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Egon Börger started his scientific career in philosophy, and he came to computer
science via studying in depth mathematical logic. He spent two decades in logic and
three decades in computer science. As he phrased it himself, his youth was dedicated to
mathematics and logic, his senior years to software engineering, and with beginning
seniority he worked on business processes and other applied topics. What from a
superficial view may look like a straight line from theory to practice fulfils in fact the
principle of “negated negation” in the sense of the German philosopher Georg Wilheim
Friedrich Hegel. By confronting theoretical insights with applied problems from which
they were originally derived by abstraction, new enhanced challenges are discovered
that require deep scientific and thus theoretical investigation on a higher quality level.
Egon Börger is known not only as an excellent scientist but also as a virtuoso for
playing with the dialectic antipodes of theory and practice, bringing theoretical results
into applications and extracting challenging questions from applications in order to
shift scientific knowledge to a higher level.

Egon Börger was born on May 13, 1946, in Westfalia in Germany. More than
mathematics he loved music, so his ambition was to become a conductor, but his
teachers advised against it. So he started to study philosophy at the Université de Paris I
(Sorbonne) and the Institut Supérieur de Philosophie in Louvain. Professors Joseph
Dopp and Jean Ladrière, followers of the tradition of Robert Feys, aroused his interest
in mathematical logic and foundations of mathematics, which in 1966 brought Egon
back to his home town, Münster. This was the last place he wanted to study, and even
less he wanted to be a mathematician. However, the lively spirit of mathematical logic
commemorated by Heinrich Scholz and his famous student and successor Hans Hermes
was just too inspiring. Professors Scholz and Hermes were among the few scientists
who realised the impact of Turing’s solution of Hilbert’s fundamental decision prob-
lem, which manifested itself in the tight relationship between abstract computing
machines and descriptive logical languages.

From the very beginning Egon was part of the Münsteranian school of logic with a
strong focus on the exploration of this relationship between logic and computing
science, which coined his interest in this area. He became a student of Dieter Rödding



who continued the tradition started by Gisbert Hasenjäger, Hans Hermes, and Wilhelm
Ackermann, and his Ph.D. thesis was dedicated to the complexity of decision problems.

One year after completing his Ph.D. he followed an invitation by Edoardo Caianello
and joined the Università di Salerno as a lecturer to help develop a new institute for
computer science. Between 1972 and 1976 he gave many lectures on various computer
science topics, through which he gained a deep understanding of the discipline. He
returned to Münster, where he completed his habilitation in 1976 with a thesis on
complexity theory. Further years as a lecturer and Associate Professor at the Univer-
sities of Münster, Udine and Dortmund followed.

The relationship between logic and computing science determined Egon’s first
monograph on computation theory, logic, and complexity, which was published in
German in —1985 (it was later translated into English), and also— his second mono-
graph on the classical decision problem, which he published together with Erich Grädel
and Yuri Gurevich in 1997. The first monograph focused on the concept of formal
language as carrier of the precise expression of meaning, facts and problems, and formal
operating procedures for the solution of precisely described questions and problems. At
that time the text was at the forefront of a modern theory of these concepts, paving the
way in which they developed first in mathematical logic and computability theory and
later in automata theory, theory of formal languages, and complexity theory. In both
monographs random access machines played an important role.

After the unexpected death of Dieter Rödding it was expected by many that Egon
would become his successor, but official politics at the Universität Münster prevented
this. This was to the detriment of the Universität Münster, where soon its excellent
standing in logic and foundations of mathematics was devastated. Universität Münster
is still one of the few universities in Germany without a decent computer science
department and degree program. Fortunately, Egon could still choose between other
offers, and he accepted the position of a chair in computer science at the Università di
Pisa, which he held until his retirement in 2011, rejecting various offers from other
prestigious universities.

Right at the time of his relocation to Pisa he joined forces with Michael M. Richter
and Hans Kleine Büning to establish an annual conference on “Computer Science
Logic” (CSL), which soon led to the foundation of the European Association for
Computer Science Logic (EACSL) with Egon as its first chairman. He held this
position until 1997. Together with the North American conference series “Logic in
Computer Science” (LiCS), CSL still counts as one of the most prestigious conferences
in theoretical computer science focusing on the connections between logic and
computing.

From 1985 on, the field of computer science started to stretch out into many new
application areas. Distributed computing over networks became possible, database
systems facilitated concurrent computation, artificial intelligence ventured from a niche
area to a useful technology enabling inferential problem solving in diagnosis, con-
trolling machines through software became possible, etc. Together with his
long-standing collaborator Yuri Gurevich he realised that the rapid developments in
computing would require radically new methods in computer science logic. It was Yuri
who first formulated a “new thesis” moving computations on Tarski structures to the
centre, while Egon realised that the idea of “evolving algebras”—now known as
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Abstract State Machines (ASMs)—does not only create a new paradigm for the
foundations of computing, subsuming the classical theory, but at the same time can be
exploited for rigorous systems engineering in practice thereby fulfilling the criteria of a
“software engineering” discipline that deserves this name.

One of the first achievements was the definition of an operational semantics of the
Warren Abstract Machine for Prolog programs, and this work by Egon led to the formal
foundation of a comprehensive abstract semantics of Prolog used by the ISO Prolog
standardisation committee. Since then he has systematically and tirelessly pushed
experiments to apply ASMs to real-life software systems, in particular industrial
software-based systems. Unlike many other renowned researchers in the field of logic
and computation, Egon never liked hiding in a snail shell away from the problems that
arise in computing applications. He actively sought the challenges arising in practice.
Four of his five sabbaticals during his active time in Pisa were spent with companies
(IBM, Siemens, Microsoft, and SAP). He organised several Dagstuhl Seminars, acted
as co-chair of several summer schools, gave numerous invited talks, and visited
international institutions and academies.

He triggered and led the effort of international groups of researchers who developed
the ASM method for high-level system design and analysis. At the beginning of 2000
he wrote another monograph, known as the ASM book, establishing the theoretical
foundations of the formal method for building and verifying complex software-based
systems in an effectively controllable manner, namely by stepwise refinement of
abstract ground models to executable code. To provide a forum for ASMs, he started,
in 1994, the annual workshop on Abstract State Machines, which later, in 2008, was
turned into the international ABZ conference series to promote fruitful integration of
state-based formal methods.

Many extensions of the ASM method are due to Egon, who has always been able to
identify and capture new potential of the method, referring to new characteristics of
modern complex systems. With the intention of exploiting the ASM method to tackle
new challenging computational aspects, Egon has worked in many different computer
science areas: from programming languages to hardware architectures, software
architectures, control systems, workflow and interaction patterns, business processes,
web applications, and concurrent systems.

During his long and still very active research carrier, Egon has made significant
contributions to the field of logic and computer science. Since 2005 he has been an
Emeritus member of the International Federation for Information Processing. In 2007,
in recognition of his pioneering work in logic and its applications in computer science,
he received the prestigious Humboldt Research Award, and since 2010, he has been a
member of Academia Europea. He is the author of more than 30 books and over 200
scientific publications. Among the published books, three underline applications of the
ASM method: (1) the book on Java and the Java Virtual Machine (JVM), which
provides a high-level description of Java and the JVM together with a mathematical
and an experimental analysis, and shows the correctness of a standard compiler of Java
programs to JVM code and the security critical bytecode verifier component of the
JVM; (2) the book on Subjective Business Process Management, which presents a
novel BPM methodology focusing on process actors and their interactions; and (3) the
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modelling companion with many detailed application examples of the ASM method, in
particular in connection with concurrent systems.

Besides his scientific contributions as a logician and computer scientist, we would
like to emphasise two prominent characteristics of Egon as a researcher, namely his
deep intuition for addressing real, open and challenging problems, and his passionate
approach toward solving research problems by looking deeply into problems, under-
standing them thoroughly, discussing them broadly with other researchers, and con-
sistently working very hard.

Many international computer science communities owe a lot to Egon, be it for his
scientific contributions and wide dissemination of his scholarly work, for his open
mind, his still active service activity or his tenacious intellectual honesty.

With this Festschrift we want to express special thanks to Egon, a real master who
inspired all of us.

April 2021 Alexander Raschke
Elvinia Riccobene

Klaus-Dieter Schewe
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1 Introduction

System engineering development processes rely on modelling activities that lead
to different design models corresponding to different analyses of the system
under consideration. More rigorous and sound models are required as the system
becomes more complex and critical. These models are usually richer than natu-
ral language written texts, images or videos descriptions. Engineers use various
modelling languages to design these models. According to the system modelling
language and to the associated analysis techniques, different system requirements
verification and validation activities can be carried out.

Although engineers use complex design descriptions to elaborate their mod-
els, they still miss to explicitly model relevant information related to the domain
of interest. In most of the cases, we observe:

1. that engineers use the available modelling languages to hard encode, on the fly,
specific domain properties with their own point of view, using the semantics
of the available modelling languages (implicit semantics). Such a process may
lead to incomplete and/or inconsistent descriptions, especially in the case of
model composition, decomposition, abstraction and/or refinement;

2. the absence of resources allowing engineers to make explicit the domain
knowledge of interest (explicit semantics). The main problem is related to
the absence, in the design modelling languages, of formalised constructs sup-
porting such knowledge domain descriptions.
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The triptych (D,S � R), where D stands for Domain, S for Specification
and R for Requirements, initially proposed by Michael Jackson and Pamela
Zave [27] and taken up by Dines Bjørner [5], summarises the ternary relation
among different kinds of knowledge and statements in system engineering.

Following the above mentioned work, we advocate the exploitation of domain
knowledge in design models. The resulting methodology may be considered as
independent of the formal modelling language which will be able to address the
three parts of the triptych or at least should be a consistent collection of domain
knowledge entities of D. In our case, these three parts must be formally handled
by the state-based approach set up for system design.

This paper is organised as follows. Sections 2 and 3 give a brief overview of the
importance of domain knowledge in requirements engineering and of ontologies
as a suitable model for this kind of knowledge. Section 4 then presents a case
study from the aeronautic domain that was used throughout this paper. The
impact of our claim in system engineering, when state-based formal methods are
used, in particular Event-B, is discussed in Sect. 5 on the defined case study. A
conclusion ends this paper.

2 Domain in Requirements Engineering

Elaborating a formal specification of a system requires a preliminary step that
consists of identifying and analysing the requirements that the system must
satisfy. There exist many requirements engineering methods, such as KAOS [20],
i� [26], the Problem Frames approach [16], based on different paradigms but
all these methods agree on a point: it is necessary to understand and describe
the domain in which the system will take place well in order to express the
right requirements and consequently build the right specification that satisfy
the requirements. This statement appeared first in [15] and formalised in [16]
and [27] by the well-known triptych (D,S � R) where D stands for Domain, S
for Specification and R for Requirements. It means that when a specification S
is built in some domain D the system specification entails its requirements R.

In his book [5] and following articles [6,7], Dines Bjørner expresses the same
idea, when he describes this Triptych Paradigm of Software Engineering “Before
software can be developed, the software developers and the clients contracting this
software must understand the requirements. Before requirements can be devel-
oped, the software developers and the clients contracting these requirements must
understand the domain”.

It is also commonly accepted that a domain property is a descriptive state-
ment about the system and is generally unchanging regardless of how the system
behaves. On the contrary, a requirement is a prescriptive statement describing a
property that the system shall satisfy.

In his book [20], Axel van Lamsweerde goes further and introduces the con-
cepts of expectation, a specific case of prescriptive statements that needs to be
satisfied by the environment of the system, and hypothesis, a specific case of
descriptive statement satisfied by the environment of the system and subject to
change.
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From the above seminal work review, we understand that

– explicit domain knowledge formalisation as descriptive models shall be con-
ducted before system design

– and, prescriptive specific system hypotheses have to be derived from the
domain model. Below, we discuss the case of ontologies as models for domain
knowledge.

3 Ontology-Based Modelling of Domain Knowledge

Information on the domain or domain knowledge related to the system to be
engineered is used at every step of the system development life cycle. In many
engineering areas, standards or shared knowledge are defined and designers refer
to it in the development steps. When formal methods are set up, developers use
domain knowledge, usually assumptions or environment properties, formalised
as hypotheses, definitions, axioms, theorems, invariants, etc.

Although domain modelling is a key activity in requirements engineering, it
relies on formal knowledge engineering approaches that offer formal semantics
and reasoning capabilities. In this setting, formal ontologies play a major role
as they make explicit the domain knowledge and offer reasoning and external
referencing capabilities at different system development steps.

Briefly, according to [12], an ontology is an explicit specification of a concep-
tualisation while [17] considers a domain ontology as a formal and consensual
dictionary of categories and properties of entities of a domain and the relation-
ships that hold among them. Both definitions focus on the three core following
characteristics. Indeed, ontologies and domain knowledge models require to

– be explicit in order to allow designers to use and refer to domain knowledge
concepts;

– offer descriptive domain knowledge characterisations, in the form of generic
categories (e.g. classes) that go beyond the ones of the system under design;

– derive, through instantiation, prescriptive characteristics for specific concepts
used by systems models

When applying formal methods in system engineering [2,5], two categories
of domain knowledge can be identified. The first one relates to the mathematics
and the formal modelling features required by the application domain related
to the system under design. Examples of such domain knowledge are continu-
ous features for hybrid systems or for signal processing. The second one deals
with specific knowledge related to the application domain possibly referring to
the first type of knowledge. Examples of such domain knowledge are models
describing standards for engines, energy consumption, units, etc. In both cases,
this knowledge has to be explicitly represented.

Ontology modelling languages equipped with logic-based formal semantics
have been defined. They advocate the definition of domain concepts as classes
associated to operations, relations on classes, instances and constraints and of an
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instantiation mechanism. Depending on the existing relationships, operators and
constraints, different reasoning capabilities are possible. Whatever is the chosen
ontology modelling language, it can be represented as axiomatised theories with
data-types, axioms, theorems and proof rules [23].

Once ontologies, are formally described as theories with data-types in the
hosting formal method, it is possible to allow models to use it to type state
variables and use the available operators. This approach is referred to as model
annotation [3,9,13,24]. Indeed, use of or reference to ontology concepts brings to
the designed formal models ontological definitions, axioms, theorems and proof
rules.

Our Claim

In this paper, we claim that first, domain knowledge shall be axiomatised explic-
itly as reusable domain specific axioms and reasoning rules and second, that
state-based formal methods offer the adequate framework for such axiomatisa-
tion and use in the system design and safety insurance process [4]. In particular,
they may be used to formalise domain ontologies and offer the capability to use
the ontology concepts (domain knowledge concepts, hypotheses, theorems, proof
rules, etc.) is system models formalised using state-based methods.

4 The Nose Gear (NG) Velocity System Case Study

The Nose Gear (NG) velocity system [10] is the toy example we selected to illus-
trate the need of leveraging domain knowledge in the design of formal systems
models. Its goal is to model a critical function estimating the ground velocity of
an aircraft and the estimated value should be as close as possible to the effective
velocity because it is critical, when considering the minimal velocity required for
aircraft take off. Indeed, fluid mechanics laws require a minimal speed on ground
for an effective take off of an aircraft.

In this case study, we consider the explicit features involved in the sys-
tem under consideration: a nose gear velocity update function. This function
is responsible for estimating the velocity of an aircraft while moving on the
ground.

This case study is suitable for exposing the need for integrating explicit
semantics in formal modelling as it consists of multiple heterogeneous compo-
nents working together to produce the result. Additionally, it suggests cases
for data conversions while estimating the velocity and publishing the computed
velocity.

Next subsection presents a brief system description.

4.1 System Description

In general, the velocity is estimated by calculating the elapsed time for a com-
plete rotation of a nose gear wheel. In the NG system, these rotations are
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monitored by an electro-mechanical sensor connected to a computer. This sensor
generates a click (also called ‘pulse’) for each complete rotation, which conse-
quently generates a hardware interrupt. Interrupt service routine (ISR) of the
system is then responsible for serving these interrupts. ISR increments a 16-bit
counter, NGRotations, to capture a complete rotation of the NG wheel, and
stores the current time of the update in NGClickTime variable. Both NGRota-
tions and NGClickTime are modelled as 16-bit coded integer variables.

The NG system is equipped with a millisecond counter called Millisecs. This
counter is incremented once every millisecond and provides a read-only access
of its current value to all components in the system.

The system has another component, namely a real time operating system
(RTOS), responsible for invoking the update function. RTOS makes sure that
this function is invoked at least once every 500 ms. However, the exact timing of
each invocation of this function relative to hardware interrupt is not predictable.

Finally, the velocity update function is responsible for estimating the cur-
rent velocity of the aircraft on the ground. This estimation is based on cur-
rently available values of accessible counters. Estimated velocity is stored in a
variable called estimatedGroundVelocity. Update function has read-only access
to Millisecs counter along with NGRotations counter and the global variable
NGClickTime. Also, the diameter of the NG wheel is available to the update
function as a compile time constant called, WheelDiameter. The update function
can store all the necessary private data required for calculating an estimation of
the ground velocity. These values are protected from invocation to invocation.

There is one explicit, and the most important, requirement for this system,

EXFUN-1. While the aircraft is on the ground, the estimated
velocity shall be within 3 km/h of the true velocity of the
aircraft at some moment within the past 3 seconds.

EXFUN-1 is a very important issue on the control of the speed of the aircraft
up to some possible deviation due to external actions like the possible deforma-
tion of the wheels or any interaction with environment. Along with EXFUN-1, we
have systematically extracted several other implicit/derived requirements from
this system description. The full analysis of the target system can be found
in [22] for details on the Event-B models. Below, we study the specific case of
computation of the aircraft travelled distance on the runway.

4.2 The Case of the Travelled Distance Computation

In order to highlight the influential importance of the so called implicit infor-
mation that may be needed when using a state-based method and its proof
environment, we choose to study the case of the computation of the travelled
distance which is combined with time to compute the ground speed for take-off.

NGRotations stores the number of recorded rotations of the wheel while
the aircraft is moving on the ground. It is implemented as a 16-bits variable
meaning that its real-world value shall be always smaller than 215 − 1 = 32767.
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As a consequence of this design decision, it is possible to relate the NGRotations
variable and the physical entity, namely the length of the runway required for
landing or take off. In our case, the diameter of the considered aircraft wheel is
supposed to be constant and equal to 22 in.

Starting from these hypotheses, the MAXLENGTHRUNWAY variable, max-
imum length of a runway encoded by NGRotations, can be computed using the
value 215 − 1 and the wheel diameter. It is worth noticing that, if the aircraft is
still on the runway and the travelled distance is over MAXLENGTHRUNWAY ,
hen the stored value is no more correct as the 16-bit register overflows.

In addition, we also need to consider the conversion rules of imperial unit
system into metric unit system provided by a specific document (standard, table,
book, etc.). So, if we consider that 1 in = 2.54 cm, the MAXLENGTHRUNWAY
value is defined, in meter unit, by the following expression:

MAXLENGTHRUNWAY = π × 22 × 2.54 × 0.01 × (215 − 1) = 57494 (1)

When encoded in a 16-bits register, the longest possible length of a runway is
57494. If we refer to domain knowledge related to airports designs, runways, in
particular runways length, are designed according to technical constraints related
to the chosen airport position, altitude, land topology, and weather conditions
(wind, rain, etc.).

Again, if we refer to additional domain knowledge related to airports descrip-
tions repository (a finite set of civil airports or instances) we identify that the
value of the longest existing runway is a runway (in China) equal to 5500 m.
Observe that this distance is expressed in meters while wheel diameters are given
in inches by wheel designers.

This means that a 16-bits register encodes safely any aircraft travelled dis-
tance (no overflow nor register initialisation is possible) since 5500 ≤ 57494. An
alternative choice would have been an 8-bit register but in this case the encoded
distance with 8 bits is 447 and safety condition is not fulfilled in this case.

From this example, we clearly understand that it is not possible to assert
the travelled distance of an aircraft on a runway without external additional
knowledge (i.e. domain knowledge).

5 Impact on System Engineering

When the D,S � R triptych mentioned in Sect. 1, is formalised within a formal
method, the fulfilment of system requirements requires to derive, by a proof using
the supported proof system, the requirements R from the specification S and
the domain knowledge D. When state-based formal methods are used, the proof
uses hypotheses provided by the domain knowledge D and by the specification S
and relies on state changes expressed as before-after predicates (BAP). Inductive
proofs are set up for invariant preservation or state reachability.
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5.1 The Triptych from State-Based Formal Methods Perspective

Most of the state-based methods model state changes using a generalised assign-
ment operation based on the “becomes such that” before after-predicate (offer-
ing deterministic or non deterministic assignments). This operation is encapsu-
lated in rules in ASM [8], substitutions or events in B and Event-B [1], Hoare
triples [14], operations in RSL [11], actions in TLA [19], operations in VDM [18],
schemas in Z [25] and so on (alphabetical order). All these methods associate a
proof obligation generation mechanism producing proof goals submitted to the
underlying method proof system. As mentioned above, these proof obligations
use D and S as hypotheses. For example, if we consider the case of Event-B, the
proof obligation for event invariant preservation is described as follows.

Let us consider an event recording a state change with

– A(s, c) axiomatised definitions for sets s and constants c
– x a state variable
– G(x) a guard expressed as a Boolean expression
– BAP (x, x′) a before-after predicate linking before x and after x′ state vari-

ables values
– I(x) the invariant expressed as a predicate with x as a free variable.

then, invariant preservation proof obligation for this event is defined as the fol-
lowing expression:

A(s, c) ∧ G(x) ∧ BAP (x, x′) ∧ I(x) =⇒ I(x′) (2)

If we match the above expression with the the triptych, we observe that A(s, c),
G(x)∧BAP (x, x′) and I(x) correspond to part of the domain knowledge D, the
specification S and the requirements R respectively. To be more precise, I(x) is
related to R as a requirement can be operationalised by several events and an
event can participate to the operationalisation of several requirements.

5.2 Formalising Domain Knowledge

Let us consider again the previous proof obligation. During system development,
the axiomatisation provided by A(s, c) can be decomposed as

A(s, c) ≡ ADom(s, c) ∧ AMeth(s, c) ∧ ASpec(s, c)

where,

– AMeth(s, c) represents the native or core axiomatisation related to the used
formal method. It formally characterises the semantics of the formal method.
It never changes unless the semantics of the method is changed. For example,
in the case of Event-B, all the axiomatic definitions related to set theory
belong to this category. Other such axioms may appear when mathematical
theories are externally defined and used in a given development. Examples
are theories for vectors or differential equations, etc.
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– ADom(s, c) describes the application domain the system under design belongs
to. This axiomatisation is descriptive and usually stable. It introduces a set of
concepts specific to an application domain. Axiomatisation of domain knowl-
edge, standards, certification processes, etc., belongs to this category. They
may evolve subject to standard, technology or regulation rules evolutions.
Examples of units with imperial or metric unit systems, polar or Cartesian
coordinates, car driving rules, railway protocols (e.g. ERTMS), the European
Food Law, the world health agency regulations, access control rules, Inter-
national Civil Aviation Organization (ICAO) regulations, etc., belong to this
category of axiomatisation of domain knowledge. In general, it is represented
by standardised and formalised ontologies.

– ASpec(s, c) are specific definitions corresponding to the system under design.
They introduce prescriptive definitions of the system entities and their char-
acteristics.

Note that we do not discuss the issue of aligning semantics if ADom(s, c)
is formalised in a logic other than the one of the formal modelling language
used. In this case, we assume that ADom(s, c), AMeth(s, c) and ASpec(s, c) are
all integrated and formalised in the used formal modelling language.

Thus, the previous proof obligation can be rewritten as:

ADom(s, c)∧AMeth(s, c)∧ASpec(s, c)∧G(x)∧BAP (x, x′)∧ I(x) =⇒ I(x′) (3)

5.3 Illustration on the Nose Gear Case Study

Back to the case study described in Sect. 3, let us consider the action that records
the position of an aircraft along the runway at take off step. The requirement
states that every distance travelled by an aircraft on a runway over the world
can be safely encoded.

Context and Definitions. In the Event-B context ngv0, we gather several
constants required for the case study. Axioms are tagged with three possible tags
DOM when the axiom is related to the Domain, SPEC when it is related to the
Specification and METH when the axiom is related to the underlying methodology
as a mathematical computation (no such axiom in the example).

CONTEXT ngv0
SETS

Units
CONSTANTS

PI // The Constant π

NBITS // Available bits for registers

Nbits //Selected number of bits for coding NGRotations

MAXCODEDINT // Maximum integer coded in Nbits

Circumference // Length of one wheel revolution

LMAX // Maximal length for MAXCODEDINT steps
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MAXLENGTHRUNWAY // Maximal length of the runway

WheelDiameter // Diameter of a wheel

in // Inch unit of length

cm // Centimeter unit of length

m // Meter unit of length
AXIOMS

DOM axm0: PI = 314

DOM axm1: partition(Units, {in}, {cm}, {m})

DOM axm2: MAXLENGTHRUNWAY ∈ Units → N

DOM axm3: MAXLENGTHRUNWAY = {in �→ 216536, m �→ 5500,

cm �→ 550000}
DOM axm4: WheelDiameter ∈ Units → N

DOM axm5: NBITS ⊆ N

DOM axm6: NBITS = {8, 16, 32, 64}
SPEC axm0: MAXCODEDINT > 0

SPEC axm1: Nbits ∈ NBITS

SPEC axm2: Nbits = 16

SPEC axm3: MAXCODEDINT = 2(Nbits−1) − 1

SPEC axm4: Circumference ∈ Units → N

SPEC axm5: WheelDiameter = {in �→ 22, m �→ 254 ∗ 22/10000,

cm �→ 254 ∗ 22/100}
SPEC axm6: Circumference(m) = PI ∗ WheelDiameter(m)

SPEC axm7: LMAX ∈ Units → N ∧ LMAX (m) =

MAXCODEDINT ∗ Circumference(m)

SPEC axm8: MAXLENGTHRUNWAY (m) ≤ LMAX (m)
END

Checking Selected Domain Definitions. Axioms of the context should be
checked as sound with respect to the engineering process. The definition of
axioms is generally simple but is very critical, since we have to check that the
resulting list of axioms A(s, c) is consistent. One specific axiom SPEC axm8 is
scanned MAXLENGTHRUNWAY (m) ≤ LMAX (m).

Here, MAXLENGTHRUNWAY (m) is supplied by the knowledge domain of
the problem and is available as an axiom in a domain ontology. LMAX (m) is
the value of the longest possible length that can be coded using the Nbits 16-bit
coded integer.

Classically, one can use a tool for finding a possible axioms inconsistencies
by solving constraints over the whole axioms. In our case, we may use the ProB
tool [21] to analyse solution existence for the list of axioms. We do not discuss
the technique for analysing formal texts and for validating a list of axioms but
in the current case, we identify a critical property which is expressed as an a
priori axiom.

In the introduction of the case study, we have explicitly given the value when
Nbits is 16 and when Nbits is 8. Using the effective values, we obtain that the
set of axioms is inconsistent when Nbits = 8, since in this case LMAX (m) = 447
and MAXLENGTHRUNWAY (m) = 5500. Hence, the choice of Nbits in the set
NBITS of possible registers should be Nbits �= 8.
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Computing the Travelled Distance. Let us consider the critical action incre-
menting the variable ngv (number of wheel revolutions) while recording the posi-
tion pos on the runway. Recording the position in the pos state variable is in
fact a feature of the model (introduced for the proof process) and not of the
implementation and LMAX (m) may not safely encoded using Nbits bits since
the pos variable is not implemented.

In case pos is actually implemented, an additional condition over LMAX (m)
ie LMAX (m) ≤ MAXCODEDINT is required.

We describe the following Event-B machine with a single event tick updating
both pos and ngv variables at each wheel revolution.

MACHINE ngv1
SEES ngv0
VARIABLES

ngv // Number of wheel revolutions

pos // Computed position on the runway (travelled distance)
INVARIANTS

inv1: pos ∈ 0 .. MAXLENGTHRUNWAY (m)

inv2: ngv ∈ 0 .. MAXCODEDINT

inv3: pos = ngv ∗ Circumference(m)
EVENTS
Initialisation

begin
act1: pos := 0

act2: ngv := 0
end

Event tick 〈ordinary〉 =̂
when

grd1: pos + Circumference(m) < MAXLENGTHRUNWAY (m)
then

act1: ngv := ngv + 1

act2: pos := pos + Circumference(m)
end

END

Invariant Preservation. The proof obligation of invariant preservation of the
tick event is given by the expression of Eq. (3). We obtain

ADom(s, c) DOM axm0 ∧ · · · ∧ DOM axm6
AMeth(s, c) are the axioms of defining set theory and first

order logic operators
ASpec(s, c) SPEC axm0 ∧ · · · ∧ SPEC axm8
G(x) pos + Circumference(m) < MAXLENGTHRUNWAY (m)
BAP (x, x′) ngv′ = ngv + 1 ∧ pos′ = ngv′ ∗ Circumference(m)
I(x) pos ∈ 0 .. MAXLENGTHRUNWAY (m)∧

ngv ∈ 0 .. MAXCODEDINT∧
pos = ngv ∗ Circumference(m)
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Equation (3) is using the list of axioms A(s, c) ≡ ADom(s, c) ∧ AMeth(s, c) ∧
ASpec(s, c) and it is clear that the proof obligation can be proved to be correct
even if A(s, c) axioms are not consistent.

From the previous discussion, we have justified the soundness of our list of
axioms and discharged the associated proof obligations. The invariant prop-
erty is expressing that both pos and ngv are bounded under the relation
pos = ngv ∗ Circumference(m). The variable pos is bounded by a value
which is ensuring that ngv is remaining correctly coded when Nbits = 16.
It is clear that the axioms over the constants are expressing conditions for
ensuring the possibility for pos to be increased. The interpretation of the
guard pos + Circumference(m) < MAXLENGTHRUNWAY (m) is that the
aircraft has enough space for progressing on the runway. However, the relation
pos = ngv ∗ Circumference(m) is used as pos/Circumference(m) = ngv which
helps to conclude that ngv ≤ MAXCODEDINT .

The complete Rodin archive checks the proof obligations and contains also
some intermediate lemmas.

6 Conclusion

Despite its simplicity, the example presented in this paper demonstrates that
explicit structuring and formalising domain knowledge within the logic of the
used state-based method contributes to broadening the spectrum of use of these
methods, particularly in system design. Furthermore, we think that this domain
knowledge can be specified as off-the-shelf domain theories and reused by system
designers with minimal formalisation effort.

Thanks. The authors are grateful to the anonymous reviewers. They warmly
thank Prof Dines Bjørner for his comments and careful review on the preliminary
drafts of this paper.
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Abstract. A computably enumerable (c.e.) set A is mitotic if it can be
split into two c.e. sets A0 and A1 which are Turing equivalent to A. Glaßer
et al. [3] introduced two variants of this notion. The first variant weak-
ens mitoticity by not requiring that the parts A0 and A1 of A are c.e.,
the second strengthens mitoticity by requiring that the parts A0 and A1

are computably separable. Glaßer et al. [3] raised the question whether
these variants are nonequivalent to the classical mitoticity notion. Here we
answer this question affirmatively. We also show, however, that the weaker
mitoticity property is trivial, i.e., that any c.e. set has this property. More-
over, we consider and compare these new variations of mitoticity for the
common strong reducibilities in place of Turing reducibility. Finally - not
directly related to these results - we show that all weak truth-table (wtt)
complete sets are wtt-mitotic, in fact strongly wtt-mitotic.

1 Introduction

For most ‘natural’ noncomputable computably enumerable (c.e.) problems (sets)
the information content of the sets is coded redundantly. For instance, by
Myhill’s Theorem, any m-complete c.e. set A is a cylinder, i.e., can be split
into infinitely many c.e. parts where each part is m-equivalent to the original set
A. A weaker form of redundancy – which has been extensively studied in com-
putability theory as well as in computational complexity theory1 – is mitoticity.
(The term is borrowed from the process of mitosis in cell biology – the division
of the mother cell into two daughter cells genetically identical to each other.)
A c.e. set A is mitotic if it can be split into two c.e. sets A0 and A1 which are
equivalent to the original set A (hence equivalent to each other). This notion was
originally introduced for Turing reducibility – and most of the work on mitotic
sets in computability theory deals with this reducibility – but it can be (and has
been) adapted to other reducibilities too. (In the following mitotic will refer to

1 First steps to a systematic study of polynomial-time bounded variants of mitotic sets
were taken in the author’s 1984 paper [1]. This work was done when the author was
a postdoc at the University of Dortmund supervised by Egon Börger who greatly
encouraged and supported this work. For a survey of the further work on mitoticity
in computational complexity theory, see the survey by Glaßer et al. [3]. In the current
paper we confine ourselves to the setting of computability theory.

This article is based on some unpublished notes of the author from February 2017.
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mitotic for Turing reducibility and we say r-mitotic if we consider this notion
for some other reducibility r.)

The first work on mitotic sets is by Lachlan [4] who showed that this notion
is nontrivial, i.e., that there are non-mitotic c.e. sets. A systematic study of the
mitotic sets was started by Ladner [5,6]. For instance he showed the following:
the mitotic sets are just Trahtenbrot’s c.e. autoreducible sets. i.e., the c.e. sets A
for which the question whether a number x is an element of A can be answered
using A\{x} as an oracle; there are (Turing) complete c.e. sets which are non-
mitotic; and there are so-called nontrivial completely mitotic degrees, i.e., Turing
degrees of noncomputable c.e. sets where all c.e. members are mitotic.

For more results on mitotic sets in computability theory and computational
complexity theory we refer to the fairly recent survey [3] by Glaßer et al. There
also two new notions of mitotic c.e. sets are introduced, one strengthening the
classical notion, one weakening it: in the stronger notion it is required that
the c.e. parts (A0, A1) of a mitotic splitting of a c.e. set A are computably
separable, in the weaker notion the requirement that the parts A0 and A1 of the
splitting are computably enumerable is dropped. (Some motivation for this new
notions comes from computational complexity where corresponding variants of
polynomial-time mitoticity have been considered in [1].) Glasser et al. raise the
question (see Question 4.2 there), whether these new notions are really new,
i.e., not equivalent to the classical notion. Here we will show that this is indeed
the case (which, by the equivalence of autoreducibility and mitoticity, also gives
a negative answer to Question 3.4 in [3]). In fact, we give stronger separation
results for the three variants of mitoticity by considering these notions not only
for Turing reducibility but also for the classical strong reducibilities. Some of
these separation results were obtained independently by Michler [7] (see below).

Before we state our results more precisely, we first give formal definitions of
the mitoticity notions considered in the following. Here we have to give some
warning in order to avoid confusion. Glasser et al. [3] call the classical mitotic
sets (which, following Ladner, are called mitotic in the standard literature) c.e.
mitotic, and call the stronger notion, requiring computable separability of the
parts, mitotic. Here we stick to the traditional notation. So the c.e. mitotic sets
of [3] are called mitotic here (as usual), and the mitotic sets of [3] are called
strongly mitotic here.

Definition 1. Let r be any reducibility. A c.e. set A is r-mitotic if there are
disjoint c.e. sets A0 and A1 such that A = A0 ∪ A1 and A =r A0 =r A1.

Glaßer et al. [3] consider the following variations of the notion of an r-mitotic
set.

Definition 2. (a) A c.e. set A is weakly r-mitotic if there are disjoint (not
necessarily c.e.) sets A0 and A1 such that A = A0 ∪ A1 and A =r A0 =r A1.

(b) A c.e. set A is strongly r-mitotic if there is a computable set B such that
A =r A ∩ B =r A ∩ B.
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As usual in the literature, we call a c.e. set mitotic if it is T-mitotic, and we
call a c.e. set weakly mitotic (strongly mitotic) if it is weakly T-mitotic (strongly
T-mitotic). Besides Turing (T) reducibility we consider the following common
strong reducibilities: many-one reducibility (m), truth-table reducibility of norm
1 (1-tt), bounded truth-table reducibility (btt), truth-table reducibility (tt) and
weak truth-table reducibility (wtt). (Moreover, for technical convenience we also
consider the bounded truth-table reducibilities of fixed norm k ≥ 2 (k-tt) though
these reducibilities are not transitive.) We call a reducibility r stronger than a
reducibility r′ (and r′ weaker than r) if, for any sets A and B, A ≤r B implies
A ≤r′ B; and we call r strictly stronger than r′ (and r′ strictly weaker than r) if
r is stronger than r′ but r and r′ are not equivalent, i.e., r′ is not stronger than
r. For the reducibilities considered here, m is stronger than 1-tt, 1-tt is stronger
than btt (more generally, for any k ≥ 1, k-tt is stronger than (k +1)-tt and btt),
btt is stronger than tt, tt is stronger than wtt, and wtt is stronger than T (in
fact, as well known, all these relations are strict – though m and 1-tt coincide on
the c.e. sets). Note that, for reducibilities r and r′ such that r is stronger than r′,
any r-mitotic set is r′-mitotic, any strongly r-mitotic set is strongly r′-mitotic,
and any weakly r-mitotic set is weakly r′-mitotic. In the following we tacitly use
these trivial observations.

The following implications among the mitoticity notions are immediate by
definition (for any reducibility r).

A is strongly r-mitotic ⇒ A is r-mitotic ⇒ A is weakly r-mitotic (1)

Glaßer et al. [3] raise the question whether, for Turing reducibility, the converses
of these implications hold (see Question 4.2 there). As pointed out above already,
in the following we show that this is not the case. In fact, we prove stronger sep-
aration results by considering not only Turing reducibility but also the classical
strong reducibilities mentioned above. The separation of strong mitoticity and
mitoticity was independently obtained by Michler [7], a student of Glaßer.

In Sect. 2, we compare weak mitoticity with mitoticity. In order to separate
r-mitoticity from weak r-mitoticity for any reducibility r weaker than 1-tt, we
show that, for such r, weak r-mitoticity is trivial, i.e., that any c.e. set is weakly
1-tt-mitotic hence weakly r-mitotic. (In fact, any c.e. set A can be split into a
c.e. set A0 and a co-c.e. (or, alternatively, a left-c.e.) set A1 such that A =1-tt

A0 =1-tt A1.) In the setting of the classical strong reducibilities this separation
is optimal since, for any reducibility r stronger than m (just as for any positive
reducibility) weak r-mitoticity and r-mitoticity coincide since any set which is m-
reducible (or positively reducible) to a computably enumerable set is computably
enumerable.

The separation of mitoticity and strong mitoticity is given in Sect. 3. As
mentioned above already, this separation was independently obtained by Michler
[7]. We show that there is a btt-mitotic (in fact, 2-tt-mitotic) set which is not
strongly T-mitotic. In this result we cannot replace 2-tt by 1-tt since, as we also
show, any 1-tt-mitotic set is strongly T-mitotic (in fact, strongly wtt-mitotic).
Still, as our final result of this section shows, there are 1-tt-mitotic sets which
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are not strongly 1-tt-mitotic. By the coincidence of (strongly) m-mitotic and
(strongly) 1-tt-mitotic, this also gives the separation of m-mitoticity and strong
m-mitoticity.

In the final Sect. 4, which is not directly related to the above separations, we
look at complete sets. As mentioned above already, Ladner [5] has shown that
there is a Turing complete set which is not Turing mitotic (hence not strongly
Turing mitotic), whereas, by Myhill’s theorem, any m-complete set is a cylinder
hence strongly m-mitotic (see Glaßer et al. [3]). Here we show that Ladner’s result
also fails if we replace Turing reducibility by weak truth-table reducibility: any
wtt-complete set is strongly wtt-mitotic hence wtt-mitotic.

Our notation is standard. Unexplained notation can be found, for instance, in
the introductory part on computability theory of the monograph [2]. We assume
the reader to be familiar with the basic techniques of computability theory. Some
of the proofs in Sect. 3 use finite-injury priority arguments.

2 Weakly Mitotic Sets

Here we show that any c.e. set A is weaky 1-tt-mitotic hence weakly (Turing)
mitotic. The proof of this rather straightforward observation is based on the fact
that any infinite c.e. set contains an infinite computable set as a subset.

Theorem 1. Let A be any c.e. set. Then A is weakly 1-tt-mitotic (hence weakly
r-mitotic for any reducibility r weaker than 1-tt). In fact, there is a c.e. set A0

and a co-c.e. set A1 such that A0 and A1 are disjoint, A = A0 ∪ A1, A =m A0,
and A =1-tt A1.

Proof. If A is computable then the claim is trivial. So w.l.o.g. we may assume
that A �= ω and A is infinite. Fix an infinite computable subset B of A and
let b0 < b1 < b2 < . . . be the elements of B in order of magnitude. Define the
splitting A = A0 ∪̇ A1 of A by letting A0 be the c.e. set

A0 = (A ∩ B) ∪ {bn : n ∈ A}

and by letting A1 be the co-c.e. set

A1 = {bn : n �∈ A}.

Then, as one can easily check, A =m A0 and A =m A1 (hence A =1-tt A0 =1-tt

A1). 	

Since Ladner [5] has shown that there are c.e. sets which are not mitotic

(hence not r-mitotic for any reducibility r stronger than T), Theorem 1 gives
the desired separation of weak mitoticity and mitoticity.

Corollary 1. There is a c.e. set which is weakly mitotic but not mitotic. In
fact, for any reducibility r weaker than 1-tt-reducibility and stronger than Turing
reducibility, there is a c.e. set which is weakly r-mitotic but not r-mitotic.
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Note that any set which is many-one reducible to a c.e. set is c.e. too. Hence
weak m-mitoticity and m-mitoticity coincide. So, in Theorem 1 and Corollary
1 we cannot replace 1-tt-reducibility by the stronger m-reducibility. (More gen-
erally, for the same reason, we cannot replace 1-tt-reducibility by any positive
reducibility.)

Also note that in Theorem 1 we may replace the co-c.e. set A1 by a left-c.e. set
A1 (see e.g. Downey and Hirschfeldt [2] for the definition). Namely, in the proof
of Theorem 1, it suffices to replace A0 and A1 by the c.e. set A0 = {bn : n ∈ A}
and the left-c.e. (and d-c.e.) set

A1 = (A ∩ B) ∪ {bn : n �∈ A},

respectively. (The proof that A1 is left-c.e. is as follows. By Theorem 5.1.7 in
[2], it suffices to give a computable approximation {A1,s}s≥0 of A1 such that,
for any number x and any stage s such that x ∈ A1,s\A1,s+1, there is a number
y < x such that y ∈ A1,s+1\A1,s. Such an approximation is obtained by letting
A1,s = (As ∩ B) ∪ {bn : n �∈ As ∪ B} for any given computable enumeration
{As}s≥0 of A. Namely, if x ∈ A1,s\A1,s+1 then x = bn for some number n ∈ B
such that n ∈ As+1\As. So, for y = n, y < x and y ∈ A1,s+1\A1,s.) So, for
any reducibility r weaker than 1-tt, mitoticity becomes trivial if we relax the
condition that the parts of the splitting are c.e. by only requiring the parts to
be left-c.e. (or one c.e. and the other left-c.e.).

3 Strongly Mitotic Sets

We now turn to the relations between mitoticity and strong mitoticity for the
common reducibilities. First we give the following strong separation theorem
which was independently proven by Michler [7].

Theorem 2. There is a c.e. set A such that A is 2-tt-mitotic but not strongly
T-mitotic.

Below we will show that this is optimal, i.e., that 2-tt cannot be replaced by
1-tt in Theorem 2.

Proof (of Theorem 2). By a finite injury argument, we enumerate c.e. sets A,
A0 and A1 such that A = A0 ∪̇A1, A is 2-tt-mitotic via (A0, A1) and A is
not strongly T-mitotic. We let A0,s and A1,s be the finite parts of A0 and A1,
respectively, enumerated by the end of stage s, and we let As = A0,s ∪ A1,s.

It suffices to ensure that the c.e. sets A0, A1 and A = A0 ∪ A1 satisfy the
following three conditions.

A0 ∩ A1 = ∅ (2)

∀ i ≤ 1
(

Ai ≤2-tt A1−i & Ai ≤2-tt A & A ≤2-tt Ai

)
(3)

∀ B

(
B computable ⇒

[
A �≤T A ∩ B or A �≤T A ∩ B

])
(4)
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As one can easily check, in order to ensure (2) and (3) it suffices to guarantee
that, for any number x ≥ 0, one of the following four clauses holds.

(I) A0 ∩ {3x, 3x + 1, 3x + 2} = ∅
A1 ∩ {3x, 3x + 1, 3x + 2} = ∅

(II) A0 ∩ {3x, 3x + 1, 3x + 2} = { 3x }
A1 ∩ {3x, 3x + 1, 3x + 2} = { 3x + 1 }

(III) A0 ∩ {3x, 3x + 1, 3x + 2} = { 3x + 2 }
A1 ∩ {3x, 3x + 1, 3x + 2} = { 3x }

(IV) A0 ∩ {3x, 3x + 1, 3x + 2} = { 3x + 1 }
A1 ∩ {3x, 3x + 1, 3x + 2} = { 3x + 2 }

(5)

On the other hand, these constraints are tame enough in order to allow us to
meet the non-mitoticity requirements ensuring condition (4). The key to satisfy
this condition is the ability that, given a computable set B, we can expand A
in such a way that the expansion affects only one of the parts A ∩ B or A ∩ B
whence the other part fails to record this change in A. Note that this can be done
in the presence of the above constraints since for any x we may pick j0 �= j1 ≤ 2
such that B(3x + j0) = B(3x + j1) (since we may choose from 3 numbers and
B can take only two values) and we may add 3x + j0 and 3x + j1 to A in such
a way that one of the conditions (II) to (IV) is satisfied.

Formally, in order to guarantee (4) we meet the requirements

R〈e,k〉 : If ψe is total then A �= ΦA∩Se

k0
or A �= ΦA∩Se

k1
.

(for all numbers e and k = 〈k0, k1〉) where {ψe}e≥0 is an acceptable numbering of
the 0-1-valued partial computable functions, Se = {x : ψe(x) = 1}, and {Φe}e≥0

is an acceptable numbering of the Turing functionals. To show that this suffices
to get (4), for a contradiction assume that all requirements are met but (4) fails.
By the latter, fix B such that B is computable and such that A ≤T A ∩ B and
A ≤T A ∩ B hold. Then (by the former) there is a number e such that ψe is
total and B = Se, whence (by the latter) we may fix numbers k0 and k1 such
that A = ΦA∩Se

k0
and A = ΦA∩Se

k1
. So, for k = 〈k0, k1〉, requirement R〈e,k〉 is not

met contrary to assumption.
In the course of the construction we use computable approximations ψe,s

and Φe,s of the partial functions ψe and the Turing functionals Φe, respectively,
where ψe,s(x) = ψe(x) (ΦX

e,s(x) = ΦX
e (x)) if the computation of ψe(x) (ΦX

e (x))
converges in ≤ s steps and where ψe,s(x) ↑ (ΦX

e,s(x) ↑) otherwise. We let l(e, s) be
the least x such that ψe,s(x) ↑ (note that for total ψe, lims→∞ l(e, s) = ∞), and
let Se,s = Se � l(e, s) (i.e., Se,s is the longest initial segment of Se determined
by the end of stage s). Moreover, for technical convenience, we assume that

ΦX
e,s(x) ↓ ⇒ e, x, ϕX

e (x) < s (6)
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holds where ϕX
e (x) is the use of ΦX

e (x), i.e., the least strict upper bound on
the oracle queries occuring in the computation of ΦX

e (x). Note that (by the use
principle) this ensures

ΦX
e,s(x) ↓ & X � s = Y � s ⇒ ΦY

e (x) = ΦY
e,s(x) = ΦX

e,s(x). (7)

Now, the strategy to meet requirement R〈e,k〉 is as follows.

Step 1. At the stage s+1 at which the attack starts, appoint x = s as R〈e,k〉-
follower.
When x is appointed, none of the numbers 3x, 3x + 1, 3x + 2 is in A. These
numbers become reserved for the R〈e,k〉-strategy: this strategy will determine
which of of these numbers are enumerated into A0 and A1, and these are
the only numbers which may be enumerated for the sake of this strategy
(unless the follower becomes cancelled by the strategy of a higher priority
requirement and another attack on R〈e,k〉 with a new follower is made later).
Step 2. Wait for a stage s′ ≥ s such that

3x + 2 < l(e, s′), (8)

∀ j ≤ 2 (Φ
As′ ∩Se,s′
k0,s′ (3x + j) = 0 & ϕ

As′ ∩Se,s′
k0,s′ (3x + j) < l(e, s′)), (9)

and

∀ j ≤ 2 (Φ
As′ ∩Se,s′
k1,s′ (3x + j) = 0 & ϕ

As′ ∩Se,s′
k1,s′ (3x + j) < l(e, s′)) (10)

hold.

For the least such s′ (if any), perform the following action at stage s′ + 1.

– Pick j0 and j1 minimal (in this order) such that j0 < j1 ≤ 2 and Se(3x+j0) =
Se(3x + j1).

– Enumerate 3x + j0 and 3x + j1 into A0 and A1 according to the matching
clause (II) to (IV). I.e., if j0 = 0 and j1 = 1 then enumerate 3x into A0 and
3x + 1 into A1, if j0 = 0 and j1 = 2 then enumerate 3x into A1 and 3x + 2
into A0, and if j0 = 1 and j1 = 2 then enumerate 3x + 1 into A0 and 3x + 2
into A1. (Since numbers are enumerated into A0 and A1 only according to
this clause, this ensures that condition (5) – hence conditions (2) and (3) –
are satisfied.)

– Cancel the followers of all lower priority requirements Rn, n > 〈e, k〉. (This
ensures that - besides 3x + j0 and 3x + j1 - no numbers ≤ s′ are enumerated
into A after stage s′, unless a higher priority requirement acts later.)

To show that the strategy succeeds to meet R〈e,k〉 provided that no higher
priority requirement will act after stage s, distinguish the following two cases.

If there is no stage s′ as in Step 2 of the attack then either ψe is not total
(whence R〈e,k〉 is trivially met) or (by the use principle) there is a number j ≤ 2

such that ΦA∩Se

k0
(3x + j) �= 0 or ΦA∩Se

k1
(3x + j) �= 0 (where here and in the
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following inequality includes the case that one side – here the right side – is
defined while the other side – here the left side – is undefined). Since in this
case none of the numbers 3x, 3x + 1, 3x + 2 is enumerated into A, it follows that
requirement R〈e,k〉 is met.

If there is such a stage s′ then there are numbers j0, j1 ≤ 2 such that 3x+ j0
and 3x+j1 are enumerated into A at stage s′+1 where either {3x+j0, 3x+j1} ⊆
Se or {3x + j0, 3x + j1} ⊆ Se. Moreover, by the assumption that no higher
priority requirement will act after stage s′ and by cancellation of the lower
priority followers, no other numbers ≤ s′ will enter A after stage s′. Obviously,
this implies

A � s′ = (As′ � s′) ∪ {3x + j0, 3x + j1}.

So, if {3x+ j0, 3x+ j1} ⊆ Se then (A∩Se) � s′ = (As′ ∩Se) � s′ whence, by (10)
and by (7),

ΦA∩Se

k1
(3x + j0) = Φ

As′∩Se

k1,s′ (3x + j0) = Φ
As′ ∩Se,s′
k1,s′ (3x + j0) = 0 �= A(3x + j0),

and, if {3x + j0, 3x + j1} ⊆ Se then, by the dual argument, ΦA∩Se

k0
(3x + j0) �=

A(3x + j0). So, in either case R〈e,k〉 is met.
Having explained the ideas underlying the construction, we now give the

formal construction (where stage s = 0 is vacuous, i.e., A0,0 = A1,0 = ∅ and no
requirement has a follower at the end of stage 0).

Stage s + 1. Requirement R〈e,k〉 requires attention if 〈e, k〉 ≤ s and one of the
following holds.

(i) There is no R〈e,k〉-follower at the end of stage s.
(ii) R〈e,k〉 has the follower x at the end of stage s and (8)–(10) above hold for s

in place of s′.

Fix 〈e, k〉 minimal such that R〈e,k〉 requires attention. Say that R〈e,k〉 receives
attention and becomes active. If (i) holds, appoint s as R〈e,k〉-follower. If (ii) holds
pick j0 and j1 minimal (in this order) such that j0 < j1 ≤ 2 and Se(3x + j0) =
Se(3x + j1). If j0 = 0 and j1 = 1 then enumerate 3x into A0 and 3x + 1 into A1,
if j0 = 0 and j1 = 2 then enumerate 3x into A1 and 3x+2 into A0, and if j0 = 1
and j1 = 2 then enumerate 3x + 1 into A0 and 3x + 2 into A1. In any case, for
any n > 〈e, k〉 cancel the follower of requirement Rn (if any).

Note that the construction is effective whence the sets A0, A1 and A are c.e.
Moreover, it is obvious that the construction ensures that, for any x, one of the
conditions (I) to (IV) in (5) applies. So (2) and (3) are satisfied. It remains to
show that all requirements are met. For this sake one first shows, by a straight-
forward induction on n, that any requirement Rn requires attention only finitely
often. This implies that, for any given number 〈e, k〉, there is a stage s at which
x = s is appointed as R〈e,k〉-follower and x is not cancelled later (since no higher
priority requirement acts later). By the above discussion of the strategy to meet
R〈e,k〉, it follows that the attack on R〈e,k〉 via the follower x works. So R〈e,k〉 is
met. We leave the details to the reader. 	
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Next we show that Theorem 2 is optimal. For this sake we first observe
that m-mitoticity and 1-tt-mitoticity coincide. So it suffices to show that any
m-mitotic set is strongly T-mitotic.

Proposition 1. A c.e. set A is (strongly) m-mitotic if and only if A is (strongly)
1-tt-mitotic.

Proof. This is immediate by the fact that ≤m and ≤1-tt agree on the class E of
c.e. sets. 	

Theorem 3. Any m-mitotic set is strongly T-mitotic.

Proof. Assume that A is m-mitotic. Fix c.e. sets Ai (i = 0, 1) such that

A = A0 ∪ A1 & A0 ∩ A1 = ∅, (11)

and A =m Ai. By the latter, fix computable functions fi and gi (i = 0, 1) such
that Ai ≤m A via fi and A ≤m Ai via gi, i.e., such that

∀ i ≤ 1 ∀ x ≥ 0 (Ai(x) = A(fi(x))), (12)

and
∀ i ≤ 1 ∀ x ≥ 0 (A(x) = Ai(gi(x))) (13)

hold. It suffices to define a computable set S such that

A ∩ S ≤T A ∩ S & A ∩ S ≤T A ∩ S (14)

holds.
The definition of S is based on the following two observations.

For any x ≥ 0 and any i ≤ 1, A(x) and A(f1−i(gi(x))) can be
(uniformly) computed from A(gi(x)) and vice versa. (15)

For any x ≥ 0 such that x ∈ A there is a number i ≤ 1
such that gi(x) �∈ {x, f1−i(gi(x))}.

(16)

For a proof of (15) fix x and i. Then A(x) and A(f1−i(gi(x))) can be com-
puted from A(gi(x)) as follows. If gi(x) �∈ A then gi(x) �∈ Ai and gi(x) �∈ A1−i. By
the former and by (13), x �∈ A, while, by the latter and by (12), f1−i(gi(x)) �∈ A.
On the other hand, if gi(x) ∈ A then, by enumerating A0 and A1, find the
unique j ≤ 1 such that gi(x) ∈ Aj . Then, by (13), x ∈ A iff j = i and, by (12),
f1−i(gi(x)) ∈ A iff j = 1− i. Finally, the procedure for computing A(gi(x)) from
A(x) and A(f1−i(gi(x))) is as follows. By (13), gi(x) ∈ Ai iff x ∈ A, and, by
(12), gi(x) ∈ A1−i iff f1−i(gi(x))) ∈ A. So gi(x) ∈ A iff A ∩ {x, f1−i(gi(x))} �= ∅.

For a proof of (16) fix x, assume that x ∈ A, and (by (11)) fix the unique
i ≤ 1 such that x ∈ A1−i. Then, by x ∈ A and by (13), gi(x) ∈ Ai whence
(by (11)) gi(x) �∈ A1−i. So gi(x) �= x. Moreover, by gi(x) �∈ A1−i and (12),
f1−i(gi(x)) �∈ A. So gi(x) �= f1−i(gi(x)) since gi(x) ∈ Ai ⊆ A.

Now, for the definition of S, we inductively define computable enumerations
{Sx}x≥0 and {Sx}x≥0 of S and S, respectively. Let S0 = S0 = ∅. For the
definition of Sx+1 and Sx+1 distinguish the following cases.
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Case1: x ∈ Sx ∪ Sx. Let
Sx+1 = Sx

Sx+1 = Sx
(17)

Case 2: x �∈ Sx ∪ Sx. Distinguish the following subcases.
Case 2.1: There is a number i ≤ 1 such that gi(x) �∈ {x, f1−i(gi(x))}.
Then, for the least such i, let

Sx+1 =

{
Sx ∪ {x} if f1−i(gi(x)) ∈ Sx ∪ Sx

Sx ∪ {x, f1−i(gi(x))} otherwise

Sx+1 =

{
Sx if gi(x) ∈ Sx ∪ Sx

Sx ∪ {gi(x)} otherwise

(18)

Case 2.2: Otherwise. Let
Sx+1 = Sx ∪ {x}
Sx+1 = Sx

(19)

Obviously, the above ensures that Sx ⊆ Sx+1, Sx ⊆ Sx+1, x ∈ Sx+1 ∪ Sx+1

and Sx+1 ∩ Sx+1 = ∅. So, for S =
⋃

x≥0 Sx, the complement S of S is given by
S =

⋃
x≥0 Sx. Moreover, by effectivity of the definition of the sets Sx and Sx,

{Sx}x≥0 and {Sx}x≥0 are computable enumerations whence S and S are c.e. So
S is computable.

It remains to show that (14) holds. For this sake, (by computability of S) it
suffices to show that, for any x, A ∩ Sx can be computed from A ∩ Sx uniformly
in x and vice versa. We give inductive procedures.

For x = 0 the task is trivial since S0 = S0 = ∅. So fix x and (by inductive
hypothesis) assume that there are procedures for computing A∩Sx from A∩Sx

and vice versa.
Then, in order to give an effective procedure for computing A ∩ Sx+1 from

A ∩ Sx+1, it suffices to give a procedure for computing A ∩ (Sx+1\Sx) from
A ∩ (Sx ∪ Sx+1) since, by inductive hypothesis, A ∩ Sx can be computed from
A ∩ Sx hence from A ∩ Sx+1.

So fix y ∈ Sx+1\Sx. In order to decide whether y ∈ A (using A∩ (Sx ∪Sx+1)
as an oracle), distinguish the following two cases according to the case applying
to the definition of Sx+1 and Sx+1. (Note that, by Sx+1 �= Sx, one of the two
subcases of Case 2 must apply.) If Case 2.1 applies then, for the least i ≤ 1
such that gi(x) is not in {x, f1−i(gi(x))}, it holds that y ∈ {x, f1−i(gi(x))} and
gi(x) ∈ Sx ∪ Sx+1. So A(y) can be computed from A ∩ (Sx ∪ Sx+1) by (15).
Finally, if Case 2.2 applies then y = x and x �∈ A by (16).

The algorithm for computing A ∩ Sx+1 from A ∩ Sx+1 is similar. First, by
inductive hypothesis, we may argue that it suffices to compute A ∩ (Sx+1\Sx)
from A ∩ (Sx+1 ∪ Sx). Then given y ∈ Sx+1\Sx, Case 2.1 must apply to the
definition Sx+1 and Sx+1 (since Sx+1 = Sx otherwise). So, given i ≤ 1 minimal
such that gi(x) �∈ {x, f1−i(gi(x))}, y = gi(x) and {x, f1−i(gi(x))} ⊆ Sx+1 ∪ Sx.
So A(y) can be computed from A ∩ (Sx+1 ∪ Sx) by (15).

This completes the proof. 	
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Note that the reductions of A ∩ S to A ∩ S and of A ∩ S to A ∩ S given
in the proof of Theorem 3 are wtt-reductions. (Namely, by x ∈ Sx+1 ∪ Sx+1,
the uses of the reductions are bounded by f(x) = max(Sx+1 ∪ Sx+1) + 1.) So,
actually, any m-mitotic set is strongly wtt-mitotic. We do not know whether this
can be improved by showing that any m-mitotic set is strongly tt-mitotic or even
strongly btt-mitotic. We conclude this section, however, by showing that there
is an m-mitotic set which is not strongly m-mitotic.

Theorem 4. There is an m-mitotic set A which is not strongly m-mitotic (but
strongly 2-tt-mitotic).

Proof (idea). The general format of the proof resembles that of the proof of
Theorem 2. So we only give the idea of the proof. By a finite injury argument
we enumerate a pair of disjoint c.e. sets A0 and A1 such that A = A0 ∪ A1 has
the required properties.

For any number x we ensure that, for Ex = {5x, 5x+1, 5x+2, 5x+3, 5x+4},
the splitting (A0 ∩ Ex, A1 ∩ Ex) of A ∩ Ex has one of the following three forms.

(I) A0 ∩ Ex = ∅
A1 ∩ Ex = ∅

(II) A0 ∩ Ex = { 5x, 5x + 1 }
A1 ∩ Ex = { 5x + 2, 5x + 4 }

(III) A0 ∩ Ex = { 5x + 1, 5x + 3 }
A1 ∩ Ex = { 5x, 5x + 2 }

(20)

Note that this ensures that A is m-mitotic via (A0, A1). For instance, A ≤m A0

via f0 where f0(5x) = f0(5x+1) = f0(5x+2) = 5x+1, f0(5x+3) = 5x+3 and
f0(5x + 4) = 5x; and A0 ≤m A via g0 where, for fixed x0 �∈ A, g0(5x) = 5x + 4,
g0(5x + 1) = 5x + 1, g0(5x + 2) = g0(5x + 4) = x0 and g0(5x + 3) = 5x + 3.
Moreover, as one can easily check, (20) ensures that A is strongly 2-tt-mitotic
via (A ∩ S,A ∩ S) for the computable set S defined by

S = {5x + 1 : x ≥ 0} ∪ {5x + 3 : x ≥ 0}.

In order to make A not strongly m-mitotic, it suffices to meet the require-
ments

R〈e,k〉 : If ψe, ϕk0 and ϕk1 are total then there is a number x such that
A0(5x) �= (A ∩ Se)(ϕk0(5x)) or A0(5x) �= (A ∩ Se)(ϕk1(5x)).

for all e, k ≥ 0 where k = 〈k0, k1〉, ψe and Se are defined as in the proof of
Theorem 2, and {ϕn}n≥0 is a standard numbering of the partial computable
functions. (Note that the above requirements ensure that, for any computable
set S, A0 �≤m A ∩ S or A0 �≤m A ∩ S. Since, by (20), A0 =m A, this implies that
A �≤m A ∩ S or A �≤m A ∩ S.)
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The strategy to meet requirement R〈e,k〉 is as follows. We pick a follower
x, i.e., reserve the numbers in Ex for this strategy. We then wait for a stage
s > 5x+4 such that ϕk0(5x) and ϕk1(5x) are defined at stage s, say ϕk0(5x) = y0
and ϕk1(5x) = y1, such that y0 < s and y1 < s, and such that ψe(y0) and
ψe(y1) (hence Se(y0) and Se(y1)) are defined at stage s too. (If there is no such
stage s then we may argue that one of the functions ψe, ϕk0 and ϕk1 is not
total whence requirement R〈e,k〉 is trivially met.) Now, at stage s + 1, cancel
all lower priority followers (whence - assuming that requirement R〈e,k〉 is not
injured later - the only numbers ≤ s enumerated into A0 or A1 after stage s are
the numbers enumerated into these sets by the R〈e,k〉-strategy hence elements
of Ex). Moreover, define the splitting (A0 ∩ Ex, A1 ∩ Ex) of A ∩ Ex at stage
s + 1 where the clause used for the definition depends on the distinction of the
following cases. (In each case we shortly explain why the corresponding action
guarantees that R〈e,k〉 is met where we tacitly assume that R〈e,k〉 is not injured
later, i.e., that As(y) = A(y) for all y ≤ s which are not in Ex.)

Case 1: y0 �∈ Se or y1 ∈ Se. Then apply clause (II) to Ex.
This implies that A0(5x) = 1 whereas (A ∩ Se)(ϕk0(5x)) = 0 (if y0 �∈ Se) or
(A ∩ Se)(ϕk1(5x)) = 0 (if y1 ∈ Se).
Case 2: Otherwise, i.e., y0 ∈ Se and y1 ∈ Se. Note that this implies
(A ∩ Se)(ϕk0(5x)) = A(y0) and (A ∩ Se)(ϕk1(5x)) = A(y1). Distinguish the
following two subcases.
Case 2.1: y0 �∈ Ex or y1 �∈ Ex. Fix i minimal such that yi �∈ Ex. If yi ∈ As

then apply clause (I) to Ex; otherwise, apply clause (II) to Ex.

The former implies that A0(5x) = 0 whereas (A ∩ Se)(ϕk0(5x)) = 1 (if i = 0)
or (A∩Se)(ϕk1(5x)) = 1 (if i = 1); the latter implies that A0(5x) = 1 whereas
(A ∩ Se)(ϕk0(5x)) = 0 (if i = 0) or (A ∩ Se)(ϕk1(5x)) = 0 (if i = 1).
Case 2.2: Otherwise, i.e., y0 ∈ Ex and y1 ∈ Ex. Then apply clause (III) to Ex.

Note that this gives A0(5x) = 0. Moreover, by case assumption (Case 2), y0 �=
y1 whence we may fix i ≤ 1 such that yi �= 5x+4. It follows by case assumption
(Case 2.2) that yi ∈ {5x, 5x + 1, 5x + 2, 5x + 3} hence (by (III)) A(yi) = 1. So
(A ∩ Se)(ϕk0(5x)) = 1 (if i = 0) or (A ∩ Se)(ϕk1(5x)) = 1 (if i = 1).

This completes the description of the R〈e,k〉-strategy and the explanation why
it succeeds. We leave the formal construction of A implementing this strategy
to the reader. 	


4 Completeness and Mitoticity

Ladner [5] has shown that there is a Turing complete set which is not mitotic. The
following theorem shows that we cannot replace Turing completeness by weak
truth-table completeness. In fact any wtt-complete set is strongly wtt-mitotic.

Theorem 5. Any wtt-complete set is strongly wtt-mitotic.
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Proof. Let A be wtt-complete and let {As}s≥0 be a computable enumeration of
A. We show that there is a strictly increasing computable sequence 0 = x0 <
x1 < x2 < x3 < . . . such that, for the corresponding partition {In}n≥0 of ω into
the intervals In = [xn, xn+1), there is a constant c such that

∀ n ≥ c ∀s ≥ 0
(

As ∩ (
⋃

m<n

Im) �= A ∩ (
⋃

m<n

Im) ⇒ As ∩ In �= A ∩ In

)
(21)

holds. This implies that, for any infinite computable set Ind, A is wtt-reducible
(hence wtt-equivalent) to A ∩ (

⋃
n∈Ind In). (Namely, in order to compute A(x)

for given x from A ∩ (
⋃

n∈Ind In), fix nx ∈ Ind minimal such that c ≤ nx and
x < xnx

, and, using A ∩ (
⋃

n∈Ind In) as an oracle, compute s minimal such that
As ∩ Inx

= A ∩ Inx
. Then A(x) = As(x) by (21). Note that this reduction is

bounded by the computable function g(x) = xnx+1.) So, in particular, A =wtt

A ∩ B =wtt A ∩ B for the computable set B =
⋃

n≥0 I2n whence A is strongly
wtt-mitotic.

The definition of the sequence {xn}n≥0 exploits the following observation.
By wtt-completeness of A, we may fix a strictly increasing computable function
f such that any c.e. set is f -bounded Turing reducible to A. (Namely, since
the universal set U = {〈e, x〉 : x ∈ We} (where We is the eth c.e. set w.r.t. a
standard numbering of the c.e. sets) is c.e. and since A is wtt-complete, there is
a computable function g such that U is g-bounded Turing reducible to A, and,
obviously, there is a computable function h such that We is h-bounded Turing
reducible to U for all e. Moreover, we may choose g and h to be strictly increasing.
Hence the composition f = h◦g of g and h will give the desired bound f .) Then
the strictly increasing computable sequence {xn}n≥0 is inductively defined by
letting

x0 = 0 and xn+1 = f(〈n, xn, xn〉).
(Here we assume that 〈x, y, z〉 = 〈x, 〈y, z〉〉 for a computable pairing function 〈·, ·〉
which is strictly increasing in both arguments. So 〈·, ·, ·〉 is strictly increasing in
its three arguments too, and 〈e, y, z〉 ∈ ω[e] = {〈e, w〉 : w ≥ 0} for all numbers
y, z.)

In order to show that the intervals In = [xn, xn+1) induced by this sequence
satisfy (21), we enumerate an auxiliary c.e. set C. Since A is f -bounded Turing
complete, there will be an index e such that C = ΦA,f

e . (Here ΦA,f
e is the f -

bounded variant of the eth Turing functional Φe where any oracle query ≥ f(x)
in ΦA

e (x) causes the computation to diverge.) The definition of C on ω[e] will
ensure (21) if we let c = e. The idea is as follows. If n ≥ e and a number x ∈ Im
where m < n enters A at a stage s then, at a later stage where C and ΦA,f

e agree
on all numbers ≤ xn+1 = 1 + max In, we enumerate 〈e, xn, x〉 into C (note that
by choice of e there must be such a stage) thereby forcing A to change below
f(〈e, xe

m+1, x〉) ≤ xe
n+1 after stage s. So, if x is the last number from

⋃
m<n Im

which enters A, then this forces a number from In to enter A after the stage
at which x is enumerated into A. So the last change of A on

⋃
m≤n Im will be

on In.
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For the formal definition of C we use the length function

l(e, s) = μ y (∀ x < y (Cs(x) = ΦAs,f
e,s (x)))

where l(e, s) is the length of agreement between C and ΦA,f
e observed at the end

of stage s of the construction. Here Cs is the finite part of C enumerated by the
end of stage s, inductively defined as follows. Stage 0 is vacuous, i.e., C0 = ∅.

Stage s+1. For any numbers e,m, n ≤ s and x such that e ≤ n, m < n, x ∈ Im,
x ∈ As, l(e, s) ≥ xn+1, and 〈e, xn, x〉 �∈ Cs, enumerate 〈e, xn, x〉 into Cs+1.

This completes the definition of the computable enumeration {Cs}s≥0 of the
auxiliary c.e. set C. The formal proof that this definition ensures (21) is indirect.
Fix e such that C = ΦA,f

e , let c = e, and, for a contradiction, assume that n ≥ e
witnesses the failure of (21). Then, for the number x ∈ ⋃

m≤n Im which enters
A last, x ∈ ⋃

m<n Im. In other words, there is a number x, an index m, and a
stage t such that

x ∈ Im and m < n and x ∈ At+1\At and (A\At+1) � xn+1 = ∅. (22)

Now fix s > t minimal such that n ≤ s and l(e, s) ≥ xn+1. (Such a stage s
must exist, since, by C = ΦA,f

e , lims→∞ l(e, s) = ∞.) Since x �∈ At, it follows by
definition of the enumeration of C that 〈e, xn, x〉 �∈ Ct+1. By minimality of s,
this implies 〈e, xn, x〉 �∈ Cs (since 〈e, xn, x〉 may enter C at a stage v + 1 only if
n ≤ v and l(e, v) ≥ xn+1). So all conditions necessary for enumerating 〈e, xn, x〉
into C are satisfied at stage s + 1, hence

C(〈e, xn, x〉) = Cs+1(〈e, xn, x〉) = 1 �= 0 = Cs(〈e, xn, x〉) = ΦAs,f
e,s (〈e, xn, x〉)

(23)
where the last equality holds by l(e, s) ≥ xn+1 since

〈e, xn, x〉 ≤ 〈e, xn, xn〉 ≤ f(〈e, xn, xn〉) ≤ xn+1 (24)

by strict montonicity of 〈·, ·, ·〉 and f . Now, by C = ΦA,f
e and by (23), A �

f(〈e, xn, x〉) �= As � f(〈e, xn, x〉) hence A � xn+1 �= As � xn+1 by (24). But, by
s ≥ t + 1, this contradicts the last clause of (22).

This completes the proof of Theorem 5. 	
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Abstract. In view of the increasing importance of cyber-physical sys-
tems, and of their correct design, the Abstract State Machine (ASM)
framework is extended to include continuously varying quantities as well
as the conventional discretely changing ones. This opens the door to the
more faithful modelling of many scenarios where digital systems have to
interact with the continuously varying physical world. Transitions in the
extended framework are thus either moded (catering for discontinuously
changing quantities), or pliant (catering for smoothly changing quanti-
ties). An operational semantics is provided, first for monolithic systems,
and this is then extended to give a semantics for systems consisting of
several distinct subsystems. This allows each subsystem to undergo its
own subsystem-specific mode and pliant transitions. Refinement is elabo-
rated in the extended context for both monolithic and composed systems.
The formalism is illustrated using an example of a bouncing tennis ball.

1 Introduction

Conventional model based formal refinement technologies (e.g. [2,3,13,17,54])
are based on purely discrete concepts. These are typically ill suited to modelling
applications which are best expressed using continuous mathematics. So there is
a mismatch between the continuous modelling needed at the abstract level, and
the discrete techniques used close to code in hybrid and cyber-physical (CPS)
systems [1,8,15,18,22,29,36–38,47,48,53,55].
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Hybrid and CPS systems display considerable complexity in their behaviour,
which poses challenges for verification techniques. One well respected way of
confronting verification complexity is the top-down design and development app-
roach. Supported by suitable formal notions, it allows complex behaviour to be
approached in stages, with properties that have been established previously per-
sisting in suitable form as more design detail is added. This makes it eminently
suited to confront the challenges posed by complex systems development.

The Abstract State Machine (ASM) approach [11,13] is an established
methodology for top-down design and development. It differs from many other
formal approaches by having a very liberal type system, based on universal alge-
bra rather than a fixed collection of low level built-in types. Following on from
this, the model of state update in ASM is based on the idea of modifying dynamic
functions, a generalisation of the idea of state variables (although, most often,
this full generality is not needed).

In this paper we present an extension of the ASM formalism that enables
us to treat continuously changing quantities fluently, especially at the abstract
level. This is essential if we are to model hybrid and cyber-physical systems
effectively. We also develop the needed extension of ASM refinement. The ASM
extension is based on restricting the continuous behaviours that are permitted to
those which can be described, piecewise, by solutions to well posed initial value
problems, this being sufficient for most engineering purposes. These fundamental
ideas are applied both to monolithic systems, and to systems consisting of several
cooperating subsystems.

The rest of this paper is structured as follows. In Sect. 2 we review the essen-
tials of ASM, and then describe the continuous extension. We base this on a
discussion of the desired semantic domain first, and then construct the syntax
and the desired semantics to map cleanly to it. Section 3 covers a simple exam-
ple concerning a tennis ball bouncing back and forth over a tennis net. Section 4
discusses the formal operational semantics of the given description. The formal
semantics lends itself to defining the semantics of composed (or decomposed)
systems, which we also discuss. With the detailed semantics covered, in Sect. 5
we return to the tennis ball example to explore some of its more subtle aspects.
Then in Sect. 6 we develop the refinement machinery relevant to Continuous
ASM. This is given as a minimal generalisation of the discrete formulation, and
is followed by a discussion of compositionality issues. Section 7 returns to the
tennis ball and discusses a simple refinement scenario for the example. Section 8
discusses related work, while Sect. 9 concludes.

2 ASM, Discrete and Continuous

In this section we review the essentials of ASM [11,13], and extend the formalism
to cope with continuously varying quantities. The advantage of considering such
a clean extension of a discrete formalism is that it opens the door to adapting
existing tools for the discrete formalism, rather than having to start from scratch.
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2.1 Discrete Basic ASM Models

A definitive description of conventional, discrete ASM, is given in [13]. Here, we
give an overview sufficient to prepare the ground for the continuous extension.

As noted above, ASM is founded on concepts of universal algebra [25,50].
This starts by defining signatures, from which we can generate algebras and then
look for models that satisfy the constraints imposed by the algebras. These static
structures constitute a universe within which ASM dynamics runs its course.

Focusing on the concept of basic ASM, the key update notion is carried by
dynamic functions, functions that get (partly) redefined by updates of the form:

f(t1, . . . , tn) := t (1)

In (1), the t1, . . . , tn, t are terms evaluated in the current state, i.e. with respect
to the current definitions of all the elements of the algebras (static and dynamic);
with these values, the dynamic function f at the element of its domain consisting
of the values of the tuple t1, . . . , tn is redefined to be the value of t. If f is a
nullary dynamic function, then (1) corresponds to updating a variable.

A basic ASM transition rule is a construct of the form:

if Condition then Updates (2)

where the Updates are as in (1), and Condition evaluates to a truth value. In
practice, the basic form in (2) is enhanced to improve readability by admit-
ting various syntactic sugars: the usual elaborations of the conditional; a forall
x with cond Rule form for iterating Rule over a collection ranged over by x
(with x constrained by cond); and a choose x with cond Rule form to allow
Rule to be nondeterministic. Below, we only need rules of the form:

Op(in is,out os) =
if guard(xs, is) then

choose xs′, os with rel(xs′, xs, is, os)
do xs, os := xs′, os (3)

In (3) the rule’s name is Op, and we have (read-only) inputs in is and (write-
only) outputs out os in the signature of Op. For us, a basic ASM is a finite set
of such rules.

We say that a rule like (3) is enabled if its guard evaluates to true. In most
model based development formalisms, given a state of the model, i.e. a valuation
that maps each variable to a value in its type, progress is made by selecting
one of the enabled rules and executing it. The ASM policy though, is that all
enabled rules are selected, and their updates are performed in parallel. So the
sets of enabled rules that arise must define consistent sets of updates. If not,
execution aborts. A run of an ASM system thus starts at an initial state, and
continues via a succession of state changes, defined by maximal sets of enabled
rules that define consistent update sets.
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2.2 Continuous ASM Models

We extend the framework above to the continuous world by first examining the
semantic domain. Looking ahead a little, we will be using differential equations
(DEs), and therefore, for mathematical consistency, we need to be precise about
the semantic domain with respect to which the DEs will be interpreted.

For simplicity, we restrict to the case in which the states are given by val-
uations of the tuple of variables of the model, i.e. functions from the tuple of
variables to the tuple of the variables’ types. To extend such models smoothly
to include continuously varying phenomena, we partition the variables into two
kinds: mode variables, whose types are discrete sets, and which only change
discontinuously, and pliant variables, whose types include topologically dense
sets, and which are permitted to evolve both continuously and via discrete
changes. In our terminology, discrete ASM just uses mode variables.

We model time as a left-closed interval T of the reals R, with a finite left
endpoint for the initial state, and with a right endpoint which is either finite (and
right-open) or infinite, depending on whether the dynamics is finite or infinite.
Now, the values of all variables become functions of T .

For a mode variable v, the function is a piecewise constant function, which is
constant on each element of a sequence of left-closed right-open intervals. Thus
the behaviour of v partitions T into a sequence of left-closed right-open intervals,
〈[tv,0 . . . tv,1), [tv,1 . . . tv,2), . . .〉, on each piece of which the behaviour is constant.

For a pliant variable x, the permitted behaviours are piecewise continuous.1

These pieces again partition T into a sequence of left-closed right-open intervals,
〈[tx,0 . . . tx,1), [tx,1 . . . tx,2), . . . 〉, on each piece of which the behaviour undergoes
no discontinuities.

Putting together all the behaviours of all the variables that participate in
defining a particular execution of a system, yields a sequence of left-closed right-
open intervals, 〈[t0 . . . t1), [t1 . . . t2), . . .〉, which is the coarsest partition of T into
such intervals where all discontinuous changes of all the variables of the system
during that execution take place at a boundary point ti.

We note at this juncture that our formulation is by no means the first work
on the ASM formalism to consider the notion of time per se. In this context we
could mention the earlier work in [9,12,16,23,24,26,42,45] for example. While
all of these are concerned with time, in all of them the concern is with pure
timing, i.e. there is no continuously varying behaviour. So in our formulation,
states in all of these works are piecewise constant functions of time.

In a typical interval [ti . . . ti+1), mode variables will be constant, but pliant
variables will change in a continuously varying manner. However, mere continuity
still allows for a very wide range of mathematically pathological behaviours.2 To
constrain these, we make the following restrictions and recommendations:

I Zeno: there is a constant δZeno, such that for all i needed, ti+1 − ti ≥ δZeno.
N. B. Since the presence or absence of Zeno behaviour is usually a global

1 We mention below that actually, we need absolute continuity, not mere continuity
alone.

2 Texts on mathematical analysis are usually replete with relevant examples.
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property of a system’s reachability relation, this point must be regarded as a
recommendation rather than a restriction that is statically enforceable.

II Limits: for every variable x, and for every time t ∈ T , the left limit
limδ→0 x(t−δ), written

−−→
x(t), and the right limit limδ→0 x(t+δ), written

←−−
x(t),

(with δ > 0 in each case) both exist, and for every t, x(t) =
←−−
x(t). (N. B. At

the endpoint(s) of T , any missing limit is defined to equal its counterpart.)
III Differentiability: The behaviour of every pliant variable x in the interval

[ti . . . ti+1) is given by the solution of a well posed initial value problem Dxs =
φ(xs, t) (where xs is a relevant tuple of pliant variables and D is the time
derivative). “Well posed” means that φ(xs, t) has Lipschitz constants which
are uniformly bounded over [ti . . . ti+1) bounding its variation with respect
to xs, and that φ(xs, t) is measurable in t.

It is recognised that ASM types can be mathematically complex entities. There-
fore it is intended that I-III above apply to variables with as general a type as
might be needed, provided that the concepts required in I-III (such as left/right
limits, initial value problem, Lipschitz constants, uniform boundedness, measur-
ability) make sense for them. That said, in the overwhelming majority of cases,
the conventional real type R is sufficient, so we do not consider more complicated
possibilities in this paper.

With I-III in place, the behaviour of every pliant variable is piecewise abso-
lutely continuous [41,52], with the variation being described by a suitable differ-
ential equation.

Accompanying the distinction between mode and pliant variables, is a dis-
tinction between mode and pliant transitions. Mode transitions are just like
conventional ASM transitions in that they record a discrete transition from
before-values to after-values of the mode variables, albeit that these are the
values of piecewise constant functions of time. A rule for a mode transition Op

can be written using familiar ASM notation:

Op(in
−→
is,out ←−os) =

if guard(−→xs,
−→
is) then

choose
←−
xs′,←−os with rel(

←−
xs′,−→xs,

−→
is,←−os)

do xs, os :=
←−
xs′,←−os (4)

In (4), the overarrows are semantic decorations. These are not part of the syn-
tax, but are included for clarity to indicate which limiting value for a variable
(selected from its behaviour as a function of time) is to be taken as being referred
to in the rule. This needs to be understood since all runtime executions of Op

take place at points of discontinuity in the temporal behaviour of (at least some
of the) variables, because rules like Op are intended precisely to define such
discontinuities. Note therefore that the choice of left limit for before-values and
right limit for after-values (at a given transition point) makes (4) into the kind
of instantaneous transition we would expect. Stripping off the overarrows from
(4) yields the form one would write to describe a rule in a specific application.
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In (4) we single out the inputs is and outputs os, (read-only and write-
only respectively), while xs are the state variables (accessed in read/write man-
ner). Note the double decoration of the after-state variables

←−
xs′. The prime

corresponds to the usual syntactic decoration that one would expect to use
in distinguishing before-states (unprimed) from after-states (primed), whereas
the overarrow indicates the temporal semantic interpretation. Obviously, if the
after-values for xs and os are available explicitly, the relevant expression can be
assigned in the do clause, and the choose and with clauses can be omitted.

Pliant transitions do the corresponding job for pliant variables. While a mode
transition is a single before-/after-value pair, a pliant transition is a family of
before-/after-value pairs parameterised by the relevant time interval [ti . . . ti+1).
Moreover, instead of the change from before-values to after-values taking place
instantaneously, the before-value can be understood to refer to the initial value
at ti (which, by II, equals the right limit at ti), while the after-value refers
to an arbitrary time in the open interval (ti . . . ti+1), so the before-value and
after-value are separated in time. To reflect the constraints that apply to pliant
transitions, we write rules for them thus:

PliOp(in is(t ∈ (tL(t) . . . tR(t))),out os(t ∈ (tL(t) . . . tR(t))))
c=

if IV (xs(tL(t))) ∧ guard(xs(tL(t))) then

with rel(xs, is, os, t)
do xs(t), os(t) := solve DE(xs(t), is(t), os(t), t) (5)

In (5), the symbol c= signals the presence of a rule for a pliant transition, distin-
guishing it from the instantaneously executed kind. The notations tL(t) and tR(t)

refer to the beginning and end, respectively, of the time interval during which
PliOp executes. Of course, the values of these cannot be known statically, even
disregarding the fact that different invocations of the rule at runtime will require
different values for tL(t) and tR(t). Therefore all explicitly given references in (5)
to variables’ time dependencies, and to tL(t) and tR(t) values, are semantic dec-
orations, included for readability, and indicated by the shading. They do not
form part of the syntactic form of the rule, and so “t ∈ (tL(t) . . . tR(t))” in the
declaration of the input “in is(. . .)” is redundant (similarly for the output), as
is “(t)” in occurrences of “xs(t)”, etc. In this paper, we have opted to retain the
“var(t)” way of referring to the time dependent behaviour of pliant variables
inside pliant rules, for improved readability.

Given a specific execution of the system, which generates a specific partition
of T , for an arbitrary t, we define L(t) = max{i | ti ≤ t} and R(t) = min{i | ti >
t} (with obvious default for an infinite last interval) which yields the indexes in
the partition of T relevant to the subinterval of T to which t belongs. This is
consistent with the notations tL(t) and tR(t) in (5). These devices allow us to refer
to the beginning and end of the interval during which the pliant event runs in a
generic manner in our meta level discussions. They also permit, despite what has
been said above, rules like PliOp to refer to relative time from the beginning
of the execution of a transition specified by PliOp, by using expressions like
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(t − tL(t)). This is useful within clauses such as rel(xs, is, os, t), for example.
Obviously, fresh syntactic sugar could be introduced to handle this, if desired.

For a specific execution of PliOp, the inputs is and outputs os are con-
tinuously absorbed from and emitted to the environment over the open interval
(tL(t) . . . tR(t)), as indicated in the signature. (Both must be absolutely right con-
tinuous.) Note that the initial values IV and guard guard depend only on the
before-value of the state,3 and not on the input, whereas rel, which expresses
any additional constraints that must hold beyond the differential equation DE
itself, can depend on all state and input values from the start of the interval tL(t)
up to the current time t. The assignment in (5) says that the after-state and out-
put at t should satisfy the differential equation DE (as well as rel). As for the
instantaneous case, if the continuous functions of t to be assigned to xs, os are
known explicitly, we can omit the with and/or solve clauses as appropriate,
and just assign xs, os to the relevant expression.

As mentioned earlier, pliant variables can undergo instantaneous discontin-
uous transitions as well as continuous ones. For such transitions, the structure
in (4) is sufficient. We continue to call instantaneous transitions involving both
kinds of variable mode transitions, introducing the term pure mode tran-
sitions for the former kind.

A continuous ASM ruleset is well formed iff:

• Every enabled mode transition is feasible, i.e. has an after-state, and on its
completion enables a pliant transition (but does not enable any mode transi-
tion).

• Every enabled pliant transition is feasible, i.e. has a time-indexed family of
after-states, and EITHER:
(i) During the run of the pliant transition a mode transition becomes enabled.

It preempts the pliant transition, defining its end. ORELSE
(ii) During the run of the pliant transition it becomes infeasible: finite termi-

nation. ORELSE
(iii) The pliant transition continues indefinitely: nontermination.

A run of a continuous ASM system starts with a mode transition which assigns
the initial state of all system variables, and then, pliant transitions alternate
with mode transitions. The last transition (if there is one) is a pliant transition
(whose duration may be finite or infinite). We thus see that the sequence ti of
times at which discontinuities take place, emerges as the sequence of times at
which the first possible preemptions of the pliant transitions by the enabling of
mode transitions arises.

3 Example: A Bouncing Tennis Ball

To illustrate our formalism, we consider an idealised tennis rally, in which a
pointlike tennis ball of unit mass is being hit back and forth over the tennis net,
3 Normally, we would expect IV to depend on the pliant variables and guard to depend

on the mode variables, but there is no need to insist on this formally.
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Fig. 1. A single shot in a tennis rally.

which is of height N . Let the
horizontal and vertical compo-
nents of the ball’s velocity be vx
and vy, positive for rightwards
and upwards motion. Suppose
horizontal and vertical positions
are measured from the bot-
tom point of the net, positive
for rightwards and upwards dis-
placements, and for the tennis
ball, these are px and py.

We consider a single shot in
the rally. As illustrated in Fig. 1, the ball appears from the right, with velocity
(vxin, vyin) say (both vxin and vyin being negative), bounces once, and then on
its continuing path encounters the player’s racquet at height R, having travelled
a horizontal distance L. After striking the ball, the racquet gives it a velocity
(vxout, vyout). We can model this scenario using continuous ASM rules as follows.
The free flight of the ball is governed by a pliant rule:

Flight
c
=

if py > 0 then with py ≥ 0

do px(t), py(t), vx(t), vy(t) := solve [Dpx,Dpy,Dvx,Dvy] = [vx, vy, 0, −g]

In Flight we see the usual equations of Newtonian motion for a point mass in
first order row-vector form. We use the symbol D to denote the time derivative
in “program-like” situations; g is the acceleration due to gravity. We check,
and continually enforce, the constraint that py is non-negative—the ball is not
allowed to penetrate the surface of the tennis court. This one rule is enough for
all three free-flight episodes of our scenario.

The interactions of the ball with the ground and with the racquet require
some mode rules. The simplest is the bounce off the tennis court surface. The
following rule will do.

Bounce = if py = 0 ∧ vy < 0 then do vy := − c vy

Rule Bounce assumes that the motion of the pointlike tennis ball in the hor-
izontal direction is unaffected by the bounce, but that the vertical component
is reflected, and scaled down by the coefficient of restitution c (where we have
0 < c < 1).

While the modelling of the bounce can be said to be reasonably realistic, we
simplify the interaction with the racquet fairly dramatically, by assuming that
the racquet has infinite mass and is infinitely stiff. In this case, the encounter
between the ball and racquet can be modelled just like a bounce, i.e. the normal
component of the relative velocity is reflected modulo the coefficient of restitution
c, and the tangential component remains unaffected.

To model this properly, we need position and velocity variables for the rac-
quet; let these be rpx, rpy, rvx, rvy respectively, and suppose that these variables
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refer to the precise point of impact on the racquet of the ball. Suppose that at
the moment of impact, the racquet is inclined at an angle α to the horizontal, as
in Fig. 1. Then a mode rule that will fulfill our requirements is the following.

Racquet =

if py > 0 ∧ py = rpy ∧ px < 0 ∧ px = rpx ∧ vx < 0 ∧ vx.rvx + vy.rvy < 0 then

do

vx := −(vx − rvx)(cos2(α) + c sin2(α)) + (vy − rvy)(1 − c) cos(α) sin(α) + rvx,

vy := (vx − rvx)(1 − c) cos(α) sin(α) − (vy − rvy)(sin2(α) + c cos2(α)) + rvy

The guard of Racquet checks that the ball is above the ground and to the left
of the net, and that the ball and racquet are in the same place. The final conjunct
of the guard is the inner product of the racquet and ball velocities. Insisting that
it is negative ensures that the racquet strikes the ball in such a way that there
is a component of the resulting velocity that is opposed to the ball’s previous
motion—which, if the ball is travelling as we would expect, towards the left,
ensures that the ball will travel towards the net after the impact. Beyond that,
explaining the assignments to vx and vy in the rule takes us deeper into classical
mechanics than is appropriate here, so the details are relegated to an appendix.

Our model is completed with an Init rule to assign appropriate initial values
to all the variable. We do not write it down.

4 Formal Semantics

The account of the Continuous ASM in Sect. 2 was intended to give a picture
of our formalism that is conceptually easy to grasp and is clear enough for
model building, relying to some extent on the reader’s intuition and experience
to fill in any gaps (e.g. positing ab initio the sequence ti of times at which
discontinuities take place). In this section we give a summary of the formal
operational semantics of our formalism. In order to not waste large amounts of
space on repeating routine material, we rely heavily on existing work: on [13]
(especially Chap. 2.4) for conventional ASM semantics; and on [49] (especially
Chapter III §10) for differential equations in the sense of Carathéodory. Given
these trusted foundations for discrete and continuous update respectively, the
issues we must be most careful about are the handovers between mode and pliant
transitions. We discuss these further after presenting the semantics.

One thing that we have not explicitly mentioned hitherto, is that we have
been assuming that the system being discussed is defined monolithically, i.e. as a
single indivisible syntactic unit. This is in accord with the automata-centric view
taken in the majority of work on hybrid systems in the literature (see Sect. 8).
However, in rule based formalisms (such as ASM), it is quite common to compose
systems out of smaller subsystems—in the ASM case, the simultaneous execution
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of all enabled rules at each step provides a very simple semantics for composing
subsystems that just aggregates the subsystems’ rulesets.4

In this regard, the semantics we sketched in Sect. 2.2 is inadequate. For one
thing, we spoke (almost exclusively) of transitions, and did not explore in detail
how they might be related to ASM rules, except that intuitively it is clear that
rules should specify transitions. This also sidesteps the scheduling convention
just mentioned. For another thing, we did not consider whether insisting that
the system as a whole engaged in the alternation of mode and pliant transitions
as we described them, made sense when the system is not monolithic.

The latter point raises an issue not present in the usual discrete world. In the
discrete world, when an update is made to some system variables, any variables
not mentioned in the syntactic description of the update, conventionally remain
at their existing value. This coincides with the natural real time behaviour of
variables that have piecewise constant values over time. So there is no observ-
able distinction between leaving such a variable unaltered (to pursue its natural
temporal evolution) on the one hand, and updating it to remain at the same
constant value on the other hand. The former view is appropriate if the vari-
able belongs to a different subsystem which is unaware of the ongoing update,
while the latter view is appropriate if the variable belongs to the system being
currently updated, but no change in its value is required.

In the continuous world, in which the values held in system variables may vary
in a non-piecewise constant manner over time, the distinction between these two
views can become apparent. If a variable that belongs to the subsystem currently
being updated (via a pliant transition that is about to start) is not mentioned
in the syntactic description of the update, then the policy that its value remains
constant throughout the ensuing interval of time during which the new pliant
transition will act, represents a specific design decision about the semantics of
the current subsystem.

While it might be possible to justify such a design decision on requirements
grounds when the variable belongs to the system being updated, the same design
decision can seem very unnatural when the variable in question belongs to a dif-
ferent subsystem, in which its behaviour is being governed by a pliant transition
that started in that subsystem earlier, and which demands some non-constant
behaviour for the variable. Then, the idea that behaviour is suddenly overridden
by a constant behaviour that “appears out of nowhere” (from the point of view
of that other subsystem) is very counterintuitive. So it is highly preferable that
such variables be allowed to continue with their pre-existing behaviour.

Taking this latter view complicates the semantic picture a little. On the face
of it, the definition of the sequence of times ti at which discontinuities take place
becomes more problematic—the sequence that is “naturally” seen by one subsys-
tem need not coincide with the sequence that is “naturally” seen by another sub-
system. Additionally, specifying the moments at which mode transitions arise, and

4 Dually, one can approach the same issue by decomposing simpler abstract systems
into collections of smaller, more detailed subsystems, as happens in Event-B for
instance.
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Table 1. Notations utilised in the semantics

Notation Explanation

T Time interval, duration of the dynamics

Uvar Type for variable var

R Set of rules

S Semantics of R, a set of system traces

ζvar System trace of var, ζvar : T → Uvar

PlRl(pli, t) Pliant rule for variable pli that ζpli obeys at time t

InitUDS Set of consistent update sets for the initial rules of R
PliRsEN Set of enabled pliant rules of R (at any execution of step [5] of the

Semantics)

PliRsCT Set of pliant rules that are to continue preceding execution (at any
execution of step [6] of the semantics)

PliREM Set of remaining pliant rules (not in PliRsEN ∪ PliRsCT at any
execution of step [7] of the semantics)

MoRs Set of non-Init mode rules enabled at a preemption point (at any
execution of step [12.2] of the semantics)

MoRsUDS Set of consistent update sets for the rules in MoRs (at any execution
of step [12.3] of the semantics)

their scope, as well as determining the scope of pliant transitions, requires more
care. Deciding what “subsystem” refers to, and how to handle it in the context of
a rule system based formulation, also requires care.

Our semantics takes these considerations into account. It defines the
behaviours of a set of rules R, much as one would do for a monolithic sys-
tem. However, we allow for the fact that R may itself be made of the union
of one or more constituent sets of rules. We do this by: (i) allowing for several
Initial rules (which must, of course, be consistent, originating from different
constituent rule subsets), (ii) having a preemption mechanism that allows pliant
rules to continue past a preemption point (when this is appropriate) as well to
be preempted (when that is appropriate), using rule-variable dependencies to
determine which course of action to apply after any mode transition. This gives
a simple syntax-independent semantics for composition. With these thoughts in
mind, the semantics is given in the following sections.

4.1 Semantic Context

We start with a number of contextual observations and definitions. Table 1 sum-
marises the specialised notations introduced during the course of the technical
details.

[A] Time, referred to as t, takes values in the real left-closed right-open set
[t0 . . .+∞), where t0 is an initial value for time. For every other system variable
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var, there is a universe of values (or type) Uvar. If var is pliant, then Uvar is
R. (N. B. Earlier we were more lax concerning the types of pliant variables. Now
we will be more specific, recognising that, in practice, more complex types that
are of interest can be constructed from R anyway.)

[B] The semantics is given for R which is a set of rules. R contains one or more
distinguished Initial rules. Each Init rule has a guard which is either “true” or
“t = t0”.

[C] Time is a distinguished variable (read-only, never assigned by rules). All
other variables have interpretations which are functions of an interval of time
starting at t0. (See [E].) As well as directly referring to the time variable, time
may be handled indirectly by using clock variables. Their values may be assigned
by mode rules, and their rates of change with respect to time may (during use
in pliant rules) be specified directly, or defaulted to unity.

[D] R consists of mode rules and pliant rules. A mode rule (e.g. (4)), is enabled
iff, under the current valuation of the system variables, the value of the guard
of (4) lies in the topological closure of the true-set of the guard. A pliant rule
(e.g. (5)), is enabled iff IV ∧ guard evaluates to true under the current valuation
of the system variables. A variable is governed by a mode rule iff it is assigned
by that rule. A pliant variable is governed by a pliant rule iff it appears in the
left hand side of the DE of the rule, or is directly assigned in the rule, or is
constrained in the with clause.

[E] The semantics of R is a set of system traces S. Each system trace S ∈ S is
given by a time interval T = [t0 . . . tfinal) (where tfinal, with tfinal > t0, is finite
or +∞), and a set of time dependent variable interpretations ζvar : T → Uvar,
one for each variable var. If S is empty we say that the semantics of R is void.

[F] In order that the evolution of each pliant variables is suitably managed,
an additional data structure is needed. For each pliant variable pli, the function
PlRl(pli, t) returns the pliant rule that the interpretation ζpli of variable pli is
obeying at time t.

[G] The set of traces S is constructed by the step by step process below,
which describes how individual system traces are incrementally constructed.5

Whenever a choose is encountered, the current trace-so-far is replicated as
many times as there are different possible choices, a different choice is allocated
to each copy, and the procedure is continued for each resulting trace-so-far.
Whenever a terminate is encountered, the current trace-so-far is complete.
Whenever an abort is encountered, the current trace-so-far is abandoned, and
eliminated from the semantics S, of R.

4.2 Operational Semantics

In the context of the assumptions [A]–[G] above, the operational semantics of
the Continuous ASM can be given as follows.
5 N. B. The process is not intended to be executable. All traces-so-far are intended to

be explored simultaneously.
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[1] Let i := 0 (where i is a meta-level variable).
[2] Let InitUDS be the set of consistent update sets for the collection of initial

rules of R. If InitUDS is empty then void. Otherwise, choose an update
set from InitUDS and assign all variables accordingly, thereby interpreting
their values at time t0. (N. B. We assume that all system variables acquire
an initial value in this manner.)

[3] If any non-Init mode rule is enabled when the variables have the values at
ti then abort.

[4] If no pliant rule from R is enabled then abort.
[5] Let PliRsEN be the set of enabled pliant rules from R.
[5.1] If any pliant variable occurs in the left hand side of the DE (or direct

assignment) of more than one rule in PliRsEN (or more than once in
the left hand side of the DE in the same rule), then abort.

[6] If i = 0 let PliRsCT = ∅. Otherwise, let PliRsCT be the set of pliant
rules from R, such that: PliRsCT is maximal; no rule in PliRsCT is in
PliRsEN ; no variable governed by any rule in PliRsCT is governed by any
rule in PliRsEN ; for every rule PliRlCT in PliRsCT , for every pliant
variable pli governed by PliRlCT,

−−−−−−−−→
PlRl(pli, ti) = PliRlCT; for every

rule PliRlCT in PliRsCT , for every mode variable v which occurs in the
guard of PliRlCT,

−−→
v(ti) = v(ti).

[7] Let PliREM consist of any pliant variables pli that are not governed by
any rule in either PliRsEN or PliRsCT . If PliREM is nonempty, then
abort.

[8] If there does not exist a tnew > ti such that there is a simultaneous solution
of all the DEs and direct assignments in the rules in PliRsEN ∪PliRsCT
in the left-closed, right-open interval [ti . . . tnew), using as initial values the
variable values and right limits of inputs and outputs at ti, and such that
the rel predicates also evaluate to true in the interval [ti . . . tnew), then
abort.

[9] Otherwise, choose a simultaneous solution as in [8], and let tmax be
maximal such that tmax > ti and this solution is defined in the interval
[ti . . . tmax).

[9.1] For all pliant variables pli, for all t ∈ [ti . . . tmax), let PlRl(pli, t) be the
rule governing the behaviour of pli. (N. B. This assignment is total by
[7] and unambiguous by [5.1].)

[9.2] For every mode variable, extend its value at ti to a constant function
in the interval [ti . . . tmax).

[10] If no non-Init mode rule is enabled at any time tnext in the open interval
(ti . . . tmax), or no non-Init mode rule is enabled by the left-limit values of
the state variables at time tmax in the case that these left-limit values exist
and are finite at tmax, then terminate.

[11] Let i := i + 1.
[12] Let ti be the smallest time tnext at which some non-Init mode rule is

enabled in [10].
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[12.1] Discard the interpretation of all variables, and the definition of PlRl,
in the interval [ti . . . tmax).

[12.2] Let MoRs be the set of non-Init mode rules that are enabled when all
variables var are interpreted as the left-limit values at ti, i.e. as

−−−−→
var(ti).

[12.3] Let MoRsUDS be the set of consistent update sets for the rules in
MoRs. If MoRsUDS is empty then abort. Otherwise, choose an
update set from MoRsUDS and assign all the updated variables accord-
ingly, thereby interpreting their values at time ti.

[12.4] For all other variables var, interpret their values at time ti to be their
left-limit values at ti, i.e. to be

−−−−→
var(ti).

[13] Goto [3].

4.3 Mode-Pliant and Pliant-Mode Handovers

Before commenting further, we make some observations on the consistency of
the above definition. As noted earlier, we can take certain things for granted,
such as well definedness of mode transitions via ASM update semantics, and the
existence of solutions to differential equations. The key remaining points then,
are whether the handovers from pliant to mode transitions, and those from mode
to pliant transitions, are well defined.

We observe that the handover from pliant to mode transitions is trouble-free
as follows. Since the set of values at which any mode rule becomes enabled is
closed (being given by the closure of the true-set of the guard of the rule, by
[D]), and since the system trajectory is a continuous function during any interval
in which a pliant rule is active, if the system trajectory meets the closure at
all during such an interval, it first meets it at some specific time point. Since
there are only finitely many rules, the minimum of these points is a unique well
defined time point, and so ti in [12] emerges as this minimum. Thus the earliest
moment that a mode transition becomes enabled during a pliant transition is a
well defined time point, and the time at which the pliant transition is preempted
is well defined, from which a consistent set of mode updates is derived, by [12],
[12.1], [12.2], [12.3].

We argue that the handover from mode to pliant transitions is also consistent.
Firstly, upon completion of a mode transition, some pliant rules will (typically)
be enabled, [5]; these are required to be unambiguous and consistent by [5.1].
Secondly, these rules need not govern all the pliant variables of the whole system.
By [6], if there were pliant rules contributing to the pliant transition that was
just preempted, which govern variables disjoint from those governed by the first
case, they are permitted to continue—we might term this figurative interruption
and resumption a “virtual skip”. Thirdly, the former two measures may still not
take care of all pliant variables, since there is no requirement for pliant rules
and the sets of variables that they govern to dovetail neatly together. If there
are any pliant variables left over, [7] ensures that the run is aborted.

With suitable attention to routine details, the above remarks can be turned
into a formal proof of the consistency of the definition of system traces.
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4.4 Multiple Subsystems

We return to the questions that were raised earlier concerning the definition of,
and interaction between, subsystems that coexist within a single encompassing
system. We examine how the formal semantics above helps to address these, and
we tie up the semantic loose ends.

To start with, we would normally expect that a separate subsystem would
control (i.e. have write access to) an exclusive set of variables. We therefore take
that as a fundamental principle.6

The next basic insight comes from [13], which promotes a perspective in which
a system’s variables are either monitored or controlled. Controlled variables are
written to by the system, whereas monitored variables are merely read. For the
latter, it is assumed that the environment supplies the values that are read, but
aside from the condition that the values of monitored variables should be stable
when read, no further restriction is placed on them. Thus, there is nothing to
prevent their values from being supplied by another ASM system, the original
system and its environment thus becoming two subsystems of a larger system. In
other words, the conventional definition of an ASM system is intended to enable
it to play the role of subsystem, essentially without modification.

For our purposes, we add a couple of observations to the above picture to
make it suit the Continuous ASM situation. Firstly, since pliant variables’ val-
ues will change continuously in general, we can modify “stable when read” to
“reliably readable when needed”, to avoid any possible confusion. Secondly, we
emphasise that in the context of a system comprising several subsystems (i,e,
one constructed via the composition of the subsystems’ rulesets), each writable
variable is written to by the rules belonging to exactly one of the subsystems,
and no rule (of the whole system) writes to the writable variables of more than
one of the subsystems. With these simple structural restrictions in place, the
semantics of a system consisting of the composition of multiple subsystems is
simply given by aggregating all of the rules of all of the subsystems in the usual
way, and processing them according to the single system semantics given above.

Of course, a non-void semantics for subsystem A1 which assigns a variable
x1 while reading variable x2 which belongs to subsystem A2, and a non-void
semantics for subsystem A2 which assigns a variable x2 while reading variable
x1, does not guarantee a non-void semantics for the entire system consisting
of A1 together with A2, since there may not be values for x1 and x2 that
simultaneously satisfy all the constraints imposed by the two subsystems.

The second proviso above also acts in concert with the stipulations of the
formal semantics to ensure that, in a multi-subsystem system, each preemption
point is caused by an identifiable subset of the subsystems,7 and upon completion

6 We can imagine that write access to some variable might, exceptionally, be shared
by more than one subsystem, but under such circumstances a suitable protocol will
have be in place to prevent race conditions, such as in the case of familiar mutual
exclusion protocols [31,40]. We do not consider such cases here.

7 For simplicity, we permit simultaneous preemption by more than one subsystem,
even if it would be a little impractical in reality.
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of the preemption, an identifiable subset of the subsystems embarks on new
pliant behaviour, with the remainder resuming the pliant behaviour they were
executing previously. (N.B. The two subsets need not be the same.)

The last point brings us to the issue of the how the indexing of mode and pli-
ant transitions works in a system conceptually divided into separate subsystems.
We see that the semantics defines a global indexing, which is a strict sequentiali-
sation of the mode transitions of the entire system, regardless of which subsystem
they might arise from. From the vantage point of any given subsystem, only a
subset of these mode transitions might be “visible”, but this amounts to simply
re-indexing the mode transitions if we want to describe the system dynamics
from that subsystem’s viewpoint. Allied to this is the fact that if a remote sub-
system undergoes a mode transition of which a given subsystem is unaware,
some values being read by the local subsystem might still undergo discontinuous
change in the midst of a pliant transition (of the local subsystem). This discon-
tinuity causes no discomfort, since we understand differential equations in the
sense of Carathéodory. Provided that the right hand side of each ODE in the
system has the uniformly bounded Lipschitz property in the system variables,
and remains measurable over time, it is guaranteed that a solution exists and is
absolutely continuous.

Lastly, a note on Zeno behaviour. Nothing in the semantics that we have
discussed precludes it. Therefore the semantic model does not of itself guaran-
tee the recommendation I of Sect. 2.2. As we remarked, Zeno-freeness normally
depends on global reachability, so our view is that if a system model is capable
of exhibiting Zeno behaviour, then there is potentially something wrong with
the model, and, depending on circumstances, the model ought to be improved
to remove or mitigate those aspects that lead to it.8

5 The Tennis Ball Revisited

What is interesting about the tennis ball example is to consider how the formal
semantics of Sect. 4 views the behaviour of the tennis ball system. We start by
noting that the guards of the various mode rules in the tennis ball system all
featured strict inequalities. However, in order that in any given run, the times
at which mode events occur are well defined, the runtime interpretation of mode
events’ guards is via the closure regions of their true-sets. In other words, the
strict inequalities of guards are reinterpreted non-strictly. This gives rise to some
interesting effects, which we comment on now.

One interesting effect concerns the constraint py > 0 in the guard of Rac-

quet. If this is replaced by py ≥ 0, then the scenario is possible in which py = 0
becomes true at the precise time that the ball strikes the racquet. In this case
both Bounce and Racquet are enabled. If Bounce runs first, then Racquet

will be enabled immediately afterwards, and the run will be aborted by point [3]
of the formal semantics. If Racquet runs first, then Bounce will be enabled
8 This could depend on requirements. Zeno behaviour may sometimes be tolerable and

sometimes not.
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immediately afterwards, and the run will also be aborted. These aborts are typi-
cal of the “cleaning up” that the semantics performs when the rules do not neatly
conform to the requirements of the strucure of runs that we have demanded. This
also supports the view that one should design and reason about systems using
such guards etc. as most eloquently address the needed system requirements.
Regarding behaviours at awkward boundary cases which arise because of the
semantics, even if the semantics does not abort, behaviours may be forced that
could justifiably be regarded as anomalous.

As an example of this consider the flight of the ball after the racquet strike,
as it approaches the net. If the path of the ball is low, it will hit the net after
having travelled a horizontal distance L from the point of impact with the rac-
quet. Assuming the racquet strikes the ball so that it has an upward velocity
component, let us consider increasing the velocity with which the racquet strikes
the ball. As this increases, the ball will typically hit the net at points higher and
higher up. Eventually, the top of the net will be reached. If the net is modelled as
a vertical line, closed at the top (i.e. using a definition such as 0 ≤ net y ≤ N),
then the family of ball trajectories including these net impacts, generated by the
above rules will behave smoothly as the limit of the top of the net is reached.

By contrast, keeping the same net definition, consider the case when the ball
has a lot of energy on its return towards the net. Then it will fly over the net
towards the right. Now consider reducing the ball’s energy gradually. At the limit
point, i.e. when the flight of the ball touches the net at height N , there will be a
discontinuity in the family of ball trajectories. At the limit point, instead of the
ball flying over the net, it will hit the net and drop leftwards. Assuming that the
net is modelled as we said, and that we have a mode rule to model the impact
with the net, this anomalous limiting behaviour of the family of trajectories in
which the ball flies over the net will be generated by the semantics.

By contrast, if we model the net as 0 ≤ net y < N , then the anomaly would
be generated the other way round, as the point of impact with the net rose.

Is the existence of either anomalous limit harmful? We argue that it is not.
The anomaly exists at a single set of values for the system parameters. Viewed
from the perspective of the system as a whole, this is a set of measure zero. In
engineering terms, it is something which cannot be observed since the slightest
departure from the specific parameter values causes a change in behaviour—only
behaviours that are modelled by systems in which the behaviours are robust over
parameter sets of non-zero measure can play a role in real life, so the existence of
relatively isolated anomalous behaviours does no harm. These relatively isolated
anomalous behaviours are the price that one sometimes has to pay for being
able to model at an idealised level. And although such idealised models are
clearly unrealistic to a degree, the clarity they can bring to high level system
conceptualisation makes the price one that is worth paying.

A further set of interesting behaviours arises if we allow the coefficient of
restitution parameter c, to vary. Under normal circumstances, one would expect
a single bounce of the ball before the racquet returns the ball over the net, this
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being what is allowed by the rules of tennis. If, however, we consider a succession
of further bounces, more interesting things can occur.

We assume that the racquet stays at a horizontal distance L away from the
net. Then the number of bounces that the ball can experience depends on the
value of c. Provided there is at least one bounce, then by adjusting the value of
c we can increase the number of subsequent bounces arbitrarily. To see this we
observe that the (vertical part of the) kinetic energy reduces by a factor of c2 on
every bounce. So the height of the parabolic flight segment after every bounce
also reduces by a factor of c2, and so does its width, which corresponds to the
horizontal distance travelled during that parabolic flight segment. So, aside from
the initial part in which the ball comes over the net, the total horizontal distance
travelled is proportional to

∑∞
k=1 c2k = c2(1 − c2)−1. As c reduces to zero, this

approaches c2, which also approaches zero.
So the total additional horizontal distance travelled after the first bounce can

get arbitrarily small, and thus the ball may never reach the racquet while still
in the air. What we see here is an example of a Zeno effect. To absorb all the
initial vertical kinetic energy takes an infinite number of bounces.

What happens afterwards? Arguing physically (though still in a highly ide-
alised way), since the vertical and horizontal elements of the kinetic energy are
decoupled, after the vertical kinetic energy has been absorbed by the bounces,
the horizontal kinetic energy remains, so the ball rolls along the ground with
velocity vxin. Arguing according to the semantics of Sect. 4, if c is small enough
for this behaviour to ensue, then the single system run allowed by a fixed set
of system parameters never gets past the limiting Zeno point of the behaviour
described. This is because the semantic construction in Sect. 4 only allows for
a number of steps that is indexable by the naturals. Going beyond the Zeno
point would require a transfinite construction, which we have not explored in
this paper. Such constructions, while possible, would always be unphysical to a
greater or lesser extent, so are of limited value for application modelling.

What we have just been discussing, illustrates in a very clear way the diffi-
culties inherent in the Zeno recommendation of Sect. 2. For one set of param-
eters, the Zeno effect is absent, and the model behaves in an exemplary way.
For another set of parameters, looking not much different from the first, the
behaviour is completely different, exhibiting Zeno effects. (And, of course, there
is the boundary scenario, in which the limit of the Zeno behaviour reaches exactly
the distance L, which we didn’t explore.)

5.1 The Tennis Ball as a Multiple System

Let us contemplate our tennis ball example from the vantage point of multiple
subsystems. Taking the rules we wrote at face value, there is no sensible possi-
bility of partitioning the system, since its simplicity dictates that all the rules
modify all variables, more or less.
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However, we can consider enlarging the system, for example by adding a
television camera that follows the flight of the ball.9 This would have read access
to the ball’s dynamical variables, but not write access. In this case, the TV
camera’s variables and rules would reside in a separate subsystem from those of
the tennis ball itself. Depending on the detail of its model, the ball’s dynamical
variables would, via read access, determine which pixels of the camera’s CCD
sensor changed in response to the ball’s flight, etc.

An alternative approach might note that we have focused on building a sys-
tem for the left hand side of the tennis court. We could thus contemplate building
a complementary system to cover the right hand side of the court, subsequently
composing the two subsystems to get a system covering the entire court.

However, there are problems with this approach, should we attempt to con-
struct the system described. The ball would alternately be found, first in one
half of the court, and next in the other. This means that the ball’s behaviour
would not be the responsibility of a single subsystem. This flies in the face of the
restriction made at the beginning of Sect. 4.4, to ensure each variable is updated
by a single subsystem.

The motivations for imposing such a restriction differ between mode and
pliant variables. For mode variables, the fact that a mode variable can retain its
value indefinitely, without special supervision, until an update changes the value,
reduces the problem of its semantics’ consistency to well understood questions
of mutual exclusion, so that a single agent has authority to update the variable
at any moment. The restriction of updates to a variable to a single subsystem is
therefore just the simplest incarnation of this policy.

For pliant variables, the situation is different. A pliant variable’s semantics
demands that its value needs to be supervised at all times, by a differential
equation for example. This corresponds to the physical reality that the laws of
nature hold at all times, and therefore that any description of a physical process
must adhere to the same principle. If responsibility for ensuring this is divided
among a number of subsystems, the challenge of verifying that it is met becomes
the harder. In particular, the description must be continuous and unbroken over
time. This is easiest to ensure if all updates to the pliant variable are contained
in one subsystem.

In [7] there is a much more extensive discussion of the implications of physical
law for language systems intended for the definition and description of cyber-
physical systems.

6 Continuous ASM Refinement

Now we develop our Continuous ASM framework to encompass refinement of
Continuous ASM models. We start by describing the usual ASM refinement
formulation, appropriate to pure mode transitions, and then show how to extend
this to encompass the new kinds of transition.
9 A sports programme that genuinely did this would make viewers dizzy, but we can

tolerate the idea of it for the sake of the example.
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6.1 The Discrete Case

In general, to prove a conventional ASM refinement, we verify so-called (m,n)
diagrams, in which m abstract steps simulate n concrete ones in an appropriate
way. This means that there is nothing that the n concrete steps can do that is
not suitably reflected in m appropriately chosen abstract steps, where both m
and n can be freely chosen to suit the application. It will be sufficient to focus on
the refinement proof obligations (POs) which are the embodiment of this policy.
The situation for refinement is illustrated in Fig. 2, in which we suppress input
and output for clarity.

In Fig. 2 the refinement relation RA,C (also often referred to as the gluing
relation) between abstract and concrete states, holds at the beginning and end

• •

• •

••

• • ••

. . .

. . . . .

m steps

n steps

x x′

y′y

RA,C(x, y) RA,C(x′, y′)

Fig. 2. An ASM (m, n) diagram, showing how m
abstract steps, going from state x to state x′ sim-
ulate n concrete steps, going from y to y′. The sim-
ulation is embodied in the refinement relation RA,C,
which holds for the before-states of the series of steps
RA,C(x, y), and is re-established for the after-states
of the series RA,C(x′, y′).

of the (m,n) pair. This per-
mits us to abut such (m,n)
diagrams, by identifying the
last (abstract and concrete)
states of one (m,n) diagram,
with the first (abstract and
concrete respectively) states
of the next, and thereby to
create relationships between
abstract and concrete runs in
which RA,C is periodically re-
established. (N. B. In much of
the ASM literature, the main
focus is on an equivalence,
usually written ≡, between
abstract and concrete states.
This is normally deemed to contain a “practically useful” subrelation RA,C, cho-
sen to be easier to work with. The approach via RA,C will be the focus of our
treatment, and is also focus of the KIV [30] formalization in [43,44].)

The first PO is the initialization PO:

∀ y′ • CInit(y′) ⇒ (∃x′ • AInit(x′) ∧ RA,C(x′, y′)) (6)

In (6), it is demanded that for each concrete initial state y′, there is an abstract
initial state x′ such that RA,C(x′, y′) holds.

The second PO is correctness. The PO is concerned with the verification of
(m,n) diagrams. For this, we have to have some way of deciding which (m,n)
diagrams are sufficient for the application. In practice, this is part of the design
process, so let us assume that this has been done. Let CFrags be the set of
fragments of concrete runs that we have previously determined will permit a
covering of all the concrete runs of interest for the application. Using :: to denote
concatenation, we write y :: ys :: y′ ∈ CFrags to denote an element of CFrags
starting with concrete state y, ending with concrete state y′, and with intervening
concrete state sequence ys. Likewise we write x ::xs ::x′ ∈ AFrags for abstract
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fragments. Let is, js, os, ps denote the sequences of abstract inputs, concrete
inputs, abstract outputs, concrete outputs, respectively, belonging to x::xs::x′

and y::ys::y′ and let InAOps,COps(is, js) and OutAOps,COps(os, ps) denote suitable
input and output relations. Then the correctness PO reads:

∀x, is, y, ys, y′, js, ps • y ::ys ::y′ ∈CFrags ∧
RA,C(x, y) ∧ InAOps,COps(is, js) ∧ COps(y :: ys :: y′, js, ps) ⇒

(∃xs, x′, os • x ::xs ::x′ ∈AFrags ∧
AOps(x ::xs ::x′, is, os) ∧ RA,C(x′, y′) ∧ OutAOps,COps(os, ps)) (7)

In (7), it is demanded that whenever there is a concrete run fragment of the
form COps(y ::ys ::y′, js, ps), carried out by a sequence of concrete operations10

COps, with state sequence y ::ys ::y′, input sequence js and output sequence ps,
such that the refinement and input relations RA,C(x, y)∧InAOps,COps(is, js) hold
between the concrete and abstract before-states and inputs, then an abstract run
fragment AOps(x ::xs ::x′, is, os) can be found to re-establish the refinement and
output relations RA,C(x′, y′) ∧ OutAOps,COps(os, ps).

The ASM refinement policy also demands that non-termination be preserved
from concrete to abstract. We retain this in our extension of the formalism for
when it is needed.

Assuming that (6) holds, and that we can prove enough instances of (7)
to cater for the application of interest, then the concrete model is a correct
refinement of the abstract model. In a correct refinement, all the properties of
the concrete model (that are visible through the refinement and other relations),
are suitably reflected in properties of the abstract model (because of the direction
of the implication in (7)). If in addition, the abstract model is also a correct
refinement of the concrete model (using the converses of the same relations),
then the concrete model is a complete refinement of the abstract model. In a
complete refinement, all relevant properties of the abstract model are also present
in the concrete model (because of the direction of the implication in the modified
version of (7)). Therefore, to ensure that the complete set of requirements of an
intended system is faithfully preserved through a series of refinement steps, it is
enough to express them all in a single abstract model, and then to ensure that
each refinement step is a complete refinement.

6.2 The Continuous Case

The preceding was formulated for the discrete world. However, to extend it to the
continuous world is not very hard. The essence of the approach is to reinterpret
the run fragments AOps(x ::xs ::x′, is, os) and COps(y ::ys ::y′, js, ps) appearing
in (7) in a way that yields a natural extension of the discrete case.

In the discrete context, such a notation refers to a sequence of states, i.e. a
map from some natural number indexes to state values. In a context including
10 We define an operation as a maximal enabled set of rules—provided its updates are

consistent. Enabled inconsistent updates cause abortion of the run, as usual in ASM.
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real time, the analogue of this is a function from an interval of time to state
values, which is piecewise constant. More precisely, the interval of time in ques-
tion will be a finite closed interval [tA . . . tB], where tA < tB . Such an interval
corresponds to a typical left-closed right-open interval [tA . . . tB) on which the
function is piecewise constant plus the right endpoint tB. The interval [tA . . . tB)
itself is partitioned into a finite sequence of left-closed right-open subintervals,
on each piece of which the function is constant (as seen in the semantics of mode
variables in Sect. 4).

The purpose of the right endpoint tB , is to record the after-state of the last
mode transition, so that it can be identified with the initial state of a successor
function, when (m,n) diagrams are abutted. Referring to Fig. 2, we can view the
rightward pointing arrows (both abstract and concrete) as the constant functions
on non-empty left-closed right-open subintervals (with the blobs at their tails
representing the leftmost values), and the final blob (both abstract and concrete)
representing the isolated value at the right closure of the entire interval.

We allow an exception to this convention when tB = ∞. In that case the last
subinterval of [tA . . . tB) is of infinite length, corresponding to a nonterminating
final transition, and there is no isolated right endpoint, and no abutting of an
(m,n) diagram featuring this kind of final subinterval to any successor.

The obvious generalisation of this for the framework of Continuous ASM is
to use piecewise absolutely continuous functions from intervals of time to state
values. These would be defined on finite closed intervals [tA . . . tB], with tA < tB .
As above, such an interval would partition into one or more left-closed right-
open subintervals on each of which the state function is absolutely continuous
and without internal discontinuities, plus an isolated state at the right endpoint
tB , included to allow identification with the initial state of a successor function.

In this context, AOps(x ::xs ::x′, is, os) at the abstract level and COps(y ::
ys :: y′, js, ps) at the concrete level, each consist of an alternating sequence of
pliant and mode transitions (starting with pliant and ending with mode—unless
the tB = ∞ exception applies, and the last transition is pliant too).

Similar principles apply to inputs and outputs. Mode inputs and outputs are
mapped to the time instant at which the after-state is established, while pliant
inputs and outputs are mapped to the (left- and right-) open interval during
which the pliant transition runs. We thereby derive an interpretation for the
notation used in (7) appropriate for the current context. Thus R(x, y) becomes
a predicate about the earliest abstract and concrete state values referred to by
the state functions mentioned, while R(x′, y′) refers to the latest state values.

In this way, (7) continues to define refinement in the Continuous ASM con-
text. The piecing together of (m,n) diagrams to build an abstract simulation
of a concrete run, now reduces to the identification of the latest (abstract and
concrete) state values reached by one (m,n) diagram, with the earliest (abstract
and concrete) state values of its successor (m,n) diagram, in the way indicated
above for the discrete case.

Given the above, it is instructive to point out what the PO (7) does not
demand. We have already said that the ASM PO does not mention states that
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are internal to the length m and length n fragments that occur in a given (m,n)
diagram. This frequently simplifies the relations R, In,Out etc., that capture
the relationship between abstract and concrete worlds—the policy is particularly
useful when it is easy to predict that the systems are guaranteed to schedule their
steps in the particular way exploited in a given (m,n) diagram.

Finally, there is no explicit mention of time in (7). In particular there is noth-
ing in (7) that indicates, in any relative way, how time is expected to progress
during the respective length m and length n fragments—the abstract and con-
crete systems are free to progress according to their own notions of time.

Such aspects give the ASM POs great flexibility. Designers can define rela-
tionships between systems in the most practically useful way, a perspective the
ASM philosophy promotes. The appropriateness of the policy adopted for a given
development becomes a matter for the wider requirements arena.

6.3 Continuous ASM Refinement and Multiple Subsystems

It is clear that refinement, as thus defined, suits a monolithic semantics—the
correctness PO implicitly speaks of the state and I/O spaces in their entirety,
and makes no concession to the subsystem issues debated in detail in Sect. 4.4.
We comment on this now.

Suppose we have two subsystems A1 and A2. Taking A1 in isolation, its
semantics is given in Sect. 4, on the understanding that any external values
needed (e.g. from A2) appear as values of free variables of A1 that are “reliably
readable when needed”. On the other hand, viewing the system as a whole, forces
the same Sect. 4 semantics to address the whole system, and to supply values
of variables for both A1 and A2 simultaneously and consistently. Additionally,
concerning the effect of a single rule, the ASM rule firing policy (namely that any
enabled rule executes), also allows us to largely ignore whether the rule is being
executed by a monolithic system, or by one of its subsystems.11 We observed
already though, that a non-void semantics for A1 and a non-void semantics
A2, do not in themselves guarantee a non-void semantics for the combination
of A1 and A2, since a globally consistent assignment of values to variables does
not follow from individually consistent partial assignments.

The last observation makes clear that things get more complicated when
refinement is considered. Suppose abstract subsystem A1, with variables x1,
is1, os1, is refined by concrete subsystem C1, with variables y1, js1, ps1, using
relations RA1,C1, InA1Opsd,C1Opsd

and OutA1Opsd,C1Opsd
, where d indexes over the

(m,n) diagrams of the A1 to C1 refinement. Suppose abstract subsystem A2,
with variables x2, is2, os2, is refined by concrete subsystem C2, with variables
y2, js2, ps2, using relations RA2,C2, InA2Opsd,C2Opsd

and OutA2Opse,C2Opse
, where

e indexes over the (m,n) diagrams of the A2 to C2 refinement.

11 Contrast that with the case in which only one enabled rule is chosen to execute at a
time. Then, whether a single rule executes, or a single rule per subsystem executes
(and how this is reflected in observable effects), has a significant impact on the
semantics and becomes very visible to the environment.
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Now, even if there is a non-void semantics for the combination of A1 and
A2, there is no guarantee of a non-void semantics for the combination of C1
and C2. Furthermore, even if there is a non-void semantics for the combination
of C1 and C2, there is no a priori guarantee that the non-void semantics for
the C1 and C2 combination is a refinement of the non-void semantics of the
combination of A1 and A2.

The root cause of these problems is the presence of the existential quantifiers
in the conclusion of (7), since a conjunction of existential quantifications does
not imply the existential quantification of the conjunction, as would be needed
if refinement of the combined system were to follow from the refinements of the
subsystems individually.

Moreover, even contemplating the C1 and C2 combination as a refinement
of the combination of A1 and A2 raises difficulties, since the lexical scope of (7)
reaches beyond just the state variables of the abstract and concrete systems,
to include any read-only input variables and write-only output variables (via
InA1Ops,C1Ops and OutA1Ops,C1Ops respectively for A1, for example). If some of
the read-only input variables or write-only output variables of one subsystem
are identified with state variables of the other, the form of (7) itself would have
to be adapted to reflect this, depending on the context.

Further difficulties in eliciting a refinement of A1 and A2 to C1 and C2
from individual refinements of A1 to C1 and A2 to C2 come from the fact that
these individual refinements need not use (m,n) diagrams that are necessarily
congruent. Thus the ‘shape’ of the diagram used at a particular point of the
A1/C1 execution (in terms of the number of steps and their durations at the
two levels of abstraction) need not coincide with the ‘shape’ of the diagram used
at the corresponding point of the A2/C2 execution. All this notwithstanding the
fact that the two separate refinements do not have to agree about the way that
time itself progresses in their constituent models.

In the face of all the difficulties pointed out, there are two approaches that
make sense. The first approach is to leave the resolution of all the issues that
come up, case by case, to individual application developments. Most often, an
individual application will be characterised by features that reduce most of the
points raised to trivialities, and by other features that indicate the way to resolve
those that remain in ways that are relatively convincing and evident from the
structure of the application.

The second approach is to simplify matters drastically, until a point is reached
at which the difficulties pointed out are sufficiently reduced that a relatively
tractable generic formulation results. We illustrate what can be done using a
simple example of this approach.

To start with, we make a number of restrictions, and we argue for their suffi-
ciency as a scheme for combining two subsystems (having a restricted structure)
below.12 Thus let A1 be refined to C1 and A2 be refined to C2, and let us assume

12 In the sequel, we refer to manipulations on relations via the logical operations on
the logical definition of their bodies, for simplicity—e.g., (set theoretic) intersection
of relations (over the same signature) is expressed via conjunction.
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the other notations introduced above. We will refer to the combination of A1
and A2 as A, with state variables x, and the combination of C1, and C2 as C,
with state variables y. The sought for refinement from A to C will be described
by a refinement relation RA,C, which we define in terms of the per subsystem
ones already introduced.

In less technical terms, what follows can be seen as the opening of the lexical
scopes of the separate name spaces of the A1 and A2 systems, and the creation
of the name space of A via their union. This allows name capture of identical
identifiers. Similarly for C1 and C2, yielding C. To then get a valid A to C
refinement requires a number of additional compatibility properties to hold, so
that the desired refinement can be proved.

(1) Time is deemed to progress at the same rate in all models of the construction.
(2) For simplicity, we assume that none of A1, A2, C1, C2 have any I/O.
(3) The state variables x1 of A1 partition into x11, x12. The state variables C1

y1 partition into y11, y12. The state variables x2 of A2 partition into x21,
x22. The state variables C2 y2 partition into y21, y22.

(4) The following pairs of variables are identical: x12 ≡ x21 (≡ x12); y12 ≡
y21 (≡ y12). There are no other variable clashes.

(5) The refinement relations of the A1/C1 and A2/C2 refinements decompose as
follows, being nontrivial on only the variables mentioned. RA1,C1(x1, y1) ≡
R11

A1,C1
(x11, y11) ∧ R12

A1,C1
(x12, y12); RA2,C2(x2, y2) ≡ R21

A2,C2
(x21, y21) ∧

R22
A2,C2

(x22, y22). R12
A1,C1

(x12, y12) = R21
A2,C2

(x21, y21) ≡ R12
A2,C2

(x12, y12).
We define RA,C(x, y) ≡ R11

A1,C1
(x11, y11) ∧ R12

A2,C2
(x12, y12) ∧ R22

A2,C2

(x22, y22).
(6) There is a relation ρ1,2 from the (m,n) diagrams of the A1/C1 refinement

to the (m,n) diagrams of the A2/C2 refinement. It satisfies the following
conditions. (i) For every (m,n) diagram of the A1/C1 refinement featuring
a given behaviour of x12 in A1 and y12 in C1 (over the duration of the
diagram), there is a (m,n) diagram of the A2/C2 refinement featuring an
identical behaviour of x21 in A2 and y21 in C2 (over the identical duration),
and the pair of (m,n) diagrams is in ρ1,2. (ii) As for (i), but directed from
the A2/C2 refinement to the A1/C1 refinement using the converse of ρ1,2.
(iii) ρ1,2 is universal on all A1/C1 and A2/C2 (m,n) diagram pairs having
a given common x12/y12 (≡ x21/y21) behaviour.

(7) For each pair of ρ1,2-related (m,n) diagrams, we construct an (m,n) diagram
of the A/C refinement as follows. The execution fragment of A is the con-
junction of: the execution fragment of A1 on x11, the execution fragment of
A1 (or A2) on x12, and the execution fragment of A2 on x22. The execution
fragment of C is the conjunction of: the execution fragment of C1 on y11,
the execution fragment of C1 (or C2) on y12, and the execution fragment of
C2 on y22. (And the refinement relation satisfied at the beginning and end
of the constructed (m,n) diagram is RA,C.
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Theorem 1. Let system A1 have refinement C1 and system A2 have refinement
C2, as described. Let systems A and C be as constructed above, and suppose
points (1)–(7) above hold. Then

1. The (m,n) diagrams constructed for A and C in (7) are valid (m,n) diagrams,
in that the abstract and concrete execution fragments are related via the RA,C

refinement relation.
2. The collection of (m,n) diagrams for A and C thereby constructed yields a

Continuous ASM refinement from A to C.

Proof: To show claim 1., we consider a typical constructed (m,n) diagram, cre-
ated by fusing an A1/C1 (m,n) diagram with a corresponding A2/C2 (m,n)
diagram. The C1 execution fragment starts in a C1 state that is related by
RA1,C1 to the starting state of the A1 execution fragment. Likewise for C2 and
A2. Composing the two concrete execution fragments in parallel while fusing the
two identical behaviours of y12 and y21, yields an execution fragment of C that
starts in a state which is related by RA,C to the starting state of A, and because
the two concrete execution fragments have the same duration as a consequence
of being related by ρ1,2, they end simultaneously, in states that are RA1,C1 and
RA2,C2 related respectively to end states of the corresponding abstract execu-
tion fragments (whose identical x12 and x21 behaviours have also been fused),
reestablishing RA,C for the after-state of the constructed (m,n) diagram.

To show claim 2., we work by induction on an arbitrary execution of C. The
initial C state decomposes into a C1 initial state fused with a C2 initial state.
The combination of these is related by RA,C to an A initial state, similarly decom-
posed and fused. For the inductive hypothesis we assume that the execution of
C has been simulated, using a succession of the constructed (m,n) diagrams,
reaching a concrete state y ≡ (y11, y12, y22) which is related by RA,C(x, y) to an
abstract state x ≡ (x11, x12, x2).

Consider the concrete execution continuing from y. The (y11, y12) part of the
initial portion of it is a C1 execution fragment that is simulated by an A1 exe-
cution fragment via an (m,n) diagram of the A1/C1 refinement. The y12 ≡ y12
part of the C1 execution fragment is common to the (y21, y22) part of the con-
crete execution continuing from y, i.e. common to a C2 execution fragment that
is simulated by an A2 execution fragment via an (m,n) diagram of the A2/C2
refinement. By (6).(i) and (6).(ii), we can choose the A2 execution fragment to
have the same x12 behaviour exhibited by the A1 execution fragment. Therefore,
by (6).(iii) we can fuse the two (m,n) diagrams to give an (m,n) diagram of
the A to C refinement that simulates the concrete execution continuing from y.
By (5) we easily derive that the refinement relation satisfied at the end of the
(m,n) diagram is R. ��

The preceding constitutes a basic generic result of the kind being sought.
We can imagine many variations on a result like this. For instance, we could
involve inputs and outputs. Alternatively, we could insist that some of the R
relations (and/or their I/O analogues) were functions from concrete to abstract.
As another option we could relax the independence of the various relations on
shared vs. unshared variables in various ways. And so on.
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It is now evident that the all the mechanisms involved in combining the A1
to C1 refinement with the A2 to C2 refinement to get the A to C refinement
—whether as described above, or via the generalisations suggested— centre on
manipulation of the name spaces of the individual subsystems. In principle, these
act as lexical binders, fixing the meaning of each identifier within the context of
that subsystem. The objective of the manipulation is to then open these name
spaces, in order to permit name capture of the free identifiers inside, which then
become variables shared across the larger system. The ASM approach of allow-
ing an individual subsystem’s behaviour to be influenced by monitored variables
—whose updates need not be defined within the subsystem— allows each sub-
system to have enough available behaviours, that the behaviours required for
shared variable cooperation are available, and can be specified within a larger
system by the name capture technique.

7 Refinement and the Tennis Ball

We now expand our tennis ball example to illustrate the potential for our frame-
work to express the inclusion of design detail via refinement. However, rather
than developing a more elaborated version of the previous model —which typi-
cally would entail the introduction of copious quantities of technical detail— we
develop an abstraction of the model of Sect. 3, and we argue that our original
model arises as a refinement of the new one via the ASM refinement mechanism.

Thus, suppose the rally was taking place in a court surrounded by a fence
of height H. One approach to the design might be that the fence is sufficiently
high that no player can hit the ball out of the court. Of course, to enforce such
a restriction absolutely might well be too demanding in a realistic setting, but
we can pursue it in our idealised scenario anyway.

From this perspective, the only property of the ball that we need to care
about is its total energy. That determines the maximum height it can reach via
the conversion of all that energy into potential energy via the law of conservation
of energy. In fact, since the ball’s kinetic energy arises from the inner product
of the velocity vector with itself, and the vertical and horizontal components
of the velocity are orthogonal, we can identify the vertical energy (arising from
the square of the vertical component of the velocity) as a separately conserved
quantity, and it is only that energy that is available to be converted into potential
energy as the ball flies upwards. Therefore, aside from an abstract Init rule, we
can model the path of the ball in abstract terms using the following abstract
pliant event, in which, for clarity, the subscriptA distinguishes abstract variables
from their former (now concrete) counterparts:

FlightA
c=

choose px′
A(t), py′

A(t), vx′
A(t), vy′

A(t) with
1
2
vy′ 2

A(t) + g pyA(t) ≤ Emax

do pxA(t), pyA(t), vxA(t), vyA(t) := px′
A(t), py′

A(t), vx′
A(t), vy′

A(t)
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In FlightA, we use the direct assignment form of a pliant rule to allow the
dynamics of the abstract tennis ball to evolve arbitrarily, subject only to the
constraint that its vertical energy, 1

2vy′ 2
A(t) + g pyA(t) remains within Emax. In

such direct assignment pliant rules, it is tacitly assumed that the behaviours of
the variables are only ever assigned to (piecewise) absolutely continuous func-
tions of time. This restriction implies that the derivatives of these functions
exist in the Carathéodory sense, and thus the semantics of such direct assign-
ment cases falls within the scope of the previously given differential equation
semantics when we interpret a direct assignment z := Θ via differentiation, i.e.,
Dz := DΘ. (We observe that if Θ has discontinuities, then these can be han-
dled via the “virtual skip” mechanism discussed earlier.) With the FlightA rule
in place, it is now easy to build an (m,n) diagram to show the refinement of
FlightA to some of the behaviours we discussed in the previous section.

Firstly, we model the passage of time in the same way in our two systems. Sec-
ondly, the m of our (m,n) diagram will be 2: i.e. an execution of the abstract Init
rule, followed by a single execution of FlightA at the abstract level. Thirdly,
the n of our (m,n) diagram will be covered by two broad cases: it will be 6 for
the normal dynamics case discussed in Sect. 3; and it will be 6+2k (with k ≥ 1)
for the “approaching Zeno” cases.

For the normal dynamics case, the sequence of 6 steps consists of Init,
Flight, Bounce, Flight, Racquet, Flight. For the “approaching Zeno”
cases, it consists of Init, Flight, then k repetitions of (Bounce, Flight), and
then Racquet, Flight. The Zeno case itself would correspond to Flight, fol-
lowed by an infinite number of repetitions of (Bounce, Flight). But we do not
regard that as a proper (m,n) diagram because of the infinite number of steps.

To qualify as ASM refinements, we need to make explicit the equivalence
R that such (m,n) diagrams preserve. For this, we observe that provided that
the parameters of the earlier model are confined (in the static algebra within
which the dynamics takes place), to values that limit the vertical energy of the
ball appropriately, then R can taken to be a partial identity relation between
abstract and concrete states, being defined as the identity on those states which
have a vertical energy that does not exceed the specified maximum. The fact
that the equivalence is preserved is proved by the observation that the concrete
dynamics permitted by the explicit model of Sect. 3 is simply one of the arbi-
trary behaviours allowed in the abstract model (provided that the energy of the
concrete model remains suitably constrained).

8 Related Work

The framework we described above is similar to many ways of formulating hybrid
systems present in the literature. We comment on some aspects of that here. Ear-
lier work includes [4,5,27,32]. Shortly after these works were published, there
appeared a spate of other papers, such as [20,21,32]. Much further activity
ensued, too much to be surveyed comprehensively. A large proportion of it is
described in the Hybrid Systems: Computation and Control series of interna-
tional conferences. Slightly later formulations include [10,28,33]. Many of these
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earlier approaches, and especially the tools that support the relevant method-
ologies are surveyed in [14]. A less old theoretical overview is to be found in
[48].

The majority of these works take an automata-theoretic view of hybrid sys-
tems. Thus, they have named states for the discrete control, within each of
which, continuous behaviour evolves. This continues until the next preemption
point arrives, triggered by the guard condition of the next discrete state becom-
ing true. We achieve a similar effect via our mode and pliant operations. This
relatively small degree of difference is in fact reassuring, since, in attempting to
describe physical behaviour we have little leeway: the physical world is as it is
and all descriptions must conform to it.

From our point of view, the capabilities of most of these systems are rather
similar, except in those cases where the expressivity of the continuous part has
been deliberately curtailed in order to get greater decidability, e.g. the pioneering
[28] where continuous behaviour is linear in time. The focus on decidability is
pursued vigorously in the literature. The survey [19] is a contemporary overview
of reachability analysis of hybrid systems, and discusses many sublanguages of
the general hybrid framework, restricted so that one or other variation of the
notion of reachability is decidable for them.

The general hybrid framework is so expressive, that its undecidability is
relatively self-evident, even if attention has to be paid to the details in order
to model a two counter machine, which is the usual route to the result. The
consequence of this is that unbounded state values are needed, or the state
space will have accumulation points. While these are fine theoretically, both are
unrealistic from an engineering standpoint, since engineering state spaces have
both a finite size, and a limited accuracy.

The absence of the automata-theoretic structure in our approach simplifies
the description of systems somewhat. All aspects become expressible in a rela-
tively recognisable “program-like” syntax. The separation of discrete transitions
from continuous ones also chimes with our other goal, of developing a hybrid
formalism as a clean extension of an existing discrete formalism, syntactically
and semantically. This also allows for different kinds of mathematical reasoning,
relevant to the two worlds, to be cleanly separated on a per rule basis.

One difference between these approaches and ours, is the greater attention we
have paid to the general semantics of differential equations. Issues of noise aside,
classical physics is invariably defined in these terms, so we took that as basic.
Many of the approaches above sidestep the issue by merely positing the existence
of a continuous flow over the time interval between two discrete transitions. The
equivalent of that for us would have been to take the criteria at the end of
Sect. 2.2 as part of our formalism’s definition, rather than as properties to be
demonstrated on the basis of that definition. We argued for the truth of these
on the basis of “off the shelf” mathematics in Sect. 4.

Properly controlling the continuous behaviour is just as important as prop-
erly defining the discrete, of course. Innocent looking conditions, such as merely
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requiring the right hand side of a DE to be continuous (c.f. [6]), can, strictly
speaking, be unsound.13

The way to avoid problems, is to restrict the form of the allowed differential
equations to cases whose properties are known. The results surveyed in [19] give
many examples of this kind. Among these are several that incorporate the stan-
dard textbook results on linear and non-linear DEs, long included in computer
algebra systems like Mathematica [35] or Maple [34]. A more general approach
to DEs is taken in [37,38]. In our case, we have broadened the class of allowed
differential equations quite a bit, to maximise expressivity, relying on the “off the
shelf” mathematics mentioned above to suply solutions, where they are avail-
able. (Of course, only a tiny fraction of the DEs that one can write down have
solutions that one can write down [39].)

9 Conclusions

In the preceding sections we first reviewed traditional discrete ASM, founding
it on a discussion of basic ASM rules, and then we embarked on an extension
that would allow a convincing description of the continuous phenomena inherent
in hybrid and cyber-physical systems. Our strategy was based on deciding on a
simple semantic domain first, centered on piecewise absolutely continuous func-
tions of time that were solutions of well posed initial value problems of ordinary
differential equations. We then arranged the syntax and its formal semantics to
map cleanly onto it. The benefits of this included the fact that the behaviour
of every variable could be fully described by a straightforward function: from a
semi-infinite or finite interval of time to its type, and satisfying the properties
mentioned. Of the many available ways of formulating continuous phenomena
within applied mathematics, this semantic domain covers the vast majority of
the problems that arise in practice, and is ultimately behind most formulations
of hybrid and cyber-physical systems, which are so intensively studied today
[1,8,15,27,36,37,46–48,51,53,55,56].

The formal semantics was then described, in sufficient detail that a fully rigor-
ous technical definition could be elaborated from it if desired. We did not go into
the full details however, since so much of that could be straightforwardly taken
from quite standard sources. After that we considered refinement, and having
reviewed discrete ASM refinement, we formulated continuous ASM refinement
as a minimal extension of the discrete case. Our various discussions of semantics
were complemented by discussions of issues surrounding compositionality and
multi-subsystem systems, in the light of the formulation given. Accompanying
this, we gave a simple illustration of the formalism in an example involving the
flight of a tennis ball. Despite the apparent simplicity, this example nevertheless
provided an opportunity to discuss further technical issues that arise when we
13 The standard counterexample that mere continuity of the right hand side admits is

Dx = x2. This has a solution x(t) = (a − t)−1 (for some constant of integration a),
which explodes at t = a. Such counterexamples are very familiar in the differential
equations literature, typically being surveyed in the opening pages of standard texts.
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model hybrid systems in a clean way, for example as Zeno effects. We illustrated
the formulation of Continuous ASM refinement by showing an abstraction, illus-
trating how very general properties could be specified in our formalism, and
could then be refined to more specific behaviours. In future work, we intend to
use our formulation to explore larger, more complex case studies.

A The RAQUET Rule

We recall the Racquet rule of Sect. 3.

Racquet =

if py > 0 ∧ py = rpy ∧ px < 0 ∧ px = rpx ∧ vx < 0 ∧ vx.rvx + vy.rvy < 0 then

do

vx := −(vx − rvx)(cos2(α) + c sin2(α)) + (vy − rvy)(1 − c) cos(α) sin(α) + rvx,

vy := (vx − rvx)(1 − c) cos(α) sin(α) − (vy − rvy)(sin2(α) + c cos2(α)) + rvy

To understand the assignments to vx and vy in the above we use vector notation.
So let p,v, rp, rv be 2D vectors (in the plane of Fig. 1) corresponding to our
earlier quantities. Let r = [− cos(α), sin(α)] be a unit vector pointing upwards
along the line of the racquet, and let r⊥ = [sin(α), cos(α)] be a unit vector
normal to the racquet, pointing towards the net.

We make a rigid Galilean transformation into the rest frame of the racquet,
keeping the orientation of the racquet the same, but reducing its velocity to
zero. In this frame of reference, the ball approaches the racquet with velocity
v−rv. When the ball strikes the racquet, the tangential component of the ball’s
velocity remains the same, while the perpendicular component is reflected, and
is reduced by the coefficient of restitution c. Resolving the velocity into these
two components, the velocity before the collision is [(v − rv) · r, (v − rv) · r⊥],
while the velocity after the collision is [(v − rv) · r,−c(v − rv) · r⊥] = [−(vx −
rvx) cos(α) + (vy − rvy) sin(α),−c(vx − rvx) sin(α) − c(vy − rvy) cos(α)], where
in the last expression, we have evaluated the dot products in the rectiliear frame
of reference, since dot products are rotationally invariant. We can re-express this
after-velocity in the rectilinear frame by applying a rotation matrix as follows:

[
cos(α) sin(α)

− sin(α) cos(α)

] [
−(vx − rvx) cos(α) + (vy − rvy) sin(α)

−c(vx − rvx) sin(α) − c(vy − rvy) cos(α)

]

=

⎡

⎢
⎢
⎣

−(vx − rvx) cos2(α) + (vy − rvy) cos(α) sin(α) −
c(vx − rvx) sin2(α) − c(vy − rvy) cos(α) sin(α)

(vx − rvx) cos(α) sin(α) − (vy − rvy) sin2(α) −
c(vx − rvx) cos(α) sin(α) − c(vy − rvy) cos2(α)

⎤

⎥
⎥
⎦

Now, reversing the rigid Galilean transformation, we get the assignment given
in Racquet.
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19. Fränzle, M., Chen, M., Kröger, P.: In Memory of Oded Maler: Automatic Reach-
ability Analysis of Hybrid-State Automata. ACM SIGLOG News 6, 19–39 (2019)

20. Friesen, V., Nordwig, A., Weber, M.: Object-oriented specification of hybrid sys-
tems using UMLh and ZimOO. In: Bowen, J.P., Fett, A., Hinchey, M.G. (eds.)
ZUM 1998. LNCS, vol. 1493, pp. 328–346. Springer, Heidelberg (1998). https://
doi.org/10.1007/978-3-540-49676-2 22

21. Friesen, V., Nordwig, A., Weber, M.: Toward an object-oriented design methodol-
ogy for hybrid systems. In: Object-Oriented Technology and Computing Systems
Re-Engineering, pp. 1–15. Elsevier (1999)

22. Geisberger, E., Broy, M. (eds.): Living in a Networked World. Integrated
Research Agenda Cyber-Physical Systems (agendaCPS) (2015). http://www.
acatech.de/fileadmin/user upload/Baumstruktur nach Website/Acatech/root/
de/Publikationen/Projektberichte/acaetch STUDIE agendaCPS eng WEB.pdf

23. Graf, S., Prinz, A.: A framework for time in FDTs. In: Proceedings of FORTE-04.
LNCS, vol. 1092, pp. 266–290. Springer (2004)

24. Graf, S., Prinz, A.: Time in abstract state machines. Fund. Inf. 77, 143–174 (2007)
25. Gratzer, G.: Universal algebra. In: Abstract Algebra. Graduate Texts in Mathe-

matics, vol. 242. Springer, New York (2007). https://doi.org/10.1007/978-0-387-
71568-1 15

26. Gurevich, Y., Huggins, J.K.: The railroad crossing problem: an experiment with
instantaneous actions and immediate reactions. In: Kleine Büning, H. (ed.) CSL
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Abstract. Stepwise design of programs is a divide-and-conquer strat-
egy to control complexity in program modularization and theorems. It
has been studied extensively in the last 30 years and has worked well,
although it is not yet commonplace. This paper explores a new area of
research, finding efficient products in colossal product spaces, that builds
upon past work.

1 To My Friend Egon

Egon and I (Batory) first met at the “Logic for System Engineering” Dagstuhl
Seminar on March 3–7, 1997. Egon presented his recent work on Abstract State
Machines (ASMs) entitled “An Industrial Use of ASMs for System Docu-
mentation Case Study: The Production Cell Control Program”. I presented my
work on Database Management System (DBMS) customization via fea-
ture/layer composition. I had not yet directed my sights beyond DBMS software
to software development in general.

At the heart of our presentations was the use and scaling of Dijkstra’s con-
cepts of layering and software virtual machines [15] and Wirth’s notions of step-
wise refinement [53]. The connection between our presentations was evident to us
but likely no others. I was not yet technically mature enough to have a productive
conversation with Egon then to explore our technical commonalities in-depth.

Our next encounter was at a Stanford workshop on Hoare’s “Verifying Compi-
ler Grand Challenge” in Spring 2006. Egon would make a point in workshop
discussions and I would think: That is exactly what I would say! And to my
delight as I learned later, Egon reacted similarly about my discussion points. At
the end of the workshop, we agreed to explore interests and exchanged visits –
I to Pisa and he to Austin. We wrote a joint paper [6] and presented it as a
keynote at the June 2007 Abstract State Machine Workshop in June 2007. In
doing so, I learned about his pioneering JBook case study [44]. Our interactions
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were a revelation to me as our thinking, although addressing related problems
from very different perspectives, led us to similar world view.

In this paper, I explain our source of commonality and where these ideas have
been taken recently in my community, Software Product Lines (SPLs).

2 Similarity of Thought in Scaling Stepwise Design

Central to the Stepwise Design (SWD) of large programs is the scaling of a
step to an increment in program functionality. A program is a composition of
such increments. To demonstrate that such technology is possible, one must nec-
essarily focus on the SWD of a single application (as in JBook [44]) or a family
of related applications (as in SPLs) where stereotypical increments in functional-
ity can be reused in building similar programs. These increments are features;
think of features as the legos [49] of domain-specific software construction.

The JBook [44] presented a SWD of a suite of programs: a parser, ASTs
(Abstract Syntax Trees), an interpreter, a compiler and a JVM for Java 1.0.
At each step, there is a proof that the interpretation of any Java 1.0 program P
and the compilation and then JVM execution of P produced identical results. The
divide-and-conquer strategy used in JBook centered on the Java 1.0 grammar.
The base language was the sublanguage of Java imperative expressions (ExpI).
For this sublanguage, its grammar, ASTs, interpreter, compiler and JVM were
defined, along with a proof of their consistency, Fig. 1a. Then imperative state-
ments (ΔStmI) were added to ExpI, lock-step extending its grammar, ASTs,
interpreter, compiler, JVM and proof of their composite consistency, Fig. 1b.1
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Fig. 1. SWD of JBook.

1 All extensions were manually defined – this is normal.
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And then static fields and expressions (ΔExpC) were added, Fig. 1c, and so on
until the complete syntax of Java 1.0 was formed, with its complete AST defi-
nitions, a complete interpreter, compiler and JVM for Java 1.0 too, Fig. 1d.

The JBook was a masterful case study in SWD. It fit my SPL theory of
features, where an application is defined by a set representations (programs,
documents, property files, etc..). Features incrementally extend each representa-
tion so that they are consistent. Features could add new documents as well.

An SPL follows the JBook example, but with important differences. Some
programs can have different numbers of features and different features can imple-
ment identical functionalities in different ways.2 This enables a family of related
programs to be built simply by composing features. Each program in an SPL is
defined by a unique set of features. If there are n optional features, the size of
the SPL’s product space can be up to 2n distinct programs/products.

It is well-known that features obey constraints: selecting one feature may
demand the selection and/or exclusion of other features. And there is a preferred
order in which features are composed. It was discovered that a context sensitive
grammar could define the product space of an SPL whose sentences are legal
sequences of features. Such a grammar is a feature model [7]. A partial feature
model for JBook is below (given that each of the sublanguages in its design is
useful); the first line is a context free grammar. Notation “[T]” denotes feature
T is optional. Subsequent lines define propositional formulas as compositional
constraints to make the grammar context sensitive:

JBook : Expl [ΔStml] [ΔExpC] [ΔStmC] ... ;

// constraints

ΔExpC ⇒ ΔStml; // if ΔExpC then so too must ΔStml

ΔStmC ⇒ ΔExpC; // if ΔStmC then so too must ΔExpC

These are the basics of SPLs [4]; a more advanced discussion is in [5].

3 SPL Feature Models and Product Spaces

A feature model can be translated to a propositional formula φ [2–4]. This is
accomplished in two steps: (1) the context free grammar is translated to a propo-
sitional formula φ′, and (2) composition constraints are conjoined with φ′ to pro-
duce φ. For example, the lone production of the JBook context free grammar,
defined above, is translated to:3

φ′ =
(
JBook ⇔ (Expl)

) ∧ (
(ΔStml ∨ ΔExpC ∨ ΔStmC ∨ . . .) ⇒ JBook

)

where each term is a boolean variable. The complete propositional formula φ is:

φ = φ′ ∧ (ΔExpC ⇒ ΔStml) ∧ (ΔStmC ⇒ ΔExpC)

2 Much like different data structures implement the same container abstraction [8].
3 More involved examples and explanations are given in [2–4].
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Every solution of φ corresponds to a unique product (a unique set of features)
in that SPL. Binary Decision Diagrams (BDD) and Sharp-SAT solvers
(#SAT) can count the number of products of φ [12,21,32,40]. Industrial SPLs

can have colossal product spaces. Consider the table below from [5,21]:

Model #Variables #SAT-solutions Source

axTLS 1.5.3 64 1012 http://axtls.sourceforge.net/

uClibc 201 50420 298 1050 https://www.uclibc.org/

Toybox 0.7.5 316 1081 http://landley.net/toybox/

BusyBox 1.23.2 613 10146 https://busybox.net/

EmbToolkit 1.7.0 2331 10334 https://www.embtoolkit.org

LargeAutomotive 17365 101441 [26]

272 is a magic number in SPLs. If an SPL has 272 optional features, it has
2272 unique products. 2272≈1082 is a really big number : 1082 is the current
estimate of the number of atoms in the universe [46]. The LargeAutomotive
SPL in the above table has a colossal space of 101441 products. That makes the
largest numbers theoretically possible in Modern Cosmology look really, really

small � [35].4 And there are even larger known SPLs (e.g., the Linux Kernel),
whose size exceeds the ability of state-of-the-art tools to compute.

Beyond admiring the size of these spaces, suppose you want to know which
product in a space (or a user-defined subspace) has the best performance for
a given a workload. Obviously, enumerating and benchmarking each product
is infeasible. The immediate question is: How does one search colossal product
spaces efficiently? A brief survey of current approaches is next.

4 Searching SPL Product Spaces

To predict the performance of SPL products, a mathematical performance model
is created. Historically, such models are developed manually using domain-
specific knowledge [1,13]. More recently, performance prediction models are
learned from performance measurements of sampled products. In either case,
a performance model is given to an optimizer, which can then find near-optimal
products that observe user-imposed feature constraints (e.g., product predicates
that exclude feature F and include feature G).

4.1 Prediction Models

Models can estimate the performance of any valid product [17,37,42,43,54]. The
goal is to use as few samples as possible to learn a model that is ‘accurate’. Find-
ing a good set of training samples to use is one challenge; another is minimizing
the variance in predictions.
4 Still 101441 does pale in comparison to 10284265, the size of the space of texts a monkey

can randomly type out, one text of which is Hamlet [34,36] or 1040000, the size of
the space of texts a monkey can type out, one text of which is this paper.

http://axtls.sourceforge.net/
https://www.uclibc.org/
http://landley.net/toybox/
https://busybox.net/
https://www.embtoolkit.org
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Let C be the set of all legal SPL products. 1st-order performance models
have the following form: let $P be the estimated performance of an SPL product
P ∈ C, where êP is the set of P’s selected features and $Fi is the performance
contribution of feature Fi:

$P =
∑

i∈êP

$Fi (1)

$Fi might be as simple as a constant (ci) or a constant-weighted expression [17]:

$Fi = c0 (2)
or

= c0 + c1 · n + c2 · n · log(n) + c3 · n2 + ... (3)

where n is a global variable that indicates a metric of product or application
‘size’. The value for n is given; the values of constants (ci) must be ‘learned’.

1st-order performance models are linear regression equations without (fea-
ture) interaction terms. Such models are inaccurate. Let $Fij denote the perfor-
mance contribution of the interaction of features Fi and Fj, which requires both
Fi and Fj to be present in a product; $Fij = 0 otherwise. 2nd-order models take
into account 2-way interactions:

$P =

⎛

⎝
∑

i∈êP

$Fi

⎞

⎠ +

⎛

⎝
∑

i∈êP

∑

j∈êP

$Fij

⎞

⎠ (4)

Models with n-way interactions add even more nested-summations to (4) [42].
Manually-developed performance models [1,9,13] are different as they:

– Identify operations [ O1.. ] invoked by system clients;
– Define a function $Ok to estimate the performance of each operation Ok;
– Encode system workloads by operation execution frequencies, where νk is the

frequency of Ok; and
– Express performance $P of a program P as a weighted sum of frequency times

operation cost:
$P =

∑

k

νk·$Ok (5)

Features complicate the cost function of each operation, where the set of features
of product P ∈ C becomes an explicit parameter of each Ok:

$P =
∑

k

νk·$Ok(êP) (6)

In summary, manual performance models include workload variances in their pre-
dictions, whereas current SPL performance models use a fixed workload. Work-
load variations play a significant role in SPL product performance. To include
workloads in learned models requires relearning models from scratch or transfer
learning which has its own set of issues [23].5

5 Transfer learning is an automatic translation of one performance model to another.
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4.2 Finding a Near-Optimal is NP-Hard

The simplest formulation of this problem, namely as linear regression equations,
is NP-Hard [52]. Here’s a reformulation of Eq. (1) as a 0–1 Integer Programming
Problem. Let 1i(P) be a boolean indicator variable to designate if feature Fi is
present (1i(P) = 1) or absent (1i(P) = 0) in P. Rewrite Eq. (1) as:

$P =
∑

i∈êP

$Fi =
∑

i

$Fi · 1i(P)

We want to find a configuration cnear to minimize $P, Eq. (7). To do so,
convert Eq. (7) into a inequality with a cost bound b, Eq. (8). By solving Eq.
(8) a polynomial number of times (progressively reducing b) we can determine a
near optimal performance $cnear and cnear’s features (the values of its indicator
variables):

min
P∈C

($P) = min
P∈C

( ∑

i

$Fi · 1i(P)
)

(7)

min
P∈C

( ∑

i∈ê

$Fi · 1i(P)
) ≤ b (8)

Prop Formula Linear 
Constraint

Linear Inequality

Fig. 2. Prop Formula to an integer inequality.

Recall a feature model
defines constraints among
features, like those in the
“Prop Formula” col-
umn of Fig. 2. There are
well-known procedures to
translate a propositional
formula to a linear con-
straint, and then to ≤
inequalities [16,22].

To optimize Eq. (8)
correctly, feature model
constraints must be observed. The general structure of the optimization problem
described above is:

find x such that cTx ≤ b rewrite of Eq. (8)
subject to Ax ≤ d feature model constraints

where x ∈ 1n (x is an array of n booleans), c ∈ Z
n and b ∈ Z (c is an array of n

integers, b is an integer), A ∈ Z
m×n (A is an m×n array of integers), and d ∈ Z

m (d
is an array of n integers). This is the definition of 0–1 Linear Programming, which
is NP-Complete [52]. The NP-hard version removes bound b and minimizes cTx.
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4.3 Uniform Random Sampling

Optimizers and prediction models [17–19,37–39,54] rely on ‘random sampling’,
but the samples used are not provably uniform. Uniform Random Sampling
(URS) conceptually enumerates all η = |C| legal products in an array A. An
integer i ∈ [ 1..η ] is randomly selected (giving all elements in the space an equal
chance) and A[i] is returned. This simple approach is not used because η could be
astronomically large. Interestingly, URS of large SPLs was considered infeasible
as late as 2019 [24,33].

An alternative is to randomly select features. If the set of features is valid, a
product was “randomly” selected. However, this approach creates far too many
invalid feature combinations to be practical [17,18,37,39,54]. Another approach
uses SAT solvers to generate valid products [19,38], but this produces prod-
ucts with similar features due to the way solvers enumerate solutions. Although
Henard et al. [19] mitigated these issues by randomly permuting the parameter
settings in SAT solvers, true URS was not demonstrated.

The top path of Fig. 3 summarizes prior work: the product space is non-
uniformly sampled to derive a performance model; samples are interleaved with
performance model learning until a model is sufficiently ‘accurate’. That model
is then used by an optimizer, along with user-imposed feature constraints, to
find a near-optimal performing product.

URS product space 

feature
model

user imposed
feature

constraints

near-optimal
performing

product

learn
performance

model

use
optimizer

non-URS 
sample products

Performance Model Approach

Pure Uniform Random Sampling Approach

Fig. 3. Different ways to find near-optimal products.

In contrast, a pure URS approach (the bottom path of Fig. 3) uses neither per-
formance models nor optimizers. Near-optimal products are found by uniformly
probing the product space directly, and benchmarking the performance of sam-
pled products using the required workload. User-imposed feature constraints sim-
ply reduce the space to probe. A benefit of URS is that it is a standard way to
estimate properties accurately and efficiently of colossal spaces [14]. It replaces
heuristics with no guarantees with mathematics with confidence guarantees.

Note�For some, it may not evident that URS could be used for optimiza-
tion. In fact, Random Search (RS) algorithms [10,50] do exactly this –
find near-optimal solutions in a configuration space. We present evidence
later that URS requires many fewer samples than existing performance
model approaches [30].�
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5 URS Without Enumeration

Let η = |φ| be the size of an SPL product space whose propositional formula is
φ. Let F = [ F1, F2, ..Fθ ] be a list of optional SPL features. Randomly select an
integer i ∈ [1..η] and compute s1 = |φ∧F1|, the number of products with feature
F1. If i ≤ s1, then F1 belongs to the ith product and recurse on the subspace
φ ∧ F1 using feature F2. Otherwise ¬F1 belongs to the ith product and recurse
on subspace φ ∧ ¬F1 with i = i − |φ ∧ F1| using feature F2. Recursion continues
until feature Fθ is processed, at that point every feature in the ith product is
known.

Note�Historically, Knuth first proposed this algorithm in 2012 [25]; Oh
and Batory reinvented and implemented it in 2017 using classical BDDs
[30]. Since then other SAT technologies were tried [11,32,40]. (A #SAT
solver is a variant of a SAT solver: instead of finding a solution of φ
efficiently, #SAT counts φ solutions efficiently.) The most scalable version
today is by Heradio et al. and uses reduced BDDs [21], which in itself is
surprising as for about a decade, SAT technologies have dominated feature
model analysis.�

Given the ability to URS a SPL colossal product space, how can a near-
optimal product for a given workload be found? That’s next.

6 Performance Configuration Space (PCS) Graphs

Let C denote the product space of φ, where η = |φ| = |C|. Imagine that for every
product P∈C we predict or measure a performance metric $(P) for a given
benchmark. By “performance metric”, we mean any non-functional property
of interest of P (response time, memory size, energy consumption, throughput,
etc.). A small $ value is good (efficient) and a large $ value is bad (inefficient).
An optimal product Pbest in C has the smallest $ metric:6

∃Pbest ∈C :
(∀P∈C : $(Pbest) ≤ $(P)

)
(9)

For large C, creating all (P, $(P)) pairs is impossible... but imagine that we
could do so. Further, let’s normalize the range of $ values: Let $(Pbest) = 0 be
the best performance metric and let $(Pworst) = 1 be the worst. Now sort the
(P, $(P)) pairs in increasing $(P) order where $(Pbest) = 0 is first and $(Pworst) = 1
is last, and plot them. The result is a Performance Configuration/Prod-
uct Space (PCS) graph, Fig. 4a. This graph suggests that PCS graphs are
continuous; they are not. PCS graphs are stair-stepped, discontinuous and non-
differentiable [27] because consecutive products on the X-axis encode discrete
decisions (features) that can make discontinuous jumps in performance, Fig. 4b.

6 To maximize a metric, negate it.
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$(c) 1

η1

$(c) 1

η1
(a) (b)

Fig. 4. Normalized PCS graphs.

Example�Suppose product Pi has feature F and F is replaced by G in
Pi+1. If F increments performance by .01, say, and G increments perfor-
mance by .20, there will be a discontinuity from $(Pi) and $(Pi+1) in a
PCS graph.�

Note�Every PCS graph is monotonically non-decreasing. The latter
means that consecutive products on the X-axis, like Pi and Pi+1, must sat-
isfy $(Pi) ≤ $(Pi+1). Many products in C may have indistinguishable per-
formance values/metrics because their differing features have no impact
on performance, leading to $(Pi) = $(Pi+1).�

Random Search (RS) is a family of numerical optimization algorithms that
can be used on functions that are discontinuous and non-differentiable [10,50].
The simplest of all RS algorithms is the Best-of-n-Samples below. Here we
use URS for sampling:

1. Initialize x with a random product in the search space.

2. Until a termination criterion is met (n − 1 samples) repeat:

2.1 Sample a new product y in the search space.

2.2 If $(y)<$(x) set x=y.

3. Return x.

Listing 1.1. Best-of-n-Samples

How accurate is the returned product? An answer can be derived by exploiting
a PCS graph’s monotonicity, next.
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7 Analysis of Best-of-n-Samples

The X-axis of a PCS graph (i.e., the product space) can be approximated by the
real unit interval I = [0..1] when η > 2000 [30]. I emerges from the limit:

lim
η→∞

1

η
·
[
1..η

]
= lim

η→∞

[1
η
..

η

η

]
= [0..1] = I (10)

Randomly select a product in C, i.e., one point in I. URS means each point
in I is equally likely to be chosen. It follows that on average the selected product
p1,1 partitions I in half:

p1,1 =
∫ 1

0

x · dx =
1

2
(11)

Now randomly select n products from C. On average n points partition I into
n+1 equal-length regions. The kth-best product out of n, denoted pk,n, has rank
k

n+1
, where the k·(n

k

)
term below is the normalization constant [5]:7

pk,n = k ·
(
n

k

)
·
∫ 1

0

xk · (1 − x)n−k · dx =
k

n + 1
(12)

The left-most selected product, which is a near-optimal product PnearOpt= p1,n,
is an average distance 1

n+1
from the optimal Pbest = 0 by Eq. (12):

p1,n =
1

n + 1
(13)

Let’s pause to understand this result. Look at Fig. 5. As the sample set size n
increases (Fig. (a)→Fig. (c)), PnearOpt progressively moves closer to Pbest at X = 0.
If n = 99 samples are taken, PnearOpt on average will be 1% from Pbest in
the ranking along the X -axis.

0 1n=1(a)

0 1n=3(b)

0 1n

= 

(c)

Fig. 5. Convergence to Pbest by increasing Sample Size (n).

Note: None of the Eqs. (11–13) reference η or |C|; both disappeared when we
took the limit in (10). This means (11–13) predict sampled ranks (that is, X-axis
7 Equation (12) is an example of the Beta function [47].
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ranks) for an infinite-sized space. Taking n=99 samples on any colossal product
space, on average PnearOpt will be 1% from Pbest in the ranking. It is only for
minuscule product spaces, η ≤ 2000, where predictions by Eqs. (11–13) will be
low [30]. Such small product spaces are enumerable anyway, and not really of
interest to us.

Third, how accurate is the p1,n = 1
n+1

estimate? Answer: the standard devi-
ation of p1,n, namely σ1,n [5,29], can be computed from v1,n, the second moment
of p1,n:

v1,n = 1 ·
(
n

1

)
·
∫ 1

0

x2 · (1 − x)n−1 · dx =
2

(n + 1) · (n + 2)

σ1,n =
√

v1,n − p1,n2 =

√
2

(n + 1) · (n + 2)
− ( 1

n + 1

)2 (14)

Observe p1,n is almost equal to σ1,n. Figure 6 plots the percentage difference
between the two:

%diff = 100 · (
p1,n
σ1,n

− 1) (15)

%
 d

iff

0.0%
0.2%
0.4%
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1.2%
1.4%

# of samples taken

80

Fig. 6. %diff plot.

For n = 80 samples p1,n
is 1.2% higher than σ1,n

which is itself small. For
n ≥ 100 there is no practi-
cal difference between p1,1
and σ1,n. Stated differ-
ently, URS offers remark-
able good accuracy and
variance with n ≥ 100 [30].

Bottom Line. To find
a near-optimal product
in colossal product space,
take a uniform-random
sample set of size n, predict or measure the performance of each product, and
return the best performing product as it will be 100

n+1% away, with variance
approximately 100

n+1%, from the optimal product, Pbest, in the space.

Percentiles. Readers may have noticed that our ranking is how ‘close’ PnearOpt
is X-axis-based from Pbest, where the more typical notion is Y-axis-based, i.e., the
fraction $(PnearOpt) is from $(Pbest). The utility of PCS graphs is this: optimizing
X also optimizes Y.

Fig. 7. Percentiles.

A common X-axis metric in
statistics is a percentile , see
Fig. 7 [28]. Candidates are lined
up and the percentage of candi-
dates that are “shorter” than You
(the blue person) is computed.
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You are in the (top) 80% percentile. In performance optimization, we want to
be in the lowest percentile, ideally <1% means “in the top <1 percentile”.

8 Another Benefit of URS in Product Optimization

Prior to performance models for and URS of colossal product spaces, URS was
compared with early results on small SPLs that used performance models [30].
The performance model contestants were Sankar2015 [37] and Siegmund2012
[42], which at the time were the best models to date.

Figure 8 shows two non-PCS graphs: the X-axis is the number n of samples
taken to form a prediction model or a Best-of-n-Samples result and the Y-axis
is the fraction distance of their returned PnearOpt to Pbest.
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0.10
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540 560 580
0.00
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140160180
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Total # of 
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samples ( )

Fig. 8. Comparison of URS with existing performance models in 2017.

In short:

– The accuracy of both performance models did not improve with increasing
N, unlike URS which progressively improves;

– URS obtained the same accuracy with less work (fewer samples) than both
Sarkar2015 (see in Fig. 8a) and Siegmund2012 (see in Fig. 8b); and

– URS obtained better results for the same work (see and above).

Other similar results are reported in [30]. However, these results are outdated
and need to be refreshed with the latest performance model technologies and
URS technologies; at best they are provisional and suggest future work.

9 Choosing a Sample Set Size

An open problem with non-URS methods is: what sample set size is needed to
find PnearOpt with a given accuracy? As there is no formal analysis of non-uniform
sampling, it is not known how to answer this question. However, URS has an
answer. The following elegant derivation is by Heradio [20], better than [31].
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Confidence assertions are of the form: with 90% probability PnearOpt will be
within the top ρ percentile. Let ρ be the desired percentile (e.g., top 1% has
ρ = .01). In one random selection, we have probability ρ that a desired product
was selected and (1− ρ) that it was not. After n selections, we have probability
(1 − ρ)n that no selections were desirable and 1 − (1 − ρ)n that at least one of
them is. Let c denote the confidence (probability) that after n selections PnearOpt
is in the top ρ percentile:

c = 1 − (1 − ρ)n (16)

Solving for n:

n =
ln(1 − c)
ln(1 − ρ)

(17)

The table of Fig. 9 lists the sample set size to use for a given confidence (c)
and accuracy (ρ) no matter how colossal the space . Note: 90% and 95%
are common degrees of confidence; 99.7% is known as near certainty since it
encompasses 3σ, virtually all values [51]:

n=sample set size
%accuracy 90.0% 95.0% 98.0% 99.7%

5.00% 45 58 76 113
4.00% 56 73 96 142
3.00% 76 98 128 191
2.00% 114 148 194 288
1.00% 229 298 389 578
0.50% 459 598 780 1159
0.30% 766 997 1302 1933
0.20% 1150 1496 1954 2902
0.10% 2301 2994 3910 5806

%confidence

Fig. 9. Sample set size to achieve %accuracy with %confidence.

Example: A product:

– in the top 5% is returned in 45 samples with 90% confidence;
– in the top 2% is returned in 148 samples with 95% confidence; and
– in the top .20% is returned in 1954 samples with 98% confidence.

Equation (16) has three variables; given values of two, one can solve for the
third. The previous discussion showed how to determine n given confidence c
and accuracy ρ. Here are the two other possibilities:
Given c and n, what is the expected accuracy ρ? Solving (16) for ρ:

ρ = 1 − (1 − c)
1
n (18)

The table of Fig. 10 has rows for confidence c values, columns are the number of
samples taken n, and entries are the accuracy ρ of returned answers:
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%ρ
%confidence 25 50 100 200 400 800 1600

90.0% 8.80% 4.50% 2.28% 1.14% 0.57% 0.29% 0.14%
95.0% 11.29% 5.82% 2.95% 1.49% 0.75% 0.37% 0.19%
98.0% 14.49% 7.53% 3.84% 1.94% 0.97% 0.49% 0.24%
99.7% 20.73% 10.97% 5.64% 2.86% 1.44% 0.72% 0.36%

n = sample set size

Fig. 10. Expected accuracy ρ given c and n.

Example�Suppose a total of n = 100 samples are to be taken and 95%
confidence is desired in an answer. The returned solution has accuracy in
the top 2.95% of all solutions.�

Given n and ρ, what is expected confidence c? Eq. (16) is already solved
for c and is repeated below:

c = 1 − (1 − ρ)n

The table of Fig. 11 has rows for accuracy values ρ, columns are the total number
of samples taken n, and entries are the confidence c of returned answers:

%c = confidence
%ρ = accuracy 25 50 100 200 400 800 1600

4.000% 63.96% 87.01% 98.31% 99.97% 100.00% 100.00% 100.00%
2.000% 39.65% 63.58% 86.74% 98.24% 99.97% 100.00% 100.00%
1.000% 22.22% 39.50% 63.40% 86.60% 98.20% 99.97% 100.00%
0.500% 11.78% 22.17% 39.42% 63.30% 86.53% 98.19% 99.97%
0.250% 6.07% 11.76% 22.14% 39.38% 63.26% 86.50% 98.18%
0.125% 3.08% 6.06% 11.76% 22.13% 39.37% 63.24% 86.48%

n = number of samples

Fig. 11. Expected confidence c given ρ and n.

Example�Taking n = 100 samples and wanting accuracy ρ = 1%, the
confidence of a returned answer is 63.4%. That is, there is a 63.4% chance
that the returned answer is within the top 1% of all products.�

There are other analyzes for the Best-of-n-Samples algorithm, like how many
samples are needed to have two samples returned in the top ρ% with c% confi-
dence, is much like the above. Also, a recursive search of a space is another inter-
esting possibility – performing a search and using the data collected to reduce
the size of the space to search in the next recursion. A noticeable improvement in
PnearOpt was observed by recursive searching [30] – with two important caveats.
We have not yet determined how to guarantee that Pbest is not pruned in a space
restriction, nor do we have mathematics to compute the confidence of returned
results. These remain open problems.
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10 Given a Limit of n Samples...

Benchmarking is by far the greatest cost in sampling. Suppose a client is willing
to pay the cost of benchmarking 100 samples to find a near optimal product for
a particular precision ρ and confidence c.

Question: Would it be better to conduct one experiment E of 100 samples
for a given ρ accuracy, or two experiments E1 and E2 of 50 examples each again
with the same ρ accuracy, and take the best result? In the latter case, would the
confidence change by using two experiments?

Answer: There is no difference! It is not difficult to see that the PnearOpt answer
in either case would be the same: PnearOpt would be the result of experiment E1
or E2, and would be the best-of-both result.

It is a bit harder to see is how the confidence of the two-experiment result
is the same as a one-experiment result. Let c be the confidence of both E1 and
E2. The confidence c2 we would have in the result of taking the best-of-both
experiments is weighted. Namely, sum the product of confidences where at least
one experiment succeeds:

c2 = c · c · 1 + c · (1 − c) · 1 + (1 − c) · c · 1 + (1 − c) · (1 − c) · 0
= 2 · c − c2 (19)

Let c(n, ρ) = 1 − (1 − ρ)n, Eq. (16), be the confidence of an experiment for a
fixed n and ρ. It is easy to prove the following equality that shows the confidence
of a single experiment with 2 · n samples and ρ accuracy and the confidence of
two smaller experiments with n samples and ρ accuracy, Eq. (19), are the same:

2 · c(n, ρ) − c(n, ρ)2 = c(2 · n, ρ) (20)

10.1 PCS Graphs of Real SPLs

What do real PCS graphs look like? This is not a fundamental question, but
one asked out of curiosity. Several small SPLs were analyzed by Siegmund et al.
[41,42] that took several months of benchmarking:
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– H264 is a video encoder library for H.264/MPEG-4 AVC format written in
C. With 16 features and 1152 configurations, Sintel trailer encoding times
were measured, see Fig. 12a and

– BerkeleyDBC is an embedded database system written in C. With 18 fea-
tures and 2560 configurations, benchmark response times were measured.
Note its multiple “stairs” or vertical leaps. See Fig. 12b.

Figure 12a–b are Complete PCS graphs – meaning all products are plot-
ted. This is possible when configuration spaces are tiny. But what about SPLs

with colossal spaces? What then? A number of techniques were tried, and the
simplest performed best:

– Randomly select n= 100 or n= 200 configurations, as 100–200 points are
sufficient resolution for a graph in a paper,

– Predict the performance or build-and-benchmark each sample,
– Sort the samples from best-performing to worst,
– Let pi be the ith best performance. Plot a PCS graph using the n points

{(xi,yi)}ni=1 = {( i
n+1

, pi)}ni=1.

Example. ToyBox 0.7.5 provides Android systems with a collection of Linux
command-line utilities within a single executable. It has 316 features and 1081

configurations [45]. Build size was measured. Its PCS graph, Fig. 12c, was pro-
duced with n = 100, although the graph for n = 200 was identical.

11 Future Work and Next Steps

There is a hunger in Software Engineering research for more scientific approaches
to be used, where mathematics can help solve fundamental design problems.
The use of mathematics is evident in the work of Börger et al. on ASMs and
the JBook [44]; so too in the area of SPLs. Software design indeed has a math-
ematical foundation, but perhaps not how Dijkstra, Hoare, and Wirth initially
envisioned. Science must deliver quite a lot before it can overcome Cowboy Pro-
gramming [48]. The Science of Software Design will answer questions that were
unanswerable previously.

This holds for finding near-optimal products in colossal SPL product spaces, a
practical problem whose roots are found in early work on SWD. Given the ability
to URS such spaces, an entire world of prior results on RS is now applicable. The
simplest RS algorithm, Best-of-n-Samples, can answer scientific questions that
prior approaches could not. Namely, given any two of (confidence of answer,
accuracy of answer, and number of samples to take), the third can be computed.
Perhaps other RS algorithms may be analyzable as well.

Software Engineering research is fad-driven – the latest is Machine Learn-
ing (ML). ML also can provide answers to questions that couldn’t be answered
before. We showed in Sect. 7 that near-optimal results can be accompanied with
accuracy or confidence metrics – to give precision about returned results that
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could not be determined before. Or that the number of samples to take is no
longer a guess – it can be precisely computed. And in Sect. 8, URS can also
provide more accurate answers than performance models with less work (fewer
samples), although these results need to be refreshed as they used small product
spaces (what was available at that time). Today’s open question is whether the
provisional results in this paper scale to colossal spaces.

In this paper, URS may have been offered unintentionally as a tool to solve
all analysis problems. Far from the truth, URS is but one in an ever-increasing
sophisticated arsenal of techniques that can be used. Coupled with domain-
specific knowledge, URS tools will be even better. URS will likely become a lower-
bound on what can be accomplished and accepted (w.r.t. accuracy, confidence,
and work) in future work. If so, we have indeed made progress.

To Egon. You and your work continue to inspire me and others. Thank you.

Acknowledgments. We thank the referees for their helpful comments on this paper.

References

1. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized
views and indexes in SQL Databases. In: VLDB (2000)
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Abstract. An important concept for nonmonotonic reasoning in the
context of a conditional belief base R is syntax splitting, essentially
stating that taking only the syntactically relevant part of R into account
should be sufficient. In this paper, for the semantics of ordinal conditional
functions (OCF) of R, we introduce the notion of semantic splitting of R
where the combination of models of sub-belief bases of R corresponds to
the models of R. While this is not the case for all OCF models, we show
that for c-representations which are a subclass of all OCFs governed by
the principle of conditional preservation, every syntactic splitting is also
a semantic splitting. Furthermore, for the semantics of c-representations,
we introduce constraint splittings of a conditional belief base and show
that they fully capture and go beyond syntax splittings, thus allowing for
additional belief base splittings that enable the computation of models
locally from sub-belief bases.

Keywords: Conditional · Conditional belief base · Ordinal conditional
function · Ranking function · Syntax splitting · Semantic splitting

1 Introduction

In logic-based knowledge representation, conditionals of the form (B|A) are used
to express defeasible rules “If A then usually B”. In contrast to a material
implication, a conditional allows for exceptions. A propositional interpretation,
also called (possible) world, ω can verify the conditional (ω |= A ∧ B), it can
falsify it (ω |= A ∧ ¬B), or the conditional is not applicable (ω |= ¬A). Many
different semantics have been proposed for a conditional belief base R consisting
of a set of conditionals, e.g. [1,11,15,16,18,22]. Among these semantics, ordinal
conditionals functions (OCFs) [26], also called ranking functions, assign a natural
number to each world representing the degree of surprise when seeing this world.
There are various semantics that select a single ranking model or a class of
ranking models to be taken into account for nonmonotonic reasoning in the
context, e.g. [16,19,22,24].

The basic idea of syntax splitting [21,23,25] is that for entailments that
involve only a part of the signature of R and R splits over this signature, only
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the part of R corresponding to the subsignature should be relevant. Here, we
study splittings of conditional belief bases together with splittings on the level
of their models. Recently, it has been shown that skeptical c-inference taking all
c-representations of R into account [5,6] is fully compatible with syntax splitting
[20]. We introduce the concept of semantic splitting of a belief base R and show
that for c-representations every syntax splitting of R is also a semantic splitting.
Furthermore, we propose the notion of constraint splitting and show that every
constraint splitting of R is also a semantic splitting, and that constraint splittings
fully capture and properly exceed syntax splittings.

This paper relies on and extends our previous work on conditional belief
bases. In [7–9], we employed Prof. Egon Börger’s method for high-level system
design and analysis [12–14], which is based an Gurevich’s notion of abstract
state machines (ASMs) [17], for specifying, refining, and verifying various belief
management operations on conditional belief bases. Furthermore, one of the
authors of this paper, Christoph Beierle, benefited very much from meeting
Prof. Egon Börger when he gave a talk at IBM Germany in Stuttgart in April
1990 on a novel logic method for the definition of semantics of programming
languages, and from joint work (e.g. [2–4]) when ASMs were still called evolving
algebras. We are glad to contribute this paper on conditional belief bases to the
Festschrift dedicated to Prof. Egon Börger on the occasion of his 75th birthday.

The rest of this paper is organized as follows. In Sect. 2, we summarize the
background of conditional logics and ranking functions. In Sect. 3, syntax and
semantic splittings of belief bases are presented, and in Sect. 4, we recall aspects
from a compilation scheme for computing c-representations of a belief base.
These aspects are used for establishing the concept of constraint splitting intro-
duced and investigated in Sect. 5. In Sect. 6, we conclude and point out future
work.

2 Background: Conditional Logic

Let L(Σ) be the propositional language over a finite signature Σ. The language
may be denoted by L if the signature is clear from context. The formulas of L
will be denoted by letters A,B,C, . . .. We write AB for A∧B and A for ¬A. We
identify the set of all complete conjunctions over Σ with the set ΩΣ of possible
worlds over LΣ . For ω ∈ Ω and A ∈ L, ω |= A means that A holds in ω. The set
of worlds satisfying A is ΩA = {ω | ω |= A}. Two formulas A,B are equivalent,
denoted as A ≡ B, if ΩA = ΩB .

By introducing a new binary operator |, we obtain the set (L | L)Σ = {(B|A) |
A,B ∈ L(Σ)} of conditionals over L(Σ). Again, Σ may be omitted. As semantics
for conditionals, we use ordinal conditional functions (OCF), also called rank-
ing functions, first introduced (in a more general form) in [26]. An OCF (over
Σ) is a function κ : ΩΣ → N0 expressing degrees of (im-)plausibility of pos-
sible worlds where a lower degree denotes “less surprising”. At least one world
must be regarded as being normal; therefore, κ(ω) = 0 for at least one ω ∈ Ω.
Each κ uniquely extends to a function mapping formulas to N0 ∪ {∞} given by
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κ(A) = min{κ(ω) | ω |= A} where min ∅ = ∞. An OCF κ accepts a conditional
(B|A), written κ |= (B|A), if the verification of the conditional is less surprising
than its falsification, i.e., if κ(AB) < κ(AB). A finite set R ⊆ (L | L)Σ of con-
ditionals is called a belief base over Σ. An OCF κ accepts a belief base R if κ
accepts all conditionals in R, and R is consistent if an OCF accepting R exists.
Mod Σ(R) denotes the set of all OCFs κ accepting R.

3 Syntax Splitting and Semantic Splitting

Let us start with defining what a syntax splitting of a belief base is.

Definition 1 (syntax splitting of R). Let R be a belief base over a signature
Σ. A partition {R1, . . . ,Rn} of R is a syntax splitting of R with respect to
{Σ1, . . . , Σn} if {Σ1, . . . , Σn} is a partition of Σ such that Ri is a belief base
over Σi, for i = 1, . . . , n.

In order to investigate whether a composition of models of sub-belief bases
corresponding to the union R = R1 ∪ · · · ∪ Rn for syntax splitting exists, we
introduce the notion of model combination for sets of ranking functions.

Definition 2 (model combination). Let M1,M2 be sets of OCFs over Σ.
The model combination of M1 and M2, denoted by M1 ⊕ M2, is given by

M1 ⊕ M2 = {κ | κ(ω) = κ1(ω) + κ2(ω) for any ω ∈ ΩΣ , κ1 ∈ M1, κ2 ∈ M2}.

Definition 3. A (model based) semantics Sem for conditional belief bases is a
function mapping every belief base R over Σ to a set of models Mod Sem

Σ (R) ⊆
Mod Σ(R).

A semantic splitting of R depends on the combination of models given by an
OCF-based semantics.

Definition 4 (semantic splitting of R). Let R be a belief base over a sig-
nature Σ. A partition {R1, . . . ,Rn} of R is a semantic splitting of R for a
semantic Sem if

Mod Sem
Σ (R) = Mod Sem

Σ (R1) ⊕ · · · ⊕ Mod Sem
Σ (Rn).

A semantic Sem may satisfy the following postulate:

Postulate (SynSem). If {R1, . . . ,Rn} is a syntax splitting of R, then it is
also a semantic splitting of R for Sem.

Example 1. System P is an axiom system stating desirable properties for non-
monotonic reasoning with conditionals [1,22]. It also induces a semantic that
maps a belief base R to all its models, i.e., Mod System P

Σ (R) = Mod Σ(R). This
semantics does not satisfy (SynSem) which can be illustrated with R = R1 ∪R2
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and R1 = {(a|�)} and R1 = {(a|�)}. Obviously, {R1,R2} is a syntax splitting
of R. The ranking function

κ1 = {ab �→ 1, ab̄ �→ 0, āb �→ 1, āb̄ �→ 1} accepts R1, and
κ2 = {ab �→ 1, ab̄ �→ 1, āb �→ 0, āb̄ �→ 1} accepts R2,

but κ1 + κ2 = {ab �→ 2, ab̄ �→ 1, āb �→ 1, āb̄ �→ 2} is not even a ranking function
and would also not model R if it were normalized by reducing all ranks by 1.

Among the OCF models of R, c-representations are special models obtained
by assigning an individual impact to each conditional and generating the world
ranks as the sum of impacts of falsified conditionals. For an in-depth introduction
to c-representations and their use of the principle of conditional preservation
ensured by respecting conditional structures, we refer to [18,19]. The central
definition is the following:

Definition 5 (c-representation [18]). A c-representation of a belief base R
over Σ is a ranking function κ #»η constructed from #»η = (η1 , . . . , ηn) with integer
impacts ηi ∈ N0 , i ∈ {1 , . . . , n}, assigned to each conditional (Bi|Ai) such that
κ accepts R and is given by:

κ #»η (ω) =
∑

1�i�n

ω|=AiBi

ηi (1)

We will denote the set of all c-representations of R by Mod C
Σ(R).

While for each consistent R, the system Z ranking function κZ [16] is uniquely
determined, there may be many different c-representations of R. These can con-
veniently be characterized via the solutions of a constraint satisfaction problem
(CSP). In [5], a modeling of c-representations as solutions of a constraint satis-
faction problem CR(R) is given.

Definition 6 (CRΣ (R) [5], crR
i ). Let R = {(B1|A1), . . . , (Bn|An)} over

Σ. The constraint satisfaction problem for c-representations of R, denoted by
CRΣ(R), on the constraint variables {η1, . . . , ηn} ranging over N0 is given by
the constraints crR

i , for all i ∈ {1, . . . , n}:

(crR
i ) ηi > min

ω∈ΩΣ

ω|=AiBi

∑

j �=i

ω|=AjBj

ηj

︸ ︷︷ ︸
Vmini

− min
ω∈ΩΣ

ω|=AiBi

∑

j �=i

ω|=AjBj

ηj

︸ ︷︷ ︸
Fmini

(2)

The constraint crR
i in (2) is the constraint corresponding to the conditional

(Bi|Ai). The expressions Vmini
and Fmini

are induced by the worlds verifying
and falsifying (Bi|Ai), respectively. The constraint variable ηi corresponding to
the conditional r = (Bi|Ai) will sometimes also be denoted by ηr.
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Example 2. Let Σ = {b, p, f, w} represent birds, penguins, flying things and
winged things, and let Rbird = {r1, r2, r3, r4} be the belief base with:

r1 : (f |b) birds usually fly
r2 : (f |p) penguins usually do no fly
r3 : (b|p) penguins are usually birds
r4 : (w|b) birds usually have wings

With ΩΣ denoting the set of worlds over Σ = {b, p, f, w} and ri = (Bi|Ai)
for i ∈ {1, . . . , 4}, the constraint system CRΣ(Rbird) is:

(crRbird
1 ) η1 > min

ω∈ΩΣ

ω|=bf

∑

j �=1

ω|=AjBj

ηj − min
ω∈ΩΣ

ω|=bf

∑

j �=1

ω|=AjBj

ηj (3)

(crRbird
2 ) η2 > min

ω∈ΩΣ

ω|=pf

∑

j �=2

ω|=AjBj

ηj − min
ω∈ΩΣ

ω|=pf

∑

j �=2

ω|=AjBj

ηj (4)

(crRbird
3 ) η3 > min

ω∈ΩΣ

ω|=pb

∑

j �=3

ω|=AjBj

ηj − min
ω∈ΩΣ

ω|=pb

∑

j �=3

ω|=AjBj

ηj (5)

(crRbird
4 ) η4 > min

ω∈ΩΣ

ω|=bw

∑

j �=4

ω|=AjBj

ηj − min
ω∈ΩΣ

ω|=bw

∑

j �=4

ω|=AjBj

ηj (6)

A solution of CRΣ(R) is an n-tuple (η1, . . . , ηn) ∈ N
n
0 . For a constraint

satisfaction problem CSP , the set of solutions is denoted by Sol(CSP). Thus,
with Sol(CRΣ(R)) we denote the set of all solutions of CRΣ(R). Table 1 details
how solutions of CRΣ(Rbird) translate to OCFs accepting Rbird .

The following proposition is an immediate consequence of a theorem estab-
lished in [18].

Proposition 1 (soundness and completeness of CRΣ(R) [5]). Let R =
{(B1|A1), . . . , (Bn|An)} be a belief base over Σ. Then we have:

Mod C
Σ(R) = {κ #»η | #»η ∈ Sol(CRΣ(R))} (7)

For showing that c-representations satisfy (SynSem), we employ this charac-
terization of c-representations as solutions of a CSP and the following observation
exploiting that c-representations satisfy the property of irrelevance regarding
symbols not mentioned in R (cf. [6]).

Proposition 2. Let R be a belief base over Σ′ and Σ′ ⊆ Σ. Then R is also a
belief base over Σ and Sol(CRΣ′(R)) = Sol(CRΣ(R)).

In the sequel, we will use the following syntax splitting property of c-
representations.
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Table 1. Verification and falsification for the conditionals in Rbird from Example 2.
#»η 1,

#»η 2 and #»η 3 are solutions of CRΣ(Rbird) and κ#»η 1(ω), κ#»η 2(ω), and κ#»η 3(ω) are their
induced ranking functions according to Definition 5.

ω
r1:

(f |b)
r2:

(f |p)

r3:

(b|p)

r4:

(w|b)
impact on ω κ#»η 1(ω) κ#»η 2(ω) κ#»η 3(ω)

ω0 b p f w v f v v η2 2 4 5

ω1 b p f w v f v f η2 + η4 3 7 12

ω2 b p f w f v v v η1 1 3 4

ω3 b p f w f v v f η1 + η4 2 6 11

ω4 b p f w v − − v 0 0 0 0

ω5 b p f w v − − f η4 1 3 7

ω6 b p f w f − − v η1 1 3 4

ω7 b p f w f − − f η1 + η4 2 6 11

ω8 b p f w − f f − η2 + η3 4 8 11

ω9 b p f w − f f − η2 + η3 4 8 11

ω10 b p f w − v f − η3 2 4 6

ω11 b p f w − v f − η3 2 4 6

ω12 b p f w − − − − 0 0 0 0

ω13 b p f w − − − − 0 0 0 0

ω14 b p f w − − − − 0 0 0 0

ω15 b p f w − − − − 0 0 0 0

impacts: η1 η2 η3 η4

#»η 1 1 2 2 1
#»η 2 3 4 4 3
#»η 3 4 5 6 7

Proposition 3 ([20, Prop. 8]). Let R be a belief base over Σ and {R1,R2}
be a syntax splitting of R with respect to {Σ1, Σ2}. Then Sol(CRΣ(R)) =
{( #»η 1, #»η 2) | #»η i ∈ Sol(CRΣi

(Ri)), i = 1, 2}, i.e.:

Sol(CRΣ(R)) = Sol(CRΣ1(R1)) × Sol(CRΣ2(R2))

For binary syntax splittings, we can now prove (SynSem) for c-
representations.

Proposition 4. Let R,R1,R2 be belief bases over Σ such that {R1,R2}
is a syntax splitting of R with respect to {Σ1, Σ2}. Then Sol(CRΣ(R)) =
Sol(CRΣ(R1)) × Sol(CRΣ(R2)) implies

Mod C
Σ(R) = Mod C

Σ(R1) ⊕ Mod C
Σ(R2).

Proof. W.l.o.g. assume R = {(B1|A1), . . . , (Bn|An)}, R1 = {(B1
1 |A1

1), . . . ,
(B1

k|A1
k)}, R2 = {(B2

1 |A2
1), . . . , (B

2
l |A2

l )} and (Bi|Ai) = (B1
i |A1

i ) for i = 1, . . . , k
and (Bi+k|Ai+k) = (B2

i |A2
i ) for i = 1, . . . , l.
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Direction “⊆”: Let κ ∈ Mod C
Σ(R). There must be #»η ∈ Sol(CRΣ(R)) such

that κ = κ #»η . Proposition 3 implies that there are #»η i ∈ Sol(CRΣi
(Ri)), i = 1, 2

such that #»η = ( #»η 1, #»η 2). Due to Propositions 1 and 2, we have κ #»η 1 ∈ Mod C
Σ(R1)

and κ #»η 2 ∈ Mod C
Σ(R2) and thus κ #»η 1 + κ #»η 2 ∈ Mod C

Σ(R1) ⊕ Mod C
Σ(R2). Every-

thing combined we have:

κ #»η (ω) =
∑

1�i�n

ω|=AiBi

ηi =
∑

1�i�k

ω|=A1
i B1

i

η2
i +

∑

1�i�l

ω|=A2
i B2

i

η2
i = κ #»η 1 + κ #»η 2 (8)

and therefore κ ∈ Mod C
Σ(R1) ⊕ Mod C

Σ(R2).
Direction “⊇”: Let κ ∈ Mod C

Σ(R1) ⊕ Mod C
Σ(R2). By definition there are

ranking functions κ1 ∈ Mod C
Σ(R1), κ2 ∈ Mod C

Σ(R2) such that κ = κ1 + κ2.
Due to Propositions 1 and 2, there must be #»η i ∈ Sol(CRΣ(Ri)) for i = 1, 2
such that κi = κ #»η i for i = 1, 2. Therefore, #»η = ( #»η 1, #»η 2) ∈ Sol(CRΣ(R))
according to Proposition 3 and thus κ #»η ∈ Sol(CRΣ(R)). With (8) it follows
that κ = κ1 + κ2 = κ #»η 1 + κ #»η 2 = κ #»η ∈ Mod C

Σ(R). �

The proof that c-representations fully satisfy (SynSem) is obtained by an
induction on the number of partitions of R.

Proposition 5. C-representations satisfy (SynSem).

Proof. Let {R1, . . . ,Rn} be a syntax splitting of R over Σ. We show that
{R1, . . . ,Rn} is a semantic splitting for c-representations by induction over n.
The base case n = 1 holds trivially.

Induction Step: Let {R1, . . . ,Rn,Rn+1} be a syntax splitting of R over Σ
with respect to {Σ1, . . . , Σn, Σn+1}. Then {(R1 ∪ · · · ∪ Rn),Rn+1} is a syn-
tax splitting of R with respect to {Σ′, Σn+1} where Σ′ = Σ1 ∪ · · · ∪ Σn.
Proposition 3 implies Sol(CRΣ((R1 ∪ · · · ∪ Rn) ∪ Rn+1)) = Sol(CRΣ′(R1 ∪
· · · ∪ Rn)) × Sol(CRΣn+1(Rn+1)). Proposition 2 allows us to lift R1 ∪ · · · ∪ Rn

and Rn+1 from their sub-signatures to Σ with Sol(CRΣ′(R1 ∪ · · · ∪ Rn)) =
Sol(CRΣ(R1 ∪ · · · ∪ Rn)) and Sol(CRΣn+1(Rn+1)) = Sol(CRΣ(Rn+1)), recep-
tively. With Proposition 4, it follows that Mod C

Σ(R1 ∪ · · · ∪ Rn ∪ Rn+1) =
Mod C

Σ(R1 ∪· · ·∪Rn)⊕Mod C
Σ(Rn+1). Applying the induction hypothesis yields

Mod C
Σ(R1 ∪ · · ·∪Rn ∪Rn+1) = Mod C

Σ(R1)⊕· · ·⊕Mod C
Σ(Rn)⊕Mod C

Σ(Rn+1),
i.e., {R1, . . . ,Rn,Rn+1} is a semantic splitting of R. �

Thus, for c-representations, every syntax splitting is also a semantic splitting.
In the next sections, we will show that we can go even further. We will develop a
syntactic criterion for belief bases that captures all syntax splittings and allows
for additional semantic splittings.

4 Optimizing Constraint Systems for C-Representations

The key ingredients determining the constraint crR
i in Definition 6 are the con-

straint variables occurring in the expressions Vmini
und Fmini

. This observation
is exploited in the powerset representation of CRΣ(R).
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Definition 7 (powerset representation, PSR(R) [10]). Given the notation
as in Definition 6, let

Π(Vmini
) = { {ηj | j �= i, ω |= AjBj} | ω |= AiBi} (9)

Π(Fmini
) = { {ηj | j �= i, ω |= AjBj} | ω |= AiBi} (10)

The powerset representation of crR
i , also called the PSR term corresponding to

(Bi|Ai) relative to R, is the pair psrR
i = 〈Π(Vmini

), Π(Fmini
)〉 and the power

set representation of R is PSR(R) = {psrR
1 , . . . , psrR

n }.

Thus, Π(Vmini
) and Π(Fmini

) are the sets of sets of constraint variables ηj

occurring in the two sum expressions in (2).

Example 3. The PSR terms for the four constraints (3)–(6) are:

〈Π(Vmin1), Π(Fmin1)〉 = 〈{{η2}, {η2, η4}, ∅, {η4}}, {∅, {η4}}〉 (11)
〈Π(Vmin2), Π(Fmin2)〉 = 〈{{η1}, {η3}, {η1, η4}}, {∅, {η4}, {η3}}〉 (12)
〈Π(Vmin3), Π(Fmin3)〉 = 〈{{η2}, {η2, η4}, {η1}, {η1, η4}}, {∅, {η2}}〉 (13)
〈Π(Vmin4), Π(Fmin4)〉 = 〈{{η2}, {η1}, ∅}, {{η2}, {η1}, ∅}〉 (14)

In general, a PSR term 〈V, F〉 is a pair of sets of subsets of the involved
constraint variables. The following definition assigns an arithmetic expression
to any set of sets of constraint variables that will be used for recovering a CSP
capturing CRΣ(R). For every set S, we will use P(S) to denote the power set
of S.

Definition 8 (represented arithmetic term, ρ [10]). Let CV =
{η1, . . . , ηn} be a set of constraint variables and let M ⊆ P(CV ) be a set of
subsets of CV . The arithmetic expression represented by M = {S1, . . . , Sr},
denoted by ρ(M), is:

ρ(M) = min{
∑

η∈S1

η, . . . ,
∑

η∈Sr

η} (15)

Note that min ∅ = ∞, and if S = ∅ then
∑

η∈S η = 0. We extend the definition
of ρ to PSR terms 〈V, F〉:

ρ(〈V, F〉) =

{
∞ if ρ(V) = ∞ and ρ(F) = ∞
ρ(V) − ρ(F) else

(16)

The first case in (16) catches the extreme case of a belief base R containing
a conditional of the form (B|⊥). Because such a conditional is never applicable,
it is never verified or falsified. Thus, a belief base containing (B|⊥) is inconsis-
tent, since no ranking function accepting (B|⊥) exists. The following proposition
states that a subtraction expression occurring in CRΣ(R) that corresponds to a
conditional that is applicable in at least one world can safely be replaced by the
arithmetic expressions obtained from its PSR representation.
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Proposition 6 ([10]). Let R = {(B1|A1), . . . , (Bn|An)} be a belief base, CV
be the constraint variables occurring in CRΣ(R), and let ηi > Vmini

− Fmini
be

the constraint crR
i . If Ai �≡ ⊥, then for every variable assignment α : CV → N0

we have:

α(Vmini
) − α(Fmini

) = α(ρ(〈Π(Vmini
), Π(Fmini

)〉)) (17)

In order to be able to directly compare the different representations, we will
use ρ(PSR(R)) to denote the result of replacing every PSR term psrR

i in PSR(R)
by the constraint ηi > ρ(psrR

i ).

Proposition 7 (Soundness and completeness of PSR(R)). For every belief
base R, we have Sol(CRΣ(R)) = Sol(ρ(PSR(R))).

In order to ease our notation, we may omit the explicit distinction between
a PSR term 〈V, F〉 and its represented subtraction expression in ρ(〈V, F〉).
Likewise, we may omit the distinction between PSR(R) and ρ(PSR(R)).

The powerset representation 〈V, F〉 of a subtraction expression can be opti-
mized. For instance, the minimum of two sums S1 and S2 of non-negative inte-
gers is S1 if all summands of S1 also occur in S2. Figure 1 contains a set T of
transformation rules that can be applied to pairs of elements of the powerset
of constraint variables, and thus in particular to the PSR representation of a
subtraction expression:

(ss-V ) removes a set S′ that is an element in the first component if it is a
superset of another set S in the first component.

(ss-F ) removes a set S′ that is an element in the second component if it is a
superset of another set S in the second component.

(elem) removes an element η that is in every set in both the first and the second
component from all these sets.

(ss-V) subset-V :
〈V ∪ {S, S′}, 〉

〈V ∪ {S}, 〉 S � S′

(ss-F) subset-F :
〈V, ∪ {S, S′}〉

〈V, ∪ {S}〉 S � S′

(elem) element :
〈{V1 ∪ {η}, . . . , Vp ∪ {η}} , {F1 ∪ {η}, . . . , Fq ∪ {η}}〉

V1, . . . , Vp , F1, . . . , Fq

Fig. 1. Transformation rules T for optimizing PSR terms of subtractions.

Note that T is functionally equivalent to the set of transformation rules
given in [10]. The set given in Fig. 1 is a minimal set of transformation rules,
and the two additional rules given in [10] can be replaced by a finite chain of
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applications of (ss-V) and (ss-F), respectively. The transformation system T is
terminating and confluent, and it is sound in the sense that the result of applying
T exhaustively to a PSR term 〈V, F〉 is a simplified PSR term that is equivalent
to 〈V, F〉 with respect to all variable assignments.

Definition 9 (CCR(R) [10]). For a belief base R, the compilation of R,
denoted by CCR(R), is obtained from PSR(R) by replacing every PSR term
psrR

i by its optimized normal form ccrR
i = T (psrR

i ).

Example 4. CCR(Rbird ), the compilation of Rbird , is given by:

η1 > 〈{∅}, {∅}〉
η2 > 〈{{η1}, {η3}}, {∅}〉
η3 > 〈{{η2}, {η1}}, {∅}〉
η4 > 〈{∅}, {∅}〉

Similar as before, ρ(CCR(R)) denotes the constraint system obtained from
CCR(R) by replacing every PSR term 〈V, F〉 by ρ(〈V, F〉). In [10], it is shown
that the compilation is sound and complete, i.e., for every belief base R,

{κ#»η | #»η ∈ Sol(ρ(CCR(R)))} = {κ | κ is a c-representation of R} (18)

and thus

Sol(ρ(CRΣ(R))) = Sol(ρ(CCR(R))). (19)

5 Constraint Splittings

For CCR(R), we can extract the information which constraint variables are
independent from each other.

Definition 10 (∼dp
R , ∼∗

R, |= ). Let R be a belief base and (Bi|Ai), (Bj |Aj) ∈
R. Then (Bi|Ai) directly depends on (Bj |Aj) in R, denoted by (Bi|Ai) ∼dp

R
(Bj |Aj), if ηi ∈ Vars(ccrR

j ) where Vars(ccrR
j ) is the set of constraint variables

occurring in ccrR
j . The reflexive and transitive closure of ∼dp

R is denoted by ∼∗
R.

For R′,R′′ ⊆ R we say that R′ and R′′ are constraint independent, denoted
R′ |= R′′, if for all r′ ∈ R′, r′′ ∈ R′′ we have r′ �∼∗

R r′′.

A constraint splitting of R must respect the independence relation |= on the
partitions.

Definition 11 (constraint splitting). Let R be a belief base. A partition
{R1, . . . ,Rk} of R is a constraint splitting of R if Ri |= Rj for all i, j ∈
{1, . . . , k} with i �= j.

Example 5. The partition {R1,R2} with R1 = {r1, r2, r3} and R2 = {r4} is a
constraint partition of Rbird .
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Obviously, constraint variables belonging to different partitions of a syntax
splitting are constraint independent, yielding the following observation.

Proposition 8. For c-representations, every syntax splitting of R is also a con-
straint splitting of R.

While constraint splittings fully capture syntax splittings, they properly go
beyond them. An example illustrating this is Rbird for which {{r1, r2, r3}, {r4}}
is a constraint splitting, but not a syntax splitting.

Proposition 9. For c-representations, in general, a constraint splitting of R is
not necessarily a syntax splitting of R.

For showing that for c-representations every constraint splitting is also a
semantic splitting, we employ projections of impact vectors and of belief bases.
If #»η is an impact vector with impacts corresponding to the conditionals in R,
then for R′ ⊆ R, the subvector of #»η containing only the impacts related to the
conditionals in R′ is called the projection of #»η to R′ and is denoted by #»η R′ . We
extend the notion to a set M of impact vectors by writing MR′ The following
definition extends the notion of projection to constraint satisfaction problems
for c-representations.

Definition 12 (CSP projection CRΣ(R)R′). Let R = {(B1|A1), . . . ,
(Bn|An)} be a set of conditionals, and let R′ ⊆ R. The projection of CRΣ(R)
to R′, denoted by CRΣ(R)R′ , is the constraint satisfaction problem given by the
set of constraints {crR

i | (Bi|Ai) ∈ R′}.

W.l.o.g. let us assume that R = {(B1|A1), . . . , (Bn|An)} and R′ =
{(B1|A1), . . . , (Bk|Ak)} where k � n. Note the difference between

CRΣ(R′) = {crR′
1 , . . . , crR′

k } (20)

and

CRΣ(R)R′ = {crR
1 , . . . , crR

k }. (21)

While CRΣ(R′) in (20) is a CSP over the constraint variables η1, . . . , ηk,
CRΣ(R)R′ in (21) is a CSP over the constraint variables η1, . . . , ηk, ηk+1, . . . , ηn.
Both CSP have |R′|-many constraints, but in contrast to crR

i , any of the con-
straint variables ηk+1, . . . , ηn in the sum in the minimizations terms given in
Eq. (2) are removed in crR′

i .
Using projections both for CRΣ(R) and for the solutions of the projection of

CRΣ(R), we obtain a proposition for constraint splittings of R that corresponds
to Proposition 3 for syntax splittings.

Proposition 10. If {R1,R2} is a constraint splitting of R with respect to Σ =
{Σ1, Σ2} then

Sol(CRΣ(R)) = Sol(CRΣ(R)R1)R1 × Sol(CRΣ(R)R2)R2 .
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Example 6. For the constraint splitting {R1,R2} with R1 = {r1, r2, r3} and
R2 = {r4} of Rbird , the vector #»η 1 = (1, 2, 2, 0) is a solution of CRΣ(Rbird)R1 ,
and the vector #»η 2 = (4, 3, 2, 1) is a solution of CRΣ(Rbird )R2 . Note that neither
#»η 1 nor #»η 2 is a solution of CRΣ(Rbird ). However, when composing the projec-
tions of #»η 1 and #»η 2 to R1 and R2, respectively, we get #»η 1

R1
= (1, 2, 2) and

#»η 2
R2

= (1) and thus #»η = ( #»η 1
R1

, #»η 2
R2

) = (1, 2, 2, 1), with #»η being a solution of
CRΣ(Rbird ) as stated in Proposition 10.

The next proposition states that a binary constraint splitting is also a seman-
tic splitting.

Proposition 11. If {R1,R2} is a constraint splitting of R with respect to Σ =
{Σ1, Σ2} then

Mod C
Σ(R) = Mod C

Σ(R1) ⊕ Mod C
Σ(R2).

Proof. The proof is obtained similar as in the proof of Proposition 4 by employing
the relationship established in Proposition 10. �

We now have all ingredients for establishing the semantic splitting property
of constraint splittings.

Proposition 12. For c-representations, every constraint splitting of R is a
semantic splitting of R.

Proof. Let {R1, . . . ,Rn} be a constraint splitting of R. Using Propositions 10
and 11 the claim follows by induction over n analogously to the induction proof
in Proposition 5. �

Thus, also for the syntax splitting exceeding constraint splittings, ranking
models of R can be determined by simply combining models of the respective
sub-belief bases of R.

6 Conclusions and Future Work

Inspired by the notion of syntax splitting, we formulated the notion of semantic
splitting under which the ranking models of a conditional belief base R can be
easily computed from the models ob sub-belief bases of R. For c-representations,
every syntax splitting is a semantic splitting and also a constraint splitting. Fur-
thermore, also every constraint splitting is a semantic splitting, while constraint
splittings cover and extend syntax splittings. Our current work includes trans-
ferring the concepts developed here from ranking models to total preorders of
worlds and to other semantics of conditional belief bases.
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Abstract. In this paper, we discuss the community associated with
Abstract State Machines (ASM), especially in the context of a Commu-
nity of Practice (CoP), a social science concept, considering the devel-
opment of ASM by its community of researchers and practitioners over
time. We also consider the long-term historical context of the advisor tree
of Egon Börger, the main promulgator of the ASM approach, which can
be considered as multiple interrelated CoPs, distributed over several cen-
turies. This includes notable mathematicians and philosophers among its
number with some interesting links between the people involved. Despite
most being active well before the inception of computer science, a number
have been influential on the field.

1 Background

There are two kinds of truths: those of reasoning and those of fact. The
truths of reasoning are necessary and their opposite is impossible; the truths
of fact are contingent and their opposites are possible.

– Gottfried Leibniz

This paper has been inspired by the work of the computer scientist Egon Börger
[11,12] and is presented in celebration of his 75th birthday. The author has
been involved in building and investigating communities [38], both in the area
of formal methods, especially the Z notation [49], and also in museum-related
[8,59] and arts-related [44,50] contexts. Börger has been central to building
the community [10] around the Abstract State Machines (ASM) approach to
modelling computer-based systems in a formal mathematical manner. This paper
considers aspects of this community, especially with respect to Egon Börger’s
role, and also in the context of the Community of Practice (CoP) approach to
considering the evolution of communities based around an area of developing
knowledge [94,95].
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1.1 Personal Appreciation

All our knowledge begins with the senses, proceeds then to the understand-
ing, and ends with reason. There is nothing higher than reason.

– Immanuel Kant

I first met Egon Börger when he visited Tony Hoare [34] at the Oxford Univer-
sity Computing Laboratory’s Programming Research Group (PRG) in Septem-
ber 1993, including a talk by him entitled The methodology of evolving algebras
for correctness proofs of compilation schemes: the case of OCCAM and TRANS-
PUTER [12,19]. I was a Research Officer working on formal methods [68] and
specifically the Z notation [33,67] at the time. I also became involved with the
European ESPRIT ProCoS I and II projects on Provably Correct Systems, led
by Tony Hoare at Oxford, Dines Bjørner at DTH in Denmark, and others in the
early 1990s [9,31,47].

The subsequent ProCoS-WG Working Group of 25 partners around Europe
existed to organize meetings and workshops in the late 1990s [32]. Egon Börger
gave a talk to the group on Proof of correctness of a scheme for compilation
of Occam programs on the Transputer at a January 1995 workshop in Oxford
[12,19]. The ProCoS-WG final report in 1998 [48] included the following:

Prof. Egon Börger of the University of Pisa, Italy, has participated at
many ProCoS-WG meetings, largely at his own expense. He was an
invited speaker at ZUM’97 [46] and organized, with Prof. Hans Langmaack
of the University of Kiel, an important set of case studies formalizing a
Steam Boiler problem in a variety of notations [1], including a number of
contributions by ProCoS-WG members. He reports:

The ProCoS meetings have been for me a very useful occasion
for fruitful exchange of ideas and methods related to the applica-
tion of formal methods. In particular I appreciate the occasion I
had to present my work on the correctness theorem for a general
compilation scheme for compiling Occam programs to Transputer
code. This work appeared in [23]. Furthermore I appreciated the
chance to present the Abstract State Machine (ASM) method to
ProCoS-WG members.

See Fig. 1 for a group photograph of participants at the final ProCoS-WG
workshop held at the University of Reading in the UK during 1997, including
Egon Börger and myself. Egon Börger was also an invited speaker [27] at the co-
located ZUM’97 conference [46] that I co-chaired, introducing the Z community
to ASM.

Much later, in 2006, we both contributed to a book on Software Specifica-
tion Methods [64] based around a common case study, including use of the Z
notation [37] and ASM [24]. In the same year, I also attended Egon’s 60th birth-
day Festkolloquium at Schloss Dagstuhl, Germany [3], later contributing to the
associated Festschift volume [45].
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Fig. 1. ProCoS-WG meeting at the University of Reading, 1997. Egon Börger is 4th
from the right; I am 10th from the right.

From the early 2000s, I was Chair of the UK BCS-FACS (Formal Aspects
of Computing Science) Specialist Group. In December 2003, Egon presented
on Teaching ASMs to Practice-Oriented Students with Limited Mathematical
Background at the BCS-FACS Workshop Teaching Formal Methods: Practice
and Experience, held at Oxford Brookes University. Subsequently, I invited Egon
to speak to the group at the BCS London office in March 2007, and a chapter
appeared in a book of selected talks [18].

In 2008, we were co-chairs of the newly formed Abstract State Machines,
B and Z: First International Conference, ABZ 2008 in London, UK, edited
by Egon Börger (ASM), Michael Butler (B), myself (Z), and Paul Boca as a
local organizer [21,22], including an ASM-based paper co-authored by Egon
Börger [30]. This was an extension of the previous ZB conferences, that were a
combination of previously separate B and Z conferences. In 2011, we collaborated
on a special issue of selected and extended papers from the ABZ 2008 conference
in the Formal Aspects of Computing journal, edited by Egon Börger, myself,
Michael Butler, and Mike Poppleton [20]. Most recently, I reviewed his 2018 book
on Modeling Companion for Software Practitioners using the ASM approach, co-
authored with Alexander Raschke [42].

2 Communities of Practice

Reason is purposive activity. – Georg Hegel

A Community of Practice (CoP) [94] is a social science concept for modelling the
collaborative activities of professional communities [10] with a common goal over
time [95,96]. It can be used in various scenarios, for example, formal methods
communities [39,41,49]. A CoP consists of:

1. A domain of knowledge and interest. In the case of ASM, this is the applica-
tion of a mathematical approach to computer-based specification modelling
and development.
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2. A community around this domain. For ASM, this includes the ABZ con-
ference organizers and programme committee members that are interested
in ASM at its core, conference presenters and delegates, as well as other
researchers and practitioners involved with ASM.

3. The practice undertaken by the community in this domain, developing its
knowledge. The ASM community is encouraging the transfer of research ideas
into practical use. The ASM approach has been used to model industrial-
scale programming and specification languages, and a recent book has been
produced to encourage use by software practitioners [28].

There are various stages in the development of a CoP:

1. Potential: There needs to be an existing network of people to initiate a CoP.
In the case of ASM, researchers interested in theoretical computer science and
formal methods were the starting point, especially the original progenitors,
Yuri Gurevich and Egon Börger.

2. Coalescing: The community needs to establish a rhythm to ensure its con-
tinuation. In the case of ASM, a regular ASM workshop was established.

3. Maturing: The community must become more enduring. The ASM workshop
combined with the ZB conference, already a conference for the Z notation and
B-Method, to become the ABZ conference in 2008 [21].

4. Stewardship: The community needs to respond to its environment and
develop appropriately. The ASM community has interacted with related orga-
nizations such as the Z User Group (ZUG), the B User Group (BUG),
etc., and has fostered these relationships especially through the regular ABZ
conference.

5. Legacy: All communities end eventually; if successful they morph into further
communities. ASM continues as a community, although it has combined with
other state-based approach communities such as those around B, VDM, Z,
etc. Exactly how these related communities will continue is something that
is worth considering and planning for at the appropriate time.

It remains to be seen precisely what legacy ASM leaves in the future. For the
moment, the ASM community continues through the ABZ conference and other
more informal and individual interactions.

3 The Development of ASM

The model should not dictate but reflect the problem.
– Egon Börger [28]

In the 1980s, the American computer scientist and mathematician Yuri Gurevich
(originally from the Soviet Union) conceived of the idea of “evolving algebras”
[62], based on the Church-Turing thesis, with algorithms being simulated by a
suitable Turing machine [90]. He suggested the ASM thesis, that every algorithm,
however abstract, can be emulated step-for-step with an appropriate ASM. In
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2000, he axiomatized the notion of sequential algorithms, proving the ASM thesis
for them [61]. Essentially, the axioms consist of state structures, state transitions
on parts of the state, with everything invariant under isomorphisms of the struc-
tures. The structures can be considered as algebras; hence the original name of
evolving algebras. However, later the term Abstract State Machine (ASM) was
generally adopted and Yuri Gurevich’s colleague Egon Börger became the lead-
ing figure in the ASM community. The axiomatization of sequential algorithms
has subsequently been extended to interactive and parallel algorithms.

During the 1990s, a research community built up and an ASM method was
developed, allowing ASMs to be used for the formal specification and develop-
ment of computer-based software and hardware [14]. ASM models for widely
used programming languages such as C, Java, and Prolog, as well as specifica-
tion languages such as SDL, UML, and VHDL, were created. A more detailed
historical presentation of ASM’s early developments has been produced by Egon
Börger in 2002 [15].

Subsequently, two ASM books have appears in 2003 [29] and 2018 [28], both
with Egon Börger at the lead author. As we have seen, the original ASM work-
shops have been combined with the B-Method, Z notation, and other state-based
formal approaches to form the ABZ conference, started in 2008 [21], and contin-
uing to this day.

3.1 Publications

Some key evolving algebra and ASM publications are shown in Fig. 2. An ASM
tutorial introduction as also available [17]. A 1996 Steam Boiler Control case
study competition book for different formal methods [1,2] included an “Abstract
Machine” specification and refinement [7]. An annotated ASM bibliography is
available, covering 1988–1998 [26].

Some of the main author influences of Egon Börger can be seen in Fig. 3, both
in terms of who has influenced him and who he has influenced. Figure 4 shows
mentions of Egon Börger in the Google corpus of books, from the late 1960s
onwards. It is interesting to note the peak of “Egon Boerger” with no umlaut in
the mid-1990s and the peak of “Egon Börger” with an umlaut in the mid-2000s,
perhaps illustrating improvements in computer typesetting around the end of
the 20th century. Similarly, Fig. 5 shows mentions of Abstract State Machines
in books from the 1980s onwards. This indicates a peak of interest in the early
2000s, although there may be a slight revival in the late 2010s, perhaps due in
part to the 2018 book on the subject [28].

4 A Longterm Historical View

What is reasonable is real; that which is real is reasonable.
– Georg Hegel
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1995: Yuri Gurevich, Evolving Algebras 1993: Lipari Guide [62].
1995: Yuri Gurevich and Egon Börger, Evolving Algebras: Mini-

Course [63].
1995: Egon Börger, Why use Evolving Algebras for Hardware and Soft-

ware Engineering? [14].
2000: Yuri Gurevich, Sequential Abstract-State Machines capture Sequen-

tial Algorithms [61].
2002: Egon Börger, The Origins and Development of the ASM Method

for High-Level System Design and Analysis [15].
2002: Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte & Margus

Veanes, Generating Finite State Machines from Abstract State Ma-
chines [60].

2003: Egon Börger & Robert Stärk, Abstract State Machines: A Method
for High-Level System Design and Analysis [29].

2003: Egon Börger, The ASM Refinement Method [16].
2008: Egon Börger, Michael Butler, Jonathan Bowen & Paul Boca, Ab-

stract State Machines, B and Z: First International Conference, ABZ
2008 [21,30].

2010: Egon Börger, The Abstract State Machines Method for High-Level
System Design and Analysis [18].

2018: Egon Börger & Alexander Raschke, Modeling Companion for Soft-
ware Practitioners [28,42].

Fig. 2. Some key ASM publications.

Fig. 3. Author influences of Egon Börger. (Semantic Scholar: http://www.
semanticscholar.org.)

http://www.semanticscholar.org
http://www.semanticscholar.org
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Fig. 4. Graph of mentions of Egon Börger in books. (Ngram Viewer, Google Books:
http://books.google.com/ngrams.)

Fig. 5. Graph of mentions of Abstract State Machines in books. (Ngram Viewer, Google
Books: http://books.google.com/ngrams.)

http://books.google.com/ngrams
http://books.google.com/ngrams
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It is interesting to study the historical ancestry of ASM through the advisor tree
of its leading promulgator, Egon Börger [97]. This itself forms a fascinating inter-
related set of communities of related researchers through the centuries. Although
Egon Börger has been based at the University of Pisa in Italy for much of his
career, he was born in Germany and most of those in his advisor tree are of
Germanic origin. This is assumed for those mentioned in the rest of this section,
except where indicated otherwise.

We are lucky in the mathematical sciences such as computer science to have
the excellent Mathematics Genealogy Project (MGP) resource available online
(https://www.mathgenealogy.org), providing over a quarter of a million records
of mathematicians (including many computer scientists), giving details of their
degree, university, advisor(s), etc. This provides the foremost online resource for
discovering degree and advisor information of people included in this database.
In particular, records for advisors can be followed on the web through hyperlinks.

4.1 Logicians

Information on Egon Börger’s doctoral thesis in 1971 is available on MGP [74].
It was entitled Reduktionstypen in Krom- und Hornformeln (in English, “Reduc-
tion types in Krom and Horn formulas”), from Westfälische Wilhelms-Universität
(now the University of Münster) in Germany and was supervised by Dieter Röd-
ding [13]. Rödding (1937–1984) was a mathematical logician who made con-
tributions to the classification of recursive functions and on recursive types in
classical predicate logic. He was one of the first researchers to use a machine-
oriented approach to complexity in his investigation of recursive functions and
logical decision problems, before computer science had been established as an
academic field.

Rödding’s advisor, also at Münster, was Gisbert Hasenjaeger (1919–2006),
another Germany mathematical logician. In 1949, Hasenjaeger developed a new
proof for the completeness theorem of Kurt Gödel (1906–1978) for predicate
logic. He worked as an assistant to the logician Heinrich Scholz (1884–1956)
at the Cipher Department of the High Command of the Wehrmacht and was
responsible for the security of the Enigma machine, used for encrypting German
messages in World War II. The Enigma code was broken by Alan Turing (1912–
1954) and his team at Bletchley Park in England [52]. Hasejaeger constructed
a universal Turing machine (UTM) from telephone relays in 1963, now in the
collection of the Heinz Nixdorf Museum in Paderborn. In the 1970s, Hasenjaeger
learned about the breaking of the Enigma machine and he was impressed that
Turing had worked successfully on this [81].

As well as working together, Heinrich Scholz was also Gisbert Hasenjaeger’s
doctoral advisor at Münster. Scholz was a philosopher and theologian, in addi-
tion to being a logician. Alan Turing mentioned him regarding the reception of
his ground-breaking paper On Computable Numbers, with an Application to the
Entscheidungsproblem, read in 1936 and published in 1937 [90]. Turing received
a preprint request from Scholz and was impressed by the German interest in

https://www.mathgenealogy.org
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the paper. Perhaps the use of a German term in the title helped! The Entschei-
dungsproblem (German for “decision problem” [25]) was a challenge posed by
the mathematicians David Hilbert (1862–1943) and Wilhelm Ackermann (1896–
1962) in 1928. The origin of the Entscheidungsproblem goes back to Gottfried
Leibniz (1646–1716) [83,84], of which more later. Scholz established the Insti-
tute of Mathematical Logic and Fundamental Research at Münster in 1936 and
it was later led by Dieter Rödding.

Much later, during the early 21st century, Achim Clausing inspected Scholz’s
papers at Münster. He discovered two original preprints from Alan Turing, miss-
ing since 1945. The first paper On Computable Numbers [90] was with a postcard
from Turing. In a letter from Turing to his mother while he was studying for
his doctorate under the supervision of Alonzo Church (1903–1995) at Princeton
University in the USA, there is indication that Scholz not only read Turing’s
paper, but also presented it in a seminar [51]. This could arguably have been
the first theoretical computer science seminar. The second preprint found was
Turing’s foundational 1950 article on machine intelligence [91], foreseeing the
subsequent development of artificial intelligence (AI). Turing noted by hand on
the first page “This is probably my last copy” [51]!

Heinrich Scholz studied for two advanced degrees. The first was for a Licenti-
ate theology degree at Humboldt-Universität zu Berlin (awarded in 1909) under
the theologian Carl Gustav Adolf von Harnack (1851–1930) and Alois Adolf
Riehl (1844–1924), an Austrian neo-Kantian philosopher. We shall hear more of
Kant [5] later. The second was a Doctor of Philosophy degree at the Friedrich-
Alexander-Universität Erlangen-Nürnberg (awarded in 1913) under Friedrich
Otto Richard Falckenberg (1851–1920), entitled in Germany Schleiermacher und
Goethe; Ein Beitrag zur Geschichte des deutschen Geistes (in ENglish, “Schleier-
macher and Goethe; A contribution to the history of the German spirit”). This
covered the theologian and philosopher Friedrich Schleiermacher (1768–1834),
together with the renowned polymath Johann Wolfgang von Goethe (1749–
1832).

Here we will follow each of these lines separately to an interesting denouement
at the end. Those not interested in the history of mathematics [80] or philosophy
[6,89] can safely skip to Sect. 4.4. The first line of advisors includes an eclectic
mix of academics. The second line includes some of the leading philosophers and
mathematicians of all time. Börger’s advisor lineage as described in this section
is illustrated in Fig. 6.

4.2 Polymaths: Astronomers, Geometrists, Mathematicians,
Philosophers, Physicists, and Theologians

If others would but reflect on mathematical truths as deeply and continu-
ously as I have, they would make my discoveries.

– Carl Gauss

Adolf von Harnack (sometimes known as just Adolf Harnack) was a Lutheran the-
ologian and church historian. He gained his doctorate at the Universität Leipzig
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Egon Börger
Münster (1971)

D. Rödding
Münster (1961)

G. Hasejager
Münster (1950)

H. Scholz
Berlin (1909)

Erlangen-Nürnberg (1913)

A. Harnack
Leipzig (1873)

M. Drobisch
Leipzig (1834)

K. Mollweide
Helmstedt (1796)

J. Pfaff
Göttingen (1786)

A. Käster
Leipzig (1739)

C. Hausen
Wittenberg (1713)

J. Wichmanns-
hausen

Leipzig (1685)

O. Mencke
Leipzig (1665)

J. Planer
Wittenberg (1686)
Tübingen (1709)

J Bode
Hamburg

W. Krug
Wittenberg
(1791/94)

A. Ebert
Göttingen (1844)

C. Gauss
Helmstedt

(1799)

A. Möbius
Leipzig
(1815)

A. Riehl
Innsbruck (1868)

R. Falckenberg
Jena (1877)

K. Fischer
Halle (1847)

J. Erdmann
Kiel (1830)

G. Hegel
Jena (1801)

F. Schelling
Tübingen (1795)

J. Fichte
Königsberg (1792)

I. Kant
Königsberg (1770)

M. Knutzen
Königsberg
(1732/34)

C. Wolff
Leipzig (1703)

E. Tschirnhaus
Leiden (1669/74)

G. Leibniz
Leipzig (1666)

J. Thomasius
Leipzig (1643)

F. Leibniz
Leipzig (1622)

E. Weigel
Leipzig (1650)

C. Pfautz
Leipzig (1663)

Fig. 6. Academic advisor tree for Egon Börger [74]. (Family relationships are indicated
with additional curved arrow links, as discussed in the text.)
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in 1873 under Moritz Wilhelm Drobisch (1802–1896) and Georg Karl Wilhelm
Adolf Ebert (1820–1890), a philologist and literary historian. Drobisch was a
mathematician, logician, psychologist, and philosopher. He was the brother of
the composer Karl Ludwig Drobisch (1803–1854).

Moritz Drobisch studied under Karl Brandan Mollweide (1774–1825) and
Wilhelm Traugott Krug (1770–1842), gaining his doctorate at the Universität
Leipzig in 1824, with a dissertation entitled in Latin Theoriae analyseos geo-
metricae prolusio on theories for analysis in geometry. Wilhelm Krug was a
philosopher and writer who followed the Kantian school of logic.

Fig. 7. A cosmological Mollweide projection, used in an online 2021 talk by the
Oxford mathematical physicist Roger Penrose, in celebration of his 2020 Nobel Prize.
(YouTube: http://www.youtube.com/watch?v=1zXC51o3EfI.)

Karl Mollweide was a mathematician and astronomer. He invented the Moll-
weide projection for maps, giving equal areas for different parts of a map of a
curved surface like the spherical world. This is useful for wide-area global and
cosmic maps, giving a projection in the form of a flat ellipse. This projection is
used to the present day, as illustrated in Fig. 7. Mollweide also discovered what
is now known as Mollweide’s formula in trigonometry, useful in finding solutions
relating to triangles:

a + b

c
=

cos(α−β
3 )

sin(γ
2 )

a − b

c
=

sin(α−β
3 )

cos(γ
2 )

where a, b, c are the lengths of sides of a triangle and α, β, γ are the opposite
angles. These pleasingly symmetrically matching equations both include all the
important constituent parts (side lengths and angles) of a triangle.

Mollweide studied under the mathematician Johann Friedrich Pfaff (1765–
1825) at the Universität Helmstedt, attaining his award in 1796. Pfaff was the
advisor for two other famous mathematicians, Carl Friedrich Gauss (1777–1855),
also a physicist, and August Ferdinand Möbius (1790–1888), also a theoretical

http://www.youtube.com/watch?v=1zXC51o3EfI
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astronomer [56]. Gauss has many mathematical and scientific concepts named
after him as the leading scientist of his generation. Möbius has a number of
mathematical, especially geometrical, ideas named after him too, the most well-
known of which is the Möbius strip, a surface in three-dimensions with only one
side, which he discovered in 1858.

Johann Pfaff achieved his doctorate in 1786 at the Georg-August-Universität
Göttingen under Abraham Gotthelf Kästner (1719–1800) and the astronomer
Johann Elert Bode (1747–1826), known for the Titus-Bode law for predicting the
space between planets in a solar system. Kästner was a mathematician and also
an epigrammatist. He wrote mathematical textbooks, compiled encyclopaedias,
translated scientific proceedings, and even wrote poetry in an epigrammatic
style. In 1789, he was elected a Fellow of the Royal Society, the leading scientific
society based in London, England. The moon crater Kästner, 49 km in diameter,
is named after him.

Abraham Kästner studied under the mathematician Christian August
Hausen (1693–1743) Universität Leipzig, achieving his doctorate in 1739, with
a dissertation entitled in Latin Theoria radicum in aequationibus (in English,
“The theory of the roots of equations”). Hausen is also known for his research
on electricity, using a triboelectric generator. The triboelectric effect is a type
of electricity where some materials become electrostatically charged after being
separated from another material that they were touching previously. Rubbing
the two materials can increase their surface contact, and thus increase the tri-
boelectric effect. Combing hair with a plastic comb is a common way of creating
triboelectricity.

Christian Hausen gained his doctorate in 1713 at the Universität Wittenberg
(now merged with Halle to later become the Martin-Luther-Universität Halle-
Wittenberg), under the guidance of the philologist Johann Christoph Wich-
mannshausen (1663–1727) and the mathematician Johannes Andreas Planer
(1665–1714). Wichmannshausen studied under the direction of his father-in-law,
the philosopher and scientist Otto Mencke (1644–1707), gaining his doctorate
at the Universität Leipzig in 1685, on issues concerning the ethical nature of
divorces.

Otto Mencke also studied at Leipzig and his doctorate was awarded in 1665.
His advisor was the philosopher and jurist Jakob Thomasius (1622–1684), and
his dissertation was on theology. In 1682, he founded the first German scientific
journal in Germany, entitled Acta Eruditorum. He was a professor of moral
philosophy at Leipzig.

Jakob Thomasius conducted his studies at Leipzig as well, under Friedrich
Leibniz (aka Leibnütz, 1597–1652), gaining his degree in 1643. He was an impor-
tant foundational scholar in the history of philosophy [88]. Friedrich Leibniz
was a Lutheran lawyer, a notary, registrar, and professor of moral philosophy at
Leipzig. He was the father of the notable mathematician and polymath Gottfried
Wilhelm (von) Leibniz (1646–1716), to whom we shall return [84].
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4.3 Philosophers and Mathematicians

To comprehend what is, is the task of philosophy: and what is is Reason.
– Georg Hegel

We now return to the advisor for Heinrich Scholz’s second dissertation in 1913,
under Richard Falckenberg (1851–1920) at the Friedrich-Alexander-Universität
Erlangen-Nürnberg, at the bottom of the right-hand lineage in Fig. 6. Facken-
berg was a historian of philosophy. He wrote the book History of Modern Phi-
losophy, originally published in 1886, and still available in English translation
through Project Gutenberg online as an open-access resource [55], scanned from
the original editions [54]. Falckenberg received his doctorate from the Friedrich-
Schiller-Universität Jena in 1877, having studied under the philosopher Ernst
Kuno Berthold Fischer (1824–1907). His dissertation was entitled in German
Über den intelligiblen Charakter. Zur Kritik der Kantischen Freiheitslehre (in
English, “About the intelligent character. On the criticism of the Kantian doc-
trine of freedom”).

Kuno Fischer was also a historian of philosophy and a critic, known for his
lecturing skills. One of Fischer’s philosophical contributions was to categorize
philosophers into followers of empiricism and rationalism, including Gottfried
Leibniz as a rationalist. He was a follower of Hegelianism and interpreted the
works of Kant. He published a six-volume set of monographs entitled Geschichte
der neuern Philosophie (in English, “History of modern philosophy”) [57], which
influenced the philosopher Friedrich Wilhelm Nietzsche (1844–1900). Fischer also
taught the philosopher, logician, and mathematician Friedrich Ludwig Gottlob
Frege (1848–1925) at Jena and, more unusually, the English playwright, novelist,
and short-story writer William Somerset Maugham (1874–1965) at Heidelberg.
Fischer’s 80th birthday in 1904 was celebrated with a Festschrift, published
three years later [73]. Fischer studied at the Universität Halle (now merged
with Wittenberg to be the Martin-Luther-Universität Halle-Wittenberg) under
Johann Eduard Erdmann (1805–1892). He was awarded a doctorate in 1847 for
a dissertation on the ancient Athenian philosopher Plato.

Johann Erdmann was a pastor, historian of philosophy, and philosopher of
religion. He wrote a three-volume set of books entitled A History of Philoso-
phy, available in an English translation [53]. Erdmann studied for his doctor-
ate under the leading philosopher Georg Wilhelm Friedrich Hegel (1770–1831)
[76] at Christian-Albrechts-Universität zu Kiel. He received his doctoral degree
in 1830 with a dissertation entitled in Latin Quid intersit inter Philosophiam
et Theologiam (in English, “What is the difference between Philosophy and
Theology”).

Hegel was a leading figure in German idealism [85], developed from Kant’s
ideas [87], linked with Romanticism and the Enlightenment, where reality is seen
depending on human perception or understanding. Hegel’s ideas continue to be
highly influential on contemporary Western philosophical issues, in areas relating
to aesthetics, ontology, politics, both in analytic philosophy (mainly in English-
speaking countries) and continental philosophy (largely in mainland Europe).
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Hegel’s philosophical ideas are now termed Hegelianism, summarized in the title
of the preface in Elements of the Philosophy of Right as “What is rational is real;
And what is real is rational” [66].

Hegel’s Science of Logic [65] presented his idea of logic as a system of dialec-
tics, later dubbed Hegelian dialectic. This is normally presented in a three-stage
developmental style, as provided by Heinrich Moritz Chalybäus (1796–1862): 1)
a thesis or problem; 2) an antithesis or reaction, contradicting this thesis; and
3) their resolution through a synthesis or solution. Although named after Hegel,
this is a different formulation to his. Hegel was influenced in these ideas by Kant,
with Johann Gottlieb Fichte (1762–1814, see later) elaborating and popularizing
the approach. As well as science, Hegel has also been influential in artistic circles
with respect to aesthetics to this day [77].

Hegel’s dissertation was defended at Friedrich-Schiller-Universität Jena while
with the philosopher Friedrich Wilhelm Joseph von Schelling (1775–1812) [86].
Hegel and Schelling shared a room at university. Schelling was an “Extraordinary
Professor” (a professor without a chair in Germany) at Jena and encouraged his
friend Hegel to come to Jena in 1801. Hegel became a Privatdozent (unsalaried
lecturer) at Jena. His inaugural dissertation that year, in Latin, was entitled
De orbitis planetarum (in English “The orbits of the planets”), interestingly in
the field of astronomy, which then was considered as natural philosophy [4]. The
dissertation is inscribed in Latin Socio Assumto Carolo Schelling (in English “an
assumed ally Karl Schelling”) and Schelling was present at Hegel’s defence on
27 August 1801, Hegel’s 31st birthday. At the time, Schelling was still only 26,
several years younger than Hegel.

Karl Schelling was part of the German idealism philosophical movement.
He and Hegel were early friends, but later became rivals, and Schelling became
rather eclipsed by Hegel. Schelling undertook his doctorate at the Eberhard-
Karls-Universität Tübingen, completing his dissertation in 1795, and working
with the philosopher Johann Gottlieb Fichte (1762–1814) [86].

Johann Fichte’s ideas were criticized by both Schelling and Hegel [92]. He
studied for his doctorate with the well-known philosopher Immanuel Kant (1724–
1804) [5] at the Universität Königsberg. His dissertation, produced in 1792,
was entitled in German Versuch einer Kritik aller Offenbarungen (in English,
“Attempt to criticize all revelations”).

Immanuel Kant was an important thinker in the Age of Enlightenment (aka
the Age of Reason). He produced works covering aesthetics, epistemology, ethics,
and metaphysics. Subsequently, his ideas have made him one of the most influen-
tial historical figures within modern Western philosophy. He founded transcen-
dental idealism, as expounded in his Critique of Pure Reason [70].

Kant enrolled at the University of Königsberg (now Kaliningrad) in 1740, at
the age of 16, and remained there for his entire career. He studied the philosophy
of Gottfried Leibniz and Christian Freiherr von Wolff (1679–1754) under the
direction of Martin Knutzen (1713–1751), the Extraordinary Professor of Logic
and Metaphysics there until his early death, aged 37. Knutzen was a rationalist
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who had an interest in British philosophy, especially empiricism, and science.
He introduced Kant to the then relatively recent mathematical physics of Isaac
Newton (1642–1727). Knutzen discouraged Kant from following Leibniz’s theory
of pre-established harmony [88], where substances only affect themselves despite
apparent interactions, and idealism, the concept that reality is mental, which
many 18th-century philosophers regarded negatively.

In 1755, Kant received a license to lecture at Königsberg, and produced a
master’s thesis in that year under the Prussian physicist and philosopher Johann
Gottfried Teske (1704–1772). His doctoral dissertation was produced in 1770,
entitled in Latin De mundi sensibilis atque intelligibilis forma et principiis (in
English, “The form and principles of the sensible and the intelligible world”).

Martin Knutzen studied mathematics, philosophy, and physics, at Königs-
berg, producing his inaugural dissertation in 1732, his Master of Arts disserta-
tion in 1733, and his doctoral dissertation in 1734, resulting in him becoming a
professor at the early age of 21 shortly after. Knutzen was a follower of Christian
von Wolff at Königsberg and the rationalist school of thinkers. He also had an
interest in natural sciences, teaching astronomy, mathematics, and physics, as
well as philosophy. His interest in Newton’s ideas led to him question the the-
ory of pre-established harmony, as espoused by Leibniz and Wolff. He defended
the idea of mechanical causality in moving physical objects and his lessons at
Königsgberg influenced Kant, especially in his work on the Critique of Judge-
ment, which attempted reconcile spiritual autonomy with respect to mechanical
reality [71].

Christian von Wolff enrolled at Jena but moved to Leipzig in 1702, pro-
ducing a Habilitationsschrift dissertation in 1703, written in Latin and entitled
Philosophia practica universalis, methodo mathematica conscripta (in English,
“On Universal Practical Philosophy, composed according to the Mathematical
Method”). Wolff’s main advisor was Ehrenfried Walther von Tschirnhaus (1651–
1708). Otto Mencke, whom we have met early on the other branch of Egon
Börger’s advisor tree, served as an examiner for Wolff’s dissertation. Mencke
was impressed enough to send Wolff’s dissertation to Gottfried Leibniz. Wolff
and Leibniz remained in correspondence together until Leibniz died in 1716. The
astronomer, geographer, librarian, and mathematician Christoph Pfautz (1645–
1711) was also an advisor. Wolff was a mathematician, philosopher, and scientist
during the German Enlightenment and is regarded by many to be the most influ-
ential and important German philosopher between Leibniz and Kant, two giants
in the field.

Pfautz helped to co-found the first German scientific journal Acta Erudito-
rum (as mentioned earlier) with his brother-in-law Otto Mencke in 1682, in Egon
Börger’s other advisor line. To raise the journal’s profile and encourage submis-
sions, Pfautz took Otto Mencke to Holland and England in 1680, via Amsterdam,
Antwerp, Delft, Leiden, Utrecht, London, and Oxford. Pfautz met leading scien-
tists, including Isaac Newton, whose views he introduced to Germany scholars
in the journal. Pfautz was a regular correspondent with Gottfried Leibniz from
1679 and was one of the early Enlightenment proponents at Leipzig.
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Ehrenfried von Tschirnhaus was a mathematician, physician, physicist, and
philosopher who originally studied at Leiden University in Holland. He developed
the Tschirnhaus transformation to remove intermediate terms from an algebraic
equation, published in the Acta Eruditorum journal in 1683. He is also considered
by some to have invented European porcelain.

Gottfried Leibniz was a leading polymath of his age and one of the most
important logicians, mathematicians, and philosophers during the Enlighten-
ment. He followed the 17th-century philosophical tradition of rationalism. His
most important mathematical contribution was the development of differential
and integral calculus, at the same time that Isaac Newton developed these ideas
independently too in England. They used different notations and Leibniz’s more
general notation is the one that has endured. Indeed, Newton’s notation held
back subsequent mathematical advances in England compared to continental
Europe for centuries.

Leibniz introduced heuristic ideas of the law of continuity, allowing finite
reasoning to be generalized to the infinite case (e.g., when considering a circle
as being an infinite-sided polygon), and the transcendental law of homogene-
ity, allowing terms tending to the infinitesimal to be ignored (e.g., a + dx = a).
Much later in the 1960s, these ideas became important in non-standard analysis,
reformulating calculus using a logically rigorous notion of infinitesimal numbers,
illustrating how long it can take for mathematical ideas to have a useful appli-
cation.

Leibniz was also inventive in the development of mechanical calculators.
While considering the inclusion of automatic multiplication and division in Pas-
cal’s calculator of the French mathematician Blaise Pascal (1623–1662), he orig-
inated a pinwheel calculator in 1685 with adjustable numbers of teeth (normally
0 to 9 in the decimal system). He also invented what became known as the Leib-
niz wheel, a cylindrical drum with stepped teeth, as used in the arithmometer,
the first mechanical calculator to be mass-produced, introduced in 1820. This
interest in mechanical reasoning can be seen as a precursor to later consideration
of the nature of computation in a logical framework, including issues concerning
the Entscheidungsproblem (“decision problem”), as previously mentioned [83].

Gottfried Leibniz studied for his doctorate under Jakob Thomasius (whose
student Otto Mencke is also on Egon Börger’s other line of advisors on the
left-hand side of Fig. 6) and the astronomer, mathematician, and philosopher,
Erhard Weigel (1625–1699) at the Universität Leipzig, producing his dissertation
in Latin entitled Disputatio arithmetica de complexionibus on arithmetic in 1666.

Leibniz also studied with the legal scholar Bartholomäus Leonhard von
Schwendendörffer (1631–1705) at the Universitẗ Altdorf and later with his men-
tor, the Dutch astronomer, inventor, mathematician, and physicist, Christiaan
Huygens (1629–1695) through the French Académie Royale des Sciences (Royal
Academy of Sciences) in Paris, after visiting the city from 1672. Hugygens was a
major figure in the European Scientific Revolution that marked the emergence
of modern science and was influential in the Age of Enlightenment. He invented
the Huygens eyepiece with two lenses for telescopes.
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As we saw earlier, the father and son Friedrich and Gottfried Leibniz are
also related via Jakob Thomasius academically. Both are part of Egon Böger’s
academic lineage, Friedrich Leinbiz via both his major lines, as illustrated in
Fig. 6.

4.4 The Origins of Binary Computing

There are 10 types of people: those that can count in binary and those that
can’t. – Anon.

Gottfried Leibniz, 13 generations back in Egon Börger’s academic genealogical
tree (see Fig. 6), studied the binary numbering system in 1679, later published in
an 1703 French article Explication de l’Arithmétique Binaire (in English, “Expla-
nation of Binary Arithmetic”, see Fig. 8) [72]. In 1854, the English mathematician
George Boole (1815–1864), based at Queen’s College (now University College),
Cork, in southern Ireland, published a foundational book, The Laws of Thought,
detailing an algebraic system of binary logic, later dubbed Boolean algebra,
important in the design of digital electronics.

Fig. 8. Leibniz’s examples of binary arithmetic, published in 1703 [72].

In 1937, the American engineer and mathematician Claude Shannon (1916–
2001) [58] worked on his novel master’s thesis (issued later in 1940) at the Mas-
sachusetts Institute of Technology (MIT) that implemented Boolean algebra and
binary arithmetic using electronic relays and switches, entitled A Symbolic Anal-
ysis of Relay and Switching Circuits [82], foundational in digital circuit design.

Also in 1937, George Stibitz (1904–1995), while working at Bell Labs in the
USA, created a relay-based computer called the Model K (for “Kitchen”, where it
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was assembled!), which implemented binary addition [35]. In the same year, Alan
Turing’s foundational paper based on what became known as a Turing machine,
a mathematical model for a digital computational device, appeared [90].

In 1945, the Hungarian-American mathematician and polymath John von
Neumann (1903–1957) produced a draft report on the EDVAC binary computer
design, that became dubbed von Neumann architecture, a standard style of digi-
tal computer design [93]. Thus, with all these subsequent developments, Leibniz’s
ideas on the binary number system were foundational for modern digital com-
puter design. The discipline of computer science has developed especially from
the second half of the 20th century [40], with the first academic computer science
departments opening in the 1960s [36]. Without all these developments, there
would be no need for formal methods in general and ASM in particular.

4.5 Further Academic Advisor Relationships

We have seen (as illustrated in Fig. 6) that Egon Börger’s academic lineage goes
back to the leading mathematician Gottfried Leibniz and his father. His imme-
diate “ancestors” are logicians. Then there is a split into two major lineages with
Heinrich Scholz through his two separate degrees in 1909 and 1913. The first
line (on the left in Fig. 6) includes an eclectic mix of scientists and philosophers,
including a relationship with Gauss and Möbius, leading to Gottfried Leibniz’s
father Friedrich Leibniz (also his “grandfather” in the academic tree of advi-
sors via Jakob Thomasius). The second line (on the right in Fig. 6) of mainly
philosophers includes two of the most important philosophers of all time, Hegel
and Kant, as well as Gottfried Leibniz himself, and then links to the first line via
Jakob Thomasius. These can be seen as a historical community of academics,
each passing on their knowledge to the next generation, eventually to Egon
Börger.

Egon Börger is a distant academic “relative” of the 19th/20th century math-
ematician David Hilbert, via Johann Pfaff and his student Gauss. Hilbert was
influential on theoretical computer science through the likes of Kurt Gödel and
then Alan Turing. Börger is also related to Turing, who’s academic advisor line
goes back to Gottfried Leibniz as well, via another follower of Leibniz in Paris, the
rationalist philosopher Nicolas Malebranche (1638–1715) [43]. Even Yuri Gure-
vich and Egon Börger are distantly related by advisor. Following Gurevich’s
advisor tree back in time on the Mathematics Genealogy Project [75], we find
the important Russian mathematician Pafnuty Lvovich Chebyshev (1821–1894)
several generations back, eventually leading to Johann Pfaff in Börger’s advisor
tree via another of Pfaff’s students, the mathematician Johann Martin Christian
Bartelsi (1789–1836), who also tutored Gauss.
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5 Conclusion

There is nothing without reason. – Gottfried Leibniz

The Abstract State Machines (ASM) approach is one of a number of compet-
ing state-based formal methods for modelling computer-based systems. It has
been used in this role for industrial-strength computer-based languages such as
programming languages and specification notations. The community associated
with ASM has developed since the 1980s and continues in tandem with other
state-based approaches such as the Z notation, the B-Method, and Event-B. Each
has their own advantages and disadvantages, which are beyond the scope of this
paper. Each have their own community of adherents, that have now somewhat
merged with the establishment of the ABZ conference in 2008 [21].

The 2003 book on ASM [29] is a general introduction to ASM. The subsequent
2018 ASM book [28] is entitled Modeling Companion for Software Practitioners.
It can be used for self-study, as a reference book, and for teaching, but its title
indicates the intention of being a practical book for potential industrial use. A
third book with industrial case studies in due course could complete these books
as a trilogy [42].

The ASM community is an example of a Community in Practice (CoP) in
action. Other related CoPs are based around state-based specification and devel-
opment approaches such as the Z notation, B-Method/Event-B, etc. CoPs can
potentially merge and create new CoPs. For example, the B-Method and then
Event-B were developed after the Z notation largely by the same progenitor,
Jean-Raymond Abrial, and with some in the Z community becoming part of the
B community.

A Community of Practice depends on people with different skills for success,
be it for ideas, vision, organization, etc. Yuri Guevich and Egon Börger were
both key for the success of ASM, just as Steve Wozniak and Steve Jobs [69] were
both crucial for the initial launch of Apple. I will leave it for the reader to decide
who has taken on which roles.

We have also considered Egon Börger’s advisor tree historically, which started
mainly in the fields of mathematics and philosophy, and more recently has
included several logicians. All this knowledge has helped to lead to the devel-
opment of the ASM approach. Members of the advisor tree have themselves
participated in CoPs, such as the rationalist movement, German idealism, etc.
Some have been eminent enough to be leaders of CoPs, like Kant and Hegel.
They have inspired their own eponymous schools of thought, such as Kantian
ethics and Hegelism.

Predicting the future is always difficult, but the community around ASM has
been successful enough to leave its mark on the formal methods community as
a whole. What is clear is that without Egon Börger, it is unlikely that the ASM
community would have developed to the extent that it has.
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6 Postscript

Genius is the ability to independently arrive at and understand concepts
that would normally have to be taught by another person.

– Immanuel Kant

What it means to be a genius and how long it takes to become a genius are
matters for debate [78]. However, Kant’s definition above is perhaps a good one.
Egon Börger completed his doctoral thesis in 1971 [13] and his first two decades
of papers were mainly on logic and decision problems [11]. Subsequently his
research centred increasingly around Abstract State Machines [15]. As the main
leader of the ASM community, he has to this day produced papers developing
ideas around ASM, advancing its use. He has been the teacher of ASM and co-
author the two main books on the subject [28,29]. Thus, by Kant’s definition
above, Egon Börger is a genius.
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Abstract. “The bride is dressed in red and the groom in white.” Some-
times someone cannot believe their own ears, thinking they have mis-
understood, and instead the communication is clear and exact, Egon
actually got married in white and Donatella was in red. Some other
times someone believe they have understood and instead the message is
ambiguous and unclear.

When considering software requirements, one way to eliminate inac-
curacies is to build a ground model and give it a formalization. In this
paper, we propose an approach that begins by searching for terms and
constructs that may cause communication problems and suggests a sys-
tematic way to disambiguate them.

1 Introduction

In the initial step of the classic software development process requirements are
defined. This process aims to obtain a general description of functional (what
the program should do) and non-functional (such as resources, performance,
etc.) requirements. Although this process is somewhat systematic, requirements
identification is usually intuitive and informal, and requirements are usually
expressed informally through natural language phrases. Requirements are typi-
cally the basis on which implementations are built. However, natural language is
inherently ambiguous, and ambiguity is seen as a possible (if not certain) source
of problems in the subsequent interpretation of requirements.

Among the others, Egon Boerger advocated to start from an unambiguous,
formal, ground model and proceed through a rigorous formal process that pre-
serves correctness to develop the implementation [4,5]. Defining ground models
is one of the three activities that constitute the formal method for engineering
computer-based systems known as Abstract State Machine (ASM) method [6].

However, this introduces a necessary formalization step that should bridge
the informal understanding of what is expected from the system to be built into
its formal, rigorous model. Quoting Egon:
c© Springer Nature Switzerland AG 2021
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The notoriously difficult and error prone elicitation of requirements is
largely a formalization task in the sense of an accurate task formulation,
namely to realize the transition from usually natural-language problem
descriptions to a sufficiently precise, unambiguous, consistent, complete
and minimal formulation of ... “the conceptual construct” ... of a computer-
based system, as distinguished from a software representation, e.g. by code.

This is mainly a language and communication problem between the domain
expert or customer and the software designer who prior to coding have to
come to a common understanding of “what to build”, to be documented
in a contract containing a model which can be inspected by the involved
parties.

This, together with

the fact that there are no mathematical means to prove the correctness of
the passage from an informal to a precise description

makes the formalization step quite challenging, especially for complex systems.
Egon’s approach has been that of expressing “the conceptual construct” as a so
called “ground” model:

ground models must be apt to mediate between the application domain,
where the task originates which is to be accomplished by the system to be
built, and the world of models, where the relevant piece of reality has to
be represented.

Our research has instead focused on the informal nature of requirement them-
selves. Pioneering a popular stream of research in the Requirements Engineering
discipline, we have addressed the said communication mismatch problem by
focusing on the identification and analysis of ambiguity in requirements doc-
uments. In particular, in previous works we have focused on the automated
analysis of requirements documents by means of Natural Language Processing
(NLP) tools [7]. This kind of analysis is aimed at identifying typical natural
language defects, especially focusing on ambiguity sources [3].

In this paper we exemplify the principles of this research stream by applying
the QuARS NLP tool to identify ambiguities in the informal description of the
known Steam Boiler case study [2], showing how also that natural language
description (considered as if it were a requirements document for the proposed
case study) suffered from ambiguity: this ambiguity has necessarily to be solved
when formalising the case study (and we show examples of solved ambiguities).

2 Sources of Ambiguity in Requirements

Natural language (NL) is the most commonly used means of expressing software
requirements despite the fact that it is inherently ambiguous, and despite the fact
that ambiguity is a known source of problems in the subsequent interpretation
of requirements.



Language and Communication Problems in Formalization 123

Natural language processing techniques (NLP) are frequently used today to
help system engineers and project managers analyze and correct requirements
in natural language and to provide the user with a quality assessment of each
requirement analyzed, significantly automating and speeding up the task of find-
ing possible errors in NL requirements documents. However this does not mean
that human review of the requirements is unnecessary or unimportant. Rather,
these NLP techniques and tools will provide a help in this task. Domain experts
shall review the results the tools provide and use their expertise to correct the
deficiencies they find.

There are many different sources of ambiguity that can cause communication
problems between stakeholders, some are due to the use of ambiguous words (lex-
ical ambiguities), others (the syntactical ambiguities) to particular syntactical
structures or to the position of a word in a requirement (when used as an adjec-
tive or pronoun for example). We list the most common sources of ambiguity,
with a classification inspired by [3].

Analytical, attachment, and coordination ambiguities, are different forms of
syntactic ambiguities. They occur when a sentence admits more than one gram-
matical structure, and different structures have different meanings. We provide
some examples, for a more in-depth discussion we refer to [3]: “software fault
tolerance”, can be tolerance to software faults or fault tolerance achieved by
software (analytical); “I go to visit a friend with a red car” means either that I
go with the red car or that the friend I’m visiting has a red car (attachment);
“She likes red cars and bikes”, where it is not clear whether she likes all bikes or
only red ones (two coordinators in a sentence); “I will travel by plane or ferry
and car”, that can be interpreted as “I will travel by plane or I will travel by
ferry and car” or as “I will travel by plane or ferry and by car” (another example
of coordination: a coordinator related to a modifier). Somehow all three have to
do with associativity.

A requirement contains an anaphoric ambiguity when an element of a sen-
tence depends for its reference on another, antecedent, element and it is not
clear to which antecedent it refers, as in “The procedure shall convert the 24 bit
image to an 8 bit image, then display it in a dynamic window” [12]. Anaphoras
are another category of syntactic ambiguity and in most cases can be identified
looking for pronouns.

Vagueness is a lexical defect and it is sometimes considered not as an ambigu-
ity but as a separate category, in fact it does not lead to different interpretations,
but to a loose interpretation. For completeness and uniformity we keep it in this
list and treat it as an ambiguity. An example is “The system must support
many users at the same time”: what is meant by many? 5? 1000?, without a
clarification you will never be able to say if the system will have satisfied the
requirement.

Temporal ambiguities are special cases of vagueness, that occur when a tem-
poral quantification is missing. Examples are: “A message shall be sent after
activation of the registration function”. How long after? “The Project Team
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must demonstrate mockups of UI changes to project stakeholders early in the
development process”. How early?

Comparatives and superlatives are syntactic ambiguities: a comparator with-
out a term of comparison; a superlative with a vague or no context. Although,
also in this case we can identify terms that play the role of indicators. Examples
are: “The feature X may be used to provide a better grade of service to certain
users”. “Any emissions radiating into the driver’s cab and other on-board equip-
ment from the exterior aerial shall meet the industry standards to the highest
possible degree”.

We have seen that coordinators can lead to ambiguities in some syntactic con-
structions, disjunctions instead are a separate case because they are inherently
ambiguous, as in “The user information contained in the confirmation message
shall be the engine number or train number (if registered)”.

An Escape clause contains a condition or a possibility and makes a require-
ment weaker, vague and unverifiable. An example is “The system, if possible,
updates the data every 2 h”.

Similarly, the use of a weak verb (e.g. may or may not) leads to a weakness
and offers an excuse for not implementing the requirement.

Quantifiers are a notable cause of ambiguity, for different orders of reasons:
they can be originated from generalizations of the matter; the analysts may not
have defined the universe of quantification; the analysts may not have defined the
scope of the quantifier itself. The sentence “All pilots have a red car” contains
two ambiguities: universe of discourse, the sentence is true in a Ferrari F1 box,
not in general, and scope, the pilots share the same car?

Underspecification is a syntactical ambiguity that occurs when a generic term
is used that lacks of a specifier. For instance in “It shall be possible for the driver
to store numbers in the radio”, it must be made clear what the numbers are.
In this case the context of the requirement makes clear that they were train
identification numbers.

When using a passive voice it is possible to omit the agent, in fact, often we
change an active form to passive so that we don’t have to decide on the subject
of the action (which becomes the agent in the passive form). This generates a
(syntactic) ambiguity that must be resolved by deciding who is the subject of
the action. As an example “The fire alarm must be issued” will become “The
system must issue the fire alarm”.

2.1 QuARS

QuARS - Quality Analyzer for Requirement Specifications – is a tool for ana-
lyzing NL requirements in a systematic and automatic way by means of NLP
techniques with a focus on ambiguity detection [9,10].

QuARS performs an automatic linguistic analysis of a requirements docu-
ment in plain text format, based on a given quality model. Its output indicates
the defective requirements and highlights the words that reveal the defect.
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Fig. 1. The QuARS architecture for defect identification.

The defect identification process is divided into two, independent, parts
(Fig. 1). The first part, lexical analysis, detects candidate defective terms using
a set of dictionaries. Lexical analysis permits to capture disjunction, optionality,
subjectivity, vagueness, optionality, weakness, quantifiers, and temporal defects.
The second part is syntactical analysis, that captures implicity and underspeci-
fication defects.

Other features of QuARS are (i) metrics derivation for evaluating the quality
of NL requirements; (ii) the capability to modify existing dictionaries, and to add
new dictionaries for new indicators; (iii) view derivation, to identify and collect
together those requirements belonging to given functional and non functional
characteristics, by defining specific requirements.

In Table 1 we present the indicators used by QuARS to detect defects of lexi-
cal and syntactic ambiguity in NL sentences. Table 2 shows how they correspond
to the ambiguity classes listed above.

Table 1. Defects detected by QuARS

Ambiguity class Indicators

vagueness clear, easy, strong, good, bad, adequate...

subjectivity similar, have in mind, take into account,...
disjunction or, and/or

optionality or, and/or, possibly, eventually, case, if possible, if
appropriate...

temporal before, after, as soon as, then...

weakness can, could, may, . . .

implicity demonstrative adjectives or pronouns

underspecification wordings missing a qualification (e.g.: interface or information
without a qualifier, such as user and price, respectively)
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Table 2. Ambiguity classes detected by QuARS

Ambiguity classes QuARS detection classes

Analytical n.a.

Attachment n.a.

Coordination n.a.

Anaphoric n.a.

Vagueness vagueness

Temporal temporal

Comparatives n.a.

Superlatives n.a.

Disjunction disjunction

Escape Clause optionality, weakness

Quantifiers quantifiers

Underspecification underspecification

Passive voice n.a.

3 Steam Boiler and QuARS

Based on the insight that thorough comparison between the various design for-
malisms proposed in the literature as well as some amount of unification would
be crucial both to industrial takeover and to scientific progress in the field, an
international seminar on “Methods for Semantics and Specification” was held at
Schloß Dagstuhl, Wadern, Germany, on June 5–9, 1995. The seminar took the
form of a “competition” between different researchers who had been invited as
representatives of their particular methods. The competition was on the Steam
Boiler control specification problem drafted by J.-R. Abrial, E. Börger, and
H. Langmaack, which has been posed to the participants as a common case
study [1,2].

We consider here the natural language specification of the Steam Boiler case
study as if it was the requirements document specifying the system, structuring
the text as a set of numbered sentences. The resulting document is made of
39 requirements (see the Appendix). We have applied QuARS to analyse this
document looking for potential ambiguities, then the output of the tool has been
manually examined to distinguish true ambiguities from false positives (FP).
Table 3 shows a summary of the true ambiguity defects.

The vagueness analysis revealed 4 defects, 3 of which are true ambiguities and
only one FP. The table shows req.29, which is ambiguous because satisfactory
is not an accurate measure for water level, and req.39 is ambiguous because it
is unclear what the appropriate actions are. Here the communication problems
can be solved by providing ranges so that it is possible to evaluate predicates
satisfactory(water level) and appropriate(action).



Language and Communication Problems in Formalization 127

The quantifiers analysis revealed 7 defects, one of which is a true ambiguity
and 6 are FP. The table shows Req.1, in which it is not clear what “each physical
unit is connected to a control unit” means.

The disjunction analysis revealed 9 defects, all occurrences of or : 1 truly
ambiguous and 8 FP. Req. 33, containing the ambiguous occurrence, introduces
a case of non-determinism.

The weakness analysis revealed 8 defects: 2 true ambiguities (both occur-
rences of can) and 6 FP: in Req. 13 it is not clear if the program must send
the program-ready signal or can avoid doing so. Req. 17 is ambiguous about the
program’s obligation to adjust water levels.

The search for temporal ambiguities returned 10 defects, out of which 9 true
ambiguities and 1 FP. Most ambiguities are due, as in req. 8, to the presence of
wording as soon as. The analyst must decide whether as soon as means the next
step or within a some time. Similarly, requirements 11 and 37 must be clarified
because of the terms then and after.

The optionality analysis did not reveal any defect, while implicity and under-
specification reveald some defects that were false positives.

4 Solving Communication Mismatch Problems

QuARS helps to find in the natural language specification critical points that
can create communication problems as they can lead to multiple interpretations.
Depending on the defect class, the range of possible interpretations changes. We
address the output of the QuARS analysis of the steam boiler and indicate, for
each requirement, the possible interpretations and the corresponding formaliza-
tion, that depend on the class of defect. This way we provide, through examples,
a systematic means to consider, for each ambiguity class as defined in Table 2,
the possible interpretations and their formalization, so that they can be com-
pared on a mathematical ground. The formalization makes use of first order logic
and temporal logics, which are well suited to express in a rigorous manner the
particular aspects to which a single requirement refers.

4.1 Formalising Vagueness and Quantifiers

A vague term may represent an abstraction, as satisfactory in the example below,
which is made concrete by a set of possible instances.

Req 29 “The rescue mode is the mode in which the program tries to maintain a
satisfactory water level despite of the failure of the water level measuring unit”

We need to clarify what satisfactory means, providing a measure and a range
of values. For example, let us assume it is between N1 and N2, included.
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Table 3. Analysis with QuARS of the steam boiler requirements

————- QuARS [Lexical] vagueness ANALYSIS ————-
The line number:
29. the rescue mode is the mode in which the program tries to maintain a satisfactory water level
despite of the failure of the water level measuring unit.
is defective because it contains the wording: satisfactory
The line number:
39. once the program has reached the emergency stop mode, the physical environment is then
responsible to take appropriate actions, and the program stops.
is defective because it contains the wording: appropriate
—- QuARS [Lexical] vagueness Statistics (on ”boiler.txt” file): ————–
Number of evaluated sentences: 39 Number of defective sentences: 4

————- QuARS [Lexical] Quantifiers ANALYSIS ————-
The line number:
1. the program communicates with the physical units through messages which are transmitted
over a number of dedicated lines connecting each physical unit with the control unit.
In first approximation, the time for transmission can be neglected.
is defective because it contains the wording: each
—- QuARS [Lexical] Quantifiers Statistics (on ”boiler.txt” file): ————–
Number of evaluated sentences: 39 Number of defective sentences: 7

————- QuARS [Lexical] Disjunction ANALYSIS ————-
The line number:
33. as soon as the water measuring unit is repaired, the program returns into mode degraded or
into mode normal.
is defective because it contains the wording: or
—- QuARS [Lexical] Disjunction Statistics (on ”boiler.txt” file): ————–
Number of evaluated sentences: 39 Number of defective sentences: 9

————- QuARS [Lexical] weakness ANALYSIS ————-
The line number:
13. as soon as a level of water between N1 and N2 has been reached the program can send
continuously the signal program-ready to the physical units until it receives the signal
physical units ready which must necessarily be emitted by the physical units.
is defective because it contains the wording: can
The line number:
17. as soon as the water level is below N1 or above N2 the level can be adjusted by the program
by switching the pumps on or off.
is defective because it contains the wording: can
—- QuARS [Lexical] weakness Statistics (on ”boiler.txt” file): ————–
Number of evaluated sentences: 39 Number of defective sentences: 8

————- QuARS [Lexical] temporal ANALYSIS ————-
The line number:
8. as soon as this message has been received the program checks whether the quantity of
steam coming out of the steam-boiler is really zero.
is defective because it contains the wording: as soon as
The line number:
11. if the quantity of water in the steam-boiler is below w then the program activates a pump
to fill the steam-boiler.
is defective because it contains the wording: then
The line number:
37. this mode can also be reached after detection of an erroneous transmission between the
program and the physical units.
is defective because it contains the wording: after
—- QuARS [Lexical] temporal Statistics (on ”boiler.txt” file): ————–
Number of evaluated sentences:39 Number of defective sentences:10



Language and Communication Problems in Formalization 129

If we consider as a satisfying range the closed interval [N1..N2], using first order
logic we may write:

∀x. (satisfactory water level(x) ↔ (x ≥ N1 ∧ x ≤ N2))

and then formalise Req 29 as follows:

rescue mode → ∃x.(water level(x) ∧ satisfactory water level(x))

Quantifiers can make a requirement ambiguous for two reasons at least: the
universe of discourse and scope.

Req 1 “The program communicates with the physical units through messages
which are transmitted over a number of dedicated lines connecting each physical
unit with the control unit. in first approximation, the time for transmission can
be neglected.”

Here the universe for each is clear, and it is the set of physical units. The
problem is the scope and the two possible interpretations are: “each physical
unit is connected to a distinguished control unit” and “all the physical units are
connected to a common control unit”, formalized, respectively, by:

∀x.∃y.(connected(x, y) ∧ ∀r, s.((connected(r, s) ∧ x 	= r) → y 	= s))
∃y.∀x.connected(x, y)

4.2 Formalising Disjuncion, Weakness and Temporal Ambiguities:
CTL

We consider a branching-time temporal logic that is a subset of CTL - Compu-
tation Tree Logic [8]1:

φ ::= | true | p | ¬φ |φ ∨ φ |AXφ |EXφ |AFφ |EFφ |AGφ |EGφ

Each CTL operator is a pair of symbols. The first one is either A (“for All
paths”), or E (“there Exists a path”). The second is one of X (“neXt state”), F
(“in a Future state”, i.e. in a state of the path), G (“Globally in the future”, i.e.
in all states of the path).

Req 33 “as soon as the water measuring unit is repaired, the program returns
into mode degraded or into mode normal.”

This requirement is ambiguous because of the presence of as soon as that
can be interpreted as next step or as eventually and formalised accordingly as
follows:

1 The definition we provide is not minimal, and some operators can be derived by
other. We use this definition for simplicity and readability.
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AG(water munit repaired → AX(mode degraded ∨ mode normal))
AG(water munit repaired → AF (mode degraded ∨ mode normal))

The formalization of the disjunction or makes non-determinism explicit: this
step makes the analyst aware of the condition, if non-determinism is intended,
then the specification itself will contain a disjunction, otherwise the requirement
must be disambiguated.

Req 17 “as soon as the water level is below N1 or above N2 the level can be
adjusted by the program by switching the pumps on or off.”

Besides the temporal ambiguity, that we interpret here as next step, there is a
weak verb, namely can. As in the previous case, if the use of a weak verb is inten-
tional, then the specification will take this into account, using an appropriate
modality:

AG((water below N1 ∨ water above N2) → EXswitched pumps)

otherwise the requirement is disambiguated, for instance, imposing to switch
the pumps:

AG((water below N1 ∨ water above N2) → AXswitched pumps)

Note also that, for more precision, the formula can be split to indicate the
exact action taken in the two cases of low and high water, respectively:

AG(water below N1 → AXswitched pumps on)
AG(water above N2 → AXswitched pumps off)

Req 37 “This mode can also be reached after detection of an erroneous trans-
mission between the program and the physical units.”

There are three defects in this requirement:

This, that is a false positive since it is easily disambiguated reading require-
ment 36: it refers to the emergency stop mode;
can as above, the weakness is left in the formalization, using path quantifier
“E”, or removed using modality “A”.
after : it is not clear if it refers to the next state or to a future one, hence
either “F” or “X” are to be used.

Metric Temporal Logic. Also, when specifying requirements with temporal
expressions, the analyst’s first decision is whether to model them in terms of
computational steps (LTS) or use a real-time model. For example, as soon as
can be the next step or within a time limit expressed in seconds or milliseconds.
Requirement 33 “as soon as the water measuring unit is repaired, the program
returns into mode degraded or into mode normal” for instance could be inter-
preted as:

“within n millisecond after the water measuring unit is repaired, the program
returns into mode degraded or into mode normal.”
and specified in a metric temporal logic [11].
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5 Conclusions

In this paper we have briefly shown an approach to address the problem, often
discussed by Egon Boerger, of grounding the software development process on
a formal basis able to capture the intended behaviour by avoiding the typical
ambiguity that natural language requirements inherently contain. The presented
approach follows a different research path with respect to the one mastered by
Egon, in which a ground model by means of ASM is developed first with the aim
of solving potential ambiguities. We focus instead on the ambiguity sources in
the natural language expression of requirements, exploiting a NLP tool to point
out potential ambiguities, then recurring to focused logic formulae expressing
the different interpretations that may solve them.

Acknowledgements. The research has been partially supported by the project
“IT-MaTTerS” (Methods and Tools for Trustworthy Smart Systems), MIUR PRIN
2017FTXR7S.

A Steam Boiler Requirements

1. The program communicates with the physical units through messages which
are transmitted over a number of dedicated lines connecting each physical
unit with the control unit. In first approximation, the time for transmission
can be neglected.

2. The program follows a cycle and a priori does not terminate.
3. This cycle takes place each five seconds and consists of the following actions:

Reception of messages coming from the physical units; Analysis of informa-
tions which have been received; Transmission of messages to the physical
units.

4. In first approximation, all messages coming from (or going to) the physical
units are supposed to be received (emitted) simultaneously by the program
at each cycle.

5. The program operates in different modes, namely: initialization, normal,
degraded, rescue, emergency stop.

6. The initialization mode is the mode to start with.
7. The program enters a state in which it waits for the message STEAM-

BOILER-WAITING to come from the physical units.
8. As soon as this message has been received the program checks whether the

quantity of steam coming out of the steam-boiler is really zero.
9. If the unit for detection of the level of steam is defective—that is, when u

is not equal to zero—the program enters the emergency stop mode.
10. If the quantity of water in the steam-boiler is above N2 the program activates

the valve of the steam-boiler in order to empty it.
11. If the quantity of water in the steam-boiler is below W then the program

activates a pump to fill the steam-boiler.
12. If the program realizes a failure of the water level detection unit it enters

the emergency stop mode.



132 A. Fantechi et al.

13. As soon as a level of water between N1 and N2 has been reached the pro-
gram can send continuously the signal PROGRAM-READY to the physical
units until it receives the signal PHYSICAL UNITS READY which must
necessarily be emitted by the physical units.

14. As soon as this signal has been received, the program enters either the mode
normal if all the physical units operate correctly or the mode degraded if
any physical unit is defective.

15. A transmission failure puts the program into the mode emergency stop.
16. The normal mode is the standard operating mode in which the program

tries to maintain the water level in the steam-boiler between N1 and N2
with all physical units operating correctly.

17. As soon as the water level is below N1 or above N2 the level can be adjusted
by the program by switching the pumps on or off.

18. The corresponding decision is taken on the basis of the information which
has been received from the physical units.

19. As soon as the program recognizes a failure of the water level measuring
unit it goes into rescue mode.

20. Failure of any other physical unit puts the program into degraded mode.
21. If the water level is risking to reach one of the limit values Mi or M2 the

program enters the mode emergency stop.
22. This risk is evaluated on the basis of a maximal behaviour of the physical

units.
23. A transmission failure puts the program into emergency stop mode.
24. The degraded mode is the mode in which the program tries to maintain a

satisfactory water level despite of the presence of failure of some physical
unit. It is assumed however that the water level measuring unit in the steam-
boiler is working correctly. The functionality is the same as in the preceding
case.

25. Once all the units which were defective have been repaired, the program
comes back to normal mode.

26. As soon as the program sees that the water level measuring unit has a failure,
the program goes into mode rescue.

27. If the water level is risking to reach one of the limit values Mi or M2 the
program enters the mode emergency stop.

28. A transmission failure puts the program into emergency stop mode.
29. The rescue mode is the mode in which the program tries to maintain a

satisfactory water level despite of the failure of the water level measuring
unit.

30. The water level is estimated by a computation which is done taking into
account the maximum dynamics of the quantity of steam coming out of the
steam-boiler.

31. For the sake of simplicity, this calculation can suppose that exactly n liters
of water, supplied by the pumps, do account for exactly the same amount
of boiler contents (no thermal expansion).

32. This calculation can however be done only if the unit which measures the
quantity of steam is itself working and if one can rely upon the information
which comes from the units for controlling the pumps.
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33. As soon as the water measuring unit is repaired, the program returns into
mode degraded or into mode normal.

34. The program goes into emergency stop mode if it realizes that one of the
following cases holds: the unit which measures the outcome of steam has a
failure, or the units which control the pumps have a failure, or the water
level risks to reach one of the two limit values.

35. A transmission failure puts the program into emergency stop mode.
36. The emergency stop mode is the mode into which the program has to go,

as we have seen already, when either the vital units have a failure or when
the water level risks to reach one of its two limit values.

37. This mode can also be reached after detection of an erroneous transmission
between the program and the physical units.

38. This mode can also be set directly from outside.
39. Once the program has reached the Emergency stop mode, the physical envi-

ronment is then responsible to take appropriate actions, and the program
stops.
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1 Software Competence Center Hagenberg, Hagenberg, Austria
flavio.ferrarotti@scch.at

2 TM Connected, Linz, Austria

Abstract. In this paper we use the Abstract State Machine (ASM)
method for high-level system design and analysis created by Egon Börger
to formally specify Grover’s quantum database search algorithm, step-
wise refining it from its highest abstraction level down to its implementa-
tion as a quantum circuit. Our aim is to raise the question of whether the
ASM method in general and quantum ASMs in particular can improve
the current practices of quantum system engineering; providing accu-
rate high-level modelling and linking the descriptions at the successive
stages of quantum systems development through a chain of rigorous and
coherent system models at stepwise refined levels of abstraction.

1 Introduction

Prof. Egon Börger’s method for high-level system design and analysis [4,5], which
is built on the solid mathematical base of Gurevich’s abstract state machines
(ASMs), is without any doubt among the most notorious and lasting contribu-
tions to the development of the discipline of rigorous software engineering. The
ASM method has proven its strength for the rigorous specification and valida-
tion of a wide class of systems, from embedded hardware-software systems to
complex multi-agent systems.

A unique feature of the ASMs rigorous systems engineering method (ASM
method for short) is the fact that it covers design, specification, verification by
reasoning techniques and validation by simulation and testing within a single
theoretical and conceptual framework. At a high level of abstraction it provides
accurate and mathematically precise modelling which at the same time can be
intuitively understood by non-experts. Moreover, starting from high level system
specifications, which can be correctly understood as a kind of high level pseu-
docode, the method enables to link the successive stages of system development
in an organic and efficiently maintainable chain of rigorous and coherent system
models at stepwise-refined levels of abstraction.
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Despite its success in many different areas of systems engineering, the ASM
method has, up to our knowledge, not yet been considered for high-level design
and analysis of quantum systems. This is rather surprising given the fact that
it is known since a long time that a very general notion of quantum algorithm
can be precisely and faithfully captured by quantum ASMs [8]. Of course, this
does not automatically implies that the ASM methods can be successfully used
for quantum systems engineering, but it is a strong indication in that sense.
We believe that this Festschrift celebrating Prof. Egon Börger 75 birthday is
therefore an excellent venue to raise this issue.

Moreover, the development of quantum systems and algorithms are notori-
ously difficult tasks that involve complex design flows composed of steps such
as synthesis, mapping, or optimizations. All these tasks need to be completed
before a high level conceptual quantum algorithm can be executed on an actual
device. This process results in many different model descriptions at various levels
of abstraction, which usually significantly differ from each other. The complex-
ity of the underlying design problem makes it even more important to not only
provide efficient solutions for single steps, but also to verify that the originally
intended functionality is preserved throughout all levels of abstraction. At the
same time there is the challenge of finding abstractions that expose key details
while hiding enough complexity [6]. We conjecture that the ASM method can be
extended to provide an appropriate and universal mathematical tool to meet, if
not all, most of these challenges. In this work we present, in terms of quantum
ASMs, a complete and detailed specification and refinement of Grover’s database
search algorithm [9], which is a very influential and well known quantum algo-
rithm. The aim is to provide concrete evidence that the ASM method can indeed
be successfully used for rigorous engineering of quantum systems.

The paper is organized as follows. In Sect. 2 we introduce the necessary back-
ground from quantum computing, emphasising in particular the model of quan-
tum circuits adopted for the definition of quantum ASMs in [8]. The actual
model of quantum ASM is described in Sect. 3. Our main contribution, i.e., the
complete specification and refinement from high-level modelling down to the
level of implementation of Grover’s algorithm, is presented in Sect. 4. Finally, we
provide a brief conclusion in Sect. 5.

2 Quantum Computation

There are several good books such as [11] that provide a solid background on
quantum computation. Here we give a brief introduction to the main concepts
used in this paper.

In quantum mechanics vectors are written using brackets as follows:

|ψ〉 =

⎛
⎜⎜⎜⎝

a1

a2

...
an

⎞
⎟⎟⎟⎠ |α〉 =

⎛
⎜⎜⎜⎝

b1
b2
...

bn

⎞
⎟⎟⎟⎠

〈ψ| = (ā1, ā2, . . . , ān)

〈α| = (b̄1, b̄2, . . . , b̄n)
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where ā denotes the complex conjugate of a. This notation was the idea of Paul
Dirac and is also known as 〈bra|ket〉 notation. Following this notation, the inner
product of vectors |ψ〉 and |α〉 is the scalar 〈α|ψ〉 = a1b̄1 + a2b̄2 + · · · + anb̄n.

There are several theoretical models of quantum computing such as quantum
circuits, quantum Turing machines, quantum automata and quantum program-
ming. All these theoretical models define an state of a quantum algorithm as a
superposition of states of a classical computation model. In mathematical terms
a quantum state of a quantum algorithm is represented by a unit-length vector
|ψ〉 in an n-dimensional Hilbert space C

n.
For finite-dimensional vector spaces such as C

n, Hilbert spaces are no dif-
ferent than inner product spaces. Formally, a Hilbert space must be an inner
product space that is also a complete metric space. That is, a Hilbert space H
must be complete with respect to the norm ‖v‖√〈v|v〉 (i.e., the length of the
vector in the vector space) induced by the inner product (i.e., every Cauchy
sequence in H has a limit in H).

Quantum bits (Qubits for short) are similar to standard bits only in that
they are also base-2 numbers, and they take on the value 0 or 1 when measured
and thus collapsed to a classical state. Unlike classical bits, in its uncollapsed,
quantum state, a qubit is in a superposition of the values 0 and 1. Mathemat-
ically, a qubit is represented as a vector in the two dimensional Hilbert space
C

2 with orthonormal basis vectors |0〉 and |1〉. Hence, the superposition state
|ψ〉 of a qubit is represented as a linear combination of those basis vectors:
|ψ〉 = a0|0〉 + a1|1〉 with ‖a0‖2 + ‖a1‖2 = 1, where a0 and a1 are, respectively,
the complex scalar amplitudes of measuring |0〉 and |1〉. Complex numbers are
required to fully describe the superposition of states and interference or entan-
glement inherent in quantum systems. Since the squares of the absolute values
of the amplitudes of states in a quantum system must add up to 1, we can think
of them as probabilities in the sense that ‖ai‖2 represents the chance that when
a given quantum state is measured (i.e., when the superposition is collapsed)
then the value i is observed.

Similar to classical computers, quantum computers use quantum registers
made up of multiple qubits. When collapsed, quantum registers are bit strings
whose length determines the amount of information they can store. An n-qubit
quantum register is a vector |ψ〉 in the 2n-dimensional Hilbert space (C2)⊗n =
C

2 ⊗ · · · ⊗C
2 with orthonormal basis {|x〉 : x ∈ {0, 1}n} which we assume to be

lexicographically ordered from |00 · · · 0〉 as first basis vector to |11 · · · 1〉 as last
basis vector. The state of such a quantum register has then the form

|ψ〉 =
∑

x∈{0,1}
ax|x〉 = a00···0|00 · · · 0〉 + · · · + a11···1|11 · · · 1〉

with
∑

x∈{0,1}‖ax‖2 = 1.
The most widely used model of quantum computation is the quantum circuit

model in which a quantum circuit is a sequence of quantum gates, and a quantum
algorithm is a general model that combines classical algorithms with quantum
circuits and measurement steps.
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A quantum gate on m qubits is a unitary transformation U on a 2m dimen-
sional Hilbert space (C2)⊗m. Such transformations can be described by unitary
matrices, or linear operators, applied to a quantum register by tensoring the
transformation matrix with the matrix representation of the register. All linear
operators that correspond to quantum logic gates must be unitary. If a complex
matrix U is unitary, then it must hold that U−1 = U∗, where U∗ is the conjugate
transpose of U . It follows that UU∗ = U∗U = I, where I is the identity matrix.
Unitary operators preserve the inner product of two vectors and the composition
of two unitary operators is also unitary. Notice that a transformation matrix can
be seen as a function U : {0, 1}m×{0, 1}m → C, where U(x, y) is the probability
amplitude of the transition from base state |x〉 to base state |y〉.

No finite collection of gates allows us to express precisely every unitary trans-
formation, not even on C

2, since there are uncountably many such transforma-
tions. But there are finite gate sets B which are universal in the sense that, for
any unitary transformation U on any (C2)⊗m, an arbitrarily close approxima-
tion can be synthesized (see [14] among others). The following are well known
examples of quantum gates which we will use in this paper.

– Hadamard gate: Defined by the following matrix:

H =
1√
2

(
1 1
1 −1

)

When applied to a qubit with the value |0〉 or |1〉, it induces an equal super-
position of the states |0〉 and |1〉. More precisely H|0〉 = (|0〉 + |1〉)/√2 and
H|1〉 = (|0〉 − |1〉)/√

2.
– Pauli X gate: Aka. Not gate. It is defined by the matrix:

Not =
(

0 1
1 0

)

This gate simply switches the amplitudes of |0〉 and |1〉, i.e., Not |0〉 = |1〉 and
Not |1〉 = |0〉.

– Toffoli gate: This gate together with the Hadamard gate can be considered
universal in the quantum computing sense [14]. It applies to three distinct
qubits. Two work as controls and one works as target. We can define Toffoli
on the basis vectors |c1〉|c2〉|t〉 of (C2)⊗3, where |c1〉 and |c2〉 are controls and
|t〉 is the target. If |c1〉 and |c2〉 are both |1〉 then the new value of |t〉 is |t⊕1〉
(where ⊕ is addition modulo 2), i.e., the value of |t〉 is “flipped”. If |c1〉 or |c2〉
(or both) is |0〉, then |t〉 remains unchanged. The controls qubits are never
changed.

3 Quantum ASMs

We assume that the concept of Abstract State Machine (ASM) is well known [5].
We also assume that the reader is familiar with the differences between sequen-
tial [10] and parallel ASMs [1,2,7]. In this work we consider quantum ASMs as
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defined in [8]. As shown there, quantum ASMs faithfully capture a broad class
of quantum algorithms as defined by a set of machine independent and language
independent postulates. The discussion on whether these postulates truly cap-
ture the idea of quantum algorithm in an intuitive and commonly accepted way
is of course fascinating, but it is beyond the scope of this paper. For our purpose
here, it is enough to note that quantum ASMs provide a good starting point
to explore the application of the ASM method to analyse and design quantum
algorithms.

The general idea of quantum algorithm captured by quantum ASMs can be
informally described as follows [8]:

– A quantum algorithm combines classical algorithms with quantum circuits.
– The collection of quantum gates used by a quantum algorithm is fixed.
– The quantum circuits used by a quantum algorithm may work with any num-

ber n of qubits.
– A quantum circuit on some number n of qubits is applied to a computational

basis state |x〉 = |x0 . . . xn−1〉. This results in a state |ψ〉 ∈ (C2)⊗n which is
usually entangled. The algorithm is at that point in a quantum mode.

– A quantum algorithm can return to a classical mode by applying a measure-
ment step in the computational basis of one or more qubits.

Quantum ASMs are defined in [8] as sequential ASMs extended with two
specific rules for unitary transformations and measurement, respectively, and
with an expanded background to describe the mathematics of quantum gates
and quantum measurement.

The background B of states of a quantum ASM extends the background of
states of parallel ASM described in Section 3 in [7] with the basic arithmetic
operations on complex numbers, natural numbers, binary strings and functions
encoding the transformation matrices of a given set Ω of quantum gates (pos-
sibly parametrised if Ω is infinite). Notice that in particular this includes basic
operations on multisets of complex values and a summation operator

∑
on finite

multisets such that if M ⊆ C is the multiset given by MultM : C → N, then∑
M =

∑
z∈M (MultM (z) · z).

A quantum ASM is a sequential ASM that operates on states with back-
ground B and is extended with the following two rules:

1. apply U to qubits i1, . . . , im (where U ∈ Ω)

2. measure on qubits i1, . . . , im

The (usually entangled) quantum states |ψ〉 that will be produced by the
unitary transformations resulting from calls to rule (1) as well as the collapsed
quantum states resulting from calls to rule (2), are described by a dynamic
function Ψ : 0, 1∗ → C where:

|ψ〉 =
∑

x∈{0,1}n

Ψ(x)|x〉
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Given a number n of qubits and x ∈ 0, 1n, the ASM initializes Ψ by setting
Ψ(x) = 1 and Ψ(y) = 0 for y �= x, thus effectively starting with the state of the
quantum register collapsed to the vector |x〉. The semantics of rules 1 and 2 is
defined as follows:

Unitary Transformations. Rule

apply U to qubits i1, . . . , im (where U ∈ Ω)

applies the unitary transformation defined by the quantum gate U to the qubits
i1, . . . , im by updating the corresponding amplitude values in Ψ .

Measurement. Rule

measure on qubits i1, . . . , im

measures the current state with respect to one or more qubits in the compu-
tational basis and updates (collapses) the amplitudes of Ψ accordingly. This
is done by: writing the current quantum state |ψ〉 =

∑
x∈{0,1}n Ψ(x)|x〉 as

|ψ〉 =
∑m

u∈{0,1|ψu〉 where |ψu〉 =
∑

x:xi1 ···xim=u1···um
Ψ(x)|x〉; picking one u

according to the probability distribution p(u) =
∑

x:xi1 ···xim=u1···um
‖Ψ(x)‖2;

and projecting |ψ〉 to (1/
√

p(u))|ψu〉 by updating Ψ accordingly.
Note that to pick u according to the probability distribution we need to

assume that the quantum ASM has access to a dynamic function random which
provides a random real number in the interval [0, 1]. Given the inherent proba-
bilism in quantum mechanical processes, this number needs to be a true random
number, not a pseudo random number generated by a deterministic process.

Finally, let us point out that the rules for unitary transformations and mea-
surement described above, can both be simulated by standard parallel ASMs as
shown in Section 4 in [8]. It follows that every quantum algorithm as defined
by the postulates in [8] can be simulated by a corresponding parallel ASM.
This means that parallel ASMs are a good starting point to specify quantum
algorithms at a high level of abstraction. The ASM specification of Grover’s
algorithm in the next section supports this claim.

4 ASM Specification of Grover’s Algorithm

Grover’s Algorithm [9] is a quantum algorithm for a function inversion prob-
lem known as the oracle search problem. Given access to a Boolean oracle
f : {0, 1}n → {0, 1}, the problem consists in solving the equation f(x) = 1. The
quantum algorithm proposed by Grover’s can solve this problem (with proba-
bility very close to 1) in time O(

√
N), where N = 2n. By comparison the best

sequential algorithm for this problem works in linear time O(N).
In the following we assume that f(x) = 1 has a unique solution. This is just

to simplify the presentation since Grover’s algorithm does not actually need it.
Grover’s algorithm is usually called a quantum database search algorithm

since it can be thought of as performing a search to find the unique element x
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that satisfies the condition f(x) = 1 among the elements of an unordered set (or
database) of size N = 2n.

We start by observing that given a Boolean oracle f , the nondeterministic
ASM in Listing 1.1 solves f(x) = 1 in just one step.

1 choose x ∈ {0, 1}n with f(x) = 1
2 answer := x

Listing 1.1. Nondeterministic algorithm for the oracle search problem

Since we assumed that f(x) = 1 has a unique solution, the parallel algorithm
in Listing 1.2 also solves f(x) = 1 in just one step.

1 f o ra l l x ∈ {0, 1}n
2 i f f(x) = 1 then
3 answer := x

Listing 1.2. Parallel algorithm for oracle search problem

If we want to implement the algorithm specified in Listing 1.1 (or in List-
ing 1.2), be it in a standard computer or in a quantum computer, and want to be
sure that it works exactly as intended, then we need to apply a series of stepwise
correct refinements until we reach the required level of abstraction. For standard
ASMs this process is well understood and developed [3,12,13]. The same can-
not be said for quantum ASMs [8]. To gain intuition on this open problem, we
describe next a stepwise refinement of the ASM in Listing 1.2 up to the level of
a quantum algorithm which can run in a quantum computer simulator1. That
is, we apply the ASM method [4,5] to the function inversion problem, refining
it up to a step by step quantum ASM specification of Grover’s Algorithm.

The goal is to use the inherent parallelism in the quantum effect to con-
struct an efficient quantum algorithm that implements the unbounded paral-
lelism expressed by the standard forall rule in Listing 1.2. We start by extend-
ing the state with a dynamic function Ψ : {0, 1}∗ → C which represents the
current quantum state of the quantum register of n qubits necessary for the
given search space of size N = 2n. Then we can refine the ASM rule as shown in
Listings 1.3–1.7. Note that this new rule formally specifies Grover’s algorithm,
but at a level of abstraction that is higher than its well known specification in
terms of quantum circuits.

1 i f state = initial then
2 par
3 UniformSuperposition1

4 i := 1
5 state := iteration
6 endpar
7 i f state = iteration then
8 par
9 i f i ≤ (π/4)

√
2n then

1 see e.g. https://www.ibm.com/quantum-computing/simulator/.

https://www.ibm.com/quantum-computing/simulator/
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10 seq
11 OracleReflection1

12 DiffusionTransform1

13 endseq
14 i := i + 1
15 endpar
16 else
17 state := measure
18 i f state = measure then
19 par
20 Measurement

21 state := final
22 endpar

Listing 1.3. Quantum algorithm for the oracle search problem

The algorithm can be informally described as follows:
1. Set the quantum register into an equal superposition of quantum states (cf.

Listing 1.4). This step gives to the 2n possible bitwise configurations of the
n qubits an equal probability of 2−n of being observed when the system is
measured.

2. Negate the amplitude of the correct state as determined by the oracle function
(cf. Listing 1.5). This step corresponds to a call to a quantum oracle (black-
box) that will modify the system (without collapsing it to a classical state)
depending on whether we are in the correct configuration, i.e., the state that
we are searching for. All other states will remain unchanged. Note that after
this step the only state with a negated amplitude will be the target state.
However the probability of the system being correct remains the same.

3. Transform the amplitude of each state so that it is as far above average as it
was below average before the transformation, and vice versa (cf. Listing 1.6).
This is called diffusion transform by Grover. This step amplifies the proba-
bility of the target state and decreases the probability of all others (the sum
of the squares of all the probabilities must add to 1).

4. Repeat steps 2 and 3 until the probability of (choosing) the target state is
close to 1 and the probability of the other states is close to 0. This requires
≈ (φ/4)

√
2n iterations of steps 2 and 3.

5. Measure the quantum register to determine the result (cf. Listing 1.7). This
is done by decomposing the unit interval into 2n segments S(x) (where x ∈
{0, 1}n) of length ‖Ψ(x)‖2 and choosing the x for which the random number
returned by the function random is contained in S(x). Recall that every
quantum ASM has access to a dynamic function random which provides at
each state a truly random number in the interval [0, 1].

1 UniformSuperposition1 =
2 f o ra l l x ∈ {0, 1}n do
3 Ψ(x) := 1/

√
2n

Listing 1.4. Set quantum register into an equal superposition of quantum states.
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1 OracleReflection1 =
2 f o ra l l x ∈ {0, 1}n do
3 Ψ(x) := (−1)f(x)Ψ(x)

Listing 1.5. Negate the amplitude of the correct state.

1 DiffusionTransform1 =
2 let average =

∑{{ψ(x) : x ∈ {0, 1}n}}/2n in
3 f o ra l l x ∈ {0, 1}n do
4 ψ(x) := average + (average − Ψ(x))

Listing 1.6. Amplify the probability of the target state.

1 Measurement =
2 f o ra l l x ∈ {0, 1}n do
3 let p = ‖Ψ(x)‖2 , l =

∑{{‖Ψ(y)‖2 : y ∈ {1, 0}n ∧ y <lex x}} in
4 i f l ≤ random < l + p then
5 par
6 Φ(x) := 1
7 answer := x
8 endpar
9 else

10 Ψ(x) := 0
Listing 1.7. Measure the quantum register to determine the result.

Notice that the probability β = 1 − ‖Ψ(x0)‖2, where x0 is the target state,
of the last measurement step collapsing the quantum register to an incorrect
state is not 0. This is very unlikely since the algorithm ensures that ‖Ψ(x0)‖2 is
very close to 1. In any case, the machine can test the answer and run again the
algorithm if it is incorrect. The probability βk of failing k times consecutively
decreases exponentially.

The rule Measurement in Listing 1.7 does not need further refinement.
A quantum computer is supposed to be able to perform such a measurement
feasibly in any state |ψ〉 =

∑
{0,1}n αx|x〉.

The next step is to refine UniformSuperposition1, OracleReflection1

and DiffusionTransform1 in Listings 1.4, 1.5 and 1.6, respectively, up to
the level of implementation in terms of quantum operations. These are the only
remaining sub-rules, apart from Measurement, which involve unbounded par-
allelism in the high-level specification of Grover’s algorithm in Listing 1.3. We
assume that in the initial state the n qubits of the quantum register are initialized
to |0〉, i.e., Ψ(0n) = 1 and Ψ(x) = 0 for x �= 0n.

We refine the rule UniformSuperposition1 into UniformSuperposi

tion2 as shown in Listing 1.8. Here, H denotes the well known Hadamard quan-
tum operator (aka. “fair coin flip”). Note that many quantum algorithms begin
by applying the Hadamard operator to each qubit in a register. In this way the
algorithm can start with a clean state in which each of the 2n possible states of
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the register have an equal probability of 2−n of being observed when the system
is measured.

1 UniformSuperposition2 =
2 seq
3 apply H to qubit 1
4 apply H to qubit 2
5 . . .
6 apply H to qubit n
7 endseq

Listing 1.8. Set quantum register into an equal superposition of quantum states.

Clearly, execution of UniformSuperposition2 in a quantum computer
has asymptotic complexity Θ(log N) = Θ(log 2n) = Θ(n), since it requires a
sequence of n applications of the elementary Hadamard gate.

Refinement of OracleReflection1 requires to define a new quantum ora-
cle operator O which depends of the oracle function f . Quantum oracle imple-
mentations will often use an extra qubit, since a quantum gate can always be
achieved by first transforming the given Boolean oracle function f into a stan-
dard Boolean circuit C which computes the reversible function F on the set
{0, 1}n+1 defined by F (x, b) = (x, b ⊕ f(x)), where ⊕ denotes addition modulo
2, and then transforming C to the desired quantum oracle O. In this implemen-
tation the extra qubit is, however, unnecessary. Thus, we simply write the oracle
effect as O|x〉 = (−1)f(x)|x〉. The refinement of OracleReflection1 consists
in one application of this oracle operator O as shown in Listing 1.9.

1 OracleReflection2 = apply O to qubits 1, . . . , n

Listing 1.9. Negate the amplitude of the correct state.

The rule DiffusionTransform1 actually expresses a quantum operator
D that is the reflection of (C2)⊗n in the line spanned by the average vector
|μ〉 =

∑
x∈{0,1}n |x〉/√

2n, i.e., D|μ〉 = |μ〉 and D|v〉 = −v for every vector v

orthogonal to |μ〉. For our purpose however, it actually suffices to compute −D
instead. If the number of iterations made by the algorithm �(π/4)

√
2� is odd,

then the output vector gets a factor −1, but it makes no difference since collinear
vectors represent the same state when they are measured by a quantum machine.
It turns out that −D can be written as the rule DiffusionTransform2 in
Listing 1.10, thus providing the required refinement of DiffusionTransform1.

1 DiffusionTransform2 =
2 seq
3 apply H to qubit 1
4 . . .
5 apply H to qubit n
6 apply Not to qubit 1
7 . . .
8 apply Not to qubit n
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9 apply cn−1Z to qubits 1, . . . , n
10 apply Not to qubit 1
11 . . .
12 apply Not to qubit n
13 apply H to qubit 1
14 . . .
15 apply H to qubit n
16 endseq

Listing 1.10. Amplify the probability of the target state.

The gate H in Listing 1.10 is again the well known Hadamard gate. The gate
Not interchanges two “truth values” |0〉 and |1〉 and is defined by the equations:
Not |0〉 = |1〉 and Not |1〉 = |0〉. The remaining gate used in Listing 1.10, i.e.,
gate cn−1Z, multiplies |1n〉 by −1 and leaves every other basis vector unchanged.
Thus, it leaves every vector orthogonal to |1n〉 unchanged. It follows that the
operations in lines 6–12 in Listing 1.10 multiply |0n〉 by −1 and leave every
other vector orthogonal to |0n〉 unchanged. Since lines 3–5 as well as lines 13–
15 in Listing 1.10 each perform the operation H⊗n and (H⊗n)2 is the identity
operator, it is clear that OracleReflection2 multiplies the average vector |μ〉
by −1 and leaves every vector orthogonal to |μ〉 unchanged. The gate cn−1Z can
be expressed by a composition of the standard Hadamard and Toffoli gates. We
omit the well known details.

Regarding runtime of the algorithm, note that the runtime of the call
to the oracle gate O in Listing 1.9 depends on the specific function f and
on the implementation of O. If we view the call to O as one elementary
operation, then the total running time of each of the (π/4)

√
2n calls to the

rules OracleReflection2 and DiffusionTransform2 is Θ(4n) for the two
Hadamard transforms and the two Not⊗n transforms, plus the cost of applying
O(n) gates to perform the cn−1Z transform. Therefore, we get that the runtime
of the whole algorithm is O(

√
2n).

5 Conclusion

In this paper we have shown that the ASM method can be suitably used for
high level design and analysis of Grover’s quantum algorithm, from its high level
specification down to its implementation as a quantum circuit. It is clear that
the techniques used in this paper for the correct specification and refinement of
Grover’s algorithm can be replicated for many others quantum algorithms. We
think it would be very interesting to carry out a systematic study and classifica-
tion of the interesting forms of quantum algorithm specification and refinement
in terms of quantum ASMs. This should involve the necessary development of
a theory of correct quantum ASM refinement that takes into account the fact
that quantum algorithm are inherently probabilistic. We conjecture that the
development of a full-fledged ASM method for quantum systems, comprising
design, formal verification and validation, can be of great benefit for advancing
the development of quantum systems.
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Abstract. The B landscape can be confusing to formal methods out-
siders, especially due to the fact that it is partitioned into classical B for
software and Event-B for systems modelling. In this article we shed light
on commonalities and differences between these formalisms, based on
our experience in building tools that support both of them. In particu-
lar, we examine not so well-known pitfalls. For example, despite sharing
a common mathematical foundation in predicate logic, set theory and
arithmetic, there are formulas that are true in Event-B and false in clas-
sical B, and vice-versa.

1 Introduction

B and Event-B are state-based formal methods, where states of a system are
modelled as mathematical entities and there are explicit operations which can
inspect and modify the state. Other members of this family are abstract state
machines (ASMs), TLA+, VDM or Z.

1.1 Classical B

The B-method [3] consists of a formal language along with a methodology for
performing refinement and conducting proof. The B-method is rooted in predi-
cate logic, set theory, and arithmetic. B arose out of Z [48], with a focus on tool
support and the use of successive refinement to derive provably correct imple-
mentations out of high-level specifications. The B-method is arguably one of
the industrially more successful formal methods, it being used to develop code
for a variety of (mostly railway-based) safety critical systems. The initial indus-
trial use of B was for line 14 in Paris [21], whose product has been adapted by
Siemens for many other metro lines worldwide (e.g., [22]). Other successful sys-
tems have used the B-method to derive provably correct code, such as Alstom’s
U400 CBTC (Communication-Based Train Control) system which is used by
almost 100 metro lines worldwide.

This initial version of B, as laid out in [3] and supported by Atelier-B, is
now called classical B or also “B for software”.
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1.2 Event-B

Out of the experience with classical B, Abrial developed a successor eventually
called Event-B (previously the name of B# was also used [4]). Event-B was
designed to correct a few issues in classical B, to simplify the language (e.g.,
making it easier to parse and removing the complex inclusion mechanism) and
to make refinement proofs easier to conduct and more scalable to larger models.
The main addition though is a more flexible refinement concept targeted at
systems modelling. The foundations of Event-B are laid out in the book [5] from
2010, but first ideas were published much earlier, e.g. the notion of events was
already presented in 1998 [8] and the idea of extending a kernel language was
presented in 2003 [4].

1.3 Tool Support

Classical B was initially supported by the B-Toolkit and by Atelier-B [16].
Nowadays, only the latter is maintained and used in practice. Atelier-B pro-
vides project management, static checking, proof obligation generation, auto-
matic and interactive proof and code generation for B. A summary of 25 years
of development and industrial use of Atelier-B can be found in [33].

Event-B is supported by the rodin platform [6], which was initially devel-
oped within the Rodin EU project.1 The rodin platform provides static check-
ing, proof obligation generation and proof management features. It is maybe less
known that Atelier-B also supports an Event-B dialect. However, formal syn-
tax and semantics have not yet been published. Still Atelier-B is being used
for Event-B modelling in practice, e.g., in [17,18,42,43].

The animator and model checker ProB [36] supports both classical B and
Event-B. ProB is also available as a plugin for rodin, and supports the
Atelier-B version of Event-B.

1.4 Outline

In the remainder of the paper we rely on the book [3] for the semantic foundations
of classical B, and on the Atelier-B handbook [16] for the technical aspects
(like concrete syntax).

For Event-B we rely on the book [5] for the mathematical foundations, and
[41] for the technical aspects. We thus concentrate on Event-B as supported by
rodin; however, in Sect. 5.1 we discuss the dialect supported by Atelier-B.

Note that we are not the first to compare Event-B and classical B. Section 2
of [1] contains one page and a half of comparison, while [41] also contains a
few isolated comparisons. In this present article, we assemble our view of the
differences and insights, acquired during more than 15 year trying to support
both formalisms within ProB.

In Sect. 2 we first focus on typing and the fundamental data types. In Sect. 3
we focus on the language for expressions and predicates. Here the languages of
1 See http://rodin.cs.ncl.ac.uk.

http://rodin.cs.ncl.ac.uk
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classical B and Event-B are very similar, but this is also the area where we find
the most subtle and maybe surprising differences. At the level of machines and
refinement, there are more marked distinctions between Event-B and classical B.
We discuss those in Sect. 4 and also provide a few remarks on other formalisms
in Sect. 5.

2 Types

Both classical B and Event-B are based on typed predicate logic: every iden-
tifier and expression must have a type that specifies a set of possible values.
There are a few base types (such as integers) and type constructors. The set
of possible values for two distinct types in disjoint. Typing imposes restrictions
on the permissible expressions, but has the benefit of catching some obvious
modelling errors [32]. Typing also ensures that classical paradoxes such as the
Russell-Zermelo paradox, or concepts such as a set containing itself cannot be
expressed in B.

Base Types. Both classical B and Event-B provide the mathematical integers
as base type. The only difference lies in the ASCII notation (the Unicode notation
is identical):

– Event-B uses INT for the mathematical integers, NAT for the natural numbers
starting at 0 and NAT1 for the natural numbers starting at 1.

– classical B uses INTEGER for the mathematical integers, NATURAL for the nat-
ural numbers starting at 0 and NATURAL1 for those starting at 1.

Beware that in classical B, INT stands for the implementable integers ranging
from MININT to MAXINT. Similarly, NAT stands for the implementable natural
numbers starting at 0 while NAT1 is equivalent to 1..MAXINT. Event-B has no
notion of MININT and MAXINT and no concept of implementable integers.

In addition both classical B and Event-B provide the same base type for
booleans (BOOL). However, the following base type is only available in classical
B and not in Event-B:

– STRING the set of strings.

This is typically not a major limitation, one would usually introduce a new
deferred set in a context along with the string constants that are required. How-
ever, adding a new string constant requires updating the context and its axioms.
In classical B one can just use the syntax for string literals. Also, classical B pro-
vides no built-in operators apart from equality and disequality. ProB, however,
provides a large range of operators (e.g., strings can be concatenated using the
ˆ operator).

In addition, it is possible to add new given sets, which are new base types, dis-
joint from every other type. Note that Sect. 5.2.6 of [3] (page 281) and Sect. 7.13
of Atelier-B handbook state that every given set is finite and non-empty. The
latter still holds, but the former is not true in Event-B and rodin, where given
sets can be infinite.
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Type Constructors. Both classical B and Event-B provide two ways to con-
struct complex types from simpler types A and B:

– the powerset operator P(A), generating the set of all subsets of A.
– the Cartesian product operator A × B, generating the set of all pairs with

first component in A and the second one in B.

A binary relation between A and B has the type P(A × B). Similarly, a
function from A to B is also represented as a set of pairs and has the same type
P(A × B).

Functions. The various operators in B for partial or total functions, injections,
surjections and bijections thus do not add a new base type. This is different
from other formalisms (e.g., TLA+). In the expression f ∈ 0..1 → 0..1, there is
no special treatment required for ∈: 0..1→ 0..1 is simply a set, namely the set of
total functions from 0..1 to itself:2 0..1 → 0..1 = {{0 �→ 0, 1 �→ 0}, {0 �→ 0, 1 �→
1}, {0 �→ 1, 1 �→ 0}, {0 �→ 1, 1 �→ 1}}.

Records. The following type constructor is missing in Event-B:

– struct (f1 : T1, ..., fk : Tk), the set of records with k fields named f1 to fk and
with types T1 to Tk.

Some efforts were made to add records to rodin, e.g., in the form of a record
plugin by Colin Snook,3 which generates construction and accessor functions by
axiomatising the required record types in a context. Another proposal can be
found here [23].

Sequences. Event-B is also lacking the sequence constructor and the correspond-
ing operations on sequences. Note, however, that in classical B sequences are not
a new type: seq(X) has the type P(Z × τX), where τX is the type of X. Event-B
is thus not really lacking the type constructor, but more the associated built-in
operations on sequences; we return to this issue later in Sect. 3.2.

Type Inference. rodin has an improved type-inference over Atelier-B.
Indeed, Atelier-B requires types of identifiers to be declared using construc-
tions such as x ∈ S before using the identifier. rodin, on the other hand, uses
a more powerful type inference algorithm,4 meaning that typing can be inferred
from usage anywhere in the predicate and via a wider range of operators.

For example, v = x∪y∧2 �∈ x is not accepted by Atelier-B, but is accepted
by rodin: from 2 �∈ x one can infer that x is of type P(Z), from which one can
infer in turn that y and v must also have the type P(Z).

This improved type inference has some ramifications for the Event-B lan-
guage, enabling simpler expressions; see, e.g., the id or prj1 operators in Sect. 3.2.
2 Alloy’s multiplicity annotations cannot be understood so simply in this way; see [30].
3 https://wiki.event-b.org/index.php/Records Extension.
4 Attribute grammars with inherited and synthesised attributes (see [10]).

https://wiki.event-b.org/index.php/Records_Extension
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In one aspect, rodin is stricter than classical B; it requires that every sub-
expression must be given a ground type. As such, the predicate ∅ = ∅ or the
expression prj1 (1 �→ ∅) is rejected by rodin: it cannot infer a ground type
for the respective empty sets. For this, rodin introduced the oftype operator,
to enable the user to annotate expressions with a type. One can thus write
∅ oftype P(BOOL) = ∅.

Note that ProB provides Hindley-Milner type inference for both classical B
and Event-B.

3 Formula Language for Expressions and Predicates

Abrial’s book about classical B [3] introduced the ASCII-based abstract machine
notation (AMN). Later, Unicode support was added to Atelier-B and ProB.
In this section we concentrate on the core language for formulas, disregarding
machine structuring and refinement for the time being.

At this level, both classical B and Event-B distinguish three kinds of formulas:

1. expressions which represent a (fixed) value. Expressions have no side-effect.
2. predicates which are either true or false, but do no represent a value. B thus

syntactically and semantically distinguishes between the boolean value TRUE
and a true predicate.

3. substitutions, also known as statements, which describe how states can be
transformed into successor states.

We will examine substitutions in Sect. 4.1. Before looking at the first two
classes in more detail, we can make a few general remarks:

– rodin provides no syntax for comments; comments are stored separately from
formulas in the rodin database. This has the ramification that comments can
only be put in certain pre-configure places, and that complex formulas cannot
contain comments inside the formula.

– The ASCII version of classical B is notoriously difficult to parse e.g., due to
overloading of +, *, comma and semicolon (see Chap. 2 of [39]). These issues
with the syntax were corrected in Event-B.
Note that in the for DEFINITIONS in classical B (see Sect. 3.3), the above
issues lead to ambiguity: one cannot determine whether a DEFINITION is
an expression, predicate or substitution. An extreme case is the definition
d(X)==X which could actually be either of them, depending on the context of
the definition call.

3.1 Predicates

In classical B and Event-B predicates are syntactically different from expressions:
the grammar has distinct non-terminal symbols for expressions and predicates
(see Appendix B.1 and B.2 in [3] and Sects. 3.2 and 3.3 in [41]). Note, however,
that the Atelier-B parser seems to use an operator parser that mixes together
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the predicate and expression operators, and only makes the distinction between
predicates and expressions after the parsing process. This means that certain
expressions require parentheses in Atelier-B, which are not required in rodin

or ProB. For example, 1=2 <=> 2=3 is a valid predicate for rodin and ProB,
but Atelier-B requires parentheses: (1=2) <=> (2=3) as in Atelier-B the
binary operators = and <=> have the same priority 60 and are left-associative
(see Appendix A of [16]).5

By default, Atelier-B requires all identifiers to contain at least two charac-
ters. This default setting can be overriden. In Event-B this restriction does not
exist. Identifiers can also include special Unicode characters. This is not sup-
ported by Atelier-B (but ProB supports it for both classical B and Event-B).

On the other hand, rodin performs some additional checks on identifiers,
namely that they occur either bound or free but not both. This may give rise to
warnings in rodin, which do not exist in Atelier-B.

Truth and Falsity as Predicates. The keywords true and false were added
in Event-B. The Unciode equivalents are � and ⊥ respectively. Note that, both
in Event-B and classical B, TRUE and FALSE are boolean values, which cannot
be used as predicates.

Atelier-B does use the predicates btrue and bfalse, but they only feature
in the proof theory language and only appear inside the proving interface. These
keywords cannot be used in B machines, where users then resort to constructs
like 1=1 or 1=2. The latest version of ProB has added the predicates btrue and
bfalse also to the core B language, for convenience.

The B-Toolkit [11] had the keyword true, which is also used for some exam-
ples in Schneider’s book on B [45]. This led to confusion, as readers are unable
to enter some of the examples into Atelier-B or ProB.

Priorities and Associativity. In classical B, conjunction and disjunction have
the same priority but are left-associative. a∧b∨c∧d thus corresponds to ((a∧b)∨
c) ∧ d. This may not correspond to what users expect. E.g, many mathematical
text books assume that conjunction binds tighter than disjunction.

In Event-B, conjunction and disjunction also have the same priority, but
here they cannot be mixed without parentheses. The formula a∧ b∨ c∧d is thus
rejected, which seems sensible to the author and avoids subtle mistakes when
writing complex predicates.

Properly parenthesised Event-B predicates with conjunction and disjunction
have the same meaning in classical B. This property, however, no longer true
for the equivalence operator, where the priority is different. In Atelier-B, ⇔
binds tighter than conjunction, while in Event-B it is weaker than conjunction.

5 Without parentheses the Atelier-B parser thus interprets 1=2 <=> 2=3 as the
invalid ((1=2) <=> 2)=3. In ProB the grammar specifies that = has two expressions
as arguments, and expressions cannot make use of = or <=>. Hence, even without
parentheses, 1=2 <=> 2=3 is unambiguously interpreted as (1=2) <=> (2=3).
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The following predicate is thus false in Atelier-B but true in rodin:

2=3 & (1=1) <=> (4=5) & 2=2

Note that Atelier-B does not respect Abrial’s book [3] here. [3] states on
page 26 in Sect. 1.2.5 that ⇔ binds weaker than conjunction (and implication).

Quantification. Both Event-B and classical B support the same universal and
existential quantification. However, the syntax priorities are subtly different.
For example, ∃xx.xx > 2 or #xx.xx>2 are allowed in rodin, but generate parse
errors in Atelier-B. In classical B, an existential quantification thus always
requires parentheses around the inner predicate: ∃xx.(xx > 2).6 Similarly, the
universal quantification also always requires a parentheses around the inner pred-
icate in classical B. There is thus also no issue with priorities of the quantifiers
in classical B.

In Event-B, it is no longer required to put a parentheses around the inner
predicates. This also means that the priority has to be specified, which is lower
than equivalence and implication (see page 11 of [41]). ∀x.P =⇒ Q is thus
equivalent to ∀x.(P =⇒ Q) in Event-B.7

3.2 Expressions

Expressions in B stand for values and have no side-effects. While predicates
contain expressions, expressions can also contain themselves sub-predicates:

– inside the bool(P) operator, which converts a predicate to a boolean value.
– inside set comprehensions or lambda abstractions. For example {x | P}.
– inside quantified operators, such as quantified union and intersection.

Minor Syntactic Differences. Let us first look at some syntactic changes
made in Event-B, whose aim was to remove some of the potential ambiguities
in classical B:

– In classical B the minus operator - is overloaded and can stand for either
integer difference or set difference. In Event-B it only stands for integer dif-
ference. For set difference one has to use the backslash operator \, which can
also be used in classical B.

– In classical B, * is overloaded and can stand for either multiplication or
Cartesian product. The solution to this result in a small cascade of differences:
1. In Event-B, * only stands for arithmetic multiplication.

6 One reason is that classical B allows composed identifiers in the grammar (e.g., xx.xx
can refer to variable xx in an included machine xx). Note that, however, ∃xx.2 < x
is also not accepted by Atelier-B.

7 Note, however, that the statement in Sect. 3.2.3 of [41]: “∀x.P =⇒ Q is parsed as
(∀x.P ) =⇒ Q in classical B” is not true: without parentheses ∀x.P =⇒ Q cannot
be parsed at all.
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2. The Cartesian product is denoted in ASCII using the ** operator in
Event-B. In classical B this operator stands for exponentiation.

3. The integer exponentiation is then denoted using the hat operator ˆ in
Event-B. In classical B this operator stands for sequence concatenation
(which does not exist in Event-B).

Note: in Unicode form some of these differences disappear, e.g., Cartesian prod-
uct is written as × in both classical B and Event-B.

Expression Atelier-B Event-B comment

set difference A − B , A\B A\B

integer difference x − y x − y identical

integer multiplication x ∗ y x ∗ y identical

Cartesian product A ∗ B A ∗ ∗B

integer exponentiation x ∗ ∗y x ˆ y

sequence concatenation x ˆ y n.a

Syntax for Division/Multiplication. This point is similar to the treatment
of conjunction and disjunction in Sect. 3.1. The syntax of Event-B disallows
certain combinations of operators without parentheses, see Table 3.2 on page 19
in [41]. Here is one example, suggested by Leslie Lamport:

– 8 / 4 / 2 is allowed in Atelier-B and has the value 1, but rodin rejects
the expression and requires parentheses (despite [41] saying on page 19 that
the division is left-associative). Apparently this is a bug in rodin.8

Surprisingly, however, the expression 6 / 2 * (1+2) is allowed by rodin,
and has the value 9 in both rodin and Atelier-B.9

Missing in Event-B. Quite a few classical B operators were removed in Event-
B, even though the underlying types still exist.

– Various predicates to iterate over relations are no longer available:
• the transitive closure operator closure1,
• the reflexive closure operator closure, and
• the iteration operator iterate.

– The quantified sum Σ and product Π operators are no longer available in
Event-B.

– The rel and fnc operators to transform functions into relations and vice-
versa have been removed in Event-B.

8 Private communication from Laurent Voisin, Paris, 17th September 2019.
9 See also https://plus.maths.org/content/pemdas-paradox for this particular

example.

https://plus.maths.org/content/pemdas-paradox
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rel, fnc In classical B we have fnc({1|->2,1|->3}) = {1|->{2,3}} to con-
vert a relation into a function to powersets. The rel operator does the inverse:
{1|->2,1|->3} = rel({1|->{2,3}}). The effect of the fnc operator can easily
be described constructively by the user for a given relation r:

fnc(r) = (λx.x : dom(r)|r[{x}])

Similarly, the effect of rel can be expressed in Event-B as follows:

rel(f) = {x �→ y|x : dom(f) ∧ y ∈ f(x)}

On the downside, however, the user cannot define a polymorphic version in
Event-B: for every type one needs to introduce a new version of the operator.
Σ, Π, closure, ... The quantified sum and product and the closure operators
cannot be written so easily. They can be described in an axiomatic fashion, e.g.,
by proving axioms such as:

x �→ y ∈ closure(r) ∧ y �→ z ∈ closure(r) =⇒ x �→ z ∈ closure(r)

Axiomatic definitions make animation with ProB difficult, as the animator
has to solve the constraints to infer valid solutions for the given axiomatization
of the closure. Currently, these operators are typically introduced using rodin’s
theory plug-in [15,26] where custom proof rules and ProB bindings can be
stored.

Sequences. Event-B removed support for sequence operators from the core
language. In classical B a sequences of length n is a total function from 1..n to
some range. Here is a brief overview of the missing operators:

– The operators seq, seq1, iseq, iseq1 to introduce sets of sequences over
some domain. E.g., the set of non-empty injective sequences over 0..1 is
iseq1({0,1}) = {{1|->0}, {1|->1}, {1|->0,2|->1}, {1|->1,2|->0}}.
The permutation operator perm is also no longer available.
For example, perm({0,1}) = { {0|->0,1|->1}, {0|->1,1|->0} }.

– Special notation for explicit sequences: [11,22] = {1|->11,2|->22}
– Operators to deconstruct sequences: first, last, front, tail.

For example, tail({1|->11,2|->22}) = {1|->22}.
– Operators to combine or modify sequences: ,̂ conc, rev.

For a given type of sequence, one can write definitions which mimic these
operators. E.g.,

seq(T ) = {s|∃n.n ≥ 0 ∧ s ∈ 1..n → T}
or

first = λx.x ∈ seq(T )|x(1)

Again, these operators are typically introduced using rodin’s theory plug-in
[15,26] where custom proof rules and ProB bindings can be stored.
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New Operators in Event-B. In Sect. 2 we saw the need for oftype operator.
There are a few more useful additions to B’s expression language in Event-B:

– three more binary operators to construct relations: <->> for surjective rela-
tions, <<-> for total relations and <<->> for total surjective relations.

– the finite operator. finite(S) corresponds to S:FIN(S) in classical B.
– the partition operator to partition a set. It has flexible arity and provides a

handy shortcut for quadratic number of equations. For example, the formula
partition(S,A,B,C) corresponds to the predicate

S = A ∪ B ∪ C ∧ A ∩ B = ∅ ∧ A ∩ C = ∅ ∧ B ∩ C = ∅

Due to the stronger type inference, a more compact operator for identity
relations is available. In classical B the identity operator id takes an argument,
specifying the set over which identity is generated:

id(BOOL) = {FALSE �→ FALSE, TRUE �→ TRUE}
This operator is still available in Event-B. However, one can also drop the

argument and simply write id, which is identity over the base type inferred by
(the stronger) type inference.

Pairs. Concerning the syntax, Event-B only allows a �→ b or a |-> b in ASCII
to denote a pair. classical B also allows the comma notation (a, b) for pairs.

Function application always takes one argument in Event-B, the notation
f(x,y) is not allowed; one has to use f(x �→ y) instead. This removes some
of the possible confusion in classical B about how many arguments a function
takes. See Sect. 3.3.1 of [41] for more discussions and additional motivations.

Note, that ProB always requires parentheses when using comma for pair
constructor in classical B. With this rule, the notation {1,2} is non-ambiguously
a set consisting of two numbers, and not a set consisting of one pair.

Tuples are nested pairs in both Event-B and classical B. The triple
(a|->b|->c) thus corresponds to nested pair (a|->b)|->c.

Projection Functions for Tuples. To access elements of pairs B provides
the projection functions prj1 and prj2. However, the use in classical B is very
cumbersome, as one has to provide the domains for the pair’s components:

– to access the first position of (1, 2) one has to write:
prj1(INTEGER,INTEGER)((1,2)).

– to access the first position of the triple (1, 2, 3) one has to write:
prj1(INTEGER,INTEGER)(prj1(INTEGER*INTEGER,INTEGER)((1,2,3)))

– to access the first position of (1, 2, 3, 4) the expression gets more convoluted:
prj1(INTEGER,INTEGER)(prj1(INTEGER*INTEGER,INTEGER)

(prj1(INTEGER*INTEGER*INTEGER,INTEGER) ((1,2,3,4)))).
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– to access the first position of (1, 2, 3, 4):
prj1(INTEGER,INTEGER)(prj1(INTEGER*INTEGER,INTEGER)

(prj1(INTEGER*INTEGER*INTEGER,INTEGER)

(prj1(INTEGER*INTEGER*INTEGER*INTEGER,INTEGER) ((1,2,3,4,5))))).

As one can see, it is very tedious to access components of tuples in classical
B, even for tuples just using simple base types like above. In Event-B, the type
arguments are luckily dropped, and e.g., to access the first component one can
write the last example much more compactly:

prj1(prj1(prj1(prj1(1 �→ 2 �→ 3 �→ 4 �→ 5))))

But this still remains awkward and is not very readable: records with named
fields are much more convenient in this aspect (which are only available in clas-
sical B, see Sect. 2). E.g., we simply write r’a to access the first field of a record
r = rec(a:1,b:2,c:3,d:4,e:5).

Division, Modulo, Exponentiation and Well-Definedness. Integer divi-
sion behaves the same in classical B and Event-B. For example, we have (-3 /
2) = -1. In particular, division obeys the rule that

a/b = (−a)/(−b) = − (−a/b) = − (a/ − b)

Thus we have for example: (−1)/4 = −(1/4) = 0.10

Both Event-B and classical B have well-definedness (WD) conditions for pos-
sibly ill-defined expressions [9]. Below we elaborate on some of the differences
already discussed in [34].

For the division operator these conditions are identical, i.e., not permitting
to divide by 0.

For modulo -3 mod 2 = -1 is well-defined and true in Event-B, but is not
well-defined in classical B. But this is not due to a difference in the WD condition,
but due to the fact that -3 mod 2 is parsed as -(3 mod 2) in rodin and (-3)
mod 2 in Atelier-B.

However, for exponentiation Event-B is less permissive than classical B. (−2)3

is allowed in classical B, but not well-defined in Event-B (cf. page 43, Table 5.2
in [41]).

Supposing a and b are well-defined, we have the following well-definedness
conditions:11

Another subtle difference in treating well-definedness is discussed in [34].
rodin adds the goals of well-definedness proof obligations as hypotheses to sub-
sequent proof obligations, while Atelier-B does not. The technique is described
in [40] (but is not mentioned in [5,41]) and avoids having to re-prove the same
goal multiple times. As a result, it means that discharging WD proof obligations
is even more important in rodin, as otherwise it is very easy to discharge false
theorems (see Listing 2.1 in [34]).
10 In other formal languages this may be different; see Sect. 5.2.
11 The rodin handbook requires modulo arguments to be non-negative, which is cor-

rect; [41] is in error.
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Expression classical B Event-B comment

a/b b �= 0 b �= 0 identical

a mod b a ≥ 0, b > 0 a ≥ 0, b > 0 identical

ab b ≥ 0 a ≥ 0, b ≥ 0 classical B more permissive

Syntax for Lambda and Quantified Union, Intersection. Maybe surpris-
ingly, the notation for λ and quantified operators is not compatible between
Event-B and Atelier-B: it is generally not possible to write an expression in
such a way that it is accepted by both rodin and Atelier-B. For example, to
define the decrement function over the domain 1..5 and apply it to the value 3
one has to write in ASCII notation:

– (%x.x:1..5|x-1)(3) in rodin

– %x.(x:1..5|x-1)(3) in Atelier-B

More precisely, right-hand side rules of the formal grammar productions in
Event-B and classical B are respectively:

– ‘λ’ ident-pattern ‘.’ predicate ‘|’ expression in rodin

– ‘λ’ ident-pattern ‘.’ ‘(’ predicate’|’ expression ‘)’ in Atelier-B

As such a parentheses spanning both predicate and expression are not allowed
in Event-B but required in classical B.

Another difference concerns lambda abstractions with multiple variables.
Here the use of the comma is required for the parameters of the λ in Atelier-B

but not allowed in Event-B; see Sect. 3.3.1, page 13 of [41]. Here is an example:

– (%x|->y.x:1..5 & y:1..5|x-y)(3|->4) in rodin

– %(x,y).(x:1..5 & y:1..5|x-y)(3,4) in Atelier-B

– %(x,y).(x:1..5 & y:1..5|x-y)(3|->4) also allowed in Atelier-B

In addition, Event-B allows arbitrary nested patterns:

λx �→ (y �→ z).x ∈ 1..5 ∧ y ∈ 1..5 ∧ z ∈ 1..4 | x ∗ y ∗ z

This example cannot be written as a simple lambda expression in classical B,
as %(x,y,z).(P|E) corresponds to the differently nested λ(x �→ y) �→ z.P | E
in Event-B.

Finally, Event-B also provides an additional set comprehension construction
with an expression term: {x.P|E}. The equivalent formula is more convoluted to
write in classical B and requires the use of an existential quantifier: {z | #x.(P
& z=E)} in ASCII or {z | ∃x.(P ∧ z = E)} in Unicode.
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3.3 Definitions

Atelier-B provides a special section where one can add (parameterised) defi-
nitions. Definitions are implemented by textual replacement in Atelier-B. In
other words, they are macros with all of their problems (known to seasoned C
programmers).

For example, when not using parentheses in the definition bodies, the textual
replacement can result in unexpected results due to change of priorities. In the
example below, a reader may expect 2*add(0,5) to be identical to 2 * (0 + 5),
i.e. 10. However, after textual replacement we obtain the expression 2*0+5 which
is equal to 5.

DEFINITIONS
add(xx,yy) == xx+yy

ASSERTIONS
2*add(0,5) = 10; // false in Atelier-B

Another problem is variable capture, when the definition’s quantified vari-
ables clash with identifiers in the actual arguments of the definition. Take the
following example:

DEFINITIONS

egt(xx) == (#yy.(yy:1..99 & xx<yy)) // egt: Exists-Greater-Than

ASSERTIONS

egt(5); // true

#yy.(yy:INTEGER & yy=5 & egt(yy)) // false

We have that egt(5) is true: yy=6 satisfies the predicate. However, the pred-
icate yy=5 & egt(yy) is false, as it is textually rewritten to

yy=5 & (#yy.(yy:1..99 & yy<yy))

and there is no solution for yy<yy.12 These problems do not arise very often, but
when they do, they are hard to understand and debug. In one instance, I had the
surprising result that the value of {a | a : Sigma} was different from Sigma.
I was suspecting a bug in ProB, until I realised that Sigma was introduced
by the definition Sigma == {a,b}, where a and b were some of the elements
of a given set Symbol. The set comprehension was thus equivalent to {a | a
: {a,b}} in turn equivalent to Symbol. ProB now warns when such variable
captures appear. The price to pay is that ProB does not really treat definitions
as macros, every definition body has to be a valid formula; it cannot consist of
a partial text of a formula.

Another issue of macros are related to performance: the textual substitution
can lead to an explosion of the size of the constructed formula, and can lead in
turn to multiple evaluation of the same expression. For example, the following
definitions look innocuous:
12

ProB warns when such variable captures appear. The price to pay is that ProB

does not really treat definitions as macros, every definition body has to be a valid
formula; it cannot consist of a partial text of a formula.
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DEFINITIONS
droplst(ss) == {size(ss)} <<| ss // drop last element

The above works correctly, e.g., to drop the last three elements of a list:

droplst(droplst(droplst([1,2,3,4,5]))) = [1,2]

However, the sequence [1,2,3,4,5] appears 23 = 8 times in the expression
after replacement. It is clear that when the argument is a much larger literal
value or more definitions are nested this effect can be problematic, in particular
for data validation [24]. Also, if the argument to setl is a complicated set
comprehension, this expression may be evaluated eight times by a tool like ProB
(unless common-subexpression elimination is enabled).

Given the problems with macros, it is understandable that the definitions
concept from classical B was not incorporated into Event-B. However, the com-
plete absence of definitions is also problematic in practice. The theory plug-in
[15,26] can also be used to introduce definitions. But this is a quite heavyweight
solution, so much so that probably nobody uses it for that purpose. Copying
and pasting the respective formulas seems to be one solution adopted in prac-
tice, but this is not very readable and easy to maintain. As such, hygenic macros
[25] (which properly treat quantified variables) would be a nice extension of
Event-B. Other formal languages like TLA+ and Alloy provide this feature; see
Sects. 3.5 and 5.

3.4 General Missing Features

A few features that are generally useful are missing in both Event-B and classical
B when compared to other specification or programming languages. Here is a
list of some of them:

IF-THEN-ELSE. While classical B has an IF-THEN-ELSE substitution, it has
no such construct for expressions or predicates. For predicates, one can write
something like (A =⇒ B) ∧ (¬A =⇒ C), at the cost of duplicating A.
For expressions, it is more cumbersome. This construct is particularly useful for
defining functions via the lambda construction. It is for example available in
TLA+ or Z, and ProB now supports it for classical B as well.

For example, a function to compute the absolute value can be defined as
follows:

abs = λx.(x ∈ Z|IF x < 0 THEN − x ELSE x END)

Without this construct more cumbersome encodings are required, e.g.:

abs = λx.(x ∈ N|x) ∪ λx.(x ∈ Z ∧ x < 0| − x)
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LET. While classical B has a LET substitution, it has no such construct for
expressions or predicates. It is also available in TLA+ or Z, and ProB now also
supports it for classical B. The construct is particularly useful to structure the
definition of more complex set comprehensions or lambda abstractions.

A LET construct LET x BE x = E IN P END for a predicate P can be
mimicked using existential quantification: ∃x.x = E ∧ P .

For expressions, however, it is more cumbersome. Some workaround exists
for expressions which happen to be sets:

⋃
x.(x = E|F ) is an encoding of

LET x BE x = E IN F END .

Recursive Functions. While it is in principle possible to define recursive functions
in classical B and Event-B (see [37] in the Festschrift for Egon Börger’s 60th
birthday, presented at Schloß Dagstuhl), the process is still more cumbersome
than it should be. ProB provides some support for recursive functions, e.g., one
can write a recursive function to compute the sum of a set by defining a constant
sum by the following equation:13

sum = (λx.x ⊆ Z|IF x = ∅ THEN 0 ELSE min(x)+ sum(x\{min(x)}) END)

This is, however, there is no support by the B provers yet and ProB does
not yet perform any well-foundedness checks.

In classical B, it is possible to use the transitive closure operators to encode
a recursive computation (see Sect. 6.2 in [24]). For the example above one would
encode a (non-recursive) step function, which receives the set of integers and an
accumulator:

step = λ(s, acc).(s �= ∅ | (s \ {min(s)}, acc + min(s))

We can now use the transitive closure operator (closure1 ) to compute the
sum of a set using an initial value of 0 for the accumulator:

closure1 (step)[{{1, 2, 3} �→ 0}] = {(∅ �→ 6), ({2, 3} �→ 1), ({3} �→ 3)}

The result can be obtained by extracting the value for the base case (∅):

closure1 (step)[{{1, 2, 3} �→ 0}](∅) = 6

This technique enables proof with Atelier-B, but is computationally not
optimal (the transitive closure derives all intermediate results). It also clearly
requires considerable expertise by users.

Here, TLA+ provides a more convenient way of defining new recursive
functions.

13 In classical B one can of course just use the Σ operator for this example. Here we
just wish to illustrate the various approaches to recursion on a simple example.
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Polymorphism. While many of the core B operators are polymorphic a user
cannot define polymorphic functions. For example, set union and cardinality are
polymorphic and can be applied to sets of different types:

card({1} ∪ {2}) = card({TRUE} ∪ {FALSE})

All variables or constants must have a concrete, fully instantiated type. E.g.,
a user-defined union function would look like this and work only for the declared
type (here sets of integers):

myunion = (λx �→ y.x ⊆ Z ∧ y ⊆ Z|{z | z ∈ x ∨ z ∈ y})

In classical B, definitions can be polymorphic, as the following example shows:

MYUNION (x, y) == {z | z ∈ x ∨ z ∈ y}

But as we have seen in Sect. 3.3, this approach has some considerable draw-
backs.

3.5 Future of B

In future, we would like to extend both classical B and Event-B to address these
shortcomings and incorporate the good ideas from other languages:

– making the extensions of ProB as part of the core language for Atelier-B

and rodin

• IF-THEN-ELSE for expressions and predicates
• LET for expressions and predicates
• better support for strings [24]

– an EXPRESSIONS clause to replace the fragile DEFINITIONS with hygenic
macros, derived from the constants and variables of a B machine.

– a way to specify recursive functions, along with a variant for proving well-
foundedness. Ideally it should be possible to write polymorphic functions.

The goal would be to obtain a specification language, which is amenable
to formal proof and constraint solving, while providing the convenience of a
functional programming language.

4 Machines and Refinement

While for predicates and expressions, classical B and Event-B are very close
together, there are marked differences at the level of the B machines. Due to
space limitations we can only elaborate on some of the differences.

In Event-B, new sets and constants are put into contexts while variables and
events are put into machines. In classical B, there are only machines, which can
contain sets, constants, variables and operations.
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In Event-B, a machine can include contexts, but cannot include machines.
Here, classical B is more flexible, as it allows to include any machine. In contrast
to Event-B, a machine can be included multiple times and renamed. E.g., one can
include multiple copies of a generic buffer machine and give each copy an indi-
vidual name. Also, classical B has a relatively complex “ontology” of inclusion
keywords: INCLUDES, EXTENDS, USES, SEES and IMPORTS. These various inclusion
mechanisms mainly differ by what parts of the included machine can be seen and
used. These concepts make sense for enabling compositional proofs of complex
software systems, but can be confusing to the B user.

As far as refinement is concerned, a context in Event-B can only refine
another context, and a machine can only refine another machine. For contexts
this is called extending rather than refining.

In summary, the powerful but complex structuring mechanism of classical B
has been replaced by just two structuring mechanisms:

– inclusion: a machine can see contexts, giving it access to their constants,
axioms and theorems.

– refinement: a machine can refine another machine and a context can extend
another context.

There is also a considerable change in terminology:

– operations are now called events, on the account that Event-B is used for
systems modelling,

– properties are now called axioms, and
– assertions are now called theorems.

Finally, classical B distinguishes between abstract machines, refinement
machines and implementation machines, each with their own particularities. The
subset of B allowed in implementation machines is also called B0, for which var-
ious code generators are available.

One addition is that in Event-B axioms, invariants, guards and theorems
carry labels. These labels are helpful during proof, to identify the source of
hypotheses or proof obligations.

Another difference is that theorems can be interleaved with invariants; the
order can be relevant for proof (influencing the available hypotheses) and for
well-definedness. The same is true for theorems and axioms: there is one section
of an Event-B context containing both theorems and axioms and the order is
relevant. In classical B, the ASSERTIONS clause is completely separate from the
INVARIANTS and PROPERTIES clause, and as such contains both theorems
on variables and constants.

4.1 Events, Operations and Substitutions

A B machine has operations, while an Event-B machine has events. Both oper-
ations in classical B and events in Event-B consist of substitutions (aka state-
ments). A substitution can modify the state of a B machine, meaning that it
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can change the values of the variables. In this area Event-B differs quite consid-
erably from classical B. While classical B has a very rich substitution language,
including CASE statements or WHILE loops, Event-B follows a minimalistic
approach. More precisely, an event in Event-B has just three components:

– an optional list of parameters,
– a guard predicate,
– a list of actions, which are implicitly executed in parallel. The empty action

list corresponds to skip, i.e., an event that keeps the state unchanged.

For the actions there are only three substitutions available in Event-B, where
x is a variable:

– deterministic assignments of the form x := E, where x is a variable and E
an expression.

– non-deterministic assignments of the form x :: S, where x is a variable and
S a set expression.

– assignments by predicate of the form x :| P, where x is a list of variables and
P a predicate.

Witness predicates are associated with some parameters and non-
deterministic assignments. We return to this below when talking about
refinement.

Some guards can be marked as theorems. This is not possible in classical B,
but there is an ASSERT substitution which can serve a similar purpose.

The above form for describing an event is also possible in classical B, but it
provides a much richer language. Compared to classical B, we can mention the
following most important missing constructs:

– no conditional substitution (IF-THEN-ELSE). In Event-B, this is typically
mimicked by multiple events and incorporating the tests into the guard.

– no LET substitution. This drawback can be circumvented by adding a sepa-
rate parameter to the event. Note that in Event-B, parameters do not corre-
spond to parameters in the generated code, and parameters can be changed
in refinements. Hence, this solution is typically quite appropriate.

– no sequential composition. A sequential composition needs to be encoded by
separate events. A difference with classical B is that then that the invariant
is also checked in the additional intermediate state. Furthermore, interleav-
ings between various events are then possible. Some plugins and extension of
rodin try to solve this limitation by adding back ways to specify a control
flow [27] or providing UML state machines [44].

– no while loops. This point is similar to sequential composition. Typically
a while loop is modelled in Event-B by introducing additional events. The
variant of a while loop can be encoded using the convergence annotations of
events.

– no operation call. In Event-B it is not possible to call the event of another
machine. Sometimes this limitation can be overcome by refinement: instead
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of calling an operation we refine it and add additional behaviour. This solu-
tion is, however, not always feasible. Some extensions of rodin have tried to
overcome this [28].

– no preconditions (PRE). Indeed, in Event-B, events have only guards, while
classical B allows both guards and preconditions. But as there is no way to
call operations of another machine in Event-B, there is typically also no need
for preconditions.

4.2 Refinement

A comparison of refinement in various state-based formal methods can be found
here: [20] discussing Z and B, and [19] discussing Event-B and ASM. We can
only discuss a few important aspects here.

Changing Signatures of Operations. Classical B is designed for software
and a high-level abstract machine serves as both specification and provides the
signature of the available operations. As such, changing parameters and return
values in refinements is not allowed, as it would result in an implementation
which is incompatible with the specification.

In Event-B, parameters play another role and there is no concept of an oper-
ation call. As such, parameters can be removed, changed and introduced. When
parameters are removed, however, a witness predicate has to be provided. This
enables to establish a relation between the abstract and concrete parameters
while conducting the refinement proofs.

Introducing New Events. In systems modelling it makes sense that during
refinement the specifications becomes more concrete and more events become
visible. Hence, Event-B allows to introduce new events in refinements. However,
to ensure that the abstract model is still a correct abstraction, these new events
must refine skip: they are not allowed to change the state of the abstract model,
i.e., must be invisible at the abstract level.

In addition, events can be marked as anticipated or convergent. This anno-
tation is often used for new events to ensure termination (to ensure that sooner
or later a visible event of the abstraction must occur).

In classical B there is no need to add new events; it would be impossible to
call them anyway as they do not figure in the high-level abstract machine.

Splitting and Merging Events. Splitting an operation in software develop-
ment makes no real sense: we want to derive code and want to know which
concrete operation should be used. In systems modelling, however, it is useful
to split an event into different variations. Something that is indistinguishable
at the high-level, maybe differentiated at the more concrete level. E.g., at an
abstract level we may just have an event move train, but in a more concrete
level, with more precise modelling of locations, we may wish to split this event
into move train forward and move train backward).
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Refinement Proof Obligations. One big change in Event-B is the refinement
proof obligation. In classical B one has to prove for a concrete operation, that a
matching abstract event does exist. More precisely, this is done by proving that
it is not the case that there is a concrete event for which no matching abstract
event exists. This leads to a proof obligation with two negations [3,45]. While
this is a very flexible refinement concept, the resulting proof obligations are not
always easy to discharge.

Event-B eliminates the double negation, yielding much simpler proof obli-
gations. The price to pay is that the user has to specify the correct abstract
behaviour that matches the concrete behaviour. This is made possible by:

– witness predicates, which specify abstract parameters and values for non-
deterministic assignments.

– the simple substitution language, which means that every case of a conditional
becomes its own event. As such, one can precisely pinpoint matching abstract
events for concrete events. In classical B, the refinement of case statement
by another case statement results in combinatorial explosion of cases in the
refinement proof.

4.3 Composition and Modularisation

A major missing feature in Event-B is the possibility to include machines and,
e.g., call the operations in the included machines. This mechanism is very useful
to decompose a system into components. The core language of Event-B only
provides refinement as a structuring mechanism for machines. Sometimes this is
sufficient to structure a development, but it also implies that various features or
subcomponents have to be introduced in a particular order, which the B user
has to choose.

For example, to mimic a system which uses a component “traffic light” and
“car”, one can simply include the corresponding B machines in classical B. In
Event-B, one would provide an abstract system model, and refine it while first
adding either the “traffic light” or the “car” component. In a second refinement
one would add the other component. The order is now fixed, and hard to change.
The modelling of the sub-components is weaved into the model of the system
and also harder to change and adapt.

There are, however, some extensions of Event-B which address this issue.
Most notable are the composition/decomposition approaches:

– shared variable decomposition [2],
– shared event decomposition [46], leading to the [47] decomposition plugin.

These composition concepts are not identical to inclusion in classical B, and
are more adapted to systems modelling. It is, however, often possible to do
Event-B style compositional modelling in classical B using machine inclusion
and operation calls. An example of this style of systems modelling in classical B
can be found in [38], with a later translation to a rodin refinement. The author
has also managed to translate a simple example used to illustrate the approach
from [2] to inclusion and refinement in classical B.
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5 Other Formal Methods

We provide a brief comparison with some other formal methods. Due to space
restrictions, we cannot conduct a comprehensive comparison.

5.1 Event-B by Atelier B

As already mentioned, Atelier-B also supports a dialect of Event-B. Compared
to rodin it provides a much richer language for describing substitutions. Another
advantage is the existence of a complete textual representation for machines
(even though a formal grammar is unfortunately not available). At some point,
the B2RODIN plugin was developed to import such Atelier-B files.14

5.2 TLA+

TLA+ [31] has the same grounding in predicate logic, set theory and arithmetic
as B. A major difference, however, is that TLA+ is untyped; see Sect. 2 and the
debate in [32]. An undeniable advantage of the untyped nature of TLA+ is that
records can be viewed simply as a special function mapping strings to values. It
is also possible to use a unique null value to represent partially defined functions.

In contrast to B, the grammar of TLA+ makes no distinction between pred-
icates and expressions. There is thus also no need for conversion predicates like
bool(.) in B or for the distinction between the booleans and the truth values.

As far as relations are concerned, TLA+ has fewer built-in operators. Also,
functions are not sets of pairs and are set apart from relations. As a consequence,
one cannot apply set operators to functions. There is, however, a provision for
defining recursive functions and new operators (aka polymorphic functions).
Combined with the IF-THEN-ELSE and LET constructs for expressions, this
provides a convenient way to write functions.

TLA+ uses the term action to denote events. Here TLA+ is much closer to
Event-B than classical B. An action in TLA+ is simply described by a predicate,
namely the before-after predicate. There is thus no substitution language, and
parameters are encoded using existential quantification. There is, however, the
Pluscal language which provides programming constructs (like while loops) and
which is translated to regular TLA+.

Due to the absence of a substitution language, TLA+ cannot escape the frame
problem, and actions need to be annotated with “unchanged” annotations, i.e.,
specifying which variables are not modified by the action. Also, TLA+ provides
no refinement methodology and refinement proof obligations. TLA+ is geared
towards the verification of temporal logic formulas; something which is not at
the heart of classical B or Event-B (but provided by ProB). TLA+ here relies
in this aspect on stuttering, which ensures that refinement is possible. See [7]
for a discussion and the influence of TLA+ on Event-B.

As a minor note, TLA+ uses floored division, which is different from B. For
example (−1)/4 = −1 �= 0.
14 https://www.methode-b.com/en/download-b-tools/rodin/b2rodin/.
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5.3 Alloy

Alloy [29] is also rooted in logic and set theory. The semantic rules of Alloy can
be expressed in B [30]. Alloy puts even more emphasis on relations than B; the
fact that everything is a relation provides an elegant core language. Also, tuples
are “flat” in Alloy and not nested pairs as in B. This makes various operations
more elegant. In particular the relational join operator can be used to cover
various B operators (such as both domain and range).

On the downside, the multiplicity annotations in Alloy are not fully denota-
tional; their meaning depends on the context [30]. Here I find B’s approach to
specifying partial and total functions more elegant. Also, Alloy is restricted to
first-order sets and relations; i.e., one cannot use the Alloy analyser on sets of
sets. The restriction, ensures that a translation to propositional logic for SAT
solving is feasible.

5.4 ASM, Z

Z [48] is the predecessor of B, but has more data types available. For instance,
multisets (bags) or freetypes with constructors are available. The latter corre-
spond to inductive datatypes, as typically available in functional or logic pro-
gramming languages. In Rodin freetypes can be introduced in the theory plug-in
[15,26]. Z also provides for the IF-THEN-ELSE or LET constructs for expres-
sions. A particularity of Z is its schema calculus, which provides a completely
different way to organise or structure a specification than B machines.

Abstract state machines (ASMs) [13] have considerable commonalities with
B. An interesting difference is that ASMs allow parallel assignments to the
same variables, and provides various semantics to reconcile updates. More details
about the differences can be found in [35].

6 Discussion and Conclusion

We conclude with a few more discussions about the tools available. The present
paper was influenced by the experience of making ProB accept both classical
B and Event-B. As we have seen, predicates and expressions of classical B and
Event-B are very close, so much so that ProB uses the same interpreter and con-
straint solver for predicates, expressions of classical B and Event-B (and actually
also TLA+ and Z). ProB has a flag (animation minor mode) which influences
some the behaviour of the interpreter, like division and well-definedness condi-
tions for modulo or exponentiation. At the machine level there is a much larger
difference; here ProB uses two completely different interpreters for classical B
and Event-B.

On the practical side, classical B has multiple code generators, which have
been used in a considerable number of industrial projects [14,33]. While Event-B
also has a few code generators, none of them have been used in industrial projects
yet. Also, in Event-B the control structure must be extracted; in classical B it
is explicit expressed using the richer substitution language.
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Another practical difference is the lack of a textual representation for
machines and contexts in rodin. In fact, rodin was built on the idea of itera-
tive development, where users update the rodin model database, with automatic
incremental building and proving occurring in the background. With hindsight
one can say that this dream has only been partially fulfilled, and that the lack of
a textual representation was more of a hindrance than an enabler. Indeed, there
are at least five editors in rodin, all with their own machine representation. The
lack of a textual representation made it difficult to version, refactor and share
rodin models. The Camille editor [12] was developed to address these issues;
but its maintenance has proven difficult; in particular synchronising the textual
representation with the rodin database within the evolving Eclipse Modelling
Framework (EMF) is a challenge. Camille also does not provide editing for the
theories within the theory plugin. A successor, called CamilleX together with a
redeveloped theory plugin, will hopefully overcome these challenges.

In our exploration of Event-B and classical B we have stumbled upon various
subtle and surprising differences. We have identified shortcomings of one or the
other formalisms and have also provided some recommendations for an improved
mathematical notation. We hope that this article can help new researchers better
understand the B landscape.
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7. Abrial, J.-R., Cansell, D., Méry, D.: Refinement and reachability in event-B. In:
Treharne, H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455,
pp. 222–241. Springer, Heidelberg (2005). https://doi.org/10.1007/11415787 14

8. Abrial, J.-R., Mussat, L.: Introducing dynamic constraints in B. In: Bert, D. (ed.)
B 1998. LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053357

9. Abrial, J.-R., Mussat, L.: On using conditional definitions in formal theories. In:
Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol.
2272, pp. 242–269. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45648-1 13

10. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley, Boston (2007)

11. B-Core (UK) Ltd, Oxon, UK. B-Toolkit, On-line manual (1999). http://sens.cse.
msu.edu/Software/B-Toolkit/BKIT/BHELP/BToolkit.html

12. Bendisposto, J., Fritz, F., Jastram, M., Leuschel, M., Weigelt, I.: Developing
Camille, a text editor for Rodin. Softw. Prac. Exp. 41(2), 189–198 (2011)

13. Börger, E.: Abstract State Machines. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-642-18216-7

14. Butler, M., et al.: The first twenty-five years of industrial use of the B-method. In:
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1 Happy Birthday, Egon Börger!

Dear Egon!
Our scientific paths crossed several times starting in the late seventies of the
last century. I am happy, they did. I remember our encounters as fruitful and
illuminating, and I thank you, Egon, for what my memory retained from these
encounters.

We were both working in Germany in this period, you in Münster and Dort-
mund, and I in Berlin with frequent visits to Israel. Both of us came from Mathe-
matical Logic. You worked between 1969–1989 in Logic and Complexity Theory.
You were one of the pioneers in applying logical methods in computer science. I
worked in 1971–1984 in Model Theory, both classical and abstract. But already
in 1978 I started looking for applications of Model Theory in computer science.
My path led me through database theory and specification of abstract data types
to the foundations of logic programming and PROLOG. Your path also passed
through logic programming and PROLOG, via the analysis of the classical deci-
sion problems in logic.

Together with E. Grädel and Y. Gurevich you are one of the authors of
the fundamental monograph on the Classical Decision Problem [16], reprinted
again in 2001 as [15]. You were the enthusiastic initiator of the conference series
CSL (Computer Science Logic) in 1987 which led to the creation of its umbrella
c© Springer Nature Switzerland AG 2021
A. Raschke et al. (Eds.): Börger Festschrift, LNCS 12750, pp. 173–186, 2021.
https://doi.org/10.1007/978-3-030-76020-5_10
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organization EACSL in 1992 in Dagstuhl, with again you leading the initiative,
supported by Klaus. Ambos-Spies, Yuri Gurevich, Moshe Vardi, myself, and
many other attendees of the Dagstuhl seminar, see [13].

Since 1990 your research has mainly focused on Software Technology. You
were co-pioneering the development and the industrial applications of the
Abstract State Machines Method. In your CV posted at your homepage you
write that “these applications were aimed at controllable construction and main-
tenance of hardware/software systems with a focus on rigorously relating require-
ments capture by high-level models to detailed design and their analysis (using
both mathematical verification and experimental validation)”. This is when our
paths diverged. From 1995 on I became more involved with applications of Finite
Model Theory to combinatorial counting, which led me back to more mathemat-
ical questions. Unfortunately, since then we have not met for almost 30 years.

I am happy to be able to dedicate the reflections below to the celebration of
your 75th birthday. I hope your enthusiasm for research remains unbroken, even
in spite of the COVID pandemic. Stay healthy and productive until 120.

2 The Logical Origins of the AMS Method

In 2002, Egon Börger published an excellent historical sketch and annotated
bibliography on the origins and the development of the AMS method, [14]. He
traces the origins of the ASM concept to various papers by Y. Gurevich, starting
in 1984. This is correct when looking at the published papers. However, starting
in 1978, during a one-year stay in Jerusalem, I started exploring model theoretic
methods in computer science, working on the suggestion of E. Shamir with C.
Beeri on the foundation of database dependencies. This led to [22]. Some of my
unpublished work with C. Beeri later found its way into M. Vardi’s PhD Thesis.
From Fall 1980 on both Yuri and I participated in the Logic Year organized by
the Institute of Advanced Studies in Jerusalem. The research program mostly
centered around S. Shelah’s research topics in Model Theory. Y. Gurevich, J.
Baldwin, J. Stavi, and I also worked on our contributions to the encyclopedic
volume on Model Theoretic Logics [4], Y. Gurevich on Monadic Second Order
Theories [33], J. Baldwin on Definable Second Order Quantifiers [3], J. Stavi on
Second Order Logic (a chapter which remained unfinished and was not included
in the volume) and I on three chapters: one on Compact Logics, one with D.
Mundici on Abstract Equivalence Relation, and one, originally planned with
S. Shelah, on the Foundations of Abstract Elementary classes (aka Abstract
Embedding Relations) [50–52]. It was during the Logic Year 1980 that Yuri and
I discovered our parallel interest in applications of logic to theoretical computer
science. Between 1978 and 1982 I also had intensive discussions with J. Stavi
touching on abstract model theory, second order logic and the foundations of
computer science. This was an exciting period, and its impact on Yuri’s and my
own future work cannot be underestimated.

In 1982 I was invited speaker at the Logic Colloquium in Florence, where
I spoke about Model theoretic issues in theoretical computer science. A written
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version was made public in [48] and published as [49]. Already in 1980, during
the Logic Year in Jerusalem, Y. Gurevich got interested in my work in computer
science and kept “interrogating” me on my views.

In fall 1984 Egon Börger organized a series of courses in Udine under the
title Trends in Theoretical Computer Science which led to the book [12]. The
speakers were K. Ambos-Spies, K. Apt, E. Börger, P. Flajolet, Y. Gurevich, M.
Karpinski, P. Martin-Loef, E Shamir, E. Specker and M. Vardi. All the papers
in the book are landmark papers1. However, for mysterious reasons, the book
is not in the databases of google.scholar, and also otherwise difficult to retrieve.
Y. Gurevich’s contribution is widely quoted as a preprint or offprint. E. Börger
produced an outstanding book, which most definitely deserves to be reprinted
even today.

In this paper I would like to sketch what I think led ultimately to Gurevich’s
definition of Abstract State Machines. In retrospect, it all amounted to finding
models of computation of the right level of abstraction. A common theme in this
quest appears to be looking at two models of computation:

– Computations as performed by register machines, where the contents of the
registers may be a bit, a natural number, a real number, a relation, or even
first order or higher order structure.

– Computations, as described by Ianov schemes, are more commonly known as
program schemes.

The view I present here is not meant to be historical, but conceptual. It is also not
always technically precise, and it does not always address the original motivation
the respective authors had in mind. What I try to sketch is a line of development
which ultimately led to the formulation of Abstract State Machines.

3 MHC-Machines

When I was an undergraduate from 1967 to 1971 there was no Computer Science
Department at the Institute of Technology in Zurich, ETHZ. However, comput-
ing machinery had a long tradition in Zurich. On the initiative of E. Stiefel, ETH
acquired the ZUSE-4 in 1944. A detailed history can be found in the encyclo-
pedic book Milestones in Analog and Digital Computing by Herbert Bruderer
[17] and in [37]. In 1968 I took a compulsory course, Numeric Analysis I, given
by Peter Läuchli but based on a course designed by Heinz Rutishauser. The
nascent computing group in the Mathematics Department of ETHZ consisted of
E. Stiefel, H. Rutishauser, P. Läuchli and N. Wirth.

1 The book is divided into four parts. Part I. Logic and complexity, with [2,9,35,60],
Part II. Database Theory, with [61]. Part III. Analysis of algorithms with [10], and
Concurrency and distributed algorithms, with [8,11]. M. Karpinski and P. Martin-
Loef did not contribute to the book.
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H. Rutishauser is credited for inventing compilers and being the driving force
behind the definition of ALGOL 60. N. Wirth, who joined the group in 1968,
later won the Turing Award for creating the programming languages ALGOL
W, Euler, Pascal, Modula, Modula-2, Oberon, Oberon-2, Oberon-07, Oberon
System.

There was no talk about the foundations of Computability in this course. It
was mostly about basic numeric analysis, but its novelty was the use of a punch
card driven computer for our homework. We were given a manual of ALGOL
60 and a four-hour tutorial session on how to punch cards, use the manual and
submit the homework. I learned PASCAL in 1973 from the mimeographed yet
unpublished version of [44].

The logical aspects of computing were taught at this time by E. Specker and
H. Läuchli, Peter’s younger brother. Their joint seminar was also attended by
the retired Paul Bernays, the gray eminence of Logic in Zurich. In his active
time in Zurch he had three students with major impact on theoretical computer
science: Corrado Böhm, J. Richard Büchi and Erwin Engeler. During his time
in Göttingen before the rise of the Nazis P. Bernays supervised M. Schönfinkel,
G. Gentzen and S. MacLane, and he hosted R. Péter for several months working
with her on the foundations of Computability, published after WWII in 1951
as [54], see also [55]. The 1951 book was praised by M. Davies as the first
comprehensive treatment of recursive function theory.

P. Bernays’ influence on modern computer science is still vastly underesti-
mated. I learned about various notions of Computability from the Zurich logi-
cians, but only in the context of the undecidability of the Decision Problem, or
Recursion Theory.

In the 1969 course on numeric analysis we were given a model of computation
inspired by the practice of human computing during World War II, a model I would
like to call MHC: Massive Human Computing. This was a model of highly parallel
computing. Each human (during WWII mostly women) acted as an unbounded
register matching moving floating point numbers between registers and perform-
ing arithmetic operations with the help of a mechanical device like a CURTA or an
ARITHMOMETER. There was a central authority, the MASTER, who assigned
computing plans to the human computers. Once the plan was executed, the human
returned the results to the MASTER, and was given a new computing plan, pos-
sibly containing registers with previously computed numbers.
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Curta Felix Arithmometer
National Museum of Computing Computer History Museum

When I worked for a subcontractor of the European Space Agency developing
a simulation program for geostationary satellites, MHC was my computation
model. In fact, I developed computation plans in the form of flow charts which
were afterwards translated by a programmer into FORTRAN and punched into
cards. They were then run on a Control Data machine after being carefully
checked both for mathematical errors and compilability. Executing the programs
then was prohibitively expensive.

4 Program Schemes and Unbounded Register Machines

Between 1950 and 1960 many researchers attempted to make the notion of com-
puting (in contrast to computability) precise. Iuri I Ianov initiated a model of
computation (the Ianov schemes), which was based on flowcharts and led later,
under the influence of M. Paterson’s thesis, to the widely studied abstract pro-
gram schemes. Ianov’s work is [39–41]. It was followed by [19,42,53,56]. Early
concerns in the development of program schemes were how to prove properties
of programs readable by humans, rather than analyzing Turing machines. For
my narrative here I would like to stress the conceptual development leading from
Ianov schemes, via Paterson’s work, to the work by A. Chandra.

Another line of developments emanating from similar concerns culminated
in the definition of unbounded register machines. A good and widely accepted
formal treatment is given in [58]. There is also a good discussion of early attempts
to define register machine on the Wikipedia page Register Machines [63]. We are
not interested in the exact historic developments here.

The original register machines differ in details of how to model control. For
us their main common feature is what can be put into the registers, and what
operations can be performed. Natural choices are N, the non-negative integers
together with the arithmetic operations addition, subtraction, multiplication and
equality and order for comparisons. A register machine model is considered com-
plete if it computes (enumerates) exactly the recursive functions (sets) of natural
numbers. If the registers are allowed to contain finite objects which are codable
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and decodable by natural numbers, one usually defines completeness via this
coding.

Iuri I. Ianov John C. Shepherdson

5 Computability over Abstract Structures

Inspired by J. Shepherdson’s work, [58], E. Engeler in 1967, and independently,
H. Friedman in 1969, [29,31], formulated a notion of computability over a fixed
relational structure. J. Shepherdson, [57], discusses these two papers, and also
relates them to program schemes as defined in [19,46].

H. Friedman E. Engeler

The fixed relational structure was intended to be the real numbers, or some
other algebraic structure used in traditional mathematics. Originally, these
papers did not generate vast interest. In the first ten years they were hardly
quoted outside the circles interested in generalized recursion theory. It was the
period of emerging complexity theory based on the Turing model of computation,
the emergence of the P vs NP question, and also the period when Generalized
Recursion Theory developed in different directions.

Only in 1989 did L. Blum, M. Shub and S. Smale reinvent register machines for
the real numbers, and more generally, for arbitrary rings and fields [6]. Their work
was based on earlier work by S. Smale [59]. Its main novelty was the discovery of
an analog of the P vs NP question over arbitrary fixed structures A. We come
back to their work at the end of this paper and will refer to this computational
model as BSS-computing over A. Similarly, S. Abiteboul and V. Vianu looked at,
what they call generic computations for relational databases, [1].

6 Computable Queries in Databases

Around 1980 there were four papers which triggered anew Yuri’s and my interest
in questions of computability:
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A. Chandra’s and D. Harel’s seminal work on computable queries in
databases [18,20,21], and N. Immerman’s and M. Vardi’s work on polynomial
time computable queries [43,62].

A. Chandra and D. Harel, 1987 in Hawaii

A. Chandra and D. Harel combined two fundamental ideas. They used some
kind of register machines where the registers could hold finite relations over a
fixed (infinite) universe, and they required that the register machine should act
invariantly on isomorphic relations. In their first paper they considered a simple
version of their query language, which is untyped. [20] was a breakthrough paper
if only for being a proof of concept. In [18] a typed version is presented which
also allows a closer look at complexity issues.

N. Immerman M. Vardi

The papers by N. Immerman and M. Vardi were first presented at the same
conference in 1982. They combined the approach by A. Chandra and D. Harel
with earlier work by R. Fagin, N. Jones and A. Selman [30,45], who characterized
classes of finite relational structures recognizable in NP as those classes defin-
able in existential second order logic. N. Immerman and M Vardi gave similar
characterization for classes of ordered finite relational structures recognizable in
in P using formalisms inspired by work of A. Chandra and D. Harel. This line
of research has very old roots in the Spectrum Problem formulated by H. Scholz
in 1953. For a state of the art account of the developments arising from Scholz’s
problem, see [28]. We note that E. Börger also worked on Spectrum Problem in
1983 [7].

Yuri’s first paper leading to the evolution of ASM was published in 1983 as
[32]. This was followed by [35] in the volume edited by E. Börger. My first paper
in this direction was [25], finally published as [27]. In 1987 I helped R. Herken to
choose contributors for his book project The Universal Turing Machine – A Half
Century Survey [38], reprinted several times. Relevant to our narrative were two
papers: Y. Gurevich’s [34] and my own paper co-authored with E. Dahlhaus [26].
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7 Logic vs Engineering

Personally, I am convinced that the general atmosphere of the Logic Year 1980
in Jerusalem and these developments emanating from evolving database theory
played an important role in the maturing of the concepts leading to the Abstract
State Machines. Yuri Gurevich was hired in 1982 by the CSEE Department of
the University of Michigan, where he was exposed to the challenge of teaching
and learning from practically minded students and colleagues. According to him,
it was this challenge which influenced the further evolution of the ASM concepts.
Y. Gurevich views AMS as an engineering discipline. I have described the logical
background which influenced the formulation of AMS. In Y. Gurevich’s account
of the origins of AMS [36], he also writes:

We hope that the story of the ASM project will support the maxim that
there is nothing more practical than good theory.

8 P vs NP for Query Languages

In this last section I want to discuss what happens when we merge computabil-
ity of query languages with the approach of Blum-Shub-Smale in the unit cost
model, see [5].

M. Shub, L. Blum, F. Cucker and S. Smale

A similar approach was also pursued by S. Abiteboul and V. Vianu [1]. They
write:

The machines described here model computations where a structures is
accessed through an abstract interface. They were used to describe generic
complexity classes.

They introduce complexity classes GEN − P and GEN − NP and show them to
be different, and conclude that:

the results point to a trade-off between complexity [in the Turing model]
and computations with an abstract interface.

This also applies to our case below. It may be not of any practical significance, but
it also sheds light on the above-mentioned trade-off. It also leads to interesting
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questions in the realm of l’art pour l’art, i.e., testing our available mathematical
and logical tools. The exact relationship between [1] and BSS-inspired approach
will be discussed in [47].

We first introduce a structure inspired by the work of A. Chandra and D.
Harel. It is an algebra of finite relations over a fixed countable domain D, which
we call a CH-algebra over D, denoted by CH(D).

We then use this algebra to give an alternative definition of computable
queries, which disregards the size of the relations. BSS-computability with CH(D)
allows us to formulate deterministic and non-deterministic polynomial time com-
putability over CH(D), denoted by PCH(D) and NPCH(D). Finally, we sketch a
proof which shows that PCH(D) �= NPCH(D). Details will be presented in [47].

8.1 CH-Algebras

Let D be an infinite set. We define a structure CH(D) as follows: A finite relation
over D is a subset of An with A a finite subset of D. The universe U(D) of CH(D)
consists of all finite relations over D.

More formally,

U(D)n = {R ⊂ An : A ⊂ D,A finite}

and
U(D) =

⋃

n

U(F )n

For a relation r we define the active domain AD(r) of r to be the subset

AD(r) = {d ∈ D : there is tuple x ∈ r which contains d}

We now equip U(D) with the following (partial) operations.

Constants:
(i) There is a constant []0 for the relation of arity zero.

Unary functions: There are three unary operations:
(i) ↑: For a relation r, r ↑ is obtained from r adding a column to the right,

i.e., by forming r × AD(r).
(ii) ↓: For a relation r of arity ≥ 1, ↓ r is obtained from r deleting the left

most column i.e., projecting the left most column away.
(iii) ∼: For a relation r of arity k ≥ 2, r∼ is obtained from r by interchanging

the two right most columns.
Binary functions: There two binary operations:

(i) ∪: For two relations r and s of the same arity r ∪ s is their union.
(ii) \: For two relations r and s, rofthesamearity \ s is their set difference.

To make the operations total, we can set []0 whenever the operations are not
defined.

The set U(D) equipped with these constants and operations is called the
CH-Algebra over D, denoted by CH(D):
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CH(D) = (U(D), ↑, ↓,∼ ,∪, \, []0)

The computable queries in the sense of Chandra-Harel are functions which
map a finite sequence of relations onto a relation and which can be represented
by the programming language they define. The BSS computable functions over
a CH-Algebra coincide with the computable queries.

8.2 BSS-Computations in Unit Cost

Let A be a first order structure. In the unit cost model of BSS-computations, an
input of size n consists of a sequence of n elements of A. By abuse of notation,
we denote the set of finite sequences of elements of A by A∗. Decision problems
are given as functions from A∗ to A with values in a two-element set, so one
has to assume that in A there are at least two constant terms. Non-determinism
is based on guessing sequences of elements in A∗ of size polynomial in the size
of the input. A function F : A∗ → A is computable if there is a time bound
t : N → N such that there is a BSS-machine which computes F on input of size
n in time t(n).

We denote the class of problems over A recognizable in deterministic BSS-
polynomial time by PA, and by NPA, and the class of problems over A recog-
nizable in non-deterministic BSS-polynomial. In this model it is possible that a
decision problem is in NPA but not decidable (computable). One example for
such an A is the ring of integers Z, see [5].

8.3 PCH(D) vs NPCH(D)

In the unit cost model of BSS-computing over CH(D) each relation has the same
cost, namely 1. As a consequence of this, a relational structure with m relations
can be represented by a m + 1 tuple. In other words, every finite graph has cost
2. We look at the problem 3COL that asks whether an input graph (V,E) is
3-colorable.

Proposition 1. 3COL is in NPCH(D).

Proof. Guess three set C1, C2, C3 ⊂ V and verify that C2
i ∩ E = ∅.

Proposition 2. 3COL is not in PCH(D).

Proof. In fact it is not even computable. Assume for contradiction that there is a
deterministic BSS-machine M which checks whether a graph (V,E) ∈ 3COL. M
runs in constant time, as all inputs are of size 2. So M performs a finite number
of test. A test checks whether two relations r and s defined by terms t and u in
CH(D) are equal. In this case the terms use as constants only the input graph
(V,E), the vertex set and the edge relation. If a relation is definable by a term
in CH(D) then it is also definable by a first order formula φt of some quantifier
rank qt.
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Let q be bigger that all the quantifier ranks used in the tests performed by
M . Let (V1, E1) be in 3COL and let (V2, E2) not be in 3COL, but such that they
cannot be distinguished by first order formulas of quantifier rank ≤ q. Two such
graphs exist because it is well known that 3COL is not first order definable. In
this case M accepts or rejects both graphs, a contradiction.

We conclude:

Theorem 1. PCH(D) �= NPCH(D).
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54. Péter, R.: Rekursive funktionen, Budapest, vol. 57 (1951)
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Abstract. We define MOTION (MOdeling and simulaTIng mObile ad-
hoc Networks), a Java application based on the framework ASMETA
(ASM mETAmodeling), that uses the ASM (Abstract State Machine)
formalism to model and simulate mobile networks. In particular, the
AODV (Ad-hoc On-demand Distance Vector) protocol is used to show
the behaviour of the application.
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1 Introduction

Mobile Ad-hoc NETwork (MANET) is a technology used to establish and to
perform wireless communication among both stationary and mobile devices in
absence of physical infrastructure [1]. While stationary devices cannot change
their physical location, mobile devices are free to move randomly: they can enter
or leave the network and change their relative positions. Thus, the network lacks
a predictable topology. Each device is able to broadcast messages inside its radio
range only; outside this area, communication is possible only by means of coop-
eration between intermediate devices. They can act as initiator, intermediate
and destination of a communication. This research area is receiving attention in
the last few years, in the context of smart mobile computing, cloud computing
and Cyber Physical Systems ([21] and [13]).

One of the most popular routing protocols for MANETs is the Ad-hoc On-
demand Distance Vector (AODV, [22]), and several variants have been intro-
duced in order to reduce communication failures due to topology changes. For
example, Reverse-AODV (R-AODV, [18] and [8]) overcomes this problem by
building all possible routes between initiator and destination: in case of failure
of the primary route (typically the shortest one), communication is still provided
by the alternative routes. More recently, variants have been proposed to cope
with congestion issues ([17] and [10]) and to improve the security on commu-
nications, using cryptography to secure data packets during their transmission
(Secure-AODV, [29]), and adopting the so-called trust methods, in which nodes
are part of the communication if and only if they are considered trustworthy
(Trusted-AODV, [19] and [10]).

c© Springer Nature Switzerland AG 2021
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The technology of Mobile Ad-hoc NETwork (MANET) raises several prob-
lems about the analysis of performance, synchronization and concurrency of the
network. Moreover, the request of computing services characterized by high qual-
ity levels, broad and continuous availability, and inter-operability over heteroge-
neous platforms, increases the complexity of the systems’ architecture. There-
fore, it is important to be able to verify qualities like responsiveness, robustness,
correctness and performance, starting from the early stages of the development.
To do this, many studies are executed with the support of simulators [3,25,27].
They are suitable to evaluate performance and to compare different solutions,
implementing the network at a low abstraction level, and considering only a lim-
ited range of scenarios. The simulators, by their intrinsic nature, cannot provide
specification at higher level, and they cannot support proofs of correctness, of
synchronization and of deadlock properties. They measure performances, but
they cannot model MANETs with a higher abstraction level of specification.

To do this, formal methods that model the process are needed. For instance,
the process-calculus [24], CMN (Calculus of Mobile Ad Hoc Networks, [20]),
and AWN (Algebra for Wireless Networks, [12]) capture essential characteris-
tic of nodes, such as mobility or packets broadcasting. Petri nets have been
employed to study the modeling and verification of routing protocols [28] and
the evaluation of protocols performance [11]. With respect to process calculi,
state-based models provide a suitable way of representing algorithms, and they
are typically equipped with tools, such as CPN Tools [16], that allow to simulate
the algorithms, directly. However, we believe that proposed state-based mod-
els lack expressiveness: basically, they provide only a single level of abstraction,
and cannot support refinements to executable code. Instead, this characteris-
tic is intrinsic in the ASM model. Even if formal methods are satisfactory for
reasoning about correctness properties, they rarely are useful for studying per-
formance properties [9]. Generally speaking, correctness properties are formally
proved, while the performance properties are investigated through simulations
of the system.

Our aim is to use the ASM formalism to study formal properties, and to use
MOTION as a tool for evaluating performance properties. The ASM approach
provides a way to describe algorithms in a simple abstract pseudo-code, which
can be translated into a high-level programming language source code, as in [7]
and in [15].

In Sect. 2, we recall concepts and definitions related to the Abstract State
Machine’s model. In Sect. 3, we describe three mobile network’s protocols: AODV
(Ad-hoc On-demand Distance Vector), N-AODV (NACK-based AODV), and
BN-AODV (Black hole-free N-AODV). In Sect. 4, we introduce the definition
and specific behaviour of MOTION, with respect to the ASM’s model of the
previous network protocols. Conclusions and future work can be found in Sect. 5.

2 Abstract State Machines

An Abstract State Machine (ASM, [7]) M is a tuple (Σ,S,R, PM ). Σ is a sig-
nature, that is a finite collection of names of total functions; each function has
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arity n, and the special value undef belongs to the range (undef represents an
undetermined object, the default value). Relations are expressed as particular
functions that always evaluate to true, false or undef.

S is a finite set of abstract states. The concept of abstract state extends the
usual notion of state occurring in finite state machines: it is an algebra over the
signature Σ, i.e. a non-empty set of objects together with interpretations of the
functions in Σ. Pairs of function names together with values for their arguments
are called locations: they are the abstraction of the notion of memory unit.
Since a state can be viewed as a function that maps locations to their values,
the current configuration of locations, together with their values, determines the
current state of the ASM.

R is a finite set of rule declarations built starting from the transition rules
skip, update (f(t1, t2, . . . , tn) := t), conditional (if φ then P else Q), let (let x = t
in P ), choose (choose x with φ do P ), sequence (P seq Q), call (r(t1, . . . , tn)),
block (P par Q) (see [7] for their operational semantics). The rules transform
the states of the machine, and they reflect the notion of transition occurring in
traditional transition systems. A distinguished rule PM , called the main rule of
the machine, represents the starting point of the computation.

A move of a ASM, in a given state, consists of the execution of all the
rules whose conditions are true in that state. Since different updates could affect
the same location, it is necessary to impose a consistency requirement: a set of
updates is said to be consistent if it contains no pairs of updates referring to the
same location. Therefore, if the updates are consistent, the result of a move is
the transition of the machine from the current state to another; otherwise, the
computation doesn’t produce a next state. A run is a (possibly infinite) sequence
of moves: they are iterated until no more rules are applicable.

The aforementioned notions refer to the basic ASMs. However, there exist
some generalisations, e.g. Parallel ASMs and Distributed ASMs (DASMs) [15].
Parallel ASMs are basic ASMs enriched with the rule forall x with φ do P , to
express the simultaneous execution of the same ASM P over x satisfying the
condition φ. A Distributed ASM is intended as a finite number of independent
agents, each one executing its own underlying ASM: it is capable of capturing
the formalization of multiple agents acting in a distributed environment. A run,
which is defined for sequential systems as a sequence of computation steps of
a single agent, is defined as a partial order of moves of finitely many agents,
such that the three conditions of co-finiteness, sequentiality of single agents, and
coherence are satisfied. Roughly speaking, a global state corresponds to the union
of the signatures of each ASM together with interpretations of their functions.

3 MANET and Routing Protocols

Mobile Ad-hoc NETworks are networks of autonomous mobile nodes whose
topology is not predefined. Each node has a transmission radio range within
which it can transmit data to other nodes, directly. Because of the potential
movements of the nodes, the routes connecting them can change rapidly.



190 E. Covino and G. Pani

Several routing protocols have been proposed; among them, the Ad-hoc On-
demand Distance Vector (AODV) is one of the most popular. Indeed, a large
number of simulation studies are dealing with it, representing a reliable baseline
for comparison to the results of simulations executed with MOTION. Moreover,
we add two variants of AODV: NACK-based Ad-hoc On-demand Distance Vec-
tor (N-AODV, [4]), that improves the awareness that each host has about the
network topology, and Blackhole-free N-AODV (BN-AODV, [5]), that detects
the presence of malicious nodes leading to a blackhole attack.

3.1 Ad-hoc On-Demand Distance Vector (AODV)

This routing protocol has been defined in [22]: it is a reactive protocol that com-
bines two mechanisms, namely the route discovery and the route maintenance,
in order to store some knowledge about the routes into routing tables. The rout-
ing table associated with each node is a list of all the discovered (and still valid)
routes towards other nodes in the network, together with other information. In
particular, for the purposes of the present paper, an entry of the routing table
of the node i concerning a node j includes: the address of j; the last known
sequence number of j; the hop count field, expressing the distance between i and
j; and the next hop field, identifying the next node in the route to reach j.

The sequence number is an increasing number maintained by each node,
that expresses the freshness of the information about the respective node. When
an initiator wants to start a communication session towards the destination,
it checks if a route is currently stored in its routing table. If so, the protocol
ends and the communication starts. Otherwise, the initiator broadcasts a control
packet called route request (RREQ) to all its neighbors.

An RREQ packet includes the initiator address and broadcast id, the desti-
nation address, the sequence number of the destination (i.e., the latest available
information about the destination), and the hop count, initially set to 0, and
increased by each intermediate node. The pair <initiator address; broadcast id>
identifies the packet, uniquely; this implies that duplications of RREQs already
handled by nodes can be ignored.

When an intermediate node n receives an RREQ, it creates the routing table
entry for the initiator, or updates it in the fields related to the sequence number
and to the next hop. Then, the process is iterated: n checks if it knows a route
to the destination with corresponding sequence number greater than the one
contained into the RREQ (this means that its knowledge about the route is
more recent). If so, n unicasts a second control packet (the route reply, RREP)
back to the initiator. Otherwise, n updates the hop count field and broadcasts
once more the RREQ to all its neighbors.

The process successfully ends when a route to the destination is found. While
the RREP travels towards the initiator, routes are updated inside the routing
tables of the traversed nodes, creating an entry for the destination, when needed.
Once the initiator receives back the RREP, the communication can start. If the
nodes’ movements break a link (i.e., a logical link stored in a routing table is
no more available), a route maintenance is executed in order to notify the error
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and to invalidate the corresponding routes: to this end the control packet route
error (RERR) is used.

3.2 NACK-Based AODV (N-AODV)

One of the main disadvantages of the AODV protocol is the poor knowledge
that each node has about the network topology. In fact, each node n is aware
of the existence of a node m only when n receives an RREQ, either originated
by, or directed to m. In order to improve the network topology awareness, the
NACK-based AODV routing protocol has been proposed and modeled by means
of a Distributed ASM in [4].

This protocol is a variant of AODV: it adds a Not ACKnowledgment (NACK)
control packet in the route discovery phase. Whenever an RREQ originated by
n and directed to m is received by the node p that doesn’t know anything about
m, p unicasts the NACK to n. The purpose of this control packet is to state the
ignorance of p about m. In this way, n (as well as all the nodes in the path to
it) receives fresh information about the existence and the relative position of p.
Therefore, on receiving the NACK, all the nodes in the path to p add an entry
in their respective routing tables, or update the pre-existing entry. N-AODV has
been experimentally validated through simulations, showing its efficiency and
effectiveness: the nodes in the network actually improve their knowledge about
the other nodes and, in the long run, the number of RREQ decreases, with
respect to the AODV protocol.

3.3 Black Hole-Free N-AODV (BN-AODV)

All routing protocols assume the trustworthiness of each node; this implies that
MANETS are very prone to the black hole attack [26]. In AODV and N-AODV
a black hole node produces fakes RREPs, in which the sequence number is as
great as possible, so that the initiator establishes the communication with the
malicious node, and the latter can misuse or discard the received information.
The black hole can be supported by one or more colluders, that confirm the
trustworthiness of the fake RREP. The Black hole-free N-AODV protocol [5]
allows the honest nodes to intercept the black holes and the colluders, thanks to
two control packets: each intermediate node n receiving an RREP must verify
the trustworthiness of the nodes in the path followed by the RREP; to do this, n
produces a challenge packet (CHL) for the destination node, and only the latter
can produce the correct response packet (RES). If n receives RES, it sends the
RREP, otherwise the next node towards the destination is a possible black hole.

4 MOTION

4.1 Development and Behavior

As stated before, MOTION (MOdeling and simulaTIng mObile ad-hoc Net-
works) is a Java application that allows to specify the simulation parameters, to
execute the network described, and to collect the output data of the simulation.
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To define MOTION, we have used the ASM-based method consisting in devel-
opment phases, from requirements’ specification to implementation. Some envi-
ronments support this method, and among them the ASMETA (ASM mETA-
modeling) framework [2,14]. This framework is characterized by logical compo-
nents that capture the requirements by constructing the so-called ground models,
i.e. representations at high level of abstraction that can be graphically depicted.
Starting from ground models, hierarchies of intermediate models can be built by
stepwise refinements, leading to executable code: each refinement describes the
same system at a finer granularity. The framework supports both verification,
through formal proof, and validation, through simulation.

MOTION is developed within the ASMETA framework thanks to the
abstract syntax defined in the AsmM metamodel; the behavior of the MANET is
modelled using the AsmetaL language, and then the network is executed by the
AsmetaS simulator. Since AsmetaS simulates instances of the model expressed
by means of the AsmetaL, the information concerning each instance (number of
agents and their features, for instance) must be recorded into the AsmetaL file.

The executions of MOTION and ASMETA are interleaved: MOTION pro-
vides the user interface and captures the data inserted by the user, representing
the parameters of the simulation. MOTION then includes these data into the
AsmetaL file, and it runs AsmetaS. AsmetaS executes an ASM move, simulating
the behavior of the network protocol over the current data, and it records the
values of the locations in a log file, for each state. At the end of each move the
control goes back to MOTION: it gets the information about the results of the
ASM move, such as the relative position of the hosts, the sent/received packets,
and the values of waiting time, and it records them into the AsmetaL file. Then,
MOTION invokes AsmetaS for the next move. Even if this interleaved execu-
tions requires a good amount of interaction work, this is done in order to collect
the information about the evolution of the network step by step, and to use it
for the analysis of the performances and behaviour of the network itself.

At the end of the simulation, MOTION reads the final log file, parses it, and
stores the collected results in a csv file. Web pages, with the complete package,
can be found at https://sourceforge.net/projects/motion-project/.

4.2 Defining the Mobility Model

A realistic simulation of a MANET should take into account all its features.
We have decided that the movement issues, as well as the amplitude of the
radio range, are defined within the mobility model. We assume that the whole
network topology is expressed by the connections among devices, implicitly, and
for each of them we consider only its current neighborhood. More precisely, in
MOTION the network topology is expressed by an adjacency matrix C, such
that cij = 1 if i and j are neighbors, 0 otherwise, for each pair of devices i
and j. This implies that we can use concepts and properties of graph theory;
for instance, the reachability between two agents ai and aj is expressed by the
predicate isLinked(ai, aj), which evaluates to true if there exists a coherent path
from ai to aj , to false otherwise.

https://sourceforge.net/projects/motion-project/
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Within MOTION, the mobility model is implemented into a Java class that,
before executing any ASM move, updates the adjacency matrix. To this end,
each cij is randomly set to 0 or 1, according to a mobility parameter defined by
the user (see Sect. 4.4). The new values of the matrix are then set within the
AsmetaL file, so that the ASM move can be executed, accordingly.

4.3 The Abstract State Machine-Based Models

The AODV routing protocol has been formally modelled through ASMs in [6]
(Chap. 6). It is described as a set of nodes, each one representing a device. A
modified version is used in MOTION, that takes into consideration the parameter
Timeout (that is, the waiting time for the route-reply packet). The high-level
definition of MOTION for AODV is:

MAIN RULE AODV =
forall a ∈ Nodes do AODVSPEC(a)

where

AODVSPEC(a) =
forall dest ∈ Nodes with dest �= a do

if WaitingForRouteTo(a, dest) then
if Timeout(a, dest) > 0 then

Timeout(a, dest) := Timeout(a, dest)-1
else

WaitingForRouteTo(a, dest) := false
if WishToInitiate(a) then PREPARECOMM
if not Empty(Message) then ROUTER

If the device needs to start a communication (i.e. the predicate WishToIni-
tiate evaluates to true), then PREPARECOMM is called. The predicate Wait-
ingForRouteTo expresses that the discovery process previously started is still
running; in this case, if the waiting time for RREP is not expired (i.e., Time-
out() > 0), the time-counter is decreased. Finally, if the device has received a
message (either RREQ, RREP or RERR), ROUTER is called, with

ROUTER = ProcessRouteReq
ProcessRouteRep
ProcessRouteErr

where each process expresses the behavior of the device, depending on the type
of the message received.

The main difference between the previous model and the ASM model for N-
AODV concerns ROUTER, that includes the call to PROCESS-NACK, in order
to unicast the NACK packet, if needed.
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The BN-AODV model is more structured, because it has to describe the
behavior of three different kinds of agents: honest hosts, black holes, and collud-
ers. So, the main rule has the form:

MAIN RULE BN-AODV=
forall a ∈ Blackhole do BLACKHOLESPEC(a)
forall a ∈ Colluder do COLLUDERSPEC(a)
forall a ∈ Honest do HONESTSPEC(a)

where HONESTSPEC describes the behavior of the honest nodes, and it’s anal-
ogous to AODVSPEC. BLACKHOLESPEC and COLLUDERSPEC are the spec-
ifications for the non-honest nodes and the colluders, respectively. Moreover,
ROUTER for the honest nodes must verify the trustworthiness of the received
RREPs.

Thanks to the formalization of the protocols, some correctness properties
have been proved in the past, such as the starvation freeness for the AODV
protocol, the properness of the packet (either NACK or RREP) received back
by the initiator of any communication, when it is not isolated for N-AODV, and
the capability to intercept blackhole attacks for BN-AODV.

4.4 Specific Behavior of the Tool

A simulation in MOTION is performed in a number of sessions established by
the user (10 sessions, Fig. 1), each of which has a duration (50 moves, Fig. 1);
during each session, the MANET includes a number of devices defined by the
user, that depends on the specific evolution of the network (due to movements,
some of them can be disconnected). Moreover, during each session, each device is
the initiator for a number of attempts for establishing a communication, each of
them towards a destination different from the initiator itself: the user expresses
the probability that each device acts as an initiator by setting the parameter
Initiator Probability (10%, Fig. 1). Thanks to the intrinsic parallelism in the
execution of the ASM’s rules, more attempts can be simultaneously executed. A
communication attempt is considered successful if the initiator receives an RREP
packet within the waiting time expressed by the parameter RREP Timeout ;
otherwise, the attempt is considered failed.

In MOTION, the devices mobility is defined by the user by means of two
parameters, namely Initial connectivity and Mobility level. The former defines
the initial topology of the MANET: it expresses the probability that each device
is directly linked to any other. During the simulation, the devices mobility is
expressed by the random redefinition of the values of the adjacency matrix C.
More precisely, for each pair of devices <ai, aj>, and for each move of the ASM,
the values of C are changed with a probability expressed by Mobility level.
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Fig. 1. MOTION user interface for AODV protocol

When the BN-AODV routing protocol is simulated, the MOTION user inter-
face includes the definition of the number of black holes and colluders, and two
parameters establishing the increment of the fake sequence number produced by
the black holes. Figure 1 shows the current state of the simulation in the panel
under the two buttons START and STOP.

From the ASM perspective, there are two different machines, both called by
the ASMETA’s main rule. The first one is OBSERVERPROGRAM: it is not part
of the MANET, but it is used in order to manage the execution. It initializes
the locations and data structures for all devices, manages the mobility (set-
ting the initial topology and resetting the adjacency matrix at each move), and
updates the counter for the time expiration. The second machine, called by the
main rule, is the model of the devices’ behavior. Currently, MOTION allows the
users to study AODV, N-AODV, and BN-AODV; for all of them, the MANET
is modeled by means of a Distributed ASM. In both AODV and N-AODV all
the nodes behave in the same way, described by the respective DASM, so the
machine specifying the protocol is called; at each move the machine randomly
decides if the current agent will initiate new communication attempts by invok-
ing PREPARECOMM, then it acts as a router by processing the proper control
packets (with ROUTER).
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5 Conclusions and Future Work

Mobile Ad-hoc NETwork is a technology used to perform wireless communica-
tions among mobile devices in absence of physical infrastructure. It is widely used
in the context of smart mobile computing, cloud computing and Cyber Physi-
cal Systems. Several routing protocols have been developed, and problems have
been raised about the measurement of performances of these networks, and also
about the formal analysis of qualities like responsiveness, robustness, correct-
ness. In order to address these problems, both simulators and formal description
methods are needed. The former allow us to measure performance through direct
simulation, but they aren’t suitable to describe the properties of the networks.
On the other hand, formal methods can do it, but they can hardly be used for
studying performance properties.

In this paper, we have introduced MOTION, a Java application in which
MANET’s are modeled as an Abstract State Machine by means of the AsmetaL
representation. This representation can be used to prove formal properties of
the network, as well as can be simulated by the simulation engine AsmentaS.
MOTION can collect the results of this simulation, that can be used for perfor-
mances’ analysis. We have validated MOTION on the Ad-hoc On-Demand Vec-
tor protocol and on two of its variants (concerning the host’s network topology
awareness and the ability to intercept blackhole attacks). Note that MOTION
itself has been developed within the ASMETA framework, thanks to the abstract
syntax defined in the AsmM metamodel.

A sensible improvement of MOTION could be the definition of a new inter-
face, in which the dynamic evolution of the network, during the computations,
is shown (as in [23]). Moreover, a complexity analysis of the network’s protocols
and the related algorithms could be performed, when the network is represented
by means of ASM’s. Finally, a change of the structure that represents the connec-
tivity among the nodes (from adjacency matrix to adjacency list, for instance),
could lead to a dramatic improvement of the resource-consumption during the
simulation of the behaviour of the network.
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Abstract. Abstract State Machines work with algorithms on the natu-
ral abstraction level. In this paper, we discuss the notion of the natural
abstraction level of an algorithm and how ASM manage to capture this
abstraction level. We will look into three areas of algorithms: the algo-
rithm execution, the algorithm description, and the algorithm semantics.
We conclude that ASM capture the natural abstraction level of the algo-
rithm execution, but not necessarily of the algorithm description. ASM
do also capture the natural abstraction level of execution semantics.
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1 Introduction

Abstract state machines (ASM) [9], originally called Evolving algebras, [22]
enable a high-level and abstract description of computations. ASM can be consid-
ered formalized pseudo-code, such that ASM programs are readable even without
much introduction. The original purpose of ASM was to improve on the low-level
abstraction provided by Turing machines [43], in order to be able to reason bet-
ter about computability. This original purpose was achieved with the sequential
ASM thesis [23]. It was later extended with an ASM thesis for parallel [3,5,40]
and distributed computations [13].

From there, ASM were developed into different directions. Egon Börger under-
stood very early that ASM are not only a mathematical tool for computability, but
also a tool for system design and analysis. For the practical applicability, several
more features were needed for ASM beyond [23], for example time [34] and dis-
tributed computations [38].

Another major ingredient for system design is a method to design systems,
in this case the ground model approach [10]. This approach enables step-wise
systems design, keeping correctness all the way to the final system.

The theoretical track of ASM has achieved a lot of success, and even though
there are still details to be sorted out [36,38], this work is well under way. The
major difference between the Turing machines approach and ASM is that ASM
promise to work on the natural abstraction level for the computation.
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It is of essence for every engineer to work on the right level of abstraction, as
problem descriptions are simpler, and solutions are understandable at the right
level of abstraction. Sometimes, solutions introduce high level of complexity by
being at the wrong level of abstraction [15].

This paper tries to review the concept of abstraction level and identifies the
meaning of natural abstraction in three dimensions: algorithm execution, algo-
rithm description, and algorithm (language) semantics. We focus on sequential
algorithms, although the conclusions also apply to other kinds of algorithms.

This paper starts with a discussion of the concept of algorithm in Sect. 2
before introducing abstract state machines in Sect. 3. Then we look into abstrac-
tion levels in executions in Sect. 4, in descriptions in Sect. 5, and in language
semantics in Sect. 6. We conclude in Sect. 7.

2 What is an Algorithm?

Before looking into abstraction levels, we need to agree what an algorithm is.
Harold Stone proposes the following definition “...any sequence of instructions
that can be obeyed by a robot, is called an algorithm” (p. 4) [42]. Boolos et al.
offers a similar definition in [7]: “... explicit instructions such that they could be
followed by a computing machine”.

This definition includes computer programs, bureaucratic procedures and
cook-book recipes. Often, the condition that the algorithm stops eventually is
included. In our context, also infinite loops are permitted because we also want
to include server programs. Besides, termination is undecidable. Please note that
the notion of algorithm relies on a basic set of elementary operations or functions.

Turing machines formalize this informal definition. Gurevich writes in [23]:
“. . . Turing’s informal argument in favor of his thesis justifies a stronger thesis:
every algorithm can be simulated by a Turing machine . . . according to Savage
[1987], an algorithm is a computational process defined by a Turing machines”.

From the considerations so far, we conclude that an algorithm has a descrip-
tion (“a sequence of instructions”) and an execution (“a computational pro-
cess”). It is the semantics of the description that leads to the execution.

As an example, let’s look at the Euclidean algorithm which computes the
greatest common divisor gcd from two natural numbers n1 and n2. It can be
expressed in ASM as follows.

IF n1 > n2 THEN
DO IN-PARALLEL

n1 := n2

n2 := n1

ENDDO
ELSEIF n1 = 0 THEN

gcd := n2

ELSE
n2 := n2 − n1

ENDIF
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2.1 Algorithm Execution

For the execution of the Euclidean algorithm we have to know that the parallel
execution of assignments is the standard mode in ASM [9]. The ASM code for
the Euclidean algorithm describes one step of the algorithm, and it is repeated
until there are no more changes.

A sample execution of the ASM algorithm for the numbers n1 = 1071
and n2 = 462 leads to the following sequence of pairs (n1, n2): (1071, 462),
(462, 1071), (462, 609), (462, 147), (147, 462), (147, 315), (147, 168), (147, 21),
(21, 147), (21, 126), (21, 105), (21, 84), (21, 63), (21, 42), (21, 21), (21, 0), (0, 21).
The result is then gcd = 21. Please note that gcd would be present in all states.

We will look at the execution of algorithms in Sect. 4.

2.2 Algorithm Description

Algorithms can be expressed in many kinds of notation, including natural lan-
guages, pseudo code, flowcharts, programming languages or control tables.

When we use Java to express the same algorithm, it looks something like that.
Please note the extra temporary variable t for swapping n1 and n2. In addition,
there is an enclosing while loop which is not needed in ASM. Java does not
provide natural numbers as types; we silently assume that the parameters are
non-negative.

public static int gcd(int n1, int n2) {
while (n1 > 0) {

if (n1 > n2) {
int t = n1;
n1 = n2;
n2 = t;

} else {
n2 = n2 − n1;

}
}
return n2;

}
Now we look at a version of the algorithm in Lisp. The solution is recursive

as is customary in Lisp. Again, we assume that the typing of the parameters is
correct.

(defun gcd (n1 n2)
(if (= n1 0)

n2
(if (> n1 n2)

(gcd n2 n1)
(gcd n1 (- n2 n1))

)
)
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Finally, we can also use Prolog for the algorithm as follows. Here, we need to
use an extra parameter for the result. This solution is again recursive and the
typing is assumed to be correct.

gcd(0, N2, Result):- !, N2=Result.
gcd(N1, N2, Result):- N1 > N2, gcd(N2, N1, Result).
gcd(N1, N2, Result):- N1 =< N2, N2New is N2-N1, gcd(N1, N2New, Result).

We will look at the description (languages) of algorithms in Sect. 5.

2.3 Algorithm Semantics

All possible executions of an algorithm are the semantics of the algorithm. This
means that the semantics of the algorithm connects the description of the algo-
rithm with the execution of the algorithm. More precisely, the description is
written in a language, and the semantics of the language provides the execu-
tion(s), see also [30] and [19].

This way, the semantics of the algorithm description is implied by the seman-
tics of the language which is used for the description. There is not a semantics
for each and every description, but a general semantics for the language of the
descriptions. Therefore, algorithm semantics is in fact language semantics.

We will look at semantics in Sect. 6.

3 Abstract State Machines

The central concepts in abstract state machines (ASMs) are (abstract) states
with locations and transition rules with updates. Their definitions can be found
in many sources, including, but not limited to [2,4,6,8,9,12].

An abstract state machine (ASM) program defines abstract states and a
transition rule that specifies how the ASM transitions through its states. ASM
states are defined using a signature of names (function symbols), where each
name has an arity. This allows to construct expressions using the names in the
usual way. ASM names can be typed in the usual way.

The states are then interpretations of the names over a base set of values.
Each name with arity zero is interpreted as a single element of the base set,
while each name with arity n is interpreted as an n-ary function. Expressions
are interpreted recursively.

ASM names are classified into static names whose interpretation does not
change (e.g. True), and dynamic names which are subject to updates. Each
ASM signature includes the predefined static names True, False and Undefined,
interpreted as three distinct values. All ASM functions are total, and the special
value Undefined is used to model partial functions.
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An ASM transition rule (program) looks like pseudo-code and can be read
without further explanation. The rules include assignments, if, forall, and some
other statements. We refer to [9] for a formal definition.

The basic unit of change is an assignment, written as loc := e. Executing this
assignment means to change the interpretation of the location loc to the value
of the expression e in the given state.

Locations (loc = f(e1, . . . , en)) are constructed of an n-ary name (f) and n
expressions ei. More precisely, a unary function symbol u is a location, and any
function symbol f with a number of locations li as arguments of f is a location
as well. In each state, each location has a value.

An update is given by two locations, one on the right-hand side and one on
the left-hand-side. The value of the left-hand side location is replaced by the
value of the right-hand side location, such that lhs = rhs will be true in the new
state, unless the value of rhs is also changed in the state change. Formally, the
assignment creates an update, which is a pair of a location and a value. All the
applicable updates are collected into an update set, thereby implementing the
parallel execution mode. Applying the update set to the current state (executing
it) leads to the changes in the next state.

An ASM run starts with an initial state, being a state as defined above. For
each state, the transition rule produces an update set which leads to the next
state, thereby creating a sequence of states. Each state change (or step or move)
updates the interpretation of its symbols given by a set of updates according to
the assignments used.

4 Executing Algorithms

For the execution of algorithms, we need to look at the runtime, which is basically
the same as operational semantics [18,26,35]. Runtime has two aspects, namely
runtime structure including a set of initial states and runtime changes (steps)
[37,39]. These same aspects are also identified in the sequential time postulate
in [23], which postulates the existence of a set of states including initial states,
and a one-step transformation function between states. We look into states and
steps in the sequel.

4.1 Runtime Structure (States)

There is agreement between the theoretical [23]1 and the practical [39] under-
standing of runtime states as follows.

– States have a structure (States are first-order structures).
– The possible runtime states are fixed (All states have the same vocabulary

and no transformations change the base set of states).
– There are several ways to implement states (They are closed under isomor-

phisms).

1 This is given by the abstract state postulate.
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The difference between theoretical and practical runtime states is that states are
object structures in [39], while they are value structures in [23]. This difference is
not serious, as objects can be considered as object IDs, and properties of objects
are then functions over objects IDs. As usual, methods of objects just get an
implicit parameter which is their enclosing object.

There are two perspectives to runtime structure, namely low-level (defined
by the machine), and high-level (defined by the language). Low-level structure
is given by the general von-Neumann architecture [33] which involves a CPU,
a memory unit and input and output devices. High-level structure depends on
the language used. As an example, for Java the runtime structure includes a
set of objects, a program counter, threads, a stack, and exception objects [29].
There is also a part of the high-level runtime structure that depends on the
algorithm itself, for example objects of Java classes. For Prolog, the runtime
structure includes a (local) stack with environments and choice points, a heap
(global stack) with terms, and a trail with variable bindings as described in the
Warren Abstract Machine [44].

Of course, a computation cannot be run on an abstract or a virtual machine,
some real (physical) machine has to be there to do the work. For example,
the Java virtual machine (JVM) is typically implemented on top of a general-
purpose machine, which again is based on machine code, which again is based on
circuits, which again is based on electronics, which again is based on electrons,
which again is based on quarks. A similar argument can be made for ASM,
where the semantics of ASM has to be implemented on a standard computer.
In ASM, a state change is done as one step, whereas in an implementation on a
real computer, it would amount to a series of steps.

Which of these levels is the natural level for the algorithm? We can safely
assume that the natural level is the highest of them, in the JVM example it would
be the level of JVM operations. This means that the language of formulating
the algorithm is essential, as the runtime structure can be different for different
languages. Writing the same algorithm in Prolog versus in Java would imply
serious changes in the runtime, i.e. the execution of the algorithm is different.

Although it is easy to forget, the runtime structure also needs a specification
of the initial runtime state.

We see that ASMs provide the flexibility to use or define structures that
fit the user’s natural understanding of the algorithm. ASM makes explicit the
implicit runtime elements of typical programming languages, e.g. the program
counter. This is possible because ASM does not have any fixed runtime elements
implied by the language.

4.2 Runtime Changes

Based on the runtime structure, runtime changes define what happens at runtime
(dynamics), i.e. what is a computation step and what changes are done. As the
runtime structure is given, only the changes are relevant. This relates to a finite
set of changes on locations in the runtime structure, as already defined in [23] by
the bounded exploration postulate. Bounded exploration has not been important
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for practical considerations of runtime structure, as boundedness is implied by
the underlying machine. In practical terms, ways to express the changes have
been more important.

Minsky [31] has demonstrated that Turing completeness requires only four
instruction types: conditional GOTO, unconditional GOTO, assignment, and
HALT. There is one implied instruction which is sequential composition. Nowa-
days, GOTO is considered bad and related to “spaghetti code”, so ASM intro-
duce the same level of Turing completeness using structured programming with
update (assignment), parallel composition, and if-then-else. For ease of writing,
also a let and a forall are provided. In ASM, sequential composition is not avail-
able because there is no predefined program counter. HALT is implicit as the
execution stops when there are no more changes, i.e. the update set is empty2.

The ASM algorithm could also be written using different syntax, for example
traditional programming language syntax. Using Java syntax, we can express the
ASM Euclidean algorithm (syntactically) as follows. Warning: This is not Java,
just Java syntax for ASM.

if (n1 > n2) {
n1 = n2;
n2 = n1;

} else if (n1 == 0) {
gcd = n2;

} else {
n2 = n2 − n1;

}
Remember that the execution mode is parallel here. We have changed the

names such that they fit the Java conventions.
This formulation reveals that the syntax is not too important for ASM and

it has not been focused upon much. Instead, constructs in ASM are often con-
sidered abstract syntax that can be written in different ways, as is customary in
mathematics. In the abstract syntax of ASM, we need locations, updates, choices
and parallel blocks.

In each state, the complete ASM program is executed. This deviates slightly
from the idea of regular programming languages, where only the current state-
ment is executed, identified by the program counter. For example, during the
execution of the Java code as given in Sect. 1, the program counter keeps track
of the current code position during execution. In addition, there is an extra
temporary variable t for the swap between n1 and n2.

The execution in Lisp includes a number of function activation records to keep
track of all the recursive calls. We have a similar situation with Prolog execution,
which adds a number of variable unifications into the runtime structure.

2 In some sense, this turns HALT from a syntactic element into a semantic element.
Minsky would have been able to avoid the HALT if there was a rule that the execution
stops when moving (GOTO) out of the program.
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In-place state transformations can also be expressed by transformation lan-
guages like QVT [16] or ATL [25]. We do not go into more detail of those
languages, as they do not add more possibilities than the languages we already
discussed.

Operational semantics languages also provide possibilities to express runtime
changes. The Euclidean algorithms can be expressed using SOS [35] as follows.

〈n1 > n2, s〉 ⇒ true

(s) −→ (s � {n1 �→ n2, n2 �→ n1})

〈n1, s〉 ⇒ 0
(s) −→ (s � {gcd �→ n2})

〈n1 > n2, s〉 ⇒ false, 〈n1 > 0, s〉 ⇒ true

(s) −→ (s � {n2 �→ n2 − n1})

In this situation, ASM are an effective formalization of pseudo-code, as they
are dedicated to describing one transition only3.

What is needed for the runtime changes is navigation of the runtime structure
for reading and writing of locations. In SOS [35] and also in ASM, the current
program is outside the runtime state. That is possible in ASM, as the program
is constant and it is always applied as one. SOS wants to keep the current
execution position, but does not use a program counter. Instead, the program
is a parameter of the SOS rules. Changing the PC amounts to changing the
program for the next runtime state.

We see that ASM allow an explicit description of the runtime changes based
on the explicit description of the runtime structure. This works for all kinds of
runtime changes, be it program executions or movements of knitting needles. If
the algorithm includes a sequence of actions, advancing through the sequence
step by step can be considered the natural level of abstraction, such that an
implicit program counter would be needed. This is standard in imperative pro-
gramming languages, and can also be provided by extended ASM variants. We
discuss this aspect of the user perspective in the next section.

5 Describing Algorithms

When describing an algorithm, the focus is not on the execution of the algorithm,
but the understanding on the part of the user. Algorithms are ubiquitous, and we
find them nearly in all aspects of life. What is the natural level of abstraction in
this case? In a first attempt, we distinguish three abstraction levels of algorithm
descriptions, see also [41].

High-level descriptions are given by prose and ignore implementation details
like a UML use case description.

3 There are also advanced ASM concepts to handle structured executions, often called
Turbo-ASM [9].



What Is the Natural Abstraction Level of an Algorithm? 207

An implementation description is still prose and details how the high-level
description is turned into something executable, for example as UML classes
and activity diagrams.

A formal description gives all the detail and makes the algorithm executable,
for example in Java.

It is possible to have an executable understanding of all these levels, but they
differ in the level of abstraction and detail. ASMs contribute to lifting the level
of formality and executability even to the high-level descriptions. The same is
achieved with model-driven development, see Sect. 6.

One might argue that ASM fit the bill again, as they are proven to provide
the natural level of abstraction for algorithms as discussed in Sect. 4. However,
this is only true from the point of view of the machine. In many cases, this
is the same point of view as for the designer and the user. As an example,
computer scientists often think of algorithms in terms of the machine, and there
the argument with ASM applies.

However, many other users do not look at algorithms from the point of view
of the machine. Examples are algorithms that describe recipes, or knitting algo-
rithms, or algorithms to calculate loan security, or how to assemble a piece of
furniture, see Fig. 1. Typically, there are experts that know how to cook or to
knit, and they will describe their algorithms in a way related to their expertise.
This is usually connected to the area of domain-specific languages (DSL) [20].

Fig. 1. Different sample algorithm descriptions

There is extensive research in the area of DSL, and the general result is that
a good DSL captures the concepts of the domain in question, rather than the
concepts of the underlying machine. Instead, there is a transformation process
from the DSL to some lower-level language in terms of model-drivel development
(MDD) [1], which is standardized in the model-driven architecture (MDA) of
OMG [27]. ASM can be related here as a transformation target language.

ASM cannot and will not be the universal description language, because it
is impossible to have just one language for all purposes. The language with the
natural level of abstraction has to be found and developed in the domain where it
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is used, together with its users. The examples in Fig. 1 are algorithm descriptions
in DSLs that are not readily captured by ASM syntax.

Of course, ASMs were never intended to replace languages, especially not
their concrete syntax. However, ASMs can be used to take the abstract syntax
of a language and define its semantics. This has been done with UML state
diagrams [11], the programming language Java [14], the specification language
SDL [21], and could also be done with the music sheet and a knitting pattern.
We discuss this aspect in the next section.

Even for regular algorithms, ASM are missing several essential language fea-
tures of modern languages, for example classes, exceptions, namespaces, gener-
ics, inheritance, and iterators. These features might not be needed for simple
algorithms, but they are essential for system-level complex algorithms.

We see that ASMs do not provide the description of algorithms in a concrete
syntax on the natural level of abstraction in the same way as DSLs. Of course,
this is not the intention of ASMs. Using ASM, we can define the behavior, as
discussed in Sect. 4. We look at how ASMs can define languages (DSLs) in the
next section.

6 Language Semantics

In connection with DSLs, there is a need to describe languages formally. How else
would a DSL come to life if not using a description. Typically, meta-languages
are used to describe languages, see for example the well-known OMG stack of
modelling languages in Fig. 2.

Level Example Description

M3 MOF
Defines a language for specifying

metamodels

M2 UML
Defines a language for specifying

models

M1 model of a bank
Defines a language that describes

a semantic domain

M0
a runtime state Contains runtime instances of the

of the bank model model elements defined in the model

Fig. 2. OMG stack

In the OMG stack, specifications (descriptions of algorithms - Sect. 5) are
placed on level M1, while the language they are written in is on level M2. An
algorithm written in ASM would be on M1, while ASM itself is on M2. The
execution of the algorithm (Sect. 4) is on the base level M0. The level M3 is
dedicated to meta-languages, i.e. languages that are used to describe languages.
Often, meta-languages are already languages on their own, such they could be
placed both on M2 and on M3. The definition of the meta-languages themselves
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is done using the same meta-languages, where the language definition languages
used are found on M3, while the languages defined are on M2 (bootstrapping).

Is ASM a good language to describe languages? To answer this question, we
have to consider what it takes to define a language, i.e. which meta-languages
we need. As it turns out, there are several elements that need to be described
for a language, namely abstract syntax (also called structure), concrete syntax,
constraints being a part of structure, and semantics (translational or opera-
tional) [24,32], see Fig. 3. We will consider these aspects one by one.

Fig. 3. Language aspects

6.1 Structure (Abstract Syntax)

The abstract syntax of a language contains the concepts of the language and
their relationships with each other. Class diagrams are the method of choice to
describe abstract syntax, as shown in MOF [17]. Even though ASM also allow
describing structure, class diagrams are not supported in ASM. However, it is
possible to use MOF diagrams to show ASM structure definitions. This way,
MOF gets an ASM semantics. It should be noted that abstract syntax typically
entails an abstract syntax tree, and tree structures can be expressed using ASM.

This way, ASM has support for the abstract syntax of structure definitions,
but not the concrete syntax as given by MOF. Moreover, classes with inheritance
are not supported by ASM, which is mainly a typing issue.

A second part of Structure is related to constraints, often expressed as OCL
formulas. Logical formulas are well within the capabilities of ASM, so this part
would be possible to express. The main part of the logical formulas is a way to
navigate the syntax tree, and this is commonly done using expressions. More
advanced DSLs for name resolution [28] are beyond the capacities of ASM. Still
the semantics of all these languages can be formalized using ASM.

6.2 (Concrete) Syntax

Concrete syntax has two main forms, namely textual syntax and graphical syn-
tax. Textual syntax is commonly given by grammars, which ASMs do not pro-
vide. Again, using grammars for analysis will finally lead to syntax trees, which
can be expressed by ASM. Still, the notation of choice in this case would be
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grammars. Graphical syntax could be given by graph grammars, which again
cannot be written in ASM. A similar argument as before applies also here.

As for concrete syntax, ASMs do not provide the concrete syntax on the
natural abstraction level. However, the semantics of grammars can be described
using ASM.

6.3 Semantics

We consider two essential kinds of semantics, translational semantics and exe-
cution semantics (operational semantics), see [32] for a more detailed discussion
of other kinds of semantics.

Translational Semantics refers to semantics that is given as a translation into
a languages which has a given semantics already. Semantically, a translation is a
simple function and it could be given by various forms of function definition. It
has become customary to define transformations between abstract syntax, such
that the connection between the language constructs becomes visible. In princi-
ple, ASM can define functions, but in order to define structural transformations,
more dedicated languages should be used [16,25].

Dedicated transformation languages allow the specification of input and out-
put patterns for the transformation. In addition, templates can be used to specify
the result of the transformation. The semantics of transformation languages is
often a function or a series of functions.

As with the previous language definition elements, ASM are able to capture
the aspects semantically, but do not provide the syntax on the natural abstrac-
tion level.

Execution Semantics describes how a program is executed at runtime. It
includes the runtime structure and the runtime changes as discussed in Sect. 4.
ASM are very well suited to describe runtime with both runtime state and run-
time changes. This is already discussed in Sect. 4. This is also the way that
language semantics is given using ASM, see for example [14] and [21].

There are only few dedicated languages for the definition of execution seman-
tics, and ASM provides all features that are needed. For application of ASM in
an object-oriented language definition context, where both the language struc-
ture and the runtime environment are object-oriented, the availability of classes
and inheritance in ASM would be an advantage.

SOS [35] is a DSL for the description of execution semantics. The example
of SOS in Sect. 4 shows that its expressive power is comparable to ASM.

6.4 Summary

ASM shines for the formulation of execution semantics on the natural level of
abstraction, which relates very well to its power in describing algorithm execu-
tions. This implies that the semantics of all meta-languages can be formalized
using ASM. On the syntax side, DSLs are on a more natural abstraction level.
The same applies to transformations.
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7 Conclusion

We have considered the abstraction level of Abstract State Machines and whether
the ASM capture the natural abstraction level of an algorithm. We have looked
into three aspects of natural abstraction level, namely abstraction of executions,
abstraction of descriptions, and abstraction of language semantics.

As it turns out, ASM are on the correct level of abstraction for algorithm
execution, which is already established in [23]. The consideration of runtime
environments brings the same result from a different perspective.

For the description of algorithms, ASMs cannot provide the correct abstrac-
tion level, as this depends on the application domain of the algorithm. Domain-
specific languages are the way to provide such good descriptions, and no single
language can provide the correct abstraction level.

This leads to the discussion how languages can be formalized, and whether
ASM are on a natural abstraction level as a meta-language. Language design
has several areas, and ASM are not on the right abstraction level for abstract
syntax and concrete syntax. ASM can be used for some aspects of constraints
and of transformation semantics. However, the strength of ASM is that it is on
the natural abstraction level for operational semantics, which essentially is the
same as repeating that ASM are on the natural abstraction level for algorithm
execution.

When we connect these results to the OMG modelling levels as presented
in Fig. 2, then ASM is strong on level M0 (executions), and not strong on level
M1 (descriptions). On level M2, the strength of ASM is again on the execution
semantics side, i.e. the connection of the description with the executions. We
can interpret this such that ASM is a semantic language with little concern for
syntax. It provides support to explicitly capture executions on the correct level of
abstraction, and it avoids predefined execution patterns like a program counter.

This way, ASMs give just the right level of freedom for describing all execution
situations on the natural level of abstraction.
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Abstract. Safety-critical systems require development methods and
processes that lead to provably correct systems in order to prevent catas-
trophic consequences due to system failure or unsafe operation. The use
of models and formal analysis techniques is highly demanded both at
design-time, to guarantee safety and other desired qualities already at
the early stages of the system development, and at runtime, to address
requirements assurance during the system operational stage.

In this paper, we present the modeling features and analysis tech-
niques supported by ASMETA (ASM mETAmodeling), a set of tools for
the Abstract State Machines formal method. We show how the model-
ing and analysis approaches in ASMETA can be used during the design,
development, and operation phases of the assurance process for safety-
critical systems, and we illustrate the advantages of integrated use of
tools as that provided by ASMETA.

1 Introduction

Failures of safety-critical systems could have potentially large and catastrophic
consequences, such as human hazards or even loss of human life, damage to
the environment, or economic disasters. There are many well-known examples
of critical failures in application areas such as medical devices, aircraft flight
control, weapons, and nuclear systems [40,41].

To assure safe operation and prevent catastrophic consequences of system
failure, safety-critical systems need development methods and processes that lead
to provably correct systems. Rigorous development processes require the use of
formal methods, which can guarantee, thanks to their mathematical foundation,
model preciseness, and properties assurance.
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Fig. 1. Assurance process during system’s life cycle

However, modern safety-critical software systems usually include physical
systems and humans in the loop, as for example Cyber-Physical Systems (CPSs),
and, therefore, “system safety” is not only “software safety” but may depend
on the use of the software within its untrusted and unreliable environment.
Reproducing and validating real usage scenarios of such systems at design- or
at development- time is not always possible. Their behavior under certain cir-
cumstances cannot be completely validated without deploying them in a real
environment, where all relevant uncertainties and unknowns caused by the close
interactions of the system with their users and the environment can be detected
and resolved [28,41]. Therefore, an important aspect of the software engineering
process for safety-critical systems is providing evidence that the requirements are
satisfied by the system during the entire system’s life cycle, from inception to
and throughout operation [49]. As envisioned by the Models@run.time research
community, the use of models and formal analysis techniques is fundamental at
design-time to guarantee reliability and desired qualities already at the early
stages of the system development, but also at runtime to address requirements
assurance during the system operational stage.

Providing assurances that a system complies with its requirements demands
for an analysis process spanning the whole life cycle of the system. Figure 1 out-
lines such a process, showing the three main phases of Design, Development,
and Operation of a system life cycle. During the system development phase,
models created, validated, and verified during the design phase are eventually
used to derive correct-by-construction code/artifacts of the system and/or to
check that the developed system conforms to its model(s). During the opera-
tion phase, models introduced at design-time are executed in tandem with the
system to perform analysis at runtime. In this assurance process, stakeholders
and the system jointly derive and integrate new evidence and arguments for
analysis (Δ); system requirements and models are eventually adapted according
to the collected knowledge. Hence, requirements and models evolve accordingly
throughout the system life cycle.
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This assurance process requires the availability of formal approaches having
specific characteristics in order to cover all the three phases: models should pos-
sibly be executable for high-level design validation and endowed with properties
verification mechanisms; operational approaches are more adequate than denota-
tional ones to support (automatic) code generation from models and model-based
testing; state-based methods are suitable for co-simulation between model and
code and for checking state conformance between model state and code state
at runtime. In principle, different methods and tools can be used in the three
phases; however, the integrated use of different tools around the same formal
method is much more convenient than having different tools working on input
models with their own languages.

This article presents, in a unified manner, the distinctive modeling features
and analysis techniques supported by ASMETA (ASM mETAmodeling) [13,17],
a modeling and analysis framework based on the formal method Abstract State
Machines (ASMs) [26,27], and how they can be used in the three phases of the
assurance process (see Fig. 1). ASMETA adopts a set of modeling languages and
tools for not only specifying the executable behavior of a system but also for
checking properties of interest, specifying and executing validation scenarios,
generating prototype code, etc. Moreover, runtime validation and verification
techniques have been recently developed as part of ASMETA to allow runtime
assurance and enforcement of system safety assertions.

The remainder of this article is organized as follows. Section 2 explains the
origin of the ASMETA project, recalls some basic concepts of the ASM method,
and overviews the ASMETA tools in the light of the assurance process. The
subsequent sections describe analysis techniques and associated tooling strategies
supported by ASMETA for the safety assurance process: Sect. 3 for the design
phase, Sect. 4 for the development phase, and Sect. 5 for the operation phase.
Section 6 concludes the paper and outlines future research directions.

2 The ASMETA Approach

This section recalls the origin of the ASMETA project [17] and the basic concepts
of the ASM method it is based on; we also overview the set of tools in the light
of the assurance process.

2.1 Project Description

The ASMETA project started roughly in 2004 with the goal of overcoming the
lack of tools supporting the ASMs. The formal approach had already shown
to be widely used for the specification and verification of a number of software
systems and in different application domains (see the survey of the ASM research
in [27]); however, the lack of tools supporting the ASM method was perceived
as a limitation, and there was skepticism regarding its use in practice.
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The main goal when we started the ASMETA project, encouraged by the
Egon Börger suggestion, was to develop a textual notation for encoding ASM
models. We exploited the (at that time) novel Model-driven Engineering (MDE)
approach [45] to develop an abstract syntax of a modeling language for ASMs [36]
in terms of a metamodel, and to derive from it a user-facing textual notation
to edit ASM models. Then, from the ASM metamodel – called Abstract State
Machine Metamodel (AsmM) – and by exploiting the runtime support for models
and model transformation facility of the open-source Eclipse-based MDE IDE
EMF, ASMETA has been progressively developed till now as an Eclipse-based
set of tools for ASM model editing, visualization, simulation, validation, property
verification, and model-based testing [13].

In order to support a variety of analysis activities on ASM models, ASMETA
integrates different external tools, such as the NuSMV model checker for per-
forming property verification and SMT solvers to support correct model refine-
ment verification and runtime verification. To this purpose, ASMETA mainly
supports a black-box model composition strategy based on semantic map-
ping [35,39], i.e., model transformations realize semantic mappings from ASM
models (edited using the textual user-facing language AsmetaL) to the input for-
malism of the target analysis tool depending on the purpose of the analysis, and
then lift the analysis results back to the ASM level.

ASMETA is widely used for research purposes (also by groups different from
the development teams [1,14,19,48]) and as teaching support in formal methods
courses at the universities of Milan and Bergamo in Italy.

Case Studies. ASMETA has been applied to different case studies in several
application domains; moreover, a wide repository of examples, many of which
are benchmarks presented by Egon Börger in his dissemination work on the
ASM method, are available on line1. Specifically, ASMETA has been applied
in the context of medical devices (PillBox [20], hemodialysis device [3], ambly-
opia diagnosis [2], PHD Protocol [21]), software control systems (Landing Gear
System [12], Automotive Software-Intensive Systems [5], Hybrid European Rail
Traffic Management System [37]), cloud- [14] and service-based systems [42,43],
Self-adaptive systems [15,16].

2.2 Abstract State Machines: Background Concepts

The computational model at the base of the ASMETA framework is that of the
Abstract State Machines (ASMs) formal method. It was originally introduced by
Yuri Gurevich as Evolving Algebras [38], but it was Egon Börger who renamed
the approach as ASMs – viewed as an extension of Finite State Machines (FSMs)
–, and disseminated it as a method for the high-level design and analysis of
computing systems [26,27].

ASM states replace unstructured FSM control states by algebraic structures,
i.e., domains of objects with functions and predicates defined on them. An ASM
location, defined as the pair (function-name, list-of-parameter-values), represents

1 Repository https://github.com/asmeta/asmeta/tree/master/asm examples.

https://github.com/asmeta/asmeta/tree/master/asm_examples
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the ASM concept of basic object container, and the couple (location, value) is a
memory unit; an ASM state can be thus viewed as a set of abstract memories.

State transitions are performed by firing transition rules, which express the
modification of functions interpretation from one state to the next one and,
therefore, they change location values. Location updates are given as assignments
of the form loc := v, where loc is a location and v its new value. They are the basic
units of rules construction. By a limited but powerful set of rule constructors,
location updates can be combined to express other forms of machine actions
as: guarded actions (if-then, switch-case), simultaneous parallel actions (par
and forall), sequential actions (seq), non-deterministic actions (choose).

Functions that are not updated by rule transitions are static. Those updated
are dynamic, and distinguished in monitored (read by the machine and modified
by the environment), controlled (read and written by the machine), shared (read
and written by the machine and its environment).

An ASM computation (or run) is defined as a finite or infinite sequence S0, S1,
. . . , Sn, . . . of states of the machine, where S0 is an initial state and each Sn+1

is obtained from Sn by firing the set of all transition rules invoked by a unique
main rule, which is the starting point of the computation.

It is also possible to specify state invariants as first-order formulas that must
be true in each computational state. A set of safety assertions can be specified
as model invariants, and a model state is safe if state invariants are satisfied.

ASMs allow modeling different computational paradigms, from a single
agent to distributed multiple agents. A multi-agent ASM is a family of pairs
(a,ASM(a)), where each a of a predefined set Agent executes its own machine
ASM(a) (specifying the agent’s behavior), and contributes to determine the next
state by interacting synchronously or asynchronously with the other agents.

ASMs offer several advantages w.r.t. other automaton-based formalisms:
(1) due to their pseudo-code format, they can be easily understood by practition-
ers and can be used for high-level programming; (2) they offer a precise system
specification at any desired level of abstraction; (3) they are executable mod-
els, so they can be co-executed with system low-level implementations [43]; (4)
model refinement is an embedded concept in the ASM formal approach; it allows
for facing the complexity of system specification by starting with a high-level
description of the system and then proceeding step-by-step by adding further
details till a desired level of specification has been reached; each refined model
must be proved to be a correct refinement of the previous one, and checking of
such relation can be performed automatically [11]; (5) the concept of ASM modu-
larization, i.e., an ASM without the main firing rule, facilitates model scalability
and separation of concerns, so tackling the complexity of big systems specifica-
tion; (6) they support synch/async multi-agent compositions, which allows for
modeling distributed and decentralized software systems [16].

2.3 Tool-Support for Safety Assurance

Figure 2 gives an overview of the ASMETA tools by showing their use to support
the different activities of the safety assurance process depicted in Fig. 1.
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Fig. 2. ASMETA tool-set

At design-time, ASMETA provides a number of tools for model editing
and visualization (the modeling language AsmetaL and its editor and compiler,
plus the model visualizer AsmetaVis for graphical visualization of ASM mod-
els), model validation (e.g., interactive or random simulation by the simulator
AsmetaS, animation by the animator AsmetaA, scenario construction and vali-
dation by the validator AsmetaV), and verification (e.g., static analysis by the
model reviewer AsmetaMA, proof of temporal properties by the model checker
AsmetaSMV, proof of correct model refinement by AsmRefProver).

At development-time, ASMETA supports automatic code and test case gen-
eration from models (the code generator Asm2C++, the unit test generator ATGT,
and the acceptance test generator AsmetaBDD for complex system scenarios).

Finally, at operation-time, ASMETA supports runtime simulation (the sim-
ulator AsmetaS@run.time) and runtime monitoring (the tool CoMA).

The analysis techniques and associated tooling strategies supported by
ASMETA are described in more detail in the next sections and they are applied
to the one-way traffic light case study introduced in [27].

3 ASMETA@design-time

In order to assure the safety of software systems, system design is the first activity
supported by ASMETA. During this phase, users can model the desired system
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asm oneWayTrafficLight
import StandardLibrary
signature:

enum domain LightUnit = {LIGHTUNIT1 | LIGHTUNIT2}
enum domain PhaseDomain = { STOP1STOP2 | GO2STOP1 |

STOP2STOP1 | GO1STOP2 }
enum domain Time = {FIFTY | ONEHUNDREDTWENTY | LESS}
dynamic controlled phase: PhaseDomain
dynamic controlled stopLight: LightUnit −> Boolean
dynamic controlled goLight: LightUnit −> Boolean
dynamic monitored passed: Time

definitions:
rule r stop1stop2 to go2stop1 =

if phase=STOP1STOP2 then
if passed = FIFTY then

par
goLight(LIGHTUNIT2) :=

not(goLight(LIGHTUNIT2))
stopLight(LIGHTUNIT2) :=

not(stopLight(LIGHTUNIT2))
phase := GO2STOP1

endpar
endif

endif

rule r go2stop1 to stop2stop1 = ...

rule r stop2stop1 to go1stop2 = ...

rule r go1stop2 to stop1stop2 =
if phase=GO1STOP2 then

if passed = ONEHUNDREDTWENTY then
par

goLight(LIGHTUNIT1) :=
not(goLight(LIGHTUNIT1))

stopLight(LIGHTUNIT1) :=
not(stopLight(LIGHTUNIT1))

phase := STOP1STOP2
endpar

endif
endif

main rule r Main =
par

r stop1stop2 to go2stop1[]
r go2stop1 to stop2stop1[]
r stop2stop1 to go1stop2[]
r go1stop2 to stop1stop2[]

endpar

default init s0:
function stopLight($l in LightUnit) = true
function goLight($l in LightUnit) = false
function phase = STOP1STOP2

Fig. 3. Example of AsmetaL model for a one-way traffic light

using the AsmetaL language, exploiting its features, and refine every model which
can be visualized in a graphical manner and analyzed with several verification
and validation tools.

3.1 Modeling

Starting from the functional requirements, ASMETA allows the user to model
the system using, if needed, model composition and refinement.

3.1.1 Modeling Language
System requirements can be modeled in ASMETA by using the AsmetaL lan-
guage and the AsmetaXt editor.

Figure 3 shows the AsmetaL model2 of the one-way traffic light : two traffic
lights (LIGHTUNIT1 and LIGHTUNIT2), equipped with a Stop (red) and a Go
(green) light, that are controlled by a computer, which turns the lights go and
stop, following a four phases cycle: for 50 s both traffic lights show Stop; for
120 s only LIGHTUNIT2 shows Go; for 50 s both traffic lights show again the Stop
signal; for 120 s only LIGHTUNIT1 shows Go.

The model, identified by a name after the keyword asm, is structured into
four sections:

– The header, where the signature (functions and domains) is declared, and
external signature is imported (see Modularization below);

– The body, where transitions rules are defined (plus concrete domains and
derived functions definitions, if any);

– A main rule, which defines the starting rule of the machine;
– The initialization, where a default initial state (among a set of) is defined.

2 Note that $x denotes the variable x in the AsmetaL notation.
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Each AsmetaL rule can be composed by using the set of rule constructors (see
Sect. 2.2) to express the different machine action paradigms.

Modularization. ASMETA modeling supports the modularization and informa-
tion-hiding mechanism, by the module notation. When requirements are complex
or when separation of concerns is desired, users can organize the model in several
ASM modules and join them, by using the import statement, into a single main
one (also defined as machine), declared as asm, which imports the others and
may access to functions, rules, and domains declared within the sub-modules.
Every ASM module contains definitions of domains, functions, invariants, and
rules, while the ASM machine is a module that additionally contains an initial
state and the main rule representing the starting point of the execution.

3.1.2 Refinement
The modeling process of an ASM is usually based on model refinement [25]: the
designer starts with a high-level description of the system and proceeds through a
sequence of more detailed models each introducing, step-by-step, design decisions
and implementation details. At each refinement level, a model must be proved
to be a correct refinement of the more abstract one.

ASMETA supports a special case of 1−n refinement, consisting in adding
functions and rules in a way that one step in the ASM at a higher level can
be performed by several steps in the refined model. We consider the refinement
correct if any behavior (i.e., run or sequence of states) in the refined model can
be mapped to a run in the abstract model.

To automatically prove the correctness of the model refinement process, users
can exploit the AsmRefProver tool [11], which is based on a Satisfiability Modulo
Theories (SMT) solver. With the execution of this software, one can specify two
refinement levels and ensure that an ASM specification ASM i is a correct refine-
ment of a more abstract one ASM i−1. Then, AsmRefProver confirms whether the
refinement is correctly performed with two different outputs: Initial states
are conformant and Generic step is conformant.

Figure 4 shows a refinement of the one-way traffic light model (see Fig. 3)
in which pulsing lights (rPulse and gPulse) are introduced and a different
management method for the time is used, based on a timer function mapping
each phase to a timer duration. Thus, the behavior of the system modeled in
Fig. 3 is preserved and expanded during the refinement process.

Modeling by refinement allows adding to the model requirements of increasing
complexity only when the developer has gained enough confidence in the basic
behaviors of the modeled system. This can be done by alternating modeling and
testing activities, as presented in [21], with different refinement levels.

3.1.3 Visualization
Model visualization is a good means for people to communicate and to get a com-
mon understanding, especially when model comprehension can be threatened by
the model size. ASMETA supports model visualization by a visual notation
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asm oneWayTrafficLight refined

import StandardLibrary

signature:
enum domain LightUnit = {LIGHTUNIT1 | LIGHTUNIT2}
enum domain PhaseDomain = { STOP1STOP2 | GO2STOP1

| STOP2STOP1 | GO1STOP2 | STOP1STOP2CHANGING
| GO2STOP1CHANGING | STOP2STOP1CHANGING
| GO1STOP2CHANGING }

dynamic controlled phase: PhaseDomain
dynamic controlled stopLight: LightUnit −> Boolean
dynamic controlled goLight: LightUnit −> Boolean
static timer: PhaseDomain −> Integer
dynamic monitored passed: Integer −> Boolean
dynamic controlled rPulse: LightUnit −> Boolean
dynamic controlled gPulse: LightUnit −> Boolean

definitions:
function timer($p in PhaseDomain) = switch($p)

case STOP1STOP2 : 50
case GO2STOP1 : 120
case STOP2STOP1 : 50
case GO1STOP2 : 120

endswitch

rule r switchToStop1 =
par

r emit[rPulse(LIGHTUNIT1)]
r emit[gPulse(LIGHTUNIT1)]

endpar

rule r switchToGo2 = ...
rule r switchToStop2 = ...
rule r switchToGo1 = ...

rule r stop1stop2 to stop1stop2changing =
if(phase=STOP1STOP2) then

if(passed(timer(STOP1STOP2))) then
par

r switchToGo2[]
phase:=STOP1STOP2CHANGING

endpar
endif

endif

rule r go2stop1 to go2stop1changing = ...
rule r stop2stop1 to stop2stop1changing = ...

rule r go1stop2 to go1stop2changing = ...
macro rule r switch($l in Boolean) = $l := not($l)
macro rule r emit($pulse in Boolean) = $pulse := true

rule r pulses =
forall $l in LightUnit with true do

par
if(gPulse($l)) then

par
r switch[goLight($l)]
gPulse($l) := false

endpar
endif
if(rPulse($l)) then

par
r switch[stopLight($l)]
rPulse($l) := false

endpar
endif

endpar

macro rule r changeState =
par

if(phase=STOP1STOP2CHANGING) then
phase := GO2STOP1

endif
if(phase=GO2STOP1CHANGING) then ... endif
if(phase=STOP2STOP1CHANGING) then ... endif
if(phase=GO1STOP2CHANGING) then ... endif

endpar

main rule r Main =
par

r stop1stop2 to stop1stop2changing[]
r go2stop1 to go2stop1changing[]
r stop2stop1 to stop2stop1changing[]
r go1stop2 to go1stop2changing[]
r pulses[]
r changeState[]

endpar

default init s0:
function stopLight($l in LightUnit) = true
function goLight($l in LightUnit) = false
function phase = STOP1STOP2
function rPulse($l in LightUnit) = false
function gPulse($l in LightUnit) = false

Fig. 4. Example of a refined AsmetaL model for a one-way traffic light

defined in terms of a set of construction rules and schema that give a graphical
representation of an ASM and its rules [4]. The graphical information is repre-
sented by a visual graph in which nodes represent syntactic elements (like rules,
conditions, rule invocations) or states, while edges represent bindings between
syntactic elements or state transitions. The AsmetaVis tool supports two types
of visualization: basic visualization, which represents the syntactic structure of
the model and returns a visual tree obtained by recursively visiting the ASM
rules; semantic visualization, which introduces visual patterns that permit to
capture some behavioral information as control states. An example of semantic
visualization of the one-way traffic light case study (see Fig. 3) is shown in Fig. 5:
it displays how the four macro rules in the model change the phase of the system.

3.2 Validation and Verification

Once the AsmetaL model is available, the user can perform validation and veri-
fication activities.
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Fig. 5. AsmetaVis semantic visualization

Insert a boolean constant for passed(50):
true
<State 0 (monitored)>
passed(50)=true
</State 0 (monitored)>
<UpdateSet − 0>
goLight(lightUnit2)=true
phase=GO2STOP1
stopLight(lightUnit2)=false
</UpdateSet>
<State 1 (controlled)>
LightUnit={lightUnit1,lightUnit2}
goLight(lightUnit2)=true
phase=GO2STOP1
stopLight(lightUnit2)=false
</State 1 (controlled)>
Insert a boolean constant for passed(120):
false
<State 1 (monitored)>
passed(120)=false
</State 1 (monitored)>
<UpdateSet − 1>
</UpdateSet>

<State 2 (controlled)>
LightUnit={lightUnit1,lightUnit2}
goLight(lightUnit2)=true
phase=GO2STOP1
stopLight(lightUnit2)=false
</State 2 (controlled)>
Insert a boolean constant for passed(120):
true
<State 2 (monitored)>
passed(120)=true
</State 2 (monitored)>
<UpdateSet − 2>
goLight(lightUnit2)=false
phase=STOP2STOP1
stopLight(lightUnit2)=true
</UpdateSet>
<State 3 (controlled)>
LightUnit={lightUnit1,lightUnit2}
goLight(lightUnit2)=false
phase=STOP2STOP1
stopLight(lightUnit2)=true
</State 3 (controlled)>
Insert a boolean constant for passed(50):

Fig. 6. Simulation of one-way traffic light using AsmetaS

3.2.1 Simulation
This is the first validation activity usually performed to check the AsmetaL model
behavior during its development and it is supported by the AsmetaS tool [13].
Given a model, at every step, the simulator builds the update set according to
the theoretical definitions given in [27] to construct the model run. The simulator
supports two types of simulation: random and interactive. In random mode, the
simulator automatically assigns values to monitored functions choosing them
from their codomains. In interactive mode, instead, the user inserts the value
of monitored functions and, in case of input errors, a message is shown inviting
the user to insert again the function value. In case of invariant violation or
inconsistent updates, a message is shown in the console and the simulation is
interrupted. In Fig. 6, we show the result of the simulation for the one-way traffic
light AsmetaL model (see Fig. 3). When the desired time is passed, 50 or 120 s,
the phase of the system changes.

3.2.2 Animation
The main disadvantage of the simulator is that it is textual, and this makes
sometimes difficult to follow the computation of the model. For this reason,
ASMETA has a model animator, AsmetaA [22], which provides the user with
complete information about all the state locations, and uses colors, tables, and
figures over simple text to convey information about states and their evolution.
The animator helps the user follow the model computation and understand how
the model state changes at every step.
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Fig. 7. Animation of one-way traffic light using AsmetaA

Similarly to the simulator, the animator supports random and interactive ani-
mation. In the interactive animation, the insertion of input functions is achieved
through different dialog boxes depending on the type of function to be inserted
(e.g., in case of a Boolean function, the box has two buttons: one if the value is
true and one if the value is false). If the function value is not in its codomain,
the animator keeps asking until an accepted value is inserted. In random anima-
tion, the monitored function values are automatically assigned. With complex
models, running one random step each time is tedious; for this reason, the user
can also specify the number of steps to be performed and the tool performs the
random simulation accordingly. In case of invariant violation, a message is shown
in a dedicated text box and the animation is interrupted (as it also happens in
case of inconsistent updates). Once the user has animated the model, the tool
allows exporting the model run as a scenario (see Sect. 3.2.3), so that it can
be re-executed whenever desired. Figure 7 shows the animation of the one-way
traffic light model using the same input sequence of the simulator. The result is
the same, but the tabular view makes it easier to follow the state evolution.

3.2.3 Scenario-Based Simulation
AsmetaS and AsmetaA tools require that the user executes the AsmetaL model step
by step, each time the model has to be validated. Instead, in scenario-based simu-
lation, the user writes a scenario, a description of external actor actions and reac-
tions of the system [29], that can be executed whenever needed to check the model
behavior. Scenarios are written in the Avalla language and executed using the
AsmetaV tool. Each scenario is identified by its name and must load the ASM to
be tested. Then, the user may specify different commands depending on the oper-
ation to be performed. The set command updates monitored or shared function
values that are supplied by the user as input signals to the system. Commands
step and step until represent the reaction of the system, which can execute one
single ASM step and one ASM step iteratively until a specified condition becomes
true. Then, the check command is used to inspect property values in the current
state of the underlying ASM. Figure 8 shows an example of Avalla scenario for
the one-way traffic light case study. The scenario reproduces the first two steps of
the cycle: when 50 s are over, the second traffic light changes from Stop to Go; and
only when 120 s are passed, the two traffic lights show Stop signal.

To simulate scenarios, AsmetaV invokes the simulator. During the simula-
tion, AsmetaV captures any check violation and, if none occurs, it finishes with
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scenario scenario1
load oneWayTrafficLight.asm

set passed(50) := true;
step
check phase = GO2STOP1;
check goLight(lightUnit2) = true;
check goLight(lightUnit1) = false;

set passed(120) := false;

step
check phase = GO2STOP1;
check goLight(lightUnit2) = true;
check goLight(lightUnit1) = false;

set passed(120) := true;
step
check phase = STOP2STOP1;
check goLight(lightUnit2) = false;
check goLight(lightUnit1) = false;

Fig. 8. Example of Avalla scenario for the one-way traffic light case study

</State 1 (controlled)>
check succeeded: phase = GO2STOP1
check succeeded: stopLight(lightUnit2) = false
check succeeded: goLight(lightUnit2) = true
<UpdateSet − 1>

</State 1 (controlled)>
check succeeded: phase = GO2STOP1
CHECK FAILED: stopLight(lightUnit2) = true at step 1
check succeeded: goLight(lightUnit2) = true
<UpdateSet − 1>

Fig. 9. AsmetaV output of one-way traffic light

a “PASS” verdict (“FAIL” otherwise). Moreover, the tool collects information
about the coverage of the AsmetaL model, in particular, it keeps track of all the
rules that have been called and evaluated, and it lists them at the end. Figure 9
shows the output of the validator upon executing the scenario in Fig. 8: in the
first column, all the functions assume the expected value, while in the second
column a check is failed because the function had a different value.

The user can exploit modularization also during scenario building. Indeed,
it is possible to define blocks, i.e., sequences of set, step, and check, that can
be recalled using the execblock when writing other scenarios that foresee the
same sequence of Avalla commands.

3.2.4 Model Reviewing
When writing a formal model, a developer could introduce some errors that are
not related to a wrong specification of the requirements but are just due to care-
lessness, forgetfulness, or limited knowledge of the formal method. For example,
a developer could use a wrong function name, or could forget to properly guard
an update, and so on. An error that is commonly done in ASM development
is due to its computational model, where all possible updates are applied in
parallel: if a location is simultaneously updated to two different values, this is
known as inconsistent update [26], and it is considered as an error in ASMs. Such
kind of error occurs quite frequently (especially in complex models) because the
developer does not properly guard all the updates. Other types of errors done
using ASMs are overspecifying the model, i.e., adding model elements that are
not needed, or writing rules that can never be triggered.

All these types of errors can be captured automatically by doing a static anal-
ysis of the model. This is the aim of the AsmetaMA tool [7], which performs auto-
matic review of ASM models. The tool checks the presence of seven types of errors
by using suitable meta-properties specified in CTL and verified using the model
checker AsmetaSMV (see Sect. 3.2.5). Figure 10a shows the selection of the seven
meta-properties in AsmetaMA. For example, MP1 checks the presence of inconsis-
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(a) Meta-properties

rule r stop2stop1 to stop2stop1changing =
if phase=STOP2STOP1 then
if passed(50) then
par

r switchLightUnit[LIGHTUNIT1]
//Error: it should be ”phase := STOP2STOP1CHANGING”
phase := STOP2STOP1

...

MP6: Every controlled location can take
any value in its codomain
Function phase does not take the values
{GO1STOP2, GO1STOP2CHANGING,
STOP2STOP1CHANGING} of its domain.

(b) Violation of MP6

Fig. 10. AsmetaMA

tent updates, and MP3 checks whether there are rules that can never be triggered.
Figure 10b shows an example of a violation that can be found with the model
review. It is an error that we discovered using AsmetaMAwhen writing the model of
the traffic light; according to the requirements, when the phase is STOP2STOP1 and
50 time units are passed, the phase should become STOP2STOP1CHANGING in the
next state; however, we wrongly typed the value as STOP2STOP1. Such error was
discovered by MP6 that checks if there are possible values that are never assumed
by a location: the violation of MP6 allowed us to reveal our mistake.

3.2.5 Model Checking
ASMETA provides classical model checking support by the tool AsmetaSMV [6].
The tool translates an ASM model into a model of the symbolic model checker
NuSMV [30], which is used to perform the verification. Being NuSMV a finite
state model checker, the only limitation of AsmetaSMV is on the finiteness of the
number of ASM states: only finite domains can be used, and the extend rule
(which adds elements to a domain) is not supported.

When using AsmetaSMV, the NuSMV tool is transparent to the user who can
specify, directly in the ASM model, Computation Tree Logic (CTL) and Linear
Temporal Logic (LTL) properties defined over the ASM signature. Moreover,
also the output of the model checker is pretty-printed in terms of elements of
the ASM signature. Figure 11a shows CTL and LTL properties specified for the
traffic light case study.

The CTL property, for example, checks that if the second traffic light shows
the stop light, it will show the go light in the future.

In order to better understand the verification results, the tool allows to sim-
ulate the returned counterexample. To this aim, a translator is provided that
translates a counterexample into an Avalla scenario (see Sect. 3.2.3). Figure 11b
shows the counterexample of the violation of the CTL property shown in Fig. 11a
(in a faulty version of the ASM model); the corresponding Avalla scenario is
reported in Fig. 11c.

AsmetaSMV has been used in several case studies to verify the functional
correctness of the specified system. AsmetaSMV is also used as a back-end tool
for other activities supported in ASMETA, e.g., model review (see Sect. 3.2.4).
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CTLSPEC ag(stopLight(LIGHTUNIT2) implies ef(goLight(LIGHTUNIT2)))
LTLSPEC g(phase=STOP1STOP2 implies x(phase=GO2STOP1 or phase=STOP1STOP2))

(a) Specification of temporal properties in the AsmetaL model

−− specification AG (stopLight(LIGHTUNIT2) −>
EF goLight(LIGHTUNIT2)) is false

−− as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample

−> State: 7.1 <−
stopLight(LIGHTUNIT2) = true
goLight(LIGHTUNIT2) = false
rPulse(LIGHTUNIT2) = false
passed(50) = false
phase = STOP1STOP2
passed(120) = false
gPulse(LIGHTUNIT2) = false

−> State: 7.2 <−
passed(50) = true

−> State: 7.3 <−
rPulse(LIGHTUNIT2) = true
passed(50) = false
phase = STOP1STOP2CHANGING
gPulse(LIGHTUNIT2) = true

−> State: 7.4 <−
stopLight(LIGHTUNIT2) = false
goLight(LIGHTUNIT2) = true
rPulse(LIGHTUNIT2) = false
phase = GO2STOP1
passed(120) = true
gPulse(LIGHTUNIT2) = false

−> State: 7.5 <−
rPulse(LIGHTUNIT2) = true
phase = GO2STOP1CHANGING
passed(120) = false
gPulse(LIGHTUNIT2) = true

−> State: 7.6 <−
stopLight(LIGHTUNIT2) = true
goLight(LIGHTUNIT2) = false
rPulse(LIGHTUNIT2) = false
phase = STOP2STOP1
gPulse(LIGHTUNIT2) = false

(b) Counterexample in AsmetaSMV

scenario oneWayTrafficLight refined.test
load oneWayTrafficLight refined.asm

check stopLight(LIGHTUNIT2) = true;
check goLight(LIGHTUNIT2) = false;
check rPulse(LIGHTUNIT2) = false;
check phase = STOP1STOP2;
check gPulse(LIGHTUNIT2) = false;

set passed(50) := false; set passed(120) := false;
step

set passed(50) := true;
step
check rPulse(LIGHTUNIT2) = true;
check phase = STOP1STOP2CHANGING;
check gPulse(LIGHTUNIT2) = true;

set passed(50) := false;
step
check stopLight(LIGHTUNIT2) = false;
check goLight(LIGHTUNIT2) = true; check
rPulse(LIGHTUNIT2) = false;
check phase = GO2STOP1;
check gPulse(LIGHTUNIT2) = false;

set passed(120) = true;
step
check rPulse(LIGHTUNIT2) = true;
check phase = GO2STOP1CHANGING;
check gPulse(LIGHTUNIT2) = true;

set passed(120) := false;
step
check stopLight(LIGHTUNIT2) = true;
check goLight(LIGHTUNIT2) = false;
check rPulse(LIGHTUNIT2) = false;
check phase = STOP2STOP1;
check gPulse(LIGHTUNIT2) = false;

(c) Executable counterexample in Avalla

Fig. 11. AsmetaSMV

4 ASMETA@development time

Once the AsmetaL model is available, the user can automatically generate
abstract tests, C++ code, and C++ unit tests. Moreover, Behavior-Driven Devel-
opment scenarios in C++ can be generated from Avalla scenarios.

4.1 Model-Based Test Generation

Model-based testing [46] is a popular testing approach in which formal models
are used for testing purposes, in particular test generation. Indeed, the model
is an abstract representation of the System Under Test (SUT), from which it is
possible to generate both the test inputs and the expected output (so, tackling
the oracle problem of software testing [18]). In offline test generation, abstract
tests are generated from the model, and then these are translated into concrete
tests for the SUT. Coverage criteria over the model are used to define the test
goals. A typical approach for generating tests achieving these goals is to use
model checkers [32]: a test goal is translated into a suitable temporal property
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(called trap property), whose counterexample (if any) is the test covering the
test goal.

In ASMETA, the ATGT tool [34] performs model-based test generation using
both model checkers SPIN and NuSMV. The generation is guided by coverage
criteria defined or adapted for ASMs [33], such as rule coverage, parallel rule
coverage, MCDC, etc. For example, the rule coverage criterion requires that for
every transition rule ri there exists at least one state in a test in which ri fires,
and another state in a test in which ri does not fire. The abstract tests generated
with ATGT can be later translated into concrete test cases for the implementation,
as described in Sect. 4.3.

4.2 Model-Based Code Generation

According to best practices of model-driven engineering, the implementation of
a system should be obtained from its model through a systematic model-to-code
transformation. Thanks to Asm2C++, given an AsmetaL model, the C++ code is
automatically generated [24]. This is done through a series of steps: the AsmetaL
model is parsed and its (internal) representation in terms of Java objects as
an instance of the ASMETA metamodel (AsmM) is built; then, a model-to-text
transformation, implemented in Xtext, is applied to translate the model into
C++ code. The generated code is composed of two files: header (.h) and source
(.cpp). The header file contains the interface of the source file and the translation
of ASM domains declaration and definition, functions and rules declaration. The
rules implementation, the functions/domains initialization, and the definitions
of the functions are contained in the source file. The translation of the one way
traffic light case study in C++ is shown in Fig. 12.

Since an ASM run step consists in the execution of the main rule and the
update of the locations, in C++ the ASM step has been implemented by two
methods: mainRule() and fireUpdateSet(). The former corresponds to the
translation of the ASM main rule, while the latter updates the locations to the
next state values. Moreover, we have addressed two semantic ASM concepts that
do not have a direct implementation in C++: parallel execution and nondeter-
minism. More details on their implementation in C++ and the translation of
ASM rules to corresponding C++ instructions can be found in [24].

Given the translation of an AsmetaL model in C++ code, it is easy to adapt
the code generation process for a specific platform. We have chosen Arduino
since it supports C++, it is cheap and it is easily accessible. After C++ code
generation, three new steps are required: HW configuration and integration,
ASM runner generation, and merging of all generated files. HW configuration
contains the mapping between ASM functions and Arduino input/output, and
other specific hardware settings. A first draft is automatically generated, and
then the user links monitored and out functions to physical hardware pins.
The ASM runner automatically generates a .ino file which contains the loop()
function to run ASM on Arduino. The loop() function iteratively executes
the following functions: getInputs()—reads the data from the input devices
like sensors; mainRule()—contains the behavior described in the AsmetaL
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#i f n d e f ONEWAYTRAFFICLIGHT H
#de f i n e ONEWAYTRAFFICLIGHT H

#inc l u d e <se t>
us ing namespace s t d ;

/∗ DOMAIN DEFINITIONS ∗/
namespace oneWayTra f f i cL ightnamespace{

c l a s s L i gh tUn i t ;
enum PhaseDomain {STOP1STOP2, GO2STOP1,

STOP2STOP1, GO1STOP2};
}

us ing namespace
oneWayTra f f i cL ightnamespace ;

c l a s s oneWayTra f f i cL ightnamespace : :
L i g h tUn i t{

pub l i c :
s t a t i c s t d : : s e t<L i gh tUn i t∗> e lems ;
L i g h tUn i t ( ){e lems . i n s e r t ( t h i s ) ;}

};

c l a s s oneWayTra f f i cL i gh t {

/∗ DOMAIN CONTAINERS ∗/
const se t<PhaseDomain> PhaseDomain elems ;

pub l i c :

/∗ FUNCTIONS ∗/
PhaseDomain phase [ 2 ] ;
s t d : : map<L i gh tUn i t ∗ , bool> s t o pL i g h t [ 2 ] ;
s t d : : map<L i gh tUn i t ∗ , bool> goL igh t [ 2 ] ;
s t a t i c i n t t ime r ( PhaseDomain

param0 t imer ) ;
s t a t i c L i gh tUn i t∗ l i g h t U n i t 1 ;
s t a t i c L i gh tUn i t∗ l i g h t U n i t 2 ;
s t d : : map<i n t , bool> pas sed ;

/∗ RULE DEFINITION ∗/
vo id r s w i t c h ( boo l l ) ;
vo id r sw i tchToGo2 ( ) ;
vo id r sw i t chToStop2 ( ) ;
vo id r sw i tchToGo1 ( ) ;
vo id r sw i t chToStop1 ( ) ;
vo id r s t o p 1 s t o p 2 t o g o 2 s t o p 1 ( ) ;
vo id r g o 2 s t o p 1 t o s t o p 2 s t o p 1 ( ) ;
vo id r s t o p 2 s t o p 1 t o g o 1 s t o p 2 ( ) ;
vo id r g o 1 s t o p 2 t o s t o p 1 s t o p 2 ( ) ;
vo id r Main ( ) ;

oneWayTra f f i cL i gh t ( ) ;

vo id i n i t C on t r o l l e dW i t hMon i t o r e d ( ) ;
vo id g e t I n p u t s ( ) ;
vo id s e tOutput s ( ) ;
vo id f i r eUpd a t e S e t ( ) ;

};

#end i f

#i n c l u d e ” oneWayTra f f i cL i gh t . h”
us ing namespace oneWayTra f f i cL ightnamespace ;
/∗ Conve r s i on o f ASM r u l e s i n C++ methods ∗/
vo id oneWayTra f f i cL i gh t : : r s w i t c h ( boo l l ){

l = ! ( l ) ;}
vo id oneWayTra f f i cL i gh t : : r sw i tchToGo2 ( ){
{ r s w i t c h ( goL igh t [ 0 ] [ l i g h t U n i t 2 ] ) ;

r s w i t c h ( s t o pL i g h t [ 0 ] [ l i g h t U n i t 2 ] ) ;}}
vo id oneWayTra f f i cL i gh t : : r sw i t chToStop2 ( ){
{ r s w i t c h ( goL igh t [ 0 ] [ l i g h t U n i t 2 ] ) ;

r s w i t c h ( s t o pL i g h t [ 0 ] [ l i g h t U n i t 2 ] ) ;}}
vo id oneWayTra f f i cL i gh t : : r sw i tchToGo1 ( ){
{ r s w i t c h ( goL igh t [ 0 ] [ l i g h t U n i t 1 ] ) ;

r s w i t c h ( s t o pL i g h t [ 0 ] [ l i g h t U n i t 1 ] ) ;}}
vo id oneWayTra f f i cL i gh t : : r sw i t chToStop1 ( ){
{ r s w i t c h ( goL igh t [ 0 ] [ l i g h t U n i t 1 ] ) ;

r s w i t c h ( s t o pL i g h t [ 0 ] [ l i g h t U n i t 1 ] ) ;}}
vo id oneWayTra f f i cL i gh t : : r s t o p 1 s t o p 2 t o g o 2 s t o p 1 ( ){
i f ( ( phase [ 0 ] == STOP1STOP2) ){
i f ( pas sed [ t ime r (STOP1STOP2) ] ){
{ r sw i tchToGo2 ( ) ;

phase [ 1 ] = GO2STOP1;}}}}
vo id oneWayTra f f i cL i gh t : : r g o 2 s t o p 1 t o s t o p 2 s t o p 1 ( ){
i f ( ( phase [ 0 ] == GO2STOP1) ){
i f ( pas sed [ t ime r (GO2STOP1) ] ){
{ r sw i t chToStop2 ( ) ;

phase [ 1 ] = STOP2STOP1;}}}}
vo id oneWayTra f f i cL i gh t : : r s t o p 2 s t o p 1 t o g o 1 s t o p 2 ( ){
i f ( ( phase [ 0 ] == STOP2STOP1) ){
i f ( pas sed [ t ime r (STOP2STOP1) ] ){
{ r sw i tchToGo1 ( ) ;

phase [ 1 ] = GO1STOP2;}}}}
vo id oneWayTra f f i cL i gh t : : r g o 1 s t o p 2 t o s t o p 1 s t o p 2 ( ){
i f ( ( phase [ 0 ] == GO1STOP2) ){
i f ( pas sed [ t ime r (GO1STOP2) ] ){
{ r sw i t chToStop1 ( ) ;

phase [ 1 ] = STOP1STOP2;}}}}
vo id oneWayTra f f i cL i gh t : : r Main ( ){
{ r s t o p 1 s t o p 2 t o g o 2 s t o p 1 ( ) ;

r g o 2 s t o p 1 t o s t o p 2 s t o p 1 ( ) ;
r s t o p 2 s t o p 1 t o g o 1 s t o p 2 ( ) ;
r g o 1 s t o p 2 t o s t o p 1 s t o p 2 ( ) ;}}

/∗ S t a t i c f u n c t i o n d e f i n i t i o n ∗/
i n t oneWayTra f f i cL i gh t : : t ime r ( PhaseDomain p ){r e t u rn [& ] ( ){
i f ( p==STOP1STOP2)
r e t u rn 50 ;

e l s e i f ( p==GO2STOP1)
r e t u rn 120 ;

e l s e i f ( p==STOP2STOP1)
r e t u rn 50 ;

e l s e i f ( p==GO1STOP2)
r e t u rn 120 ; }() ;}

/∗ Funct i on and domain i n i t i a l i z a t i o n ∗/
oneWayTra f f i cL i gh t : : oneWayTra f f i cL i gh t ( ){

// S t a t i c domain i n i t i a l i z a t i o n
PhaseDomain elems :{STOP1STOP2,GO2STOP1,STOP2STOP1,GO1STOP2;} ;
/∗ I n i t s t a t i c f u n c t i o n s Ab s t r a c t domain ∗/
l i g h t U n i t 1 = new L i gh tUn i t ;
l i g h t U n i t 2 = new L i gh tUn i t ;
/∗ Funct i on i n i t i a l i z a t i o n ∗/
f o r ( const auto& l : L i g h tUn i t : : e l ems ){

s t o pL i g h t [ 0 ] . i n s e r t ({ l , t rue}) ;
s t o pL i g h t [ 1 ] . i n s e r t ({ l , t rue}) ; }

f o r ( const auto& l : L i g h tUn i t : : e l ems ){
goL igh t [ 0 ] . i n s e r t ({ l , f a l s e }) ;
goL igh t [ 1 ] . i n s e r t ({ l , f a l s e }) ; }
phase [ 0 ] = phase [ 1 ] = STOP1STOP2;}

vo id oneWayTra f f i cL i gh t : : i n i t C on t r o l l e dW i t hMon i t o r e d ( ){}
/∗ Apply the update s e t ∗/
vo id oneWayTra f f i cL i gh t : : f i r eUpda t eS e t ( ){}
/∗ i n i t s t a t i c f u n c t i o n s and e l ement s o f a b s t r a c t domains ∗/
s t d : : s e t< L i gh tUn i t∗>L i gh tUn i t : : e l ems ;
L i g h tUn i t∗oneWayTra f f i cL i gh t : : l i g h t U n i t 1 ;
L i g h tUn i t∗oneWayTra f f i cL i gh t : : l i g h t U n i t 2 ;

Fig. 12. oneWayTrafficLight.h and oneWayTrafficLight.cpp

model; fireUpdateSet()—updates the state at the end of each loop; and
setOutputs()—sets the output values like the current state of light-emitting
diode (LED). The merging step takes care of merging all files.



The ASMETA Approach to Safety Assurance of Software Systems 231

BOOST AUTO TEST SUITE( Tes toneWayTra f f i cL i gh t )
BOOST AUTO TEST CASE( my t e s t 0 ){
// i n s t a n c e o f the SUT
oneWayTra f f i cL i gh t o n e w a y t r a f f i c l i g h t ;
// s t a t e
// s e t mon i to red v a r i a b l e s
o n e w a y t r a f f i c l i g h t . pas sed [50]= f a l s e ;
. . .
BOOST CHECK( o n e w a y t r a f f i c l i g h t . phase [0]==STOP1STOP2 ) ;
// c a l l main r u l e
o n e w a y t r a f f i c l i g h t . r Main ( ) ;
o n e w a y t r a f f i c l i g h t . f i r eUpda t e S e t ( ) ;
. . .

}
. . .

Fig. 13. C++ unit test

4.3 Unit Test Generation

If the C++ code is available (automatically generated or not) and the user wants
to test it, C++ unit tests can be automatically generated given the AsmetaL
model [23]. Unit tests are generated in two different ways. The first approach
consists in running randomly the AsmetaS simulator for a given number of steps
as requested by the tester, then the generated state sequence is translated into
a C++ unit test. The second approach, instead, translates the abstract tests
generated with ATGT (see Sect. 4.1) in C++ unit tests. In both cases, the C++

unit tests are written using the Boost Test C++ library.
A test suite is defined by using the BOOST AUTO TEST SUITE(testSuiteName)

macro; it automatically registers a test suite named testSuiteName. A test suite
definition is ended using BOOST AUTO TEST END(). Each test suite can contain
one or more test cases. A test case is declared using the macro BOOST AUTO -
TEST CASE(testCaseName). An example of a test case in presented in Fig. 13.

4.4 Behavior-Driven Development Scenarios

In parallel to classical unit tests which focus more on checking internal function-
alities of classes, developers and testers employ also Behavior-Driven Develop-
ment (BDD) tests which should be examples that anyone from the development
team can read and understand. Since the use of scenarios is common at code-
level and at the level of the (abstract) model, and since there is a translator
that automatically generates C++ code from AsmetaL model, we have intro-
duced the AsmetaBDD tool which translates an abstract scenario written in the
Avalla language to BDD code using the Catch2 framework [24]. The AsmetaBDD
tool generates a C++ scenario that can be compiled together with the C++ code
and executed. An example is shown in Fig. 14, where both scenarios check the
correctness of the phase transition when 50 s are passed.
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scenario scenario1

load oneWayTrafficLight.asm

check phase = STOP1STOP2;

set passed(50) := true;

step

check phase = GO2STOP1;
...

(a) Avalla scenario

#include ”catch.hpp”
#include ”oneWayTrafficLight.hpp”
SCENARIO(”oneWayTrafficLight starts”) {
GIVEN(”The traffic lights are stopped”) {
oneWayTrafficLight trafficLight;
REQUIRE(trafficLight.phase == STOP1STOP2);
WHEN(”passed 50 sec”) {
trafficLight.passed(50);
THEN( ”the traffic light is changing state ” ) {
REQUIRE(trafficLight.phase == GO2STOP1);}}
....

}}

(b) BDD scenario using Catch2

Fig. 14. AsmetaBDD scenario example

5 ASMETA@operation time

Formal validation and verification techniques usually allow the identification
and resolution of problems at design time. However, the state space of a system
under specification is often too large or partially unknown at design time, such
as for CPSs with uncertain behavior of humans in the loop and/or endowed
with self-adaptation capabilities or AI-based components. This makes a com-
plete assurance impractical or even impossible to pursue completely at design
time. Runtime assurance methods take advantage of the fact that variables that
are free at design time are bound at runtime; so, instead of verifying the com-
plete state space, runtime assurance techniques may concentrate on checking the
current state of a system.

Currently, ASMETA supports two types of runtime analysis techniques: run-
time simulation described in Sect. 5.1, and runtime monitoring described in
Sect. 5.2. Both approaches view the model as a twin of the real system and
use the model as oracle of the correct system behavior. The former exploits the
twin execution to prevent misbehavior of the system in case of unsafe model
behavior, while the latter exploits the twin execution to check the correctness of
the system behavior w.r.t. the model behavior.

5.1 Runtime Simulation

Recently, a runtime simulation platform [44] has been developed within
ASMETA to check safety assertions of software systems at runtime and sup-
port on-the-fly changes of these assertions. The platform exploits the concept of
executable ASM models and it is based on the AsmetaS@run.time simulator to
handle an ASM model as a living/runtime model [47] and execute it in tandem
with a prototype/real system. To this purpose, the runtime simulation platform
operates between the system model and the real running system; it traces the
state of the ASM model and of the system allowing us to realize a conceivable
causal relation depending on the analysis scope and on low-level implementation
details. This runtime simulation mechanism, for example, could be used in con-
junction with an enforcer component tool to concretely sanitize/filter out input
events for the running system or to prevent the execution of unsafe commands
by the system – input/output sanitization [31].



The ASMETA Approach to Safety Assurance of Software Systems 233

(a) Runtime simulation dashboard SimGUI (b) Assertion catalog GUI

Fig. 15. AsmetaS@run.time

AsmetaS@run.time supports simulation as-a-service features of the AsmetaS
simulator and additional features such as model execution with timeout and
model roll-back to the previous safe state after a failure occurrence (e.g., invari-
ant violations, inconsistent updates, ill-formed inputs, etc.) during model execu-
tion. AsmetaS@run.time allows also the dynamic adaptation of a running ASM
model to add/change/delete invariants representing, for example, system safety
assertions. This mechanism could be exploited to dynamically add new assertions
and guarantee a safer execution of the system after its release, in case dangerous
situations have not been foreseen at design time or because of unanticipated
changes or situational awareness.

The runtime simulation platform includes also UI dashboards for dynamic
Human-Model-Interaction (both in a graphical and in a command-line way)
which allow the user to track the model execution and change safety assertions.
Figure 15a shows the ASM model of the one-way traffic light model through the
graphical dashboard SimGUI.

In particular, the central panel shows the ASM runs and the simulation
results. The last one produced the verdict UNSAFE due to an invalid input
value read by the ASM for the enumerative monitored function passed. Then,
the model is rolled back to its previous safe state. The running ASM model can
be adapted dynamically to incorporate new safety invariants or simply modify or
cancel existing ones. This can be requested by an external client program or done
manually by the user through the GUI Assertion Catalog to the simulator
engine (see Fig. 15b). Model adaptation is carried out when the model is in a
quiescent state, i.e., it is not currently in execution and no other adaptation
activity of it is going on. Once adapted, the ASM model execution continues
from its current state. A newly added safety invariant that would be immediately
violated in the current state of the ASM model is forbidden.

5.2 Runtime Monitoring

ASMETA allows to perform runtime monitoring of a Java program using the
tool CoMA (Conformance Monitoring through ASM ) [8]. The approach is shown
in Fig. 16 and described as follows:
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Fig. 16. CoMA: Conformance monitoring through ASM

import org.asmeta.monitoring.∗;

@Asm(asmFile = ”oneWayTrafficLight.asm”)
public class OWTL {

@FieldToLocation(func = ”stopLight”,
args={”LIGHTUNIT1”})

boolean redLight1;
@FieldToLocation(func = ”stopLight”,

args={”LIGHTUNIT2”})
boolean redLight2;
@FieldToLocation(func = ”goLight”,

args={”LIGHTUNIT1”})
boolean greenLight1;
@FieldToLocation(func = ”goLight”,

args={”LIGHTUNIT2”})
boolean greenLight2;
private boolean turn1;

@StartMonitoring
public OWTL() {

redLight1 = true; redLight2 = true;
greenLight1 = false; greenLight2 = false;
turn1 = false;

}

@RunStep
public void
updateLights(@Param(func = ”passed”) Time passedTime) {

if((passedTime == Time.FIFTY
&& redLight1 && redLight2) ||

(passedTime == Time.ONEHUNDREDTWENTY
&& greenLight1 != greenLight2)) {

if(turn1) {
greenLight1 = !greenLight1;
redLight1 = !redLight1;

}
else {

greenLight2 = !greenLight2;
redLight2 = !redLight2;

}
if (redLight1 && redLight2) {

turn1 = !turn1;
}

}
}

}

enum Time {FIFTY, ONEHUNDREDTWENTY, LESS;}

Fig. 17. CoMA – Java implementation of the one-way traffic light

– The Java program under monitoring and the ASM model are linked by means
of a set of Java annotations3 (step ①). Some annotations are used to link the
Java state with the ASM state; namely, they link class fields of the Java pro-
gram with functions of the ASM model. Other annotations, instead, specify
the methods of the Java program that produce state changes that must be
monitored; Fig. 17 shows the Java implementation for the running case study,
annotated for the linking with the ASM model shown in Fig. 3;

– the observer (step ②) monitors the Java program execution and, whenever
a method under monitoring is executed, it performs a simulation step of the
ASM model with the simulator (step ③);

– the analyzer (step ④) checks whether the Java state after the method execu-
tion is conformant with the ASM state after the simulation step. Details on
the conformance definition can be found in [8].

CoMA can also check the conformance of nondeterministic systems in which
multiple states can be obtained by executing a method under monitoring;
namely, the tool checks whether there exists a next ASM state that is con-
formant with the obtained Java state. There are two implementations of this
approach: by explicitly listing all the possible next ASM states [9], or by using
a symbolic representation with an SMT solver [10].
3 A Java annotation is a meta-data tag that permits to add information to code

elements (class declarations, method declarations, etc.). Annotations are defined
similarly as classes.
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6 Conclusion and Outlook

This article provided an overview of the ASMETA model-based analysis app-
roach and the associated tooling to the safety assurance problem of software
systems using ASMs as underlying analysis formalism. ASMETA allows an open
and evolutionary approach to safety assurance as depicted in Fig. 1.

ASMETA is an active open-source academic project. Over the years, it has
been improved with new techniques and tools to face the upcoming new challeng-
ing aspects of modern systems. It has also been used as a back-end for system
analysis of domain-specific front-end notations (as those for service-oriented and
self-adaptive systems).

Recently, ASMETA has been extended to deal with model time features,
and improvement to support the verification of quantitative system properties
by means of probabilistic model checking is under development. Application
domains under current investigations are those of IoT security, autonomous and
evolutionary systems, cyber-physical systems, and medical software certification.
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Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 61–74.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11811-1 6

7. Arcaini, P., Gargantini, A., Riccobene, E.: Automatic review of Abstract State
Machines by meta property verification. In: Muñoz, C. (ed.) Proceedings of the
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19. Benduhn, F., Thüm, T., Schaefer, I., Saake, G.: Modularization of refinement
steps for agile formal methods. In: Duan, Z., Ong, L. (eds.) ICFEM 2017. LNCS,
vol. 10610, pp. 19–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68690-5 2

20. Bombarda, A., Bonfanti, S., Gargantini, A.: Developing medical devices from
abstract state machines to embedded systems: a smart pill box case study. In:
Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019. LNCS,
vol. 11771, pp. 89–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29852-4 7

21. Bombarda, A., Bonfanti, S., Gargantini, A., Radavelli, M., Duan, F., Lei, Yu.:
Combining model refinement and test generation for conformance testing of the
IEEE PHD protocol using abstract state machines. In: Gaston, C., Kosmatov,
N., Le Gall, P. (eds.) ICTSS 2019. LNCS, vol. 11812, pp. 67–85. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31280-0 5

https://doi.org/10.1007/978-3-642-29860-8_17
https://doi.org/10.1007/978-3-642-29860-8_17
https://doi.org/10.1109/ICSTW.2013.29
https://doi.org/10.14279/tuj.eceasst.70.970
https://doi.org/10.14279/tuj.eceasst.70.970
https://doi.org/10.1007/978-3-319-41591-8_17
https://doi.org/10.1007/978-3-319-41591-8_17
https://doi.org/10.1007/s10009-015-0394-x
https://doi.org/10.1002/spe.1019
https://doi.org/10.1007/s00165-016-0371-5
https://doi.org/10.1016/j.jss.2020.110558
https://doi.org/10.1016/j.jss.2020.110558
https://doi.org/10.1145/3019598
https://asmeta.github.io/
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1007/978-3-319-68690-5_2
https://doi.org/10.1007/978-3-319-68690-5_2
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1007/978-3-030-31280-0_5


The ASMETA Approach to Safety Assurance of Software Systems 237

22. Bonfanti, S., Gargantini, A., Mashkoor, A.: AsmetaA: animator for Abstract State
Machines. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018.
LNCS, vol. 10817, pp. 369–373. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-91271-4 25

23. Bonfanti, S., Gargantini, A., Mashkoor, A.: Generation of C++ unit tests from
Abstract State Machines specifications. In: 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), pp. 185–
193, April 2018. https://doi.org/10.1109/ICSTW.2018.00049

24. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code
generator from Abstract State Machines specifications. J. Softw. Evol. Process
32(2), e2205 (2020). https://doi.org/10.1002/smr.2205

25. Börger, E.: The ASM refinement method. Formal Aspects Comput. 15, 237–257
(2003)

26. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

27. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, Heidelberg (2003). https://doi.org/10.1007/
978-3-642-18216-7

28. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engi-
neering trustworthy self-adaptive software with dynamic assurance cases. IEEE
Trans. Softw. Eng. 44(11), 1039–1069 (2018). https://doi.org/10.1109/TSE.2017.
2738640

29. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based vali-
dation language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 71–84. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87603-8 7

30. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

31. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reac-
tion. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 103–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-75632-5 4

32. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey.
Softw. Test. Verif. Reliab. 19(3), 215–261 (2009)

33. Gargantini, A., Riccobene, E.: ASM-based testing: coverage criteria and automatic
test sequence. J. Univers. Comput. Sci. 7(11), 1050–1067 (2001). https://doi.org/
10.3217/jucs-007-11-1050

34. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using spin to generate tests from
ASM specifications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263–277. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36498-6 15

35. Gargantini, A., Riccobene, E., Scandurra, P.: A semantic framework for
metamodel-based languages. Autom. Softw. Eng. 16(3–4), 415–454 (2009).
https://doi.org/10.1007/s10515-009-0053-0

36. Gargantini, A., Riccobene, E., Scandurra, P.: Ten reasons to metamodel ASMs.
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Abstract. The Flashix project has developed the first realistic verified
file system for Flash memory. This paper gives an overview over the
project and the theory used. Specification is based on modular compo-
nents and subcomponents, which may have concurrent implementations
connected via refinement. Functional correctness and crash-safety of each
component is verified separately. We highlight some components that
were recently added to improve efficiency, such as file caches and concur-
rent garbage collection. The project generates 18K of C code that runs
under Linux. We evaluate how efficiency has improved and compare to
UBIFS, the most recent flash file system implementation available for
the Linux kernel.

1 Introduction

Modular software development based on refinement has always been a core con-
cern of our Formal Methods group.

One of the constant positive and inspiring influences on our work has always
been Prof. Börger’s research on the formalism of Abstract State Machines
(ASMs) [7].

The earliest starting point of this has been the Prolog Compiler specified
in [6] that describes compilation to the Warren Abstract Machine as stepwise
ASM refinement. Mechanized verification of this refinement tower was posed by
him as a challenge in a DFG priority program. Our solution to this case study
led to a formalization of the ASM refinement theory [5] proposed there [33] and
later on to a completeness proof [34]. Using this theory we managed to do a
mechanized verification of the compiler [35] using our theorem prover KIV [15].
The work led to the PhD of one of the authors of this paper [32], with Prof.
Börger being one of the reviewers.
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It was also Prof. Börger who pointed us to the Mondex challenge [10,41],
which consists of mechanizing the proofs of a security protocol for Mondex elec-
tronic purses. Among other groups [25] we verified the original protocol [21],
but also proposed an improvement that would avoid a weakness. We extended
the case study to the development of a suitable cryptographic protocol and to
the verification of a Java implementation [19]. The Java calculus [40] we used in
KIV was influenced by the semantics of Prof. Börger’s book [39]. The work also
influenced our work on the development of a systematic development of security
protocols using UML specifications [20].

Since then, we have tackled our most ambitious case study: Development of
a fully verified, realistic file system for flash memory, called Flashix.

In a first phase of the project we had to develop the necessary theory that
allowed to manage the complexity of such an undertaking. A concept of com-
ponents and subcomponents was developed that are connected by refinement.
This allowed modular software development as well as modular verification of
proof obligations for each component. Together the proofs of this refinement
tower guarantee functional correctness as well as crash-safety of the resulting
implementation. An overview was given in [17]. The generated code from this
first phase is a sequential implementation that can be run in Linux.

This paper gives an overview of the second phase of the project, where we
tackled aspects crucial for efficiency: we enhanced the theory with a concept
that allows to add concurrency incrementally to a refinement tower. We now
also allow caches for files, which lead to a new crash-safety criterion called write-
prefix crash consistency. We summarize the concepts and the theory in Sect. 2
and give an overview over the structure of Flashix in Sect. 3.

We then highlight two of the new features of Flashix. File content is now cached
as described in Sect. 4, and write-prefix crash consistency has been proved [4]. Like
wear leveling (described in [36]) garbage collection is now concurrent (Sect. 5).

The specifications of the Flashix file system implementation uses a language
of abstract programs similar to the rules of Turbo-ASMs [7], although the concept
for concurrency is based on interleaving [37]. We generate Scala- as well as C-Code
from such abstract programs. Currently the generated C-Code has 18k loc, which
can be used in Linux either with the Fuse library [42] or integrated in the kernel.

Section 6 evaluates the performance of our implementation. Since the con-
cepts of UBIFS (the newest implementation of a file system in the Linux kernel)
served as a blue-print for the concepts we used and verified in Flashix, we also
compare efficiency to UBIFS.

Finally Sect. 7 gives related work, and Sect. 8 concludes the paper.

2 Methodology

This section gives an informal summary of the methodology. It consists of three
core concepts that together establish that the top-level specification of POSIX
is correctly implemented having crash-safe and linearizable behavior. The three
concepts detailed in the following subsections are
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– State-based components with specifications of operations. These are refined
to implementations which are components, too. The implementations may
call operations of other subcomponent specifications.

– Refinement from specifications comes in two flavors: (a form of) data refine-
ment that allows to exchange abstract data structures (e.g. a set) with more
efficient, concrete ones (e.g. a red-black tree) and atomicity refinement, which
replaces an atomic operation with the non-atomic steps of a program, which
allows concurrent execution.

– A concept for verifying crash-safety.

2.1 Components

A component is similar to an ASM. We distinguish between specification and
implementation components, although they are specified using the same syntax.

A component specifies a number of state variables that store values of data
types like numbers, lists, sets, arrays, maps, or tuples. Data types themselves are
axiomatized using simply-typed lambda calculus. Most axioms use many-sorted
first-order logic only, but there are exceptions like infinite sequences which use
function variables (which represent dynamic functions as used in ASMs).

The operations of a component are given by a precondition, inputs and out-
puts, together with an imperative program that modifies the state. Programs
contain assignments (function updates are possible), conditionals, loops and
recursion. Using non-deterministic choose is allowed in specifications. Thereby
an arbitrary postcondition can be established, simply by choosing a state that
satisfies the predicate. Implementations allow specific versions only for which
executable code can be generated. Two common cases are the allocation of a
new reference for a heap-based data structure and choosing an element from a
set.

There are two distinguished operations: Initialization, which computes initial
states, and recovery, which is called after a crash when remounting to re-initialize
the state.

Specification components are used to describe parts of the file system in
an abstract and simple way, mainly by specifying functionality algebraically.
Implementation components, on the other hand, implement functionality pro-
grammatically using low-level data structures.

For example, in Flashix we use a specification component to access a set of
ordered elements. The component provides interface operations to add or delete
an element. Another operation returns the greatest element below some given
threshold. The precondition of this operation requires the set to be non-empty.
The programs for these operations typically consist of a single assignment as the
functionality is axiomatized over algebraic sets.

The corresponding implementation component gives an efficient realization of
the interface using a red-black tree defined as a heap-based pointer structure. The
separation into specification and implementation components allows to generate
high-performance code from implementations while client components do not
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have to deal with their complexity but can rely on their abstract specification
instead.

The semantics of a specification component is always that of a data type as in
data refinement: it is a set of traces (also called histories). A trace is a sequence of
matching pairs [inv(in1, op1), ret(op1, out1), . . . , inv(inn, opn), ret(opn, outn)]
of invoke events inv(ini, opi) and return events ret(opi, outi). The first corre-
sponds to invoking the operation opi with input ini, the second to the call
returning with output outi. Such a trace corresponds to a client sequentially
calling operations op1, . . . , opn that execute atomically. Note that we immedi-
ately use a pair instead of a single call event to simplify the description of
concurrency and crash-safety. The trace is observable (i.e. an element of the
semantics) if there is a suitable sequence of states [s0, . . . , sn] (the run of the
ASM) which is hidden from the client. State s0 must be initial, and if calling
operation opi in state si−1 with input ini has a valid precondition, then it must
have an execution that terminates and leads to state si with output outi. Since
the client is responsible for calling an operation only, when its precondition is
satisfied, observations after calling an operation with violated precondition are
arbitrary: the called operation should behave chaotically, yielding an arbitrary
(even an illegal) successor state or none at all by non-termination.

Implementation components differ from specification components in two
aspects. First, they may call operations from one or more subcomponents. Sec-
ond, their semantics can be either atomic or interleaved. In the first case, its
semantics is the same as the one of a specification component. In the latter
case the semantics of the implementation are interleaved runs of the programs.
The semantics then is similar to a control-state ASM, where the control-state is
encoded implicitly in the program structure. To accommodate the fact, that we
can have an arbitrary number of threads (or agents in ASMs), the events in traces
are now generalized (as in [22]) to consist of matching pairs of invt(ini, opi) and
rett(opi, outi) events that are indexed with a thread t. Matching pairs of different
threads may now overlap in a history, corresponding to interleaved runs of the
programs. The atomic steps of executing an operation are now: first, the invoking
step (where the invocation event is observed), then the execution of individual
instructions of the program like assignments, conditionals, and subcomponent
calls, and finally a returning step (if the program terminates). The execution of
operations of several threads are now interleaved. Formally, a concurrent history
is legal if the projection to events of each thread t gives a sequence of matching
pairs, possibly ending with an invoke event of a still running (pending) operation.

2.2 Refinement

Refinement of a specification component to an implementation component with
atomic semantics is done using the contract approach to data refinement (see [13]
for proof obligations in Z and the history of the approach) adapted to our opera-
tional specification of contracts, with proof obligations in wp-calculus, as detailed
in [17].
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All our refinements in the first phase of the Flashix project were such sequen-
tial refinements. Adding concurrency by replacing an atomic implementation
with a thread-safe implementation with interleaved runs typically requires to
add locks and ownership concepts, together with information which lock pro-
tects which data structure. Details of this process of ‘shifting the refinement
tower’ are described in [36].

In the second phase of the Flashix project we have now added concurrency
in all three places, where this is useful: The implementation of the top-level
POSIX specification is now thread-safe, as mentioned in Sect. 3. Wear level-
ing and garbage collection (see Sect. 5) are now executed concurrent to regular
POSIX operations called by the user of the file system.

Fig. 1. Refinement to a
concurrent implementa-
tion.

Proving an implementation with interleaved
semantics to be correct can be done in one step, prov-
ing linearizability [22] (progress aspects such as ter-
mination and deadlock-freedom must additionally be
proved).

Our approach uses two steps, using the implemen-
tation with atomic semantics (denoted by ) as an
intermediate level, see Fig. 1. This allows to have an
upper refinement that (ideally) is the same as before
and can be reused. In practice it is often necessary
to add auxiliary operations that acquire/release own-
ership to specifications, as indicated by the O in the
figure. These additional operations do not generate
code, but they ensure that the client of the specifica-
tion (the machine that uses this machine as a subma-
chine) will not use arbitrary concurrent calls, but only ones that adhere to a
certain discipline, as detailed in [36]. This leads to additional proof obligations
for the refinement as well as for the client, which must call acquire/release to
signal adherence to the discipline.

The lower atomicity refinement shows that the interleaved implementation
(denoted by ) behaves exactly as if the whole code of the implementation
would be executed atomically at some point in between the invoking step and
the returning step. This point is usually called the linearization point. Cor-
rect atomicity refinement (and linearizability in general) can be expressed as
reordering the events of the concurrent history H to a sequential history S (i.e. a
sequence of matching pairs that do not interleave) that is correct in terms of the
atomic semantics. The (total) order of matching pairs in the sequential history is
determined from the order of linearization points. It preserves the partial order
(called the real-time order) of operations in the concurrent history. If an oper-
ation is pending in the concurrent history, the corresponding sequential history
may be completed in two ways: either the invoke event can be dropped, when
the operation has not linearized, or a matching return can be added, when it
has.
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The proof method for proving atomicity refinement uses Lipton’s theory of
commuting operations [26] and borrows ideas from [14].

The proof has two phases, which may be alternated. In the first phase, we
verify that specific assertions hold at all program points using a rely-guarantee
approach. This proof also guarantees termination and deadlock freedom with a
calculus similar to the one in [43]. Essentially, the steps must satisfy two condi-
tions: First, assertions before and after a step must satisfy the usual conditions
of Hoare’s calculus for total correctness. Second, all assertions must be stable
with respect to a rely condition that is proven to abstract the steps of other
threads.

The second phase is to iteratively show that two sequential steps of one
thread can be combined into a single atomic step. This is done by showing that
the first step commutes (leaves the same final state, if it is a returning step it
must also produce the same output) with every step of another thread to the
right (the step is a right mover), or dually that the second step is a left mover.

We found that this proof technique is suitable for locking-based algorithms,
where locking/unlocking instructions are simple cases of right/left movers. If
a data structure is written in a section of the code, where the thread holds a
suitable lock, then the operation is both a left as well as a right mover (a both
mover).

Note that the assertions proven for program points play an essential role
in proving such commutativity properties, since they are often incompatible,
resulting in trivial commutativity. Usually writing a data structure does not
commute with writing it in another thread. But if it is asserted that the updating
thread holds a lock that protects it, then they trivially commute, since the two
assertions that the lock is held by both threads contradict each other.

Combining steps into larger steps can be iterated. It typically leads to the
innermost locking range to be contracted to one atomic instruction. Repeating
the first phase, we can now prove that the lock is free at all times, which again
allows new instructions to become left or right movers in phase two. Alternating
phases ends, when all instructions of the program have been combined into a
single, atomic step.

The approach so far guarantees functional correctness. For our instance this
says that our concurrent implementation of the POSIX standard (which com-
bines the code from all implementation components) has the same behavior (in
the sense of linearizability [22]) as atomically executing POSIX operations. In
particular, all operations terminate and there are no deadlocks.

To prove that this is the case, we have to show that refinement is compatible
with the use of subcomponents: If C refines A, then implementation M that calls
operations of A, is refined by machine M, calling their implementation from C,
as shown in Fig. 2.

This is a folklore theorem (“substitutivity”) that should hold for all mean-
ingful definitions of refinement. For data refinement we are aware of the formal
proof in [12], for linearizability it is informally stated in [22]. We have not given
a detailed proof yet, the sequential case (including crash-safety, see below) is
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Fig. 2. Substitutivity of refinement.

proven in [17]. For the concurrent case we recently found an elegant proof in
terms of combining IO-Automata [3], though this proof does not yet take into
account non-terminating behavior of operations. Like for other refinement defi-
nitions (see e.g. [13] for data refinement or [34] for ASM refinement) the proof
would have to be lifted to a scenario where states include a bottom element that
represents non-termination.

2.3 Crash Safety

In addition to functional correctness, crash-safety is the second important aspect
for a file system to work correctly. Informally it guarantees that when a crash
happens (typically a power failure), the file system can be rebooted to a state
that is consistent and does not contain any surprises: files and directories that
have not been modified before the crash still should keep their content. Files
where a write operation was running should not have modified content outside
the range that was overwritten, and data within the range should be either old
or new data, but nothing else.

A first observation relevant for crash-safety is that the only persistent state
of the file system that is left unchanged by a crash is flash memory, which is the
state of the lowest-level MTD interface. All other state variables are state, stored
in RAM, that is deleted by a crash. Meaningful values for these states are con-
structed by running the recovery operations of all implementation components
bottom-up.

A second, crucial observation is that if a running operation (on any level of
the hierarchy) is aborted in the middle due to a crash, the resulting state can
also be reached by crashing in a state after the operation has completed. The
reason is that the flash hardware can always (nondeterministically) refuse any
writes due to being worn out. Therefore, the alternative run that leads to the
same state as the one with the crash is the one where all flash modifications fail
after the point of the crash in the original one and the crash happens at the end.
Proving this can be reduced to the simple proof obligation (expressible in wp-
calculus) that all implementations of operations have a run such that running
crash and recovery in the initial and final state yields the same state.

As a consequence, the question whether crashes at any time are guaranteed
to lead to a consistent state can be reduced to the question whether crashes in
between operations lead to a consistent state. Again, the latter gives a simple
proof obligation in wp-calculus for the recovery program.
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However, this does not specify how the final state looks in comparison to the
final state of the original run, so we still might see an unexpected result.

A simple idea to specify the effect of a crash would be to specify a (total)
Crash relation between states before and after the crash. However, this becomes
intractable for higher levels of the refinement tower, due to the use of write-back
caches. Such caches are used in all file system implementations for efficiency,
since RAM access is significantly faster than writing or reading from persistent
memory. In our flash file system such a cache, called the write buffer, is even
necessary, since a page can only be written as a whole, and can not be overwrit-
ten. The write buffer therefore collects data until full page size is reached before
writing the page to flash memory. The write buffer follows a queue discipline, it
persists data first that was received first. We call such a buffer order-preserving
and allow arbitrary use of such order-preserving caches on any level of an imple-
mentation.

The use of a cache makes it difficult to just specify a crash relation, since
on higher level specifications, the information which part of the data is still in
cache is no longer present. After all, the top-level POSIX specification speci-
fies a directory tree and file contents with no information which parts are still
cached. In principle, such information can be added as auxiliary data (used for
verification only, deleted in the running code), but we found such an encoding
to become intractable.

Instead we specify the effect of crashes mainly in an operational style, where
the effect of a crash is to construct an alternative run that explains the resulting
state after the crash. This alternative run mainly retracts a final piece of the
original run with the intuition that the results of the retracted operations are
still in the cache. We found that this is compatible with order-preserving caches,
where losing the content of a queue corresponds to losing the effects of some of
the final operations.

In addition to undoing part of the run it is however necessary that operations
(one in a sequential setting, several in concurrent implementations) that are
running at the time of the crash may be executed with a different result: when
writing some bytes to a file crashes, an initial piece of the data may have persisted
while the remaining bytes have not. Constructing an alternative run that writes
fewer bytes is consistent with POSIX: A top-level write is allowed to return
having only written a prefix of the data to the file (the number of written bytes
is returned). The alternative run will therefore have a different completion of the
write operation with fewer bytes written.

Therefore, in addition to undoing a final part of the run, we allow all run-
ning operations (which have a pending invoke in the shortened history) to be
completed differently in the replacement run.

Two more considerations are necessary to ensure that crashes do not give
surprising results. First, POSIX offers a sync operation that empties all cached
data. This leads to synchronized states, which we specify on all levels of the
refinement hierarchy. Operations that lead to a synchronized state are then for-
bidden to be retracted in the alternative run.
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Finally, we still need a crash relation on all levels to specify an additional
residual effect of the crash on RAM state. For the top-level of POSIX this is
obvious, since even when no operation is running, a crash will at least close all
open files and remove the resulting orphaned files (files that were removed in the
directory tree, but are still open).

In summary, the effect of a crash after a run that went through states
(s1, . . . , sn) will be a (consistent) final state s′ of an alternative run, which exe-
cutes an initial piece of the original run, say up to si, then completes operations
that are running at this point to reach a state s′′. Finally, the crash relation is
applied and the recovery program is executed to reach s′.

The proof obligations resulting from this concept were formally verified to
imply this crash-safety criterion for a sequential setting in [17]. However, it is
applicable without changes in a concurrent setting, too. Note that it is again
crucial that all operations that run at the point where a crash happens have an
alternative run without any more changes to the persistent flash memory. Thus,
when proving linearizability by reordering steps according to Lipton’s theory, we
can already consider a run with completed operations to show that an equivalent
sequential execution exists where all programs execute atomically.

The theory given here must be extended when caching the data of individual
files is considered as retracting a part of the run is no longer sufficient. We
consider an appropriate extension in Sect. 4.

3 The Flashix File System – Overview

The Flashix file system is structured into a deep hierarchy of incremental refine-
ments as shown in Fig. 3. Boxes represent formal models that can be connected
via refinements (dashed lines) and can call operations of their subcomponents
through a well-defined interface ( ). We distinguish between specification
components in white and implementation components in gray. Combining all
implementation components then results in the final implementation of the file
system.

The top layer of Fig. 3a is a formal specification of the POSIX standard [31].
It defines the interface and the functional correctness requirements of the file
system. Here, the state of the file system is given by a directory tree where
leaves store file identifiers, and a mapping of file identifiers to the corresponding
file contents, represented by a sequence of bytes. An indirection between file
identifiers and file content is necessary to allow hard links, where the same
file is present in several directories. Structural operations, i.e. operations that
modify the directory tree like creating/deleting directories or (un)linking files,
are defined on paths. Content operations, such as reading or writing parts of the
content of a file, work directly on file identifiers.

The bottom layer of the hierarchy in Fig. 3b is a formal specification of the
Linux MTD Interface (Memory Technology Devices). It acts as a lower boundary
of the file system and provides low-level operations to erase flash blocks and to
read and write single pages within flash blocks. Preconditions ensure that calls
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(a) Upper layers of Flashix. (b) Lower layers of Flashix.

Fig. 3. Component hierarchy of the Flashix file system.

to these operations comply with the characteristics of flash memory, i.e. that
pages are only written as a whole and that pages are only written sequentially
within a block. Additionally, it formalizes assumptions about hardware failures
or the behavior of the flash device in the event of a crash.

In a first refinement step, the POSIX model is refined by a Virtual Filesystem
Switch (VFS) that uses an abstract specification of the core file system (AFS).
Similar to the Linux Virtual Filesystem, the VFS component implements the
resolution of paths to individual file system objects, permission checks, and the
management of open files. Basically, the AFS provides an interface analogous to
the POSIX interface but on the level of file system objects instead of paths. This
specification abstracts completely from any flash-specific concepts and thus the
VFS is not limited to be used exclusively with flash file systems. Details of the
POSIX specification as well as the sequential refinement to VFS and AFS can
be found in [18].

Recently, we worked on a locking concept for the VFS that allows concurrent
calls to the file system interface. The approach taken focuses on enabling parallel
access to file contents, in particular we want to allow arbitrary concurrent reads
as well as concurrent writes to different files. Therefore, we chose a fine-grained
locking strategy for files, whereas we applied a coarse-grained strategy for the
directory tree. This means that each file is protected by an individual reader-
writer lock while a single reader-writer lock is used for the entire directory tree.
It should be noted, that parallel traversal of the directory tree is still possible
as long as no structural operation is performed. Thus, we think this is a good
trade-off between development or verification effort and performance gain. We
augmented the existing sequential versions of VFS and AFS with locks and own-
erships respectively and proved that the interleaved implementation of VFS is
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linearizable and deadlock-free using atomicity refinement as explained in Sect. 2.
The verification showed that a strict order for acquiring and releasing locks is
beneficial for our approach.

AFS is refined by the actual Flash File System (FFS). Additionally, AFS is
refined by a Cache component that caches data structures used at the interface
of the core file system. The Cache is integrated as a decorator, i.e. it wraps
around the AFS in the sense that it uses AFS as a subcomponent and also
implements the interface of AFS. This allows the file system to be used both with
and without Cache. The main goal of this integration was to allow write-back
caching of content operations. However, write-back caching can have significant
effects on the crash behavior of a system. In [4] we presented a novel correctness
criterion for this sort of file system caches and proved that Flashix complies with
it. We sketch the most important concepts of this addition and the proof idea
in Sect. 4.

The FFS was the layer at which we started the development of the Flashix
file system in [38]. It introduces concepts specific to flash memory and to log-
structured file systems. Updates to file system objects must be performed out-
of-place and atomically. For this purpose, the FFS is built upon an efficient
Index, implemented by a wandering B+-Tree, and a transactional Journal. Both
are specified abstractly in the component FFS-Core. New versions of file system
objects are encapsulated in nodes and grouped into transactions that are then
written to a log. To keep track of the latest versions of objects, the locations
of them on the flash memory are stored in the Index. The Index exists in two
versions, one persisted on flash and one in RAM. Updates on the Index are
initially performed only in RAM in order to improve performance as these update
are quite costly to perform on flash. Only during commits that are executed
regularly, the latest version of the Index is written to flash. The transactional
Journal ensures that, in the event of a crash, the latest version of the RAM Index
can be reconstructed. This can be done by replaying the uncommitted entries
in the log starting from the persisted Index on flash. In doing so, incomplete
transactions are discarded to comply to the atomicity properties expected by
the VFS.

Another crucial mechanism implemented in this layer is garbage collection.
Due to their out-of-place nature, updates to the file system leave garbage data
behind. This data must first be deleted before the storage space it occupies can
be used again. But since flash blocks can only be erased as a whole, garbage
collection chooses suitable blocks for deletion (preferably blocks with a high per-
centage of garbage), transfers remaining valid data of that block to another one,
and finally triggers the erasure of the block. This mechanism is not triggered
explicitly by calls to the file system, instead it must be performed periodically
to ensure that the file system does not run out of space. Hence we extracted
garbage collection into a separate thread, we give more details on this concur-
rency extension in Sect. 5.

Both the transactional Journal and the B+-Tree write nodes on the flash
device. The Node Encoding component is responsible for serializing these nodes
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to bytes before they can be written to flash. It also keeps track of the alloca-
tion of erase blocks and, for each block, the number of bytes still referenced
by live data, i.e. by nodes of the index or nodes that store current versions of
file system objects. This information is used to determine suitable blocks for
garbage collection. Besides that, the layer ensures that writing of nodes appears
to be atomic to the Journal and Index. It detects partially written nodes that
may occur through crashes or hardware failures and takes care of them. A more
in-depth view on these components and the garbage collection is given in [16].

All serialized nodes pass a Write Buffer. This buffer cache tackles the restric-
tion that flash pages can only be written sequentially and as a whole. It caches
all incoming writes and only issues a page write once a page-aligned write is
possible, i.e. the write requests have reached the size of one flash page in total.
Otherwise, padding nodes would have to be used in order to write partially filled
pages, which both would increase the absolute number of writes to flash and the
amount of wasted space on the flash device. Introducing such an order-preserving
write-back cache (written data leaves the cache in the same order as it entered
it) also affects the crash behavior of the file system. In [29] we give a suitable
crash-safety criterion as well as a modular verification methodology for proving
that systems satisfy this criterion.

The Superblock component is responsible for storing and accessing the inter-
nal data structures of the file system. A specific part of the flash device is reserved
for this data. They are written during a commit only, since persisting each update
would have a significant negative impact on the performance of the file system.
A critical task of this layer is to ensure that commits are performed atomically
using a data structure called superblock.

Finally, the Erase Block Manager (EBM) provides an interface similar to the
one of MTD (read, write, erase). However, the EBM introduces an indirection
of the physical blocks of the flash device to logical blocks and all of its interface
operations address logical blocks only. These logical blocks are allocated on-
demand and mapped to physical blocks. The indirection is used to move logical
blocks transparently from one physical block to another one which is necessary
to implement wear leveling. Wear leveling ensures that within some bounds all
blocks are erased the same number of times. This is necessary to maximize
the life time of the flash memory, as erasing a flash block repeatedly wears it
out, making it unusable. To ensure a bound, the number of performed erases is
stored in an erase counter. Wear leveling finds a logical block that is mapped
to a physical block with low erase count and re-maps it to a block with high
erase count. Since a logical block with low erase-count typically contains a lot
of stale data that has not been changed for some time and therefore is not likely
to change soon, the number of erases is kept at the same level and the lifetime
of the flash device increases.

The EBM uses the Header Encoding component for the serialization and
deserialization of administrative data, most important an inverse mapping stored
in the physical blocks containing the numbers of the logical blocks they are
mapped to.
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Fig. 4. Representation of file content in VFS.

A sequential version of the Erase Block Manager is explained in detail in [30].
But similar to garbage collection, wear leveling has to be performed regularly
without being triggered by the user and so we adjusted the EBM to run wear
leveling in a separate thread as well. Another thread is used to perform the
erasure of blocks asynchronously, too. We illustrate this extension and the ver-
ification methodology for introducing concurrency to a refinement hierarchy on
a simplified version of the EBM in [36].

4 Crash-Safe VFS Caching

A common technique to get a highly efficient file system implementation is the
use of caching. Flashix features several caches in multiple layers: the B+-Tree
contains a write-through cache for the directory structure, the Write Buffer uses
an order-preserving write-back cache for flash pages, and lately we added a non-
order-preserving write-back cache for file contents to the VFS layer.

Since all in-memory data is lost in the event of a crash, crash-safety is a
critical aspect when integrating caches. For write-through caches this is unprob-
lematic as cached data is only a copy of persisted data on flash. In [29] we
presented a crash-safety criterion for order-preserving caches: basically a crash
has the effect of retracting a few of the last executed operations. But this cri-
terion is too strong for non-order-preserving caches and so in [4] we proposed a
more relaxed criterion and proved that our VFS caches comply with it. We will
now give an overview over the crucial aspects of this latest extension.

While file contents are represented as a finite sequences of bytes in POSIX,
VFS breaks this abstract representation down to a map of fixed-size byte arrays
(pages) and an explicit file size as shown in Fig. 4. Each box depicts a page and
is identified by a page number pno. The map offers the advantage of a sparse
representation with the convention that missing pages are filled with zeros only.
This is indicated by a white dashed box (pno-1 in the figure). A important detail
is the possibility of random data (hatched) beyond the file size sz, resulting from
prior crashes or failed operation executions. This is especially relevant when the
file size is not page-aligned and the page of sz (pno+1 in the figure) contains
actual garbage data (non-zero bytes) beyond sz.

When extending a file, such garbage data must not become visible as this
would not match the POSIX requirements. There are two ways to change the
file size: explicitly with a truncation or by writing content beyond the current
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Fig. 5. Truncation to a larger size sz ≤ n (left) and to a smaller size n < sz (right).

file size. A truncation crops the content of a file to a new size n and ensures
that all data within the file is valid. Hence, in addition to updating the size, the
actual content may also need to be updated. To increase the file size, possible
junk data in the page of sz needs to be cleared with zeros and pages beyond the
old file size are deleted (Fig. 5 on the left). On the other hand, junk data can
remain in the page of the new size when shrinking the file (Fig. 5 on the right).

The VFS breaks down a write into three steps. First, possible junk data
beyond the file size is removed. This is done by a truncation to the current
file size (n = sz in Fig. 5). Then the respective pages are written bottom up
individually. If writing a page causes an error, writing stops and hence only a
prefix of the requested bytes are written. Finally, the file size is adjusted to the
position of the last written byte if data was written beyond the old file size.

By using the decorator pattern, VFS caching could be integrated into our
refinement hierarchy without changing existing components by adding a single
new component. The component Cache refines and uses AFS at the same time
as shown by Fig. 3a. To cache content operations in a write-back manner, writes
and truncations are aggregated in local page and size caches. Additionally, write-
through caches for header nodes (containing meta data of files and directories)
and directory entries are implemented. Page writes are stored in the page cache
and truncations or size updates lead to updates in the respective size caches. We
only cache the most current file size while multiple truncations are aggregated
by caching the minimal truncation size since the last synchronization. Reading
a page tries to find a corresponding cache entry. If it does not exist in the cache,
the page is read from the Flash File System (FFS) and (if it exists) stored in
the cache.

Updating the persisted content happens only if it is triggered by a call of the
fsync operation for the respective file. A call to fsync starts the synchronization
with a single truncation of the persisted content to the minimal truncation size.
Then, similar to a VFS write, all dirty pages of the file in the cache are written
to the FFS bottom up and finally the file size is adjusted if necessary.

Showing functional correctness of this addition can be done by a single data
refinement and will not be considered further here. However, proving crash-
safety is quite difficult. If a crash occurs, all data in the volatile state of the
Cache component is lost such that unsynchronized writes and truncations have
not taken place. To ensure crash-safety, it must be shown that each crash results
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Fig. 6. Write-prefix crash consistency: prefix writes for a crash during the synchroniza-
tion of a file just before syncing byte k.

in a consistent state. Normally, the effect of a crash would be described by
an explicit change of state. But this is usually not practicable for write-back
caches and the crash-safety criterion introduced in [29] is not suitable for non-
order-preserving caches, too. So we use a new criterion called Write-Prefix Crash
Consistency (WPCC). It states that for any file a crash has the effect of retracting
all write and truncate operations since the last synchronization of that file and
re-executing them, potentially resulting in writing prefixes of the original runs [4].

This follows from the effects of a crash during persisting a cached file as
shown in Fig. 6 for the POSIX data representation. On the left, there is shown
how multiple overlapping writes combine to a sequence of written bytes. Since
cached pages are written bottom up during synchronization, a crash in the middle
of fsync results in a prefix of these bytes being persisted (on the bottom right
in Fig. 6). If the crash occurs just before persisting the byte at position k, the
resulting state can be explained by writing prefixes of the original instructions
(namely those prefixes that have written exactly the bytes beyond k). This can
result in complete writes (write 1 in Fig. 6), partial writes (write 3), or writes
that are completely lost (write 2). To archive this behavior it is essential that
VFS writes as well as synchronizations are performed bottom up and that writes
can fail after writing a arbitrary number of bytes.

Informally, the criterion describes the effects of a crash by finding an alter-
native run where loosing cached data has no noticeable effect. These alternative
runs may differ at most from their original runs in that writes since the last
synchronization have written prefixes of their original runs. Because such an
alternative run is a valid run and hence results in a consistent state, the original
crashing run yields a consistent state as well.

The main effort for proving crash-safety is to show that such alternative
runs exist for any possible occurrence of a crash. While finding suitable runs
for crashes outside of fsync is unproblematic (if nothing was persisted, failed
executions of cached operations can be chosen), this is especially hard for crashes
within fsync. One particular challenge is to show that the aggregation of multiple
truncate operations matches WPCC if the minimal truncation was executed but
the final file size was not yet synchronized at the event of the crash. This can
lead to slightly different junk data in the write-prefix run such that on the level
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of AFS the contents of the crashed run and the write-prefix run differ beyond
the file size. However, this junk data is only visible in AFS as the abstraction
to POSIX ignores all bytes beyond the file size. Hence an alternative run can
be found on the level of POSIX, but this required to extend the proof work to
another layer of abstraction. More details on the difficulties and the concrete
proof strategy involving multiple commuting diagrams can be found in [4].

5 Concurrent Garbage Collection

Besides allowing concurrent calls to the file system interface as briefly outlined
in Sect. 3, moving certain internal mechanisms into separate threads also intro-
duces additional concurrency to the file system. Hence the affected models have
to be modified in order to avoid conflicts resulting from parallel executions of
operations.

The expansion with concurrent garbage collection ranges from the FFS layer
to the Journal layer. In the FFS the concurrent operation for garbage collection
is introduced (Fig. 8). This operation is not part of the interface (it refines skip,
i.e. it has no visible effect for clients). Hence, it can not be called by any client
components. Instead it will be repeated infinitely within its own thread. To
ensure that garbage collection is not performed continuously, especially when
no more space can be regained, a condition variable gc cond is used1. At the
beginning of each iteration the thread blocks at the condition wait call until it
is signaled by another thread to start. The concrete garbage collection algorithm
is specified in the FFS-Core and implemented in the Journal component, so after
being signaled the operation ffs core gc is called.

Signaling takes place in all FFS operations that may modify the file system
state in the sense that either entries are written to the log and hence space on
the flash device is allocated or garbage is introduced by invalidating allocated
space. Such operations, as shown generically in Fig. 7, emit a signal to gc cond
after they have updated the index.

The implementation of ffs core gc in the Journal component then first
checks whether there is a block which is suitable for garbage collection. If that
is the case, all still referenced nodes of this block are collected, these nodes are
then written to the journal, and their new addresses are updated in the index
accordingly. Finally, if the referenced data was successfully copied, the block can
be marked for erasure.

As an additional thread is introduced in the FFS, established ownerships
in the VFS/AFS layer are not sufficient to prevent data races between the
garbage collection thread and other threads. For this reason the reader-writer
lock core lock is added to the FFS component. It is used to acquire exclusive

1 Note that condition variables are always coupled to a mutex. Here gc cond is cou-
pled to gc mutex . Signaling a condition requires to hold the corresponding mutex.
Starting to wait for a signal requires to hold the mutex as well, however, the mutex
is released during waiting. As soon as a signal was emitted and the mutex is free,
the waiting thread acquires the mutex and continues its execution.
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ffs operation(...) {
...
nd1 := inodenode(key1 , ...);
...
rwlock wlock( ; core lock);
ffs core wacquire();
ffs core journal add(nd1 , ... ; adr1 , ... ; err);
if err = ESUCCESS then {

ffs core index store(key1 ; adr1 );
...
mutex lock( ; gc mutex);
condition signal( ; gc cond, gc mutex);
mutex unlock( ; gc mutex);

};
ffs core release();
rwlock wunlock( ; core lock);
...

}

Fig. 7. General operation scheme of modi-
fying FFS operations.

ffs gc() {
mutex lock( ; gc mutex);
condition wait( ; gc cond, gc mutex);
mutex unlock( ; gc mutex);

rwlock wlock( ; core lock);
ffs core wacquire();
ffs core gc();
ffs core release();
rwlock wunlock( ; core lock);

}

Fig. 8. FFS garbage collection opera-
tion.

or shared ownership for the journal and index data structures. We did not head
for a more fine-grained locking approach since usually updates affect nearly all
parts of the state of FFS-Core anyway. However, using reader-writer locks still
allows for concurrent read accesses to the Journal.

Fig. 9. Refinement hierarchy extended
by concurrent garbage collection.

Modifying operations in the FFS as
shown in Fig. 7 always follow the same
scheme. First, all new or updated data
objects are wrappend into nodes (nd1 , ...)
with an unique key (key1 , ...). Depend-
ing on the concrete operation, nodes for
inodes, dentries, and pages are created.
Then these nodes are grouped into trans-
actions and appended to the log using
the ffs core journal add operation. If
successful, i.e. the operation returns the
code ESUCCESS, the operation returns
the addresses (adr1 , ...) where the passed
nodes have been written to. Finally, the
index is updated by storing the new
addresses of the affected keys via the oper-
ation ffs core index store2. It is cru-
cial that garbage collection is never performed between these calls since this
could result in a loss of updates (e.g. if garbage collection moves nodes
updated by the operation), potentially yielding an inconsistent file system state.
Hence, the locking range must include the ffs core journal add as well as all
ffs core index store calls.

2 Some operations also update the index by removing entries from it.
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journal operation(...) {
...
mutex lock(; idx lock);
index operationi(...);
mutex unlock(; idx lock);
...
mutex lock(; idx lock);
index operationj(...);
mutex unlock(; idx lock);
...

}

journal operation(...) {
...
atomic {

mutex lock(; idx lock);
index operationi(...);
mutex unlock(; idx lock);

}
...
atomic {

mutex lock(; idx lock);
index operationj(...);
mutex unlock(; idx lock);

}
...

journal operation(...) {
atomic {

...
mutex lock(; idx lock);
index operationi(...);
mutex unlock(; idx lock);
...
mutex lock(; idx lock);
index operationj(...);
mutex unlock(; idx lock);
...

}
}

Fig. 10. Reduction steps of a Journal operation (from left to right).

To prove that this locking strategy is in fact correct, i.e. that the interleaved
components are linearizable, we again apply atomicity refinement. This results
in the expansion of the refinement hierarchy shown in Fig. 9. Usually, atomicity
refinement would have to be applied to all layers below Index, too, but we did
not put any effort in making a interleaved version of the B+-Tree yet. Instead
we locked the interface of the Index (depicted by ). This means that each
call to an Index operations index operation requires the current thread to
be an exclusive owner of the Index component. In the Journal this is realized
by surrounding these calls with a mutex idx lock as shown in Fig. 10 on the
left. Owning a subcomponent exclusively ensures that the subcomponent is only
called sequentially and hence allows to directly use the unaltered sequential
version of the subcomponent and its refinements (denoted by in Fig. 9).

FFS-Core is augmented with ownership ghost state matching the reader-
writer lock core lock of FFS. The FFS operations acquire and release this own-
ership according to the locking ranges (see Fig. 7 and Fig. 8). While the ownership
granularity of AFS (owned directory tree, owned files, ...) does not match the
state of the FFS-Core or the Journal, the information about which files etc. are
owned when an operation is called (encoded in the preconditions) is still rele-
vant for the FFS in order to preserve functional correctness. For example, an
owned file must not be removed from the index while its metadata is updated.
Therefore, ownership ghost state is added to FFS analogously to AFS and cor-
responding ownership properties are established. This is sufficient to prove that
the interleaved FFS can be reduced to an atomic FFS via atomicity refinement.
The data refinement of the atomic AFS to the atomic FFS is basically identical
to the original sequential refinement, in addition, it must only be shown that
their respective ownerships match.

When proving the atomicity refinement of the Journal, it is apparent that
Index operations together with their surrounding lock calls form atomic blocks
like in the center of Fig. 10. But as most operations have multiple calls to the
Index, this is not sufficient to reduce these operations to completely atomic
ones. It remains to show that these blocks as well as statements that access
the local state of the Journal move appropriately (usually they have to be both
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mover). To prove this, the ownership information of the FFS-Core component
can be used. The Journal is augmented with ownership properties, operations
and preconditions that match those of the FFS-Core and so accesses to the
local state can be inferred to be both movers. The information that a certain
ownership is acquired at the calls of Index operations and their associated locking
operations allows to prove that these blocks in fact are movers and hence to
further reduce the operations to be atomic (Fig. 10 on the right). Although the
proofs are simple, this is quite elaborate since many commutations have to be
considered. The data refinement of FFS-Core to the atomic Journal then again
is basically identical to the sequential refinement.

6 Evaluation
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Fig. 11. Nano write benchmarks on Flashix and UBIFS: big write (left) and small
writes (right). Flashix was used in three different configurations: sequentially without
VFS cache (FA), sequentially with VFS cache (FB), and with VFS cache and concurrent
wear leveling and garbage collection (FC). (Color figure online)

To evaluate the performance of the Flashix file system we perform a collection
of microbenchmarks. This gives us some insight in whether the expansions we
have made, especially those described in Sect. 4 and Sect. 5 or in [4,36], have an
impact on the performance. Furthermore, we want to compare the performance
of Flashix with state-of-the-art flash file systems like UBIFS [23].

All benchmarks were run within a virtualized Linux Mint 19.3 distribution,
using 3 Cores of a Intel Core i5-7300HQ CPU and 4, 8 GB of RAM. The flash
device was simulated in RAM using the NAND simulator (nandsim) integrated
into the Linux kernel [27]. The numbers shown in the following represent the
mean of 5 benchmark runs in which the mean standard deviation across all runs
is below 4.5% (this translates to a mean deviation in runtime of less than 0.16 s).

We chose some small workloads that represent everyday usage of file systems:
copying and creating/extracting archives. Copying an archive to the file system
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Fig. 12. Vim write benchmarks on Flashix and UBIFS: big write (left) and small writes
(right). Flashix was used in three different configurations: sequentially without VFS
cache (FA), sequentially with VFS cache (FB), and with VFS cache and concurrent
wear leveling and garbage collection (FC).

results in the creation of a file and writing the content of that one file. Anal-
ogously, copying an archive from the file system yields in reading the content
of the file. Hence, we call these workloads big write and big read respectively.
On the other hand, extracting an archive results in the creation of a directory
structure containing many files. The contents of the created files are written as
well, however, these are multiple smaller writes compared to the single big write
when copying. Creating an archive from a directory structure on the file system
requires to read all directories and files. Hence, we call such workloads small
writes and small reads respectively. As sample data we used archives of the text
editors Nano3 and Vim4.

Figure 11 shows the results of the write benchmarks with Nano. When com-
paring the uncached configuration (FA) with the cached configuration (FB) of
Flashix, one can see that adding the VFS cache has indeed a significant impact
on write times (depicted in blue). But as these times do not include persisting
the cached data to flash, we enforced synchronization directly afterwards via
sync calls (depicted in red). For big writes the combined runtime of the cached
configuration is similar to the uncached one. For small writes though, the com-
bined runtime of FB is substantially faster since repeated reads to directory and
file nodes during path traversal can be handled by the cache.

Moving wear leveling and garbage collection into separate threads (FC) fur-
ther improves the performance. This is especially noticeable in the small writes
workload where the write time can be reduced by about one order of magnitude.
In the sequential configurations (FA and FB), after each toplevel operation it
was checked whether garbage collection or wear leveling should be performed.
During these checks and potential subsequent executions of the algorithms, other

3 nano-2.4.2.tar: approx. 220 elements, 6.7 MB.
4 vim-7.4.tar: approx. 2570 elements, 40.9 MB.



Flashix: Verification of a Flash File System 259

FA FB FC UBIFS
0

2

4

6

8
7.089

0.248
0.02 0.006

R
u
n
n
in
g
ti
m
e
(s
ec

on
d
s)

big read

FA FB FC UBIFS
0

10

20

30

34.016

6.014

0.837 0.745

R
u
n
n
in
g
ti
m
e
(s
ec

on
d
s)

small reads

(a) Vim read benchmarks with hot caches.
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Fig. 13. Vim read benchmarks on Flashix and UBIFS: big read (left) and small reads
(right). Flashix was used in three different configurations: sequentially without VFS
cache (FA), sequentially with VFS cache (FB), and with VFS cache and concurrent
wear leveling and garbage collection (FC).



260 S. Bodenmüller et al.

big read small readsbig write small writes
0

1

2

0.019

0.709

0.13

2.02

0.007
0.0690.019

0.184

R
u
n
n
in
g
ti
m
e
(s
ec

on
d
s)

Flashix

UBIFS

Fig. 14. Vim benchmarks on Flashix and UBIFS without flash delays.

POSIX operation calls were blocked. In the concurrent configuration (FC) these
blocked time can be eliminated for the most part since writing to the cache does
not interfere with garbage collection or wear leveling. As small writes trigger
considerably more toplevel operation calls, this effect is much more noticeable
than with big write workloads.

Compared to UBIFS, the current version of Flashix performs as expected.
Runtimes of the FC configuration are always within the same order of magnitude
of those of UBIFS. This also applies for running the benchmarks with a larger
archive like Vim shown in Fig. 12.

Similar effects can be observed when considering read workloads as shown
in Fig. 13. Adding caches significantly speeds up both reading a single big file
and reading many small files when the caches are hot (Fig. 13a), i.e. when the
requested data is present in the caches. Likewise, moving wear leveling and
garbage collection to background processes brings down the runtime by an order
of magnitude. When reading from cold caches, i.e. when no requested data is
present in the caches, the speed up is much more subtle since the main delay
results from reading data from flash. As shown in Fig. 13b, for big reads there is
hardly any improvement from FA to FB or FC. However, both expansions have
an impact on the runtime of small read workloads for the same reasons as for
small write workloads: repeated reads to the directory structure can be handled
by the cache and blocked time for garbage collection and wear leveling can be
eliminated. With these additions one can see that Flashix is competitive with
UBIFS regarding read performance, too.

In future work we plan to further improve the performance of Flashix by
improving our code generator as the generated code is not optimal in terms of
allocating/deallocating and copying data structures. The optimization potential
becomes apparent when comparing the raw in-memory runtimes of Flashix and
UBIFS like in Fig. 14. Here we instructed nandsim to not simulate any delays
for accessing the simulated NAND memory. The results show that UBIFS is
still up to a factor of 10 faster than Flashix for the Vim microbenchmarks (the
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Nano benchmarks yield similar results). First experiments show, that even simple
routines can affect performance noticeably if they are generated inefficiently. For
example, we found out that a simple optimization of a routine used in the Journal
for calculating the required space of a node-list on flash improved the runtime
by up to 30% compared to the generated code. Hence we plan to apply data
flow analysis to identify this and other locations where such optimizations can
be performed. We are optimistic that this will further close the gap to state-of-
the-art handwritten file systems.

7 Related Work

There are some other projects related to verified file systems.
Damchoom et al. [11] develop a flash file system by using incremental refine-

ment. Concurrency is verified on a similar level as AFS for reading and writing
of file content and for wear-leveling as well. Synchronization between threads
is implicit by semantics of Event-B [1] models. But this makes it difficult to
derive executable code. Amani et al. [2] design the flash file system BilbyFS to
research their tool Cogent for generating verified C code. The system can also
derive specifications for Isabelle/HOL. BilbyFS has a similar but simpler struc-
ture as Flashix. For instance it builds on top of the EBM instead of MTD. It
supports caching mechanism but not on the level of VFS. Crash-safety has not
been considered so far.

(D)FSCQ [8,9] is a sequential implemented file system developed by Chen
et al., which is targeted for regular disks with random access, not flash memory.
Similar to our approach, structural updates to the file system tree are persisted
in order. DFSCQ also uses a page cache, however, it does not specify an order in
which cached pages are written to persistent store. Therefore, it is not provable
that a crash leads to a POSIX-conforming alternate run. Instead a weaker crash-
safety criterion is satisfied, called metadata-prefix specification: it is proved that
a consistent file system results from a crash, where some subset of the page
writes has been executed. Verification is done by using Crash Hoare Logic and
Haskell code is derived from the specification.

Our crash-safety criterion for order-preserving caches is similar to buffered
durable linearizability [24], though there are some differences: the criterion is
purely history based, it allows to construct a prefix of the history, where pending
operations can be completed anew, similar to our approach. It however allows to
complete pending operations in the shortened history even after operations that
have started after the crash. This is useful for a concurrent recovery routine, that
may restart operations that crashed. It is disallowed in our approach, since not
relevant for file systems. Buffered durable lineariability also disallows the effect
of closing open files that we specify separately with a Crash predicate.

Verification of a sophisticated locking scheme that locks inodes hand-over-
hand (lock coupling) has recently been done in the theorem prover Coq for a file
system prototype called AtomFS that is directly programmed in C and stores
data in RAM [44]. A particular challenge for the proof of linearizability solved
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there was the rename operation, that moves directories (whole subtrees). The
operation has to lock both the source and target directory, but has to avoid
deadlocks. It should be possible to port this locking scheme to our file system.

Other, older related work can be found in our prior work [4,36].

8 Conclusion

The Flashix project has developed the first realistic verified file system using a
refinement- and component-based approach that generates code at the end.

Being realistic however had the price that the individual components had to
be intertwined carefully, which caused lots of effort and was therefore substan-
tially harder than analyzing concepts individually.

We think that developing such a large system without suitable modulariza-
tion and abstraction by verifying concrete C-code directly would have been an
almost impossible task.

The use of abstract data types and components, that allows efficient verifica-
tion comes at a price, however. Since abstract data types have the semantics of
predicate logic, which is a value semantics that does not take sharing, allocation,
or destructive updates into consideration, generating correct, efficient C-code is
still a challenge.

Generating functional (non-destructive) code instead has long been done by
theorem provers, but this would be hopelessly inefficient for a file system, where
destructively updated arrays (buffers, pages, blocks) are crucial for efficiency:
we tried using Scala’s immutable type Vector once, but the generated code is
slower by at least one order of magnitude.

It is possible to refine individual pieces of the abstract code to heap-based
destructive code, and this is occasionally necessary (e.g. to represent search trees
efficiently as pointer structures), and the verification task can be supported by
using a library for separation logic, however refining all abstract data struc-
tures with pointer-structures would mean to analyze sharing manually, and to
duplicate all code.

Another alternative is to enforce a linear type system on abstract specifica-
tions, for which a code generator could be proven correct [28].

Our current code generator follows the principle of not sharing data struc-
tures in the resulting C code to have definite allocation and deallocation points,
and to allow destructive updates. This however, enforces copying x and all its
substructures to y, when executing an assignment x := y. We already do a simple
liveness check (if y is no longer used, then copying can be avoided), and some
more ad-hoc optimizations to avoid unnecessary copying.

Still, a systematic data flow analysis, that allows sharing in places where it is
harmless, and avoids copying wherever possible, should be able to close a large
part of the still existing gap between the efficiency of our generated code and
the hand-written code of UBIFS.

Implementation of such a data flow analysis is still future work, and we
also want to tackle formalization and verification of such an approach, thereby
establishing the correctness of the code generator.
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Abstract. Over the last decades the field of computer science has
changed a lot. In practice we are now dealing with very complex systems,
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Dear Egon,

The first time we met was at a Dagstuhl seminar in 1997 organised by Bern-
hard Thalheim. You were sceptical concerning my presentation on consistency
enforcement in formal specifications due to the use of predicate transformers,
but I think I could convince you that the existence proof (in infinitary logic) is
possible, though the doubts concerning their usefulness remained. We also dis-
cussed about your 1985 monograph on computation theory, logic and complexity
in the field of computer science, which in the very same year I used as a text in
an introductory course on Theoretical Computer Science. Though some of the
material was considered very demanding for the students, it was (and still is)
one of the best texts describing the links between computation theory, logic and
complexity theory, as it was handled until that time.

It took years to meet again, because Egon started to develop the very success-
ful use of Abstract State Machines (ASMs) for rigorous software development,
while I had turned my back on “formal methods” after discovering how little
the FM community was interested in mathematical foundations. This changed
again after getting to know ASMs better. I tentatively started putting Ph.D.
students on the track, and in one case the intended quick exploitation of ASMs
for database transformations became the basis of a convincing theory of parallel
algorithms.

More than 35 years passed since the publication of your monograph on com-
putation theory, logic and complexity, and over this period the field of computer
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science has changed a lot. In practice we are now dealing with complex systems
of systems, but though ASMs turned out very suitable to cover the develop-
ments, it seems that the theoretical foundations have not caught up with it.
This birthday present is dedicated to a demonstration how a modernised the-
ory of computation may look like. The theory is centred around the notion of
algorithmic systems, which are harder to define than computable functions, in
particular, when all developments in computing are to be taken into account.

I will argue that behavioural theories are key to the understanding, i.e. we
require language-independent axiomatic definitions of classes of algorithmic sys-
tems that are accompanied by abstract machine models provably capturing the
class under consideration. The machine models give further rise to tailored logics
through which properties of systems in the considered class can be formalised and
verified, and to fine-tuned classifications on the grounds of complexity restric-
tions. I will outline that all extensions will be (1) conservative in the sense
that the classical theory of computation is preserved, (2) universal in the sense
that all practical developments are captured uniformly, and (3) practical in the
sense that languages associated with the abstract machine models can be used
for rigorous high-level systems design and development, and the logics can be
exploited for rigorous verification of desirable properties of systems. This links to
your newer monographs focusing on the theory and application of the Abstract
State Machine method.

1 Towards a Theory of Computation on Structures

In 1985 Egon Börger published his influential monograph on computation theory,
logic and complexity (see the English translation in [8]), which focused on the
concept of formal language as carrier of the precise expression of meaning, facts
and problems, and the concept of algorithm or calculus, i.e. a formally operating
procedure for the solution of precisely described questions and problems. At that
time the text was at the forefront of a modern theory of these concepts, paving
the way in which they developed first in mathematical logic and computability
theory and later in automata theory, theory of formal languages and complexity
theory.

Nonetheless, it became clear that the state of the theory left many open
problems. Computing started to stretch out into many new application areas.
Distributed computing over networks became possible, database systems facili-
tated concurrent computation, artificial intelligence ventured from a niche area
to a useful technology enabling inferential problem solving in diagnosis, control-
ling machines through software became possible, etc. Now, only 35 years later
the rapid progress in computing has led to a fascinating variety of interconnected
systems that are used to support, manage and control many aspects of our life.
There is hardly an area that has not yet been penetrated by computing, and
still there are many open challenges for the continuation of this success story.
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We are now dealing with systems of systems that are

– operating in parallel exploiting synchronously multiple processor cores and
asynchronously computing resources distributed over networks,

– hybrid interacting with analogue systems with continuous behaviour,
– adaptive changing their own behaviour,
– intelligent reasoning about themselves and their environment,
– interactive communicating with their environment, and
– random depending on probability distributions.

All these developments require scientific foundations centred around compu-
tation theory, complexity and logic:

– Is there a theory of computation that faithfully covers all the aspects of
systems of computing systems that occur in practice?

– Is there a methodology grounded in such a theory of computation that permits
the definition and classification of complex systems and the provision of means
for specification, systematic development, validation and verification?

– Is there a methodology that permits reasoning about problems and their
solutions in terms of correctness and complexity?

In 1982 Chandra and Harel raised the problem, whether there exists a com-
putation model over structures that captures the complexity class PTIME rather
than Turing machines that operate over finite strings [17]. The problem reflects
the typically huge gap between the abstraction level of an algorithm or more
generally a system of algorithmic systems and the level of Turing machines. It is
not sufficient to know that deep inside the core of systems we deal with computa-
tions that given a proper string encoding can be represented by Turing machines;
instead, computation theory has to stretch to arbitrary Tarski structures that
are omnipresent in all mathematical theories, and any extension should be con-
servative in the sense that the classical theory is preserved as a representation
on the lowest level of abstraction.

A first answer was given in 1985 by Gurevich’s “new thesis” [26], which was
further elaborated in the 1995 Lipari guide [28]. The new theory emphasises
Tarski structures (aka universal algebras) to capture abstract states of systems
and evolving algebras, now known as Abstract State Machines (ASMs), as the
abstract machines capturing the algorithms on arbitrary levels of abstraction.
Egon Börger realised that these ideas do not only create a new paradigm for
the foundations of computing subsuming the classical theory, but at the same
can be exploited for rigorous systems engineering in practice thereby fulfilling
the criteria of a “software engineering” discipline that deserves this name as
envisioned in the 1968 meeting in Garmisch, where this notion was coined [32].

A remarkable success story started leading to proofs of compiler correctness
for the Warren Abstract Machine for Prolog [13], the translation from Occam
to transputers [10], the compilation of Java and the bytecode verifier [37], the
development of the sophisticated theory of ASM refinements [9], and much more.
The state of the theory and practice of ASMs is well summarised in Egon Börger’s
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and Robert Stärk’s monograph on ASMs [16]. More recent examples are found
in the modelling companion by Börger and Raschke [12].

While the development proved that ASMs can take over the role of the formal
languages in computation theory, it took until 2000 to develop the celebrated
“sequential ASM thesis” [29], which is based on the observation that “if an
abstraction level is fixed (disregarding low-level details and a possible higher-
level picture) and the states of an algorithm reflect all the relevant information,
then a particular small instruction set suffices to model any algorithm, never
mind how abstract, by a generalised machine very closely and faithfully”. On
one hand the thesis provided a language-independent definition of the notion of
sequential algorithm giving for the first time in history a precise axiomatic defi-
nition of the notion of “algorithm” (though restricted to sequential algorithms).
On the other hand it contained the proof that all algorithms as stipulated by
the defining postulates are faithfully captured by sequential ASMs. This justi-
fied further to establish another new notion: a behavioural theory comprises a
machine-independent axiomatic definition of a class of algorithms (or more gen-
erally: algorithmic systems), an abstract machine model, and a proof that the
machine model captures the class of computations.

Starting from the first behavioural theory, the theory of sequential algorithms,
further success stories followed. Moschovakis’s critical question how recursion
could be captured was answered by the behavioural theory of recursive algorithms
[15]. A first attempt to extend the theory to parallel algorithms was undertaken by
Blass and Gurevich [5], but it was not well received due to the use of concepts such
as mailbox, display and ken that were considered too close to the machine model,
but another behavioural theory of parallel algorithms without these restrictions
was then developed in [22]. This closed the case of synchronous parallel algorithms.
A convincing behavioural theory for asynchronous algorithmic systems was devel-
oped in [14] with concurrent ASMs as the machine model capturing concurrent
algorithms, i.e. families of sequential or parallel algorithms associated with agents
that are oblivious to the actions of each other apart from recognising changes to
shared locations. Recently, a behavioural theory of reflective algorithms was devel-
oped addressing the question how to capture algorithmic systems that can adapt
their own behaviour [34].

The behavioural theories yield variants of Abstract State Machines that can
be used for rigorous systems development. Furthermore, Stärk and Nanchen devel-
oped a logic for the reasoning about deterministic ASMs [36]. As discussed in [16] it
was considered difficult to extend this logic to the case of non-deterministicASMs1.
This gap was closed in [23] by making update sets first-class objects in the theory
and proving completeness with respect to Henkin semantics. It was also shown how
the logic can be adapted to reason about concurrent ASMs [24]. An extension to
reflective ASMs was approached in [35]. On one side it shows the tight connections
between the classes of algorithmic systems handled in the behavioural theories.
On the other side it shows that the development of the logical counterpart of the
theories has not yet reached the same development state.

1 Note a full behavioural theory of non-deterministic algorithms does not yet exist.
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This applies even more so to complexity theory. One of the few studies try-
ing to bring complexity theory to the theory of ASMs, which after all provide
the theory of computations on structures as asked for by Chandra and Harel, is
the theory of choiceless polynomial time (CPT) [6,7], which studies the choice-
less fragment of PTIME using PTIME bounded deterministic Abstract State
Machines. Though it was possible to show that CPT subsumes other models of
computation on structures2 such as relational machines [3], reflective relational
machines [1] and generic machines [2], it is strictly included in PTIME. If the
hope had been to exhaust PTIME the same as existential second-order logic cap-
tures NP [21], this failed. No systematic research trying to close the gap between
CPT and PTIME followed, and Gurevich posted his conjecture that there is no
logic capturing PTIME [27].

If true, it would doom all further attempts in this direction. This would
further imply that complexity theory as a whole, in particular descriptive com-
plexity theory [30] which is tighly coupled with finite model theory [20,31], could
not be based on more abstract models of computations on structures. In par-
ticular, it would not be possible to avoid dealing with string encodings using
Turing Machines. However, this consequence appears to be less evident in view
of the ASM success stories. Various attempts have been undertaken to refute
Gurevich’s conjecture either by adding quantifiers such as counting [19] or by
adding non-deterministic choice operators [4,25]. A comparison and evaluation
is contained in [18].

All these attempts failed, and the main reason for the failure is the neglec-
tion of the computations understood as yielding sequences of abstract states with
update sets defining the state transitions. Instead, only the functional relation-
ship between the input structure and the Boolean output was emphasised. This
restriction to Boolean queries blurs the subtle distinctions that become possible,
when the behavioural theory and the associated logic are taken into account. A
refutation of Gurevich’s conjecture has been achieved in [33] exploiting insignif-
icant choice3 thus leading to insignificant choice polynomial time (ICPT). Based
on the insight that choice is unavoidable to capture PTIME it is not too hard to
see that PTIME problems can be solved by polynomial time bounded ASMs with
insignificant choice, as it suffices to create an order on the set of atoms in the
base set. This construction is rather specific, as it exploits to choose only atoms,
and it permits to replace arbitrary insignificant choice ASMs by ASMs satisfy-
ing a local insignificance condition. This condition can be expressed in the logic
of non-deterministic ASMs [23,24]. To show that the extension remains within
PTIME it suffices to simulate PTIME ASMs with choices among atoms that
satisfy the local insignificance condition by PTIME Turing machines with input
strings given by the standard encoding of an ordered version of the input struc-
ture. Here the local insignificance permits to choose always the smallest atom,

2 Strictly speaking, all these previous computational models are still based on Turing
machines, which are coupled with queries on relational stores.

3 Insignificant choice imposes two conditions on the update sets yielded by a choice.
The first of these conditions is similar to semi-determinism [38].
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and the PTIME bound results from the fact that local insignificance checking for
choices among atoms can be done in polynomial time. With this logic capturing
PTIME it then becomes possible to show that PTIME and NP differ [33].

In the remainder of this article I will further elaborate how behavioural the-
ories, associated logics and complexity work together. The emphasis will be on
parallel algorithms. In Sect. 2 I will start from the behavioural theory of parallel
algorithm, which will be extended by insignificant choice. This does not alter the
expressiveness, but justifies the use of choice rules in many practical examples
using ASMs [12]. In Sect. 3 I will proceed with the logic of non-deterministic
ASMs and outline how it needs to be modified to capture only insignificant
choice. Finally, Sect. 4 brings in polynomial time, where the presence or absence
of choice makes a significant difference. In fact, it is the difference between CPT
and ICPT. I conclude with a brief outlook in Sect. 5 emphasising that this is
just a brief demonstration of how a modernised theory of computation centred
around the notion of algorithmic systems may look like.

2 Parallel Algorithms

Let us briefly review the parallel ASM thesis [22], and extend the theory by
insignificant choice as in [33]. Note that different from classical computation
theory the behavioural theory characterises the class of parallel algorithms by
four postulates and then proves that the class is captured by the Abstract State
Machines, which is more than just defining the semantics of ASMs.

2.1 The Parallel ASM Thesis

Deterministic algorithms proceed in steps, which is reflected in the sequential
time postulate for sequential algorithms [29]. Parallel algorithms4 do not make
a change here; only the amount of updates characterising the transition from a
state to its successor varies significantly.

Postulate 1 (Sequential Time Postulate). A parallel algorithm A comprises
a non-empty set S of states, a non-empty subset I ⊆ S of initial states, and a
one-step transformation function τ : S → S.

Same as for sequential algorithms a state has to reflect all the relevant infor-
mation, so we also preserve the abstract state postulate, which characterises
states as Tarski structures over a fixed signature, i.e. a set of function symbols.

Postulate 2 (Abstract State Postulate). Every state S ∈ S of a parallel
algorithm is a structure over a fixed finite signature Σ such that both S and
I are closed under isomorphisms, the one-step transformation τ of A does not
change the base set of any state, and if two states S and S′ are isomorphic via
ζ : S → S′, then τ(S) and τ(S′) are also isomorphic via ζ.
4 More precisely: unbounded parallel algorithms, as sequential algorithms algorithms

already subsume bounded parallelism. The difference is that in the unbounded case
the parallel branches of a computation depend on the state.
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These two postulates alone give already rise to several decisive definitions. A
run of a parallel algorithm A is a sequence S0, S1, . . . of states with S0 ∈ I and
Si+1 = τ(Si) for all i ≥ 0. A location of state S is a pair (f, (a1, . . . , an)) with
a function symbol f ∈ Σ of arity n and an n-tuple of elements ai of the base
set of S. The value valS(�) of a location � in state S is fS(a1, . . . , an) using the
interpretation fS of f in S. An update in S is a pair (�, v) comprising a location
� of S and an element v of the base set of S. An update set in S is a set of such
updates.

An update set Δ is called consistent iff (�, v1), (�, v2) ∈ Δ imply v1 = v2. For a
consuistent update set Δ in S we obtain a state S′ = S+Δ with valS′(�) = v for
(�, v) ∈ Δ, and valS′(�) = valS(�) otherwise. Any two states S, S′ with the same
base set define a unique minimal consistent update set Δ(S) with S′ = S+Δ(S).
In particular, we write ΔA(S) for the update set defined by S and its successor
τ(S).

Update sets ΔA(S) must be determined by the parallel algorithm, which
has an intrinsic finite representation. For sequential algorithms it suffices to
assume that this finite representation contains a finite set of ground terms over
the signature Σ such that the evaluation of these terms in a state S uniquely
determines the updates in S. This gives rise to the bounded exploration postulate.
For parallel algorithms this is slightly more complicated, as in every state the
algorithm may execute an arbitrary number of parallel branches. However, these
branches are determined by the state. As there must exist a finite representation,
it is justified to assume that the branches are determined by terms, so it suffices
to replace the ground terms by multiset comprehension terms5.

Postulate 3 (Bounded Exploration Postulate). Every parallel algorithm
A of signature Σ comprises a finite set W (called bounded exploration witness)
of multiset comprehension terms {{t(x̄, ȳ) | ϕ(x̄, ȳ)}}x̄ over signature Σ such that
ΔA(S) = ΔA(S′) holds, whenever the states S and S′ of A coincide on W .

Finally, each computation has a background comprising the implicit fixed
values, functions and constructors that are exploited, but not defined in the
signature. For sequential algorithms the background was kept implicit, as it
merely requires the presence of truth values and the usual operators on them, a
value undef to capture partial functions, and an infinite reserve, from which new
values can be taken if necessary. Parallel algorithms must in addition require the
presence of tuples and multisets as already used for bounded exploration. This
leads to the background postulate.

Postulate 4 (Background Postulate). Each parallel algorithm A comprises
a background class K defining at least a binary tuple constructor and a multiset
constructor of unbounded arity, and a background signature ΣB contains at least
the following static function symbols:

5 It must be multiset terms and not set terms, as there may be multiple branches
doing the same.
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– nullary function symbols true, false, undef and {{}},
– unary function symbols reserve, Boole, ¬, first, second, {{·}},

⊎
and AsSet,

and
– binary function symbols =, ∧, ∨, →, ↔, 	 and ( , ).

We assume general familiarity with Abstract State Machines [16], so we will
not define them here. Then the key result in [22] is the following “parallel ASM
thesis”.

Theorem 1. Abstract State Machines capture parallel algorithms as defined by
the sequential time, abstract state, bounded exploration and background postu-
lates.

The proof that ASMs fulfil the requirement of the Postulates 1–4 is not very
difficult. A bounded exploration witness can be constructed from an ASM rule;
then showing the decisive property of Postulate 3 is rather straightforward.

The proof that every parallel algorithm as stipulated by the four postulates
can be step-by-step simulated by an ASM with the same background and signa-
ture is complicated. The key argument is to show that if an update set ΔA(S)
contains an update ((f, (a1, . . . , an)), a0), then any (n + 1)-tuple (b0, . . . , bn)
with the same type as (a0, . . . , an) also defines an update ((f, (b1, . . . , bn)), b0) ∈
ΔA(S), where the type is defined by a bounded exploration witness W . Exploting
isolating formulae for types gives rise to a forall-rule rS with ΔrS

(S) = ΔA(S).
The extension to a single rule r with Δr(S) = ΔA(S) for all states S uses
the same ideas as the proof of the sequential ASM thesis with straightforward
generalisations.

2.2 Parallel Algorithms with Choice

As shown by many examples in [12,16] it is often useful to permit non-
deterministic choice. We will therefore explore how to extend the parallel ASM
thesis to a non-deterministic parallel ASM thesis, then restrict choice such that
it becomes insignificant, i.e. the final result does not depend on the choice (up to
isomorphism).

Clearly, the abstract state and background postulates can be preserved, but
the sequential time postulate has to be replaced by a branching time postulate.

Postulate 5 (Branching Time Postulate). A non-deterministic parallel
algorithm A comprises a non-empty set S of states, a non-empty subset I ⊆ S
of initial states, and a one-step transformation relation τ ⊆ S × S.

We continue to call each state S′ ∈ τ(S) a successor state of S. Then S
and S′ ∈ τ(S) define a unique minimal consistent update set Δ(S, S′) with
S +Δ(S, S′) = S′. Let ΔA(S) = {Δ(S, S′) | S′ ∈ τ(S)} denote the set of update
sets in state S.

In the same way as the shift from sequential algorithms to parallel algorithms
required multiset comprehensions, it seems plausible that also the shift from
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parallel algorithms to non-deterministic parallel algorithms will require multiset
comprehensions. We therefore define a witness term as a term of the form

{{{{t(x̄, ȳ) | ϕ(x̄, ȳ)}} | ψ(x̄)}} .

Then the bounded exploration postulate could be altered as follows:

Postulate 6 (Non-Deterministic Bounded Exploration Postulate).
Every non-deterministic parallel algorithm A of signature Σ comprises a finite
set W (called bounded exploration witness) of witness terms over signature Σ
such that ΔA(S) = ΔA(S′) holds, whenever the states S and S′ of A coincide
on W .

It is again rather straightforward to show that non-deterministic ASMs sat-
isfy the modified postulated for non-deterministic parallel algorithm.

Theorem 2. Non-deterministic Abstract State Machines define non-determini-
stic parallel algorithms as defined by the branching time, abstract state, non-
deterministic bounded exploration and background postulates.

However, a proof that non-deterministic Abstract State Machines capture
non-deterministic parallel algorithms has not yet been completed. This will
be dealt with elsewhere. Our interest here is on a restricted version of non-
determinism.

In a run S0, S1, . . . we call a state Sn final iff τ(Sn) = {Sn} holds, i.e. there
is no more change to the state. Assuming that some function symbols in Σ
have been declared as output functions. Let out(S) denote the restriction of a
final state S to its output locations. Then we call a non-deterministic parallel
algorithm A a insignificant choice algorithm iff every run has a final state and for
any two final states S1 and S2 the outputs out(S1) and out(S2) are isomorphic.

Next consider locally insignificant choice ASMs, i.e. non-deterministic ASMs
with the following properties:

(i) For every state S any two update sets Δ,Δ′ ∈ Δ(S) are isomorphic, and we
can write

Δ(S) = {σΔ | σ ∈ G} ,

where G ⊆ Iso is a set of isomorphisms and Δ ∈ Δ(S) is an arbitrarily
chosen update set.

(ii) For every state S with Δ(S) = {σiΔ0 | 0 ≤ i ≤ k} (G = {σ0, . . . , σk} ⊆
Iso) and the corresponding successor states Si = S + σiΔ0 we have

Δ(Si) = σiΔ(S0) .

Theorem 3. Locally insignificant choice Abstract State Machines define
insignificant choice algorithms as defined by the branching time, abstract
state, non-deterministic bounded exploration and background postulates and the
insignificant choice restriction.

We cannot yet provide a proof that locally insignificant choice Abstract State
Machines capture insignificant choice algorithms, but it seems as plausible as
Theorem 2.
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3 The Logic of Non-deterministic ASMs

Let us now tend to associated logics. A logic for deterministic ASMs has been
developed by Stärk and Nanchen [36] and proven to be complete. It is also
described in [16]. We now look into the extension for non-deterministic ASMs
[24] and how it can be adapted to capture the insignificant choice.

3.1 Unrestricted Logic

As the logic of non-deterministic ASMs has to deal with update sets, we let
the signature contain a static constant symbol cf for each dynamic function
symbol f ∈ Σ, i.e. cf is not dynamic and has arity 0. We also exploit that the
base set contains elements that interpret cf in every state. By abuse of notation
we wrote (cf )S = cf . Now let X be a second-order variable of arity 3. For a
variable assignment ζ we say that ζ(X) represents an update set Δ iff for each
((f, ā), b) ∈ Δ we have (cf , ā, b) ∈ ζ(X) and vice versa. Here we write ā for
n-tuples, where n is the arity of f .

As for the syntax, with this extension the terms of Lnd are ASM terms. The
formulae of the logic are defined inductively as follows:

– If t and t′ are terms, then t = t′ is a formula.
– If X is an n-ary second-order variable and t1, . . . , tn are terms, then

X(t1, . . . , tn) is a formula.
– If r is an ASM rule and X is a second-order variable of arity 3, then updr(X)

is a formula.
– If ϕ and ψ are formulae, then also ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ and ϕ → ψ are formulae.
– If ϕ is a formula, x is a first-order variable and X is a second-order variable,

then also ∀x.ϕ, ∃x.ϕ, ∀X.ϕ, ∃X.ϕ are formulae.
– If ϕ is a formula and X is a second-order variable of arity 3, then [X]ϕ is

formula.

The semantics is defined for Henkin structures. A Henkin prestructure S̃ over
signature Υ is a structure S over Σ with base set B together with sets of relations
Dn ⊆ P(Bn) for all n ≥ 1.

As the logic uses second-order variables we need extended variable assign-
ments ζ into a Henkin prestructure. For first-order variables x we have ζ(x) ∈ B
as usual, but for second-order variables X of arity n we request ζ(X) ∈ Dn.
Then with respect to a Henkin prestructure S̃ and such a variable assignment
terms are interpreted as usual. The interpretation [[ϕ]]S̃,ζ for formulae ϕ is mostly
standard with the non-standard parts defined as follows:

– If ϕ has the form ∀X.ψ with a second-order variable X of order n, then

[[ϕ]]S̃,ζ =

{
T if [[ψ]]S̃,ζ[X �→A] = T for all A ∈ Dn

F else
.
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– If ϕ has the form [X]ψ, then

[[ϕ]]S̃,ζ =

⎧
⎪⎨

⎪⎩

F if valS,ζ(X) represents a consistent update set Δ

with [[ψ]]S̃+Δ,ζ = F
T else

.

While this interpretation is defined for arbitrary Henkin prestructures, it
makes sense to restrict the collections Dn of n-ary relations to those that are
closed under definability, which defines the notion of Henkin structure. We then
say that a sentence is valid iff it is interpreted as 1 (i.e., true) in all Henkin
structures.

A Henkin structure over signature Σ is a Henkin prestructure S̃ =
(S, {Dn}n≥1) that is closed under definability, i.e. for every formula ϕ, every
variable assignment ζ and every n ≥ 1 we have

{(a1, . . . , an) ∈ Bn | [[ϕ]]S̃,ζ[x1 �→a1,...,xn �→an] = T} ∈ Dn.

3.2 Capturing Insignificant Choice

We now approach a characterisation of the semantic insignificant choice restric-
tion in the logic Lnd defined above. We use isUSet(X) to express that X repre-
sents an update set, and conUSet(X) to express that it is consistent—these are
defined in [24].

Let us assume that the base set B is defined as the set of hereditarily finite
sets B = HF (A) over a finite set A of atoms. Then we can express that X is an
isomorphism by

iso(X) ≡ ∀x, y1, y2.(X(x, y1) ∧ X(x, y2) → y1 = y2)∧
∀x1, x2, y.(X(x1, y) ∧ X(x2, y) → x1 = x2) ∧ ∀x∃y.X(x, y) ∧ ∀y∃x.X(x, y)∧

∧

f∈Υdyn

X(cf , cf ) ∧ ∀x, y.

[

X(x, y) → (x ∈ Atoms ↔ y ∈ Atoms)∧

∀u.(u ∈ x → ∃v.v ∈ y ∧ X(u, v)) ∧ ∀v.(v ∈ y → ∃u.u ∈ x ∧ X(u, v))
]

This leads to the following insignificance constraint for a rule r expressing
that any two update sets yielded by r are isomorphic:

∀X1,X2. updr(X1) ∧ updr(X2) →
∃X.(iso(X) ∧ updIso(X1,X2,X) ∧ updIsoSet(X1,X2,X))
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with

updIso(X1,X2,X) ≡
∧

f∈Υdyn

[∀x̄1, x2, ȳ1, y2.

(X1(cf , x̄1, x2) ∧
∧

1≤i≤ar(f)

X(x1i, y1i) ∧ X(x2, y2) → X2(cf , ȳ1, y2))∧

∀x̄1, x2,ȳ1, y2.(X2(cf , x̄1, x2) ∧
∧

1≤i≤ar(f)

X(x1i, y1i) ∧ X(x2, y2) → X1(cf , ȳ1, y2))]

and

updIsoSet(X1,X2,X) ≡ ∀Y1, Y2.(isUSet(Y1) ∧ isUSet(Y2) ∧ updIso(Y1, Y2,X))
→ ([X1]updr(Y1) ↔ [X2]updr(Y2))

We can use this characterisation of insignificant choice to modify the logic
in such a way that a choice rule will either become an insignificant choice or
interpreted as skip. For this recall the axiomatic definition of updr(X) from
[24]. In order to express insignificant choice we introduce new formulae of the
form updic

r (X). If r is not a choice rule, we simply keep the definitions replacing
upd by updic. For a choice rule r of the form choose v ∈ {x | x ∈ Atoms∧x ∈ t}
do r′(v) enddo we define

updic
r (X) ↔∃v.v ∈ Atoms ∧ v ∈ t ∧ updic

r′(v)(X)∧
∀Y.(∃x.x ∈ Atoms ∧ x ∈ t ∧ updic

r′(x)(Y )) →
∃Z.(iso(Z) ∧ updIso(X,Y,Z) ∧ updIsoSet(X,Y,Z))

4 Complexity Restriction

Let us finally look at the link to complexity theory. We define PTIME restricted
versions of parallel ASMs [6] and locally insignificant choice [33], which define
choiceless polynomial time (CPT) and insignificant choice polynomial time. The
former one is strictly included in PTIME; the latter one captures PTIME.

4.1 Choiceless Polynomial Time

In order to define a polynomial time bound on an ASM we have to count steps of
a run. If we only take the length of a run, each step would be a macrostep that
involves many elementary updates, e.g. the use of unbounded parallelism does
not impose any restriction on the number of updates in an update set employed
in a transition from one state to a successor state. So we better take the size of
update sets into account as well. If objects are sets, their size also matters in
estimating what an appropriate microstep is. This leads to the notion of PTIME
bound from CPT [6].

A PTIME (bounded) ASM is a triple M̃ = (M,p(n), q(n)) comprising an
ASM M and two integer polynomials p(n) and q(n). A run of M̃ is an initial
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segment of a run of M of length at most p(n) and a total number of at most
q(n) active objects, where n is the size of the input in the initial state of the run.

We say that a PTIME ASM M̃ accepts the input structure I iff there is a
run of M̃ with initial state generated by I and ending in a state in which Halt
holds and the value of Output is 1. Analogously, a PTIME ASM M̃ rejects the
input structure I iff there is a run of M̃ with initial state generated by I and
ending in a state in which Halt holds and the value of Output is 0.

A logic L can be defined by a pair (Sen,Sat) of functions satisfying the
following conditions:

– Sen assigns to every signature Σ a recursive set Sen(Σ), the set of L-sentences
of signature Σ.

– Sat assigns to every signature Σ a recursive binary relation SatΣ over struc-
tures S over Σ and sentences ϕ ∈ Sen(Σ). We assume that SatΣ(S, ϕ) ⇔
SatΣ(S′, ϕ) holds, whenever S and S′ are isomorphic.

We say that a structure S over Σ satisfies ϕ ∈ Sen(Σ) (notation: S |= ϕ) iff
SatΣ(S, ϕ) holds.

If L is a logic in this general sense, then for each signature Σ and each
sentence ϕ ∈ Sen(Σ) let K(Σ,ϕ) be the class of structures S with S |= ϕ. We
then say that L is a PTIME logic, if every class K(Σ,ϕ) is PTIME in the sense
that it is closed under isomorphisms and there exists a PTIME Turing machine
that accepts exactly the standard encodings of ordered versions of the structures
in the class.

We further say that a logic L captures PTIME iff it is a PTIME logic and
for every signature Σ every PTIME class of Σ-structures conincides with some
class K(Σ,ϕ).

4.2 Insignificant Choice Polynomial Time

An insignificant choice ASM (for short: icASM) is an ASM M such that for every
run S0, . . . , Sk of length k such that Halt holds in Sk, every i ∈ {0, . . . , k − 1}
and every update set Δ ∈ Δ(Si) there exists a run S0, . . . , Si, S

′
i+1, . . . , S

′
m such

that S′
i+1 = Si+Δ, Halt holds in S′

m, and Output = true (or false, respectively)
holds in Sk iff Output = true (or false, respectively) holds in S′

m.
A PTIME (bounded) insignificant choice ASM (for short: PTIME icASM) is a

triple M̃ = (M,p(n), q(n)) comprising an icASM M and two integer polynomials
p(n) and q(n) with runs such that whenever an input structure I is accepted by
M̃ (or rejected, respectively) then every run on input structure I is accepting
(or rejecting, respectively).

According to this definition whenever there exists an accepting or rejecting
run, then all other runs on the same input structure, i.e. runs that result making
different choices, are also accepting or rejecting, respectively.

Theorem 4. ICPT captures PTIME on arbitrary finite structures, i.e. ICPT
= PTIME.
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The full proof is given in [33]. In a nutshell, given a PTIME problem we
simply use a non-deterministic ASM to first generate an order on the set of
atoms, then create deterministically the standard encoding of the input struc-
ture with this order and finally simulate the PTIME Turing machine deciding
the problem. Then it is clear that the choices in the ASM will only refer to
atoms, and the local insignificance will be satisfied. This is then used to prove
also the converse by creating a PTIME simulation by a Turing machine. The
local insignificance condition implies global insignificance, i.e. any choice can
be replaced by a fixed choice of the smallest element, and the fact that choices
are restricted to atoms guarantees that the local insignificance condition can be
checked on a Turing machine in polynomial time. The first part of the proof
further shows that PTIME is included in a fragment of ICPT defined by ASMs
satisfying the local insignificance condition.

Corollary 1. PTIME is captured by the fragment ICPTloc of ICPT, where the
separating icASM satisfies the local insignificance condition.

Through Theorem 4 and Corollary 1 ICPT highlights the similarities and dif-
ferences between classical computation theory on strings using Turing machines
and computation theory on structures using ASMs. Not only does the shift to
arbitrary Tarski structures lead to a theory on arbitrary level of abstraction,
while at the same time enabling the proofs of long-standing open problems such
as the refutation of Gurevich’s conjecture and the separation of PTIME from NP
[33], it shows that computation theory requires more than just functions from
input to output. Furthermore, it helps closing the gap between the theory of
computation and the developments in practice with the perspective to obtain a
thorough theoretical penetration of practice, which is what actually was claimed
by the term “Software Engineering”.

5 Concluding Remarks

Monographs written or co-authored by Egon Börger provide cornerstones for the
development of the theory of computation and its applications [8,11,16,37]. In
this article I outlined bits of a modernised theory of computation on structures
grounded in behavioural theories of classes of algorithmic systems, associated log-
ics and complexity theory. The emphasis was on polynomial time computations.
Starting from parallel algorithms I showed how to extend them by insignificant
choice, which requires a modification of the logic of non-deterministic ASMs.
Then I sketched the recently proven capture of PTIME. This shows how all
parts of the theory fit neatly together. Nonetheless, there are still many open
problems associated with the theory, which need to be addressed such as a the-
ory of non-determinism and randomness. The next decisive monograph will be
a consolidated theory of computations on structures.
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Computations on structures give rise to specification of algorithmic systems
on arbitrary levels of abstraction, i.e. they directly feed into rigorous system
development. The logics associated with a particular class of algorithmic sys-
tems can be used in this context for the verification of desirable properties.
Complexity classes enable fine-tuned classification with further insights how an
algorithm solving a problem in a complexity class looks like. The various suc-
cessful applications of the ASM method with or without choice, with single or
multiple machines and with sophisticated refinement strategies show that com-
putation theory on structures is well positioned to bridge the gap between the
increasing structural complexity of modern software-centric systems and the
foundational theory.
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Abstract. The domain of Subject-oriented Business Process Manage-
ment (S-BPM) is somewhat outstanding due to its embracing of Subject
Orientation. However, at the same time, it is also a classic BPM domain
concerned with typical aspects like creation and exchange of diagram-
matic process models, elicitation of domain knowledge, and implement-
ing process (models) into organisations and IT systems. Nevertheless, the
Abstract State Machine (ASM) concept, a formal and abstract specifica-
tion means for algorithms, has been and is fundamental and an important
cornerstone for the S-BPM community. The first formal specifications for
S-BPM has been developed by Egon Börger using ASM means—namely
a specification for an interpreter engine for the subject-oriented modeling
language PASS, the Parallel Activity Specification Schema. However, for
the sake of intuitive and comprehensive use, ASM can be enriched with
defining the passive aspects of PASS, namely the (data) structure of pro-
cess models and data object appearing in the processes. Here it is useful
to complement ASM description means with concepts that are better
suited for that tasks. This work analyzes how the S-BPM research com-
munity has combined ASM with the Web Ontology Language (OWL)
to generate a precise, while comprehensible, system specification for the
execution of formal, subject-oriented process models. Furthermore, it will
be argued why this combination is worthwhile overcoming the weaknesses
of both generic and technology independent specification approaches.
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1 Introduction

The specification and implementation of business processes is an inherently
complex activity involving multiple stages and multiple actors. Normally, the
involved actors are specialists in different domains, e.g. business analysts, pro-
cess stakeholders, software developers. The collected information about a process
is usually formalized in models of and ideally are understood and agreed upon by
all involved parties. For that purpose, a multitude of methodologies have been
proposed to manage the complexity of gathering and structuring the required
information. B. Thalheim gives in [21] a comprehensive overview of aspects on
conceptual models.

According to [11] a model should have following properties:

1. Aiding a person’s own reasoning about a domain
2. Supporting the communication of domain details among stakeholders
3. Supporting the communication of domain details to developers
4. Documenting relevant domain details for future reference

Furthermore, models are often created for the purposes to plan changes in
their considered domain, e.g. to make business processes more effective and/or
efficient. Today the standard way to achieve more effectiveness and efficiency is
the use of IT. In order to transform a model into reality using IT there is another
requirement for models:

5. Transformation of Models into an IT-solution

Diagrammatic or graphical modeling languages are the preferred approach for
describing processes. They are seen as more understandable and intuitive than
textual specifications [15]. However, to meet the transformation requirements
the syntax and semantics of a graphical language must be precisely defined.

Because several stakeholders from different domains are involved in defining
a model, several different visualisation styles based on the same modeling philos-
ophy can be useful. Business people may prefer pictographs whereas developers
may prefer a rectangle for representing the same entity.

Furthermore, since networked organization for business processes cross their
borders, and the various organisations involved in a process likely use different
IT-platforms, different parts of a process are implemented in different systems.
Ideally, various platforms automatically must align to, or at least the humans as
developers must understand the semantics of a process model in the same way.

There cannot only be different graphical tools for specifying models, but
also different platforms where these models are migrated for execution. Figure 1
shows the basic structure of a modeling and execution environment.

A language which meets the first four properties is the Parallel Activity
Specification Schema (PASS) which is a schema based on the subject-oriented
philosophy where the active entities are the focus of model. As a modeling lan-
guage, PASS is informal and semantically open, and allows to specify any kind
of executable process system. However, due to the prior mentioned requirements
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Fig. 1. Definition and execution of process models

caused by the possible involvement of a multitude of people, organisations, and
IT systems, there are multiple editors and IT systems tailored to various stake-
holders and their visual needs. Still or especially under these requirements, the
exchange of process models between various tools and the identical execution on
each platform needs to be assured. Consequently, model and execution seman-
tics of any modeling complex with such a goal needs to be specified in a formal
manner. We have done that for PASS using the Abstract State Machine (ASM)
formalism—but only partially since, as will be argued, while being a proper tool
for algorithmic definition, ASM can and possibly should be complemented by
other specification means that better fit other modeling aspects.

In the first section of this work, the different aspects of modeling are consid-
ered in more detail. In the succeeding sections we describe the features of PASS
and why we decided to use the ontological means of the web ontology language
(OWL) to define the formal static model structure, and for formally specifying
the dynamic aspects of PASS models Abstract State Machine (ASM).

2 Modeling in General

“You don’t have to understand the world, you just have to orient yourself”
(“Man muss die Welt nicht verstehen, man muss sich nur darin zurechtfinden.”).
According Internet source), this sentence is attributed to Albert Einstein (e.g.
[7]). Who understands what is going on in the world? Who knows how it works?
As we cannot answer these questions sufficiently detailed, we should take care
of our world, namely the part of the world that is important to us in a specific
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situation. We should recognize that we create or construct our world on a daily
basis. Any excerpt of reality is naturally determined by our subjective interests.
Each of us decides which part of the world we want to consider and which aspects
seem important to us. In doing so, we identify the artifacts and the relationships
between them that are essential for us. Such an abstraction of a part of reality
is called a model [20]. Figure 2 shows the general approach for creating models.

Fig. 2. Modeling and its implementation

This general approach is as follows: We consider a domain we want to change,
e.g. we want to make a business process more effective and/or efficient. This
means we create and adapt a model that fits our requirements. Now we have
a model of the considered domain as we want it to be (SHOULD). This model
represents what we implement in order to create a new world.

Models can never cover or represent all aspects of reality at once. They are
always a reduction of reality made by and from the perspective of a specific
interest group at a specific time for a certain purpose. In order to describe
models in information science, ontologies can be applied. An ontology is a way
of describing the attributes and properties of a domain and how they are related,
by defining a set of concepts and categories that represent the considered part
of the world.

A model has two major aspects: the static aspect which contains the con-
sidered entities and their relations, and the dynamic aspect which defines the
behavioral part of the considered domain.

2.1 Static View

In the static view, entities of reality, which should become individuals of a model,
are selected. This includes the identification of the relations between entities
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which become part of the model. The selected entities and the relations between
them are called attributes of a static model.

2.2 Dynamic View

In a model, also dynamic aspects can be considered. Dynamic aspects can be
concepts like chemical reaction processes, flow behaviors of fluids, the dynamics
of a machines, or the observable behavior of an entity, or the observable behavior
of a complex system. Describing these aspects has specific requirements that are
not necessarily met by languages specialized for static aspects. Especially for
state-based abstract system description, these requirements include the ability
to describe concepts like concurrency, non-determinism, synchronization, and
communication.

2.3 Modeling Languages

As stated, both, static structure and dynamic behavior are two major aspects
of any system when we interpret the part of reality considered for modeling as
system. Consequently, no system can be modeled without considering both in
tandem [6].

However, not every modeling language, either graphical or textual, is equally
sufficient to express both aspects and many of them tend to focus on one aspect.

For instance, entity relationship diagrams describe only data structures which
means only static aspects are considered. UML, which is actually 14 different
languages, considers both in respective diagram types, static aspects in, e.g., class
diagrams and dynamic aspects in state transition diagrams. BPMN is a language
for describing business processes. This means its focus is the specification of
behavior.

3 The Parallel Activity Specification Schema: PASS

The aforementioned Parallel Activity Specification Schema (PASS) is special
in this regard. It follows the paradigm of Subject-Orientation when describing
models of process or rather process systems. In such models the term of “Subject”
refers to active entities. These execute operations on objects and exchange data
via messages to synchronize their operations.

PASS as a modeling language is used to specify dynamic concepts (processes).
However, its SIDs (see later) as well as the Messages (Data)-Objects they contain
are more akin to static structures. Furthermore, PASS models themselves are
static structures that need to be described by a meta-model specialized for that.
Finally, the execution of a PASS process model is, again, a dynamic concept and
a specification for a correct execution would should be specialized for that.

In the following sections first we give an informal overview and after that we
outline the precise and formal definition of PASS.
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3.1 General Concept of Subject-Orientation

As any process model, subject-oriented process specifications are embedded in
a context. A context is defined by the business organization and the technology
by which a business process is executed. Subject-oriented system development
has been inspired by various process algebras (see e.g. [10,13,17,18]), by the
basic structure of nearly all natural languages (Subject, Predicate, Object) and
the systemic sociology developed by Niklas Luhmann [2,16] and Jürgen Haber-
mas [12,19]. In the active voice of many natural languages, a complete sentence
consists of the basic components subject, predicate and objects. The subject
represents the active element, the predicate (or verb) the action, and the object
is the entity on which the action is executed. According to the organizational
theory developed by Luhmann and Habermas, the smallest organization consists
of communication executed between at least two information processing entities
(Note, this is a definition by a sociologist, not by a computer scientist) [16].
Figure 3 summarizes the different inspirations of subject orientation.

Fig. 3. Fundamentals of Subject-Orientation

Particularly, we describe how these various ingredients are combined in an
orthogonal way to a modeling language for scenarios in which active entities play
a prominent role like in Industry 4.0.
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Structure of Models Described in PASS. A PASS model (system) con-
sists of two separate but interconnected graph descriptions. First, the Subject
Interaction Diagram (SID) that defines the existence of active entities (the Sub-
jects) and their communication relationships, that they can use to exchange data
in a process context. Furthermore, for each subject there can be an individual
Subject Behavior Diagram (SBD) that defines its specific activities in a process.

A subject acts upon (data) objects that are owned by the subject and can
not be seen by other subjects1.

It is important to emphasize, that this specification is totally independent
from the implementation2 of subjects, objects, and the communication between
subjects. This means subjects are abstract entities which communicate with
each other and use their objects independent from possible implementations.
The mapping to an actual implementation entity or technology is done in a
succeeding step.

When an implementation technology is assigned (mapped) to a subject to
execute its behavior (SBD) it becomes an actor/agent, e.g. a software agent. In
Fig. 4 a model defined in PASS is shown. The upper part of that figure shows the
graphical representation of a PASS model with SID (upper diagram) and SBDs
(lower diagrams). In the example subject ‘Customer’ sends a message ‘order’ to
the subject ‘Companies’ and receives the messages ‘Delivery’ or ‘Decline’.

In principle, an SBD defines the behavior of a subject as a kind of state
machine, interlinking three types of states (see lower part of Fig. 4). Send states
(green nodes) represent the dispatch of messages to other subjects, Receive states
(red nodes) represent the reception of messages from other subjects, and Func-
tion/Do states (yellow nodes) represent tasks that do not involve interaction
with other subjects. States are connected using transitions representing their
sequencing. The behaviour of a subject may include multiple alternative paths.
Branching in PASS is represented using multiple outgoing transitions of a state,
each of which is labelled with a separate condition. Merging of alternative paths
is represented using multiple incoming transitions of a state. Within an SBD,
all splits and merges in the process flow are always explicitly of the XOR type.
There are no AND or OR splits!

Subjects are executed concurrently. Triggering and synchronizing concurrent
behaviors is handled by the exchange of messages between the respective sub-
jects.

For a subject-oriented process model to be complete and syntactically cor-
rect, all messages specified in the SID (and only those) must be handled in
the SBDs of the two subjects involved. The SBD of the sending subject needs
to include a Send state specifying the message and recipient name (see Fig. 4).
Correspondingly, the SBD of the receiving subject needs to include a Receive
state specifying the message and sender name. There is no explicit diagrammatic

1 In an extended version of subject-orientation shared objects are also possible but
are not considered here [9].

2 Implementation of a subject = realization in form of a human, IT-System, or other
technology.
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Fig. 4. Main Components of PASS (Color figure online)

association of the messages shown in the SID with the corresponding Send and
Receive states in the SBDs.

At runtime, any incoming message is placed in the so-called input pool of the
receiving subject, which can be thought of as a mailbox. When the execution of
the subject has reached a Receive state that matches the name and sender of a
message in the input pool, that message can be taken out of the input pool and
behaviour execution can proceed as defined in the SBD. The default commu-
nication mode is asynchronous. Synchronous communication can be established
by restricting the maximum number of messages that can be stored in the input
pool. The input pool is not visualized in a diagram but is an important con-
cept in order to understand how messages and behaviours are loosely coupled
subjects in PASS.

3.2 Formal Description of PASS

In order to standardize any process modeling language, an informal description
as described above is not sufficient for execution. In addition, formal specification
for the static structure of the models as well as a specification of the execution
dynamics is necessary. For PASS the static structure is defined formally using the
Web Ontology Language (OWL see [1]. The dynamic aspects are specified with
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ASM [5]. The following sections give an overview to both formal descriptions.
More details can be found in [14].

Structure of PASS Models in OWL. In OWL, four principal (color corded)
concepts exist, as shown here: Classes, relationships between classes, the so-
called Object Properties, non-linking Data Properties that are attached to
classes and allow attaching individual data values to instances of the classes, and
finally the instances of classes themselves, the OWL Individuals.

Figure 5 shows the most important elements of PASS SIDs as they appear in
the Standard-pass-ont ontology in OWL.

The central classes are Subject, MessageSpecification, and MessageEx-
change. Between these classes are defined the properties hasIncomingMes-
sageExchange (in Fig. 5 number 217) and hasOutgoingMessageExchange
(in Fig. 5 number 224). These properties define that subjects have incoming
and outgoing messages. Each MessageExchange has a sender and a receiver
(in Fig. 5 number 227 and number 225). Messages Exchanges also have a type.
This is expressed by the property hasMessageType (in Fig. 5 number 222)
linking it to a MessageSpecification. These Message Specifications are the
actual existential definitions for Messages, while the model element of the Mes-
sage Exchange is used to define that an existing message is indeed exchanged
between specific subjects. Beyond that, message exchanges that have the same
sender and receiver may be grouped into an MessageExchangeList that con-
tains them.

Fig. 5. Elements of PASS Process Interaction Diagram
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Each Fully Specified Subject contains at least one Subject Behavior
(containsBehavior), which is considered to be its Base Behavior (see prop-
erty 202 in Fig. 6—containsBaseBehavior) and may have additional subject
behaviors (see sub-classes of SubjectBehavior in Fig. 6) for Macro Behaviors
and Guard Behaviors.

The details of all behaviors are defined as state transition diagrams (PASS
behavior diagrams). These Behavior Diagrams themselves contain Behav-
ior Describing Components (see Fig. 6). Inversely, the Behavior Describ-
ing Component have the relation belongsTo linking them to one Subject
Behavior.

Execution Semantics of PASS Models with ASM. As stated, while the
correct structure and syntax of Parallel Activity Specification Schema (PASS)
are specified in the Web Ontology Language (OWL), its execution semantics is
defined using the formalism of Abstract State Machines (ASM) as defined by
Börger in [3]. The original PASS ASM execution specification has been formu-
lated in [4] in 2011, but is now somewhat outdated in terms of PASS model
elements covered by the specification as well as the used vocabulary.

While not yet covering all PASS elements, the current version of the PASS
execution semantics is based on [23] and [22]. Note, that this is not a pure ASM
specification, but rather a specification meant for CoreASM, an open-source
ASM execution engine/software implemented for the JAVA Virtual Machine
(JVM) [8]. Thereby, it is an execution specification as well as a reference imple-
mentation at the same time.

Fig. 6. Structure of subject behavior specification

The complete specification comprises all elements and aspects a workflow
engine requires, including concepts to receive and send messages between various
instances of subjects. However, at the core of each subject instance is what Börger
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had already defined in the original work: an interpreter for a Subject Behavior
Diagram that defines the actual behavior possibilities of a subject instance within
a process-instance.

In advanced PASS modeling, a subject may technically have more than one
behavior, for example multiple MacroBehaviors. A FullySpecifiedSubject
always has one main MacroBehavior given with containsBaseBehavior,
which is loaded as 1st macro instance. Therefore, the
simply calls the for this 1st macro instance. Later on, the

can be called recursively from a MacroState with other
instances of the MacroBehavior elements, the so-called Additional Macros.

The controls the repetitive evaluation of all States in
the SBD of the given MacroBehavior instance.

The evaluation of each individual State is structured into three main phases
of the : initialization, the state function, and an optional transi-
tion behavior.
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In the beginning the initializes the evaluation of a State
with the , which will also set to .

Next, it is checked if the State has to be aborted, which is the case when a
timeout or cancel is activated. Then the will reset the previous
evaluation results of it.

Otherwise the interprets the state function, which comprises
the evaluation of the corresponding FunctionSpecification and Transition-
Conditions3, including the TimeTransitionCondition to supervise a possi-
ble timeout, until it is indicated that this phase is and an outgoing
transition has been selected or determined.

Usually, the outgoing Transition will be selected by the environment (i.e.
by the agent), which is for example the case for the FunctionSpecification
DefaultFunctionDo1 EnvironmentChoice. However with auto-transitions
it is possible, that such a transition is automatically selected by the state func-
tion as soon as it becomes enabled and as long as there are no other enabled
transitions to choose from, as it is the case for the DefaultFunctionRe-
ceive2 AutoReceiveEarliest as it is specified in the
(not shown here).

For the last phase the selected Transition will be initialized by the
and the transition behavior will be performed with

the , until it is completed as well. As last step the
updates the of the macro instance by removing

the current State and adding the State that is indicated by the property has-
TargetState on the selected Transition.

3.3 Combination of Structure and Behavior

As stated, the definitions of valid models, syntax and structure of a model, the
static view, is given by the OWL specification. For that purpose, a model itself
is a data object with a structure matching the ontology definition.

The concept is, that the ASM-engine accepts process model objects following
the ontology definition as input and “produces” state sequences, i.e. the dynamic
process flow, as an output. Naturally, this works only if the ASM interpreter can
handle all concepts defined in ontology and therefore, has been created to match
the ontology. In order for this to work, the process models have to be imported
into the CoreASM environment—a transformation that links both technologies
together.

Although the current ASM interpreter does not yet cover all PASS elements,
it is shown in the previous section, that both the underlying concepts and nomen-
clature of both the specifications of the structure (OWL) and behavior (ASM)
already fit well together. Such harmony cannot be taken for granted, as develop-
ment of one specification has to be reflected in the other one in synchronization.
3 Thereby the availability of each Transition can change, depending on the

dynamic state of the TransitionCondition during execution. For example, the
enables or disables a Transition based on the availability of a Mes-

sage in the Inputpool according to the ReceiveTransitionCondition.
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Fig. 7. Combination of OWL and ASM

The relationship between the OWL and ASM specifications is depicted in the
bottom part of Fig. 7, which suggests to develop changes in the ontology first
with an informal description of the behavior and later on to formally specify
the behavior in the ASM specification and thereby to update the process model
importer of the reference implementation.

The upper part of Fig. 7 summarises the run-time behavior: a process model,
that adheres to the OWL PASS Ont, can be interpreted by the reference imple-
mentation, which is interpreting the ASM specification, to produce an interpre-
tation of the process model with its execution sequences.

To detect errors in a process model, a reasoner can be used to detect incon-
sistencies within the process model and also against the standard-pass-ont (for
example a ReceiveState must not have a SendTransition). However, not all prob-
lems can be found by a reasoner, since there is only a definition for a process
model and not for an executable process model. It is deliberately allowed to store
incomplete process models. This allows the exchange between various tools, for
example to create a prototype in tool A and perform further refinement in tool
B. Therefore, before or during the import of OWL process models to the inter-
preter, the process model has to be validated for executability. For example, all
interactions defined on an SBD have to be defined on the SID, otherwise errors
could occur during the execution.

4 Discussing the Combination

As stated, for subject-oriented modeling with PASS, this combination of OWL
and ASM is used at the core of a standard architecture for PASS modeling and
execution tools. The concept is that each modeling tool stores the models in
the owl structure which in turn can be interpreted by execution tools. Various
modeling tools can use different language variants or extensions for describing
the same facts if they are derived from and therefore adhere to the PASS-OWL
definition. Figure 8 shows the particular roles of OWL and ASM specifications.
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Fig. 8. Overview usage of OWL and ASM in tool suites

If done precisely, any CoreASM-Spec based interpreter is able to interpret
the model in the right way. This conceptual environment allows creating process
models with different graphical editors in an interchangeable way, and using any
workflow engine ensuring interpretation in the same way.

To discuss a usage scenario (depicted in Fig. 9): Due to historical develop-
ment, modeling tool A currently does not use the OWL structure to store mod-
els. The original ASM implementation had been developed before the OWL
definition was complete. The data repository structure for storing specifications
of modeling tool A (*.graphml files) has been directly transferred into a data
structure (ScalaModel in PASSProcessModel) which is used as a high-level in-
memory data structure for further transformation to the actual CoreASM data
structure (ASM Map in PASSProcessWriterASM).

The intermediate data structure (ScalaModel in PASSProcessModel) is also
capable to be stored in OWL and to be read from it, allowing the import of
OWL process model definition into the CoreASM interpreter.
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Fig. 9. Architecture of the reference implementation

Modeling tool B is based on Microsoft Visio. This modeling tool can store
process models in the PASS standard OWL format. Due to adherence to OWL
and ASM standards, both modeling tools can be used to generate valid, exe-
cutable input for the same workflow engine.

Although the CoreASM execution engine works, it is only meant as a ref-
erence and far from having good performance and usability on a level where
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it would be applicable for industry applications. Moreover, a complete work-
flow solution also needs an administration and management component. Conse-
quently and as next steps, it is planned to implement a workflow engine in C#
based on or derived from the CoreASM code.

Figure 10 shows the principal concept for usage of the reference implemen-
tation as a part of the requirement specification for a workflow engine. To do
so, the programmers of the alternative workflow engines simply need to conform
to the Execution Semantics of the ASM spec. The CoreASM reference imple-
mentation can be used as part of a test framework, which interprets a set of
process models, that had been crafted to automatically converge to accepting
end states. This forms test cases for the other workflow engines to validate if
their executions converge to the same results.

Fig. 10. Deriving a workflow engine from the reference implementation

5 Conclusion

In order to establish Subject-oriented Business Process Management (S-BPM)
as behavior- and communication-centered system development approach, not
only intuitive tools to (re)present models and specify contextual information are
required, but, at the core, also stringent specifications of static and dynamic
elements. Starting with its original formal ASM execution Specification by Egon
Börger, the subject-oriented modeling language PASS (Parallel Activity Speci-
fication Schema), has become a semantically precise and formal instrument for
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behavior modeling. Complementing the ASM specification with the Web Ontol-
ogy Language (OWL) enriches this capability with contextual system representa-
tions, and overcomes the weaknesses of both generic and technology-independent
specification approaches.

In this paper we have demonstrated how this combination of ontology and
an abstract state machine can be approached for specifying the structure and
behaviour of systems in a mutually aligned way. We have exemplified in detail
how these two concepts have been applied to PASS, and thus how a subject-
oriented approach works for the benefit of specifying concurrent systems inde-
pendent from their implementation. Utilizing this approach, a variety of mod-
eling and execution tools can be developed to be used in an interchangeable
way, while meeting different stakeholder requirements and preferences from a
technological and user-centered perspective.

In a certain way it could be argued that having two different formalisms for
static (OWL) and dynamic (ASM) aspects maybe somewhat unnecessary and
double the work. Why the extra effort of having to create two different formal
specification that are still sync with each other, regarding the vocabulary and
concepts? Why the need to learn and understand both when wanting to extend
specifications?

However, the experience during the work on the presented domain has shown
that this combination is indeed the best approach to be advised. While being
an official specification for S-BPM, the original Börger ASM interpreter rarely
understood as being that, an interpreter, and partially people wondered where
the Do States and Receive Transitions are? The ASM interpreter only implicated
the existence of these elements indirectly. On the other side when defining the
OWL specification, often model elements were proposed that came with assump-
tions about the execution, but without a precise execution semantics. Each on its
own simply was always lacking precision and especially easy and direct compre-
hensibly in the other regard. Having both overcomes the shortcomings of both
and furthermore allows learners that want to understand S-BPM and PASS
modeling formally a subject-oriented approach in itself by allowing to make
such simple statements as: “Here is an ASM interpreter. It should read PASS
models that contain the following elements. Only a syntactically correct model
can be executed. Here are the rules that tell you what is Okay and what not.
When encountering an element during execution, the interpreter should behave
in this specific way.” It should be obvious where in the previous sentences each
specification played its role and why both together form a great union.
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Abstract. Models are a universal instrument of mankind. They sur-
round us our whole lifespan and support all activities even in case we are
not aware of the omnipresence. They are so omnipresent that we don’t
realise their importance. Computer Science is also heavily using models
as companion in most activities. Meanwhile, models became one of the
main instruments. The nature and anatomy of models is not yet properly
understood.

Computer Science research has not yet been properly investigating its
principles, postulates, and paradigms. The well-accepted three dimen-
sions are states, transformation, and collaboration. An element of the
fourth dimension is abstraction. The fourth dimension is modelling. We
review here the fourth dimension.

Keywords: Models · Art of modelling · Modelling theory · Computer
science pitfalls · Model theory

1 Models Are the Very First Human Instrument

Wavering forms, you come again;
once long ago passed before my clouded sight.

Should I now attempt to hold you fast? ...
You bear the images of happy days,
and friendly shadows rise to mind,
With them, as almost muted tale,
come youthful love and friendship.

Goethe, Faust I

Remark: See too the presentations in https://vk.com/id349869409 or in the youtube
channel “Bernhard Thalheim” for the theory and practice of modelling.
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Models, Models, Models – We Are Surrounded with Models

Humans use many instruments and especially intellectual instruments. The very
first intellectual instrument we use is a model. Babys quickly develop their own
models of the ‘mother’ and ‘father’. They cannot yet use a natural language
but they know already models of their surroundings [22]. Later children realise
that their models of ‘father’ or ‘mother’ are different from those used by other
children although they use the same terms in their native language for referencing
to mothers and fathers.

Later, we develop mental concepts and we learn to strengthen them to codi-
fied concepts. Concepts can be considered as the main and basic elements of men-
tal models. Codified concepts are essential elements of conceptual models. Edu-
cation is model-backed. Almost all scientific and engineering disciplines widely
use modelling. Daily life and social interaction is also model-backed.

The wide use of models is caused by: models are often far simpler; models
reduce complexity of systems; models support reasoning; models support interac-
tion, communication, and collaboration; models are more focused, abstract, and
truncated; models support perception; models must not be correct - they should
however be coherent; models may be preliminary; models ease understanding;
models can be understood on the fly; etc.

In general, models are and must be useful. Mental models are used by every-
body in an explicit but often implicit form. They have an added value in life,
society, science, and engineering, e.g. models in Ancient Egypt. Models have not
to be named ‘model’1. Their importance is far higher than often assumed.

Our discipline is not an exception for the misunderstanding of modelling.
Moreover, modelling is a central activity due to the complexity of our systems
and especially our software. There is a simple reason for the importance of
models: systems are far more complex than a human can entirely understand.
Models, however, allow to concentrate, scope and focus on certain aspects while
neglecting others or coping with other through other models.

1 The oldest mention we acknowledge is the usage in Ancient Egypt with the use of
models as moulds, models as representations, and models of the right order (’maat’).
The first explicit notion of model is ‘metron’ in Ancient Greece and ‘modulus’ in
Roman time, i.e. at least 40BC. The wide use of this word came with engineering in
the 16th century and with sciences in the 19th century.
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Models, Everywhere, Anytime, for and by Everybody

Computer Science2,3 (CS) and especially Applied Computer Science (ACS)4

are unthinkable without modelling. Modelling has been already used when the
history of CS started. We use very different names for artifacts that are models,
e.g. specification, declaration, or description. We also know more that 60 different
notions of conceptual model. As far we know, the variety of notions of model
goes far beyond 450.

Analysing the state of art in CS&ACS we conclude that each branch widely
uses models. Depending on the construction, description, prescription, prognosis,
investigation, and application scenarios where models are used, models function
as blueprint for system and software construction, as development companion,
as starting or inspiration point, as means for systems analysis and prognosis,
as means for learning and reflection, as reasoning instrument, as reflection and
representation of some observed reality or system, as thought guide, as means
for explanation and elaboration, as helper for integration and modernisation,
etc. There is no branch in CS&ACS that does not use models.

Models are specific in dependence on the role they play as instruments in
scenarios. If the model is dependable and especially of sufficient quality then it
properly functions in those scenarios. Models are also used for sense-making in a
more foundational setting, for delivering essential information about the system,
and for representation of aspects that are currently of interest. Models are a good
instrument for communication or more general interaction and collaboration.
And they are used by everybody at the perception or conceptual or intelligible
levels.

2 A description of Computer Science has been given in [12]:
“Computer Science and engineering is the systematic study of algorithmic processes
– their theory, analysis, design, efficiency, implementation and application – that
describe and transform information. The fundamental question underlying all of
computing is, What can be (efficiently) automated.”.

3 Computer Science can be divided into kernel CS and applied CS. The first subdis-
cipline spans theoretical, practical and technical CS.

4 We do not know a commonly accepted description of this subdiscipline.
Essentially, applied CS has two branches: specific application-oriented CS and engi-
neering of solutions in applications. The first branch has led to a good number
of so-called ‘hyphen’ CS such as business informatics, biomedical informatics, and
geoinformatics. The second branch is engineering of work systems [2], i.e. systems “in
which humans or machines perform processes and activities using resources to pro-
duce specific products or services for customers”. It spans topics such as information
systems, information science, information theory, information engineering, informa-
tion technology, information processing, or other application fields, e.g. studying
the representation, processing, and communication of information in natural and
engineered systems. It also has computational, cognitive and social aspects.
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Inheritance of heritage knowledge is considered to be a really bad habit in CS.
“Never cite a paper that is older than 5 years” and “never read and learn from
old wise papers” are common approaches in modern research. Such revolutionary
approach has never led to a real good outcome in history and disciplines. The
body of knowledge of a science consists however of compiled achievements of
research. Models and modelling is one of those. Modelling has its huge body of
knowledge that waits its digestion, systematisation, and compilation.

2 The Fourth Dimension of Computer Science: Modelling

What you inherit from your father,
Earn it anew before you call it yours.

What does not serve you is a heavy burden,
What issues from the moment is alone of use.

Goethe, Faust I

Towards an Understanding of our Disciplines

The great success of redevelopment of Mathematics by the Nicolas Bourbaki
group [6] led to a structure-oriented redesign of Mathematics. This group found
that Mathematics has three guiding dimensions: algebra, order, and topology.
Following [47], we can distinguish three dimensions of computer science: states,
transformation, and collaboration5. Computation is considered so far as state
transformation. Systems are never completely monolithic. They consist of inter-
acting components. The disciplinary orientation understands interaction as some
kind of collaboration. So far we straiten human behaviour into this schema and
squeeze together human behaviour and machine operating6. The fourth dimen-
sion is often underestimated but not less important: models. Figure 1 depicts the
interrelation of the four dimensions and adds to the CS&ACS intext the outer
context.

5 A dimension that has not found its proper entry into our discipline is approxima-
tion. Approximation is the fifth dimension orthogonal to states, transformation, and
collaboration.

6 We expect that modern applications such as internet technology have to use human-
isation as the sixth dimension in order to cope with modern interdisciplinary tasks.
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Fig. 1. The four dimensions of computer science: (1) the state dimension; (2) the trans-
formation dimension; (3) the collaboration dimension; (4) the model dimension

The three dimensions are interwoven. For instance, central concerns in dat-
abase management are states and state transformation. The fourth dimension is
also interwoven with the other three. Models scope and focus to the essentials and
allow us to restrict attention and to construct systems in a thoughtful way. Mod-
els allow us to avoid complexity, to concentrate first on the most important issues
(pragmatism), to ‘dream’ on system extensions not yet observable or developed
(amplification), and to abstract from the current state by an ideal state of affairs
(idealisation). Humans are restricted in their mental abilities and cannot prop-
erly reason on complex systems. Instead, we order, categorise, generalise, abstract,
and stereotype in a methodological mould in such a way that our models, macro-
models, meso-models, and micro-models can be mapped to operating mechanisms.

CS&ACS have not yet developed a ‘Bourbaki’ collection of paradigms and
principles. At present, Computer Science can be defined as the systematic study
of computer and computation systems, “including their design (architecture)
and their uses for computations, data processing, and systems control.” (slightly
changed from [32]). Following [12], we can assume that kernel CS is based on
three main competencies: theory, abstraction, and construction (or composition;
originally ‘design’). We may consider modelling as a fourth competency. Mod-
elling did not find a proper foundation in CS. It is however considered to be one
– if not the main – of the core competencies in ACS.

What Means Modelling?

Models are used as instruments in our activities. Modelling thus includes master-
ing and manufacturing the instruments. Models should be useful. Modelling thus
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also includes deployment in preparation for work, utilisation with skilled acts of
using, and well-organised application stories for models. We should not target for
ideal or perfect instruments. The 3U macro-model considers usefulness, usability,
and usage as a holistic quality for models. Modelling as mastering meets thus
two challenges: appropriate7 models with sufficient quality in use. Models are
oriented on its use in application ‘games’ [46] by users within their context and
usage culture.

CS Theoreticians, Researchers, and Developers Are Modelling

A common misbelief is that theoreticians, researchers, and developers do not
need models. They can develop their ideas and thoughts without modelling. Code
is then something like a plan and presentation of these ideas. What are then ideas
and presentations? These are two mental states, the first one as perception or
idea (in German ‘Auffassung’) and the second one as imagination (in German
‘Vorstellung’) [7,28,43]. These are then nothing else than perception models and
their presentations.

A second claim is often made: the code is the model. We ask ourselves ‘of
what’? Of the operating of a machine from one side and of our understanding
how the machine would work from the other side. So again, it is a model. Whether
it is unconscious, preconscious, or subconscious does not matter. It is already a
model mediating between expectations and operating.

A third claim sometimes asserted strongly is the belief that Theoretical Com-
puter Science may sidestep models. What about their models of computation
that became THE unshakable paradigm of computation? Nothing else than these
models can be accepted. We may ask ourselves whether there are other useful
models of operating.

CS Modelling is so far an Art or Handicraft

Modelling is so far treated as craft or handicraft, i.e. the skilled practice of a
practical occupation. Modellers perform a particular kind of skilled work. Mod-
elling is a skill acquired through experience in developing and utilising a model.
At present it becomes an art. Art aims at creation of significant (here: appro-
priate) things (here: models)8. Artistry is a conscious use of skill and creative
imagination that one can learn by study and practice and observation. Usually
acquired proficiency, capability, competence, handiness, finesse, and expertise in
modelling.

We envision that modelling is becoming a sub-discipline in CS due to its
importance as the fourth dimension. It will be a branch of knowledge based
on a controllable and manageable system of rules of conduct or methods of CS

7 See below: adequate and justified, sufficient internal and external quality.
8 Donald Knuth followed this meaning by calling his four volumes: ‘The art of pro-

gramming’ [24].
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practice. So far, a number of methodologies has been developed. Some of them
became a mould9 for modelling. Modelling is not yet a science10 or culture11.

Models in Applied Computer Science

Models are also used in manufacturing for instance as a template, pattern, ref-
erence, presentation, prototype, origin for production, master copy, and sample.
We should note that models and modelling is different for engineering and also
for ACS. It is far less well understood in CS. This observation is also true for
software engineering [14] that makes heavy use of models but neither coherent,
systematically, nor considering the engineering specifics. Software architecture
[13] is not an exception.

Models can but don’t have to be explicitly designed for usage. Engineering as
the approach to create the artificial [36] is based on models as a starting point for
construction, as a documentation of the construction, as a means for developing
variations, as a thought and imagination instrument, and as an artifact within
the creation process. There are, however, objects that became models at a far
later stage of their existence12.

3 Myths About Modelling

I’ve studied now Philosophy and
Jurisprudence, Medicine – and even, alas!

Theology – from end to end with labor keen;
and here, poor fool with all my lore I stand,

no wiser than before.

Goethe, Faust I

9 A mould is a distinctive form in which a model is made, constructed, shaped, and
designed for a specific function a model has in a scenario.
It is similar to mechanical engineering where a mould is a container into which liquid
is poured to create a given shape when it hardens. In Mathematics, it is the general
and well-defined, experienced framework how a problem is going to be solved and
faithfully mapped back to the problem area.

10 A model and modelling science consists of a system of knowledge that is concerned
with models, modelling and their phenomena. It entails unbiased observations and
systematic experimentation. It involves a pursuit of model and modelling knowledge
covering general truths or the operations of fundamental laws.

11 Culture combines approaches, attitudes, behaviour, conventional conducts, codes,
traditions, beliefs, values, customs, thought styles, habits, the system comprising of
the accepted norms and values, goals, practices, and manners that are favored by
the community of practice. It is a characteristic of this community and includes all
the knowledge and values shared by the community of practice.
Culture of modelling is a highly developed state of perfection that has a flawless or
impeccable quality.

12 Objects can be developed for usage. At a later stage, they were exhibited and become
models used for explanation, e.g. about culture. See for instance, Ancient Egyptian
objects in modern museums. We also may observe the opposite for the model-being
of object, e.g. see [8].
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Is modelling important? Should modelling become a professional skill? Or
a profession? It seems that this is not (yet) and must not be the case. It is a
side technique used by everybody. Modelling does not have a prominent role
in kernel CS education. A separate module named ‘Modelling’ is a curiosity
in curricula. Let us briefly consider some arguments against the existence of
such modules in curricula. From the other side, all branches of CS including
ACS make heavy use of models. So far we know, the earliest publication which
uses the notion of model is 2.500 years old13. May be, the notion is even older
since it seems that Ancient Egyptians already deliberately used models. CS
and ACS have developed many novel approaches to modelling and are far away
from considering their way of modelling as the sole right of representation14. We
claim that modelling is one of the main activities in our field and one of our
main competencies. The analysis [41] underpins this exceptional role of models
in CS compared to other disciplines.

(1) There is no commonly acceptable notion of model

CS uses the term ‘model’ in a manifold of cases. Models have very different
functions. It seems not to be fruitful to use a general singleton notion of model.
Instead we may use a parameterised notion with parameters that can be refined
and adapted according the specific function that a model plays in an application
scenario, in a given context, for some community of practice, for a collection of
origins which must be represented by the model15.

(2) Modelling languages must be as expressive as only possible

After having their success stories, modelling languages become dinosaurs. Any-
thing what is thinkable in the application domain of such languages is inte-
grated. For instance, the entity-relationship modelling language started with 4

13 The earliest source of systematic model consideration we know is Heraclitus (see [26]
for a systematic and commented re-representation of Heraclitus fragments) with his
concept of λóγoς (logos).

14 Mathematician often claim that they are the only ones who know what is a model
and what is modelling. We notice, however, that modelling is typically performed
outside Mathematics.

15 The notion
“A model is a simplified reproduction of a planned or real existing system with its
processes on the basis of a notational and concrete concept space. According to the
represented purpose-governed relevant properties, it deviates from its origin only due
to the tolerance frame for the purpose.” [44]
is a typical example of this parametrisation. The origin is the system and the inher-
ited concept space. Analogy is essentially a mapping. Focus is simplification. Purpose
is reproduction or documentation. The justification is inherited from the system and
its processes. Sufficiency is based on tight mapping with some tolerated deviation.
In a similar form we use parameters for the definition in [1]:
“A model is a mathematical description of a business problem.”.
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constructs (entity type, relationship type, attribute, cardinality constraints) and
was quickly extended by more than 150 additional constructs [38]. Boiling down
these extensions and reducing to essential elements we use nowadays around a
dozen of constructs.

(3) Modelling languages should be primarily syntactic – Syntax first,
semantics later, avoid pragmatics, disregard pragmatism

CS follows the mathematical or logical treatment of semiotics. A concept is intro-
duced in a syntactic form and gets it meaning in a second semantification step.
Pragmatics is often neglected as well as pragmatism. The two extremes are then
full fledged syntactical constructions or rather simplistic and simple syntactical
constructions that are then combined with heavy semantics. Natural languages
use words and construction in a holistic semiotics form. For instance, the rela-
tional data structure language uses a very small syntactic language. Since the
syntax for structures is insufficiently expressive for applications, this syntactical
part is extended by more than threescore classes of integrity constraints.

(4) Each hype must have its modelling language

CS is an area of extensive and eager hype development. Since hypes come and
vanish and since hypes are typically born due to some challenges to existing
approaches, they use new vocabulary and thus new models. For instance, big
data applications are considered to be schema-less and thus model-free. In reality
they use models. Realising this we use a ‘novel’ language for their description.
Essentially, big data modelling is based on the sixth normal form from relational
database approaches.

(5) Implementable modelling languages should be minimalistic

The relational database modelling language is based on two syntactical construc-
tors (relational type and attribute). Anything what is to be given in more detail
can be semantically added. This treatment requires skills of a master or journey-
man. It often results in introduction of artificial elements. For instance, RDF use
only labelled binary relationships among labelled nodes. From predicate logic we
know that any predicate can be expressed by associated binary predicates if we
introduce a concept of identifier which is essentially a surrogate value and makes
modelling a nightmare whenever the application is a bit more complex than the
toy examples used for explaining RDF.

(6) A model reflects main aspects of applications and allows to
derive all others

A model should holistically cover all aspects of a given application. This restricts
development of a model or results in infeasibility or impossibility of model devel-
opment. Database modelling is a typical example. A database schema is intro-
duced in the global-as-design approach. All specific viewpoints of business users
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can be represented by views that are from the global schema. This philoso-
phy results in assumptions such as unique-name, unique-granularity, and unique
identifiability. New database applications needs then work-arounds or other lan-
guages.

(7) Models can be discarded after being used

A common programming approach is to use some kind of model for inspiration or
for documentation of the negotiated agreement in a community of practice. These
models are later thrown away since they seem not to be of any use anymore. For
instance, UML models are used as inspiration models for programmers. They
can be discarded after they have been used for coding. At the best, they are
stored in the documentation. Revising, modernising, or migrating the code does
not havde an impact on the model.

(8) At its best, models are used for programming and coding

Models often carry far more knowledge about an application domain than the
program that has been derived from the model. For instance, language terms
used in models have their own linguistic meaning and carry important semantics.
The main function of models is the support for program construction. Programs
might also be models to certain extend. But the model is used in this case mainly
as the initial point for programming.

From the other side, modelling languages are often so well-developed that
models written in these languages can be fully (or at least in form of templates)
translated or compiled to code. The modelling-to-program initiative16 matures
the model-driven approaches to executable models, i.e. modelling is then profes-
sional programming.

(9) One model is sufficient for holistic representation

Systems have typically many sub-systems, are embedded, and are used with a
good variety of features. Modelling often assumes that a singleton model allows to
represent all these facets and aspects. The database schema approach mentioned
above is a typical example of this belief. A weaker assumption is the existence of
a model ensemble that uses separation of concern for development of models for
each aspect. We better use model suites that consist of tightly and coherently
associated models [10]. Models in a model suite reflect specific aspects and facets
but are associated to each other in a way that allows to control and to manage
coherence.

16 See http://bernhard-thalheim.de/ModellingToProgram/.

http://bernhard-thalheim.de/ModellingToProgram/
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(10) Modelling can be practised as handicraft or an art

Modelling uses cookbook approaches which can be used in a handicraft at the
level of a journeyman who starts as apprentice with learning how to model on
the basis of toy examples. Modelling is thus – at its best – an art and does not
need a theory. We envision, however, that modelling must be performed at the
level of a professional master craftsman. It will then develop its own modelling
culture.

(11) Modelling languages should have a flexible semantics and fixed
syntax

The UML community uses an approach with refinable semantics. Each mem-
ber of the community of practice and tools may use their own interpretation.
The result is a ‘lost-in-translation’ situation resembling a nightmare. The syntax
allows then a variety of translations depending on a hidden intention of the lan-
guage user. Instead, languages must support precise descriptions both in syntax
and semantics. Moreover, the UML approach uses model suites with a number of
somehow associated models each of it will have their variety of interpretations.
Harmonisation becomes a nightmare. Integration, modernisation, and migration
of systems cannot be properly supported. Instead, a model suite can be based
on institutions for signatures. Each model in the model suite is expressed in a
properly defined language. Models are associated by a fixed association schema.
We can then uniquely translate one meaning to another one.

(12) Programs and algorithms first, structures later

Programmers are used to concentrate on an algorithmic problem solution. The
lessons of first computer programming with bit and byte tricky realisation seem
to be forgotten. At least with data mining we discovered that efficient algorithms
have to incorporate supporting data structures. We should break with the bad
habit to consider design of proper variable collection as nonessential for program-
ming. CS solution development has to be based on a sophisticated integration
of structures, functionality, interaction, and distribution. So, models have to be
based on co-design approaches that guarantee this integration.

(13) There are no hidden deep models behind

Computer Science models often keep quiet about postulates, paradigms, and
more general its basis or grounding. For instance, the basis of Turing machines
includes a number of implicit principles such as compositionality, functional or
relational state transformations, step-wise computation, and context-freeness.
One of the guiding implicit postulates is the Von-Neumann-machine and its
sequentiality and separation into computation, control, and data. An implicit
and concealed deep model circumvents deliberate model utilisation. In order to
overcome this pitfall, the abstract state machine approach explicitly uses the
three guiding postulates for sequential computation (postulates of sequential
time, of abstract state, of bounded exploration of the state space) [3].



312 B. Thalheim

(14) Models represent machines as state-transformers

Digital computers are based on a notion of state. Computation is controlled
state transformation. Many technical devices like analogous computers are not
built on this paradigm. Neural networks might be coarsened understood as state
transformers. The first Leibniz multiplication machine integrated analog and
digital computation. CS concentrated on state transformation. Models seem to
follow the same paradigm although this is not necessary.

(15) All models are conceptual models

There is no common agreement which artifact should (not) be considered to be a
(conceptual) model although the term ‘conceptual model’ is used for more than
for five decades in computer science and for more than one century in science and
engineering. It is often claimed that any model is a conceptual one. Conceptual
models are, however, models with specific properties. Better we claim:
“A conceptual model is a function-oriented and consolidated model of origins that
is enhanced by concept(ion) spaces of their origins, is formulated in a language
that allows well-structured formulations, is based on mental/perception/domain-
situation models with their embedded concept(ion)s and notions, and is oriented
on a matrix that is commonly accepted.” [20]

(16) Models are monolithic at the same level of abstraction

It seems that programming has to be based on the same level of abstraction, e.g.
programs based on formal grammars with word generation at the same level of
abstraction. Second-order grammars do not change this picture. Models repre-
senting UML model collections, OSI communication layering, and information
systems are typically model suites (see myth (9)). Model suites use several lev-
els of abstraction. The abstraction layer meta-model [38] for development of an
information system is an example of integrated and controlled use of models in
a model suite at several abstraction layers.

(17) CS is entirely based on programming

Computer application engineering is mainly treated as software production. CS
is also concerned with hardware, with embedded systems, and proper system
composition. Engineering has some common concerns with science. It is however
a completely different activitiy17. Most of the practical and applied Computer
Science is in reality engineering. We note that engineering and ACS are exten-
sively using of models.
17 Engineering is the art of building with completely different success criteria (see [33]:

“Scientists look at things that are and ask ‘why’; engineers dream of things that
never were and ask ‘why not’.” (Theodore von Karman)).
“Engineers use materials, whose properties they do not properly understand, to form
them into shapes, whose geometries they cannot properly analyse, to resist forces
they cannot properly assess, in such a way that the public at large has no reason to
suspect the extent of their ignorance.” (John Ure 1998, cited in [33]).
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(18) The inner structure of models must be static

Tools we use in daily life are constantly adapted. The structure and the com-
position of these tools change. So far, we assume that the structure of a system
is static. For instance, ASM uses a static set of functions. The functions them-
selves may change. The category of the functions may change among being static,
dynamic, private, and public. However, the set of functions is fixed. There is no
reason beside convenience why the set of functions should not be dynamic. Prac-
tical systems may have functions that are incorporated depending on the state
of a running system and especially on the context.

(19) Model-based reasoning is based on deductive systems

The reasoning approach is still often based on some kind of deductive system that
allows to derive conclusions from rules, facts, premisses, presuppositions, etc.
Model detection already uses inductive and evidential reasoning. Model appli-
cation also uses plausible and approximative reasoning. For instance, abduction
is used as a technique for detection of the best explanation in a given context.
Although classical and non-classical mathematical logic has overwhelming suc-
cess stories we should integrate reasoning systems that are completely different
from deductive systems. Therefore, model-based reasoning is also based on a
combination of various kinds of deductive, inductive, evidential, abductive or
more general plausible, and approximative reasoning. Most of these reasoning
mechanisms are based on coherence instead of on consistency. Moreover, deduc-
tion has to be handled beyond first-order predicate logic despite undecidability,
incompleteness, and worse-case complexity of higher-order logics.

(20) AI models may cover human intelligence

Although AI tools are nudging, directing, and misleading us, they do not cover all
sides of human intelligence. Neither emotional nor self-reflection or other kinds
of human intelligence can be programmed with current approaches. As a matter
of fact, human creativity in problem solution is far from being programmable.
Mental models are essential for daily problem solution as well as for technical
realisations. Therefore, modelling has to properly reflect this kind of intelligence.

4 Models - Towards a General Theory

It’s written here: ‘In the Beginning was the Word!’
Here I stick already! Who can help me? It’s absurd,

Impossible, for me to rate the word so highly.
I must try to say it differently.

If I’m truly inspired by the Spirit. I find
I’ve written here: ‘In the Beginning was the Mind’.

Let me consider that first sentence,
So my pen won’t run on in advance!

Is it Mind that works and creates what’s ours?
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It should say: ‘In the beginning was the Power!’
Yet even while I write the words down,

I’m warned: I’m no closer with these I’ve found.
The Spirit helps me! I have it now, intact.

And firmly write: ‘In the Beginning was the Act!’

Goethe, Faust I

We will not present approaches that allow to overcome all the myths. The
development of a general theory of models and modelling is on the agenda for
the next threescore years. Parts and pieces for this theory are already developed.

This agenda includes answers to a number of questions, e.g.:

– What are the essential properties of models? Can modelling be systematised?
– Which artifacts and thoughts are models? Is there any demarcation for the
model-being? How can the model-being can be characterised?

– What is the main orientation of a model? Can we separate aspects of model
use?

– Are we using some model or are we using an ensemble of models?
– What are the properties of models that are used for interaction in social
settings?

– What about myths on models that seems to be valid?

Models are thoughts or artifacts. They are used as instruments at a certain
point of time. At other points of time, they might not be models. I.e. thoughts
and artifacts have their own journey in the model being. What is then the notion
of a model?

The Notion of Model

Let us first introduce a general notion of model. This notion can be specialised
to more specific in disciplines. The notion generalises almost all notions or pre-
notions used and known so far in general model theory [23,27,29,37]. More
specific notions can be declined by parameter refinement and hardening from
this notion.

“A model is a well-formed, adequate, and dependable instrument that rep-
resents origins and that functions in utilisation scenarios.
Its criteria of well-formedness18, adequacy19, and dependability20 must be com-
monly accepted by its community of practice (CoP) within some context and
correspond to the functions that a model fulfills in utilisation scenarios.” [40]
18 Well-formedness is often considered as a specific modelling language requirement.
19 The criteria for adequacy are analogy (as a generalisation of the mapping property

that forms a rather tight kind of analogy), being focused (as a generalisation of
truncation or abstraction), and satisfying the purpose (as a generalisation of classical
pragmatics properties).

20 The model has another constituents that are often taken for granted. The model is
based on a background, represents origins, is accepted by a community of practice,
and follows the accepted context. The model thus becomes dependable, i.e. it is
justified or viable and has a sufficient quality.

Most notions assume dependability either as a-priori given or neglect it completely.
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This notion also allows consideration of the model-being of any instrument.
We note that the instrument-being is based on the function that a model plays
in some scenario. The generality of this notion and its parametric form provides
a means for specialisation. For instance, models used in Computer Science are
both based on ‘normal’ models that are adequate from one side, ‘deep’ models
that determine justification, and canonical sufficiency frames for model qual-
ity from the other side. For instance, assuming the deep model, quality suffi-
ciency, and the background as definitely given and as being unchangeable, we
can restrict the determination of the model-being of an instrument to adequacy.
Such assumptions are often made while considering models. Reasoning by mod-
els and deployment of models of models becomes problematic if the deep model,
quality sufficiency, and the background are implicit.

The Logos, Archẽ, and Nous of Modelling

The quote we use for this Section is based on reasoning about four of the
seven meanings of λóγoς (logos): word, concept, judgement, mind, power, deed,
and reason. The notion of logos characterises the model-being. Models must
be well-formed (word), based on world-views (concepts), acceptable (judge-
ment), understandable (mind), applicable (power), support their successful use
(intended application), and allow to assess their utilisation (reason). We distin-
guish perception and idea (in German ‘Auffassung’21; including thought, concep-
tion, opinion, view, understanding, apprehension, thinking,claim to truth) from
imagination and reflection (in German ‘Vorstellung’; including vision, image,
(re)presentation, conceivability, belief, mental image or picture, speech, expla-
nation, justification, accountability, justification, meaningful and -founding spo-
ken/written/thought speech, verifiability, reasonableness, correctness). Essen-
tially, the two kinds of mental models are perception model and the imagination
or reflection communication model.

Logos is according to Heraclitus [26] the dynamic, creative, and ordering
principle that is injected to perception and reflection. It is subordinated to Nous
as ‘intellectus’, ordering spirit, reason, and rational soul. Archẽ is the third ele-
ment in this triptych. It is the general principle of reality and the grounding one
in the sense of a fundamental laws. According to the Platon’s three analogies
(cave, divided line, sun) we cannot fully access it.

Computer Science modelling uses archẽ as its suite of domain-situation mod-
els (see the encyclopedic side in the model triptych [30]). The model triptych
has its linguistic or representation dimension. This dimension enables model
expression. It also hinders it due to the obstinacy of each language. These lan-
guages heavily influence modelling due to their hidden grounding and basis.
For instance, state-oriented languages with doubtful paradigm of computation-
is-state-transformation have a hard time to represent events or continuously
changing systems (see also [45] for Sapir-Whorf principle of linguistic relativity).

21 The word fields in German and English languages are different.
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ACS Needs Approaches Beyond Computation

ACS models and CS models substantially differ. Both use reflection and repre-
sentation models. Prescription ACS models must be as precise and accurate as
only possible if they are used as blueprint, plan, antetype, archetype, and real-
isation worksheet. They must also be more flexible due to adaptation to given
environments. For documentation models, the analogy is a homomorphic map-
ping. ACS models are also used as steering, usage, and guiding models. On the
other hand, CS models can also be description, conceptual, investigation, and
explanation models. Due to the difference in their function, their adequacy and
dependability follow different schemata, norms, and usages, i.e. different canons.

ACS models cannot be context-free or context-limited. They represent a vari-
ety of aspects and are thus typically model suites. The UML approach demon-
strates this approach by separation of concern. CS models are typically more
monolithic and follow the global-as-design approach. For instance, in CS we pre-
fer to use UML class diagrams as the lead model from which the class aspects
in other models can be derived as specific views. Additionally, engineering is a
construction discipline and thus less – if at all – theory-oriented. However, it is
more oriented on technological realisability. Engineering has to produce robust
products with well-designed error-tolerance.

Proper Theory of Modelling Languages

Both CS and ACS make intensive use of formal or somehow narrative
but orthonormalised languages. Formal languages follow a rigid syntax-first-
semantic-second approach. The classical approach to define models within a
modelling language that is again defined by a meta-model language is far to
strict whenever essential constructions and constructors are not theoretically
based (see the OMG approach with models M1, meta-models M2, meta-meta-
models M3 etc.). For instance, we know more than half a dozen different IsA
relationships while database modellers are used to only one of them. Narrative
languages are less rigid and less correct. A typical example of the last kind
are standards, e.g. the BPMN standard. In this case, the definition of a formal
semantics often becomes a nightmare and requires intensive foundational work
in order to become rigid, e.g. [4,5].

We do not know a theory of language development neither for conceptual lan-
guages nor for so-called domain-specific languages although parts and pieces are
currently under development, e.g. [15,42]. Languages must, however, be based on
a proper theory whenever languages are used as an enabling tool for modelling
in the model triptych approach. Nowadays, languages must also be supported
by advanced tools and advanced guidance for their use.
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5 Tasks for Next Decades

Enough words have been exchanged,
Let me finally see deeds;

While you are paying compliments,
Something useful can happen.

Goethe, Faust I

Overcoming Limits, Obstinacies, and Problematic Solutions

We often hear a claim that ACS&CS are at their dead end. The claim is near to
truth due to problematic paradigms and postulates that must be changed soon in
the form as envisioned in [9,25,42]22. The AI 4.0 hype illustrates the wild search
for a solution of new paradigms. The first step will be a thorough reconsider-
ation of the computation paradigms. For instance, data massives do not need
algorithmic number crunching but rather sophisticated ‘water supply systems’.
Web computation is based on symbol crunching. Neural networks must be build
on the real way how neurons work. We do not need optimal solutions. Instead we
can live with approximative solutions near to the optimal. Programming-in-the-
small was successful for the current infrastructure. Programming-in-the-large is
not yet properly understood. Programming-in-the-world cannot be supported
within the current approach. A path towards a solution is proper modelling
and model-based reasoning. It might also solve problems of dehumanized algo-
rithmic machines. Sophisticated systems such as AI systems operate without
feelings, without heart, without compassion, without conscience, and without
ethics. They are simply machines. Human infrastructures need however a differ-
ent environment based on models that humans use.

Programming-in-the-large and programming-in-the-world have to use new
kinds of models. The classical modelling approach to programming-in-the-small
has to be incorporated. It needs, however, a deep reconsideration of modelling in
the future. Model suites with a number of well-associated to each other models
can be one of the solution. As a minimal requirement to a model suite, models
representing human approaches and use have to become an integral part.

Modelling to Program and Modelling as Programming

The main usage of models and modelling in CS&ACS is models-for-programming
(M4P). There are many initiatives that extend this usage towards modelling-
to-program (M2P): Model-driven development, conceptual-model programming,
models@runtime, universal applications, domain-specific modelling, framework-
driven modelling, pattern-based development, round-trip engineering, model
programming, inverse modelling, and reference modelling.
22 The software crisis has been a crisis 1.0. Nowadays we have a data crisis, a (large and

embedded) system crisis, an infrastructure crisis, and an energy crisis. For instance,
it is estimated that one third of the world-wide produced electro energy is consumed
by computers by 2025.
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These initiatives are the starting points for a programme for true fifth gener-
ation programming that starts with models and then uses models as source code
for a program beside of being useful for program specification, i.e. modelling-
as-programming (MaP). It is similar to second and third generation program-
ming where programmers are writing programs in a high-level language and rely
on compilers that translate these programs to machine code. We propose to
use models instead of programs and envision that models can be translated to
machine code in a similar way. The approach has already been used in several
projects, e.g. for ASMbacked C++ programming and for database development
[21,35].

Models will thus become executable while being as precise and accurate as
appropriate for the given problem case, explainable and understandable to devel-
opers and users within their tasks and focus, changeable and adaptable at differ-
ent layers, validatable and verifiable, and maintainable.

Humanised Systems

Web system development [34] taught us a really sad lesson: user are not judging
the system by its functions but its form at the first step. They ask whether a
system is intuitively understandable and usable. They judge on colours and other
completely irrelevant features instead of functioning issues. Civil engineering has
already properly learned this lessons long time ago and found a way how to
cope with the problem: design of everyday things, e.g. [31]. With the broadband
application we have to go away from the philosophy that the administrator is
the only king and the user is at its best the slave.

Models of systems must, thus, be based on the cultures of users, especially
on their models.

Application-Governed ACS

CS and ACS experts are used to be the ruler and the guidance for human
behaviour. This orientation has been very useful for the first half century of CS
existence. Computers became now an essential part of the everyday infrastruc-
ture. As such, they are services in applications. A fist step to primary considera-
tion of application objectives instead of requirements analysis is the abstraction-
layer macro-model [34] for web system information systems.

Applications bring in their own culture23 including national and regional,
community-backed and corporate, good and problematic habits, professional and
educational, ethic and generational, and finally gender, class, and ideological
ones. Therefore, models must be adaptable to the specific cultures.

23 Culture is a “a collective phenomenon, which is shared with people who live or lived
within the same social environment, which is where it was learned; culture consists of
the unwritten rules of the social game; it is the collective programming of the mind
that separates the member of one group or category of people from others.” [19].
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Applications found their way of incorporating very different people with their
specific perception, reflection, and imagination. People come with their models
that might vary a lot. The common binder is the business. The binder can be
used as the starting point for an association schema among the models used. In
this case, we have to properly and flexibly handle and adapt models in a model
suite.

Applications continuously change and adapt to new ways of operating. That
means that change management will be an essential feature for model suites too.
Changes might be evolutionary changes, modernisation, migration, or partial
replacement with partial cannibalisation. The change with a model suites must
also be so robust and flexible.

Paradigms and Postulates for CS and ACS Models

Models, activities to model and to use models, and modelling (MMM) has not
yet found its theoretical underpinning. Parts and pieces are already developed
in different disciplines [41]. An MMM theory or MMM culture is one of the
challenges. CS models can be stereotyped. Modelling can be systematised into a
smaller set of canons and moulds by grouping MMM success stories according to
those stereotypes. This approach is similar to the design science approach. The
rigor cycle [11,18] aims at summarisation, generalisation, and systematisation
of modelling experience. Exaptation is some kind of extrapolation of known
solutions to new problems in other context.

From the other side, modelling can be based on separation into normal
modelling and inheritance of already existing deep models from the same kind
of application [39]. Deep models are the inner and inherent part of a model
together with corresponding methodologies, techniques, and methods, i.e. its
matrices. Modelling, model development, and model utilisation can be concen-
trated around the normal model.

Modelling themselves follows a number of paradigms, postulates, and princi-
ples. They are often implicitly assumed in CS. Reusable postulates (e.g. separa-
tion into state, evolution, and interaction for information systems), paradigms
(e.g. global-as-design for database structures and views), and principles (e.g.
incremental constructivity) support efficient development of normal models.
Database structure and functionality modelling reuses and accepts a standard-
ised matrix with development and utilisation methods and some robust method-
ology.

6 Finally

A marshland flanks the mountain-side,
Infecting all that we have gained;

Our gain would reach its greatest pride
If all noisome bog were drained.

I work that millions may possess this space,
If not secure, a free and active race.

Goethe, Faust II
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Towards Modelling 2.0 and Modelling 3.0

We may consider the current state of art as the first generation of modelling. The
body of MMM knowledge is not yet synthesised into a subdiscipline of CS and
ACS. The MMM discipline has to be based on its specific foundations, its specific
reasoning methods, its methodologies, and its practices. Model suites are a good
starting point for multi-view, multi-abstract, multi-level, and multi-culture mod-
elling. This approach has to be generalised, well-founded for all its extensions,
and properly supported by tools and workbenches. Modelling in our discipline
is mainly language-based. We, thus, need an extensible but well-integrated col-
lection of languages. Some of them can be oriented on general purpose while
most will be domain-specific. Models should be easy to modify and to mod-
ernise. Model quality management includes also model analysis depending on
functioning in scenarios. This BoK should also include means for certification
and industrial licensing.

Models are almost useless if they are one-way-products. Currently, some mod-
elling platforms (e.g. ADOxx) support generation of programs from models, at
least for some of the modelling approaches. Modelling 2.0 could be considered
as modelling-in-the-world. Modellers come with various cultures, commonsense,
thought schools according to the branches of CS and ACS, and various languages.
Collaborative model development cannot be based on a unform language envi-
ronment. It can use some kind of generic approach that allows to derive specific
languages from some source in such a way that the specific adaptation can be
reversed and then mapped back to the other partner, i.e. we use an approach
with model institutions. Shared model usage is another real challenge. Modelling
3.0 could use model spaces based on solution libraries from which a generic and
adaptable model can be extracted similar to the concept of namespace for injec-
tion of the meaning of words in Web x.0 .

As stated, models are the fourth dimension of modern CS and ACS. The
associations to the other dimensions will become explicit. For instance, MMM
2.0 or 3.0 will be then based on MMM for collaboration or more specifically
for communication, for cooperation, and for coordination in various forms and
adaptable to various kinds of applications.

Modelling Becomes an Education Subdiscipline in CS and ACS

Modeling is currently an art. It should become a craftsmanship with integration
into CS and ACS education. So far, modelling is taught as a side-method for
system development. Each subdiscipline has its approach to integrate models
and modelling. Some of them use models in an implicit form, some of them in an
explicit form. Each subdiscipline founds its specific approach and way of acting.
Best practices are used for demonstrating the potential of models. A compilation
of this experience is one of the lacunas of current CS and ACS.

Systematic and well-guided modelling should be taught in a specific and
separate module in any CS and ACS programme. Modelling will become an
object in education and continuing education. A discipline of modelling needs its
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basis, its methods, its methodologies, and its theory. All this must be adaptable
to specific application cases. A modelling discipline includes also proper quality
management and handling of errors.

Each subdiscipline has its conception, its concept spaces, its methods, its ter-
minologies, its success and failure stories, its construction approach, its accepted
practices, its educational demonstration models, its competencies and skills, its
approaches, and its theoretical underpinning. MMM as a module will be not
different.

Deploying the Full Capacity and Potential of Models

The utility, potential and capacity of models is not yet fully understood and
deployed. Models are used for complexity reduction, for communication within
the communities of practice, for efficiency increase during development, and for
mediating during development. We may launch out model suites into risk min-
imisation, generation of solutions directly from models, and handling interoper-
ability among different systems. Models should become an integral component
of delivery software and hardware.

Models will become a proper companion during all development steps for inte-
grated team collaboration, for quality management, for forecasting performance
and bottlenecks, for generating of neatly integrable partial solution. Model suites
have to reflect a large variety of viewpoints in a well-associated form since
applications become more and more multi-disciplinary and interdisciplinary.
Modelling-in-the-world should allow to tolerate heterogeneity in organisations
that are outside the control and understanding of the modelling team.

Heritage (currently often called ‘legacy’) models and reference models can
be used for experience propagation. Componentisation of models shall support
re-usage and recycling of already existing high-quality solutions. Domain-specific
languages may be used for development of inheritable and adaptable domain-
specific model suites and their integration into solutions. Models in a model
suite also represent a variety of viewpoints within a community of practice.
Tight association of models in suites allows to concentrate on certain issues and
aspects without losing the coherence in the model suite. Model suites have to
support multi-abstraction, multi-levels, and multi-cultures among all partners.

In order to serve the variety of viewpoints and cultures within a community
of practice, a model suite should integrate a number of informative models for
each member as well a number of representation models in a variety of lan-
guages. These different models may represent the same aspects and features but
in different forms due to the differences in the languages used and preferred by
some members in the community of practice. Models for theoreticians might be
qualitative. Models might also concentrate around quantitative aspects for data
practitioners. We need then a ‘matching’ theory for the two orientations.
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Call for Contribution and Research

Wolfgang Hesse (see also [16,17]) summarised the consternation about modelling
in the Modellierung 2009 workshop:

– ... but they do not know what they do ...;
– Babylonian language confusion and muddle;
– “It’s not a bug, it’s a feature”, de-facto-standards and lobbyists;
– Why I should cope with what was the state of art yesterday;
– Each day a new wheel, new buzzwords without any sense, and a new trend;
– Without consideration of the value of the model;
– Competition is a feature, inhomogeneity;
– Laokoon forever;
– Dreams about a sound mathematical foundation;
– Take but don’t think - take it only without critics;
– Academia in the ivory tower without executable models;
– Where is the Ariadne thread through?

This lead directly to a number of research and development issues: Can we
develop a simple notion of adequateness that still covers the approaches we
are used in our subdiscipline? Do we need this broad coverage for models? Or
is there any specific treatment of dependability for subdisciplines or specific
deployment scenarios? Which modelling methods are purposeful within which
setting? Which model deployment methods are properly supporting the function
of a model within a utilisation scenario? How does the given notion of model
match with other understandings and approaches to modelling in computer sci-
ence and engineering? What is the background of modelling, especially the basis
that can be changed depending on the function that a model plays in some
utilisation scenario? Language matters, enables, restricts and biases. What is
the role of languages in modelling? Which modelling context results in which
modelling approach? What is the difference between the modelling process that
is performed in daily practice and systematic and well-founded modelling? Are
we really modelling reality or are we only modelling our perception and our
agreement about reality? What is the influence of the modeller’s community
and schools of thought?

The current situation is not really different from 2009. We need a lot of good
research contributions.

What you put off today will not be done tomorrow;
You should never let a day slip by

Let resolution grasp what’s possible
And seize it boldly by the hair;

Then you will never lose you grip,
But labor steadily, because you must.

Goethe, Faust I
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elltheorie. Erwägen-Wissen-Ethik (EWE) 26(3), 329–342 (2015)
30. Mayr, H.C., Thalheim, B.: The triptych of conceptual modeling. Softw. Syst. Mod-

eling 20(1), 7–24 (2020). https://doi.org/10.1007/s10270-020-00836-z
31. Norman, D.A.: The Design of Everyday Things. Doubleday, New York (1990)
32. Safra, J.E., Aquilar-Cauz, J., et al. (eds.): Encyclopædia Britannica Ultimate Ref-

erence Suite, chapter Computer Science. Encyclopædia Britannica, Chicago (2015)
33. Samuel, A., Weir, J.: Introduction to Engineering: Modelling. Synthesis and Prob-

lem Solving Strategies. Elsevier, Amsterdam (2000)
34. Schewe, K.-D., Thalheim, B.: Design and development of web information systems.

Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58824-6
35. Schmid, J.: Compiling abstract state machines to C++. J. Univ. Comput. Sci. 11,

1069–1088 (2001)
36. Simon, H.: The Sciences of the Artificial. MIT Press, Cambridge (1981)
37. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Cham (1973)
38. Thalheim, B.: Entity-Relationship Modeling - Foundations of Database Technol-

ogy. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-04058-4
39. Thalheim, B.: Normal models and their modelling matrix. In: Models: Concepts,

Theory, Logic, Reasoning, and Semantics, Tributes, pp. 44–72. College Publications
(2018)

40. Thalheim, B.: Conceptual models and their foundations. In: Schewe, K.-D., Singh,
N.K. (eds.) MEDI 2019. LNCS, vol. 11815, pp. 123–139. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-32065-2 9

https://doi.org/10.1007/978-1-4419-5653-8
https://doi.org/10.1007/s10270-020-00836-z
https://doi.org/10.1007/978-3-662-58824-6
https://doi.org/10.1007/978-3-662-04058-4
https://doi.org/10.1007/978-3-030-32065-2_9


Models and Modelling in Computer Science 325

41. Thalheim, B., Nissen, I. (eds.): Wissenschaft und Kunst der Modellierung: Modelle,
Modellieren. Modellierung. De Gruyter, Boston (2015)

42. Thomas, O., et al.: Global crises and the role of BISE. Bus. Inf. Syst. Eng. 62(4),
385–396 (2020)

43. Twardowski, K.: Zur Lehre vom Inhalt und Gegenstand der Vorstellungen: Eine
psychologische Untersuchung. Hölder, Wien (1894)
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Abstract. We present a framework for modeling the semantics of fre-
quent concepts in the context of procedures and functions. In particu-
lar, we consider the concepts of recursive and non-recursive procedures,
parameter passing mechanisms, return values, procedures as values (with
local and non-local procedures), synchronous and asynchronous proce-
dures, and for the latter, synchronization mechanisms. The concepts are
mostly modeled in a combinable manner. Hence the concepts for pro-
cedures for many popular programming languages are covered by the
framework.

1 Introduction

A formal programming language semantics is used in many applications. An
important application is compiler verification [7]. Another one is model-checking
approaches where the language semantics is abstracted e.g. to a finite-state
machine or a pushdown machine, and the correctness of the abstraction must
be proven [17,18]. The semantics specifications using Abstract State Machines
(ASM) is an operational semantics that specifies an abstract execution model for
a programming language. Hence, executable ASM models for the semantics of
programming languages enable the generation of interpreters. In addition high-
level debugging is also possible, i.e., debuggers may also be generated from the
ASM semantics of a programming language. Furthermore, it is possible to prove
formally the type-safety of a programming language by proving that any valid
program has the invariant that each value of an expression belongs to its type,
i.e., a type error can never occur, see e.g. [13].

In order to specify the semantics of real-world programming languages, it is
helpful to have a toolkit that specifies state transitions of the different variants
of language concepts. Therefore, in contrast to many works on ASM-semantics of
programming languages [3], this work focuses on the basic concepts in program-
ming languages rather than modeling the semantics of a concrete programming
language. The main goal of the paper is to provide a framework for formalization
of procedure/function calls and returns. We only consider typed languages with
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static scoping. The idea is that a set of ASM rules is introduced for different
concepts in this context.

Informally, a procedure has a name p and a body b which is a statement
sequence. If p is being called, the execution after the call is starting with the
execution of b, and if the control returns from p (e.g. after the execution of b
or a return-statement is being executed), then the execution continues with the
statement after the call. A procedure may have parameters. Parameter passing
mechanisms specify the interaction between the caller and the callee at the pro-
cedure call as well at the procedure return. Furthermore, a function returns a
value and a function call is an expression that after returns this value. We fur-
ther consider recursive procedures, i.e., a procedure can call itself either directly
or indirectly. The latter is forbidden for non-recursive procedures and functions.
Procedures and functions as values allow the assignment of procedures and func-
tions to variables or passing them to parameters of other procedures and func-
tions. Each procedure and function has a context which contains all bindings and
visible declarations. In languages such as C, procedures have a global scope, i.e.,
it is possible to declare procedures and functions in a global scope only. Hence,
all bindings to names in a global scope are visible. Therefore, procedure values
are solely the procedure with its parameters and body. In contrast, languages
such as Ada allow local declarations of procedures, too. Hence, the visible decla-
rations depend on the context of a procedure declaration and the context needs
to be part of a procedure value.

The classical execution of procedure calls is described above: the caller waits
until the callee returns. For asynchronous procedures, the caller and the callee
are executed concurrently. Without explicit synchronization, the caller can only
return iff all callees have been returned. However, the question remains how
asynchronous functions return their values. For this, an explicit barrier synchro-
nization with the called function is needed, and the value is returned upon this
synchronization point.

The paper is organized as follows: Sect. 2 introduces Abstract State Machines
as required for the purpose of this paper. Section 3 introduce the general idea
behind programming language semantics. The principal modeling is indepen-
dent of the concrete statements in the programming language and required for
the modeling of procedures/functions. Section 4 discusses the modeling of non-
recursive and recursive procedures, Sect. 5 discusses parameter passing, Sect. 6
discusses functions, and Sect. 7 procedure parameters. These four sections only
consider synchronous procedures. For asynchronous procedures in Sect. 8 we dis-
cuss (possibly recursive) asynchronous procedures, asynchronous functions, and
barrier synchronizations.

Remark 1. The concepts for modelling the semantics of procedures stems from
the experience of the Verifix project [7] on construction correct compilers. The
part of asynchronous procedures has its foundation on the work of protocol
conformance [9] and deadlock analysis of service-oriented systems [16].
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2 Abstract State Machine

We introduce Abstract Machines as it is useful for defining programming lan-
guage semantics. It is based on [4], but the definition is based on many-sorted,
partial order-sorted signatures (similar to [19]) instead of one sorted signatures.

Remark 2. The usual definitions of Abstract State Machines [4] is based on one-
sorted signatures. This is the only extension to [4]. In particular, updates are
defined as in [4] and no updates on the interpretation of sort symbols are possible.
There are several reasons for introducing sort. In particular, it turns out that
is convenient using sorts for the different concepts in programming languages,
and sub-sorts if these concepts are extended (e.g. procedure return and function
return).

Definition 1 (Partial ordered signature, variable). A partial order-sorted
signature is a tuple Σ � (S,�, F, F ′) where

i. S is a finite set of sorts
ii. �⊆ S × S is a partial order on sorts
iii. F � (Fw,s)w∈S∗,s∈S is a family of sets of total function symbols,1

iv. and F ′ � (Fw,s)w∈S+,s∈S is a family of sets of partial function symbols.

A set of variables for Σ is a family of pairwise disjoint sets X � (Xs)s∈S.

Notation: f : s1 × · · · sn → s ∈ F denotes f ∈ Fs1,...,sn,s, f : s1 × · · · sn →?s ∈
F ′ denotes f ∈ F ′

s1,...,sn,s, and x : s ∈ X denotes x ∈ Xs.

Definition 2 (Terms, Equations, Formulas). Let Σ � (S,�, F, F ′) be a
signature and X be a set of variables. The set of Σ-terms of sort s over X is the
smallest family of sets (Ts(Σ,X))s∈S satisfying2

i. Xs ⊆ Ts(Σ,X) for all s ∈ S,
ii. Fε,s ⊆ Ts(Σ,X) and F ′

ε,s ⊆ Ts(Σ,X) for all s ∈ S,
iii. {f(t1, . . . , tn) | t1 ∈ Ts1(Σ,X), . . . , tn ∈ Tsn

(Σ,X)} ⊆ Ts(Σ,X) for all
f : s1 × · · · × sn → s ∈ F and all f : s1 × · · · × sn →?s ∈ F ′

iv. Ts(Σ,X) ⊆ Ts′(Σ,X) iff s � s′

Furthermore T (Σ,X) �
⋃

s∈S

Ts(Σ,X). A Σ-ground term is Σ-term t ∈ T (Σ, ∅)

without variables. T (Σ) � T (Σ, ∅) denotes the set of all ground terms.
A Σ-equation of sort s ∈ S is a pair of two Σ-terms t, t′ ∈ Ts(Σ,X). The

index s is omitted if it is clear from the context. A sort check for sort s is an
unary predicate over T (Σ,X), denoted by t is s, t ∈ T (Σ,X), and an unary
definedness predicate Ds.
1 S∗ denotes the set of all sequences over S and S+ denotes the set of non-empty

sequences over S.
2 ε denotes the empty sequence.
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The set of Σ-formulas over x is the smallest set F(Σ,X) satisfying

v. {t1
.= t2 | t1, t2 ∈ Ts(Σ,X)} ⊆ F(Σ,X) for all s ∈ S.

vi. {t is s | t ∈ T (Σ,X)} ⊆ F(Σ,X) for all s ∈ S.
vii {Ds(t) | t ∈ Ts(Σ,X)} ⊆ F(Σ,X)
viii. {¬ϕ | ϕ ∈ F(Σ,X)} ⊆ F(Σ,X)
ix. {ϕ ∧ ψ | ϕ,ψ ∈ F(Σ,X)} ⊆ F(Σ,X)
x. {∀x : s • ϕ | ϕ ∈ F(Σ,X), x : s ∈ X} ⊆ F(Σ,X)

The Σ-formulas in (v), (vi) an (vii) are called atomic. We use the following
abbreviations: e � e

.= true if e is a term of sort BOOL

ϕ ∨ ψ � ¬(¬ϕ ∧ ¬ψ)
ϕ ⇒ ψ � ¬ϕ ∨ ψ

∃x : s • ϕ � ¬∀x : s • ¬ϕ
The operator ∧ has a higher priority than ∨ and both operators are associative.
The operator ∨ has higher priority than ⇒ and ⇒ is right-associative. Further-
more the scope of the variable of a quantor ∀ or ∃ is the whole formula (except
it is hidden by another quantor over the same variable name).

Definitions 1 and 2 define syntax only. Their interpretation is based on the
notion of algebras.

Definition 3 (Σ-Algebra, Interpretation of Terms). Let Σ � (S,�, F, F ′)
a partial order-sorted signature. A Σ-algebra is a pair A � (A, [[·]]A) where

i. A � (As)s∈S is a family of sets such that As ⊆ As′ iff s � s′ (the carrier sets)
ii. For each f : s1 × · · · × sn → As ∈ F , [[f ]]A : As1 × · · · × Asn

→ s is a total
function

iii. For each f : s1 × · · · × sn → As ∈ F ′, [[f ]]A : As1 × · · · × Asn
→ s is a partial

function with domain dom(f) ⊆ As1 × · · · × Asn
.

Sometimes we denote A �
⋃

s∈S As A valuation is a family of total functions
β � (βs : Xs → As)s∈S. The interpretation of terms w.r.t a Σ-algebra A and a
valuation β is a function [[·]]βA : T (Σ,X) → A inductively defined as follows:

iv. [[x]]βA � βs(x) iff x ∈ Xs

v. [[c]]βA � [[c]]A iff c :→ s ∈ F

vi. [[f(t1, . . . , tn)]]βA � [[f ]]A([[t1]]
β
A, . . . , [[tn]]βA) for all t1 ∈ Ts1 , . . . , tn ∈ Tsn

iff
f : s1 × · · · × sn → s ∈ F

vii. For f : s1 × · · · × sn → s ∈ F ′, [[f(t1, . . . , tn)]]βA is undefined
iff (t1, . . . , tn) �∈ dom(f) or at least one ti is undefined. Otherwise
[[f(t1, . . . , tn)]]βA is defined and [[f(t1, . . . , tn)]]βA � [[f ]]A([[t1]]

β
A, . . . , [[tn]]βA) for

all (t1, . . . , tn) ∈ dom(f).

Notation: We omit the indices if they are obvious from the context.
Now we define the interpretation of formulas.
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Definition 4 (Interpretation of Formulas). Let Σ � (S,�, F, F ′) be a sig-
nature, X be a set of variables over Σ, A � (A, [[·]]A) be a Σ-algebra, and
β : X → A be a valuation. The pair A, β is a model of formula ϕ ∈ F(Σ,X),
denoted by A, β |= ϕ that inductively satisfies the following properties:

i. A, β |= t1
.= t2 iff [[t1]]

β
A = [[t2]]

β
A and [[t1]]

β
A, [[t2]]

β
A are both defined

ii. A, β |= t is s iff [[t]]βA is defined and [[t]]βA ∈ As

iii. A, β |= Ds(c) for c :→ s ∈ F , A, β |= Ds(x) for x : s ∈ X,
A, β |= Ds(f(t1, . . . , tn)) iff A, β |= Ds1(t1), . . . ,A, β |= Dsn

(tn) and
f : s1 × · · · × sn → s ∈ F , and
A, β |= Ds(f(t1, . . . , tn)) iff A, β |= Ds1(t1), . . . ,A, β |= Dsn

(tn),
f : s1 × · · · × sn →?s ∈ F ′, and ([[t1]]

β
A, . . . , [[tn]]βA) ∈ dom(f).

iv. A, β |= ¬ϕ iff A, β �|= ϕ
v. A, β |= ϕ ∧ ψ iff A, β |= ϕ and A, β |= ψ
vi. A, β |= ∀x : s • ϕ iff A, β′ |= ϕ for all a ∈ As and all valuations β′ with

β′(y) =

{
β(y) if y �= x

a if y = x

The pair A, β is a model of a set of formulas Φ ⊆ F(Σ,X), denoted by A, β |= Φ
iff A, β |= ϕ for all ϕ ∈ Φ. Algebra A is a model of ϕ ∈ F(Σ,X) iff A, β |= ϕ for
all valuations β. Finally, algebra A is a model of a set of formulas Φ ⊆ F(Σ,X),
denoted by A |= Φ iff A, β |= Φ for all valuations β.

We now define the notion of an Abstract State Machine. Informally, an
abstract state machine specifies a state transition system by a set of rules where
the states are algebras over a partial order-sorted signature. The rules induce
a set of updates which change the interpretations of function symbols in the
signature.

Definition 5 (Update, Rule, Abstract State Machine).
Let Σ � (S,�, F, F ′) be a signature and X be a set of variables. A Σ-update is a
pair of two ground-terms f(t1, . . . , tn), t ∈ Ts(Σ), denoted by f(t1, . . . , tn) := t.
A Σ-rule has the form if ϕ then u where u is a Σ-update (ϕ is the guard of the
rule), it has the form forall x : s • ϕ do u where u is a Σ-update which may
contain the variable x : s ∈ X and ϕ may contain a free variable3 x : s, or it has
the form choose x : s • ϕ in u1, . . . , un where u1, . . . , un are Σ-updates which
may contain x : s and ϕ may contain the free variable x : s. A Σ-Abstract State
Machine is a tuple A � (I,X,R,Ax ) where

i. I is a set of Σ-algebras (the initial states)
ii. X is a set of variables
iii. R is a set of Σ-rules
iv. Ax ⊆ F(Σ,X) is a set of axioms where no axiom contains a dynamic func-

tion symbol.
3 A variable x : s is free in ϕ iff there is an occurrence of x:s that is not bound to a

quantor ∀ or ∃.
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Any top-level function symbol f of a left-hand side of an update in a rule of R is
called a dynamic function symbol. Static function symbols are function symbols
that are not dynamic.

Notation: if ϕ then u1

· · ·
un

is an abbreviation for if ϕ then u1

· · ·
if ϕ then un

If ϕ does not contain free variables x : s, then if ϕ then forall x : s • ψ do u is
an abbreviation for forall x : s • ψ ∧ ϕ do u.
For choose, we use analogous abbreviations.

We now define the semantics of ASMs by state transitions. The states of a
Σ-ASM are Σ-algebras that satisfy Ax

Definition 6 (Activated Rule, Update Sets, State Transition). Let Σ �
(S,�, F, F ′) be a signature and A � (I,X,R,Ax ) be a Σ-Abstract State
Machine. A state q � (A, [[·]]q) is a Σ-algebra such that q |= Ax. A rule if
ϕ then u ∈ R is activated in a state q iff q |= ϕ. A rule forall x : s • ϕ do u
is activated for all valuations β : {x : s} → A such that q, β |= ϕ, and a rule
choose x : s • ϕ in u1, . . . , un is activated for a valuation β : {x : s} → A such
that q, β |= ϕ.

A semantic update is a triple (f, (a1, . . . , an), a) where f : s1×· · ·×sn → s ∈
F ∪ F ′ is a dynamic function symbol, a1 ∈ As1 , . . . , an ∈ Asn

, and a ∈ As. Two
semantic updates (f, (a1, . . . , an), a), (g, (a′

1, . . . , a
′
n), a′)are conflicting iff f = g,

ai = a′
i for i = 1, . . . , n, and a �= a′. A set of U of updates is consistent iff it

does not contain two conflicting updates. A possible set Uq of semantic updates
in state q is a consistent set of semantic updates defined as follows:

Uq � {(f, ([[t1]]q, . . . , [[tn]]q), [[t]]q) | if ϕ then f(t1, . . . , tn) := t ∈ R is activated}∪
{(f, ([[t1]]

β
q , . . . , [[tn]]βq ), [[t]]βq ) | forall x : s • ϕ do f(t1, . . . , tn) := t ∈ R

is activated for valuation β}∪
{(f, ([[t1]]

βr
q , . . . , [[tn]]βr

q ), [[t]]βr
q ) | r � choose x : s • ϕ in u1, . . . , um ∈ R

and there is a valuation that activates r
f(t1, . . . , tn) := t ∈ {u1, . . . , um}}

where βr is a valuation that activates the choose-rule r. Let U(q) be the set of
possible sets of semantic updates in state q. ASMs non-deterministically chooses
an U ∈ U(q) and the successor state successor state q′ w.r.t U is defined for each
dynamic function symbol f : s1 × · · · × sn → s ∈ F ∪ F ′ by:

[[f ]]q′(a1, . . . , an) �
{

a if (f, (a1, . . . , an), a) ∈ U
[[f ]]q(a1, . . . , an) otherwise

If U(q) is empty then q has no successor.
A run of A is a sequence of states 〈qi | 0 ≤ i < n〉 where n ∈ N ∪ ∞, q0 ∈ I

is an initial state, and qi is a successor state of qi−1 for all 1 ≤ i < n.

Remark 3. A possible update set takes into account each activated rule. Infor-
mally, any choose-rule non-deterministically chooses a valuation that activates the
rule. Each update set U ∈ U(q) is consistent according to the above definition.
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In contrast to [4], Definition 5 excludes nested updates on forall and choose.
Hence, Definition 6 does not consider this case. However, it is straightforward to
extend the definition by defining update sets inductively. For this work, it is not
necessary to consider this nesting as the ASM rules in the paper don’t use it.

Note that Definition 5 implies that there are no axioms on dynamic func-
tion symbols. Hence, axioms cannot be violated due to state transitions. Static
function symbols have the same interpretation in all states of a run.

Remark 4. The initial state can be specified as set of rules of the form
if ϕ then f(t1, . . . , tn) := t and forall x : s • ϕ do f(t1, . . . , tn) := t where
the formula φ and the terms t1, . . . , tn, t do not contain a dynamic function
symbol. Thus, an initial state q0 satisfies q0 |= ϕ ⇒ f(t1, . . . , tn) .= t and
∀x : s • ϕ ⇒ f(t1, . . . , tn) .= t, respectively.

3 Programming Language Semantics

Programming language definitions distinguish between lexical elements, con-
crete syntax, abstract syntax, static semantics, and dynamic semantics. Lexi-
cal elements are identifiers, constants, keywords, special symbols and comments.
They form the vocabulary of the concrete syntax which is usually defined by
a context-free grammar. The non-terminals of this context-free grammar repre-
sent language concepts, i.e., they represent the abstract syntax. The abstract
syntax abstracts from all unnecessary details of the concrete syntax. For exam-
ple, the keywords of a while loop are not required; it is just necessary to know
that it has a condition (which is an expression) and loop body (which is state-
ment sequence). Similarly, special symbols are not needed. Another example are
parantheses since e.g. (((a + b))) and a + b represents the same expression. The
structure of the parantheses are represented by a tree. Static semantics defines
bindings of names, typing etc. Dynamic semantics defines state transitions. The
latter can be formalized by ASMs and is based on the abstract syntax and static
semantics. The following example demonstrates these ideas and its formalization.

Figure 1(a) shows the abstract syntax - as a context-free grammar - of a little
while language containing declarations of identifiers, having two types integer
and boolean, assignments, operators −, >, =, and not, a while-loop, a (one-
sided) if-statement, and a write- and a read-statement. There is a constructor
and sort for each language concept, cf. Fig. 1(b). ID is the sort of identifiers
and INT the sort of integers as specified by the programming language. Both
informations are lexical information. As it can be seen from the signatures of
the operation symbols, there are sorts such as EXPR and STAT that classify
the language concepts expressions and statements, respectively. This can be
formalized by sub-sort relations as shown in Fig. 1(c).

Remark 5. In general, the constructor ground-terms of an abstract syntax cor-
respond to an abstract syntax tree. Figure 2 shows an abstract syntax tree for a
little while language where the nodes are named with the constructors.
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〈prog〉 ::= ’prog’ 〈decls〉 ’begin’ 〈stats〉’end’
〈decls〉 ::= 〈decl〉
〈decls〉 ::= 〈decls〉’;’〈decl〉
〈decl〉 ::= 〈vardecl〉
〈vardecl〉 ::= id ’:’〈type〉
〈type〉 ::= id
〈stats〉 ::= 〈stat〉
〈stats〉 ::= 〈stats〉’;’〈stat〉
〈stat〉 ::= 〈assign〉|〈while〉|〈if 〉|〈read〉|〈write〉
〈assign〉 ::= 〈des〉 ’:=’〈expr〉
〈while〉 ::= ’while′ 〈expr〉 ’do’〈stats〉’end’
〈if 〉 ::= ’if′ 〈expr〉 ’then’〈stats〉’end’
〈read〉 ::= ’read’ 〈des〉
〈write〉 ::= ’write’ 〈expr〉
〈des〉 ::= 〈name〉
〈name〉 ::= id
〈expr〉 ::= 〈des〉|〈minus〉|〈gt〉|〈eq〉|〈not〉|〈const〉
〈minus〉 ::= 〈expr〉 ’-’ 〈expr〉
〈gt〉 ::= 〈expr〉 ’>’ 〈expr〉
〈eq〉 ::= 〈expr〉 ’=’ 〈expr〉
〈not〉 ::= ’not’ 〈expr〉
〈const〉 ::= intconst
The operator ’-’ is left-associativ, all other binary
operators are not associative. The priorities of the
operators are ’not’ ≺ ’=’ ≺ ’>’ ≺ ’-’
(a) Syntax of the while language

mkProg : DECLS × STATS → PROG
mkNodecl : → DECLS
addDecl : DECLS × DECL → DECLS
mkVarDecl : ID × TYPE → DECL
mkType : ID → TYPE
mkNostat : → STATS
addStat : STATS × STAT → STATS
mkAssign : DES × EXPR → ASSIGN
mkWhile : EXPR × STATS → WHILE
mkIf : EXPR × STATS → IF
mkRead : DES → READ
mkWrite : DES → WRITE
mkName : ID → DES
mkMinus : EXPR × EXPR → MINUS
mkGt : EXPR × EXPR → GT
mkEq : EXPR × EXPR → EQ
mkNot : EXPR × EXPR → NOT
mkConst : INT → CONST
(b) Constructors for Abstract Syntax Trees

ASSIGN � STAT,WHILE � STAT, IF � STAT,
READ � STAT,WRITE � STAT,
DES � EXPR,MINUS � EXPR,GT � EXPR
EQ � EXPR,NOT � EXPR,CONST � EXPR,
(c) Sub-Sort Relations in the Abstract Syntax

prog : → PROG
pc : → OCC
mem : LOC →?VALUE
env : → ENV
val : OCC →?VALUE
inp : → STREAM
out : → STREAM
In addition there is static function
bind : ENV × ID →?LOC
and a sub-sort relation LOC � VALUE
(e) Dynamic Function Symbols

occ : PROG × OCC →?NODE
deftab : PROG × OCC →?DEFTAB
isDefined : DEFTAB × ID → BOOLEAN
identifyDef : DEFTAB × ID →?DEF
typeOf : VARDEF → TYPE
pri : PROG × NODE → TYPE
post : PROG × NODE → TYPE
isValue : PROG × OCC →?BOOL
isAddr : PROG × OCC →?BOOL
first : PROG → OCC
next : PROG × OCC →?OCC
first : PROG × OCC →?OCC
cond : PROG × OCC →?OCC
lop : PROG × OCC →?OCC
rop : PROG × OCC →?OCC
opd : PROG × OCC →?OCC
DECLS � NODE,DECL � NODE, STATS � NODE,
STAT � NODE, EXPR � NODE,VARDEF � DEF
(d) Static Function Symbols

initial pc := first(prog)
env := initenv(prog)
¬D(mem(l))
¬D(val(o))

if Ct is ASSIGN then mem(val(Lop)) := val(Rop)
Proceed

where Ct � occ(prog, pc), Lop � lop(prog, pc),

Rop � rop(prog, pc), and Proceed � pc := next(occ, pc)

if Ct is WHILE ∧ Cond
.
= true then pc := first(prog, pc)

where Cond � val(cond(prog, pc))

if Ct is WHILE ∧ Cond
.
= false then Proceed

if Ct is IF ∧ Cond
.
= true then pc := first(prog, pc)

if Ct is IF ∧ Cond
.
= false then Proceed

if Ct is READ then mem(val(Opd)) := front(inp)
inp := tail(inp)
Proceed

where Opd � opd(prog, pc)

if Ct is WRITE then out := add(out, val(Opd))
Proceed

if Ct is NAME ∧ isValue(prog, pc) then
val(pc) := mem(Loc)
Proceed

where Loc � bind(env , id(ct))

if Ct is NAME ∧ isAddr(prog, pc) then
val(pc) := Loc
Proceed

if Ct is MINUS then val(pc) := val(Lop) − val(Rop)
Proceed

if Ct is GT then val(pc) := val(Lop) > val(Rop)
Proceed

if Ct is EQ then val(pc) := val(Lop) = val(Rop)
Proceed

if Ct is NOT then val(pc) := not(val(Opd))
Proceed

if Ct is CONST then val(pc) := const(Ct)
Proceed

(f) Initial State and State Transitions

Fig. 1. A small while-language

The static semantics provides static informations of the program, i.e., infor-
mations and conditions that can be determined without executing the program.
It is not only the static semantics as defined in the language definition but it
also prepares the dynamic semantics, in particular the control-flow and use-def-
relations of values. These informations are defined by static functions on the
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abstract syntax tree and by axioms that need to be satisfied. Figure 1(d) shows
these functions for the while language. We omit the axioms and describe infor-
mally the meaning of these functions. These functions need to address nodes of
abstract syntax trees which are modeled as occurrences. This is a list of natural
numbers that specifies which child has to be chosen. Figure 2 demonstrates this
concept. For example the list [1, 0, 1, 1, 1, 0] addresses the root of the condition
of the second if-statement. Note that the addressing of a node is partial func-
tion because not each list of natural numbers identifies a node in an abstract
syntax tree. The function symbol deftab represents the contextual information
at each node, i.e. the definitions that are visible at the node. isDefined checks
whether there is a binding for a name. identify identifies a definition for a name.
For example the identifier at occurrence [1, 0, 1, 0, 0, 0, 0] in Fig. 2 identifies the
definition stemming from the declaration of i which contains the information
that i is a variable with type integer. identify is partial because undefined
identifiers cannot be identified. The function pri defines the a-priori type of an
expression, i.e., the type determined by the structure of an expression. E.g.,
in Fig. 2, the expression at node [1, 0, 1, 1, 1, 0] has the a priori type boolean.
The function post defines the type expected by the context of an expression.
E.g., in Fig. 2, the expression at node [1, 0, 1, 1, 1, 0] has the a posteriori type
boolean, because an if statement expects a boolean type for its condition. In
general, read- and write statements define the a posteriori type integer for its
operands. For the while-Language in Fig. 1, the static semantics requires that
the a priori type of an expression is equal to its a posteriori type. The functions
isValue and isAddr determine whether a value of a designator or an address of
a designator is required for the evaluation. For example, the designator i at the
read instruction requires an address, i.e., isAddr(prog , [1, 0, 0, 0, 1, 0]) holds. In
contrast, the designator i at the write instruction requires the value of i, i.e.,
isValue(prog , [1, 1, 0]). If the occurrence is not a designator, then these functions
are undefined.

Remark 6. Each programming language with static binding of names requires
a static function analogous to deftab. For languages with dynamic binding of
names, this function would become a dynamic function as part of the dynamic
semantics. In general a definition contains all information necessary for specifying
the static conditions and required for the static semantics.

In general, the a priori type of an expression needs not to be equal to its a
posteriori type. In this case, the value of the expression needs to be converted to
a corresponding value of the a posteriori-type. Strongly typed languages usually
introduce a type system where each value of a sub-type is converted automati-
cally to a value of its super-type.

For the preparation of the dynamic semantics of a programming language it
is necessary to identify the first instruction of a program (function first), the next
instruction (function next), and access to operands of expressions (lop, rop, opd).
For example, in Fig. 2, the first instruction is at occurrence [1, 0, 0, 0, 1, 0] which
is the computation of the address of variable i. In Fig. 2 the next instruction of
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prog
i:integer;
j:integer

begin
read(i);
read(j);
while not i=j do

if i>j then i:=i-j end;
if not i>j then i:=i-j end;

end;
write(i)

end
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Fig. 2. An example program of the while-language in Fig. 1

[1, 0, 1, 1, 1, 1, 1] (which addresses the assignment in the second if-statement) is
[1, 0, 1, 0, 0, 0] (which is computing the address and value of the left-hand side
of the equal-expression in the condition of the while-loop). In addition, for the
while-language it is necessary to have access to the condition of the while loop
and if-statement (cond), to the first statement of the body of the while-loop and
the then-part of an if-statement (first). Note that these functions are all partial
since they operate on occurrences.

Figure 1(e) shows the dynamic functions. The constant prog is the program
to be executed. pc is the program counter containing the occurrence of the
instruction to be executed next. mem is the memory where LOC is the sort of
addresses and VALUE the sort of values.

Remark 7. Note, that in many languages, addresses are also values. Therefore,
it is not necessary to distinguish between values and addresses in the context of
saving intermediate results in evaluating expressions. If a value of a designator
has been computed, then the result of the computation of its address is used.
For languages where addresses are not values, then VALUE becomes a super-sort
for a (new) sort of values VAL and the sort LOC.
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Furthermore, there is a constant env of sort ENV, the environment. In partic-
ular, an environment binds addresses to names of variables which is formalized
by the static function bind that looksup an address for a variable. Finally, each
occurrence that is a variable has an address, and each occurrence that is an
expression has a value. In general both depend on current state, i.e., the func-
tion val is also a dynamic function. The functions inp and out are the input
and output streams, respectively, which are lists of integers (for the example
language).

Remark 8. For the while languages it is sufficient to define LOC � ID and
BOOL � VALUE and INT � VALUE where BOOL is the sort of booleans and
INT is the sort of integers of the size defined by the programming language.
These sorts have usual constructors and operation symbols. In most program-
ming languages there are more values (e.g. addresses) which can be specified
analogously by sub-sort relations. In general, programming languages with static
scoping allow different definitions for the same name as long as they are in dif-
ferent scopes (local declarations). Hence, the binding to an address depends on
the scope currently being executed. Therefore, in contrast to the while language,
the environment may change during execution.

Finally Fig. 1(f) shows the rules of the ASM specifying the dynamic seman-
tics of the while language. Expressions are evaluated from left to right. We use
macros for abbreviations of frequently used terms and for better readability.
These macros are expanded analogous to the macros #define of the C pre-
processing language. The guards of the rules check the type of an instruction,
respectively, and the corresponding updates specify the state transitions for this
instruction. The functions id : NODE →?ID and const : NODE →?VALUE define
the identifier for a name and the the value of a constant, respectively.

4 Non-recursive and Recursive Procedures

We first show procedure calls and returns for parameterless procedures. The
rules in this section can be combined with the rules in other sections. In this
section, we first introduce procedure calls (and returns) for programming lan-
guages without recursion. We assume that each procedure has one entry-point,
i.e., a unique instruction being executed upon the procedure call. This is usual
in all modern programming languages. We also assume that there is an explicit
return statement. In programming languages that return after executing the last
statement of the procedure body, the abstract syntax implicitly adds a return
statement as the last statement of the procedure body. Hence, this assumption
is no restriction.

If recursion is not allowed then each procedure has a static local environ-
ment, i.e., the addresses of its local variables (if this concept exists) and its
local procedures (if this concept exists) are known. In addition the environment
of a procedures must store the program counter of the caller (or the program
counter of the instruction to be executed after the call). This is being restored
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when returning from a procedure. Usually, the non-recursion is not dynamically
checked.

mkProcDecl : NAME × BODY → PROCDECL
mkBody : DECLS × STATS → BODY
mkProcCall : NAME → PROCCALL
mkReturn : → RETURN
first : PROCDEF → OCC
id : PROCCALL → ID
proc : PROG × OCC →?ID
getEnv : ENV × ID →?ENV
setpc : ENV × ID × OCC →?ENV
getpc : ENV × ID → OCC
PROCDECL � DECL, PROCCALL � STAT,
RETURN � STAT,PROCDEF � DEF
(a) Static Functions

if Ct is PROCCALL then
env := LocEnv
pc := first(ProcDef )

where

Id � id(prog, pc)

LocEnv � setpc(getEnv(env , Id), Id, pc)

ProcDef � identifyDef (deftab(prog, pc), Id)

if ct is RETURN then
pc := next(prog,OldPc)
env := OldEnv

where

Cp � proc(prog, pc)

OldPc � getpc(env ,Cp)

OldEnv � getEnv(env ,Cp)
(b) State Transitions for Call and Return

Fig. 3. Non-recursive procedure call and return

Figure 3 shows the formal definition of the ASM-rules for procedure calls and
returns. Figure 3(a) shows the operation symbols for the static functions. The
functions mkProcDecl , mkBody , mkProcCall , and mkReturn are the constructors
for the abstract syntax trees. Procedure calls and returns are statements as
shown in the sub-sort relations, respectively.

The sort PROCDEF is the sort of procedure definitions and contains informa-
tion on the first instruction being executed when executing the procedure body.
The function first gets this occurrence from a procedure definition. The function
id obtains the identifier of the procedure being called, and the function proc
obtains for an occurrence in a procedure body the identifier of this procedure.
The other static functions are functions on the environment required in the state
transitions for saving and restoring the caller (setpc and getpc), and obtaining
the local environment of a procedure (getEnv). The state transitions in a proce-
dure call changes the environment to the procedure being called. In particular
it stores the program counter of the call. Furthermore, the program counter is
set to the occurrence of the first instruction in the procedure body, and it stores
that the procedure is in execution. These updates are only being executed if
the called procedure is not in execution. When returning from a procedure then
the old program counter (OldPc) and the old environment (OldEncv) is being
restored and the procedure is no more in execution.

Remark 9. This is almost the semantics of non-recursive procedures in Fortran.
Fortran allows to declare local procedures with a restricted nesting depth. The
old versions of Fortran allow more than one entry point. Then each entry point
is modeled as a separate procedure with a different name but the same local
environment as the procedure. Then the formalization is the same as in Fig. 3.
This semantics is the semantics for static local variables (SAVE-variables), i.e., if
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a procedure p is called afterwards, then the local variables of p have the value at
the last return from p. For non-static variables, these values are not preserved
and the memory at the addresses of these local variables become undefined. It
is straightforward to add the corresponding update using forall and the pre-
defined identifier ⊥ for undefining a value.

In COBOL all identifiers are global, i.e. a procedure does not contain
local declarations and parameters. Therefore one environment is sufficient. The
PERFORM-statement calls a procedure. The semantics is the same as in Fig. 3.

If a programming language checks dynamically on recursion, then for each
procedure, the environment contains a symbolic state for each procedure indi-
cating whether it is currently being in execution. The condition in the rule for
a call is extended by the condition that the called procedure is currently not in
execution. The formal semantics of Java [13] uses a similar formalization for class
initialization with three symbolic states: uninitialized, initialization in progress,
and initialized. The initialization of classes is only being called for uninitialized
classes.

If recursive procedures are allowed, a recursively called procedure might
have several calls that are in progress. Hence, the local variables of a procedure
must be bound to different addresses for each call in execution. The call-return-
mechanism follows the Last In-First Out-principle. Hence, the environment is a
stack of procedures where each stack element (frame) stores the bindings and the
program counter of the caller. The bindings include the bindings of the environ-
ment of the procedure being called (global environment). If no local procedures
are allowed each procedure is bound to the bindings of the global variables. If
local procedures (i.e., procedure declarations in a procedure body), the callee
extends the environment of the caller by its local variables and local procedures.
Thus, the binding of a procedure is a binding to its environment. Similarly, in
object-oriented languages, the global environment of an object method is the
bindings of its attributes and its methods. Analogously, the global binding of a
static method of a class is the binding of the class’ static attributes. Note, that
this also applies to local methods and local classes.

Figure 4 shows the ASM-rules formalizing procedure calls and returns. We
added the rule for declarations which allocates a new location for the declared
variable. The rules use all static functions of the non-recursive version except
getEnv . Instead, the two static functions push and pop are introduced for pushing
and poping frames from the environment. The function getpc now obtains the
program counter of the top frame of an environment. getBinding obtains the
bindings from the top frame of an environment. The static function addBinding
adds a binding of a variable to an address to the bindings of the top frame
of an environment. The functions bindVar and bindProc obtain the address of
the object bound to a variable in an environment and the bindings bound to a
procedure, respectively. bind obtains a binding of a variable within a frame, and
f ∈ e is true iff f is a frame in an environment.

A procedure call pushes a new frame with empty bindings and the program
counter of the caller to the environment and proceeds with the first instruction
of the procedure body. Since programming languages might also have function



A Framework for Modeling the Semantics 339

calls which behave slightly different, a common supersort CALL is introduced in
order to specify the common state transitions for procedure and function calls in
the ASM rule for calls. The specific state transitions for procedure calls (i.e., the
change of the environment) is specified in the rule for procedure calls. Note that
the first instruction might be a variable declaration or procedure declaration.
The execution of a variable declaration obtains an unused address and binds
it to the variable. An address is used if it is somewhere bound to a variable
in a frame in the environment or it is contained as a value in the memory. The
execution of a procedure declaration binds the procedure to the current bindings.
If the object associated with a variable declaration is created upon execution of
its declaration, then the declarations are executed in their order. If the objects
of all local declarations are accessible within the whole procedure body, then
the first procedure declaration is executed after the last variable declaration.
This issue can be modelled by the static function next . On procedure return,
the old program counter and the environment of the caller are restored and the
execution proceeds as usual with the instruction after the call.

push : ENV × FRAME → ENV
pop : ENV → ENV
mkFrame : BINDING × OCC → FRAME
getBindings : ENV → BINDING
mkBinding : → BINDING
addBinding : ENV × ID × LOC → ENV
addBinding : ENV × ID × BINDING → ENV
bindVar : ENV × ID →?LOC
bindProc : ENV × ID →?BINDING
bind : FRAME × ID →?LOC
· ∈ · : FRAME × ENV → BOOL
PROCCALL � CALL,CALL � STAT

if Ct is VARDECL then
Proceed
choose l : LOC • ¬Used(l) in

env := addBinding(env , Id, l)
where

Used(l) f : FRAME id : ID f env bind(f, v)
.
= l l′ : LOC mem(l′) .

= l

if Ct is PROCDECL then
env := addBinding(env , Id,Bindings)
Proceed

where Bindings � getBindings(env)

if Ct is CALL then
pc := first(ProcDef )

if Ct is PROCCALL then
env := push(env ,Frame)

where

Id � id(prog, pc)

Frame � mkFrame(bindProc(env , Id), pc)

ProcDef � identifyDef (deftab(prog, pc), Id)

if Ct is RETURN then
env := pop(env)
pc := next(prog, getpc(env))

Fig. 4. Recursive procedure call and return

Remark 10. The functions and rules in Fig. 4 are a framework for modeling
the concepts of many programming languages which allow recursion. Languages
such as C don’t allow local procedures. On a global level, all global variables are
associated with objects which exist during the whole life time for the program.
Hence procedure declarations are executed after the last variable declarations
before starting main. Local variable declarations are executed in their order
since the objects associated with a local variable exists from its declaration.
This also holds for local variables of methods in Java, C++, C#, Eiffel, and
Sather (no matter whether they are static or not).

Static variables (also local static variables) in C exist during the whole execu-
tion of the program. Hence, the declaration of static variables are executed when
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executing procedure declarations. These variables are added to the bindings of
the procedure. The declaration of a static variable is not executed when execut-
ing a procedure, i.e., the rule for the execution of variable declaration does not
apply to local declaration of static variables. The SAVE-variables of Fortran for
recursive procedures and the own-variables in Algol60 have the same semantics.

Languages such as Algol60, Algol68, Pascal, Modula, and Ada allow local pro-
cedure declarations. For these languages all objects associated to local variables
are alive when a local procedure is being called. Hence, first all local variable
declarations and then all local procedure declarations are being executed.

Similarly in object-oriented languages such as Java, C++, C#, Eiffel, and
Sather the bindings of the object attributes and object methods of an object
are created upon object creation and are visible in all methods, i.e., first the
object attribute declarations are executed and then the method declarations
are being executed (eventually also the initializers and the constructors). The
binding of this can be viewed as an implicit parameter of a method being bound
when executing parameter passing. For static attributes and static methods the
bindings are computed before the first object is being created. In Java and C#
static attribute declarations and static method declaration are executed when
the class initialization starts. In Sather, C++, and Eiffel these declarations are
being executed when the program starts, i.e., before calling main. All objects
associated to static variable declarations of a class are visible in all static methods
of this class. This semantics also applies to local classes. In case of inheritance, the
execution of the declarations of an object starts first by executing the bindings of
the attribute declarations of the super classes, then inheritance is being resolved
(including overriden methods), and finally the method declarations are being
executed. Hence, these variants differ just in the order of the instructions being
executed (formalized by the static function next) but it does not affect the state
transition for the single instruction.

5 Parameter Passing

Usually, procedures have parameters. The parameters are local variables of the
procedure. The most common parameter passing mechanisms in programming
languages are call-by-value, call-by-result, call-by-reference, and call-by-value-
and-result although programming languages usually do not offer all of them.
The semantics of the call-by-value parameter passing mechanism evaluates the
argument to a value and assigns it to the corresponding parameter at the time of
the procedure call. The call-by-result parameter passing mechanism assigns the
value of the parameter to the corresponding argument at the time of the pro-
cedure return. call-by-value-and-result combines call-by-value and call-by-result.
Finally, call-by-reference passes the address of the argument to the address of
the parameter, i.e., the argument and the parameter refer to the same object.

It remains to discuss the meaning of an argument corresponding to a parame-
ter. Often, it is positional, i.e., the i-th argument is passed to the i-th parameter.
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However, many languages also allow non-positional correspondences of argu-
ments. In this case, the correspondence is explicitly specified in the procedure
call by associating the argument with the corresponding parameter.

After calling a procedure, the parameters are being passed, i.e., the first
instruction is the passing of the first parameter. We assume that for call-by-
value and call-by-value-and-results parameters, the corresponding arguments are
all evaluated when calling the procedure. We assume that call-by-value-and-
result parameters and their corresponding arguments are duplicated such that
it is call-by-value and a call-by-result-parameter4. We further assume that for
all call-by-reference-parameters and call-by-result-parameters the addresses of
the corresponding arguments are computed when calling a procedure, i.e., the
functions val is defined for these occurrences, respectively, cf. Fig. 1.

In Fig. 5(a), the functions mkProcDecl , mkPars, mkNoPars, and mkAddPar
are constructions for procedure declarations in the abstract syntax. The first
sub-sort relation in Fig. 5(c) specifies that procedure declarations are declara-
tions. Similarly, the functions mkValPar , mkRefPar , and mkResPar specify the
constructors of the parameters passed by call-by-value, call-by-reference, and call-
by-result, respectively. The sub-sort relations in Fig. 5(c) specify the sort PAR
which subsumes all specific sorts for parameters including the passing mechanism
for a parameter. Finally, the functions mkProcCall , mkNoArgs, and mkAddArg
are the constructors for the abstract syntax of procedure calls. The last sub-sort
relation in Fig. 5(c) specifies that procedure calls are statements.

The correspondence between parameters and arguments of procedure calls
is modeled by the static function corr where the second argument is the occur-
rence of the procedure call, the third argument the parameter, and the result
the argument corresponding to this parameter. call-by-value, and call-by-result
parameters are local variables, i.e., the state transitions for local variables also
be executed.

Remark 11. The static function corr can be extended straightforwardly to non-
positional parameter passing. If parameters are passed non-positionally, then the
procedure call contains the parameter of the callee the argument to be passed to
this parameter, i.e., corr remains a static function. Some languages such as e.g. C
or C++ have the concept of varying number of parameters (called ellipsis in C or
C++). However, the types of the arguments of each call can be determined and
therefore, the possible numbers of arguments are known statically. In this case,
a procedure with varying number of parameters is considered as overloading the
procedure with the required numbers of parameters, respectively. An example is
the procedure printf in C or C++.

The transition rules for passing arguments to value-parameters on procedure
call are straight forward. Reference parameters behave differently than variable
declarations since there is no need for a new address. Instead the address of the
corresponding argument is bound to the parameter as shown in the transition
rule for the reference parameter.
4 A parser can create abstract syntax trees with this duplication.
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mkProcDecl : NAME × PARS × BODY : → PROCDECL
mkNoPars : → PARS
mkAddPar : PARS × PAR → PAR
mkValPar : NAME → VALPAR
mkRefPar : NAME → REFPAR
mkProcCall : NAME × ARGS → PROCCALL
mkNoArgs : → ARGS
mkAddArg : ARGS × EXPR → ARGS
corr : PROG × OCC × OCC →?OCC
addBinding : ENV × OCC × LOC → ENV
bindArg : ENV × OCC →?LOC
(a) Static Functions

if Ct is RESPAR ∧ entry(OldPc) then
Proceed
choose l : LOC • ¬Used(l) in

env := NewEnv
where

NewEnv � addBinding(addBinding(env , Id, l),Arg, val(Arg))

if Ct is RESPAR ∧ entry(OldPc)
.
= false then

mem(Loc) := val(pc)
Proceed

where Loc � bindArg(env , oldPc,Arg)

(d) State Transition Rules

entry : OCC →?BOOL
(b) Dynamic Function

PROCDECL � DECL,
VALPAR � PAR,
REFPAR � PAR,
RESPAR � PAR,

(c) Subsorts

if Ct is CALL then
entry(pc) := true

if Ct is VALPAR then
Proceed
choose l : LOC • ¬Used(l) in

env := addBinding(env , Id, l)
mem(l) := val(Arg)

where Arg � corr(prog,OldPc, pc))

if Ct is REFPAR then
env := addBinding(env , Id, val(Arg))
Proceed

Fig. 5. Parameter passing

A special role is played by result parameters since they are also used upon
return. In both cases, result parameter passing is also executed upon proce-
dure call. Thus, it is required to know whether it passing a result parameter
is executed on procedure entry or on procedure return. This is modeled by the
dynamic function entry . In the state transition of the last parameter, the update
entry(proc(prog , pc)) := false is executed. Furthermore, there might be recursive
calls using result parameters. The problem is that the execution of a recursive
procedure p may destroy the address information of the previous call of p. For
example if a procedure p(out x) calls recursively p(x), then the variable x stem-
ming from the parameter of the recursive call and the argument x have different
locations, but the address information is being destroyed upon the recursive call
since the address of x becomes the address of the parameter of the recursively
called procedure. The solution is to save the addresses of the arguments of the
corresponding call-by-result parameters upon the call of a procedure in the frame
of the callee. This is modeled by the additional static function addBinding shown
in Fig. 5. It adds a binding for the occurrence of an argument to its address to
the bindings of the top of the stack. The function bindArg looks up this binding.

6 Functions

Function calls usually have the same semantics as procedure calls including
parameter passing. However, function calls are expressions and therefore have
a value, i.e., the value that is returned after execution of the function body.
However, there is also another consequence of function calls being expressions:
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function calls might be sub-expressions of an expression e, and then addresses
or values of other sub-expressions of e might be computed but not yet used as
the following example in Java demonstrates:

Example 1 (Function calls in Java). Consider the expression x+y*f(z) where f
is a function and x, y, and z are variables. Java has a strict left-to-right expression
evaluation order. Hence, when f is called, the values of x and y are computed.
However, these values are being used after the return from f has been executed,
since the value of y*f(z) and the value of the complete expression can only
be computed after the value of f(z) is available. Similarly, when executing the
assignment x=f(y), the address of x has been computed (due to the left-to-right
evaluation order), but it is used after returning from f, since storing the return
value to the address of x cannot be executed before the value of the function
call is known.

In many programming languages, the evaluation order is unspecified. [6] intro-
duces a framework for expression evaluation. However, in any language, there
might be addresses or values being computed that are used after returning from
a function call within the same expression. If recursion is allowed, then these
values need to be stored. For example, if the expressions in Example 1 are in the
body of function f, then the addresses and values are bound to the occurrences
of x and y, respectively, which are overwritten when executing the recursive call
of f.

Figure 6 shows the state transition rules of function calls. The static functions
are extended by a static function addBindings which adds bindings of values of
occurrences to (the top frame) of an environment and bindings of adresses of
occurrences to the environment, and the functions bindVal selects these values
from a binding, respectively. The sorts OCCS and VALS are lists of occurrences
and values, respectively. The static function ith select the i-th element of a
list, respectively, and the static function length the length of theses lists. The
dynamic function evaluated contains the occurrences of all sub-expressions which
are evaluated but whose values or addresses are not yet used upon a function call.
The macro Save saves all values and addresses and addresses in an environment.
Similarly, the macro Restore restores these values and addresses.

In Fig. 6, the updates for a function call as well as for a function return are
added to the updates of a procedure call and return, respectively. Therefore, we
have the sub-sort relations shown in Fig. 6, since then the guards of the rules
for procedure calls and returns are also satisfied for function calls and returns,
respectively. The updates for function calls saves computed but unused values.
The updates for function returns restore this values and store the return value
(modeled by the static function opd) at the occurrence of the function call.
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mkFunDecl : NAME × PARS × TYPE × BODY → FUNDECL
mkFunCall : NAME × ARGS → FUNCALL
mkFunReturn : EXPR → FRET
addBindings : ENV × OCCS × VALS → ENV
bindVal : BINDING × OCC →?VAL
getBinding : FRAME → BINDING
ith : OCCS × NAT →?OCC
ith : VALS × NAT →?VAL
length : OCCS → NAT
length : VALS → NAT
(a) Static Functions

evaluated : → OCCS
(b) Dynamic Functions

FUNCALL � CALL,
FUNCALL � EXPR
FRET � RETURN,
FUNDECL � PROCDECL
(c) Sub-sorts

if Ct is FUNCALL then
choose vals : VALS • Values(vals) in

env := Save(vals, push(env ,Frame))
where

Values(vs) � length(vs)
.
= length(evaluated)∧

∀i : NAT : •i < length(evaluated) ⇒ ith(vs)
.
= val(ith(evaluated(i)))

Save(vs, e) � addBindings(evaluated, v, e)

if Ct is FRET then
val(OldPc) := val(Opd)
Restore(getBinding(top(env)))

where

Opd � opd(prog, pc)

Restore(b) � forall o : OCC • D(bindVal(o)) do val(o) := bindVal(b, o)

Fig. 6. Function call and return

Remark 12. Some languages don’t distinguish conceptually between procedures
and functions. For example, in Algol68, C, C++, Java, and C#, procedures are
functions with return type void. However, the return statements distinguish
between returning a value and returning no value with the same semantics as
in Figs. 4 and 6. These languages have the concept of an expression being state-
ments, i.e., in the abstract syntax it also holds EXPR � STAT. A call is always
an expression (and can be used as a statement). Hence, there is no distinction
between a function call and a procedure call. If a procedure (or function) is called
as statement, then there are no evaluated expressions or designators whose result
is being used after the call.

7 Procedures as Values

In some programming languages, it is possible to pass procedures and functions
to parameters or to assign procedures to variables. In both cases, a procedure is
a value. The value is the closure of a procedure or function [11], i.e., it consists
of the parameters and the body of the procedure or function, respectively, and
its bindings in the current environment. For the parameters and the body, it is
sufficient to provide the first instruction to be executed (which is the first param-
eter, if the parameter list is not empty). In Fig. 7 this is modeled by the static
function closure and the subsort relation CLOSURE � VALUE. Hence, procedure
values can be stored in the memory, i.e., it is possible to assign procedures to
variables or pass them as parameters. The static functions first and getBindings
access the first instruction and the bindings of a closure, respectively. The static
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function proc yields the occurrence of the designator specifying the procedure to
be called.

proc : PROG × OCC →?OCC
closure : OCC × BINDING → CLOSURE
first : CLOSURE → OCC
getBindings : CLOSURE → BINDING
CLOSURE � VALUE

if Ct is CALL then
pc := first(Closure)

where Closure � val(proc(prog, pc))

Frame � mkFrame(getBindings(Closure), pc)

if Ct is PROCDECL then
Proceed
choose l : LOC • ¬IsUsed(l) in

env := addBinding(env , Id, l)
mem(l) := closure(first(ProcDef ), getBindings(env))

Fig. 7. Procedures as values

Passing procedures is passing the closure by the passing mechanism call-
by-value to the parameter, i.e., a procedure parameter is simply a call-by-value
parameter of a procedure type. However, there are two possibilities to access a
variable (or parameter) of a procedure type: computing the value (the closure)
and calling the closure. For the former, the closure of a procedure declaration
is stored in the memory and the procedure name is bound to a new location,
i.e., the ASM-rules for procedure and function declarations need to be changed
but the rules for the evaluation of designators remain unchanged. For the latter,
the ASM-rules for procedure calls and function calls in Figs. 4 and 6 need to be
changed in order to access the closure of the procedure or function to be called.
These rules are identical to those in Figs. 4 and 6 except that the macro FRAME
has been changed into the definition in Fig. 7.

Remark 13. Languages that don’t have the concept of local procedures such
as C and C++ use function pointers instead of procedure parameters. This
is sufficient because the bindings visible at the function declarations are the
global names and these are statically known. At first glance, it seems that this
also holds for Java and C#. However, these languages know the concept of
anonymous functions (in Java these are called lambda-expressions). The value
of an anonymous function is a closure and the bindings are those of the current
environment. Thus, anonymous functions in Java and C# require the formal
model of this section.

The concept of procedures and functions as values are already introduced
in LISP [11] - however with dynamic bindings. Algol68 introduces the concept
of procedures/functions as values and the concept of anonymous functions with
static binding. It has the semantics as introduced in this section. Pascal, Modula,
and Ada don’t have the possibility to assign closures to variables but only to pass
them as parameters, called procedure parameters in these languages. It also has
the semantics as introduced here.
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8 Asynchronous Procedures

If an asynchronous procedure is being called, then the caller and the callee exe-
cute concurrently. Thus, each call starts a new thread. Within this thread it
is possible to call synchronous procedures, i.e., a stack frame is pushed to the
thread environment as usual. On the other hand, the execution may call an
asynchronous procedure. This call forks a new thread from the callers frame.
Therefore, the environment has the behaviour of a cactus stack [8] (or called tree
of stacks by [5]), cf. Fig. 8. Each thread can non-deterministically continue its
execution. Before we consider explicit synchronizations, we consider the more
simple case that each procedure can only return if all called asynchronous pro-
cedures have returned. Otherwise, calling a procedure and returning from a
procedure behave as usual. In particular, the parameter passing mechanism has
the same behaviour as discussed in Sect. 5.

Fig. 8. A cactus stack with 5 threads

mkAsyncProc : NAME × PARS × BODY → APROCDECL
mkAsyncCall : NAME × ARGS → APROCCALL
push : ENV × FRAME × THREAD → ENV
top : ENV × THREAD → FRAME
pop : ENV × THREAD → ENV
fork : ENV × FRAME × THREAD → ENV
terminate : ENV × THREAD → ENV
forked : ENV × THREAD × THREAD → BOOL
mkFrame : BINDING × OCC × THREAD → FRAME
addBinding : THREAD × ENV × ID × LOC → ENV
addBinding : THREAD × ENV × ID × BINDING → ENV
addBinding : THREAD × ENV × OCC × LOC → ENV
bind : THREAD × ENV × ID →?LOC
bindArg : THREAD × ENV × OCC →?LOC
getpc : THREAD × ENV →?OCC
main : → THREAD
threads : ENV → THREADS
· ∈ · : THREAD × THREADS → BOOL
selectThread : ENV × THREAD →?ENV
APROCDECL � DECL
(a) Static Functions and subsorts

val : THREAD × OCC →?VALUE
pc : THREAD →?OCC
entry : THREAD × OCC →?BOOL
evaluated : THREAD → OCCS
thread : → THREAD
(b) Dynamic Functions

initial pc(main) := first(prog)
¬t

.
= main ⇒ ¬D(pc(t))

¬D(mem(l))
¬D(val(t, o))
thread := main

(c) Initial State

Fig. 9. Static and dynamic functions, initial state

In a first step, we extend the previous semantics to the execution on threads.
For this, a dynamic constant thread that contains the thread currently being
executed is introduced, cf. Fig. 9(b). Furthermore, all static functions related to
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environments have an additional parameter of sort THREAD. E.g. push must
specify the thread where a frame is pushed, cf. Fig. 9(a). There is now one pro-
gram counter per thread. This is modeled by adding a parameter sort THREAD
to pc. Since a procedure can be active on different threads, the dynamic func-
tions evaluated , val , and entry also become an additional parameter of sort
THREAD, cf. Fig. 9(b). All ASM-rules except the rules for returning from func-
tions and procedures are relative to the dynamic constant thread , i.e., it is added
as an argument if the corresponding static and dynamic functions require this
argument, cf. Fig. 10. The semantics of a procedure or function returns change
because it is different for asynchronous procedures.

For asynchronous procedure calls and returns, some more static functions are
required. The static functions fork and terminate fork and terminate a thread,
respectively. Furthermore, there is a static function threads yielding the set of
threads in an environment and selectThread for selecting the environment spe-
cific to a thread, cf. Fig. 9(a). The constant main is the main thread (for exe-
cution of a procedure main as e.g. in C, C++, Java, or C# or a main program
as e.g. in Pascal, Modula, or Ada), cf. Fig. 9(a). Figure 11 shows the transition
rules for asynchronous procedure calls and returns. The first rule chooses non-
deterministically a new active thread that is not waiting. This models the inter-
leaving semantics. A thread is active iff it is contained in the environment and is
waiting if it tries to execute a return but it has still some non-terminated forked
threads. For an asynchronous procedure call a new thread is created, the program
counter of the new thread is updated to the first instruction of the callee, and the
program counter of the caller proceeds to the next instruction. The return from
a synchronous procedure or synchronous function is the same as before w.r.t.
the thread currently being executed. The return from an asynchronous proce-
dure call terminates the corresponding thread. Note that the ASM rules don’t
distinguish between the case whether in a programming language may offer two
possibilities for the distinction between synchronous and asynchronous proce-
dure calls: First, a procedure must be declared as synchronous or asynchronous.
Second, the language distinguishes between the concept of a synchronous call and
an asynchronous call (as a statement). Since both possibilities can be modeled
by the same abstract syntax, the ASM rules capture both variants.

The semantics in Fig. 11 specifies that a procedure (or function) return is
possible only if all forked threads are terminated. Thus, before a return of a
procedure p is being executed, all called asynchronous procedures must execute
their return. Thus, this is a synchronization at the execution of a return instruc-
tion of p. If several asynchronous procedures have been called by p the order of
returning from these callees is not specified but results from the non-determinism
of the interleaving semantics. Furthermore, there is no possibility to access the
return value of an asynchronous function call. Explicit synchronization state-
ments allow more control over asynchronous functions. We consider here a barrier
synchronization, i.e. the caller of an asynchronous procedure (or function) waits
at this synchronization statement until the corresponding thread terminates (i.e.,
the callee executes its return statement). If the callee is a function, then the
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if Ct is READ then
mem(val(thread,Opd)) := front(inp)
inp := tail(inp)
Proceed

where Pc � pc(thread)

Ct � occ(prog,Pc)

Proceed � Pc := next(prog,Pc)

Opd � opd(prog,Pc)

if Ct is WRITE then
out := add(out, val(thread,Opd))
Proceed

if Ct is NAME ∧ isValue(prog,Pc) then
Proceed
val(thread,Pc) := mem(Loc)

where Loc � bind(thread, env , Id)

Id � id(prog,Pc)

if Ct is NAME ∧ isAddr(prog,Pc)then
val(thread,Pc) := Loc
Proceed

if Ct is VALPAR then
Proceed
choose l : LOC • ¬Used(l) in

env := addBinding(thread, env , Id, l)
mem(l) := val(threadArg)

where Arg � corr(prog,OldPc,Pc)

OldPc � next(prog, getpc(thread, env))

if Ct is REFPAR then
env := addBinding(thread, env , Id, val(Arg))
Proceed

if Ct is RESPAR ∧ entry(OldPc)
.
= false then

mem(Loc′) := val(thread, pc)
Proceed

where Loc′ � bindArg(thread, env ,OldPc,Arg)
if Ct is FUNCALL then

choose vals : VALS • Values(vals) in
env := Save(vals,NewEnv(env , thread)

where

Values(vs) �
length(vs)

.
= length(evaluated(thread))∧

∀i : NAT • i < length(evaluated(thread))
⇒ ith(vs)

.
= val(thread, ith(evaluated(thread), i)))

NewEnve(e, t) � push(e,Frame(t), t))

Save(vs, e) � addBindings(evaluated(thread), vs, e)

if Ct is ASSIGN then
mem(val(thread,Lop)) := val(thread,Rop)
Proceed

where Lop � lop(prog, pc(t))

Rop � rop(prog, pc(t))

if Ct is WHILE ∧ Cond(t)
.
= true then

Pc := first(prog,Pc)

where Cond � val(thread, cond(prog,Pc))

if Ct is WHILE ∧ Cond(t)
.
= false then Proceed

if Ct is IF ∧ Cond(t)
.
= true then

Pc := first(prog,Pc)

if Ct is IF ∧ Cond(t)
.
= false then Proceed

if Ct is MINUS then
val(thread,Pc) := val(thread,Lop) − val(thread,Rop)
Proceed

if Ct(t) is CONST then
val(thread,Pc) := const(Ct)
Proceed

if Ct is CALL then
Pc := first(Closure)
entry(thread,Pc) := true

where Closure � val(thread, proc(prog,Pc))

if Ct is PROCCALL then
env := push(env ,Frame(thread), thread)

where

Frame(t) � mkFrame(getBindings(Closure),Pc, t)

if Ct is PROCDECL then
Proceed
choose l : LOC • ¬isUsed(l) in

env := addBinding(thread, env , Id, l)
mem(l) := DefClos(first(ProcDef ), thread, env)

where DefClos(ot, e) � closure(o, getBindings(t, e))

if Ct is RESPAR ∧ entry(thread,OldPc) then
Proceed
choose l : LOC • ¬Used(l) in

env := NewEnv ′(thread, env , l,Arg)

where Env1(t, e, l) � addBinding(t, e, Id, l)

NewEnv ′(t, e, l, a) �
addBinding(t,Env1(t, e, l), a, val(t, a))

Fig. 10. Asynchronous execution of threads

choose t : THREAD • CanProceed(t) in
thread := t

where IsActive(t) � t ∈ threads(env)

IsWaiting(t) � ∃t′ : THREAD • forked(env , t, t′)
CanProceed(t) � IsActive(t) ∧ ¬IsWaiting(t)

if Ct is APROCCALL then
Proceed
choose t : THREAD • ¬isActive(t) in

env := fork(env ,Frame(t), thread)
pc(t) := first(Closure)
entry(t, pc(t)) := true

if Ct is RETURN ∧ ¬IsWaiting(thread)then
if OldPc is PROCCALL then

env := pop(env , thread)
Pc := next(prog,OldPc)

if OldPc is APROCCALL then
env := terminate(env , thread)

if Ct is FRET then
val(thread,OldPc) := val(thread,Opd)
Restore(getBinding(top(env , thread)))

where

Opd � opd(prog,Pc)

Restore(b) �
forall o : OCC • D(bindVal(b, o)) do

val(thread, o) := bindVal(b, o)

Fig. 11. Procedure returns and asynchronous procedure calls
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synchronization is an expression and its value is the return value of the function.
Hence, it must also be possible to declare threads.

mkThread : NAME → THREADDECL
mkSyncProc : NAME → SYNC
mkSyncFun : NAME → SYNCEXPR
THREADDECL � VARDECL, SYNC � STAT
SYNCEXPR � EXPR, SYNCEXPR � SYNC
THREAD � VALUE

IsWaiting(t) �
Cmd(t) is SYNC ∧ ¬Sync(t) is RETURN∨
∃t′ : THREAD • forked(env , t, t′)

where Cmd(t) � occ(prog, pc(t)))

Synchronize(t) � val(t, id(prog, pc(t)))

Sync(t) � Cmd(Synchronize(t))

if Ct is APROCCALL then
then

Proceed
choose t : THREAD • ¬IsActive(t) in

env := fork(env ,Frame(t), thread)
pc(t) := first(Closure)
entry(t, pc(t)) := true
val(thread,Pc) := t

if Ct is SYNC ∧ Sync(thread) is RETURN then
env := terminate(env ,Synchronize(t))
Proceed

if Ct is SYNCEXPR ∧ Sync(thread) is FRET then
val(thread,Pc) = RetVal(Synchronize(thread))

where RetVal(t) � val(t, opd(prog,Sync(t)))

Fig. 12. Explicit barrier synchronization

Figure 12 shows the semantics of a synchronization statement and expres-
sion. The static functions only need to be extended by the constructors for the
declaration of threads, and the synchronization statements and synchroniza-
tion expressions. The main difference between synchronization statements and
synchronization expressions is that the latter has a value, the return value of
the asynchronous function. Furthermore, threads are values, i.e., they can be
stored in the memory. Due to the sub-sort relations, the thread declarations
can be used analogous to variables, i.e., no new transition rules are required
for thread declarations, accessing thread variables, assigning threads to thread
variables. Even passing threads to value or reference parameters is possible.
However, the choice of selecting active, non-waiting threads for execution is
slightly different to Fig. 11 since in addition, threads might wait at a synchronize-
statement/expression for the return statement of the callee. This is formalized
by the revision of the macro IsWaiting . The transition rule for asynchronous
procedure call in Fig. 12 extends the corresponding rule in Fig. 11 by storing t as
value of the current call in the current thread. The transition rule for synchro-
nization checks whether the asynchronous procedure to be synchronized reached
the return statement. This is the only possibility to return from asynchronous
procedures. If a synchronization synchronizes with a function, then value of the
synchronization becomes the return value of the asynchronous function to be
synchronized.

Remark 14. It is also possible to specify other synchronization mechanisms.
Locking variables can be modeled by a dynamic function lock : LOC → BOOL
and writing to mem(l) is possible only if l is not locked. This affects the tran-
sition rules for assignments, and passing parameters by value or by result.
Also note, that threads or procedures might be locked since these are consid-
ered as values too. Another synchronization mechanism are critical sections.
If a critical section is being executed, then no critical section of any other
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thread can be executed concurrently. It is possible to specify the semantics
of critical sections, by specifying whether a thread enters and leaves a criti-
cal section. If a critical section is being entered then the execution of the thread
waits until no other thread is in a critical section. Hence, a dynamic function
inCriticalSection : THREAD → BOOL is required. This specification is indepen-
dent of whether there are explicit statements for entering and leaving critical
sections or the critical sections are statically declared.

Threads in Java and C# are bound to objects and created upon object
creation. Thus, the environments are bound to these objects.

9 Related Work

There is a lot of work on defining programming language semantics using Abstract
State Machines, see [3] for an overview. Usually, the language semantics is modular
in the sense that starting from a kernel language, the language is extended concept
per concept without changing the ASM rules of the previous definitions. A nice
example of this approach is the language definition of Java in [13].

Montages [1,2] is a visual model of the abstract syntax, and control- and
data-flow. We used static functions for this purpose, and their formal (algebraic)
specification can be derived from Montages specifications. Similarly, the static
semantics can be specified using attribute grammars [10] and these specifications
can be systematically transformed into static functions and axioms.

Most of the formalization concepts for ASM transition rules in this paper can
be found in the works mentioned in [3]. In addition, we have shown the difference
between non-recursive and recursive procedures, local procedures, the transition
rules for all usual parameter passing mechanisms, and in particular procedures
as values. It therefore covers many programming languages. The modeling of
concurrency in [13] (and similarly the concurrency of C# [14]) is similar to our
approach. [6] discusses for expression evaluation semantics that covers many
programming languages. It is in the same spirit as this work for procedures and
functions.

The idea of using asynchronous procedures and base the execution model on
cactus stacks stems from our work on protocol conformance checking of Web Ser-
vice Compositions [9] or deadlock analysis of Web Service Compositions [16]. [15]
contains an operational semantics of synchronous and asynchronous procedure
calls based on inference rules.

[12] has a similar motivation as this work, i.e., it provides a modular frame-
work for modeling programming language semantics. In contrast to this work it
is based on rewrite systems. The framework provides possibilities for specifying
configurations which are closely related to states of ASMs. In contrast to [12] we
also consider local procedures within a local scope and asynchronous procedures.

10 Conclusions

In this paper, we have shown the formalization of the operational semantics using
Abstract State Machines for frequently used concepts related to procedures and
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functions. Usually not all formalizations are needed for a formal semantics in a
programming language. However, our results provide a toolkit for the semantics
of procedures and functions: just look at the concepts and take the correspond-
ing rules as specified in this paper. Details are discussed in the remarks at the
end of each section. The model in Sect. 7 is sufficient for all variations of syn-
chronous procedures and functions: Procedures are variables that store closures
as procedure values. If a programming language has no procedure variables or
procedure parameters, then this behaves like a constant declaration since the
execution of a procedure declaration of a procedure p stores the closure in the
location associated to p, but within the language it is not possible to declare
variables of a procedure type. Thus, the closure of p remains unchanged during
the lifetime of p. Issues like correspondence between arguments of a procedure
call and the parameters of the callee can be modeled by a static function - even
if non-positional parameter passing is possible. If only parameterless procedures
are allowed all rules related to parameter passing can be removed. Similarly, only
the rules for the parameter passing mechanisms offered by the programming lan-
guage are needed. A similar remark applies to asynchronous procedures.

The formalizations are rather independent of the formalization of the other
statements and expression evaluation. Thus, they can be combined with similar
toolkits and frameworks for other variants of programming language concepts.
One concept that requires a special focus is exception handling as this concept
may abort a current execution (including procedure and function calls). Another
concept that may affect the environment is the classical unconditional jump since
this may remove stack frames upto the stack frame where the jump target is
visible.
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