
Online Shielding for Stochastic Systems

Bettina Könighofer1,3(B), Julian Rudolf1, Alexander Palmisano1,
Martin Tappler2,3,4, and Roderick Bloem1

1 Institute IAIK, Graz University of Technology, Graz, Austria
bettina.konighofer@iaik.tugraz.at

2 Institute IST, Graz University of Technology, Graz, Austria
3 Silicon Austria Labs, TU-Graz SAL DES Lab, Graz, Austria

4 Schaffhausen Institute of Technology, Schaffhausen, Switzerland

Abstract. We propose a method to develop trustworthy reinforcement
learning systems. To ensure safety especially during exploration, we auto-
matically synthesize a correct-by-construction runtime enforcer, called a
shield, that blocks all actions of the agent that are unsafe with respect
to a temporal logic specification. Our main contribution is a new synthe-
sis algorithm for computing the shield online. Existing offline shielding
approaches compute exhaustively the safety of all states-action combina-
tions ahead-of-time, resulting in huge computation times, large memory
consumption, and significant delays at runtime due to the look-ups in
huge databases. The intuition behind online shielding is to compute at
runtime the set of all states that could be reached in the near future. For
each of these states, the safety of all available actions is analysed and used
for shielding as soon as one of the considered states is reached. Our pro-
posed method is general and can be applied to a wide range of planning
problems with stochastic behaviour. For our evaluation, we selected a 2-
player version of the classical computer game Snake. The game requires
fast decisions and the multiplayer setting induces a large state space,
computationally expensive to analyze exhaustively. The safety objective
of collision avoidance is easily transferable to a variety of planning tasks.

1 Introduction

Reinforcement Learning (RL) proved successful in solving complex tasks that
are difficult to solve using classic controller design, including applications in
computer games [33], multi-agent planning [40], and robotics [37]. RL learns
high-performance controllers by optimizing objectives expressed via rewards
in unknown, stochastic environments. Although learning-enabled controllers
(LECs) have the potential to outperform classical controllers, safety concerns
prevent LECs from being widely used in real-world tasks [3]. In RL, optimal
strategies are obtained without prior knowledge about the environment. There-
fore, the safety of actions is not known before their executions. Even after train-
ing, there is no guarantee that no unsafe actions are part of the final policy.
Having no safety guarantees is unacceptable for safety-critical areas, such as

c© Springer Nature Switzerland AG 2021
A. Dutle et al. (Eds.): NFM 2021, LNCS 12673, pp. 231–248, 2021.
https://doi.org/10.1007/978-3-030-76384-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76384-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-76384-8_15

232 B. Könighofer et al.

autonomous driving. Safety guarantees take different forms. Especially safety-
critical operations require the absence of all unsafe behaviour, while achieving
absolute safety for all operations may be impossible due to uncertain, stochastic
behaviour. In these cases, safety guarantees may limit the probability of unsafe
events.

Shielding [7] is a runtime enforcement technique to ensure safe decision mak-
ing. By augmenting an RL-agent with a shield unsafe actions are blocked by
the shield and the learning agent can only pick a safe action to be sent to the
environment. Shields are automatically constructed via correct-by-construction
formal synthesis methods from a model of the environment dynamics and a safety
specification. Consequently, an agent augmented with a shield is guaranteed to
satisfy the safety objective as long as the shield is used. We model the environ-
ment via Markov decision processes (MDPs), a popular modelling formalism for
decision-making under uncertainty [36,38]. We assess safety by means of proba-
bilistic temporal logic constraints [5], which can express different forms of safety
guarantees. In this paper, we generally limit the probability to reach critical
states in the MDP. For each state and action, exact probabilities are computed
on how likely it is that executing this action results in a safety violation from
the current state. The shield then blocks all actions whose probability of leading
to safety violations exceeds a threshold with respect to an optimally safe action.

The problem with offline shielding. The computation of an offline shield for
discrete-event systems requires an exhaustive, ahead-of-time safety analysis for
all possible state-action combinations. Therefore, the complexity of offline shield
synthesis grows exponentially in the state and action dimension, which limits the
application of offline shielding to small environments. Previous work that applied
shields in complex, high-dimensional environments relied on over-approximations
of the reachable states and domain-oriented abstractions [2,4]. However, this may
result in imprecise safety computations of the shield. This way, the shield may
become over-restrictive, hindering the learning agent in properly exploring the
environment and finding its optimal policy [19].

Our Solution – Online Shielding. Our approach is based on the idea of comput-
ing the safety of actions on-the-fly during run time. In many applications, the
learning agent does not have to take a decision at every time step. Instead, the
learning agent only has to make a decision when reaching a decision state. As an
example consider a service robot traversing a corridor. The agent has time until
the service robot reaches the end of the corridor, i.e., the next decision state, to
decide where the service robot should go next. Online shielding uses the time
between two decision states to compute the safety of all possible actions in the
next decision state. When reaching the next decision state, this information is
used to block unsafe actions of the agent. While the online safety analysis incurs
a runtime overhead, every single computation of the safety of an action is efficient
and parallelisable. Thus, in many settings, expensive offline pre-computation and
huge shielding databases with costly lookups are not necessary. Since the safety
analysis is performed only for decision states that are actually reached, online
shielding is applicable to large, changing, or unknown environments.

Online Shielding for Stochastic Systems 233

In this paper, we solve the problem of shielding a controllable RL-agent
in an environment shared with other autonomous agents that perform tasks
concurrently. Some combinations of agent positions are safety-critical, as they
e.g., correspond to collisions. A safety property may describe the probability of
reaching such positions (or other safety properties expressible in temporal logic).
The task of the shield is to block actions with a too high risk of leading to such a
state. In online shielding, the computation of the safety for any action in the next
decision state starts as soon as the controllable agent leaves the current decision
state. The tricky part of online shielding in the multi-agent setting is that during
the time the RL agent has between two consecutive decisions, the other agents
also change their positions. Therefore, online shielding needs to compute the
safety of actions with respect to all possible movements of the other agents.

Technically, we use MDPs to formalize the dynamics of the agents operating
within the environment. At runtime, we create a small MDP for each decision.
These MDPs model the immediate future from the viewpoint of the RL. Via
model checking, we determine for the next actions the minimal probability of
violating safety. An action is blocked by the shield, if the action violates safety
with a probability higher than a threshold relative to the minimal probability.

Contributions. The contributions of this paper comprise (1) the formalisation of
online shielding, (2) its implementation via probabilistic model-checking includ-
ing a demonstrator that is available online1, and (3) an evaluation of online
shielding. The implementation and the evaluation apply shielding to a two-player
version of the classic computer game Snake. The evaluation demonstrates that
shields can be efficiently computed at runtime, guarantee safety, and have the
potential to positively influence learning performance.

Outline. The rest of the paper is structured as follows. Section 1.1 discusses
related work. We discuss the relevant foundations in Sect. 2. In Sect. 3, we present
the setting and formulate the problem that we address. We present online shield-
ing in Sect. 4, by defining semantics for autonomous agents in the considered
setting and defining online shield computations based on these semantics. In
Sect. 5, we report on the evaluation of online shielding for the classic computer
game Snake. Section 6 concludes the paper with a summary and an outlook on
future work.

1.1 Related Work

Runtime enforcement (RE) [12,30,41] covers a wide range of techniques to
enforce the correctness of a controller at run-time. The concept of a correct-by-
construction safety-shield to enforce such correctness with respect to a temporal
logic specification was first proposed in [7]. Shields are usually constructed offline
by computing a maximally permissive policy containing all actions that will not
violate the safety specification. Several extensions exist [4,6,29,39]. The shield-
ing approach has been shown to be successful in combination with RL [2,21].

1 http://www.onlineshielding.at, accessed: 2020-11-27.

http://www.onlineshielding.at

234 B. Könighofer et al.

Jansen et al. [19] introduced offline shielding with respect to probabilistic
safety. Our work on online shielding directly extends their notion of shielding to
the online setting. The offline approach was limited as every action for every state
has to be analyzed ahead of time, making the offline approach infeasible for com-
plex environments. Our proposed extension to perform the safety analysis online
allows the application of shielding in large, high-dimensional environments.

Pranger et al. [29] proposed adaptive shields to enforce quantitative objec-
tives at run-time. While the computation of their shields is performed offline,
the authors deal with the consequences of an incorrect or incomplete model
that is used for the computation of the shield. During runtime, the authors use
abstraction refinement and online probability estimation to update the model
and synthesize new shields from the updated models periodically.

Li et al. [24] proposed model predictive shielding (MPS). Given an optimal
policy and a safe policy, MPS checks online for each visited state, whether safety
will be maintained using the optimal policy. If not, MPS switches to the safe
policy. In online shielding, we compute the safety of actions before a decision
state is visited, thereby preventing delays at runtime. Furthermore, in online
shielding, we do not switch between policies but evaluate all possible decisions
to be maximally permissive to the shielded agent.

Safe RL [13,15,27] is concerned with providing safety guarantees for learned
agents. Our work focusses on the safe exploration [26], we refer to [15] for other
types of safe RL. Using their taxonomy, shielding is an instance of “teacher
provides advice” [9], where a teacher with additional information about the
system guides the RL agent to pick the right actions. Apprenticeship learning [1]
is a closely related variant where the teacher gives (positive) examples and has
been used in the context of verification [42]. Uppaal Stratego synthesizes
safe, permissive policies that are optimized via learning to create controllers
for real-time systems [10]. Some of the work does not assume a model for the
environment, making the problem intrinsically harder—and often limiting safety
during exploration. We refer to [8,14,16–18] for some interesting approaches.

2 Preliminaries

Sequence and Tuple Notation. We denote sequences of elements by t = e0 · · · en

with ε denoting the empty sequence. The length of t is denoted |t| = n + 1. We
use t[i] = ei for 0-based indexed access on tuples and sequences. The notation
t[i ← e′

i] represents overwriting of the ith element of t by e′
i, that is, t[j] = t[i ←

e′
i][j] for all j �= i and t[i ← e′

i][i] = e′
i.

A probability distribution over a countable set X is a function μ : X → [0, 1]
with

∑
x∈X μ(x) = 1. Distr(X) denotes all distributions on X. The support of

μ ∈ Distr(X) is supp(μ) = {x ∈ X | μ(x)>0}.
A Markov decision process (MDP) M = (S, s0,A,P) is a tuple with a finite

set S of states, a unique initial state s0 ∈ S, a finite set A = {a1 . . . , an} of
actions, and a (partial) probabilistic transition function P : S × A → Distr(S),
where P(s, a) = ⊥ denotes undefined behaviour. For all s ∈ S the available

Online Shielding for Stochastic Systems 235

actions are A(s) = {a ∈ A|P(s, a) �= ⊥} and we assume |A(s)| ≥ 1. A path in an
MDP M is a finite (or infinite) sequence ρ = s0a0s1a1 . . . with P(si, ai)(si+1) >
0 for all i ≥ 0 unless otherwise noted.

Non-deterministic choices in an MDP are resolved by a so-called policy. For
the properties considered in this paper, memoryless deterministic policies are
sufficient [5]. These are functions π : S → A with π(s) ∈ A(s). We denote the set
of all memoryless deterministic policies of an MDP by Π. Applying a policy π to
an MDP yields an induced Markov chain D = (S, sI , P) with P : S → Distr(S)
where all nondeterminism is resolved. A reward function r : S ×A → R≥0 for an
MDP adds a reward to every state s and action a enabled in s.

In formal methods, safety properties are often specified as linear temporal
logic (LTL) properties [28]. For an MDP M, probabilistic model checking [20,22]
employs value iteration or linear programming to compute the probabilities of
all states and actions of the MDP to satisfy a safety property ϕ.

Specifically, we compute ηmax
ϕ,M : S → [0, 1] or ηmin

ϕ,M : S → [0, 1], which yields
for all states the maximal (or minimal) probability over all possible policies to
satisfy ϕ. For instance, for ϕ encoding to reach a set of states T , ηmax

ϕ,M(s) is the
maximal probability to “eventually” reach a state in T from state s ∈ S.

3 Setting and Problem Statement

Setting. We consider a setting similar to [19], where one controllable agent,
called the avatar, and multiple uncontrollable agents, called adversaries operate
within an arena. The arena is a compact, high-level description of the underlying
model and captures the dynamic of the agents. Any information on rewards is
neglected within the arena since it is not needed for safety computations.

From this arena, potential agent locations may be inferred. Within the arena,
the agents perform tasks that are sequences of activities performed consecutively.

Formally, an arena is a pair G = (V,E), where V is a set of nodes and E is
a finite set of E ⊆ V × V . An agent’s location is defined via the current node
v ∈ V . An edge (v, v′) ∈ E represents an activity of an agent. By executing an
activity, the agent moves to its next location v′. A task is defined as a non-empty
sequence (v1, v2) ·(v2, v3) ·(v3, v4) · · · (vn−1, vn) ∈ E∗ of connected edges. To ease
representation, we denote tasks also as sequences of locations v1 · v2 · · · vn.

The set of tasks available in a location v ∈ V is given by the function Task(v).
The set of all tasks of an arena G is denoted by Task(G). The avatar is only able
to select a next task at a decision location in VD ⊆ V . To avoid deadlocks, we
require for any decision location v ∈ VD that Task(v) �= ∅ and for all v · · · v′ ∈
Task(v) that v′ ∈ VD, i.e., any task ends in another decision location from
which the agent is able to decide on a new task. A safety property may describe
that some combinations of agent positions are safety-critical and should not be
reached (or any other safety property from the safety fragment of LTL).

Example 1 (Gridworld). Figure 1 shows a simple gridworld with corridors rep-
resented by white tiles and walls represented by black tiles. A tile is defined
via its (x, y) position. We model this gridworld with an arena G = (V,E) by

236 B. Könighofer et al.

1 2 3 4 5

1

2

3

4

5

A

E

Fig. 1. Gridworld with avatar A (top right) and an adversary E (bottom left).

associating each white tile with a location in V and creating an edge in E
for each pair of adjacent white tiles. Corners and crossings are decision loca-
tions, i.e., Vd = {(1, 1), (1, 3), (1, 5), (5, 1), (5, 3), (5, 5)}. At each decision loca-
tion, tasks define sequences of activities needed to traverse adjoining corridors,
e.g., Task((1, 3)) = {(1, 3) · (2, 3) · (3, 3) · (4, 3) · (5, 3), (1, 3) · (1, 2) · (1, 1),
(1, 3) · (1, 4) · (1, 5)}.

Problem. Consider an environment described by an arena as above and a safety
specification. We assume stochastic behaviours for the adversaries, e.g., obtained
using RL [31,32]. In fact, this stochastic behaviour determines all actions of the
adversaries via probabilities. The underlying model is then an MDP: the avatar
executes an action, and upon this execution, the next exact positions (the state
of the system) are determined stochastically.

Our aim is to shield the decision procedure of the avatar to avoid unsafe
behaviour regarding the stochastic movements of the adversaries. The problem
is to compute a shield that prevents the avatar to violate the given safety specifi-
cation by more than a threshold δ with respect to the optimal safety probability.
The safety analysis of actions is performed on-the-fly allowing the avatar to
operate within large arenas.

Example 2 (Gridworld). In Fig. 1, the tile labelled A denotes the location of the
avatar and the tile labelled E denotes the position of an adversary. Let (xA, yA)
and (xE , yE) be the positions of the avatar and the adversary, respectively. A
safety property in this scenario is ¬F(xA = xE ∧ yA = yE). The negated “even-
tually” operator F states that we must not eventually reach a state where the
agents collide. Thus, the property specifies safety by requiring that unsafe states
must not be reached. We give more details in Sect. 4.3 on how to construct a
shield for this setting.

4 Online Shielding for MDPs

In this section, we outline the workflow of online shielding in Fig. 2 and describe it
below. Given an arena and behaviour models for adversaries, we define an MDP
M that captures all safety-relevant information. At runtime, we use current

Online Shielding for Stochastic Systems 237

Adversary
Behaviour Models

Arena

Runtime
Information

Model M of
Next Decision

Online
Shield

Avatar
(RL-Agent)

Safety
Analysis

Blocking
Unsafe Actions

Execution & Observation

Fig. 2. Workflow of the shield construction.

runtime information to create sub-MDPs M of M that model the immediate
future of the agents up to some finite horizon. Given such a sub-MDP M and
a safety property ϕ, we compute via model checking the probability to violate
ϕ within the finite horizon for each task available. The shield then blocks tasks
involving a too large risk from the avatar.

4.1 Behaviour Models for Adversaries

The adversaries and the avatar operate within a shared environment, which
is represented by an arena G = (V,E), and perform tasks independently. We
assume that we are given a stochastic behaviour model of each adversary that
determines all task choices of the respective adversary via probabilities. The
behaviour of an adversary is formally defined as follows.

Definition 1 (Adversary Behaviour). For an arena G = (V,E), we define
the behaviour Bi of an adversary i as a function Bi : VD → Distr(Task(G)) from
decision locations to distributions over tasks, with supp(Bi(v)) ⊆ Task(v).

Behaviour models of adversaries may be derived using domain knowledge
or generalised from observations using machine learning or automata learn-
ing [25,35]. A potential approach is to observe adversaries in smaller arenas
and transfer knowledge gained in this way to larger arenas [19]. Cooperative and
truly adverse behaviour of adversaries may require considering additional aspects
in the adversary behaviour, such as the arena state at a specific point in time.
Such considerations are beyond the scope of this paper, since complex adver-
sary behaviour generally makes the creation of behaviour models more difficult,
whereas the online shield computations are hardly affected.

4.2 Safety-Relevant MDP M
In the following, we describe the safety-relevant MDP M underlying the agents
operating within an arena. This MDP includes non-deterministic choices of the
avatar and stochastic behaviour of the adversaries. Note that the safety-relevant

238 B. Könighofer et al.

MDP M is never explicitly created for online shielding, but is explored on-the-fly
for the safety analysis of tasks.

Let G = (V,E) be an arena, let Task be a task function for G, let Bi with
i ∈ {1 . . . m} be the behaviour functions of m adversaries, and let the avatar be
the zeroth agent. The safety-relevant MDP M = (S, s0,A,P) models the arena
and agents’ dynamics as follows. Each agent has a position and a task queue
containing the activities to be performed from the last chosen task. The agents
take turns performing activities from their respective task queue. If the task
queue of an agent is empty, a new task has to be selected. The avatar chooses
non-deterministically, whereas the adversaries choose probabilistically.

Hence, M has three types of states: (1) states where the avatar’s task queue
is empty and the avatar makes a non-deterministic decision on its next task, (2)
states where an adversary’s task queue is empty and the adversary selects its
next task probabilistically, and (3) states where the currently active agent has a
non-empty task queue and the agent processes its task queue deterministically.

Formally, the states S = V m+1×(E∗)m+1×{0, . . . , m} are triples s = (v, q, t)
where v encodes the agent positions, q encodes the task queue states of all agents,
and t encodes whose turn it is. To enhance readability, we use pos(s) = s[0] = v,
task(s) = s[1] = q, and turn(s) = s[2] = t to access the elements of a state s. We
additionally define ava = 0, thus pos(s)[ava] and task(s)[ava] are the position and
task of the avatar, whereas turn(s) = ava specifies that it is the turn of the avatar.
There is a unique action αadv representing adversary decisions, there is a unique
action αe representing individual activities (movement along edges), and there
are actions for each task available to the avatar, thus A = {αadv, αe}∪Task(G).

Definition 2 (Decision State). Given a safety-relevant MDP M. We define
the set of decision states SD ⊆ S via SD = {sD ∈ S | task(sD)[ava] = ε ∧
turn(sD) = ava}, i.e., it is the turn of the avatar and its task queue is empty.

This implies that if sD ∈ SD, then pos(sD)[ava] is a decision location in VD. A
policy for M needs to define actions only for states in SD, thereby defining the
decisions for the avatar. All other task decisions in states s, where turn(s) �= ava,
are performed stochastically by adversaries and cannot be controlled.

At run-time, in each turn each agent performs two steps:

(1) If its task queue is empty, the agent has to select its next task.
(2) The agent performs the next activity of its current task queue.

Selecting a new task. A new task has to be selected in all states s with turn(s) = i
and task(s)[i] = ε, i.e., it is the turn of agent i and agent i’s task queue is empty.

If i = ava, the avatar is in a decision state s ∈ SD, with actions A(s) =
Task(pos(s)[ava]). For each task t ∈ A(s), there is a successor state s′ with
task(s′) = task(s)[ava ← t], pos(s′) = pos(s), turn(s′) = turn(s), and P(s, t, s′) =
1. Thus, there is a transition that updates the avatar’s task queue with the edges
of task t with probability one. Other than that, there are no changes.

If i �= ava, an adversary makes a decision, thus A(s) = αadv. For each t ∈
Task(pos(s)[i]), there is a state s′ with task(s′) = task(s)[i ← t], pos(s′) = pos(s),

Online Shielding for Stochastic Systems 239

turn(s′) = turn(s), and P(s, αadv, s
′) = Bi(pos(s)[i])(t). There is a single action

with a stochastic outcome determined according to the adversary behaviour Bi.

Performing Activities. After potentially selecting a new task, the task queue of
agent i is non-empty. We are in a state s′, where task(s′)[i] = t = (vi, v

′
i) · t′ with

pos(s′)[i] = vi. Agent i moves along the edge (vi, v
′
i) deterministically and we

increment the turn counter modulo m+1, i.e., A(s′) = {αe} and P(s′, αe, s
′′) =

1 with s′′[0] = pos(s′)[i ← v′
i], task(s′′) = task(s′)[i ← t′], and turn(s′′) =

turn(s′) + 1 mod m + 1.

4.3 Sub-MDP M for Next Decision

The idea of online shielding is to compute the safety value of actions in the
decision states on the fly and block actions that are too risky. For infinite hori-
zon properties, the probability to violate safety, in the long run, is often one and
errors stemming from modelling uncertainties may sum up over time [19]. There-
fore, we consider safety relative to a finite horizon such that the action values
(and consequently, a policy for the avatar) carry guarantees for the next steps.
Explicitly constructing an MDP M as outlined above yields a very large number
of decision states that may be infeasible to check. The finite horizon assumption
allows us to prune the safety-relevant MDP and construct small sub-MDPs M
capturing the immediate future of individual decision states.

More concretely, we consider runtime situations of being in a state st, the
state visited immediately after the avatar decided to perform a task t. In such
situations, we can use the time required to perform t for shield computations for
the next decision. We create a sub-MDP M by determining all states reachable
within a finite horizon and use M to check the safety probability of each action
(task) available in the next decision and block unsafe actions.

Construction of M . Online shielding relies on the insight that after deciding on
a task t, the time required to complete t can be used to compute a shield for the
next decision. Thus, we start the construction of the sub-MDP M for the next
decision location v′

D from the state st that immediately follows a decision state
sD, where the avatar has chosen a task t ∈ A(sD). The MDP M is computed
with respect to a finite horizon h for v′

D.
By construction, the task is of the form t = vD · · · v′

D, where vD is the avatar’s
current location and v′

D is the next decision location. While the avatar performs
t to reach v′

D, the adversaries perform arbitrary tasks and traverse |t| edges, i.e.,
until v′

D is reached only adversaries take decisions. This leads to a set of possible
next decision states. We call these states the first decision states SFD ⊆ SD.
After reaching v′

D, both avatar and adversaries decide on arbitrary tasks and all
agents traverse h edges. This behaviour defines the structure of M .

Given a safety-relevant MDP M = (S, s0,A,P), a decision state sD and its
successor st with task(st)[ava] = t, and a finite horizon h ∈ N representing a
number of turns taken by all agents following the next decision. These turns and
the (stochastic) agent behaviour leading to the next decision are modelled by the

240 B. Könighofer et al.

sub-MDP M . M = (S , s0 ,A ,P) is formally constructed as follows.
The actions are the same as for M, i.e., A = A. The initial state is given by
s0 = (st, 0). The states of M are a subset of M’s states augmented with the
distance from s0 , i.e., S ⊆ S × N0. The distance is measured in terms of the
number of turns taken by all agents.

We define transitions and states inductively by:

(1) Decision Actions. If (s, d) ∈ S , d < |t| + h, and there is an s′ ∈ S such
that P(s, α, s′) > 0 and α ∈ {αadv} ∪ Task(G) then (s′, d) ∈ S and
P ((s, d), α, (s′, d)) = P(s, α, s′).

(2) Movement Actions. If (s, d) ∈ S , d < |t|+h, and there is an s′ ∈ S such that
P(s, αe, s

′) > 0, then (s′, d′) ∈ S and P ((s, d), αe, (s′, d′)) = P(s, αe, s
′),

where d′ = d + 1 if turn(s) = m and d′ = d otherwise.

Movements of the last of m+1 agents increase the distance from the initial state.
Combined with the fact that every movement action increases the agent index
and every decision changes a task queue, we can infer that the structure of M
is a directed acyclic graph. This enables an efficient probabilistic analysis.

By construction, it holds for every state (s, d) ∈ S with d < |t|, s is not
a decision state of M. The set of first decision states SFD consists of all states
sFD = (s, |t|) such that sFD ∈ S with task(s)[ava] = ε and turn(s) = ava,
i.e., all first decision states reachable from the initial state of M . We use
Task(SFD) = {t | s ∈ SFD, t ∈ A(s)} to denote the tasks available in these
states. M does not define actions and transitions from states (s, |t| + h) ∈
S , as their successor states are beyond the considered horizon h. We have
A((s, d)) �= ∅ for all states at distance d < |t| + h from the initial state.

4.4 Shield Construction

The probability of reaching a set of unsafe states T ∈ S from any state in
the safety-relevant MDP should be low. In the finite horizon setting, we are
interested in bounded reachability from decision states sD ∈ SD within the
finite horizon h. We concretely evaluate reachability on sub-MDPs M and
use T = {(s, d) ∈ S | s ∈ T} to denote the unsafe states that may be
reached within the horizon covered by M . The property ϕ = ♦T encodes the
violation of the safety constraint, i.e., eventually reaching T within M . The
shield needs to limit the probability to satisfy ϕ.

Given a sub-MDP M and a set of first decision states SFD. For each task
t ∈ Task(SFD), we evaluate t with respect to the minimal probability to satisfy
ϕ from the initial state s0 when executing t by computing ηmin

ϕ,M (s0). This
is formalised with the notion of task-valuations below.

Definition 3 (Task-valuation). A task-valuation for a task t in a sub-MDP
M with initial state s0 and first decision states SFD is given by

valM : Task(SFD) → [0, 1], with valM (t) = ηmin
ϕ,M (s0),

and A(sFD) = {t} for each sFD ∈ SFD.

Online Shielding for Stochastic Systems 241

The optimal task-value for M is optvalM = mint′∈Task(SFD) valM (t′).

A task-valuation is the minimal probability to reach an unsafe state in T
from each immediately reachable decision state sFD ∈ SFD weighted by the
probability to reach sFD. When the avatar chooses an optimal task t (with
valM (t) = optvalM) as next task in a state sFD, optvalM can be achieved
if all subsequent decisions are optimal as well.

We now define a shield for the decision states SFD in a sub-MDP M using
the task-valuations. Specifically, a shield for a threshold δ ∈ [0, 1] determines a
set of tasks available in SFD that are δ-optimal for the specification ϕ. All other
tasks are “shielded” or “blocked”.

Definition 4 (Shield). For task-valuation valM and a threshold δ ∈ [0, 1], a
shield for SFD in M is given by

shield
M
δ ∈ 2Task(SFD) with

shield
M
δ = {t ∈ Task(SFD) | δ · valM (t) ≤ optvalM }.

Intuitively, δ enforces a constraint on tasks that are acceptable w.r.t. the
optimal probability. The shield is adaptive with respect to δ, as a high value for
δ yields a stricter shield, a smaller value a more permissive shield. In particularly
critical situations, the shield can enforce the decision maker to resort to (only) the
optimal actions w.r.t. the safety objective. This can be achieved by temporarily
setting δ = 1. Online shielding creates shields on-the-fly by constructing sub-
MDPs M and computing task-valuations for all available tasks.

Through online shielding, we transform the safety-relevant MDP M into a
shielded MDP with which the avatar interacts (which is never explicitly cre-
ated) that is obtained from the composition of all sub-MDPM . Due to the
assumption on the task functions that requires a non-empty set of available
tasks in all decision locations and due to the fact that every decision for shield-
ing is defined w.r.t. an optimal task, the shielded MDP is deadlock-free. Hence,
our notion of online shielding guarantees deadlock-freedom and optimality w.r.t.
safety. By using the minimal probability as task valuation valM (t), we assume
that the avatar performs optimally with respect to safety in upcoming decisions.
Alternatively, we could use the maximal probability in combination with a fixed
threshold λ ∈ [0, 1] such that only tasks t with valM (t) ≤ λ are allowed. This
would place weaker assumptions on the avatar behaviour, but it may induce
deadlocks in case there are no sufficiently safe actions.

4.5 Optimisation – Updating Shields After Adversary Decisions

After the avatar decides on a task, we use the time to complete the task to
compute shields based on task-valuations (see Definition 3 and Definition 4).
Such shield computations are inherently affected by uncertainties stemming
from stochastic adversary behaviour. These uncertainties consequently decrease

242 B. Könighofer et al.

Fig. 3. A screenshot of the Snake game with colour-coded shield display. (Color figure
online)

whenever we observe a concrete decision from an adversary that we considered
stochastic in the initial shield computation.

An optimisation of the online shielding approach is to compute a new shield
after any decision of an adversary, if there is enough remaining time until the
next decision location. Suppose that after visiting a decision state, we computed
a shield based on M . While moving to the next decision state, an adversary
decides on a new task and we observe the concrete state s. We can now construct
a new sub-MDP M′ using s′

0 = s as initial state, thereby resolving a stochastic
decision between the original initial state s0 and s′

0 . Using M′ , we compute
a new shield for the next decision location.

The facts that the probabilistic transition function of M does not change
during updates and that we consider safety properties enable a very efficient
implementation of updates. For instance, if value iteration is used to compute
task-valuations, we can simply change the initial state and reuse computations
from the initial shield computation. Note that if a task is completely safe, i.e.,
tasks with a valuation of zero, the value of this task will not change under a
re-computation, since the task is safe under any sequence of adversary decisions.

5 Implementation and Experiments

2-Player Snake. We implemented online shielding for a two-player version of
the classic computer game Snake. We picked the game because it requires fast
decision making during runtime, and provides in an intuitive and fun setting to
show the potential of shielding such that it can potentially be used for teaching
formal methods. Figure 3 shows a screenshot of the 2-Player Snake game on
the map that was used for the experiments. In the game, each player controls
a snake of a different colour. Here, the green snake is controlled by the avatar
(the RL-agent) and the purple snake by the adversary. The goal for each player
is to eat five randomly positioned apples of their own colour. The score for the

Online Shielding for Stochastic Systems 243

Fig. 4. Screenshots from the Snake game to demonstrate recalculation.

green snake (the avatar) is positively affected (+10) by collecting a green apple
and by wins of the avatar (+50), i.e., if it collects all green apples before the
adversary snake collects all purple apples. If a snake has a collision, the snake
loses. In case that the heads of both snakes collide, the avatar loses.

We implemented a shield to protect the avatar snake from collisions with
the adversary snake. The shield computes online the minimal probability that
taking the next corridor will lead to a collision. The game, as shown in Fig. 3,
indicates the risk of taking a corridor from low to high by the colours green,
yellow, orange, red.

We also implemented the optimisation to recalculate the shield after a deci-
sion of the adversary snake. Figure 4 contains two screenshots of the game on a
simple map to demonstrate the effect of a shield update. In the left figure, the
available tasks of the green snake are picking the corridor to the left or the cor-
ridor to the right. Both choices induce a risk of a collision with the purple snake.
After the decision of the purple snake to take the corridor to its right-hand-side,
the shield is updated and the safety values of the corridors change.

Experimental Set-up. The Python-based implementation can be found at http://
onlineshielding.at along with videos, evaluation data and a Docker image that
enables easy experimentation. For shield computations, we use the probabilistic
model checker Storm [11] and its Python interface. We use the PRISM [23] lan-
guage to represent MDPs and domain-specific optimisations to efficiently encode
agents and tasks, that is, snakes and their movements. Reinforcement learning is
implemented via approximate Q-learning [34] with the feature vector denoting
the distance to the next apple. The Q-learning uses the learning rate α = 0.1
and the discount factor γ = 0.5 for the Q-update and an ε-greedy exploration
policy with ε = 0.6. The pygame2 library is used to implement the game’s inter-
face and logic. All experiments have been performed on a computer with an
Intel R©CoreTM i7-4700MQ CPU with 2.4 GHz, 8 cores and 16 GB RAM.

2 https://www.pygame.org/, accessed 2020-11-27.

http://onlineshielding.at
http://onlineshielding.at
https://www.pygame.org/

244 B. Könighofer et al.

10 12 14 16 18 20 22 24 26 28 30

10−1

100

101

102

Horizon h

T
im

e
[s
]

l = 10, mean
l = 15, mean
l = 10, maximum
l = 15, maximum

Fig. 5. Shield computation time for varying horizon values and snake lengths.

Evaluation Criteria. We report on two types of experiments: (1) the time
required to compute shields relative to the computation horizon and (2) the
performance of shielded reinforcement learning compared to unshielded rein-
forcement learning measured in terms of gained reward. The experiments on
computation time indicate how many steps shielding can look ahead within some
given time. The experiments on learning performance demonstrate the effect of
shielding.

Computation Time Measurements. When playing the game on the map illus-
trated in Fig. 3, we measured the time to compute shields, i.e., the time to con-
struct sub-MDPs M and to compute the safety values. We measured the time
of 200 such shield computations and report the maximum computation times and
the mean computation times. Figure 5 presents the results for two different snake
lengths l ∈ {10, 15} and different computation horizons h ∈ {10, 11, . . . , 29}. The
x-axis displays the computation horizon h and the y-axis displays the computa-
tion time in seconds in logarithmic scale.

We can observe that up to a horizon h of 17, all computations take less than
one second, even in the worst case. Assuming that every task takes at least one
second, we can plan ahead by taking into account safety hazards within the next
17 steps. A computation horizon of 20 still requires less than one second on
average and about 3 seconds in the worst case. Horizons in this range are often
sufficient, as we demonstrate in the next experiment by using h = 15.

We compare our timing results with a similar case study presented by Jansen
et al. [19]. In a similar multi-agent setting on a comparably large map, the deci-
sions of the avatar were shielded using an offline shield with a finite horizon of
10. The computation time to compute the offline shield was about 6 h on a stan-
dard notebook. Note, that although the setting has four adversaries, the offline
computation was performed for one adversary and the results were combined for
several adversaries online.

Furthermore, Fig. 5 shows that the snake length affects the computation time
only slightly. This observation supports our claim that online shielding scales

Online Shielding for Stochastic Systems 245

0 200 400 600 800

0

20

40

60

80

Learning Episode

R
ew

ar
d

Sh. RL
Unsh. RL

Fig. 6. Reward gained throughout learning for shielded and unshielded RL.

well to large arenas, i.e., scenarios where the safety-relevant MDP M is large.
Note that the number of game configurations grows exponentially with the snake
length (assuming a sufficiently large map), as the snake’s tail may bend in dif-
ferent directions at each crossing.

The experiments further show that the computation time grows exponentially
with the horizon. Horizons close to 30 may be advantageous in especially safety-
critical settings, such as factories with industrial robots acting as agents. Since
individual tasks in a factory may take minutes, online shielding would be feasible,
as worst-case computation times are in the range of minutes. However, offline
shielding would be infeasible due to the average computation time of more than
10 s that would be required for all decision states.

RL with Online Shielding. Figure 6 shows plots of the reward gained during
learning in the shielded and the unshielded case. The online shield uses a horizon
of h = 15. The y-axis displays the reward and the x-axis displays the learning
episodes, where one episode corresponds to one play of the Snake game. The
reward has been averaged over 50 episodes for each data point.

The plot demonstrates that shielding improves the gained reward signifi-
cantly. By blocking unsafe actions, the avatar did not encounter a single loss due
to a collision. For this reason, we see a consistently high reward right from the
start of the learning phase. In the execution phase, shielded RL manages to win
about 96% of all plays, whereas unshielded RL wins only about 54%.

6 Conclusion and Future Work

Online shielding is an efficient approach to enforce safe behaviour of autonomous
agents operating within a stochastic environment. The approach exploits the
time required to complete tasks to model and analyse the immediate future w.r.t.
a safety property. For every decision at runtime, we create MDPs to model the
current state of the environment and the behaviour of the agents. Given these
MDP models, we employ probabilistic model-checking to evaluate every action
possible in the next decision. In particular, we determine the probability of unsafe

246 B. Könighofer et al.

behaviour following every possible choice. This information is used by shields to
block unsafe actions, i.e., actions leading to safety violations with a probability
exceeding a threshold relative to the minimal probability of safety violations.

For future work, we plan to investigate the application of online shielding in
other settings, such as decision making in robotics and control. Another inter-
esting extension would be to incorporate quantitative performance measures in
the form of rewards and costs into the computation of the online shield, as pre-
viously demonstrated in an offline manner [4] and in a hybrid approach [29],
where runtime information was used to learn the environment dynamics.

Acknowledgments. This work has been supported by the “University SAL Labs”
initiative of Silicon Austria Labs (SAL) and its Austrian partner universities for applied
fundamental research for electronic based systems.

References

1. Abbeel, P., Ng, A.Y.: Exploration and apprenticeship learning in reinforcement
learning. In: ICML. ACM International Conference Proceeding Series, vol. 119,
pp. 1–8. ACM (2005)

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: AAAI. AAAI Press (2018)

3. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety. CoRR, abs/1606.06565 (2016)

4. Avni, G., Bloem, R., Chatterjee, K., Henzinger, T.A., Könighofer, B., Pranger,
S.: Run-time optimization for learned controllers through quantitative games. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 630–649. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 36

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
6. Bharadwaj, S., Bloem, R., Dimitrova, R., Könighofer, B., Topcu, U.: Synthesis

of minimum-cost shields for multi-agent systems. In: ACC, pp. 1048–1055. IEEE
(2019)

7. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: runtime
enforcement for reactive systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 533–548. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 51

8. Cheng, R., Orosz, G., Murray, R.M., Burdick, J.W.: End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks. In:
AAAI (2019)

9. Clouse, J.A., Utgoff, P.E.: A teaching method for reinforcement learning. In: ML,
pp. 92–110. Morgan Kaufmann (1992)

10. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16

11. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A STORM is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

https://doi.org/10.1007/978-3-030-25540-4_36
https://doi.org/10.1007/978-3-662-46681-0_51
https://doi.org/10.1007/978-3-662-46681-0_51
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31

Online Shielding for Stochastic Systems 247

12. Falcone, Y., Pinisetty, S.: On the runtime enforcement of timed properties. In:
Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 48–69. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 4

13. Fulton, N., Platzer, A.: Verifiably safe off-model reinforcement learning. In:
TACAS, pp. 413–430 (2019)

14. Fulton, N., Platzer, A.: Verifiably safe off-model reinforcement learning. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 413–430. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17462-0 28

15. Garcıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16(1), 1437–1480 (2015)

16. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Omega-
regular objectives in model-free reinforcement learning. In: Vojnar, T., Zhang,
L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 395–412. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17462-0 27

17. Hasanbeig, M., Abate, A., Kroening, D.: Logically-correct reinforcement learning.
CoRR, abs/1801.08099 (2018)

18. Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G.J., Lee, I.: Rein-
forcement learning for temporal logic control synthesis with probabilistic satisfac-
tion guarantees. In: CDC, pp. 5338–5343. IEEE (2019)

19. Jansen, N., Könighofer, B., Junges, S., Serban, A., Bloem, R.: Safe reinforcement
learning using probabilistic shields (invited paper). In: Konnov, I., Kovács, L. (eds.)
CONCUR, volume 171 of LIPIcs, pp. 3:1–3:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2020)

20. Katoen, J.-P.: The probabilistic model checking landscape. In: LICS, pp. 31–45.
ACM (2016)

21. Könighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield synthesis for reinforce-
ment learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476,
pp. 290–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-
4 16

22. Kwiatkowska, M.Z.: Model checking for probability and time: from theory to prac-
tice. In: LICS, pp. 351. IEEE CS (2003)

23. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

24. Li, S., Bastani, O.: Robust model predictive shielding for safe reinforcement learn-
ing with stochastic dynamics. In: ICRA, pp. 7166–7172. IEEE (2020)

25. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn. 105(2), 255–299 (2016). https://doi.org/10.1007/s10994-016-5565-9

26. Moldovan, T.M., Abbeel, P.: Safe exploration in Markov decision processes. In:
ICML. icml.cc/Omnipress (2012)

27. Pecka, M., Svoboda, T.: Safe exploration techniques for reinforcement learning -
an overview. In: Hodicky, J. (ed.) MESAS 2014. LNCS, vol. 8906. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13823-7 31

28. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
pp. 46–57. IEEE (1977)

29. Pranger, S., Könighofer, B., Tappler, M., Deixelberger, M., Jansen, N., Bloem, R.:
Adaptive shielding under uncertainty. CoRR, abs/2010.03842 (2020)

https://doi.org/10.1007/978-3-030-32079-9_4
https://doi.org/10.1007/978-3-030-17462-0_28
https://doi.org/10.1007/978-3-030-17462-0_27
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s10994-016-5565-9
https://doi.org/10.1007/978-3-319-13823-7_31

248 B. Könighofer et al.

30. Renard, M., Falcone, Y., Rollet, A., Jéron, T., Marchand, H.: Optimal enforcement
of (timed) properties with uncontrollable events. Math. Struct. Comput. Sci. 29(1),
169–214 (2019)

31. Sadigh, D., Landolfi, N., Sastry, S.S., Seshia, S.A., Dragan, A.D.: Planning for
cars that coordinate with people: leveraging effects on human actions for planning
and active information gathering over human internal state. Auton. Robot. 42(7),
1405–1426 (2018). https://doi.org/10.1007/s10514-018-9746-1

32. Sadigh, D., Sastry, S., Seshia, S.A., Dragan, A.D.: Planning for autonomous cars
that leverage effects on human actions. Science and Systems. In: Robotics (2016)

33. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529(7587), 484 (2016)

34. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

35. Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L∗-based
learning of Markov decision processes. In: ter Beek, M.H., McIver, A., Oliveira, J.N.
(eds.) FM 2019. LNCS, vol. 11800, pp. 651–669. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30942-8 38

36. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cam-
bridge (2005)

37. Wang, A., Kurutach, T., Liu, K., Abbeel, P., Tamar, A.: Learning robotic manipu-
lation through visual planning and acting. arXiv preprint arXiv:1905.04411 (2019)

38. White, D.J.: Real applications of Markov decision processes. Interfaces 15(6), 73–
83 (1985)

39. Wu, M., Wang, J., Deshmukh, J., Wang, C.: Shield synthesis for real: enforcing
safety in cyber-physical systems. In: FMCAD, pp. 129–137. IEEE (2019)

40. Zhang, W., Bastani, O.: MAMPS: safe multi-agent reinforcement learning via
model predictive shielding. CoRR, abs/1910.12639 (2019)

41. Zhou, W., Gao, R., Kim, B., Kang, E., Li, W.: Runtime-safety-guided policy repair.
In: RV, pp. 131–150 (2020)

42. Zhou, W., Li, W.: Safety-aware apprenticeship learning. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 662–680. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 38

https://doi.org/10.1007/s10514-018-9746-1
https://doi.org/10.1007/978-3-030-30942-8_38
https://doi.org/10.1007/978-3-030-30942-8_38
http://arxiv.org/abs/1905.04411
https://doi.org/10.1007/978-3-319-96145-3_38

	Online Shielding for Stochastic Systems
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Setting and Problem Statement
	4 Online Shielding for MDPs
	4.1 Behaviour Models for Adversaries
	4.2 Safety-Relevant MDP M
	4.3 Sub-MDP M for Next Decision
	4.4 Shield Construction
	4.5 Optimisation – Updating Shields After Adversary Decisions

	5 Implementation and Experiments
	6 Conclusion and Future Work
	References

