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Abstract. Reactive synthesis is the task of automatically deriving an
implementation from a specification. It is a promising technique for the
development of verified programs and hardware. Despite recent advances,
reactive synthesis is still not practical when the specified systems reach
a certain bound in size and complexity. In this paper, we present a mod-
ular synthesis algorithm that decomposes the specification into smaller
subspecifications. For them, independent synthesis tasks are performed,
and the composition of the resulting implementations is guaranteed to
satisfy the full specification. Our algorithm is a preprocessing technique
that can be applied to a wide range of synthesis tools. We evaluate our
approach with state-of-the-art synthesis tools on established benchmarks
and obtain encouraging results: The overall runtime decreases signifi-
cantly when synthesizing implementations modularly.

1 Introduction

Reactive synthesis automatically derives an implementation that satisfies a given
specification. Thus, it is a promising technique for the development of provably
correct systems. Despite recent advances, however, reactive synthesis is still not
practical when the specified systems reach a certain bound in size and complex-
ity. In verification, breaking down the analysis of a system into several smaller
subtasks has proven to be a key technique to improve scalability [4,26]. In this
paper, we apply compositional concepts to reactive synthesis.

We present a modular synthesis algorithm that decomposes a specification
into several subspecifications. Then, independent synthesis tasks are performed
for them. The implementations obtained from the subtasks are combined into an
implementation for the initial specification. Since the algorithm uses synthesis
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as a black box, it can be applied to a wide range of synthesis algorithms. In
particular, the algorithm can be seen as a preprocessing step for synthesis.

Soundness and completeness of modular synthesis depends on the decompo-
sition. We introduce a criterion, non-contradictory independent sublanguages, for
subspecifications that ensures soundness and completeness. The key question is
now how to decompose a specification such that the criterion is satisfied.

Lifting the language-based criterion to an automaton level, we propose
a decomposition algorithm for specifications given as nondeterministic Büchi
automata that directly implements the independent sublanguages paradigm.
Thus, using subspecifications obtained with this algorithm ensures soundness
and completeness of modular synthesis. A specification given in the standard
temporal logic LTL can be translated into an equivalent nondeterministic Büchi
automaton, and hence the decomposition algorithm can be applied as well.

However, while the algorithm is semantically precise, it involves several
expensive automaton operations. Thus, for large specifications, the decompo-
sition becomes infeasible. Therefore, we present an approximate decomposition
algorithm for LTL formulas that still ensures soundness and completeness of
modular synthesis but is more scalable. It is approximate in the sense that it
does not necessarily find all possible decompositions. Besides, we introduce an
optimization of this algorithm for formulas in a common assumption-guarantee
format.

We have implemented both decomposition procedures as well as the modu-
lar synthesis algorithm and used it with the two state-of-the-art synthesis tools
BoSy [9] and Strix [22]. We evaluated our algorithms on the set of established
benchmarks from the synthesis competition SYNTCOMP [16]. As expected, the
decomposition algorithm for nondeterministic Büchi automata becomes infeasi-
ble when the specifications grow. For the LTL decomposition algorithm, how-
ever, the experimental results are excellent: Decomposition terminates in less
than 26ms on all benchmarks, and hence the overhead is negligible. Out of 39
decomposable specifications, BoSy and Strix increase their number of synthe-
sized benchmarks by nine and five, respectively. For instance, on the generalized
buffer benchmark [15,18] with three receivers, BoSy is able to synthesize a solu-
tion within 28 s using modular synthesis while neither of the non-compositional
approaches terminates within one hour. For twelve and nine further benchmarks,
respectively, BoSy and Strix reduce the synthesis times significantly with mod-
ular synthesis, often by an order of magnitude or more. The remaining bench-
marks are too small and too simple for compositional methods to pay off. Thus,
decomposing the specification into smaller subspecifications indeed increases the
scalability of synthesis on larger systems.

Related Work: In model checking, compositional approaches improve the scal-
ability of algorithms significantly [26]. The approach that is most related to our
contribution is a preprocessing algorithm for model checking [6]. It analyzes
dependencies between the properties to be checked to reduce the number of
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model checking tasks. We lift this idea from model checking to reactive synthe-
sis. Our approach, however, differs inherently in the dependency analysis.

There exist several compositional synthesis approaches. The algorithm by
Kupferman et al. is designed for incrementally adding requirements to a specifi-
cation during system design [19]. Thus, it does not perform independent synthesis
tasks but only reuses parts of the already existing solutions. The algorithm by
Filiot et al. depends, like our LTL decomposition approach, heavily on drop-
ping assumptions [10]. They use an heuristic that, in contrast to our criterion, is
incomplete. While their approach is more scalable than a non-compositional one,
one does not see as significant differences as for our algorithm. Both algorithms
do not consider dependencies between the components to obtain prior knowledge
about the presence or absence of conflicts in the implementations.

Assume-guarantee synthesis [2,3,21] takes dependencies between components
into account. In this setting, specifications are not always satisfiable by one com-
ponent alone. Thus, a negotiation between the components is needed. While this
yields more fine-grained decompositions, it produces an enormous overhead that,
as our experiments show, is often not necessary for common benchmarks. Avoid-
ing negotiation, dependency-based compositional synthesis [13] decomposes the
system based on a dependency analysis of the specification. The analysis is more
fine-grained than the one presented in this paper. Moreover, a weaker winning
condition for synthesis, remorsefree dominance [5], is used. While this allows for
smaller synthesis tasks, it also produces a larger overhead than our approach.

The synthesis tools Strix [22], Unbeast [8], and Safety-First [27] decompose
the specification. The first one does so to find suitable automaton types for inter-
nal representation and to identify isomorphic parts, while the last two identify
safety parts. They do not perform independent synthesis tasks for the subspec-
ifications. In fact, the scalability of Strix improves notably with our algorithm.

2 Preliminaries

LTL. Linear-time temporal logic (LTL) [24] is a specification language for linear-
time properties. Let Σ be a finite set of atomic propositions and let a ∈ Σ. The
syntax of LTL is given by ϕ,ψ:: = a | ¬ϕ | ϕ∨ψ | ϕ∧ψ | ϕ | ϕ U ψ. We define
true := a ∨ ¬a, false := ¬true, ϕ := true U ϕ, and ϕ := ¬ ¬ϕ and use
standard semantics. The atomic propositions in ϕ are denoted by prop(ϕ), where
every occurrence of true or false in ϕ does not add any atomic propositions to
prop(ϕ). The language L(ϕ) of ϕ is the set of infinite words that satisfy ϕ.

Automata. For a finite alphabet Σ, a nondeterministic Büchi automaton (NBA)
is a tuple A = (Q,Q0, δ, F ), where Q is a finite set of states, Q0 ⊆ Q is a set
of initial states, δ : Q × Σ × Q is a transition relation, and F ⊆ Q is a set of
accepting states. Given an infinite word σ = σ1σ2 · · · ∈ Σω, a run of σ on A is
an infinite sequence q1q2q3 · · · ∈ Qω of states where q1 ∈ Q0 and (qi, σi, qi+1) ∈ δ
holds for all i ≥ 1. A run is called accepting if it contains infinitely many visits
to accepting states. A accepts a word σ if there is an accepting run of σ on A.
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The language L(A) of an NBA A is the set of all accepted words. Two NBAs
are equivalent if their languages are equivalent. An LTL specification ϕ can be
translated into an equivalent NBA Aϕ with a single exponential blow up [20].

Implementations and Counterstrategies. An implementation of a system with
inputs I, outputs O, and variables V = I ∪ O is a function f : (2V )∗ × 2I → 2O

mapping a history of variables and the current input to outputs. An infinite word
σ = σ1σ2 · · · ∈ (2V )ω is compatible with an implementation f if for all n ∈ N,
f(σ1 . . . σn−1, σn ∩ I) = σn ∩ O holds. The set of all compatible words of f is
denoted by C(f). An implementation f realizes a specification s if σ ∈ L(s) holds
for all σ ∈ C(f). A specification is called realizable if there exists an implemen-
tation realizing it. If a specification is unrealizable, there is a counterstrategy
fc : (2V )∗ → 2I mapping a history of variables to inputs. An infinite word
σ = σ1σ2 · · · ∈ (2V )ω is compatible with fc if fc(σ1 . . . σn−1) = σn ∩ I holds for
all n ∈ N. All compatible words of fc violate s, i.e., C(fc) ⊆ L(s).

Reactive Synthesis. Given a specification, reactive synthesis derives an imple-
mentation that realizes it. For LTL specifications, synthesis is 2EXPTIME-
complete [25]. Since we use synthesis as a black box procedure in this paper,
we do not go into detail here. Instead, we refer the interested reader to [11].

Notation. Overloading notation, we use union and intersection on words: For a
set X and σ = σ1σ2 · · · ∈ (2Σ1)ω, σ′ = σ′

1σ
′
2 · · · ∈ (2Σ2)ω with Σ = Σ1 ∪ Σ2,

σ∪σ′ := (σ1∪σ′
1)(σ2∪σ′

2) · · · ∈ (2Σ)ω and σ∩X := (σ1∩X)(σ2∩X) · · · ∈ (2X)ω.

3 Modular Synthesis

In this section, we introduce a modular synthesis algorithm that divides the syn-
thesis task into independent subtasks by splitting the specification into several
subspecifications. The decomposition algorithm has to ensure that the synthesis
tasks for the subspecifications can be solved independently and that their results
are non-contradictory, i.e., that they can be combined into an implementation
satisfying the initial specification. Note that when splitting the specification, we
assign a set of relevant in- and output variables to every subspecification. The
corresponding synthesis subtask is then performed on these variables.

Algorithm 1 describes this modular synthesis approach. First, the specifica-
tion is decomposed into a list of subspecifications using an adequate decomposi-
tion algorithm. Then, the synthesis tasks for all subspecifications are solved. If a
subspecification is unrealizable, its counterstrategy is extended to a counterstrat-
egy for the whole specification. This construction is given in the full version [12].
Otherwise, the implementations of the subspecifications are combined.

Soundness and completeness of modular synthesis depend on three require-
ments: Equirealizability of the initial specification and the subspecifications,
non-contradictory composability of the subresults, and satisfaction of the ini-
tial specification by the parallel composition of the subresults. Intuitively, these
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Algorithm 1: Modular Synthesis
Input: s: Specification, inp: List Variable, out: List Variable
Output: realizable: Bool, implementation: T

1 subspecifications ← decompose(s, inp, out)
2 sub results ← map synthesize subspecifications

3 foreach (real,strat) ∈ sub results do
4 if ! real then
5 implementation ← extendCounterStrategy(strat, s)
6 return (⊥, implementation)

7 impls ← map second sub results

8 return (�, compose impls)

requirements are met if the decomposition algorithm neither introduces nor drops
parts of the system specification and if it does not produce subspecifications that
allow for contradictory implementations. To obtain composability of the subre-
sults, the implementations need to agree on shared variables. We ensure this
by assigning disjoint sets of output variables to the synthesis subtasks: Since
every subresult only defines the behavior of the assigned output variables, the
implementations are non-contradictory. Since the language alphabets of the sub-
specifications differ, we define the non-contradictory composition of languages:

Definition 1 (Non-Contradictory Language Composition). Let L1, L2

be languages over 2Σ1 and 2Σ2 , respectively. The composition of L1 and L2 is
defined by L1 || L2 = {σ1 ∪ σ2 | σ1 ∈ L1 ∧ σ2 ∈ L2 ∧ σ1 ∩ Σ2 = σ2 ∩ Σ1}.

The satisfaction of the initial specification by the composed subresults can be
guaranteed by requiring the subspecifications to be independent sublanguages:

Definition 2 (Independent Sublanguages). Let L ⊆ (2Σ)ω, L1 ⊆ (2Σ1)ω,
and L2 ⊆ (2Σ2)ω be languages with Σ1, Σ2 ⊆ Σ and Σ1 ∪ Σ2 = Σ. Then, L1

and L2 are called independent sublanguages of L if L1 ||L2 = L holds.

From these two requirements, i.e., non-contradictory and independent sub-
languages, equirealizability of the initial specification and the subspecifications
follows. For the full proof, we refer the reader to full version [12].

Theorem 1. Let s, s1, s2 be specifications with L(s) ⊆ (2V )ω, L(s1) ⊆ (2V1)ω,
L(s2) ⊆ (2V2)ω. Recall that I ⊆ V is the set of input variables. If V1∩V2 ⊆ I and
V1 ∪ V2 = V hold, and L(s1) and L(s2) are independent sublanguages of L(s),
then s is realizable if, and only if, both s1 and s2 are realizable.

Proof (Sketch). First, let s1, s2 be realizable and let f1, f2 be implementations
realizing them. Let f be an implementation that acts as f1 on O ∩ V1 and
as f2 on O ∩ V2. Since V1 ∩ V2 ⊆ I and V1 ∪ V2 = V hold, f is well-defined and
defines the behavior of all outputs variables. By construction, f realizes s1 and s2
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since f1 and f2 do, respectively. Since L(s1) and L(s2) are non-contradictory,
independent sublanguages of L(s) by assumption, f thus realizes s.

Second, assume that si is unrealizable for some i ∈ {1, 2}. Then, there is a
counterstrategy fc

i for si. With the construction given in the full version [12],
we can construct a counterstrategy for s from fc

i . Hence, s is unrealizable. 
�
The soundness and completeness of Algorithm 1 for adequate decomposi-

tion algorithms now follows directly with Theorem 1 and the properties of such
algorithms described above: They produce subspecifications that do not share
output variables and that form independent sublanguages.

Theorem 2 (Soundness and Completeness). Let s be a specification. Let
S = {s1, . . . , sk} be a set of subspecifications with L(si) ⊆ (2Vi)ω such that⋃

1≤i≤k Vi = V , Vi ∩ Vj ⊆ I for 1 ≤ i, j ≤ k with i = j, and L(s1), . . . ,L(sk)
are independent sublanguages of L(s). If s is realizable, Algorithm 1 yields an
implementation realizing s. Otherwise, Algorithm 1 yields a counterstrategy for s.

Proof. First, let s be realizable. By applying Theorem 1 recursively, si is realiz-
able for all si ∈ S. Since Vi ∩Vj ⊆ I for any si, sj ∈ S with i = j, the implemen-
tations realizing the subspecifications are non-contradictory. Hence, Algorithm
1 returns their composition: Implementation f . Since V1∪· · ·∪Vk = V , f defines
the behavior of all outputs. By construction, f realizes all si ∈ S. Thus, since
the L(si) are non-contradictory, independent sublanguages of L(s), f realizes s.

Next, let s be unrealizable. Then, there exists an unrealizable subspecification
si ∈ S and Algorithm 1 returns its extension to a counterstrategy for the whole
system. The correctness of this construction is proven in the full version [12]. 
�

4 Decomposition of Nondeterministic Büchi Automata

To ensure soundness and completeness ofmodular synthesis, a decomposition algo-
rithm has to meet the language-based adequacy conditions of Theorem 1. In this
section, we lift these conditions from the language level to nondeterministic Büchi
automata and present a decomposition algorithm for specifications given as NBAs
on this basis. Since the algorithm works directly on NBAs and not on their lan-
guages, we consider their parallel composition instead of the parallel composition
of their languages: Let A1 = (Q1, Q

1
0, δ1, F1) and A2 = (Q2, Q

2
0, δ2, F2) be NBAs

over 2V1 , 2V2 , respectively. The parallel composition of A1 and A2 is defined by
the NBA A1 || A2 = (Q,Q0, δ, F ) over 2V1∪V2 with Q = Q1 × Q2, Q0 = Q1

0 × Q2
0,

((q1, q2), i , (q′
1, q

′
2)) ∈ δ if, and only if, (q1, i ∩V1, q

′
1) ∈ δ1 and (q2, i ∩V2, q

′
2) ∈ δ2,

and F = F1 × F2. The parallel composition of NBAs reflects the parallel compo-
sition of their languages:

Lemma 1. Let A1 and A2 be two NBAs over alphabets 2V1 and 2V2 , respectively.
Then, L(A1 || A2) = L(A1) || L(A2) holds.
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Algorithm 2: Automaton Decomposition
Input: A: NBA, inp: List Variable, out: List Variable
Output: subautomata: List (NBA, List Variable, List Variable)

1 if isNull checkedSubsets then
2 checkedSubsets ← ∅
3 subautomata ← [(A, inp, out)]
4 foreach X ⊂ out do
5 Y ← out\X
6 if X �∈ checkedSubsets ∧ Y �∈ checkedSubsets then
7 AX ← Aπ(X∪inp)

8 AY ← Aπ(Y∪inp)

9 if L(AX || AY) ⊆ L(A) then
10 subautomata ← decompose(AX, inp, X) ++ decompose(AY, inp, Y)
11 break

12 checkedSubsets ← checkedSubsets ∪ {X, Y}
13 return subautomata

Proof. First, let σ ∈ L(A1 || A2). Then, σ is an accepting run on A1 || A2. Hence,
by definition of automaton composition, for i ∈ {1, 2}, σ ∩ Vi is an accepting run
on Ai. Thus, σ ∩ Vi ∈ L(Ai). Since (σ ∩ V1) ∩ V2 = (σ ∩ V2) ∩ V1, we have
(σ ∩ V1) ∪ (σ ∩ V2) ∈ L(A1) || L(A2). By definition of automaton composition,
σ ∈ (2V1∪V2)ω and thus σ = (σ ∩ V1) ∪ (σ ∩ V2). Hence, σ ∈ L(A1) || L(A2).

Second, let σ ∈ L(A1) || L(A2). Then, there are σ1 ∈ (2V1)ω, σ2 ∈ (2V2)ω with
σ = σ1 ∪σ2 such that σi ∈ L(Ai) for i ∈ {1, 2} and σ1 ∩V2 = σ2 ∩V1. Hence, σi is
an accepting run on Ai. Thus, by definition of automaton composition and since
σ1 and σ2 agree on shared variables, σ1 ∪σ2 is an accepting run on A1 || A2. Thus,
σ1 ∪ σ2 ∈ L(A1 || A2) and hence σ ∈ L(A1 || A2) holds. 
�

Using the above lemma, we can formalize the independent sublanguage crite-
rion on NBAs directly: Two automata A1, A2 are independent subautomata of A
if A = A1 || A2. To apply Theorem 1, the alphabets of the subautomata may not
share output variables. Our decomposition algorithm achieves this by construct-
ing the subautomata from the initial automaton by projecting to disjoint sets of
outputs. Intuitively, the projection to a set X abstracts from the variables out-
side of X. Hence, it only captures the parts of the initial specification concerning
the variables in X. Formally: Let A = (Q,Q0, δ, F ) be an NBA over alphabet 2V

and let X ⊂ V . The projection of A to X is the NBA Aπ(X) = (Q,Q0, πX(δ), F )
over 2X with πX(δ) = {(q, a, q′) ∈ Q × 2X × Q | ∃ b ∈ 2V \X . (q, a ∪ b, q′) ∈ δ}.

The decomposition algorithm for NBAs is described in Algorithm 2. It is a
recursive algorithm that, starting with the initial automaton A, guesses a sub-
set X of the output variables out. It abstracts from the output variables outside
of X by building the projection AX of A to X ∪ inp, where inp is the set of input
variables. Similarly, it builds the projection AY of A to Y := (out \ X) ∪ inp. By
construction of AX and AY and since both X ∩ Y = ∅ and X ∪ Y = out hold, we



120 B. Finkbeiner et al.

0
(i1 ↔ o2)
∧ (i2 ↔ o1)

(a) NBA A
0 (i2 ↔ o1)

(b) NBA Aπ(V1)

0 (i1 ↔ o2)

(c) NBA Aπ(V2)

Fig. 1. NBA A for the shift 2 specification and its projections Aπ(V1) and Aπ(V2) to
V1 = {i1, i2, o1} and V2 = {i1, i2, o2}. All states are accepting.

have L(A) ⊆ L(AX || AY). Hence, if L(AX || AY) ⊆ L(A) holds, then AX || AY is
equivalent to A and therefore L(AX) and L(AY) are independent sublanguages of
L(A). Thus, since X ∩ Y = ∅ holds, AX and AY are a valid decomposition of A.
The subautomata are then decomposed recursively. If no further decomposition is
possible, the algorithm returns the subautomata. By only considering unexplored
subsets of output variables, no subset combination X, Y is checked twice.

As an example for the decomposition algorithm, consider the specification ϕ =
((i1 ↔ o2) ∧ (i2 ↔ o1)) for inputs I = {i1, i2} and outputs O = {o1, o2}. The

NBA A that accepts L(ϕ) is depicted in Fig. 1a. The subautomata obtained with
Algorithm 2 are shown in Figs. 1b and 1c. Clearly, V1 ∩ V2 ⊆ I holds. Moreover,
their parallel composition accepts exactly those words that satisfy ϕ. For a slightly
modified specification ϕ′ = ((i1 ↔ o2) ∨ (i2 ↔ o1)), however, Algorithm 2
does not decompose the NBA A′ with L(A′) = L(ϕ′): In fact, the only possible
decomposition is X = {o1}, Y = {o2} (or vice-versa), yielding NBAs A′

X and A′
Y

that accept every infinite word. Clearly, L(A′
X || A′

Y) ⊆ L(A′) since L(A′
X || A′

Y) =
(2I∪O)ω and hence A′

X and A′
Y are no valid decomposition.

Algorithm 2 ensures soundness and completeness of modular synthesis: The
subspecifications do not share output variables and they are equirealizable to
the initial specification. This follows directly from the construction of the subau-
tomata, Lemma 1, and Theorem 1. The proof is given in the full version [12].

Theorem 3. Let A be an NBA over alphabet 2V . Algorithm 2 terminates on A
with a set S = {A1, . . . ,Ak} of NBAs with L(Ai) ⊆ (2Vi)ω, where Vi ∩ Vj ⊆ I for
1 ≤ i, j ≤ k with i = j, V =

⋃
1≤i≤k Vi, and A is realizable if, and only if, for all

Ai ∈ S, Ai is realizable.

Since Algorithm 2 is called recursively on every subautomaton obtained by pro-
jection, it directly follows that the nondeterministic Büchi automata contained in
the returned list are not further decomposable:

Theorem 4. Let A be an NBA and let S be the set of NBAs that Algorithm 2
returns on input A. Then, for each Ai ∈ S over alphabet 2Vi , there are no NBAs
A′, A′′ over alphabets 2V ′

and 2V ′′
with Vi = V ′ ∪ V ′′ such that Ai = A′ || A′′.

Hence, Algorithm 2 yields perfect decompositions and is semantically precise.
Yet, it performs several expensive automaton operations such as projection, com-
position, and language containment checks. For large automata, this is infeasible.
For specifications given as LTL formulas, we thus present an approximate decom-
position algorithm in the next section that does not yield non-decomposable sub-
specifications, but that is free of the expensive automaton operations.
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5 Decomposition of LTL Formulas

An LTL specification can be decomposed by translating it into an equivalent NBA
and by then applying Algorithm 2. To circumvent expensive automaton opera-
tions, though, we introduce an approximate decomposition algorithm that, in con-
trast to Algorithm 2, does not necessarily find all possible decompositions. In the
following, we assume that V = prop(ϕ) holds for the initial specification ϕ. Note
that any implementation for the variables in prop(ϕ) can easily be extended to one
for the variables in V if prop(ϕ) ⊂ V by ignoring the inputs in I \ prop(ϕ) and by
choosing arbitrary valuations for the outputs in O \ prop(ϕ).

The main idea of the decomposition algorithm is to rewrite the initial LTL for-
mula ϕ into a conjunctive form ϕ = ϕ1 ∧· · ·∧ϕk with as many top-level conjuncts
as possible by applying distributivity and pushing temporal operators inwards
whenever possible. Then, we build subspecifications consisting of subsets of the
conjuncts. Each conjunct occurs in exactly one subspecification. We say that con-
juncts are independent if they do not share output variables. Given an LTL formula
with two independent conjuncts, the languages of the conjuncts are independent
sublanguages of the language of the whole formula:

Lemma 2. Let ϕ = ϕ1 ∧ ϕ2 be an LTL formula over Σ. Let L(ϕ1) ∈ (2Σ1)ω,
L(ϕ2) ∈ (2Σ2)ω be the languages of ϕ1 and ϕ2 over Σ1 and Σ2, respectively, with
Σ1 ∪ Σ2 = V . Then, L(ϕ1) and L(ϕ2) are independent sublanguages of L(ϕ).

Proof. First, let σ ∈ L(ϕ). Then, σ ∈ L(ϕi) for all i ∈ {1, 2}. Since prop(ϕi) ⊆ Σi

holds by definition and since the satisfaction of an LTL formula does only depend
on the valuations of the variables in prop(ϕi), we have σ∩Σi ∈ L(ϕi). Since clearly
(σ ∩ Σ1) ∩ Σ2 = (σ ∩ Σ2) ∩ Σ1 holds, (σ ∩ Σ1) ∪ (σ ∩ Σ2) ∈ L(ϕ1) || L(ϕ2). Since
Σ1 ∪ Σ2 = Σ, σ = (σ ∩ Σ1) ∪ (σ ∩ Σ2) and hence σ ∈ L(ϕ1) || L(ϕ2).

Next, let σ ∈ L(ϕ1) || L(ϕ2). Then, there are words σ1 ∈ L(ϕ1), σ2 ∈ L(ϕ2)
with σ1∩Σ2 = σ2∩Σ1 and σ = σ1∪σ2. Since σ1 and σ2 agree on shared variables,
σ ∈ L(ϕ1) and σ ∈ L(ϕ2) follows. Hence, σ ∈ L(ϕ1 ∧ ϕ2). 
�

Our decomposition algorithm then ensures that different subspecifications
share only input variables by merging conjuncts that share output variables into
the same subspecification. Then, equirealizability of the initial formula and the
subformulas follows directly from Theorem 1 and Lemma 2:

Corollary 1. Let ϕ = ϕ1 ∧ ϕ2 be an LTL formula over V with conjuncts ϕ1, ϕ2

over V1, V2, respectively, with V1 ∪ V2 = V and V1 ∩ V2 ⊆ I. Then, ϕ is realizable
if, and only if, both ϕ1 and ϕ2 are realizable.

To determine conjuncts of an LTL formula ϕ = ϕ1 ∧ · · · ∧ ϕn that share vari-
ables, we build the dependency graph Dϕ = (V,E) of the output variables, where
V = O and (a, b) ∈ E if, and only if, a ∈ prop(ϕi) and b ∈ prop(ϕi) for some
1 ≤ i ≤ n. Intuitively, outputs a and b that are contained in the same connected
component of Dϕ depend on each other in the sense that they either occur in the
same conjunct or that they occur in conjuncts that are connected by other output
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Algorithm 3: LTL Decomposition
Input: ϕ: LTL, inp: List Variable, out: List Variable
Output: specs: List (LTL, List Variable, List Variable)

1 ϕ ← rewrite(ϕ)
2 formulas ← removeTopLevelConjunction(ϕ)
3 graph ← buildDependencyGraph(ϕ, out)
4 components ← graph.connectedComponents()
5 specs ← new LTL[|components|+1] // initialized with true

6 foreach ψ ∈ formulas do
7 propositions ← getPropositions(ψ)
8 foreach (spec,set) ∈ zip specs (components ++ [inp]) do
9 if propositions ∩ set �= ∅ then

10 spec.And(ψ)
11 break

12 return map (λϕ → (ϕ, inputs(ϕ), outputs(ϕ))) specs

variables. Hence, to ensure that subspecifications do not share output variables,
conjuncts containing a or b need to be assigned to the same subspecification. Out-
put variables that are contained in different connected components, however, are
not linked and therefore implementations for their requirements can be synthesized
independently, i.e., with independent subspecifications.

Algorithm 3 describes how an LTL formula is decomposed into subspecifica-
tions. First, the formula is rewritten into conjunctive form. Then, the dependency
graph is built and the connected components are computed. For each connected
component as well as for all input variables, a subspecification is built by adding
the conjuncts containing variables of the respective connected component or an
input variable, respectively. Considering the input variables is necessary to assign
every conjunct, including input-only ones, to at least one subspecification. By con-
struction, no conjunct is added to the subspecifications of two different connected
components. Yet, a conjunct could be added to both a subspecification of a con-
nected component and the subspecification for the input-only conjuncts. This is
circumvented by the break in Line 11. Hence, every conjunct is added to exactly
one subspecification. To define the input and output variables for the synthesis
subtasks, the algorithm assigns the inputs and outputs occurring in ϕi to the sub-
specification ϕi. While restricting the inputs is not necessary for correctness, it
may improve the runtime of the corresponding synthesis task.

Soundness and completeness of modular synthesis with Algorithm 3 as a
decomposition algorithm for LTL formulas follows directly from Corollary 1 if the
subspecifications do not share any output variables:

Theorem 5. Let ϕ be an LTL formula over V . Then, Algorithm 3 terminates on
ϕ with a set S = {ϕ1, . . . , ϕk} of LTL formulas with L(ϕi) ∈ (2Vi)ω such that
Vi ∩ Vj ⊆ I for 1 ≤ i, j ≤ k with i = j,

⋃
1≤i≤k Vi = V , and such that ϕ is

realizable, if, and only if, for all ϕi ∈ S, ϕi is realizable.
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Proof. Since an output variable is part of exactly one connected component and
since all conjuncts containing an output are contained in the same subspecification,
every output is part of exactly one subspecification. Therefore, Vi∩Vj ⊆ I holds for
1 ≤ i, j ≤ k with i = j. Moreover, the last component added in Line 8 contains all
inputs. Hence, all variables that occur in a conjunct of ϕ are featured in at least one
subspecification. Thus,

⋃
1≤i≤k Vi = prop(ϕ) holds and hence, since V = prop(ϕ)

by assumption,
⋃

1≤i≤k Vi = V follows. Therefore, equirealizability of ϕ and the
formulas in S directly follows with Corollary 1. 
�

While Algorithm 3 is simple and ensures soundness and completeness of mod-
ular synthesis, it strongly depends on the structure of the formula: When rewrit-
ing formulas in assumption-guarantee format, i.e., ϕ =

∧m
i=1 ϕi → ∧n

j=1 ψj , to a
conjunctive form, the conjuncts contain both assumptions ϕi and guarantees ψj .
Hence, if a, b ∈ O occur in assumption ϕi and guarantee ψj , respectively, they are
dependent. Thus, all conjuncts featuring a or b are contained in the same subspec-
ification according to Algorithm 3. Yet, ψj might be realizable even without ϕi.
An algorithm accounting for this might yield further decompositions.

In the following, we present a criterion for dropping assumptions in a sound
and complete fashion. Intuitively, we can drop an assumption ϕ for a guarantee ψ
if they do not share any variable. However, if ϕ can be violated by the system, i.e.,
if ¬ϕ is realizable, equirealizability is not guaranteed when dropping the assump-
tion. For instance, consider the formula ϕ = (i1 ∧ o1) → (i2 ∧ o2), where
I = {i1, i2} and O = {o1, o2}. Although assumption and guarantee do not share
any variables, the assumption cannot be dropped: An implementation that never
sets o1 to true satisfies ϕ but (i2 ∧ o2) is not realizable. Furthermore, dependen-
cies between input variables may yield unrealizability if an assumption is dropped
as information about the remaining inputs might get lost. For instance, in the for-
mula (( i1 → i2) ∧ (¬ i1 → i3) ∧ (i2 ↔ i4) ∧ (i3 ↔ ¬i4)) → ( i1 ↔ o), where
I = {i1, i2, i3, i4} and O = {o}, no assumption can be dropped: Otherwise the
information about the global behavior of i1, which is crucial for the existence of an
implementation, is incomplete. This leads to the following criterion for dropping
assumptions. For the full proof, we refer to the full version [12].

Lemma 3 (Dropping Assumptions). Let ϕ = (ϕ1 ∧ ϕ2) → ψ be an LTL for-
mula with prop(ϕ1) ∩ prop(ϕ2) = ∅ and prop(ϕ2) ∩ prop(ψ) = ∅. Let ¬ϕ2 be unre-
alizable. Then, ϕ1 → ψ is realizable if, and only if, ϕ is realizable.

Proof (Sketch). First, assume that ϕ′ := ϕ1 → ψ is realizable and let f be
an implementation realizing it. Clearly, a strategy that ignores inputs outside of
prop(ϕ′), behaves as f on outputs in prop(ϕ′), and chooses arbitrary valuations for
the outputs outside of prop(ϕ′), realizes (ϕ1 ∧ ϕ2) → ψ.

Next, assume that (ϕ1 ∧ ϕ2) → ψ is realizable and let f be an implementation
realizing it. Since ¬ϕ2 is unrealizable by assumption, there exists a counterstrat-
egy fc

2 with C(fc
2) ⊆ L(ϕ2). For every σ ∈ (2prop(ϕ

′))ω, we can construct a word
σ̂ ∈ (2V )ω with fc

2 that is equivalent to σ on the variables in prop(ϕ′) but satis-
fies ϕ2. Let g be an implementation that for every input σ behaves as f on σ̂. Since
g behaves as f but ensures that ϕ2 is satisfied, it realizes ϕ′. 
�
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By dropping assumptions, we are able to decompose LTL formulas of the
form ϕ =

∧m
i=1 ϕi → ∧n

j=1 ψj in further cases: Intuitively, we rewrite ϕ to
∧n

j=1(
∧m

i=1 ϕi → ψj) and then drop assumptions for the individual guarantees. If
the resulting subspecifications only share input variables, they are equirealizable
to ϕ. For the full proof, we refer to the full version of this paper [12].

Theorem 6. Let ϕ = (ϕ1 ∧ ϕ2 ∧ ϕ3) → (ψ1 ∧ ψ2) be an LTL formula over V ,
where prop(ϕ3) ⊆ I and prop(ψ1) ∩ prop(ψ2) ⊆ I. Let prop(ϕ1) ∩ prop(ϕ2) = ∅,
prop(ϕ1)∩prop(ϕ3) = ∅, prop(ϕ2)∩prop(ϕ3) = ∅, and prop(ϕi)∩prop(ψ3−i) = ∅
for i ∈ {1, 2}. Let ¬(ϕ1 ∧ϕ2 ∧ϕ3) be unrealizable. Then, ϕ is realizable if, and only
if, both ϕ′ = (ϕ1 ∧ ϕ3) → ψ1 and ϕ′′ = (ϕ2 ∧ ϕ3) → ψ2 are realizable.

Proof (Sketch). First, let ϕ be realizable and let f be an implementation realizing
it. Clearly, f realizes (ϕ1 ∧ ϕ2 ∧ ϕ3) → ψi for all i ∈ {1, 2} as well. By Lemma 3,
(ϕ1 ∧ϕ2 ∧ϕ3) → ψi and (ϕi ∧ϕ3) → ψi are equirealizable since ϕ1, ϕ2, and ϕ3 do
not share any variables and ϕ3−i and ψi only share input variables by assumption.
Thus, there are implementations realizing ϕ′ and ϕ′′.

Next, let ϕ′ and ϕ′′ be realizable and let f1, f2 be implementations realizing
them. Let f be an implementation that acts as f1 on the variables in prop(ϕ′) and
as f2 on the variables in prop(ϕ′′).The formulas only share variables in prop(ϕ3)
and thus only input variables. Hence, f is well-defined. By construction, f realizes
both ϕ′ and ϕ′′. Thus, since ϕ′ ∧ ϕ′′ implies ϕ, f realizes ϕ. 
�

Analyzing assumptions thus allows for decomposing LTL formulas in further
cases and still ensures soundness and completeness of modular synthesis. A mod-
ified LTL decomposition algorithm needs to identify variables that cannot be
shared safely among subspecifications. If an assumption contains such variables,
it is bound to guarantees. Otherwise, it is free. Guarantees are decomposed as
in Algorithm 3. Then, bounded assumptions are added to the subspecifications
of their respective guarantees. Free assumptions can be added to all subspecifi-
cations. To obtain small subspecifications, though, further optimizations can be
used. A detailed description of the algorithm is given in the full version [12].

Note that the decomposition algorithm does not check for possible violations of
assumptions. Instead, we slightly modify the modular synthesis algorithm: Before
decomposing,we perform synthesis on the negated assumptions. If it returns realiz-
able, it is possible to violate an assumption. The implementation is extended to an
implementation for the whole specification that violates the assumptions and thus
realizes the specification. Otherwise, if the negated assumptions are unrealizable,
the conditions of Theorem 6 are satisfied. Hence, we can use the decomposition
algorithm and proceed as in Algorithm 1.

6 Experimental Evaluation

We implemented the modular synthesis algorithm as well as the decomposition
approaches and evaluated them on the 346 publicly available SYNTCOMP [16]
benchmarks. Note that only 207 of the benchmarks have more than one output
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Fig. 2.Comparison of the performance of modular and non-compositional synthesis with
BoSy and Strix on the decomposable SYNTCOMP benchmarks. For the modular app-
roach, the accumulated time for all synthesis tasks is depicted.

variable and are therefore realistic candidates for decomposition. The automaton
decomposition algorithm utilizes the Spot (2.9.6) automaton library [7] and the
LTL decomposition relies on SyFCo (1.2.1.1) [17] for formula transformations. We
first decompose the specification and then run synthesis on the resulting subspec-
ifications. We compare the CPU Time, Gates, and Latches for the original speci-
fication to the sum of the corresponding attributes of all subspecifications. Thus,
we calculate the runtime for sequential modular synthesis. Parallelization of the
synthesis tasks may further reduce the runtime.

6.1 LTL Decomposition

LTL decomposition with optimized assumption handling terminates on all bench-
marks in less than 26 ms. Thus, even for non-decomposable specifications, the over-
head is negligible. The algorithm decomposes 39 formulas into several subspecifi-
cations, most of them yielding two or three subspecifications. Only a handful of
formulas are decomposed into more than six subspecifications.

We evaluate our modular synthesis approach with two state-of-the-art synthe-
sis tools: BoSy [9], a bounded synthesis tool, and Strix [22], a game-based synthesis
tool, both in their 2019 release. We used a machine with a 3.6 GHz quad-core Intel
Xeon processor and 32 GB RAM and a timeout of 60 min. In Fig. 2, the compari-
son of the accumulated runtimes of the synthesis of the subspecifications and the
original formula is shown for the decomposable benchmarks. For both BoSy and
Strix, decomposition generates a slight overhead for small specifications. For larger
and more complex benchmarks, however, modular synthesis decreases the execu-
tion time significantly, often by an order of magnitude or more. Note that due to
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Table 1. Synthesis time (in seconds) of BoSy and Strix for non-compositional and mod-
ular synthesis on exemplary SYNTCOMP benchmarks.

Benchmark Original Modular

# subspec. BoSy Strix BoSy Strix

Cockpitboard 8 1526.32 11.06 2.108 8.168

Gamelogic 4 TO 1062.27 TO 25.292

LedMatrix 3 TO TO TO 1156.68

Radarboard 11 TO 126.808 3.008 11.04

Zoo10 2 1.316 1.54 0.884 2.744

generalized buffer 2 2 70.71 534.732 4.188 7.892

generalized buffer 3 2 TO TO 27.136 319.988

shift 8 8 0.404 1.336 2.168 3.6

shift 10 10 1.172 1.896 2.692 4.464

shift 12 12 4.336 6.232 3.244 5.428

the negligible runtime of specification decomposition, the plot looks similar when
considering all SYNTCOMP benchmarks.

Table 1 shows the running times of BoSy and Strix for modular and non-
compositional synthesis on exemplary benchmarks. On almost all of them, both
tools decrease their synthesis times with modular synthesis notably compared to
the original non-compositional approaches. Particularly noteworthy is the bench-
mark generalized buffer 3. In the last synthesis competition, SYNTCOMP 2020,
no tool was able to synthesize a solution for it within one hour. With modular syn-
thesis, however, BoSy yields a result in less than 28 s.

In Table 2, the number of gates and latches of the AIGER circuits [1] corre-
sponding to the implementations computed by BoSy and Strix for modular and
non-compositional synthesis are depicted for exemplary benchmarks. For most
specifications, the solutions of modular synthesis are of the same size or smaller in
terms of gates than the solutions for the original specification. The size of the solu-
tions in terms of latches, however, varies. Note that BoSy does not generate solu-
tions with less than one latch in general. Hence, the modular solution will always
have at least as many latches as subspecifications.
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Table 2. Gates and latches of the solutions of BoSy and Strix for non-compositional and
modular synthesis on exemplary SYNTCOMP benchmarks.

Benchmark Gates Latches

Original Modular Original Modular

BoSy Strix BoSy Strix BoSy Strix BoSy Strix

Cockpitboard 11 7 25 10 1 0 8 0

Gamelogic – 26 – 21 – 2 – 2

LedMatrix – – – 97 – – – 5

Radarboard – 6 19 6 – 0 11 0

Zoo10 14 15 15 13 1 2 2 2

generalized buffer 2 3 12 3 11 69 47134 14 557

generalized buffer 3 – – 20 3772 – – 3 14

shift 8 8 0 8 7 1 0 8 0

shift 10 10 0 10 9 1 0 10 0

shift 12 12 0 12 11 1 0 12 0

6.2 Automata Decomposition

Besides LTL specifications, Strix also accepts specifications given as deterministic
parity automata (DPAs) in extended HOA format [23], an automaton format well-
suited for synthesis. Thus, our implementation performs Algorithm 2, converts the
resulting automata to DPAs and synthesizes solutions with Strix.

For 235 out of the 346 SYNTCOMP benchmarks, decomposition terminated
within 10 min yielding several subspecifications or proving that the specification is
not decomposable. In 79 of the other cases, the tool timed out and in the remaining
32 cases it reached the memory limit of 16 GB or the internal limits of Spot. Note,
however, that for 81 specifications even plain DPA generation fails. Thus, while
the automaton decomposition algorithm yields more fine-grained decompositions
than the approximate LTL approach, it becomes infeasible when the specifications
grow. Hence, the advantage of smaller synthesis subtasks cannot pay off. However,
the coarser LTL decomposition suffices to reduce the synthesis time on common
benchmarks significantly. Thus, LTL decomposition is in the right balance between
small subtasks and a scalable decomposition.

For 43 specifications, the automaton approach yields decompositions and many
of them consist of four or more subspecifications. For 22 of these specifications, the
LTL approach yields a decomposition as well. Yet, they differ in most cases, as the
automaton approach yields more fine-grained decompositions.

Recall that only 207 SYNTCOMP benchmarks are realistic candidates for
decomposition. The automaton approach proves that 90 of those specifications
(43.6%) are not decomposable. Thus, our implementations yield decompositions
for 33.33% (LTL) and 36.75% (Automaton) of the potentially decomposable spec-
ifications. We observed that decomposition works exceptionally well for specifica-
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tions that stem from real system designs, for instance the Syntroids [14] case study,
indicating that modular synthesis is particularly beneficial in practice.

7 Conclusions

We have presented a modular synthesis algorithm that applies compositional tech-
niques to reactive synthesis. It reduces the complexity of synthesis by decom-
posing the specification in a preprocessing step and then performing indepen-
dent synthesis tasks for the subspecifications. We have introduced a criterion for
decomposition algorithms that ensures soundness and completeness of modular
synthesis as well as two algorithms for specification decomposition satisfying the
criterion: A semantically precise one for nondeterministic Büchi automata, and
an approximate algorithm for LTL formulas. We have implemented the modular
synthesis algorithm as well as both decomposition algorithms and we compared
our approach for the state-of-the-art synthesis tools BoSy and Strix to their non-
compositional forms. Our experiments clearly demonstrate the significant advan-
tage of modular synthesis with LTL decomposition over traditional synthesis algo-
rithms. While the overhead is negligible, both BoSy and Strix are able to synthesize
solutions for more benchmarks with modular synthesis. Moreover, they improve
their synthesis times on complex specifications notably. This shows that decom-
posing the specification is a game-changer for practical synthesis.

Building up on the presented approach, we can additionally analyze whether
the subspecifications fall into fragments for which efficient synthesis algorithms
exist, for instance safety specifications. Moreover, parallelizing the individual syn-
thesis tasks may expand the advantage of modular synthesis over classical algo-
rithms. Since the number of subspecifications computed by the LTL decomposi-
tion algorithm highly depends on the rewriting of the initial formula, a further
promising next step is to develop more sophisticated rewriting algorithms.

References

1. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Technical report
11/2, Institute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria (2011)

2. Bloem, R., Chatterjee, K., Jacobs, S., Könighofer, R.: Assume-guarantee synthe-
sis for concurrent reactive programs with partial information. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 517–532. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 50

3. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 21

4. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In: Pro-
ceedings of the Fourth Annual Symposium on Logic in Computer Science. LICS 1989,
pp. 353–362. IEEE Computer Society (1989). https://doi.org/10.1109/LICS.1989.
39190

https://doi.org/10.1007/978-3-662-46681-0_50
https://doi.org/10.1007/978-3-540-71209-1_21
https://doi.org/10.1109/LICS.1989.39190
https://doi.org/10.1109/LICS.1989.39190


Specification Decomposition for Reactive Synthesis 129

5. Damm, W., Finkbeiner, B.: Does it pay to extend the perimeter of a world model?
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 12–26. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 4

6. Dureja, R., Rozier, K.Y.: More scalable LTL model checking via discovering design-
space dependencies (D3). In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 309–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2 17

7. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot
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