
Multi-source Anomaly Detection
in Distributed IT Systems

Jasmin Bogatinovski(B) and Sasho Nedelkoski

Distributed Operating Systems, TU Berlin, Berlin, Germany
{jasmin.bogatinovski,nedelkoski}@tu-berlin.de

Abstract. The multi-source data generated by distributed systems, pro-
vide a holistic description of the system. Harnessing the joint distribution
of the different modalities by a learning model can be beneficial for crit-
ical applications for maintenance of the distributed systems. One such
important task is the task of anomaly detection where we are interested
in detecting the deviation of the current behaviour of the system from the
theoretically expected. In this work, we utilize the joint representation
from the distributed traces and system log data for the task of anomaly
detection in distributed systems. We demonstrate that the joint utiliza-
tion of traces and logs produced better results compared to the single
modality anomaly detection methods. Furthermore, we formalize a learn-
ing task - next template prediction NTP, that is used as a generalization
for anomaly detection for both logs and distributed trace. Finally, we
demonstrate that this formalization allows for the learning of template
embedding for both the traces and logs. The joint embeddings can be
reused in other applications as good initialization for spans and logs.

Keywords: Multi-source anomaly detection · Multi-modal · Logs ·
Distributed traces

1 Introduction

The complexity of the multi-layered IT infrastructures such as the Internet of
Things, distributed processing frameworks, databases and operating systems, is
constantly increasing [10]. To meet the consumers’ expectations of fluent service
with low response times guarantees and availability, the service providers highly
rely on the high volumes of monitoring data. The massive volumes of data lead to
maintenance overhead for the operators and require introducing of data-driven
tools to process the data.

A crucial task for such tools is to correctly identify the symptoms of deviation
of the current behaviour system from the expected one. Due to the large volumes of
data, the anomaly detector should produce a small number of false-positive alarms,

J. Bogatinovski and S. Nedelkoski—Equal contribution

c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2020 Workshops, LNCS 12632, pp. 201–213, 2021.
https://doi.org/10.1007/978-3-030-76352-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76352-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-76352-7_22


202 J. Bogatinovski and S. Nedelkoski

thus reducing the efforts of the operators, while at the same time producing a high
detection rate. The benefit of timely detection allows prevention of potential fail-
ures and increases the opportunity window for conducting a successful reaction
from the operator. This is especially important if urgent expertise and/or admin-
istration activity is required. The symptoms often are notified whenever there are
performance problems or system failures and usually manifests as some finger-
prints within the monitored data: logs, metrics or distributed traces.

The monitored system data represent the state of the system at any time point.
They are grouped into three categories-modalities: metrics, application logs, and
distributed traces [12]. The metrics are time-series data that represent the uti-
lization of the available resources and the status of the infrastructure. Typically
they involve measuring of the CPU, memory and disk utilization, as well as data
as network throughput, and service call latency. Application logs are print state-
ments appearing in code with semi-structured content. They represent interac-
tions between data, files, services, or applications containing a rich representative
structure on a service level. Service, microservices, and other systems generate logs
which are composed of timestamped records. Distributed traces chains the service
invocations as workflows of execution of HTTP or RPC requests. Each part of the
chain in the trace is called an event or span. A property of this type of data is
that it preserves the information for the execution graph on a (micro)service level.
Thus, the information for the interplay between the components is preserved.

The log data can produce a richer description on a service level since they are
fingerprints of the program execution within the service. On the other side, the
traces do not have much information on system-level information but preserve
the overall graph of request execution. Referring to the different aspects of the
system, the logs and traces provide orthogonal information for the distributed
systems behaviour. Building on this observation in this work, we introduce an
anomaly detection multi-source approach that can consider the data from both
the traces and logs, jointly. We demonstrate the usability of time-aligned log
and tracing data to produce better results on the task of anomaly detection as
compared to the single modalities as the main contribution to this work. The
results show that the model build under the joint loss from both the logs and
trace data can exploit some relationship between the modalities. The approach
is trainable end-to-end and does not require the building of separate models for
each of the modalities. As a second contribution, we consider the introduction of
vector embeddings for the spans within the trace. The adopted approach allows
the definition of the span vectors as a pooling over the words they are composed
of. We refer to these vector embeddings as span2vec.

2 Related Work

The literature recognizes various approaches concerned with anomaly detection
in distributed systems from single modalities. We review the single modalities
approaches for both logs and traces. We also provide an overview of the existing
multi-modal approaches, however, none of them jointly considers both traces
and logs.



Multi-source Anomaly Detection in Distributed IT Systems 203

The most common approaches for anomaly detection from log data roughly
follows a two-step composition - log parsing followed by a method for anomaly
detection. The first step allows for an appropriate log representation. One chal-
lenge during this procedure is the reduction of the noise in the log data. This
noise in a log message is present due to the various parameters parts of the log
can take during execution. To this end, there are many proposed techniques for
log parsing [3,7,14]. A detailed overview and comparison across benchmarks of
these techniques are given in [18]. After the template extraction, there are two
general approaches to represent the logs. The first one is based on word fre-
quencies and metrics derived from the logs (e.g. TF-IDF) [2,5,15,17] or reusing
word representation of the logs, based on corpora of words. The second approach
aims at translating the templates into sequences of templates - most often rep-
resented as sequences of integers or sequences of vectors. Such representation
allows modelling the sequential execution of a program workflow. One of the
most commonly utilized approaches is RNN-based(e.g. LSTM, GRU) [1]. They
often are coupled with an additional mechanism such as attention to allow for
better preservation of the semantic information inside the logs [6]. Depending on
the data representation, various methods are utilized from both the supervised
and unsupervised domains of machine learning. However, due to easier practical
adoption and the absence of labels, the unsupervised methods are preferred.

The available approaches for anomaly detection from tracing data are scarce.
They usually model the normal execution of a workload, represented within the
trace by utilizing history h of recent trace events as input. They decompose
the trace in its building blocks, the events/spans, and predict the next span in
the sequence. The anomaly detection is done with imposing thresholds on the
number of errors the LSTM is making for the corresponding trace predicted [9,
10]. Further approaches aim to capture the execution of a complete workload into
a finite state automata (FSA) [16]. However, the FSA approaches are dependent
on specific tracing implementation systems. The unification of this approach with
other types of modalities such as the log data due to the assumed homogeneous
structure of the states building the FSA is harder.

Several works on multi-modal learning for anomaly detection demonstrate
the feasibility of using different modalities of data for anomaly detection [11,13].
In the context of large scale ICT systems, the authors in [10] consider the joint
exploitation of traces and the corresponding response times of the spans within
the trace. More specifically, a multi-modal LSTM-based method, trained jointly
on both modalities is introduced, showing the additional value added by the
shared information, improves the anomaly detection scores. In [4] a Multimodal
Variational Autoencoder approach is adopted for effectively learning the relation-
ships among cross-domain data which provide good results for anomaly detection
build on the logs and metrics as modalitites. However, they do not preserve the
information for the overall microservice architecture.

To the best of our knowledge, the literature does not yet recognize methods
for joint consideration of logs and traces as fundamentally complementary data
sources describing the distributed IT systems. Hence in this work, we propose
an approach on how to jointly consider the complement information within the
logs and traces.



204 J. Bogatinovski and S. Nedelkoski

3 Multimodal Approach for Anomaly Detection
from Heterogeneous Data

In this section, we describe the multi-source approach towards anomaly detection
using logs and tracing data. First, we describe the logs and traces as generated
by the system. We present their specifics that are exploited for the definition of
the Next Template Prediction (NTP) pseudo-task. Second, we describe the NTP
pseudo-task for anomaly detection. Thirdly, we describe one way to address the
NTP task utilizing deep learning architecture on a single modality description
of the system state. Next, we provide a solution that enables us to efficiently
solve the NTP problem as a pseudo task for joint detection of anomalies from
both logs and traces. Finally, we present an approach that uses the results from
the NTP task and performs anomaly detection.

3.1 Data Representation

The raw logs and traces as generated by the system, contain various information
about the specific operation being executed. Since some of the information is a
sporadic description of the operations, proper filtering and representation should
be done. Due to the specifics of the two modalities, we address them separately.

Logs. A log is a sequence of temporally ordered unstructured text messages L =
{li : i = 1, 2, ...}. Each text message li is generated by a logging instruction (e.g.
printf(), log.info()) within the software source code. Since the logging function is
part of the body of the whole program, it can serve as a proxy for the program
execution workflow. Hence one can infer the normal execution pattern within
the program workflow.

The logs consist of a constant and a varying part, referred to as log template
and log parameters. Due to the large variability of the parameters, they can
introduce a lot of noise. To mitigate this problem common way to represent the
logs is with the extraction of the constant part through a log parsing procedure.
It allows for the creation of a dictionary of log templates from a given set of logs.

To unify the representations of the logs, the log templates are tokenized. A
dictionary from the tokens, representing the vocabulary of all of the tokens in
the logs - Dlogs words is created. Since the log templates can have a different
number of tokens, for the uniform representation of the log templates a special
<SPECLOG> token is added, such that each of the logs has an equal number of
tokens. The maximal size of the log template is limited by a parameter called
max log size.

Li = {W i
0,W

i
1, . . . ,W

i
t } (1)

where each of the Wt is an extracted word mapped to index t ∈
Dlogs word indecies.



Multi-source Anomaly Detection in Distributed IT Systems 205

Distrubted Traces. Distributed traces are a request-centred way to describe
behaviour within the distributed system. It means that they follow the execution
of the user issued a request through the distributed system in a record referred
to as spans. The spans represent information (e.g. start time, end time, service
name, HTTP path) about the operations performed when handling an external
request in service. Formally, a trace is written as

Ti = {Si
0, S

i
1, . . . , S

i
m}, (2)

where i ∈ {1, . . . , N} is a trace as part of an observation set of traces, and m is
the length Ti or the number of spans in the trace.

One of the most characteristic properties of the spans is the function executed
during the event and a corresponding endpoint. They usually represent either
HTTP or RPC calls, denoting the interconnection between the spans within
the trace. The HTTP calls are described with path, scheme, method. The RPC
calls are represented with the functions they are executing. Since these features
represent the intra-service communication in a trace, we assume that they are
sufficient for structural analysis of possible anomalies. To provide a richer rep-
resentation of the traces, further augmentation of the traces can be done. More
specifically, two artificial spans (<START> and <END>) are added to the beginning
and the end of the trace, accordingly. It preserves the knowledge for the length
of the trace.

Represented in this form the spans have very similar representation as to
the logs, with additional constraints that the spans are further bounded by the
operation executed within the trace. It means that they also are facing the
problem of the presence of noise into the representation induced by the varying
parameters. Similar as for the logs, applying a template extraction technique
produces a set of representative template spans. It allows for each of the trace
to be represented as a sequence of template spans. Formally,

Ti = {Sti0, Sti1, . . . , Stik} (3)

where each of the Stk is an extracted template mapped to index k ∈
Dtemplate indecies.

Observing that each function calls are sequences of characters, a dictionary of
the sequences of characters appearing inside the given set of traces is constructed -
Dspan words. It provides a unique language for the description of all of the spans
appearing in the observed traces. Formally a span is represented as

Stj = {W i
0,W

j
1 , . . . ,W

j
q } (4)

where Wq is a sequence of characters as extracted from the dictionary of span
words Dspan words. Since there are spans with a different number of words, to
provide spans in an appropriate representational format for later processing, each
of the spans is augmented with a <SPECSPAN> token.



206 J. Bogatinovski and S. Nedelkoski

3.2 NTP: Pseudo-task for Anomaly Detection

Representation of both traces and logs in the previously described manner, allow
us to take a unified approach towards their modelling. The appearance of the next
log message is conditioned on the appearance of the history of the previous logs.
Similarly, within a trace, the appearance of the next span is conditioned on the
previous ones. Thus the modelling problem can be conceptualized formally as

P (ATwin:T ) =
T∏

t=Twin

P (At|A<t) (5)

where A<t denotes the templates traces or logs from At−win to At, with win
denoting the size of the preserved history. Hence we refer to this task as the next
template prediction (NTP).

3.3 Single Modality Anomaly Detection

Figure 1 depicts the proposed end to end architecture to solve the NTP task for
single modalities. We use the same architecture for both the logs and the traces.

Fig. 1. Proposed architecture for single modality. The same approach can be utilized
also for the logs data.

At the input, we provide the dictionary of the words as appearing in
Dlogs words and Dspan words. We perform initialization with random vectors for
each of the words with a specific size. This is a parameter of the method referred
embedding size Nembedding. The template embedding layer uses the representa-
tions of the words to create the corresponding sequences of templates. These
sequences are fed through an autoregressive deep learning LSTM method that



Multi-source Anomaly Detection in Distributed IT Systems 207

is modelling the sequential dependence between the input samples represented
with f(x). Its output is used to calculate the softmax between the real next
template and the output of the network. The softmax is calculated as

P (f(x)) =
ef(x)

A∑
i=1

efi(x)
(6)

It calculates a distribution over the all possible templates. The one with the
maximal probability is considered the most likely template to appear given the
input sequence of templates.

LSTM architecture is a deep learning neural network method used for effi-
ciently modelling sequential data. The representation of the system state is given
via a single vector, refer to as a hidden state. The assumption the method is mak-
ing, builds on top of the Markov property. It states that the state of the system
at any particular point in time can be determined just from the previous state.
To achieve this goal, it utilizes a selection mechanism build on abstractions of
input, output and forget gates. This mechanism allows the network to selectively
choose how much information from the previous inputs it should preserve and
distribute towards the output. Hence it can model short and long term depen-
dencies within a sequence and the structure appearing into the sequence of state
events. Thus it is a handy solution for modelling our problem. Stacking of mul-
tiple LSTM cells provides greater representational power of the architecture.

Fig. 2. Proposed architecture for joint analysis of logs and traces.

3.4 Multimodal LSTM

To account for both modalities and enable end to end learning system for
anomaly detection, we propose the method as given on Fig. 2. It is composed
of two models described in the previous section. On the inputs provided are the
dictionary of logs and spans, simultaneously, to each of the two models. How-
ever, the output of both LSTMs is concatenated to one another and fed through
an additional linear layer. It gives an advantage of including the information



208 J. Bogatinovski and S. Nedelkoski

from both of the modalities, to improve the predictive performance. The shared
information from the concatenation is then passed through two linear layers, one
accounting for the traces and the other for the logs.

To account for both modalities the cost function is also changed. We calculate
it as a joint cross-entropy loss of the most likely span and log to appear, given the
joint information in a particular period. We calculated the joint loss as follows:

L((s, l), f(x, y)) = L(f(x), s) + L(f(y), l) (7)

where L(·, ·) account for the categorical-cross entropy loss, and s and l for the
ground truth span and log templates that should appear as the next relevant
templates. Because the loss function includes the information from both modal-
ities when the back-propagation step is done the gradients are calculated based
on the information from both of the modalities.

One important detail for joint training the two modalities is providing the
information from the same time intervals to the model from both of the modali-
ties. The granularity representation of a log message is on a single time interval,
on one side, and the spans span across multiple time stamps. To address this
challenge we address block of logs of varying size. The size of a block of log mes-
sages is dependent on the corresponding spans within the trace appearing during
the particular time interval. To create a block of log messages we stack multiple
logs together to pair up with the corresponding time intervals determined by the
spans. Such an approach requires the introduction of a maximal number of logs
that are considered at once.

Given this coupling between the traces and logs, the question to ask is “What
is the learning task for the joint method?”. Since the time spanning of the spans
determine the size of log blocks, just a window size parameter on the traces
imposed is. This parameter determines the number of spans the method should
use to produce the next one. The block of log messages is created in a way that,
the log messages that come from the start time of the first and the end time
of the last span in the window of spans are joined into one block. The target is
to predict the next expected log. An additional complication that can arise is
the absence of logs in a particular time frame. To address this, we denote those
windows that have a missing target and drop them from the learning set.

3.5 Anomaly Detection

NTP is utilized for anomaly detection for logs, however, the anomaly detection
in the traces require additional anomaly detection procedure. We further provide
a simple and effective method that acts on the output from the NTP solver to
detect if there is an anomaly or not. The anomaly detection procedure for the
single modality log model considers a log as normal if the prediction for the log
is in the next top k logs. Otherwise, it is predicted as an anomaly.

For the detection of anomalous trace, the decision procedure should take
into consideration the correct prediction among all of the spans in the trace
subject to prediction. A span is correctly predicted if, for a given input sequence



Multi-source Anomaly Detection in Distributed IT Systems 209

of spans, the true span is in the top k span ranked spans. For each trace, this
procedure creates an accumulation of the correctly predicted spans. The ratio
of incorrectly predicted spans (span error rate) num err

length(trace) is considered as an
anomaly score for the trace. Setting a threshold on this score can be used for
anomaly detection. Finally, for the joint multimodal method, a combination of
the previously described techniques is utilized.

4 Experiments and Results

In this section, we first describe the experimental design we used for evaluation.
Second, we provide a detailed analysis of the results from the experiments to
justify the improvements the joint information provides. Finally, we discuss the
span2vec embedding as a consequence and further contribution of this work.

4.1 Experiments

Dataset Preprocessing Details. In the experiments we used the publicly
available dataset1 covering the trace and logs as monitoring components in over-
lapping time intervals. To the best of our knowledge, this is the only available
dataset suited for multi-modal anomaly detection in distributed systems and as
such it is utilized.

The experiments are generated from an OpenStack deployment testbed. We
used the concurrent execution scenario, with 3 execution workloads: create an
image, create a server, create a network, as described in [8]. As such we demon-
strate the usefulness of our method in scenarios as close to real-world execution.

Train Test Split. The training dataset is composed of the traces appearing
up to a particular time point, such that 70% of the normal traces are contained.
The anomalous traces during this time-window are discarded. The logs that
belong in the corresponding time intervals as generated by the trace are also
preserved in the training set. We aim of modelling the normal behaviour of
the system with preserving the normal traces and normal logs. To evaluate our
model, the test set is composed of all of the remaining logs and traces appearing
after the split time point.

Baselines. The main aim of this work is to demonstrate that the shared informa-
tion between the logs and traces can improve anomaly detection in comparison
to anomaly detection methods build from single modalities. As baselines we use
the single modality LSTM method build separately for the traces and logs. The
models are built on the same dataset as the multi-modal model and tested on
the same test set to allow for a fair comparison.

1 https://zenodo.org/record/3549604.

https://zenodo.org/record/3549604


210 J. Bogatinovski and S. Nedelkoski

Table 1. Results from the experimental evaluation.

Score Logs-joint Trace-joint Single logs Single traces

Accuracy 0.976 0.990 0.974 0.955

Precision 0.904 0.992 0.897 0.992

Recall 0.996 0.984 0.996 0.909

f1 0.948 0.988 0.944 0.949

Implementation Details. The first step of the data preprocessing requires
settings the values for the Drain parser. The values for the similarity and depth
were set to 0.5, 0.4 and 4, 4, for the logs and traces accordingly. These values
provide a concise template as evaluated by the domain expert. The N embedding
is set to 256. For the window size parameter for the traces the value is set to
3. For optimization of the cost functions for the single and multiple modalities
methods, we use SGD solver with standard values for the learning rate = 0.001
and momentum = 0.9. The batchsize is set to 256 as a commonly chosen values.
The number of epochs is 100 for all of the tested methods.

For the anomaly detection procedure we further require the logs top k and
trace top k parameters. They are set to 20 and 1 accordingly. For the error
threshold on the anomaly score, the best value between 0.05 and 1 with a step
of 0.05 chosen is.

4.2 Results

Table 1 summarize the results from the experiments. Firstly, one can observe
that the results from the single modalities methods show that for the logs and
traces, individually the approach can provide good results. It shows that the
assumption made by the NTP task solver is sufficient for successful modelling
of the normal state of the system.

Comparison of the results from the columns Trace-joint and Trace-single sug-
gest that there is an improvement of the results for the traces for the multimodal
method. More specifically, there can be observed improved value on the recall for
the joint model for the traces in comparison to the single one. This suggests that
the addition of the additional information from the logs can increase the num-
ber of correct predictions for the anomalous traces. The improvement is further
depicted in the increased value for the F1 score on the joint traces. The results
on the logs do not seem that change too much. One explanation of this behaviour
is that the granularity of the information from the logs is truncated on the level
of the data source with a lower frequency of generation - the trace is harder for
the information in the trace to be transferred to the logs. The information that
the multimodal method is receiving from the logs when it is aiming to predict
the next relevant span complements the information as obtained just from the
sequence of spans individually.



Multi-source Anomaly Detection in Distributed IT Systems 211

Fig. 3. Span2Vec embedding of the events in the tracing data from the whole vocabu-
lary of spans for the three different workloads.

4.3 Span2Vec and Log2Vec

One element of the method is the ability to learn to embed both the logs and
spans. The logs and spans are composed of words represented as vectors. The
vectors are learned during the optimization procedure. Hence are optimized for
the specific NTP task. Since the logs and spans are linear combinations from
these words, pooling over the words belonging to the same span/log can be used
to provide a unique vector mapping for them.

Figure 3 depicts a two-dimensional representation of the vector space of
the spans embeddings. Three operations are executed. Close observation reviles
that spans that are specific for a workload occur close to one another, while
the ones that are shared co-occur in groups of their owns. For example, the
spans GET /v2.0/images/, PUT /v2.0/image/, GET /v2/images/ and POST
/v2.0/networks/ are unique for create delete image workload. As it can be
observed, these spans are very close to one another in comparison to the other
spans like the pair POST /v2.0/networks and DELETE /v2.0/network/. On the
other side, the artificially added spans like START and STOP or the authen-
tication span each of the workloads is utilizing are grouped, separated from
the workload-specific spans. Close inspection of the Euclidean distance between
the spans confirms the observations from the TSNE vector representation. The
importance of these embeddings is the most emphasised in their future reuse for
warm starting the methods. This can reduce the adoption time and the difficulty
when a new machine model is deployed in production.



212 J. Bogatinovski and S. Nedelkoski

5 Conclusion

In this work, we presented a novel method for multi-source anomaly detection
in distributed systems. It uses data from two complementary different modal-
ities describing the behaviour of the distributed system - logs and traces. We
utilize the next template prediction (NTP) task as a pseudo task for anomaly
detection. It is based on the assumption that the relevant information from the
program execution workflow can be preserved into one vector. Then it uses the
corresponding vector to predict the most relevant template to appear. To detect
the anomaly, a post-processing step that acts on the predictions of the NTP task
is used.

The results show that the multimodal approach can improve the scores for
anomaly detection for multiple modalities in comparison to the single modalities
of logs and traces. The information that the logs and traces are preserving is com-
plementary and the model can exploit it. Furthermore, the method can produce
vector representation for both the logs and traces. These vector embeddings are
used as a good bias for transferring and reusing the accumulated knowledge for
faster training and adaptation.

In future work, we would investigate how adding additional information from
the metric data can be incorporated into the model. It will allow for the creation
of a unified model of the whole system behaviour, making the further processes
of AIOps life-cycle easier. Additionally, we would investigate transfer learning
approaches based on the generated embeddings. Specifically, we are interested
in investigating how the learned embeddings can be reused for other types of
workloads with a final aim to reduce the deploy time of the machine learning
model in production.

References

1. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. Association for
Computing Machinery, New York, NY, United States, pp. 1285–1298 (2017)

2. He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: Towards automated log parsing for large-
scale log data analysis. IEEE Trans. Dependable Secure Comput. 15, 931–944
(2018)

3. He, P., Zhu, J., Zheng, Z., Lyu, M.: Drain: An online log parsing approach with fixed
depth tree. In: IEEE International Conference on Web Services (ICWS). Curran
Associates, Red Hook, NY, USA, pp. 33–40 (2017)

4. Ikeda, Y., Ishibashi, K., Nakano, Y., Watanabe, K., Kawahara, R.: Anomaly detec-
tion and interpretation using multimodal autoencoder and sparse optimization.
arXiv preprint arXiv:1812.07136 (2018)

5. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs
for system problem detection. In: Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference. USENIX Association, USA, p. 24 (2010)

6. Meng, W., et al.: Loganomaly: unsupervised detection of sequential and quantita-
tive anomalies in unstructured logs. In: Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-19. International Joint
Conferences on Artificial Intelligence Organization, pp. 4739–4745 (2019)

http://arxiv.org/abs/1812.07136


Multi-source Anomaly Detection in Distributed IT Systems 213

7. Nedelkoski, S., Bogatinovski, J., Acker, A., Cardoso, J., Kao, O.: Self-supervised
log parsing. arXiv preprint arXiv:2003.07905 (2020)

8. Nedelkoski, S., Bogatinovski, J., Mandapati, A.K., Becker, S., Cardoso, J., Kao,
O.: Multi-source distributed system data for AI-powered analytics. In: Brogi, A.,
Zimmermann, W., Kritikos, K. (eds.) ESOCC 2020. LNCS, vol. 12054, pp. 161–176.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44769-4 13

9. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection and classification using
distributed tracing and deep learning. In: 19th IEEE/ACM International Sympo-
sium on Cluster. Cloud and Grid Computing (CCGRID), IEEE Computer Society,
Los Alamitos, CA, USA, pp. 241–250 (2019)

10. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection from system tracing data
using multimodal deep learning. In: 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD). IEEE Computer Society, Los Alamitos, CA, USA,
pp. 179–186 (2019)

11. Park, D., Erickson, Z., Bhattacharjee, T., Kemp, C.C.: Multimodal execution mon-
itoring for anomaly detection during robot manipulation. In: IEEE International
Conference on Robotics and Automation (ICRA). Curran Associates, Red Hook,
NY, USA, pp. 407–414 (2016)

12. Sridharan, C.: Distributed Systems Observability: A Guide to Building Robust
Systems. O’Reilly Media (2018)

13. Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep boltzmann
machines. J. Mach. Learn. Res. 15, 2949–2980 (2014)

14. Tang, L., Li, T., Perng, C.S.: Logsig: generating system events from raw textual
logs. In: Proceedings of the 20th ACM International Conference on Information
and Knowledge Management. Association for Computing Machinery, New York,
NY, USA, pp. 785–794 (2011)

15. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale
system problems by mining console logs. In: Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles. Association for Computing
Machinery, New York, NY, USA, p. 117–132 (2009)

16. Yang, Y., Wang, L., Gu, J., Li, Y.: Transparently capturing request execution path
for anomaly detection. arXiv preprint arXiv:2001.07276 (2020)

17. Zhang, Y., Sivasubramaniam, A.: Failure prediction in ibm bluegene/l event logs.
In: Seventh IEEE International Conference on Data Mining (ICDM 2007), pp. 583–
588 (2007)

18. Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., Lyu, M.R.: Tools and benchmarks
for automated log parsing. http://arxiv.org/abs/1811.03509 (2018)

http://arxiv.org/abs/2003.07905
https://doi.org/10.1007/978-3-030-44769-4_13
http://arxiv.org/abs/2001.07276
http://arxiv.org/abs/1811.03509

	Multi-source Anomaly Detection in Distributed IT Systems
	1 Introduction
	2 Related Work
	3 Multimodal Approach for Anomaly Detection from Heterogeneous Data
	3.1 Data Representation
	3.2 NTP: Pseudo-task for Anomaly Detection
	3.3 Single Modality Anomaly Detection
	3.4 Multimodal LSTM
	3.5 Anomaly Detection

	4 Experiments and Results
	4.1 Experiments
	4.2 Results
	4.3 Span2Vec and Log2Vec

	5 Conclusion
	References




