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Abstract. This paper presents a Bayesian Network approach to model
and forecast the daily return direction of the Lima stock Exchange gen-
eral index using foreign market’s information. Thirteen worldwide stock
market indices were used along with the copper future that is negotiated
in New York.

The proposed approach was compared against popular machine learn-
ing methods, including decision tree, SVM, Multilayer Perceptron and
Long short-term memory networks. The results showed competitive
results at classifying both positive and negative classes. The approach
allows graphical representation of the relationships between the markets,
which facilitate the understanding on the target market in the global con-
text. A web application was developed to demonstrate the advantages
of the proposed approach. To the best of our knowledge, this is the first
effort to model the influences of the main stock markets around the world
on the Lima Stock Exchange general index.

Keywords: Stock market index prediction · Bayesian networks ·
S&P/BVL

1 Introduction

Predicting the closing direction of stock market indices is an important task,
since investors could benefit from it to devise strategies for trading the stocks
comprising the index, thereby increasing their potential for future profit. How-
ever, predicting the stock index direction is a challenging problem due to the
complex and stochastic nature of the markets. Several machine learning meth-
ods have been proposed to address this task, including: Support Vector Machines
[13,14,17,22,29], Tree-based classifiers [2], Fuzzy Inference systems [4–6,15,25],
Artificial Neural Networks (ANN) [1,11,12,26], Neuro-Fuzzy systems [3,24],
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Bayesian networks [18,26], Hidden Markov models [30] and more recently, Deep
Learning models [7,8,10,23,28].

Despite this considerable amount of research, the focus has been primarily on
improving predictive performance by devising new model designs or by search-
ing for new informative variables to incorporate into the models. Regarding the
latter, a large proportion of published articles proposes to use predictor vari-
ables derived from the same index or from sources of information generated in
the same target market, like economic or sentiment indicators. Few works have
described models with predictor variables from other markets. One of which
came from Sung and So [20], which analyzed various interrelated world stock
market indices to extract association rules for predicting daily changes of the
Korea Composite Stock Price Index (KOSPI). Their methodology was able to
find some unexpected association patterns among global stock market indices
that were useful to forecast the target market and understand its behavior in
the global context. In addition, following on from this, a recent article from
Malagrino et al. [18] described a Bayesian Network (BN) approach to model the
conditional dependencies between iBOVESPA index (the main index in the Sao
Paulo Stock Exchange) and different stock market indices from around the globe.
The accuracy results were comparable to the obtained by some popular machine
learning methods using single market data, but its simplicity was remarkable,
since it only used closing directions values from foreign stock market indices.

According to the findings of Malagrino’s work, BNs can be a useful tool not
just to forecast stock indices, but also to model the interrelationships among the
markets. However, the simplifications made in that work by grouping the indices
by their home continent limited the understanding whether modeling the indices
as individual variables is a worthwhile path. This paper describes a Bayesian
Network approach to model and forecast the daily closing direction of the Lima
Stock Exchange General Index (S&P/BVL) based on information from 13 foreign
market indices. Separately to the work of Malagrino et al. each individual index
is modelled as a random variable, thus representing the full joint probability
distribution among the different markets. An exhaustive investigation evaluates
the appropriate time period for the forecasting task and subsequently compare
the results against several popular machine learning models. To the best of our
knowledge, this is the first effort trying to model and forecast the S&P/BVL
index with information from global markets.

2 Materials and Methods

We collected stock index daily closing prices from Yahoo! Finance’s website from
13 representative markets: Dow Jones (USA), S&P 500 (USA), IBEX 35 (Spain),
CAC 40 (France), FTSE 100 (UK), DAX (Germany), BSE Sensex (India), Hang
Seng (China), Nikkei 225 (Japan), S&P/ASX 200 (Australia), IPC Mexico (Mex-
ico), iBOVESPA (Brasil). We also collected historical Copper Futures prices
(that is negotiated in New York Stock Exchange) due to the importance of this
commodity in the target market. The period of the collected data was from
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03/30/2000 to 03/30/2020, corresponding to a 7306 d. Additionaly, the histor-
ical opening and closing prices from the target index S&P/BVL Peru General
(Peru) were also collected.

Figure 1 shows the kernel density distribution of each collected index. No
index is stationary or follows normal distribution.

Fig. 1. Kernel density estimate of the different index values

In order to facilitate the modeling with BNs we transformed each index series
into a discrete one: values greater than or equal to the previous day are assigned
the discrete value “1”, otherwise is assigned “0”. The resulting discrete dataset
was composed by 5205 days (excluding weekends and days where all the markets
were closed).

The indices used in this study are from different time zones, which means
that the closing time of each stock market may not be the same (Table 1). As our
intention is to capture potential relationships from the foreign stock markets with
respect to the Lima Stock market in order to predict it, we have constraints in the
search of such relationships, which is dictated by the order in which the markets
close. Thus, the variables representing the indices are defined and ordered by
their closing time relative to the closing time of Lima Stock Exchange. Figure 2
illustrates this, where the longitudinal distance to Lima indicates the difference
of a market closing time with respect to that of Lima. Variables in the same
longitudinal position represent markets that have the same closing time. For the
markets that close at the same time or after Lima, the corresponding variables
represent values from the previous day (eg. SP500, DJI, Mexico and Copper).
No left-to-right relationships are allowed in the BN structure learning phase in
order to respect the flow of information produced by the market closings.



Modeling and Predicting the Lima Stock Exchange General Index 157

Table 1. Closing times of the modeled stock markets

Index Stock market Closing time (GMT+00)

Copper Future New York Stock Exchange 22:00 h

IPC Mexico Mexico Stock Exchange 22:00 h

S&P500 New York Stock Exchange 21:00 h

Dow Jones New York Stock Exchange 21:00 h

iBOVESPA Brazil Stock Exchange 21:00 h

S&P/BVL Peru General Lima Stock Exchange 21:00 h

CAC 40 Euronext Paris 16:30 h

DAX Frankfurt Stock Exchange 16:30 h

IBEX35 Madrid Stock Exchange 16:30 h

FTSE 100 London Stock Exchange 16:30 h

BSE Sensex Bombay Stock Exchange 10:00 h

Hang Seng Hong Kong Stock Exchange 08:00 h

Nikkei 225 Tokyo Stock Exchange 06:00 h

S&P/ASX 200 Australian Securities Exchange 06:00 h

Fig. 2. Temporal order of the indices stock markets closing times

We call the set of variables defined according to Fig. 2 as 24 h set because
they all represent indices closed up to 24 h before the Lima stock market. In
addition, we generated a 48 h set that include all the variables of 24 h set plus
those that represent the closing information of the indices on the previous day
(this results in a set of 30 variables and the Lima target variable). In a similar
way we generated a 72 h set comprising of 45 variables and the target variable.
In Sect. 3 we discuss the results obtained with each set of variables.

For each set of variables we arranged its corresponding dataset. Missing val-
ues due to holidays were treated following two different methods. The first cor-
responds to the removal of all data rows corresponding to the days where some
market is on holiday, this resulted in a reduction of the data to a total of 3567 d
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where all the markets were open. The second method involves imputing the miss-
ing value by copying the value from the previous working day. The results with
these two methods will later be discussed in Sect. 3.

To learn the structure (acyclic directed graph - DAG) of the BN models we
experimented with two algorithms: Hill Climbing and Max-min Hill Climbing
[27].

As mentioned before, the learning was constrained to follow the temporal
order of the closing times. For this we constructed lists of forbidden edges (black-
lists) so the learning algorithms do not consider adding such edges in the struc-
ture discovery process. The size of the blacklist was 266 for the 24 h dataset, 1044
for the 48 h dataset and 2332 for the 72 h dataset. After learning the structure of
the models, their parameters (conditional probability tables of the variables) are
computed by using Maximum Likelihood Estimations from the corresponding
dataset.

3 Experiments and Results

Here we describe experiments and results obtained with our BN approach and
alternative methods.

As alternative methods we tested the following algorithms: decision trees
(DT), support vector machine (SVM) with radial and polynomial kernels, Mul-
tilayer Perceptron (MLP) and Long short-term memory (LSTM) neural architec-
tures. These methods were chosen for their popularity and good results reported
in the field [9,19].

Prior to performing the experiments we first split the data using a 80:20
ratio (the first 80% for training and the remaining 20% for testing). The 20% set
was reserved for comparisons between the final optimized models for each model
type. First, we describe the experiments with our approach and then proceed to
describe the experiments with alternative models.

Bayesian Networks (BN). With the 80% training data we follow a walk-
forward validation strategy in order to evaluate the effectiveness of each combi-
nation of imputation method, set of variables (time window) and BN structure
learning algorithm (12 combinations in total) and identify the optimal one. This
consisted of splitting the data in n temporal blocks and iterating from the second
one, using all the previous blocks as a training set to induce the BN model and
testing it on the iterating block to obtain performance metrics. After doing all
n-1 iterations we obtain averaged scores. As performance metrics we register:
Accuracy, Precision, Recall, F1-score and G-mean.

Table 2 shows the average G-mean scores obtained in the walk-forward val-
idation of each combination. G-mean is worth observing here since it penalize
models that present poor results in any of the classes (we consider that false
positives and false negatives are equally important). All configurations presented
close scores, ranging from 0.6160 to 0.6344. The best result was obtained with
the Hill Climbing learning algorithm, with the dropping-rows-with-nulls as treat-
ment of missing values and using the time window of 24 h. In all time windows
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the Hill Climbing algorithm presented better results than Max-min Hill Climb-
ing. In relation to the missing values treatment, the dropping-rows-with-nulls
strategy tends to present slightly better results than the imputation by dupli-
cating the previous value. This might indicate that adding artificial data adds
noise to the model or that the imputation method applied may not be the most
appropriate for this problem. The small differences in scores between the config-
urations (lower than 0.02) suggests that there is not a superior better treatment,
learning algorithm or time window for our approach, which can also suggest that
the approach is robust to these parameters, according to the G-mean metric.

Table 2. G-mean scores of the bayesian network models

Time window Missing values treatment Structure learning algorithm G-mean

24 h Duplicating last value Max-min Hill Climbing 0.6191

24 h Duplicating last value Hill Climbing 0.6220

24 h Dropping rows with null values Max-min Hill Climbing 0.6246

24 h Dropping rows with null values Hill Climbing 0.6344

48 h Duplicating last value Max-min Hill Climbing 0.6160

48 h Duplicating last value Hill Climbing 0.6224

48 h Dropping rows with null values Max-min Hill Climbing 0.6279

48 h Dropping rows with null values Hill Climbing 0.6309

72 h Duplicating last value Max-min Hill Climbing 0.6194

72 h Duplicating last value Hill Climbing 0.6268

72 h Dropping rows with null values Max-min Hill Climbing 0.6258

72 h Dropping rows with null values Hill Climbing 0.6324

Decision Trees (DT). Decision Tree models were induced with the same 80%
training datasets used in the BN modeling. In addition, we obtained continuous
versions of the datasets to induce DT models with corresponding continuous
variables. Also, based on the results obtained in the BN experiments, we here-
inafter adopt the dropping-rows-with-nulls strategy to treat the missing values,
since it tended to present superior results. The DT learner has a set of hyper-
parameters that can affect the quality of the resulting models: the max depth
of the tree, the minimum samples split and the minimum samples per leaf. We
optimized these parameters by using a Bayesian optimization method in order to
allow a wide and smart search of the hyperparameter space. The search ranges
were: [1, training data size] for max depth; [1, 2000] for the minimum samples
to split; and [1, 100] for the minimum samples per leaf. The evaluation of each
hyperparameter combination followed the walk-forward strategy in the training
data with the G-mean as scoring metric (as in BN models). Table 3 shows the
G-mean score for the best hyperparameter configuration found in each combi-
nation of data type and time window. The results obtained with discrete data
are noticeably more accurate than those obtained with continuous data, with
almost no difference throughout the different time windows.
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Table 3. G-mean results for the best hyperparameters configurations of DT model
found by Bayesian optimization in each combination of data type and time window

Data type Time
window

Max
depth

Min samples
split

Min samples
leaf

G-mean

Discrete data 24 h 1 229 1 0.6263

Discrete data 48 h 1 462 1 0.6263

Discrete data 72 h 1 2 1 0.6265

Continuous data 24 h 2853 2 1 0.3397

Continuous data 48 h 2852 2 1 0.4084

Continuous data 72 h 2852 2 1 0.3645

Support Vector Machines (SVM). For this kind of model we experimented
two common kernels: the radial basis function kernel (RBF) (as in [13]) and
the polynomial kernel, as in [19]. Similar to DT models, main SVM hyperpa-
rameters were optimized with Bayesian optimization: for RBF kernel models
the gamma parameter was optimized in the range [0.01, 100]; for polynomial-
kernel models the degree hyperparameter was optimized in the range [1, 5]. In
all models the regularization hyperparameter (C) was optimized in the interval
[0.01, 100]. Table 4 shows results for the best hyperparameter configuration of
RBF-kernel models in each combination of data type and time window. Likewise,
Table 5 shows results for SVM model with polynomial kernels. Similar to the DT
results, the superiority of the scores obtained with discrete data is noticeable,
but minor differences exist along the different time windows in that data type.

Table 4. Results for the best hyperparameter configurations of SVM models with
RBF kernels found by Bayesian optimization in each combination of data type and
time window.

Data type Time window Regularization
parameter (C)

Gamma (γ) G-mean

Discrete data 24 h 13.86 0.01 0.6217

Discrete data 48 h 43.37 0.01 0.6303

Discrete data 72 h 2.01 0.01 0.6411

Continuous data 24 h 77.45 31.68 0.4081

Continuous data 48 h 9.52 64.70 0.3860

Continuous data 72 h 41.35 82.31 0.3577

Multilayer Perceptrons (MLP). For this kind of model we experimented
3-layer topologies, as in [16,19,21]. The number of neurons in the input layer is
fixed to the size of the set of variables. The number of neurons in the second layer
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Table 5. Results for the best hyperparameter configurations of SVM models with
polynomial kernels found by Bayesian optimization in each combination of data type
and time window.

Data type Time window Regularization
parameter (C)

Degree (D) G-mean

Discrete data 24 h 0.03 2 0.6432

Discrete data 48 h 0.12 1 0.6300

Discrete data 72 h 2.52 1 0.6434

Continuous data 24 h 83.12 2 0.3132

Continuous data 48 h 100.00 2 0.3622

Continuous data 72 h 43.85 3 0.3273

(hidden layer) is treated as a hyperparameter to be optimized in the range [10,
400]. In the third layer (output layer) there is only one neuron, which delivers
the output of the model (the support for positive classification). All neuron
units used hyperbolic tangent activation functions (tanh). To adjust weights we
used Adam method, which updated the net weights using adaptive momentum
in the backpropagation step to avoid local minima. The decay rates for the
moments of the exponential moving average of the gradient were set to 0.9 (and
0.999 for the squared gradient) and a penalty term α = 0.0001. The maximum
number of epochs was set to 1000. The learning rate was treated as another
hyperparameter to optimize in the range [0.00001, 0.5]. Table 6 shows results for
the best hyperparameter configuration of MLP models in each combination of
data type and time window. As with DT and SVM models, the discrete data
generated superior Gmean scores but with small differences between the different
time windows in that data type.

Table 6. Results for the best hyperparameter configurations of MLP models found by
Bayesian optimization in each combination of data type and time window

Data type Time window Learning rate Hidden layer size G-mean

Discrete data 24 h 0.00291 258 0.6479

Discrete data 48 h 0.00020 290 0.6449

Discrete data 72 h 0.00012 400 0.6409

Continuous data 24 h 0.06273 399 0.1459

Continuous data 48 h 0.00001 10 0.2063

Continuous data 72 h 0.00001 14 0.1422

Long Short-Term Memories (LSTM). For this kind of model we used a
topology of one input layer, two hidden LSTM layers and a dense output layer
with one neuron unit. The two LSTM layers have a dropout rate of 0.2 and
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0.1 respectively in order to prevent overfitting in training. As in MLP models,
Adam algorithm was used to update the weights in the backpropagation steps.
Binary cross entropy was the loss function used for computing error gradients.
The maximum number of training epochs was set to 5 due to the large amount
of time that this type of model demands on training.

The number of units in the LSTM layers was treated as hyperparameters
to be optimized, with the range of [10, 400] for the first layer and [10, 200] for
the second layer. The learning rate was also considered as hyperparameter to
be optimized, being between 0.00001 and 0.1. Table 7 shows results for the best
hyperparameter configuration of LSTM models in each combination of data type
and time window. Different from the other kind of models, LSTM models do not
show large differences between the results with discrete and continuous data.

Table 7. Results for the best hyperparameter configurations of LSTM models found
by Bayesian optimization in each combination of data type and time window

Data type Time window Learning rate Layer 1 size Layer 2 size G-mean

Discrete data 24 h 0.09435 10 10 0.6251

Discrete data 48 h 0.04406 10 176 0.6366

Discrete data 72 h 0.08404 10 10 0.6251

Continuous data 24 h 0.03914 89 10 0.6301

Continuous data 48 h 0.03527 58 21 0.6299

Continuous data 72 h 0.04423 10 156 0.6368

Model Comparison and Discussion
The previous experiments allowed us to identify the best set of hyperparame-
ters for each combination of model type, data type, and time window. Here we
present another set of experiments with hyperparameter-optimized models. The
aim with these experiments is to compare the forecasting abilities of the differ-
ent model-generating methods. The 20% test set is used to perform the model
comparison. We performed a 1-day walk forward validation in the test set. This
means that we iterate over the days in the test set, each time selecting a new
day for testing and using all previous historical data for training the model (with
optimized hyperparameters) and asking it to predict the closing price movement
of the selected day. After repeating this on every test day we compute the con-
fusion matrix and all associated metrics. For the case of BN model, we used Hill
Climbing as a learning algorithm in these experiments. BN models were only
evaluated on discrete data.

Table 8 shows the results of all metrics obtained by the different model types
and time windows on discrete data. Table 9, shows equivalent results with con-
tinuous data.
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Table 8. Models accuracy, precision, recall, F1-score and G-mean score with the dis-
crete dataset

Time window Model Accuracy Precision Recall F1-score G-mean

24 h Decision Tree 0.6275 0.6632 0.6531 0.6581 0.6240

24 h SVM - RBF kernel 0.6275 0.6632 0.6531 0.6581 0.6240

24 h SVM - Polynomial kernel 0.6162 0.6705 0.5918 0.6287 0.6183

24 h Multilayer Perceptron 0.6303 0.6448 0.7270 0.6835 0.6104

24 h Long short-term memory 0.6176 0.6374 0.7041 0.6691 0.6007

24 h Bayesian network 0.6232 0.6511 0.6760 0.6633 0.6147

48 h Decision Tree 0.6275 0.6632 0.6531 0.6581 0.6240

48 h SVM - RBF kernel 0.6218 0.6412 0.7066 0.6723 0.6054

48 h SVM - Polynomial kernel 0.6190 0.6546 0.6480 0.6513 0.6151

48 h Multilayer Perceptron 0.6275 0.6452 0.7143 0.6780 0.6105

48 h Long short-term memory 0.5560 0.5532 0.9949 0.7110 0.1471

48 h Bayesian network 0.6261 0.6528 0.6811 0.6667 0.6171

72 h Decision Tree 0.6269 0.6623 0.6522 0.6572 0.6236

72 h SVM - RBF kernel 0.6227 0.6533 0.6650 0.6591 0.6164

72 h SVM - Polynomial kernel 0.6269 0.6623 0.6522 0.6572 0.6236

72 h Multilayer Perceptron 0.6339 0.6533 0.7084 0.6798 0.6205

72 h Long short-term memory 0.5372 0.5864 0.5294 0.5565 0.5379

72 h Bayesian network 0.6255 0.6520 0.6803 0.6658 0.6167

Table 9. Models accuracy, precision, recall, F1-score and G-mean score with the con-
tinuous dataset

Time window Model Accuracy Precision Recall F1-score G-mean

24 h Decision Tree 0.5056 0.5506 0.5408 0.5457 0.5003

24 h SVM - RBF kernel 0.5224 0.5482 0.7398 0.6298 0.4367

24 h SVM - Polynomial kernel 0.5392 0.5580 0.7730 0.6481 0.4437

24 h Multilayer Perceptron 0.5266 0.5482 0.7832 0.6450 0.4097

24 h Long short-term memory 0.5490 0.5490 1.0000 0.7089 0.0000

48 h Decision Tree 0.4776 0.5241 0.5281 0.5260 0.4688

48 h SVM - RBF kernel 0.5224 0.5458 0.7755 0.6407 0.4077

48 h SVM - Polynomial kernel 0.5378 0.5587 0.7526 0.6413 0.4561

48 h Multilayer Perceptron 0.5224 0.5636 0.5765 0.5700 0.5130

48 h Long short-term memory 0.5490 0.5490 1.0000 0.7089 0.0000

72 h Decision Tree 0.5133 0.5561 0.5575 0.5568 0.5062

72 h SVM - RBF kernel 0.5456 0.5666 0.7289 0.6376 0.4852

72 h SVM - Polynomial kernel 0.5288 0.5528 0.7366 0.6316 0.4512

72 h Multilayer Perceptron 0.5049 0.5403 0.6522 0.5910 0.4612

72 h Long short-term memory 0.5484 0.5484 1.0000 0.7083 0.0000
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From the above results it is clear that the models trained with discrete data
tend to achieve better scores in Accuracy, Precision and G-mean. Recall results
of LSTM models learnt with continuous data were perfect (value 1), but when
inspecting the predictions it was found that such models only predict positive
labels (they are totally incapable of predicting the negative class). In the same
models the G-mean values were 0, suggesting that this is a better metric to assess
the present prediction task.

Models trained with discrete data show close G-mean scores (with the excep-
tion of the LSTM models that showed lower results). The scores ranged from
0.6054 (SVM - RBF kernel - 48 h time window) to 0.6240 (Decision Tree - 24 h
and 48 h time windows, SVM - RBF kernel - 24 h time window). Figure 3 shows
these results in graphical form, where there is no clear difference between models
along different time windows. From this graph we can confirm the large advan-
tage of the models induced with discrete data.

Fig. 3. G-mean scores for the proposed and alternative models experiments using both
discrete and continuous datasets and the three time windows

To better understand how the predictive capabilities of the models are bal-
anced in each of the classes, we plot the models in a ROC-fashion plot (True
positive rate - TPR vs True negative rate - TNR).

Figures 4 and 5 show such plots for the discrete and continuous cases respec-
tively. Off-diagonal line represents the results of a random predictor and the
diagonal line represents the results of a balanced predictor. The perfect predic-
tor is in the top right corner of the plots. With respect to the discrete case (Fig. 4)
we note that, even though all the models have close Gmean scores (except the
LSTM in 48 h and 72 h that are near to random predictors), the models present
some variability in the balance between TPR vs TNR, ranging from 0.65 to 0.73
in the TPR axis and from 0.5 to 0.6 in the TNR axis. It is interesting to note that
BN models show values closer to the center in both ranges and a small variabil-
ity to the time window when compared to the other model types. The increased
predictability of the TPR and TNR values in the BN models along with their
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Fig. 4. TPR vs TNR graph for the proposed and alternative models experiments using
discrete data and the three time windows

Fig. 5. TPR vs TNR graph for the proposed and alternative models experiments using
continuous data and the three time windows
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greater robustness to the time windows makes this approach attractive for the
closing direction prediction task.

With respect to the continuous case (Fig. 5) the models are mostly near to
the random predictions (represented by the off-diagonal). This means that the
same quantity of predictability gained in one class is lost in the other.

It is apparent that the raw continuous data pose difficulties for the stud-
ied models to learn useful patterns and some data transformation is needed to
facilitate this task, as demonstrated with the results in discretized data.

Finally, a web application was developed to show the capabilities of the pro-
posed approach in predicting the closing direction of the S&P/BVL Peru General
Index. Each hour the application connects to Yahoo Finance api and retrieves the
closing index values of the markets closed at that time. With such information
the model makes the prediction and shows it in the web application. The model
structure and conditional probability distribution are estimated every 24 h. The
model structure can be visualised in the web application, which is hosted at
https://chapi-tesis.shinyapps.io/code2/.

4 Conclusion

A Bayesian network approach was proposed to model and forecast the S&P/BVL
Peru General index, based on representative stock market indices from four con-
tinents. The predictive capabilities of the proposed approach were compared
against popular machine learning methods, showing competitive results at clas-
sifying both the positive and negative classes using different time windows. One
of the advantages of our approach is that it doesn’t require all the variables
to be known at the prediction time, which is common in stocks markets (some
indices may not be available or are still open and therefore their closing direc-
tion is unknown). This property allows us to develop the web application that
can predict the target market at any time. The approach allows us to specify
the temporal flow of information between stock markets, which gives the pos-
sibility of generating models with possible causal interpretation. Unlike many
existing models that are considered black boxes, our approach graphically repre-
sents the relationships between the dependent variables and the target variable,
facilitating the understanding of the domain.

As future works we would like to extend the approach to incorporate into
the model certain economic variables that investors usually consider in their
decisions, such as interest rates, dollar prices, GDP, etc. In the same way, we are
planning to extract sentiment indices of market news and tweets to incorporate
into our approach.
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