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Preface

Topics in Modal Analysis, Testing & Parameter Identification represents one of the nine volumes of technical papers pre-
sented at the 39th IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for Experimental
Mechanics and held on February 8–11, 2021. The full proceedings also include volumes on Nonlinear Structures & Systems;
Dynamics of Civil Structures; Model Validation and Uncertainty Quantification; Dynamic Substructures; Special Topics
in Structural Dynamics & Experimental Techniques; Rotating Machinery, Optical Methods & Scanning LDV Methods;
Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing; and Data Science
in Engineering.

Each collection presents early findings from experimental and computational investigations on an important area
within Structural Dynamics. Topics in Modal Analysis, Testing and Parameter Identification represents papers on enabling
technologies for dynamic systems and applications of Modal Analysis in specific application areas.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Lexington, MA, USA Brandon J. Dilworth
Cincinnati, OH, USA Michael Mains
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Chapter 1
A Structural Dynamics Approach to Modeling Human
Performance

Michael C. Sevier and Michael D. Cook

Abstract Health and athletic performance models can be used to prescribe an individualized training regimen to maximize
improvement over a given period (e.g., preparing for a peak event). The Banister impulse-response (IR) model is a popular
approach to describe the cumulative dynamic effects of training on athletic performance. The model describes both positive
and negative training effects (PTEs and NTEs, respectively) that occur from a single training impulse, each having magnitude
and decay parameters determined via testing of individual athletes. This work proposes that PTE and NTE responses from a
single training impulse can similarly be described by the response of a single degree of freedom (SDOF) viscoelastic system.
Cumulative training effects can then be modeled using the discrete form of the convolution integral in a manner similar to
the IR model. The pedagogical advantage of this approach is to offer students studying mechanical vibrations a physical
sense for how cumulative impulses relate to the response of a system. The other advantage of this approach is to initiate the
discussion on how concepts from structural dynamics can be used to solve problems in exercise physiology.

Keywords Banister impulse-response model · Exercise physiology · Viscoelastic model · Vibrations · Biomechanical
model

1.1 Background: Banister IR Model

Human performance models are used to prescribe individualized exercise routines in order to optimize physiological
capability at a target date. The Banister impulse-response (IR) model [1, 2] is a popular method of monitoring cumulative
fitness and fatigue effects due to training over the course of a season. Banister [3] proposed defining the magnitude of training
impulses (TRIMPs) by:

TRIMP = t · k·FHRR (1.1)

FHRR = HRaverage − HRrest

HRmax − HRrest
(1.2)

where t is the duration of the exercise bout in minutes, FHRR is the fraction of the heart rate (HR) reserve, and k is defined
by Eqs. (1.3) and (1.4) for men and women, respectively.

k = 0.64e1.92·FHRR (1.3)

k = 0.86e1.67·FHRR (1.4)
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2 M. C. Sevier and M. D. Cook

Note that related approaches, such as the training stress score (TSS), have been adapted for cycling by utilizing power
meter readings instead of heart rate [4]. The TSS approach has also been extended to running and swimming [5–10]. Calvert
et al. [11] determined that a linear ordinary differential equation (ODE) can be used to represent the change in performance
capacity p(t) over time t:

dp(t)

dt
= −1

τ
p(t) + w(t) (1.5)

where w(t) is training stress and τ is the decay time constant. Note that the performance value p(t) can represent a variety
of performance metrics such as speed or power. The solution of the ODE in Eq. (1.5) can be represented as the following
convolution integral:

p(t) =
∫ t

0
e−(t−Θ)/τw (Θ) dΘ, (1.6)

or in discretized form:

p(t) =
t−1∑
i=1

e−(t−i)/τw(i)Δt =
t−1∑
i=1

e−(t−i)/τw(i), (1.7)

where i is the ith day leading up to day t and �t is set equal to a constant value of 1 day. During the initial stages of training,
athletes often experience reduced performance capacity (i.e., negative p(t)) that Eq. (1.7) could not capture in its current
form [11]. The equation was modified to account for positive training effects (PTEs) and negative training effects (NTEs)
separately:

PTE(t) = k1

t−1∑
i=1

e−(t−i)/τ1w(i), (1.8)

NTE(t) = −k2

t−1∑
i=1

e−(t−i)/τ2w(i), (1.9)

where k1 and k2 are gain parameters for PTE and NTE, respectively. Similarly, τ 1 and τ 2 are the decay time constants for
each of the training effects. The total performance is measured as the sum of both training effects combined with an initial
performance parameter p(0).

p(t) = p(0) + PTE(t) + NTE(t) (1.10)

Note that the PTEs and NTEs are a qualitative representation of cumulative physiological parameters and are not
representative of a single quantifiable result. Typically, NTEs are larger in magnitude than PTEs but also decay more rapidly.
If training loads are too frequent and/or too intense, the NTEs accumulate and can lead to overtraining and/or fatigue.
If training loads are spaced too far apart, then the PTEs decay to a point where negligible training benefit occurs. The
five adjustable parameters (i.e., k1, k2, τ 1, τ 2, p(0)) in Eqs. (1.8)–(1.10) would be determined by fitting an individual’s
performance throughout normal in-season training with that predicted by an equation. This could subsequently be used to
determine which type of training would best suit the individual for a season. For example, results reproduced from Clarke
and Skiba [12] in Fig. 1.1 show how a triangular training schedule might be advantageous for one athlete (τ 1 = 25, τ 2 = 10)
but not for another (τ 1 = 30, τ 2 = 5) when compared to a constant training schedule.

The purpose of this work is to see if the Banister IR model for human performance can be replicated using the response
of simple single degree of freedom (SDOF) viscoelastic oscillators due to initial conditions. The motivation for this is
twofold:

1. Introduce students of vibration mechanics to the convolution integral commonly used for a system’s response to an
arbitrary forcing function. This may be advantageous since the student will be able to kinesthetically relate their own
experiences from hard exertion to what is being experienced by a vibrating specimen.
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Fig. 1.1 Performance comparison between athlete 1 (τ 1 = 25, τ 2 = 10) and athlete 2 (τ 1 = 30, τ 2 = 5) when subject to constant training load
(100 TRIMP) vs. triangular training load (10 TRIMP at the beginning and end, 180 TRIMP in the middle). Both athletes have gain parameters
k1 = 1 and k2 = 2

2. Suggest that a potential relationship may exist between how the human body adapts to applied impulses and the principals
of vibrations and modal analysis. There is a wealth of information in the field of structural dynamics that may lead to new
insights in how the body responds to training loads.

1.2 Viscoelastic Model

The model presented here is based on the position response, x(t), over time, t, of a critically damped single degree of freedom
viscoelastic system having natural frequency, ωn, due to initial displacement, x0, and zero initial velocity:

x(t) = x0 (1 + ωnt) e−ωnt . (1.11)

The form of this equation was chosen because it most closely represents the NTE and PTE form of response in the
Banister IR model. Equation (1.11) could be reinterpreted in the form shown below for the PTE response due to an initial
PTE displacement (i.e., product of training load ω0 and gain parameter kPTE):

PTE(t) = kPTE·w0· (1 + ωPTEt) e−ωPTEt (1.12)

where ωPTE would represent the natural frequency of the PTE response akin to the inverse of the time constant, 1/τ , in Eqs.
(1.6) and (1.7). Equation (1.12) can be expanded to the discretized form of the convolution integral to evaluate the PTE and
NTE response due to multiple training sessions as:

PTE(t) = kPTE

t−1∑
i=1

w(i)· (1 + ωPTE (t (i) − i)) e−ωPTE(t (i)−i), (1.13)

NTE(t) = −kNTE

t−1∑
i=1

w(i)· (1 + ωNTE (t (i) − i)) e−ωNTE(t (i)−i), (1.14)
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where time t would be measured in days and each increment i corresponds to 1 day. The total performance response p(t)
could similarly be determined from Eq. (1.10) as the sum of both training effects combined with an initial performance
parameter p(0). Similar to the Banister IR model, there are five adjustable parameters (i.e., kPTE, kNTE, ω1, ω2, p(0)) that
would be determined from an individual’s in season training.

Note that a variation of Eq. (1.11) was considered where the initial velocity would represent the training impulse instead of
the initial displacement. The advantage of this form would be that it would more closely represent the relationship between
a mechanical impulse, F̂ , and velocity, v, provided by the impulse-momentum relationship F̂ = Δmv (where m is an
object’s mass). This approach was disbanded to have a more similar relationship with the Banister IR model. However, it
should be noted that the initial velocity form might be a better fit in cases where the physical response is determined within
the timeframe of the training period. Additionally, the combination of positive initial training velocity and negative initial
displacement could result in a single equation that would adequately represent the total performance response. This approach
would represent supercompensation performance models that predate the Banister IR model [13].

1.3 Results and Discussion

1.3.1 Response to Single Impulse

Figure 1.2 compares the response due to a single 100 TRIMP impulse using both the Banister IR (k1 = 1, k2 = 2, τ 1 = 27,
τ 2 = 10) and viscoelastic (kPTE = 1, kNTE = 2, ωPTE = 0.075, ωNTE = 0.2) models. The slope in the viscoelastic model is
more horizontal near the training impulse due to the assumption of zero initial velocity in Eq. (1.11). Although differences
between the two models can be observed, the authors believe these differences to be within the error already present in
the Banister IR model. Additionally, if important differences are discovered, they could be ameliorated by an adjustment in
parameters.

1.3.2 Cumulative Response over Season

A basic season training schedule might include constant training for most of the season with a taper period of reduced
training leading to the final race. A well-timed taper period allows for NTEs to diminish before a substantial loss in PTEs.

Fig. 1.2 Banister IR (k1 = 1, k2 = 2, τ 1 = 27, τ 2 = 10) and viscoelastic (kPTE = 1, kNTE = 2, ωPTE = 0.075, ωNTE = 0.2) response due to a
single 100 TRIMP impulse
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Fig. 1.3 Cumulative performance prediction for the Banister IR and viscoelastic models throughout season. Initial performance, p(0), set to 500
(arbitrary units)

This would lead to a supercompensation effect of peak performance near the target event. Figure 1.3 illustrates such an effect
using both models (same parameters as Fig. 1.2) for a constant training load of 100 TRIMPs for 120 days, a seven-day period
of reduced training (80, 60, 50, 40, 35, 30, 30 TRIMPs), followed by no training for 3 days until the target event at day 130.

1.3.3 Parameter Fitting

The results shown in Figs. 1.2 and 1.3 assume that the five adjustable parameters for the athlete are known for either model.
These parameters include initial performance, p(0), two gain parameters (k1, k2 for the Banister IR model and kPTE, kNTE
for the viscoelastic model), and two decay parameters (τ 1, τ 2 for the Banister IR model and ωPTE, ωNTE for the viscoelastic
model). The values can be determined via a minimization algorithm evaluating the difference between measured performance
data and the performance predication model. For example, if there are N data points, a minimization function might take the
form of:

fmin =
√√√√ N∑

i=1

(pmodel(i) − pdata(i))
2 (1.15)

where pdata(i) is the measured performance data and pmodel(i) is the performance prediction from either model at the same
time. Suppose that nine average power readings were measured from a one-hour cycling time trial as shown in Table 1.1.
A possible set of athletic parameters derived from a minimization algorithm performed on Eq. (1.15) would be given in
Table 1.2. Figure 1.4 demonstrates how well each model compares to the measured data points given in Table 1.1 with the
parameters indicated in Table 1.2.
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Table 1.1 Sample time-trial
cycling results

Test day number Test power (W)

45 271
48 274
56 282
70 290
77 292
83 296
105 299
115 296
132 302

Fig. 1.4 Performance models with parameters fitted to performance data

Table 1.2 Model parameters
based on sample time-trial
cycling results shown in Table 1.1

Parameter Banister IR model Viscoelastic model
Initial performance p(0) 250 p(0) 247

PTE gain k1 0.31 kPTE 0.141
NTE gain k2 0.36 kNTE 0.159
PTE decay τ 1 29.3 ωPTE 0.0465
NTE decay τ 2 20.2 ωNTE 0.0754

1.3.4 Potential for Pedagogical Purposes

In the authors’ experience teaching mechanical vibrations and dynamics of systems, students often seem to struggle with
terms within the convolution integral equation. Equation (1.16) demonstrates one such form of the equation where the
displacement response, x, at time t due to forcing function F(t) is evaluated for an underdamped viscoelastic system having
mass, m, natural frequency, ωn, damping factor, ζ , and damped natural frequency, ωd = ωn

√
1 − ζ 2:

x(t) =
t∫

0

F (τ)

mωd
e−ζωn(t−τ) sinωd (t − τ) dτ. (1.16)

The main source of confusion seems to lie in a misunderstanding of what τ and t represent. It is the authors’ hope that the
viscoelastic model presented in Eqs. (1.10)–(1.14) would bolster a better understanding by offering a kinesthetic analogy.
Most people recognize how soreness from a substantial workout can last for multiple days while eventually subsiding. This
could be used to explain how the influence of a force at time τ diminishes as the difference between the current time, t, and
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τ increases due to the exponential term shown in Eqs. (1.13), (1.14), and (1.16). Additionally, it is the authors’ hope that
students would recognize how the body feels is not due to simply one training session but the cumulation of multiple training
sessions and thereby understand the necessity of the integral in Eq. (1.16) and the summation terms in Eqs. (1.13) and (1.14).

1.3.5 Potential Future Applications of Vibration Principals to Human Performance

It is not uncommon for structural dynamics principals traditionally applied to inanimate objects such as buildings, satellites,
and aircraft to also be applied to the human body [14, 15]. However, as far as the authors are aware, the field of structural
dynamics has not yet been applied to describe the adaptive capabilities of biological systems. One of the main advantages
of structural vibrations is its ability to model the interaction of various structural modes which are excited depending on
the amplitude and frequency content of the input load. This may prove useful for predicting specific types of training that
the participant can perform that will excite systems that are sufficiently recovered (i.e., NTEs decay more rapidly) while
not exacerbating already fatigued systems (i.e., NTEs that decay more slowly). While there are already efforts via machine
learning [16] to obtain similar results from loosely correlated variables, the application of structural dynamic principals may
offer a more deterministic approach to human performance prediction.

Initial work could involve modeling how individual systems (e.g., bones, muscles, tendons) respond to training impulses.
The propagation of training loads from an activity (e.g., running) to loads experienced by individual systems has already
been studied in substantial detail. Individual variations to these loads may be monitored by real-time feedback mechanisms
[17]. The cumulative effect of training can be determined and compared with human tissue limits. An overall optimization
approach may involve the optimization of critical performance systems (e.g., certain muscle groups, VO2 max) while staying
within constraints such as avoiding illness and injury for all systems.

1.4 Conclusions

A critically damped single degree of freedom viscoelastic model is proposed as a viable tool for predicting human
performance. The authors believe reasonable agreement with Banister impulse-response (IR) human performance model
has been shown for response to a single training impulse, response due to cumulative training loads over the course of a
season, and in parameter prediction based on performance data. The authors believe this viscoelastic model offers students
of mechanical vibrations a kinesthetic sense for how cumulative impulses relate to the response of a system. Additionally, the
authors believe that there may be potential for applying vibration principals to describe adaptive capabilities of the human
body in the hopes of gaining further insights for human performance.
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Chapter 2
Feature Based Monitoring Application for Automatic Crack
Detection Using WaveImage

Maik Gollnick, Patrick Giese, and Daniel Herfert

Abstract Monitoring systems for machines, plants, materials, and equipment are increasingly used in production processes.
These online condition monitoring systems can detect damage or excessive loads at an early stage and can drastically reduce
or prevent long downtimes of plants and machines as well as high repair and maintenance costs. This paper depicts a method
for online crack detection with pattern recognition and computer vision methods for specimens joined by self-pierce riveting
under cyclic load in fatigue tests (laboratory application) (Giese et al. Early stage crack detection in mechanically joined
steel/aluminium joints by condition monitoring; 2020).

In this context a parameter-free detection of significant frequencies during the test procedure was developed. To achieve
this goal, the vibration data is recorded by a triaxial structure-borne sound sensor during the test. The evaluation is used for
online crack detection, so that an early shutdown of the testing machine and thus a meaningful result over the life cycle of a
mechanically joined joint is guaranteed.

For this purpose, time series are described in the frequency domain at each function value by a novel feature vector.
The characteristics used are independent of external test parameters, such as the test frequency or force level. This makes it
possible to change test parameters without additional algorithmic effort and without expert knowledge.

Keywords Crack detection · Computer vision · Mechanical joining · Self-pierce riveting · Fatigue

2.1 Introduction

The precise description of the durability of machines and production facilities can help to prevent long downtimes and
reduce repair and maintenance costs in industrial environments. A contribution to this characterization is the investigation
of mechanically joined joints, which are used in almost every component. Thereby, fatigue strength tests are performed to
describe the lifetime of the investigated samples. The application of nondestructive testing methods for condition monitoring
using structure-borne sound sensors is becoming more and more important [1].

The aim of this thesis is the development of a condition monitoring system with structure-borne sound sensors for early
detection of cracks in mechanically joined components and structures. In a research project [2] the algorithm was developed
and evaluated on several samples. Uniform failure criteria are necessary for a comparability of mechanically joined joints
and their design. Such criteria are not yet defined. In addition, two conditions are frequently tested based on the testing
machine used. The first criterion refers to the stiffness curve. A drop of the associated function of approx. 40% indicates a
failure of the component. The second condition refers to the course of the excitation frequency during the test procedure. A
change that is too high also indicates crack initiation and is therefore used to investigate the fatigue strength. Both criteria
are not sufficient for a uniform description of crack formation, because either only the complete failure of the component can
be predicted or the criterion is not transferable between different specimens. Furthermore, due to the complexity of crack
development, it cannot be guaranteed that one of the two criteria will show a significant change when a crack develops.
Therefore, crack type and crack degree can differ for the same failure criterion.
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In the preceding project [2] the basic algorithm and the control of the testing machines servo- and resonance pulsers
were already implemented. Thereby the interfaces to the data recorder and to switch off the test were implemented in the
software WaveImage (gfai tech GmbH). To describe the vibration behavior during the test process, the magnitude curve in
the frequency domain was considered. The focus in the frequency domain was to put on the excitation frequency, since a
significant change of this frequency signals leads to a disturbance in the oscillation pattern and to a readjustment of the testing
machine. The tests carried out showed that this assumption is correct for crack formation and can therefore also ensure early
crack detection. Furthermore, a feature vector [2] was developed so that a reliable classification between intact and damaged
specimen can be made.

To find the excitation frequency, the maximum magnitude value in the considered frequency range was used. This simple
method is extremely influenced by sensor noise and/or other signal interferences and in the worst case it can lead to a wrong
classification result. For this reason, a classification-based approach for the detection of peaks [3] has been used in this
paper and adapted to the problem of crack detection for mechanically joined connections. With this method it is possible to
describe misclassifications in advance and to teach them in a model. This reduces the number of wrong decisions in the later
classification process and increases the stability of the whole system.

The method used and the adjustments made for crack detection of mechanically joined samples are presented in this
thesis.

2.2 Background

The aim of fatigue tests is to determine the fatigue strength of a material or component. The samples used are permanently
loaded by a sinusoidal excitation. In the study [2] tests were carried out on a servo-hydraulic testing machine with an
excitation frequency of 20 Hz, see Fig. 2.1 (right). Shear tensile specimens with the material combinations steel HC340LA
(t = 1.5 mm)–aluminum EN AW-6016 (t = 2.0 mm) were used and mechanically joined by means of semi-tubular rivets.

To record the time series during the test procedure, a triaxial structure-borne sound sensor from “Metra Mess- und
Frequenztechnik Radebul e.K.” (MMF) was applied to the sample below the joining element, see Fig. 2.1 (left). A mechanical
clamp was used to attach the accelerometer. The data acquisition was done with a data recorder of the company Goldammer
GmbH of the USB Basis Series (G0V-1034-0). The sampling rate was set to 192 kHz to increase the resolution. The time
series were recorded for the measurement directions X, Y, and Z.

For the evaluation regarding crack initiation during the test, the time series were divided into smaller and nonoverlapping
sections. The length of the sections was determined experimentally and fixed at 10 s. For the classification of a crack, the
oscillation behavior during a test can be divided into three sections. The first phase describes the oscillation of the sample.
Here the oscillation behavior is irregular and changes to an almost constant state as the test time progresses. This state is

Fig. 2.1 Shear tensile specimen with applied accelerometer (left) and servo-hydraulic test system (right)
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Fig. 2.2 Representation at the location of the excitation frequency of an intact sample (left) and at the time of cracking (right)

described by the second phase. The oscillation response is nearly constant and changes with increasing deformation. If the
load limit of the sample is exceeded, the failure phase is reached.

For the acquisition of the crack timing the focus was put on the deformation phase. The time series were transformed into
the frequency domain and described. Therefore the magnitude curve below 100 Hz was considered. For the description of the
magnitude curves the excitation frequency plays a decisive role. Since the frequency can also change during the experiment
[2], it is determined automatically. The determination is based on a maximum value method, where a peak differs from other
function values only by its maximum amplitude. The following Fig. 2.2 illustrates the behavior of the magnitude curve at the
position of the excitation frequency.

In Fig. 2.2 you can see a significant deviate of the peak at the position of the excitation frequency of about 94% for channel
X, channel Y by about 16%, and channel Z about 36%. The curve for each measuring channel is shown. As representative
of an intact sample, the centroid of the training quantity is shown in the left graph. In contrast, the right figure shows the
magnitude progression at the time of a crack. This shows the clear difference between intact and damaged sample.

Based on this observation the feature vector was created. It is used for the classification of cracks and consists of two
components. The first component results from the description of the peak at the excitation frequency. For this purpose,
the peak width and the peak height are used as values. The width is normalized by the number of frequency lines.
For the independent representation of the height in relation to the existing force level, the amplitude is normalized by a
reference standard deviation. This value results from the amplitudes of all training examples at the position of the excitation
frequency [2].

The second component is represented by the correlation of the currently observed magnitude progression with the training
data and describes the change of the entire progression. For training data, this value is formed by the negative correlation to
each other. This three-dimensional vector is created for each measuring direction and chained to a total feature vector.

For the final crack classification a local four-step model was created. In the first step, the transient phase is detected and
skipped. In the second step, a local training set is built up. The amount of data used results from the excitation frequency and
an experimentally determined value. After the training set has been created the actual classification follows. The time series
are transformed into feature vectors and checked against the training set by means of negative correlation. The result value is
represented as an indicator function. The function values are assigned to the classes “intact sample” and “damaged sample”
by a threshold value procedure.

2.3 Automatic Peak Search

In the work [3] a parameterless method for the recognition of peaks in indicator functions was already presented. Due to the
simple calculation and the frequent application in the field of modal analysis the “Complex Mode Indicator Function” [4,
5] was used as reference. Each single function value was described by a feature vector and integrated into a synthetically
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Fig. 2.3 Visualization of the feature calculation for automatic peak search. The calculation of the left and right peak prominence for two sample
peaks (left). The calculation of the relative height (right)

learned classification model. Three features were used to create the vectors. The first two characteristics describe the function
values to the left and right of the currently considered location, which are smaller than the current function value. Sine a shift
in the feature space occurs due to the varying peak position, the description was supplemented by the relative peak height.
Thus, the third feature compensates for the weaknesses of the first two features and guarantees a clear representation in the
feature space. For the calculation of the features all amplitudes are scaled to the range between zero and one. The following
Fig. 2.3 illustrates the calculation of these characteristics.

Figure 2.3 (left) shows the determination of the left and right peak prominence. For this purpose the values smaller than
the currently considered function value are counted and normalized by the number of frequency lines to the range [0,1]. This
normalization is important, because otherwise a binding to the signal size would be present. Figure 2.3 (right) illustrates the
calculation of the relative peak height. Here the value is defined as the difference between the maximum of the left and right
minimum and the currently considered amplitude. The left and right minimum is determined when calculating the left and
right peak prominence. The normalization results from the previous scaling of all amplitudes to the range [0,1].

2.4 Adjustment of the Automatic Peak Search

Since the selection of the test frequency plays a decisive role for the stability of the crack detection, the existing procedure
for the selection of the peaks was replaced by the automated peak detection [3]. For this purpose the generally applicable
method was adapted to the conditions of crack detection for fatigue tests.

For the description of the function values the basic feature vector of the classification-based method was used. This vector
was taught with synthetic data and with data from previous experiments. As classification model a “Support Vector Machine”
[6] optimized with the “Iterative Single Data Algorithm” [7] was used. To generate the data sets, tests were carried out with
the material combinations HC340LA (t = 1.5 mm)–EN AW-6016 (t = 2.0 mm) and EN AW-6016 (t = 2.0 mm)–HC340LA
(t = 1.5 mm). The samples were mechanically joined by means of semi-tubular rivets. The combination of synthetic and real
test series should lead to a better adaptation of the method. Furthermore, the data were modified with a noise function to
better represent the influence of external disturbances.

A post-processing step has been added to adjust the automatic peak search. Since the excitation frequency always occurs
in connection with its harmonic frequencies, an additional check of the detected frequencies for their multiples was added.
If a frequency occurs as a multiple, the smallest multiple was returned as detected excitation frequency. The following Fig.
2.4 shows the mode of operation of the applied method.

Figure 2.4 shows all detected peaks. It quickly becomes clear that some peaks are only caused by interference in the
signal and are not related to an excitation frequency. In addition to these interference peaks, the harmonics of the excitation
frequency must also be excluded. With this simple strategy the detected peaks could be reduced and noise or interference
peaks could be excluded.
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Fig. 2.4 Illustration for the calculation of the excitation frequency using automatically detected peaks

In summary, it can be said that the classification method used for automated peak detection has significantly improved the
stability of crack detection. By the additional testing for harmonic frequencies and peaks that do not represent any excitation
frequency could be excluded.

2.5 Conclusion

In this thesis a classification-based method for the automatic detection of peaks was presented. This method was extended for
the context of crack detection in fatigue tests with mechanically joined specimens. Thus, the previously used method, which
only used the maximum function value as an indicator, could be replaced. The associated weaknesses such as sensor noise
or other disturbing signals could be successfully solved. In the one-time learning phase of the classifier all known influences
could be mapped and a later misinterpretation during the assignment process could be avoided. A more precise adaptation
could be achieved by the additional extension of the training process with real measurement data. Since the method works
without parameters, no additional expert knowledge is required. This facilitates the practical application. Thus, the applied
model improves the quality and robustness of crack classification.

In further investigations disturbing signals from, e.g., nearby test machines will be recorded and integrated into the training
process.
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Chapter 3
High Spatial Resolution Modal Parameter Estimation via
Low-Cost Fiber Optic Strain Sensors

Benjamin L. Martins

Abstract An experimental demonstration is presented highlighting the ability of low-cost, mass-produced, Bragg-grated
fiber optic strain sensors to be used in response-only modal analysis. For the demonstration, a lightweight carbon fiber testbed
instrumented with a single optical fiber containing 59 fiber optic strain sensors was mounted in a cantilever configuration.
The dynamic strain response of the beam to impact excitation of an unknown magnitude and direction were recorded for
five impacts. The resulting strain response time-history data was processed into sensor-to-sensor power spectral density
information to allow for modal parameter estimation using ATA’s IMAT™ software. The information for each of the derived
power spectral density functions was combined into a power spectral mode indicator function to identify the poles of the
system and extract the modal frequencies and damping ratios for the first seven flexible modes of the testbed. A scanning laser
vibrometer was used to validate the modal parameters obtained by the fiber optic strain sensing system using conventional
frequency-response-function-based experimental modal analysis techniques.

Keywords Modal testing · Modal parameter estimation · Fiber optic sensing · Dynamic strain · Operational modal
analysis

Nomenclature

ATA ATA Engineering, Inc.
DOF Degree of freedom
EMA Experimental modal analysis
IMAT Interface between MATLAB, Analysis, Test
OFDR Optical frequency domain reflectometry
PSD Power spectral density
PSMIF Power spectral mode indicator function
SLV Scanning laser vibrometer
UUT Unit under test

3.1 Introduction

Modal parameter estimation is a fundamental part of research and development programs spanning a broad range of
industries. Understanding the vibration response of the unit under test (UUT) provides important information typically used
in model correlation and validation efforts. The common practice in modal parameter estimation is to instrument the UUT
with an array of accelerometers and measure the response while a known (and measured) force is applied [1]. While this
approach has unquestioned utility that has led to it being the industry standard, there are instances where increased spatial
resolution with negligible mass loading may be desirable.

Fiber optic strain sensors provide an opportunity for high spatial resolution modal data to be obtained on lightweight,
flexible structures without influencing the modal response of the host structure in a meaningful manner [2]. Historically,
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the monitoring of structural dynamics with fiber optic strain sensors has been done using customized fibers and wavelength
division multiplexing [3]. The use of optical frequency domain reflectometry (OFDR) demodulation, on the other hand,
allows standardized sensing fibers to be mass-produced at a fraction of the cost. These standardized sensing fibers are
produced at differing spatial resolutions providing point measurements down to 1/8 inch of separation on a single fiber [4].
Recent advancements in OFDR processing technologies have enabled accurate monitoring of high spatial resolution dynamic
strain response [5]. Leveraging this technology, this paper explores modal parameter estimation using response-only strain
data and compares such a technique to scanning laser vibrometer (SLV)-based experimental modal analysis (EMA)-derived
parameters.

3.2 Experimental Setup

To demonstrate the utility of OFDR fiber optic strain sensors in modal parameter estimation, an experimental testbed was
identified [5]. The testbed used in this study was composed of a thin-wall carbon/epoxy composite tube, a network of
distributed OFDR fiber optic strain sensors, and three airfoil-shaped steel masses. The root-most 6 inches of the 98-inch
beam were clamped, simulating an aircraft wing with cantilever boundary condition. The experimental testbed is shown
in Fig. 3.1.

The cross section of the composite tube was near rectangular, having nominal dimensions of 2 inches by 1 inch and a
wall thickness 0.04 inches. Each of the three airfoil masses was waterjet from A36 steel to have a NACA-0016 profile with a
17-inch chord that is 1-inch thick. The airfoil masses were mounted to the composite beam at 36, 65.75, and 97.5 inches from
the beam’s root to the center of the mass. The inclusion of airfoil masses reduced the modes of the structure such that the
first six bending vibration modes were less than 25 Hz. This includes the first three bending modes in the soft-plane (bending
about the y-axis, out-of-plane, or flapping) and first three bending modes in the stiff-plane (bending about the z-axis, in-plane,
or lead-lag).

A single optical fiber was attached to one of the long faces of the carbon tube at the maximum distance from each neutral
axis of the beam (without the fiber lying on the corner) to maximize the sensitivity of the fiber to the dynamic strain in both
of the beam’s bending planes. A representative diagram of the fiber’s location relative to the tube’s cross section is provided
in Fig. 3.2. The fiber itself was a Bragg-grated fiber developed specifically for OFDR sensing systems that have the same
central wavelength for each grating set, leading to a low-cost (mass-production), high-sensor-count fiber. The optical fiber
(including cladding) had a nominal diameter of 0.005 inches and a linear weight of 0.00102 pound per foot. The chosen
grating spacing was 0.157 inches (4 mm) on center with a grating length of 0.0787 inches (2 mm). This combination led to
59 point strain measurements in total along the span of the cantilever tube. A proprietary OFDR fiber optic strain sensing
system developed by NASA Armstrong Flight Research Center was used to measure the dynamic strain data.

In addition to the response-only modal parameters estimated from the dynamic strain data, an SLV was used to conduct
non-contact EMA. A Polytec PSV-400 SLV provided a full-field assessment of the UTT’s vibration response for use as a
baseline comparison for the fiber optic system estimates. The vibrometer used in the current study was a one-dimensional
system, i.e., vibration data in only one plane at a time was acquired. As a result, two scans were required to capture the data
in both the soft-bending and stiff-bending planes. In total, 52 vibrometer targets were affixed to the beam on the short face
and 64 targets on the tall face, including targets on the airfoil masses and fixturing. The targets were made of 3M reflective
tape, measured to be 1/8 inch squares. The three images in Fig. 3.3 show the setup of the vibrometer for the tall face (left),
short face (right), and a zoomed view of some of the targets associated with the center section of the beam (center).

3.3 Results

Response-only data was collected from the fiber optic strain sensors, allowing for computation of the power spectral density
(PSD) matrix (auto- and cross-spectra) between sensor pairs. The testbed was excited via impact on the upper airfoil mass
(closest to the clamped end) to provide the requisite broad-spectrum excitation for calculation of the PSD. The airfoil mass
was impacted using an industrial hammer at an angle relative to the leading edge such that modes in both planes of the beam
were excited. Five excitation cycles were repeated to allow for complex averaging of the PSD. The response of the testbed
was monitored using the 59 fiber optic strain sensors along the single optical fiber. The strain time history of each of the
sensors along the beam’s length is plotted in three-dimensional space in Fig. 3.4, with the plot oriented to look down the
sensor location axis.
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Fig. 3.1 Experimental testbed as
tested (the red line showing the
fiber location is computer
generated for clarity)

Note the coordinates of the beam range from 92 inches (the free end) to 0 inches (the fixed end), where the first 6 inches
of the beam contain the mounting fixture and are assumed to be fixed (and hence not shown). The remaining plots are done
in a consistent manner where the effective length of the beam is 92 inches and the clamped 6-inch root is neglected. At the
locations surrounding 30, 60, and 92 inches, the localized strain effects of the airfoil masses on the strain time histories are
visible in Fig. 3.4. Another important conclusion from Fig. 3.4 is there was a good distribution of strain energy throughout
the majority of the beam’s length. This is important to ensure quality data was available from most, if not all, of the available
sensors. To better visualize the strain time histories, the response of sensor 5 was extracted from the three-dimensional plot
and is given in Fig. 3.5. An artifact of the developmental fiber optic system used in the data acquisition is the spurious
negative spikes shown in the strain time history in Fig. 3.5. These spikes are not fundamental to the technology and are
inconsequential to the current study.

Once the strain time histories were obtained, the PSD of each sensor was calculated relative to a chosen reference degree
of freedom (DOF). Using sensor 5 as the reference DOF, the magnitude of the PSD for each of the 59 sensors was calculated,
using five spectral averages in the complex domain, and plotted in Fig. 3.6.
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Fig. 3.2 Section of the experimental testbed as tested (the red line showing the fiber location is computer generated for clarity)

Fig. 3.3 Section of the experimental testbed as tested (the red line showing the fiber location is computer generated for clarity)

As shown in Fig. 3.6, the PSD of the two tip-most sensors have higher responses than the neighboring sensors. This
increased response is believed to be a combination of two effects, the first being the localized strain associated with the tip
airfoil mass. Second, at the end of the fiber is a crude termination inflicted to end the transmission of light. This termination
tends to produce localized reflections in the data, impacting the sensors nearest the end of the optical fiber. As a result, the
two sensors nearest the tip were removed prior to the selection of the poles during the modal parameter estimation procedure.
To provide a more clear representation of a quality measurement, the PSD of sensor 2 relative to sensor 5 was isolated from
the three-dimensional plot and is shown in Fig. 3.7. In addition to the magnitude of the PSD, the coherence between the
signals and the real and imaginary components of the PSD are also plotted.
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Fig. 3.4 Strain time histories of each of the strain sensors for the five impact excitations

Fig. 3.5 Strain time history of strain sensor 5 over each of the five impact excitations

Modal parameters were estimated from the PSDs given in Fig. 3.6 using ATA’s Interface between MATALAB, Analysis,
Test (IMAT™) software in conjunction with ME’Scope. Using IMAT’s OPoly toolkit, the power spectrum mode indicator
function (PSMIF) was computed and plotted in Fig. 3.8 using the 57 root-most PSDs provided in Fig. 3.6. From the PSMIF,
poles of the system were identified and modal parameters extracted in accordance with standard EMA techniques.

The estimated frequency and damping information for the global testbed modes under 25 Hz are provided in Table
3.1. Also provided in Table 3.1 are the values obtained via EMA on the same UUT using the SLV for comparison. The
estimated modal parameters from both the fiber optic and SLV are in excellent agreement, validating the ability of the
OFDR-based fiber optic sensors to obtain accurate modal information. Although only a single axial fiber was used in the
current study, it is important to note the fiber was able to capture the bending behavior of the UUT in both planes as well as
the torsional response. This is a distinct advantage when compared to conventional EMA measurement technologies such as
accelerometers and vibrometers.
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Fig. 3.6 PSD of each of the 59 strain sensors as a function of frequency and location. In the current plot, sensor 5 is the reference sensor

Fig. 3.7 PSD of sensor 2 relative to sensor 5, averaged over the five impacts in the complex domain. The upper plot shows the magnitude of the
PSD, the middle plot gives the coherence between the two signals, and the lower plot shows the real and imaginary portions of the PSD

3.4 Conclusion

An experimental study was performed which validated the use of OFDR-based fiber optic strain sensors for response-only
modal parameter estimation. A carbon/epoxy composite testbed was instrumented with a single Bragg-grated optic fiber
providing 59-point strain measurements evenly distributed along the fiber’s length. Impact excitation was used to excite the
UUT and record response-only strain time histories. These time histories were used in the computation of the sensor-to-
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Fig. 3.8 PSMIF of the 57 root-most sensors

Table 3.1 Estimated frequency and damping for the first seven flexible modes of the testbed

Fiber optic system Vibrometer
Mode Description Frequency (Hz) Damping (%) Frequency (Hz) Damping (%)

1 First bending—soft-plane 0.90 0.50 1.01 0.72
2 First bending—stiff-plane 1.41 0.93 1.41 1.01
3 Second bending—soft-plane 5.31 0.58 5.33 0.47
4 Second bending—stiff-plane 8.55 0.08 8.57 0.14
5 First torsion 10.43 1.18 10.50 1.16
6 Third bending—soft-plane 14.05 0.78 14.10 0.77
7 Third bending—stiff-plane 22.95 0.91 23.00 0.83
Frequency resolution 0.033 Hz 0.078 Hz

sensor cross PSDs of the strain response. By implementing conventional modal parameter estimation techniques, the study
estimated a set of modal frequencies and damping values from the set of cross PSDs. These estimated parameters compared
favorably to a set of modal parameters estimated using EMA on a SLV data set for the same UTT.
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Chapter 4
Machine Learning Vibration-Based Damage Detection
and Early-Developed Damage Indicators

R. Rocha Ribeiro, L. A. C. M. Veloso, and R. M. Lameiras

Abstract The vibration-based damage detection of structures has been an active topic among many research fields for, at
least, the past four decades. In its early years, great effort has been devoted towards developing damage indicators computed
from experimental data. Recently, as this problem is increasingly studied with a data science perspective, efforts are shifting
towards finding highly meaningful features in experimental vibrational data, which is key to Machine Learning success. The
present work had the objective of analysing how the performance of a Machine Learning approach compares to and may
benefit from early-developed damage indicators. A performance comparison is presented between some early-developed
damage indicators, based on both frequency and mode shapes, and an Artificial Neural Network (ANN) supplied with
vibrational data. Also, the use of the early-developed damage indicators as inputs in the ANN was investigated. A two-span
simply supported beam was used as the numerical experiment for the tests. The performance of each approach in different
damage scenarios was discussed, as well as insights were drawn by putting the Machine Learning vibration-based damage
detection approach into perspective with some of the simplest early-developed damage indicators.

Keywords Damage detection · Vibration · Modal analysis · Machine learning · SHM

4.1 Introduction

The vibration-based damaged detection, as part of the Structural Health Monitoring (SHM) discipline, has been an active
topic on many fields, such as Mechanical, Aerospace, Manufacturing and Civil Engineering, for at least the past four decades
[1]. While the first vibration-based damage detection techniques were formulated in the form of damage indicators derived
in a physics framework, the damage detection problem, as many other SHM subjects, is now increasingly being treated as
a Machine learning problem, using techniques such as artificial neural networks (ANNs), convolutional neural networks
and k-means clustering [2–5]. However, the accumulated knowledge contained in the early damage indicators may be
extremely valuable tools when used in conjunction with Machine Learning techniques, since they can fulfil the role of
feature extraction methods, deriving meaningful information from experimental data. Also, a performance comparison that
puts some early damage indicators in perspective to recently trending Machine Learning techniques, such as ANNs, may be
useful to enlighten how the damage detection problem has evolved throughout the years.

In this sense, the present work had the objective of analysing how the performance of a Machine Learning approach
compares to and may benefit from early-developed damage indicators. A dense backpropagation Artificial Neural Network
(ANN) was selected as the Machine Learning tool, and the Cawley-Adams [6] and Kim-Stubbs [7] indices were selected to
represent early-damage indicators. A two-span simply supported beam was used as the numerical experiment for the tests.
Different features were used in the ANN, including the damage indicators themselves, and the performances in different
damage scenarios were compared to withdraw insights about each method.
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4.2 Methodology

The experimental outline of this work is summarized on Fig. 4.1.
The Finite Element (FE) model used as the test structure comprised a two-span simply supported beam (Fig. 4.2), with the

properties presented on Table 4.1, modelled in the software SAP2000 [8], in which it was discretized in 30 frame elements
of equal length. The test structure was inspired in [7], with the span lengths changed to avoid a symmetric structure, which
reportedly affects unevenly the Cawley-Adams index [6]. Only the vertical displacements on the y-axis and the rotations
around the z-axis were allowed in the model. The SAP2000 API for Python was used to generate the data used in this work.

Damage was modelled as a percentage reduction on the E-modulus of a frame element. Damage cases, which refer to
a model into each damage is present, consisted in applying a given damage level in a single frame element. So, for each
damage level tested, 30 damaged cases could be generated, considering the model was discretized in 30 frame elements.
Figure 4.3 illustrates this logic.

The Cawley-Adams, Kim-Stubbs index B and Kim-Stubbs index C were tested with all the damaged cases generated
from the damage levels of 1, 10, 50 and 90%, which cover a wide range of damage levels. In order to allow the comparison
between the damage indicators and the ANNs, which require separate training and test datasets, the ANNs trainings were
performed with the damage cases as indicated in Fig. 4.1, which did not contain any damage case related to the damage
levels of 1, 10, 50 and 90%. This work did not address cases of multiple damage locations.

To standardize the performance comparison, this work treated the damage location identification problem as a
classification problem both while using the damage indicators and the ANNs. The possible damage locations are denominated
as “classes” throughout the work, and each class refers to a portion of the length of the structure. A positive value in a class
meant that location is the damaged location.

FINITE ELEMENT 
MODEL

• SAP2000 FE model
• 30 frame elements
• Compu�ng the first 10 modes: frequencies and mode 

shapes

Cawley-
Adams 
index

DAMAGE 
IDENTIFICATION

Kim-Stubbs 
index B

Kim-Stubbs 
index C ANN

Frequencies and 
mode shapes inputs

Relative difference to 
baseline modal prop.

Cawley-Adams 
indices inputs

Kim-Stubbs indices B 
inputs

• 2 hidden layers w/ 10 neurons each
• ReLu ac�va�on func�ons in hidden layers
• So�max ac�va�on func�on on output layer
• ANNs trained with 5%, 15%, 20%, 25%, 

30%, 35%, 40%, 45%, 60%, 65%, 70%, 75%, 
80%, 85%, 95% damage cases

• ANNs tested with 1%, 10%, 50% and 90% 
damage level cases

• A damage case was comprised by a damage level applied to a frame element
• Damage levels were a % reduc�on in the E-modulus of a frame
• Each damage level was applied once in each of the 30 elements
• Damaged models were run for each damage case
• Addi�onal models were run depending on the damage iden�fica�on method

DAMAGED CASES

Tested with 1%, 10%, 
50% and 90% 

damage level cases

Tested with 1%, 10%, 
50% and 90% 

damage level cases

Tested with 1%, 10%, 
50% and 90% 

damage level cases

Kim-Stubbs indices C 
inputs

Fig. 4.1 Experimental outline



4 Machine Learning Vibration-Based Damage Detection and Early-Developed Damage Indicators 25

(a)

(b)

Fig. 4.2 Models: (a) physical model; (b) FE model

Table 4.1 Model properties

Property Value Property Value Property Value

L1 span 2.67 m Cross-section inertia 5.40E−03 m4 Mass per volume 2500 kg/m3

L2 span 5.33 m Cross-section area 0.18 m2 E-modulus 3.30E+10 N/m2

Damage level 1%

Damage level 5%

Damage level 10%

Damage level n

“n” damage levels

Frame 1

Frame 2

Frame 3

Frame 30

All 30 frame elements

Damage case 1

Damage case 2

Damage case 3

Damage case n⋅30

n·30 damage cases

Fig. 4.3 Logic behind the damage cases production

Initially, each frame of the FE model consisted in a class and potential location for damage, leading to a 30 class
classification problem. However, a strategy of reduction of available classes was implemented, based on two reasons: ANNs
typically require large datasets in the training stage and the number of frames could be insufficient to produce a large enough
dataset; the damage indicators analysed usually predict damage occurring in two or more adjacent frames, which is physically
reasonable but could interfere with the performance metrics adopted in this work. This strategy consisted in mapping, during
the data processing stage prior to the classification itself, the original 30 classes, associated to the 30 frame elements in the
FE model, to a coarser mesh of 15 classes, with each new class corresponding to a portion of the structure of twice the length
of the original classes. All the numerical analysis and data extraction of the model were still performed with the 30-element
FE mesh. This strategy had the effect of both multiplying the size of the dataset in relation to the available classes in the
classification problem, which is positive for the ANN, and also relaxing the requirements on location precision while still
maintaining a reasonable location resolution.

The method’s performance was assessed comparing ground truth class vectors, which contained the correct location of
the damage, to the results provided by each method analysed. To provide quantitative results, for each method a Confusion
Matrix was built, which is a common tool for classification performance evaluation that separates the method results in four
categories: True Negatives, False Negatives, False Positives and True Positives [9]. Since the damage indicators analysed
are formulated such that indication of damage location in more than one place is possible even for single damage location
scenarios, the comparisons for the Confusion Matrix were performed class-wise, i.e. each entry of the result class vector
was compared to its equivalent in the ground truth class vector, contributing as one unit in one of the four Confusion Matrix
categories.
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From the Confusion Matrix, the Accuracy, Precision, Recall and F1 scores were computed to aid in the performance
comparison. These scores are defined as [10]:

Accuracy = True positives + True Negatives

True positives + True Negatives + False Positives + False Negatives
(4.1)

Precision = True positives

True positives + False Positives
(4.2)

Recall = True negatives

True negatives + False Positives
(4.3)

F1 = 2 × Precision × Recall

Precision + Recall
(4.4)

The precision and recall parameter are better suited for performance evaluation, as they indicate how well the damage
indicators can find the damaged frames in the dataset while also presenting a trade-off behaviour between themselves if
the classification is being poorly done. The F1 allows to consider both these parameters simultaneously with equal weights.
Ideally, the higher the F1 parameter, the better the damage indicator is in identifying the damaged classes in the dataset.

The damage indicators analysed in this study are briefly presented in the sequence, and the reader is referred to the original
works for detailed explanations about their formulation. The Cawley-Adams index is a frequency-based damaged indicator
that requires baseline frequencies from an undamaged state of the structure and a numerical model of the tested structure to
compute a sensitivity index defined as:

δλij ,r = xi
T δKr xj

xi
T M xj

(4.5)

in which: δλij,r is the sensitivity of mode j to mode i due to a damage in the position r, which is, in other words, the ratio
between the eigenvalue variation of mode i and the eigenvalue variation of mode j, caused by a damage in the location r; xi
is the mode shape vector of mode i; δKr is a matrix containing the variation on the global stiffness matrix caused by damage
in location r; and M is the global mass matrix. To identify a damage location in a tested structure, this method uses the
frequencies identified in the tested structure and those from the baseline model to compute the sensitivities δλij, which are
then compared to each of the δλij,r computed from the numerical model, in order to identify the r that leads to the best fitting
between δλij,r and δλij. The best fit is usually measured with a score ranging from 0 to 100, with 0 indicating very unlikely
damage locations and 100 indicating highly likely. Since this method is posed in a way that multiple locations may receive
high scores, an arbitrary rule of requiring scores greater than 99 to classify a location as a damage location was adopted.
Further details about the Cawley-Adams index can be found on the method’s seminal paper [6].

The Kim-Stubbs method used in this work can be separated in two indices: B and C, both discussed in details by Kim
and Stubbs [7]. The Kim-Stubbs index B is a mode-shape based method that also requires a numerical model of the tested
structure and baseline mode shapes from an undamaged state of the structure to compute a damage index defined as:

βr =
∑nm

i=1

(
γ ∗
ir +∑ne

k=1 γ ∗
ik

)
Ki∑nm

i=1

(
γir +∑ne

k=1 γik

)
K∗

i

(4.6)

in which: βr is the damage index at location r; γir = xT
i Cr0xi can be called a unit modal stiffness of mode i for element r,

since xi is the mode shape vector of mode i and Cr0 is a global stiffness matrix containing only the geometric contributions
of frame r, i.e. Kr = ErCr0, in which Er is elastic modulus of the frame r, and Kr is the global stiffness matrix containing
only the contribution of element r; γ ∗

ir being the equivalent of γ ir, but computed with damaged mode shapes x∗
i measured at

the tested structure; Ki is the modal stiffness of mode i at the undamaged state, computed as Ki = xT
i Kxi , with K being the

global stiffness matrix of the (undamaged) numerical model; K∗
i is the damaged modal stiffness of mode i at the damaged

state, approximated by K∗
i = x∗T

i Kx∗
i ; nm refers to the number of modes being considered; ne refers to the number of



4 Machine Learning Vibration-Based Damage Detection and Early-Developed Damage Indicators 27

Fig. 4.4 ANN layout

elements in the numerical model. With the mode shapes measured at the test structure, the damage index βr at location r
can be computed and, accordingly to its original formulation, values βr > 1 indicate presence of damage. In the present
work, the criteria to classify a location as damaged was slightly modified, being inspired by Kim and Stubbs [7]: all the βr

were normalized and a Grubbs’ outlier test, with significance level of 10%, was used to detect damage among the maximum
values.

The Kim-Stubbs index C is a further development of the previous index, with allegedly advantages in situations with very
few available modal data. The mechanics of the method remain the same, but now information about the frequency is also
introduced in the damage index, defined as:

βr =
∑nm

i=1 γ ∗
ir∑nm

i=1

(
γi

(
δλi

λi
+ δMi

Mi

(
1 + δλi

λi

))
+ γr

) (4.7)

in which:γ ∗
ir and nm have the same meaning as the previous index;γi = ∑ne

k=1 γik , with each component having the same
meaning as in the previous index; δλi is the variation in the eigenvalue i due to the damage, i.e. the difference between the
square of the measured frequency, in rad/s, and the square of the baseline frequency; λi is the baseline eigenvalue; δMi is the
variation of the modal mass of mode i due to the damage in the structure, computed approximately as δMi = x∗T

i Mx∗
i −

xT
i Mxi ;Mi is the modal mass of mode i at the baseline model. Like the previous index, to perform the damage classification

all βr were normalized and a Grubbs’ outlier test, with significance level of 5%, was used to detect damage among the
maximum values. The significance level was further restricted in this index since no significant changes in performance were
verified when adopting the standard significance level of 5% instead of the previously adopted value of 10%.

The ANNs used on this work were developed with the aid of the Keras API, TensorFlow 2.0 and Scikit Learn packages
[11–13]. The Keras sequential model was used to build neural networks with two dense hidden layer, each with 10 neurons,
and an output layer whose size was defined by the number of classes in the problem, i.e. number of potential positions for the
damage. The hidden layers contained a rectified linear activation function (ReLu) and the output layer contained a Softmax
activation function, which is a common configuration for multiclass classification neural networks. The size of the input
layer was also adjusted accordingly to the features used in each analysis. Figure 4.4 illustrates the ANNs’ general structure.

As indicated in Fig. 4.1, five different features were tested on the ANN: raw frequencies and mode shapes; frequencies and
mode shapes divided by their respective values from baseline model, considering that all damage indicators analysed require
the use of baseline modal information and, thus, this information was considered as available in the framework of this paper;
Cawley-Adams damage indices for each class (damage position); Kim-Stubbs index B for each class; Kim-Stubbs index C for
each class. For each feature, a new ANN was trained and tested. The training was performed, as previously mentioned, with
samples containing damage levels that were not present in the test set, which, by its turn, comprised damage cases produced
with damage levels of 1, 10, 50 and 90%. The training was performed with a backpropagation algorithm, a minibatch of
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10 samples, the Adam optimizer [14], 300 epochs, and a cross entropy loss function. Cross validation of each ANN was
performed with a stratified k-fold strategy, using fivefolds on the training dataset. Lastly, it is worth noting that the ANNs in
this work were not modelled to detect undamaged states, i.e. there was no output to classify the structure as undamaged.

4.3 Results

The results obtained with the Cawley-Adams and Kim-Stubbs damage indices are presented on Table 4.2.
From the accuracies reported, which had high values, it can be observed that the implemented damage indicators seem to

behave as expected, with no erratic behaviours. The close values reported for the accuracies reinforce the need to be cautious
when analysing the performance of each damage indicator with such a global performance parameter, as the occurrence of
each class label (i.e. damaged or not damaged) is skewed. In fact, when considering the case with 30 available classes (i.e.
case with the possibility of identifying damage in 30 different and non-overlapping portions of the structure), the whole
dataset, which was composed of four damage levels applied to each of the 30 frame elements individually, contained a
total of 3600 labels of which only 120 were damaged labels, composing 3.33% of the dataset. The 15-classes case lead to
a proportion of 6.66%, which is still a relatively low occurrence of damaged (positive) labels compared to not damaged
(negative) labels. The accuracy parameter as computed in this work will always have a high value for this type of problem,
as the probability of a class being truly not damaged is considerably higher than being damaged, contributing to bias the
rate of total successful classifications. In an extreme example, a non-damage indicator that labels every class as not damaged
would lead to an accuracy of 96.67% for the 30-classes case, and 93.34% for the 15-classes case. Therefore, while useful to
highlight erratic performances, further performance comparisons need to consider the other metrics.

When analysing the Precision and Recall by comparing the F1 scores, it can be considered that the Kim-Stubbs-B damage
indicator presented the best performance. The at first unexpected observation that Kim-Stubbs-B outperformed Kim-Stubbs-
C, as the latter is considered by its authors as a further development of the first, may be explained by the fact that the present
work used the first 10 modes for damage identification, while the Kim-Stubbs-C was developed in the context of limited
available modal data [7].

When considering the particularities of the damage identification problem, it can be argued that the Recall parameter, i.e.
the ability to maximize the identification of damaged classes and minimize the misclassification of actual damaged class as
not damaged, may be prioritized in detriment of the Precision parameter. With this perspective, the Kim-Stubbs-B damage
indicator also presents the best performance. Lastly, as expected the relaxation caused by reducing the number of available
classes from 30 to 15 also contributed to increase the damage indicators performances in all cases. This may be useful when
such damage identification is being done in large structures as part of preliminary global assessments, whose goal would be
identifying potential areas for further focused investigation.

The results obtained with the ANN are presented on Table 4.3. It is important to highlight that the stratified k-fold accuracy
is a better ANN accuracy performance estimator than the Accuracy itself. The k-fold accuracy reported is computed as the
subset accuracy, in which a correct classification is only computed when all the classes in the multiclass classification problem
are properly labelled [15]. This is a more restricted measure when compared to the Accuracy parameter adopted in this work,
in which classes are individually considered and, thus, the bias caused by the high occurrence of negative labels is present.

The stratified k-fold accuracies indicate that the ANNs with raw vibrational data (#1 and #2) presented the lowest
performances. This illustrates the importance of using highly meaningful input data in the ANN to achieve reasonable
performances. Even though the mode shapes and frequencies do contain information regarding the position of the damage,
such information needs to be extracted and properly presented as inputs to the ANN. An illustration of this importance can be
seen on the ANNs with the relative difference between the damaged models and a baseline (undamaged) model mode shapes
and frequencies, in which this simply normalization increased the accuracy performance to reasonable values. The effect of
even higher meaningful parameters on the accuracy can be observed in the performance of the ANN with Kim-Stubbs-B
indices (#7 and #8), which was already the damage indicator with the best performance previously, indicating that its indices
retain considerable correlation to damage location.

The analysis of the Precision, Recall and F1 scores, however, suggests that the ANN with Cawley-Adams indices
(#5 and #6) achieved the best classification performance, with simultaneously high values for both Precision and Recall.
Although these ANNs did not present k-fold accuracies as high as Kim-Stubbs-B ANNs, these scores to the training set,
which contained theoretically unseen data by the ANNs. This may indicate that the Kim-Stubbs-B ANN presented lower
generalization capability when compared to the Cawley-Adams ANN. In fact, the high k-fold accuracy of both #7 and #8
ANNs, with the latter achieving 100%, may indicate occurrence of overfitting that leads to poor generalization. Further
analysis involving hyperparameters optimizations of the ANNs are required to fully address this matter.
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The reduction of the number of available classes also contributed to increase the ANN performances, as observed with
the damage indicators. For ANNs, such reduction not only relaxes the requirements on the precision of damage position
identification, but also increases the dataset size relatively to the number of classes in the problem, which may benefit the
ANN learning process by providing more examples of each class. The positive effect of the class reduction was more evident
in the ANNs with poorer performance, such as #1 to #4, indicating that larger datasets may play a positive role when using
less meaningful features in the damage identification problem.

4.4 Conclusion

This work presented a performance comparison of early-developed damage indicators and a Machine Learning approach
based on Artificial Neural Network (ANN) for the damage identification of structures using vibrational data. A two-span
simply supported beam, modelled with frame elements in a Finite Element Modelling (FEM) software, was used to provide
the modal data (frequencies and mode shapes) of the first 10 modes. The damage identification addressed only the localization
of the damage in the structure. The use of the early-developed damage indicators as inputs into ANNs was also studied.

The results illustrated the importance of providing Machine Learning based approaches to the damage identification
problem with meaningful and information-rich inputs, which may be perfectly obtained from early developed damage
indicators, which were shown to contain meaningful information about the damage location. When comparing the damage
indicators performance to ANNs with raw modal data, the first generally presented better, or at least comparable,
performance. It was also illustrated that Machine Learning tools, such as ANNs, may enhance the performance of the damage
indicators when they are used together. Some specific observations can be highlighted:

• The damage indicators analysed presented a F1 score, when considering each class separately, ranging from 37.40% to
68.62%. The poorest result was obtained with the Cawley-Adams indicator, and the best with Kim-Stubbs-B damage
indicator.

• The ANNs analysed presented a F1 score ranging from 4.71% to 99.17%. The poorest results were obtained with ANNs
with raw vibrational data (mode shapes and frequencies) as inputs, and the best results were obtained when using the
damage indicators themselves as inputs. The best performance was achieved using the Cawley-Adams damage indicator
as input.
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Chapter 5
Semi-Analytical Analysis for Dynamic Behaviors of Wind
Turbine Blades Using Transfer Function Methods

Ali Hashemi, Jinwoo Jang, and Shahrokh Hosseini-Hashemi

Abstract One of the most challenging research areas in the field of structural dynamic and vibration is development of
analytical solution for vibration and elasticity analyses of various structures. This paper focuses on developing a new semi-
analytical solution to obtain lateral deflection of a wind turbine blade under external loadings. The proposed method maps a
wind turbine blade to an Euler–Bernoulli beam with same conditions, in order to find vibration and dynamic responses of the
blade by solving analytical vibration solutions of the Euler–Bernoulli beam. Piezoelectric patches are used in this research
as actuator-sensor to excite the structures and sense the responses. The governing equations of the beam with piezoelectric
patches are derived based on integration of the piezoelectric transducer vibration equations into the vibration equations of the
Euler–Bernoulli beam structure. Finite Element model of the wind turbine blade with piezoelectric patches is developed. A
unique transfer function matrix is derived by exciting the structures and achieving responses. The beam structure is projected
to the blade by using the transfer function matrix under external forces. The results obtained from the mapping method are
compared with the results achieved from the FE model of the blade. A satisfying agreement has been observed between the
results. The results show that by increasing the distance from the base of the wind turbine blade structure, the accuracy of
the method experiences a descending trend.

Keywords Structural dynamic · Analytical vibration analysis · Transfer function matrix · Piezoelectric actuator and
sensor · Energy method

5.1 Introduction

Derivation of analytical solutions for vibration and elasticity analysis of structures have always been noticed as an important
field of research in structures analysis and design. Analytical solutions of dynamic responses in various structures have
attracted considerable attention for saving computational cost especially for large-scale structures. However, it could be
very challenging to derive analytical solution for many structures due to their intricate geometry. Furthermore, these days,
renewable energy such as wind energy has been widely considered as one of the alternative energy resources due to a
dramatic increase of global warming. According to this fact, different types of wind turbine such as off-shore and on-shore
wind turbines with various size and power generation have been studied in recent years. In general, bigger, complex wind
turbines have gained more popularity due to their effectiveness in power generation capacity. A deep understanding of
dynamic behaviors of wind turbine blades is critically significant in the development of designing wind turbines because of
obtaining most efficient design. However, it is difficult to analyze dynamical and vibrational behaviors of wind turbine
blades due to their complex shapes and continuous interaction between wind flows and their blades. Large-scale wind
turbine can experience severe unwanted vibrational deflection especially on the edges of their blades. We can consider
interaction between blades and wind flows and interaction between rotors and towers as the key causes for these vibrations.
These undesirable vibrations, especially at the tip of blades, can cause extreme structural damages and failure of the power
systems. In addition, a comprehensive perception of vibration and dynamic behaviors of wind turbine blades and deriving
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analytical solution for vibration and dynamic responses to external loadings can be tremendously helpful in active unwanted
vibration control and applying control rules to wind turbine blades which cause increase in the life of structures and also the
performance of the turbines.

The development of analytical approaches to understand dynamic behaviors of wind turbine blades or other rotary
structures poses significant challenges due to the complexity of the underlying physics and dynamic conditions. A new
understanding of analytical approaches to analyze dynamic behaviors of these complex blade shapes can contribute to
investigating various mechanical and structural systems such as helicopter rotor blades, various arms of robots, twisters,
and heavy solid components. In general, analytical solutions, numerical simulations, and system definition can be integrated
with an experimental testing to model various twister beams, such as twister turbines, helicopters, robot arms, and micro-
electrical devices. The vibration of these twister structures has been mostly studied with finite element (FM) simulation and
other numeric methods such as finite difference (FD) and differential quadrate (DQ) in comparison with analytical methods.

This research aims to define a semi-analytical solution for a wind turbine blade, which can describe lateral blade
deflections under specific external forces. In general, a semi-analytical solution technique is presented for solving linear
partial differential equations. The semi-analytical technique relies on analytically solving the equations obtained from
discretizing the spatial coordinates of a partial differential equation. The most significant advantage of semi-analytical
methods over numerical methods is tremendously shorter solving time. This work demonstrates an innovative approach to
project an actual shape of a wind turbine blade to the same scale of an Euler–Bernoulli beam in order to derive an analytical
solution for the wind turbine blade’s dynamic and vibration response. The blade of the GE 1.5-megawatt model, which has
45 m blades on a 9 m tower, is considered in this work. To simplify deriving equations, we assume this blade is a steel blade.
Plumbum-Titania-Zirconia is considered as piezoelectric sensor-actuator patches in order to sense and actuate structures.

5.2 Background

The vibrations of twister beams have been widely studied with different types of beam models, e.g., Euler–Bernoulli and
Timoshenko, using analytical or semi-analytical solutions and numerical or finite element methods (FEMs). The majority of
previous research considered Euler–Bernoulli and Timoshenko models to describe twister and under-loading beams without
considering shear deformations. Several research has been conducted in order to understand dynamic behaviors of rotary
beams, including the normal frequencies, mode shapes, and maximum vertical displacements. However, obtaining dynamic
responses of rotary beams under different loadings, including wind flow and gravity loads, has been challenging. Huang
et al. [1] obtained the natural frequencies of an Euler–Bernoulli beam during high-speed rotation using an exponential
series solution. Arvin [2] studied the nonlinear free vibrations of a rotating beam. He performed the von Kamran-strain
displacement relations and derived nonlinear motion equations by Hamilton’s principal. Da Silva [3] presented a systematic
and versatile research of a helicopter rotor blade’s responses. First, he presented complete nonlinear partial differential
equations governing the blade’s motion which consider the geometric nonlinearities that occur due to deformation, and then
the system’s equilibrium solution was specified by the system. Yigit et al. [4] studied the flexural movement of a radially
rotating beam connected to a rigid body. By using the extended Hamilton Principle, fully coupled nonlinear motion equations
were obtained. Hanagud [5], Baruh [6], and Choura et al. [7] studied dynamical models of rotating Euler–Bernoulli beams
without considering centripetal forces on beams. Most of the previous studies did not investigate the interaction between
fluids and structures [8]. Song et al. [8] established an elaborate model in understanding the fluid-structure interaction
between a structure and airflow. Through using the open source OpenFOAM tools coupled with the arbitrary mesh interface
(AMI) framework, Wang et al. [9] provided numerical simulations of wind turbine blade-tower interaction. Vibration analysis
of wind turbine blades or other rotary beam shape structures can be divided into two main parts. The first part includes
edgewise vibration that happens out of the beam’s rotation circle, and the second part consists on the flap-wise vibration that
occurs in the rotation plate. Lee et al. [10] studied flap-wise vibration of a composite rotational Euler–Bernoulli beam and
the relationship between rotational speed and natural frequencies. Asr et al. [11] suggested prestressing in the blade structure
of the H-Darrieus wind turbine in the context of axial compression stress. Their research presented a structural comparison
in terms of their dynamic vibrational response among reference and prestressed turbine rotor configurations. Jokar et al. [12]
obtained the dynamic modeling and free vibration analysis of horizontal axis wind turbine blades in the flap-wise direction by
evaluating blade kinetic and potential energies and using Hamilton’s principle. Farsadi et al. [13] performed a semi-analytical
solution for the free vibration analysis of uniform and symmetric pre-twisted rotating TW. They adopted the Green-Lagrange
strain tensor to derive the strain field of the system and Hamilton’s principle to derive the governing equations of the dynamic
system. Afzali et al. [14] derived a vibration model for a H-rotor/Giromill blade. They assumed that the blade under transverse
bending and twisting deformation was treated as a uniform straight elastic Euler–Bernoulli beam. Derivation of the energy
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equations and simplified aerodynamic models for bending and twisting blades have been distributed and the equations of
Lagrange have been extended to assumed modal coordinates to derive nonlinear motion equations for bending and twisting
blades [15–19]. Meksi et al. [20] derived the equations of motion of functionally graded sandwich plates from Hamilton’s
principle based on a new shear deformation plate theory. Alsabagh et al. [21] implemented the Rayleigh-Ritz method for a
typical 5-MW wind turbine blade and developed MATLAB codes and then obtained natural frequencies for both flap-wise
and edgewise vibrational behavior. Chen et al. [22] derived a dynamic model of curved beams by using the Absolute Nodal
Coordination Formulation based on the radial point interpolation method (RPIM). Chen et al. [23] examined the free vibration
of rotating tapered Timoshenko beams by using the technique of variational iteration. Mokhtar et al. [24] investigated the
rotor-stator interaction phenomenon in the finite element (FE) framework by using Lagrange multiplier based on contact
mechanics. Tang et al. [25] presented a developed approach that is used to identify the operational blade vibration modes
by measuring the vibrational displacements with a non-contact single point laser sensor during the wear process. Liu et al.
[26] studied structural vibration by establishing a dynamic equilibrium equation of a coupled system consisting of a five-leaf
blade. A blade excitation force model consists of transverse and vertical excitation forces generated by using a quasi-steady
method. The Hamilton principle and the finite element (FE) method with a rotating pre-twisted and leaned cantilever beam
model (RPICBM) with the flap-wise-chordwise-axial-torsional coupling was set up by Zheng et al. [27]. They validated the
efficacy of the model through comparisons with the literature and the FE models in ANSYS. Warminski et al. [28] studied
dynamics of a rotor composed of a flexible beam linked to a slewing rigid hub based on extended Bernoulli–Euler theory for
a slender beam model, which considers a nonlinear curvature, synchronized transverse and longitudinal oscillations and the
hub’s non-constant angular velocity. In different engineering structures, rotating composite beams and blades have a wide
variety of applications [29]. Rafiee et al. [29] presented a comprehensive analysis of scientific papers on rotating composite
beams as presented in the past decades. For the flexural study of a sandwich beam combined with a piezoelectric layer, Wang
[30] proposed a fundamental mechanics model. The Maxwell equation was used in the formulation in order to extract the
distribution of the piezoelectric potential. Chen et al. [31] developed a semi-analytical solution of the dynamic features of
the AG-WEC by the frequency and time domain analysis based on the potential flow principle.

5.3 Theory and Modeling

Unlike complex structures such as wind turbine blades, the Euler–Bernoulli beam has been widely investigated in order
to obtain analytical solutions for dynamic and vibration responses to any external forces and excitations since the Euler–
Bernoulli beam theory relies on a couple major assumptions, and also the beam has a simple geometry shape that makes
analytical analysis possible for the Euler–Bernoulli beam. The two primary assumptions made by the Bernoulli–Euler beam
theory are that “plane sections remain plane” and that deformed beam angles (slopes) are small, then shear deformations
can be neglected. The novelty of this research work includes the projection of a wind turbine blade’s deformations and
lateral deflections to the same scale of Euler–Bernoulli beam. We proposed a unique transfer function matrix to undertake
the projection of a wind turbine blade to an Euler–Bernoulli beam. The proposed transfer function matrix is used to transfer
latera deflections of the Euler–Bernoulli beam to the wind turbine blade. This projection will permit us to simply obtain the
dynamic and vibration responses of a wind turbine using the Euler–Bernoulli beam.

To develop the transfer function matrix, we need to excite both the wind turbine blade and the Euler–Bernoulli beam
with same external excitations and then derive the lateral deflections of selective specific nodes on their surfaces. The Euler–
Bernoulli beam should be in the same length with the wind turbine blade which is 45 meters. The lateral movements of
the Euler–Bernoulli beam are obtained analytically in this research. FE models are used to calculate the counterpart of the
wind turbine blade. To apply external forces and obtain the dynamic responses of both the wind turbine blade and the Euler–
Bernoulli beam, the piezoelectric patches are considered. The electromechanical properties of piezoelectric materials make
them powerful material as sensors and actuators. These piezoelectric sensors/actuators are patched on the surfaces of both
structures. These piezoelectric patches provide the measurements of the external excitation and the dynamic responses. Two
initial function matrices are derived for the Euler–Bernoulli beam with PZT patches and the wind turbine blade with PZT
patched by applying same external loading and obtaining corresponding responses. Then, a total transfer function is achieved
by using two initial function matrices.
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5.3.1 The Euler–Bernoulli Beam Includes Piezoelectric Patches

An estimated form of the beam considered with patches is shown in Fig. 5.1. The beam under consideration here is assumed
as an Euler–Bernoulli beam in its length (L), width (b), and height (h) and divided into n equal sections. To achieve the
best results, the boundary conditions of the beam are assumed as those of a cantilever beam, just like a blade in a wind
turbine, anchored at one end to a support. Therefore, edgewise vibrations are discarded. Moreover, the piezoelectric patches
were assumed to be continuous along the transversal direction. Thus, the length of each piezoelectric patch Lp became the
following:

Lp = x2bj − x1bj , (5.1)

where j indicates that the number of sensors, b represents the beam, 2 and 1 are the beginning and the end of the patch,
respectively. x2bj and x1bj are the distance of the end tip and the beginning of the nth sensor-actuator from the base,
respectively. In this research Lp was assumed as 10 cm for each sensor. The width of every piezoelectric patch is the same as
the width of beam b and is located at the end of each section on the beam.

5.3.2 Analytical Modeling of the Euler–Bernoulli Beam Includes PZT Patches

The Euler–Bernoulli theory neglects shearing deformations; hence, the shearing tension and strain are not included. In this
theory, the shear force is only derived by this equation:

V = dM

dx
(5.2)

The governing equation of the Euler–Bernoulli beam with PZT patches is achieved by the energy method and Lagrange
equations. Then acquired obtained equation is solved by the assumed mode method. The total strain energy of the Euler–
Bernoulli beam is expressed as the following:

U = 1

2

∫ L

0

∫

A

(σxxεx) dAdx (5.3)

By substituting the correlated equations for stress and strain of the Euler–Bernoulli beam, Eq. (5.3) can be represented as:

U = 1

2

∫ L

0
Dxx

(
∂uz (x, t)

∂x

)2

dx (5.4)

Dxx is defined as the following:

Dxx = EI (x) (5.5)

Fig. 5.1 Estimated figure of the beam includes piezoelectric patches
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σ xx and εx are the normal stress and normal strain in x-direction, respectively. E is the Young module, and I(x) is the
second moment of area in x direction. The related strain energy equation for the beam is derived by substituting Eq. (5.5)
into Eq. (5.4), the following:

U = 1

2

∫ L

0

(
EI (x)

(
∂uz(x, t)

∂x

)2
)

dx, (5.6)

where uz(x) describes transverse deflection of the beam at some position x. A total kinetic energy of the Euler–Bernoulli
beam is formulated as

T = 1

2

∫ L

0

∫

A

(
ρν2z

)
dAdx, (5.7)

where νz is velocity and it can be shown as

νz = ∂uz(x, t)

∂t
(5.8)

The Euler–Bernoulli beam’s cumulative kinetic energy can be formulated and simplified by replacing Eq. (5.8) into Eq.
(5.7) as

T = 1

2

∫ L

0

(
ρA(x)

(
∂uz(x, t)

∂t

)2
)

dx (5.9)

Upon deriving the governing equation of the vibration of the PZT patches, by considering the linear PZT constitutive
relations, the stress and strain of these patches can be developed as:

σ
p
xx = cE

11S1 − e31E3 (5.10)

ε
p
xx = S1 = −y

∂2uz (x, t)

∂x2 , (5.11)

where 1, 2, and 3 indicate the X, Y, and Z directions, respectively. cE
11, e31, and E3 are modules of elasticity of the PZT in

constant electric field, piezoelectric stress constant, and the electric field across the electrodes of the PZT, respectively. The
relations between the electrical field and voltage applied to the piezoelectric patch electrodes is presented as the following:

E3 = V (t)

ha

(5.12)

V(t) is applied harmonic voltage. The correlation between the piezoelectric stress constant and the associated strain
constant, d31, is provided as:

e31 = cE
11d31 (5.13)

Thus, the equations of the strain energy and kinetic energy of a piezoelectric patch are formulated as:

U
p
j = 1

2

∫ x2a

x1a

(
cE
11Ip

(
∂2uz(x, t)

∂x2

)2

+ JpV (t)

(
∂2uz(x, t)

∂x2

)2)
dx (5.14)

T
p
j = 1

2

∫ x2a

x1a

ρahab

(
1

2

∂uz(x, t)

∂x

)2

dx (5.15)
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The strain energy of the piezoelectric patches must be added to the strain energy of the Euler–Bernoulli beam in order
to achieve the overall strain of the Euler–Bernoulli beam along with the piezoelectric sensor and actuator. The mentioned
process must be applied for the kinetic energy of the piezoelectric patches and the Euler–Bernoulli beam, respectively. The
cumulative strain energy and kinetic energy of the beam with PZT patches can therefore be obtained as follows:

U = 1

2

∫ L

0

(
EI (x)

(
∂uz(x, t)

∂x

)2
)

dx + 1

2

∫ x2a.j

x1a.j

(
cE
11Ip

(
∂2uz(x, t)

∂x2

)2

+ JpV (t)

(
∂2uz(x, t)

∂x2

)2)
dxj=1:n,

(5.16)

T = 1

2

∫ L

0

(
ρA(x)

(
∂uz(x, t)

∂t

)2)
dx + ∫ x2a.j

x1a.j
ρahab

(
1
2

∂uz(x, t)
∂x

)2
dxj=1:n

, (5.17)

where j indicates the number of piezoelectric patches.

5.4 Assume Mode Method

The assumed mode approximation is called to solve the governing equations of the beam and the piezoelectric patch. Under
the actuation of a surface-bonded PZT patch, the transverse deflection can be expressed as:

(u qx x xtz k k k
b. ) = ∑ п=1 ( ) ( ), (5.18)

where Òk is the admissible function which satisfies geometrical boundaries and qk describes the corresponding unknown. By
replacing Eq. (5.18) into Eqs. (5.16) and (5.17), these equations can be expressed as:

(5.19)

(5.20)

The Lagrange equation is presented as:

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

+ ∂U

∂qj

= 0 (5.21)

By substituting Eqs. (5.19) and (5.20) into the Lagrange Eq. (5.21), the simple matrix form of governing equation of the
Euler–Bernoulli beam along with the PZT patch becomes

M {q̈} + K {q} = −V (t)η, (5.22)

where M, K, and η are presented as
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(5.23)

(5.24)

(5.25)

5.4.1 Finite Element Modeling

The blade’s FE modeling of GE 1.5 MW wind turbine is constructed in ANSYS code. The length of the blade is 45 m
which includes PZT patches. The piezoelectric patches are set on the blade similarly to the Euler–Bernoulli beam and the
scheme is represented in Fig. 5.2. It is assumed that the connection between the PZT patches and the beam is perfect. The
blade with the same geometry of the beam which was used in the analytical modeling is modeled and the simulation is
performed three-dimensionally. In the combined field of transient structural dynamics and the electric field, the simulation of
the model is performed. Defining the structural damping of the blade in FEM has a high impact on obtaining an appropriate
approximation of the real blade’s behavior. The Rayleigh damping is considered as the structural damping model of the
blade. The coefficients are obtained as α = 0.0027 and β = 0.0000017 which are the mass corresponding coefficient and
stiffness corresponding coefficient, respectively.

5.4.2 The Wind Turbine Blade Projection on the Euler–Bernoulli Beam

Due to the fact that the velocity of wave propagation in solid media is only related to the frequency variants of actuation,
not the time when forces are applied to a structure, we can consider both systems (the wind turbine blade and the Euler–
Bernoulli beam) as time invariant. Because both the systems are linear time-invariant (LTI), the linear properties can be used
to identify vibrational characteristics subjected to any external force. The linear time-invariant feature of the system is used to
represent an efficient, feasible, and accurate model as a result of finding a semi-analytical solution for the wind turbine blade

Fig. 5.2 Section’s estimated diagram from the blade to the beam
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for deriving lateral blade deflections under external various forces. The proposed method leverages the linear time-invariant
characteristics. Therefore, the use of transfer projection function is limited to LTI systems. To obtain the frequency responses
of both the FE model of the blade and the Euler–Bernoulli beam, the transmitted pulse signal is considered as an impulse
function. For the Euler–Bernoulli beamwith piezoelectric patches, a pulse signal is applied to every actuator’s location. Then,
the n outcomes of pulse signals are reached using the analytical equations by each applying the pulse signal to an actuator.
In LTI systems, the unit step function can be used instead of sending the transmitted pulse signal to determine structure
frequency responses. Herein, the unit step function is used to solve the equations in the time domain. Then, the achieved
amplitude responses from n points are differentiated to obtain the system’s responses to the transmitted pulse signal. To
extract exact responses, the frequency domain is considered, since many noises were present among the reached responses.
In the frequency domain, noises exhibit small frequencies and are recognizable. Additionally, high frequencies caused by the
resonance phenomenon can be eliminated in the frequency domain. To increase the ratio of signals to noises, overvoltage is
required. A step function output is defined as yu(t). To derive the responses to the impulse function, the outcomes needed to
be differentiated with respect to time. The response of the impact function yδ(t) equaled as the following:

yδ(t) = dyu(t)

dt
(5.26)

Then, the frequency response is as the following:

Yδ (ω) = FFT (yδ(t)) (5.27)

By applying the unit step function to each PZT actuator, n outputs from each n sensors are obtained in every actuation (n
is 45 in this research). Each element of the function matrix of the beam and the blade is achieved as the following:

gij = FFT (j th output) /FFT (ith input) , (5.28)

where j indicates the number of sensor (output) and i presents the number of actuator (input). Repeating this procedure for
every section, the [N × N] matrix of function G is derived as the following:

G(i, j) = gij i, j = 1, 2, . . . , n (5.29)

Therefore, the n × n initial function matrix is derived for the Euler–Bernoulli beam with piezoelectric patches through the
use of these external excitations and related responses. A n × n initial function matrix is derived for the wind turbine blade
with patches by applying the same external excitations and deriving lateral movements in the same way. In order to obtain
amplitude responses of the blade, the FE model of the wind turbine blade with patches is constructed in ANSYS code.

Two initial function matrices are achieved, Gb and Gw for the beam with PZT patches and the blade with PZT patches,
respectively, by applying the mentioned method on the beam and the blade. At this step, by applying any same external
dynamic load (Us) to both systems and concerning the linear feature of the whole system, the total transfer function matrix
is derived as:

Yb = Gb.Us (5.30)

Yw = Gw.Us (5.31)

By using linear feature of the whole system

Yw =
(
Gw

/
Gb

)
.Yb (5.32)

Next, the total transfer function matrix is obtained by using two initial metrices that are achieved in previous step as

GT =
(
Gw

/
Gb

)
(5.33)
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The total transfer function GT can project vibrational and tensional outcomes of the analytical solution of the Euler–
Bernoulli beam with PZT patches to the wind turbine blade with PZT patches under the same external loading (Eqs. (5.31),
(5.32), and (5.33)). Obtaining lateral movements of the wind turbine blade with the semi-analytical approach consists of the
following steps:

• Step 1. Deriving governing equations of the Euler–Bernoulli beam with the attached piezoelectric actuator and sensor
using energy method.

• Step 2. The derived governing equations are solved by assumed mode method.
• Step 3. Finite Element model of the wind turbine blade with PZT patched is developed.
• Step 4. Obtaining frequency responses of both systems, the FE model of the blade and the Euler–Bernoulli beam, by

applying the transmitted pulse signal.
• Step 5. Deriving initial function matrices for the beam and the blade.
• Step 6. Obtaining total transfer function by using two achieved initial function matrices with respect to linear properties

of the systems.

5.5 Results and Discussion

To verify the proposed semi-analytical solution includes the transfer function matrix method for the wind turbine blade,
the Euler–Bernoulli beam and the FEM model of the wind turbine blade are loaded separately with three external different
loadings. A sine distributed load with an amplitude of 20 kg/m3 and attack angles of 15, 30, and 45 degrees are applied,
respectively. The loadings cause a continuous force on the Euler–Bernoulli beam that should be discretized to the number of
divided pieces (number of actuators-sensors) which is performed by using the Reilly–Ritz method. Figure 5.3 represents the
comparison between analytical results and FEM results at the location of the twentieth sensor.

As shown in Fig. 5.3, acceptable compliance is found between analytical results and FEM results. Furthermore, Fig. 5.4
displays the error between the outcomes of the analytical solution and FEM for each sensor by applying the mentioned
loadings. As it can be seen from Fig. 5.4, there are no clear and exact patterns in the error rates based on the sensor locations.
The results show that the accuracy of the method decreases as the sensors’ distance from the base of the wind turbine
increases; however, there are some exceptions in the trends. One reason for obtaining ascending rate of errors by increasing
the sensors’ distance from the base is that the vibration domain of the structure naturally grows with augmentation of the

Fig. 5.3 The outcomes of the analytical results and FEM results for the twentieth sensor under loading number 1 (15 degrees attack angle)
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Fig. 5.4 Error percentage for each sensor under loading number 1 (15-degree attack angle)

interval from support. As it can be observed, the span from the base can be known as a determining factor for the method’s
accuracy.

5.6 Conclusion

An effective semi-analytical solution based on a unique transfer function matrix for a wind turbine blade is presented in
the paper. First, the governing equations of the Euler–Bernoulli beam with the attached piezoelectric actuator and sensor
were driven using energy method. By integrating the characteristic vibration equations of the piezoelectric patches into
the characteristic equations of the Euler–Bernoulli beam, the impact of changing mass, stiffness, and electromechanical
coupling between the beam and the piezoelectric actuator and sensor is taken into account. Then with the assumed mode
method, the obtained governing equations are solved. The FE model of the wind turbine blade and piezoelectric patches
is then developed by Rayleigh damping factors. In order to derive initial transfer function matrices for the Euler–Bernoulli
beam with PZT patches and the wind turbine blade with PZT patches, a pulse signal is applied to every actuator’s location in
both systems and then responses are reached. Concerning the linear feature of the whole system, the final transfer function
matrix is derived by applying same external dynamic force to both systems. To validate the mapping performance of the
final transfer function matrix, the Euler–Bernoulli beam and the FE model of a wind turbine blade are loaded separately with
three different loads. Findings show satisfactory correlations between the deflections that are derived directly from the FE
model of the wind turbine blade and the movements that are achieved from the proposed method. Moreover, the accuracy of
the method declined by increasing the distance of the sensors from the base of the wind turbine blade due to natural growth
of the structure’s vibration domain in longer distance from the support. The potential outcomes of this presented method are
derivation of vibration equations of various complex shapes and also equations of deformations, strains, and tensions that are
related to them. Future investigations could enhance the accuracy of the results by changing the number of sensors/actuators
and their efficient installment and applying the method on other solid structures.
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Chapter 6
Evaluating the Mechanical Redesign of a Biped Walking Robot
Using Experimental Modal Analysis

Tobias F. C. Berninger, Philipp Seiwald, Felix Sygulla, and Daniel J. Rixen

Abstract Structural dynamics can have a significant influence on the performance of robots. This has already been
extensively shown for robot manipulators. In a previous work, we have also shown this for our biped walking robot
LOLA. Vibration issues caused by the mechanical structure of LOLA are visible in the joint controllers and are limiting
the performance of her walking and balancing controllers. We showed this by measuring the open-loop transfer functions of
these controllers and linking the dynamics of the control plant to the structural dynamics of LOLA by comparing the results
to an Experimental Modal Analysis. The knowledge gained from this analysis influenced the redesign of LOLA’s upper-body
structure. In this work, we will show the benefits gained from the new mechanical design by performing and comparing the
same tests as done in our previous work.

Keywords Robotics · Humanoid robot · Mechanical design · Structural dynamics · Experimental modal analysis

6.1 Introduction

Over the past decade, tremendous progress has been made in the field of biped walking robots. Companies like Boston
Dynamics [1], Honda [2], and Agility Robotics [3] have demonstrated versatile and robust biped walking machines in various
scenarios. However, while pushing the performance of these machines to their limits, increasingly complex effects have to
be taken into account. In case of our own biped walking robot LOLA (Fig. 6.1), we noticed various structural vibration
problems that prevent us from further increasing the bandwidth of both our walking [5] and joint position controllers [6].
We investigated these issues in [7] and found strong indications that the main reason for this is the influence of LOLA’s own
structural dynamics on the control plants, which are not yet considered in the control design.

To our knowledge, the dynamics of the mechanical structure of biped walking robots have not been investigated yet by the
biped walking robotics community. This is probably because until very recently biped walking robots have been moving quite
slowly for various reasons and only required relatively low control bandwidth compared to high-performance mechatronic
systems like parallel kinematics pick-and-place robots [8–10]. The rigid body assumption for stiffly designed position-
controlled robots like LOLA was therefore still somewhat valid. There have been various efforts to design biped walking
robots with compliant joints, e.g., [11], which inherently have to consider the dynamics introduced by their flexible elements.
However, based on our experience, we assume that most other types of walking robots, position or torque controlled, will
also have to deal with the structural dynamics of their previously assumed to be stiff links, when trying to further push the
bandwidth of their controllers to achieve better performance.

The influence of the structural dynamics of robot manipulators on their performance has already been acknowledged and
studied quite extensively. Most publications concentrate on the dynamics introduced by flexible joints or gears [12–15], while
others look into the dynamics of the flexible links [16–19]. Works that consider both, flexibilities of the joints and links, are
done a bit more rarely [20–22], and however, it seems to become increasingly apparent that this has to be done in order to
acquire high-fidelity models [23].

Experimental Modal Analysis (EMA) is one of the main tools in structural dynamics to experimentally acquire models
that can be used to verify simulation results and generally analyze the dynamics of a mechanical system. For this reason,
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Fig. 6.1 Old (left) and new (right) mechanical design of LOLA with the old and new torso assembly (adapted from [4])

EMA has already been in use in the robot manipulator community for quite some time [24–26]. However, the only case
where an EMA has been applied to a biped walking robot seems to be our own previous work [7].

The purpose of this work is to reevaluate the structural dynamics of our robot LOLA after we had to redesign her upper-
body structure to make her more suitable for multi-contact locomotion [4].

6.2 Mechanical Redesign and System Overview

For the new design, LOLA received a new set of arms with one additional degree of freedom (DOF) each, Fig. 6.2. In the
results of our previous EMA, we noticed that the weakest component of LOLA’s structure was her single backbone pipe
(Fig. 6.1), which had a large contribution to basically all mode shapes, Fig. 6.4a. This was particularly problematic, since the
inertial measurement unit (IMU), which provides the balancing controller with inclination measurements of the upper body,
was mounted on this backbone pipe. For this reason, we also redesigned the torso of LOLA by replacing the single backbone
pipe with a box-like assembly that now houses the IMU and is attached to the hip of the robot via a particularly stiff stainless
steel mounting flange. The hip and legs of the robot were left unchanged. Overall, the robot’s DOF increased to 26 (+2),
height to 1.763m (+1.21%), and mass to 68.2Kg (+7.74%). A more detailed description of LOLA’s redesign can be found
in [4]. We also published a video that showcases the new hardware upgrades [27].

The robot is actuated by 26 drives, most of which are custom-designed BLDC motors featuring harmonic drive gears,
motor-side incremental encoders, and link-side absolute encoders, see [28] for details. In each foot and hand, a 6-axis
force/torque sensor measures the interaction forces with the robot’s environment. The IMU in the torso measures the upper-
body pitch and roll inclinations. The control structure can be separated into two main control loops:

1. A balancing control loop receives the desired ideal contact wrenches at the feet from a walking pattern generator [29].
The balancing controller then modifies these desired contact wrenches based on the inclination feedback from the IMU to
compensate external disturbances and modeling errors. The modified desired contact wrenches are then sent to the hybrid
position/force controller.

2. The hybrid position/force controller uses the measurements of the 6-axis force/torque sensors to implement the modified
desired contact wrenches by changing the pose of the robot. The desired joint angles for the pose change are then sent to
the decentralized joint position controllers [6].

A more detailed description of LOLA’s control architecture can be found in [5]. The first balancing controller is therefore
a non-collocated control loop with the upper-body inclinations measured by the IMU as the input and the modified desired
contact wrenches at the feet as the output. The entire mechanical structure from the mounting point of the IMU at LOLA’s
torso down to the force/torque sensors at the feet is therefore included in the control plant. The influence of LOLA’s structural
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Fig. 6.2 New mechanical design of LOLA with measurement setup

dynamics is very clearly visible in the controller’s open-loop transfer function, which we have shown in [7]. The hybrid
position/force controller and joint position controllers experience similar effects.

6.3 Experimental Setup

In order to evaluate the effect of the mechanical redesign on LOLA’s structural dynamics, we repeated the EMA in a
similar way as we have already done in [7]. Six tri-ax acceleration sensors with a dimension of 12.5 × 12.5 × 12.5mm,
a weight of 6.7 g, and a sensitivity of 100mV/g are used to measure the response of the system. The sensors are a good
compromise between delivering an acceptable accuracy in the low frequency range needed in this test, while also being
small and lightweight enough to be easily attachable to LOLA’s structure via wax. Since we already know from our previous
measurements that the hip motors stay quite rigid relative to each other, even for higher frequency modes (Fig. 6.4a), we
concentrated the sensors more around the torso region. Three sensors are placed near the hand, elbow, and shoulder of each
arm. Four sensors are placed in each corner of the new box-shaped torso assembly. One sensor is placed directly on the IMU
and three sensors near the shin, knee, and hip of each leg. Additionally, the driving point is measured using an impedance
sensor next to the right knee with a sensitivity of 22mV/N for force and 100mV/g for acceleration. In summary, there
were 18 measurement locations with 3 DOFs each, plus one point where force and acceleration were measured. The output
accelerations at the 18 locations were measured in three separate measurement runs.

The system is excited by a modal shaker, which is hung from the ceiling and attached to the impedance sensor at the
knee using a stinger. The excitation signal is a logarithmic sweep from 2–50Hz over 20 s. The amplitude is chosen such that
the arms show visible vibration amplitudes of up to 1 cm. It is important to use a quite strong excitation signal to overcome
nonlinear effects like stick–slip or static friction in the gears and various other components of LOLA, which have a much
more pronounced effect during low-vibration amplitudes.

The EMA is performed using an LMS system from Siemens, which utilizes the PolyMax algorithm [30] to identify a
modal model.

During the experiments, LOLA is standing in her typical starting position for walking tests. The joint angles are actively
held in place by the joint position controllers; however, the balancing and force controllers are turned off for these tests.
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6.4 Results

Figure 6.3 shows two exemplary frequency response functions (FRFs) measured during the EMA. Figure 6.3a shows the
FRF from the input at the shaker to the output acceleration measured at the left elbow in vertical direction. The measured
FRF shows a very good coherence in the frequency range of interest up to 30Hz, which covers all the modes that are of
interest to us. The synthesized FRF derived from the modal model identified by the PolyMax algorithm also shows excellent
agreement with the measurements in amplitude and phase.

Figure 6.3b shows the FRF from the input at the shaker to the output acceleration measured at the lower right corner
of the torso in vertical direction. This FRF is much more challenging to measure with good quality, since the vibration
amplitudes at the torso are quite a bit lower than at the arms. However, we still managed to achieve an acceptable coherence
at the resonance peaks of the measured FRF. The anti-resonances are expectedly much more noisy, which also causes the
PolyMax algorithm to misidentify an anti-resonance around 15Hz. However, all following poles are still identified correctly,
which can be seen by the acceptable fit of the model for the amplitude and the correct shape of the phase following the
misidentified anti-resonance after 15Hz. Since we are only interested in the mode shapes and eigenfrequencies of the system
for this evaluation, the results are still of good quality here.

This indicates an overall very good result of the EMA, since we are still getting good synthesized FRFs at all resonance
peaks, even for the more challenging measurement points. Applying the Modal Assurance Criterion (MAC) to the identified
mode shapes also shows a good independence between mode shapes, Table 6.1. The resulting mode shapes are plotted in
Fig. 6.4b and can be compared to the old shapes Fig. 6.4a, which were identified in [7]. Since these mode shapes are quite
difficult to depict on paper, we highly recommend to watch the comparison of the mode shapes in motion in a video that we
will publish on [31].

The first mode shape is basically the same as before and only slightly increased its eigenfrequency from 6.5Hz to 6.9Hz
(+6.1%). This is unsurprising, since the mode is a rigid rotation of the upper body around the yaw axis that is caused by
twisting of the legs. We suspect that for the old design, the torsion of the backbone pipe also had a slight contribution to this
mode, which is now improved a bit by the stiffer torso. The only marginal improvement for this mode is expected, since we
did not change the hip and leg design of the robot. Fortunately, this mode causes no problem for our walking control system,
since the rotation around the yaw axis is not measured for the feedback of the balancing controller. This mode is therefore
unobservable for the controller and thus not relevant.

The second mode of the old design at 9.7Hz, however, caused us a lot of trouble for the control design, since this mode
involved a large amount of bending of the backbone pipe, which very clearly showed up in the measurements of the IMU
around the roll axis. The eigenfrequency of the new second mode is now 19.6% higher at 11.6Hz and only involves very
little motion of LOLA’s upper body. Even for the small upper-body motion, the measurement points of the torso itself all
stay rigid relative to each other. The main contribution to this mode shape is mainly the deformation of the arms and a bit of
twisting of the legs. While the eigenfrequency of this mode only increased by about 20%, it is very good that the torso and
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Fig. 6.3 Exemplary measured FRFs with the synthesized model and coherence. (a) FRF from the input at the shaker to the output acceleration at
the left elbow in vertical direction. (b) FRF from the input at the shaker to the output acceleration at the lower right corner of the torso in vertical
direction
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Table 6.1 MAC of the first five
modes in %

Mode 1 2 3 4 5

1 100 0.03 0.63 0.32 2.08

2 0.03 100 3.71 0.12 0.03

3 0.63 3.71 100 0.40 1.96

4 0.32 0.12 0.40 100 0.71

5 2.08 0.03 1.96 0.71 100

hip now stay rigid relative to each other. We suspect that this will have a positive effect on the open-loop transfer function of
the balancing controller, which goes from the IMU measurements at the torso to the forces/torques at the feet.

The same is also true for the third and fourth modes, which are basically just different combinations of arm and leg
motions, while the torso and hip stay relatively rigid. The first deformation of the upper body can be seen at the fifth mode
shape at 23Hz. While the torso itself including the IMU still stays rigid, there is now a relative rotation around the roll axis
between the torso and the hip.

While we are highly satisfied with these results regarding the new mode shapes and higher eigenfrequencies, since the
control path between IMU and the feet now behaves much more rigidly, we also lost a quite significant amount of damping,
Fig. 6.4. For example, the second mode decreased its damping ratio from 3.5% to 1.6%, which is less than half the amount
of modal damping than in the old design. This was probably caused by the old design using a lot of old rivet connections,
which also started to deteriorate over the years. This likely introduced a significant amount of damping at the interfaces of
the connections between the torso components. The new torso is assembled much more tightly and probably lost a bit of its
damping properties compared to the old design.

6.5 Discussion

These results show that we definitely achieved the secondary goal of this redesign, which was to make LOLA’s upper-body
structure more rigid. Whether or not this has a positive effect on the performance of the robot still remains to be seen. As
of the time of writing, we are still in the process of evaluating the influence of the LOLA’s new structural dynamics on the
control system. We can report the preliminary results that the changes are definitely visible in the open-loop transfer function
of the balancing controller. We also needed to retune the joint position controllers of LOLA, because of the lower amount of
damping in the mechanical system. We plan to publish a more thorough investigation of these effects in the future.

We still wanted to publish the results of the new EMA in this separate work to emphasize our opinion on the importance
of having a good understanding of the structural dynamics of a biped walking robot. We could show here again that an
EMA is a very useful tool to reliably evaluate the structural dynamics of biped walking robots, despite these machines being
highly complex mechatronic systems. With sufficient expert knowledge, an EMA as shown here can be setup in 1–2 days
and provide very useful information about the global structural dynamics of the system that can potentially be of great help
to trouble shoot specific problems caused by the dynamics of the mechanical structure as already discussed in [7].

In our opinion, the structural dynamics of biped walking robots play an important role in their design to maximize their
potential performance. It seems that, in the current state of the art for walking robots that are not inherently compliant like
[11], the structural dynamics are either completely ignored or only investigated after they started to cause problems. We can
also see in Fig. 6.4 that, while the mode shapes are more favorable now, the eigenfrequencies did not increase by much.
The reason for this is that the dynamics of mechanical structures often do not scale very well and stay roughly the same for
structures of similar topology and size. This is because stiffer materials or designs are often also heavier, which keeps the
overall eigenfrequencies of the structure in the same ball park. For example, the first eigenfrequency of robot manipulators
are often in the region of 7–10Hz [25], because of all robots being a similar tree-like structure regardless of size. This means
that there is probably no way around considering the structural dynamics of even stiffly designed humanoid robots in their
control system to further improve their performance, since there are only quite limited possibilities to further increase the
rigidity of the system just by improving the mechanical design.

Robot manipulator companies like ABB are already trying to incorporate high-fidelity flexible multibody simulation
models in their development process to investigate dynamic effects caused by the mechanical structure of the robot as
early as possible in the development cycle [23]. Sooner or later, there will also be no way around this for groups in the
humanoid robots community. This also opens up a still quite unexplored and challenging field of developing efficient flexible
multibody simulations of biped walking robots that can be coupled with their control systems in order to predict unfavorable
interactions between their control design and structural dynamics as early as possible.
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Fig. 6.4 Front and top views of the first five mode shapes before and after the redesign with their respective eigenfrequency and damping ratio.
(a) Mode shapes before the redesign [7]. (b) Mode shapes after the redesign
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6.6 Conclusions and Future Works

In this work, we performed an EMA of our redesigned biped walking robot LOLA. The results showed that we were able to
design the torso in a much more rigid way, which we suspect will give us a beneficial effect for the possible bandwidth of
the balancing controller of LOLA. This again showed the potential of utilizing an EMA to evaluate the structural dynamics
of a biped walking robot and to use its results to investigate structural vibration problems.

For the future, we plan to thoroughly investigate the effects of the changed dynamics of the new upper-body structure on
LOLA’s control system. In the long term, we will also try to extend our current Beautiful Robot C++ Code Library (Broccoli
[32]) with a flexible multibody simulation to be able to better predict dynamic effects caused by the mechanical structure of
our robot.
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Chapter 7
Novel Wirelessly Synchronised Modal Testing of Operational
Buildings Using Distributed OCXO High-Precision Data Loggers

Wai Kei Ao and Aleksandar Pavic

Abstract This chapter describes a novel and oven-controlled crystal oscillator (OCXO) high-precision synchronised
wireless data acquisition system for modal testing of large structures. The system was used for the first time for a rare FRF-
based modal testing of a full-scale multi-storey building in operation. National Instruments’ CompactRIO and LabVIEW
were utilised to develop wireless multi-channel data loggers to resolve typical, and sometimes insurmountable, problems
related to the logistics of long cables connecting sensors with data acquisition in ambient vibration testing (AVT) exercises on
operational structures. Several OCXO-based data loggers were used to distribute sensors wirelessly across the structure, using
a sub-microsecond sensor synchronisation procedure to measure simultaneously not only the structural vibration response
but also the forcing function needed in FRF measurements. As part of the setup, a spectrum analyser (SA) was used to
provide the shakers’ excitation signal and perform a point accelerance FRF measurement at a location close to the data
acquisition centre and with minimum wired infrastructure. Two different data acquisition systems (OCXO- and SA-based)
used independent time clocks.

To validate the OCXO-based FRFmeasurement in buildings, modal testing was carried out on a 15-tonne laboratory-based
test floor and a full-scale seven-storey condominium building made of cross-laminated timber. The combination of distributed
OXCO-based wireless and synchronised data loggers coupled with an SA-based force generation and FRF point mobility
quality assurance measurement was successfully used to identify the sway modes’ dynamic properties of the structure.

Keywords Distributed OCXO-based data logger · Spectrum analyser-based system · Time synchronisation · Modal
analysis

7.1 Introduction

The number of multi-storey, mid- to high-rise buildings in urban areas has been increasing rapidly for some time now as
the world decided to go up rather than out of its growing cities. For such structures, the wind-induced lateral sway motion
and the related the vibration serviceability performance nowadays govern the design, replacing the strength considerations
in determining the size and shape of the structure.

The damping and natural frequencies of high-rise buildings are the key but traditionally unreliable design parameters as
it is quite difficult to predict them in advance. The way forward is to learn about the as-built modal properties of operational
structures subjected to wind dynamic load in service. For this, output-only ambient vibration testing (AVT) has commonly
been used for many years. However, it is well known that the experimentally estimated modal properties based on the output-
only AVT are much less reliable than their FRF-based counterparts based on the input–output relationship.

The FRF-based modal testing could deal much more effectively than the AVT with the non-linear dynamic behaviour
of the structure and provide a more robust, informed and reliable estimation of the as-built modal properties. For example,
amplitude-dependent behaviour and properties of higher modes of vibration are much easier to investigate and measure using
the FRF-based methodology, compared with its AVT-based counterpart.

To carry out the FRF-based modal testing in an operational building, a novel distributed OCXO-based high-precision
data acquisition system featuring robust time synchronisation was developed. The OCXO-based data loggers can provide
time synchronisation wirelessly, without the need for Wi-Fi, radio or GPS signals. This means that the data loggers could
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be easily distributed through the building at different levels and locations, without any wires to connect sensors to the main
data acquisition system. This solves the key logistical obstacle in modal testing of operational high-rise buildings: running
long wires up and down the building across multiple floor levels. This is the key advantage of the wireless OCXO-based
data loggers over the traditional wired method. The wired method typically features a multi-channel spectrum analyser (SA)
capable of ‘live’ monitoring of the force and response data, as well as of the formation of FRFs through averaging. This is
an important quality assurance feature in FRF-based modal testing of any structure, including operational buildings, and—
as will be seen—the OCXO-based system makes use of this ‘live’ feature as much as possible without compromising its
essentially wireless capability.

The novel OCXO-based data loggers are combined with a wired multi-channel spectrum analyser (SA) to perform
FRF measurements. The SA-based sub-system is used to provide an input signal to drive the modal testing exciter(s)
simultaneously and provide real-time measured force and response data monitoring, but only at a single test point rather
than throughout the whole building. That point is at the same level and close to where the FRF data acquisition centre
is (typically at the top of the building next to the exciters), thus minimising the number and length of wires. This hybrid
system, comprising the wired SA- and wireless OCXO-based data loggers, is considered an optimum solution. It combines
the need for the predominantly wireless data acquisition across different floor levels with the need to have quality-assured
‘live’ measurements of the point accelerance FRF, arguably the most important type of FRF measured.

It is very important to quality assure the FRF measurements in situ, in particular, for civil engineering applications where
return to the test site is difficult or impossible in case of errors. It also makes use of an existing standard and wired modal
testing infrastructure.

To illustrate the process of time synchronisation and operation of the new OCXO-based modal testing systems for a single-
input multi-output (SIMO) FRF measurement, firstly a laboratory-based 15-tonne full-scale and reconfigurable single-floor
panel structure was used. The aim was to experimentally estimate horizontal sway modes of vibration, mimicking what is
typically required for real high-rise structures. In addition, in addition to the hybrid system, a standard wired multi-channel
SA-based system measurement was also used to repeat the test and obtain FRF data for the validation of the hybrid modal
testing system.

After this, the hybrid system was developed successfully for the first time on a full-scale seven-storey condominium
building made of cross-laminated timber (CLT) during its normal operation resulting in a unique FRF-based modal testing
data from such a structure.

This chapter has five sections. Following the introduction, the second section introduces the oven-controlled crystal
oscillator (OCXO) high-precision synchronised data acquisition system. The third section describes the laboratory test
structure on which the above-mentioned two FRF-based modal tests were carried out, using (1) the hybrid OCXO- and
SA-based wireless/wired method and (2) the wired SA-based method. The fourth section describes the deployment of the
hybrid system in FRF-based modal testing of a full-scale CLT building. Conclusions are presented in the last section.

7.2 Oven-Controlled Crystal Oscillator (OCXO) High-Precision Synchronised Data
Acquisition System

Figure 7.1a shows an OCXO-based data logger [1] and a CompactRIO-9064 embedded into a Peli storm case. Furthermore,
it shows a 14.5V LiPloy battery housed within the case, along with DC–DC and AC–DC voltage converters. The data logger
can work with both DC (battery) or AC supply.

To record force and vibration data, National Instruments (NI) 9234 (Fig. 7.1b) was coupled (in CompactRIO-9064)
with other NI modules. CompactRIO-9064 chassis has four slots. The first slot is occupied by the mentioned NI-9234 C
Series Sound and Vibration Input Module. This module gives a wide dynamic range of signal conditioning and configures a
software-selectable 24-bit AC/DC coupling converter that ensures measured signal accuracy. The NI-9234 can also measure
integrated electronic piezoelectric (IEPE) and non-IEPE sensors. Each channel of this module (4-channel, 51.2 kS/s/channel,
±5 V) has built-in anti-aliasing filters that enable automatic adjustment of the sample rate.

Then, the NI-9402 module (Fig. 7.1b) was attached to the second slot of the CompactRIO-9064 chassis, which is a low-
voltage transistor-to-transistor logic (LVTTL), 4 bidirectional channels, 55 ns C Series Digital Module and configures a
high-speed digital I/O counter/timer. Each of the CompactRIOs in the OCXO-based data loggers is also used to monitor
the ‘local’ OCXO clock/tick, which reaches 120 MHz. As such, the field programmable gate array (FPGA) module of the
CompactRIO, which is compatible with graphical programming LabVIEW, could implement the corresponding vibration
data acquisition by overriding the native CompactRIO clock with the acquired OCXO clock/ticks, as shown in Fig. 7.2a.
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Fig. 7.1 OCXO-based high-precision synchronised data acquisition system. (a) OCXO-based data logger. (b) CompactRIO-9064 embedded a
waterproof Peli

Fig. 7.2 LabVIEW graphical programming of the CompactRIO-9064. (a) LabVIEW field programmable gate array (FPGA) module block
diagram. (b) LabVIEW real-time block diagram

Oven-controlled crystal oscillators (OCXOs) are used in control circuitry to provide accurate binary-numbered clock ticks.
The crystal oscillators have a steady and very much constant temperature, which guarantees stability of the high-frequency
measurements. It should be noted that the OCXO is typically applied in radio transmitters, cellular base stations and military
communications equipment to control the frequency measurement very precisely. For convenience, the OCXO was packaged
inside a blank C Series module and inserted into the fourth slot of the CompactRIO chassis.

A Honeywell QA750 accelerometer is connected (via a relatively short 10–20 long cables) to the sensors’ port of the
OCXO-based data logger, as shown in Fig. 7.3a. The accelerometer, or any other suitable sensor, can be placed at a test point
on the structure, typically at the same level in the case of building structures, which amplifiers logistics considerable.

As part of the process for data synchronisation between different OCXO-based data loggers, one of the distributed data
loggers is first selected to act as a ‘master’ clock. The selected ‘master’ data logger needs to connect to the DC/AC power
to activate the embedded CompactRIO. A successful setting of the master clock is announced by a ‘beep’ sound and an



56 W. K. Ao and A. Pavic

Fig. 7.3 Master and slave OCXO units time synchronisation. (a) Connecting QA sensor to OCXO-based data logger. (b) Time synchonisation:
connecting a ‘master’ OCXO to ‘local’ OCXO units

illumination of an indicator (green) on its CompactRIO. Then, the other ‘slave’ data loggers are powered up and individually
activated using the same method resulting in a setup of ‘local’ clock/ticks. The next step is to synchronise the ‘local’ units
by briefly connecting them to the ‘master’ OCXO clock. This is done using a BNC cable to connect the ‘master’ data logger
output port with each of the ‘slave’ units’ input port, for all slave units in turn, as demonstrated in Fig. 7.3b. This syncing
process only takes a few seconds for each ‘slave’ unit and is done only once at the start of the test. The synchronisation
achieved is within a fraction of a microsecond, practically ideal for the purpose of modal testing of large civil engineering
structures and with negligible drift.

The CompactRIO-9064 has high-speed direct memory access. The acquired data, for example, acceleration, is recorded
using a Technical Data Management Streaming (TDMS) format file. In our application, the recorded acceleration TDMS
files were stored one per minute, as shown in Fig. 7.2b, which could very much guarantee no acquired data loss and control
of each file size. The CompactRIO-9064 housing contains a USB port that could extend the file storage through plugging an
external flash memory stick. Once the testing is complete, the stored data could then be accessed through Ethernet, FTP, or
retrieved from a USB flash drive.

7.3 Forced Vibration Modal Testing in the Use of OCXO-Based Distributed Data Loggers

This section describes a laboratory scale floor structure and its modal testing.

7.3.1 Description of the Test Structure

A reconfigurable laboratory-based test floor structure (Fig. 7.4a) was tested to validate the novel hybrid wireless/wired
measurement method of FRF-based modal testing. The weight of the rectangular floor panel structure was approximately
15 tonnes with of dimensions 7.5 × 5 m2. This floor panel was located in the laboratory of the Vibration Engineering Section
at the University of Exeter, UK. The structure was constructed of sandwich plate system (SPS) panels, I section (UB and
UC) steel beams, steel plates and bolts. This is a reconfigurable structure, and in this study, Type C floor structure [2] was
used.

As it can be seen in Fig. 7.5, two main girders were UB 457 × 191 × 82 mm section, while the two secondary beams were
UB 305 × 165 × 40 mm, whereas a beam (UC 203 × 203 × 60 mm) was set in the middle of the panel connected to the
midpoints of the main girders. M22 bolts were used to connect all elements of this core structural frame. M22 countersunk
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Fig. 7.4 Reconfigurable test-bed floor panel structure. (a) Test floor panel. (b) Zoom in view of the support boundary condition

Fig. 7.5 Modal testing test grid

bolts were used to interconnect 12 SPS panel via steel strips (SP02 200× 2279× 12 mm). The four corners of the constructed
floor were laid on roller supports, as shown in Fig. 7.4b, which were placed on short transfer beams (SB01 UC 203 × 203
× 46) and then bolted to columns (SC01 UC 203 × 203 × 46 mm). The constructed floor test structure was used for the
FRF-based modal testing to identify the horizontal sway modes of vibration of the whole structure in the x-direction only
(Fig. 7.5).
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7.3.2 Modal Testing Setup Featuring Wired SA- and Wireless OCXO-Based Distributed Data
Loggers

For convenience, a total of 15 test points (TPs) were defined, as shown in Fig. 7.5. This study used two horizontal APS400
electrodynamic shakers, represented by a triangle symbol, to excite the tested floor structure nominally at TP11 in the x-
direction only. Two movements (termed here ‘swipes’) of 12 available accelerometers were used to cover the 15 test points
by moving the horizontal accelerometers over the 15-point test grid. The first swipe covered TP1 to TP12, while the second
swipe required accelerometers only at the three remaining locations: TP13, TP14 and TP15. To check the robustness of the
FRF measurement, which used the hybrid (OCXO- and SA-based) system, the traditional wired method (only SA-based) was
also used separately to repeat nominally identical modal testing to obtain benchmark modal testing results for comparison
with hybrid system. Figures 7.6 and 7.7 show the equipment and its connections for the traditional SA-based method featuring
plenty of wires. There are, as previously mentioned, a considerable logistical challenge in operational buildings and one of
the key reasons why FRF-based modal testing of operational buildings is so rare, practically non-existent.

The OCXO-based data logger can be utilised to overcome these problems, and Fig. 7.8 shows the relevant equipment
connections for the hybrid OCXO- and SA- based systems. The key advantage is that there are no long cables from connection
reels (accommodating 4 accelerometers per reel, the same number an OCXO data logger handles) to signal conditioner
(which exist as pink lines in the standard wired setup shown in Fig. 7.6).

Fig. 7.6 Standard SA-based wired measurement system featuring connections between accelerometers and cable extension reel, long cables from
cable extension reels to the signal conditioner and spectrum analyser
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Fig. 7.7 Experimental equipment setup. (a) Signal conditioners, spectrum analyser and APS amplifiers. (b) Two horizontal APS Dynamic Inc.
shakers setup

Fig. 7.8 Connections in the OCXO-based system featuring only connections between accelerometers and OCXO-based data loggers (yellow box).
(a) Swipe 1. (b) Swipe 2

7.3.3 Modal Analysis

The electrodynamic excitation for both shakers was identical and random in nature, being a pick noise in the frequency
range of 0–30 Hz. This was provided by a Data Physics Spectrum Analyser with digital data acquisition enabling 0.01 Hz
resolution of the force and response signals. Typical time histories acquired simultaneously by the SA and OCXO system
are shown in Fig. 7.9.
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Fig. 7.9 Different staring time of OCXO-based data loggers and spectrum analyser. (a) Swipe 1. (b) Swipe 2

Fig. 7.10 OCXO- and SA-based measured signal before alignment. (a) Swipe 1. (b) Swipe 2

Fig. 7.11 OCXO-based (blue line) and SA-based (red line) measured signal after time shifting indicating perfect alignment of the two signals,
indicating practically identical signal after the time alignment. (a) Swipe 1. (b) Swipe 2

The force on both shakers was measured directly by recording their moving mass acceleration. Therefore, all force and
response data were measured as acceleration using the same type of accelerometers and OCXO-based data loggers. The
wired part of the hybrid system used the SA to generate the excitation signal for the shakers and to provide in situ single
point accelerance FRF data monitoring. This is not possible using the OCXO data that are suitable only for offline post-
processing after the test [3]. Since the OCXO- and SA-based data acquisition systems are separate and used in parallel, they
have their independent time clocks and different triggers acquiring the same data, as shown in Fig. 7.9.

To enable informed offline time synchronisation between the SA- and OCXO-acquired structural excitation and response
data, the delay between the two measured raw voltage signals of the shakers was calculated by observing difference between
two easily identifiable ‘events’ caused by a manual movement of the shaker masses, which was recorded by both SA- and
OCXO-based systems (see Fig. 7.9). After that, the time shift between the two signals was easy to calculate. Figures 7.10
and 7.11 show the initial signal misalignment and subsequent perfect alignment indicating that the resulting SA- and OCXO-
based measurements were practically identical.

Figure 7.12 shows the total input force for the two ‘swipes’ after the signal scaling to appropriate physical units. The
peak of the total random force (combined synchronous action of both shakers) was approximately 200 N. The SA- and
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Fig. 7.12 Total force time history with respect to time after unit calibration. (a) Swipe 1. (b) Swipe 2

Fig. 7.13 TP11 acceleration time history with respect to time after unit calibration. (a) Swipe 1. (b) Swipe 2

Fig. 7.14 TP11 FRF curve of swipe 1. (a) FRF magnitude. (b) FRF phase

OCXO-based systems produced practically identical measurements from both shakers forking together. Figure 7.13 shows
the corresponding horizontal acceleration response at TP11 measured in the x-direction. The scaled results also gave indicate
practically identical measurements of the corresponding accelerations reaching a magnitude of 0.5 m/s2 in swipes 1 and 2.

By using the input–output force–acceleration data, the relevant FRFs for of each of the two swipes could be estimated, as
shown in Figs. 7.14 and 7.15 for point accelerance FRF at TP11. The FRF calculation was based on 75% overlap and 100
averages with the Hanning window applied on each 53.33 s long data block. It can be seen that the FRFs are almost identical
for the wired (SA) and wireless (OCXO) systems and that the FRF data is quite repeatable between the two swipes.

After the experimental FRF estimation, curve fitting was used to estimate the modal properties [4]. The results are shown
in Fig. 7.16 and Table 7.1.

The first mode was the lateral swaying mode at 7.9 Hz. The second mode was horizontal ‘twisting’ (torsion) 11.7 Hz.
The third mode was a highly complex mode at 14.2 Hz. However, this mode appears in both wireless OCXO- and wired
SA-based measurements and is very consistent giving again confidence that the two systems produce practically identical
results. Furthermore, Table 7.1 provides a numerical comparison between the estimated modal properties including theModal
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Fig. 7.15 TP11 FRF curve of swipe 2. (a) FRF magnitude. (b) FRF phase

Fig. 7.16 Comparison of mode shapes using OCXO- and SA-based systems

Table 7.1 Comparison of modal properties of OCXO- and SA-based measurements

OCXO Spectrum analyser Relative error

Mode
number

MAC
valueModal frequency (Hz) Modal damping (%) Modal frequency (Hz) Modal damping (%) Frequency (%) Damping (%)

1 7.97 0.96 7.96 0.98 0.17 2.25 0.994

2 11.78 1.12 11.77 1.20 0.08 6.29 0.976

3 14.23 0.32 14.26 0.32 0.19 2.91 0.957

Assurance Criterion (MAC) values for comparing the mode shapes estimated using data from both data acquisition systems.
The MAC values very close to 1.0 provided additional evidence that both systems provide almost identical mode shapes that
are of good and consistent.

7.4 Modal Testing of Fully Operational CLT Building

This section describes the deployment of the hybrid data acquisition in FRF-based modal testing of a full-scale timber
building. The test structure is the Yoker building at Clyde Riverfront in Glasgow, UK (Fig. 7.17). The £5.5 m, seven-storey
residential building has a T-shape (Fig. 7.17b) with clearly separated (but structurally still connected) northern and southern
wings. The residential building is constructed of CLT panels entirely [5] accommodating 42 flats. The building received the
Structural Timber Award in 2018. The building is the tallest timber building in Scotland with a total height of 22 m.
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Fig. 7.17 Yoker building, Glasgow, UK. (a) Photo of Yoker building. (b) 3D drawing and tested area

Fig. 7.18 Equipment setup for Yoker building FRF-based modal testing. (a) Shakers and data acquisition centre. (b) OCXO-based data logger
connected with QA sensor. (c) QA sensor

The building was completed in 2017 and was fully occupied during the modal testing. To reduce disruption to the
occupants, only the communal corridor zone was possible to be used (red coloured in Fig. 7.17b). At the top, a test area
was set up housing the shakers and data acquisition centre with majority of cables (Fig. 7.18a). All accelerometers were
distributed along the six levels of the test zone. In Fig. 7.17b, the test area is highlighted in red. The test zone was part of the
north wing of the building.

Figure 7.18a shows three shakers used to excite the structure on the top floor. Two QA750 accelerometers were attached
to each shaker armature using the same setup described in Sect. 7.3.2. The data acquisition centre including the SA, shaker
power amplifiers, signal conditioners and control PC was also set up on the top floor and close to the exciters. This was
done to minimise the length of the cables/wires from the data acquisition centre (signal conditions, SA and power amplifiers)
to the shakers. Figures 7.18b and 7.18c shows an OCXO-based data logger connected to 4 QA750 accelerometers which
location and orientation enabled identification of both bending and torsional modes of vibration.

Applying the previously described hybrid modal testing methodology (Sect. 7.3.3), the estimated modal properties are
shown in Fig. 7.19. Notably, the first and second modes were close to each other, at 2.85 Hz and 2.93 Hz, respectively,
but the FRF-based method had very little difficulty in identifying them. Identifying so clearly such close modes in AVT
could be quite problematic. Also, it transpired that, due to the T-shape of the building, the first mode is a combination of
torsion and bending. The second mode was bending in the x-direction. The other higher modes are presented in Fig. 7.19.
Most interestingly, the methodology had little difficulty in identifying two modes at 8.74 Hz and 9.68 Hz, which are heavily
bending in a manner difficult to excite using AVT due to lack of energy at such high frequencies. However, this kind of
information can provide a good insight into the stiffness of connections engaged in those bending modes, seldom seen in the
standard AVT literature.

The whole 26-channel instrumentation commissioning, modal testing and decommissioning were carried out within a
single day by a test crew of only 3 people.
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Fig. 7.19 Modal properties of Yoker building

7.5 Discussion and Conclusions

This chapter described a novel OCXO-based data acquisition system that provides a wireless time synchronisation for FRF-
based modal testing of sway modes of full-scale buildings in operation, thus decimating the cabling required and enabling
high-quality FRF-based modal testing of operational multi-storey buildings, such as residential or office buildings. The
methodology was validated successfully using a 15-tonne laboratory-based floor panel structure. The modal testing of this
structure using both the OCXO-based ‘wireless’ and standard multi-channel ‘wired’ method produced practically identical
results.

After the successful laboratory trial, a full-scale timber building was instrumented using the wireless OCXO-based data
loggers. These demonstrably facilitated a successfully modal testing of a seven-storey residential building in operation
resulting in high-quality FRFs acquired and demonstrably good quality of modal estimates of the fundamental and higher
modes of vibration, seldom seen in AVT-based modal testing. Equally important is the fact that the whole 26-channel
instrumentation commissioning, modal testing and decommissioning were carried out within a single day by a test crew
of only three people.
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Chapter 8
Empirical Fourier Decomposition for Time-Domain Signal
Decomposition

Wei Zhou, Zhongren Feng, Y. F. Xu, Xiongjiang Wang, and Hao Lv

Abstract Signal decomposition is an effective tool to assist the identification of modal information in time-domain signals.
Two signal decomposition methods, including the empirical wavelet transform (EWT) and Fourier decomposition method
(FDM), have been developed based on Fourier theory. However, the EWT can suffer from a mode mixing problem for signals
with closely spaced modes, and decomposition results by FDM can suffer from an inconsistency problem. An accurate
adaptive signal decomposition method, called the empirical Fourier decomposition (EFD), is proposed to solve the problems
in this work. The proposed EFD combines the uses of an improved Fourier spectrum segmentation technique and an ideal
filter bank. The segmentation technique can solve the inconsistency problem by predefining the number of modes in a signal
to be decomposed, and filter functions in the ideal filter bank have no transition phases, which can solve the mode mixing
problem. A numerical investigation is conducted to study the accuracy of the EFD. It is shown that the EFD can yield an
accurate and consistent decomposition result for a signal with closely spaced modes, compared with decomposition results
by the EWT, FDM, variational mode decomposition, and empirical mode decomposition.

Keywords Signal decomposition · Empirical Fourier decomposition · Empirical wavelet transform · Fourier
decomposition method · Ideal filter bank

8.1 Introduction

Signal decomposition is a widely used numerical tool in different fields, such as biomedical signal analysis [1], seismic signal
analysis [2], mechanical vibration signal analysis [3, 4], and speech enhancement [5]. Time-domain signals that derive from
a physical system usually comprise several superposed components, which are referred to as modes [6], and the modes can
encompass meaningful frequency-domain information of the signals, i.e., modal information. Hence, it is crucial to obtain
signal decomposition results with high accuracy and efficiency.

In the past few decades, several signal decomposition methods have been developed, and the empirical mode decomposi-
tion (EMD)[7] is one of the most significant methods, even though its mathematical understanding is limited and it has some
known shortcomings, such as robustness of mode mixing [8] and end effects [9]. Improved versions of the EMD have been
developed to overcome the shortcomings. The ensemble EMD [10] has been developed by adding white noise with finite
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amplitudes to alleviate the problems of mode mixing and end effects. The complete ensemble EMD [11] was developed to
further improve the EMD by adding completeness and a full data-driven number of modes, which are missing in the ensemble
EMD. Li et al. presented a time-varying filter technique to solve the mode mixing problem [12]. However, these EMD
methods cannot fundamentally solve the problems of mode mixing and end effects. The variational mode decomposition
(VMD) [13] is a non-recursive signal decomposition method, which was developed based on a generalization of Wiener
filters. However, the VMD can fail for non-stationary time-domain signals with chirp modes that have overlapping frequency
ranges. To avoid this potential failure, McNeill [14] proposed the use of an optimized objective function with constraints
on short-time narrowband modes, and Chen et al. [15] exploited a complete variational framework to generalize the VMD.
The empirical wavelet transform (EWT) employs an adaptive wavelet filter bank based on segments of Fourier spectra [16].
The workability of the EWT has been improved in Refs. [17–19] to eliminate its requirement for a high signal-to-noise
ratio in a signal to be decomposed. However, transition phases between filter functions in a wavelet filter bank in the EWT
can lead to the model mixing problem for signals with closely spaced modes. Besides, the first decomposed mode by the
EWT can correspond to a trivial residual, with which the number of segments is not equal to that of decomposed modes.
Fourier decomposition method (FDM) [20] is an adaptive non-stationary, nonlinear signal decomposition method that can
decompose a zero-mean signal into a set of Fourier intrinsic band functions (FIBFs) based on Fourier theory and Hilbert
transform. Several limitations of the FDM have been identified. To obtain a FIBF, two frequency scan techniques were
developed. One is called the low-to-high (LTH) technique and the other is high-to-low (HTL) technique. The LTH and HTL
techniques recursively estimate upper and lower bounds of FIBFs, respectively. However, decomposition results by the FDM
with the two frequency scan techniques, i.e., FDM-HTL and FDM-LTH, can be inconsistent, and one cannot determine
which decomposition results are correct. Furthermore, the two frequency scan techniques are both iterative and can require
long computation times for FDM.

In this work, the EWT and the FDM are briefly reviewed: the segmentation technique and the construction of a wavelet
filter bank in the EWT are described, and the construction of FIBFs and the two frequency scan techniques of the FDM are
described. A new adaptive signal decomposition method, called the empirical Fourier decomposition (EFD), is proposed to
solve the aforementioned problems of the EWT and FDM. The EFD combines an improved segmentation technique and an
ideal filter bank [21]. The improved segmentation technique has an adaptive sorting process to yield segmentation results
that are less adversely affected by noise and contains meaningful modal information, and the ideal filter bank, whose filter
functions have no transition phases, facilitates accurate decomposition for signals with closely spaced modes. A numerical
investigation is conducted to study the accuracy of decomposition result by the EFD for a signal with closely spaced modes
by comparing with decomposition results by the EMD, VMD, EWT, and FDM.

The remnant of this chapter is arranged as follows. In Sect. 8.2, the EWT and FDM are briefly reviewed. In Sect. 8.3,
the proposed EFD is described. In Sect. 8.4, the numerical investigation is presented. Conclusions and some discussions on
future works are presented in Sect. 8.5.

8.2 Reviews of EWT and FDM

8.2.1 EWT

The EWT employs an adaptive wavelet transform algorithm based on segments of Fourier spectra [16]. The two most
important steps of the EWT are (1) the use of an adaptive segmentation technique to divide Fourier spectrum of a signal to
be decomposed and (2) the construction of a wavelet filter bank [22]. Assume that the spectrum is defined on a normalized
frequency range [−π, π ]. The segmentation technique and wavelet filter bank for the spectrum in the frequency range [0, π ]
are described below, and those for the spectrum in the frequency range [−π, 0] can be deduced based on Hermitian symmetry
of Fourier spectrum in the normalized frequency range [−π, π ].

One segmentation technique for the EWT is the local maxima technique [16], in which the spectrum in [0, π ] is divided
into N contiguous frequency segments. Each segment is denoted by Sn = [ωn−1, ωn] with n ∈ [1, N ], ω0 = 0 and ωN = π .
To determine the values of ωn, the first N −1 largest local maxima of the spectrum magnitude are identified. The frequencies
that uniquely correspond to the identified maxima are reindexed in descending order and denoted by [Ω1,Ω2, . . . ΩN−1]
such that Ω1 < Ω2 < · · · < ΩN−1; in addition, Ω0 = 0 is defined. The value of ωn is expressed by

ωn = Ωn−1 + Ωn

2
, n ∈ [1, N − 1] (8.1)
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which concludes the local maxima technique. As an alternative to the local maxima technique, the lowest minima technique
[23] was developed for the EWT: the spectrum division and frequency reindexing procedures, which are the same as those
in the local maxima technique, are first carried out. Then, the minimum of the spectrum magnitude in the frequency range
[Ωn−1,Ωn] is identified, and the value of ωn is determined by

ωn = arg
ω

minXn(ω), (8.2)

where Xn(ω) denotes spectrum magnitudes in [Ωn−1,Ωn] and argmin(·) denotes argument of the minimum, respectively,
which concludes the lowest minima technique.

The wavelet filter bank is then constructed, and it consists of an empirical scaling function φ̂1(ω) and a series of empirical
wavelet functions ψ̂n(ω), which are expressed by

φ̂1(ω) =

⎧⎪⎪⎨
⎪⎪⎩

1 if|ω| ≤ ω1 − τ1

cos
[

π
2 β
(

1
2τ1

(τ1 + |ω| − ω1)
)]

ifω1 − τ1 ≤ |ω| ≤ ω1 + τ1

0 otherwise

(8.3)

and

ψn(ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 ifωn + τn ≤ |ω| ≤ ωn+1 − τn+1

cos
[

π
2 β
(

1
2τn+1

(τn+1 + |ω| − ωn+1)
)]

ifωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin
[

π
2 β
(

1
2τn

(τn + |ω| − ωn)
)]

ifωn − τn ≤ |ω| ≤ ωn + τn

0 otherwise

(8.4)

in which, respectively, ·̂ denotes Fourier transform of a function, ω the circular frequency, β an arbitrary function, and τn a
parameter that determines the size of the transition phase [16] associated with the nth and (n + 1)th segments; the transition
phase ranges in [ωn − τn, ωn + τn]. One of the most used forms of β in Eqs. (8.3) and (8.4) with a variable x is [22]

β(x) =

⎧⎪⎪⎨
⎪⎪⎩
0 ifx ≤ 0

x4(35 − 84x + 70x2 − 20x3) if0 < x < 1

1 ifx ≥ 1

(8.5)

The parameter τn is calculated by

τn = γωn (8.6)

where γ is a sufficiently small parameter, so that it can prevent overlapping between boundaries of nonzero φ̂1(ω) and ψ̂n(ω).
A criterion for an acceptable value of γ is

γ < min
n

(
ωn+1 − ωn

ωn+1 + ωn

)
(8.7)

for all n values, and its value can be determined by

γ =
(

R − 1

R

)
min

n

(
ωn+1 − ωn

ωn+1 + ωn

)
(8.8)

where R is the number of discrete data in the signal to be decomposed. The determination of φ̂1(ω) and ψ̂n(ω) concludes the
construction of the wavelet filter bank. Graphical illustrations of φ̂1(ω) and ψ̂n(ω) are shown in Fig. 8.1a and b, respectively.
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Fig. 8.1 Graphical illustrations of (a) φ̂1(ω) and (b) ψ̂n(ω). Shaded parts are transition phases

After applying a segmentation technique and constructing a filter bank, a decomposed signal can be reconstructed as

f̃ (t) = Wε
f (0, t) ∗ φ1(t) +

N−1∑
n=1

Wε
f (n, t) ∗ ψn(t) (8.9)

where the asterisk ∗ denotes the convolution of two functions, and Wε
f (0, t) and Wε

f (n, t) are called the approximation
coefficient function and detail coefficient function, respectively. The function Wε

f (0, t) is expressed by

Wε
f (0, t) = F−1(f̂ (ω)φ̂1(ω))

=
∫ ω1+τ1

−ω1−τ1

f (τ)φ̄1(τ − t)dτ (8.10)

where the overbar denotes complex conjugation and F−1 denotes the inverse Fourier transform of a function. Note that
F−1(φ̂1(ω)) = φ1(t) and F−1(ψ̂n(ω)) = ψn(t). The function Wε

f (n, t) is expressed by

Wε
f (n, t) = F−1(f̂ (ω)ψ̂n(ω))

=
∫ τn−ωn

−ωn+1−τn+1

f (τ)ψ̄n(τ − t)dτ +
∫ ωn+1+τn+1

ωn−τn

f (τ )ψ̄n(τ − t)dτ (8.11)

Resulting decomposed components of the signal can be expressed by

f0(t) = Wε
f (0, t) ∗ φ1(t) (8.12)

and

fn(t) = Wε
f (n, t) ∗ ψn(t) (8.13)

A step-by-step description of the EWT for a signal f (t) is provided as follows:

Step 1. Obtain a Fourier spectrum of f (t) using Fourier transform.
Step 2. Segment the spectrum in Step 1 using a segmentation technique, such as the local maxima technique and the lowest

minimum technique.
Step 3. Construct a wavelet filter bank based on the frequency segments in Step 2.
Step 4. Express approximation and detail coefficient functions based on the wavelet filter bank in Step 3.
Step 5. Decompose f (t) and reconstruct it using Eq. (8.9).

The EWT can yield accurate decomposition results when f (t) does not have closely spaced modes. However, when f (t)

has closely spaced modes, a mode mixing problem can occur due to the transition phase, and the problem can become more
serious when the closely spaced modes exist in high frequencies as τn in Eq. (8.6) becomes larger for higher frequencies.
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8.2.2 FDM

Assume that f (u) is a zero-mean, discrete, and length-limited signal within one period U , which is an even integer; the
fundamental frequency of f (u) can be expressed by

ϕ0 = 2π

U
(8.14)

In the FDM, f (u) is approximated by a summation of K orthogonal FIBFs gk(u) [20]:

f (u) =
K∑

k=1

gk(u) (8.15)

Based on Eq. (8.15), the analytical signal of f (u) can be expressed by [24]

z(u) = f (u) + jH(f (u))

=
K∑

k=1

[
gk(u) + jH(gk(u))

]
(8.16)

=
K∑

k=1

zk(u)

where H(·) denotes Hilbert transform of a function, j = √−1, and zk(u) = gk(u) + jH(gk(u)). The term zk(u) can be
considered as the analytical signal corresponding to gk(u). Note that z(u) can be expressed as Fourier series:

z(u) =
U/2−1∑
m=1

ame
jmϕ0u (8.17)

where

am = 2

U

U−1∑
u=0

f (u)e−jmϕ0u (8.18)

and values of am can be estimated using discrete Fourier transform.
The analytical signal zk(u) can be considered as a filtered signal by Hilbert transform filter [25], which is the counterpart

of a filter in the wavelet filter bank in the EWT, and zk(u) can be further expressed by

zk(u) =
Mk∑

m=Mk−1+1

ame
jmϕ0u (8.19)

where Mk ranges from 1 to (U/2 − 1) with M0 = 0. Determination of values of Mk is similar to the segmentation in the
EWT. In the FDM, two frequency scan techniques have been proposed to determine the values of Mk in Eq. (8.19), including
the LTH technique and the HTL technique [20]. Flowcharts of the LTH and HTL techniques are shown in Figs. 8.2 and 8.3,
respectively. In the LTH technique, K values of Mk are searched in a forward manner so that M1 < M2 < . . . < Mk . . . <

MK , with which

z1(u) =
M1∑

m=M0+1

ame
jmϕ0u
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Initialize Mk-1=0, Mk=1, k=1

Mk=Mk+1 Mk=Mk-1+1

k=k+1

Mk<(U/2-1)

Mk = Maxima (Mk) for k (u)  0

Mk=(U/2-1)

No

No

Yes

End

Yes

qk (u) = arg

qk (u+1) – qk (u–1)

2
k (u) =

∑ am ejm 0u

m=Mk-1+1

Mk

Fig. 8.2 Flowchart of the LTH technique

z2(u) =
M2∑

m=M1+1

ame
jmϕ0u (8.20)

...

zK(u) =
MK∑

m=MK−1+1

ame
jmϕ0u

where M0 = 0 and MK = U/2 − 1. The signal zk(u) can further be expressed by

zk(u) = Ak(u)ejθk(u) (8.21)
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Initialize M0=U/2, M1=U/2-1, k=1

Mk=Mk–1 Mk=Mk-1–1

k=k+1

Mk> 1

Mk = Minima (Mk) for k (u)  0

Mk=1

No

No

Yes

End

Yes

qk (u) = arg

qk (u+1) – qk (u–1)

2
k (u) =

∑ am ejm 0u

m=Mk

Mk-1–1

Fig. 8.3 Flowchart of the HTL technique

where

Ak(u) =
∥∥∥∥∥∥

Mk∑
m=Mk−1+1

ame
jmϕ0u

∥∥∥∥∥∥
2

(8.22)

and

θk(u) = arg

⎡
⎣ Mk∑

m=Mk−1+1

ame
jmϕ0u

⎤
⎦ (8.23)

denote instantaneous amplitude and phase of zk(u), respectively, in which ‖·‖2 and arg(·) calculate Euclidean norm and
argument of a complex quantity, respectively. The FIBFs gk(u) can be obtained by

gk(u) = Re
[
Ak(u)ejθk(u)

]
(8.24)
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where Re(·) is the real part of a function. In the HTL technique, K values of Mk are searched in a backward manner so that
MK < . . .Mk < Mk−1 < . . . < M1, with which

z1(u) =
M0−1∑
m=M1

ame
jmϕ0u

z2(u) =
M1−1∑
m=M2

ame
jmϕ0u (8.25)

...

zK(u) =
MK−1−1∑
m=MK

ame
jmϕ0u

where M0 = U/2 and MK = 1.
A step-by-step description of the FDM for f (u) is as follows:

Step 1. Obtain a Fourier spectrum of f (u) using Fourier transform.
Step 2. Express z(u) using the spectrum of f (u) obtained in Step 1.
Step 3. Obtain K zk(u) using the LTH or HTL technique.
Step 4. Obtain FIBFs gk(u) from the real part of zk(u) obtained in Step 3.
Step 5. Reconstruct f (u) as a summation of FIBFs gk(u) obtained in Step 4.

An issue of the FDM is that its decomposition results using the LTH technique can be inconsistent with those using the
HTL technique, and the issue will be verified in the numerical investigation in Sect. 8.4.

8.3 EFD

Similar to the EWT and FDM, the EFD consists of two critical steps: an improved segmentation technique and a construction
of an ideal filter bank. In the EFD, Fourier spectrum of a signal to be decomposed is defined on a normalized frequency
range [−π, π ], and the improved segmentation technique and the construction of an ideal filter bank for the spectrum in the
frequency range [0, π ] are described below.

8.3.1 Improved Segmentation Technique

The improved segmentation technique is proposed based on the lowest minima technique [23] described in Sect. 8.2.1. In
the improved segmentation technique, [0, π ] is divided into N contiguous frequency segments. Unlike the local maxima and
lowest minima techniques, ω0 and ωN are not necessarily equal to 0 and π , respectively, and their values are determined
in an adaptive sorting process. In the sorting process, Fourier spectrum magnitudes at ω = 0 and ω = π and their local
maxima are identified and extracted to a series. All magnitudes in the series are sorted in descending order. Frequencies
corresponding to the first N largest values in the sorted series are denoted by [Ω1,Ω2, . . . ΩN ]. In addition, Ω0 = 0 and
ΩN+1 = π are defined. Boundaries of each segment are determined by

ωn =
⎧⎨
⎩
arg
ω

min X̌n(ω) if0 ≤ n ≤ NandΩn �= Ωn+1

Ωn if0 ≤ n ≤ NandΩn = Ωn+1

(8.26)

where X̌n(ω) denotes the Fourier spectrum magnitudes between Ωn and Ωn+1, which concludes the improved segmentation
technique.
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8.3.2 Construction of an Ideal Filter Bank

Both the EWT and FDM consist of a step of constructing a filter bank. In the EWT, a wavelet filter bank is formed by the
empirical scaling function and wavelet functions. In the FDM, Hilbert transform filter bank is constructed based on Fourier
spectrum of the analytical signal associated with a signal to be decomposed. In the EFD, an ideal filter bank is constructed
based on frequency segments obtained by the improved segmentation technique. In each frequency segment, the ideal filter
is a band-pass filter with ωn−1 and ωn serving as its cut-off frequencies and it has not transition phases. Hence, the ideal
filter can retain the major Fourier spectrum component in the segment, and all other Fourier spectrum components beyond
the segment are excluded.

Fourier transform of a signal to be decomposed f (t) is expressed as

f̂ (ω) =
∫ ∞

−∞
f (t)e−jωtdt (8.27)

An ideal filter bank can be constructed by μ̂n(ω):

μ̂n(ω) =
{
1 ifωn−1 ≤| ω |≤ ωn

0 otherwise
(8.28)

where 1 ≤ n ≤ N and the values of ωn are determined by Eq. (8.26). A graphical illustration of the ideal filter bank is shown
in Fig. 8.4.

Filtered signals that correspond to μ̂n(ω) are calculated by

f̂n(ω) = μ̂n(ω)f̂ (ω) =
{

f̂ (ω) ifωn−1 ≤| ω |≤ ωn

0 otherwise
(8.29)

Decomposed components in the time domain can be obtained using the inverse Fourier transform:

fn(t) = F−1
[
f̂n(ω)

]
=
∫ ∞

−∞
f̂n(ω)ejωtdω

=
∫ −ωn−1

−ωn

f̂ (ω)ejωtdω +
∫ ωn

ωn−1

f̂ (ω)ejωtdω (8.30)

The reconstructed signal is calculated as a summation of all decomposed components:

f̃ (t) =
N∑

n=1

fn(t) (8.31)

Fig. 8.4 Graphical illustration of an ideal filter bank of the EFD
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Fig. 8.5 Flowchart of the EFD

A flowchart of the EFD is shown in Fig. 8.5 and a step-by-step description of the EFD is provided as follows:

Step 1. Obtain Fourier spectrum of a signal to be decomposed f (t) using Fourier transform.
Step 2. Determine boundaries of segment ωn using the improved segmentation technique based on Fourier spectrum

obtained in Step 1.
Step 3. Construct an ideal filter bank μ̂n(ω) based on ωn obtained in Step 2.
Step 4. Obtain filtered signals f̂n(ω) in the frequency domain using μ̂n(ω) obtained in Step 3.
Step 5. Obtain decomposed components fn(t) in the time domain using inverse Fourier transforms of f̂n(ω) obtained in

Step 4

8.4 Numerical Investigation

In this section, the effectiveness of the proposed EFD method for decomposing signals with closely spaced modes is studied.
Decomposition accuracy of the EFD method is compared with that of the EWT [16], FDM [20], VMD [13], and EMD [7]
methods.

A stationary signal with two modes [26] denoted by fSig(t) is constructed to compare performances of the different
decomposition methods for signals with closely spaced modes, which is expressed by

⎧⎪⎪⎨
⎪⎪⎩

fSigC1(t) = cos(2πt)

fSigC2(t) = a cos(2πλrt)

fSig(t) = fSigC1(t) + fSigC2(t)

(8.32)

where a and λr denote a ratio between the amplitudes of fSigC2(t) and fSigC1(t) and that between the frequencies of fSigC2(t)

and fSigC1(t), respectively; 0.01 ≤ a ≤ 100 and 0.01 ≤ λr ≤ 1. When λr approaches to 1, fSigC2(t) and fSigC1(t) become
closely spaced modes. The signal fSig(t) is sampled at a frequency of 10Hz for 300 s. The EFD, EWT, FDM-LTH, FDM-



8 Empirical Fourier Decomposition for Time-Domain Signal Decomposition 75

(a)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1
(b)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1
(c)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

(d)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1
(e)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1
(f)

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

Fig. 8.6 Decomposition performance with respect to (a, λr ) by the (a) EFD, (b) EWT, (c) FDM-LTH, (d) FDM-HTL, (e) VMD and (f) EMD

HLT, VMD, and EMD are deployed to decompose fSig(t). A two-dimensional binary quantity Q(a, λr) is used to measure
the decomposition performance [26] of the different methods for fSig(t) with different values of a and λr , and it is expressed
by

Q(a, λr) =
⎧⎨
⎩
0 if‖C1−fSigC1‖2‖fSigC2‖2

≤ ε

1 if‖C1−fSigC1‖2‖fSigC2‖2
> ε

(8.33)

where C1 is the decomposed component by a decomposition method corresponding to fSigC1(t) and ε is the threshold of
Q. A zero value and a unit value of Q indicate an acceptable decomposition result and an unacceptable decomposition one,
respectively, and the value of ε is chosen to be 0.5 in this study, which was also the cases in Refs. [4, 12, 26]. Resulting
Q(a, λr) corresponding to the six methods are shown in Fig. 8.6, where the colors of blue and yellow correspond to Q values
of 0 and 1, respectively. It can be seen that the yellow area corresponding to the EFD is the smallest among the six Q results.
Even as λr approaches to 1, fSig(t) can still be well decomposed. However, the decomposition by the EFD is affected when
a approaches to 0.01. Furthermore, the yellow area corresponding to the EWT is the second smallest, but its decomposition
performance is affected when a approaches to 0.01 and λr is larger than 0.8. The yellow area corresponding to the VMD
is the third smallest. Similar to Q corresponding to the EFD, as λr approaches to 1, fSig(t) can still be well decomposed.
However, the decomposition performance associated with the VMD is affected when a is close to 0.01 and 100. The yellow
area corresponding to the EMD is the fourth smallest. The EMD cannot decompose fSig(t), when λr is larger than 0.65 for
all a. In addition, worse decomposition results are obtained when a approaches to 100. For the FDM-LTH and FDM-HTL,
decomposition performances are almost the same but the worst among the six methods. Their decomposition results are
greatly affected by the value of a. They can hardly decompose fSig(t), when a is smaller than 1 for λr ≥ 0.01. Based on the
observations, it is indicated that the EFD can robustly and accurately decompose fSig(t) as its decomposition results are the
most accurate even when fSig(t) becomes a signal with closely spaced modes, and both the FDM-LTH and FDM-HTL can
yield inaccurate decomposition results for fSig(t).
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8.5 Concluding Remarks

In this paper, an accurate and efficient EFD method is proposed to decompose time-domain signals. The EFD consists of two
critical steps: the improved segmentation technique and the construction of a filter bank. In the improved segmentation
technique, only meaningful Fourier spectrum components are included, and the last segment that can contain noise is
narrowed, which can decrease the size of the segment and alleviate adverse effects of noise. In a constructed filter bank,
transition phases of filter functions are eliminated, which can improve the decomposition performance for closely spaced
modes. A numerical investigation is conducted on a signal with closely spaced modes, it is shown that the EFD can yield a
high accuracy and consistency decomposition result for the signal with closely spaced modes, and its decomposition result
is more accurate than that by the other decomposition methods. A future work can be an investigation of the applicability of
the EFD to signals/data of higher dimensions, such as digital images.
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Chapter 9
Vibration Isolation in 3D Printer Using Meta-Structures

Shantanu H. Chavan and Vijaya V. N. Sriram Malladi

Abstract Reducing vibrations in a 3D printer is crucial in improving the quality of printed prototypes. Ideally, the noise
from the actuators in 3D printers should not hinder the print quality. However, isolating the printer surface from vibrations
is challenging. Therefore, in this paper, a novel vibration-isolating frame is designed for building a novel 3D printer. Such a
structure would absorb external vibrations and isolate the print-plate, thereby improving the print quality.

The proposed frame is a meta-structure that absorbs vibrations over a frequency bandwidth. The structure is built with
assembling multiple identical unit cells. Each unit cell is an assembly of 1D beams of varying cross-sections. The current
paper’s objective is to design a fame that produces in-plane and out-of-plane bandgaps. Finite element models iterate over
multiple designs, which are validated in the lab through robust experimentation. The paper discusses the design methodology
and the corresponding results.

Keywords Meta-structure frame · Vibration isolation · 3D printer · Bandgaps

9.1 Introduction

3D printers have emerged as one of the most dominating technologies which are used extensively. The poor quality of the
3D prints is a significant problem and vibrations are one of the most prominent reasons for quality degradation. The quality
of a 3D print could further be improved if the printer surface is isolated from all the external vibrations.

This paper evaluates if meta-structures are a feasible option in isolating the print bed from ambient vibrations. The ambient
vibrations experienced by a Prusa 3D printer were first measured while printing a part. The power spectral densities have
shown that there are significant vibrations in the frequency band of 50–108 Hz. Therefore, the aim is to design a meta-
structure frame capable of isolating vibrations over this frequency bandwidth.

The frame is a 2D assembly of unit cells in series and parallel. The design of the meta-structural frame is iteratively tuned
till the desired bandgap is achieved. For design flexibility, combination of (Poly-lactic acid) PLA 3D prints and aluminum
beams of rectangular cross-section (0.5′′ × 0.25′′) is used. Figure 9.1 shows the design of a single unit cell and the meta-
structure made of multiple unit cells. These unit cells are assembled longitudinally such that the total length was equal to the
length of the 3D printer base. This structure is tested to validate the finite element modelling. Furthermore, the longitudinal
structure is extended laterally to match the width of the 3D printer base to produce the ultimate vibration isolating frame.

9.2 Bandgap Using the 1D Meta-Structure

Given the requirement of the band gap range, we conducted experiments on the proposed meta-structure to assess the position
of the band gap. The smart shaker K2007E01 shown in Fig. 9.2 actuates the 1D meta-structure over the frequency range of
interest. While the smart shaker is mounted on one end on the meta-structure, the other end is suspended with pre-tensed
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Fig. 9.1 Unit cell and meta-structure assembly

Fig. 9.2 Experimental setup

fishing lines to replicate free-free boundary conditions. PCB teardrop accelerometers 352A24 measured the response at
multiple locations.

In finite element modelling, the experimental environment is replicated with all the appropriate boundary conditions,
excitation points, and response measurement points. Figure 9.3 compares the simulated and the experimental frequency
response functions of the 1D structure. The location of the bandgap in the experimental frequency response function agrees
with the simulated FRFs. Also, the highlighted frequency band gap region aligns well with the peaks in the experimental
PSD of the printer surface.
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Fig. 9.3 Comparison of experimental and simulated FRFs of the meta-structure with PSD of the vibrations generated

9.3 Conclusion

The showcased work represents the use of meta-structures for isolation of vibrations in 3D printers. With the experiments
conducted on Prusa i3 MK3S 3D printer and the meta-structure, the feasibility of the usage of proposed meta-structure is
assessed. The structure can absorb all the vibrations from the 3D printer frame without transmitting it further to the printer
bed. Band gap of 50–108 Hz is achieved successfully which hinders the transfer of vibrations in this vibration range. In
future, the assemble of the meta-structure with the print bed will be studied.



Chapter 10
Experimental Modal Analysis Using Nontraditional Response
Variables

Robert N. Coppolino

Abstract Recent introduction of enhancements for the Simultaneous Frequency Domain (SFD) method of experimental
modal analysis, specifically the exploitation of left-hand eigenvector data to validate modal orthogonality and estimate kinetic
energy distributions, opens the opportunity for incorporation of nontraditional measured response variables. These variables
include (1) strains and/or stresses for structures, and (2) dynamic pressures for fluids and gases (e.g., for launch vehicle
system dynamics and vibroacoustics). Justification for the exploitation of the above-cited, measured variables stems from
the following facts: (a) stresses and fluid pressures are theoretically proportional to accelerations, and (b) SFD estimates an
effective dynamic system and permits identification of complex eigenvectors that occur in multiphysics applications. Validity
of these expanded opportunities is demonstrated with two simple analytically simulated examples.

Keywords Experimental modal analysis · Acceleration · Strain · Pressure

10.1 Introduction

The majority of modern modal test campaigns, especially in the aerospace community, employ acceleration responses and
applied force or foundation acceleration excitations to estimate frequency response functions and modal characteristics of
a structural test article. Modal test verification and validation goals are typically accomplished through (theoretical mass-
weighted) orthogonality checks of (real) experimental mode shapes, which satisfy NASA and/or U.S. Air Force standards.
In addition, correlation and updating of finite element mathematical models, ultimately intended for prediction of system
performance during operations, are guided by mass-weighted cross-orthogonality and modal frequency correlation criteria
specified in the same NASA and/or U.S. Air Force standards.

Over the past 50 years, technical organizations have augmented accelerometer sensors with strain and load gauges (which
are basically scaled strain gauges) to gain additional insights into structural behavior, especially when critical load paths
are redundant. While strain gauge data provides valuable detailed information, it has typically played a “surrogate” role in
experimental modal analysis.

Satisfaction of U.S. government modal test orthogonality and test-analysis cross-orthogonality criteria are at times
challenged by inaccessible key regions on a test article. Two such regions are (a) interior (flexible) structural components
and (b) liquid propellant tank fluid free surfaces. It is contended in this paper that augmentation of measured dynamic
response with strain gauge and pressure sensor data (playing a primary role in experimental modal analysis) may remedy
these challenges. Finally, it is noted that the important category of vibroacoustics may be properly and rigorously addressed
through employment of structural acceleration and interacting fluid (gas) dynamic pressure sensors. Specifically, fully
coupled vibroacoustic system modes may be estimated by an expanded approach to experimental modal analysis.

This paper provides a systematic basis for the incorporation of strain gauge and pressure sensor data in experimental modal
analysis. Theoretical foundations for the employment of strain and pressure degrees of freedom are discussed, and simulated
structural and hydroelastic (vibroacoustic) data for simplified example systems are employed to demonstrate feasibility of
incorporation of nontraditional response variables in experimental modal analysis.
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10.2 Nomenclature

Symbol Definition

[A] Fluid-structure interface area matrix
[Aη] Generalized state-space matrix
[B] Viscous damping matrix
[C] Fluid compliance matrix
[COH] SFD modal coherence matrix
{Fe} Applied force array
[H] FRF matrix
[K] Stiffness matrix
[Kε] Strain-displacement matrix
KE Kinetic energy (distribution)
[LTM] Load transformation matrix
[M] Mass matrix
{P} Fluid pressure array
[R] Fluid “radiation” loss matrix
[S] Fluid susceptance matrix
[V] SFD generalized trial vector matrix
f Circular frequency (Hz)
[h] Modal FRF matrix
i Imaginary unit
{q} Modal displacement array
t Time
{u} displacement array
{v} Fluid volumetric strain array
[�] Modal matrix
[ΓF] Applied force distribution matrix
[I] Identity matrix
{ε} Strain array
[γ ] State-space modal gain matrix
{η} State-space modal displacement array
λ Complex eigenvalue
{σ } Stress array
ω Angular frequency (rad/sec)
{ξ} Generalized displacement array
ζ Critical damping ratio

10.3 Theoretical and Experimental Considerations

10.3.1 In Vacuo Linear Structural Dynamics

The generally accepted matrix equations for an in vacuo, linear structural dynamic system are,

[M] {ü} + [B] {u̇} + [K] {u} = [ΓF ] {Fe(t)} (10.1)

In addition, elastic strains (for axial deformations, ε = du/dx) are described by a real, linear transformation with respect
to the discrete displacement array,

{ε} = [Kε] {u} (10.2)
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Moreover, it should be noted that “accelerated” strains,

{ε̈} = [Kε] {ü} (10.3)

define an explicit transformation of accelerations, which (analytically) justifies an expanded role for strain measurements in
experimental modal analysis.

Explicit substitution of displacements from Eq. (10.1) (a slightly more involved path must be taken for a singular stiffness
matrix) results in a “load” transformation relationship (for strains),

{ε} =
[
KεK

−1ΓF

]
{Fe} −

[
KεK

−1M
]
{ü} −

[
KεK

−1B
]
{u̇} (10.4)

The most commonly employed approximation of the above relationship ignores the small contribution of damping,
resulting in,

{ε} ≈
[
KεK

−1ΓF

]
{Fe} −

[
KεK

−1M
]
{ü} = [

LTMε,F
] {Fe} + [

LTMε,ü

] {ü} (10.5)

Further substitutions of elastic stress-strain transformations yields internal stress and member loads in the form,

{σ } ≈ [
LTMσ,F

] {Fe} + [
LTMσ,ü

] {ü} (10.6)

When low-frequency (undamped normal) modes are substituted in Eqs. (10.5) and (10.6), the well-known mode
acceleration relationships due to Williams [1] are defined as,

{ε} ≈ [
LTMε,F

] {Fe} + [
LTMε,q̈

] {q̈�} and {σ } ≈ [
LTMs,F

] {Fe} + [
LTMσ,q̈

] {q̈�} (10.7)

It should be noted that the mode acceleration relationships automatically account for the quasi-static response of all higher
frequency modes.

10.3.2 Hydroelasticity and Vibroacoustics

Interaction of an inviscid, compressible fluid with a structure has been described by Zienkeiwicz [2] (and related to Toupin’s
variational principle [3, 4]) employing pressure perturbation degrees of freedom. In particular, dynamics of the fluid are
described by,

[C]
{
P̈
}+ [R]

{
Ṗ
}+ [S] {P } = −

[
AT
]
{ü} (10.8)

The interacting structural system is described by,

[M] {ü} + [B] {u̇} + [K] {u} = [A] {P } + [ΓF ] {Fe} (10.9)

The resulting unsymmetric, coupled “hydroelastic” system equations are,

[
M 0
AT C

]{
ü

P̈

}
+
[

B 0
0 R

]{
u̇

Ṗ

}
+
[

K −A

0 S

]{
u

P

}
=
[

ΓF

0

]
{Fe} (10.10)

Physically, the above matrix partitions play the following roles:

(a) [C] represents flexibility or compliance of the fluid medium.
(b) [S] represents “inverse mass” or susceptance of the fluid medium.
(c) [R] represents radiating acoustic wave losses only for an infinite fluid medium.
(d) [A] represents the area of the fluid-structure interface.
(e) [�F] represents spatial allocation of applied external loads.
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While the fluid compliance matrix, [C], is symmetric and positive-definite, the fluid susceptance matrix [S] is symmetric
and positive-semi-definite, due to the fact that uniform pressure distribution (unless at least one pressure DOF is constrained)
results in no fluid motions [4].

The Zienkeiwicz equations can be re-cast in standard symmetric form by substitution of the pressure-volumetric strain
transformation (only for finite fluid media where [R] = [0]),

[C] {P } = {v} (10.11)

which substituted into Eq. (10.8) yields,

[S] {P } = − {v̈} −
[
AT
]
{ü} (10.12)

Note that the above equation clearly indicated that fluid pressures are directly related to accelerations; therefore pressure
DOFs play a role corresponding to acceleration DOFs in experimental modal analysis.

Introduction of a small perturbation in the singular susceptance matrix, [S], permits its explicit inversion, which results in
the symmetric hydroelastic system equations (for a finite fluid medium) by substitution into Eq. (10.10),

[
M + AS−1AT AS−1

S−1AT S−1

]{
ü

v̈

}
+
[

B 0
0 0

]{
ü

v̈

}
+
[

K 0
0 C−1

]{
u

v

}
=
[

ΓF

0

]
{Fe} (10.13)

10.3.3 Experimental Modal Analysis (EMA) Considerations

Conventional laboratory modal testing typically results in estimated frequency response function (FRF) arrays associated
with measured accelerations,

[
Ü (f)

]
, and (one or more) (unit) applied forces, [F(f )]. When strain measurements are made,

additional FRF arrays, [ε(f )], may be estimated. Moreover, when the test article either interacts with a liquid (hydroelasticity)
or gas (vibroacoustics), dynamic pressure FRF arrays, [P(f )], may be relevant. Since most EMA techniques focus on
acceleration data, the following augmented FRF arrays appear to be of consistent character:

(a) Accelerations and strain “accelerations” by virtue of Eq. (10.2)

[
Ü (f )

ε̈(f )

]
∼
[

I

Kε

] [
Ü (f )

]
(10.14)

(b) Accelerations and pressures by virtue of Eq. (10.12)

[
Ü (f )

P (f )

]
∼
[

I 0
− S−1AT −S−1

] [
Ü (f )

v̈(f )

]
(10.15)

(c) Accelerations, pressures, and strain “accelerations” by virtue of Eqs. (10.2) and (10.12)

⎡
⎣ Ü (f )

ε̈(f )

P (f )

⎤
⎦ ∼

⎡
⎣ I 0

Kε 0
− S−1AT −S−1

⎤
⎦
[

Ü (f )

v̈(f )

]
(10.16)

In the present paper, application of general cases (a) and (b) are explored with simple example analytically simulated
test articles. Moreover, EMA calculations employ versions of the Simultaneous Frequency Domain Method (SFD) [5–7], for
which an overview is provided in the Appendix of this paper.
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10.4 Illustrative Example 1: In Vacuo Structure Accelerations and Strains

10.4.1 Simulated Measured Data

The first illustrative example system consists of a lumped parameter, five mass, rod type structure, which is depicted below
in Fig. 10.1.

Matrix properties and theoretical (real and complex) modal solutions associated with this structure are summarized below
in Table 10.1.

It should be noted that the rod’s actual modes are complex due to the nonproportional viscous damping matrix, [B].
Simulated acceleration and strain FRFs (depicted below in terms of magnitude and phase versus frequency in Figs. 10.2

and 10.3, respectively) are formed by direct solution to frequency domain expressions of Eqs. (10.1) and (10.2); note that the
strains are calculated as differences of successive displacements divided by the spacing (L = 0.2).

Note that the strain FRFs, illustrated in Fig. 10.3, have low-frequency magnitudes that are characteristic of displacement
FRFs. This contrasts with the acceleration FRFs, illustrated in Fig. 10.2, which have asymptote to null magnitudes at low
frequency. The strain acceleration FRFs (formed via multiplication of strain FRFs by −(2π f )2), illustrated below in Fig.
10.4, however, possess low-frequency asymptotic behavior consistent with acceleration FRFs.

Five simulated measured cases are considered to investigate effectiveness of combined acceleration and strain FRF data
for EMA, specifically:

Case 1: Five acceleration response FRFs representing a conventional EMA array typically employed for a process aimed at
satisfying mass-weighted orthogonality criteria according to NASA STD-5002 [8] or SMC-S-004 [9].

Case 2: One acceleration response FRF and four strain “acceleration” FRFs representing situations in which some “mass
points” are inaccessible (e.g., enclosed regions).

Fig. 10.1 Five mass rod structure

Table 10.1 Five mass rod structure matrices and theoretical modal solutions

K M B Γ F

200000 −100000 0 0 0 1 0 0 0 0 16.96 −2.70 −0.13 −0.01 0.00 0
−100000 110000 −10000 0 0 0 0.9 0 0 0 −2.70 5.73 −0.48 −0.02 −0.01 0.5
0 −10000 20000 −10000 0 0 0 1 0 0 −0.13 −0.48 2.73 −0.51 −0.12 0
0 0 −10000 110000 −100000 0 0 0 1.1 0 −0.01 −0.02 −0.51 6.28 −2.81 1
0 0 0 −100000 200000 0 0 0 0 1 0.00 −0.01 −0.12 −2.81 17.06 0
Real modal analysis results
Freq (Hz) Zeta (%) Phi
19.55 1.11 0.13 −0.26 −0.67 0.01 1.00
33.39 1.54 0.24 −0.40 −1.00 0.00 −0.74
36.21 1.56 1.00 −0.25 0.40 −0.02 0.03
80.80 1.61 0.25 1.00 −0.28 0.58 −0.01
83.25 1.54 0.14 0.64 −0.19 −1.00 0.01
Complex modal analysis results
Freq (Hz) Zeta (%) |Phi| Phase of Phi (deg)
19.55 1.11 0.13 0.26 0.67 0.01 1.00 −0.7 178.3 −0.5 178.6 0.0
33.38 1.54 0.24 0.40 1.00 0.00 0.74 −0.4 178.7 0.0 −2.5 178.9
36.20 1.56 1.00 0.25 0.40 0.02 0.03 0.0 179.7 178.6 −1.9 −1.8
80.79 1.61 0.25 1.00 0.28 0.58 0.01 −0.4 0.0 −1.4 178.8 177.6
83.24 1.54 0.14 0.64 0.19 1.00 0.01 −0.7 −0.5 −1.9 0.0 −1.2
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Fig. 10.2 Illustrative example 1 acceleration FRFs

Fig. 10.3 Illustrative example 1 strain FRFs

Case 3: All five acceleration response FRFs and all four strain “acceleration” FRFs representing a thoroughly mapped test
article.

Case 4: All five acceleration response FRFs and all four strain “displacement” FRFs representing a thoroughly mapped test
article [to demonstrate issues associated with mixing of acceleration and displacement FRFs in EMA].
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Case 5: Employment of strain “displacement” FRFs and acceleration FRFs to estimate load transformation matrices [for an
augmented EMA process with strain playing a “surrogate” role].

10.4.2 Experimental Modal Analysis

EMA results, based on SFD-2018 computations, for Cases 1–4 (with modes unit normalized to the common response
channel, A1) are presented below in Table 10.2.

EMA results for all four cases indicate consistent values for all modal frequencies, damping, and complex modes
[eigenvectors]. This level of consistency occurs due to the fact that the simulated FRF data is noise-free, which is never
the case with actual measured data.

Fig. 10.4 Illustrative example 1 strain acceleration FRFs

Table 10.2 EMA (SFD-2018) results for cases 1–4
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It is of interest to note that all EMA modes (for Cases 1–4) computed by SFD-2018 [7] indicate clear modal isolation
based on left-hand eigenvector orthogonality checks. Effectiveness of the mode isolation process is demonstrated below in
Figs. 10.5 and 10.6, which, respectively, depict the (Case 3) physical FRF,Ü3(f ), and generalized modal FRFs, h4(f ) and
h5(f ), associated with modes 4 and 5.

Further insight into the quality of EMA results for the four cases is realized by reconstruction of (simulated) measured FRF
data using estimated system eigenvalues and modal vectors. “Classic” SFD [5, 6] estimation of experimental modal vectors
using linear least squares calculation is a feature of many EMA techniques [10]. Strain-displacement FRF reconstruction

Fig. 10.5 Case 3 physical FRF Ü3(f )in the 70–90 Hz frequency band
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for Case 4, provided below in Fig. 10.7, illustrates the failure to accurately reconstruct the function when low-frequency
residuals are not included.

It is clearly illustrated in the above results that inclusion of FRF reconstruction deficiencies is eliminated when low-
frequency residuals are included in the FRF reconstruction process. While the low-frequency residual is not required for
acceleration FRFs, it is required for strain-displacement FRFs to compensate for the fact that modal displacement FRFs are
“−1/(2π f )2” times modal acceleration FRFs.

10.4.3 Strain Viewed as a Surrogate Variable

In addition to incorporation of strain FRFs in the EMA process (Cases 2–4), strain FRFs may be viewed as “surrogates”
with respect to acceleration FRFs (Case 5) to be employed for direct estimation of LTMs (see Eq. (10.5)). Estimation of
real-valued coefficient matrices is guaranteed when the least-squares process in cast as,

[
LTMε,F LTMε,ü

] =
⎛
⎝[ ε(f )Real ε(f )Imag

]
·
[
F(f )Real F(f )Imag
Ü(f )Real Ü(f )Imag

]T⎞
⎠ ·

⎛
⎝
[
F(f )Real F(f )Imag
Ü(f )Real Ü(f )Imag

]
·
[
F(f )Real F(f )Imag
Ü(f )Real Ü(f )Imag

]T⎞
⎠

−1

. (10.17)

The estimated load transformation matrices are illustrated below in Table 10.3.
In addition, recovery of measured strains employing the estimated load LTMs yields nearly perfect strain FRF functions,

as indicated below for ε45(f ), as illustrated below in Fig. 10.8.
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Fig. 10.7 Case 4 strain FRF reconstruction results

Table 10.3 Estimated load transformation matrices

LTMεF × 105 LTMεA × 105

F A1 A2 A3 A4 A5

ε12 2.6828 ε12 0.1949 −4.1138 −2.4963 −0.4841 −0.1967
ε23 2.0399 ε23 2.1052 3.7231 −25.0098 −4.4893 −2.0379
ε34 2.0040 ε34 2.1318 3.8198 24.9534 −4.6076 −2.0917
ε45 −4.7243 ε45 0.2466 0.3273 2.5098 5.0527 −0.2206
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10.5 Illustrative Example 2: Hydroelastic System Accelerations and Fluid Pressures

10.5.1 Simulated Measured Data

The second illustrative example system consists of a lumped parameter, five mass and five fluid DOF, hydroelastic system,
which is depicted below in Fig. 10.9.

Matrix properties associated with this hydroelastic system in terms of the unsymmetric Zienkeiwicz formulation (Eq.
(10.10)) are summarized below in Table 10.4.

In addition, matrix properties associated with the corresponding symmetric hydroelastic formulation (Eq. (10.13)) are
summarized below in Table 10.5.

Note that the system’s actual modes are complex due to the nonproportional viscous damping matrix, [B].
The (unsymmetrical Zienkeiwicz) hydroelastic system complex modes in the frequency band below 20 Hz are summarized

below in Table 10.6.
The zero eigenvalue mode of no consequence (impossible to excite) is associated with uniform fluid pressure distribution,

which is consistent with “null” fluid motion [4]. It also should be noted that the structural and fluid modal kinetic energies
are determined by product operations involving left- and right-hand complex eigenvectors [7].

Fig. 10.8 Measured and Reconstructed Strain FRF, ε45(f )

Fig. 10.9 Five mass and five
fluid DOF hydroelastic system
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Table 10.4 Hydroelastic system matrices (Zienkeiwicz formulation)

Table 10.5 Hydroelastic system matrices (symmetric formulation)

Table 10.6 Hydroelastic system (Zienkeiwicz model) modes

Simulated acceleration and pressure FRFs (depicted below in terms of magnitude and phase versus frequency in Figs.
10.10 and 10.11, respectively) are formed by direct frequency domain solution of Eq. (10.10); note that the pressure FRFs
are scaled by an “inertance” factor, Le/(f lAf l) = 68.015 resulting in acceleration unit pressure FRFs.
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Fig. 10.10 Hydroelastic system acceleration FRFs

Fig. 10.11 Hydroelastic system scaled pressure FRFs

10.5.2 Experimental Modal Analysis

EMA was conducted on the simulated hydroelastic FRFs employing both SFD-2018 and “Classic” SFD methods. A
comparison of theoretical and EMA estimated complex eigenvalues in the 0–15 Hz band, presented below in Table 10.7,
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clearly integrity of the EMA process. It should be pointed out that the “Classic” SFD results suggest that other EMA
techniques [10] should produce results of similar integrity.

Validation of SFD-2018 estimated modes is demonstrated by effectiveness of left-hand eigenvector orthogonality (mode
isolation) checks, shown below in Fig. 10.12.

Validation of “Classic” SFD estimated modes is demonstrated below in Fig. 10.13 via reconstruction of (simulated)
measured FRF data using estimated system eigenvalues and modal vectors.

Table 10.7 Comparison of theoretical and EMA complex eigenvalues

Model SFD-2018 Classic SFD
Mode Freq (Hz) Zeta (%) Freq (Hz) Zeta (%) Freq (Hz) Zeta (%)

1 3.489 0.705 3.489 0.705 3.489 0.706
2 6.681 1.253 6.681 1.253 6.681 1.254
3 8.519 0.956 8.519 0.956 8.519 0.957
4 10.809 0.266 10.809 0.266 10.809 0.266
5 12.941 1.307 12.941 1.307 12.941 1.304

Fig. 10.12 SFD-2018 validation via complex mode isolation checks
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Fig. 10.13 “Classic” SFD validation via FRF reconstruction

Again it is pointed out that the “Classic” SFD results suggest that other EMA techniques [10] should produce results of
similar integrity.
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10.6 Conclusions

The overall goal of this paper was to introduce and demonstrate a basis for augmentation of measured acceleration response
variables with measured strain and fluid pressure variables to enhance the modal test process for in vacuo structures
and hydroelastic/vibroacoustic systems, respectively. Measured strains have been utilized by the technical community
for understanding and quantification of redundant load paths. A rigorous theoretical analysis demonstrated that strain-
accelerations and fluid pressures play roles that are consistent with accelerations.

Two simple illustrative examples clearly illustrate feasibility of measured strains and fluid pressures augmenting measured
accelerations in experimental modal analysis. This finding goes a step beyond established past utilization of strains and
fluid pressures in a surrogate role in experimental modal analysis. While strain-accelerations are definitely consistent
with acceleration variables, employment of strain-displacements were found to be acceptable response variables through
incorporation of quasi-static residuals in experimental modal analysis calculations (with some reservations on the part of this
writer).

Augmentation of measured acceleration response variables with measured strain and fluid pressure variables produces
mathematical experimental modal vectors that depart from application of established NASA and USAF criteria for
experimental mode verification and validation and test-analysis correlation. That being said, the acceleration partition of
the augmented experimental modal vectors may continue to be employed to satisfy the established U.S. government criteria.
Enhanced experimental mode orthogonality, based on exploitation of SFD-2018 calculated left-hand eigenvectors, however,
serves to extend the process of experimental mode verification and validation.

The subject matter and results presented in this paper represents an important first step towards utilization of measured
strain and fluid pressure variables in experimental modal analysis (beyond their well-established roles as surrogate data).
Much additional work is required in the experimental arena to secure broad peer community acceptance.

A.1 Appendix: The Simultaneous Frequency Domain Method (SFD)

A.1.1 Effective Dynamic Systems

The SFD method, introduced in 1981, has undergone substantial revision and refinement since that time. SFD describes
physical FRFs associated with a series of “N” excitations in terms of the product of (1) a real reduction transformation
matrix and (2) generalized FRFs,

[
Ü1(f ) Ü2(f ) . . . ÜN (f )

] = [V ]
[
ξ̈1(f ) ξ̈2(f ) . . . ξ̈N (f )

]
. (10.A1)

By performing singular value decomposition (SVD) analysis of the physical FRF collection, a dominant set of real
generalized trial vectors, [V], and complex generalized FRFs,

[
ξ̈1(f ) ξ̈2(f ) . . . ξ̈N (f )

]
, is obtained. Unit normalization of

the SVD trial vectors is expressed as,

[V ]T [V ] = [I] . (10.A2)

Theoretically, the generalized FRF array describes the following (real coefficient matrix) dynamic system equations,

[
ξ̈ (f )

]+
[
B̃
] [

ξ̇ (f )
]+

[
K̃
]
[ξ(f )] =

[
Γ̃
]
[F(f )] ,where

[
B̃
]

=
[
M−1

]
[B] and

[
K̃
]

=
[
M−1

]
[K] . (10.A3)

Estimation of experimental modal parameters is performed by complex eigenvalue analysis of the state variable form of
the effective dynamic system,

{
ξ̈

ξ̇

}
=
[−B̃ −K̃

I 0

]{
ξ̇

ξ

}
+
[

Γ̃

0

]
{F } , (10.A4)

which is of the general type,

{η̇} = [
Aη

] {η} + [
Γη

] {F } . (10.A5)
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Complex eigenvalue analysis of the effective dynamic system produces:

(a) {η} = [
Φη

] {q} ,where the“left-handed" eigenvectors are
[
ΦηL

] = [
Φη

]−1

(b)
[
ΦηL

] · [Φη

] = [I ] ,
[
ΦηL

] · [Aη

] [
Φη

] = [λ] (complex eigenvalues)

(c)
[
ΦηL

] · [Γη

] = [γ ] (modal gains)
(d) q̇j − λjqj = (γ )j [F(f )] (frequency response of individual modes) .

(10.A6)

Recovery of experimental modes in terms of the physical DOFs involves back transformation employing the trial vector
matrix, [V], specifically,

[Φ] = [V ]
[
Φη

]
, [ΦL] = [

ΦηL

] [
V T

]
, [OR] = [ΦL] [Φ] ≡ [I ] . (10.A7)

A.1.2 “Classic” SFD

Estimation of the effective dynamic system with the SFD method (and more generally any method that performs similar
system “plant” estimation operations) will pick up spurious “noise” degrees of freedom and associated spurious modes.
Over the years since 1981, the writer has employed a heuristic practice in versions of SFD algorithms that select “authentic”
modes from the complete set, which is estimated in selected frequency bands. The heuristic criteria include (1) elimination
of modes having negative damping, (2) modes with very low modal gain, and (3) other modes that appear spurious from any
number of physical/experience based considerations. Prior to 2018, the “Classic” SFD method (this writer’s version) did not
make use of the complex modes associated with the effective dynamic system (Eqs. (10.A4)–(10.A7)).

The theoretical relationship between FRFs and modal parameters (assuming that modal vectors are real) is

[H(f )] = [Φ] · [h(f )] , (10.A8)

where [�] is the unknown real modal matrix and [h(f )] is the SDOF acceleration FRF matrix. The terms of [h(f )] are defined
as,

hn(f ) = −(f/fn)
2(

1 + 2iζn (f/fn) − (f/fn)
2) , (10.A9)

where fn and ζ n are the modal frequency and damping associated with the particular experimental mode. Since the modal
SDOF acceleration matrix is completely known, the real modal matrix is obtained by linear least squares analysis. At the
experimental modal analyst’s discretion (highly recommended), low- and/or high-frequency residual modal frequencies may
be added to the set of identified eigenvalues (the low-frequency residual FRF has a frequency close to “0” and a user-
selected damping value, e.g., ζ n = 0.01, and the high-frequency residual has a frequency substantially higher than the
highest experimental modal frequency and a user-selected damping value, e.g., ζ n = 0.01) to enhance accuracy of modal
vector estimates.

The theoretical relationship between FRFs and modal parameters (assuming that modal vectors are complex) is,

[H(f )] = − (2π · f ) ·
N∑

n=1

(
Φn

λn − i (2π · f )
+ Φ∗

n

λ∗
n − i (2π · f )

)
, (10.A10)

where �n is the unknown nth complex modal residue vector and λn is the nth (positive imaginary part) complex eigenvalue.
The complex modal residue vectors are proportional to the complex system modes. Complex eigenvalues (when critical
damping ratio is less than 1.0) are,

λn = −ζnωn + iωn. (10.A11)
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Since the complex eigenvalues are completely known, the complex modal residue vectors (proportional to the complex
modal vectors) are obtained by linear least squares analysis. As for the case of real modes, low- and/or high-frequency
residual modal frequencies may be added to the set of identified eigenvalues to enhance accuracy of modal vector estimates.

Regardless of whether the user chooses to estimate real or complex modal vectors, reconstructed FRFs calculated from
identified modal parameters serve as a means for a quality check on the overall “Classic” SFD process.

A.1.3 SFD 2018: A Fresh Look at Experimental Modal Analysis

The initial point of departure from “Classic” SFD practice is estimation of an effective dynamic system over the entire
frequency band of interest (rather than selected sub-frequency bands). In order to achieve a satisfactory estimation for the
effective dynamic system, the “tolerance” factor (�) employed in the SVD process is set to a sufficiently low value (10−5);
in previous sub-frequency band SFD calculations, the SVD “tolerance” factor was set to a value of 10−2. Computation of
effective dynamic systemmodal parameters, from the first-order system described in Eq. (10.A4), yields complex modes with
eigenvalues having negative and positive imaginary parts. The first level of mode down-selection is to eliminate all modal
eigenvalues and eigenvectors that are outside the positive frequency band of interest. A vital component of the mode down-
selection process is selection of left-hand eigenvectors. [�ηL] that correspond to their [�η] counterparts; this circumvents
issues associated with more involved procedures for computation of a truncated left-hand eigenvector set.

Two computational procedures estimate uncoupled experimental modal FRFs (labeled with subscript “A”). The first
method computes the exact modal solution from the estimated modal parameters of Eq. ((10.A6)-(d)). Specifically,

(
hj

)
A

= (
q̇j

)
A

=
(

i2πf

i2πf − λj

) (
γj

)
. (10.A12)

The second method estimates uncoupled experimental modal FRFs (labeled with subscript “E”) from linear combinations
of the generalized FRFs (see Eqs. (10.A6)-(a) and (10.A6)-(b)) as follows:

(
hj

)
E

= (
q̇j

)
E

= [
ΦηL

]
j

· (η̇) . (10.A13)

Verification and validation of any candidate estimated experimental mode is now to be judged on the basis of (a) graphical
displays of the modal FRFs, and (b) a new modal coherence metric, which is defined as,

COHj =
∣∣[hj (f )

]∗
A

· [hj (f )
]
E

∣∣2∣∣[hj (f )
]∗
A

· [hj (f )
]
A

∣∣ · ∣∣[hj (f )
]∗
E

· [hj (f )
]
E

∣∣ . (10.A14)

References

1. Williams, D.: Dynamic loads on aeroplanes under given impulsive load with particular reference to landing and gust loads on a large flying
boat. Great Britain Royal Aircraft Establishment Reports SME 3309 and 3316 (1943)

2. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method, Its Basis and Fundamentals, 6th edn. Elsevier (2005)
3. Toupin, R.A.: A variational principle for the mesh-type analysis of a mechanical system. J. Appl. Mech. 74 (1952)
4. Coppolino, R.N.: A numerically efficient finite element hydroelastic analysis, NASA CR-2662 (1976)
5. Coppolino, R.: A simultaneous frequency domain technique for estimation of modal parameters from measured data, SAE Paper 811046

(1981)
6. Coppolino, R., Stroud, R.: A global technique for estimation of modal parameters from measured data, SAE Paper 851926 (1985)
7. Coppolino, R.N.: Experimental mode verification (EMV) using left-hand eigenvectors, IMAC 37 Proceedings (2019)
8. Load analysis of spacecraft and payloads, NASA-STD-5002 (1996)
9. Independent structural loads analysis, USAF Space Command, SMC-S-004 (2008)

10. Piersol, A.G., Paez, T.L. (eds.): Harris’ Shock and Vibration Handbook, 6th edn. McGraw-Hill (2010) (Chapter 21, Experimental modal
analysis, allemang and brown)



Chapter 11
Dynamic Behavior of Post-Buckled Fixed-Fixed Composite Skin
Panels

Andrew J. Ehler, Amanda J. Lial, Jason A. Cohrs, Matthew P. Snyder, and Matthew B. Obenchain

Abstract The purpose of this experiment was to observe the dynamic behavior of bi-stable composite plates with fixed-
fixed boundary conditions. In particular, the team sought to observe the minimum energy required to induce snap-through
of post-buckled carbon epoxy composites fixed inside an aluminum frame. Initially, students collected the time response of
the plate using an impact hammer and laser vibrometer. From the frequency response, the natural frequencies of the plates
were determined and compared to analytically predicted results based upon a model constructed using thin plate theory and
classical laminate theory. Next, the dynamic responses of the plates were obtained by applying various loading conditions
with the use of a shaker table. These tests yielded validating natural frequencies to impact testing and the resonant frequencies
of post-buckled plates. The minimum loading conditions required to cause snap-through in a post-buckled plate were found
and analyzed across various conditions. These results provide a basis for determining minimum energy requirements required
to cause buckling behavior in composite plates for applications to the hypersonic environment.

Keywords Composites · Dynamic response · Snap-through · Natural frequency · Vibrations

11.1 Introduction

Composite skin panels are an increasingly attractive option for aerospace applications, and foundational research is advancing
to develop the understanding of the scientific community with respect to their response under dynamic loading conditions.
Much of the previous research that has occurred on this topic has been with free boundary conditions. For example,
Ranaparkhi and Sarnobat compared experimental results while supporting composite plates with strings to create a free
boundary condition and then found their experimental results to be congruent with finite element analysis results [1].
Pingulkar analyzed the vibration of composite plates in a cantilever configuration, and these experimental results were also
found to closely agree with an associated finite element model [2].

In a hypersonic environment, thermal forces and aerodynamic forces can combine to force buckling and post-buckled
behavior in flight. The specific phenomenon this study addresses is bi-stable snap-through of a representative composite
panel through frequency response analysis. Different anisotropic panels were manufactured in both uniaxial and cross-ply
configurations with carbon-epoxy laminates. This study adds to the research done by McLean et al. [3] by reassessing their
predictive modeling code and its ability to predict natural frequencies of composite plates as well as further analyzing the
minimum energy requirements to produce snap-through across various plate layering configurations.
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Fig. 11.1 Strain gage positioning on the composite plate

11.2 Experimental Methods

11.2.1 Testing Setup

Carbon-epoxy laminates were previously manufactured in-house using standard layup techniques [3]. The two specimens
used in this study were plates with laminate configurations of [0]4 and [0/90]s which were 5 × 12 in. These specimens were
then uniformly marked with 15 grid points. For this study, the plates were affixed in an aluminum test fixture in order to
maintain fixed boundary conditions on each end. When affixing the carbon epoxy composite specimen in the aluminum test
fixture, the goal was to have zero strain on the composite plate after tightening the bolts of the metal frame. This ensured that
no buckling was present in the system prior to experimentation. In order to do this, the bolts were tightened in an alternating
pattern similar to that of torqueing down a tire. The strain on the plate was recorded using strain gauges shown in the setup
above in Fig. 11.1. While it proved impossible to reduce the strain throughout the plate to zero and maintain suitable fixed-
fixed boundary conditions, strain could be minimized using this method incrementally. The six surrounding bolts were first
torqued to 5.42 Nm and then to 9.49 Nm. A possible source of error addressed by the team in this process was slight warping
on a corner of the frame. In future testing, the team recommends examining better means to create a zero-strain environment
either by using a medium inside the frame or creating a new testing frame.

11.2.2 Impact Testing

Once the composite plate was properly affixed inside the test fixture, the frame was inserted into a foam block to prevent
vibration interference from outside noise as show in Fig. 11.2. A tripod holding the Polytec CLV 3D laser vibrometer was
placed above the specimen. The laser from the vibrometer was oriented over a specific point. This point was not hit with the
hammer; however, the remaining 14 points were. An impact hammer was used to deliver a firm, quick “tap” on the specimen’s
points. The data produced from the impact was recorded using VibSoft and exported to MATLAB. The vibrometer was set
at six different locations on the plate as denoted by graphite squares to determine if results were consistent. The data from
VibSoft was imported into MATLAB to plot the results.

11.2.3 Shaker Table Testing

Following completion of the impact testing, shaker table testing was conducted. The test fixture was mounted onto the table
and two accelerometers placed on the plate according to Fig. 11.3 below. The same set of data collection was performed on
each specimen.
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Fig. 11.2 Impact testing setup showing vibrometer and foam holder with test fixture

Fig. 11.3 Composite plate and metal frame system set transverse to the shaker table

Testing began with a low amplitude-frequency sweep at 0.25 g on the plates. Then, buckling was induced by putting
pressure on the center of the plate evenly using a ruler to create a deformation of 1.5 mm, and the frequency sweep was again
repeated at 0.25 g and the response data was recorded. Then, starting at 0.5 g, the amplitude of the loading was increased
by 0.5 g increments up to 3 g in order to observe the frequency response to induced vibration. Finally, after determining the
frequency at which the minimum energy necessary to induce a chaotic snap-through region, two tests were run. First, the
plates were tested at a high amplitude of g loading which was decreased until the chaotic snap-through region ceased. Then,
the opposite procedure was executed starting from a low g amplitude and moving up until the chaotic snap-through region
was reached.
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11.3 Results and Discussion

11.3.1 Determination of Natural Frequencies

Data collected from the impact testing experiments were analyzed in order to determine the frequency response of the plates.
Magnitude responses from the six vibrometer-measurement locations were plotted against the corresponding frequencies.
Peaks in these frequencies indicate the natural frequencies of the composite plates. Figures 11.4 and 11.5 show the results of
this analysis for the [0]4 and [0/90]s plates. Notable in these figures are the large spikes present around the 25 Hz location.
The team believes that these peaks are most attributable to environmental factors in the testing location. This would explain
the large magnitude of the peaks compared to the resonance peaks. The consistency in these spikes across tests conducted
on multiple plate configurations and the lack of analytical evidence supporting a natural frequency at this frequency indicate
these are from outside factors.

The results in Fig. 11.4 for the [0]4 plate indicate the first three natural frequencies occurring at 118.3, 132, and
208.6 Hz. Analytical predictions for these frequencies were determined using the methodology described in [3]. This analysis
considered the layup configuration of the plate and the fixed-fixed boundary conditions, and indicated the natural frequencies

Fig. 11.4 FRF magnitude response for [0]4 plate

Fig. 11.5 FRF magnitude response for [0/90]s plate
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Fig. 11.6 Sine sweep magnitude responses of [0]4 plate for non-buckled and buckled configurations

to be 103.5, 153.1, and 259.9 Hz. These results matched overall behavior, but they were not accurate in predicting specific
values. Part of this may be due to inconsistencies in the boundary conditions from being truly fixed-fixed in the experimental
testing. Additionally, inconsistencies in the material may further contribute to differing values.

Due to surface irregularities on the [0/90]s plate, noisier vibrometer data were collected at several of the testing points
than the data found for the [0]4 plate. This caused some difficulty differentiating between the peaks indicating the natural
frequencies. Namely, referring to Fig. 11.5, there appears to be a resonance peak around 60 Hz. However, analysis on other
plates with similar conditions showed that this peak is likely an artifact of the plate surface rather than the fundamental
frequency. From this, the group concluded that the first three natural frequencies occurred at 101.3, 196.7, and 232.0 Hz.
Analytical predictions based upon the geometry and material of the plate yielded natural frequencies of 97.1, 188.8, and
267.72 Hz. Similar to the [0]4 plate, the analytical predictions vary from the experimentally obtained results. However,
especially notable in these results is that the first two resonance frequencies closely match the predicted results compared
to the third frequency. This suggests the analytical model may be more accurate in predicting natural frequencies associated
with the lower modes than it is with the higher modes.

11.3.2 Changes in Natural Frequency of Post-Buckled Configuration

Following completion and analysis of the impact testing using a laser vibrometer, the plates were tested on a shaker table.
The sine sweep using a flat, pre-buckled configuration for the [0]4 plate yielded resonance peaks at 126.0, 145.5, and
206.6 Hz as shown in Fig. 11.6a. In this figure, the two data sets represent the two accelerometers attached to the plate.
The observed natural frequencies closely match the predicted natural frequencies and those determined during the impact
testing, thus confirming the team’s conclusions concerning the experimentally used plates’ natural frequencies. Following
the reconfiguration of the plate to a post-buckled state, the sine sweep was re-run and the magnitude was again plotted against
the frequency as shown in Fig. 11.6b. The resonance peaks for the buckled configuration were much less defined, apart from
the fundamental frequency at 115.2 Hz. The results showed lesser defined peaks at 213.6 and 239.1 Hz. The slight shift left
on the first natural frequency was expected, as buckling reduces the effective stiffness of the plate, thus lowering the expected
fundamental frequency. Analysis focused on higher frequencies was not considered.

The same analysis was conducted on sine sweeps conducted on the [0/90]S plate. The non-buckled configuration shown in
Fig. 11.7a had resonance peaks at 91.3, 173.5, and 215.0 Hz. In Fig. 11.7b, the buckled configuration had peaks 68.7, 159.9,
and 213.6 Hz. These results correspond with the findings of the [0]4 plate analysis. The fundamental frequency shifted left
from the non-buckled configuration as expected. While the higher frequencies still saw some shift from the non-buckled
configuration, the differences were not as drastic as the [0]4 plate.

The summary of the results for the natural frequency behaviors of the two composite plates tested are shown in Table
11.1 below. These results indicate that there was consistency among the three test and analytical procedures in determining
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Fig. 11.7 Sine sweep magnitude responses of [0/90]S plate for non-buckled and buckled configurations

Table 11.1 Fundamental
frequency for non-buckled plates
across tests

[0]4 Plate (Hz) [0/90]S Plate (Hz)

Predicted frequency 103.5 97.1
Impact test frequency 118.3 101.3
Shaker table frequency 126.0 91.3

the natural frequency of the composite plates. Of note is the relative inconsistency between the placements of the results.
The predicted frequency based upon the analytically model was not always the lowest nor was the shaker table always the
highest as indicated by the [0]4 plate. Instead, the relative values of the natural frequencies varied across the tests. The
researchers conclude that these differences were therefore most attributable to the testing conditions and inconsistencies
within the testing frame and setups. Further experimentation is needed to find if these inconsistencies can be reduced.

11.3.3 Determination of Minimum g-Loading

After determining the fundamental frequencies of the buckled plates, the minimum energy required to produce the chaotic
snap-through effects was determined. Sine sweeps of the buckled plate configurations were once again analyzed to determine
the g-loading at which snap-through occurs. Below in Fig. 11.8 is a demonstration of this phenomenon as seen in the
magnitude response.

In the 2.0 g loading in Fig. 11.8a, there was a slight perturbation in the curve rising to the peak about the 101.5 Hz point.
This represents the point at which snap-through was about to occur and caused non-uniform deflections detected by the
accelerometers. Figure 11.8b fully shows this snap-through. At 2.5 g, there was significant disturbance from 98.4 Hz until
112.0 Hz. These disturbances reflect snap-through in the plate. The abnormal magnitude response detected by accelerometers
corresponds to the abnormal plate motion. From this, one can conclude that the minimum g-loading required to obtain snap-
through was within this range of frequencies and between 2.0 and 2.5 g.

Frequencies were set in increments in this range and the minimum g-loading determined. Referring to Fig. 11.9, this
minimum g-loading occurred at around a frequency of 99 Hz. The team also found that the minimum g-loading required for
snap-through depended on whether snap-through had already occurred or not. When higher g-loads were applied to generate
snap-through and then reduced until snap-through ceased, the required loading was lower, as indicated by the blue line.
However, when g-loading was gradually applied until snap-through occurred, the g-loading was higher, as indicated by the
red line. The researchers postulate that such behavior is seen because there is a certain potential energy required to overcome
inertia in order to initiate snap-through. This allows the minimum g-loading to maintain snap-through to be smaller than that
required to cause snap-through. The minimums for the increasing and decreasing loads were 2.19 and 1.95 g respectively.

The g-loading test analysis was repeated with the [0/90]s plate to further analyze and confirm the results of the [0]4 plate.
Below in Fig. 11.10 are the sine sweep results of three different loading conditions showing the snap-through phenomenon.
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Fig. 11.8 Sine sweep magnitude responses of [0]4 plate at varying g-loads demonstrating snap-through phenomenon

Fig. 11.9 Minimum g-loading required to incite snap-through behavior for [0]4 plate

In (a), there is a slight disturbance indicating potential snap-through at 73.4 Hz. In (b) at 2.5 g, snap-through is evident
from 71.5 to 78.9 Hz. This region expands in (c) at 3.0 g, ranging from 69.7 to 82.4 Hz. This region illustrates a chaotic
snap-through region where the plate moved rapidly back and forth between the two stable equilibria. The expansion of the
snap-through across a larger range of frequencies was expected, as the greater energy present in higher loading conditions
allows snap-through to occur further from the resonance peak. As with the [0]4 plate, the minimum g-loading to cause
snap-through was examined. At a frequency of 70 Hz, snap-through could be maintained with a g-loading of 2.19 g. This
corresponded to the same g-loading for the [0]4 plate.

11.4 Conclusions

The results of these experiments demonstrated the usefulness of examining the dynamic response of bi-stable composite
plates. The analytical model was capable of predicting generalized behavior of the natural frequencies of the composite
plates. However, more analysis should be done to assess whether the differences were attributable to improper testing
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Fig. 11.10 Sine sweep magnitude responses of [0/90]S plate at varying g-loading conditions

environment procedures or whether the model must be refined. Moreover, the model does not yet predict the buckled behavior
of the plates, which is necessary to predict the minimum g-loading.

The dynamic testing results showed that natural frequencies found for flat-plate, non-buckled configurations closely
matched those obtained with the laser vibrometer. When moved to the post-buckled configuration, the resonant frequencies of
the plates shifted downwards. As increased g-loading was applied, the snap-through behavior was observed. By incrementally
increasing the loading about the fundamental frequency, the region of frequencies in which the snap-through behavior
occurred also increased. Determining the minimum energy required for snap-through yielded two results. There was a
minimum g-loading associated with maintaining snap-through behavior and a higher g-loading associated with causing
snap-through behavior. Future analysis should focus more on the greater loads needed to initiate snap-through, as this is the
primary concern for hypersonic applications. In our case analysis, both of the minimum loading conditions associated with
causing snap-through behavior occurred at 2.19 g.
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