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Abstract Removal of contaminants from wastewater has become an important
research area because the amount of available drinkingwater in theworld continues to
decline due to rising demand and/or long periods of drought. Furthermore, the chem-
ical and petrochemical industry generates a wide variety of highly toxic residues.
Treatment of wastewater is a controversial field in terms of environment protection.
In this chapter, several nanomaterials, which impart their unique properties, will be
discussed. Among nanomaterials, carbon nanotubes (CNTs) are a form of carbon
allotrope with a graphite-like structure, displaying various adsorption characteris-
tics, as a result of the diameter, internal geometry, physical and chemical properties
or the obtaining method. Contaminants removal using CNTs needs further research,
only limited studies being available and more practical applications are needed to
confirm the results. Several other adsorbent nanomaterials have been reported in
literature. Among them, mesoporous materials have large surface areas and narrow
pore size distribution, ranging from 20 to 100 Å, being suitable for liquid phase reac-
tions because they favor the diffusion of the reactants to the active site. The adsor-
bents can be very effective for adsorption of several types of contaminants, such as
heavy metals and different types of dyes. Recently, advanced research targeted the
wastewater treatment by using nano catalysts, nano photocatalysts or membranes.
The purpose of this chapter was to accomplish a comprehensive overview on the use
of nanomaterials in wastewater treatment. The renewed interest in the environment
pollution has led to the development of effective models describing the performances
of these technologies.

Keywords Adsorption · Catalysis · Nanomaterial · Wastewater

V.-C. Niculescu (B) · M. G. Miricioiu · R.-E. Ionete
National Research and Development Institute for Cryogenic and Isotopic Technologies – ICSI
Ramnicu Valcea, 4th Uzinei Street, PO Raureni, Box 7, 240050 Ramnicu Valcea, Romania
e-mail: violeta.niculescu@icsi.ro

M. G. Miricioiu
e-mail: marius.miricioiu@icsi.ro

R.-E. Ionete
e-mail: roxana.ionete@icsi.ro

© Springer Nature Switzerland AG 2021
A. Vaseashta and C. Maftei (eds.), Water Safety, Security and Sustainability,
Advanced Sciences and Technologies for Security Applications,
https://doi.org/10.1007/978-3-030-76008-3_6

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76008-3_6&domain=pdf
mailto:violeta.niculescu@icsi.ro
mailto:marius.miricioiu@icsi.ro
mailto:roxana.ionete@icsi.ro
https://doi.org/10.1007/978-3-030-76008-3_6


136 V.-C. Niculescu et al.

1 Introduction

Safe drinking water and sanitation facilities are essential for human health and well-
being, but also a basic necessity for crops and animals. Since water is the key of
the body’s metabolic processes, once contaminated with toxic compounds, it can
cause serious diseases such as cholera, diarrhea, dysentery, hepatitis and typhoid.
Up to 1 million people die every year due to diarrhea caused by drinking water
or poor hygiene [1]. Due to rapid urbanization and climate change, it will become
a challenge to consume water with proper quality, for general needs and even for
agriculture. In 2017, according to World Health Organization, 1400 million people
usewater sources located 30min away from them, 206million takesmore than 30min
to collect water, 435 million uses groundwater and 144 million uses untreated water
from surface sources [1]. Therefore, to achieve high quality standards, wastewater
treatment must be performed.

A combination of several factors lead to water pollution, such as the discharge
of effluents from various sources (industrial, domestic), intensive use of pesticides
in agricultural activities, and poor isolation of landfills. [2]. According to the Euro-
pean Environment Agency, the main contaminants present in soil due to commer-
cial and industrial activities are heavy metals (31%), mineral oil (20%), polycyclic
aromatic hydrocarbons (16%), aromatic hydrocarbons (13%), chlorinated hydrocar-
bons (13%) and others (7%) [3, 4]. The identification of appropriate technological
advances and gaps that mapwith the contaminants removal fromwastewater, must be
a priority for correctly informing the scientists regarding the application of the best
standards, resulting the safe use of water. Nevertheless, only a fraction of the wastew-
ater streams are collected and appropriately treated by various methods (Fig. 1), i.e.
primary (settling treatment), secondary (biological methods for reduction of organic
compounds) and tertiary (stringent methods for reduction of nutrients) [5]. In Serbia,
for example, 48% of the population collects sewage, but does not treat it before evac-
uation, while at the opposite pole, in Netherlands, 99% of the population applies
strict treatments.

During the last decades, several unconventional and conventional technologies
were applied for wastewater treatment, taking into account the pollution types,
sources and levels. One of the classical technologies, intensively applied, is based
on sand filters. Its main advantage consists in the complex filtration, resulting in
the removal of solids, such as chemical (e.g. nitrite, nitrate, heavy metals and pesti-
cides) and biological contaminants [6]. Two types of sand filters were used, namely
slow and rapid sand filter introduced in various tank designs, depending on the water
demands. The filtration rate for the rapid filter is up to 50 times greater than in case of
slow filter, due to the particles size, which were significantly higher, ~up to 11 times.
Another conventional technology used for many years for wastewater treatment is
based on the use of biological activated carbon (BAC) filter, consisting of activated
carbon covered by a biofilm [6]. The purification mechanism involves both adsorp-
tion and biodegradation [7]. A different filter used only for wastewater treatment,
through its aeration configuration, is the biological aerated filter (BAF) [8, 9]. Also,
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Fig. 1 Collected urban wastewater and types of the treatments

membrane filtration and chemical treatments by using chlorination, UV irradiation
and permanganate oxidation have been and are still used, but, in some cases, these
treatments do not reach the required standards for wastewater [10–13]. Nowadays,
new highly efficient treatments with low-cost operation and environmentally friendly
composition are used for human and environment.

In order to have an overview of the efficiency of removing contaminants, including
metals, the treatment processes (Fig. 2) were structured in four main categories
(nanofiltration, adsorption, reverse osmosis and ion exchange) [14]. It has been
observed that conventional adsorption technology has the highest tendency to remove
As and Hg, but lower efficiency for Ni removal. Reverse osmosis has a higher
efficiency for removing Ni and Zn.

An important aspect of these technologies is the fabrication and operation cost.
Taking into consideration the higher cost per treatedwater volumebut lower operation
cost, the nanofiltration remains a promising solution for water treatments, being
intensively studied in order to obtain cheaper materials with higher efficiency and
environmentally friendly properties [14]. The interest in using nanomaterials for
wastewater treatment arises from their superior characteristics, such as high surface
area, high surface free energy, tunable pores or reactive sites [15]. Therefore, various
nanomaterials have been used in different wastewater treatment methods, involving
adsorption, photocatalysis or membranes.

The aim of this chapter is to accomplish a comprehensive overview of results
obtained in the past years on the use of nanomaterials in wastewater treatment.
The renewed interest in the environment pollution has led to the development of
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Fig. 2 Technologies efficiency for wastewater treatment

effective models, which equally well describe the performances of these technolo-
gies. For wastewater treatment, the nanomaterials can be considered easily adaptable
approaches, but some concerns need to be addressed: their limitations, advantages,
disadvantages and future perspectives. Moreover, their health risk must be evaluated
by the research communities, being responsible for generating suitable regulation to
surpass this concern.

2 Nanotechnology for Wastewater Treatment

The necessity of clean water is increasing worldwide due to the freshwater dimin-
ishing resources, caused by population increase, extended droughts, climate changes
and strict water quality regulation [15, 16]. Nanotechnology has proved to be one
of the most suitable methods for wastewater treatment. It can appropriately mitigate
many of the water quality problems by using various functional nanoparticles and/or
nanofibers [17]. Nanotechnology uses “materials with any external dimension in the
nanoscale (around 1–100 nm) or having internal structure or surface structure in the
nanoscale” (Fig. 3) [18, 19].

Nanomaterials have significantly improved physical, chemical and biological
characteristics resulted from their structure and high surface area [21, 22]. These
unique properties (Table 1) were studied for implementation in wastewater treatment
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Fig. 3 A size comparison of nanoparticle with other larger-sized materials [20]

Table 1 Potential applications of nanomaterials in wastewater treatment

Treatment method Nanomaterial Nanomaterial improved
characteristics

Adsorption Carbon nanotubes, metal oxides,
nanofibers, metal-organic
frameworks

High specific surface area, selective
adsorption sites, tunable pores, easy
reuse, etc.

Photocatalysis Nano-TiO2, silica derivates High stability and selectivity, low
toxicity and costs, etc.

Membranes Zeolitic, polymeric, mixed matrix
membranes

High permeability and selectivity,
hydrophilicity, low toxicity,
mechanical and chemical stability,
etc.
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[23].
The high surface area-to-volume proportion of nanomaterials improves the reac-

tivity against environmental contaminants. In the context of wastewater treatment
and remediation, nanotechnology can supply both water quality and quantity, with
low-costs and real-time measurements [24, 25]. Energy preservation results in cost
savings due to the nanomaterials small sizes, but the total usage cost of the nanotech-
nology must be compared with other commercial techniques [26]. The development
of various nanomaterials like nano adsorbents, nano catalysts, zeolites or nanos-
tructured membranes resulted in toxic metals removal or organic and inorganic
compounds.

2.1 Adsorption

Generally, the adsorption of emerging contaminants on the surface of nanomaterials
ismainly influenced by the physical structure and chemical properties of thematerial,
such as the pore structure, specific surface area or surface functional groups.

2.1.1 Carbon Nanotubes

Carbon nanotubes (CNTs) are allotropes of carbon with a graphite-like structure,
exhibiting various adsorption properties as a result of the chirality, internal geom-
etry and diameter, or synthesis method [27–33]. Carbon nanotubes are single-walled
nanotubes (SWNT), having an internal diameter of about 1 nm [34, 35] and multi-
walled nanotubes (MWNT), formed by a number of concentric tubes or laminated
graphene layers [35–37]. Multi-walled carbon nanotubes can be obtained from
single-walled CNTs by using supplementary chemical processing methods, in order
to improve the contact area by several times and the amount of active sites for adsorp-
tion [38]. Table 2 gives an overview of the applications where CNTs have been used
for the removal of emerging contaminants from water.

Specific surface area has an important influence on the adsorption performance of
CNTs and itmainly depends on the presence of single- ormulti-walled structures. For
example, when SWNT were used, tetracycline was removed from wastewater with
a 92% efficiency, while MWNT removed only 16% [44]. The adsorption coefficient
(Kd) values of SWCNTs, MWCNTs were almost 1500 and 1100 respectively [44].
The sorption data of tetracycline on MWCNTs were evaluated using the Langmuir
model, the maximum adsorption capacity being 269.5 mg/g and the efficiency 99.8%
[42].

There are only few studies that compare the behavior of single- and multi-walled
carbon nanotubes, the majority revealing better performance for the single-walled
carbonnanotubes.Also, contradictory resultswere obtained byusing the same carbon
nanotubes for removal the same contaminant [45, 46]. For example, the removal of
sulfamethoxazole from aqueous solutions was tested under various conditions [45,
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Table 2 Adsorption of some emerging contaminants on carbon nanotubes

Nanomaterial Contaminant Treatment conditions Maximum adsorption
− qm
(mg/g)/coefficient −
kf (mmol−1−nLnkg−1)

References

MWCNT Norfloxacin T = 30 °C; pH = 7 qm = 89 [39]

MWCNT Sulfamethoxxazole pH = 7 qm = 46 [40]

MWCNT Sulfamethoxxazole pH = 6 kf = 510 [41]

MWCNT Tetracycline T = 20 °C qm = 270 [42]

MWCNT Sulfonamides T = 25 °C kf = 352–2815 [43]

MWCNT Chloramphenicol T = 25 °C kf = 570–618 [43]

MWCNT Non-antibiotic
pharmaceuticals

T = 25 °C kf = 318–1521 [43]

MWCNT Tetracycline pH = 5 kf = 240 [29, 44]

KOH-activated
MWCNT

Sulfamethoxxazole pH = 6 kf = 2300 [29, 44]

KOH-activated
MWCNT

Tetracycline pH = 6 kf = 800 [29, 44]

SWCNT Tetracycline pH = 5 kf = 1150 [29, 44]

KOH-activated
MWCNT

Sulfamethoxxazole pH = 6 kf = 5200 [29, 44]

KOH-activated
MWCNT

Tetracycline pH = 6 kf = 1400 [29, 44]

46]. Some authors reported that, from the multiple factors that can be varied, such as
pH, adsorbent dosage or adsorbate concentration, the effect of pH affects adsorption
capacity most strongly [45]. Others reported that, in the same conditions, the adsorp-
tion capacity was mostly influenced by adsorbent quantity or initial concentration of
the adsorbate [46].

The adsorption capacity of CNTs can be improved by functionalizing them with
other reactive nanomaterials, which is an area of ongoing investigation. For example,
zero valent iron (nZVI) was immobilized on the surface of the CNTs to remove the
diazo dye Direct Red 23 from aqueous solution [47]. The emerging contaminants
removal by adsorption on CNTs still needs further research, only limited studies
being available and more experimental proof being needed in order to sustain the
reported trends.

2.1.2 Metal-Organic Framework (MOF) Nanomaterials

The adsorption properties of someMOFs are summarized in Table 3. Zeolitic imida-
zole framework (ZIF)-magnetic graphene oxide exhibited high adsorption efficiency
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Table 3 Adsorption of some emerging contaminants on MOFs

Nanomaterial Contaminant Treatment conditions Maximum
adsorption −
qm (mg/g)

References

Cr(III)
terephtalat-MIL101

Dimetridazole T = 25 °C; pH = 6 qm = 185 [48]

Cr(III)
terephtalat-MIL101

Metronidazole T = 25 °C; pH = 6 qm = 188 [48]

Cr(III)
terephtalat-MIL101

Naproxen T = 25 °C; pH = 7 qm = 156 [49]

Cr(III)
terephtalat-MIL101

Ketoprofen T = 25 °C; pH = 7 qm = 80 [49]

Zeolitic imidazole
framework-magnetic
graphene oxide

Benzotriazole T = 40 °C qm = 300 [50]

Zeolitic imidazole
framework-8

1H-benzotriazole T = 30 °C qm = 299 [51]

Zeolitic imidazole
framework-8

5-tolyltriazole T = 30 °C qm = 397 [51]

Metal organic
framework-porous
carbon

Ibuprofen T = 25 °C; pH = 5 qm = 320 [52]

Metal organic
framework-porous
carbon

Diclofenac
solution

T = 25 °C; pH = 5 qm = 400 [52]

against benzotriazole (300 mg/g) [50]. The ZIF-8 adsorption capacity for 1H–benzo-
triazole and 5-tolyltriazole was better evaluated by pseudo-second-order kinetics,
fitting the Langmuir adsorption model with an adsorption capacity of 298.5 and
396.8 mg/g, respectively [51].

Various mechanisms were proposed for MOFs adsorption of pollutants from
wastewater, such as Lewis acid–base interactions, electrostatic interactions, π–π
interactions or H-bonding [50]. For example, it was reported that the adsorption of
nitroimidazole antibiotics on MOFs was achieved by H-bonding between the –NO2

group from nitroimidazole and –NH2 from the modifiedMOFs [48]. One of the most
important parameters that influence MOFs adsorption capacity is the pH. The 1H–
benzotriazole and 5-tolyltriazole adsorption on ZIF-8 slightly decreased with the pH
increasing [51]. The ZIFs negatively charged with magnetic reduced graphene oxide
displayed rather stable adsorption for benzotriazole at pH varying between 4 and
9 [50]. Once the pH increased to 10, adsorption decreased due to the inhibition of
electrostatic adsorption by the negatively-charged species graphene oxide [50].

Another MOF, MIL-101, was used for the saccharin adsorption from wastew-
ater, displaying stable adsorption capacity at pH ranging from 3 to 7, which was
attributed to the electrostatic interaction of positively charged MOF with negatively
charged deprotonated form of saccharin and the stable H-bonding between the NH2
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function on urea-MIL-101 and saccharin anion [53]. Two MOFs composites, MIL-
101/chitosan (MIL-101/CS) andMIL-101/sodium alginate (MIL-101/SA)were used
for the adsorption of benzoic acid (BEN), IBP, and ketoprofen (KET), exhibiting
similar variation of the pH-dependent adsorption, reaching a maximum adsorption
at pH around 4, due to the influence of pKa-dependent electrostatic interaction [54].
Urea-modifiedMIL-101manifested a decrease in the adsorption capacity one the pH
was increased, as a result of the electrostatic interaction between the positive surface
charge on MIL-101 and the negatively charged oxygen from the -NO2 group of the
nitroimidazole antibiotics [48].

2.1.3 Mesoporous Silica

Mesoporous silicamaterials (such as SBA-3, SBA-15,MCM-41 orMCM-48) gained
intensive interest as potential adsorbents over the last years, due to their high surface
area, tunable, ordered and uniform pores, high pore volume, thermal and mechanical
stability and option for functionalization [55, 56]. As a consequence, they have been
applied as adsorbents for organic dyes [57–59], heavy metals from wastewater [60,
61], polycyclic aromatic hydrocarbons [62], as well as other organic contaminants
[63]. The adsorption capacity of several mesoporous silica materials for various dyes
is summarized in Table 4.

As noted, SBA-15 manifested a significantly higher adsorption efficiency than
MCM-48, due to its larger pore size (5.27 nm vs. 3.0 nm), allowing dye molecules
to easily diffuse from SBA-15 surface to pores [58, 67]. Furthermore, the meso-
porous silica adsorption capacity is dependent on the functional group, initially
having a negative surface charge due to the Si−OH groups. In this respect, in order to
improve the adsorption processes, the mesoporous silica surface was functionalized
with groups suitable for adsorption of specific compounds. Various functionalized
mesoporous silica materials were used for adsorbing dyes (Table 4). For example,
mesoporous silica functionalizedwith amino or carboxylic groups have been used for
adsorption of acidic and basic dyes, with good selectivity and rapid adsorption rate
due to the high surface area and to the strong electrostatic interactions [68, 69]. The
adsorption of Remazol Red dye by MCM-41-NH2 reached an efficiency of 98.2%,
higher than that obtained using Fe(III)/Cr(III) hydroxide (9%) or various carbon-
based adsorbents [68, 69]. Mesoporous silica materials can be easily protonated in
water, resulting in charging their surface which can interact with other ions in solu-
tion. As a consequence, mesoporous silica could be applied as efficient adsorbents
for the removal of various organic contaminants [73].

Also, in the case of using mesoporous silica as adsorbent, the pH controls the
amplitude of the electrostatic charges shared by the ionized contaminants molecules.
In general, low pH will increase the rate removal of an anionic dye, while that of a
cation dye will decrease [74–76]. For example, the removal of cationic methylene
blue dye using 3-aminopropyl triethoxysilane-mesoporous silica was increased once
the pH increased, a maximum adsorption capacity (66 mg/g) being achieved at pH
equal to 7 [77]. The capacity of dimethyldecylamine-mesoporous silica for removing
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sulphonated azo dye fromwastewater (0.3 mg/g) was slowly increased by decreasing
the pH under 4. A higher pH conducted to the adsorption capacity decrease, prob-
ably due to the deprotonation of the surface groups and to the protonation of the
acidic functional groups of the dye, resulting an electrostatic repulsion between the
mesoporous silica and the adsorbate [70]. The maximum adsorption capacities of
the acidic dyes were reported in solutions with a pH varying from 2 to 6, while for
the cationic dyes, the optimum pH varied between 7 and 11 [78].

Heavy metal ions (Pb, Zn, Cd or Cr) are known as emerging contaminants in a
water source. Their direct or indirect release as a by-product from different indus-
tries in wastewater stream is a part of water pollution. Ni-SBA-15 and Ni-MCM-41
obtained through co-condensation were used as adsorbents for removing Ni+2 from
wastewater with an adsorption rate and capacity up to 95% [79]. Determination of
Pb+2 traces in wastewater was achieved using mesoporous silica functionalized with
Pb(II) [80]. The bifunctional modified Al+3/Ti+4-MCM-41 was used to remove Cd+2

ions fromwastewater [81]. Additionally, theM41S and SBA serieswere preferred for
removal of Cr(VI) fromwastewater, due to their unique pore structure [82]. Function-
alization of SBA-15 andMCM-41with amino groups conducted to effective removal
of heavy metals such as Pb+2, Cd+2, Cu+2, Ni+2 and Cr+2, reaching high adsorp-
tion rate (around 99%) [83]. Also, SBA-15 functionalized with two types of func-
tional groups, propyl-trimethylammonium and propyl-ammonium were obtained for
nitrates removal fromwastewater [84]. The adsorption capacitywas influenced by the
nature of the functional group and, also, by the synthesis method. It can be concluded
that the selectivity and capacity of metal ions adsorption are affected by mesoporous
silica obtaining method, functional groups and pH [85].

2.2 Photocatalysis

An advanced oxidation process for removing trace contaminants is the photocatalytic
oxidation. The most studied photocatalysts consist of either metal oxides (such as
TiO2 and ZnO) or carbon nanotubes and graphene oxides combined with metal
oxides (such as TiO2, Cu2O Co3O4 and ZnFe2O4). TiO2 nanoparticles are used
effectively for the photocatalysis of wastewater pollutants like benzenes, polychlo-
rinated biphenyls (PCBs) or chlorinated alkanes [86]. Also, the microcystins were
removed from wastewater by photocatalysis using TiO2 nanoparticles in a “falling
film” reactor [87].

Organic contaminants can be efficiently removed by doping TiO2 with noble
metals, due to the hydroxyl radical appearance [88]. For example, nano-TiO2 doped
with noble metal were applied in the methylene blue removal in the visible-light
domain [89]. Al2O3 was deposited onto nanoporous TiO2 and it was effectively used
for the total organic removal fromwastewater [90]. Similarly, significant results were
obtainedwith photocatalysts derived frommesoporous silica, for example combining
TiO2/Al-MCM-41 and TiO2/Al-SBA-15 for the of phenolic compounds removal
from wastewater [91]. Carbon nanotubes were applied as reinforced photocatalytic
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Fig. 4 Representation of photocatalytic mechanism

composite materials along with TiO2 or ZnO, in order to improve their total surface
area, defects or electrical conductivity, affecting the overall photocatalytic activity
[92]. A mechanism of action for enhancing photocatalytic activity proposed the
involvement of band gap or energy gap defined as energy intervals (no electrons
exist) between the valence and conduction bands (Fig. 4).

The valence band consists in the highest energy state with electrons, whereas the
conduction band is the lowest energy band without electrons [93]. Photons raised
from various light sources can be exposed to a nanocatalyst, the vibration band elec-
trons being excited and moving to the conduction band. In this manner a vacancy or
hole appears in the vibration band. The holes react with water molecules or hydroxyl
groups, resulting in hydroxyl radicals (·OH) that directly oxidize the pollutants on
the carbon nanotubes surface. On the other hand, the excited electrons moved to
conduction band form hydroxyl radicals, which interact with oxygen molecules,
resulting superoxide radical ions (O2 −·) that rapidly attacks and oxidizes the target
contaminant.

The photocatalysis can be influenced by various parameters, such as light radia-
tion, the type and nature of semiconductor, temperature, pH, as well as contaminant
concentration [94]. Although photocatalysis efficiency is increased when UV light
is used, various nanomaterials had been tested using visible light for photodegra-
dation of pharmaceuticals and organic dyes [95]. The pH can affect the band edge
position, and the surface charge of the nanocatalyst particles. In photocatalysis, the
effect of pH is correlated with the catalyst surface charge, as well as with the ionic
form of the substrate [96]. The photocatalysis can be improved if an oxidant is
added to the reaction. This is captured on the catalyst surface, reducing the hole-
electron recombination and promoting the formation of hydroxyl ions. For example,
in the photocatalytic oxidation of sulfamethoxazole, hydrogen peroxide was used
as oxidant agent which can absorb light, thus resulting the charge separation [97].
Regardless of the light type, introduction of photocatalysts in wastewater treatment
can conduct to a decrease in energy requirement.
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2.3 Membranes

Membranes act as physical barriers allowing various ions and molecules to
pass through. Generally, the pressure-driven membrane process includes reverse
osmosis (RO), nanofiltration (NF), microfiltration (MF) and ultrafiltration (UF). The
membranes can be obtained with various shapes such as hallow fiber, tubular and
spiral, with various separation efficacy.

2.3.1 Zeolite Membranes

Precise nanoscale crystal of 2D zeolites and obtaining of zeolite nanosheets with
appropriate mechanical stability received great attention in the last years. Briefly,
zeolite membranes are obtained using similar methods as for graphene and MOF
nanosheets [98]. Various studies have been achieved in order to obtain a well
dispersed suspension of nanosheets via exfoliationmethod, but their morphology and
structure and were affected. Due to these disadvantages, only few studies achieved
the rational design and obtaining of 2D membranes, based on pristine 2D zeolite
nanosheets. For example, zeolite nanosheets with uniform thickness (∼=3.5 nm)
were prepared [99]. However, in order to produce well-characterized membrane
microstructures, the focus should remain on the preferred orientation, designed inter-
faces and grain boundary control, with emphasis on reproducibility and stability
under multicomponent contaminants mixtures. This can be accomplished by incor-
porating 2D zeolite nanosheets in an appropriate polymer matrix resulting mixed
matrix membranes (MMMs).

Zeolitemembraneswereused as a substitute to polymericmembranes for desalina-
tion of complex wastewaters containing organic solvents or radioactive compounds,
as well as in the situation when high temperature operation is required [100]. A
preparation method of hydroxysodalite nano porous zeolite membranes on mullite
support was reported and the membranes were used in desalination by pervaporation
technique, studying the effect of various operation conditions such as feed pressure,
temperature or rate on water flow. It was concluded that increased pressure, feed rate
and temperature linearly influenced the wastewater flow.

2.3.2 Mixed Matrix Membranes (MMMs)

The aim of developing these membranes was to combine the advantageous proper-
ties of the two types of polymeric and ceramic membranes and increasing the overall
process efficiency. Apart from thewastewater treatment, theMMMs have revolution-
ized other areas where separation or purification is important, such as gas separation
[101]. Several researchers defined four types of MMMs, based on the membrane
structure and filler location in the membrane structure (Fig. 5), namely conventional
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Fig. 5 Illustration of
MMMs types: a conventional
nanocomposite, b thin film
nanocomposite, c TFC with
nanocomposite substrate,
d surface located
nanocomposite

nanocomposite, thin film nanocomposite, thin film composite with nanocomposite
substrate, and surface located nanocomposite [102].

Various MMMs contain inorganic fillers which attach to the support materials
by covalent bonds, hydrogen bonds or van der Waals forces. These inorganic fillers
can be obtained through sol gel, photothermal synthesis, thermal plasma synthesis,
inert gas condensation, flame synthesis, low-temperature reactive synthesis, pulsed
laser ablation, spark, mechanical alloying/milling, electrodeposition and so on [103].
Inorganic fillers contribute to obtain theMMMs desired properties. In the water treat-
ment, these fillers have been incorporated for various purposes: disinfection [104],
selectivity improvement [103] or to surpass membrane fouling [105]. Examples of
inorganic fillers can be zeolite [106], TiO2 [107], silica [108] or carbon nanotubes
[109]. Figure 6 offers an illustration of various inorganic fillers for MMMs used in
water treatment [110].

Fig. 6 Different types of
inorganic fillers used for
MMMs
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Carbon nanotubes are currently considered as vital for water treatment, especially
for desalination, being able to significantly decrease the cost and energy consumption
[109].MMMscanbeobtained alsoby introducingorganicfillers such as cyclodextrin,
polypyrrole, polyaniline or chitosan beads into substrate matrix, mainly through
blending or phase inversion [111, 112]. The advantage of organic fillers consists in
having functional groups that makes them more suitable than the inorganic ones.

A nanocomposite membrane was obtained by blending polyaniline nanofibers in
polysulfone polymer, resulting a membrane with good permeability and antifouling
characteristic, resulting the water flow increasing up to 1.6 times [112]. Polyaniline
nanospheres and oligomers were also introduced into polysulfone matrix, increasing
the water flow from 1.7 to 4 times higher than the neat polymeric membranes [113].

The β-cyclodextrin polyurethane was mixed into polysulfone matrix for removal
of Cd+2 contaminants fromwater [111]. The permeability of the obtainedmembranes
increased up to 489 Lm2/h, due to the appearance of wider pores on the surface,
higher hydrophilicity and better pores inter-connectivity. The disadvantage was that
β-cyclodextrin reduced the membrane strength due to the macro-voids appeared in
the structure, resulting a lower mechanic stability [111].

Recent development was achieved by using hybrid fillers to obtain MMMs.
Such membranes consist in two different fillers introduced in a continuous phase
to accomplish a targeted purpose or to improve the overall process efficiency. For
example, the combination of Fe(II)-Fe(III) oxide and polyaniline was introduced
into polyethersulfone matrix, resulting a removal of 85% for Cu(II) from wastewater
[114]. An antifouling MMM was prepared by Fe2O3 nanoparticles and multiwalled
carbon nanotube inclusion into polyvinyldene fluoride, speeding the degradation of
contaminants such as cyclohexanoic and humic acid [115]. The Fe2O3 nanoparticles
improved the membrane hydrophilicity but caused the decrease of surface porosity.
Reduced graphene oxide/polythiophene (rGO/PTh) were immersed into polyether
sulfone matrix, designing an antifouling membrane with high permeability [116].
Despite the observed advantages of hybrid fillers, they could also affect themembrane
efficiency, pore blockage being frequently observed [114].

3 Prospective of Nanomaterials Application in Wastewater
Treatment

The key issue of nanotechnology introduction in wastewater treatment consists in the
possibility of finding nanomaterials in high quantities at low costs. Scaling up these
materials at industrial level remains amajor milestone in nanotechnology application
for wastewater treatment. Also, the nanomaterials characteristics (for example, high
surface areas, size, shape or dimensions), their interaction with other contaminants
than the targeted ones or with living beings are not fully elucidated and further
research needs to be achieved. Environmental fate and toxicity of nanomaterials
towards humans are still not fully explored.
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The nanomaterials stability (oxidative, photochemical, biological or hydrolytic)
in environment needs to be studied. Up to now, it was demonstrated that carbon
nanotubes or TiO2 nanoparticles are very toxic for humans.Many nanomaterials have
carcinogenic effect and obstruct the normal cellular roles of lungs or immune system.
In order to use nanomaterials in wastewater treatment systems, efficient methods
need to be developed, being able to prevent the nanomaterials passing through the
treated. Also, cost-benefit evaluation needs to be approached in order to evaluate the
nanotechnology application for wastewater treatment.

The nanostructuredmembranes can be used for the degradation of various organic
and inorganic contaminants. To improve their performances, it will be necessary a
better understanding of the nanocomposites membranes formation. In this respect,
the priority concern in the real field wastewater treatment must be directed towards
the pattern of the nanoparticles within the matrix, as well as toward the changes in
their structures and properties.

Mixedmatrix membranes are claimed to be efficient in terms of efficiency, perme-
ability and selectivity; however, some difficulties were identified, restricting their
wider applications. The drawbacks include the discovery of compatible nanoparti-
cles, complexity of the synthesis, high cost, morphology control, as well as struc-
tural defects. Furthermore, the introduction of inorganic particles into an organic
membrane for wastewater treatment presents a potential hazard to environment and
human health, a milestone that must be addressed in the near future. Despite this,
it is considered that MMMs have great potential, their successful and competitive
application requiring a combined effort to solve the identified drawbacks in order to
compete with the classical purification technologies. This chapter aimed to provide
a systematic review and a critical bibliometric analysis on nanomaterials and tech-
niques (such as adsorption, photocatalysis or membrane technology) that can be
applied for the removal of various classes of contaminants from wastewater.

4 Conclusions

This study intended to emphasize the use of nanomaterials for removing pollu-
tants from wastewater by adsorption, catalysis or membrane processes. While many
studies approached the endocrine disrupting chemicals removal, it also must be
mentioned the increased interest in pharmaceuticals and personal care products.
Both the adsorption and catalysis processes showed great potential for removing
pollutants from wastewater. For the adsorption technology, carbon nanotubes and
mesoporous silica have attracted an increased interest, the proposed mechanisms
including hydrophobic effect, hydrogen bonding, covalent bonding,π-π interactions
or electrostatic interaction. In the last years, metal organic frameworks nanomaterials
were studied for removing pollutants from wastewater. Among the nanomaterials
used for photocatalysis, TiO2 was, by far, the most studied. Membrane technology
has efficiently replaced conventional water treatment. The idea of hybrid or mixed
matrix membranes has risen, combining characteristics of polymeric and ceramic
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membranes by introducing inorganic particles as fillers in an organic polymermatrix,
improving the efficiency, permeability and selectivity.
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