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Preface

This book includes extended and revised versions of a set of selected papers from the
6th International Conference on Geographical Information Systems Theory,
Applications and Management (GISTAM 2020), exceptionally held as a web-based
event, due to the COVID-19 pandemic, during May 7–9, 2020.

GISTAM 2020 received 62 paper submissions from 38 countries, of which 15%
were included in this book. The papers were selected by the event chairs and their
selection was based on a number of criteria that included classifications and comments
provided by Program Committee members, session chairs’ assessments, and also the
program chairs’ global view of all the papers included in the technical program. The
authors of selected papers were then invited to submit revised and extended versions
of their papers having at least 30% innovative material.

The International Conference on Geographical Information Systems Theory,
Applications and Management aims at creating a meeting point of researchers and
practitioners that addresses new challenges in geo-spatial data sensing, observation,
representation, processing, visualization, sharing, and managing, in all aspects con-
cerning information communication and technologies (ICT) as well as management
information systems and knowledge-based systems. The conference welcomes original
papers of either practical or theoretical nature, presenting research or applications, of
specialized or interdisciplinary nature, addressing any aspect of geographic information
systems and technologies.

We are confident that the papers included in this book will strongly contribute to the
understanding of some current research trends in geographical information systems
theory, applications, and management, specifically with relation to geographic infor-
mation retrieval, big data, real-time sensors, spatial information and society, spatial
modeling and reasoning, spatio-temporal data acquisition, earth observation and
satellite data, and ecological and environmental management.

We would like to thank all the authors for their contributions and the reviewers for
their hard work which has helped ensure the quality of this publication.

May 2020 Cédric Grueau
Robert Laurini
Lemonia Ragia



Organization

Conference Chair

Lemonia Ragia ATHENA Research & Innovation Information
Technologies, Greece

Program Chairs

Cédric Grueau Polytechnic Institute of Setúbal, Portugal
Robert Laurini (Honorary) Knowledge Systems Institute, France

Program Committee

Andrea Ajmar Politecnico di Torino, Italy
Rute Almeida University of Porto, Portugal
Costas Armenakis York University, Canada
Thierry Badard Laval University, Canada
Jan Blachowski Wroclaw University of Science and Technology,

Poland
María Camacho Olmedo Universidad de Granada, Spain
Manuel Campagnolo Instituto Superior de Agronomia, Portugal
Cristina Catita Universidade de Lisboa, Portugal
Filiberto Chiabrando Politecnico di Torino, Italy
Eliseo Clementini University of L’Aquila, Italy
Antonio Corral University of Almeria, Spain
Joep Crompvoets Catholic University of Leuven, Belgium
Paolo Dabove Politecnico di Torino, Italy
Anastasios Doulamis National Technical University of Athens, Greece
Nikolaos Doulamis National Technical University of Athens, Greece
Suzana Dragicevic Simon Fraser University, Canada
João Fernandes Universidade de Lisboa, Portugal
Ana Fonseca Laboratório Nacional de Engenharia Civil, Portugal
Cidália Fonte University of Coimbra, Portugal
Cheng Fu University of Zurich, Switzerland
Sébastien Gadal Aix-Marseille University, France/CNRS UMR 7300

ESPACE, France/North-Eastern Federal University,
Russia

Auroop Ganguly Northeastern University, USA
Jinzhu Gao University of the Pacific, USA
Lianru Gao Chinese Academy of Sciences, China
Gilles Gesquière LIRIS, France
Fabio Giulio Tonolo Politecnico di Torino, Italy



Luis Gomez-Chova Universitat de València, Spain
Gil Gonçalves University of Coimbra/INESC Coimbra, Portugal
Nikos Grammalidis Centre for Research and Technology Hellas, Greece
Hans Guesgen Massey University, New Zealand
Gilberto Gutierrez Retamal University of Bio-Bio, Chile
Bob Haining University of Cambridge, UK
Cristina Henriques University of Lisbon, Portugal
Stephen Hirtle University of Pittsburgh, USA
Wen-Chen Hu University of North Dakota, USA
Karsten Jacobsen Leibniz Universität Hannover, Germany
Simon Jirka 52° North, Germany
Wolfgang Kainz University of Vienna, Austria
Harry Kambezidis National Observatory of Athens, Greece
Andreas Koch University of Salzburg, Austria
Artur Krawczyk AGH University of Science and Technology, Poland
Mel Krokos University of Portsmouth, UK
Poh-Chin Lai The University of Hong Kong, Hong Kong
Roberto Lattuada myHealthbox, Italy
Christophe Lienert LAINAT, Switzerland
Vladimir Lukin Kharkov Aviation Institute, Ukraine
Paulo Marques Portugal
Miguel Martínez-Prieto University of Valladolid, Spain
Jean Mas Universidad Nacional Autónoma de México, Mexico
Gavin McArdle University College Dublin, Ireland
Gintautas Mozgeris Vytautas Magnus University, Lithuania
Anand Nayyar Duy Tan University, Vietnam
Dimos Pantazis University of West Attica, Greece
Jian Peng Peking University, China
Massimiliano Pepe Politecnico di Bari, Italy
Marco Piras Politecnico di Torino, Italy
Lemonia Ragia ATHENA Research & Innovation Information

Technologies, Greece
Mathieu Roche CIRAD, France
John Samuel Graduate School of Chemistry, Physics and

Electronics, Lyon, France
Markus Schneider University of Florida, USA
Diego Seco University of Concepción, Chile
Sylvie Servigne INSA Lyon, France
Yosio Shimabukuro Instituto Nacional de Pesquisas Espaciais, Brazil
René Sieber ETH Zurich, Switzerland
Francesco Soldovieri Consiglio Nazionale delle Ricerche, Italy
Uwe Stilla Technische Universitaet Muenchen, Germany
Rui Sun Beijing Normal University, China
Ana Teodoro Oporto University, Portugal
Goce Trajcevski Northwestern University, USA
Marc van Kreveld Utrecht University, Netherlands

viii Organization



Michael Vassilakopoulos University of Thessaly, Greece
Benoit Vozel University of Rennes I, France
Lei Wang Louisiana State University, USA
Christiane Weber CNRS UMR TETIS, France
Stephan Winter The University of Melbourne, Australia
Laszlo Zentai Eötvös Loránd University, Hungary

Invited Speakers

Alexander Zipf Heidelberg University, Germany
Paraskevi Nomikou National and Kapodistrian University of Athens,

Greece
Andrew U. Frank Vienna University of Technology, Austria

Organization ix



Contents

Spatial Information Technology: Past, Present, Future . . . . . . . . . . . . . . . . . 1
Andrew U. Frank

Location Extraction from Twitter Messages Using a Bidirectional Long
Short-Term Memory Neural Network with Conditional Random
Field Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Zi Chen, Badal Pokharel, Bingnan Li, and Samsung Lim

Automatic Processing of Sentinel-2 Data for Monitoring Biodiversity
in a User-Defined Area: An Example from Mount Kilimanjaro
National Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Fortunata Msoffe and Dirk Zeuss

3D Urban Growth Simulation Using Human Settlement Capacity SLEUTH
Model (HSCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Rani El Meouche, Mojtaba Eslahi, Anne Ruas,
and Muhammad Ali Sammuneh

Quality Assessment of Worldview-3 Stereo Imagery Derived Models Over
Millennial Olive Groves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Ante Šiljeg, Fran Domazetović, Ivan Marić, and Lovre Panđa

Integration of New Data Layers to Support the Land Cover
and Use Information System of Spain (SIOSE): An Approach
from Object-Oriented Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Benito Zaragozí, Jesús Javier Rodríguez-Sala, Sergio Trilles,
and Alfredo Ramón-Morte

Analysis of Public Transport Mobility Data: A System for Sharing
and Reusing GIS Database Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Benito Zaragozí, Aaron Gutierrez, and Sergio Trilles

Geolocation Inference Using Twitter Data: A Case Study of COVID-19
in the Contiguous United States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bingnan Li, Zi Chen, and Samsung Lim

Digital High-Scale Food Security Analysis: Challenges, Considerations
and Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Timothy Mulrooney and Tysean Wooten

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



Spatial Information Technology: Past,
Present, Future

Andrew U. Frank(B)

Geoinformation, Technical University Vienna,
Gusshausstrasse 27-29, 1040 Wien, Austria

frank@geoinfo.tuwien.ac.at

Abstract. I have participated for about 40 years in the most aston-
ishing technical development of Geographic Information Systems and
seen the inclusion of spatial information technology in nearly all forms
of it: spatial database technology, GPS, the web, mobile smart phones.
Ubiquitous computing and connectivity became possible. The article will
firstly reviews the history of GIS use and divides the development of the
enabling technology for GIS use approximately in decades. The develop-
ment can be broken in roughly decades characterized by the technology
which enabled the then dominant GIS use.

The article will then includes some tentative ideas for developments
which could occur in the next decade. I will try to draw some conclu-
sions from the review: why did some technologies become successful in
the marketplace and while some other did not? What makes a technol-
ogy to become a smashing commercial success? Google maps might be
the most spectacular, but by far not the only example.

My experience leads me to believe that commercial success is the
result of the combination of three conditions:

– a fundamental human need is at the core - e.g. people need to navi-
gate in the world and must avoid to get lost,

– a cost-effective technical means to satisfy this need is available -
e.g. widely available smartphones, and,

– a business-opportunity is identified - e.g. selling advertisement.

1 Introduction

Telling history involves always a personal slant: what is considered important
enough to be told, what is left out? My involvement started the day before
Christmas 1977 when Prof. Rudolf Conzett at ETH Zurich asked me to investi-
gate the application of database management system software to cadaster data.
Multipurpose cadaster was then an emerging concept to combine the different
kinds of spatial data collected in city administration in maps which could be
superimposed on light tables. Multipurpose cadaster was one of the technologies
which eventually became GIS.

Nearly 40 years later – at the time when I retired from the chair for Geoin-
formation at the Technical University Vienna, Geoinformation is an established,
c© Springer Nature Switzerland AG 2021
C. Grueau et al. (Eds.): GISTAM 2020, CCIS 1411, pp. 1–17, 2021.
https://doi.org/10.1007/978-3-030-76374-9_1
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2 A. U. Frank

widely used technology: Think of Google Maps and car navigation! My profes-
sional career has evolved around GIScience research at ETH Zurich, at University
of Maine as part of the NCGIA and eventually at TU Wien. During these years,
I had the pleasure to meet and work with most of the pioneers of GIS in person.

The first part of this article will review the GIS history from my observations
during these years. I will divide the development into five periods of (roughly)
a decade, referring to what I considered dominant practice. Eventually, I add
some predictions for the 2020 decade.

The development of GIS is driven by enabling technologies; therefore, for
each decade, I will first characterize the new, generally used information and
surveying technologies and then describe the geographic information practice
and the geographic information research enabled by the technology; I will then
highlight changes in the available data and software. The reduction of prices for
information technology was and still is the most important driver of development
in recent years. The reduction in IT prices follows Moore’s law1; the development
of IT has drastically reduced the costs of determining a location on the earth’s
surface by using GPS (from an estimated $1,000 to $.01 per point2).

The second smaller part of the article is an attempt to draw some conclusions
from observing the history of GIS business. What were the success stories? Why
did some technology advances lead to business successes—and other not? What
combinations of technology advances were necessary to start a successful business
venture?

For example, computer mapping was available since early 1990, but became
successful only when the technical solution combining GPS with smart phones
were widely available and “payment” by clients accepting advertisement a form
of compensation.

2 Decade Around 1970

Likely the first conference which can be counted as GIS precursor conference
was the AutoCarto conference in 1974 in Reston VA.3 One of the first theory-
oriented GIS conferences attended by those who would become influential in
GIS development in the decades to come. The first academic GIS conference was

1 Gordon Moore, co-founder of Fairchild Semiconductors and Intel, empirically
observed that computer performance doubles every 18 months or every 10 years
the performance increases by a factor of about 100 (2(120/18) = 101.6), or the costs
decrease by the same factor. For example, the price of a GPS receiver decreased
from $30,000 to $3 between 1990 and 2010. Processors improved by a factor of 1010

between 1970 and 2020 as a combination of price reduction from $10 million to $100
(i.e. 104), an increase in speed by 105 and with 10 more processor cores - together
roughly 1010 .

2 Since the Euro has not been used over the entire period under review, I am giving
prices in “units” that correspond approximately to one Euro or one US$.

3 https://cartogis.org/docs/proceedings/archive/auto-carto-1/index.html.

https://cartogis.org/docs/proceedings/archive/auto-carto-1/index.html


Spatial Information Technology: Past, Present, Future 3

organized a few years later by the “Harvard Laboratory for Computer Graphics
and Spatial Analysis” [20].4

I attended at the beginning of my doctoral studies at the ETH Zurich prob-
ably the first European non-English language conference on “Land Information
Systems” in Darmstadt [23], together with my advisor R. Conzett and W. Mess-
mer (from city surveying Basel which operated one of the first city “GIS” at the
time).

Before starting my Ph.D. at ETH Zurich5 I had experienced IT technology
in a major Swiss bank with punched cards and suffered batch processing during
my undergrad studies, where Niklaus Wirth taught me Pascal. I was allowed to
do my Ph.D. research at the new “Center for Interactive Computing” at ETH
(ZIR), where I experienced a user friendly version of a time sharing, interactive
operating system (TOPS-10 on a DEC-10 computer from Digital Equipment
Corp.) derived from Multics.6

2.1 Technology

The typical IT technology in this decade was processing tasks in batches, with-
out user interaction with big mainframe computers in data centers; tasks were
entered as stacks of punched cards. They produced stacks of printed paper, often
with hundreds of pages which where then distributed to users.

Maps were drawn slowly on very expensive mechanical drafting tables.
Graphic displays were either static (Tektronix Storage Tube) or extremely expen-
sive dynamic vector displays.7

Surveying offices used the first electronic pocket calculators (e.g. HP 35)
and less often desktop calculators for geodetic coordinate calculations; larger
computational tasks were handed over to data centers.

2.2 Geographic Information Practice

Archives of paper maps, blueprint copying machines and light tables for over-
laying plans dominated technical offices. Few departments of large organiza-
tions used small computers to keep cadastral and utilities mapping up to date.8

4 https://en.wikipedia.org/wiki/Harvard Laboratory for Computer Graphics and
Spatial Analysis.

5 My topic was to study the suitability of database management systems for (multi-
purpose) cadaster; the supervisors were R. Conzett (surveying) and C.A. Zehnder
(IT) from ETH Zurich [27].

6 Most modern OS derive in some form from MULTICS; most notably Multics is the
precursor for Unix, which is the precursor for Linux ... see https://en.wikipedia.org/
wiki/Multics.

7 The ETH “Center for Interactive Computing” (ZIR) had one dynamic vector display,
an Evans & Sutherland Picture System 2, which could draw wire frame representa-
tions of a very small village; the price tag was above one million dollar.

8 Surveying offices in e.g. the towns of Vienna, Basel, Hamburg, or the Dutch Rijk-
waterstaat.

https://en.wikipedia.org/wiki/Harvard_Laboratory_for_Computer_Graphics_and_Spatial_Analysis
https://en.wikipedia.org/wiki/Harvard_Laboratory_for_Computer_Graphics_and_Spatial_Analysis
https://en.wikipedia.org/wiki/Multics
https://en.wikipedia.org/wiki/Multics


4 A. U. Frank

In Canada, Roger Tomlinson – known as the “inventor” of the term GIS – devel-
oped the “Canadian Geographic Information System” since 1962.9

2.3 Research

There were experiments with cartographic production in England [4] or at the
Harvard Graphics Lab [20] for applications in local planning, forestry etc. Steiner
in Zurich used minicomputer for a “geographical data processing system” [55].10

2.4 Software

Software was supplied by the manufacturers and only worked on their systems;
in contrast to the 1960s, software in the 1970s had now has a price and is no
longer a free add-on to the pricey expensive hardware.

3 Decade Around 1980

At the FIG conference in Montreux I was involved in the definition of the term
Land Information System:

A land information system is a tool for legal, administrative and economic
decision-making and an aid for planning and development which consists,
on the one hand, of a data base containing spatially referenced land-related
data for a defined area, and, on the other hand, of procedures and tech-
niques for the systematic collection, updating, processing and distribution
of this data.

The base of a LIS is a uniform, spatial reference system for the data in
the system which also facilitates the linking of the data within the system
with other land-related data [25].11

Soon afterwards the distinction between Land Information System (LIS) and
Geographic Information System (GIS) was abandoned in favor of the now com-
mon GIS terminology [28].

After completing my dissertation at ETH [27], I became professor of Geo-
graphic Information Systems at the University of Maine. A few years later, my
research group joined a team formed with the geography departments of the
University of California, Santa Barbara and New York State University in Buf-
falo to win an NSF funded competition [1] and started the NCGIA (National
Center for Geographic Information and Analysis) in 1987 [44].
9 https://en.wikipedia.org/wiki/Canada Geographic Information System.

10 Other reviews, slightly english-language centered are by [14,15]. Notable is an early
publication in 1988 with contributions from Dangermond, Coppock, Chrisman,
Rhind, Tomlinson and Goodchild.

11 The definition was produced in parallel in German, French and English in a small
hotel room in Montreux in a long night discussion; it survived the change in termi-
nology from LIS to GIS.

https://en.wikipedia.org/wiki/Canada_Geographic_Information_System
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3.1 Technology

Mini computers for less than one million dollar and graphic workstations with
raster displays were affordable even for smaller organizations. The necessary
software for GIS was purchased from various companies, often together with the
necessary hardware. Graphics [24] and database management programs became
standardized [12]. Microcomputers, such as the IBM PC introduced 1981, were
still very limited and had no graphics capabilities.

3.2 Geographic Information Practice

Reports of successful and cost-effective utility mapping operations are published
by US companies, often referred to as AM/FM (for automated mapping/facilities
management) [57]. These systems operated by large utility companies produced
documentation of existing installations for maintenance. Various manufacturers
(for example Intergraph12 and Synercom) offered software and hardware for
graphical systems with few very expensive workstations (approximately half a
million dollar per seat). For urban planning and environmental projects, software
from ESRI13 brought together data from different sources. All these systems were
proprietary and the exchange of data between the systems was challenging.

3.3 Research

The use of database management systems for spatial data requires more elab-
orate data storage structures than is customary for administrative applica-
tions [27]; metadata (i.e. data about the data) must describe the data quality
[9,10]. The Global Positioning System (originally Navstar later became known
as “GPS”14) was developed at the Johns Hopkins University Applied Physics
Laboratory on behalf of the United States Department of Defense. Tests for
geodetic use began after sufficient satellites were operational and the system
was approved for civilian use [36].15

Cartographic representations were the primary product from GIS at the time.
The data structures (i.e. unconnected lines and anchor points for area descrip-
tions - referred to as “spaghetti & meat balls”) were sufficient to obtain car-
tographic output, but not for the management of public utilities planning and
management.

The US government had collected data describing the street network to orga-
nize the decennial population census; the data structure recorded topology in a
format which is often referred to as Dual Independent Map Encoding (DIME)
[16]. Instructions for wayfinding could be produced if additional rules of road
traffic (especially turning restrictions) where added [61]. First trials showed the

12 https://en.wikipedia.org/wiki/Intergraph.
13 https://en.wikipedia.org/wiki/Esri.
14 https://en.wikipedia.org/wiki/Global Positioning System.
15 https://en.wikipedia.org/wiki/Global Positioning System#Predecessors.

https://en.wikipedia.org/wiki/Intergraph
https://en.wikipedia.org/wiki/Esri
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/Global_Positioning_System#Predecessors


6 A. U. Frank

importance of presentation of instructions to the user [39,42]. Experimental car
navigation systems with dead-reckoning to determine location were not commer-
cially successful; it took another 20 years of technological development [13,31].

The need to transfer the large amount of geographical data recorded in on
paper maps into a digital system became recognized. Laserscan built an auto-
matic digitizing device for the Dutch Rijkswaterstaat where lines were optically
tracked.16

At the same time the Ohio State University equipped vehicles with position
sensors and video cameras to record street data digitally [48], these were the
forerunners of the technology Google Maps used twenty years later to collect
street data.

3.4 Data

Extensive digitization projects were started in many places (e.g. city of Vienna
for multi-purpose digital map, the French national mapping agency started a
project to digitize the topographic map series) and projects were already com-
pleted in smaller regions (e.g. city of Basel). The data set including all streets
in the United States was prepared by the US Bureau of the Census; it is topo-
logically encoded [17,60].

3.5 Software

GIS software was produced by specialized companies - often tied to hardware
of specific manufacturers. Software production creates a natural monopoly, few
companies dominate the market.17 Changing the software manufacturer is almost
impossible because the data collected was recorded in the manufacturers propri-
etary format and translation to the format of another vendor was very difficult.

4 Decade Around 1990

I taught at the University of Maine in the United States for about 10 years
and did research at NCGIA until I was appointed to the Vienna University of
Technology in 1992.

4.1 Technology

Local networks connect large and very expensive mainframes with terminals,
workstations on the raster screens of which graphic representations are finally
possible. Around 1995 the restrictions on the Internet (Arpanet, NSFNET) on
16 http://www.laser-scan.com/demo/laser-scan-history/.
17 The production of software is a large investment to produce initially but to produce

more copies is inexpensive; this creates a “natural monopoly”. A company having
a product can undercut any competing offer and no other vendor will reasonably
attempt to make the large investment when the primary vendor will always be able
to reduce his price and make it impossible for him to recoup his investment.

http://www.laser-scan.com/demo/laser-scan-history/
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research institutions were lifted and access was made available to everyone. The
NSCA Mosaic Browser, available since 1993, allowed the Internet not only for
email but also for access to linked documents - the World Wide Web became a
reality [2].

GPS is increasingly used to obtain point coordinates. Calculations were car-
ried out on PC or workstations and the map layout coded there; maps were later
plotted on expensive large pen plotters.

4.2 Geographic Information Practice

Urban and regional GIS emerged, connected map with data from the admin-
istrative departments. Employees connected with terminals at their workplace
could obtain spatial analysis on demand. The centrally managed data could be
updated by decentralized employees. The vision of a GIS with central data stor-
age avoiding multiple copies of data to maintain, as it was imagined as a goal
in FIG documents and in the work of researchers at the University of Wisconsin
[11,46] twenty years before, became slowly reality.

Applications outside of public administration, for example for the real estate
market or fleet management, appeared and were cost effective for private compa-
nies. MapQuest used the US government road data from the US census to display
route descriptions in the web browser; the user then prints ed the description
and used it as a reference while driving.18 This application was probably the first
geographic service to be accepted by a wide audience. At the end of the decade,
the first train schedule information systems for the railroad were created (in
Europe SBB 1988, DB 1990) and accessible by the public using a web browser
as well.19

4.3 Research

An NCGIA initiative led to an analysis of the economic impact of geographic
data and in particular the use of location data for commercial exploitation [7,8].

Mobile phones used GPS to determine the location GPS-based devices were
patented in 1995; in the USA it becomes mandatory that all mobile phones
from 1998 onward transmit at least the position as radio cell identifier in an
emergency E-911 call [52]. Leading GIS researchers recognized ethical and social
issues involved [18,19].

The standardization of query languages became urgent with the emerging
internet; the research addressed methods of qualitative spatial reasoning nec-
essary for query languages qualitative spatial reasoning [21,22,30,51]. Transfer
of data between systems was impeded by the differences in encoding semantics;
standards for interoperability were urgently required [6], but the necessary the-
ory was lacking [59]. GIS, which could also record, document and display changes
in time, were designed and theoretically justified but not widely used for lack of
software [29,33,43].
18 https://en.wikipedia.org/wiki/MapQuest.
19 https://de.wikipedia.org/wiki/Elektronische Fahrplanauskunft.

https://en.wikipedia.org/wiki/MapQuest
https://de.wikipedia.org/wiki/Elektronische_Fahrplanauskunft
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4.4 Data

Federal government data in the United States is free of copyright, accessible and
usable by everyone even commercially. MapQuest and similar companies used
the road data from the Bureau of the Census to develop commercially viable
applications. In Europe, the national surveying offices defended the copyright
on their geographic data and only allowed commercial use within restricted and
expensive agreements; many national mapping agencies made even experiments
and research difficult. Therefore there are hardly any commercial GIS applica-
tions in Europe (with few exception like e.g. WiGeoGIS20 in Vienna) even if this
would make economic sense [40]. National Geoinformation policies to create and
maintain a spatial data infrastructure were proposed [41] but had limited influ-
ence; Rhind and Onsrud debate the role of copyright on GIS commercialization
[49,54].

4.5 Software

GIS programs were increasingly being built for the “PC” and the Windows
operating system from Microsoft. The GRASS GIS program system21 built up
by the US Corps of Engineers gains wider usage.

The exchange of data structured for use with proprietary software was com-
plicated and costly. Various US government agencies, universities and industry
founded under the leadership of David Schell 1994 the Open Geospatial Consor-
tium22 to advance software standards. The contribution of OGC was to create a
channel for the exchange of information between public authorities and potential
providers which leads to realistic standards. The very strict US public procure-
ment law restricts contacts between providers and potential buyers and among
the providers in enforcing anti-trust regulations. The OGC standards severed
the close connection between proprietary software and GIS data and allowed
smaller, specialized companies to deliver individual components in an open GIS
program. The EU promoted the European software industry, consisting of small
companies, with the GIPSIE project.23

5 Decade Around 2000

5.1 Technology

PCs were available at practically every employee’s desk and connected to the
World Wide Web - data is available regardless of the location of storage. The
20 https://www.wigeogis.com/en/home.
21 More information about the current state of the open source GIS program is found

at https://de.wikipedia.org/wiki/GRASS GIS and https://grass.osgeo.org/. A text
book is Neteler and Mitasova [45].

22 http://www.opengeospatial.org/ogc/histor and https://de.wikipedia.org/wiki/
Open Geospatial Consortium.

23 https://cordis.europa.eu/event/id/11209-gipsie-information-day/de.

https://www.wigeogis.com/en/home
https://de.wikipedia.org/wiki/GRASS_GIS
https://grass.osgeo.org/
http://www.opengeospatial.org/ogc/histor
https://de.wikipedia.org/wiki/Open_Geospatial_ Consortium
https://de.wikipedia.org/wiki/Open_Geospatial_ Consortium
https://cordis.europa.eu/event/id/11209-gipsie-information-day/de
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reduction of prices of GPS receivers and microcomputers allowed applications
that were previously not economically feasible. Mobile phones that finally fit in
trousers and handbags and whose position within a radio cell are known are
spreading rapidly, as are battery-powered laptop computers that can connect to
the Internet via the mobile phone network. Users have, in principle, access to all
the data in the world everywhere and always.

5.2 Geographic Information Practice

Car navigation devices with

– GPS positioning,
– locally stored road network, and
– usable graphical screen

were sold at a price that is acceptable for private users and are spreading rapidly.
Al Gore24 envisioned a virtual earth where a user can zoom in on his home

town and then on his street; it was realized around 2005 by Google Earth
and Google Maps in a comprehensive and widely used application, which later
included directions for road transportation, time-tables of public transport, etc.

Ruggedized laptop computers became small enough to allow direct recording
of spatial data in the field and proved cost effective in forestry, agriculture and
similar industries.

5.3 Research

Using available spatial and population statistics data achieved better targeting
for advertisement of services and goods. Targeting advertisement based on the
location of a person allows more situation and location aware adverts. In 2004 a
specialized conference on location-based services started at the Vienna University
of Technology.25 The determination of positions of customers within buildings
remains an open but important question with numerous applications [34].

The integration of data from different sources with different goals when col-
lecting was studied not only as a question of data structuring but also identifying
the differences in the meaning of the data (a.k.a semantics). Interoperability of
semantics was increasingly understood and connected to quality of the data.

5.4 Data

It was observed that only a few data sets are important for most applications
and it would be economically advantageous to make them generally available for
all uses:

– transport network,
24 US Vice President 1993–2001 serving President Bill Clinton.
25 https://lbsconference.org/former-lbs-conferences/.

https://lbsconference.org/former-lbs-conferences/
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– political boundaries,
– digital terrain model,
– hydrography,
– land use and land cover.

Data quality requirements for spatial resolution are usually low and errors in the
data are tolerable in many cases [26,35].

The desired reduction of apparently duplicate data collections is sometimes
not possible because different legal definitions underlie the administrative appli-
cation, e.g. different definitions of “forest” produce requirements for different
data sets which use the definition appropriate for the agencies; observing two
agencies collecting data with the same label are not always indicating wasteful
duplications!

5.5 Software

The open source movement in computer science was gaining traction and was
used by large companies for the creation of complex systems (IBM with Eclipse or
Google with Android); the open QGIS26 was created using GRASS and various
other free software packages.

6 Decade Around 2010: The Present Situation

6.1 Technology

Better resolution for small screens, better batteries, higher transmission rates
in the mobile network and tiny, powerful computer chips allow graphic access
to the WWW on the new smart phones. The higher resolution of the screen is
attractive for map drawings. The new device can be used to place a phone call,
but users learn rapidly to appreciate all the other functions found on the WWW.
Social media, platforms for the exchange of information in more or less closed
groups become extremely popular. The smart phone uses the GPS location to
track the users location and add location data to all data collected. Producing
enormous amounts of spatial data.

Vehicles with many sensors collect street images for different collectors
(Google and others); laser scanners allow precise mapping of a site by surveyors.

Google collected practically all text document on the web and scanned a sub-
stantial share of all books found in university libraries.27 The collected immense
amount of data is used to train natural language components which later are
used in commercial applications, but is – due to copyright restrictions – not
widely available.

26 https://en.wikipedia.org/wiki/QGIS.
27 https://en.wikipedia.org/wiki/HathiTrust.

https://en.wikipedia.org/wiki/QGIS
https://en.wikipedia.org/wiki/HathiTrust
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6.2 Geographic Information Practice

Geographic information is used everywhere and at all times by everyone – every-
one and every company uses location data in applications to find people and find
addresses, customers search for services, and companies offer services nearby, etc.
Applications are designed for the web right from the start. The use of geographic
information is practically only limited by the number and the usability of pro-
grams on the smart phone. Mobile devices serve as sensors: traffic volumes and
traffic jams can be detected from observing the movement of users and lead
to better route guidance. Applications for accessing popular services are often
duplicated by resellers and it becomes difficult for the user to identify the genuine
informative one, e.g. the authoritative time-table of a public transport company,
the cinema program, without confusion by unwanted and unhelpful offers.

Organizations and administration begin to use smart phone applications to
update data their employees collect, but allow citizens to send messages (with
location and photo) to record problems needing an intervention. Dispatchers
collect data from employees and forward jobs to them - all as applications on
the smart phone.

6.3 Research

The connection of data with other databases became possible with the concepts
of the Semantic Web [5]. The data are structured in binary relations with RDF
[38] and found with the query language SPARQL [50]. Typically are these opera-
tions buried in lower layers of application programs and combined with attractive
graphics.

Assembling GIS applications with data from different sources and connecting
them with the dialog with the user, reveals the lack of systematic understanding
of meaning. The adequate solution of tasks in space depends on the context;
for example, the decision as to what is “close” and what is “far” includes many
aspects of the situation of the person making the decision, e.g. tourism or com-
mercial travel, the mode of transportation. . . . [32].

6.4 Opening Up of Government Data

Based on a decision by the UK government in 201128 geodata is released from
copyright in the UK; other local authorities were quickly following the trend
(e.g. City of Vienna). Commercially significant is not so much the access to the
basic geographic data (which is already largely available through Google Maps),
but the detailed descriptive data which providers use in different business mod-
els. Data is often provided free of charge to the user who are then constrained
to accept some advertising. Commercial applications can often charge a fee for
access. There are often restrictions put in place to channel web traffic to govern-
mental agencies and avoid commercial enterprises benefiting from public data.

28 https://en.wikipedia.org/wiki/Open Data in the United Kingdom.

https://en.wikipedia.org/wiki/Open_Data_in_the_United_Kingdom
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For example, it took a long time long till Google Maps could include the sched-
ules of e.g. the Vienna city public transport schedule system.

Free geographic data collected by volunteers in the Open Street Map Project
is of sufficient quality and is accessible across the board.29 It is used as an
alternative to the proprietary Google Maps data.

7 What May Come: The Next Decade

7.1 Technology

Computer downsizing and performance increases likely continue. Novel ideas are
“wearable” computers, which are incorporated into clothing and are with you at
all times; unsolved is the communication between user and computer. Invisible
sensors that collect data about the behavior of their users or people around them
will increase. Using cars as sensors is no longer a technical issue, but mostly a
legal and social question. Semantics, cognition and context (as three key words)
are captured primarily using statistical methods.

The penetration of IT into all activities and the current low level of data
protection and security promote crime: Nobody places leaves a cars unlocked on
a city streets, but putting their computers - even if only an integrated computer
in a washing machine or in a refrigerator - unprotected on the Internet is common
practice.

7.2 Geographic Information Practice

Surveying will specialize in high precision and surveillance tasks. Surveyors are
familiar with observing movement of objects and spatial-temporal planning. The
importance of time-related data will increase in most applications and often
time-related data will replace static data.

The quality of the data can be displayed and the demands on the quality of
data for various applications can be assessed. Applications must include warnings
for users, if the data necessary for a decision is not available or is not available
in sufficient quantity.

Games that connect virtual worlds with real space – Pokémon Go was one
of the first30 – are successful and complementary to classic sports. Just as today
the timetable information – once a domain of specialized railway officials – is
automated, simple legal cases (and other activities of human “experts”) can be
automated [56]. The same should also apply to routine decisions in building law.

Sensors automatically detect certain situations (e.g. crowds in public trans-
port, traffic jams) and make this information available to others for their deci-
sions in the form of programmed components that can be integrated into applica-
tions. This extends the field of work of the “quantity surveyor” and the property
valuation specialist.
29 https://en.wikipedia.org/wiki/OpenStreetMap.
30 https://en.wikipedia.org/wiki/Pokémon Go.

https://en.wikipedia.org/wiki/OpenStreetMap
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7.3 Research

The statistical procedures for the acquisition of semantics should be supple-
mented with rule-based, ontological procedures. Since space and time are the
fundamental indices in almost all areas of life and have likely fundamentally
influenced the development of human cognition, spatial thinking and the “dig-
ital version” of it will be a prerequisite for the intelligent integration of data
from different sources: sensor data must be combined with verbal data to make
meaningful messages.

Research on human-computer interaction, especially user interfaces, in con-
nection with natural language technologies are recognized as the most impor-
tant topics for overcoming practical obstacles in the use of IT. The protection
of spatio-temporal information to ensure the level of “privacy” necessary for a
human society becomes an important topic for the development of technology,
law and practice. How can information be obtained for the planning of busi-
ness or public decisions without conclusions being drawn about the behavior of
individuals [58]?

The context of information communicated must be considered. Understand-
ing the pragmatics of natural language are difficult to integrate with programmed
applications. The contrast between the “closed world” logic of most administra-
tive activities and the “open world” logic [53] must be used for spatial reasoning
in most cases calls for “intelligent” systems that choose between the two logics
depending on the situation [3]. Computer security and defense against crime
when dealing with spatial data is an issue: how to prevent the misuse or falsifi-
cation of sensor data?

7.4 Data and Software

Data and software are increasingly becoming a “free good” that can be used
by everyone. Business models must move their focus away from the copyright of
data [37] and concentrate on value produced for the user. The spatial professional
in practice becomes an expert in situation-appropriate applications of processes
that run on public data with public software. Remember the famous joke from
the early years of automobiles, where a repair bill read: “Material used: 1 screw
10 cents, Known where to apply it $19.90, Total $20”!

8 Conclusion

8.1 Enabling Technologies

The development of IT, especially of ever smaller computers that provide more
performance with less power consumption, but also the development of batteries,
cellular networks and finally GPS, have allowed new applications. Applications
become economically viable, as a combination of price and usability, includ-
ing the form factor. I conclude that the development of technology, driven by
research, is the primary engine of change and that the social changes, which
are becoming apparent in politics are the consequences of the development of
technology, including new institutions (in the sense of Douglas North [47]).
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8.2 Innovative Companies

Many of the pioneers have disappeared over time. Rarely have small companies,
which were first on the market, survived in the long term against being pushed
out or bought up by monopolists (e.g. Microsoft has successfully forced the first
browser by Netscape out through marketing practices later considered illegal).
The increasing complexity of IT through intensely networked systems forced
the transition to open source models of software production and increases the
chances for new ideas in startups - which are then taken over by monopolists.

8.3 It Takes Fifteen to Twenty Years from Research to Practice

The examples shown here, such as GPS, topological relations, data acquisition
from moving vehicles, demonstrate a time lag of 15 to 20 years between the
“invention” is discussed in research groups till it is put into practice. Novel ideas
are often documented at an early stage in a research publication, but only years
later the announcement of a product follows, and only much later, after the
idea has been incorporated into education and has proven to be economically
worthwhile, it will be sold and money earned with it. This is hardly documented
and is - in retrospect - difficult to observe.

9 Coda

The real and the virtual world seem to merge on the web, but in the end, real
physical space is essential for humans; we can order food from a take out and ask
a delivery service to bring it to our home—but the food is better physically real
and nourishing! The same applies for many other substantial aspects of human
life.

Maintaining the synchronization between the real physical world and the
virtual image is a demanding task; for example, the state of the road network,
public transport etc. must be up-to-date. The user must become more conscious
of the difference between reality and its representation; if there is a discrepancy
between the physical reality and the information in a database then we should
believe the real world situation; knowledge can be wrong, the state of reality
cannot.

My experience leads me to believe that commercial success is possible as a
combination of three conditions:

– a fundamental human need is at the core - e.g. people need to navigate in the
world and must avoid to get lost;

– a cost-effective technical mean to satisfy this need is available and,
– a business-opportunity is identified.

A long term successful business is only possible if the services rendered or the
product sold is solid and substantially satisfies the user needs, as expressed by
Abraham Lincoln:

You can fool all the people some of the time, and some of the people all
the time, but you cannot fool all the people all the time.
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Abstract. In the context of disaster management, location information is crucial
in disaster scenarios to infer the incident location and facilitate disaster relief.
In recent years the advent of social media has brought not only great opportu-
nity to enhance disaster management in a crowdsourced perspective, but also a
major challenge to interpret the noisy information. A conventional approach to
location extraction from texts is Named Entity Recognition (NER), however it
shows unsatisfactory performance on informal and colloquial texts such as social
media messages, especially for the uncommon place names. To address this issue,
we proposed a Bidirectional Long Short-Term Memory (LSTM) Neural Network
with Conditional Random Field (CRF) layer to identify geo-entities especially the
rarely known local places in social media messages, and the use of orthographic,
semantic and syntactic features was explored to achieve best performance. The
proposedmodel was tested on a dataset collected fromTwitter, showing promising
performance in detecting location information when compared with off-the-shelf
NER tools.

Keywords: Named entity recognition · Location extraction · Social media ·
Deep learning model

1 Introduction

Social media can be beneficial in disaster risk reduction, response and recovery pro-
cess [1], and Twitter stands out as an effective social media platform because of its
global extension and the speed in which information gets disseminated [2]. While loca-
tion information can be crucial in disaster management, Twitter offers three types of
information for extracting the location where the incident happens: (i) geo-tagged texts
or geo-coordinates (ii) users’ locations in their profiles (iii) location mentions in the
tweets. The previous studies show that the explicit and accurate information about the
place where an event has happened can be gainedwith the tweets having geo-coordinates
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[3]. However, the tweets containing geo-coordinates are rare among the whole Twitter
stream. The location information from the user’s profile can be an alternative to detection
of the place of event, but its accuracy is not guaranteed. Therefore, the location mentions
in the tweet text accounts the most for the location recognition, which requires further
text processing.

The text mining technique that is commonly used to extract place names from texts
is Named Entity Recognition (NER). This method analyzes the text based on Part-of-
Speech (POS) tagging and labels a certain group of words as an entity category including
person, organization or location. The technique performs well for well-structured sen-
tences and well-known places, but not so good for the extraction of local geo-entities
from social media messages. It is because the texts are usually written in informal or
random format due to geographic or non-geographic ambiguities.

In order to improve the extraction of unknown place names from the social media,
we proposed a model based on Bidirectional Long Short-TermMemory (LSTM) Neural
Network with Conditional Random Field (CRF) layer to recognize the local geo-entities
mentioned in social media messages. Stanford Named Entity Recognizer was used to
label the training data. The experimentation was carried out to incorporate both syntactic
and semantic features in themodel. In addition toword embedding, POS tags, letter cases
and prepositions are considered as well to augment the model.

2 Related Work

The extraction of location mentions from texts is a long-studied problem since texts are
one of the most common forms to encode geographic information, but in this process
the geo-referents of the location mentions become ambiguous and even the boundaries
of the location mentions in text are difficult to recognize without enough background
information, especially when the place name is abbreviated for brevity. Naturally the
place name extraction falls into sub-problems: entity delimitation and toponym disam-
biguation. The former delimitates the boundaries of a place name, which is the focus of
our study, and the latter decides the most possible geo-referent to the place name.

While entity delimitation can be solved bymatchingwith gazetteer [4] or hard-coded
rules [5], the current NER tools or systems are generally more powerful in extract-
ing location mentions from formal texts in terms of recall. One of the most renowned
NER systems is Stanford NER [6] where a Conditional Random Field (CRF) model
incorporates long distance features to identify named entities including location. Some
researchers have also attempted further augmentation to theNER capability of extracting
locations by constructing a gazetteer from word clusters [7]. Web NER aims at sepa-
rating complex place names from web pages by utilizing capitalization cues and lexical
statistics [8].

However, the NER systems have shown unsatisfactory performances on social media
messages [9] mainly owing to the informal and irregular expressions as well as the
short texts. An outstanding performance has been achieved by Stanford NER when
it is retrained by annotated tweets [10], but the annotation of social media messages
is time-consuming and elusive on large scale text processing. Meanwhile LSTM is
becoming a popular choice of NER owing to its suitability for sequence classification.
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Bi-LSTM-CRF networks using contextualized embeddings were employed for chemical
NER [11]. An exploratory study on Indonesian Twitter Posts [12] used LSTM for NER
and experimented on a small dataset, on which it achieved a F1-score of 0.81 for location
recognition.

Recent years have witnessed a lot of efforts attempting to address the problem of
extracting location mentions from social media streams. A model to predict the occur-
rence of location mentions in a tweet was introduced and was found that this preliminary
process can enhance the accuracy of entity delimitation [13].A statistical languagemodel
was built in [14] based on augmented and filtered region-specific gazetteers from online
resources such as OpenStreetMap (OSM) to extract place names from tweets, a F1-score
of 0.85 was achieved while no training data is required.

Unlike the studies above, we mainly focus on the location mentions referring to
geo-entities of small scale, which rarely appear in most gazetteers. And a deep learning
model is constructed and trained on Stanford NER annotated tweets, without manual
annotation.

3 Methodology

3.1 Model

We used a Bidirectional LSTM-CRF (Bi-LSTM-CRF) model, which belongs to the
category of Recurrent Neural Networks (RNNs), to label whether a word is an element
of a location mention or not. RNN is an appropriate approach for sequence classification
due to its capability of passing the output of one node to its successor, which can be
interpreted as the influence of a word to the successive word. LSTM is a specialized
RNNwhich performs better on long sequences while the impact of previous layers decay
along with vanishing gradient in RNN. LSTM employs a mechanism called forget gates
to control the information flow in the neural network.

Fig. 1. LSTM cell.

Figure 1 shows the mechanism of an LSTM cell that handles information from
previous sequences and current input with forget gate, input gate and output gate. An
LSTM cell takes three inputs: previous hidden state ht−1, previous cell state Ct−1 and
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current input xt . The forget gate generates ft to decide whether to keep previous cell state
Ct−1:

ft = σ(Wf xt + Uf ht−1) (1)

where σ is sigmoid activation function, Wf and Uf are weight matrices for linear
transformation and combination of xt and ht−1, respectively.

Input gate is to decide whether to update current cell state Ct with new candidate
value ˜Ct by it :

it = σ(Wixt + Uiht−1) (2)

˜Ct = tanh(WCxt + UCht−1) (3)

where tanh stands for a hyperbolic tangent activation function. The current cell state Ct

is updated by:

Ct = ft ∗Ct−1 + it ∗ ˜Ct (4)

Output gate controls the update of current hidden state ht :

ot = σ(Woxt + Uoht−1) (5)

ht = ot ∗ tanh(Ct) (6)

The outputs of an LSTM cell are current cell state Ct and current hidden state ht
whereCt and ht are passed to the next time step t+1. The label yt of input xt is determined
by ht :

yt = softmax(Wyht + by) (7)

On the basis of LSTM, Bi-LSTM model is trained on two directions of the input
sequence, forward and backward, providing comprehensive context information of
the target word. Bi-LSTM model has been implemented on NER tasks and shown
competitive performances on benchmark datasets [15].

Conditional Random Field (CRF) is a graph-based sequence labelling algorithm to
predict a label for each element in a sequence. A set of feature functions f (X, i, yi, yi−1)

is defined to model the interdependency of input sequence X, position i, current state yi
and previous state yi−1. The selection feature functions are task-specific. For instance,
in POS tagging task if a word ends with ‘-ness’ and yi is NN (noun, singular or mass) the
feature function fj(X, i, yi, yi−1) is set to be 1, or otherwise 0. This shows that the feature
functions quantify semantic or syntactic rules and evaluate the factors determining the
label of a token. The interdependency can be modelled between not only neighboring
states but also states at a distance in a sequence. It is assumed in CRF that the conditional
probability P(Y|X) ∝ exp

{∑n
i=1 w

T · f (X, i, yi, yi−1)
}

where the weight w represents
the significance of different feature factors in determining the final class label. It is
optimized by minimizing−log(P(Y|X)).CRFmaximises the conditional probability of
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the whole sequence while removes the constraint of limited dependency among states
Y in Hidden Markov Model (HMM).

In the combination of LSTM and CRF, CRF takes the output of LSTM layer as
the feature functions and automatically learns characteristics and regulations of a valid
output sequence, which not only avoids manual work to select feature functions but also
captures the interaction between LSTM output sequences.

As seen in Fig. 2, features of the input sequence are passed to the forward and
backward LSTM layers respectively in our model, the two outputs are subsequently
concatenated and passed to a fully connected layer. Finally, a CRF layer verifies the
validity of LSTM output sequence and predicts the probability distribution over all the
class labels in the sequence.

Input 
Features

Input 
Features

Forward 
LSTM

Forward 
LSTM

Backward 
LSTM

Backward 
LSTM

Full-
connected 

Layer

Full-
connected 

Layer
CRFCRF OutputOutput

Fig. 2. Bi-LSTM-CRF model architecture.

Additionally, a regularization method called label smoothing is employed to rectify
the noisy labels generated by StanfordNER. For a one-hot label vector y, label smoothing
constructs a softened label vector y′ = (1 − α) ∗ y + α ∗ u where u is a uniform
distribution overK classes andα is a hyperparameter. Label smoothing is commonly used
to avoid overfitting in deep learning models. However, it also contributes to correcting
the noisy labels in this case.

3.2 Features

Apart from the Bi-LSTM-CRF model, we tested the impacts of five categories of fea-
tures on the classification results: word embedding, character embedding, POS tags,
capitalization and prepositions. Word embedding is a word representation method that
maps words to continuous vectors in higher dimensions. It is grounded on Distributional
Hypothesis that words with similar contexts are inclined to have similar semantic mean-
ings [16], and word embedding encodes the context information in the vector. Therefore,
the similarity of two words can be evaluated by the cosine value of their word vectors.

One of the most popular approaches of word embedding is the Skip-Gram model.
It is a fully connected neural network that takes the one hot encoding vector of the
target word wi as input and produces the conditional probability that an arbitrary word
wj from the vocabulary occurs in the context window of wi. Parameters θ of the model
are optimized by maximizing the log-likelihood sum of P

(

wj|wi; θ
)

. Another widely
used word embedding model is GloVe [17], short for Global Vectors. Unlike Skip-Gram
model which is trained by maximum likelihood estimation of the conditional probability
of neighboringwords, GloVe is trained on global statistics of a word-word co-occurrence
matrix obtained from training corpus. In the co-occurrence matrix X , Xij represents the
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co-occurrences of word i and word j and Pij = Xij/Xi. In order to measure the semantic
similarity between words, a ratio F(i, j, k) = Pik/Pjk is defined on a third entry word
k. If the ratio approximates to 1, word k is either highly or barely relevant to both word
i and word j. Otherwise word k is relevant to word i or word j, according to offset of
ratio. Specifically, F is an exponential function to fulfil the symmetry of word relations:

F
(

(ui − uj)T · uk
)

= Pik

Pjk
= F

(

uTi · uk
)

F
(

uTj · uk
) (8)

where ui, uj and uk are the corresponding word embeddings of word i, j and k.
Therefore we have:

uiTuk = log(Xik) − log(Xi) (9)

The right term log(Xi) is invariant of word k, it is split into two bias terms to comply
with the symmetry of relation between word i and k:

uiTuk + bi + bk = log(Xik) (10)

The cost function over vocabulary V is defined as:

J =
∑V

i,j=1
f
(

Xij
)

(uTi uj + bi + bj − log
(

Xij
)

)2 (11)

f
(

Xij
) =

{(

Xij
Xmax

)α

if Xij < Xmax

1 otherwise
(12)

where f is aweighting function to adjust the cost forword pairs of different co-occurrence
frequencies and α is empirically set at 0.75.

GloVe provides pre-trained word embeddings which are used in this paper. The
GloVe word embeddings are trained on an enormous Twitter dataset of 2 billion tweets
covering a vocabulary of 1.2 million words.

An outstanding challenge in the processing of social media texts lies in the out-of-
vocabulary words. The evolving lexicon of cyberspeak far surpasses the limited dic-
tionary of numbered training materials, not to mention misspellings and emoticons.
The out-of-vocabulary words are often marked as unknown words and share the iden-
tical embedding, neglecting their semantic and syntactic diversities. However, the con-
stituents that form all words possibly occurring among social media texts in English
are restricted to 26 l, 10 digits and some other special characters, which inspires the
introduction of character embedding as an alternative to word embedding. Training of
character embedding is similar to word embedding where a substantially smaller char-
acter dictionary is pre-defined, and the character sequence is projected to a matrix made
up of character embeddings. The character matrix is processed by a one dimensional
convolutional or recurrent layer to extract the features of word segments or subwords,
which are commonly recognized as prefixes, suffixes or roots.

The other three features, POS tags, capitalization and prepositions are regarded as
categorical data and encoded into integers. POS tags are the labels that denote the part of
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speech of a word such as noun, verb or adjective. Since the location mentions are mostly
comprised of nouns, POS tags can signify the possible occurrence of location mentions.

Another factor that could influence the identification of location mentions is the
capitalization or case of a word. We consider the capitalization in four categories: upper
case, lower case, title case and other.

Prepositions that can describe places or directions such as ‘at’ or ‘in’ are also impor-
tant indicators of location mentions. We collect all the prepositions regarding locations
in a list and encode the occurrence of prepositions in tweets as the list index. The three
indexed categorical features are mapped and trained into corresponding embeddings
in the Bidirectional LSTM-CRF model. Another factor to consider in the model is the
errors in features resulted from the informality of social media data. The errors caused
by upstream tasks or writing mistakes may severely impact the downstream task of geo-
entity recognition. For example, POS tag is a major indicator to identify proper nouns,
but the performance of POS taggers on informal and noisy social media data is constantly
in doubt. Therefore, a fully connected layer is designed in the proposed model to correct
the errors in input features in order to minimize their influence on model performance.
Meanwhile the errors are infrequent compared with the majority of unpolluted data,
which requires merely a minor correction on the original embedding layer. To this end, a
fully connected layer with an L2 regularizer is added after the POS tag embedding layer
and case embedding layer to correct the noise in features such as POS tagging errors
or case misuse. The corrected embedding layers are concatenated with the pre-trained
word embedding and preposition embedding for each token or word as can be seen in
Fig. 3.

Fig. 3. Concatenated feature embeddings.

As the features employed to describe the data are heuristic, we also explore the con-
tribution of each feature to the correct locationmention labelling by adjust the dimension
of the feature in the following experiments.

4 Experiments

4.1 Dataset

The dataset we used in the experiments was collected fromTwitter via its official applica-
tionprogramming interfaces (APIs). From to21st to 30th ofAugust 2017 twoconsecutive
typhoons Hato and Pakhar affected Southern China area while two populated coastal
cities Hong Kong and Macau were severely impacted. We collected and reduplicated
tweets from the two areas during the typhoon-impacted period and extracted typhoon-
related tweets by an augmented Convolutional Neural Network (CNN), resulting in
10,996 tweets ready for location extraction.
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4.2 Pre-processing

The named entities including locationmentions in the tweetswere annotated via Stanford
NER tools, and POS tagging was implemented likewise using Stanford POS tagger.
Among 10,996 tweets location mentions were found in 4,215 tweets. Considering that
Stanford NER tools can ignore the unknown places only familiar to locals, we only used
the 4,215 positive tweets as training data.

In order to test the proposed model on its capability of detecting local place names,
we manually selected and labelled 100 tweets in which Stanford NER misclassified
the place names. The word embeddings with dimension of 200 were pre-trained by the
Skip-Gram model on the Twitter stream we collected. The embeddings of POS tags,
capitalization and prepositions were trained along with the model.

4.3 Model Training

In the training process we leave out one tenth of the training data, which is 422 tweets,
for validation, and 3,793 for training. If the validation loss is not improved in 5 epochs
the training process will be terminated.

Figure 3 shows the variation of accuracy and loss for training set and validation set
when all the four features are employed. The validation accuracy is improved to 96% in
comparison to 92%when only word embedding is used, which proves that the utilization
of syntactic features such as POS tags can boost the model performance. In the following
subsection we will examine how the features influence the model on the test set (Fig. 4).

Fig. 4. Model training [18].

4.4 Feature Evaluation

4.4.1 Individual Application of Feature

We first verify every feature separately on the test set. In the training process all the
tweets are padded to the same length for alignment, the padded element is labelled 0 as
its location mention category. A word that is part of a location mention is labelled 1, and
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other words are 2. The positive label 1 accounts for an extreme small proportion in the
true labels of test set at 1.18%.

In Table 1 we present the precision, recall and F1-score of each label when only
word embedding is applied. The proposed model performs well on label 0 and 2 that
constitute majority of labels but shows poor performance in predicting locationmentions
particularly in terms of recall. The precision has not reached 0.5 and F1-score is merely
0.11.

Table 1. Classification results on word embedding.

Label Precision Recall F1-score

0 0.98 0.99 0.99

1 0.42 0.06 0.11

2 0.91 0.94 0.93

We further investigate the classification performance of individual application of
character embedding, POS tags, capitalization and Prepositions on label 1, as shown in
Table 2. The noise correction layer for POS embedding and case embedding is tested
separately aswell to verify its effectiveness. Best performance is achieved byPOS tags on
precision and F1-score, and case embedding with noise correction layer reaches highest
recall. The singular employment of prepositions produces inferior outcomes compared
to POS tags and capitalization, but still outperforms the results of word embedding. The
unsatisfactory outcomes produced by prepositions are reasonable for that preposition is
an indicator of neighboring words for geo-entity recognition. For POS embedding and
case embedding, the use of noise correction layer lowers precision and increases recall,
this tradeoff has no significant contribution for POS embedding but enhances F1-score
of case embedding considerably. This indicates that capitalization in social media texts is
comparably noisy than POS tags produced by Stanford POS Tagger and less informative
than formal texts.

Table 2. Classification results on other features.

Feature Precision Recall F1-score

Character embedding 0.57 0.55 0.56

POS tags 0.66 0.65 0.66

POS tags w/correction 0.62 0.71 0.66

Capitalization 0.60 0.54 0.57

Capitalization w/correction 0.55 0.72 0.62

Prepositions 0.58 0.09 0.15
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In general, individual application of feature produces unsatisfactory results, which is
mostly caused by the imbalanced nature of data where locationmentions are exceedingly
infrequent.

4.4.2 Combination of Features

After the performance of individual features is tested, the concatenated embedding that
encompasses all the features are verified in experiments as well as the noise correction
layers. In Table 3, the concatenated embedding has yielded favourable outcomes in
comparison with individual features. The introduction of noise correction layer has
considerably improved recall as well as F1-score, which means that in social media data
the errors of POS tagging and case misuse have notably affected the sequence labelling
task. The noise correction layer has correctedmost of these errors,whereas it also imports
minor noise resulting in slight decrease of precision.

Table 3. Classification results on other features.

Model Precision Recall F1-score

Bi-LSTM-CRF without noise correction layer 0.82 0.60 0.69

Bi-LSTM-CRF with POS correction layer 0.81 0.62 0.70

Bi-LSTM-CRF with case correction layer 0.78 0.68 0.72

Bi-LSTM-CRF with both noise correction layers 0.77 0.71 0.74

We compare the proposed model to Stanford NER and two off-the-shelf NER tools
TwitterNLP [19] and TwitterNER [20] that are specialized for Twitter data. TwitterNLP
reconstructed an NLP pipeline including POS tagging, shallow parsing, capitaliza-
tion informativity classifier and NER tagger. Capitalization informativity classifier was
designed to determine if a tweet informatively capitalized since the capitalization in
social media messages are generally less reliable. Each component of the NLP pipeline
was adapted and re-trained on Twitter data. The NER tagger in TwitterNLP consisted
of two parts: named entity segmentation and classification. In named entity segmenta-
tion orthographic, contextual and dictionary features were employed on a Conditional
Random Fields model to label IOB (Inside-Outside-Beginning) tags for text sequences,
and LabeledLDA [21] was applied in named entity classification to model the label
distribution over the text segments linked to an entity.

TwitterNER provides a semi-supervised approach for named entity recognition in
tweets. It utilized diversified features including orthographic features extracted by reg-
ular expressions, gazetteer features, unsupervised features such as word embedding and
word clusters, and applied random feature dropout to generate more samples for aug-
mentation of the small training dataset. A linear chain CRF was leveraged for named
entity classification.

The experiments were conducted on the same test set. In Table 4 it can be seen that
precision, recall and F1-score have been largely increased, which proves the capability
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of the proposed model on identifying unknown location mentions from social media
messages, either with or without the label smoothing. Label smoothing has moderately
improved precision of the model while maintaining the same level of recall, thus pro-
motes the overall metric F1-score. It proves that label smoothing is capable of reducing
the noise in training labels. Moreover, Bi-LSTM-CRF with label smoothing enhances
recall and F1-score significantly with small sacrifice of precision by rectifying the errors
in labels.

Table 4. Comparison with baselines.

Model Precision Recall F1-score

Bi-LSTM-CRF without label smoothing 0.77 0.71 0.74

Bi-LSTM-CRF with label smoothing 0.80 0.71 0.75

TwitterNLP 0.30 0.14 0.19

TwitterNER 0.96 0.56 0.71

Stanford NER 0.89 0.58 0.70

The Bi-LSTM-CRF model is proven to have better capability to learn the interde-
pendences between input sequences in both forward and backward directions as well as
the output sequences. Without utilization of gazetteers, it achieves promising results on
identification of unknown place names from social media texts in the curated test dataset
that is difficult to learn.

5 Conclusions

In this paper, a deep learning model based on Bi-LSTM-CRF Neural Network was
proposed in order to identify the rarely known local geo-entities mentioned in social
media messages. We tested five features of word embedding, character embedding,
POS tags, capitalization and prepositions to evaluate their capabilities to differentiate
between positive and negative labels. It was found that POS tags contribute the most
to classification. The proposed model has achieved competitive results even with noisy
training data. The introduction of noise correction layer for features further boosts the
performance. However, there still exist areas for further enhancements especially on
precision of the Bi-LSTM-CRF model. In order to address the issue of imbalanced
datasets, we can further under-sample the majority negative labels, or ensemble the
proposed model with other methods suitable for imbalanced datasets such as decision
tree models. Moreover, the multiple instance learning framework can be exploited in
the model as the training data labelled by Stanford NER possibly contains many false
negative labels.
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Abstract. Climate and land-use change continue to pose major threats to global
rapid declines in biodiversity and ecosystem functions impacting natural sys-
tem’s resilience and capacity for the provision of ecosystems services. Kiliman-
jaro Mountain National Park, a cloud tropical montane forest was specifically
designated to protect the only free-standing highest mountain in the world. In
ensuring long-term protection of this high biodiverse tropical montane forest park,
consistent ecological monitoring, including field measurements, is of paramount
importance. This study provides a state-of-the-art remote sensing method con-
tribution in the conservation efforts carried out by park staff for protecting this
unique national park in the tropics. Our method demonstrates the automatic calcu-
lation of derived vegetation indices from Sentinel-2 data of the European Satellite
Agency, using the normalized difference vegetation index (NDVI) as an exam-
ple. The Sentinel-2 satellite mission provides data for consistent and long-term
biodiversity monitoring to complement the in-situ observations by focusing on
specific areas of interests in and outside the park ecosystems. Our study uses an
area in the western edge of the park as an example, which became part of the Kili-
manjaro Mountain National Park in 2008 (the “Half-mile strip”). We demonstrate
how to automatically download and preprocess Sentinel-2 data for a particular
study area and time period, as well as how to calculate various vegetation indices
while taking into account the specific cloud coverage in the satellite images for the
area in focus. We developed and provide processing routines in the programming
environment R, which can easily be adopted to any study area for automatically
generating similar outcomes.

Keywords: Biodiversity monitoring · Climate-land-use change · Cloud
Coverage ·Mount Kilimanjaro National Park · Remote sensing · Sentinel-2
data · Vegetation indices

1 Introduction

It is well known that protected areas particularly those in the tropics face key challenges
linked to loss of wildlife habitats, mainly due to land use changes in their surrounding
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ecosystems whilst exacerbated by the increasing impacts of global climate change [1, 2].
Mount Kilimanjaro National Park and its associated ecosystems represent such a world-
wide unique and diverse habitat, with its altitudinal range of about 5,900 m associated
with climate and vegetation zones changing from the tropical savannas at the lowlands
to the afro-alpine grasslands at the top [3]. Apart from the natural ecosystems within
the national park, several land use types occur in the vicinity, including intensive annual
monocultures (maize, beans and other cereals), perennial coffee-plantations and diverse
traditional agro-forestry systems such as the so-called “Chagga-home-gardens”, which
to some extent retain a semi-natural forest structure [4].

This highest free-standing mountain in Africa acts as a water tower by feeding major
river systems in the region. The tropical mountainous forest ecosystems play a major
role in the regional climate regulation, while providing many other important ecosystem
services to the locals and beyond [2]. It’s melting “ice-cap”, which is vanishing because
of decreasing precipitation [5] rather than by an increasing temperature, is an important
tourism attraction by mountaineers and tourists visiting the park every year and has
become a global symbol for the accelerating trend of global change [3].

Our study capitalizes on the recently concluded “KiLi1-Project” (running from 2010
to 2018), with the main objective of a follow-up monitoring strategy for the Kilimanjaro
Mountain National Park, being the custodian in ensuring the continuity of the ecosystem
services provided by the park to the local, national and the international community at
large [1, 2]. Apart from the direct ecosystem services provided by the park in its natural
settings, it is particularly a key tourist destination in the country, contributing to the local
and national economy from the foreign currency accrued through the tourism business
and its tripling effects to the local communities surrounding the park [2]. The park
management authority vested with the responsibility of protecting this unique tropical
montane cloud-forest in the long run, at the face of its increasingly isolation from its
surroundings, mainly through habitat conversions from natural forest vegetations to
croplands because of the adjacent intensifying land uses spearheaded by increasing
human population pressure [4].

We explored the use of current remote sensing opportunities by deploying state-of-
the-art data from theSentinel-2Multi-Spectral Instrument (MSI) satellite of theEuropean
Satellite Agency (ESA), and developed a workflow in the programming environment R,
which can easily be adopted to other study areas. The implementation of the workflow
will enable in-situ repeated observations up-scale, which are hardly feasible in such a
large protected area’s challenging terrain by park staff on the ground [2]. The currently
available data from the Sentinel-2 MSI provides multi-spectral bands with high spatial
resolutions and quick revisit time of five days for both Sentinel-2 A and B satellites
[6]. The Sentinel-2 MSI is comprised of 13 spectral bands ranging in resolutions from
10 m, (four bands) inclusive of the visible wavelengths (band 2-Blue, band 3-Green,
band 4-Red); 20 m (six bands) inclusive of the new “Red-Edge”, near-infra red (NIR)
and short-wave infra-red (SWIR) wavelengths; important for vegetation monitoring and
with high capabilities for use in ecosystem, biodiversity and conservation monitoring
[7]. The other three bands are of 60 m resolution including the aerosol, water vapor and
cirrus bands.

Spectral signatures and derived indices like the normalized difference vegetation
index (NDVI) are used as a standardized way to measure the health of vegetation by
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quantifying the ratio of the difference between the NIR (strongly reflected by vegetation)
and Red bands (strongly absorbed by vegetation) [8]. NDVI values ranges from −1 to
+ 1, with a distinct threshold for each land cover type. Negatives likely represent water,
while positives close to one indicate dense green leaves. However, values close to zero
represent no leaves or degraded forest [2].

In this paper, Sentinel-2 MSI spectral bands and derived products, including
vegetation indices like the NDVI, were processed with the following objectives:

• Automatically download Sentinel-2 data for a particular study area.
• Automatically pre-process the downloaded Sentinel-2 data to calculate various
vegetation indices for the selected study area and time period.

• Calculate and take into account the specific cloud coverage within the study area for
multiple Sentinel-2 data scenes.

• Provide graphical results for assessing the quality of the input data and changes in
vegetation indices over time.

2 Materials and Methods

2.1 Study Area

The Kilimanjaro Mountain National Park and its ecosystems are located in the north-
east of Tanzania (Fig. 1) and span an elevation gradient from the colline savanna plains
(~700ma.s.l.) to the glaciated areas encirclingKibo summit (5895ma.s.l.). Its equatorial
day time climate is shaped by the passing of the intertropical convergence zone, with
more than half of the annual rainfall occurring during the so called long-rainy season
(March to May) [9]. While annual precipitation amounts to more than 2500 mm in the
southern montane forest belt, the lee ward northern mountain side receives hardly more
than 1000 mm [9, 10].

In this study, we focused on an area in the western edge of the KilimanjaroMountain
National Park (Fig. 1), the so called “Half-mile strip”. The border of this study area was
digitized in QGIS [17]. TheHalf-mile strip is an area of interest for the parkmanagement
due to its proximity to human settlements, its expanding land-use conversions mainly for
agricultural activities, and other characteristics such as the presence of access roads for
various public services making the park more vulnerable to poaching and other illegal
activities [4].

2.2 Sentinel-2 Data

Our study area is covered by the Sentinel-2 tile “T37MBS”.We searched for all available
L2A scenes of this tile for the period between 2017-01-01 and 2020-09-01 and auto-
matically downloaded them with the R-script provided in the Supplementary Material
(Appendix A1), thereby making use of the functions provided by the R package sen2r
[11]. A total of 130 L2A scenes were found and downloaded for further processing
(Appendix A2).

We clipped and cropped all downloaded sceneswith the previously digitized polygon
of our study area in order to calculate 17 different vegetation indices as well as the study-
area-specific cloud coverage for each scene. It is important to note that the calculation
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Fig. 1. Study area in the Kilimanjaro Mountain Ecosystem in Tanzania. A) Distribution of the
established sampling sites in the KiLi1 project along the elevational and land use gradients [9].
B) Area used in this study (the “Half-mile strip”).

of cloud coverage within the study area is much more appropriate compared to selecting
scenes based on the overall cloud coverage because low overall cloud coverage could
still be related to high cloud coverage in the study area, and vice versa. Only scenes with
less than 10% cloud cover in the study area were selected for further analyses. Our R
script for batch processing of multiple Sentinel-2 scenes is provided in Appendix A3
and can easily be adjusted for any other study area. The code is also available via our
github repository at https://github.com/envima/sentinel-kili and might be extended in
the future.

2.3 Vegetation Indices

In this study, indices extraction focused on thewestern edge of theKilimanjaroMountain
National Park boundary, an area that was annexed into the park in 2008, formally “the
Half-mile strip” zone of the former Kilimanjaro Forest Reserve [2, 3]. We calculated
17 different vegetation indices (Table 1) in this particular study area according to a
standardized workflow (Fig. 2, Appendix A3) with a spatial resolution of 10 m and for
130 points in time (scenes). For convenience, we present only exemplary results for the
well-known NDVI in the main text. For the complete results see Appendix A2.

https://github.com/envima/sentinel-kili
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Sentinel 2 (A &B) data accessed for downloads from ESA-Copernicus 
Sci-Hub Platform

Plot of indices results 
& summary statistics 

including means

Exporting Image products 
(Indices) into GIS for further 

analyses and Sharing as a web 
service

Creation of image layer-
Indices (ndvi, rvi, final 
products)

ArcGIS 
Server

Processing L2A data in R for automation including clipping study 
area, band stucking & cloud mask application

Fig. 2. Workflow for obtaining, processing, analyzing, and sharing outputs of Sentinel-2 satellite
data through the TANAPA GIS Server (adopted from Msoffe et al. [2]).

Table 1. Indices processed in this study (adopted from Xu and Su [16]).

Index Description

CTVI Corrected transformed vegetation index

DVI Difference vegetation index

EVI Environmental vegetation index

EVI2 2-band Enhanced vegetation index

GEMI Global environmental monitoring index

GNDVI Green normalized difference vegetation index

MSAVI Modified soil-adjusted vegetation index

MSAVI-2 Modified secondary soil-adjusted vegetation index

NDVI Normalized difference vegetation index

NDWI Normalized difference water index

NRVI Normalized ratio vegetation index

RVI Ratio vegetation index

SAVI Soil-adjusted vegetation index

SR Simple ratio

(continued)
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Table 1. (continued)

Index Description

TTVI Transformed triangular vegetation index

TVI Triangular vegetation index

WDVI Weighted difference vegetation index

3 Results

Of the 130 available Sentinel-2 L2A scenes for our study area and time period, only
24 had cloud coverage of less than 10% within the study area (Table 2). These scenes
were subsequently used for calculating the NDVI, which serves as example here (Fig. 3).
Additional results for the other 16 indices can be found in Appendix A2.

Table 2. Sentinel-2 Data scenes with less than 10% cloud coverage in the study area, which were
used for exemplarily calculating the NDVI.

Date NDVI Clouds (study
area)

Clouds (scene)

2017-02-08 0.78 0.00 0.01

2017-03-10 0.76 0.00 0.45

2018-03-05 0.65 0.06 0.08

2018-07-28 0.64 0.05 0.06

2018-12-25 0.72 0.04 0.23

2019-01-19 0.84 0.00 0.08

2019-02-03 0.77 0.00 0.00

2019-02-08 0.73 0.06 0.24

2019-02-28 0.78 0.00 0.01

2019-03-15 0.61 0.07 0.03

2019-03-20 0.73 0.01 0.02

2019-06-23 0.76 0.00 0.12

2019-07-23 0.74 0.00 0.27

2019-09-01 0.68 0.00 0.34

2019-12-20 0.83 0.00 0.25

2019-12-30 0.82 0.00 0.31

2020-01-14 0.74 0.01 0.37

2020-02-08 0.84 0.00 0.15

(continued)
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Table 2. (continued)

Date NDVI Clouds (study
area)

Clouds (scene)

2020-06-02 0.64 0.09 0.50

2020-06-17 0.72 0.03 0.55

2020-06-22 0.71 0.00 0.39

2020-07-02 0.75 0.00 0.65

2020-08-11 0.73 0.00 0.22

2020-08-31 0.59 0.09 0.19

Fig. 3. Changes in vegetation greenness (NDVI) derived from Sentinel-2 data in the study area
between January 2017 and September 2020. Note that on July 28th 2018, a decent amount of cloud
coverage is present, which can be screened with the graphical outputs of the R scripts provided.

4 Discussions and Conclusions

Sentinel-2 data as used here provide the opportunity to carry out consistent monitoring
at high spatial and temporal resolutions with various opportunities for applications in
biodiversity and ecosystem monitoring [12]. This is because remote sensing allows
measurements of large regions in high temporal resolution, thereby providing continuous
information about vegetation status. The reflectance and emission of light from the
Earth’s surface can be directly related to the physiological, morphological and structural
composition of plants [13].

Several studies have proven for instance a significant correlation between species
richness and spectral indices [14]. The most common used index is the NDVI, capturing
the greenness and chlorophyll content [15]. NDVI is often used in research related to
regional and global vegetation assessments, and was shown not only to be related to
canopy structure and leaf area index, but also to canopy photosynthesis [16]. The most
common validation process is through direct or indirect correlation between the indices
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obtained and vegetation characteristics measured in-situ, including vegetation cover and
leaf area index [16], of which Sentinel-2 data as utilized in this study come to play.

Using optical remote sensing for biodiversitymonitoring in tropical areas like theKil-
imanjaro National Park is very challenging because of the high cloud coverage through-
out the year. The techniques and workflows presented here could mitigate this challenge
by focusing on a well-defined study area instead of utilizing the normal procedure of
relying on the full satellite scenes. By only considering full scenes for obtaining image
data, one could miss a lot of information by discarding full scenes of overall bad quality.
However, by considering the focal area of interest, more scenes and thus information can
be obtained for calculating indices, analyzing vegetation trends, and thus better monitor-
ing of the study area over time. This approach goes in line with the fact that biodiversity
and ecosystem monitoring in protected areas like the Mount Kilimanjaro National Park
should be complemented with remote sensing methods as demonstrated in this study.
Our provided scripts in the R-environment can furthermore be applied in any other study
area for customized workflows and automatic generation of similar results.

Time series of vegetation indices derived from Sentinel-2 data provide a bird’s eye
view snapshot of the required indicators for monitoring vast areas such as Kilimanjaro
Mountain National Park [2], while contributing to the global biodiversity conservation
agenda especially needed in achieving the Aichi Conservation Targets (2011–2020) for
developing essential biodiversity variables from remote sensing data [18, 19]. Figure 3
shows for instance that trends in greenness derived here were consistent in that all the
values were above the NDVI value of 0.59, which indicates stable green vegetation
throughout the study period, i.e. from 2017 until today. This is not surprisingly since
our study area is in the total protection zone of the ecosystem, having included the
Half-mile strip inside the park (annexation in 2008), where anthropogenic activities
are prohibited and other illegal activities are checked by park staff through routine
surveillances. Detailed results from the different indices in this study (a total of 17
including the NDVI, Appendix A2) is a confirmation that consistent Sentinel-2 data
acquisition can supplement the small-scale ground in-situ observations carried out by
park staff.

In order to overcome limitations in obtaining sufficient continuous image data from
scenes that are cloud free, our developed workflow and scripts in the R-environment
provide an automation for the selection of available and suitable scenes as well as
for obtaining final products for further studies. It is anticipated that remote sensing
techniques and their application for biodiversity conservation and monitoring in the
Kilimanjaro National Park will enhance efforts undertaken by park staff on a daily basis
and ultimately provide a long-term database for the conservation of the cloud-montane
forest ecosystem.
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Appendix

A1: Downloading Sentinel-2 Data

#title: "Download sentinel scenes with sen2R for a particular study area and time 
period" 
#authors: "Dirk Zeuss, Fortunata Msoffe" 
#date: "1 September 2020" 
# Praeambel --------------------------------------------------------------- 
rm(list = ls()) # clean workspace 
# Load packages 
library("sen2r") 
library("rgdal") 
library("sf") 
# sen2r() # Use the gui to enter your scihub credentials, which will then be saved in 
the package. 
# Set working directory 
wd <- "/home/sentinel_processing" 
setwd(wd) 
# Set data directory for sentinel scenes 
path_sentinel_data <- "/home/data/sentinel/kili" 
# Set study area for querying available Sentinel scenes 
studyarea <- readOGR("studyarea/kinapahalfmile.shp") # Vector polygon defining the 
study area within the sentinel tile set above. Check, if the projection is defined and the 
same as the sentinel tiles. 
## Download  ----------------------------------------------------------- 
# Get list of available Sentinel scenes 
sen_list <- s2_list(spatial_extent = sf::st_as_sf(studyarea), # could be omitted if the 
tile name is known 
                    tile = "37MBS", # choose sentinel tile name. Be careful here to provide 
only five characters. 
                    time_interval = as.Date(c("2017-01-01", "2020-09-01")), # choose time 
interval 
                    level = "L2A", 
                    max_cloud = 100) # get all scenes independent of overall cloud coverage 
# Download scenes 
s2_download(s2_prodlist = sen_list, 
            downloader = "builtin", 
            apihub = NA, 
            service = NA, 
            outdir = path_sentinel_data, 
            order_lta = TRUE, 
            overwrite = FALSE) 
## END --------------------------------------------------------------------------------  
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A2: Vegetation Indices Calculated from 130 Sentinel-2 L2A Scenes
for Our Study Area (“the Half-Mile Strip”).
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A3: Processing Sentinel-2 Data

#title: "Extraction of vegetation indices from Sentinel L2A scenes for a particular 
study area considering cloud coverage" 
#authors: "Dirk Zeuss, Fortunata Msoffe" 
#date: "1 September 2020" 
#---Praeambel --------------------------------------------------------------- 
rm(list = ls(all = TRUE)) # clean workspace 
library("raster") 
library("RStoolbox") 
library("rgdal") 
# Set working directory 
wd <- "/home/sentinel_processing" 
setwd(wd) 
## Choose sentinel tile name ------------------------------------------------------------- 
# Set sentinel tiles to process (all scenes matching the string below in the sentinel data 
folder will be processed) 
sentinel_tile <- "T37MBS"  
# Set study area ------------------------------------------------------studyarea <- read-
OGR("studyarea/kinapahalfmile.shp") # Vector polygon defining the study area with-
in the sentinel tile set above 
# plot(studyarea) 
## Set and get paths -------------------------------------------------------------- 
# Set path to the directory with sentinel scenes 
path_sentinel_data <- "/home/data/sentinel/kili" 
# Get paths to folders of sentinel scenes 
paths_sentinel_tiles <- list.files(path_sentinel_data, pattern = sentinel_tile, full.names 
= TRUE, recursive = FALSE) 
# length(paths_sentinel_tiles) # number of scenes matching the tile name set above in 
the data folder 

paths_sentinel_tiles <- grep(".SAFE", paths_sentinel_tiles, value = TRUE) # remove 
potential non-sentinel paths in the data folder  
## Batch processing ----------------------------------------------------- 
# Loop over all scenes in the sentinel data folder to calculate vegetation indices and 
cloud coverage for the study area 
result <- list() # create empty list for collecting the results later 
for(i in paths_sentinel_tiles)try({ # iterate over all sentinel scene folders in the senti-
nel data folder 

# Show some output on the status of the batch processing 
cat("Processing:", basename(i), "\n") 

# Select bands  ------------------------------------------------------- # Set the search 
pattern for bands to process. In this case only the 10m bands are selected. 

searchPattern_10m <- "_10m.jp2$"  
# Get paths with images containing "searchPattern_10m" 
paths_bands_10m <- list.files(file.path(i, "GRANULE"), pattern = searchPat-

tern_10m, full.names = TRUE, recursive = TRUE) 
# Create stack of bands 
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bands_10m <- stack(paths_bands_10m) 
# Rename bands to band name and resolution (only for long names) 

regs_matched <- gregexpr("_..._.*$", names(bands_10m))  
tempname <- as.character(regmatches(names(bands_10m), regs_matched)) 
names(bands_10m) <- substr(tempname, 2, nchar(tempname)) 

# Reproject, crop and clip  ------------------------------------------------------- 
# Reproject study area to Sentinel CRS 

studyarea <- spTransform(studyarea, projection(bands_10m)) 

# Crop and clip Sentinel tile with study area polygon 
bands_10m <- crop(bands_10m, studyarea) 
bands_10m <- mask(bands_10m, studyarea) 
# Index calculation ------------------------------------------------------- 

# Choose indices for calculation 
# indices_to_process <- c("RVI", "NDVI") # Manually choose indices here. If you 

like to process indices which need the 20m resolution bands, these bands must be 
added to the search pattern above. 

indices_to_process <- NULL # "NULL" in this case means the calculation of all 
available indices in RStoolbox::spectralIndices() 

# Create layer of indices 
Index_layer <- RStoolbox::spectralIndices(bands_10m, # see 

?RStoolbox::spectralIndices for available indices and the required bands  blue = 
"B02_10m", # add additional bands here if they are required for other vegetation indi-
ces
                                            green = "B03_10m", 
                                            red = "B04_10m", 
                                            nir = "B08_10m", 
                                            indices = indices_to_process, 
                                            scaleFactor = 1, 
                                            skipRefCheck = TRUE) # see ?RStoolbox::spectralIndices 
for details.  

# Create raster stack of index layers 
Index_layer <- stack(Index_layer)  
# Calculate summary statistics for each index layer 
indices_res <- sapply(names(Index_layer), function (x) cellStats(Index_layer[[x]], 

stat = "mean")) # Note that the mean vegetation index over the whole study area is 
calculated here. Change, if you need other summary statistics. 

# Cloud coverage in study area   ------------------------------------------------------- #
Get path to cloud mask 

path_cloud_mask <- list.files(file.path(i, "GRANULE"), pattern = 
"MSK_CLOUDS_B00.gml", full.names = TRUE, recursive = TRUE) 

# Import cloud mask 
cloud_mask <- readOGR(path_cloud_mask, disambiguateFIDs = TRUE, verbose = 

FALSE) 
# Mask clouds in study area for coverage calculation 

clouds <- mask(bands_10m[[1]], cloud_mask, updatevalue = NA) 
# Calculate cloud coverage 
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all_pixels_study_area <- length(na.omit(raster::values(bands_10m[[1]]))) # number 
of all pixels in the study area 

cloud_pixels_study_area <- length(na.omit(clouds@data@values)) # number of 
cloud pixels in the study area 

cloud_coverage <- cloud_pixels_study_area / all_pixels_study_area 
names(cloud_coverage) <- "cloud_coverage" 

# Cloud coverage in full scene   ------------------------------------------------------- 
# Get path to metadata 

path_overall_cloud_coverage <- list.files(file.path(i, "HTML"), pattern = 
"UserProduct_index.html", full.names = TRUE, recursive = TRUE) 

# Read in metadata 
metadata <- readChar(path_overall_cloud_coverage, 

file.info(path_overall_cloud_coverage)$size) 
# Extract cloud coverage of the full scene 

search_pattern <- ".*(Cloud Coverage Assessment: )" 
temp_string <- sub(search_pattern, "", metadata)  
cloud_cover_full_scene <- as.numeric(substr(temp_string, 1,5)) / 100 

# Visual checks  ------------------------------------------------------- # Visually check 
cloud coverage calculation 

# graphics.off() 
# plotRGB(bands_10m, r = 4, g = 3, b = 2, stretch = "lin") 
# plot(studyarea, add = TRUE) 
# plot(cloud_mask, add=TRUE) 
# plot(clouds, add=TRUE, col="red") 

# Visually check index layer 
# plot(Index_layer) 
# title(main=i) 

# Write out visual checks to disk 
dir.create(file.path(wd, "output/graphics/indices"), recursive = T, showWarnings = 

FALSE)  
dir.create(file.path(wd, "output/graphics/cloud_coverage"), recursive = T, show-

Warnings = FALSE)  
jpeg(filename = paste0(file.path(wd, "output/graphics/indices", basename(i)), 

".jpg"),  
width = 1600, height = 1400, pointsize = 24) 

plot(Index_layer) 
dev.off() 
jpeg(filename = paste0(file.path(wd, "output/graphics/cloud_coverage", base-

name(i)), ".jpg"), width = 800, height = 600) 
plotRGB(bands_10m, r = 4, g = 3, b = 2, stretch = "lin") 
plot(studyarea, add = TRUE) 
plot(cloud_mask, add=TRUE) 
plot(clouds, add=TRUE, col="red") 
dev.off() 

# Collect results  ------------------------------------------------------- 
# Show some output on the status of the batch processing 
cat(names(indices_res), ":", indices_res, ",",  
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"cloud coverage:", cloud_coverage,  ",",  
"cloud coverage full scene:", cloud_cover_full_scene,   
"\n") 

# Concatenate index results and corresponding Sentinel scene 
result[[basename(i)]] <- c(indices_res, cloud_coverage, cloud_cover_full_scene = 

cloud_cover_full_scene) 

# Clean up 
#rm(cloud_mask, clouds, bands_10m); gc() # if you run into memory issues, try this 

line. 
})

# Postprocessing ---------------------------------------------------------- 
# Create a data.frame ("table") for the results 
result_df <- data.frame(Tile = names(result), 
                        Date = as.Date(substr(names(result), 12, 19), format = "%Y%m%d"), 
                        sapply(names(indices_res), function (x) sapply(result, function (y) 
y[x])), 
                        cloud_coverage = sapply(result, function (x) x["cloud_coverage"]), 
                        cloud_cover_full_scene = sapply(result, function (x) 
x["cloud_cover_full_scene"]), 
                        row.names = NULL) 
# Order results by date of the processed sentinel scenes 
result_df <- result_df[order(result_df$Date),] 
result_df 
# Save results as csv file in the "output" directory  --------------------------------------- 
# Creates the folder "output" in your working directory, if it does not already exist. 
dir.create(file.path(wd, "output"), showWarnings = FALSE)  
# Set name of the output result file with number of scenes processed, indices calculat-
ed and processing date 
name_output_file <- paste("results_",  
                           sentinel_tile, "_", 
                           length(paths_sentinel_tiles),  
                           "scenes_",  
                           collapse="_", 
                           Sys.Date(), 
                           sep = "") 
# Write to file 
write.csv(result_df, file = paste0(file.path(wd, "output", name_output_file), ".csv"), 
row.names = FALSE) 
## Plot change in indices over time --------------------------------------------------------- 
pdf(file = paste0(file.path(wd, "output", name_output_file), ".pdf"), width = 20, 
height = 12, pointsize=18) 
par(mfrow=c(4,5)) 
for (j in names(indices_res)){ 

plot(result_df[,j] ~ result_df$Date, type = "b", xlab = "", ylab = j, main = j)} 
dev.off() 
## END  -------------------------------------------------------------------------------- 
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Abstract. In recent years, the growth of urbanization in the world is increasing.
This almost leads to irreversible changes that affect biodiversity, ecosystems, and
climate change. The aim of this research is to provide different urban growth
scenarios that can be considered for sustainable urban development strategies. We
have proposed the HSCS (Human Settlement Capacity SLEUTH) model which is
based on SLEUTH urban growth simulation. This model leads to the acquisition
of new urban areas in the form of a number of pixels on which urbanization
is supposed to take place. We have defined a building classification and have
estimated population growth, and by adding these two parameters to our model,
we have improved the simulation results. These parameters also helped us to define
different growth scenarios and to calculate the height of the buildings as the third
dimension according to each scenario. In parallel, the footprints of buildings have
been created in the new urban pixels by considering some urban constraints, such
as the direction of the buildings, the distance to urban entities and geographical
features. These building footprints take height values according to the defined
scenarios, and so we have simulated a three-dimensional model of the city. This
model has been applied on a small city called Saint Sulpice la Pointe which has a
significant rate of population growth and urban sprawl during the last two decades.
The 3D representation of the urban growth provides disparate images of city of
tomorrow for its application in urban.

Keywords: HSCS (Human Settlement Capacity SLEUTH) model · CA
(Cellular Automata) modelling · Urban growth modelling · 3D model · GIS
(Geographic Information System)

1 Introduction

1.1 Urban Growth Modelling

Urbanization refers to the process of increasing the size of cities, which occurs due
to several factors, including population growth and rural exodus. The phenomenon of
urban sprawl is a major challenge for city officials and urban planners. Urban simulation
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techniques tend to solve various problems of urban growth modelling. Today many
scientistswork on simulating urban growth using a variety ofmodellingmethods.Almost
all urban growth models are based on historical data and simulate growth similar to
today’s trends. CA (cell automation) modelling is one of the most widely used urban
simulation models that can be integrated with GIS and RS (remote sensing) data [1–4].

SLEUTH is a pattern-based model that uses cell automation and landmapping and is
widely used to simulate urban growth [5–7]. SLEUTH is derived from the acronym of its
input maps including Slope, Land use, Excluded, Urban, Transportation and Hillshade.
SLEUTH model calibration requires several historical maps such as urban and trans-
portation maps. In SLEUTHmodeling, the growth rhythm is considered using historical
data and it produces prospective simulations with the same current trend. Therefore,
the effects of population growth and urban tissue are not explicitly considered in the
simulations. In addition, the SLEUTH results are raster data on which urban planning
is supposed to occur. This makes it difficult for decision makers to interpret the results.
In this research, we have integrated more parameters including the estimation of the
population growth and building type to overcome SLEUTH limitations and to optimize
the model simulation. Furthermore, we have provided a three-dimensional view of the
model, taking into account some constraints such as the direction of buildings to roads,
and the distance from urban entities and geographical features. The proposed model is
called HSCS (Human Settlement Capacity SLEUTH) urban growth model that aims to
study the housing capacity for the population forecast in the growthmodel. In addition, it
is a scenario-based urban growthmodel that can compare and evaluate land use and urban
configuration in different urban fabric scenarios. In the proposed HSCS model, we have
extended our previous works by considering the environmental protection scenario in
urban growth simulations,making somemodifications inmodelling of 3D representation
of the grown city, and applying the model on a larger study area [8].

1.2 3D Urban Modelling

In recent years, modelling of virtual 3D cities has been in demand by governments,
municipalities and companies. The three-dimensional city models are used in various
aspects of urban planning and management such as smart city mobility, operating cost
savings, increased resilience, sustainability improvement, emergency response and evac-
uation planning, seismic damage and flooding [8–11]. They are also used in estimations
of solar radiation, energy demand and energy efficiency, cast shadows with urban fea-
tures, noise emission in a restricted environment, and lighting simulations as well as in
management of urban heritage, urban planning projects, and simulation modelling in
terms of pollution, climate changes, and urban sprawl [12–17].

There are various techniques for producing a three-dimensional model of the city,
such as creating three-dimensional urban footprints [18–20] and three-dimensional
reconstruction and data integration used in photogrammetry or laser scanning with GIS
data [21–27]. Factors such as data availability, performance accuracy, efficiency, speed,
human capital and costs should be considered to select themost appropriate 3Dmodelling
technique.

In this research, by giving a third dimension to the building footprint, a 3D geo-
visualization of the building in new urban areas is presented. The third dimension rep-
resents the height of a building, which is obtained according to urban fabric scenarios
commensurate with the type of building and population density.
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Our goal is to develop a model that can provide different scenarios for future urban
growth resulting from today’s urban planning, which conforms with different land pri-
orities and constraints, so that it can influence future strategies for sustainable urban
development. Therefore, we aim to find the effects of population growth and types of
buildings in the urban growth simulation model. This leads to the preparation of urban
fabric scenarios that help to compare the determinants of urbanization and measure it in
different scenarios of urban dispersion.

The study area is presented in the next section. In Sect. 3, the process and method-
ology are defined. The results of urban growth simulation are shown and discussed in
Sect. 4. In Sect. 5, a three-dimensional geo-visualization of the urban growth model is
presented. This research is concluded in Sect. 6.

2 Study Area

The model has been applied to three different study areas with different sizes and scales
in terms of geographical extent and population, including a metropolis, a city and a
rural area to test its effectiveness. In all three study areas, over the past two decades, a
significant amount of population growth and urban expansion has been observed. In this
article, for ease of visualization, we have presented a small town called Saint Sulpice la
Pointe (43° 46′ 30′′ N, 1° 41′ 14′′ E). Saint Sulpice la Pointe is a peri-urban located in
the Tarn department of France (see Fig. 1). The extent of the study area is 3600 ha. The
city had a population of 8934 in 2016 and the average population growth rate between
2009 and 2016 was 1.73 percent per year (Legal populations, INSEE - National Institute
of Statistics and Economic Studies, France, 2016).

Fig. 1. Location of Saint Sulpice la Pointe study area, France.
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We have used geospatial database and geographic information systems to create the
input maps for the simulations by SLEUTH model. Input maps contain raster data with
a size of 200 × 200 pixels that feature a cell size of 30 m × 30 m (~900 m2). We
have created urban, land use, excluded and transportation maps from the BD TOPO
and BD ORTHO databases from IGN (National Institute of Geographic and Forestry
Information) database of 2017. Slope and hillshade maps have been created from the
Digital ElevationModel (DEM)ofRGEALTI, provided by IGN.Wehave also calculated
the average population for the coming years and defined the classification of the building
as complementary parameters to make the model more reliable. Using the HSCS urban
growth model, we have defined the different urban fabric scenarios based on socio-
demographic data that have been integrated into the model during simulations.

3 Simulation Modelling and Methodology

In the proposed model, we have first simulated the prospective urban growth using
SLEUTH. As discussed, the 2017 data has been used and the 2050 forecasts have been
simulated. In this model, we have added other parameters such as population estimation
and type of buildings as socio-geographical features. These two parameters have been
considered in the HSCS model as well as in the definition of urban fabric scenarios for
the 3D model of urban growth. The focus of this paper is on creating a representation
of 3D buildings from new pixels simulated by the HSCS model. In creating the 3D
representation of the buildings, first, their footprints are created, then the model gives
the appropriate height to these footprints according to the scenario of the urban fabric,
neighbourhood and district in which they are located. In the urban planning system,
there are certain distances between a building and its neighbours, as well as to roads,
rivers, forests, and so on. We have defined some constraints such as buildings, rivers,
exclusion zones, and existing buildings to consider the distance of new pixels from each
other or from urban features and topographic objects. Figure 2 illustrates the procedure
of generating the 3D city representation from the new pixels obtained from model.

SLEUTH output maps are the GIF format images that are composed of pixels and
have no information about the height of the simulated urban areas. In fact, they are
made up of pixels on which urbanization is about to occur, which is difficult for decision
makers to interpret the results. In addition, like many other methods of urban growth
simulation, SLEUTH considers only historical data without taking into account changes
in population growth rates or types of buildings. Therefore, the aim of this research is
to diversify the simulations by explicitly integrating various factors such as the type
of buildings and population growth and to provide visual methods for representing the
results of the urban growth scenario in 3D.

To optimize the results, we have first considered certain factors in defining excluded
areas in our simulations so that the model can meet some limitations in terms of geo-
graphical features and environmental protection (see Sect. 4.1).Wehave defined different
types of buildings and have classified the existing buildings (see Sect. 4.2). In parallel,
we have extracted the demographic information of the study area and calculated the
compound annual population growth rate and average estimate of population for the
target year (see Sect. 4.3).
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Fig. 2. Method procedure to generate a 3D geo visualization of the urban growth.

The estimation of the population growth and the building classification will help to
calculate the building class probabilities for the new urban areas obtained from model.
Therefore, different probabilities of height have been achieved for each pixel. We have
defined different urban fabric scenarios based on socio-demographic data (see Sect. 4.4).
Later, according to the urban fabric scenarios, each footprint of building is given an
appropriate height to simulate a 3D city model.

The SLEUTH output maps consist of some raster data that should be transformed
into polygons that indicate the building footprints. To transform a pixel to a polygon, the
SLEUTH results need to be georeferenced and converted to vector data (see Sect. 5.1).
Vector data makes polygons that should be oriented along their nearest road sections
(see Sect. 5.2). As discussed earlier, the urban objects define some constraints for a
polygon. These constraints adjust the polygon configuration. We have defined two types
of constraints, including continuous constraints such as the roads, rivers, and railways,
and discrete constraints that define the spaces such as cemeteries, airports, and industrial,
residential and commercial buildings (see Sect. 5.3). In the next step, the surfaces are
adjusted according to the scenarios to obtain the desired footprint for each building (see
Sect. 5.4). Finally, we have given the appropriate height to each building footprint and
we have created a 3D representation of the prospective city (see Sect. 5.5).

4 Urban Growth Simulation

4.1 SLEUTH Model

SLEUTH is an urban growth model that used the cellular automation techniques. The
SLEUTH model fits in well with simulation of a dynamic urban expansion and it is
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compatible with the morphological model of urban configuration. This model is based
on a probabilistic and self-modification process that corresponds with two states of the
urban or non-urban.

SLEUTH includes three processes of calibration, prediction and self-modification.
This urban growth simulationmodel is based on four growth rules including spontaneous
growth, new spreading centre growth, edge growth and road-influenced growth in which
the five coefficients of dispersion, breed, spread, slope and road gravity coefficients
control these rules. SLEUTH coefficients are determined in calibration process.

As mentioned earlier, SLEUTH input maps include slope, land use, excluded, urban,
transportation and hillshade maps. Each pixel of the excluded map has a value between
0 and 100, where 100 indicates 100% protection and the zero specified areas that are
not protected from urbanization. By changing the pixel values in the excluded maps, we
have defined different levels of protection according to the environmental areas and land
use of the study area. In creating excluded maps, areas include remarkable buildings,
cemeteries, airfields and sport grounds, railways stations, activity areas, water surfaces,
national parks and closed forests areas (wood land, closed coniferous forest, closed
deciduous forest, mixed closed forest and tree area) are given a value of 100. Open
forests, hedges, woody heath, poplar grove, orchard and vineyards are taken value 50,
which means they provide 50% protection. These classifications have been made based
on the IGN data. Figure 3 shows the excluded map. Historical transport and urban maps
of 2000, 2008, 2012 and 2017 have been used to calibrate the model.

In the calibration mode, we have extracted the best-fit coefficients for the simulation.
Given the appropriate coefficients, themodel has been implementedfirst to produceurban
growthmaps for 2017 for accuracy assessment and then for 2050 using the forecastmode.

Themodel has been testedwith the inputmaps of 2000 for simulating the prospective
maps of 2017. The results have been compared to the observedmaps on 2017. The overall
accuracy for the goodness-of-fit is calculated to measure the overall proportion of the
pixels that change correctly, to the total number of cells. The evaluation of the model
shows that its accuracy is acceptable according to the scale of the study area and the size
of the pixels. Figure 4 illustrates the simulated result for 2050.

4.2 Building Type Classification

To simulate newbuildings, current buildings can provide a perspective view for the future
building. Therefore, we have defined building classes based on observations andwe have
classified current buildings. For building classification, residential building information
has been taken from BD TOPO from IGN. For each type of building, numbers and
heights have been extracted and an average height has been calculated for each type.
Classification of building type has been done with regards to land use and urban tissue.
According to the observations of the study area, three classes of the building have
been defined, including single dwellings, low-rise housing and shop top housing. Later,
considering the height of the neighbouring buildings, the appropriate height has been
given to the new simulated area to display the new buildings on 3D. This process is based
on the classification of building types and helps us to define urban fabric scenarios.
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Fig. 3. Excluded input map.

Fig. 4. Urban growth simulated results for 2050.

4.3 Population Growth Estimation

We have used the INSEE database to obtain the demographic information. We have
generated a population map that gives the ratio of individuals per pixel. Given the total
population of the study area, the number of inhabitants of each building class has been
calculated by integrating the number of individuals per pixel, the building classes and
the number and kinds of the existing buildings. Table 1 shows the number, occupancy
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level and the heights of buildings in Saint Sulpice la Pointe according to the building
classification.

Table 1. Number, area and height of residential buildings according to building classification,
2016, Saint Sulpice la Pointe.

Building class Number of buildings Total area Average height (m)

m2 %

Single dwellings 2 782 420 239 69,80% 4

Low-rise housing 1 189 179 156 29,76% 8

Shop top housing 6 2 674 0,44% 15

After calculating the number of inhabitants for each type of building, population
growth has been estimated to calculate the amount of buildings required, and urban
fabric scenarios have been defined accordingly.

The average population growth rate during the years 2009 and 2016 is equal to
1.73% per year. This growth rate has been used to estimate population growth forecasts.
Then, given the population and compound annual population rate, we have estimated the
average population in the coming years. The compound annual population growth rate
has been calculated for the simulated urban growth of 2050 in 33 growth cycles from
2017. Given the actual number of 8934 inhabitants in 2017, the estimated rate shows
that the population will increase 79% on 2050. To create urban fabric scenarios, we
have estimated the number of buildings that are needed to accommodate the projected
population. Therefore, we have calculated the number of occupants of each building and
the space used by each occupant. We have assumed the same housing rate per person
for the forecast date, according to the type of building. Table 2 shows the estimate of
the number of inhabitants in each type of building for undifferentiated buildings in Saint
Sulpice la Pointe.

Table 2. Estimation of the average number of inhabitants for each type of buildings in Saint
Sulpice la Pointe.

Building class Estimated average number of inhabitants

Single dwellings 2

Low-rise housing 3

Shop top housing 6

4.4 Urban Fabric Scenario

To create urban fabric scenarios, some primary scenarios have been first assumed to
better understand the type of buildings and their residential capacities. Later, the final
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urban fabric scenarios have been defined according to the results of the initial scenarios.
In our model, we have categorized and integrated the type of buildings into the model to
know what types of buildings might be built in the grown area. Integrating population
growth can help us see how many residents can be accommodated in an urban growth
simulation area, as well as howmuch housing is needed tomeet the estimated population
increase. These scenarios are based on the expansion of the city and are defined as follow:

1. Sprawl urban: In this scenario we assume that all new urban areas are covered by
single dwellings.

2. Mediumdense urban: Themediumdense scenario considers 50%of single dwellings
and 50% of shop top housing.

3. Medium/high dense urban: This scenario covers 30% of single dwellings and 70%
of shop top housing.

4. High dense urban: High dense scenario assumes 100% shop top housing.

Primary scenarios are fictitious, however can help define the final scenarios based
on the number of residents who can live in the simulated areas. Table 3 illustrates the
increased population in primary urban fabric scenarios.

Table 3. Estimation of the increased population in primary urban fabric scenarios for 2050.

Population per 
urban 
fabric 

scenarios in 
2050

Sprawl urban 
fabric scenario

Medium dense 
urban fabric 

scenario

Medium/high 
dense urban 

fabric scenario

High dense urban 
fabric scenario

100% single 
dwelling

50% single 
dwelling & 50% 
shop top housing

30% single 
dwelling & 70% 
shop top housing

100% shop top 
housing

4 684 52% 9 368 105% 11 242 126% 14 052 157%

As mentioned in Sect. 4.3, the estimation of population growth indicates that the
population will increase by 79% in 2050, while the housing capacities in the primary
scenarios, as shown in Table 3, are far from this. Table 3 shows 52% of the population
housing capacity for the sprawl urban fabric scenario, which cannot reach a growth
rate of 79%. This rate exceeds 79% for the other three scenarios. Therefore, to achieve
reliable results, we define the final scenarios.

In SLEUTH, a simulation is made of a series of growth cycles in which each growth
cycle represents one year of growth. Considering the classification of the type of build-
ings, the simulated urban growth and the average estimated population, we evaluate the
appropriate growth cycle to achieve the desired urban fabrics. For the final urban fabric
scenarios, we defined four scenarios, including low, medium, medium/high and high
dense urban fabrics, with growth cycles of 33, 28, 23, and 18, respectively, that can
nearly accommodate expected population growth (see Table 4).
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Table 4. Estimation of the increased population in final urban fabric scenarios for 2050.

Population per 
urban fabric 
scenarios in 

2050

Low dense urban 
fabric scenario

Medium dense 
urban fabric   

scenario

Medium/high 
dense urban   

fabric scenario

High dense urban 
fabric scenario

45% single 
dwelling & 45% 
low-rise & 10% 
shop top housing

50% single 
dwelling & 50% 
shop top housing

30% single 
dwelling & 70% 
shop top housing

100% shop top 
housing

33th growth 
cycle

28th growth 
cycle

23th growth 
cycle

18th growth 
cycle

6 675   75% 7 924   89% 6 456   72% 7 470   84%

The differences in scenarios also indicate the amount of environmental protection
that could affect urban planning for the coming years. Figure 5 shows the simulated
urban area in each growth cycle for each scenario. We have maintained 79% population
growth, while land uses ranged from 110 hectares to 210 hectares. The differences
indicate the loss of natural and environmental resources which shows that changing
urban fabric scenarios has a very significant effect on limiting urban development, thus
saving natural landscapes.

Fig. 5. Urban sprawl obtained from different urban fabric scenarios to accommodate 79% urban
population growth.
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5 3D Representation of Prospective Urban Growth Simulation

In this section, the aim is to create a 3D geo-visualization of simulated urban growth by
creating 3D building representations from the new simulated pixels. To do this, the pixels
have been first converted from raster data to building footprints. Given the excluded areas
such as buildings, rivers, exclusion zones, and current buildings, we have defined some
urbanization constraints. Later, building footprints have been produced based on these
constraints. The height of the building for the building footprint has been calculated based
on the probability of the height of the adjacent neighbours according to the probabilities
estimated in the urban fabric scenarios.

5.1 Transform Pixels into Polygons

SLEUTH outputs include a non-referenced raster data that contains three types of pixels
i.e. current urban patches, the new urban patches, and blank pixels. We have first geo-
referenced the raster data according to our database vector data and then have converted
it to vector data. In the process of geo-referencing a polynomial transformation has been
performed which provides the mean square root deviation (RMS) as a control indicator.
RMS should generally be less than size of a pixel.

5.2 Positioning the Building Footprints

As shown in Fig. 6, the generated polygons rotate along their nearest section of road.
Orientation is done according to the size of the polygon and its central coordinates (Xc,
Yc).

Fig. 6. Pixel orientation.
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In this process, first the roads are divided into small sections, then their coefficient
of orientation (Cd) is calculated by the following equation:

Cd = Ye − Ys

Xe − Xs
(1)

(Xs, Ys) and (Xe, Ye) are the start and end coordinates, respectively. Later, the
orientation angle of the road section is calculated according to the horizontal axis in two
cases. When Xe − Xs = 0 (section parallel to the vertical axis):

θ = π
/
2 (2)

If no:

θ = arc tan (Cd) (3)

The squares are oriented by considering the coordinates of the corners of the poly-
gons in the general reference, by connecting any polygon to a local coordinate system
using this angle. Therefore, we will have one rotation plus two translations. Equation 4
describes the rotations according to Z:

Rz =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤

⎦ (4)

The coordinates change according to Eq. 5:

{
X = Xc + x cos θ − y sin θ

Y = Yc + x sin θ + y cos θ
(5)

Where (x, y) are the coordinates of the corners in the local coordinate system and
(X, Y) their counterparts in the global coordinate system.

{
X = Xc + (R

2

)
(cos θ − sin θ)

Y = Yc + (R
2

)
(sin θ + cos θ)

(6)

Next, we change the cosine and sine sign to quadrilateral coordinates to reach to the
four corners.

5.3 Building Footprints Configuration

Adjusting and locating new buildings follows the layout of old buildings. Hence, it is
necessary to define the distance between a polygon that represents the representation of
new buildings and the various land occupation entities. Here, the situation of existing
buildings into the polygons is used to create new buildings that take into account the
distance between buildings as well as vegetation, roads, rivers, and so on. We defined
two types of restrictions:
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• Continuous constraints: Constraints on linear distribution in space, including vegeta-
tion, water, roads, and railroads.

• Discrete constraints: Discrete constraints that can be modelled by small points or
areas, such as the remarkable buildings, cemeteries, airfields, sports fields, activity
areas, industrial or commercial areas, and existing buildings.

These restrictions are based on finding the nearest neighbour and applying similar
distances. They differ in their definition of the concept of “closest”.

For continuous constraints we have applied a dual geo-processing buffer. First, we
have measured the distance from the nearest existing building to them, then we have
created a buffer ten times this distance. We assume that all buildings close to them are at
this distance (i.e. the second buffer). Then the average distance of these buildings from
the continuous constraint located in the second buffer has been calculated. This average
for new buildings is considered as the minimum distance to the continuous constraint. In
fact, to apply continuous constraints to a polygon, the algorithm creates a second buffer
at a distance equal to the average distance and eliminates the intersection of this buffer
with the polygon.

Discrete constraints have been defined by undifferentiated buildings, industrial build-
ings, and some special spaces such as remarkable buildings, cemeteries, airfields, and
activity areas. To consider the distance of a polygon from discrete constraints, it is neces-
sary to measure the distance of current buildings from each other and from other discrete
constraints. After obtaining the average distance for the current buildings, the same dis-
tance has been applied to the nearest discrete constraints to each of the polygons. Thus,
a medium-distance buffer has been created that defines the constraint of a particular
building or location.

5.4 Building Footprints Generation

So far, we have created a layer that defines the distance constraints of new polygons from
land occupation entities (e.g., existing buildings, roads, rivers, plants, railways, etc.). We
have superposed this layer on the polygon layer that we have already created from the
HSCS output. This gives us a new urban area that respects the urban constraints of our
study area.

The urban fabric scenarios are based on one or the combination of the building types
considering the density of the population. We have defined maximum surfaces (Smax)
for new building footprints in terms of building type and polygon size. According to
the urban fabric scenarios, three types of buildings have been considered for the study
area, which include a Single dwelling, a low-rise housing and a shop top housing with
Smax of 120 m2, 250 m2 and 400 m2, respectively (see Table 5). To make the footprints
of buildings, we must first consider the smaller polygons, while examining that the
entire area exceeds the maximum defined area for each scenario (Smax). The polygons
whose surface is larger than Smax are divided into smaller polygons. Therefore, we will
obtain the desired surface for the building footprints while respecting the Smax and the
distances between the new buildings.
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Table 5. Area of the new building footprints buildings classified based on the building types.

Smax (m2)

Study area Single dwelling Low-rise housing Shop dutop housing

Saint Sulpice la Pointe 120 250 400

Next, different footprints have been used to create a three-dimensional display of a
prospective urban model. Calculating the appropriate height for the footprints of build-
ings according to the urban fabric scenario, which includes urban sprawl due to popu-
lation growth and types of buildings, leads to the production of a 3D visualization of a
prospective urban model.

We have calculated the different probabilities of the type of building for each polygon
according to its neighbourhood. This gives information about the possible height of new
buildings. We have used an algorithm that combines a random aspect and a statistical
interpolation according to the scenarios that have mixed height values.

According to the urban fabric scenarios, we have three types of buildings with three
different heights. In our algorithm, we have arranged the buildings in ascending order
of their surface (SB1 < SB2 < SB3). For each type of building B1, B2 and B3, the
percentage of their combination in the scenarios has been defined by Prs, Prs2 and Prs3,
respectively. P1, P2 and P2 each show the average height probability for each building,
which has been calculated from the nearest available building height. Therefore, we have
classified new buildings according to the distance of the nearest neighbours. Figure 7
shows this classification based on the nearest neighbour. In the classification process,
the first class consists of new buildings that have at least one neighbour that is part of the
current buildings on a circle (r1). The next class is new buildings that have at least one
neighbour that is part of the current building and is located on a boundary ring between
the small circle (r1) and the large circle (r2). The last class includes new buildings that
have no neighbours that are part of the current buildings on a circle (r2).

The two radii with values r1 and r2 have been calculated based on the distance of
the nearest neighbor from each existing building using the quintile classification. Next,
the distance between the new building and the current building (DIS) is calculated.
Finally, the inverse distance (IDIS) and the sum of the inverse distance (SIDIS) have
been calculated.

5.5 3D City Visualization

The impact of each type of building has been calculated, which affects the type of new
buildingwith a height equal toHi. Then, the total probability of each type associatedwith
each building has been inferred, leading to a new Pi, which represents the probability
of a building of height Hi. The initial percentage (Pri) of each type of building has been
calculated for the variable percentage (Pr). Figure 8 shows the algorithm of calculating
the probability of the height for each building according to the types of buildings and
urban fabric scenarios.
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Fig. 7. Searching for the nearest neighbor for each building footprints.

Fig. 8. Algorithm of calculating the height probability. In this algorithm Pr represents the per-
centage of the variable, Pri indicates the initial percentage, Prs represents the percentages of
combination in the scenarios and P indicates the probability of the average height (H).

The last step is to display a three-dimensional representation of the urban growth
model. To do this, a Digital Elevation Model (DEM) has been created using the BD
TOPO (IGN) data altitudes. Using the calculated heights, an extrusion of the various
layers including new buildings has been applied. The results are displayed in ArcScene.
Figures 9 and 10 shows a 3D view of Saint Sulpice la Pointe for 2050.
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Fig. 9. 2D representations of prospective urbanmodel for 2050 in different urban fabric scenarios.
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Fig. 10. 3D representations of prospective urban model for 2050 in different urban fabric
scenarios.

6 Conclusion

The SLEUTH urban growth model creates prospective 2D maps. These maps contain
some of the pixels on which urbanization is supposed to take place. These 2D maps are
limited to raster data that is difficult to interpret and they need to be converted into 3D
urban representations.

In this research, we proposed the HSCS (Human Settlement Capacity SLEUTH)
urban growth model by integrating two parameters i.e. estimation of the popula-
tion growth and the types of buildings to SLEUTH model. The integration of socio-
demographic features and classification of residential buildings according to their height
and configurationmakes it possible to assess the capacity of human settlement in different
scenarios for the future city.

Different urban fabric scenarios are defined to understand the difference between
scattered and dense growth. These scenarios can help us see the impact of our model
on environmental protection and conservation of natural landscapes, which could affect
urban planning for years to come. As shown, for a small town the size of Saint Sulpice
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la Pointe, the amount of natural lands protected from urbanization in different scenarios
varies by 100 hectares over 33 years.

In this research, we proposed an algorithm that transforms our HSCS results to
3D representations of buildings by considering the population density, urban fabric,
and some urban constraints, including direction of the footprints and the distances to
the urban entities. The 3D representation of the model can facilitate the interpretation
of the simulation, the understanding of the simulation results and the differentiate of
scenarios in order to support the scientists and authorities in charge of urban planning
and management. In addition, the numerical model of 3D urban growth scenarios can
be used in a variety of applications such as pollution calculation, energy demand and
energy efficiency, cast shadows, solar radiation estimation, trafficmanagement and other
applications, and compare them in different scenarios. To create the 3D model, we first
create the footprints of the buildings and then apply some constraints such the direction
of buildings to roads, and the distance from urban entities and geographical features on
them to respect some adjustments of the local urban plan. The 3D representations are
created by giving an appropriate height to the footprints of buildings according to urban
fabric scenarios. The height of each building depends on the probability of the height of
the adjacent buildings according to the urban fabric scenarios.

The proposed 3D model and the defined scenarios use the potential of 3D modelling
to assist urban planners in sustainable urban development, as well as to better understand
the simulation results and facilitate the interpretation of SLEUTH simulations.
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Abstract. Worldview-3 (WV-3) stereo-extracted very high resolution (VHR)
DSMs represent state-of-the-art products in the domain of satellite-based digital
surface modelling.

The main goal of our research was a quality assessment of WV-3 stereo
imagery derived DSMs of olive groves. Quality assessment was based on extrac-
tion of olive trees by geographic object-based image analysis (GEOBIA) and point
cloud-based assessment of vertical accuracy.

The quality of WV-3 extracted DSMs was assessed at the test area (31
870,6m2)which represents the core of theOliveGardens of Lun (Pag Island, Croa-
tia). Areal accuracy of olive trees extracted by GEOBIA fromWV-3multispectral
image was evaluated for three different commonly used classification methods
(Support Vector Machine - SVM, Random Trees- RT and Maximum Likelihood
- ML) using the following indicators CORrectness, COMpleteness and Overall
Quality. Vertical accuracy was evaluated through comparison of reference point
cloud andWV-3 derived point cloud, using theM3C2 tool within CloudCompare.

RT classifier has achieved the highest areal classification accuracy. Classifica-
tion matching between reference data and WV-3 is 92.4%. The vertical accuracy
of individual olive trees from WV-3 stereo imagery deviates from the reference
model (STD = 2.57 m). STD values are lower for single, individual olive trees,
than for grouped, dense olive tree canopies, as it is further confirmed with STD
value for the whole test area.

Performed quality assessment has shown that WV-3 stereo imagery can be
used for the successful application of GEOBIA and mapping of olive trees. Cre-
ation of high-accuracy WV-3 derived models would allow efficient large-scale
management and protection of this valuable agricultural resource.

Keywords: Worldview-3 stereo imagery · UAV photogrammetry · VHR DSMs ·
Quality assessment · GEOBIA

1 Introduction

The emergence of very high resolution (VHR) optical satellite stereo imagery allowed
extensive extraction of digital surfacemodels (DSMs)with application in a broad range of
scientific fields [1]. Advance of commercial satellites (e.g. IKONOS, Pleiades, GeoEye,

© Springer Nature Switzerland AG 2021
C. Grueau et al. (Eds.): GISTAM 2020, CCIS 1411, pp. 66–84, 2021.
https://doi.org/10.1007/978-3-030-76374-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76374-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-76374-9_5


Quality Assessment of Worldview-3 Stereo Imagery Derived Models 67

Worldview) have promoted stereo satellite imagery as cost and time effective method for
the creation ofDSMs over large areas [2, 3]. Although suchDSMs lack the detail and res-
olution of models created with field geospatial methods like LiDAR or UAV photogram-
metry, they require minimal field deployment [4], thus shortening the overall modelling
process. If the spatial extent of created DSMs is considered, satellite stereo imagery
represents a relatively inexpensive data collection method, where a single collected
stereo-pair image covers large swaths of Earth’s surface [3].

The development of satellites from the Worldview constellation has significantly
advanced the capabilities of capturing multispectral and stereo satellite imagery with
sub-meter ground sampling distance (GSD) [5, 6]. Currently, most advanced commercial
satellite is Worldview-3 (WV-3), launched in August, 2014. WV-3 provides the highest
commercially available spatial resolution (0.31 m panchromatic band and eight 1.24 m
multispectral bands) of collected satellite images, alongwith a very large daily collection
capacity (up to 1 200 000 km2) [7]. Stereo imagery is collected by WV-3 on the daily
basis, where images of specific locations of interest are being collected from different
angles, along the in-track orbit, withinminimal time interval [8]. Short collection interval
between two stereo images ensures that changes (e.g. atmospheric conditions, land-cover
change, moving targets, etc.) at the target location are minimal, thus minimalizing the
potential image matching error.

AsWV-3 stereo-extractedDSMs represent state-of-the-art products in the domain of
satellite-based digital surface modelling, the main goal of our research was to evaluate
the vertical accuracy of such DSMs over olive groves. Assessment of vertical accuracy
for DSM produced from WV-3 stereo-pair image (DSMWV3) was based on comparison
with reference VHRDSM (DSMUAV ) produced with the unmanned aerial vehicle (UAV )
photogrammetry. UAV photogrammetry was chosen for the creation of reference DSM,
as a practical and cost-effective geospatial method that allows the creation of accurate
and reliable, high-quality VHR DSMs over terrains with noticeable vegetation presence
[9–11].

Although the overall quality of DSMs derived from Worldview stereo imagery was
already evaluated in some previous researches, their main focus was mostly on com-
parison with reference LiDAR data [1–3, 12, 13] and on the accuracy of extraction of
various man-made structures (e.g. buildings [14], plastic greenhouses [1, 12], etc.).

In our research, we have decided to concentrate on the assessment of DSM quality
over olive groves, as an important specific land cover type of Mediterranean area which
serves as one of the main agricultural sources of income and development [15]. Detailed
DSMs of olive groves are the basis for efficient management and protection of this
valuable agricultural resource, as they can provide unprecedented insight into all spatio-
temporal changes that are occurring within the groves [16]. Therefore, the possibility
of the application ofWV-3 stereo imagery for the creation of high-quality DSMs would
significantly improve large scale management and protection efforts.

While vertical accuracy of WV-3 stereo derived DSM was successfully evaluated
earlier within two different test areas [17], this paper is focused on the evaluation of areal
representation of olive trees extracted from WV-3 multispectral image by geographic
object-based image analysis (GEOBIA) (1) and on point cloud-based assessment of
vertical accuracy (2).



68 A. Šiljeg et al.

2 Study Area

Quality of WV-3 extracted DSM was assessed at test area within Olive Gardens of
Lun (OGL), located on Lun peninsula at the most northern part of Pag Island, Croatia
(Fig. 1A).OGL represents a large, protected olive grove that contains some of the oldest
millennial olive trees in theWorld (Fig. 1B).As such it is protected as Sites ofCommunity
Importance (SCI), under the Natura 2000 network of European nature protection areas
[18].

Fig. 1. Location of the test area (TA) (C) within the OGL (B) and Croatia (A).

Test area (TA) (Fig. 1C) covering 31 870.6 m2, represents the core of theOGL, where
most millennial olive trees are located. This area was chosen for quality assessment
because of the high concentration of millennial olive trees with a well-developed and
maintained canopy. The location of the test site (TA) within the study area can be seen
on Fig. 1B. Acquisition of both WV-3 imagery and UAV aerial imagery was conducted
before the seasonal pruning of the olive trees [19], so that possible human-induced
changes in height of olive trees are eliminated.

3 Materials and Methods

3.1 Data Acquisition and Specifications

3.1.1 Acquisition of Worldview-3 Imagery

Worldview-3 stereo imagery covering the study area was collected on December 4th,
2018, at ideal conditions, with 0% cloud cover and with optimal off-NADIR angles
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(<30º) [12], thus achieving claimed 5 m CE901/LE902 absolute horizontal accuracy
specification with 2.3 m Root Mean Square Error (RMSE) [8]. Collected stereo WV-3
images covering the study area have been provided to Authors as part of the funding of
DigitalGlobe Foundation as OrthoReady Stereo imagery (OR2A). OR2A is radiometri-
cally and sensor corrected imagery, with no terrain corrections applied, and as such it is
suitable for further orthorectification and elevation extraction [8]. Detailed specifications
of acquired WV-3 stereo imagery are given in Table 1.

Table 1. Specifications of acquired WV-3 stereo imagery. (Source: [17])

Image ID WV-3A WV-3B

Image type Stereo OR2A Stereo OR2A

Acquisition date 04.12.2018. 04.12.2018.

Acquisition time 14:20:46 14:28:40

Off-NADIR (º) 12.1 27.1

Cloud cover (%) 0 0

GSD (m) 0.30 0.30

Scan direction Forward Backward

Sun azimuth (º) 157.1 157.6

Sun elevation (º) 62 62.1

Product pixel size (PAN) 0.3 m 0.3 m

Product pixel size (MS) 1.2 m 1.2 m

3.1.2 Aerial Survey with UAV Photogrammetry

The aerial surveywas carried out onMarch 10th, 2019.,with an advanced repeat aeropho-
togrametric system (RAPS), composed of professional-grade DJI Matrice 600 PRO
drone, Gremsy T3 gimbal, Sony Alpha A7RII (42 MP) DSLR camera equipped with
20 mm lens, and Reach M+ GNSS module for UAV mapping. Advanced capabilities
of RAPS have allowed detailed aerial survey, which resulted with a collection of VHR
aerial imagery.

Flight missions were planned and automated in Universal Ground Control Software
(UgCS), which allowed adjustment of flight parameters (double-grid flight profiles,GSD
(cm), flight speed (m/s), side and forward overlap (%), etc.), according to the suggestions
given in [20]. Flight height was set to 165 m above ground, side and forward overlap
were set to 80%, and GSD was 2.6 cm. The overall accuracy of DSM created from UAV

1 CE90 - circular error at the 90th percentile, where a minimum of 90 percent of the points
measured has a horizontal error less than the stated CE90 value.

2 LE90-90th percentile linear error, where a minimum of 90% of vertical errors fall within the
stated LE90 value.
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aerial images was improved with 6 fixed ground control points (GCPs) and 3 check
points (CPs) distributed uniformly within the study area. GCPs and CPs were marked
before the aerial survey with red paint and their precise coordinates were collected with
Stonex S10 Real-Time Kinematic (RTK) GPS.

3.2 Data Processing and DSM Production

3.2.1 Creation of DSM from WV-3 Stereo Imagery

OrthoEngine 2018 suite ofGeomatica 2018 softwarewas used for the creation ofDSM of
study area fromWV-3 stereo imagery. Workflow for DSM creation within OrthoEngine
can be divided into the following substeps: math model selection (1), the introduction
of ground control points (GCPs), check points (CPs) and tie points (TPs) required for
image orientation (2), bundle adjustment (3), epipolar image creation (4) and automatic
DSM extraction (5).

The first step of DSMWV3 extraction includes the selection of corresponding
math model (1) that serves as mathematical relationship used for correlation of two-
dimensional (2D) image pixels with correct three-dimensional (3D) locations on the
ground (X, Y, Z) [21]. Optical Satellite modelling based on provided rational polyno-
mial coefficients (RPC) and zero-order polynomial adjustment was selected as one of
the most commonly used math models for DSM extraction from WV stereo imagery
[1, 3, 5]. In order to produce a highly accurate DSM, the introduction of GCPs (2) is
required for systematic compensation of RPC induced errors and improve overall image
geo-referencing accuracy [3, 5]. Therefore, sevenGCPs and five CPs scattered through-
out the study area and surveyed with the Stonex S10 RTK-GPS were introduced, along
with 187 TPs automatically detected from WV-3 stereo-pair. Reported RMSE for used
GCPs, CPs and TPs is given in Table 2.

Table 2. RMSE for GCPs, CPs and TPs used for the creation of WV-3 stereo-derived DSM
(Source: [17]).

Point type N0 RMSE X (m) RMSE Y (m) RMSE Z
(m)

MEAN RMSE (m)

GCP 7 0.369 0.197 0.504 0.356

CP 5 0.320 0.517 0.737 0.525

TP 187 0.071 0.017 0.001 0.029

Introduced GCPs and TPs were then used for bundle adjustment (3) which in com-
bination with RPC-derived sensor geometry calculates the exact position of the satellite
at the time of image collection. The next step covers the creation of epipolar image (4),
that represents a stereo-pair image, where left and right images are reprojected to have
common orientation and matching features distributed along the common x-axis [22].

The final step in the creation ofDSMWV3 was automatedDSM extraction (5). Recent
research conducted by [3] demonstrated that frequently used semi-global matching
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(SGM) is not suitable for the creation of DSMs over forested areas, since it signifi-
cantly underestimates tree presence and height. Therefore, in order to produce the best
possible quality DSM of our research area, we have tested both SGM and normalized
cross-correlation (NCC) technique (both implemented within Geomatica Orthoengine
2018) for automated DSM extraction. Pixel sampling interval was set to 1 for both NCC
and SGM derived DSMs, meaning that image correlation was performed at full image
resolution, thus enabling extraction of fine details (e.g. bushes, trees, buildings, etc.) in
created DSMs [22].

Final created DSMWV3 was used for orthorectification of pansharpened 8-ban mul-
tispectralWV-3 image (Fig. 5a2) of the study area with 0.3 m spatial resolution that was
later used for extraction of vegetation cover through GEOBIA approach. As dense point
cloud was required for evaluation of vertical accuracy (Sect. 3.4), created DSM was
converted to point cloud using the Extract vector grid from DSM tool in Orthoengine
software. Every pixel ofDSMWV3 was converted into one height point of the dense point
cloud. Dense point cloud (DCWV-3) was extracted exclusively for TA, which allowed
point-based evaluation of vertical accuracy.

3.2.2 Creation of DSM from UAV Photogrammetry

Aerial imagery acquired byRAPSwas used for the creation of theVHR referenceDSM of
the study area in Agisoft Metashape 1.5.1. software. This software is currently one of the
most advanced and precise image-based 3Dmodelling software that uses structure-from-
motion (SfM) algorithm and multi-view 3D reconstruction technology for the creation
of high-quality models [23]. Workflow for extraction of VHR DSM from aerial images
collected by RAPS followed the recommendations given in [24]. Processing of collected
aerial imagers allowed the creation and extraction of sub-decimeter spatial resolution
DSM and digital orthophoto image (DOP) (Fig. 5a1). Along with DOP and DSM dense
point cloud (DCUAV ) was extracted from Agisoft Metashape software.

3.3 GEOBIA Extraction of Olive Groves

Extraction andmapping of olive trees withinOGLwas performed byGEOBIA inArcGIS
software. Olive trees were extracted from both WV-3 multispectral imagery and digital
orthophoto (DOP) derived by aerial imagery acquired by RAPS.

The workflow was divided into the following sub steps: derivation and segmenta-
tion of a multispectral image (1), marking and adding samples - data augmentation
(2), selecting the classifier (Support Vector Machine - SVM, Random Trees - RT, Max-
imum Likelihood - ML) (3), image classification (4) and estimation of the olive tree
classification accuracy (5) (Fig. 2).

The first step of olive trees extraction was derivation and segmentation of multispec-
tral image (1), through the image segmentation based on theMean Shift approach [25].
The characteristics of image segments depend on three parameters: spectral detail, spa-
tial detail and minimum segment size. The iterative process was performed in which 64
possible combinations of parameters were examinedwith the aim of optimizing themen-
tioned parameters and generating better quality models. Selection of the best parameters
combination was performed based on visual interpretation of resulting image segments.
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Fig. 2. GEOBIAworkflow applied for extraction of olive trees fromDOP andWV-3multispectral
image.

The second step,marking and adding samples (2) refers to the collection of polygon
test samples and verification of test samples using the cross-validation method. Data
augmentation (2), is used to artificially increase the number of samples in a test set by
applying specific input distortions. These deformations include: rotation, translation,
cutting, and change in pixel brightness. In total 13 classification samples were selected
and used for the classification of image segments within the TA (ArcGIS).

The third stepwas selection of the classifier (3). Threemost commonly usedmethods
(Support Vector Machine - SVM, Random Trees- RT and Maximum Likelihood - ML)
[26–29]were selected for the classification of olive trees from theDOP acquired byRAPS
and from theWV-3multispectral imagery. The fourth step included image classification
(4) which was performed using all three mentioned classifiers based on 13 classification
samples (Fig. 3).

The last step was the estimation of the olive tree classification accuracy (5). Clas-
sification results were compared using the following areal accuracy indicators [30]:
correctness (COR), completeness (COM) and overall quality (OQ). By applying differ-
ent accuracy indicators, it is possible to quantify the correspondence between reference
data and generated objects and to assess the accuracy and success of the performed
segmentation [31]. Calculation of these indicators was performed by comparing seven
reference olive trees polygons (Ro) with polygons representing olive trees (Ci) gener-
ated by three different classifiers. Reference polygons were selected based on randomly
selected pixels using theCreate accuracy assessment points toolwithinArcGIS software.
Olive trees on which the pixels were located, or to which the pixels were nearest, were
selected as reference samples for assessing the best classifier. Seven olive tree canopies
were manually vectorized from the DOP and from theWV-3 multispectral imagery at a
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Fig. 3. 13 classification samples used for classification of DOP andWV-3 multispectral image.

scale of 1:25. Overlap polygons were obtained using the Intersect tool within ArcGIS.
These polygons represent the reference for the determination of the areal accuracy of
olive trees derived by three different classifiers. Overlap area (Ap) of the reference and
classified olive trees was calculated, as well as the over-estimated area (Ao) and under-
estimated area (Au)(Fig. 5d). The calculated values were used to calculate the selected
areal accuracy metrics, according to the following formulas:

COR calculation formula [30]:

COR = Ap

ACi

Where is:
Ap - overlap area of reference and classified area, ACi - total area of GEOBIA olive

tree
COM calculation formula [30]:

COM = Ap

ARo

Where is:
Ap - overlap area of reference and classified area, ARo - total area of the reference

olive tree
OQ calculation formula [30]:

OQ = Ap

ARo + ACi − Ap
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Where is:
Ap - overlap area of reference and classified area, ARo - total area of the reference

olive tree
ACi - total area of GEOBIA olive tree
The values of COR, COM and OQ indexes vary from 0 to 1. Higher values indicate

a greater match between the reference and classified objects, that is, higher accuracy of
the performed classification [32].

3.4 Model Vertical Accuracy Assessment

The vertical accuracy ofWV-3 derived models was evaluated from two unfiltered dense
point clouds. Dense clouds ofWV-3 derived DSM (DCWV-3) and UAV photogrammetry
derived DSM (DCUAV ) were compared by Cloud to Cloud tool (C2C) [33] within the
CloudCompare software. DCUAV was set as the reference point cloud because of its
higher point density, whileDCWV-3 was set as the compared cloud. In theDistance com-
putation option, parameters were set to create a model of the absolute distances between
compared clouds. Octree level was set to automatic and max thread count to 12/12.
The Maximum distance was set to 4.88245 m which was checked in the Approximate
distances option (Table 3).

Table 3. Approximate distances of points of compared dense clouds DCUAV and DCWV-3.

Distance values (m)

Min dist. 0

Max dist. 4.88245

Avg dist. 0.773797

Sigma 1.18259

Max error 1.22061

The M3C2 (Multiscale Model to Model Comparison) plugin by [34] allows the
generation of positive and negative distance values based onwhich the standard deviation
(STD) was calculated [35]. DCUAV was set as the reference cloud and the registration
error was set to 0.1 m because of the model error of reference data. STD was used as the
main statistical method to check the vertical accuracy of the DCWV-3.

4 Results and Discussion

4.1 Created DSMs and Point Clouds of Study Area

4.1.1 WV-3 Derived Models

WV-3 Derived DSM
As the spatial resolution of initial WV-3 stereo imagery was 0.3 m and pixel sampling
interval forNCC and SGM was set to 1, the spatial resolution of final createdDSM_WV3
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was 0.6 m. Although NCC and SGM approaches were based on identical input WV-3
stereo imagery and GCPs, resulting DSMs were very dissimilar. Significant differences
betweenDSMs of study area created byNCC andSGM approaches are obvious even from
a basic visual comparison of createdmodels (Fig. 4).DSM created by the SGM approach
was much smoother and it lacks most of single, individual trees, thus confirming what
was stated by [3]. On the other hand, NCC also failed to represent all individual olive
trees, but representation was much better than with the SGM approach.

Fig. 4. Visual comparison of DSMs created by NCC (right) and SGM (middle) approaches with
DSM created from UAV photogrammetry (left); red ellipse – the area covered by individual,
dispersed olive trees. (Source: [17]) (Color figure online)

While SGM was very straightforward and easy-to-use, NCC allowed higher auton-
omy for adjustment of user-defined parameters for DSM extraction to the local charac-
teristics of our study area. Namely, high individual olive trees rise several meters above
the surrounding terrain, significantly rising overall surface roughness. SGM technique
neglected the high surface roughness and created a rather smoothDSM, with a very poor
representation of individual olive trees. To solve this problem, we set the smoothing filter
and terrain type parameters of the NCC technique to fill holes only and mountainous,
respectively. Fill holes only parameter interpolates all holes in created DSM, but does
not apply any additional filtering and smoothing, which is important for preservation
and representation of individual olive trees in the created model. Although terrain within
our study area is represented by gentle hills, we decided to set terrain type parameter to
mountainous, in order to preserve individual trees, that would be filtered with the other
two terrain type parameters (flat, hilly). As a result,DSM produced by NCC had a much
better representation of individual olive trees thanDSM produced by SGM, and thus this
DSM was chosen as the final DSMWV3.

WV-3 Derived Multispectral Image
Orthorectification of pansharpened 8-ban multispectralWV-3 image based on generated
DSMWV3, resulted in the creation of a single terrain-corrected multispectral image with
spatial resolution of 30 cm. Created WV-3 multispectral image has very-high spatial
resolution and versatility of spectral information, that served as the basis for extraction
and classification of olive trees.
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WV-3 Derived Dense Point Cloud
Final created DSMWV3 served as the basis for conversion of individual pixels to height
points and creation of dense point cloud DCWV-3.

4.1.2 UAV Photogrammetry Derived Models

VHR reference DSMUAV with 10 cm spatial resolution and digital orthophoto image
(DOP) with 3 cm spatial resolution were created, as well as high-density point cloud.
Created models are used as reference models since the spatial resolution of both created
DSM and DOP are significantly higher than the one of WV-3 derived models.

4.2 Selected Parameters and Classifier

Mean Shift parameters were set to equal values for bothWV-3 multispectral image and
DOP segmentation. In order to minimize generalization in the process of segmentation
by an iterative process, the following values proved to be optimal:

a) Spectral detail was set to 20/20 which enabled detailed vegetation differentiation.
b) Spatial detail was set to 20/20 which enabled highlighting small compact features.
c) Minimum segment size was set to 2/20 which enabled merging segments smaller

than this size.

The proximity of the olive canopies conditioned the high values of selected spectral
and spatial parameters, as lower values resulted inmerged canopies and larger vegetation
generalization. The distribution of seven reference polygons, used for validation of three
tested classifiers, within the TA is given in Fig. 5 (b1 and b2). The results of comparing
the three classifiers (SVM, RT andML) using the three accuracy indicators (COR, COM
and OQ) are shown in Tables 4, 5 and 6.

Table 4. Results of COR validation of classifiers for DOP andWV-3.

Reference
sample

DOP WV-3

CORML CORRT CORSVM CORML CORRT CORSVM

1 0.709 0.694 0.717 0.827 0.872 0.862

2 0.957 0.963 0.962 0.852 0.854 0.853

3 0.814 0.818 0.818 0.926 0.921 0.923

4 0.622 0.633 0.620 0.164 0.505 0.503

5 0.671 0.689 0.689 0.913 0.912 0.907

6 0.531 0.545 0.541 0.250 0.301 0.247

7 0.277 0.274 0.267 0.155 0.151 0.151

Result 0.654 0.660 0.659 0.584 0.645 0.635
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Table 5. Results of COM validation of classifiers for DOP and WV-3.

Reference
sample

DOP WV-3

COMML COMRT COMSVM COMML COMRT COMSVM

1 0.974 0.985 0.980 0.965 0.922 0.928

2 0.929 0.938 0.917 0.808 0.837 0.860

3 0.946 0.926 0.933 0.900 0.881 0.883

4 0.985 0.980 0.971 0.978 0.988 0.989

5 0.976 0.979 0.979 0.850 0.921 0.939

6 0.990 0.982 0.981 0.968 0.974 0.982

7 0.910 0.932 0.931 0.951 0.951 0.951

Result 0.959 0.960 0.956 0.917 0.925 0.933

Table 6. Results of OQ validation of classifiers for DOP and WV-3.

Reference sample DOP WV-3

OQML OQRT OQSVM OQML OQRT OQSVM

1 0.702 0.687 0.707 0.803 0.812 0.808

2 0.891 0.905 0.885 0.708 0.732 0.750

3 0.779 0.767 0.773 0.839 0.819 0.823

4 0.616 0.625 0.609 0.164 0.502 0.500

5 0.660 0.679 0.679 0.786 0.845 0.857

6 0.528 0.530 0.535 0.248 0.298 0.246

7 0.270 0.259 0.262 0.153 0.150 0.150

Result 0.635 0.636 0.636 0.529 0.594 0.591

From the obtained values of the COR indicator (Table 4), it can be seen that the
accuracy of classification of olive trees based on DOP is 0.660 for the RT method,
which is higher than for the other two tested methods (MLDOP = 0.654; SVMDOP =
0.659). Furthermore, based on the WV-3 image, the COR indicator also confirmed that
RT (0.645) classifier performed better than the other two methods (MLWV-3 = 0.584;
SVMWV-3 = 0.635). Based on this indicator, it is possible to conclude that a significant
part of the surface of the olive trees classified by the GEOBIA approach is inside the
reference olive trees.

The next calculated areal indicator is COM (Table 5), which represents the ratio
between the overlap of reference and classified area (Ap) with the total area of the
reference olive trees (ARo ) [30]. The average representation is 0.960 for the RT method
on DOP and 0.933 for the SVM method on WV-3. As indicated by this metric, the
optimal classifier for WV-3 image is SVM method, although COM value for RT is not
significantly lower (0.925). High values of this metric indicate that classification results
for both DOP and WV-3 have very high matching (>0.9) with total reference area, for
all three tested classifiers.
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The OQ indicator (Table 6) considered more accurate than COR and COM, as it
depends less on the area of reference and classified objects [30]. As COR and COM,
calculated values of OQ also indicate that RT (0.636 for DOP; 0.594 forWV-3) classifi-
cationmethod performed better than the other two classifiers (MLDOP = 0.635; SVMDOP

= 0.636; MLWV-3 = 0.529; SVMWV-3 = 0.591). As all three indicators confirmed that
Random Trees classifier achieved the highest areal accuracy (Fig. 6), olive trees extracted
by this method have been selected as test areas for further evaluation of vertical accuracy.

The total area of the olive trees classifiedbyRT method from theDOP is 10360.45m2

(Fig. 5c1), while from WV-3 total area is 11 201.25 m2 (Fig. 5c2). Although the same
classifier and user-defined parameters were used, the extracted area is not identical. If
higher spatial resolution DOP is considered as a reference dataset, then WV-3 derived
areas represent a slight overestimation of the total area classified as olive trees. This
is further confirmed through the overlap of extracted olive tree areas. Classification
matching between reference DOP and WV-3 is 92.4% (Fig. 5d), which is a very high

Fig. 5. Extraction of olive trees using the GEOBIA from DOP (a1) and WV-3 MS (a2), (b1 and
b2 - reference olive trees; c1 and c2 - olive trees extracted by RT; d - overlap between olive trees
classified from WV-3 and DOP).
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value considering the difference between the two data resolutions. A high percentage of
overlap between DOP and WV-3confirms the quality of areal representation of WV-3
extracted olive trees.

Fig. 6. Graphical representation of three areal indicators of horizontal accuracy.

4.3 Vertical Accuracy of WV-3 DSM

Vertical accuracy is expressed as distance between reference point cloud (DCUAV ) and
evaluated point cloud (DCWV-3), where higher distance values represent higher verti-
cal errors. Results of the C2C tool represent absolute distances between two clouds,
calculated in meters (Fig. 7A). The C2C model shows that the smallest vertical dif-
ferences are located at the edges of the olive tree canopy, while distances are growing
towards the canopy centre. Such distribution of distances is the result of vertical inac-
curacy of canopy shape and height representation in DCWV-3, compared to the canopies
represented in DCUAV . In comparison to the reference canopy, DCWV-3 significantly
underestimates the canopy height. This is further confirmed by the 3D representation of
two point clouds (Fig. 8).

Unlike C2C that represents only absolute distances, M3C2 calculated both positive
and negative distance, thus providing a better insight into the actual deviations between
two point clouds. Calculated distances clearly indicate that negative distances are pre-
vailing in the majority (over 90%) of points fromDCWV-3 (Fig. 7B). Such representation
of negative distances further confirms thatDCWV-3 underestimates the height of the olive
tree canopy, in comparison to reference DCUAV .
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Fig. 7. Distances between DCWV-3 and referenceDCUAV calculated by C2C tool (A) andM3C2
tool (B).

Fig. 8. Absolute distances between DCWV-3 and reference DCUAV calculated by C2C tool.

Figure 9 represents the spatial distribution (A) and histogram (B) of STD values,
calculated based on a comparison of reference DCUAV and evaluated DCWV-3 in the
M3C2 tool. STD calculated for all olive trees within TA based on vertical distances
determined by the M3C2 tool is 2.58 m. Generally, STD values are lower for single,
individual olive trees, than for grouped, dense olive tree canopies. This demonstrated that
although produced DSMWV3 managed to reproduce individual olive trees, the vertical
accuracy of such representation is relatively low, as it is further confirmed with STD
value for whole TA.
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Fig. 9. Spatial distribution (A) and histogram (B) of calculated STD for calculated byM3C2 tool.
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5 Conclusion

The main aim of our study was the quality assessment ofWV-3 derivedDSMs for poten-
tial application over olive groves. The first aim was to test two different approaches
(NCC and SGM) for creation of WV-3 derived DSM. While SGM was very straight-
forward and easy-to-use, NCC allowed higher autonomy for adjustment of user-defined
parameters for DSM extraction to the local characteristics of the study area. As a result,
DSM produced by NCC had a much better representation of individual olive trees than
DSM produced by SGM.

The second aim was to test the areal accuracy of olive trees extracted from WV-
3 multispectral image through three different GEOBIA approaches. According to the
calculated areal indicators (COR, COM, OQ) Random Trees classifier has achieved the
highest areal classification accuracy from all three tested approaches (RT, SVM, ML).
While there were someminor differences between olive trees classified byRT fromDOP
and WV-3 multispectral image, the overall overlap was very high (92.4%). Thus, it can
be concluded that an orthorectified WV-3 multispectral image can be used for accurate
extraction and mapping of olive trees on large areas.

Overlap area of extracted olive trees was used as a test area for evaluation ofDCWV-3
vertical accuracy. Vertical accuracy is expressed as distance between reference point
cloud (DCUAV ) and evaluated point cloud (DCWV-3), where higher distance values rep-
resent higher vertical errors. Calculated distances are clearly indicating that negative
distances are prevailing in the majority (over 90%) of points from DCWV-3. Such repre-
sentation of negative distances further confirms that DCWV-3 underestimates the height
of the olive tree canopy, in comparison to reference DCUAV

In overall, performed quality assessment has shown that WV-3 stereo imagery can
be used for successful application of GEOBIA and mapping of olive trees, as well as for
creation of dense point clouds and high-resolution DSMs.
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Abstract. Land use and land cover (LULC) information is essential in territorial
planning for the study of natural risks and landscape science. Given the impor-
tance of LULC data, increasing efforts are being focused on producing quality
and easily accessible databases. In Spain, the Land Use and Cover Information
System (SIOSE) is a clear example of these efforts. The SIOSE database was one
of the first to be built following an object-oriented data model and a set of spec-
ifications that facilitates the integration of data from different sources. However,
the SIOSE information alone is so accurate and complete that there is a usability
gap that means that this data is not used to its full potential in some contexts,
nor is the possibility of integrating other data sources considered. In this work,
we examine the circumstances of this usability gap, its causes and consequences,
and we introduce an extension of the SIOSE object-oriented data model that will
enable enriching the LULC data including new useful data for different types of
studies. Finally, an example of implementation of this extended model serves to
encourage the user community to propose and disseminate new extended LULC
datasets that facilitate various types of landscape studies.

Keywords: Land use · Land cover · Object-oriented · Geodatabase · SIOSE

1 Introduction

The geographical and cartographic nature of the information on Land Use and Land
Cover (LULC) makes it essential in works of territorial planning and natural risks, as
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well as for landscape science [2,22]. Geographical information on land use integrates
biophysical information on the territory and human activities, and shows the socio-
economic use of the natural environment from a cartographic or spatial perspective.
For these reasons, LULC data have a strategic role in any study on natural resources
management, environmental conservation, and territorial planning [27].

1.1 LULC Data Official Repositories in the EU

Information on land use in most European countries has been associated with map pro-
duction for the many national map series that have been published since cartography
became a modern science, with works related to the preparation of official maps, as
well as with topographic and cadastral maps. This responsibility continues to depend
mainly on those official and public organisations who are responsible for the production
and management of maps at the national level. For example, in Spain, the National Geo-
graphic Institute (Instituto Geográfico Nacional; IGN) is the leading organisation for the
production of maps, and has produced national topographic maps since the nineteenth
century.

Since the second half of the last century, official repositories of digital geographic
information have been created, in part, thanks to the development of the Geographic
Information Systems (GIS) and the increasing importance of remote sensing appli-
cations (which have enabled us to obtain large amounts of information and provided
useful tools for its processing). It is worth highlighting the Coordination of Informa-
tion of the Environment Programme (CORINE) of the European Environment Agency
(EEA), which since the end of the last century has represented a coordinated effort in
the compilation of this type of information on a regular and structured basis, and with a
detailed reference scale (1:100,000). This European-level project has served as a model
for extending the initiative worldwide [7].

A global approach has allowed us to perceive the environmental consequences of
climate change and the recent development of human activities; and LULC information
has become increasingly demanded for decisive issues in the United Nations Frame-
work Convention on Climate Change (1992) and the revision of the Kyoto Protocol
(1998) [11]. There are increasing numbers of users of this type of information; both in
the public sector and private companies – and these users are using this data for different
interests. This heterogeneous demand is being satisfied by the Copernicus Land Mon-
itoring Service (CLMS), part of the Global Monitoring for Environment and Security
(GMES) of the European Environment Agency (EEA), which at the same time reports
to the Copernicus Land Observation Programme of the European Space Agency (ESA)
[9].

More specifically, in Spain, this environmental affiliation in the usefulness of LULC
information is the reason why the Ministry of Ecological Transition and Demographic
Challenge, through the Secretary of State for the Environment, encourages the produc-
tion of this type of information, in coordination with European organisations, and within
the legal framework of the INSPIRE Directive (2007/2/EC) [8]. IGN (IGN in Spanish)
is responsible for the production of LULC data under the National Plan for the Occu-
pation of the Territory (PNOT), which since 2005 centralises storage and updates in
a national database named SIOSE. CORINE Land Cover Programme (CORINE LC)
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data on Spain is currently produced through the cartographic generalisation of the
SIOSE [17]. The raw data from this database, as well as its derived products, is freely
distributed using open standard formats and a non-commercial license. According to
the IGN, between 2012 and 27 July 2017, PNOT datasets have been downloaded 5.2
million times, demonstrating the importance of this information. The principal users
are the state administrations and regional or provincial governments. Frequent uses
include agrarian policy, environmental management, urban development, or mapping.
Also noteworthy are the downloads of this information for other purposes, such as uni-
versity research, research office centres, companies, and consultancies.

1.2 Hierarchical vs. Object-Oriented LULC Classifications

During the last years of the twentieth century, the LULC classification paradigm used
by CORINE LC was also adopted by other similar programmes, such as the Geological
Survey of Land Use and Coverage of the Geological Survey of the United States [1].
This paradigm lasted for several decades and is still being used, but at the beginning
of the current century, it revealed deficiencies coinciding with the spread of the mas-
sive use of geographic databases. These limitations consisted in the fact that mutually
exclusive LULC classes were not oriented to an adequate diagnosis of reality, they were
not designed for diverse and complicated use; instead, they were designed for the elab-
oration of thematic cartography, subject to the limitation of a reference scale. In the
twenty-first century, more complex and voluminous datasets are being used, and this
has led to the emergence and need for an object-oriented paradigm [29].

The European Union created the EAGLE group, within the European Network for
Information and Observation on the Environment (EIONET), to establish the proce-
dures for optimising the integration and homogenisation of LULC data from the official
repositories of each country on a pan-European scale [3]. EAGLE proposed a solution
based on an object-oriented data model that was based on standards or reference code
lists, such as Corine LC and technical specifications directed by INSPIRE (2007/2/CE)
and ISO 19144-2 (LCML-Land Cover Meta Language). An excellent example of this
approach was the development of the SIOSE Spanish database (information system on
land occupation in Spain), created in 2005 with an integrated object-oriented model as
an initiative of the EIONET Network [10]. As already explained, the SIOSE database
was developed in Spain under the coordination of the IGN and the National Centre
for Geographical Information (CNIG). SIOSE is supported by a data model that meets
INSPIRE technical specifications, and its composition reflects the indications of the
EAGLE group, ensuring compatibility and comparability with pre-existing databases
such as Corine (CLC90 and CLC00), Murbandy/Moland, and the Land Cover Classifi-
cation System (LCCS) of the Food and Agriculture Organisation of the United Nations.

In Fig. 1, we show the geometric difference between a CORINE LC polygon (brown
outer line) and a SIOSE polygon (yellow), which is contained by the CORINE polygon.
The comparison clearly shows the difference in size and scale, with Corine LC at a
1:100,000 scale, while SIOSE is built at a 1:25,000 scale. On the map, we can see how
the thematic classification of the CORINE polygon (discontinuous urban fabric) hides
other realities that are more detailed in the SIOSE classification – roads, car parks, hotel
buildings, leisure areas, swimming pools, and gardens – that do not appear spatially
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Fig. 1. Benidorm city surroundings (Spain). Comparison of geographic information on LULC
data between Corine LC plot and SIOSE plot. Source: Corine LC, SIOSE, aerial orthophotogra-
phy flight from National Geographic Institute (PNOA) and Google Earth.

delimited but are included in the SIOSE database with detailed information (e.g. coding,
description, surface). The CORINE LC classification and model exclude these complex
realities. Inside the CORINE polygon, we see the three areas marked with white circles
(A, B and C). In these areas, single-family housing (circle A), unbuilt areas, or isolated
buildings (circle B) and large communication infrastructures appear (circle C) under the
same thematic label: discontinuous urban fabric.

An object-oriented LULC data model diminishes the loss of information during
the thematic labelling process because there are no mutually exclusive classes. This is
possible thanks to the storage of LULC statistical observations (e.g. percentages of an
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occupied area) at levels of detail that hierarchical classification models cannot achieve
because of their dichotomous nature [23]. In the case of SIOSE, this had a significant
influence on the economic savings in the production of datasets because deepening the
information and expanding the scale of application would not have been possible with
a hierarchical system. The components or variables of the landscape are unique in their
meaning, and this enables personalised thematic results, according to the demands of the
user. As a result, the object-oriented approach enables dynamic and extensible classifi-
cations to be generated to meet future needs. Furthermore, new types of parameters can
be inserted into the database without creating conflicts with previous database versions
[28].

Following the example of Fig. 1 and zooming in on the SIOSE and CORINE poly-
gons, we can better see the difference in the wealth of information offered by the SIOSE
object-oriented model versus the CORINE LC hierarchical classification model. The
CORINE model keeps less information, as can be seen in the examples in Fig. 2. The
SIOSEmodel offers a higher level of detail, describing the type of buildings and the areas
occupied within the polygon. The SIOSE database indicates that the area is aHotel Zone
with a surface presence of 50% of roads, parking areas, and pedestrian areas, 35% iso-
lated buildings, 10% swimming pools, and 5% gardens, all distributed within the poly-
gon. This thematic richness is lost in the Corine LC polygon as its hierarchical model
excludes the variety of information that exists within the polygon’s graphical boundary,
while the SIOSE object-oriented system preserves the information in the database.

1.3 Opportunities for the SIOSE Database

The SIOSE data model has enabled saving costs and effort in the production of the
database, facilitating periodic updates, and the integration of national and international
information, as well as increased data detail and a derivation of products for very
diverse purposes. The notable benefits of using the object-oriented model also come
with certain drawbacks; this model is usually challenging to learn for less experienced
users, due to variations from traditional hierarchical classifications that could be con-
sidered familiar for users of desktop GIS programmes. Hierarchical data models, such
as CORINE LC, reduce the thematic resolution of the data that make the data easier to
understand. On the other hand, the object-oriented model usually needs to be adapted
to a relational database management system with spatial capabilities, and this forces
database managers to address this incompatibility at the conceptual level. This is a case
of object-relational impedance mismatch that has been recognised in the literature as
a data structure problem due to paradigm differences [18,20]. Another disadvantage
generated by the complexity of the system is in the study of land use and land cover
changes (LULCC), which must be performed not only in geometry but also in seman-
tics [27]. Problems like these have been addressed in previous studies that pointed out
the great value of the data collected by SIOSE, but also the difficulty in handling the
database. It is an excellent example of a handy tool that is limited to experts. Several
studies highlight the drawbacks of the effort required to use SIOSE LULC in applied
research, and these range from climate change [21,25], flood risk mapping [19], farm-
land abandonment [24], wildfires [4] or purely cartographic studies [16,17].
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Fig. 2. Detail of same area of Benidorm (SE of Spain). Example of the treatment of the thematic
LULC information between Corine LC hierarchical model and SIOSE object-oriented model.
Source: Corine LC, SIOSE and aerial orthophotography flight from National Geographic Institute
(PNOA) and Google Earth.

The drawbacks mentioned above are mainly related to the lesser ease of use of the
information by ordinary users. However, these can be compensated by the great versa-
tility and usefulness of the information contained in the SIOSE database. The versatility
of the database is not only related to the information richness, but also with the extensi-
ble object-oriented model. Another strength of SIOSE goes beyond the object-oriented
data model, and resides in a coordinated and participative production model that inte-
grates data from all interested public administrations. This results in an economy of
effort and an increase in the quality of the outputs that earned the 2013 United Nations
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Public Service Award. Considering both strengths, it is logical that SIOSE developers
are considering how the database could benefit integrating data coming from volunteer
geographic information (VGI) projects such as OpenStreetMap (OSM), or how to take
advantage of the VGI contributions to better plan the need for updating in different ter-
ritories. Several studies have addressed different topics regarding VGI and LULC data
and have concluded that exciting contributions could come from these synergies [12].

In this scenario, we present the SIOSE-INNOVA project (http://siose-innova.
es/) funded by the Spanish Ministry of Economy and Competitiveness. This project
addresses the study of these questions: the technical aspects derived from the SIOSE
object-oriented data model and the above-mentioned usability drawbacks. Within the
scope of this project, the main objectives of this research are developed in the following
sections. In the next section (Sect. 2), we analyse the ecosystem where SIOSE data are
used (i.e. actors, applications, use scenarios, and case studies) in order to accurately
define the usability gap of the SIOSE database. Once this usability gap is well defined,
in Subsect. 2.2, we introduce an extension to the SIOSE data model showing how to
integrate new data layers in tailored distributions of SIOSE. Finally, in Subsect. 2.3,
we provide an example of the implementation of the extended model. In the last section
(Sect. 3), we discuss the benefits of this approach for providing enriched LULC datasets.
This proposal has already been addressed at the conceptual level [30]. However, in this
work, more explicit examples and implementation details are provided.

2 Extending the SIOSE Data Model

As explained in the previous section, there are several issues related to the SIOSE
database model that could be improved. However, proposing changes to an already
functioning system is difficult and must be done carefully and at the conceptual level
to better understand what such changes may entail. In this section, we follow the com-
plete process of describing the current system, proposing amendments and showing an
example of implementation.

2.1 Describing the SIOSE Usability Gap

The concept of usability has been widely used for many years in the field of software
and information system design [26]; it is a measure of the quality of a user’s experience
when interacting with this type of tool. In the SIOSE-INNOVA project, we consider
usability as an indicator to determine the ease with which the SIOSE database can
be used, but also to refer to the methods that serve to improve usability in the design
process. In the end, usability is nothing more than the sum of several factors that control
how users interact with a system; among these factors are speed of use, ease of learning,
accessibility, navigability, user efficiency, and error rates in use [5].

Usability can also be seen as a characteristic of any system built to be used: (1)
by a specific type of user; (2) to perform a series of tasks allowed by the system; and
(3) in a specific context in the interaction [5]. It is especially important to describe in
detail these three elements in the SIOSE system: the actors; the tasks; and the various
contexts.

http://siose-innova.es/
http://siose-innova.es/
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To better explain how the SIOSE database is used, we are going to use a series of
concepts and graphical tools from the field of software engineering that are part of the
Unified Modelling Language (UML) [6]. A use case diagram is a graphical tool that
shows the different actors (user types or user roles) that interact with the system and
what functions or operations can be performed, as well as those tasks or functions that
an actor can invoke on it. Systems are called use cases. Additionally, in systems of a
specific size, the subsystems that make up the global system are also distinct.

According to the proposed definition of usability and the concepts introduced of
actor and use case, it is possible to identify specific types of users for whom making
use of the SIOSE database tends to be more complicated. If we set ourselves the objec-
tive of improving the user experience of the different actors who can interact in the
system and the various scenarios in which this interaction can occur, we will have to
deal with various extensions of the system itself from the design phase. Fortunately,
the SIOSE database has been designed following the object-oriented paradigm, and this
feature makes its extensibility possible [28]. The SIOSE system consists of three main
subsystems or modules, each of which represents one of the phases required for the use
of LULC data. Initially, there is the data production module, in charge of the initial
data capture with which the system is fed. The second module or phase is data inte-
gration, in which the collected data is incorporated in an organised way into the system
for publication. Moreover, we have the usage phase, in which the end-users of SIOSE
consult and process the data to carry out their analysis and reports. Each of these three
modules encompasses the most important tasks or use cases. Figure 3 shows the use
case diagram of the SIOSE data integration module. The elliptical figures represent the
different use cases included in this module. Each use case is linked with a continuous
line to the actor (user role) who can invoke it in this context.

Fig. 3. Sample use case diagram corresponding to the data integration module of SIOSE.
Adapted from [30].

Among the use cases, it is seen that there are certain types of relationships (dashed
arrows) marked with the<< include >> and<< extend >> tags. A relation of type
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<< include >> means that the use case from which the arrow starts includes in its
behaviour the use case to which it points, for example, if the user VGI organisations
performs the task integrate data. This operation must necessarily perform the data com-
pilation/selection task. On the other hand, the relation<< extend >> indicates that the
use case from which the relation starts could be called, although not necessarily, by the
use case to which it points. In Fig. 3, the use case define data models, if certain conditions
were met, could incorporate the functionality of the define standards use case.

Finally, in the diagram use case, we can find inheritance relationships between actors,
and these are represented by solid arrows that go from one actor to another. In our exam-
ple in Fig. 3, the actor mapping agencies or GIS departments inherits the behaviour of
DB manager/SDI manager and standards organisation, and this means that the first of
these three actors can invoke the same tasks or use cases as the other two.

Figure 4 shows the global use case diagram of the SIOSE system, including its three
main modules (the three phases for LULC data compilation or management): (1) data
production; (2) data integration (sampled in Fig. 3); and (3) usage. In this way, we can
identify all the elements of the system and how they are organised. Description of use
cases obeys a model that may not be applicable in all cases, but according to our expe-
rience and knowledge, this model draws most of the uses that can be made with the
SIOSE system, most of which are present in the scientific literature. In the lower-left,
the role GIS producers or contractors represents the actors that produce the most data
for the SIOSE database, which need to make an official request (see Sect. 1) to carry out
their tasks. The user VGI (bottom right) represents the providers of volunteered infor-
mation; they are professionals who are encouraged to include in the SIOSE system the
data that they collect on the ground (which allows improving the overall quality of the
system data). At the other end of the diagram, in the usage module, some users want to
use SIOSE for specific particular purposes (some having little or no knowledge about
managing spatial databases, while others may have some experience in using the SIOSE
database).

The diagram in Fig. 4 shows, for each context, the types of user with access to
use cases more or less linked to that context. For example, the role of GIS technician
represents the class of users who might have an interest in processing or transforming
data from the SIOSE system to carry out an analysis or mapping, but in general, either
due to lack of interest, resources, or sufficient knowledge, it will not be their role to
develop new tools. On the other hand, the non-GIS consultant role would be that of
users who want to report certain information, but who do not have previous knowledge
or experience in the use of geospatial data, therefore, to achieve their objective they
need the help of an actor with the role GIS analyst.

Note that when the database administrator (roleDB manager/SDI manager) invokes
the use case for which the SIOSE data is published, for both the general-purpose (con-
text data integration) and the explicitly processed data according to specific require-
ments (usage context), there is no specific user role that provides new tools or facilitates
access to these new datasets (e.g. providing predefined equivalence maps and operating
environments with custom re-classifications). To represent this peculiarity, the provide
tools use case has been conceived and is located outside of the three primary SIOSE use
contexts. This use case could be invoked both by the DB manager/SDI manager role
and by an eventual type user name GIS develops.
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Fig. 4. Use case diagram showing the actors, applications and contexts where the SIOSE is devel-
oped [30].

2.2 Proposed Design

As in the previous section, we introduced the use case diagrams to represent the differ-
ent actors, use cases (tasks), and subsystems that intervene in the SIOSE system, and
we are now going to resort to class diagrams to define the internal components of this
system. This type of diagram is also part of the UML standard [6] and is very useful
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when a software system has been designed with the object-oriented paradigm. A class
is a form of extended data type (we all have an intuitive idea of what integer data is),
integer data can take a specific type of value (e.g. 1, 2, 3) and enables specific oper-
ations, (e.g. add, subtract). More specifically, a class is a software component that, in
general, can contain one or more properties defined by a series of attributes (values),
and it can also have associated a specific behaviour determined by a series of methods
that can be invoked (operations). Once a class has been defined, it can be instanced as
an object. Graphically, a class is represented by one of the shapes shown in Fig. 5.

Fig. 5. LandCoverComponent class representations. Adapted from [30].

In the A representation of the LandCoverComponent class, its name is indicated in
the upper part, its attributes or possible values in the central part, and the methods or
operations that define its behaviour in the lower part. Eventually, there may be classes
that only have properties but no behaviour and vice versa, and in such a case, the non-
existent part (properties or behaviour) would be empty. Additionally, when a problem
is well known to its designers, or when certain details are not especially important and
can be ignored, a class may be represented without indicating its properties and/or its
methods (even if it has them) to simplify the diagram. The presentation B of Fig. 5 is an
example of how the same class LandCoverComponent would be represented, ignoring
both its attributes and its methods.

The SIOSE data model, like other similar ones that have been referenced in the
introduction, can be represented with an object-oriented design. From these designs, a
LULC description can be enriched by adding new elements without affecting previously
represented information.

In the class diagram in Fig. 6, we show our proposal for the extensibility of the
SIOSE model. The design pattern that handles a group of instances that are the same
as a single object of the same class is called a composite pattern [15]. The SIOSE data
model uses this composite pattern, and the three core classes (LandCoverComponent,
LandcoverComposite and LandCoverLeaf ) along with their relationships are displayed
according to this composite pattern. The attribute interface represents the land use por-
tion of each land cover element or unit. Through this interface, the model can be easily
extended by adding new attributes to both the LandCoverUnit class and the LandCov-
erComponent.

The SIOSE polygon described in Fig. 2 can be used as an example to interpret
this class diagram. The area described in Fig. 2 contains LULC information from the
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Fig. 6. Class diagram for extending the SIOSE data model [30].

SIOSE-2011 database version, which is the LandCoverDataSet of this example. The
red polygon can be instantiated as an object of the LandCoverUnit class, and this class
inherits its properties from a geometry object (GM Object). The surface of this poly-
gon represents a Hotel zone land cover composed of 50% of roads, parking areas and
pedestrian areas, 35% of isolated buildings, 10% swimming pools, and 5% gardens.
The current SIOSE data model already comprises a shortlist of attributes for describing
land uses. With our proposal, we can describe the characteristics of the polygon much
more precisely. For example, we could explain if there is a single hotel in that area, or if
several different hotels coexist (presence). If there are several hotels, we could explain
which is the most important (percentage) or, in the case of having a buildings count
(e.g. point in polygon), what is its exact number (countable). With our model we do
not need the geometry to be necessarily a polygon, we could use, among other options,
geometries such as points to indicate the presence of trees, or lines to represent power
lines.

Our model differs fundamentally from the current one in that it provides a supe-
rior semantic richness of attributes, which until now, depending on the scale of pro-
duction, have been less critical. We also need this application of the model (or some
analogous modification) to incorporate new data from other sources. For example, we
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could create OpenStreetMap thematic information, or save and distribute a particular
re-classification without losing the link to SIOSE.

2.3 Example of Implementation

In this subsection, we show the implementation details of the proposed extended model.
They are made by developing the composite pattern into a JavaScript object notation
(JSON) data structure, which is one of several possibilities for implementing this pattern
in a relational database (i.e. through PostgreSQL JSON data type or SQLite’s JSON1
extension). In this example, we demonstrate how to integrate the maximum number
of building floors – extracted from OSM thematic data – as numeric attributes of the
SIOSE database (see Fig. 6).

The example in Fig. 7 represents the same area shown in the examples in Sect. 1.
This implementation example shows how new attributes could be preprocessed and
joined for creating tailored SIOSE distributions for different purposes. In this case,
the top heights of the buildings contained by the SIOSE polygon are added, but the
number of hotels contained in a SIOSE polygon or other attributes available through
OSM data, could also be integrated in the process. These new attributes could be added
at different semantic levels inside the composite pattern, even if it is a LandCoverUnit,
LandCoverComposite, or a LandCoverComponent. Of course, it seems easier to assign
these values at the LandCoverUnit level, as they represent a geometry and a one-to-one
relationship can be established. However, other criteria could be applied for assigning
attributes at the thematic level. In this area we find a hotel zone composed of 50% roads,
parking areas and pedestrian areas, 35% isolated buildings, 10% swimming pools and
5% gardens, distributed within the polygon. The maximum building height in that area
could be assigned to the hotel complex label, or even to the label of the isolated building.
In the second case, it is evident that not all the isolated buildings covering 35% of the
LandCoverUnit are described by the “45 floor” figure, but at least the area estimation
would not include the 50% of surfaces covered by roads and parking areas (which would
make sense in other scenarios). A more concise example would be applying the number
of orange trees to a LandCoverUnit of agricultural land, composed of 80% fruit trees
and 20% roads. In that case, the purpose of assigning the number of trees to the first
LandCoverComponent (fruit trees) would be completely clear.

As already pointed out, OpenStreetMap can provide valuable data specially for
describing artificial surfaces [12]. Following the first example, we downloaded the
OpenStreetMap data set for the area of interest, extracting all the geometries for
Benidorm – a Spanish city shaped by tourism (SE Spain) – and spatially joined the num-
ber maximum building heights to the SIOSE database as numeric attributes. Figure 7
shows how the extended SIOSE model would look when implemented in a JSON data
structure. Three options are shown using letters indicating (compatible) alternatives.
The new attribute describes: A) the whole polygon; B) LandCoverComposite; or C)
and a LandCoverComponent, in this case, the only land cover referred to any type of
buildings. Evidently, these type of assignations require a reclassification strategy spe-
cific to the studied area.
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Fig. 7. Example of implementation of the extended SIOSE data model. The image shows a light
JSON implementation of the extended model with some possibilities of enriching the SIOSE
polygon description at different semantic levels: (A) LandCoverUnit level; (B) LandCoverCom-
posite level; or (C) LandCoverComponent level.

3 Final Thoughts and Future Applications

The CORINE LC database has a greater historical perspective than SIOSE and this fac-
tor, together with its relatively higher usability, makes it more attractive for many users.
The SIOSE is also an indispensable source, with a greater spatial and thematic reso-
lution, and a growing temporal resolution (2005–2017). However, the object-oriented
data model means that many users with little training in SQL (or other similar query-
ing tools) prefer to directly use aerial photography when the CORINE LC is unsuitable
due to scale problems, or when the areas to be studied are small. Hence, usability is an
essential factor in determining the preference for a geographic dataset, and it weighs
more on the decision of users than the versatility and richness of the information –
since neither by scale, nor for information efficiency, does CORINE offer advantages
in comparison with SIOSE. It is mandatory to ensure that we provide all the tools for
using SIOSE at its full potential, or many sub-products and re-classifications will be
necessary.

As explained in Subsect. 2.1, SIOSE presents some usability problems and one way
to deal with these could be to offer specific training to these users in the use of this tool
as based on their needs. However, this option does not seem practical since it would
affect a large number of users and, in a context where most of the official GIS data is
already offered in a way that is ready to use for most users, it does not seem necessary.
On the other hand, we could address these usability problems by developing novel tools
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so that less experienced users could obtain useful custom classifications from LULC
information. To date, the scientific community has not made much effort to address this
line of action. From various perspectives, very few works present a solution – some pro-
pose the development of interoperable web services [14], the use of non-conventional
databases [20], or the design of ArcGIS extensions to reclassify the LULC information
hierarchies [13]. All of these are technical solutions that involve developing a software
layer on top of the SIOSE system that would act as an intermediary between the system
and the end-user, and allow the latter to bypass the driest parts of the system. A third
approach to address the usability problem consists in reinterpreting the SIOSE data
model to enable new and more specific information to be added to the database. With
this perspective, we have (1): tried to determine what are the primary uses of SIOSE
data in a general context; and (2) designed a mechanism that enables us to add new
thematic information to the database, or useful re-classifications, so that the community
can reuse them. In this work, we have proposed a method to add new information to the
SIOSE database without forgetting that different users may have very different needs.
The implementation example in the previous section shows how the model enables this
and introduces the need for defining the rules for transparently joining new attributes.
This model seems a good starting point for developing a tool for interactively defining
SIOSE reclassifications and writing new attributes for enriching the SIOSE database.
Considering the central importance of LULC data it is natural for the SIOSE to be the
frame for integrating geographic data from different sources.

In this work we have introduced a soft solution for extending the model, but other
possibilities could be assessed that would not imply changes or amendments in the
data model. We consider that the modifications on the database model are minimal
and would produce several positive effects that would not be achieved otherwise:
(1) the users would see the effort required to use SIOSE data better rewarded; and (2)
there would be further opportunities in the distribution of geographic information (e.g.
distribution of thematic re-classifications of interest in some fields). Most importantly,
it would be possible to create and share specific datasets for various purposes (such
as regional planning, natural risks, and tourism). This contribution only solves the first
part of the usability problem. From this point, new highly usable tools are needed for
evaluating the information contained by SIOSE and to help users create tailored queries
on an object-oriented database. After proposing this model extension, any new tool for
working with this kind of data should follow the same model and definitions, and these
tools could also include web services, GIS desktop extensions, and database extensions.
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Abstract. Data from automated fare collection systems have become
almost essential in the study of the mobility of people using public trans-
port. Among other advantages, the data collected enable longitudinal
studies to be carried out with a detail that other sources cannot approx-
imate. However, despite the great potential of these data, the data col-
lecting systems are usually intended for purely accounting purposes and
not for carrying out mobility studies. Largely for this reason, these data
are not always used to their full potential, and so it is necessary to
propose strategies that allow the preparation and exploitation of these
data, especially in those cases where the usefulness and value of the data
have not yet been proven. This study proposes a workflow that seeks
to prevent duplication of efforts when querying this type of data. The
implementation of a generic database model and a protocol for sharing
meaningful queries and results greatly facilitates an initial analysis of
these data. This strategy has been applied within a specific project, but
it could be the basis for sharing methods between different studies.

Keywords: Public transportation · Automated fare collection system ·
Smart card data · Domain-specific language · File naming convention

1 Introduction

In recent decades, automated fare collection systems (AFCSs) around the world
have been generating vast amounts of data. In many cities and metropolitan
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regions, the public use smart transport cards or similar technologies each time
they board public transport (bus, train, or metro) and the AFCS collects data
from its validation. The main aim is for accounting purposes, and so the data is
not organised for analysis, nor are there specific tools for exploring the data to
its full potential. Despite not being its main purpose, these data have been anal-
ysed to create relevant knowledge for understanding the behaviour of users and
generating better quality services [15]. These types of analysis are widespread in
the scientific literature [2,20]. Some works use smart transport card validations
to achieve huge flexibility for studying any temporal and geographical aspect [19].
An example is the use of smart travel card data to detect different profiles of pub-
lic transport users [18], build origin-destination matrices [1], and investigate user
mobility patterns [17].

Many authors agree on the opportunities that smart travel card data provide
for transport and mobility studies [15,20]. However, these data are challenging to
handle and costly to analyse. Smart transport cards gather all transactions, and so
the size of data may become huge after a relatively short period. The managers of
public transport systems in large cities or regions may have the resources and the
will to analyse such data to obtain some value. However, in regions or cities with
fewer resources, analysing this data may not be a priority, especially if the value
of analysing the data has yet to be demonstrated. In these cases, collaboration
between public transport authorities and mobility research groups in universities
has become an interesting strategy to start analysing data from AFCSs [25].

There are no standard solutions for analysing data from an AFCS. Dur-
ing the last decade, many research works have applied differing technologies or
approaches to analyse different amounts of data generated by an AFCS. For
example, the authors in [21] used big data technologies to analyse 160 million
records from the Jakarta’s Bus Rapid Transit in Indonesia, and another study
analysed nearly 200 GB of data logs from the AFCS in the city of Montev-
ideo in Uruguay [7]. Other studies were more focused on real-time analysis and
developed tailored solutions such as the data mining frameworks for bus service
management [3]. Some studies did not need to analyse such volumes of data and
used better-known software for working (e.g. MS Excel, SPSS, QGIS, Rstudio)
[8,9]. Finally, there are examples of other studies that did not indicate the use
of any specific technology to perform the analysis [22]. Among this diversity of
options, it can be highlighted that SQL databases are widely used to analyse this
data, alone or in combination with other tools. In a recent systematic literature
review, seven out of nine of the documents that reported the tools chosen for
the analysis of smart travel card data used an SQL database [16].

1.1 A Collaboration for Analysing Data from an AFCS

This research work is the result of a research project carried out jointly by a
research group at the Universitat Rovira i Virgili (Tarragona, Spain) and the
Territorial Mobility Authority of the Camp de Tarragona (ATMCdT, according
to its acronym in Catalan). The ATMCdT has been running an AFCS for more
than ten years, while serving an area of 2,998 km2 and a population of 626,277
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residents [14]. The area includes 132 municipalities and 457 interurban bus stops.
Figure 1 shows how the population is unequally distributed over the study area.
This region is shaped by coastal tourism, which further increases the pressure
on public services in the largest cities and municipalities where tourism plays a
prominent role. This drives an unbalanced public transport demand, especially
during the summer season.

Fig. 1. Reference map and context of the Territorial Mobility Authority of Camp de
Tarragona (ATMCdT) service area.

During the last decade, ATMCdT has been using the data from its AFCS
for creating reports for different needs (such as network planning, accounting,
and management of public grants). These tasks are performed through tailored
queries directly exploding the raw data logs. In this way, the fundamental pur-
pose of the data collected by the AFCS is fulfilled. More recently, in 2017 the
collaboration mentioned above started several studies for analysing the effective-
ness and spatial coverage of the public transport system [5], and the use of public
transport by tourists [6,11,12]. A subsequent study has found evidence of the
different patterns of public transport use by tourists in the summer [10]. These
studies also demonstrated that smart card data collected by the ATMCdT has
much to offer.

Together with the wide variety of technical options discussed above, the
design of a well-defined workflow and the choice of flexible free and open soft-
ware tools can make the initial exploitation of this data less expensive and avoid
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duplicating efforts [27]. However, although the studies mentioned in the previous
paragraph faced data management problems, documenting these problems was
far from their main goals, and so data preparation was not documented in detail.

In an initial effort to document the management and analysis of these data,
a system was proposed to uniquely name the AFCS data queries. This system
enables the creation of a repository to store the code together with the results,
thereby facilitating collaboration within the same research team and opening
the possibility of contributing to a public repository where these methods can be
shared [26]. Figure 2 shows a diagram that describes the communication between
the different roles of the team, the encapsulated access to a structured database,
and the need for a results repository containing spreadsheets or geographic infor-
mation system (GIS) files with specific and descriptive names. The main advan-
tages of this approach are that nobody need repeat the same query and the
database manager will hold a useful base of code for building new queries [26].

1.2 Objectives

As mentioned above, the duplication – or multiplication – of efforts and the
strategy adopted to tackle this was first described in [26]. However, this work
describes the proposed framework (database schema and naming convention) and
provides more detailed examples in which the advantages of sharing methods and
SQL queries become more evident.

The main aim of this work is to offer the lessons learned in this project when
the data from an AFCS was analysed for the first time. To achieve this, this
chapter develops the following objectives:

1. Study the data gathered by the ATMCdT and design a simple but adequate
GIS database model. This model includes only the most basic mobility data
that could be collected by any AFCS.

2. Propose a domain-specific language (DSL) to be used as a file naming con-
vention that enhances code reuse and time saving. This should allow the
description of the largest possible number of queries of this domain.

3. Extend a previous mobility grammar presented in [26] to add the capability
to store GIS results.

4. Apply and evaluate the proposed strategy, showing detailed examples that
demonstrate the value of code sharing in this area.

This chapter is organised as follows. The next section describes the proposed
framework, which includes a logical database model and a naming convention
for unambiguously storing the database queries. Section 3 shows how the frame-
work can be used to store database queries and reuse them to avoid duplicating
efforts. Three compelling examples are described. Finally, Sect. 4 presents some
concluding remarks and indicates issues that will be addressed in future works.
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Fig. 2. Sequence diagram showing the proposed workflow. The spreadsheet or GIS file
repository works on the basis of a file naming convention. Adapted from [26].

2 Proposed Framework

2.1 GIS Database Schema

The analysis of the ATMCdT data logs reveals some heterogeneity in the struc-
ture and attributes that are meaningless for research purposes. Avoiding this
complexity is essential so that the different analyses can be reproducible and
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extrapolated to other similar projects. This can be achieved by adding an
abstraction layer for querying the data more quickly, and this can be done
by using a common data model. Depending on the type of bus tickets, the
data collected by the ATMCdT includes between 22 and 60 different attributes
(columns). Many of these attributes are of no interest for analysing mobility
patterns but, as said before, they fulfil an accounting purpose. Considering the
needs of the project, only a few attributes are beneficial for analysing mobility
patterns and user profiles in the region: the exact day and time of travel; the id of
the stop where the passenger boarded; the company and carrier that operate the
transport; the municipality; and the type of fare used in each transaction. The
destination stop can sometimes also be registered. The main advantage of these
data is that the information has a spatio-temporal dimension, and it enables
us to perform cross-sectional studies as well as longitudinal analysis [10]. These
databases do not store much data on the socio-economic profile of travellers, and
these data cannot be used due to legal constraints.

The design of the database is quite generic and is given by the character-
istics of the raw data collected by the ATMCdT (see Fig. 3). This model does
not include other transactions that are also systematically recorded (such as card
sales, recharges, or cancellations). For clarity, the tables were named following the
main elements of the general traffic feed specification (GTFS) and the columns
were named predictably. The level of specificity of this model enables collecting
the most basic information for analysing the mobility of users. This informa-
tion is presumably available in all AFCSs, and it would take a relatively simple
extract-transform-load (ETL) process to structure the data in this way. Figure 3
shows that, in addition to the ATMCdT data, the database was enriched with
some layers of geographical information (such as municipalities, roads, shore-
line, population, and land uses). The stop locations and routes were manually
geolocated and digitised. However, in a geospatial database, there is room for
increasing the list of support data layers by applying spatial join operations.

2.2 MobilityFNC Definition

One of the most significant difficulties detected in the proposed workflow (Fig. 2)
is the query definition process between the mobility researcher and the database
administrator. The lack of a common language can cause loss of information
and context, which increases the probability of needing more iterations before
obtaining the desired query. An approach to resolve this problem is to define a
domain-specific language (DSL) for this type of application need. A DSL is con-
sidered a programming language and defines a set of notations and abstractions
to cover a particular problem domain [23]. The main advantage of designing and
using a DSL is that they offer more significant optimisation and adaptation to
the particular domain and systematic reuse [4,23]. DSLs have been used previ-
ously in different application domains (HTML, Unix shell scripts, and GraphViz
are widely used examples). A DSL does not always fit a specific application
domain. For example, SQL is recognised as a DSL for managing databases, but
it remains a very general and comprehensive language [13].
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Fig. 3. Entity-relationship data model derived from the ATMCdT smart card log data.
The diagram distinguishes between regular attribute tables (T ), spatial tables (S) and
the colours indicate if the data comes from ATMCdT (red) or an external source
(orange). Based on [26]. (Color figure online)

In this work, the previous mobility file naming convention (MobilityFNC )
introduced in [26] is expanded. MobilityFNC is used as a convention to represent
and define queries accurately. The main objective is to improve the communi-
cation between the two most important roles: mobility researcher and database
manager. This DSL specifies a structured and understandable method for mobil-
ity specialists to make a database query without any previous experience in
database languages. MobilityFNC is used for encoding the name files of the SQL
scripts. A mobility researcher who uses this DSL can immediately recognise if
the query has been made previously or if there is a similar query with useful
code to create a new one. Although MobilityFNC can be extended to several
kinds of public mobility, such as cars, trains, or planes, based on the ATMCdT
scenario, MobilityFNC has been applied to public bus mobility. In the same way
as SQL, MobilityFNC is used to represent the shape and main parts of a query
result. Thus, the main intention is to maximise its compatibility and improve
this proposal so that it can be translated into valid SQL, at least for a previously
known database model (like the model shown in Fig. 3).

The query definition and results are stored in two different files and both
files are named using this DSL. In this way, the query definition and query
result guarantee consistency – the SQL query defined by the database experts
and the results file – are inseparable. This repository should be checked before
developing a new query.

Figure 2 presents the workflow enhanced by using MobilityFNC. The largest
difference compared to the version presented in [26] is the option to return and
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store the results as GIS files. MobilityFNC can act as a queries repository and
joins SQL scripts and results following a filename nomenclature. Figure 2 shows
these three situations: 1) the query exists when a query description was pre-
viously encoded, a mobility expert can obtain the results without any other
procedure; 2) a similar query exists if the query to encode is similar to another
other previously executed, the database manager can adapt it and obtain the
results; and 3) in other cases (when similar queries do not exist) the database
specialist follows the query description encoded using MobilityFNC and creates
and executes the SQL query and both files are incorporated into the catalogue.

Lexicon. As previously described, a MobilityFNC expression is used to encode
file names that store SQL queries or their corresponding results. In this way, file-
names present restrictions based on the operating system. For example, depend-
ing on the operating system, some of these characters are not permitted for
naming files: NULL, \, /, :, %, ?, ∗, ”, <, > or |. In compliance with these condi-
tions, MobilityFNC does not admit any of these characters. Following the same
logic, another restriction imposes a limit of 255 characters per query description,
and so the DSL avoids redundancies. Based on these character limitations, the
list of possible operators is as follows:

– Principal blocks (source, filter, dimension and operations) are separated using
the “+” symbol.

– A new component at the same level is added using the “−” symbol
– A new level and add a component is started using the “ ” symbol
– Rows and columns are separated using the “∼” symbol
– A range in the canonical form is defined using the “[ ]” symbol
– A function or method are established using the “{ }” symbol
– An array of variables are defined using the “[ , ]” symbol

In addition to this set of operators, there is a collection of restricted terms
to encode queries. Six different classes with an assortment of reserved words are
defined as a word-list to formulate queries (see Table 1).

Syntax and Semantics. Once the structure and terms of the DSL are defined,
Grammar 1 shows how these elements are combined. This grammar is described
using the extended Backus-Naur notation [24] and is also summarised in a more
visual manner in Fig. 4.

The query definition following this DSL is composed of five blocks that are
chained using sum symbols when they describe the structure and contents of the
query result or a dot preceding the output file extension. The first block specifies
the source(s) of interest to query. In the ATMCdT case, only two different sources
are considered: ATM cards and TP single-ride tickets. The second block contains
the filters to apply. There are different kinds of filters, the most important being
those used to filter the data by date, time, fare type, or some spatial filters
(depending on the spatial layers included in the scenario). In the third block,
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Table 1. List of MobilityFNC terms adapted from the ATMCdT case study.

Category Terms

Aggregation Operations used to calculate (e.g. count, diff, totals, subtotals, top.N
or htotal)

Attributes Attributes listed in the ER model (Fig. 3)

Boolean Any boolean operator defined over the attribute (e.g. pop.over,
pop.less, pop.between, pop.equal or applied to other associated
attributes)

Ranges The -ly termination referred to a known ranging (e.g. monthly, yearly,
etc.), or predefined ones (e.g. summerly or nonsummerly)

Sources ATM smart cards and TP (single tickets)

Spatial coastal, municipality, land use, but it could be extended adding more
spatial layers

the dimensions of the query result are defined (rows and columns) including
attributes of the tables or derived aggregates. The fourth block includes the
aggregation operations performed to achieve the resulting table. The final part
of the syntax is the extension of the desired output data format. Until now,
only two extensions have been used for storing the query results: *.csv when the
result is a regular table and *.geocsv when the result contains a spatial column.
However, any other extension compatible with this logic could be applied (such
as: xlsx, json, geojson, shp, and gpkg).

Fig. 4. Example of a query filename encoded with MobilityFNC.

A Workflow for Using MobilityFNC . As noted earlier, MobilityFNC can
be applied in different mobility scenarios. In this research work, the DSL is
a bridge that enables semi-automating the process for creating new queries.
Figure 5 shows an activity diagram that complements the previous sequence dia-
gram (see Fig. 2). This activity diagram shows the whole workflow and includes
the management of the code (SQL queries), and the repository of results (spread-
sheets and GIS files). The activity diagram shows three different roles. The roles
of the two researchers (mobility and database manager) have very specific activ-
ities: coding filenames using MobilityFNC and writing SQL queries respectively;
while the repository holds the updated results. This task is automated using a
GNU Make program (Makefile). In this workflow, for each query executed on the
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Grammar 1. MobilityFNC grammar described using the extended Backus-Naur
notation [24].
Filenane ::= Source list, ”+”, [(Filters, ”+”)], Dimension, [(”+”, Operations list)], Extension

Source list ::= ”log[”, Sources, ”]”
Sources ::= source|(source, ”, ”, source)

Filters ::= Filter|(Filter, ” − ”, F ilter)
Filter ::= (”date[”, TempCardTypes, ”]”)|(”cards[”, TempCardTypes, ”]”)|
(”municipality[”, DemSpatial, ”]”)
TempCardTypes ::= ranges|(ranges, ”, ”, ranges)
DemSpatial ::= DemSpatialType|(DemSpatialType, ”, ”, DemSpatialType)
DemSpatialType ::= (spatial)|(boolean)

Dimension ::= Rows, ” ”, Colums
Rows ::= (Row, ” − ”, Row)|Row
Row ::= (ComponentType, ”[ ”, atributeFeature, ”]”)|ComponentType|Filter
Columns ::= (Column, ” − ”, Column)|Column
Column ::= (ComponentType, ”[ ”, atributeFeature, ”]”)|ComponentType|Filter
ComponentType ::= attribute|aggregation

Operations list ::= attribute, ”{”, Operations, ”}”
Operations ::= aggregation|(aggregation, ”, ”, aggregation)

Extension ::= [(ExtensionStoreFile)]”.sql”
ExtensionStoreFile ::= ”.csv”|”.geocsv”

database, the system automatically creates the corresponding results file, which
simplifies the work of the researchers. The central line that corresponds to the
outputs repository encompasses all the tasks that can be easily automated (for
example, similarity searches and saving or exporting files). Other tasks such as
writing the SQL from a textual query are more complex.

3 Writing, Naming, and Sharing SQL Queries

The MobilityFNC language has been widely used throughout the project defined
in Sect. 1. Currently, more than 56 queries have been created to analyse various
metrics across the bus transport system in the context of a previous research [10].
In this subsection, three different queries are shown and followed for the proposed
workflow. These queries provide the answers to various research questions by
aggregating data and providing spatial context when necessary.

3.1 Do Tourists Prefer a Type of Fare?

A first simple example of a MobilityFNC query asks about which fares are most
used by tourists. More specifically, the query counts the ATMCdT smart cards
that were only used in the summer of 2018 (grouped by fare). These cards were
active in 2018, and their activity was concentrated in a three-month period.
When considering the specifics of each fare type, only the T-10 card (multi-
personal, 10 to 30 transactions, and no expiry date) seems to be the right choice
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Fig. 5. Activity diagram showing a workflow. MobilityFNC is used when the user
checks if the query exists and when the results are saved in the repository.

for short stay tourists. There are other fares that are used only in summer, but
those fares are intended for longer activity periods and have a higher unitary
price per trip. This simple statistic could be interesting for proposing optimisa-
tion measures and policies (i.e. better information campaigns). In addition, this
query can be used to start a study about those journeys that are concentrated
in the summer season. From top to bottom, Fig. 6 shows the different stages of
the workflow: (1) the query requested by a mobility researcher; (2) the filename
structured according to the MobilityFNC ; (3) its SQL definition based on the
proposed database schema; and (4) the associated query result as a table (*.csv).
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Fig. 6. Example of a query filename encoded with MobilityFNC.

3.2 Sale of Single-Trip Tickets in the Most Touristic Cities

A second more complex example is establishing in which period the single-ride
tickets are most used in the most touristic cities during one year. The query
counts the number of TP transactions (single-trip tickets) that were used in
2018, distinguishing if they took place in summer or during the rest of the
year, and only in the most touristic municipalities of the study area (Cambrils,
Tarragona, Salou, Reus, and Vila-Seca). The query result shows that the number
of tickets sold is more stable in the larger cities (Tarragona and Reus) than in the
other three touristic destinations (Cambrils, Salou, and Vila-seca). In these three
municipalities, the number of tickets sold in the summer season exceeds those
sold in the other nine months of the year. Furthermore, the number of single-
trip tickets sold in medium-sized cities such as Cambrils or Salou is similar to
or exceeds the number of tickets sold in Tarragona, which is almost four times
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Fig. 7. Example of a query filename with a partial filter, encoded with MobilityFNC.

larger than these others. These figures help to explain the high level of pressure
that tourism exerts on public services in the area.

The structure of Fig. 7 is the same as in the previous example, showing how
the query is computed and the resulting table. In this case, Boolean filters are
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Fig. 8. Example of a query filename with a geospatial output, encoded with Mobili-
tyFNC.
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used in the dimension block to avoid redundancy as municipality could also
appear in the filters block. In this query, a list of totals is calculated to obtain
the final count of single-ride transactions per city.

3.3 What is the Difference in the Use of Public Transport Between
a Summer and a Winter Week?

This final query differs from the previous examples in that it takes advantage of
the previously described feature of providing a result with a geospatial compo-
nent as output (Fig. 8). A more specific temporal filter is also applied.

This query establishes a comparison to establish the spatial distribution of
the greatest pressures on the public transport network, and for this task, only
two representative weeks of each season are compared: a summer week and a
winter week. In this way, it is possible to discern which stops are most stressed
during the tourist period and which are also used throughout the year. As a
result of this query, in addition to the columns with the number of transactions
in each week and the difference between them, a column is included with the
point geometry for each stop. This result is stored in a GeoCSV file, and can
be easily uploaded for analysis or visualisation using geospatial data processing
tools such as QGIS, gvSIG and R.

4 Concluding Remarks and Future Work

In this chapter, a solution to define and store SQL queries in a multidisciplinary
research group is presented. The solution consists of a DSL acting as a file nam-
ing convention that strives to normalise the communication workflow between
researchers in a project analysing public transportation smart card data. The
MobilityFNC DSL supports the most common mobility concepts and it can apply
temporal and geospatial filters. MobitityFNC is designed for mobility experts to
be useful in the process of generating SQL queries by database administrators
or developers. The SQL query is stored as content in the same file.

A remarkable aspect is the capability to support geospatial outputs in Mobiti-
tyFNC by adding geometries such as point, line, or polygon. This feature can
be useful to analyse and visualise the results using GIS software. Currently, this
approach has been used in a real project [10], and more than 50 queries have
been written, clearly named, and stored without any management issues.

This solution could serve as a bridge to start easily analysing data from other
transport consortia and other AFCS, without limitations imposed by software
or available resources. The proposed query repository could be publicly shared
and the methods reused.

The proposed workflow still needs improvement on some important issues: (1)
it is necessary to perform some validation in other projects, including projects
studying different types of transport; (2) MobitityFNC needs to be used by
different multidisciplinary research teams to obtain qualitative and quantitative
results as feedback. This implies creating a public code repository for sharing the
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SQL queries and checking for inconsistencies; (3) and finally, a future improve-
ment would be the development of the capability to automatically generate SQL
queries from the MobilityFNC format.
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Abstract. Under the quarantine for the coronavirus disease 2019 (COVID-19)
which has been spreading rapidly across the world since it was first identified in
Wuhan City, China, in early December 2019, people are sharing their everyday life
via socialmediamore than ever before.Over the last decade, event-related informa-
tion has been increasingly generated from Twitter by the growing popularity, and
it is proved that the emergence and evolvement of events can be timely monitored
and analyzed on the basis of this platform. Geographic information plays a crucial
role in mining social media data, however, only about 2% of tweets hold accurate
geographic information due to the operational complexity and privacy concerns.
To overcome the geo-tagging restriction, finding effective geolocation inference
methods is currently one of the main topics in this research field. Geographic
information plays an important role in analyzing and monitoring the spread of an
epidemic disease. In this study, we constructed a method of geolocation inference
based on the whole potential location-related metadata of tweets. A crude form of
geographic coordinate information can be obtained from every tweet’s bounding
box, while location-related information can be mined from the textual content,
user location and place labels via Named Entity Recognition (NER) techniques.
Three coordinate datasets of the United States counties are built and used as the
coordinate references. Models with different data sources have been employed
to predict the geolocations of the tweets related to COVID-19 in the contiguous
United States. Results show that the models with four data sources, namely textual
content, user location, place labels and bounding box of place, withDigital Bound-
ary’s Average (DBA), perform better than other models. When the area threshold
of the bounding box is set to 10,000 km2, the best model can successfully pre-
dict the geolocation of 90.8% of COVID-19 related tweets with the mean error
distance of 4.824 km and the median error distance of 3.233 km. It is concluded
that the proposed method enhances the granularity of geographic information of
tweets and makes the surveillance of COVID-19 effective and efficient.

Keywords: COVID-19 · Social media · Geolocation inference · Twitter data ·
Data mining

1 Introduction

In December 2019, the initial cases of pneumonia associated with a novel coronavirus
occurred inWuhan City, China [1]. However, measures to control the spread of the virus
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were not implemented effectively to keep its spread within China [2]. Since then, the
coronavirus disease 2019 (COVID-19) has been rapidly spreading around the world,
causing tens of millions of cases in more than 160 countries [1]. As of August 17th,
2020, almost 22 million (21,852,024) cases have been recorded, including 773,586
deaths where 25.48% (5,567,765) of those cases occurred within the United States,
including 173,139 deaths according to the worldometer coronavirus pandemic tracker
[3]. Therefore, an overarching objective of this study is to contribute to the identification
of spatio-temporal patterns of the COVID-19 pandemic with a particular interest in the
United States.

Over the past decade, the Internet has helped revolutionize every aspect of people’s
lives, and it is not only a source to get information, but also a platform to disseminate
personal information [4, 5]. In addition, the development ofmobile devicesmade it easier
to send digital information (e.g., texts, location labels, and pictures). At the same time,
social media platforms have experienced a tremendous and profound reform. Twitter and
Facebook mainly provide basic services, but other types of social media are being used
to connect online for different reasons, such as location-based services (e.g., Foursquare
and Whrrl), media sharing services (e.g., Instagram, Snapchat, and Flickr), as well as
other types of services (e.g., Quora, Medium, and LinkedIn). Users can establish online
friendships based on mutual interests and share their everyday life with each other.

Supported by previous studies [4, 6–8], Twitter outshines other platforms in regard to
social network analysis and event detection because of not only its excellent design, but
also its vast user base of different age groups. According to the most up-to-date Twitter
statistics for 2020, its monthly active users are around 330 million, which accounts for
23% of the Internet population, and about 500 million tweets are posted every single
day [9]. Compared with Instagram and Snapchat regarding the demographics, Twitter is
widely used by people of different ages and nearly 63% of them age between 35 and 65
[10]. The large quantity of user-generated contents is employed for datamining in various
research areas [4]. Tweets with accurate geographic information can provide significant
benefits to event response and monitoring, hence those without geographic information
becomeuseless unless geolocation inference is applicable.Accurate prediction of tweets’
geolocation can effectively benefit the response and rescue in emergency events [11].

The development of Global Positioning System (GPS)-enabled mobile devices
enables users to share and track their locations with accurate geographical coordinates.
However, due to the operational complexity and privacy concerns, most users do not
turn this function on [12]. As Laylavi et al. [13] illustrated, the percentage of tweets
with geo-tags account for only 2%, which severely limits the development of associated
applications. Therefore, accurate geolocation inference of tweets has become an urgent
problem in this research field.

Nowadays, disease-related information is increasingly shared in real time through
Twitter, while timely data with spatial and temporal information plays a significant role
in surveillance of an epidemic disease [14, 15]. Every single tweet has its own metadata,
which includes its creation time, but under most circumstances, does not contain its
created geographical coordinates, hence geolocation inference of tweets is still a critical
issue. Real-time data without any geographic information can be almost meaningless
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for emergency response and surveillance of an epidemic disease. Thus, this study aims
to develop novel methods to predict geolocation of tweets based on their own metadata.

In this study, models based on multiple attributes of the tweet’s metadata are built
to predict the non-geotagged tweets’ geolocation. Attributes of textual content, user
location, place labels, and bounding box are fully used during the modelling process.
The dataset used in this study was collected between the 10th and 30th of June 2020.
During this time, the United States (US) was suffering a severe effect of the COVID-19
pandemic. The development of technologies, including Natural Language Processing
(NLP) and Named Entity Recognition (NER) make it easier to extract location entities
from textual data.

The main contributions of this paper are summed up as the following two points:
(1) Exploring potential location-related attributes of the tweet’s metadata and extract-
ing location entities via NER techniques; (2) Three geographic coordinate datasets of
counties are used to predict geolocation and the proposed models are built according to
different priorities of location-related attributes.

The rest of this paper is structured as follows. Section 2 describes a literature review
of relevant research. Section 3 presents a brief introduction of Twitter data’s structure.
Detailed explanation of the proposed models is described in Sect. 4. A case study of the
COVID-19 in the contiguous US based on the models mentioned in Sect. 4 is illustrated
in Sect. 5. The paper finally concludes in Sect. 6.

2 Related Works

Users sometimes add geo-information in their tweets, but in most cases, it is still not that
complete or accurate. Therefore, various methods and algorithms from other fields are
being used in the field of geolocation inference. With the development of technologies
such as machine learning, deep learning, NLP as well as Geographical Information
Systems (GIS), much more methods have made breakthroughs in this research field
[16]. However, different from formal articles which are well written and grammatically
correct, socialmediamessages always contain informal elements, e.g., acronyms, emojis,
hashtags and even typos, which is often attributed to the limit of character count and the
use of mobile devices.

In the past few years, many studies of geolocation inference based on Twitter data
have been published [16]. Ajao et al. [15] reviewed previous research related to geolo-
cation inference of tweets, and summarized relevant methods and evaluation metrics. In
the work of Cheng et al. [17], they discovered merely 20% of Twitter users in the US
prefer to show cities where they live in their user profiles, and only 5% of them pro-
vide geographical coordinates information. The study of Hecht et al. [18] illustrated that
even though self-described addresses are shown in their profiles, some of them are not
accurate or valid, and geo-tagged tweets account for merely 0.77% of the whole. From
the study of Ryoo et al. [19], the percentage of tweets with geographic information is
only about 0.4%. Bartosz et al. [20] as well as Priedhorsky et al. [21] showed the similar
percentages in their studies. More importantly, geolocation inference of social media
data is the basis of other relevant studies. Consequently, further research in this area is
needed.
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When tweets are posted, some places information in the textual content enables us
to understand them better. Textual content is used to predict the geolocation of tweets in
the studies of Cheng et al. [22], Chandra et al. [23] as well as Chang et al. [24]. However,
Ikawa et al. [25] described that some users always mention places that are not exactly
where they are. In the study of Abrol et al. [26], they researched the social network
relationships among their online friends. Backstrom et al. [27] and Bouillot et al. [28]
described that geolocation inference of tweets can be achieved by the user profile in their
studies.

NLP techniques enable various methods and algorithms of this field to be used
in information extraction and geolocation inference. Techniques of NER and part-of-
speech tagging (POS) have been introduced in the research of Lingad et al. [29]. Li et al.
[30] introduced methods of machine learning and probabilistic to geolocation inference.
Takhteyev et al. [31] used gazetteers and location databases in their research. In the study
of Huang et al. [12], deep learningmodels are used to predict geolocation of Twitter data.
Previous studies have obtained a great achievement in this field and have the potential
to pursue more accurate results of geolocation prediction [32].

Most studies conducted on geolocation inference of tweets focus on either textual
content or other location-related attributes. However, this research aims to implement all
feasible combinations of potential attributes related to location to predict the geolocation
of tweets.

3 Structure of Twitter Data

Twitter was released in March 2006 and now has about 330 million active users per
month. Tweets can be posted by users via this platform. In its early days, every tweet can
contain up to 140 characters, but the length of it was doubled in 2017 [33]. This increase
provided usersmore space to express their ideas and savedmore time of text compression
than before. Every tweet’s metadata contains a wealth of information about itself, while
it is only visible to developers, not common users. Twitter data can be collected based
on Twitter application programming interfaces (APIs) and stored with the format of
JavaScript Object Notation (JSON). JSON format is lightweight and easy for both human
beings andmachines to understand and use. A JSON object contains a key/value pair and
is normally enclosed in a pair of curly braces [34]. The structure of Twitter data consists
of several objects, including tweet object, user object, coordinates object, place object,
and bounding box object, which are all encoded in JSON format. For every tweet, the
metadata can tell us its username, textual content, unique identification (ID), created time,
and occasionally geographic details of where it was posted. In general, every tweet’s
metadata contains more than 150 attributes, while only spatio-temporal information
related attributes (shown in Fig. 1) are taken into consideration in our research.

Figure 1 shows the spatio-temporal information related attributes in a tweet’s meta-
data. The attribute of “location” is an element of the user object and is defined by user
himself/herself, therefore, it canbe a location that does not exist in the realworld or cannot
be recognized by computers. Another one is “geo_enabled”, which means if the current
user can attach geographic data or not. This attribute is very important for location-related
studies, although it does not contain any essential geographic information.
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Fig. 1. Spatio-temporal attributes of a tweet’s metadata.

Both attributes of “coordinates” and “geo” represent the specific longitude and lat-
itude of the tweet’s location, as a collection in the form [longitude, latitude]. However,
“geo” has been deprecated according to the twitter official document, hence we used the
attribute of “coordinates” to acquire accurate geo coordinates of tweets [35].

Place object contains various location-related attributes. The attribute “place_type”
represents the type of location of this place and it has five values to choose from. Table 1
shows five values of attribute of “place_type” and statistics of our research dataset. For
POI, it represents the specific location of a place, e.g., Washington Square Park, while
the other four values stand for a certain area. Due to the large regional extent of city,
admin, and country, we used data from only POI and neighborhood. Attributes of “name”
and “full_name” are two ways to describe the place’s names. While “country_code” and
“country” provide the short code and exact name of the country of the place. The attribute
of “bounding_box” is four lon/lat pairs of each corner of a box that contains the place
[35].

4 Proposed Method

Figure 2 plots the workflow to illustrate the architecture of the proposed method of this
research. This method is generally divided into three modules. In the first module, real
time tweets within a bounding box are collected. Tweets data are initially stored into text
files and then read based on JSON format. Then the data enters the preprocessing and
geotagging stage, after which a dataset with geo-tagged tweets is created. In the second
module, location entities are extracted from textual content, user location and place
labels via NER techniques. Combining geometric properties of the place’s bounding
box, as well as coordinate datasets of gazetteers and digital boundaries of the US, all
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Table 1. Typical values and statistics of “place_type” attribute.

Category Amount Percentage Example

POI 119,655 0.96% Washington Square Park

Neighborhood 25,183 0.20% Downtown Jacksonville, FL

City 10,301,683 82.98% Los Angeles, CA

Admin 1,942,596 15.65% California, USA

Country 26,105 0.21% Canada

these data are fed into 16models to predict tweets’ geolocation. Finally, predicted results
are evaluated by mean error distance (MED) and median error distance (MDED).

Fig. 2. Workflow of geolocation inference of tweets [36].

4.1 Data Collection

Twitter data can be gathered from both business companies and Twitter API which is
available free of charge. As for commercial purchases, the companies can provide both
historical and real time tweets from all over the world, but the price is very high. Twitter
API can help collect tweets freely, but only real time tweets within the specific bounding
box can be collected. Therefore, it normally takes several months to collect the whole
research data using Twitter API. In this study, data collection was done via Twitter API,
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and it was implemented by the tweepy library of python [13, 37]. The data were collected
from June 10th to June 30th, 2020 in the contiguous US during the COVID-19 pandemic.
During this period, 12,408,538 unduplicated tweets were collected and stored into local
text files. Only tweets located in the area of longitudes from66°W to 125°Wand latitudes
from 24°N to 49°N are collected, as shown in Fig. 3. While within the bounding box,
some tweets from Canada, Mexico, and the Bahamas were also included, but excluded
in this research.

Fig. 3. Area of data collection.

4.2 Data Preprocessing

Data Cleaning. In the textual content of every tweet, it often contains noises, including
hashtags, mentions, emojis and Uniform Resource Locator (URL) links, hence prepro-
cessing operation is necessary. In this step, we used regular expressions to process textual
data. A regular expression is a pattern that attempts to match with input text and can be
implemented by python re library [38]. URL links started with “https://” and “http://”
were removed from the textual content since they do not contain any location related
information. We replaced unnecessary punctuation marks into a space, and consecutive
spaces into one. Marks of user mentions, hashtags, non-English letters as well as stop
words were all deleted [37]. As for the user location, it can be modified by users at will,
thus the information was processed in the same manner.

Data Sampling. Aworkflowwas plotted to illustrate how useless tweets are filtered out
and generated a new dataset. The dataset was mainly processed via the python pandas
library. Firstly, the method of “drop_duplicate” is employed to delete duplicated tweets
from the dataset. The attribute of “lang” indicates the language used by every tweet,
and only English tweets are kept in our study. As noted above, tweets posted outside the
contiguous US are also removed from the dataset.
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Another problem is that many tweets are meaningless to this study, such as those
posted by advertisers or spambots. This kind of tweets is mainly posted by comput-
ers, therefore, only tweets posted by mobile devices (e.g., iPhone, Android, iPad, and
Instagram) are kept, and the attribute of “source” was used to implement this function
[13, 37]. Then tweets without geo-tags were filtered out and implemented by the “co-
ordinates” attribute. Finally, the COVID-19 related tweets were extracted by using the
keywords to match the “text” attribute of every tweet. We introduced Term Frequency-
Inverse Document Frequency (TF-IDF) to get keywords from news articles about the
COVID-19 pandemic in the US, and TF-IDF score helped us extract keywords from the
related articles [39].

Supported by recent studies [1, 40, 41] and TF-IDF techniques, we used the fol-
lowing keywords: “corona”, “coronavirus”, “covid”, “covid-19”, “ncov”, “sarscov2”,
“ncov2019” and “2019ncov” to extract COVID-19 related tweets. Through data sam-
pling, 3,600 corresponding tweets were retrieved from the Twitter dataset. Figure 4
shows the whole data sampling process.

Fig. 4. Flowchart of data sampling [36].

4.3 Location Information Extraction

Named Entity Recognition. NER can be used to recognize and classify different types
of entities (e.g., location names, person names, and organizations) from unstructured
texts. It has been extensively studied in the last few years in machine learning and NLP.
While it does not work well on informal texts like tweets since it is usually built on the
basis of formal texts [29]. As for this technique, it can help to answer many real-world
questions, such as: does a tweet contain the name of a person or does the tweet provide
a person’s current location? In this study, we use NER to identify locations from textual
content, user location, and place labels of the tweet based on Stanford NER, spaCy, and
Natural Language Toolkit (NLTK). After testing all tools in real tweet dataset, spaCy
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showed a much better performance than the other two tools, therefore, spaCy is used to
identify location-related information from tweets in this research.

Bounding Box. The bounding box is a specified 4-sided geographic area and matching
the tweet’s location falling into the area. Unlike other location related geographical
metadata, the bounding box contains the accurate lon-lat coordinates of the four points
enclosing the place. Due to different types of places, bounding box has different areas.
For instance, four points of a bounding box are Point1 = (λ1, ϕ1), Point2 = (λ2, ϕ1),
Point3 = (λ2, ϕ2) and Point4 = (λ1, ϕ2), then Eq. 1 can be used to calculate the area of
this bounding box.

S = R2 · |(λ2 − λ1) · (sin ϕ2 − sin ϕ1)| (1)

where R refers to the earth radius; λ1 and λ2 represent the longitudes of the bounding
box, and ϕ1 and ϕ2 refer to the latitudes of the bounding box.

Equation 1 can be used to calculate the size of the bounding box. The bounding box’s
centroid can be reckoned as the predicted location of a tweet, therefore, if the bounding
box’s area is smaller, it can provide a relatively more accurate prediction. For city, admin
and country, the bounding box is too large to be used to predict the geolocation.

4.4 Modelling

The location-related information is obtained from the four sources: textual content,
location of user profile, place labels, and bounding box. Three coordinate datasets of
counties are constructed based on gazetteers and digital boundaries of the US.

United States Gazetteers. The national gazetteers of the US were used as the data
source and called GA in this study. It is a dataset including county’s names and informa-
tion related to geography in the US. This data is provided by the United States Census
Bureau, and researchers can download it for free [42]. There are totally ten fields in the
dataset, and some of them are displayed in Table 2. The field of “NAME” can provide
duplicate names, but they locate in different states which means they have different val-
ues of “USPS”. Fields of “INTPTLAT” and “INTPTLON”, respectively, refer to latitude
and longitude of the specific county.

Table 2. Data fields of US gazetteers.

Field Description

USPS United States Postal Service state abbreviation

GEOID Unique geographic identifier for each feature

NAME Name of the feature

INTPTLAT Latitude of the feature in decimal degrees

INTPTLON Longitude of the feature in decimal degrees
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Digital Boundaries of the United States. Digital boundaries of the US are in the for-
mat of Environmental Systems Research Institute (ESRI) lpk. This group layer can be
freely downloaded from the website of ESRI and presents counties of the US in the 50
states, the District of Columbia, and Puerto Rico. The detailed datasets are represented
as polygons with over 40 fields [43].

In this paper, we only used digital boundaries of US counties due to the coarse
granularity of location inference based on the city and state level. In order to obtain
geographic coordinates of each county, we developed two ways to compute them
and named them Digital Boundary’s Centroid (DBC) and Digital Boundary’s Aver-
age (DBA). DBC is calculated based on geometric properties of every county’s poly-
gon, and the value can be calculated by the centroid of the polygon. On the other
hand, DBA is calculated by tweets falling into the county’s polygon and the value
can be calculated by their average latitude and longitude. For instance, suppose there
are m counties in the contiguous US which are County1, · · · ,Countyj, · · · ,Countym
and P_tweet1 = (λ1, ϕ1), · · · ,P_tweeti = (λi, ϕi), · · · ,P_tweetn = (λn, ϕn) are geo-
graphic coordinates of n tweets located in Countyj, then the predicted coordinates of
Countyj

(
P_countyj

)
can be calculated by Eq. 2. This method can help compute the

average longitude and latitude of geotagged tweets falling into the county’s polygon.

P_countyj = (
λ, ϕ

) =
(∑n

i=1 λi

n
,

∑n
i=1 ϕi

n

)
(2)

After calculating all polygons’ coordinates based on DBA and DBC, Fig. 5 shows
the distribution of distances between DBA and DBC of counties in the contiguous US.
This figure illustrates that the distance difference is less than 20 km in most countries,
especially for the smaller ones, while for some larger counties in the west and northeast
corner, the difference is about 40 km or more. Smaller distance difference means two
predicted methods are close to each other. When the distance difference is larger, the
better method of coordinates prediction can achieve a better performance.

Fig. 5. Distribution of distance difference of counties in the contiguous U.S.
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Modelling. As demonstrated in Fig. 2, the model is on the basis of four location-related
attributes of the tweet’s metadata: textual content (T), user location (U), place label
(P) and bounding box (B). Location entities are extracted from T, U, and P by NER
techniques, and then query them through coordinate datasets of GA, DBC, and DBA.

Equation 3 illustrates how the three predicted matrices are computed. The value will
be stored as “null” if there is no county found based on NER. When we use NER to
query the specific county’s name, sometimes several results will be found since there
are duplicate names of different counties. Therefore, the distance between the predicted
point and centroid of the tweet’s bounding box should be computed first, if it is within the
specific threshold range, the predicted point can be reckoned as a valid result, otherwise
will be discarded.
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(3)

where Texti, UserLoci, and Placei are respectively textual content, user location, and
place label of a tweet; TGAi , UGAi , and PGAi are predicted coordinates corresponding to
Texti, UserLoci, and Placei, respectively, based on GA; TDBCi , UDBCi , and PDBCi are
predicted coordinates corresponding to Texti, UserLoci, and Placei, respectively, based
on DBC; TDBAi , UDBAi , and PDBAi are predicted coordinates corresponding to Texti,
UserLoci, and Placei, respectively, based on DBA;

TGAi , UGAi , and PGAi can be “null” if corresponding counties are not found in GA;
TDBCi ,UDBCi , andUDBCi can be “null” if corresponding counties are not found in DBC;
TDBAi , UDBAi , and UDBAi can be “null” if corresponding counties are not found in DBC.
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Equation 4 shows how the area and centroid’s coordinates are computed by the
tweet’s bounding box.

⎡

⎢⎢⎢⎢
⎢⎢
⎣

BBox1
...

BBoxi
...

BBoxn

⎤
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⎣

BAREA1 BCEN1
...

...

BAREAi BCENi
...

...

BAREAn BCENn

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(4)

where BBoxi is the tweet’s bounding box; BAREAi and BCENi are the area and centroid’s
lon-lat coordinates of BBoxi, respectively.

Because every tweet has the attribute of bounding box, every model in our study
contains this attribute and is placed in the last position. UPTB is one model and designed
according to the order of U, P, T, and B. Figure 6 illustrates a flow diagram of howUPTB
works based on GA.

Fig. 6. Working principle of UPTB based on GA.

As shown in this flow chart, n elements are traversed in the outermost. Then, if TGAi
is not “null”, it is passed directly to the UPTB dataset, otherwise indicated by UGAi .
If UGAi is not “null”, it is passed directly to the UPTB dataset, otherwise indicated by
PGAi . If PGAi is not “null”, it is passed directly to the UPTB dataset, otherwise indicated
by BAREAi . If the value of BAREAi is not more than the Area_Threshold , BCENi is passed
to the UPTB dataset and then a new loop starts, otherwise a new loop starts directly and
the final result will be set as “null”. When the predicted result is “null”, it means geo
coordinates of this tweet cannot be predicted based on this model.

The other models are implemented with the same mechanism. That is, six models
(i.e., TUPB, TPUB, UTPB, UPTB, PUTB, and PTUB) contain four parameters, six
models (i.e., TUB, TPB, UTB, UPB, PTB, and PUB) contains three parameters, three
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models (i.e., TB, UB, and PB) contain two parameters and one model (B) contains
merely one parameter. A total of 16 models are implemented in this study.

5 Experimental Results

We applied models mentioned in Sect. 4 to the sample dataset and evaluated their
performance based on different metrics.

5.1 Research Data

Table 3 shows the Twitter dataset that we used in this study. We collected these tweets
from 10th to 30th of June 2020 in the contiguous US during the COVID-19 pandemic
spreading around the world. The total number of collected tweets are 12.4 million and
tweets with geo-tags account for 6%. Only geo-tagged tweets related to COVID-19 are
applied to the models described in Sect. 4, and the number is 3,600.

Table 3. Statistical information about Twitter dataset.

Item Content

Database size 61.0 GB

Date of data gathering 2020.06.10–2020.06.30

Total number of tweets 12,415,222 tweets

Total number of unique tweets 12,408,538 tweets

Total number of tweets from mobile devices 11,475,982 tweets

Total number of tweets from Instagram 401,610 (3.24%)

Total number of English tweets 10,056,767 tweets

Number of geo-tagged tweets 758,946 tweets (6.11%)

Number of geo-tagged tweets related to COVID-19 3,600 tweets (0.029%)

As shown inTable 3, geo-tagged tweets account for 6.11%of the total Twitter dataset.
These tweets were extracted, then plotted with digital boundaries of the contiguous
US. Figure 7(a) [42] shows the population distribution of the contiguous US counties
(i.e., people per square kilometer of 2018), and Fig. 7(b) shows the geo-tagged tweets
distribution based on the contiguousUS counties (i.e., geotagged tweets per 1,000 square
kilometers between June 10th and June 30th, 2020).

In statistics, the Pearson’s correlation coefficient (PCC) is a statistic that measures
linear correlation between two variables. The value range of PCC is between −1 and 1,
and the higher the value, the better the positive linear correction. Equation 5 shows how
to calculate PCC based on two paired data {(x1, y1), · · · (xi, yi) · · · (xn, yn)} consisting
of n pairs.

rxy =
∑n

i=1(xi − x)(yi − y)
√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(5)
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(a)                                                                   (b) 

Fig. 7. Population and tweets distribution in the contiguous U.S.

In this study, xi means people per square kilometer in every county, and yi means
tweets per 1,000 square kilometers in every county. PCC of the two variables in this study
is 0.88, which indicates a strong positive correlation. Figure 7 also shows that population
distribution and tweets distribution have a high correlation, hence we can detect real
world events based on geo-tagged tweets or tweets with predicted geolocation.

5.2 Evaluation Metrics

Models’ performance can be evaluated by the distance between the predicated geolo-
cation and the real geolocation of a tweet. The actual distance between two points on
the earth’s surface can be calculated by the great circle distance. For instance, the great
circle distance of two points, p1 = (λ1, ϕ1) and p2 = (λ2, ϕ2), can be calculated by
Eq. 6.

Dist(p1, p2) = 2R arcsin

(√

sin2
(

ϕ2 − ϕ1

2

)
+ cos(ϕ1)cos(ϕ2)sin2

(
λ2 − λ1

2

))

(6)

where R is the earth radius; λ1 and λ2 refer to the longitudes of points, and ϕ1 and ϕ2
refer to the latitudes of points.

Mean error distance (MED) and median error distance (MDED) are two metrics to
evaluate models in our research, and are implemented by Eq. 7 and Eq. 8, respectively.

MED = 1

ntweets

∑ntweets

i=1
Dist

(
p̂i, pi

)
(7)

MDED = medianntweetsi=1 Dist
(
p̂i, pi

)
(8)

where p̂ represents the predicted geolocation and pi refers to the real geolocation of a
tweet.

The tweet’s metadata indicates that the value of bounding box is always not null,
therefore, it can be used to predict the geo coordinates of the tweet. But its area varies a
lot among different tweets and the error distance can be affected dramatically. Figure 8
shows the variation of MED and its percentage based on different area thresholds of the
bounding box. For example, if the area threshold is set to 1,000,000 km2, almost 100%
of tweets can predict the geo coordinates, but the MED is almost 25 km. When the area
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threshold is set to 5,000 km2, almost 90% of tweets can be valid to predict, and theMED
improves to 5 km. As shown in Fig. 8, when the area threshold is set to 5,000 km2 and
10,000 km2, the MED and percentage can achieve a relatively better performance, thus
the following experiments were conducted by these two values.

Fig. 8. MED and percentage of different area thresholds.

Sometimes users mention some other location names rather than the place where
tweets are posted. But in most cases, users are more likely to be within or around the
place. In addition to this, there often exist duplicate names of different counties in the
datasets of GA, DBC, and DBA. Therefore, sometimes several counties were extracted
by NER from a tweet. To resolve this issue, we only focus on the predicted location in
the bounding box and the distance between it and the bounding box’s centroid is within
the specific range. In this study, we chose the distance threshold from 1 km to 10 km. For
example, when the distance threshold is set to 6 km, only the first result with distance of
predicted point and bounding box’s centroid no more than 6 km has been kept. Figure 9
shows MED of TUPB in three datasets with different distance thresholds, when the area
threshold is set to 5,000 km2. As illustrated in this figure, the distance threshold has
no obvious effect on datasets of DBC and GA, but it has a significant impact on DBA.
When distance is set to 6 km, the MED is lowest, hence we chose 6 km as the distance
threshold in this study.

Fig. 9. MED based on different distance thresholds.
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5.3 Results

Combining models mentioned in Sect. 4, three coordinate datasets of counties of the US
and Eq. 6, MED (BAREAi ≤ 5,000 km2 and BAREAi ≤ 10,000 km2) can be computed and
shown in Table 4 and Fig. 10. When the area threshold is set to 5,000 km2, about 88.9%
of sample tweets are successfully predicted, and the percentage has improved to 90.8%
when the area threshold is set to 10,000 km2.

Table 4. MED of models based on two area thresholds.

Models MED (BAREAi ≤ 5,000 km2) MED (BAREAi ≤ 10,000 km2)

DBC DBA GA DBC DBA GA

TUPB 4.660 4.545 4.620 4.936 4.824 4.897

TPUB 4.660 4.545 4.620 4.936 4.824 4.897

UTPB 4.660 4.545 4.620 4.936 4.824 4.897

UPTB 4.660 4.545 4.620 4.936 4.824 4.897

PUTB 4.660 4.545 4.620 4.936 4.824 4.897

PTUB 4.660 4.545 4.620 4.936 4.824 4.897

TUB 4.654 4.572 4.627 4.930 4.850 4.904

TPB 4.660 4.545 4.620 4.936 4.824 4.897

UTB 4.654 4.572 4.627 4.930 4.850 4.904

UPB 4.631 4.583 4.612 4.908 4.860 4.890

PTB 4.660 4.545 4.620 4.936 4.824 4.897

PUB 4.631 4.583 4.612 4.908 4.860 4.890

TB 4.654 4.572 4.627 4.930 4.850 4.904

UB 4.619 4.619 4.619 4.896 4.896 4.896

PB 4.631 4.583 4.612 4.908 4.860 4.890

B 4.619 4.619 4.619 4.896 4.896 4.896

From Fig. 10(a), one can see that GA has a relatively steady performance for all
models, and all values of MED are around 4.62 km. DBC has a similar performance
to GA, but the models with four sources have relatively worse performances compared
to other models. While DBA has a clear trend of variation based on different models,
the models with three or four sources have better performances than other models.
Figure 10(b) shows MED’s variation with respect to DBC, GA, and DBA based on 16
models when the area threshold of the bounding box is set to 10,000 km2. One can see
that three lines from Fig. 10(b) have similar trend patterns as those from Fig. 10(a).

There often exist some abnormal values in the dataset, and these values can pose a
significant impact on the mean value, hence the median value can reduce the impact of
abnormal values. Table 5 and Fig. 11 show the median error distance with the bounding
box’s area of 5,000 km2 and 10,000 km2.
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Fig. 10. MED of models based on two area thresholds.

Table 5. MDED of models based on two area thresholds.

Models MDED (BAREAi ≤ 5,000 km2) MDED (BAREAi ≤ 10,000 km2)

DBC DBA GA DBC DBA GA

TUPB 3.239 3.095 3.245 3.327 3.233 3.373

TPUB 3.239 3.095 3.245 3.327 3.233 3.373

UTPB 3.239 3.095 3.245 3.327 3.233 3.373

UPTB 3.239 3.095 3.245 3.327 3.233 3.373

PUTB 3.239 3.095 3.245 3.327 3.233 3.373

PTUB 3.239 3.095 3.245 3.327 3.233 3.373

TUB 3.183 3.135 3.244 3.280 3.243 3.367

TPB 3.239 3.095 3.245 3.327 3.233 3.373

UTB 3.183 3.135 3.244 3.280 3.243 3.367

UPB 3.239 3.195 3.239 3.324 3.239 3.259

PTB 3.239 3.095 3.245 3.327 3.233 3.373

PUB 3.239 3.195 3.239 3.324 3.239 3.259

TB 3.183 3.135 3.244 3.280 3.243 3.367

UB 3.239 3.239 3.239 3.255 3.255 3.255

PB 3.239 3.195 3.239 3.324 3.239 3.259

B 3.239 3.239 3.239 3.255 3.255 3.255

From Fig. 11(a), one can see that the line of GA is almost straight, and all values are
around 3.25 km. DBC shows a similar performance to GA, but three models of DBC
performed relatively better. While DBA performs vary depending on different models,
especially the models with four sources show better performances than other models.
Figure 11(b) shows MDED’s trend of DBC, GA, and DBA based on 16 models when
the area threshold of the bounding box is set to 10,000 km2. One can see that the models
with four sources have the same performance regardless of DBC, GA, and DBA. But
the values of MDED change a lot when less than four sources are used.
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Fig. 11. MDED of models based on two area thresholds.

From Fig. 10 (MED of the models) and Fig. 11 (MDED of the models), it shows
that DBA has the best performance in all cases, GA performs better in MED, and DBC
performs better in MDED. Compared with MED, MDED have smaller error distances
for all models.

6 Conclusion

Twitter has demonstrated its importance for gathering and publishing up-to-date infor-
mation during a real-world event. Geographic information plays an important role in
emergency response and event monitoring. However, only 2% of tweets are with geo-
tags, hence geolocation inference of tweets is still a major challenge. In this study,
we proposed various models to predict geolocation of tweets, as organized as follows:
(1) Twitter data collection; (2) data cleaning and extract geo-tagged tweets related to
COVID-19; (3) location entity extraction from location-related metadata of tweets based
on NER; (4) construction of three coordinate datasets on the basis of gazetteers and dig-
ital boundaries of the US; (5) model implementation based on different area thresholds
of bounding box; (6) model evaluation.

The proposedmethod has fully used all potential location-related attributes to predict
tweets’ geolocation. When the area threshold of the bounding box is set to 10,000 km2,
the best model can successfully predict the geolocation of 90.8% of COVID-19 related
tweets with the mean error distance of 4.824 km and the median error distance of
3.233 km. This method has achieved the best performance compared with previous
methods.

There still exist some deficiencies in this study. Firstly, the library of NER is limited
and does not contain every county’s name, which results in some useful information
being filtered out. Secondly, even though the distance threshold is introduced to reduce
the interference caused by duplicate county names, there still exist counties with the
same name located in the same bounding box. Thirdly, in some cases, several location
entities can be extracted based on NER, but in this study, only the first location entity
that meets the criteria is chosen. However, the real location-related information does not
always appear in the first position.

For further study, the proposed method can be applied to other emergency datasets
(e.g., bushfires, typhoons, and earthquakes). When computing the average lon-lat coor-
dinates of geo-tagged tweets located in a county, different weights can be added to each
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tweet. In addition, techniques such as natural language processing and deep learning
models can strengthen text analysis and promote the development of this research field.
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Abstract. Geospatial tools such as GIS (Geographic Information Systems) serve
as a popular technology to assess and evaluate spatial dimensions of the food envi-
ronment. While local-level policy decisions can be aided using GIS analysis and
GIS data, little work has been invested in the holistic understanding of the data on
which these decisions aremade. In this paper, we address what entails high-quality
geospatial data, challenges and opportunities that exist in the field of geospatial
data development as applied to local-scale food environment research. We further
explored factors of geospatial data quality assessment andquality control (QA/QC)
for a commercially available business (CAB) database typically used in high-scale
geospatial data analysis of the food environment. Factors related to the physical
location of all food sources such as grocery stores and farmers markets and indi-
vidualized vehicular transportation (roads) rated highest. They outweighed those
related to land cover, utilities and zoning, which are more important in medium
and low-scale (national level) analysis. When ranking various dimensions of data
quality, subject matter experts found positional accuracy and attribute accuracy
to be the most important in data development. However, errors related to tempo-
ral accuracy (age of data) exhibited the greatest number of errors within a CAB
database. This schism serves as the impetus of this project and further addresses
challenges between conceptual and practical geospatial data development policies
and procedures.

Keywords: Geographic information system · Geodatabase data development ·
Geospatial standards · GIS data quality · Food environment

1 Introduction

Patterns of negative health-related outcomes such as obesity, hypertension, and diabetes
are spatial in nature and when mapped highlight patterns of geostatistical clustering
and spatial autocorrelation. While lifestyle choices and genetics contribute to individual
and household vulnerability that lead to these differential health outcomes, it is possi-
ble to identify social and environmental factors, sometimes associated with geographic
location, that have an effect on larger groups, and might be considered as critical indica-
tors to address in any mitigation plan. While “All Americans, rich and poor, have more
access to healthy—and unhealthy—food choices than ever” [1], individual-level choice
to purchase a particular item is dependent upon a variety of factors. There is, however, a
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strong relationship between health and diet and it seems clear the accessibility of sources
for fresh meats, fruits, and vegetables is an important factor in the overall health of a
community. Even in low-income neighborhoods, food stamp recipients who live close to
supermarkets ate more fresh food and vegetables [2]. Spatial proximity is the principal
determinant to patronize a particular grocery for about half (48%) of US residents [3]
and more than half (53.9%) of residents in Detroit often shopped within 2 miles of their
residence [4]. Those who bypass the closest store cite reasons such as lower prices, lower
prices on wanted items, better selection and better quality of fresh foods as reasons for
doing bypassing these closer stores [3]. Lower income residents may not have the means
to be as selective and are subjected to the grocery store and their options, or lack thereof,
that geography dictates. While it is safe to say that geography is not a prime determinant
in explaining or even justifying health outcomes, it does have more of a role than one
would think.

The United States Department of Agriculture (USDA) has utilized the term food
desert to underscore regions within low-income communities that have limited accessi-
bility to fresh food via supermarkets. Although some research has focused on rural areas
[5–8] most of the knowledge base on the subject has been associated with urban areas
which bring about other variables such as pedestrian access and public transportation
which are typically not options in rural regions. In addition, the number of large retail-
ers is decreasing or consolidating, but increasing in size to accommodate all shoppers,
both grocery and non-grocery [9]. Combined with the fact retailers are migrating to
the suburbs from downtowns [10], retailers tend to locate near high-volume roads that
are less accessible to non-vehicular individualized transportation (i.e. walking, public
transit or riding a bike) [11]. Research [12] has highlighted this disparity of distribution
when it found unhealthy food options greatly outweighed healthy counterparts in Los
Angeles while other research found poor and minority neighborhoods had less healthy
food options than their richer and whiter counterparts [13]. As a result, typical sources of
fresh and ‘healthy’ foods such as supermarkets and farmers’ markets are being replaced
by fast food restaurants and convenience stores which offer food options that are conve-
nient (easily prepared and physically closer) and inexpensive, but typically less healthy.
The long-term ramifications on community health far outweigh any of these tangible and
intangible gains. In response to this increasing disproportion, research has explored the
notion of food swamps which represent areas with tremendously high number or ratio
of unhealthy food options compared to healthy options. Research at high scales [14, 15]
has shown food swamps predict obesity and other negative health outcomes better than
food deserts.

Geospatial tools such as Geographic Information Systems (GIS) serve as a popular
technology to represent spatial dimensions of the food environment. A GIS serves as the
means by which information about spatially-explicit phenomena can be created, stored,
analyzed and rendered in the digital environment. GIS serves as the technological arm
in the study of geography (i.e. the study of ‘where’). Experts in many dissimilar fields
have seen the utility of GIS as a means of quantifying and expanding their research. GIS
is used in disciplines such as business, sociology, justice studies, surveying and the envi-
ronmental sciences. As applied to food security, GIS can be used to measure the distance
between residents and large supermarkets or supercenters, or the density of food outlets
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within an enumeration unit (census block group or zip code) as a commonly used proxy
for availability and access [16, 17]. These regions of high and low access can be ana-
lyzed and mapped across both space and time [18] as shown in Fig. 1 [19], as well as the
socio-economic factors that may help explain this access such as median family income
(Fig. 2). These make powerful visual products disseminatable and understandable to the
entire public that can have long-term practical and policy implications.

Fig. 1. Map of USDA food deserts in Guilford County, North Carolina [19].

Fig. 2. Map of median household income combined with food deserts.
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While many only see the output of GIS data and analysis in the form of maps,
resources must be dedicated to creating high-quality data at a local scale. The manner
in which these data are captured varies. Some methods include the use of a Global
Positioning System (GPS) unit, extracting from or improving upon existing GIS data,
downloading data from a web site, connecting to a web service, the use of an Unmanned
Aerial Vehicle (UAV) or some other remote sensing platform, or creating data from an
analog format via digitization or georectification.Regardless of themethod, the resources
(e.g., the computers, time and people dedicated to the process of collecting, creating, pro-
cessing and cataloguing geospatial data) are the most time-consuming portion of a GIS-
related project. This research holistically explores the types of geospatial data needed to
perform high-quality analysis in support of analyzing and mapping spatial dimensions
of the food environment at high scales. These database needs are quite different than
data that may be required to remediate food insecurity at the individual/household level
(such as Public Use Microdata) or coarser data at a national or sub-national scale. Little
research has explored this field of database development, whether for the pure sake of
science research and applied decision-making or policy that can be implemented in the
field.

In the United States, food insecurity has been described as a “serious public health
problem associated with poor cognitive and emotional development in children and
with depression and poor health in adults” [20]. Given that women and children have
much higher rates of food security than their male and more senior counterparts in the
United States, some have called for a rights-based approach to addressing food security
[20]. In support of understanding this multi-faceted problem, this research explores both
technical and non-technical issues of the data required to represent the tangible and
intangible food environment.

2 Literature Review

While the concepts ‘food desert’ and ‘food swamp’ have many theoretical definitions,
they have applied applications. They exist in the real world and people have a practical
understanding of them (Fig. 3).

Fig. 3. Sign outside of vacant grocery story building in Gibsonville, Guilford County, North
Carolina.
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Food security is considered to be the state “when all people, at all times, have physical
and economic access to sufficient, safe and nutritious food to meet their dietary needs
and food preferences for an active and healthy life” [21]. Contemporary literature has
used terms such as availability, accessibility, proximity, disparity, inequality, density,
variety, affordability, walkability, connectivity and quality as well as the aforementioned
food desert and food swamp to describe quantitative measures of the food environment
and ultimately food security. These can all be captured using a GIS in some way, shape
and form at various scales.

The mapping and demarcation of food-insecure areas within the digital environment
has been made exponentially easier using GIS technologies. While first used as an
aesthetic tool to map study areas [22] or highlight underlying explanatory variables such
as income [23], GIS has since been used to measure real-world distances and calculate
densities, quantitatively express proximity and render this proximity with statistical
significance using a variety of analytical, geostatistical and cartographic tools. Among
the first to do this in the field of food desert research were Donkin et al. [24], Lovett et al.
[25] and Pearce [26] while more recent research [27, 28] has quantitatively calculated
and mapped the spatial extent of the aforementioned food swamps at high (sub county)
scales.

Within a GIS, ways to express spatial dimensions of the food environment vary.
Some research has expressed access and availability (or lack of access and availability)
as linear units such as kilometers or miles [29], travel time in minutes [30, 31] and
densities such as the number of food options per square mile by census tract [32], as
well as more complex metrics based on the cost to operate a car [33]. More recently,
unitless metrics expressed as ratios [15, 34] have been used as alternatives to absolute
measures because these absolute measures are meaningless if not placed within some
context. A ten-minute drive time to the nearest fresh food source in an urban area means
something much different than a ten-minute drive to the nearest fresh food source in
a rural area. The proper and prudent use of absolute measures requires more analysis
and interpretation. Food swamp research using GIS utilizes existing metrics such as
the Retail Food Environmental Index (RFEI) and the Expanded RFEI [14] while others
[27, 28] have derived their own metrics and to define spatial extents of food deserts and
swamps using variations of the RFEI, Expanded RFEI, Modified RFEI [35] and Food
Balance Metric [36].

However, coarser scales of analysis also exist. In studies that model the supply and
demand forces from farm to plate at a national scale, geospatial data regarding farm loca-
tions, their arrangement, land cover, flood plains, rivers, climate and population change
which support burgeoning sustainable planning, management and development efforts,
especially in developing countries are required [37–39]. At this scale, food security at
a small scale can be considered a function of the socio-economic and political environ-
ment regarding factors such as macro-economy, natural resources, market conditions,
education, political climate, food safety/quality and health care practices. These are not
considerations in local-scale analysis where proximity to known food sources are corre-
lated with explanatory variables to define food-needy regions. In addition, the geospatial
data needs required for local (community) level food analysis are scale dependent and
much different in nature than data required at a coarser national or sub-national scale.
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These geospatial data required for local research vary in scope, ranging from roads and
business locations to sidewalks and municipal boundaries. For example, research in Ver-
mont looked at the quality of food in conjunction with point-to-point distances along
a vector road network in which was then grouped into polygonal enumeration units
(towns/townships) [5]. Other pioneers [16, 36, 40] also used vector GIS data at some
level (individual point, census block group, tract, etc.) to express food security using
distance and density calculations derived from GIS data. In national-scale analysis of
this type, analyzing thousands to hundreds of thousand sources traveling to thousands of
destinations is resource-intensive and requires large, ancillary data layers such as roads
in support of this analysis as well as the abovementioned interpretation to be useful.
For a large county in North Carolina (~500,000 people) and using Dijkstra’s Shortest
Path First (SPF) algorithm with a road network of more than 98,000 vertices [41] a
best-case scenario for calculating just one drive-time calculation between two locations
requires a minimum of 98,000 calculations and a worst-case scenario of more than 9
billion (98,0002) calculations [42]. There are literally trillions of possible calculations
between sources and potential destinations at the national scale along amuchmore robust
road network, which essentially make desktop computing solutions impossible. While
applications using Python, Stata [43] and R programming solutions make this process
more efficient than Esri’s Network Analyst calculations using a GUI (Graphical User
Interface), they are less intuitive for the average GIS user and impossible for the average
computer.

In the United States, guidance on the mapping of the food environment begins with
the United States Department of Agriculture Food Access Atlas (https://www.ers.usda.
gov/data-products/food-access-research-atlas/go-to-the-atlas/). Food access takes into
account both the availability or proximity of food sources to residents as well as having
readily-available transportation. Information collected and mapped at the census tract
level includes the aforementioned food desert metric (low income and limited access)
as shown in Fig. 4 as well as individual components that make up this metric and
ancillary measures such as income, poverty, race/ethnicity, vehicle access and high-
density housing. They are provided as tabular data that can be brought into a GIS and
mapped accordingly. As shown in Fig. 4, census tracts can take on varying sizes and
shapes. These larger census tracts, one of which is 322 sq. miles (834 sq. km) in size,
in the middle of the diagram located in Columbus, Pender and Sampson Counties in
North Carolina are especially problematic because they may be too large to highlight
high-scale food security patterns necessary for community-based research. As a result,
higher-scale food environment analysis using block groups [30, 44, 45] or even pixels
using raster-based calculations [27] better elucidate local-level patterns, drives local
policy and decision-making, and ultimately serves as a focus of this research.

While there is boundless value in performing local-scale food environment analysis
using GIS, little research has been performed on the actual themes or topics that neces-
sitate high-quality research at a high scale. In particular, little work has been performed
to determine how important roads are in food security research at the local level. What
about elevation? In addition to the actual features, there are various questions about the
individual attributes required for high-quality food desert research. Is income (at the cen-
sus block group level) a necessary attribute for sub-county food desert research? What

https://www.ers.usda.gov/data-products/food-access-research-atlas/go-to-the-atlas/
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Fig. 4. USDA Food Access Atlas of Southeastern North Carolina showing low income and low
access census tracts [19].

about road length? This research explores how can these themes and attributes can be
prioritized when time and personnel constraints, which are a reality in the professional
world, exist.

In a GIS sources and destinations used in the spatial assessment of the food envi-
ronment are represented as points. Depending upon the focus and scale of analysis,
the number of points utilized can range from the dozens [46, 47] to hundreds [40, 48]
and even thousands. As a basis for this research on high-scale food security in North
Carolina, GIS work highlighted metrics to measure food security at the block group
level [27, 46, 49]. A variety of themes were used in these studies, ranging from roads,
business locations and rivers to municipal boundaries, farmers’ markets and fast food
outlets. Each of these layers were developed or extracted from existing data at a scale
appropriate for this type of detailed analysis. However, little insight is provided into what
quality assessment was performed for the many consumers of these data. If a supermar-
ket is not provided in the GIS database when one in reality exists (error of omission),
one may be mapping food deserts and providing subsequent remediations where it is
not needed. On the other hand, if a food source is attributed as a supermarket when it
only serves a minimal sampling of fresh food (error of commission), researchers may
not be properly identifying the food desert that exists in the area. The significance of
data-driven considerations has caused researchers to think critically about the objective
assessment, evaluation and reporting of data quality to data users.

In addition to determining what data layers best address the phenomena of food
security, it is of paramount importance that these data are also correct. While most end-
uses only want the end-products of GIS analysis typically in the form ofmaps, the largest
cost of any GIS project is developing the data which go into high-quality research and
the personnel resources attached to this data development. It goes without saying that
in an era with limited resources such as personnel, space and time, database developers
must be intentional in how, when and to what extent (temporal, spatial and topical) data
must be developed. While attempts have been made to estimate the actual and tangible
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costs [50, 51] and value [52, 53] of geospatial data, it is impossible to place a monetary
value on data although various entities have tried to estimate it [54, 55].

Spatial data quality is the end-product of processes designed to ensure newly created
data are correct (QualityAssurance)while also identifying existing data that are incorrect
(Quality Control). Applications of QA/QC extend well beyond the GIS world, such
as banking, manufacturing, software, medicine and even taxonomy [56]. While some
research [57] has distinguished between QA and QC, the two concepts are usually
termed as a pair and felt that one cannot exist without the other. Although the QA/QC
of spatial data within a GIS is required as per Federal Geographic Data Committeee
(FGDC) standards and various organizations have processes in place to ensure the various
accuracies are adhered to that best fit their needs, resources and limitations, it is not has
been at the forefront of GIS research when compared to other facets of Geographic
Information Science.

Nonetheless, the resources dedicated to data creation, especially high-quality data,
are extraordinarily high. One opinion is that data quality has no inherent value or worth,
but is ultimately realizedwhen an action is taken on information pertaining to data quality
[58]. Along those same lines, the end goal of information quality was to satisfy customer
needs, in this case being the many users who utilize these data, many of whom assume
that the data have undergone some validation [59]. Various components contribute to
spatial data quality to include: horizontal accuracy, attribute accuracy, temporal accuracy
and attribute completeness.

Horizontal accuracy represents the distance a GIS data layer deviates from geo-
graphic reality. It essentially measures the distance a GIS data feature is from where it
‘should’ be. It is impossible to tell the exact location of where a feature should be placed,
as geo-rectified imagery and even high precision Global Position Systems (GPS) data
have inherent error attached to them. Some data used food security research (grocery
stores) were created via the process of geocoding in which a relative location such
as an address is converted to a point with absolute location (latitude and longitude).
Researchers found the positional accuracy (the actual location versus what the geocod-
ing algorithm represents as the address) of geocoded rural addresses to be poorer than
urban counterparts [60–62]. This can be problematic a large study area.

Attribute accuracy describes how well the assigned attribute values match the actual
characteristics of the objects. Attributes are the non-spatial characteristics of an entity
used to describe each individual segment. Food source attributes are uniform across an
entity, and serve to distinguish one object from another. Attribute values can be text
descriptions (e.g., CONAME = ‘Food Lion’ or NAICS = ‘44511003’) or numerical
values (SALESVOL= 1655). In other cases, InfoUSA, a supplier of geospatial business
data, uses domain fields to describe particular attributes. For example, the square footage
of the store, represented by the field name SQFTCODE, can only have one of four values:
A: 1–2, 499 Square Feet, B: 2,500–9,999 Square Feet, C: 10,000–39,999 Square Feet,
D: 40,000 + Square Feet.

Attribute completeness measures the degree to which all required attributes have
been populated. This does not necessarily mean that they are correct. For example, the
SQFTCODEmust be populated and can be one of only the four possible aforementioned
values matched through a domain table. In some cases, it is left blank in the data. For the
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SALESVOL attribute, which represents sales volume in thousands of dollars, it must be
an integer. In some cases where it is not provided or unknown, a value of ‘0’ is provided.
These missing or unknown values may skew analysis when agglomerated with known
values.

Temporal accuracy refers to the age of the data compared to the usage or publication
date. Issues of temporal accuracy arise when the GIS data indicates that a feature is open
but has since closed. The assessment of temporal accuracy can be problematic because
time is rarely treated as a separate entity within spatial databases and even in metadata,
except for historically explicit databases such as the decennial census [63].

Early pioneers of GIS recognized the importance of data quality largely due to
the legal ramifications in publishing incorrect spatial information which may lead to
accidents from the misuse of data [64]. Even then, they understood the reconciliation
between accuracy, the cost of creating the most accurate of data and the inevitability that
some error will still exist. This concession is what is referred to as uncertainty absorption
[65]. Given multitude of individual GIS data features required for this type of analysis,
it is impossible to field verify every single feature used in analysis.

As applied explicitly to GIS applications related to the quality of spatial food envi-
ronment data, work has proliferated as research in the spatial analysis and representation
of the food environment has increased and a need has arisen to answer questions about
the validity of data on which decisions are made. Research [66] has understood these
challenges, which include the reliability and validity of data (proper addresses and classi-
fications of stores) as well detail and completeness (enough information is stored that can
be useful in food environment analysis). Other research [67] further expounded on these
dimensions to include the quality of geocoding processes, the definition of food outlet
constructs (what is the definition of healthy, use of proprietary codes, etc.) and ways
to measure access and via a reportable standard called Geo-FERN (Food Environment
Reporting).

Comprehensive studies [68, 69] explored the quality of large spatial databases
purchased from independent sources, referred to as Commercially Available Business
(CAB) data, among and between disparate datasets and providerswhich serve as the basis
for retail businesses. Larger-scale studies [70–73] were performed for Durham, Chicago,
Albany andPittsburgh respectively.All cited somedegree of difference between different
CAB databases such as InfoUSA, Dunn and Bradstreet, TDLinx, as well as field-based
and automated methods, noting that caution must be taken when using CAB databases.
Further research [74] reinforced the idea of uncertainty absorption within this narrow
focus (validity of GIS data in measuring the food environment), highlighting the recon-
ciliation that must be made between the sheer number of data sources provided by CAB
databases, the time needed for field verification and the need for high-quality data.

As part of a study on food access and spatial disparity in rural Texas, the addresses of
food sources provided via public lists such as Internet telephone directories, telephone
directories and the Texas Department of Agriculture were ground-truthed [48]. 18.9% of
food sources provided via these public lists could not be verified for a variety of reasons.
These reasons included 1) businesses were no longer open 2) business where food source
was formerly located was now occupied by non-food source 3) address did not exist or
able to geocode and 4) located denoted as a food source was a residence with no apparent
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food business. In addition, they found 35.7% of food sources within their study area were
only identified through ground-truthing, as these food sources were not provided through
public lists. In a similar study, field verification was performed on twenty-one different
food source categories (Restaurant, Pub/Bar, Supermarket, Takeaway Food, etc.) across
different combinations of socio-economic status (SES) and population densities (urban,
rural, mixed) in England. For the rural low SES,more than 36% of food sources provided
via a secondary source could not be found in the field [75].

Above and beyond these facets of data quality, the Federal GeographicData Commit-
tee (FGDC) and spatial data transfer standards (SDTS) consider vertical accuracy (error
in measured vs. represented elevation), data lineage (source materials of data) and log-
ical consistency (compliance of qualitative relationships inherent in the data structure)
components of data quality [76, 77]. Within the GIS community, temporal accuracy (age
of the data compared to usage date) and semantic accuracy or “the quality with which
geographical objects are described in accordance with the selected model” may also be
considered elements of data quality [78] as well as metadata, the formal cataloguing of
GIS data. Metadata has been used to describe data quality measures taken during the
data development process and subsequent updates. Most generally thought of as “data
about data”, metadata serves as a formal framework to catalog the lifeline of a particular
GIS data set. Feature-level metadata has been able to capture data quality information
[79, 80], but is typically limited to quantitative measures of positional accuracy and
qualitative information related to data lineage within eight of the more than 400 entries
that comprise a complete FGDC-compliant metadata file. Even now, the population of
these metadata elements is not fully automated and some entries must be done by the
GIS data steward. Given the efficiency at which metadata population is done by each
steward, data quality assessment done solely via the extraction of metadata entries is not
advised.

3 Procedures

As a means to prioritize data layers, attributes and dimensions of spatial data quality, a
Likert-type survey was developed and distributed to the GIS community that focuses on
local-scale food security research. It is composed of twelve questions that not only ask
about users’ GIS experience, but also asks users questions about their preferences for
particular GIS data layers used in analysis (Fig. 5) and the attributes attached to those
layers (Fig. 6).

As shown in these figures, respondents were asked to give responses to these ques-
tions on a 5-point Likert-type scale, representing “NotApplicable atAll” through “Essen-
tial to Research”. The Likert scale uses ordered responses on a bipolar scale to assess the
level of favorability with a particular statement. Some scales do have an even number
of responses (4, for example), which force respondents to choose one side of the mean
or the other. However, this one does not.

As applied to ranking dimensions of data quality, respondents were given a survey
to rank six facets of data quality. An example of this survey and explanations of these
facets are highlighted in Fig. 7.
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Fig. 5. Likert-type assessment used to rate importance of GIS data themes for use in food desert
research. 23 layers were used in this assessment [19].

Fig. 6. Likert-type assessment used to rate importance of attributes for use in local-level food
desert research. 18 attributes were used in this assessment [19].

This survey was created and distributed to the food desert community via message
boards, e-mails and online forums in the Fall of 2017 and Spring 2018. 32 respondents
answered the survey.
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Fig. 7. Dimensions of spatial data quality that respondents were asked to rate using online
assessment tool [19].

4 Results

4.1 Prioritization of Data Layers

Respondents were asked to rate data layers on 5-point Likert-type scale ranging from
“Not Applicable at All” to “Essential to Research” where each response was assigned a
point value as highlighted in Table 1.

Table 1. Respondents were asked the question “You are developing a GIS database in order
to conduct local-scale food security analysis. How important are the following GIS data layers
to your research and analysis?” regarding GIS data layers (street network, for example). The
following scale assigned point values to their answers [19].

Response Point value

Not applicable at all 1

Slightly important 2

Moderately important 3

Very important 4

Essential to research 5

For each layer, aweighted average based on responseswas calculated from the values
in Table 1 and ranked according to all 23 data layers in the survey. For example, for the
Roads data layer, there were no responses for “Not Applicable at All”, one for

“Slightly Important”, five for “Moderately Important”, twelve for “Very Important”
and the remaining fourteen respondedwith “Essential to Research”. This would compute
to a value of 4.22 and this value would be ranked among the other 22 data layers selected
for this survey. In this case, the Roads layer ranked 2nd amongst the 23 data layers
in the questionnaire. The “Grocery Stores” data layer ranked with the highest with a
score of 4.25, followed closely by “Roads”, “Farmers’ Markets” and “Urban Areas” as
highlighted in Table 2.
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Table 2. Rank of Layers/Themes as Voted by GIS User Community [19].

Rank Layer

1 Grocery stores

2 Roads

3 Farmers markets

4 Urban areas

5 Census units (block groups, tract, etc.)

6 Cities and towns

7 Fast-food restaurants

8 Counties

9 Bus routes

10 Businesses (All)

11 Non-census sub-county units (boroughs, townships, etc.)

12 Schools

13 Zoning

14 Sidewalks

15 Land cover

16 States

17 Churches

18 Walking/Jogging trails

19 Building footprints

20 Crime

21 Utilities (Electrical/Gas/Cable/Phone)

22 Elevation

23 Golf courses

In addition, users were asked to name themes not mentioned in the above list that
would be useful in this type of analysis. Themesmentioned include: Parks, Greenhouses,
Arable Land, Irrigation Pathways, Rivers, Access toWater, FoodBanks, FoodAssistance
Organizations, Community Gardens, Non-Profit Businesses, Health Agencies, Corner
Stores, Partial Markets (Walgreens, for example), Liquor Stores, Bus Stops and County
Agencies.

4.2 Prioritization of Attributes

The same conventions were applied to attributes used to describe the data layers from
Table 1. After averaging values marked by uses, the “Distance to Resource” attribute
was ranked highest, followed by “Income” and “Race/Ethnicity (by enumeration unit)”.
These results are highlighted in Table 3.
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Table 3. Rank of Attributes to Layers/Themes as Voted by GIS User Community [19].

Rank Attribute

1 Distance to nearest resource

2 Income

3 Race/Ethnicity (by enumeration unit)

4 Population density

5 Average household size

6 Population

7 Education attainment

8 Housing status (Owner-Occupied/Rental/Vacant)

9 Transportation (# of vehicles by enumeration unit)

10 Median age

11 Median rent paid

12 Spending patterns (by enumeration unit)

13 Zoning type

14 North American industry classification standard (NAICS) Code

15 Road length

16 Building size

17 Number of employees by business

18 Speed limit

4.3 Dimensions of Data Quality

Using the facets of data quality addressed above, users were asked to rate six different
dimensions of data quality from 1 (most important) to 6 (least important). These data
dimensions speak to how the data are created, described and catalogued as part of the
data development process. Scores for each facet weremerely averaged and ranked. These
rankings are highlighted in Table 4.

5 Opportunities for Development

5.1 Practical Applications of Data Quality Research

The importance and concepts of positional, temporal and attribute accuracies tie in
with burgeoning opportunities in field of data quality assessment. These facets of data
quality were rated highest of the six addressed in the survey as per Table 4. Research
is beginning to realize the importance of testing data quality for store locations which
entail a combination of field techniques and database analysis [69–73].
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Table 4. Rank of Dimensions of Data Quality [19].

Rank Facet of data quality

1 Positional accuracy (features such as stores are located where GIS database dictates)

2 Attribute accuracy (attributes of features such as feature length or NAICS codes are
correct)

3 Temporal accuracy (data currentness is consistent with study period)

4 Logical consistency (how well the logical relationships between items in the dataset are
maintained)

5 Semantic accuracy (data naming conventions are consistent among data sources)

6 Cataloging of data lifeline (via Metadata)

In support of this work, the research team developed a short field-based QA/QC
project. 400 randomly selected food sources from an eleven-county region in southeast-
ern North Carolina were divided between each of two major divisions of food (‘healthy’
vs. ‘unhealthy’) within urban and rural food sources. In order to maintain consistency in
field verification for hypothesis testing, 100 urban healthy (UH) sources were randomly
selected, as well as 100 rural healthy (RH), 100 urban unhealthy (UU) and then 100
rural unhealthy (RU). As a result, 200 urban features within the GIS database were field
checked against 200 rural food sources in the same database. 200 healthy sources were
to be checked against 200 unhealthy counterparts.

All 400 points were randomly selected and placed into a database for on-site field
verification. The goal of field verificationwas to determine 1) if the business was actually
located where the GIS database dictated 2) if the business was still in operation 3) if the
business activity (fast food, for example) is attributed correctly.Also noted in the database
were other issues that may contribute to questions of data integrity and subsequent food
desert analysis, such as 1) geocoding errors where that point is located nearby, but not
exactly where it should be and 2) points that could be attributed differently. This may
occur where a small grocery store could have been attributed as a convenience store.
Attributes were created specifically for field verification that contained placeholders for
these notations that could be done in the field.

400 points were inspected to determine how well these GIS data and various per-
mutations of these data aligned with geographic reality as well as cohorts against each
other. Of the 400 total points inspected, 310 (77.5%) of them were accurate. Of the 90
that were deemed as incorrect, the following is a summary of the errors (Table 5):
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Table 5. Summary of errors in QA/QC process.

Description of error Number of
occurrences

Type of error

Food source permanently closed 32 Temporal accuracy

Point is actually a residential location 24 Attribute accuracy

Nothing exists at the point 18 Horizontal accuracy

New business occupying Location 9 Temporal accuracy

Does not sell food directly to public (Distributor) 3 Attribute accuracy

Business name is the same, but is not a food source 2 Attribute accuracy

Located far distance from actual feature 2 Horizontal accuracy

All 90 errors were generalized into one of seven general descriptions as shown in
Table 3. The most popular error, representing 35.6% of all errors, was that the food
source represented in the GIS databases, was permanently closed. One example of these
temporal inaccuracies is shown in Fig. 7 (Fig. 8).

Fig. 8. Rural Supermarket Now Permanently Closed. This Location Was Represented in the GIS
Database as Being Open.

These 90 errors were broken down between various cohorts of the food environment
as shown in Table 4. Most notable is the difference between urban and rural accuracy.
82.5% of all 200 urban features checked were correct compared to 72.5% of rural coun-
terparts using the same sample size. These differences were also expressed between
healthy food (82% urban vs. 70% rural) and unhealthy food (83% urban vs. 75% rural).
Of the three different cohorts of food sources field verified, all of themhadurban accuracy
to be greater than rural accuracy.

An independent t-test of two proportions was run between the two sets of results to
determine if there was a difference between the percentages computed. Using the derived
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accuracy percentages for each cohort (p̂1and p̂2), the combined accuracy (p̂0) and the
sample sizes for each cohort (n1 and n2), this test helps determine the criteria in order
to reject the Null hypothesis (percentage from each cohort is equal to each other) and
accept the alternate hypothesis (percent from each cohort are not equal to each other).

Z = p̂1 − p̂2√
p̂0

(
1− p̂0

)( 1
n1

+ 1
n2

)

Permutations of the were run against each other using the test of two proportions as
shown in Table 6. There are differences between urban and rural accuracy for the some
of the six different cohorts of food stores inspected. Most significant was the distinct
differences between the accuracy for all urban food sources and less accurate rural food
sources at the α= .05 level. These differences must be noted in working with unverified
CAB data.

Table 6. Result for test of two proportions.

Null hypothesis p-value

Urban Healthy (n = 100) = Rural Healthy (n = 100) .0483**

Urban Unhealthy (n = 100) = Rural Unhealthy (n = 100) .1664

All Urban (n = 200) = All Rural (n = 200) .0170**

*ρ < .1 **ρ < .05 ***ρ < .01

In addition to the actual quality of geospatial data being provided in a CAB database
highlighting differences between urban and rural cohorts, other research has explored
store-level metrics such as the linear shelf space of healthy food [81] and the amount
of bruising of foods within stores [82]. These ideas further perpetuate the concepts
of the relatively new idea of spatial justice/injustice which explores how access to both
tangible and intangible assets [83, 84], such as food quality and even high-quality data in
this case, vary across space. Further research opportunities into issues of data collection
methods, field verification, data collection frequency and logical consistency can address
the reasons for these distinct differences as applied to the narrow scope of spatial data
accuracy within the confines of the food environment.

5.2 Standards-Based Approach to Database Development

Data standards such as the Spatial Data Standards for Facilities Infrastructure and
Environment (SDSFIE) are used by the Department of Defense (DoD) to maximize
interoperability and understandability across installations and branches by dictating
naming conventions, attributes and domain values for spatial data layers. The name
spot_elevation_point is denoted as “a point on the surface of the earth of known eleva-
tion” and is consistent across all DoD installations instead of using layer names such
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as point, landmark or landmarks. The spot_elevation_point feature class contains 23
attributes, which is relatively little compared to the road_centerline feature class which
contains 55 attributes. The FGDC has defined data standards for landmarks, addressing,
thoroughfares and parcels (FGDC, 2011) in order to standardize attributes so features
can geocoded, described and represented fully entirely by the GIS user community.
While the development of a database dedicated solely to food security is still being
realized, point and polygonal features representing municipal and census-based units
such as zip codes, towns, census tracts and census block groups have attributes that can
be seamlessly integrated with attributes that rank highly in this study such as super-
market density and access to transportation, as well as socio-economic indicators such
as poverty, race/ethnicity, education attainment, population and population density. The
development of these attributes may require further processing or the import of data
using simple GIS operations from various spatial databases such as the 2010 Census,
Esri Demographic Database, Esri Spending Patterns and American Community Survey.

In order to catalog both the data and the aforementioned processing, it is necessary to
catalog administrative, structural and descriptive information about the geospatial data
and the processes by which they were developed.Metadata serves as the formal means to
describe a dataset, and provides the standardized framework for providing information
about a dataset’s lineage, attributes, age and creators using both qualitative and quanti-
tative entries. In the GIS community, the FGDC-endorsed Content Standard for Digital
Geospatial Metadata (CSDGM) is slowly being replaced by an International Standards
Organization (ISO)-based metadata standard that accounts for evolving technologies
such as remotely sensed imagery, online services and ontologies that did not exist when
the original CSDGM (formally known as FGDC-STD-001-1998) was first published in
1998.

More than 400 individual elements comprise a complete metadata record and the
state of North Carolina has developed a State and Local Government Profile, based
on the ISO 19115, 19115-1 and 19119 standards. This standard streamlines these 400
elements into about 75 elements that best capture the information about a data layer
which enable content consistency and improves the search and discoverability of data
through online data repositories such as NCOneMap. This standard, as well as guidance
for its use, is provided by the North Carolina Geographic Information Coordinating
Council (NCGICC) through the NCOneMap online portal [85].

Using the State and Local Government Profile as a template, data layers developed in
support of high-scale food security research should be cognizant of the following entries
that already exist within this profile which speak explicitly to the aforementioned facets
of data quality and help perpetuate data discoverability:

1) Topic Category: A theme keyword that adheres to at least one of the ISO Topic
Categories.

2) ProcessDescription:A repeatable element that provides a description of how the data
were created and indicate the data source, where applicable. This process description
should include any geoprocessing and/or field calculations used to derive spatial and
attribute data derived for the sole purpose of food security research. This process
description should also contain the source scale denominator and publication date
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of source information, where available to clarify positional and temporal accuracy
respectively.

3) Feature Catalogue: Entity and Attribute Descriptions and Citations referenced to
ISO 19110, where possible.

In addition, the following Data Quality elements not explicitly addressed in this profile
should be completed to catalog attempts to maintain the highest possible accuracies
of data used in analysis. While not required, this cataloguing should strive to achieve
popular positional (horizontal and vertical) accuracy standards such as the National
Mapping Accuracy Standards (NMAS) for paper maps [86] and more recent National
Standard for Spatial Data Accuracy (NSSDA) applied to purely digital data [87].

1) Attribute Accuracy Report: an explanation of the accuracy of the identification of
the entities and assignments of values in the data set and a description of the tests
used. This may be useful if food sources and/or destinations have been field checked
for attribute errors.

2) Quantitative Attribute Accuracy Assessment: a value assigned to summarize the
accuracy of the identification of the entities and assignments of values in the data
set and the identification of the test that yielded the value.

3) Attribute Accuracy Value: an estimate of the accuracy of the identification of the
entities and assignments of attribute values in the data set.

4) Logical Consistency Report: an explanation of the fidelity of relationships in the
data set and tests used. This may be applicable if data used in the same analysis or
derivation of attributes come from multiple data sources and/or at different scales.

5) Completeness Report: information about omissions, selection criteria, generaliza-
tion, definitions used, and other rules used to derive the data set. Useful for both
spatial data and attribute completion.

6) Horizontal Positional Accuracy Report: an explanation of the accuracy of the hor-
izontal coordinate measurements and a description of the tests used. This may be
useful when field checking the locations of food sources and/or destinations.

7) Horizontal Positional Accuracy Value: an estimate of accuracy of the horizontal
positions of the spatial objects.

8) Horizontal PositionalAccuracyExplanation: the identification of the test that yielded
the Horizontal Positional Accuracy Value.

9) Vertical Positional Accuracy Report (where applicable): an explanation of the accu-
racy of the vertical coordinate measurements and a description of the tests used
[76].

6 Conclusions

Spatial dimensions of the food environment can be measured using GIS. While GIS has
increasingly become a powerful tool to map spatial dimensions of food security and the
factors that help explain it, practitioners have little understanding of the challenges and
opportunities in working with data at various scales. The comprehensive development of
high-scale spatial data in support of the food environment elicits a number of both quan-
titative and qualitative considerations discussed in this paper. Among the considerations
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included in this paper include the data themes necessary for research, the attributes for
said themes, the importance of various dimensions of data quality, efforts to assess and
evaluate data quality in the field, data quality and the role of metadata in the cataloguing
of these data.

Given data and the people that develop it are the most expensive component of any
GIS project, this is especially important when resources such as time, personnel, storage
space, processing speeds and bandwidth must be compromised. This data development
can take on many forms, ranging from the downloading of existing data, processing of
existing data, extraction from currently existing databases such as the aforementioned
CAB databases, geocoding or the use of remotely sensed imagery, either purchased,
procured or captured using a UAS (Unmanned Aircraft System). Regardless of the
methods, resources must be utilized in order to create the spatial information and derive
the attributes that facilitate food security researchwhile cataloguing the people, processes
and resources via metadata that can be discoverable across various, especially online,
platforms.

As highlighted in this paper, the GIS database requirements for food security analy-
sis at a local scale are much different than those needs at the national/sub-national scale.
National scale and sub-national (state) studies in food security explore the economics
of food production and links between this food and those who need it using data such
as land cover, supply chains, zoning, soil type, low-scale transportation networks (both
road and railroad), state and county outlines using coarse data. High-scale analysis at
the block group and even pixel scale requires more specialized data, analysis, attribu-
tion and cataloguing than data grouped at census tracts, the standard for much research,
including the United States Department of Agriculture Food Access Atlas. Types of data
required include high-scale road networks (which include speed limits and derived travel
times), business locations and spending patterns. From a data development standpoint,
the realization of a database in support of local-scale food security research requires a
reconciliation between developing the correct data layers, developing them at an appro-
priate scale that allows for local-level (sub county) scale analysis, rendering within
appropriate budgets (time, people, money, etc.) that can be practically applied through
policy and/or decision-making.

Utilizing a survey of 32 GIS professionals who integrate GIS data in support of
food environment research, they provided their opinions on the importance of various
themes attached to food desert analysis the relative importance of dimensions of data
quality. Themes directly contributing to the physical procurement of healthy food such as
grocery stores, roads and farmers’ markets were ranked highest by these professionals.
Furthermore, analysis utilizing census tracts and block groups were ranked higher than
counties, further articulating the opinion that county level analysis is too just coarse to
guide meaningful decision making.

GIS-based exploratory data analysis is a useful tool for model development as it
allows analysts to interrogate diverse geographically linked datasets to identify inherent
patterns and develop testable hypotheses regarding factors contributing to those observed
patterns. This data-driven approachminimizes bias from imposition of untested assump-
tions derived from studies for other purposes at other scales in other settings. Information
related to proximity (physical distance from resources) and socio-demographics such as
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income, race/ethnicity and household size were deemed as most important. These fac-
tors are essential to food desert research and specifically the USDA definition of a food
desert, which contain both distance and poverty components. Lastly, dimensions of data
quality were identified and users were asked to rank them in their order of importance.
Positional accuracy and attribute accuracy ranked highest while the cataloguing of data
in the form of metadata was ranked lowest. Research in the field of geospatial data qual-
ity assessment is evolving using field-based (virtual and otherwise) and programmatic
techniques.

This focus on positional and attribute accuracy within this research was especially
interesting because errors related to temporal accuracy (age of data) exhibited the most
number of errors within a CAB database (food business locations) used for high-quality
food environment research. In a field assessment and evaluation of 400 randomly selected
data features in southeast North Carolina, 90 of these data points were found to be
incorrect. 46% of the errors were related to temporal accuracy of the data, whether the
business in question no longer existed at that location or a new type of business was
occupying the food business location when checked in the field. 32% of errors were
related to attribute errors where 1) the location was in fact a residential location) 2) the
business namewas correct, but it did not sell food and 3) the business did not sell directly
to the public. The remaining 22% of errors were related to horizontal accuracy where
the business location in the GIS was located far from the actual business, most likely
due to geocoding error.

In exploring differences between various preselected cohorts of these data sources,
distinct differences were found between accuracies for rural and urban cohorts. For n
= 200, the geospatial data representing rural food sources (72.5%) was less accurate
than urban cohorts (82.5%) at α = .05. In addition, rural healthy food sources were
statistically less accurate than urban healthy cohorts at that same significance level.While
rural communities are disproportionately affected by unhealthy food environments [16]
and some research has shown that disparities in food access are also greatest in rural
communities [88, 89], this disproportionality also extends to the accuracy data sources
within these regions. These schisms, which also include the difference between our
concerns and perceptions with respect to geospatial data error and the true empirical
error in geospatial data, serves as an impetus for future work and further addresses
challenges between conceptual and practical geospatial data development policies and
procedures.

High-quality data serves as the fundamental basis for decision-making. GIS data,
whether provided through the United States Census or through other vendors can be
easily converted to geospatial format if they are not already provided in that format.
Another of the challenges in working with these data at various scales is its reliability, or
lack thereof. Explanatory demographic data are typically collected within enumeration
units such as the census block group, tract, county and state level through the American
Community Survey (ACS), a program through the United States Census that samples
data in non-decennial census years. Inherent in all ACS data is a sampling error, which
represents “errors that occur from making inferences about the whole population from
only a sample of the population” [90]. Within quantitative calculations of error is an
enumeration unit’s determination of reliability which are a result of scale, sampling
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methods and sampling size. Three classes of reliability exist forACSdata:High,Medium
and Low. These classes can give users and decision makers insight into the data used for
analysis at a particular scale. These factors must also be considered when developing
data or overlaying themwith other geospatial data given the propagation of error inherent
in multiple inaccurate or unreliable data sources.

The specific focus of this work has been on the collection, integration, analysis,
assessment and systematic description of geospatial data via formal metadata that is of
a type and level of detail to be of practical value in the development, implementation
and evaluation of interventions and policies addressing local-level food security. This
holistic approach necessitates an understanding of the technical skills needed to develop
high-quality geospatial data as well as the qualitative understanding to While the results
of this work can be used as pure research in and of itself, it is anticipated that results can
be used in helping to facilitate decision-making and dictate policy at directly address-
ing and remediating the phenomenon of food deserts as well a proliferating research in
disparate fields such as meta-metadata (information about metadata), data mining, field
assessment and data quality. Furthermore, this work addresses the technical components
of geospatial database development such as attribution, naming conventions and meta-
data according to existing standards such as the ISO-based North Carolina State and
Local Government Metadata Profile. While some minor questions still remain unan-
swered such as the potential for cross-validation or the integration of qualitative data
given food desert research has been trending towards a mixed-methods approach (com-
bining qualitative and quantitative data), it is our hope to further explore cost-effective
methods for needs assessment that take into account both causal complexity, perhaps
via longitudinal studies, and programmatic challenges imposed by the combination of
the increase of chronic disease, the contribution of unhealthy eating to chronic disease,
limited resources and increased demand. If done correctly, integrating GIS technologies
with intervention planning has the potential to be a cost-effective means for organiza-
tions to conduct effective planning aimed at improving food and nutritional security at
multiple spatial and temporal scales. Practical database development and the efficient
use of resources serves as the cornerstone of this planning and implementation.

Nonetheless, the framework approach described in this research is flexible and
broadly applicable, and can be useful for comparing and exploring spatial relation-
ships among scales, accuracies and standards between different study areas if resources
exist. We suggest that the approach, methods and results described in this paper be used
to inform analysts and end-users of geospatial data research of any implicit or explicit
error that may explain, elucidate, undermine and reinforce results using these data.
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