analysis of psychological conditions [19]. The
idea is to apply a selected mathematical operator (e.g. a linear correlation) to data
to obtain the relations between the variables and then to use network analysis
concepts (centrality, cardinality, betweenness, etc.) to characterize the obtained
relations. This approach helps visualize complex structures and allows tuning the
network analysis parameters for making the phenomena of interest more prominent.

Another approach is to uncover the model decision-making structure to the user.
This approach is widely used in process mining; where, first, the data is used to
discover a model of the process, and then, the model is used for data conformance
checking [20]. Another variant of this approach is presenting the rules uncovered
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by an algorithm. For instance, a decision tree can be presented to a participant,
such that they would be able to see what leads to a particular behaviour. This way
a participant can acquire a data-driven, tailored, and compact representation of the
model describing their behaviour.

The motivation behind this work was to provide a comprehensive outlook
over the use of EMA data to train prediction models which are interpretable,
comparable, and plottable. Thus, in this work it is demonstrated how the well-
established concepts of model learning, model-based classification, model analysis,
and network analysis are used in conjunction with the EMA data to provide a
participant with insights of their behaviour.

On the other hand, this work does not aim at providing a detailed analysis of
the individual behaviours of participants captured in the used dataset, since this
was done previously in [12, 13, 21–23]. However, the only classification results
reported previously for the used EMA dataset were obtained in a CV setting without
a distinction across participants [14]. Thus, in this work the initial performance
values are reported for the case of personalized models used in an incremental
training/prediction setting with a cold-start and no strong emphasis was put at
optimizing the prediction performance of the used classification algorithms.

The remainder of the work is structured as follows. In Sect. 6.2, an EMA
dataset used throughout this work is introduced. In Sect. 6.3, a description of the
classification algorithms used for eating behaviour prediction is provided and the
classification pipelines are explained. In Sect. 6.3.3, an overview of the experiment
settings used in this work is provided. Results of the performed experiments are
presented in Sect. 6.4. The obtained results are discussed in Sect. 6.5. The work is
concluded in Sect. 6.6.

6.2 Dataset

The dataset used in this work was collected in the framework of the “ThinkSlim”
study [7]. The dataset represents samples collected from 135 overweight participants
over 8 weeks. The participants were asked to fill their data via the mobile app:
(1) prior food intake and (2) at random, given the specified time intervals (as
explained in [12]). In this work no distinction is made between the data collection
and intervention stages of the Randomized Control Trial (RCT) used in the
“ThinkSlim” study [7]. Additional characteristics of the dataset are described
in [12].

A set of features extracted from the original dataset is described in Table 6.1.
These features were selected based on the participants compliance in providing
values for them, meaning that the features that were not filled regularly were
excluded. Hereinafter, nominal and ordinal data are referred together as categorical
data, and interval data is referred to as continuous data. From the data originally
contained in feature F4, only the hour information was used.
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Table 6.1 Dataset features used in the study. The used lists of assessed emotions and foods to
select from are shown in Tables 6.2 and 6.3, respectively

Feature IDs Feature name Purpose Data type Variable type

F4 date_saved Get DateTime of the
sample

Nominal Integer

F6 circumstances Identify activity Nominal Integer

F7 company Identify company
size

Nominal Integer

F8 company_bond Quantify strength of
a bond with the
company

Interval Double

F9 craving Quantify desire to eat Interval Double

F17–24 emotion_{...} Quantify emotional
state

Ordinal Integer

F30 location_name Identify location Nominal Integer

F39 specific_crave_names Identify desired
foods

Set of nominal {Integer}

F41 specific_eat_names Identify consumed
foods

Set of nominal {Integer}

Table 6.2 Convention about the emotion types used in the study. Emotion names are given in
English and Dutch (original language of the dataset)

Emotion type Emotion names

Positive EN Calm, Cheerful

NL Kalm, Opgewerkt

Negative EN Anxious, Angry, Nervous, Sad, Bored, Tired

NL Angstig, Boos, Gespannen, Verdrietig, Verveeld, Vermoeid

A list of assessed participant’s emotions is shown in Table 6.2 together with their
type attribution (positive/negative). Feature values related to these emotions were
originally collected on the Visual Analogue Scale (VAS) scale (from 0 to 10) and
were continuous. However, given the sparsity of the data, the feature values were
converted to categorical. This step was performed following the motivation provided
in [12]. Specifically, values corresponding to positive emotions were converted
to three categories (Low/Mid/High) whereas values of negative emotions were
converted to two categories (Yes/No). However, in contrast with [12], here zero-
valued emotions were included in the category “Low”.

The original data containing 46040 samples was preprocessed. First, 7069 dupli-
cate entries were removed. Then, the data was time-sorted using feature F4. After
that, 3274 samples related to drinking before going to bed were removed. Lastly,
184 samples with missing value for feature F41 (identifying food items consumed)
were removed. The total size of the dataset after preprocessing was 35513 samples,
out of which 20812 samples do not correspond to food intake.
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Table 6.3 Convention about the food types used in the study. Emotion names are given in English
and Dutch (original language of the dataset)

Food type Food names

Healthy EN Nuts, Soup, Fruit, Pasta, Salad, Yoghurt, Potatoes, Rice dish, Cornflakes,
Sandwiches

NL Nootjes, Soep, Fruit, Pasta, Salade, Yoghurt, Aardappelen, Rijstgerecht,
Cornflakes, Boterhammen

Unhealthy EN Ice cream, Candy, Chips, Fries, Pizza, Muffin, Pastry, Cookies, Candy bar,
Hamburger

NL IJs, Snoep, Chips, Frietjes, Pizza, Muffin, Gebak, Koekjes, Snoepreep,
Hamburger

The individual names of food and their attribution to healthy and unhealthy
food types were as shown in Table 6.3. The choice of the food types used in the
“ThinkSlim” study was motivated by their presence in a typical Dutch diet [12, 23].
For classification, a label of unhealthy eating was assigned to a sample for which
feature F41 contained any of the unhealthy food types (e.g. {Pasta} → “Healthy”,
{Pasta,Fruit} → “Healthy” and {Pasta,Muffin} → “Unhealthy”). This rather strict
labelling of eating type was aimed at increasing the number of samples correspond-
ing to unhealthy eating. Nevertheless, the dataset remained highly imbalanced in
favour of healthy eating samples (1968 unhealthy eating and 12733 healthy eating
samples). Moreover, the motivation of the study is to understand the triggers that
lead users to make a choice which is less healthy than others. In that context,
unhealthy eating refers to highly palatable foods, whereas healthy eating refers to
the healthier choice.

After the EMA data was collected, the data logging compliance of the partici-
pants was checked. Specifically, the participants who logged less than two samples
per day were considered non-compliant. This way, 80 participants (out of 135)
were retained and the rest were excluded. For completeness, results before and after
participants exclusion are presented in this work.

6.3 Analysis Methods

In this section, classification settings used in the experiments are defined and
explained. Then, the tools used for data analysis and classification are introduced.
Next, the outline of the performed experiments is presented. Finally, the methods
used for interpretation and analysis of the trained models are detailed.

6.3.1 Classification Settings

Given that the dataset used in this work was collected with a goal of identifying
unhealthy eating behaviour in adults, in this study, focus was on three prediction
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targets shown in Table 6.4. Namely, HU represents the primary target of interest.
However, HUN and EAT prediction targets were used to test the classification
performance for relevant prediction scenarios. HUN target is not only more general
than HU, as no eating can also be predicted, but it also allows testing classification
performance with a dataset more balanced w.r.t number of samples per class (for
specific figures see Sect. 6.2). EAT target is of no direct value for the original goal
of the study in which the dataset was collected, but it is deemed to be of indirect
value, as it allows identification of food intake in general.

Two prediction scenarios were considered as shown in Table 6.5. Prediction at
time t represents a setting in which analytics about person’s behaviour is required.
For instance, if it is necessary to verify for a given sample whether the participant’s
response was “truthful”. On the other hand, prediction at time t + 1 represents a
forecasting setting, in which the next behaviour sample is of interest. For instance,
if it is desired to know whether a person is going to eat something unhealthy soon.

Two prediction modes were considered, as shown in Table 6.6. INPP_N mode
is of particular interest w.r.t the study during which the dataset used was collected,

Table 6.4 Prediction targets considered

Code Classes Description

EAT 2 (eating, no eating) Using data from all the features, predict whether the
value of feature F41 indicates any food intake or not

HUN 3 (healthy, unhealthy
eating, no eating)

Using data from all the features, predict whether the
value of feature F41 contains any un/healthy food or if
it contains no food at all

HU 2 (healthy, unhealthy
eating)

Same as HUN, but all samples not corresponding to
food intake are excluded from the dataset

Table 6.5 Prediction scenarios considered

(a) Predict target value at time t (b) Predict target value at time t + 1

Features at time 0 Target/label at time 0 Features at time 0 Target/label at time 1
. . . . . . . . . . . .

Features at time t Target/label at time t Features at time t Target/label at time t + 1
. . . . . . . . . . . .

Features at time T Target/label at time T Features at time T − 1 Target/label at time T

Table 6.6 Prediction modes used

Code Name Description

IN Incremental Data is assumed to arrive sample by sample. No distinction between
participants is made

INPP_N Incremental per
participant using
history of
length N

Data is assumed to arrive sample by sample. Classification models are
trained individually per participant. To predict target/label at time t ,
previous N samples (taken at times {t − N , . . . , t − 1}, N ≥ 1) are
used to form a feature vector. In addition, class labels from each of
the history samples are included to the feature vector
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as it allows predicting a target value with a constant number of preceding sam-
ples (history length) using the data of individual participant. IN mode represents a
situation in which one common behaviour model is built using all the data available
from the participants. The latter though does not comply with the perspective
of personalization through individual behaviour modelling, and thus, serves as a
reference.

6.3.2 Tools

Two tools were used for the off-line processing and analysis of the EMA dataset,
namely: (1) KNIME Analytics Platform and (2) an own pipeline with custom
classification routines written in C++. In KNIME Analytics Platform, the algo-
rithms listed in Table 6.7 were applied to the dataset. These algorithms represent
three different classes of classifiers: tree-based (DT, GBT, and RF), probabilis-
tic/Bayesian (NB and BN), and neural network-based (MLP). Although this is by
no means a complete coverage of possible classification methods (as for instance,
maximum margin classifiers (Support Vector Machine (SVM)) and deep Artificial
Neural Networks (ANNs) are not included), it should provide a realistic impression
on the attainable classification performance using EMA data in the tested setting.

After the initial results were obtained with KNIME Analytics Platform, it was
decided to implement an own set of classification routines based on the Naïve
Bayes classifier. This choice was motivated by the simplicity of the method
allowing direct interpretation of the results, its computational efficiency and a
natural ability to accommodate for large sets of input training data in an incremental
classification setting. More details about the own classification pipeline are provided
in Sect. 6.3.2.1.

In the process of incremental training/testing, using both KNIME Analytics
Platform and the own pipeline, classification results were not obtained for the
sample collections containing only samples belonging to one class. Instead, a
classifier was trained until the data contained samples belonging to more than one

Table 6.7 Algorithms used
in KNIME Analytics
Platform

Code Description

BN Bayesian network (entropy-based, max parents 2)

GBT Gradient-boosted trees (max tree depth 4, 100
models, learning rate 0.1)

NB Naïve Bayes

MLP Multi-layer perceptron (5 hidden layers, 10 neurons
per hidden layer, max 100 training iterations)

RF Random forest (information gain-based, 100 models)

DT Decision tree (Gini index-based, Minimum
Description Length (MDL) pruning)
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class, and only after that the classifier was tested. This was done to avoid introducing
a bias in the classifier performance assessment, which would otherwise stem from
correctly classifying the only existing class until the data contained more than one
class.

All the classification accuracies reported in this work represent Balanced Accu-
racies (BAs), computed over K classes as

BA =
∑K

k=0 TPRk

K
, (6.1)

where TPRk is a True Positive Rate of the k-th class (k ∈ K).

6.3.2.1 Own Pipeline: Model Training and Testing

In case of conditionally independent features, the own pipeline implementation
follows the same principle as the NB implemented in KNIME Analytics Platform.
However, own pipeline permits the use of conditionally dependent features as
described below. In the scope of this paper, the own pipeline was applied assuming
the feature independence. Therefore, the results obtained using the NB implemen-
tation in KNIME Analytics Platform and the own pipeline are different mainly due
to internal handling of data types.

Training

For all continuous variables, mean and variance are estimated per class. The
estimation is performed incrementally. Such, the sample mean is computed as

x̄t+1 =
∑t+1

t=1 xt

t + 1
. (6.2)

The sample variance is computed as

σt+1 = (σt + x̄2
t ) · t + x2

t+1

t + 1
− x̄2

t+1. (6.3)

For all categorical variables, counts of feature value observations per class are stored

count(k,m) =
T∑

t=0
k∈K
m∈M

[c(t) = ck] [f (t) = fm] , (6.4)
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where K classes and M categorical feature values are considered. (Each categorical
feature has its own set of categorical values vn, defined for n ∈ N . This means that
for each feature, an own N exists. However, for compactness of notation, additional
indexing is further avoided.) Here [·] is the Iverson conditional notation [24].

In addition, counts of observations of pairs of categorical feature values are
stored. These counts can be formally expressed as

count(k,m, m̂) =
T∑

t=0
k∈K

m,m̂∈M
m�=m̂

[c(t) = ck] [f (t) = fm] [f (t) = fm̂] , (6.5)

where fm̂ is a categorical feature value other than fm co-registered at time t . For
instance, fm = “Alone” defines a company and fm̂ = “Home” defines a location.

Prediction

Prediction using the trained model is done as illustrated in Fig. 6.1. At time t a new
sample of data s(t) with M features (fm for m ∈ M) is recorded. Given a set of
K classes, for each class ck a probability is computed following the Bayes rule as

P(ck|s(t)) = P(s(t)|ck)P (ck)

P (s(t))
∝ P(ck)P (s(t)|ck) ∝ P(ck)

∏
P(fm|ck),

(6.6)
where P(ck|s(t)) is a posterior conditional probability of class ck given sample s(t),
P(s(t)|ck) is a conditional probability of sample s(t) given class ck , P(ck) is a prior
probability of class ck , P(s(t)) is a total probability of sample s(t), and P(fm|ck)

is a conditional probability of the m-th feature value given class ck .
The interrelations between the feature values can be captured by computing

conditional probabilities of feature value pairs. Then, the posterior probability of
class ck is be computed as

P(ck|s(t)) ∝ P(ck)
∏

m∈M

P(fm|ck)
∏

m,m̂∈M
m�=m̂

P (fm, fm̂|ck), (6.7)

where P(fm, fm̂|ck) is a conditional probability of a pair of values of the m-th and
m̂-th features given class ck .

Once the posterior probabilities are computed for all K classes, the class with the
highest posterior probability is selected as the predicted label for sample s(t). The
same procedure is repeated for all unseen samples.
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Fig. 6.1 Prediction model used in own pipeline. For a sample at time t (s(t)), probability of
class ck (k ∈ K) is computed as a product of conditional probabilities of M feature values of
the sample (e.g. P(ck |s(t)) ∝ P(f1 = v1|ck) · . . . · P(fM = vN |ck)). In addition, conditional
probabilities of pairs of feature values can be used to take into account interrelations between
the feature values (e.g. P(f1 = v1, fM = vN |ck)). Thicker lines denote higher probability values.
Values are grouped by a dotted rectangle in the value space based on their attribution to a particular
feature

6.3.3 Experiments

The legend of experiments performed is shown in Table 6.8. The experiments with
KNIME Analytics Platform were performed only in the INPP_1 prediction mode.
This was due to the platform limitations w.r.t incremental learning. Namely, at the
moment, models cannot be incrementally trained in KNIME Analytics Platform.
This means, that predicting a label for each new sample requires training of a
new model from scratch using all the currently available data. The fact that the
models cannot be reused makes running the incremental experiments (especially in
IN mode) so computationally expensive, that the experiments do not produce results
within a reasonable time. (For instance, an attempt to obtain results with KNIME
Analytics Platform using MLP in IN mode took 100 h but was still not finished.)
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Table 6.8 Experiments’ legend. For explanations of codes of prediction targets and modes
see Tables 6.4 and 6.6, respectively

Experiment Prediction Predict Dataset size Prediction

ID target at time (samples) a mode Tool

K.X EAT t 34891

K.XI HU t 13611

K.XII HUN t 34944

K.XIII EAT t + 1 34751

K.XIV HU t + 1 13579

K.XV HUN t + 1 34806

INPP_1
KNIME

Analytics Platform

O.I EAT t 35206

O.II HU t 13738

O.III HUN t 35260

O.IV EAT t + 1 35066

O.V HU t + 1 13705

O.VI HUN t + 1 35122

See Table 6.11 Own pipeline

aA number of classification decisions made when no participants were excluded (135 participants
included). For experiments with own pipeline the sizes from INPP_1 mode are reported

The results obtained with KNIME Analytics Platform provide a reference for the
results obtained with the own pipeline.

6.3.4 Model Interpretation and Analysis

Along the incremental training process, prediction models were saved once a week
for each of the participants. This frequency of saving models was selected as it was
deemed to be minimally sufficient to observe changes in the participant’s behaviour.
The prediction models trained using the own pipeline were processed in two steps:

1. Each of the models is interpreted as follows:

• Every model contains information used to classify among a set of classes. A
number of classes K is identified, and for each of the classes ck (k ∈ K) a
set of categorical features fm (m ∈ M) used for the prediction of the class is
extracted.

• Data related to categorical and continuous features is analysed indepen-
dently (the details are provided is separate sections below).

2. Using the obtained model interpretations, the selected models are compared with
each other (as described in Sect. 6.3.4.4).
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6.3.4.1 Analysis of Categorical Features

Assuming that a class ck is considered (e.g. class “eating healthy”), for each categor-
ical feature value fm̂, m̂ ∈ M (e.g. for category “Home” of the location_name
feature), normalized category frequencies are obtained as

freqck

fm̂
= count(k, m̂)∑

k∈K count(k,m)
, (6.8)

where count(·) values are computed using Eq. (6.4). The obtained normalized
category frequencies are then sorted for each of the predicted classes.

To obtain values characterizing an ability of the model to discriminate among the
predicted classes, all possible pairs of classes to discriminate from are created. For
every pair of classes (e.g. ck versus c

k̂
), for all shared categorical features and for

all corresponding categories, the discrimination values are found as

freqdiscfm̂
= freqck

fm̂
− freq

c
k̂

fm̂
. (6.9)

Note that freqdiscfm̂
is in range [−1, 1].

6.3.4.2 Analysis of Continuous Features

For a continuous feature (e.g. craving), distribution of its values between the
classes characterizes how well the feature can be used to discriminate between the
classes. Specifically, the role of the m̂-th feature in discriminating between two
classes ck and c

k̂
is determined as Fisher’s discrimination criterion [25]:

J disc
m̂

= sbetween
m̂

swithin
m̂

= wckwc
k̂ d2(x̄

ck

m̂
, x̄

c
k̂

m̂
)

σ
ck

m̂
+ σ

c
k̂

m̂

=
∑

k∈K wckd2(x̄all
m̂

, x̄
ck

m̂
)∑

k∈K σ
ck

m̂

, (6.10)

where sbetween
m̂

and swithin
m̂

are the between- and within-class variances w.r.t values of
the m̂ feature, respectively, wck is a weight of class ck in the dataset (i.e. frequency
of samples belonging to class ck), x̄

ck

m̂
and σ

ck

m̂
are a mean and a variance of the

m̂-th feature values from the samples belonging to class ck respectively, d2(·) is
a Squared Euclidean Distance (SED) (d2(x, y) = ∑N

i=0(xi − yi)
2) and x̄all

m̂
is an

overall mean of the m̂-th feature values irrespective of the sample’s class attribution.
This means that the feature which maximizes a scatter of values between the classes
and minimizes a scatter of values within the classes has a high discriminatory
capacity for the given classes.

The overall mean x̄all
m̂

(used above) and the overall variance σall
m̂

(will be used
below) can be efficiently estimated from the class-related means x̄

ck

m̂
by pooling:
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x̄all
m̂

=
∑

k∈K wck x̄
ck

m̂∑
k∈K wck

σ all
m̂

=
∑

k∈K(wck − 1)σ ck

m̂∑
k∈K(wck − 1)

.

(6.11)

Attempting to have the J disc
m̂

values normalized, instead of using the SED, the
normalized SED can be used:

d2(x̄m̂, x̄
ck

m̂
) = 0.5σall−ck

m̂

σ all
m̂

+ σ
ck

m̂

, (6.12)

where σ
all−ck

m̂
= σall

m̂
+ σ

ck

m̂
− 2cov(all, ck). However, a direct computation

of cov(all, ck) is computationally complex, thus, the Cauchy–Schwarz inequal-

ity (|cov(all, ck)| ≤
√

σall
m̂

σ
ck

m̂
) can be used to estimate the covariance. Neverthe-

less, although the use of the normalized SED allows reducing the scatter of J disc
m̂

, the
normality of J disc

m̂
is not guaranteed as in a general case the class-related variances

σ
ck

m̂
are not normalized. Specifically, variance of the feature values for a class can

be small (for instance, if the number of samples belonging to the class is small)
or zero (for instance, if there is only one sample belonging to the class or if all the
samples are the same). Therefore, it is suggested to impose a cap of one on the J disc

m̂

values estimated using the normalized SED, such that J disc
m̂

is in [0, 1] range.

6.3.4.3 Interpretation of the Resulting Values

The class discrimination values obtained for continuous and categorical features
cannot be mixed and are analysed separately. This means that, for instance, feature
company cannot be analysed w.r.t the company_bond feature.

The closer the value of freqck

fm̂
is to 1, the higher is the probability of observing

class ck if fm̂ is recorded. This means, that this value can be perceived as a “weight”
of the category in making a prediction decision in favour of the given class.

The closer the value of freqdiscfm̂
is to −1, the higher is the probability of observing

class c
k̂
when the category fm̂ is recorded. On the other hand, the closer the value

of freqdiscfm̂
is to 1, the higher is the probability of observing class ck when the

category fm̂ is recorded. This means, that those values identify which categories
of the categorical features contribute the most to deciding about observing one
of the two classes. If freqdiscfm̂

is close to zero, it means that category fm̂ has a
“similar” impact on a probability of observing either of the two classes, and thus
is not “important” for the prediction.

The closer the value of J disc
m̂

is to zero, the lower is the impact of the feature in
discriminating between the classes. Therefore, the features with the values of J disc

m̂
closer to one should be retained.
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6.3.4.4 Model Comparison

At any time t , for every participant a limited amount of data is available. Therefore,
it can be said that for every participant there exists a prediction model which is valid
at time t . These prediction models are learnt per participant individually. Once an
additional piece of data becomes available for any of the participants, the time is
incremented for all the models. This means, that if, for instance, at time t − 1 new
data is available for participant n−1, then a newmodel is trained for participant n−1
at time t−1 and the models of all other participants remain valid at time t−1 without
changes.

The process of model training and comparison is shown in Fig. 6.2. For compact-
ness, data and models are shown only for two users. The models trained as explained
in Sect. 6.3.2.1 can be compared using the following comparison types

I. The models of two different users corresponding to the same time can be
compared. This way is possible to identify relatedness between the users based
on their behaviour patterns at a set time. This can be useful for user grouping.
For instance, when a peer should be assigned to a user as a companion in a CBT.

II. The models of a user corresponding to different times can be compared. For
example, comparing models obtained after 2 and 7 weeks of an EMA study.
This way, a behaviour change is identified, and the overall degree of the change
is quantified using the aforementioned distance metrics.

III. The models of two different users obtained at two different times can be
compared. This type of comparison allows identification of similar behaviour
patterns across participants at different times. Overall, this is a generalization of
the comparison types I. and II.

IV. The model of a user at a given time can be compared to an aggregate model
of other users at that time. The aggregated model can be obtained, for instance,
as an average of models of other users. The aggregated model can be perceived
to capture behaviour of an average user. This can be particularly useful when
there is a need to establish a data-driven baseline of behaviour, for instance,
to provide feedback to the users relative to the group baseline. For example,
if a participant significantly deviates from the group behaviour in a number of
snacking moments per day, then a targeted feedback can be issued.

Only the models trained to predict for the same set of classes can be compared.
Moreover, in a comparison, it must be ensured that the values corresponding to the
same features are compared (for instance, company_bond feature of one model
is compared with the same feature of another model).

Specifically, the model comparison is performed using the values described
in Sect. 6.3.4.3. The freqck

fm̂
(and J disc

m̂
) values form a vector uniquely identifying

a prediction model. Hence, a distance between the vectors can be computed to see
how similar are the prediction models and the user behaviours which the models
were trained on.

Euclidean and cosine distance metrics are computed to identify the degree of
model/behaviour similarity. Cosine distance is of particular interest for analysis of
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Fig. 6.2 Model Processing. Given the data available for a user at a particular time, individual
models are obtained per user. Four types of model comparison are suggested as described
in Sect. 6.3.4.4
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EMA data, as it allows identifying a difference in “directions” between the par-
ticipant behaviours. Comparing the exact parameters of the models using Euclidean
distance is in turn useful when an exact match in the behaviour proportions captured
in the models is desired. The latter is expected to be particularly useful in the type IV
comparison with a reference model, setting a goal for the participant’s behaviour.

For instance, comparing the models obtained during an EMA study with the
model obtained at the end of the study allows observing the convergence in model
training (more details are provided in Sect. 6.4.3). The convergence may identify a
suitable time to start an intervention (an EMI). A threshold on the distance(s) can
be set to acknowledge the convergence.

6.4 Results

The results of this work are presented in the following three blocks. First, the
results obtained with KNIME Analytics Platform are summarized in Sect. 6.4.1.
Then, the results obtained with the own classification pipeline are presented
in Sect. 6.4.2. Finally, several examples of model analysis and comparison are
provided in Sect. 6.4.3.

6.4.1 Experiments with KNIME Analytics Platform

The results obtained from the experiments with KNIME Analytics Platform without
exclusion of participants are summarized in Table 6.9. For all the algorithms, in
all the experiments, the mean BA values were above chance. It can be seen that
predicting a target at time t + 1 was more challenging than at time t . Predicting
EAT target led to the highest BA values, and predicting HUN target led to the
lowest BA values. None of the algorithms consistently outperformed others in all the
experiments. However, when predicting a target at time t +1, GBT performed better
than other algorithms. Correct prediction of the dominant class of no eating led to
the prediction of HUN target having the larger margin between the demonstrated
BA values and the corresponding chance level (33.3%) than the prediction of
HU target (chance level of 50%) both when predicting at time t and at t + 1.

When the participant exclusion was done, as described in Sect. 6.2, the results
obtained with KNIME Analytics Platform were refined and are shown in Table 6.10.
It can be seen that the participant exclusion led to marginal improvements in the
BA values. More importantly, since the results of non-conforming participants were
excluded, a reduction in the SD values was observed. The reduction in SD values
was the largest in experiments K.XIII and K.XV. However, this reduction was
not even across the algorithms and experiments, and in some cases the opposite
was observed (for instance, see GBT in K.XII or NB in K.X). Similar to the
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Table 6.9 Mean BA (%) values across algorithms for experiments with KNIME Analytics
Platform, without exclusion of participants (135 participants included). For the description of the
experiment conditions see Table 6.8. For the description of the algorithms see Table 6.7. Highest
BA values and lowest SD values per experiment are marked in bold

Algorithm code

Experiment ID BN GBT NB MLP RF DT

Micro-average Mean 73.8981 74.9293 76.2610 72.9295 76.1787 77.9832
Mean 68.9964 69.6884 70.2533 67.3135 70.0070 72.9499K.X

Macro-average
SD 11.4166 12.4249 13.1965 11.8715 12.9949 11.8677

Micro-average Mean 62.3419 69.2225 67.4844 64.3286 62.4810 68.6808

Mean 59.9984 67.1906 65.6207 61.3503 60.0851 69.0474K.XI
Macro-average

SD 14.9543 16.3338 13.9535 16.6390 14.6218 17.4741

Micro-average Mean 53.5665 57.9644 58.8995 54.0631 56.5150 57.3104

Mean 48.9024 52.7931 53.5583 49.3488 51.3953 53.3222K.XII
Macro-average

SD 11.8171 13.2191 12.5308 11.6290 12.4647 13.3831

Micro-average Mean 59.4071 61.2225 59.6438 61.0591 61.7822 61.7819

Mean 55.1730 57.5146 56.1947 56.4148 56.5961 56.2361K.XIII
Macro-average

SD 7.1543 6.6721 7.1261 7.3463 7.1014 7.3575

Micro-average Mean 54.3346 55.9656 55.8611 54.3366 54.0882 54.6483

Mean 53.6562 55.9327 54.1624 54.2543 54.2845 54.7748K.XIV
Macro-average

SD 12.2840 13.5056 12.1622 13.0555 12.1015 12.7492

Micro-average Mean 40.7730 42.8014 41.6927 41.5904 42.5221 41.5091

Mean 38.1588 40.4863 38.8830 39.0557 39.5094 38.7787K.XV
Macro-average

SD 7.6432 8.4349 6.3723 7.8048 8.0058 7.7549

results obtained without participant exclusion (shown in Table 6.9), no algorithm
consistently outperformed others in the conducted experiments.

6.4.2 Experiments with Own Pipeline

The results obtained from the experiments with own pipeline without exclusion of
participants are summarized in Table 6.11. The results obtained in the INPP_1 mode
by design most closely resemble the ones obtained for NB algorithm used in
KNIME Analytics Platform (see Table 6.9 for reference). It can be seen that
predicting a target at time t in the IN mode resulted in the consistently higher BA
values than in the other prediction modes. Moreover, the use of extended history
length, in the INPP_2 and INPP_5 modes, led to a reduction in the BA and SD
values. However, in experiments O.IV and O.VI in INPP_2 mode the opposite was
observed.

The development of the BA values over samples is visualized per participant for
experiments O.II and O.V in Figs. 6.3 and 6.4, respectively. It can be seen that in
experiment O.II the BA values obtained do not plateau at the end of data collection,
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Table 6.10 Mean BA (%) values across algorithms for experiments with KNIME Analytics
Platform, with exclusion of participants (80 participants included). For the description of the
experiment conditions see Table 6.8. For the description of the algorithms see Table 6.7. Highest
BA values and lowest SD values per experiment are marked in bold

Algorithm code

Experiment ID BN GBT NB MLP RF DT

Micro-average Mean 74.9609 75.8483 76.7619 74.2079 77.0553 79.4886
Mean 73.0988 74.0024 69.7437 71.5808 74.6756 77.3878K.X

Macro-average
SD 8.5059 7.8530 14.8930 8.2544 8.5229 8.2904

Micro-average Mean 63.1462 69.5709 68.8903 64.7700 63.2218 69.3985

Mean 59.8829 67.1376 67.3980 62.7543 60.4094 67.9828K.XI
Macro-average

SD 11.9158 13.2723 13.7045 12.9061 12.2413 15.8544

Micro-average Mean 54.7315 58.6290 60.4180 54.8650 57.4249 58.7011

Mean 52.1798 51.9673 57.3788 51.9892 54.3639 56.8104K.XII
Macro-average

SD 8.5507 14.8886 9.6720 8.6573 9.6733 10.4301

Micro-average Mean 59.4376 61.5114 59.5801 61.5428 61.8314 62.0851
Mean 56.3091 58.6620 57.0321 57.8265 57.9359 58.4518K.XIII

Macro-average
SD 4.4620 4.6283 4.7761 5.7458 4.9374 5.8948

Micro-average Mean 54.5834 56.3849 56.5943 54.4837 54.5397 55.2516

Mean 53.3285 55.4088 54.4301 53.0690 53.1556 54.6827K.XIV
Macro-average

SD 9.8673 11.2485 10.8339 10.2546 9.1068 11.2673

Micro-average Mean 40.7756 43.0951 40.8581 42.0030 41.8854 41.7457

Mean 38.3376 40.4473 38.7129 39.4824 39.7663 39.1795K.XV
Macro-average

SD 4.2560 4.7825 7.4424 4.8234 9.8752 4.8360

and that the personal behaviour model training would continue if the data was
collected further. On the other hand, in experiment O.V, for most of the participants,
the plateau is reached at ≈150 samples. It can be seen that in both experiments the
phase of active model training lasts at least for the first 50 samples. For this reason,
the results are visualized only for 64 participants for whom more than 50 samples
were classified. The two-fold higher SD in experiment O.II compared to the one
obtained in experiment O.V is also visible when comparing the two plots.

6.4.3 Model Interpretation and Analysis

A comparison between the models trained for participant pp065 over a period of
8 weeks is shown in Fig. 6.5 as an example of a type II comparison described
in Sect. 6.3.4.4. Participant pp065 was picked randomly among the participants
who logged the most of data after participant exclusion. It can be seen that when
comparing the model obtained in week eight with the models obtained in the
previous weeks, see Fig. 6.5, the distance between the compared models gradually
decreased for both prediction targets (healthy and unhealthy eating). This means
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Table 6.11 Mean BA (%) values across prediction modes for experiments with own pipeline,
without exclusion of participants (135 participants included). For the description of the experi-
ment conditions see Table 6.8. For the description of the prediction modes see Table 6.6. Highest
BA values and lowest SD values per experiment are marked in bold

Prediction mode code

Experiment ID IN INPP_1 INPP_2 INPP_5

Micro-average Mean 75.8968 74.5371 69.5364

Mean 69.8268 68.3896 62.6129O.I
Macro-average

SD

76.7012a

13.1627 12.2634 11.8576

Micro-average Mean 66.4217 63.2799 57.9837

Mean 61.4077 57.8896 53.5591O.II
Macro-average

SD

71.6037a

10.4503 11.1327 8.7541

Micro-average Mean 58.8039 55.5748 49.3046

Mean 52.7891 49.6556 43.6607O.III
Macro-average

SD

60.8411a

12.1900 11.0198 9.5810

Micro-average Mean 56.4608 58.1442 56.0929

Mean 53.3052 53.8914 51.5119O.IV
Macro-average

SD

N/Ab

6.2321 7.1387 6.2213
Micro-average Mean 55.1493 54.0989 53.4476

Mean 51.6733 51.3217 51.0044O.V
Macro-average

SD

N/Ab

7.1760 6.0173 4.7079
Micro-average Mean 41.4747 41.7302 39.5337

Mean 38.4120 38.1273 36.1687O.VI
Macro-average

SD

N/Ab

5.6170 6.2567 5.6645
aObtaining micro- and macro-averages in the IN mode is not possible
bObtaining results in the IN mode does not make sense

convergence of the model parameters over time. The higher the slope of the distance
curves, the faster the convergence. If over time the distance is no longer decreasing,
then no model alterations w.r.t a given prediction target are observed. The latter
can occur, for instance, when none of the samples belonging to a given target was
registered in the monitored period of time.

If the distance between the models increases, this means that a different
behaviour was exhibited by the participant in the monitored time period. This can
be observed comparing the models trained for participant pp065 in weeks 3 and 4
for healthy eating class and in weeks six to eight for unhealthy eating class, as
shown in Fig. 6.5. When such an event occurs, it might be of interest to analyse the
participant’s behaviour in this time period more closely to see whether the change in
behaviour is desired. For instance, if the participant started to eat unhealthy snacks
before going to bed, this might not be desired and an action might have to be taken
to prevent this from developing into a habit.

An example of a type III model comparison, as described in Sect. 6.3.4.4, is
shown in Fig. 6.6 for participants pp065 and pp161. Participant pp161 was picked
randomly among the participants who logged the most of data after participant
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Fig. 6.3 Development of BA values per participant across samples for experiment O.II in
INPP_1 prediction mode. Only samples for participants for whom more than 50 samples were
classified (64 out of 80 participants after exclusion). Chance level is shown as a grey horizontal
line
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Fig. 6.4 Development of BA values per participant across samples for experiment O.V in
INPP_1 prediction mode. Only samples for participants for whom more than 50 samples were
classified (64 out of 80 participants after exclusion). Chance level is shown as a grey horizontal
line
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Fig. 6.5 Convergence of models trained over time for participant pp065 in experiment O.II. In (a),
the model at week eight is compared with the model at week N . In (b), the model at week N is
compared with the model at week N − 1. Distance between the models describing healthy eating
is shown in blue and unhealthy eating is shown in red. Solid lines refer to Euclidean distance (left
axis) and dashed lines refer to cosine distance (right axis)

Fig. 6.6 Distances between
the models of
participants pp065 and pp161
in experiment O.II (a type III
comparison, as described
in Sect. 6.3.4.4). Model
describing healthy eating is
shown in blue and unhealthy
eating is shown in red. Solid
lines refer to Euclidean
distance (left axis) and
dashed lines refer to cosine
distance (right axis) Week
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exclusion. Participant pp161 logged data for 6 weeks only, thus the models of the
first 6 weeks for participant pp065 were used for comparison. It can be seen that
after week two, the models became more similar in describing behaviour leading to
healthy eating and less similar in describing behaviour leading to unhealthy eating.
This trend persisted over the remaining weeks. Moreover, it can be seen that overall,
these two participants had more in common in their behaviour leading to healthy
eating than in the behaviour leading to unhealthy eating (no significant difference in
cosine (p = 0.3968, α = 0.05) and Euclidean distances (p = 0.1372, α = 0.05)).
As anticipated, the models of the two participants are significantly less similar than
the models obtained from participant pp065 across the same 6-week period (com-
pare cosine distances in Figs. 6.5 and 6.6 for healthy eating (p = 0.0011, α = 0.05)
and for unhealthy eating (p = 1.6025 × 10−7, α = 0.05)).
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Fig. 6.7 Clusters of models obtained in experiment O.II based on cosine distance between the
models predicting: (a) healthy and (b) unhealthy eating. Models compared here were trained using
all the samples available for the participant. Only the models of 80 participants after exclusion were
analysed. Node size reflects degree. Node colour represents the cluster assignment. Edges represent
cosine distances between the models of a pair of participants. Only the distances below 0.1
included. Participants with degree of zero and disconnected groups of two participants only are
not shown

Using the same approach for comparing the models between participants, the
participants behaviour was clustered using Leiden algorithm [26] in Gephi [27]. The
resulting clusters are shown in Fig. 6.7. It can be seen that the healthy eating class
was characterized by one large strongly connected cluster, which means that the
participants in that cluster shared their healthy eating behaviour patterns. Minority
clusters for the healthy eating class contained 2–3 participants only. Notable is the
high degree (a number of connected edges) of participant pp186 w.r.t the healthy
eating class. This means, that the behaviour of this participant was similar to the
behaviours of other participants, and that participant pp186 well “represented” the
group’s healthy eating behaviour. For the unhealthy eating class however, no single
dominating cluster was found. The resulting clusters were less strongly connected
internally and were more distant from each other than for the healthy eating class.
This suggests that the unhealthy eating class was associated with distinct behaviour
patterns exhibited by groups of participants. Though, the behaviours were not
different enough to form clusters isolated from each other, which means that the
behaviours had shared traits.

An example of a type IV comparison between the combined model (“model
of an average user”) obtained from 80 participants after exclusion at the end
of the experiment and the models of participant pp065 obtained at different
weeks in experiment O.II is shown in Fig. 6.8. It can be seen that the dis-
tances between the models w.r.t unhealthy eating followed a flat trend across
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Fig. 6.8 Distances between the combined model obtained from 80 participants after exclusion
at the end of the experiment and the models of participant pp065 obtained at different weeks in
experiment O.II (a type IV comparison, as described in Sect. 6.3.4.4). Model describing healthy
eating is shown in blue and unhealthy eating is shown in red. Solid lines refer to Euclidean
distance (left axis) and dashed lines refer to cosine distance (right axis)

all the 8 weeks. On the other hand, w.r.t healthy eating, the distances between
the models were decreasing until week five, after which a similar flat trend
emerged. The distances between the models w.r.t healthy eating were consis-
tently and significantly higher than the distances w.r.t unhealthy eating across
all the 8 weeks (significant difference in cosine (p = 2.0791 × 10−5, α = 0.05)
and Euclidean distances (p = 1.1267 × 10−6, α = 0.05)). The observed dynamics
shows that the underlying behaviour of participant pp065 was consistently in line
with an “average” behaviour of the other participants. Moreover, the healthy eating
behaviour tended to converge to the behaviour of the other participants, unlike the
unhealthy behaviour.

The contributions of individual categorical feature values in deciding for a
predicted class, computed per class using Eq. (6.8), can be visualized per participant
as shown in Fig. 6.9 for participant pp060 in experiment O.V in INPP_1 mode.
Participant pp060 was picked randomly among the participants who logged the
most of data not taking participant exclusion into account. In this graph, the nodes
located closer to the corresponding class label (healthy or unhealthy eating) have
a higher contribution to predicting this class than the other class. For the two-class
case shown here, the dipole-like graph is obtained, and the nodes located on either
side of the dipole (a virtual “border” is formed by a normal at the centre of a line
connecting the nodes representing the two classes) have a higher contribution to the
corresponding class.

An example of applying correlation analysis for discovery of relatedness between
the categorical feature values given in class is shown in Fig. 6.10 for partici-
pant pp060 in experiment O.V in INPP_1 mode for unhealthy eating class. This
perspective demonstrates combinations of factors which are prominent when the
participant is going to eat unhealthy (at time t + 1). It can be seen that three groups
of correlated categorical feature values are present: (1) the large group in the centre
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Fig. 6.9 Contributions of feature categories in deciding for a prediction target in experiment O.V
in INPP_1 mode for participant pp060. Node size represents degree. Edge thickness represents
contribution weight (the thicker, the higher the contribution). Nodes with contribution below 0.1
are not shown for compactness

of the graph, which includes highly related emotional components; (2) a group at
the top of the graph, which includes negative emotions; and (3) a group of two
components on the right side of the graph, which specifically describes the situation
of being bored using an e-device.

6.5 Discussion

The results obtained with the used EMA dataset demonstrated the different levels
of complexity in the selected prediction targets. Firstly, predicting a class value
at time t + 1 was significantly more challenging than predicting the same value
at time t in all experiments both for KNIME Analytics Platform and the own
pipeline (specific significance test results are omitted for compactness). This means
that the consistency in samples describing the current activity was higher compared
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in experiment O.V in INPP_1 mode for participant pp060. Node size represents degree. Edge
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with r ≥ 0.5 are shown for compactness

to the consistency in samples describing the future activity. Therefore, determining
a trend that a person, for instance, tends to eat unhealthy in a company at work is
easier than determining a trend that, for instance, if the person eats unhealthy in a
company at work than the person will eat unhealthy after that.

However, the reasons for this observation are not clear. This might be due to the
increased user state space which is being modelled when predicting at time t +1 and
the consequential increase in the number of behaviour samples required to capture
the transitions in the state space. Alternatively, this can be caused by the increased
number of inconsistencies in samples which hinder prediction performance. Solving
both of the mentioned potential causes is possible by obtaining more samples of
the user behaviour; however, the costs and time necessary for the extensive data
collection should be considered.

Although the prediction of HUN target led to significantly lower BA values than
the prediction of HU target (e.g. when comparing micro-average BA values obtained
in experiments K.XI and K.XII (p = 1.1713 × 10−4, α = 0.05)), for the HUN tar-
get, the BA values were more significantly different from the 3-class chance level of
33.3% (e.g. for micro-average BA values obtained in experiment K.V 95% Confi-



6 On the Transparent Predictive Models for Ecological Momentary Assessment Data 117

dence Interval (CI) [41.2248, 42.4047]) than the BA values obtained when predict-
ing for the HU target with the chance level of 50% (for micro-average BA values
obtained in experiment K.IV 95% CI [54.2112, 55.5336]). Moreover, prediction for
the HUN target resulted in significantly lower variance of the obtained BA values
than the prediction done for the HU target (e.g. when comparing SD values obtained
in experiments K.XI and K.XII (p = 4.9963 × 10−4, α = 0.05)). Therefore, the
HUN prediction target can be useful in a situation when errors in predicting no
eating versus healthy/unhealthy eating are tolerable (e.g. when given an unhealthy
eating sample, erroneously predicting no eating is less critical than predicting
healthy eating).

Exclusion of participants based on their compliance to the data entry led to
marginal improvements in the obtained BA values and to a reduction of variance
across the participants. Nevertheless, the effect of participant exclusion was not
significant (specific significance test results are omitted for compactness).

The use of the INPP_2 and INPP_5 prediction modes in own pipeline did not lead
to a consistent performance improvement compared to the INPP_1 mode. It merely
resulted in the reduction of variance in the BA values across the participants. The
decrease in the mean BA values can be explained by the increased dimensionality
of the feature space without an increase in the number of training samples. Given
this observation, performing an additional feature selection step might help limiting
the number of used features.

The results obtained with KNIME Analytics Platform indicated that GBT algo-
rithm bears the highest potential for predicting a target at time t + 1 in the
incremental setting among the tested algorithms. This observation complements the
suggestions made previously w.r.t the use of boosted trees in a CV setting [14]. It is
unclear however whether the use of a set of weighted trees can provide an adequate
level of explanation of the model functioning, as the set should be examined as a
complete entity at once and the notion of weights can be misleading. Nevertheless,
GBT algorithm is to be considered in the future research.

6.5.1 Is Personalization Always Necessary?

The results obtained with the own pipeline, shown in Table 6.11, indicate that the
mean BA values obtained in the INPP_{. . . } prediction modes with the tested group
of participants are lower than the results obtained in the IN prediction mode. This
means that training personalized prediction models individually for each participant
did not lead to an improved classification performance on average. Therefore, the
use of a single “global” model of user behaviour would be more accurate on average.

However, as shown in Fig. 6.4, for some participants the use of the personalized
prediction models built based on their own behaviour samples demonstrated higher
BA values, towards the end of the data collection process, than the group mean
and than the ones obtained in the IN prediction mode (without a distinction
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across participants). This means that the use of the personalized models for these
participants would be more beneficial than the use of a “global” model.

Given these two observations, it is suggested to incrementally train both a
“global” and the personalized prediction models. Testing the “global” model would
allow setting a classification performance baseline. Then, the performance of a
personalized prediction model of a particular user can be compared with this
baseline. If the personalized model is shown to outperform the “global” model, then
the personalized model is used, otherwise, the “global” model is used.

This approach does not put an additional computational burden as only a mere
comparison between the model BA values is required. However, in case if, for
instance, a Multi-Layer Perceptron (MLP) classifier is used, an incremental training
of a “global” model given a potentially large dataset might lead to a considerable
increase of the training time. On the other hand, using the NB classifier used in
the own pipeline in this work, such an approach does not pose any additional
computational challenges.

6.5.2 Model Similarity

Comparing models over time can bring additional insights in the change in the
participant behaviour introduced by an intervention. For instance, comparing the
model obtained before the change in the participant’s diet and after the change can
demonstrate whether the intervention was effective. This approach falls under a
classic interrupted time series analysis [28] and can aid in performing a Just-In-
Time Adaptive Intervention (JITAI) [29] by analysing the effectiveness of the past
interventions for a given participant.

The clustering approach used in this work is deemed to be more accurate than
the approach used in [12], as it does not require setting a fixed number of clusters
in advance. Definition of a maximum allowed distance between the models is seen
as a more natural alternative when determining the assignment of participants to
behaviour-based groups. The clusters shown in Fig. 6.7 represent the groups of indi-
viduals with similar behaviour patterns. Identification of outliers (the participants
with uncommon behaviour patterns) can be performed using the same technique, by
providing a lower bound of minimum distance signifying an uncommon behaviour.

Finding participants with similar or very different behavioural patterns can be
useful in practice for selecting appropriate “buddies” for a participant, such that
these participants are put in a group, where the members can chat together about
their experiences and reflect on their (similar) behaviours together. The described
connectedness of the participants is deemed to be particularly important for a long-
term use of an EMA-based system. Note that the participants can be reassigned
to different groups over time, since the clustering is done in a data-driven way.
Therefore, a perspective presented in Fig. 6.7 can provide a fine-grained insight
regarding behaviour similarities between participants.
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6.5.3 Model Validation

The purpose of the original study [7], in which the data used in this work was
collected, was to predict moments when a participant was about to make an
unhealthy eating choice and to provide real-time feedback which could challenge
the participant’s choice towards a healthier eating alternative. Other predictive
models applied to the dataset previously were validated by human experts (psy-
chologists) during and after the study, as described in [12, 13, 21–23]. However, no
detailed/complete analysis of individual behaviours was performed in the scope of
this work. Therefore, model validity was not checked with human experts and this
is still to be done.

Specifically, it is important to verify whether the models and the types of
analysis described in this work can be used in an intervention context by providing
personalized data-driven feedback in a dedicated EMA study. This means, that
prediction quality and model transparency have to be assessed by both the experts
conducting the study and the participants of the study receiving the feedback. In this
assessment, the qualitative feedback and acceptance also play an important role on
par with the quantitative analysis (as presented in this work). Therefore, the next step
in validation of the models described in this work is to conduct a dedicated EMA
study in which the models are used in a real-life setting and to collect qualitative
and quantitative feedback from the experts and study participants.

6.5.4 EMA with Other Features

Additional momentary features collected in an EMA study can be easily incorpo-
rated in the described models due to the use of the Bayesian framework. If the
assumption of independence between the features holds (Eqs. (6.4) and (6.6) are
used for training and prediction, respectively), the prediction performance is not
expected to suffer from the curse of dimensionality. If the feature independence
assumption is dropped (Eqs. (6.5) and (6.7) are used for training and prediction
respectively), the number of possible feature pairs grows exponentially.

For training, this is not a problem, since only the observed pairs are consid-
ered/stored. During testing, the issue can be mitigated by the adoption of heuristics,
such as, for instance, inclusion of the most frequent N pairs in the calculation
of Eq. (6.7). The most frequent pairs can be retrieved from the counts computed
using Eq. (6.5) when sorted by value. This way, the common line of the Bayesian
framework, in which the infrequent feature values will not have a strong influence
on the predictions, is maintained.

For the non-momentary features, meaning the ones which are not expected to
alter from one sample to another or change only slightly (for example, the person’s
age), a different analysis will be required. The impact of the non-momentary
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features on the results cannot be observed/evaluated using the models described in
this work. Therefore, such features are not expected to improve prediction quality.

However, the non-momentary, user-specific features (such as age) can be used
when comparing the models of different users. For instance, during the analysis it
can turn out that the users whose models are similar, also belong to the same age
range. Therefore, the non-momentary features can suggest new insights about the
phenomenon analysed in the EMA study.

6.5.5 Personalization of Class Labels

In the EMA study, in which the data used in this work was collected, all the
food items were labelled the same for all the participants [7]. Individual dietary
restrictions were not considered during the labelling process. One could argue that
pasta is not “healthy” given that it is rich of carbohydrates (which in itself is a
valid concern, especially if a lot of pasta is consumed regularly), but pasta is a
healthier choice than chips, fries, and pizza, for example. Thus, pasta was labelled
as a “healthy” choice.

Healthy food for one individual may be unhealthy for another, given their
condition (such as allergy). From the data perspective, healthy/unhealthy labelling
of food items for individual persons is straightforward. For instance, if someone is
allergic to pasta, then pasta is marked as an unhealthy choice for this individual.
The model training/evaluation process is not changed, and, in fact, the individual
will obtain more suitable feedback, considering own allergy.

However, in practice, it is not always possible to reliably obtain the information
about a person’s allergies in advance. For example, when the allergy manifests itself
over time and was not known to the person before. The same applies to diseases
emerging during the data collection process.

Nevertheless, it is indeed important to ask each participant about their allergies,
diseases, religious and dietary restrictions before collecting data. This way a more
reliable personalisation of the feedback can be provided. Once the onset state of the
user has been taken into account, it is also important to track changes in the user’s
state (for instance, a new disease) during the data collection in order to properly
label the healthy/unhealthy choices after each change. This is to be done in the
future EMA studies.

6.5.6 Method Limitations

One of the key limitations of the method described in Sect. 6.3.2.1 is its limited
adaptability to behavioural changes occurring over time. This is particularly promi-
nent when an established pattern is challenged by a participant over time, as it can
be seen in Fig. 6.3 for the lines experiencing abrupt value shifts. As the model’s
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prediction is based on the whole corpus of data available for a particular participant,
if a behaviour change occurs, for instance, only on the last day of a week-long
monitoring period, the model will not be able to distinguish the recent behaviour
change from noise. Only when the new behaviour is observed in a majority of the
collected data, the behaviour will be established as an effective participant-specific
pattern.

Observing behaviour changes is possible in multiple ways. For example, by
performing a type II model comparison (see Sect. 6.3.4.4 for explanation) or by
inspecting dynamic behaviour networks (not shown in this work). However, the
observed changes are not immediately actionable, and thus the comparison does not
directly aid in implementing interventions aimed at behavioural change. To make the
short-term changes recognized when applying a model in the intervention context,
it is suggested to train the same models, but using different time frames, and then
aggregate the predictions made by each of the models. For example, in addition
to the model of “overall” behaviour collected for the whole duration of the EMA
study, models can be trained using the data collected for the last N days or weeks to
provide a desired level of insight granularity. The latter approach is not part of this
work and is left for future investigation.

Another deficiency of the method, related to the mentioned limited adapt-
ability, is the unstable prediction performance when two behaviour patterns are
(almost) equally probable. This means that either of such behaviours can be taken to
predict a class value, which results in class value abruptly shifting from one value to
another, especially in early stages of training when little data is available (as can be
seen in Figs. 6.3 and 6.4). This shifting can be reduced, for instance, by applying a
Moving Average (MA) filter of length k to the class values output by the predictive
model. However, no comprehensive solution of this problem is deemed possible.

6.6 Conclusion

The use of the EMA data allows modelling human behaviour in a personalized way.
In this work, it was demonstrated that the use of the transparent predictive models for
EMA data allows a comprehensive human behaviour analysis. Namely, the analysis
was performed at multiple levels by assessing the:

• prediction performance obtained for a given participant compared with a perfor-
mance of the group;

• model convergence across time;
• development of the behaviour described by a model of one participant compared

with the one of another participant;
• clusters of participants with the similar behaviour patterns;
• contributions of individual behaviour components in deciding for a prediction

target; and
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• correlations between the behaviour components linked to a prediction target of
interest.

Moreover, analysis of the models can be performed in a privacy-preserving way, as
none of the raw data is shared and the model does not need to contain identifying
information. Therefore, in this case transparency does not hinder security.

Although the EMA dataset used in this work is a result of data collection for
a period of 8 weeks, the amount of data collected for each participant remains
small. Thus, this poses challenges for a cold-start, incremental learning paradigm
employed in this work. Therefore, prediction of the human behaviour using the
EMA data remains a challenging task. The use of personalization does not always
benefit the prediction performance. Moreover, the increased length of history of
samples allows decreasing the prediction variability, but it does not guarantee an
increased accuracy.

Mitigation of these challenges is possible when the data is collected for a longer
period of time or when the data sampling rate is increased. The latter is achievable
when using passive monitoring with sensors (for example, Inertial Measurement
Unit (IMU) or Global Positioning System (GPS)). Using sensors for data collection
and passive monitoring will be considered in the future work.
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Chapter 7
Mitigating the Class Overlap Problem in
Discriminative Localization: COVID-19
and Pneumonia Case Study

Edward Verenich, M. G. Sarwar Murshed, Nazar Khan, Alvaro Velasquez,
and Faraz Hussain

7.1 Introduction

The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test quickly
became the gold standard for COVID-19 diagnoses [1]. However, the test suffers
from two key problems. First, the test can be prohibitively long to administer in
areas of dense outbreaks. As an example, the RT-PCR procedure proposed in [38]
determines the absence of COVID-19 in approximately 3 h and 50min. Second, it is
particularly prone to false negatives [20]. Furthermore, patients often must be tested
several times in order to yield a confident assessment [31]. As a result, clinicians
have largely relied on chest X-rays and CT scans for early identification of potential
COVID-19 cases based on the manifestations of salient features correlated with
positive COVID-19 diagnoses [3, 17, 39].

Naturally, the foregoing has catalyzed a deluge of research in machine learning
applications to the COVID-19 pandemic. A review of machine learning applications
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to resolving COVID-19 problems ranging from the molecular to the societal has
been done by Bullock et al. [4]. In particular, there has been significant progress
made in the classification and localization of COVID-19 Regions of Interest (RoI)
from Computed Tomography (CT) scans, Lung UltraSonography (LUS) imagery,
and chest X-rays. However, the lack of COVID-19 data remains a significant chal-
lenge to the development of confident predictive assessments from deep learning
systems. It has been noted [42] that manifestations such as bilateral involvement,
and their spatial regions, can be common in various types of pulmonary conditions
i.e. MERS, COVID-19, and SARS, and it is therefore reasonable to train a classifier
or localization model on all available types of data. However, this raises the problem
of distinguishing COVID-19 from other pneumonia within a single model trained to
detect both diseases, particularly given that there are much fewer COVID-19 labels
to learn from. These are generally known as the class overlap and class imbalance
problems [2, 25] which stem from the similarity in learned features that obfuscate
the decision boundary.

Though labeled bounding boxes can be used to train localization classifiers in a
supervised manner [21], the scarcity of such data for positive COVID-19 imagery
precludes such an approach. Indeed, to the best of the authors’ knowledge, existing
public datasets do not include such localized labels [8, 9, 35], though some methods
in the literature have obtained such labels for other pulmonary conditions with the
help of radiologists [44]. At any rate, the procurement of such labels can be labor-
intensive, and it is desirable to autonomously localize RoIs without them. To that
end, we exploit the discriminative localization proposed by Zhou et al. [43] which
does not require localized labels, but rather exploits the Class Activation Maps
(CAMs) computed at the final convolutional layer for each class in a CNN model.
Given a class of interest, such as COVID-19, the salient regions in the COVID-19
CAMs can then be upsampled to the size of the original image in order to localize
the features most conducive to the classification of the chosen class.

As one of the first tests to be performed for patients suspected to have SARS,
MERS, or COVID-19, chest radiographs (X-rays) can identify various pulmonary
abnormalities, but as reported in [42], spatial locations of these manifestations are
also important, and can help the subject matter expert in distinguishing between
similar infections. However, spatial annotations of chest radiographs rarely persisted
in patient data, often because further, more sensitive tests are administered to
confirm infections. This results in potentially useful chest radiograph data in the
form of image-level labels that can be used to train convolutional neural networks
that classify chest radiographs as exhibiting certain infections. More specifically,
in the case of disease classification, an image-level label is a chest radiograph of a
patient that was confirmed to have the disease at the time the X-ray was taken, but
spatial locations of associated abnormalities are not available for various reasons.
Figure 7.1 further explains the differences between image and object-level labels.

An example of a large collection of chest radiograph image-level labels is the
National Institute of Health dataset [37] comprised over 100,000 frontal view chest
X-rays. The dataset is accompanied with text labels of disease findings that were
mined from patient records for each image. We can use this data to train classifiers



7 Mitigating the Class Overlap Problem in Discriminative Localization. . . 127

Fig. 7.1 Image (a) represents a chest radiograph (X-ray) representing an image-level label. A
medical finding accompanies this image in the form of a text label stating that COVID-19 was
identified in this X-ray, however spatial location of associated manifestations is not specified.
Image (b) constitutes an object-level label where a finding of COVID-19 is also accompanied
with spatial localization of associated manifestations in the form of a red bounding box. A model
trained to identify spatial locations of disease associated manifestations can significantly improve
explainability of its predictions. (a) Image-level. (b) Object-level

of diseases, but the lack of spatial locations of manifestations associated with these
diseases makes it challenging to interpret the output of such classifiers. In order to
increase the confidence of such predictions in the absence of spatial localizations in
our training data, we would like to employ weakly supervised localization methods
that do not require spatial localizations, or object-level labels, for training. The main
idea of using weakly supervised localization for increasing confidence in predictions
produced by image classifiers is to identify spatial locations within the image which
are used to provide a given prediction.

This leads us to the main problem associated with real world data, which is noise,
class overlap, and class imbalance. The main challenge to interpreting deep learning
predictions is the aleatoric uncertainty that arises from neuron co-adaptation when
the model is trained on labels with highly overlapped classes. This significantly
degrades the quality of weakly supervised localization, when using image-level
labels, thus making it difficult to assess whether the model is concentrating its
attention to relevant regions of the image specific to some target class. We show
in this paper that performing weakly supervised localization using state-of-the-
art approaches suffers from spurious localization in the case of gradient based
approaches, and highly broad and uncertain localization in the case of standard class
activation maps. This uncertainty makes it difficult to explain the predictions that the
model makes to the subject matter expert.

The main contribution of this work is a novel method that mitigates the neuron
co-adaptation effect that arises in multi-class classifiers trained on image-level
data with significant class overlap. We show that our method successfully reduces
aleatoric uncertainty when interpreting output of multi-class models as a means of
performing weakly supervised localization of areas of interest. Our technique works
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by exploiting current fundamental architectures of convolutional neural networks,
hence making the approach applicable to many existing applications.

7.2 Related Work

Given the visual salient cues and format of CT, LUS, and X-ray imagery, there have
been various deep learning classifiers leveraging Convolutional Neural Networks
(CNNs) applied to the medical diagnosis of pneumonia [28] and COVID-19 [23,
40, 41], among other diseases. In the case of COVID-19 detection, though these
classifiers can achieve very high precision rates, such classifiers are often moot when
it comes to quantifying decision uncertainty. In [13], an approach is proposed to
address this based on Bayesian CNNs to estimate the degree of decision uncertainty
in existing COVID-19 deep learning classifiers.

Much of the proposed work on COVID-19 classification using CNNs doubles
as COVID-19 RoI localization. This is due to the popularity of segmentation-based
approaches to classification through the use of UNets. In [16], a UNet architecture
is trained using approximately 22000 pneumonia labels in order to localize regions
of interest associated with pneumonia. Similarly, [29] leverages a pre-trained UNet
in order to obtain the masks for lung region segmentation. This was concatenated
to the original CT volume and used as input to a 3D CNN used for classification.
Similar approaches using UNet segmentation have also been explored in [6, 7, 14,
15, 19, 26].

UNet has also been extended with attention gates to increase the accuracy
of COVID detection. In [30], spatial transformers networks are used to localize
COVID-19 RoIs in LUS images. An attention mechanism within CNN architectures
was also proposed in [5] to classify RoIs returned by a 3D CNN trained on CT
volumes. These CT scans were pre-processed to extract the relevant pulmonary
RoIs. In [7], a nested UNet architecture is proposed to classify and localize COVID-
19. This architecture, known as UNet++ [44], was trained on a dataset of CT scans
with RoIs labeled by radiologists in order to yield accurate localizations. A similar
approach using a pre-trained Inception network is proposed in [36].

The main difficulty in applying these state-of-the-art approaches to novel
situations, such as the COVID-19 pandemic, is that training labels or images
with annotated spatial regions of interest, are often not available and are often
prohibitively expensive to obtain in time. Utilizing only image-level labels in
the chest radiograph domain, which typically become available sooner due to
the prevalence of the chest X-ray exam [42] to screen any suspected pulmonary
infection, still allows image classification to be effectively trained. However, a
model prediction, even if accompanied with a probability of its prediction, does not
communicate relevant information to the subject matter expert in terms of where in
the image did the model base its prediction on. Weakly supervised localization is a
way to mitigate the problem of missing object-level labels by producing prediction
explanations in the form of RoI in models that were only trained on image-level
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labels. However, as we show in this paper, even state-of-the-art weakly supervised
methods can suffer from spurious correlations within training data, potentially
explaining their prediction with irrelevant data. In this paper we explore two main
strategies for weakly supervised localization, gradient based pixel attributions first
proposed in [32] and Class Activation Mappings (CAM) proposed in [43], with the
latter approach being the basis of our method.

CAM-based approaches have already been explored to aid in the localization of
COVID-19 [33]. Our prior work [34] introduced Amplified Directed Divergence
(ADD), which used an ensemble of models to localize COVID-19 RoIs by training
two binary classifiers for detecting viral pneumonia and COVID-19, respectively. A
directed divergence kernel is then employed to compute the difference in CAMs
between the two classes. This work describes a generalization of ADD, which
is significant in two key ways. First, we leverage CAM-based localization of
overlapping and unbalanced classes within a single model. This is beneficial because
COVID-19 data is limited and since viral pneumonia shares some of the underlying
features associated with a COVID-19 diagnosis, it makes sense to train a single
classifier on both types of data. This also makes our approach easily implementable
within most existing COVID-19 classifiers. Second, our approach enables weakly
supervised localization in models that were trained on labels where any number of
overlapped classes can be present. We show that our new approach performs better
weakly supervised localization than gradient based methods and standard class
activation based approaches by using a publicly available image classification model
pre-trained on ImageNet labels, all without fine-tuning nor altering its architecture.

7.3 Discriminative Localization

In this section we describe discriminative localization approaches, also referred to
as weakly supervised object localization, because the convolutional neural networks
utilized in these approaches are typically trained for image classification tasks on
image-level labels only, with no additional spatial information such as object-level
bounding boxes. As previously stated, we emphasize these approaches because the
object-level data necessary for state-of-the-art object detection models is often not
available, while ground truth for image-level data can be collected indirectly.

In earlier work [34], we described a scenario when image-level labels of
COVID-19 X-ray samples can be acquired, without the costly labeling process
by radiologists. So, X-ray samples of patients confirmed to have COVID-19
through RT-PCR testing are collected. In that scenario, it is known that a given
sample (image-level label) contains features related to COVID-19, but there is no
information on the spatial regions of those features (object-level labels).

In this section, we first describe two current approaches to discriminative
localization, viz. Class Activation Maps and Saliency Maps, with the former
being the basis for our approach to dealing with discriminative localization in the
class overlap setting. Next, we describe our approach called Amplified Directed
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Divergence (ADD) that works with ensembles of models to deal with class overlap
and class imbalance [34]. We then introduce Scaled Directed Divergence (SDD) that
generalizes ADD to multi-class models.

In order to intuitively describe the presented methods, some examples in this
work use natural imagery from the ImageNet dataset [10]. This dataset consists
of over 14 million images that map to 1000 classes, such as cat, tree, and sports
car among others. The first state-of-the-art result in image classification using
deep neural networks was achieved using a model called AlexNet [18], which was
trained using this dataset. It has since become a standard dataset for training image
classifiers in the natural imagery domain, with many publicly available models fully
pre-trained on the entire dataset. In order to illustrate class overlap in the natural
image domain, we utilize the following three ImageNet classes as defined in the
ImageNet 1000 class index:

• 479: “car wheel”
• 751: “racer, race car, racing car”
• 817: “sports car”

The “car wheel” class represents our target class that has significant features overlap
with the other two classes (751: race car and 817: sports car). The number preceding
the name of a class is its class index within ImageNet. When using publicly available
images of passenger cars, to perform image classification with models pre-trained on
ImageNet, both classes 751 and 817 are frequently returned and are typically found
in the top-3 class results together, meaning these classes are very similar. We include
both classes in our experiments to increase the level of overlap with our target class
(car wheel: 479), and may refer to classes 751 and 817 as car interchangeably.
Furthermore, by utilizing these classes we simplify reproducibility of our results,
as most widely used neural network training libraries provide implementations of
many popular convolutional neural network architectures pre-trained on ImageNet.

7.3.1 Class Activation Maps

At the heart of our proposed method is the use of class activation mappings proposed
by Zhou et al [43]. The key to performing discriminative localization with this
approach is for a given convolutional network architecture to have a global average
pooling (GAP) layer that outputs the spatial average of each feature map at each
unit of the last convolutional layer. These spatial averages are then used as inputs to
a fully connected layer to perform classification. By projecting weights associated
with a given predicted class from the final connected layer to convolutional feature
maps, class contributing regions of an image are identified. We believe that the use
of global average pooling instead of global max pooling, as in [24], is key to avoid
focusing on spurious spatial regions of an image with respect to the predicted class.

Formally, for a given input image, let fk(x, y) be the activation of filter k at the
last convolutional layer, where (x, y) is the spatial location. Then, for each k, the
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global average pooling (GAP) layer outputs Fk , defined as
∑

x,y fk(x, y), which are
then used as input features into the final connected layer, whose output is

∑
k wc

kFk ,
where wc

k is the weight for class c and filter k. Then, the class activation map Mc is
given by

Mc(x, y) =
∑

k

wc
kfk(x, y) (7.1)

where, for each class c, the number of weights w equals to the number of filters k.
Figure 7.2 shows a visual representation of projecting weights from the final fully
connected layer to compute the class activation map.

7.3.2 Saliency Maps with Backpropagation

Simonyan et al. [32] proposed a method for querying a convolutional network
classifier about the spatial support of a given class for a given image. Specifically,
given an image I0 and a class c, and a model with a given class score function Sc(I ),
they rank the pixels of I0 based on their contribution to the class score Sc(I0). This
is done by computing the derivative vector w of a scoring function Sc with respect
to image I at an image location I0. The saliency map M ∈ Rm×n, where m and n

corresponds to rows and columns of the input image, is then obtained by rearranging
the elements of w. For multi-channel images, a saliency map is computed for each
channel. To compute a single map for all channels, a maximum magnitude of w is
taken across all color channels. The intuition here is that the magnitude of gradients
w indicates which pixels can be changed the least to affect the class score the most,
thereby corresponding to a localized target object within the image as shown in
Fig. 7.3.

Fig. 7.2 Class activation map (CAM) for a given class c is computed by performing a weighted
sum of class weights wc

k with feature activations of units k residing in the last convolutional
layer of a Convolutional Neural Network. For example, in a ResNet 152 architecture, the last
convolutional layer contains 2048 units with a mapping resolution of 7 × 7. Then each unit in the
final fully connected layer takes as input 2048 inputs, where weights wc

k of the final layer indicate
the importance of Global Average Pooling output Fk to class c. Hence, we multiply each 7 × 7
feature map by a scalar wc

k and sum them to produce a class activation map
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Fig. 7.3 Saliency maps computed on a sample image using a ResNet152 model pre-trained on
ImageNet. The leftmost image represents our input image, which was classified by the network
as class 817: “sports car, sport car,” as per ImageNet 1000 class ID list. The second image from
the left represents gradients across three RGB channels. The hhird image shows a saliency map
computed by taking maximum gradients across all channels. The fourth image overlays the max
gradient saliency map on the original image, showing the spatial support for features that localize
the target object within the input image

The computation of an image-specific saliency map for a given class only
requires a single backpropagation pass, hence it is efficient. This is different from
another method used for visualizing learned representations of classes, where an
input image with pixel intensities initialized to zero is optimized using backprop-
agation while holding filter weights of the model constant to what was learned
during training [11]. The result is a numerically computed image that represents
a visual class representation learned from an entire class of images, hence it is
not image-specific. There is however a potential utility to such representations
in the image-specific setting. Geirhos et al. [12] discuss apparent bias of trained
convolutional neural networks toward texture versus shape, hence it may be possible
to generate images representing textures that are learned by image classifiers and
observing their presence in specific image samples.

Although pixel-level backpropagation methods have shown discriminative local-
ization ability, there are drawbacks that can be shown empirically. Specifically,
the method is prone to focusing attention on spurious features of an image, even
when the network returns a correct classification. In fact, a CAM-based method that
utilizes Global Average Pooling [43] has been shown to outperform both saliency
maps [32] and Global Maximum Pooling [24] methods in weakly supervised
localization. As an example of errors due to the focus on spurious features, Fig. 7.4
shows saliency maps computed on another sample input image. Although the model
classified the image as a car (class 817), the saliency map is focused on a spurious
feature, apparently a road or parking sign. The same could be seen in the radiology
domain, where saliency maps focus on X-ray markings.

The CAM-based approach with global average pooling avoids this problem due
to all filters contributing to the attention region in a weighted manner, instead of
taking only maximum values as in both saliency maps and global max pooling
approaches. Figure 7.5 shows class activation maps computed for our three classes
of interest (i.e. 479, 817, 751), where spurious features that were focused on by
saliency maps did not appear in the CAMs. However, significant overlap between
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Fig. 7.4 Saliency maps focused on spurious features. The left image represents our input image,
classified correctly as class 817 (car). The second image from left represents gradients across three
RGB channels. The third image from the left shows a saliency map computed by taking maximum
gradients across all channels. The rightmost image overlays the max gradient saliency map on the
original image, showing the spatial support for features that localize the target object within the
input image

Fig. 7.5 The same input image as in Fig. 7.4 and Class Activation Maps are computed for three
ImageNet classes of interest, carwheel, race car, and sports car. This method is not prone to result in
attention on spurious features. However, as can be seen from the three leftmost images, significant
overlap exists between the classes for which CAMs were computed

the CAMs exists, specifically between class 479 (car wheel) and both 817 (sports
car) and 751 (race car).

7.3.3 Amplified Directed Divergence with Ensembles

Figure 7.5 illustrates the difficulty of performing weakly supervised localization
when class overlap is present within our data. The class activation maps generated
for the first image, class 479 (car wheel), and second image, class 817 (sports car)
are similar and significantly overlap each other in terms of their spatial attributes.
We note that the convolutional neural network used to generate these class activation
maps was fully trained on the ImageNet database for image-level classification.
Without localized object-level labels, there is a higher level of uncertainty regarding
where the model focused its attention to identify its target class. This is referred
to as aleatoric predictive uncertainty [13] and is often increased by the presence
of overlapping classes within data. The difficulty with aleatoric uncertainty is that it
cannot be easily reduced with more training data, unlike epistemic uncertainty which
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Fig. 7.6 Example of Amplified Directed Divergence kernel applied to class activation maps
computed from two expert models. The first image shows the class activation map computed on
a car wheel classification from an expert model trained to classify car wheels. The second image
shows a class activation map on a car classification from an expert model for cars. The third image
shows a class activation map that better localizes the target class (car wheel) computed using the
kernel method

is associated with model parameters and thus can be reduced with more training
samples.

To mitigate aleatoric uncertainty, we had [34] introduced Amplified Directed
Divergence, a kernel function that accepts two class activation maps from expert
models, each trained on specific overlapped classes, and extracts activations that are
relevant to one of them, i.e. target class (car wheel) as seen in Fig. 7.6. The result
is a new class activation map that better localizes objects of interest in the presence
of class overlap. Formally, let x ∈ Rmxn be the first class activation map calculated
using the output of the first expert model M , and let x′ ∈ Rmxn be a second class
activation map calculated using the output of a second expert model M ′. Then, the
new class activation map showing directed divergence of overlapped classes is given
by

ADD(x, x′) = eα(x/max(x)−x′/max(x′)) (7.2)

where parameter α controls the amplification of the directed divergence of the two
class activation maps. Increasing the value of α results in more focused regions,
as shown in Fig. 7.7. We also note that normalization of class activation maps is
necessary because they are calculated from two separate models that are trained
independently, which can result in different extremes in magnitudes of activations
when fed the same image. Additionally, any normalization method of the class
activation map tensors can be employed, so long as it is consistent with both tensors.
Finally, since Amplified Directed Divergence is a directed method, ADD(a, b) �=
ADD(b, a).

Figure 7.8 shows a high-level architecture of the Amplified Directed Divergence
method that utilizes expert network ensembles to mitigate the class overlap problem.
The use of two networks has advantages and disadvantages as compared to utilizing
a single multi-class model, as we will explore next. One advantage is that this
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Fig. 7.7 Role of the amplification parameter in Eq. 7.2. As the amplification parameter α is
increased, the COVID-19 localization in the heat map output by the kernel function becomes more
concentrated. More specifically, by increasing amplification of directed differences in activation
maps, small differences contribute less to the CAM computed using Eq. 7.2, making spatial
localization heatmaps concentrate on the highest activations associated with the target class.
Decreasing α results in more spread out heatmaps accounting for smaller differences in class
activation maps. This parameter can also be used to adjust the dimensions of a computed bounding
box when using class activation maps for weak labeling, i.e. computing locations of bounding
boxes based on class activation maps. (a) α = 15. (b) α = 50

architecture allows us to use models that were trained for different purposes, i.e.
classification using image-level data and object localization using more expensive
object-level data, as long as they both include Global Average Pooling of final
convolutions with the same mapping resolution in the down-sampling stage of their
architecture.

Consider for example a network trained to localize or segment specific lung
regions on expertly annotated X-ray images of Pneumonia cases. These types of
images could be more readily available due to prevalence and length of time; such
cases have been treated and studied. On the other hand, when a novel condition
emerges, such as the COVID-19 pandemic, expertly annotated X-rays may not
be available for training a model with object-level labels. We can however train
COVID-19 classifiers [25] using image-level labels, since labels for such cases
can often be obtained indirectly through collection of X-ray imagery of confirmed
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Fig. 7.8 High-level view of the expert network ensemble architecture as described in [34]. Given
a target class c1 and a second possibly overlapping class c2, two binary expert models N1 and N2
are used to calculate class activation maps CAM1 and CAM2 for their respective classes. Class
activation maps are then passed to the Amplified Directed Divergence kernel to compute the final
class activation map that more narrowly localizes a spatial region associated with CAM1

COVID-19 patients where their diagnoses were confirmed through other methods,
e.g. RT-PCR test [1]. The two models can now be used with the Amplified
Directed Divergence architecture to extract localized regions that are more rele-
vant to COVID-19, all without training the COVID-19 model for localization or
segmentation.

A potential weakness of this approach is that it is difficult to utilize it for instances
when multiple possible classes exhibit significant features overlap with our target
class. Consider the example in Fig. 7.5, where our target class is car wheel (479),
while classes 751 and 817 also produce class activation maps that are both similar
to our target class. This behavior is an artifact of neuron co-adaptation, as samples
of each class can influence the discriminative function of all other classes through
shared architecture. In cases where we need to perform discriminative localization
with multiple overlapping classes, the method needs to be adapted to the multi-class
setting.

7.3.4 Scaled Directed Divergence (SDD)

To address the multiple overlapped classes problem, in the multi-class model setting,
described above (also see Fig. 7.5), along with the problem of focusing on spurious
features shown in Fig. 7.4, we present our generalization of Amplified Directed
Divergence to the multi-class model setting. Formally, let S = {x0, . . . , xi} be the
set of Class Activation Maps corresponding to i + 1 classes of a multi-class model.
Let T (t) = S \ {xt } be the set of Class Activation Maps where the target class CAM
xt is removed from set S. Then, a new CAM for a given target class is defined as
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Fig. 7.9 Discriminative localization through class activation maps in class overlapped setting
using a multi-class model pre-trained on the full 1000 class ImageNet dataset. The first image
(from the left) shows the class activation map computed for the car wheel (479) class. The second
and third images show class activation maps for classes 817 (sport car) and 751 (race car). The
fourth image shows the class activation map computing using Scaled Directed Divergence (479K)
for the car wheel class, showing much better localization without the use of object-level labels

CAMSDD = eα(xt |S|−∑
k∈T (t) xk) (7.3)

where parameter α amplifies or decreases divergence values to be exponentiated,
while |S| scales activations of the original target class activation map by the
cardinality of S. We note that the set of class activation maps S does not have to be
exhaustive of all the classes learned by the model, but must contain our target class
and classes with possible overlap. For specialized models (e.g. COVID-19, Viral
Pneumonia, No Finding), it is simpler to include all classes. Figure 7.9 shows our
method performing discriminative localization on the car wheel (479) class using a
ResNet152 model pre-trained on the full 1000 class ImageNet dataset. We note that
the model was not fine-tuned by us in any way, the much improved localization in
the image (479K) is the result of applying our method to the three class activation
maps. In this example, set S consisted of class activation maps for classes (479, 751,
817) and xt was the class activation map for class 479.

The effect of neuron co-adaptation that arises from training samples with
overlapped features is significantly reduced, while allowing similarities in training
data to be utilized for mitigating class data imbalance and lack of class data in
general.

7.4 Experiments

In this section, we describe our experiments in applying our approach for weakly
supervised localization in two domains. First, we experiment using publicly avail-
able image classifiers that were pre-trained on the full ImageNet dataset. The
purpose of this set of experiments is to empirically validate our approach using
visually intuitive data. Second, we apply our approach to our own multi-class
(COVID-19, Viral Pneumonia, No Finding) models that were trained on the Kaggle
COVID-19 dataset. Due to the novelty of COVID-19, to the best of our knowledge
and at the time of this work, there were no publicly available annotations of X-rays
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representing COVID-19 related (RoI) regions of interest. Therefore, our empirical
validation of our approach using natural imagery serves as the next best measure of
effectiveness. As our base architecture, we utilize ResNet152 convolutional neural
network pre-trained on the full ImageNet dataset. For experiments using natural
imagery, no additional training or architecture modifications were performed. For
the X-ray domain, we used the pre-trained ResNet152 model as a feature extractor
and fine-tuned it using the Kaggle COVID-19 dataset. We also note, that any
convolutional neural network architecture can be adapted to this approach by adding
a Global Average Pooling layer immediately after the last convolutional layer of the
network.

7.4.1 Method

Prior research has shown [43] that increasing the mapping resolution of the final
convolutional layer increased the discriminative localization performance of a
network. For pre-trained models, this is typically done by removing one or more
convolutional layers at the end of the network and adding a new layer with
appropriate kernel size, stride, and the number of units to increase the final mapping
resolution. For this work, we forgo these modifications and apply SDD to existing
implementations of ResNet152, as our goal is to verify the effectiveness of our
method regardless of final mapping resolution. In our case, the final mapping
resolution of the last convolutional layer is 7 × 7. This means that the dimensions
of computed class activation maps will also be 7 × 7, and given the shape of our
input images (224 × 224), the resulting up-scaling factor required to overlay class
activation maps over original images is 32. To do this, we utilize a computer vision
technique called bilinear upsampling, where each pixel from the computed CAM
is moved in a given direction using some scaling constant, and pixels with missing
intensity values resulting from this movement are computed by taking the weighted
average of four diagonal pixels surrounding the pixel being computed.

In order to compute class activation maps, filter activations must be captured
from the last convolutional layer during inference, i.e. passing an image through the
network in order to classify it. Methods for capturing filter activations depend on the
tools used to implement the network, which in our case is the PyTorch library. The
specific ResNet152 layers that were used in our computations of class activation
maps were the following:

• model.layer4[3].relu is the last convolutional layer before the Global Average
Pooling layer. Note that layer4 refers to the fourth convolutional stage of ResNet
architectures. We also extract activation values after the ReLU layers to remove
any negative noise.

• model.fc.weights is the location of class weights. Note that before projecting
weights back to activations, class specific weights must be specified.
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As a model is loaded, a hook is attached to the last convolutional layer before
the network is used for inference. Once an image is fed to the network as input,
activations of that layer are saved for that image and class specific weights from the
last layer are then used to compute class activation maps for each class of interest.
These class activation maps are then passed to the Scaled Directed Divergence
kernel function to compute the new class activation map. All of the computed
class activation maps are upscaled to the size of the original image using bilinear
upsampling and are overlaid over the original image.

7.4.2 COVID-19 and Pneumonia Data

Our multi-class X-ray classifier was trained using publicly available COVID-19
radiology data [27]. As mentioned earlier, only image-level labels were available
for this data, meaning no localization metadata of regions of interest are present.
The dataset was randomly split into 60/20/20 train, validate, test partitions as shown
in Table 7.1. Of the three classes within this dataset, COVID-19 samples contain
roughly six times fewer samples than viral pneumonia or samples with no findings,
i.e. Normal. During network fine-tuning and inference stages, samples are resized
to 224 × 224 pixels and are normalized using per channel mean [0.485, 0.456,
0.406], and standard deviation [0.229, 0.224, 0.225] computed on the ImageNet
dataset. This was done because our custom radiology classifier uses an ImageNet
pre-trained ResNet152 as a feature extractor and backbone that was fine-tuned to
the new dataset.

7.4.3 COVID-19 AND Pneumonia Classifier

We now describe the convolutional neural network used in the application of our
method to improve weakly supervised localization in the X-ray domain. We trained
a multi-class image classifier on image-level labels of X-ray images in the COVID-
19 dataset. We have seen that propagation of filter activation values is responsible
for classification. It then follows that projecting the learned class weights back to
filter activations in order to compute class activation maps improves the quality of
localization as model accuracy improves (Fig. 7.10).

Table 7.1 Data partitions of
the COVID-19 Radiology
Dataset [27]

Partition COVID-19 Normal Viral pneumonia

Train 131 804 807

Validate 44 269 269

Test 44 268 269
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Fig. 7.10 Schematic of our X-ray image classifier based on the ResNet152 architecture. Image
input size is 224 × 224, with four convolutional stages common to variants of the ResNet
architecture. Output mapping resolutions of the four convolutional stages are as follows: 56x56
at stage 1, 28× 28 at stage 2, 14× 14 at stage 3, and 7× 7 at stage 4, the final convolutional stage.
The final connected layer has 3 outputs compared to the original 1000

Fig. 7.11 Validation
accuracy progress for
AdamW and SGD optimized
models during fine-tuning for
30 epochs
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As part of our model selection process, we trained two classifiers using different
optimization methods, AdamW [22] and Stochastic Gradient Descent. This was
done by replacing the final layer of a pre-trained ResNet152 model to reflect our new
classes, then fine-tuning each model for 30 epochs on the X-ray dataset. Replacing
the final layer with reduced numbers of units has a beneficial effect on training
speed, as the original ResNet152 model contains 2,048,000 trainable parameters
just in the final layer, which we reduced to just 6144, significantly reducing epoch
times. We checked network performance after every epoch using the validation set,
and kept track of the best performing set of weights. After 30 epochs, the best set
of weights based on the validation set performance persisted as the final trained
model. We then tested both models against the test set and selected the one with
higher accuracy as our multi-class classifier. Figure 7.11 shows validation accuracy
progress while fine-tuning both models. Table 7.2 shows a confusion matrix for
each of the two models as evaluated on the test set, while Table 7.3 shows model
performance metrics.
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Table 7.2 Confusion matrix for SGD and AdamW optimized models on the test set of the COVID-
19 Radiology dataset [27]. Class designations are as follows: COV Covid-19, NOR no findings,
and PNE viral pneumonia

Predicted SGD

COV NOR PNE

True COV (44) (3) (0)

NOR (0) (263) (30)

PNE (0) (2) (239)

Predicted AdamW

COV NOR PNE

True COV (43) (3) (4)

NOR (1) (258) (32)

PNE (0) (7) (233)

Table 7.3 Performance metrics for models trained using SGD and AdamW optimization tech-
niques. Both classifiers are based on the ResNet152 architecture pre-trained on the entire ImageNet
1000 dataset and fine-tuned on the COVID-19 Radiology dataset

Accuracy Sensitivity Precision F1 Score

ResNet SGD 0.94 0.957 0.942 0.969
ResNet AdamW 0.919 0.942 0.906 0.958

Bold values indicate better performance of the top row (model)

7.4.4 Scaled Directed Divergence with Natural Imagery

In this section, we report our weakly supervised localization results on a publicly
available image classifier pre-trained on the ImageNet 1000 dataset. In addition,
we report results of applying saliency maps, a gradient based technique for weakly
supervised localization, to the same set of images.

Figure 7.12 shows rows of images that overlay class activation maps computed
for three overlapping classes, car wheel (479), sports car (817), and race car (751),
with the last image showing a new class activation map computed using our SDD
method for our target class (479). Our method localizes our target class even in
the presence of significant overlap with other classes and without any object-level
labels. We note again, that no additional training or fine-tuning was performed on the
pre-trained ResNet152 model. In addition, our method does not focus on spurious
regions as has been observed using the gradient method on the same imagery.

Figure 7.13 shows our results of applying a gradient based weakly supervised
localization method, saliency maps [32], to the same model using the same set of
images. We observe that the method performs well in localizing some images, but
also focuses on spurious regions in other images. In the first row, a road or parking
sign is picked up, while in the fourth row a marking at the top of the image is focused
on, even though in all cases the model returned the same classification.

As stated, the purpose of these experiments is to provide empirical validation
of our method using a visually intuitive domain. Given the absence of object-level
or regions of interest labels for currently available COVID-19 X-ray data, we hope
that the shown performance of our method on the ImageNet natural imagery dataset
provides some intuition on its behavior when applied to COVID-19 data.
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Fig. 7.12 Results of applying Scaled Directed Divergence to a pre-trained ResNet152 multi-class
image classifier using random car images from Google Search. First three images in each row show
class activation maps computed for classes 479 (car wheel), 817 (sports car), and 751 (race car),
respectively. The fourth image shows better car wheel (479) localization using our method
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Fig. 7.13 Results of applying saliency maps [32], a gradient based approach to weakly supervised
localization. The method was applied to the same set of images as our SDD method in Fig. 7.12.
Note that the first and fourth rows of images illustrate potential problems with the gradient
approach associated with focusing on spurious regions in images
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7.4.5 Scaled Directed Divergence Applied to Chest X-rays

We now present a scenario of utilizing Scaled Directed Divergence as a diagnostic
aid when applied to pulmonary disease classification. Specifically, our aim is to
explain predictions made by our disease classification model by providing spatial
regions within the X-ray image that the model based its prediction on. As stated
earlier, our multi-class pulmonary disease model was trained to classify X-ray
images as one of three classes: COVID-19, viral pneumonia (PNEUM), and no
finding (NORMAL). Model training was done using only image-level labels,
meaning no spatial annotations of disease manifestations were available. We then
used samples from our test set with known labels to classify them using the model
and computed class activation maps for each class. We note that regardless of the
actual predicted class, CAMs can be computed for each class represented in the
model for every image. The intuition here is that given an image sample, it is
possible that the model made a close call between COVID-19 and pneumonia, or
that in fact both conditions were present with highly overlapped manifestations.
This can result in highly overlapped class activation maps for both diseases or
very large class activation maps that cover entire lung regions, providing little
information regarding disease manifestations in specific regions. Finally, computed
class activation maps of all classes were passed to the Scaled Directed Divergence
kernel function, described in Sect. 7.3.4 Eq. (7.3), specifying our target class, in
order to compute a new class activation map that localizes regions within the image
that explain target class predictions from the classification model. Figures 7.14
and 7.15 show the results of this process. In Fig. 7.14 our target class is COVID-19,
and Fig. 7.15 uses viral pneumonia (PNEUM) as the target class. More specifically,
the fourth image in each row is labeled with a target class appended with a letter K
to signify kernel method output.

Next, we describe our results on applying Scaled Directed Divergence to weakly
supervised localization of regions of interest in COVID-19 and Viral Pneumonia
imagery in more details. Figure 7.14 shows class activation maps computed for three
classes learned by our COVID-19, NORMAL, PNEUMONIA (Viral Pneumonia)
image classification model when COVID-19 confirmed images are provided to the
network. In this case, the model classifies all images as COVID-19, which in this
case is our target class for which we would like to compute a new class activation
map that better localizes the region that the model thinks is responsible for the
COVID-19 classification. For each image row consisting of five images in Fig. 7.14
we have the following from left to right: image 1 shows the class activation map
for class COVID-19, image 2 shows the CAM for class NORMAL, image 3 shows
the CAM for the viral pneumonia (PNEUM) class, and image 4 shows the output
of our SDD (Sect. 7.3.4 Eq. (7.3)) kernel function that localizes and explains the
prediction of the target class, in this case COVID. The last image in each row is the
original image passed to the model, where each of the CAMs in the first four images
is superimposed over the original image.
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Fig. 7.14 Results of applying our Scaled Directed Divergence method to our custom ResNet152
multi-class image classifier on X-ray images classified as COVID-19 by the model. For each row,
the first three images contain class activation maps computed for classes COVID-19, NORMAL,
and Pneumonia, respectively. Image four contains a class activation map computed with our
method that localizes regions specific to our COVID-19 target class. The last image is the original
input image

Figure 7.15 shows the same process applied to images that were classified as
Viral Pneumonia (PNEUMONIA) by our model. In this case, our target class for
which we wish to compute a new class activation map using Scaled Directed
Divergence is Viral Pneumonia. As before, the fourth image in each row represents
the class activation map computed using our method and labeled with the predicted
class appended with a letter K.
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Fig. 7.15 Results of applying our Scaled Directed Divergence method to our fine-tuned
ResNet152 multi-class image classifier on X-ray images classified as Viral Pneumonia by the
model. For each row, first three images contain class activation maps computed for classes COVID-
19, NORMAL, and Viral Pneumonia respectively. Image four (PNEUM K) contains a class
activation map computed with our method that localizes regions specific to our PNEUMONIA
target class. The last image is the original input image

Finally, Fig. 7.16 shows a sample image classified as Viral Pneumonia, where the
first row of images shows weakly supervised localization using the gradient method,
i.e. Saliency Maps, while the second row shows weakly supervised localization
using Scaled Directed Divergence. The purpose of this example is to illustrate the
tendency of the gradient method to focus on spurious regions, even during correct
classification. As can be seen in the example, X-ray markings at the top left corner
of the image are considered as part of the region making the main contribution to
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Fig. 7.16 Results of applying Saliency Maps [32] (top row) and Scaled Directed Divergence
(second row) to our fine-tuned ResNet152 multi-class image classifier on a sample of X-ray
images classified as Viral Pneumonia by the model. In the top row, the first image shows the
original input image. The second and third images show largest gradients mapped to a region of the
image signifying the region that the model attributes to the prediction that it made, when using the
Saliency Maps method. The second row shows localization using original class activation maps for
each class represented in the model. And finally, image four in the second row is a class activation
map computed with our method that localizes regions specific to our PNEUMONIA target class
prediction. It can be seen that the gradient method (top row) is focusing its attention on spurious
features of the image, i.e. X-ray markings (second, third, and fourth images in the top row), while
our method (second row) does not have this problem. By focusing on irrelevant regions of the
image (top row), the model does not provide a plausible explanation of its prediction, while by
isolating a plausible region of pneumonia manifestations within the lung region, the model better
explains why it made the prediction to the subject matter expert

the PNEUMONIA classification, while our method correctly localizes to the lung
region, ignoring spurious activations.

7.5 Discussion

Weakly supervised localization using deep learning approaches is an active area
of research. It enables machine learning practitioners and subject matter experts
in various domains to increase their confidence in predictions provided by models
trained on image-level labels when object-level labels are not available. We
discussed several such approaches and identified possible problems when applied
in real world domains. Specifically, we have shown that class overlap in training
data is a source of aleatoric uncertainty and that some existing methods for weakly
supervised localization tend to focus on spurious features, reducing the confidence
in predictions provided by the model.
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Our Amplified Directed Divergence with ensembles technique addresses the
problem of class overlap by training expert binary models on classes of interest.
Besides mitigating aleatoric uncertainty, our method allows the use of arbitrary,
independently trained models to perform better localization, even when these
models were trained on different levels of labels, i.e. image-level and object-level.
The expressiveness and flexibility provide by this arbitrary pairing can provide
useful feedback on the quality of model predictions in novel situations when training
a new object-level label model is not feasible.

A limitation of our previous approach [34] is in the multi-class setting, specif-
ically when more than two classes within our data can potentially overlap. Our
generalization of Amplified Directed Divergence called Scaled Directed Divergence
(SDD) addresses the problem for any number of overlapping classes. It mitigates the
problem of neuron co-adaptation, while allowing similar data of multiple classes to
be used to improve the accuracy of the overall multi-class model. In both cases,
Amplified Directed Divergence and Scaled Directed Divergence improve weakly
supervised localization in the presence of class overlap without spurious attention
problems that can be seen in the Saliency Map approach.

Another important point to consider is how to verify obtained results. At the time
of this work, and to the best of our knowledge, no spatially labeled annotations of
COVID-19 regions in chest radiographs are publicly available. Once this data does
become available, the standard way to validate our results of localizing relevant
regions of pulmonary disease manifestations would be to use standard metrics
used in supervised localization, such as intersection over union (IoU) of computed
bounding boxes and ground truths bounding boxes. In addition, as more chest
radiology datasets become publicly available, spatially annotated images, or object-
level labels, may become available for other pulmonary diseases. This would allow
us to validate our methods within the same domain, increasing the likelihood that
the approach generalizes to other novel pulmonary conditions.

7.6 Conclusion

In novel situations, such as the COVID-19 pandemic, indirectly obtained image-
level labels may be the only available data to aid rapid decision making at scale. We
described how weakly supervised localization can improve such decision making
by augmenting classifications with spatial support. We then showed that in noisy,
unbalanced, and class overlapped data environments, current state-of-the-art meth-
ods for weakly supervised localization suffer from spurious attention and highly
uncertain spatial localization. We described a novel technique to mitigate those
challenges and empirically showed that our method improved weakly supervised
localization in those environments.

Specifically, our method allows cheaper image-level labels to train classification
models that can provide spatial support to standard classifications, while allowing
the model to be trained on highly unbalanced and overlapped classes. The neuron
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co-adaptation induced by unbalanced and overlapped labels is mitigated post-
training via directed divergence. The uncertainty of predictions is reduced by better
isolating spatial regions responsible for target classification as shown with our
natural imagery experiments. Finally, we demonstrated that our technique can be
applied with minimal to no alteration to existing fundamental architectures, as
shown by the use of a pre-trained ResNet152 model to improve weakly supervised
localization of overlapped ImageNet classes. In addition, class activation maps
computed using our method can be utilized to perform weakly supervised labeling
of objects of interest in image-level labels.

As object-level labels become available in this domain, i.e. COVID-19 regions of
interest labeled by radiologists, techniques to validate and improve existing methods
are an important area of future work. Furthermore, as reported by Zhou et al.
[43], discriminative localization can be further improved by increasing the mapping
resolution of Convolutional Neural Networks used for image classification.
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Chapter 8
A Critical Study on the Importance of
Feature Selection for Diagnosing
Cyber-Attacks in Water Critical
Infrastructures

Ehsan Hallaji, Ranim Aljoudi, Roozbeh Razavi-Far, Majid Ahmadi,
and Mehrdad Saif

8.1 Introduction

Recent advancements in cyber-physical systems and smart grids are often followed
by more dependency on the application layer [10, 11, 22]. The severity of the
intrusions to computer networks has been increasing continuously by threatening
the security of these networks through violating privacy, integrity, and accessibility
mechanisms [3, 16]. SCADA systems are used for monitoring and controlling
various critical infrastructure processes [15]. While IDS monitors the attacks that
occur in a system/network then processes them by detecting intrusions, it has been
widely used in recent years as one of the main network security components in smart
grids and cyber-physical systems [9, 22, 29]. The intrusion detection system can be
characterized as a device or an application that detects malicious activities within
the network.

IDS frameworks usually rely on prior knowledge, training data, or recorded data,
which is often complex to analyze for extracting the attack pattern. When dealing
with big data, the abundance of the recorded samples and the high dimensionality of
the data, which is the focus of this work, complicate the decision-making process,
as they severely decrease the efficiency of the system and quality of the constructed
model. Moreover, industrial datasets usually contain noisy, redundant, or irrelevant
features that introduce critical challenges to data modeling. Feature Selection (FS)
techniques can be used to tackle the high dimensionality of the data and address the
low quality of the data by removing redundant and non-informative features of the
data [6, 13]. Such improvement in data quality will in turn enhance the performance
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of data-driven modules such as change detectors [24, 26] and classifiers [23, 25]
in the system. FS methods have different criteria, such as their variance, entropy,
and ability to preserve local similarity, which results in different correlation and
consistency.

The aim of this study is to find the effect of feature selection on the detection
accuracy of cyber-attacks on a cyber-physical system. To achieve this goal, we
study twelve advanced feature selection models combined with two classifiers, K-
Nearest Neighbors (KNN) and Decision Tree (DT). These methods are expected to
effectively select the optimal set of features for detecting intrusion. The selected
case study resembles the SCADA system of a water storage tank introduced in
[18]. In addition, a feature analysis is performed to find the most effective features
for accurate intrusion detection in the water storage system. In the context of
EXplainable Artificial Intelligence (XAI), a successful feature selection process can
help explaining the nature of the attack by clarifying the intrusion behind it. In other
words, depending on the selected features, one can identify the system components
that are more affected by the cyber-attack, which clarifies the target of the intruder.

The rest of this chapter is organized as follows. Section 8.2 describes the
background of feature selection and the twelve selected feature selection techniques.
Section 8.3 explains the design of an intrusion detection system that involves data-
driven decision-making and analyzing data gathering. Section 8.4 presents the report
on the experimental settings and results. Lastly, Sect. 8.5 will convey the conclusion
of this chapter and outlines the best approach.

8.2 Background

The quality of data in a data-driven process is usually affected by various factors
[5, 20, 21]. Feature selection, also known as variable selection or attribute selection,
is a common technique for improving the data quality. This process obtains a subset
of relevant features and eliminates the irrelevant and redundant features from the
original data. The main difference between feature selection and dimensionality
reduction is that the former creates a space by adopting a subset of features from
the original feature space, while the latter transforms the original feature space and
creates a completely new feature space. Feature selection can improve the accuracy
of the model, reduce learning time, and prevent overfitting. Most feature selection
methods are divided into three major buckets: (1) Filter-based: This generally
analyzes intrinsic properties of data, regardless of the classifier. It only considers
the association between the feature and the class label. (2) Wrapper-based: This
method is based on a specific machine learning algorithm to find optimal features; it
uses classifiers to score a given subset of features. (3) Embedded: This is an iterative
method in which the selection process is employed into the learning of the classifier.
Most of these methods can perform two processes: ranking and subset selection
(sometimes they are performed sequentially); the importance of each individual
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feature is evaluated, usually by neglecting potential interactions among the elements
of the joint set, then the final subset of features to be selected is provided.

While feature selection techniques often operate singularly and are not combined
with other feature selection algorithms, it is also possible to use these techniques
in combination. By doing so, one can use a simple approach such as the majority
of votes to aggregate the results of these techniques. However, this approach will
be most advantageous when the selected algorithms employ completely different
methods (e.g., manifold learning, cluster analysis, and mutual information) to
capture the distribution of the feature space. This will extend the flexibility of the
feature selection process against various distribution types and data structures.

8.2.1 Infinite Feature Selection

The infinite feature selection (InfFS) is a filter-based technique that models the
feature space using a graph. In this process, each graph node corresponds to a
feature, and edges connecting these nodes represent pair-wise relationships between
features. Weighted edges of this graphical model codify the independence between
two feature distributions. A path on this graph then shows a subset of features.
The convergence properties of the power series of matrices and Markov chain
fundamentals are then used to evaluate the paths that contain certain features. InfFS
defines a final score that shows the best feature candidate by ranking in descent
order [28].

8.2.2 Infinite Latent Feature Selection

Similar to InfFS, Infinite latent feature selection (ILFS) is a probabilistic technique
that models the feature space using a graph-based approach that considers all the
possible subsets of features during the ranking process. However, ILFS models the
relevancy between features as a latent variable in a generative process, which is
inspired by the probabilistic latent semantic analysis. This enables the algorithm to
investigate the feature importance upon the injection of a feature into an arbitrary
set of cues [27].

8.2.3 Evolutionary Computation Feature Selection

Evolutionary computation (ECFS) has the ability to search simultaneously within a
set of possible solutions to find the optimal and effective solution set, by iteratively
trying to improve the feature subset with regard to a given measure of quality. An
outline of three steps for EC algorithm are as follows: (1) initialization, where the
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population of solutions is initialized randomly; (2) evaluation of each solution in
the population for fitness value; (3) iteratively generating a new population until the
termination criteria (e.g., could be the maximum number of iterations or finding the
optimal set of features that maximizes classification accuracy) are met [19].

8.2.4 Relief Feature Selection

Relief Feature Selection (ReliefFS) calculates a proxy statistic (referred to as feature
weights) for each feature that can be used to estimate feature quality or relevance
to the target concept. Relief is supplanted by ReliefFS which relies on a number
of neighbors user parameter k that specifies the use of k nearest hits and k nearest
misses in the scoring update for each target instance. ReliefFS finds k nearest misses
from each other class and averages the weight update based on the prior probability
of each class [30].

8.2.5 Mutual Information

Mutual information (MutlnfFS) is a measure of dependency between two (possibly
multi-dimensional) random variables that show how much knowing the value of one
variable reduces the uncertainty on the others. MI is also able to capture non-linear
dependencies and is invariant under invertible and differentiable transformations of
the random variables in which it has been used as a score in filter methods. The
selected features will be those with top mutual information w.r.t. the classes [1].

8.2.6 Maximum Relevance and Minimum Redundancy

In the Maximum Relevance and Minimum Redundancy (mRMR) method, each
feature can be ranked based on its relevance to the target variable, and the ranking
process is able to consider the redundancy within the selected features. The best
feature is defined as one that can effectively reduce the redundant features while
keeping the relevant features for the model [31].

8.2.7 Feature Selection via Concave Minimization

Feature Selection via Concave Minimization (FSV) is considered as a wrapper
method in which subsets of features are sampled, evaluated, and finally kept as the
final output. FSV generates a separating plane by minimizing a weighted sum of
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the distances of misclassified points to two parallel planes that bound the sets, and
determines the separating plane midway between the set of misclassified points [2].

8.2.8 Laplacian Score

Laplacian score (Laplacian) is based on two data points that are probably related
to the same topic if they are close to each other in which it is based on Laplacian
Eigenmaps and Locality Preserving Projection. For each feature, the Laplacian score
is computed to reflect its locality geometric structure so features that are consistent
with the Gaussian Laplacian and with small weighted variance are selected [14].

8.2.9 Multi-Cluster Feature Selection

Multi-Cluster Feature Selection (MCFS) uses a multi-cluster structure that is defined
to measure the correlations between different features without label information
(unsupervised feature selection). Recently, the spectral clustering structure of the
data shows a significant interest in which data points are structured using the top
eigenvectors of graph Laplacian (manifold learning) and find the subset selection
using L1-regularized models [4].

8.2.10 Recursive Feature Elimination

Recursive Feature Elimination (RFE) is basically a recursive process that ranks
features according to some measure of their importance. The less relevant feature is
removed iteratively since it has the least effect on the classification. Therefore, RFE
aims to eliminate dependencies and collinearity that may exist in the model. For
high correlated features and large data sets, the relative importance of each feature
can change substantially when analyzed over a different subset of features during
the stepwise elimination process in which recursion is used [7].

8.2.11 L0-Norm

Norms are a way to measure size or length in higher dimensions. L0-norm is the
most direct and ideal scheme of feature selection that is difficult to optimize so L0-
norm can balance the training error against the number of non-zero features [12].

L0-Norm penalizes features by which the regularization and parallel parameter
estimation processes become more complicated. L0-norm solves the L0 penalty
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problem by selecting non-zero coefficients and regularization parameters simulta-
neously. In addition, it finds an estimated solution for this penalty problem.

8.2.12 Fisher Score

Fisher score finds a subset of feature, which selects the top-ranked features with
large scores. The score of each feature is computed independently by the heuristic
algorithm. The algorithm fails to select features that have low individual scores but
a very high score when they are combined together as a whole [8].

8.3 Design of Intrusion Detection System

The designed Intrusion detection system (IDS) uses a multi-modular structure, in
which the traffic data initially passes the FS methods. Then, the selected features
of data will be passed to the classification module, where the normal and malicious
traffic can be classified based on their type (see Fig. 8.1).

8.3.1 Data Collection

The data is collected from a cyber-physical system that resembles a water storage
tank [17]. SCADA systems collect data from remote facilities about the state of

Fig. 8.1 Illustrative diagram of the designed intrusion detection systems
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the physical process and send commands to control the physical process creating
a feedback control loop. SCADA was used to control a water storage tank as it
has communication patterns that are set of repetitive read and write commands.
First, it writes the contents of all registers and coils used for control. Then, a
MODBUS protocol reads the holding register command that measures the state
of the system. This protocol acts as a single serial cable that connects the serial
ports on Master and Slave devices. These two commands are each followed by
a response. The raw collected data consisted of variables such as command and
response address, command and response memory, command and response memory
count, command read and write function, the response read and write function, sub-
function, command length, response length, control mode, control scheme, high (H)
set-point value, high alert (HH) set-point value, low (L) set-point value, low alert
(LL) set-point value, pump state, cyclic redundancy code (CRC) error rate, water
level measurement, timestamps, and attack class.

8.3.2 Decision-Making

In our case study, the DT and KNN algorithms are developed as classifiers in
combination with feature selection techniques. A decision tree is a tree-like graph
consisting of internal nodes that represent a test on an attribute and branches, which
denote the outcome of the test and each leaf node holds a class label. K-nearest
neighbors is a supervised metric learning algorithm that use the label information to
learn a new unlabeled data based on a similarity measure by calculating the distance
between points using distance measures such as Euclidean distance, Hamming
distance, Manhattan distance, and Minkowski distance. Decision trees and KNN
can analyze data and identify significant characteristics in the network that indicate
malicious attacks.

The intrusion detection system detects and classifies seven different types of
cyber-attacks in the water storage system, including a normal class when the system
is safe, as shown in Table 8.1. These injection attacks are also explained briefly in
the following:

• Naïve Malicious Response: can be used to send fake payloads by injecting
response packets into the network.

• Complex Malicious Response: conceals the state of the controlled physical
process to maliciously affect the feedback control loop.

• Malicious State Command: manipulates remote field devices to change the
normal system state to a critical state by sending malicious commands.

• Malicious Parameter Command: mainly tries to change the set-points defined for
programmable logic controllers.

• Malicious Function Code: refers to the commands included in the application
layer of a system, which can be used maliciously by attackers to create
unintended consequences.
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Table 8.1 List of simulated
cyber-attacks in water
pipeline system

Classes Types of attacks

0 Instance not part of an injection

1 Naïve malicious response injection

2 Complex malicious response injection

3 Malicious state command injection

4 Malicious parameter command injection

5 Malicious function code injection

6 Denial of service injection

7 Reconnaissance injection

• Denial of Service: corrupts communications links and system programs by
attempting to exhaust computational resources.

• Reconnaissance: is the process in which attackers gain device information and
system vulnerabilities to plan future attacks against a SCADA system.

The network traffic data are validated and trained by incorporating state-of-the-
art feature selection techniques into an intrusion detection system that consists
of different modules. After the traffic data is passed through feature selection
techniques, the most relevant features are selected and new reduced data is trained
using KNN and DT classifiers. The reduced data is classified into seven different
classes as well as the safe state class, as shown in Fig. 8.1.

8.4 Experimental Results

This section analyses the obtained results in terms of accuracy and standard
deviation and compares it with twelve different FS techniques. Figure 8.1 shows
all the feature selection techniques that were used in our approach.

8.4.1 Experimental Setting

The water storage tank system generates network flow records that are captured with
a serial port data logger that includes 200,000 samples recorded using a laboratory-
scale test bed. An imbalanced data set was randomly selected by sampling 10%
(27199 samples) of the instances to minimize memory requirements and the
processing time. 19503 of these samples correspond to the normal state (i.e., class
0), and the rest of the samples are collected when the system was under attack.
Classes 1–7 in Table 8.1 have 1198, 1457, 209, 410, 155, 135, and 4132 samples,
respectively. In order to detect malicious activities in the water storage system,
features were divided into network traffic features and payload content features.
The former gives information regarding the communications within the SCADA
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Table 8.2 List of raw features in the water storage system

Number Feature Name Description

1 Command address Device ID in command packet

2 Response address Device ID in response packet

3 Command memory Memory start position in command packet

4 Response memory Memory start position in response packet

5 Command memory count Number of memory bytes for R/W command

6 Response memory count Number of memory bytes for R/W response

7 Command read function Value of read command function code

8 Command write function Value of write command function code

9 Response read function Value of read response function code

10 Response write function Value of write response function code

11 Sub-function Value of sub-function code in the
command/response

12 Command length Total length of command packet

13 Response length Total length of response packet

14 H Value of H set-point

15 HH Value of HH set-point

16 L Value of L set-point

17 LL Value of LL set-point

18 Control mode Automatic, manual, or shutdown

19 Control scheme Control scheme of the water pipeline

20 Pump Value of pump state

21 CRC rate CRC error rate

22 Measurement Water level

23 Time Time interval between two packets

24 Result Manual classification of the instance

network system, while the latter describes the current state for different components
of the SCADA system. The developed data set consists of 24 unique features (i.e., 8
payload and 16 network traffic features) as shown in Table 8.2.

The data set described in this chapter used MODBUS traffic from RS-232
connection in which it is one byte long with each server having a unique device
address. The water storage tank holds approximately two liters of water that consists
of a relief valve to drain water from the tank, a pump to add water to the tank, and
a meter to measure the percentage of water level. In addition to the on/off control
scheme to maintain the water level between high (H) and low (L) set-points, an
alarm is turned on when the water level is above high alarm set-point (HH) or below
the low alarm set-point (LL).

The read and write commands/responses have a fixed length for each system in
which an attack can be observed. In a normal system, the error rate of the intrusion
detection (i.e., w.r.t. accuracy and F1-score) should be low and constant, but when
the system is subjected to a denial-of-service attack the rates are anticipated to
increase. During the normal state, if there is no error, the response function code
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matches the command function code. In the presence of an error, the response sub-
function code is changed to the command function code plus a value of 0X80. When
a sensor detects the water level has reached L (H) level, the programmable logic
control turns the water pump on (off).

In order to log the data and inject attacks, a bump-in-the-wire method is used.
The device implementation is conducted using C programming and VMware virtual
machine. Two RS-232 serial ports are included in the virtual machine that are
connected to a USB-to-serial converter. The programmed software monitors serial
ports for traffic. Any detected traffic is then timestamped and saved in a log
file. Furthermore, the software incorporated hooks to inject, delay, drop, and alter
network traffic to facilitate the attacks.

8.4.2 Results Analysis

Results were analyzed based on 10-fold cross-validation iterations for each feature
selection technique, as shown in Fig. 8.2, to divide the outcomes w.r.t. KNN and DT
classifiers.

Figure 8.2 shows the performance measure in terms of accuracy through cross-
validation and by resorting to feature selection techniques along with the KNN
and DT classifiers. Before the feature selection is being operated on the dataset,
DT classifier displays better results than KNN classifier. However, after the feature
selection, KNN classifier shows a satisfying improvement and recorded a higher
average accuracy than DT classifier.

In Figs. 8.3 and 8.4, it is conspicuous that ECFS, INfFS, and ILFS methods show
higher performance in terms of accuracy and F1-score. The accuracy performance
on KNN classifier is demonstrated in Fig. 8.3a in which the ECFS method illustrates
the best results among all FS methods, and its average accuracy is approximately
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Fig. 8.2 Classification accuracy of DT and KNN classifiers before and after the FS. Each bar
shows the obtained accuracy for one iteration of the 10-fold cross-validation.
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Fig. 8.3 Accuracy profile of the FS methods in different iterations of cross-validation, w.r.t.
KNN and DT classification results. (a) Accuracy performance on KNN classifier. (b) Accuracy
performance on DT classifier
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Fig. 8.4 Obtained F1-Scores by FS methods in different iterations of cross-validation, w.r.t.
KNN and DT classification results. (a) F1-score performance on KNN classifier. (b) F1-score
performance on DT classifier
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99.85%. Furthermore, ILFS and InfFS are ranked second and third with an average
of 99.7%, and it is likewise considering the F1-score performance on KNN, as
shown in Fig. 8.4b. Moreover, mRMR, ReliefF, RFE, Fisher, L0-Norm, MCFS,
MutInFS, FSV, and Laplacian methods are ranked from fourth to 12-th, while their
accuracy performance falls between 82% and 98% on the KNN classifier.

The presentation of accuracy performance using the DT classifier is shown in
Fig. 8.3b in which InfFS method has outperformed the other FS methods with an
accuracy measure of 99.7%. ECFS and ILFS methods come in the second and third
ranks with an average of 99.6%. The rest of the methods are ranked from fourth
to 12-th and sorted as: Fisher, RFE, L0-norm, mRMR, ReliefFS, MutInfFS, FSV,
MCFS, and Laplacian. ECFS, ILFS, and InfFS methods result in the best accuracy
compared with the other nine FS methods. In addition, the Laplacian method is less
likely to be sensitive to the choice of classifiers.

To study the F1-score on KNN and DT classifiers, Fig. 8.4 illustrates the results
of the twelve utilized FS techniques. Considering the results of the KNN classifier,
ECFS recorded the highest F1-score when combined with the KNN and DT
classifiers in Fig. 8.4a, b, respectively. ILFS and InfFS maintain their second and
third ranks when coupled with KNN classifier. Using DT, however, changes InfFS
and ILFS ranks to second and third, respectively. Moreover, in respect of KNN
classifier, mRMR, RFE, Fisher, L0-Norm, MCFS, FSV, ReliefF, Laplacian, and
MutInfFS methods are ranked from fourth to 12-th, respectively. Considering the
DT classifier, FS methods are ranked in the following order from fourth to the 12-th
rank: Fisher, RFE, L0-norm, mRMR, FSV, MCFS, laplacian, REliefF, MutInfFS.
ECFS, ILFS, and InfFS methods are more stable and always improve the F1-score.
MutInFS method has failed to improve accuracy and F1-score performance.

Figure 8.5 shows the F1-score performance on ECFS, ILFS, and InfFS methods,
which are more compatible with the KNN classifier. This is while the rest of
FS methods are suggested to be used along with DT classifier. In general, ECFS
performs better than other FS techniques and results in the maximum accuracy
when coupled with KNN that is about 99.85%. In addition, MutInFS worsens
the F1-score; however, stability is improved when it is used with KNN, which is
about 76.3%. RFE, L0-norm, and Fisher techniques result in a stable and a slight
difference in F1-score when coupled with DT classifier in which it scores close to
98%.

8.4.3 Feature Analysis

Considering the FS outputs for all the studied FS methods, Fig. 8.6 illustrates
the importance of each feature w.r.t. the number of times it is selected by FS
methods. Based on the results shown in this figure, it can be inferred that the
most important features are the response address and time (number 2 and 23 in
Table 8.2). The second most important features are features 9 and 15, which are
response read function and HH, respectively. The third group of important features
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Fig. 8.5 Averaged F1-score of FS methods over the 10-fold cross-validation using DT and KNN

are command address, command memory, and command length (numbers 1, 3, and
12 in Table 8.2). These seven features are selected more than six percent of the times
and they are believed to be most effective on the detection accuracy. This while the
least informative features for intrusion detection of the water storage tank seem to
be control scheme and pump, which are selected only one percent of the times.

The information obtained from the feature selection algorithms can be used to
explain the nature of the attack, which in turn helps to plan a suitable response
or counter-attack. For instance, one of the top features in Fig. 8.6, namely response
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Fig. 8.6 Importance of features based on the overall results of the FS techniques. The feature
numbers correspond to the list of features in Table 8.2

address (numbers 2) can be used to detect the reconnaissance attack, as the mismatch
between response device addresses is usually an indicator of this attack. Another
example is another top feature, time (number 23 in Fig. 8.6), which can be used to
detect three types of cyber-attacks such as malicious command injection, malicious
response injection, and DOS attacks. The time interval between packets is almost
consistent during the normal operation; however, this measurement becomes very
different when such attacks exist in the network. Therefore, one can explain the
nature of attack of detecting anomalies in any of these features, as they are indicator
of certain events. Knowing the most important features, on the other hand, can
inform us regarding the most targeted parts of the system, and its mechanism, which
is useful for planning and taking defensive actions.

8.5 Conclusion

In this chapter, twelve feature selection techniques are reviewed and analyzed on
a cyber-physical case study. The selected case study resembles a SCADA system
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implemented for a water storage tank, which is under cyber-attacks. The selected
feature selection techniques are employed within a multi-modular IDS, which
combines a set of feature selection techniques with two classifiers. This framework
enables a comparative study on the feature selection methods, as well as their
compatibility with the selected classifiers. Moreover, a feature analysis is performed
w.r.t. the results of the feature selection that determines the most important features
that are crucial for the task of intrusion detection in the given SCADA system.
The features selection methods in this study achieved satisfying results in terms
of accuracy and F1-score. The results indicate that feature selection could improve
some certain level of classification accuracy in IDS. The performed comparative
experiment suggests the best combination of feature selection algorithm with a
classifier and suggests which features should be included in the detection model.
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Chapter 9
A Study on the Effect of Dimensionality
Reduction on Cyber-Attack Identification
in Water Storage Tank SCADA Systems

Ranim Aljoudi, Ehsan Hallaji, Roozbeh Razavi-Far, Majid Ahmadi,
and Mehrdad Saif

9.1 Introduction

Abundance of features in cyber-physical systems can complicate explaining var-
ious events for various applications. Security challenges arise from two different
perspectives. Firstly, an event may be detectable, when a change happens in a
certain combination of features, and as the number of these variables and events
increases, explaining the system status becomes more difficult. Furthermore, the
feature space may contain hidden characteristics that are dormant to human eye.
Devising dimensionality reduction technique improves the explainability of such
systems in a number of ways. These techniques aim at improving the feature space
by capturing the complex structure of the original data and then transform it into
a low-dimensional space, which facilitates visualization, revealing relationships
between samples, understanding and monitoring the dynamics of the system.

Dimensionality reduction can be very helpful in the design of intrusion detection
systems (IDS). For instance, if a cyber-attack can be detected by monitoring a large
number of features, dimensionality reduction can yield a feature space in which only
one or a very small number of features are enough to explain a change that indicates
a cyber-attack [7]. In contrast, other techniques such as feature selection may not
result in the same efficiency, as the features may not have enough information to
only select a small number of them to detect a cyber-threat. In other words, feature
selection usually works when at least a number of features possess very useful
information, while dimensionality reduction tries to rectify the feature space and
obtain an improved distribution.
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An IDS is a security mechanism to inspect traffic via detecting and tackling
computer security threats or any suspicious behavior [4, 16]. Challenges are arising
in accurately detecting intrusions, which make the majority of studies on smart
grids and cyber-physical systems to focus on more advanced approaches such as
machine learning [24, 31]. To secure industrial network systems, such as smart grids
[9, 10, 24], we require to address malicious intrusions that are violating privacy,
integrity, and accessibility.

SCADA systems are used for monitoring and controlling various critical infras-
tructure processes through receiving data from sensors [8, 13]. It controls the
mechanical machines, while the software allows human interactions to manage the
machines. A traditional IDS needs a database that holds records of different attacks,
each record corresponds to a particular intrusion and its characteristics. The major
drawback of this mechanism is the necessity for human involvement to inspect
threats, which is a very complicated and time consuming task. Thus, machine learn-
ing techniques promote anomaly detection algorithms that can discover abnormal
changes in the system [8, 28, 29]. For example, in our study, we are elaborating
dimensionality reduction techniques in an intrusion detection system to optimize
the performance of security mechanisms.

A challenging task for data modeling is to apply IDS on high-dimensional data
streams as a high volume of data may include noisy, redundant, or irrelevant features
[27]. Therefore, irrelevant and redundant features reduce the quality of the learning
process and grow the risk of the classifier to over-fit. To eliminate this issue, a
subset of relevant features is often selected to construct a strong learning model.
In addition, the high-dimensionality of the dataset affects the prediction accuracy
of machine learning algorithms and data visualization. Reducing the dimensionality
improves the classification performance [26], which in turn enhances the robustness
of intrusion detection systems.

In this study, we will explore the effect of dimension reduction (DR) on detection
accuracy of cyber-attacks on cyber-physical system. We experiment 22 advanced
feature extraction models combined with two classifiers, K-Nearest Neighbors
(KNN) and Decision Tree (DT), which is expected to effectively select the optimal
set of features in detecting intrusion. A water storage tank system introduced by
Morris et al. [17] is applied.

The remainder of this study is structured as follows. Section 9.2 briefly introduce
the background of dimension reduction and dimension reduction methods. The
Sect. 9.3 explains the design of the intrusion detection system that involves data-
driven decision making and analyzing data gathering. Section 9.4 reports the
experimental settings and results. Lastly, Sect. 9.5 outlines the conclusion of this
chapter.
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9.2 Background

Industrial data-driven models are often challenged with various obstacles [22,
23, 25]. One of the most common challenges in machine learning is the issue
of high-dimensionality, which can be addressed by dimensionality reduction.
Dimensionality reduction is the process of improving the original feature space
and transforming it into a smaller one in order to minimize the complexity of
a model and avoid curse of the dimensionality [5, 7]. Dimensionality reduction
is mostly used for data analysis, compression, and data visualization. Most of
the feature reduction methods are divided into two main categories: (i) Feature
selection: approaches select a subset of features from the original feature space that
results in the optimal performance. (ii) In contrast, dimensionality reduction, also
called feature extraction, captures the structure of the original feature space and then
transforms into a lower-dimensional features space. This data transformation may
be linear or non-linear. The focus of this work is on the dimensionality reduction,
and the selected techniques are explained in the following subsections.

In contrast to feature selection techniques that may be used in combination to
provide different rankings for the features, dimensionality reduction techniques are
preferred to be used alone. This is due the fact that the created features spaces may
represent different distributions and do not share any common features. A question,
however, may arise regarding the criteria for selecting the right technique for the
task at hand. While various measures can be used to facilitate this decision, the best
choice could be made after testing different algorithms on the same data to see which
one is more adaptable with the case study and bring about higher performance.
This is the approach followed in this chapter. Nevertheless, should one desire to
choose a versatile technique that works with various case studies, there are a few
points to consider. Firstly, it is more desirable to use supervised dimensionality
reduction methods, if labeled data is available, as their valuable information will be
discarded by unsupervised methods. Secondly, many of dimensionality reduction
methods make use of approaches such as manifold learning and kernel functions.
These techniques are very powerful, if they are carefully optimized, and the data
distribution should match the underlying assumptions such as comparability with
the selected kernels or to be projectable onto a manifold.

9.2.1 Principal Component Analysis

Principle Component Analysis (PCA) is a very established method, as an unsu-
pervised linear transformation technique. PCA supports us to identify patterns in
the data based on the correlation between features. PCA projects the direction of
maximum variance in high-dimensional data onto a lower-dimensional subspace
in order to minimize the sum of squared error, or maximize the variance. It is
decomposed by obtaining eigenvectors and eigenvalues on the data covariance
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matrix of the whole dataset. The obtained eigenvalues represent the variance of
the projected inputs along principal axes, and eigenvectors (principal components)
determine the directions of the new feature space. The benefits of PCA include
the reduction of noise in the data and the ability to produce independent and
uncorrelated features [33].

9.2.2 Factor Analysis

Factor Analysis (FA) is a statistical method that can be considered as an extension
of PCA. FA is designed to identify the unobservable variables from the observed
patterns of correlation between the variables. This is in contrast to the PCA, as
it is unable to use the observed information. A factor is correlated with multiple
observed variables, so each factor describes an appropriate amount of variance in
the observed variables [18].

9.2.3 Confirmatory Factor Analysis

Confirmatory Factor Analysis (CFA) is a multivariate statistical method that mea-
sures variables representing the number of constructs (or factors). CFA models the
data density on a low-dimensional manifold on which the data is representable [32].
CFA also follows a global approach for parameter optimization of the manifold
estimation, which results in a satisfying convergence rate.

9.2.4 Multidimensional Scaling

Multidimensional Scaling (MDS) references the overall similarity (or dissimilarity)
of the objects. MDS is used to visualize the dissimilarities or distances (usually by
Euclidean distance) between objects by projecting the points to a low-dimension
space [14].

9.2.5 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised linear transformation that
reduces the dimensionality on multi-class data by linearly projecting the original
samples to a smaller space, while maintaining the class-discriminatory characteris-
tics of the original data [21].
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9.2.6 Isomap

Isomap (ISO) is also referred to as isometric mapping; it is a non-linear dimen-
sionality reduction method, which takes advantage of local information by using
the concept of geodesic distances induced by a neighborhood graph. This graph is
embedded between pairs of points rather than Euclidean distances [30].

9.2.7 Semantic Mapping

Semantic Mapping (SM) reduces the dimensionality by clustering the original co-
occurrent features. Using these semantic clusters and combining features mapped
in the same cluster, it then generates an extracted feature that contains semantically
related terms [1].

9.2.8 Probabilistic Principal Component Analysis

Probabilistic Principal Component Analysis (PPCA) offers an extension to the scope
of PCA. PPCA can be utilized as a Gaussian model by maximizing the likelihood
estimates of the parameters that are associated with the covariance matrix and can
be efficiently computed from the data principle component [35].

9.2.9 Locally Linear Embedding

Locally Linear Embedding (LLE) is an unsupervised learning algorithm and a non-
linear dimensionality reduction technique. LLE outlines its inputs into a single
global coordinate system of lower-dimensionality without the involvement of local
minima. By employing the local symmetries of linear reconstructions, it can study
the global structure of non-linear manifolds. LLE projects the points to a locally
linear neighborhood. LLE utilizes an eigenvector based optimization technique to
find the low-dimensional embedding of points [33].

9.2.10 Laplacian Eigenmaps

Laplacian Eigenmaps (LE) is a closely related approach to LLE. LE constructs a
graph to compute a low-dimensional representation of the dataset that preserves
local neighborhood constraints of the dataset in an optimal process. LE is con-
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structed by a weighted graph with k nodes. Each data point is a node, and a set of
edges connecting the proximity of neighboring points using the K-nearest neighbor
algorithm [3].

9.2.11 Landmark Isomap

Landmark Isomap (LIM) is a variant of Isomap that selects a group of points
termed as landmarks to simplify the embedding computation. LIM only computes
the shortest path from each data point to the landmark points. The classical MDS
is then applied to the resulting geodesic distance matrix to find a Euclidean low-
dimension embedding of all data points [19].

9.2.12 Hessian-based Locally Linear Embedding

Hessian-based Locally Linear Embedding (HLLE) may be considered as an
improved version of the LLE. Its theoretical approach is somehow similar to
the Laplacian eigenmap framework, if the Laplacian operator is replaced with the
Hessian. HLLE uses orthogonal coordinates on the tangent planes. This makes the
local fits more robust for the dimensionality reduction [6].

9.2.13 Local Tangent Space Alignment

Local Tangent Space Alignment (LTSA) uses manifold learning, which can convert
a non-linear embedding of high-dimensional data into a smaller space and rebuild
high-dimensional coordinates from embedding coordinates. The steps for perform-
ing LTSA are similar to LLE; however, it is different in optimizing the embedding.
In LTSA, we compute the tangent space of each data point and align those local
tangent spaces, while ignoring the label information [37].

9.2.14 Kernel Principal Component Analysis

Kernel PCA (KPCA) is an extension of PCA for performing non-linear dimension-
ality reduction through the use of kernels. PCA can be applied to datasets that are
linearly separable. This is while kernel PCA maps non-linear datasets and uses a
kernel function (also called non-linear mapping function) to project dataset onto a
higher dimensional feature space, where it is linearly separable [15].
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9.2.15 Generalized Discriminant Analysis

Generalized Discriminant Analysis (GDA) is designed for a non-linear transforma-
tion. It utilizes kernel functions to map the data onto a new space, which leads
to non-linear discriminant analysis for the input data. This has been done by
maximizing the ratio of the between-class scatter to the within-class scatter [2].

9.2.16 Neighborhood Preserving Embedding

Neighborhood Preserving Embedding (NPE) is a linear DR method that aims to
discover the local neighborhood structure on the data manifold. Each data point is
represented as a linear combination of the neighboring data points and coefficients
that are specified in the weight matrix. It then finds an optimal embedding such that
the neighborhood structure can be preserved in the resulted feature space [11].

9.2.17 Locality Preserving Projections

Locality Preserving Projections (LPP) is similar to NPE in aiming at preserving the
local manifold structure. LPP shares a lot of LE or LLE properties. LPP employs
the concept of non-linear Laplacian eigenmap and computes a transformation matrix
that maps the data points to a new space. The projective maps in LPP are the optimal
linear approximations to the eigenfunctions of the Laplace Beltrami operator on the
manifold [12].

9.2.18 Diffusion Maps

Diffusion Maps (DM) reduces the data dimensionality by re-arranging data accord-
ing to parameters of its underlying manifold. The Euclidean distance between points
in the embedded space is equal to the diffusion distance in the original dimension
space. The connectivity between the points is measured using a local similarity
measure at different scales [20].

9.2.19 Locally Linear Coordination

Locally Linear Coordination (LLC) computes a number of locally linear models
on data using the Expectation Maximization approach. By this mean, it performs a
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global alignment of the linear models by aligning the local linear models using a
variant of LLE [36].

9.2.20 Manifold Charting

Manifold Charting (MC) minimizes a cost function that measures the amount of
difference between the linear models on the global coordinates of the data points by
solving a generalized eigenproblem [36]. MC also shares some similarities with the
LLC technique.

9.2.21 Large Margin Nearest Neighbor

Large Margin Nearest Neighbor (LMNN) is based on semi-definite programming
for optimizing a convex problem. The target neighbors can be set as a k-nearest
neighbors rule that shares the same labeled instances. The new data instances are
obtained from the highest vote of the k closest labeled instances. Using the global
distance metric learning method, it measures the nearby instances from the same
class and eliminates instances from different classes [34].

9.2.22 Independent Component Analysis

Independent Component Analysis (ICA) is a computational method that transforms
the independent components of the observed data by increasing the statistical
independence of the estimated components. ICA aims to separate multivariate
signals into components that are maximally independent of each other by applying
a linear transformation to decompose the original data. ICA aims to increase the
accuracy for uncorrelated data; however, the obtained independent components may
be irrelevant [33].

9.3 Design of Intrusion Detection System

The aim of the intrusion detection system (IDS) is to monitor and secure the
industrial control system from malicious network traffic. This ensures the integrity
and confidentiality of streaming data and the availability of services as well.
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9.3.1 Data Collection

The SCADA datasets have been used for the evaluation of the intrusion detection.
In this case study, SCADA was implemented for a water storage tank system. An
intruder can hack into the network system of this cyber-physical system and disrupt
the operation of the control unit. SCADA systems are generally made of four group
of components. The first components are the sensors and actuators that collect data
from remote facilities. These data have information about the state of the physical
process. By this mean, commands can be sent to control the physical process
and create a feedback control loop. Secondly, the programmable logic controllers
that are pointed to remote terminal units (RTUs) to collect data, which define the
system’s state. The water tank RTU ladder logic includes six setpoint registers; HH,
HI, LO, and LL water level setpoint register, a pump override setpoint register, and
a mode setpoint register. Furthermore, it includes three output registers which store
process parameters: pump state, water level, and alarm state. Thirdly, supervisory
controls are handled by the master terminal unit (MTU), which in turn forwards
commands to RTU. MTU sends a read query to read from the registers to measure
the state of the system. The fourth level is the human–machine interface (HMI) that
is used to display the sensor data received by MTU. HMI provides an interface for
an operator to monitor and control the system and operations in the form of visual
representation.

HMI supports a communication protocol such as MODBUS commands. HMI
(master) sends commands to MODBUS (slave) in which the individual RTU exe-
cutes the command and returns a response. MTU copies commands and responses
received from the HMI port to the radio port and vice versa, while HMI software
makes changes (every 2 s) to setpoint register values to control the physical process
[17].

9.3.2 Decision Making

In our case study, the decision tree (DT) and K-nearest neighbor (KNN) algorithms
are employed as classifiers in combination with multiple dimension reduction
techniques (i.e., as explained in the previous section) to enable a comprehensive
study on the suitability of each DR method for the selected case study (see Fig. 9.1).

DT is a classification method that uses a representation of a tree structure
consisting of internal nodes that represent a test on an attribute and branches, which
denote the outcome of the test and each leaf node holds a class label. KNN is a
non-parametric algorithm that uses the label information to learn new unlabeled
data based on a similarity measure by calculating the distance between points
using distance measures such as Euclidean distance, Hamming distance, Manhattan
distance, and Minkowski distance. DT and KNN classifiers can analyze data and
identify significant characteristics in the network from the IDS.
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Fig. 9.1 Illustrative diagram of the designed intrusion detection system

Table 9.1 List of simulated
cyber-attacks in the water
storage system

Classes Types of attacks

0 Instance not part of an injection

1 Naive malicious response injection

2 Complex malicious response injection

3 Malicious state command injection

4 Malicious parameter command injection

5 Malicious function code injection

6 Denial of service injection

7 Reconnaissance injection

The intrusion detection system detects and classifies seven different types of
cyber-attacks in the water storage tank system, including a normal class when the
system is safe and an injected class, as shown in Table 9.1. The network traffic
data are validated and trained by incorporating state-of-the-art DR techniques into a
hybrid intrusion detection system. After the traffic data is passed through dimension
reduction techniques, the most relevant features are selected, and new reduced data
is trained using KNN and DT classifiers. The reduced data is classified into seven
different classes as well as the safe state class as shown in Table 9.1.

9.4 Experimental Results

In this section, we aim to obtain a new representation of the data, having a
lower-dimensionality but with more informative features. Several experiments were
performed to compare multiple DR techniques in terms of accuracy, F1-score, and
standard deviation. The classification task in these experiments has been carried out
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using DT and kNN classifiers. We compare 22 DRmethods, namely PCA, FA, CFA,
MDS, LDA, ISO, SM, PPCA, LE, LLE, LIM, HLLE, LTSA, KPCA, GDA, NPE,
LPP, DM, LLC, MC, LMNN, and ICA. Figure 9.1 shows the DR techniques that are
utilized in the designed IDS.

9.4.1 Experiment Setting

The SCADA systems record the network flow in the water storage system, which
are captured via a serial port data logger. The recorded data has 200,000 samples.

In order to minimize memory requirements and processing time, 10% of samples
is randomly selected for training the computational models. The recorded network
traffic data consists of 24 unique features, as shown in Table 9.2, that are used to
detect malicious activities.

Table 9.2 List of parameters in water storage system

Feature name Description

Command address Device ID in command packet

Response address Device ID in response packet

Command memory Memory start position in command packet

Response memory Memory start position in response packet

Command memory count Number of memory bytes for R/W command

Response memory count Number of memory bytes for R/W response

Command read function Value of read command function code

Command write function Value of write command function code

Response read function Value of read response function code

Response write function Value of write response function code

Sub-function Value of sub-function code in the command/response

Command length Total length of command packet

Response length Total length of response packet

H Value of H setpoint

HH value of HH setpoint

L Value of L setpoint

LL Value of LL setpoint

Control mode Automatic, manual, or shutdown

Control scheme Control scheme of the water pipeline

Pump Value of pump state

CRC rate CRC error rate

Measurement Water level

Time Time interval between two packets

Result Manual classification of the instance
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The network traffic data is recoded from MODBUS traffic with RS-232 con-
nection in which it is one byte long and each server has a unique device address.
The water system devises a relief valve, a pump, alarm, meter, and a switch control
scheme to maintain the water level between high and low setpoints.

An attack can be observed by the read and write commands/responses, which
have a fixed length for each system. In a normal system, the error rate should be
low and constant but when the system undergoes a denial-of-service attack the
rates are expected to increase. If there is no error during the normal state, the
response function code matches the command function. When there exists an error,
the response sub-function code equals the summation of the command function code
and a value of 0X80.

9.4.2 Results Analysis

We evaluated the performance of 22 dimensionality reduction methods and divided
the train and test data on the basis of K-fold cross-validation approach, using K =
10, for each method then divided the results w.r.t. KNN and DT classifiers.

Both KPCA and GDA methods produce a small vector of dimension two
with an average accuracy score between 0.90–0.96. In general, Fig. 9.2 shows the
accuracy comparison of the system before and after applying dimension reduction
methods, where bars show the averaged results obtained by testing on each fold.
Figure 9.2a presents the accuracy before applying dimension reduction techniques
on our datasets, while Fig. 9.2b shows the results after applying dimension reduction
techniques. In general, decision tree classifier outperforms the KNN classifier in
terms of accuracy. Considering the original dataset, KNN recorded an average
accuracy of 87.894% and DT results in an average accuracy of 87.920%. Besides,
when DR is applied, KNN and DT achieved 90.164% and 91.535% of average
accuracy, respectively.
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Fig. 9.2 Performance improvement in each fold of the cross-validation. (a) Accuracy before DR.
(b) Accuracy after DR



9 A Study on the Effect of Dimensionality Reduction on Cyber-Attack Identification 183

In Fig. 9.3, it is apparent that performance of the PPCA method is consistently
and significantly higher when combined with KNN classifier compared to other DR
methods, and it reduces the dimensionality of the feature space to 10 features. In
respect to DT classifier, SM method obtains the highest performance in terms of
accuracy and F1-score compared to other DR methods.

Many dimensionality reduction methods perform reasonably well, and their
performance is relatively stable across a range of included low-dimensional compo-
nents. In terms of accuracy measure and KNN classifier, Fig. 9.3a shows that PPCA
method has outperformed the other methods. This is while MC and LLC methods
are ranked second and third, albeit with a slight difference. Furthermore, LDA, CFA,
KPCA, ICA, LTSA, HLLE, ISO, LE, SM, LMNN, GDA, LLE, MDS, FA, LIM,
DM, NPE, LPP, and PCA methods are ranked from fourth to 22-th, respectively.
MC and LLC methods have desirable performance with an average accuracy from
0.97 to 0.98. LPP and PCA have failed to improve the classification performance
using KNN classifier that results in an accuracy lower than 80%. Considering the
results of DT accuracy in Fig. 9.3b, PPCA is ranked as first, and it is followed by
LDA andMC that are ranked as second and third, with a slight difference. ISO, ICA,
CFA, MDS, KPCA, LTSA, HLLE, LE, SM, GDA, FA, PCA, LMNN, LIM, LLE,
and LLC methods are ranked from fourth to 19-th. DM and NPE methods share
the 20-th rank as they show equal performances. Lastly, LPP was ranked as the last
technique, as it recorded less than 67%.

In addition to accuracy, Fig. 9.3c, d represents the F1-score performance for KNN
and DT classifiers. It also indicates that PPCA yields the highest F1-score, almost
99%, and is ranked as the best. Furthermore, MC, LLC, LDA, and CFA methods
result in an average F1-score between 98% and 97%, when combined with KNN,
and can be considered as the second-best algorithms. Moreover, ISO, SM, LTSA,
HLLE, LLE, LE, LMNN, LIM, KPCA, MDS, and FA methods are ranked from
sixth to 16-th with an average of 84–94%. On the other hand, Fig. 9.3d shows that
when DT classifier is employed, the methods that come after PPCA are: LDA, MC,
PCA, ISO, SM, CFA, FA, LTSA, HLLE, LE, LLE, LIM, LMNN, and LLC that
are ranked from second to 15-th place. Both NPE and DM methods share the 17-th
place, when KNN classifier is used, while using DT classifier they are ranked 16th.
Lastly, using KNN classifier, PCA, ICA, LPP, and GDA methods are ranked as the
last methods, whereas using DT classifier ICA, GDA, and LPP are ranked from
20-th to the last.

Generally, GDA, LPP, and ICA methods are not sensitive to the choice of
classifiers as they result in lower F1-score than others in average of 50% and 70%.
PPCA, LLC, MC, and CFA are more compatible with KNN, while the rest of the
dimension reduction methods like PCA, FA, LDA, ISO, and SM are suggested to
be used with DT classifier. In general, PPCA outperforms all the competitors and
results in the maximum accuracy when coupled with KNN. Similarly, GDAworsens
the F1-score; however, stability is improved when it is used with DT classifier.

Figure 9.4 indicates the relatively higher F1-score performance achieved by the
DR methods in comparison with individual DR algorithms. The results demonstrate
better performance when DT classifier is used instead of KNN classifier for most
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Fig. 9.3 Obtained performance measures in terms of accuracy and F1-score through 10-fold cross-
validation of kNN and DT. (a) kNN accuracies (%). (b) DT accuracies (%). (c) kNN F1-score (%).
(d) DT F1-score (%)
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Fig. 9.4 F1-score performance in respect to DT and KNN classifiers

DR methods. The best performance in terms of the F1-score is almost 100% that is
obtained by both KNN and DT classifiers in combination with PPCA and using the
dimensionality size of 10 feature.

9.5 Conclusion

An intrusion detection system is prepared to study the effect of dimensionality
reduction on the intrusion detection performance. A SCADA system of a water stor-
age tank is selected as the case study. This cyber-physical system undergoes multiple
cyber-attacks in our study, for which we design an intrusion detection system. The
utilized IDS leverages 22 advanced dimensionality reduction techniques that are
coupled with two classifiers. This hybrid scheme enables a comparative study on the
impact of DR methods and their compatibility with the selected classifiers. These
algorithms are compared in terms of accuracy, F1-score, and standard deviation. The
conducted analysis ranks all the methods and proposes the best combination for the
optimal detection accuracy in the selected case study.
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accurate intrusion detection, 154
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