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Abstract. This paper presents an iterative method to analyse system
reliability models. The key idea is to analyse a partial state space of a reli-
ability model in a conservative and an optimistic manner. By considering
unexplored states as being always operational or, dually, already failed,
our analysis yields sound upper- and lower-bounds on the system’s reli-
ability. This approach is applied in an iterative manner until the desired
precision is obtained. We present details of our approach for Boolean-
logic driven Markov processes (BDMPs), an expressive fault tree variant
intensively used in analysing energy systems. Based on a prototypical
implementation on top of the probabilistic model checker Storm, we
experimentally compare our technique to two alternative BDMP anal-
ysis techniques: discrete-event simulation obtaining statistical bounds,
and a recent closed-form technique for obtaining pessimistic system life-
times. Our experiments show that mostly only a fragment of the state
space needs to be investigated enabling the reliability analysis of models
that could not be handled before.

1 Introduction

Reliability Analysis of Safety-Critical Systems. Reliability analysis is concerned
with analysing system models to determine measures-of-interest such as the
mean-time-to-failure (MTTF) and the system’s reliability, i.e., the probability
that the system is continuously operational up to a given mission time? Model-
based analysis such as the numerical evaluation of Markov chains suffer from the
state-space explosion problem. A possible remedy is discrete-event simulation.
Simulation is applicable to a large class of reliability models, e.g., it supports gen-
eral failure and repair rates, and has a low memory footprint as only the current
model state needs to be kept in memory. Simulation results though come with
statistical bounds only1 and excessively many simulation runs are needed for rare
events, events that happen with very low probability. Failures in safety-critical
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systems such as autonomous cars, nuclear power plants, satellites, launchers,
etc., are (supposed to be) rare events, and standards such as ISO 26262 require
hard guarantees—safe lower- and upper-bounds.

Lazy Verification. The challenge is to come up with a reliability analysis tech-
nique that provides hard guarantees, can deal with rare events, and preferably
provides results with numerical accuracy.

Fig. 1. Lazy verification for reliability

This paper proposes to use
lazy verification for reliability
analysis. The idea is concep-
tually simple: generate a par-
tial state space of a reliability
model description and carry out
a fast analysis that takes a con-
servative and an optimistic per-
spective. By considering unex-
plored states as being always
operational or, dually, already
failed, the analysis yields a
sound upper- and lower-bound
(ub and lb) on the system’s reli-
ability, see Fig. 1. Fast analysis is done using the state-of-the-art probabilistic
model-checking techniques [2,4,25] for continuous-time Markov models. If the
gap between the lower and upper-bound is below an a priori user-defined tol-
erance ε, i.e., ub-lb ≤ ε, the analysis halts: the system reliability is certainly
between these bounds. In case the results are not tight enough, ub-lb > ε, the
partial state space is extended with some unexplored states. This iterative app-
roach thus has a lazy character: only a state-space fragment required to obtain
the system’s reliability (or measures such as MTTF) with a given accuracy is
generated and explored.

Lazy Verification of BDMPs. Our lazy approach is applicable to a wide range
of dynamic reliability models, in particular those containing state-dependent
failure mechanisms such as temporal orderings, spare management, and fail-
ure dependencies. This includes, e.g., dynamic fault trees [17], state-event fault
trees [24], dynamic reliability block diagrams [16], and Pandora temporal fault
trees [31]. Our lazy verification approach is also applicable to the static (non-
state-dependent) reliability models such as static fault trees and reliability block
diagrams. However, our approach will not be competitive to the binary decision
diagram-based analysis of these models. We present details of our lazy verifica-
tion approach for Boolean logic-driven Markov processes (BDMPs), an expres-
sive dynamic fault tree variant extensively used by engineers at Électricité de
France (EDF) [9]. EDF is one of the world’s largest producers of electricity
and is active in technologies such as nuclear power, hydropower, wind power,
solar and geothermal energy. BDMPs contain VOTing gates (generalisation of
AND and OR gates), priority AND-gates, basic events that model system com-
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ponents whose lifetime is exponentially distributed, instantaneous events, and
two forms of triggers. While the general definition of BDMPs in [9] allows the
use of arbitrary Markov processes for defining basic events, we restrict ourselves
to the commonly used exponential distributions. The semantics of BDMPs has
been translated into Markov automaton in [26], and generalised stochastic Petri
nets in [27]. The underlying stochastic process of a BDMP is a continuous-time
Markov chain (CTMC). Polynomial-time model-checking algorithms for comput-
ing lifetimes on CTMCs have been given [4] and are part of probabilistic model
checkers such as Prism [28] and Storm [22]. The main questions for lazy BDMP
verification are “which fragment of the state space needs to be explored?” and
“how much to extend a partial state space in an iteration of Fig. 1?” The first
question is answered by a probabilistic criterion, i.e., the states with the high-
est reachability probabilities are selected for exploration. Regarding the second
question, all one-step-successors of the selected state(s) are explored and the
exploration is stopped based on an exploration threshold, e.g., if all remaining
states in iteration i have reachability probability <2−i.

Experimental Evaluation. We implemented the BDMP lazy verification app-
roach on top of the probabilistic model checker Storm [22] whose performance
is among the best as witnessed in recent tool competitions (see qcomp.org).
Distinguishing features of Storm are its modular set-up enabling the rapid
exchange of solvers, its facility to generate counterexamples, and its support for
multiple modelling languages such as the reliability models dynamic fault trees
and BDMPs. To validate our results, we compare to a free discrete-event simu-
lation tool [7]. To indicate the “goodness” of the obtained bounds, we compare
to initiator and all barriers (I&AB), a recent closed-form technique for obtain-
ing pessimistic system reliability of BDMPs [11]2. We distinguish between non-
repairable and repairable reliability models, as some analysis techniques perform
better for a particular class. The main findings of the experimental evaluation:

– Exploring small state-space fragments mostly suffices, in particular for
repairable models. This extends the findings of lazy verification of dynamic
fault trees that do not include repairs, as in [29].

– Reliability model sizes that could not be handled before come within range.
– In contrast to I&AB, lazy verification is generally applicable (non-repairable

and repairable models, arbitrary mission times, acyclic models, and mod-
els with loops), and provides sound lower- and upper-bounds within a given
accuracy ε.

Note that solving reliability models is much more difficult when the model
includes repairs, for several reasons:

– Merging failure states into a single state is not correct for repairs any more,
because these states are usually associated with different repair rates.

2 https://www.lr.org/en/riskspectrum/support-and-downloads/#accordion-rsat3.4.5
released(riskspectrumpsa1.4.0/rsat3.4.5)(15june2020).

http://qcomp.org
https://www.lr.org/en/riskspectrum/support-and-downloads/#accordion-rsat3.4.5released(riskspectrumpsa1.4.0/rsat3.4.5)(15june2020)/
https://www.lr.org/en/riskspectrum/support-and-downloads/#accordion-rsat3.4.5released(riskspectrumpsa1.4.0/rsat3.4.5)(15june2020)/
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– The existence of repairs can create new states that cannot be reached from
the initial state by a path containing only failures. This is exemplified by the
case of the PAND-gate given in Sect. 2.

– The failure and repair rates usually differ by several orders of magnitude
creating stiffness problems for solvers based on matrix calculations.

2 Boolean Logic-Driven Markov Processes

This section briefly explains the main principles of BDMPs; for more details we
refer to [9]. BDMPs extend static fault trees with triggers and associate a pair
of CTMCs with leaves to model various failure modes. Triggers model activation
mechanisms that are useful to model dynamic failure dependencies, e.g., failure
on-demand, mutual exclusion, and causal failure dependencies. Semantically,
BDMPs augment the failure predicate of static fault trees with activation and
trimming predicates. While activation predicates govern the activation status
(active or dormant) of BDMP elements, the trimming predicates curtail the
BDMP’s state space, e.g., by inhibiting the failure of non-failed inputs of OR-
gates once the gate fails. (If such input is shared with other parts of the BDMP,
then it is not pruned.) Fig. 2 depicts the main BDMP elements.

Fig. 2. BDMP elements

Gates (the first row of Fig. 2). A VOT-
gate has two parameters: the number N of
inputs and the number 1 ≤ K ≤ N of
inputs that need to fail for the VOT gate
to fail. The gate is repaired once the num-
ber of input failures is below K. The AND-
and OR-gates are special cases of VOT with
K = N and K = 1, respectively. The
priority-AND (PAND) gate fails once both
its inputs fail in a left-to-right order. Simul-
taneous input failures of PAND do not lead
to a gate failure. (Other fault tree vari-
ants use inclusive PAND [23].) Four repair
strategies for PAND exist in BDMPs: (1) on
the repair of the first input (repair-first), (2) on the repair of the second input
(repair-last), (3) on the repair of both inputs (repair-all), or (4) on the repair of
any input (repair-any).

Basic events (the second row of Fig. 2). The EXP-type basic events fail and
are repaired following an exponential distribution. They can fail only in active
mode; their repair is independent of their activation status. The STDBY-type
basic events can switch between active and passive failure rates depending on
their activation status. The INST-type basic events fail upon activation with
probability γ. The repair behavior of both STDBY and INST is the same as for
EXP. The failure of the top event TOP represents the system’s failure.

Triggers and links (the third row of Fig. 2). The trigger TRIG activates its
target when its source fails and if at least one parent of TRIG’s target is active.
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The inverted trigger InvTRIG achieves the inverse behavior, i.e., it activates the
target node when at least one parent of the target node is active and the origin of
InvTRIG is not failed. The BeforeLINK forces an order on simultaneously enabled
INST leaves to reduce the number of combinations to be examined thanks to
the trimming mechanism. The LogicLINK propagates the failure and activation
status among BDMP elements.

Example 1. As a running example we consider a reconfiguration strategy
adopted from [11]. The system, see Fig. 3 (left), has two power sources for the
Main line: (1) a Grid, and (2) a diesel generator Dies gen. The red dotted line
indicates the reconfiguration strategy. Initially, the Normal line is active and
powers the Main line. On its failure, the load is switched to the Standby line. A
repair will switch back the load to the Normal line. Reconfigurations are realised
by circuit breakers; they can fail due to: (1) inadvertent failure during normal
operation, (2) a refuse-to-open failure, or (3) a refuse-to-close failure. The lat-
ter two modes are failure on-demand as they happen while switching the load
from the Normal line to Standby line and vice versa. Dies gen has two failure
modes: failure in-operation, and failure on-demand. Whereas, Grid can only fail
in-operation.

A BDMP model is shown in Fig. 3 (right). The red (blue) arrow represents
TRIG (InvTRIG). The inverted trigger models mutually exclusive failure modes
of the circuit breaker CB1. That is, the inadvertent opening of CB1 (CB1 IO)
preempts its refuse-to-open failure mode CB1 RO. In the BDMP, initially either
Grid or CB1 IO can fail. Any of these failures causes a failure of Normal line fail,
which in turn activates Standby line fail. This also activates its children. A failure
of an INST leaf causes the events Standby line fail and the Main line fail to fail.
After a successful reconfiguration, Dies gen can fail. We point out that a failing
sequence initiated by CB1 IO does not lead to CB1 RO being tested. For the
sake of simplicity, the basic event CB2 IO is omitted from the model. Moreover,
CB2 RO and CB1 RC are omitted due to their negligible failure probability.

Fig. 3. Running example of a system (left) and a BDMP modeling it (right) (Color
figure online)



Scalable Reliability Analysis by Lazy Verification 185

3 Lazy Probabilistic Verification

This section introduces the partial state-space exploration for continuous-time
Markov chains (CTMCs), the underlying model of BDMPs. CTMCs are finite
transition systems with a designated initial state, whose transitions are labelled
with rates (positive reals) of exponential distributions. For state s with transition
rates R(s, u) = λ and R(s, v) = μ, say, the probability to move from s to u is
λ/λ+μ, and the state residence time is random: the probability to stay for t time
units in s equals 1−e−(λ+μ)·t. To enable CTMC analysis by model checking [4],
states are labelled with sets of atomic propositions.

3.1 State-Space Generation

The (compositional) semantics of BDMPs in terms of CTMCs is fully explained
in [26,27]. We present the general idea by an example.

Example 2 (CTMC for BDMP). Consider again the BDMP in Fig. 3 (right).
Figure 5 depicts a fragment of its corresponding CTMC. Initially, the BDMP
elements Grid and CB1 IO can fail. The initial state thus has two outgoing
transitions labelled with the failure rates of Grid and CB1 IO. The failure of
Grid causes the testing of three independent Bernoulli trials through the trigger.
Thus, the failure of Grid is succeeded by 23 = 8 probabilistic transitions. The
failure of CB1 IO causes two independent Bernoulli trials, as testing of CB1 RO
is inhibited by the inverted trigger. We combine these probabilistic transitions to
the preceding exponential transitions. This gives rise to 12 outgoing transitions
in the initial state, e.g., s1 represents the scenario where CB1 IO fails, but both
instantaneous events CB1 RO and CB2 RC have not failed. The failure rate of
CB1 IO is 0.0001 and the failure probabilities of the two instantaneous events
are 0.0001. We have a transition rate of 0.0001 · (1−0.0001)2 = 9.998e−5. We
indicate the failure of component CB1 IO by adding the corresponding label
{CB1 IO} to state s1. The other transition rates are obtained similarly. For
state s1, there are two possibilities: either CB1 IO is repaired, or Dies gen fails.
The transitions have rates 0.1 and 0.0001, respectively.

s0

s1 {CB1 IO} s2 {Grid} s3

{Grid, Dies gen RS}
s12. . .

{Grid, Dies gen RS,
CB1 RO, CB2 RC}9.998e−05

9.997e−05 9.998e−09

1e−161

1 1 1

Fig. 4. State space after the first iteration

On completing the state-space generation process, the resulting CTMC is
amenable to standard CTMC analysis techniques such as model checking [3].
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This is supported by state-of-the-art model checkers such as Storm [22]. Time-
bounded properties are important for reliability analysis. The unreliability is
the probability of system failure within T time units. Expressed in a timed
probabilistic temporal logic such as CSL [4]:

P

(
�[0, T ] “failed”

)
,

where “failed” represents the failure of the top-level event in the BDMP. The
unavailability is the probability that the system is failed at a given time point t:

P

(
�[t, t] “failed”

)
.

3.2 Lazy Verification

While efficient probabilistic model-checking algorithms exist [21], the state-space
explosion remains a limiting factor. This issue can partially be mitigated by
using bisimulation minimization [5], but this requires the entire state space to
be generated first. We resort to partial state-space generation. This is supported
by Storm to analyse non-repairable dynamic fault trees [29] and yields safe
upper- and lower-bounds of unreliability (and other measures). In this work, we
generalise this to repairable models described by BDMPs.

The idea is to perform iterative state-space exploration. Let us explain this
using Fig. 4. In each iteration, we explore a certain number of unexplored states—
prioritized according to some heuristic. In our example of Fig. 4, we start by first
exploring the initial state s0 which yields successor states s1, . . . , s12. State s0 is
now explored (white), and all other states are discovered (gray). All discovered
states are equipped with a self-loop in order to distinguish them from deadlock
states. Deadlocks are attributed to modelling errors. The resulting partial state
space is used to obtain safe lower and upper bounds. As both unreliability and
unavailability use the label “failed” we pursue as follows. To obtain a lower bound
lb, we mark all explored states that correspond to a system failure with the label
“failed” and analyse the unreliability (or unavailability) of the resulting CTMC.
For the upper bound ub, we additionally label all discovered states with label
“failed” as well and analyse the resulting CTMC. For our example, we obtain
the interval [0, 0.8646] for the unreliability. If ub−lb is less than a user-defined
accuracy ε, then the procedure terminates. Otherwise, it continues with the next
iteration and explores more states. In our example, we continue exploration as
indicated in Fig. 5. In the second iteration, we explore states s1 and s2 and obtain
three new states. Note that now also “repair” transitions returning to state s0
are inserted. Computing the refined bounds on the extended state space yields
[0, 0.0044]. (The nominal unreliability of this example is 0.0024).

“Failed” Labels for Discovered States. Note that we could have already added
“failed” labels to many discovered states of the first iteration as they already
represent system-level failure, e.g., state s12. While this will help to significantly
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s0

s1 {CB1 IO} s2 {Grid} s3

{Grid, Dies gen RS}
s12. . .

{Grid, Dies gen RS,
CB1 RO, CB2 RC}

s13

{CB1 IO, Dies gen}
s14

{Grid, CB1 IO}
s15

{Grid, Dies gen}

9.998e−05

9.997e−05 9.998e−09 1e−16

0.1

0.0001

0.1

0.0001
0.0001

1 1

1 1 1

Fig. 5. State space after the second iteration

tighten the bounds for the unreliability computation, it can give non-monotonic
behavior for the unavailability. A discovered state which is marked as failed can
never be left due to the self-loop. However, further exploration might introduce
repair transitions such that non-failed states can be reached now. In such sce-
narios, the lower bound for the unavailability would decrease between iterations,
which could yield unsound bounds. We, thus, keep our bound differences strictly
non-increasing by applying a more conservative approach for discovered states.

Exploration Heuristics. The order in which states are explored and the threshold
when to stop exploration for an iteration are determined by exploration heuris-
tics. We use two types of heuristics in Storm: depth-based and probability-based.
The depth-based heuristic explores the state space up to a predefined depth, i.e.,
distance to the initial state. This method is beneficial if one wants to analyse a
system for a certain number of consecutive failures. The probability-based heuris-
tic orders the states by their probability to eventually reach the state from the
initial state. That way, we give priority to states which are more likely to occur
and disregard unlikely events.

In the second iteration of our example in Fig. 5, we explored states s1 and
s2, because they have the highest incoming transition probabilities. We set the
exploration threshold to 10−5 for iteration 2. That means, the other states are
not explored in this iteration, because their probabilities are below the threshold.

Proposition 1. The lazy verification technique provides sound lower and upper
bounds, i.e., the exact unreliability (or unavailability) lies within [lb, ub].

This can be seen as follows. The approximation accounts for both extremes.
Either all of the discovered states lead to the failure (upper bound) or none of
the discovered states lead to a failure (lower bound). Moreover, the difference
between the upper and the lower bounds is strictly non-increasing for increasing
iterations. The algorithm terminates at the latest when the complete state space
is explored. The lower and upper bound then equal the exact result (up to the
machine precision) as no discovered states are present anymore.
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4 The Initiator and All Barriers Method

Context. The I&AB method [10,11] is an approximation-based analysis app-
roach. It aims to compute a conservative approximation of the BDMP’s unrelia-
bility for a given mission time. It is included in the commercial RiskSpectrum
PSA 1.4.0/RSAT 3.4.5 software tool to assess repairs in real-life nuclear proba-
bilistic safety assessments (PSAs) (cf. footnote 4). It is based on two assumptions:

– all standby redundancies become active upon the failure of an initiator, and
– the repair of initiator i inhibits the system failure (due to the sequence initi-

ated by i).

As the I&AB method relies on the repair of initiators, it is applicable to
repairable systems only. It requires the repair rates to be at least ten times
higher than the failure rates. We describe the four steps of the I&AB method
and demonstrate each step on the sample BDMP in Fig. 3 (right):

Step-1: Marking initiators and barriers. The I&AB method starts by partition-
ing the set of basic events into initiators and barriers. Initiators are the basic
events that can take the system out of its perfect state (aka: initial state). Bar-
riers are basic events that get activated upon the failure of an initiator. Once an
initiator fails, all non-failed initiators are—as barriers—activated.

Example 3. As Grid and CB1 IO are the only basic events that can be active
at the start, we mark them as initiators. All other basic events are barriers.

Step-2: Generating minimal contents of sequences. After declaring the initiators,
the I&AB method computes the set of minimal contents of sequences (MCSS).
This set contains sequences of failures—initiated by an initiator—that cause the
top event to fail. Such sequence m is minimal in the sense that none of its proper
prefixes causes a top event failure. To compute the MCSS, an SFT with NOT-
gates is derived from the BDMP while respecting the triggers and precedence
links. A PAND-gate is replaced by an AND-gate. The minimal cut sets3 of the
SFT computed using SCRAM4 correspond to MCSS of the BDMP.

Example 4. Applying the proprietary EDF-tool KB35 to our running example
yields the SFT of Fig. 6. The black circles above basic events represent negated
literals. The two top layers of the SFT are as in the BDMP. The top event AND
Main line fail has two inputs: Normal line fail, and Standby line fail. Consider
the boxed fragment of the SFT. Normal line fail occurs when either CB1 IO
or Grid fails. Since they are initiators, their failures as initiators are mutually
exclusive. This is captured by the negated literals, e.g., the left input of CB1 IO
fails if CB1 IO init fails and Grid init does not. As CB1 IO is an initiator and

3 A cut set of an SFT is a set of basic events that cause the top event to fail.
4 https://github.com/rakhimov/scram.
5 https://www.edf.fr/en/the-edf-group/who-we-are/activities/research-and-develop

ment/design-codes/design-code-kb3.

https://github.com/rakhimov/scram
https://www.edf.fr/en/the-edf-group/who-we-are/activities/research-and-development/design-codes/design-code-kb3/
https://www.edf.fr/en/the-edf-group/who-we-are/activities/research-and-development/design-codes/design-code-kb3/
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Main_line_fail

Normal_line_fail Standby_line_fail

CB1_RO

Dies_gen_RS CB2_RC Dies_gen

Normal_line_fail Normal_line_fail Normal_line_fail Dies_gen_failFCB2_RC_failIDies_gen_RS_failI

Grid_init

Gate_1

Normal_line_fail Not CB1_IO

Gate_2 Gate_3

CB1_IO_init Grid_initCB1_IO_failF

CB1_RO_failI

Grid

Gate_7

Normal_line_fail

CB1_IO

Gate_6

Grid_initGrid_init Grid_init CB1_IO_init Grid_failF CB1_IO_init

Gate_5Gate_4

CB1_IO_failFCB1_IO_init

Fig. 6. SFT generated for the running example

its mode of failure switches from init to failF (failure in-function) when Grid init
fails, the right input of CB1 IO has Grid init and CB1 IO failF as inputs.

Now consider the right input of Main line fail, i.e., Standby line fail. The
Standby line fail of Fig. 3 (right) has four components, and it is the target of a
trigger. Correspondingly, four AND gates in the SFT capture the failure of each
component. Dies gen RS, CB2 RC, and Dies gen fail once the trigger source
Normal line fail fails. The failure conditions of CB1 RO are more involved,
as it is a target of an inverted trigger. The right input of CB1 RO depicts
that CB1 RO failI (failI is a failure on-demand) must fail for CB1 RO to fail.
Whereas the left input of CB1 RO ensures that the trigger source, i.e., Nor-
mal line fail has failed and this failure is caused by Grid. The SFT’s minimal
cut sets are:

{CB1 IO init, Dies gen failF}, {CB1 IO init, Dies gen RS failI},
{CB1 IO init,

CB2 RC failI}, {Grid init, CB1 RO failI}, {Grid init, CB2 RC failI},
{Grid init, Dies gen RS failI}, and {Grid init, Dies gen failF}.
Step-3: Computing minimal products. The MCSS are arranged as minimal prod-
ucts, partial minimal sequences associated to initiators. It amounts to stripping
initiator ie from sequence m ∈ MCSS and designating m \ ie as minimal prod-
uct associated to ie. The minimal products are arranged as dictionary structure.
The minimal products for MCSS are:

CB1 IO init: {{Dies gen failF}, {Dies gen RS failI}, {CB2 RC failI}} and

Grid init: {{CB1 RO failI}, {CB2 RC failI}, {Dies gen RS failI},
{Dies gen failF}}.
Step-4: Computing unreliability. Based on minimal products, a closed-form for-
mula approximates the BDMP’s unreliability. To that end, the system failure
distribution is assumed to be exponential, and the key is to approximate its fail-
ure rate λeq. For mission time t, the unreliability is approximated by 1−e−λeq·t.
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The rate λeq is approximated as
∑

ie∈init λie · Pie, where init is the set of ini-
tiators and Pie is the probability of system failure due to minimal products
associated to ie ∈ init. An upper bound is obtained by Pie ≤ ∑k

c=1 Rc(∞),
where k is the number of minimal products with initiator ie and Rc(∞) is the
steady-state unreliability of a hypothetical parallel system composed of compo-
nents comp ∈ c. Since BDMPs can have both exponential (failure in-function)
and instantaneous (failure on-demand) failures, a minimal product c can be: (1)
mixed type, i.e., both exponential and instantaneous type components, (2) expo-
nential type, or (3) instantaneous type. Closed-forms for Rc(∞) for these types
are given in [10]. As type (2) and (3) are special cases of type (1), we consider
(1) in the following.

Using Murchland approximation [15] we have: Pie ≤ ∑k
c=1 E(Nc(∞)), where

E(Nc(∞)) is the expected number of system failures due to minimal product
c within time interval (0,∞). Consider a minimal product c involving � instan-
taneous and m exponential components. Let λc,i denote the failure rate of the
ith exponential component, γc,i denote the failure probability of the ith instan-
taneous component and μc,i denote the repair rate of the ith component. Using
rc,i = λc,i+μc,i and μc = μc,ie +

∑�
j=1 μc,j , where μc,ie is the repair rate of

initiator ie, E(Nc(∞)) equals:

(INST )︷ ︸︸ ︷
�∏

i=1

γc,i

m∑
i=1

λc,i

( m∏
j=1
j �=i

λc,j

rc,j

∫ ∞

0

INST︷ ︸︸ ︷
e− ∑�

k=1 μc,k·x
m∑

j=1
j �=i

(1−e−rc,jx)dx

︸ ︷︷ ︸
expr1

−
m∏

j=1

λc,j

rc,j

∫ ∞

0

INST︷ ︸︸ ︷
e− ∑�

k=1 μc,k·x
m∑

j=1

(1−e−rc,jx)dx

︸ ︷︷ ︸
expr2

)

Intuitively, expr1 represents the probability that all components of c except com-
ponent i failed. The term expr2 represents the probability that all components
of c failed. Their difference is the contribution of component i to c’s failure
probability. The repair of instantaneous components also contributes to these
probabilities (these parts are identified by overbraces). Solving expr2 yields:

1
μc

−
m∑

i=1

1
μc+rc,i

+
m∑

i=1

m∑
j>i

1
μc+rc,i+rc,j

−
m∑

i=1

m∑
j>i

m∑
k>j

1
μc+rc,i+rc,j+rc,k

+ · · · + (−1)m 1
μc+

∑m
i=1 rc,i

The formula for expr1 is similar except that index i is ignored.

Example 5. In our running example, let the failure rate (probability) of all expo-
nential (instantaneous) events be 0.0001, and the repair rate be 0.1. We have that
c1 = {Grid init : {CB2 RC failI}} is instantaneous, and c2 = {CB1 IO init:
{Dies gen failF}} is exponential. For c1 and c2 we obtain:

PGrid init(c1) = λGrid · γCB2 RC failI = 1 · 10−8, and
PCB1 IO init(c2) = λCB1 IO · E(Nc2(∞)) = 9.995 · 10−8,

where for λ1 = λDies gen failF , μ1 = μDies gen failF , μ = μCB1 IO, r1 = λ1+μ1:

E(Nc2(∞)) = λ1 · ((1/μ) − (λ1/μ1 · (1/μ − 1/μ1+r1))).
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As there are two exponential and five instantaneous components, all of the same
cardinality and equal reliability parameters:

λeq = 5 · (1 · 10−8) + 2 · (9.995 · 10−8) = 2.499 · 10−7.

The system unreliability for mission time t = 10, 000 thus is: 1−e−t·λeq = 0.0025.
(The nominal unreliability of this example is 0.0024, see Sect. 3.2.)

5 Case Studies

We first tested our implementation on 24 BDMP test cases available online6.
Though useful as a sanity check for our implementation, the test cases are too
small to meet our objective: investigating scalable analysis on real-world case
studies. There is only one larger test case in the literature: a power supply of a
nuclear power plant [8], so other test cases were obtained by a semi-automatic
translation from DFTs to BDMPs using the approach outlined in [6]. We selected
DFTs from the online DFT repository7, and added repairs. This yields:

Dual Processor Reactor Regulation System. This DFT models a power
regulator in a nuclear reactor [18]. The model available on the benchmark website
is non-repairable and we adopted the repair rates from the original paper [18].

Emergency Power Supply of Nuclear Power Plant. This BDMP is given
by EDF as a challenge for BDMP analysis tools [8]. The repairable model
captures most of the scenarios encountered while analysing complex dynamic
systems.

Railway Crossing. This DFT models a railway level crossing [20]. We con-
sider variant RC 5 5 sc in this paper. It consists of 5 barriers with independent
motors, 5 groups of sensors, and the controller is modeled as a single basic event.

Vehicle Guidance Case Study. These DFTs stem from an industrial case
study on safety concepts from the automotive domain [19]. We extended the
original (non-repairable) DFTs by adding repair rates of 0.1 to all basic events.
We consider all eight variants of this test case.

Railway Station. These DFTs model the influence of infrastructure failures in
German railway station areas on the routability of trains [30]. We consider all
six variants and made them repairable by adding repair rates of 0.1 to all basic
events. Note that this model is not yet available on the benchmark website.

Sensor Filter. This DFT is automatically synthesized from an AADL descrip-
tion using the Compass tool-chain [13]. We use variant sf 3 2 modelling a net-
work consisting of three sensors and two filters.

6 https://sourceforge.net/projects/visualfigaro/files/Doc and examples/.
7 https://dftbenchmarks.utwente.nl/.

https://sourceforge.net/projects/visualfigaro/files/Doc_and_examples/
https://dftbenchmarks.utwente.nl/
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6 Results and Discussion

We implemented the incremental verification (Sect. 3.2) in the probabilistic
model checker Storm [22], called Storm-approx. We also implemented the
I&AB method (Sect. 4). We validated the outcomes of our open-source proto-
typical implementation with the commercial RiskSpectrum tool8. While the
results coincide for both implementations, our implementation is not competitive
in terms of computation time and scalability. (We calibrated our implementation
using [8] as the RiskSpectrum results were online for this test case [12].) We
compare both approaches with the Monte Carlo simulator Yams [7] and evaluate
both repairable and non-repairable BDMPs. We use the trimming feature [9]—
which reduces the state space—to be able to treat large BDMPs. All the results
discussed in this Section are available online9.

Fig. 7. Accuracy of results computed by Storm, Yams and I&AB

6.1 Accuracy

Non-repairable Models. As the I&AB method is not applicable to non-repairable
systems, we only compare Yams and Storm-approx and give the results in
Fig. 7a. Since the absolute deviations between both tools are negligible, we
plot the % deviations relative to the respective mean value. Yams provides a
mean value and a confidence interval [�, u]. In Fig. 7a, the extremities of seg-
ments correspond to �−u

2·mean value · 100 and u−�
2·mean value · 100 Storm-approx

gives an upper bound and a lower bound. We compute % error bounds by using
upper bound−mean value

mean value · 100 and lower bound−mean value
mean value · 100 where mean value is

the middle of the obtained bounds. Since we used 107 simulations for each test
case with YAMS, the width of the confidence interval depends on the probability

8 https://www.lr.org/en/riskspectrum/.
9 https://github.com/moves-rwth/dft-bdmp.

https://www.lr.org/en/riskspectrum/
https://github.com/moves-rwth/dft-bdmp/
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Table 1. Computation time and state spaces statistics

Test case BDMP Non-repairable Repairable
State space Comp. time State space Comp. Time

#BE #Gates #Trig. #States #Trans. STORM YAMS #States #Trans. STORM YAMS I& AB∗

DPRPS 40 14 1 2.7 K 5.9 K 0.54 s 30 m 2.7 K 11.5 K 1.25 s 3.28 h 1.79 s
(Non-trimmed version) 23.6 M 50 M 4.33 h 42.2 m 67.6 K 0.22 M 59 s 3.16 h –

NPPS 81 54 12 10.3 M 21 M 9.5 h 3.8 h 45.5 M 96.6 M 11 m 3.76 h 11.3 m

RC 5 5 sc 41 28 25 12.3 M 35.9 M 3.6 h 2.4 h 5.3 M 18.2 M 1.7 h 4.7 h 0.52 s

VG 1 73 65 35 0.68 M 1.7 M 18 m 17 m 99.8 K 0.20 M 1.8 m 1.2 h 2.75 s
VG 2 67 63 31 0.30 M 75 M 5.6 m 7 m 39.5 K 82.6 K 33.4 s 41.8 m 11.14 s
VG 3 54 50 24 0.14 M 0.38 M 2.5 m 8.2 m 26.9 K 55.9 K 19.2 s 37.3 m 1.2 s
VG 4 54 52 25 37.2 K 86 K 30.8 s 5 m 4.9 K 10.1 K 3.2 s 10.7 m 1.2 s
VG 5 55 53 27 12.3 K 32.3 K 12.9 s 5.5 m 3.1 K 6.3 K 2.4 s 14 m 0 s
VG 6 61 58 21 0.11 M 0.29 M 2.1 m 6.5 m 37.3 K 78.2 K 30.6 s 38.5 m 0.52 s
VG 7 87 80 38 4.5 M 11.3 M 1.6 h 10.3 m 0.16 M 0.32 M 2.7 m 50.3 m 0 s
VG 8 99 95 44 18.9 M 45.8 M 8.8 h 13 m 0.87 M 1.8 M 18.5 m 3.45 h 0.31 s

RS A alt 556 531 111 15.6 M 20.6 M 18.2 h 8.5 h 7.0 M 19 M 11.2 h 8.45 h 2 h
RS H alt 194 161 38 18.6 K 39.2 K 25.6 s 2 h 3.8 K 8.9 K 6.8 s 7.5 h 4.18 s
RS M alt 520 492 104 8.5 M 11 M 8.6 h 8.8 h 0.87 M 2.18 M 1.4 h 8.8 h 1.2 h
RS A std 544 466 108 113 224 0.93 s 5.3 h 1134 224 1.03 s 5.3 h 3.8 m
RS H std 184 142 41 41 80 0.1 s 1.1 h 41 80 0.116 s 6.8 h 1.82 s
RS M std 450 338 90 91 180 0.56 s 3.93 h 91 180 0.705 s 8.8 h 468 s

∗ I&AB computation time includes cut set computation and quantification times.

to be estimated. Figure 7a indicates that the magnitude of the unreliability val-
ues of both tools coincides. However, the Storm bounds are significantly tighter
than the simulation bounds of Yams with the notable exception of test case
RS A alt. For this test case, Storm-approx took 18 h and explored 15.6 M
states with 20.6 M transitions, cf. Table 1. This means that the number of states
required to compute tighter bounds is too big to explore within the time-limit
of 24 h.

Repairable Models. Figure 7b presents the (absolute) unreliability values
obtained by Storm, Yams and I&AB. The results of Yams and Storm coin-
cide. However, the results of the I&AB method are very pessimistic for six
benchmarks. This is mostly due to the fact that I&AB does not work if there are
looped interactions of structure functions through triggers, i.e., cyclic dependen-
cies. Such loops inhibit the generation of SFTs for MCSS computation. One must
manually break the loops by modifying the activation conditions of some instan-
taneous type basic events. The BDMPs of VG-variants contain such loops mak-
ing them inappropriate for processing with I&AB. This yields trivial bounds.

6.2 Computation Time

Table 1 gives a detailed account of the model statistics and tool performances.
For each test case, we list the number of BDMP elements. For both repairable
and non-repairable variants, we give the explored state space sizes of Storm
and the computation times required by the three tools. The error bound of
Storm-approx is set to 10−3 and the number of simulations for Yams is 107.

The state-space sizes might seem small at first glance, but they are the result
of enabling trimming for the BDMP and partial exploration of these trimmed
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state spaces. The effect of trimming can be seen for the DPRPS test case, where
the state space without trimming is several orders of magnitudes larger.

The computation times of Storm and I&AB are within a few minutes for
most of the repairable test cases whereas Yams requires significantly more com-
putation time. Note that some of these times could be considerably reduced by
adapting the number of simulations to the probability to be calculated. The per-
formance of Storm and I&AB is comparable for the test cases where I&AB
returns accurate results. For RS M alt, I&AB is 5 times faster than Storm,
whereas Storm is faster on RS A std. Note that the timings for Storm are not
directly correlated to the state space sizes, compare, e.g., NPPS and RC 5 5 sc.
As failure and repair rates typically differ by at least one order of magnitude,
computing unreliability becomes expensive due to the stiffness of the CTMC.

The I&AB method requires more than one hour for RS A alt and RS M alt.
For both BDMPs, a high number of cut sets needs to be computed. We address
this issue using SCRAM by limiting the cardinality of a cut set. But by doing so
we introduce an error that cannot be mastered. The implementation of I&AB
in RiskSpectrum would be much faster and yet more precise, as it is able to
eliminate cut sets with probabilities lower than a given threshold during their
generation.

(a) Versus the number of iterations (b) Versus the threshold ε

Fig. 8. Percentage of explored state space and computation time

6.3 Gained Insights on Lazy Verification

We provide insights into the lazy verification technique using the sensor filter
sf 3 2 test case. The observed trends for this benchmark are representative for
the other benchmarks as well. The exhaustive non-trimmed state-space of the
non-repairable (repairable) version consists of 5.19 M (5.19 M) states and 14 M
(66 M) transitions and was verified in 10 m (56 m). The (approximate) trimmed
state-space for non-repairable (repairable) case consists of the same number of
states and 14 M (50 M) transitions and verified in 18 m (50 m).

State Space Coverage Versus Number of Iterations. The first trend we studied
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is the percentage of the total state space explored in each iteration and the
total computation time up to this iteration. The trends for both repairable and
non-repairable models are shown in Fig. 8a. Both graphs are plotted for an accu-
racy of 10−3. Interestingly, the repairable model converges faster as compared
to the non-repairable version and explores fewer states. One reason is the fact
that while exploring the state space, we enter the region which does not lead to
system failure but both our lazy verification and BDMP trimming are agnostic
of this. Such region can exist due to, e.g., fail-safe behavior of a PAND-gate.

State Space Coverage Versus Accuracy. The next trend we studied is the depen-
dency of the state space coverage on the accuracy. Figure 8b shows that a
larger percentage of the state-space is explored for increasing accuracy. After
the threshold of 10−3, the time for approximating the non-repairable model
exceeds the verification time of the exact approach, i.e., 10 m. However, for the
repairable case, the computation time is less than that required to fully explore
the state space. This implies that our approximation technique, combined with
the trimming feature, is more efficient for analyzing repairable systems.

Convergence of Approximate Results. Figure 9 plots the % relative errors of upper
and lower bound to the exact value. We see that the bounds converge faster for
increasing number of iterations and the error is negligible after 20 iterations.

Fig. 9. Iteration versus bound convergence

7 Conclusion

We presented an iterative verification procedure for BDMPs based on partial
state-space exploration. Our evaluation shows that this approach allows scal-
able analysis of BDMPs while providing sound upper and lower bounds of the
exact result. Our technique is applicable to other dynamic reliability models too.
Lazy verification is a promising approach and we plan to further improve it by
developing better exploration heuristics, e.g., using learning techniques [1,14].
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