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Abstract. IT systems of today are becoming larger and more com-
plex, rendering their human supervision more difficult. Artificial Intel-
ligence for IT Operations (AIOps) has been proposed to tackle modern
IT administration challenges thanks to AI and Big Data. However, past
AIOps contributions are scattered, unorganized and missing a common
terminology convention, which renders their discovery and comparison
impractical. In this work, we conduct an in-depth mapping study to
collect and organize the numerous scattered contributions to AIOps in a
unique reference index. We create an AIOps taxonomy to build a founda-
tion for future contributions and allow an efficient comparison of AIOps
papers treating similar problems. We investigate temporal trends and
classify AIOps contributions based on the choice of algorithms, data
sources and the target components. Our results show a recent and grow-
ing interest towards AIOps, specifically to those contributions treating
failure-related tasks (62%), such as anomaly detection and root cause
analysis.

Keywords: AIOps · Operations and Maintenance · Artificial
Intelligence

1 Introduction

Modern society is increasingly dependent on large-scale IT infrastructures. At
the same time, the latest IT challenges impose higher levels of reliability and
efficiency on computer systems. Because of the large increase in size and com-
plexity of these systems, IT operators are increasingly challenged while per-
forming tedious administration tasks manually. This has sparked in recent years
much interest towards the study of self-managing and autonomic computing sys-
tems to improve efficiency and responsiveness of IT services. While many static
algorithmic solutions have been proposed, these automated solutions often show
limitations in terms of adaptiveness and scalability. The presence of large data
volumes in different modalities motivates the investigation of intelligent learning
systems, able to adapt their behavior to new observations and situations.
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Artificial Intelligence for IT Operations (AIOps) investigates the use of Arti-
ficial Intelligence (AI) for the management and improvement of IT services.
AIOps relies Machine Learning, Big Data, and analytic technologies to monitor
computer infrastructures and provide proactive insights and recommendations to
reduce failures, improve mean-time-to-recovery (MTTR) and allocate computing
resources efficiently [3]. AIOps offers a wide, diverse set of tools for several appli-
cations, from efficient resource management and scheduling to complex failure
management tasks such as failure prediction, anomaly detection and remedia-
tion [13,23]. However, being a recent and cross-disciplinary field, AIOps is still
a largely unstructured research area. The existing contributions are scattered
across different conferences and apply different terminology conventions. More-
over, the high number of application areas renders the search and collection of
relevant papers difficult. Some previous systematic works only treat single tasks
or subareas inside AIOps [20,31]. This motivates the need for a complete and
updated study of AIOps contributions.

In this paper, we present in-depth analysis of AIOps to cover for these limita-
tions. We have identified and extracted over 1000 AIOps contributions through
a systematic mapping study, enabling us to delineate common trends, problems
and tools. First, we provide an in-depth description of the methodology followed
in our mapping study (Sect. 2), reporting and motivating our planning choices
regarding problem definition, search, selection and mapping. Then, we present
and discuss the results drawn from our study, including the identification of most
common topics, data sources, and target components (Sect. 3). Finally, Sect. 4
summarizes the outcomes and conclusions treated in this work.

2 Methodology

2.1 Systematic Mapping Studies

A systematic mapping study (SMS) is a research methodology widely adopted in
many research areas, including software engineering [34]. The ultimate goal of a
SMS is to provide an overview of a specific research area, to obtain a set of related
papers and to delineate trends present inside such area. Relevant papers are
collected via predefined search and selection techniques and research trends are
identified using categorization techniques across different aspects of the identified
papers, e.g. topic or contribution type. We choose to perform a SMS because we
are interested in gathering contributions and obtaining statistical insights about
AIOps, such as the distribution of works in different subareas and the presence
of temporal trends for particular topics. SMSs have also been shown to increase
the effectiveness of follow-up systematic literature reviews [34]. To this end, we
have also used our systematic mapping study to collect references for a survey
on failure management in AIOps separately published.

2.2 Planning

According to the step outline followed in [34], a systematic mapping study is
composed of:
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– Formulation, i.e. express the goals intended for the study through research
questions. Equally important is to clearly define the scope of investigation;

– Search, i.e. define strategies to obtain a sufficiently high number of papers
within the scope of investigation. This comprises the selection of one or more
search strategies (database search, manual search, reference search, etc.);

– Selection (or screening), i.e. define and apply a set of inclusion/exclusion
criteria for identifying relevant papers inside the search result set;

– Data Extraction and Mapping, i.e. gather the information required to
map the selected papers into predefined categorization scheme(s). Finally,
results are presented in graphical form, such as histograms or bubble plots.

The next sections illustrate and motivate our choices regarding these four steps
for our systematic mapping study in AIOps.

2.3 Formulation

The main goal of this mapping study is to identify the extent of past research
in AIOps. In particular, we would like to identify a representative set of AIOps
contributions which can be grouped based on the similarity of goals, employed
data sources and target system components. We also wish to understand the
relative distribution of publications within these categories and the temporal
implications involved. Formally, we articulate the following research questions:

RQ1. What categories can be observed while classifying AIOps con-
tributions in scientific literature?

RQ2. What is the distribution of papers in such categories?
RQ3. Which temporal trends can be observed for the field of AIOps?

In terms of scope, we express the boundaries of AIOps as the union of goals
and problems in IT Operations when dealt with AI techniques. To circumvent
ambiguity about the term AI, we adopt an inclusive convention where we con-
sider AI both date-driven approaches, such as Machine Learning and data min-
ing, as well as goal-based approaches, such as reasoning, search and optimization
approaches. However, we mostly concentrate our efforts on the first category due
to its stronger presence and connection to AIOps methodologies (e.g. data col-
lection).

2.4 Search and Selection

Selection Criteria. We start illustrating the selection principles beforehand,
so that the discussion will appear clearer when we describe our result collec-
tion strategy, composed of search and selection altogether. In terms of inclusion
criteria, we define only one relevance criterion, based on the main topic of the
document. Following from our discussion on scoping such inclusion criterion
comprises two necessary conditions:
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Table 1. The two keyword sets obtained via PICO used for database search.

AI Keywords IT Operations Keywords

(“AI” OR “artificial intelligence”)
“classification”
“clustering”

“logistic regression”
“regression”

(“DL” OR “deep learning”)
(“ML” OR “Machine Learning”)

(“inference” OR “logic” OR “reasoning)
(“supervised” OR “unsupervised” OR

“semi-supervised” OR “reinforcement”) AND (“learning”)
(“support vector machine” OR “SVM”)

(“tree” OR “tree-based” OR “trees” OR “forest”)
((“bayesian” OR “neural”) AND “network”)
(((“hidden” AND “markov”) OR (“gaussian”

AND “mixture”)) AND “model”)
((“datacenter” OR “data center”) AND “management”)

(“DevOps” OR “site reliability engineering”
OR “SRE”) (“IT operations”)

(“anomaly detection” OR “outlier detection”)
(“cloud computing”)

(“cloud”)
(“fault detection” OR “failure detection”)

(“fault localization” OR “failure localization”)
(“fault prediction” OR “failure prediction”)
(“fault prevention” OR “failure prevention”)

(“log” OR “logs” OR “log analysis”)
(“metrics” OR “KPI” OR “key performance indicator”)

(“remediation” OR “recovery”)
(“root-cause analysis” OR “root cause analysis”)

(“service desk automation”)
(“tracing” OR “trace” OR “traces”)

– The document references one or more AI methods. These mentions can either
be part of the implementation or as part of its discussion/analysis (e.g. in a
survey). Any mention to AI algorithms employed by others (i.e. mentioned
in the related work section or as baseline comparison) that is not strictly the
focus of the document, is not considered valid;

– The document applies its concepts to some kind of IT system management.
We therefore exclude papers with no specific target domain or with a target
domain outside of IT Operations.

In terms of exclusion criteria, we define the following as exclusion rules:

– The language of the document is not English;
– The document is not accessible online;
– The document does not belong to the following categories: scientific article

(conference paper, journal article), book, white paper;
– The main topic of the document is one of the following: cybersecurity, indus-

trial process control, cyber-physical systems, and optical sensor networks.

For the special case of survey and review papers, we consider them relevant as
long while carrying out our mapping study, but we then exclude them from our
final result set, as these articles are useful to find other connected works through
references, but they do not constitute novel contributions to the field.

Database Search. For the search process, database search represents the first
and most important step, as it aims to provide the highest number of results and
perform an initial screening of irrelevant papers. We perform database search in
three steps: keywording, query construction and result polling. For keywording
we use the PICO technique presented in [34] to derive a set of keywords for AI
and a set of keywords for IT Operations. The keywords are listed in Table 1.
Then, following our scoping considerations, we construct queries so that they
return results where both AI and IT Operations are present. In particular, we
apply logic conjunction of keywords across all combinations of the two keyword
sets (e.g. “logistic regression” and “cloud computing”). This helps enforcing



114 P. Notaro et al.

precision in our search results. For keywords with synonyms and abbreviations,
we allow all equivalent expressions via OR disjunction. We also perform general
search queries, related to the topic as a whole (e.g. “AIOps”). Finally, we group
some queries with common terms to reduce the number of queries.

We select three online search databases that are appropriate for the scope of
investigation: IEEE Xplore, ACM Digital Library and arXiv. For each query we
restrict our analysis to the top 2000 results returned. We aggregate results from
all searches in one large set of papers, removing duplicates and annotating for
each item corresponding search metadata (e.g. number of hits, index position in
corresponding searches, etc.). The result from this step consists of 83817 unique
articles. For each item we collect the title, authors, year, publication venue,
contribution type and citation count (from Google Scholar).

Preliminary Filtering and Ranking-Based Selection. In the filtering step
we start improving the quality of our selection of papers. First, papers are auto-
matically excluded based on publication venue, for those venues that are clearly
irrelevant for topic reasons (e.g. meteorology). We also exclude based on the year
of publication (year <1990) as it precedes the advent of large-scale IT services.
By doing so, we can exclude approximately 8000 elements.

Usually at this point, a full-text analysis would be performed on all the avail-
able papers to screen relevant contributions using the above cited selection rules.
Although we partly filtered results, it is still not feasible to perform an exhaus-
tive selection analysis, even as simple as filtering by title. It is also impractical
to attempt an automated selection by content, as it is not clear how to perform
an efficient, high-recall, high-precision text classification without supervision.
Therefore, before proceeding with the rest of the search and selection steps, we
apply a ranking procedure on these intermediate results, so that we can priori-
tize investigation of more relevant papers. We apply the exclusion and inclusion
rules of Sect. 2.4 to the papers examined in ranking order.

This approximate procedure however raises the question of when it is con-
venient to stop our selection and discard the remaining items. To solve this, we
develop a new approach from our observations of ranked items. We base the
method on the following assumption: a considerable ratio of relevant papers can
be identified by ranking and selecting top results using different relevance cri-
teria (conference, position index in the query result set, number of hits in all
queries, etc.), but in this sorting scenario we also observe a long-tail distribu-
tion of relevant documents, i.e. some relevant papers appear in the last positions
even after sorting with our relevance heuristics (see Fig. 1). This is coherent with
the known impossibility of performing exhaustive systematic literature reviews
and mapping studies, as completing the long tail provides less results at the
expense of a larger research effort. We assume the ratio of relevant papers in the
long tail to be constant and comparable in magnitude to the number of relevant
papers when sampled randomly from the result set. Based on this assumption,
we proceed as follows:
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(a) (b)

Fig. 1. Estimated relevance probability for collected papers (y-axis), as a function of
the index in the result set (x-axis, in thousands), with paper arranged: (a) in random
order (b) using a relevance heuristic based on search hits. We can observe how, thanks
to the heuristic (b), the majority of relevant papers can be identified by examining
only a small fraction of the set (the top results on the left side).

– We start screening all papers in the result set, ranked according to different
relevance heuristics (e.g. number of hits in queries), and we observe the ratio
of relevant papers identified over time;

– We examine the same papers in random order, and measure the same ratio;
– When the two ratios are comparable, we assert we reached the tail of the

distribution of relevant papers and stop examining and selecting new papers.

As sorting criteria, we use the number of hits in the search performed in the
previous step, as well as other more complex heuristics, taking into account the
index position in result sets and the number of citations. When examining a
paper, we look into the full content to identify concepts related to our selection
criteria previously illustrated. As done previously with search results, we gather
relevant papers in one unique group. Using this stopping criterion, we conclude
this selection step when we have identified 430 relevant papers.

2.5 Additional Search Techniques

The “early stopping” criterion previously described, while allowing a feasible
and comprehensive selection strategy across thousands of contributions, has a
natural tendency towards discarding relevant papers. We also expect to miss
other relevant papers, not present in the initial set of 83817, because they were
not identified by our database search. To cover for these limitations, we apply
other search techniques in addition to database search. Differing from before, we
here apply our selection criteria exhaustively for each document retrieved.

Reference Search. For each of the 430 relevant papers identified in the previ-
ous step, we search inside their cited references. In particular, we adopt backward
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Table 2. Sample k-shingles with relevance probability (and total occurrences).

k=1 k=2 k=3

tpc-w, 1.00 (13)
log-based, 0.92 (11)

sla, 0.84 (48)
stragglers, 0.83 (10)

vm, 0.83 (59)

defect prediction, 1.00 (34)
(work)load prediction, 1.00 (32)

software aging, 1.00 (13)
resource allocation, 1.00 (6)
hardware failures, 0.89 (8)

software defect prediction, 1.00 (22)
disk failure prediction, 1.00 (8)

failure prediction model, 1.00 (7)
cloud resource provisioning, 1.00 (5)

automatic anomaly detection, 0.88 (7)

snowball sampling [18]: we include in our relevant set all papers previously cited
by a relevant paper whenever they fulfill the selection requirements mentioned
above. By doing so, we obtain 631 relevant elements, for a total of 1061.

Conference Search. Reference search allows to identify prominent contribu-
tions frequently mentioned by other authors. A drawback is the introduction of
bias towards specific research groups and authors. We also observed how ref-
erence search rewards specific tasks and research fields as they are typically
more cited. We therefore apply other search techniques to compensate for these
facts. We perform a manual search by inspecting papers published in relevant
conferences. These relevant conferences are identified via correlation with other
relevant papers and have also been confirmed by experts in the field. We look at
the latest 3 editions of each conference, in an effort to compensate the sampling
of dated papers performed by reference search. We obtain 5 more papers with
this method.

Iterative Search Improvement. To conclude our search, we attempt at
improving our initial guess on IT Operations keywords via analysis of the avail-
able text content (text and abstract). Using our relevant paper set as positive
samples, we perform a statistical analysis to identify k-shingles (sets of k consec-
utive tokens) that appear often in relevant documents (Table 2). In particular,
we measure the document relevance probability given the set of shingles observed
in the available text content. We choose k = 1, . . . , 5. We use these shingles as
keywords to construct new queries along with previously used AI keywords. We
here limit the collection to 20 results per query. Thanks to this step, we identify
20 new relevant papers. As a by-product, we get in contact with frequently cited
concepts and keywords in AIOps, later useful for taxonomy and classification.

2.6 Data Extraction and Categorization

After obtaining the result set of relevant papers (counting 1086 contributions),
we analyze the available information to draw quantitative results and answer
our research questions. We describe here the data extraction process and the
analysis techniques employed to gather insights and trends for the AIOps field.

First, we classify the relevant papers according to target components and
data sources. Target components indicate a high-level piece of software or hard-
ware in an IT system that the document tries to enhance (e.g. hard drive for hard
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Table 3. Selection of result papers grouped by data sources, targets and
(sub)categories.
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[27] • • 1.1

[32] • • • 1.2

[16] • • • 1.3

[41] • • • • 1.3

[29] • • 1.4

[47] • • 2.1

[14] • • • 2.1

[12] • • • 2.1

[46] • • • 2.1

[8] • • • 2.2

[11] • • • 2.2

[17] • • • • 2.2

[35] • • • • 2.2

[24] • • • 2.2

[37] • • • • • 2.2

[45] • • 2.2

[43] • • • 3.1

[42] • • 3.1

[40] • • • • 3.1

[21] • • • 3.1

[22] • • • • 3.1
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[15] • • 3.1

[10] • • • • 3.1

[6] • • • 3.1

[28] • • 3.1

[30] • • • 3.2

[49] • • • 3.3

[1] • • • • 4.1

[33] • • • • 4.1

[5] • • • 4.1

[44] • • • 4.2

[4] • • • • 4.2

[19] • • • 4.2

[9] • • • 4.2

[36] • • • 4.3

[7] • • • • 4.3

[26] • • • 4.3

[2] • • • 4.3

[39] • • • 5.1

[48] • • • 5.2

[25] • • • • 5.2

[38] • • • • 5.3

(Sub)Category Legend

1.1 Software Defect Prediction 2.2 System Failure Prediction 4.2 Root Cause Diagnosis

1.2 Fault Injection 3.1 Anomaly Detection 4.3 RCA - Others

1.3 Software Rejuvenation 3.2 Internet Traffic Classification 5.1 Incident Triage

1.4 Checkpointing 3.3 Log Enhancement 5.2 Solution Recommendation

2.1 Hardware Failure Prediction 4.1 Fault Localization 5.3 Recovery

disk failure prediction). We group components in five high-level categories: code,
application, hardware, network and datacenter. Data sources provide an indica-
tion of the input information of the algorithm (such as logs, metrics, or execution
traces). Data sources are categorized in source code, testing resources, system
metrics, key performance indicators (KPIs), network traffic, topology, incident
reports, logs and traces. the “AI Method” axis denotes the actual algorithm
employed, with similar methods aggregated in bigger classes to avoid excessive
fragmentation (e.g. ‘clustering’ may contain both k-means and agglomerative
hierarchical clustering approaches). Table 3 presents a selection of papers from
the result set with the corresponding target, source and category annotation.

Then, we use the result set to infer a taxonomy based on tasks and target
goals. The taxonomy is depicted in Fig. 2. We divide in AIOps contributions in
failure management (FM), the study on how to deal with undesired behavior
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Fig. 2. Taxonomy of AIOps as observed in the identified contributions

Fig. 3. Left: distribution of AIOps papers in macro-areas and categories. Right: percent
distribution of failure management papers by category in corresponding sub-categories.

in the delivery of IT services; and resource provisioning, the study of alloca-
tion of energetic, computational, storage and time resources for the optimal
delivery of IT services. Within each of these macro-areas, we further distinguish
approaches in categories based on the similarity of goals. In failure management,
these categories are failure prevention, online failure prediction, failure detection,
root cause analysis (RCA) and remediation. In resource provisioning, we divide
contributions in resource consolidation, scheduling, power management, service
composition, and workload estimation. We further choose to expand our analysis
of FM (red box of Fig. 2) by applying for this macro-area an additional subcate-
gorization based on specific problems. Examples of subcategories are checkpoint-
ing for failure prevention, or fault localization for root cause analysis (see also
Table 3).
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Fig. 4. Published papers in AIOps by year and categories from the described taxonomy.

3 Results

We now discuss the results of our mapping study. We first analyze the distri-
bution of papers in our taxonomy. The left side of Fig. 3 visualizes the distribu-
tion of identified papers by macro-area and category. Excluding papers treating
AIOps in general (8), we observe that more the majority of items (670, 62.1%)
are associated with failure management (FM), with most contributions concen-
trated in online failure prediction (26.4%), failure detection (33.7%), and root
cause analysis (26.7%); the remaining resource provisioning papers support in
large part resource consolidation, scheduling and workload prediction. On the
right side, we can observe that the most common problems in FM are software
defect prediction, system failure prediction, anomaly detection, fault localization
and root cause diagnosis. To analyze temporal trends present inside the AIOps
field, we measured the number of publications in each category by year of pub-
lication. The corresponding bar plot is depicted in Fig. 4. Overall, we observe a
large, on-growing number of publications in AIOps. We can observe how failure
detection has gained particular traction in recent years (71 publications for the
2018–2019 period) with a contribution size larger than the entire resource provi-
sioning macro-area (69 publications in the same time frame). Failure detection
is followed by root cause analysis (39) and online failure prediction (34), while
failure prevention and remediation are the areas with the smallest number of
attested contributions (11 and 5, respectively).

4 Conclusion

In this paper, we presented our contribution towards better structuring the
AIOps field. We planned and conducted a systematic mapping study by means
of pre-established formulation, search, selection, and categorization techniques,
thanks to which we collected more than 1000 contributions and grouped into
several categories thanks to our proposed taxonomy, and differing substantially
in terms of goals, data sources and target components. In our result section,
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we have shown how the majority of papers address failures in different forms.
From a time perspective, we observed a generalized on-growing research interest,
espcially for tasks such as anomaly detection and root cause analysis.
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