
Computation on Structures

Behavioural Theory, Logic, Complexity

Klaus-Dieter Schewe(B)

UIUC Institute, Zhejiang University, Haining, China
kd.schewe@intl.zju.edu.cn

Abstract. Over the last decades the field of computer science has
changed a lot. In practice we are now dealing with very complex systems,
but it seems that the theoretical foundations have not caught up with the
development. This article is dedicated to a demonstration how a mod-
ernised theory of computation may look like. The theory is centred around
the notion of algorithmic systems addressing behavioural theory, logic and
complexity theory.

Keywords: Theory of computation · Behavioural theory ·
Computation on structures · Complexity theory · Logic · Abstract
State Machines · Parallel algorithms · Insignificant choice · PTIME

Dear Egon,

The first time we met was at a Dagstuhl seminar in 1997 organised by Bern-
hard Thalheim. You were sceptical concerning my presentation on consistency
enforcement in formal specifications due to the use of predicate transformers,
but I think I could convince you that the existence proof (in infinitary logic) is
possible, though the doubts concerning their usefulness remained. We also dis-
cussed about your 1985 monograph on computation theory, logic and complexity
in the field of computer science, which in the very same year I used as a text in
an introductory course on Theoretical Computer Science. Though some of the
material was considered very demanding for the students, it was (and still is)
one of the best texts describing the links between computation theory, logic and
complexity theory, as it was handled until that time.

It took years to meet again, because Egon started to develop the very success-
ful use of Abstract State Machines (ASMs) for rigorous software development,
while I had turned my back on “formal methods” after discovering how little
the FM community was interested in mathematical foundations. This changed
again after getting to know ASMs better. I tentatively started putting Ph.D.
students on the track, and in one case the intended quick exploitation of ASMs
for database transformations became the basis of a convincing theory of parallel
algorithms.

More than 35 years passed since the publication of your monograph on com-
putation theory, logic and complexity, and over this period the field of computer
c© Springer Nature Switzerland AG 2021
A. Raschke et al. (Eds.): Börger Festschrift, LNCS 12750, pp. 266–282, 2021.
https://doi.org/10.1007/978-3-030-76020-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76020-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-76020-5_15

Computation on Structures 267

science has changed a lot. In practice we are now dealing with complex systems
of systems, but though ASMs turned out very suitable to cover the develop-
ments, it seems that the theoretical foundations have not caught up with it.
This birthday present is dedicated to a demonstration how a modernised the-
ory of computation may look like. The theory is centred around the notion of
algorithmic systems, which are harder to define than computable functions, in
particular, when all developments in computing are to be taken into account.

I will argue that behavioural theories are key to the understanding, i.e. we
require language-independent axiomatic definitions of classes of algorithmic sys-
tems that are accompanied by abstract machine models provably capturing the
class under consideration. The machine models give further rise to tailored logics
through which properties of systems in the considered class can be formalised and
verified, and to fine-tuned classifications on the grounds of complexity restric-
tions. I will outline that all extensions will be (1) conservative in the sense
that the classical theory of computation is preserved, (2) universal in the sense
that all practical developments are captured uniformly, and (3) practical in the
sense that languages associated with the abstract machine models can be used
for rigorous high-level systems design and development, and the logics can be
exploited for rigorous verification of desirable properties of systems. This links to
your newer monographs focusing on the theory and application of the Abstract
State Machine method.

1 Towards a Theory of Computation on Structures

In 1985 Egon Börger published his influential monograph on computation theory,
logic and complexity (see the English translation in [8]), which focused on the
concept of formal language as carrier of the precise expression of meaning, facts
and problems, and the concept of algorithm or calculus, i.e. a formally operating
procedure for the solution of precisely described questions and problems. At that
time the text was at the forefront of a modern theory of these concepts, paving
the way in which they developed first in mathematical logic and computability
theory and later in automata theory, theory of formal languages and complexity
theory.

Nonetheless, it became clear that the state of the theory left many open
problems. Computing started to stretch out into many new application areas.
Distributed computing over networks became possible, database systems facili-
tated concurrent computation, artificial intelligence ventured from a niche area
to a useful technology enabling inferential problem solving in diagnosis, control-
ling machines through software became possible, etc. Now, only 35 years later
the rapid progress in computing has led to a fascinating variety of interconnected
systems that are used to support, manage and control many aspects of our life.
There is hardly an area that has not yet been penetrated by computing, and
still there are many open challenges for the continuation of this success story.

268 K.-D. Schewe

We are now dealing with systems of systems that are

– operating in parallel exploiting synchronously multiple processor cores and
asynchronously computing resources distributed over networks,

– hybrid interacting with analogue systems with continuous behaviour,
– adaptive changing their own behaviour,
– intelligent reasoning about themselves and their environment,
– interactive communicating with their environment, and
– random depending on probability distributions.

All these developments require scientific foundations centred around compu-
tation theory, complexity and logic:

– Is there a theory of computation that faithfully covers all the aspects of
systems of computing systems that occur in practice?

– Is there a methodology grounded in such a theory of computation that permits
the definition and classification of complex systems and the provision of means
for specification, systematic development, validation and verification?

– Is there a methodology that permits reasoning about problems and their
solutions in terms of correctness and complexity?

In 1982 Chandra and Harel raised the problem, whether there exists a com-
putation model over structures that captures the complexity class PTIME rather
than Turing machines that operate over finite strings [17]. The problem reflects
the typically huge gap between the abstraction level of an algorithm or more
generally a system of algorithmic systems and the level of Turing machines. It is
not sufficient to know that deep inside the core of systems we deal with computa-
tions that given a proper string encoding can be represented by Turing machines;
instead, computation theory has to stretch to arbitrary Tarski structures that
are omnipresent in all mathematical theories, and any extension should be con-
servative in the sense that the classical theory is preserved as a representation
on the lowest level of abstraction.

A first answer was given in 1985 by Gurevich’s “new thesis” [26], which was
further elaborated in the 1995 Lipari guide [28]. The new theory emphasises
Tarski structures (aka universal algebras) to capture abstract states of systems
and evolving algebras, now known as Abstract State Machines (ASMs), as the
abstract machines capturing the algorithms on arbitrary levels of abstraction.
Egon Börger realised that these ideas do not only create a new paradigm for
the foundations of computing subsuming the classical theory, but at the same
can be exploited for rigorous systems engineering in practice thereby fulfilling
the criteria of a “software engineering” discipline that deserves this name as
envisioned in the 1968 meeting in Garmisch, where this notion was coined [32].

A remarkable success story started leading to proofs of compiler correctness
for the Warren Abstract Machine for Prolog [13], the translation from Occam
to transputers [10], the compilation of Java and the bytecode verifier [37], the
development of the sophisticated theory of ASM refinements [9], and much more.
The state of the theory and practice of ASMs is well summarised in Egon Börger’s

Computation on Structures 269

and Robert Stärk’s monograph on ASMs [16]. More recent examples are found
in the modelling companion by Börger and Raschke [12].

While the development proved that ASMs can take over the role of the formal
languages in computation theory, it took until 2000 to develop the celebrated
“sequential ASM thesis” [29], which is based on the observation that “if an
abstraction level is fixed (disregarding low-level details and a possible higher-
level picture) and the states of an algorithm reflect all the relevant information,
then a particular small instruction set suffices to model any algorithm, never
mind how abstract, by a generalised machine very closely and faithfully”. On
one hand the thesis provided a language-independent definition of the notion of
sequential algorithm giving for the first time in history a precise axiomatic defi-
nition of the notion of “algorithm” (though restricted to sequential algorithms).
On the other hand it contained the proof that all algorithms as stipulated by
the defining postulates are faithfully captured by sequential ASMs. This justi-
fied further to establish another new notion: a behavioural theory comprises a
machine-independent axiomatic definition of a class of algorithms (or more gen-
erally: algorithmic systems), an abstract machine model, and a proof that the
machine model captures the class of computations.

Starting from the first behavioural theory, the theory of sequential algorithms,
further success stories followed. Moschovakis’s critical question how recursion
could be captured was answered by the behavioural theory of recursive algorithms
[15]. A first attempt to extend the theory to parallel algorithms was undertaken by
Blass and Gurevich [5], but it was not well received due to the use of concepts such
as mailbox, display and ken that were considered too close to the machine model,
but another behavioural theory of parallel algorithms without these restrictions
was then developed in [22]. This closed the case of synchronous parallel algorithms.
A convincing behavioural theory for asynchronous algorithmic systems was devel-
oped in [14] with concurrent ASMs as the machine model capturing concurrent
algorithms, i.e. families of sequential or parallel algorithms associated with agents
that are oblivious to the actions of each other apart from recognising changes to
shared locations. Recently, a behavioural theory of reflective algorithms was devel-
oped addressing the question how to capture algorithmic systems that can adapt
their own behaviour [34].

The behavioural theories yield variants of Abstract State Machines that can
be used for rigorous systems development. Furthermore, Stärk and Nanchen devel-
oped a logic for the reasoning about deterministic ASMs [36]. As discussed in [16] it
was considered difficult to extend this logic to the case of non-deterministicASMs1.
This gap was closed in [23] by making update sets first-class objects in the theory
and proving completeness with respect to Henkin semantics. It was also shown how
the logic can be adapted to reason about concurrent ASMs [24]. An extension to
reflective ASMs was approached in [35]. On one side it shows the tight connections
between the classes of algorithmic systems handled in the behavioural theories.
On the other side it shows that the development of the logical counterpart of the
theories has not yet reached the same development state.

1 Note a full behavioural theory of non-deterministic algorithms does not yet exist.

270 K.-D. Schewe

This applies even more so to complexity theory. One of the few studies try-
ing to bring complexity theory to the theory of ASMs, which after all provide
the theory of computations on structures as asked for by Chandra and Harel, is
the theory of choiceless polynomial time (CPT) [6,7], which studies the choice-
less fragment of PTIME using PTIME bounded deterministic Abstract State
Machines. Though it was possible to show that CPT subsumes other models of
computation on structures2 such as relational machines [3], reflective relational
machines [1] and generic machines [2], it is strictly included in PTIME. If the
hope had been to exhaust PTIME the same as existential second-order logic cap-
tures NP [21], this failed. No systematic research trying to close the gap between
CPT and PTIME followed, and Gurevich posted his conjecture that there is no
logic capturing PTIME [27].

If true, it would doom all further attempts in this direction. This would
further imply that complexity theory as a whole, in particular descriptive com-
plexity theory [30] which is tighly coupled with finite model theory [20,31], could
not be based on more abstract models of computations on structures. In par-
ticular, it would not be possible to avoid dealing with string encodings using
Turing Machines. However, this consequence appears to be less evident in view
of the ASM success stories. Various attempts have been undertaken to refute
Gurevich’s conjecture either by adding quantifiers such as counting [19] or by
adding non-deterministic choice operators [4,25]. A comparison and evaluation
is contained in [18].

All these attempts failed, and the main reason for the failure is the neglec-
tion of the computations understood as yielding sequences of abstract states with
update sets defining the state transitions. Instead, only the functional relation-
ship between the input structure and the Boolean output was emphasised. This
restriction to Boolean queries blurs the subtle distinctions that become possible,
when the behavioural theory and the associated logic are taken into account. A
refutation of Gurevich’s conjecture has been achieved in [33] exploiting insignif-
icant choice3 thus leading to insignificant choice polynomial time (ICPT). Based
on the insight that choice is unavoidable to capture PTIME it is not too hard to
see that PTIME problems can be solved by polynomial time bounded ASMs with
insignificant choice, as it suffices to create an order on the set of atoms in the
base set. This construction is rather specific, as it exploits to choose only atoms,
and it permits to replace arbitrary insignificant choice ASMs by ASMs satisfy-
ing a local insignificance condition. This condition can be expressed in the logic
of non-deterministic ASMs [23,24]. To show that the extension remains within
PTIME it suffices to simulate PTIME ASMs with choices among atoms that
satisfy the local insignificance condition by PTIME Turing machines with input
strings given by the standard encoding of an ordered version of the input struc-
ture. Here the local insignificance permits to choose always the smallest atom,

2 Strictly speaking, all these previous computational models are still based on Turing
machines, which are coupled with queries on relational stores.

3 Insignificant choice imposes two conditions on the update sets yielded by a choice.
The first of these conditions is similar to semi-determinism [38].

Computation on Structures 271

and the PTIME bound results from the fact that local insignificance checking for
choices among atoms can be done in polynomial time. With this logic capturing
PTIME it then becomes possible to show that PTIME and NP differ [33].

In the remainder of this article I will further elaborate how behavioural the-
ories, associated logics and complexity work together. The emphasis will be on
parallel algorithms. In Sect. 2 I will start from the behavioural theory of parallel
algorithm, which will be extended by insignificant choice. This does not alter the
expressiveness, but justifies the use of choice rules in many practical examples
using ASMs [12]. In Sect. 3 I will proceed with the logic of non-deterministic
ASMs and outline how it needs to be modified to capture only insignificant
choice. Finally, Sect. 4 brings in polynomial time, where the presence or absence
of choice makes a significant difference. In fact, it is the difference between CPT
and ICPT. I conclude with a brief outlook in Sect. 5 emphasising that this is
just a brief demonstration of how a modernised theory of computation centred
around the notion of algorithmic systems may look like.

2 Parallel Algorithms

Let us briefly review the parallel ASM thesis [22], and extend the theory by
insignificant choice as in [33]. Note that different from classical computation
theory the behavioural theory characterises the class of parallel algorithms by
four postulates and then proves that the class is captured by the Abstract State
Machines, which is more than just defining the semantics of ASMs.

2.1 The Parallel ASM Thesis

Deterministic algorithms proceed in steps, which is reflected in the sequential
time postulate for sequential algorithms [29]. Parallel algorithms4 do not make
a change here; only the amount of updates characterising the transition from a
state to its successor varies significantly.

Postulate 1 (Sequential Time Postulate). A parallel algorithm A comprises
a non-empty set S of states, a non-empty subset I ⊆ S of initial states, and a
one-step transformation function τ : S → S.

Same as for sequential algorithms a state has to reflect all the relevant infor-
mation, so we also preserve the abstract state postulate, which characterises
states as Tarski structures over a fixed signature, i.e. a set of function symbols.

Postulate 2 (Abstract State Postulate). Every state S ∈ S of a parallel
algorithm is a structure over a fixed finite signature Σ such that both S and
I are closed under isomorphisms, the one-step transformation τ of A does not
change the base set of any state, and if two states S and S′ are isomorphic via
ζ : S → S′, then τ(S) and τ(S′) are also isomorphic via ζ.
4 More precisely: unbounded parallel algorithms, as sequential algorithms algorithms

already subsume bounded parallelism. The difference is that in the unbounded case
the parallel branches of a computation depend on the state.

272 K.-D. Schewe

These two postulates alone give already rise to several decisive definitions. A
run of a parallel algorithm A is a sequence S0, S1, . . . of states with S0 ∈ I and
Si+1 = τ(Si) for all i ≥ 0. A location of state S is a pair (f, (a1, . . . , an)) with
a function symbol f ∈ Σ of arity n and an n-tuple of elements ai of the base
set of S. The value valS(�) of a location � in state S is fS(a1, . . . , an) using the
interpretation fS of f in S. An update in S is a pair (�, v) comprising a location
� of S and an element v of the base set of S. An update set in S is a set of such
updates.

An update set Δ is called consistent iff (�, v1), (�, v2) ∈ Δ imply v1 = v2. For a
consuistent update set Δ in S we obtain a state S′ = S+Δ with valS′(�) = v for
(�, v) ∈ Δ, and valS′(�) = valS(�) otherwise. Any two states S, S′ with the same
base set define a unique minimal consistent update set Δ(S) with S′ = S+Δ(S).
In particular, we write ΔA(S) for the update set defined by S and its successor
τ(S).

Update sets ΔA(S) must be determined by the parallel algorithm, which
has an intrinsic finite representation. For sequential algorithms it suffices to
assume that this finite representation contains a finite set of ground terms over
the signature Σ such that the evaluation of these terms in a state S uniquely
determines the updates in S. This gives rise to the bounded exploration postulate.
For parallel algorithms this is slightly more complicated, as in every state the
algorithm may execute an arbitrary number of parallel branches. However, these
branches are determined by the state. As there must exist a finite representation,
it is justified to assume that the branches are determined by terms, so it suffices
to replace the ground terms by multiset comprehension terms5.

Postulate 3 (Bounded Exploration Postulate). Every parallel algorithm
A of signature Σ comprises a finite set W (called bounded exploration witness)
of multiset comprehension terms {{t(x̄, ȳ) | ϕ(x̄, ȳ)}}x̄ over signature Σ such that
ΔA(S) = ΔA(S′) holds, whenever the states S and S′ of A coincide on W .

Finally, each computation has a background comprising the implicit fixed
values, functions and constructors that are exploited, but not defined in the
signature. For sequential algorithms the background was kept implicit, as it
merely requires the presence of truth values and the usual operators on them, a
value undef to capture partial functions, and an infinite reserve, from which new
values can be taken if necessary. Parallel algorithms must in addition require the
presence of tuples and multisets as already used for bounded exploration. This
leads to the background postulate.

Postulate 4 (Background Postulate). Each parallel algorithm A comprises
a background class K defining at least a binary tuple constructor and a multiset
constructor of unbounded arity, and a background signature ΣB contains at least
the following static function symbols:

5 It must be multiset terms and not set terms, as there may be multiple branches
doing the same.

Computation on Structures 273

– nullary function symbols true, false, undef and {{}},
– unary function symbols reserve, Boole, ¬, first, second, {{·}},

⊎
and AsSet,

and
– binary function symbols =, ∧, ∨, →, ↔, 	 and (,).

We assume general familiarity with Abstract State Machines [16], so we will
not define them here. Then the key result in [22] is the following “parallel ASM
thesis”.

Theorem 1. Abstract State Machines capture parallel algorithms as defined by
the sequential time, abstract state, bounded exploration and background postu-
lates.

The proof that ASMs fulfil the requirement of the Postulates 1–4 is not very
difficult. A bounded exploration witness can be constructed from an ASM rule;
then showing the decisive property of Postulate 3 is rather straightforward.

The proof that every parallel algorithm as stipulated by the four postulates
can be step-by-step simulated by an ASM with the same background and signa-
ture is complicated. The key argument is to show that if an update set ΔA(S)
contains an update ((f, (a1, . . . , an)), a0), then any (n + 1)-tuple (b0, . . . , bn)
with the same type as (a0, . . . , an) also defines an update ((f, (b1, . . . , bn)), b0) ∈
ΔA(S), where the type is defined by a bounded exploration witness W . Exploting
isolating formulae for types gives rise to a forall-rule rS with ΔrS

(S) = ΔA(S).
The extension to a single rule r with Δr(S) = ΔA(S) for all states S uses
the same ideas as the proof of the sequential ASM thesis with straightforward
generalisations.

2.2 Parallel Algorithms with Choice

As shown by many examples in [12,16] it is often useful to permit non-
deterministic choice. We will therefore explore how to extend the parallel ASM
thesis to a non-deterministic parallel ASM thesis, then restrict choice such that
it becomes insignificant, i.e. the final result does not depend on the choice (up to
isomorphism).

Clearly, the abstract state and background postulates can be preserved, but
the sequential time postulate has to be replaced by a branching time postulate.

Postulate 5 (Branching Time Postulate). A non-deterministic parallel
algorithm A comprises a non-empty set S of states, a non-empty subset I ⊆ S
of initial states, and a one-step transformation relation τ ⊆ S × S.

We continue to call each state S′ ∈ τ(S) a successor state of S. Then S
and S′ ∈ τ(S) define a unique minimal consistent update set Δ(S, S′) with
S +Δ(S, S′) = S′. Let ΔA(S) = {Δ(S, S′) | S′ ∈ τ(S)} denote the set of update
sets in state S.

In the same way as the shift from sequential algorithms to parallel algorithms
required multiset comprehensions, it seems plausible that also the shift from

274 K.-D. Schewe

parallel algorithms to non-deterministic parallel algorithms will require multiset
comprehensions. We therefore define a witness term as a term of the form

{{{{t(x̄, ȳ) | ϕ(x̄, ȳ)}} | ψ(x̄)}} .

Then the bounded exploration postulate could be altered as follows:

Postulate 6 (Non-Deterministic Bounded Exploration Postulate).
Every non-deterministic parallel algorithm A of signature Σ comprises a finite
set W (called bounded exploration witness) of witness terms over signature Σ
such that ΔA(S) = ΔA(S′) holds, whenever the states S and S′ of A coincide
on W .

It is again rather straightforward to show that non-deterministic ASMs sat-
isfy the modified postulated for non-deterministic parallel algorithm.

Theorem 2. Non-deterministic Abstract State Machines define non-determini-
stic parallel algorithms as defined by the branching time, abstract state, non-
deterministic bounded exploration and background postulates.

However, a proof that non-deterministic Abstract State Machines capture
non-deterministic parallel algorithms has not yet been completed. This will
be dealt with elsewhere. Our interest here is on a restricted version of non-
determinism.

In a run S0, S1, . . . we call a state Sn final iff τ(Sn) = {Sn} holds, i.e. there
is no more change to the state. Assuming that some function symbols in Σ
have been declared as output functions. Let out(S) denote the restriction of a
final state S to its output locations. Then we call a non-deterministic parallel
algorithm A a insignificant choice algorithm iff every run has a final state and for
any two final states S1 and S2 the outputs out(S1) and out(S2) are isomorphic.

Next consider locally insignificant choice ASMs, i.e. non-deterministic ASMs
with the following properties:

(i) For every state S any two update sets Δ,Δ′ ∈ Δ(S) are isomorphic, and we
can write

Δ(S) = {σΔ | σ ∈ G} ,

where G ⊆ Iso is a set of isomorphisms and Δ ∈ Δ(S) is an arbitrarily
chosen update set.

(ii) For every state S with Δ(S) = {σiΔ0 | 0 ≤ i ≤ k} (G = {σ0, . . . , σk} ⊆
Iso) and the corresponding successor states Si = S + σiΔ0 we have

Δ(Si) = σiΔ(S0) .

Theorem 3. Locally insignificant choice Abstract State Machines define
insignificant choice algorithms as defined by the branching time, abstract
state, non-deterministic bounded exploration and background postulates and the
insignificant choice restriction.

We cannot yet provide a proof that locally insignificant choice Abstract State
Machines capture insignificant choice algorithms, but it seems as plausible as
Theorem 2.

Computation on Structures 275

3 The Logic of Non-deterministic ASMs

Let us now tend to associated logics. A logic for deterministic ASMs has been
developed by Stärk and Nanchen [36] and proven to be complete. It is also
described in [16]. We now look into the extension for non-deterministic ASMs
[24] and how it can be adapted to capture the insignificant choice.

3.1 Unrestricted Logic

As the logic of non-deterministic ASMs has to deal with update sets, we let
the signature contain a static constant symbol cf for each dynamic function
symbol f ∈ Σ, i.e. cf is not dynamic and has arity 0. We also exploit that the
base set contains elements that interpret cf in every state. By abuse of notation
we wrote (cf)S = cf . Now let X be a second-order variable of arity 3. For a
variable assignment ζ we say that ζ(X) represents an update set Δ iff for each
((f, ā), b) ∈ Δ we have (cf , ā, b) ∈ ζ(X) and vice versa. Here we write ā for
n-tuples, where n is the arity of f .

As for the syntax, with this extension the terms of Lnd are ASM terms. The
formulae of the logic are defined inductively as follows:

– If t and t′ are terms, then t = t′ is a formula.
– If X is an n-ary second-order variable and t1, . . . , tn are terms, then

X(t1, . . . , tn) is a formula.
– If r is an ASM rule and X is a second-order variable of arity 3, then updr(X)

is a formula.
– If ϕ and ψ are formulae, then also ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ and ϕ → ψ are formulae.
– If ϕ is a formula, x is a first-order variable and X is a second-order variable,

then also ∀x.ϕ, ∃x.ϕ, ∀X.ϕ, ∃X.ϕ are formulae.
– If ϕ is a formula and X is a second-order variable of arity 3, then [X]ϕ is

formula.

The semantics is defined for Henkin structures. A Henkin prestructure S̃ over
signature Υ is a structure S over Σ with base set B together with sets of relations
Dn ⊆ P(Bn) for all n ≥ 1.

As the logic uses second-order variables we need extended variable assign-
ments ζ into a Henkin prestructure. For first-order variables x we have ζ(x) ∈ B
as usual, but for second-order variables X of arity n we request ζ(X) ∈ Dn.
Then with respect to a Henkin prestructure S̃ and such a variable assignment
terms are interpreted as usual. The interpretation [[ϕ]]S̃,ζ for formulae ϕ is mostly
standard with the non-standard parts defined as follows:

– If ϕ has the form ∀X.ψ with a second-order variable X of order n, then

[[ϕ]]S̃,ζ =

{
T if [[ψ]]S̃,ζ[X �→A] = T for all A ∈ Dn

F else
.

276 K.-D. Schewe

– If ϕ has the form [X]ψ, then

[[ϕ]]S̃,ζ =

⎧
⎪⎨

⎪⎩

F if valS,ζ(X) represents a consistent update set Δ

with [[ψ]]S̃+Δ,ζ = F
T else

.

While this interpretation is defined for arbitrary Henkin prestructures, it
makes sense to restrict the collections Dn of n-ary relations to those that are
closed under definability, which defines the notion of Henkin structure. We then
say that a sentence is valid iff it is interpreted as 1 (i.e., true) in all Henkin
structures.

A Henkin structure over signature Σ is a Henkin prestructure S̃ =
(S, {Dn}n≥1) that is closed under definability, i.e. for every formula ϕ, every
variable assignment ζ and every n ≥ 1 we have

{(a1, . . . , an) ∈ Bn | [[ϕ]]S̃,ζ[x1 �→a1,...,xn �→an] = T} ∈ Dn.

3.2 Capturing Insignificant Choice

We now approach a characterisation of the semantic insignificant choice restric-
tion in the logic Lnd defined above. We use isUSet(X) to express that X repre-
sents an update set, and conUSet(X) to express that it is consistent—these are
defined in [24].

Let us assume that the base set B is defined as the set of hereditarily finite
sets B = HF (A) over a finite set A of atoms. Then we can express that X is an
isomorphism by

iso(X) ≡ ∀x, y1, y2.(X(x, y1) ∧ X(x, y2) → y1 = y2)∧
∀x1, x2, y.(X(x1, y) ∧ X(x2, y) → x1 = x2) ∧ ∀x∃y.X(x, y) ∧ ∀y∃x.X(x, y)∧

∧

f∈Υdyn

X(cf , cf) ∧ ∀x, y.

[

X(x, y) → (x ∈ Atoms ↔ y ∈ Atoms)∧

∀u.(u ∈ x → ∃v.v ∈ y ∧ X(u, v)) ∧ ∀v.(v ∈ y → ∃u.u ∈ x ∧ X(u, v))
]

This leads to the following insignificance constraint for a rule r expressing
that any two update sets yielded by r are isomorphic:

∀X1,X2. updr(X1) ∧ updr(X2) →
∃X.(iso(X) ∧ updIso(X1,X2,X) ∧ updIsoSet(X1,X2,X))

Computation on Structures 277

with

updIso(X1,X2,X) ≡
∧

f∈Υdyn

[∀x̄1, x2, ȳ1, y2.

(X1(cf , x̄1, x2) ∧
∧

1≤i≤ar(f)

X(x1i, y1i) ∧ X(x2, y2) → X2(cf , ȳ1, y2))∧

∀x̄1, x2,ȳ1, y2.(X2(cf , x̄1, x2) ∧
∧

1≤i≤ar(f)

X(x1i, y1i) ∧ X(x2, y2) → X1(cf , ȳ1, y2))]

and

updIsoSet(X1,X2,X) ≡ ∀Y1, Y2.(isUSet(Y1) ∧ isUSet(Y2) ∧ updIso(Y1, Y2,X))
→ ([X1]updr(Y1) ↔ [X2]updr(Y2))

We can use this characterisation of insignificant choice to modify the logic
in such a way that a choice rule will either become an insignificant choice or
interpreted as skip. For this recall the axiomatic definition of updr(X) from
[24]. In order to express insignificant choice we introduce new formulae of the
form updic

r (X). If r is not a choice rule, we simply keep the definitions replacing
upd by updic. For a choice rule r of the form choose v ∈ {x | x ∈ Atoms∧x ∈ t}
do r′(v) enddo we define

updic
r (X) ↔∃v.v ∈ Atoms ∧ v ∈ t ∧ updic

r′(v)(X)∧
∀Y.(∃x.x ∈ Atoms ∧ x ∈ t ∧ updic

r′(x)(Y)) →
∃Z.(iso(Z) ∧ updIso(X,Y,Z) ∧ updIsoSet(X,Y,Z))

4 Complexity Restriction

Let us finally look at the link to complexity theory. We define PTIME restricted
versions of parallel ASMs [6] and locally insignificant choice [33], which define
choiceless polynomial time (CPT) and insignificant choice polynomial time. The
former one is strictly included in PTIME; the latter one captures PTIME.

4.1 Choiceless Polynomial Time

In order to define a polynomial time bound on an ASM we have to count steps of
a run. If we only take the length of a run, each step would be a macrostep that
involves many elementary updates, e.g. the use of unbounded parallelism does
not impose any restriction on the number of updates in an update set employed
in a transition from one state to a successor state. So we better take the size of
update sets into account as well. If objects are sets, their size also matters in
estimating what an appropriate microstep is. This leads to the notion of PTIME
bound from CPT [6].

A PTIME (bounded) ASM is a triple M̃ = (M,p(n), q(n)) comprising an
ASM M and two integer polynomials p(n) and q(n). A run of M̃ is an initial

278 K.-D. Schewe

segment of a run of M of length at most p(n) and a total number of at most
q(n) active objects, where n is the size of the input in the initial state of the run.

We say that a PTIME ASM M̃ accepts the input structure I iff there is a
run of M̃ with initial state generated by I and ending in a state in which Halt
holds and the value of Output is 1. Analogously, a PTIME ASM M̃ rejects the
input structure I iff there is a run of M̃ with initial state generated by I and
ending in a state in which Halt holds and the value of Output is 0.

A logic L can be defined by a pair (Sen,Sat) of functions satisfying the
following conditions:

– Sen assigns to every signature Σ a recursive set Sen(Σ), the set of L-sentences
of signature Σ.

– Sat assigns to every signature Σ a recursive binary relation SatΣ over struc-
tures S over Σ and sentences ϕ ∈ Sen(Σ). We assume that SatΣ(S, ϕ) ⇔
SatΣ(S′, ϕ) holds, whenever S and S′ are isomorphic.

We say that a structure S over Σ satisfies ϕ ∈ Sen(Σ) (notation: S |= ϕ) iff
SatΣ(S, ϕ) holds.

If L is a logic in this general sense, then for each signature Σ and each
sentence ϕ ∈ Sen(Σ) let K(Σ,ϕ) be the class of structures S with S |= ϕ. We
then say that L is a PTIME logic, if every class K(Σ,ϕ) is PTIME in the sense
that it is closed under isomorphisms and there exists a PTIME Turing machine
that accepts exactly the standard encodings of ordered versions of the structures
in the class.

We further say that a logic L captures PTIME iff it is a PTIME logic and
for every signature Σ every PTIME class of Σ-structures conincides with some
class K(Σ,ϕ).

4.2 Insignificant Choice Polynomial Time

An insignificant choice ASM (for short: icASM) is an ASM M such that for every
run S0, . . . , Sk of length k such that Halt holds in Sk, every i ∈ {0, . . . , k − 1}
and every update set Δ ∈ Δ(Si) there exists a run S0, . . . , Si, S

′
i+1, . . . , S

′
m such

that S′
i+1 = Si+Δ, Halt holds in S′

m, and Output = true (or false, respectively)
holds in Sk iff Output = true (or false, respectively) holds in S′

m.
A PTIME (bounded) insignificant choice ASM (for short: PTIME icASM) is a

triple M̃ = (M,p(n), q(n)) comprising an icASM M and two integer polynomials
p(n) and q(n) with runs such that whenever an input structure I is accepted by
M̃ (or rejected, respectively) then every run on input structure I is accepting
(or rejecting, respectively).

According to this definition whenever there exists an accepting or rejecting
run, then all other runs on the same input structure, i.e. runs that result making
different choices, are also accepting or rejecting, respectively.

Theorem 4. ICPT captures PTIME on arbitrary finite structures, i.e. ICPT
= PTIME.

Computation on Structures 279

The full proof is given in [33]. In a nutshell, given a PTIME problem we
simply use a non-deterministic ASM to first generate an order on the set of
atoms, then create deterministically the standard encoding of the input struc-
ture with this order and finally simulate the PTIME Turing machine deciding
the problem. Then it is clear that the choices in the ASM will only refer to
atoms, and the local insignificance will be satisfied. This is then used to prove
also the converse by creating a PTIME simulation by a Turing machine. The
local insignificance condition implies global insignificance, i.e. any choice can
be replaced by a fixed choice of the smallest element, and the fact that choices
are restricted to atoms guarantees that the local insignificance condition can be
checked on a Turing machine in polynomial time. The first part of the proof
further shows that PTIME is included in a fragment of ICPT defined by ASMs
satisfying the local insignificance condition.

Corollary 1. PTIME is captured by the fragment ICPTloc of ICPT, where the
separating icASM satisfies the local insignificance condition.

Through Theorem 4 and Corollary 1 ICPT highlights the similarities and dif-
ferences between classical computation theory on strings using Turing machines
and computation theory on structures using ASMs. Not only does the shift to
arbitrary Tarski structures lead to a theory on arbitrary level of abstraction,
while at the same time enabling the proofs of long-standing open problems such
as the refutation of Gurevich’s conjecture and the separation of PTIME from NP
[33], it shows that computation theory requires more than just functions from
input to output. Furthermore, it helps closing the gap between the theory of
computation and the developments in practice with the perspective to obtain a
thorough theoretical penetration of practice, which is what actually was claimed
by the term “Software Engineering”.

5 Concluding Remarks

Monographs written or co-authored by Egon Börger provide cornerstones for the
development of the theory of computation and its applications [8,11,16,37]. In
this article I outlined bits of a modernised theory of computation on structures
grounded in behavioural theories of classes of algorithmic systems, associated log-
ics and complexity theory. The emphasis was on polynomial time computations.
Starting from parallel algorithms I showed how to extend them by insignificant
choice, which requires a modification of the logic of non-deterministic ASMs.
Then I sketched the recently proven capture of PTIME. This shows how all
parts of the theory fit neatly together. Nonetheless, there are still many open
problems associated with the theory, which need to be addressed such as a the-
ory of non-determinism and randomness. The next decisive monograph will be
a consolidated theory of computations on structures.

280 K.-D. Schewe

Computations on structures give rise to specification of algorithmic systems
on arbitrary levels of abstraction, i.e. they directly feed into rigorous system
development. The logics associated with a particular class of algorithmic sys-
tems can be used in this context for the verification of desirable properties.
Complexity classes enable fine-tuned classification with further insights how an
algorithm solving a problem in a complexity class looks like. The various suc-
cessful applications of the ASM method with or without choice, with single or
multiple machines and with sophisticated refinement strategies show that com-
putation theory on structures is well positioned to bridge the gap between the
increasing structural complexity of modern software-centric systems and the
foundational theory.

References

1. Abiteboul, S., Papadimitriou, C.H., Vianu, V.: The power of reflective relational
machines. In: Proceedings of the Ninth Annual Symposium on Logic in Computer
Science (LICS 1994), pp. 230–240. IEEE Computer Society (1994)

2. Abiteboul, S., Vardi, M.Y., Vianu, V.: Fixpoint logics, relational machines, and
computational complexity. J. ACM 44(1), 30–56 (1997). https://doi.org/10.1145/
256292.256295

3. Abiteboul, S., Vianu, V.: Generic computation and its complexity. In: Kout-
sougeras, C., Vitter, J.S. (eds.) Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing (STOC 1991), pp. 209–219. ACM (1991)

4. Arvind, V., Biswas, S.: Expressibility of first order logic with a nondeterministic
inductive operator. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M. (eds.)
STACS 1987. LNCS, vol. 247, pp. 323–335. Springer, Heidelberg (1987). https://
doi.org/10.1007/BFb0039616

5. Blass, A., Gurevich, Y.: Abstract State Machines capture parallel algorithms. ACM
Trans. Comput. Logic 4(4), 578–651 (2003)

6. Blass, A., Gurevich, Y., Shelah, S.: Choiceless polynomial time. Ann. Pure Appl.
Logic 100, 141–187 (1999)

7. Blass, A., Gurevich, Y., Shelah, S.: On polynomial time computation over
unordered structures. J. Symbol. Logic 67(3), 1093–1125 (2002)

8. Börger, E.: Computability, Complexity, Logic, Studies in Logic and the Founda-
tions of Mathematics, vol. 128. North-Holland (1989)

9. Börger, E.: The ASM refinement method. Formal Aspects Comput. 15(2–3), 237–
257 (2003). https://doi.org/10.1007/s00165-003-0012-7

10. Börger, E., Durdanovic, I.: Correctness of compiling Occam to Transputer code.
Comput. J. 39(1), 52–92 (1996). https://doi.org/10.1093/comjnl/39.1.52

11. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, Heidelberg (1997)

12. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

13. Börger, E., Rosenzweig, D.: A mathematical definition of full Prolog. Sci. Comput.
Program. 24(3), 249–286 (1995). https://doi.org/10.1016/0167-6423(95)00006-E

14. Börger, E., Schewe, K.D.: Concurrent abstract state machines. Acta Informatica
53(5), 469–492 (2016). https://doi.org/10.1007/s00236-015-0249-7

15. Börger, E., Schewe, K.D.: A behavioural theory of recursive algorithms. Funda-
menta Informaticae 177(1), 1–37 (2020)

https://doi.org/10.1145/256292.256295
https://doi.org/10.1145/256292.256295
https://doi.org/10.1007/BFb0039616
https://doi.org/10.1007/BFb0039616
https://doi.org/10.1007/s00165-003-0012-7
https://doi.org/10.1093/comjnl/39.1.52
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1016/0167-6423(95)00006-E
https://doi.org/10.1007/s00236-015-0249-7

Computation on Structures 281

16. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-642-18216-7

17. Chandra, A.K., Harel, D.: Structure and complexity of relational queries. J. Com-
put. Syst. Sci. 25(1), 99–128 (1982). https://doi.org/10.1016/0022-0000(82)90012-
5

18. Dawar, A., Richerby, D.: Fixed-point logics with nondeterministic choice. J. Log.
Comput. 13(4), 503–530 (2003). https://doi.org/10.1093/logcom/13.4.503

19. Dawar, A., Richerby, D., Rossman, B.: Choiceless polynomial time, counting and
the Cai-Fürer-Immerman graphs. Ann. Pure Appl. Log. 152(1–3), 31–50 (2008).
https://doi.org/10.1016/j.apal.2007.11.011

20. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Perspectives in Mathematical
Logic. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-662-03182-7

21. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R. (ed.) SIAM-AMS Proceedings, pp. 43–73, no. 7 (1974)

22. Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A new thesis concerning synchro-
nised parallel computing - simplified parallel ASM thesis. Theoret. Comput. Sci.
649, 25–53 (2016). https://doi.org/10.1016/j.tcs.2016.08.013

23. Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A complete logic for Database
Abstract State Machines. Logic J. IGPL 25(5), 700–740 (2017)

24. Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A unifying logic for non-
deterministic, parallel and concurrent Abstract State Machines. Ann. Math. Artif.
Intell. 83(3–4), 321–349 (2018). https://doi.org/10.1007/s10472-017-9569-3

25. Gire, F., Hoang, H.K.: An extension of fixpoint logic with a symmetry-based choice
construct. Inf. Comput. 144(1), 40–65 (1998). https://doi.org/10.1006/inco.1998.
2712

26. Gurevich, Y.: A new thesis (abstract). Am. Math. Soc. 6(4), 317 (1985)
27. Gurevich, Y.: Logic and the challenge of computer science. In: Börger, E. (ed.)

Current Trends in Theoretical Computer Science, pp. 1–57. Computer Science
Press (1988)

28. Gurevich, Y.: Evolving algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specifica-
tion and Validation Methods, pp. 9–36. Oxford University Press (1995)

29. Gurevich, Y.: Sequential abstract state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000)

30. Immerman, N.: Descriptive Complexity. Graduate texts in Computer Science.
Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0539-5

31. Libkin, L.: Elements of Finite Model Theory. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-662-07003-1

32. Naur, P., Randell, B.: Software Engineering (1968). Report on a conference spon-
sored by the NATO Science Committee

33. Schewe, K.D.: Insignificant choice polynomial time. CoRR abs/2005.04598 (2021).
http://arxiv.org/abs/2005.04598

34. Schewe, K.D., Ferrarotti, F.: Behavioural theory of reflective algorithms I: reflective
sequential algorithms. CoRR abs/2001.01873 (2020). http://arxiv.org/abs/2001.
01873

35. Schewe, K.-D., Ferrarotti, F.: A logic for reflective ASMs. In: Raschke, A., Méry,
D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 93–106. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-48077-6 7

36. Stärk, R., Nanchen, S.: A logic for abstract state machines. J. Univ. Comput. Sci.
7(11) (2001)

https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1016/0022-0000(82)90012-5
https://doi.org/10.1016/0022-0000(82)90012-5
https://doi.org/10.1093/logcom/13.4.503
https://doi.org/10.1016/j.apal.2007.11.011
https://doi.org/10.1007/978-3-662-03182-7
https://doi.org/10.1016/j.tcs.2016.08.013
https://doi.org/10.1007/s10472-017-9569-3
https://doi.org/10.1006/inco.1998.2712
https://doi.org/10.1006/inco.1998.2712
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
http://arxiv.org/abs/2005.04598
http://arxiv.org/abs/2001.01873
http://arxiv.org/abs/2001.01873
https://doi.org/10.1007/978-3-030-48077-6_7

282 K.-D. Schewe

37. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001). https://doi.org/10.1007/978-
3-642-59495-3

38. Van den Bussche, J., Van Gucht, D.: Semi-determinism. In: Vardi, M.Y., Kanel-
lakis, P.C. (eds.) Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 191–201. ACM Press (1992).
https://doi.org/10.1145/137097.137866

https://doi.org/10.1007/978-3-642-59495-3
https://doi.org/10.1007/978-3-642-59495-3
https://doi.org/10.1145/137097.137866

	Computation on Structures
	1 Towards a Theory of Computation on Structures
	2 Parallel Algorithms
	2.1 The Parallel ASM Thesis
	2.2 Parallel Algorithms with Choice

	3 The Logic of Non-deterministic ASMs
	3.1 Unrestricted Logic
	3.2 Capturing Insignificant Choice

	4 Complexity Restriction
	4.1 Choiceless Polynomial Time
	4.2 Insignificant Choice Polynomial Time

	5 Concluding Remarks
	References

