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1  Introduction

In the last decades, digital image examinations have been introduced in dental prac-
tice, and nowadays, they constitute a prevalent tool employed in the diagnosis of 
oral diseases. Digital sensors have shorter radiation exposure time than analog 
radiographs. Moreover, digital radiography provides high-quality images. Its uses 
have been increasing in clinical practice and scientific researches, facilitating the 
application of computer methods to process and analyze examinations.

The most common examinations in dental practice are the intraoral (periapical, 
bitewing, and occlusal) and extraoral (especially the panoramic) radiographs and 
the cone-beam computed tomography. Each one of these types of imaging focuses 
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on different anatomical structures and is used for different purposes. Their acquisi-
tion processes also differ one from another. One of the topics discussed in this chap-
ter is the principles of the image formation and acquisition processes behind those 
techniques.

According to Abdalla-Aslan [1], computer methods, especially those that include 
artificial intelligence (AI), can be used to improve the accuracy and consistency of 
diagnosis. Various AI solutions for oral radiology have emerged in the last few years. 
Several previous works present efforts to automate the identification and evaluation 
of oral diseases in image-based exams, which would reduce possible errors related 
to experts’ subjectivity [1].

Although most works use traditional image processing methods, recently, 
machine learning algorithms and even convolutional neural networks (CNNs) have 
shown promising results for this problem. According to Schwendicke et  al. [2], 
dental imaging presents an excellent potential for image processing solutions since 
diagnostic imaging is an essential part of dentistry. In other words, image evaluation 
already consists of an important step in the diagnosis of several oral diseases.

In European countries, most of the radiographs acquired consist of oral image 
examinations [2]. It is estimated that around 250–300 dental images are acquired 
per 1000 individuals [2]. AI-based solutions tend to be suitable for a wide range of 
image applications, including oral ones. This chapter also briefly presents their 
main principles.

The use of AI-based image techniques tends to increase the effectiveness of diag-
nosis and lower costs by eliminating routine tasks [3]. Consequently, in the last 
years, the number of works proposing solutions on the use of such techniques has 
been increasing.

The main areas of dentistry for which AI-based image processing techniques 
were applied are cariology, endodontics, periodontology, orthodontics, and forensic 
dentistry [2].

The most popular applications are segmentation, detection, classification, and 
their combinations [2]. The detection is related to carious lesions. The anatomical 
structures for classification include teeth, jaw bone, skeletal landmarks, and biofilm 
classification. Classification considers the endodontic treatment conditions and 
even their results. The detection and classification evaluate periodontal inflamma-
tion, bone loss, and facial features [2].

The tasks involved in those applications are localization and measurement of 
anatomic structures, diagnosis of osteoporosis, classification and segmentation of 
maxillofacial cysts or tumors, identification of alveolar bone resorption, classifica-
tion of periapical lesions, diagnosis of multiple dental diseases, and classification of 
tooth types [4]. Other applications less explored are identification of root canals, 
diagnosis of the maxillary sinusitis, identification of inflamed gum, identification of 
dental plaque, detection of dental caries, and classification of the stages of the lower 
third molar [4]. This chapter also discusses some of the main application problems 
for AI-based image processing. To demonstrate the feasibility of using the presented 
techniques, three of the mentioned applications (identification of periodontal 
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diseases, detection of dental caries, and radiograph image enhancement) are selected 
for practical exemplification.

Although there is a great potential for the  use of AI-based image processing 
techniques in dental imaging, there are several challenges to be overcome in this 
context. Among these are the lack of available data, the subjectivity of oral diseases’ 
diagnosis, the lack of diagnostic standards, the complexity of some oral diseases, 
and the resistance from dentists to include computational tools in their routine. All 
these aspects are discussed in this chapter, as well.

2  An Overview on Digital Dental Imaging

This section discusses the principles of image formation and representation for oral 
radiographs and presents the most common imaging exams used in dentistry.

2.1  X-Ray Images

Medical radiographs consist of a type of biomedical data from particles’ interac-
tions in the electromagnetic x-ray spectrum, which consider very short wavelengths. 
The range that covers x-ray photon energies is delimited from 10 keV (1.6 × 10–15 J) 
to 100 keV, 𝑖.𝑒., wavelengths ranging from 0.124 to 0.0124 nm [5]. Basically, the 
devices used to obtain radiographic exams are constituted by an x-ray source and a 
detector, also called receptor (Fig. 1), which can be a film or a digital device.

The visual interpretation of radiographic exams is based on the radiodensity con-
cept. When x-ray photons are irradiated from an x-ray source to an object (or bio-
logical tissue) composed of an impenetrable material, the amount of radiation 

Fig. 1 Main configuration of the patient and devices in the acquisition of radiography
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reaching the detector device (or film) is low since the object absorbs most of the 
x-ray photons. Consequently, its respective projection in the final based radiography 
is light. This property of materials of retaining x-rays and producing light is called 
radiopacity. On the other hand, when x-ray photons are irradiated in a material that 
promotes its propagation, the amount of radiation that reaches the detector device is 
high, resulting in a respective dark projection in the radiographic image. This prop-
erty is called radiolucency [5, 6].

Attenuation is the main physical property used in image formation for most con-
ventional x-ray machines and computed tomography scan systems. It is defined as 
the difference in the amount of x-ray energy emitted by the transmitter and the 
energy received by the receptor (digital sensor or film) after transposing an object 
(patient’s biological tissue) during the examination.

For dental radiographs, such differences related to the attenuation values can 
result in four aspects: (1) coherent scattering (when incident photons scatter from 
outer electrons), (2) photoelectric absorption (when incident photons eject their 
inner electrons and fade away, releasing photons of a characteristic type), (3) 
Compton scattering when incident photons eject outer electrons, and (4) other pos-
sible scatterings. Attenuation values are commonly expressed in Hounsfield units 
(HU) that are based in the water’s attenuation, so the resultant HU value for a spe-
cific tissue can be defined as:

 
HUtissue

tissue water

water

� �
�

1000
� �

�  
(1)

where μwater and μtissue are the water’s and tissue’s attenuations.
After the exam execution, its results can be represented as images. The analog 

approach for that is achieved by using film imaging and its processing as in analogi-
cal photography. Image formation based on film imaging uses a sensitive layer that 
is modified by x-ray photons, through oxidation, proportionally to the amount of 
radiation exposition [5]. The film is then chemically processed to produce a gray-
scale image, reflecting the x-ray opacity of each tissue in a continuous range (i.e., 
this analog approach is similar to the principles applied for the former analogical 
film imaging).

Digital radiographic application has been increased in the last years, allowing the 
use of several computer-based processing, like those presented here. Radiography 
acquired using the digital approaches presents differences from the analog-signal- 
based ones, starting from the way they are represented. In digital radiography, the 
measures obtained by the acquisition process are spatially distributed in a discrete 
way, represented in a digital file and used in a matrix-like structure, defined by its 
resolution that is the number of rows and columns of such a matrix [5, 6]. When the 
electronic receptor, used in digital devices, absorbs the x-ray photons that go through 
the object, it generated a small voltage for each pixel, which is proportional to the 
volume of photons received by each device position. After that, a process called 
analog-to-digital conversion (ADC) is performed. It consists of defining ranges for 
the voltage’s values obtained in a way that the pixels whose values are in a defined 
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range are grouped together, and then the same digital value is assigned to a point [5, 
6], forming the digital image. A visualization tool (as a computer monitor) reads 
these values and assigns a corresponding gray shade for each one to display the 
matrix as a grayscale image.

According to their physical properties, electronic receptors can be divided into 
solid-state detectors or photo stimulus phosphor detectors. The first uses solid semi- 
conducting materials to gather the charge generated by x-ray photons. The second 
uses photostimulable phosphor plates to absorb, store x-ray energy, and further 
release it as light after being stimulated by another light that presents an appropriate 
wavelength [6].

In order to obtain accurate measures and, consequently, higher-quality images, 
radiation doses should be adjusted. Nevertheless, a larger exposition to radiation 
poses a risk for the patient’s health. For oral radiography, standard radiation ranges 
were proposed in order to obtain the highest quality preserving the patient’s safety.

Usual radiography is an exam that consists of a planar projection of a 3D scene. 
This scene is composed of the patient’s biological tissues and anatomical structures. 
The way the patient and the device are positioned changes with the exam focus and, 
consequently, the resultant projected image. Many configurations are defined to 
cover the different anatomic parts. The next section discusses the most common oral 
ones, including the positioning of the elements to achieve the images focusing on 
different structures according to the visualization objective.

2.2  Intraoral Radiographs

As suggested by the term, the acquisition process of intraoral radiographs involves 
positioning part of the device inside the patient’s mouth. There are three main types 
of intraoral radiographs used in dental imaging: periapical views, bitewing views, 
and occlusal views. Figure 2 shows them.

To cover all the dental arches of a healthy adult patient, a set of 17 periapical 
views and 4 bitewing views is required for most cases [6]. Periapical views 
(Fig. 2(a)) cover the teeth’s crowns, roots, and surrounding bones. Figure 3 shows 

Fig. 2 Examples of (a) periapical projections, (b) bitewing projections, and (c) occlusal projec-
tions. Occlusal view by Coronation Dental Specialty Group under CC BY 3.0 via 
Wikimedia Commons
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the distribution of a complete set of periapical projections and the teeth they respec-
tively cover. Projection A refers to the maxillary central incisors, projection B refers 
to the maxillary lateral incisors, projection C refers to the maxillary canines, projec-
tion D refers to the maxillary premolars, projection E refers to the maxillary molars, 
projection F refers to the maxillary distomolar, projection G refers to the mandibu-
lar centrolateral incisors, projection H refers to the mandibular canines, projection I 
refers to the mandibular premolars, projection J refers to the mandibular molars, and 
projection K refers to the mandibular distomolars.

Two projection techniques are mostly used in periapical radiograph acquisitions: 
paralleling and bisecting angle (Fig. 4).

The parallel periapical radiographs tend to result in an image with less distortion 
and are commonly recommended for digital imaging. This technique consists of 
positioning the x-ray receptor as parallel as possible to the dental arches inside the 
patient’s mouth, so the projection is obtained orthogonal to the teeth and the recep-
tor plane [6]. Considering a plane that approximates the surface of few consecutive 

Fig. 3 Target teeth of periapical projections A to K

Fig. 4 Receptor positioning in the periapical radiography: (a) paralleling and (b) bisecting angle
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teeth (as the maxillary central incisors), the main idea of the parallel technique is 
positioning the receptor as a parallel plane of the mentioned teeth plan, so the x-ray 
hit them directly, in a perpendicular direction (Fig. 4(a)). This better reflects the 
teeth’s true anatomical characteristics, reducing distortion in the acquisition.

The bisecting-angle technique is only used when the parallel technique cannot be 
applied due to large rigid sensors or the patient’s anatomy. It is based on the geomet-
ric principle that states that two triangles are equal if they have two equal angles and 
share completely one of their sides. In this projection, the receptor is positioned as 
close as possible to the internal part of the dental arch, i.e., the lingual surface of the 
teeth. If the exam focuses on the mandibular teeth, the receptor must be held from 
the bottom by the palate. If the exam focuses on the maxillary teeth, the receptor 
must be held on top by the floor of the mouth (Fig. 4(b)). Holding instruments (or 
the patient’s fingers) are used to promote the receptor’s perfect positioning for both 
techniques and the x-ray emission direction is adjusted in a proper manner.

Bitewing views (Fig. 2(b)) are also called interproximal views. They cover the 
coronal portions of the maxillary, mandibular molars, and premolars in a single 
image. Four of these projections are acquired with the periapical views covering all 
arches: two for the premolars (Fig. 5a) and two for the molar teeth (Fig. 5b).

Occlusal projection is another possible intraoral radiograph. It covers a wide part 
of the dental arches. This exam is mostly used when the patient’s mouth cannot hold 
the periapical receptors. As suggested by the term, the receptor is placed in the 
occlusion plane. In occlusal acquisitions, the receptor is located between the occlu-
sal surfaces of the teeth. The most common occlusal views are anterior maxillary 
occlusal projection (Fig. 6a), cross-sectional maxillary occlusal projection (Fig. 6b), 
lateral maxillary occlusal projection (Fig. 6c), anterior mandibular occlusal projec-
tion (Fig. 6d), cross-sectional mandibular occlusal projection (Fig. 6e), and lateral 
mandibular occlusal projection (Fig. 6f).

Fig. 5 Target teeth of the bitewing projections
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2.3  Extraoral Radiographs

Extraoral radiographs, as suggested by the term, consist of radiographic exams that 
do not include introducing part of the device into the patient’s mouth. The most 
widely used extraoral image in dental practice is the panoramic view presented in 
Fig. 7. The panoramic view covers all of the maxillary and mandibular dental arches 
and a wide part of the face (Fig. 7). The quality of this kind of image can be consid-
ered lower than the intraoral radiographs since it promotes geometric distortions, 
moving shadows, and even the inclusion of overlapping effects due to the presence 
of other anatomical structures in the dental arch proximity, as the neck bones. It is 
mainly recommended for initial evaluations and for cases in which intraoral radio-
graphs cannot be acquired [6].

Fig. 6 Target teeth of the occlusal projections

Fig. 7 Example of 
panoramic radiography. 
Paronamic radiograph by 
Umanoide under CC via 
Unsplash
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For panoramic acquisition, the object of interest (mouth of the patient) is posi-
tioned in the plane (image layer) in a central point in relation to the x-ray source and 
receptor, which are on opposite sides. Then receptor and x-ray source move simul-
taneously. The panoramic image is formed dynamically, that is, its acquisition is 
made during the device movement, so each part of the image corresponds to a dif-
ferent position and time. To analyze this, due to such a dynamic capture, the recep-
tor movement has to be considered, as well as the x-ray source’s position and also 
the part of the mouth which is currently on focus.

Figure 8 shows the position of the device at three different times of the pan-
oramic acquisition. Note that Fig. 8(a) corresponds to the first tooth of the acquisi-
tion process, so the part of the receptor that is directly receiving the x-rays emitted 
by the source corresponds to this part of the mouth. As the device continues, the 
acquisition process covers the rest of the dents and the receptor also moves to 
receive the x-ray of the corresponding part of the mouth (Fig. 8(b) and (c)). Note 
that the receptor moves close to the patient’s teeth arches while the x-ray source 
moves behind the patient’s neck. The receptor is intentionally positioned in this 
fashion because the structures close to the receptor are better projected in the result-
ing image. Due to the projection principles of these images, the structures that are 
close to the x-ray source are projected in the formed image in a way that it appears 
with magnification, resulting in deformed results and blur [6].

Extraoral radiographs also include several other projections. The most used ones 
are lateral skull projection (lateral cephalometric projection), submentovertex (base) 
projection, Waters’ projection, posteroanterior skull projection (posteroanterior 
cephalometric projection), reverse Towne projection (open mouth), and mandibular 
oblique lateral projections. These projections are mostly used in orthodontics and 
cephalometric landmark identification [6].

Fig. 8 Representation of the acquisition process in a panoramic view
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2.4  Computed Tomography and Cone-Beam 
Computed Tomography

Traditional computed tomography (CT), also called fan-beam tomography, acquires 
three-dimensional images by irradiating x-ray beams linearly. In order to cover a 3D 
object, the source and the receptor must surround a central point of the object plane, 
as shown in Fig. 9. When a rotation of 360° is completed, both source and receptor 
translate in the direction of the plane's normal axis, covering all the volume (object) 
[7]. Each rotation of the source results in a planar slice. As the source moves along 
the axial direction, new slices are obtained. After the end of the acquisition process, 
the slices are then computationally processed, creating a 3D digital volume. For a 
pair of consecutive slices, the values are interpolated to fill the region between them, 
resulting in a continuous-like representation. The number of slices depends mainly 
on the device’s characteristics. Over time, CT acquisition process has improved, 
especially concerning the number of slices and the way that the x-ray source’s rota-
tion and axial displacement are performed. Nevertheless, the current CT devices 
still follow these principles.

In dental imaging, the most prevalent 3D image is the cone-beam computed 
tomography (CBCT). In the acquisition process of CBCT, 3D images are acquired 
in only one rotation of the x-ray source. The beam used in this process has a cone 
format, so in each step of the rotation, a complete 2D projection is acquired at once 
(Fig. 10). There is no need for axial displacements of the x-ray source [7]. So the 
number of slices depends mainly on the digital receptor discretization. For CBCT, 
the acquisition produces an entire discrete 3D volume, with voxels’ sizes according 
to the receptor pixel size [7].

Fig. 9 Representation of the acquisition process of CT at two different positions
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3  Image Processing and Artificial Intelligence for Dental 
Image Analysis

This section describes the most common image processing tasks involving artificial 
intelligence techniques and their real application for dental imaging. In addition to 
image enhancement (which can be considered as an interesting application for den-
tal imaging), it also discusses the most prevalent applications of the presented tech-
niques for two dentistry sub-areas: periodontology and cariology. Some previous 
works in literature that present solutions for problems in the area are considered, as 
well. Moreover, practical examples applying AI and image processing for tasks 
involving classification, detection, and image enhancement are analyzed.

3.1  Artificial Intelligence Techniques for Image Processing

Digital image processing (IP) is a field of computer science and signal processing 
that studies digital signals presenting two-dimensional (2D) structures. Radiography 
is a type of biomedical imaging where the radiographic devices themselves apply 
some of these techniques after the images’ acquisition and before their storage [6]. 
A wide range of available IP processing techniques can be employed to improve, 
analyze, and extract information from oral radiographs. Researchers can apply IP 
techniques as it better suits their objectives. Four techniques are mostly related to 
dental imaging applications: enhancement, segmentation, identification, and clas-
sification. Figure 11 illustrates them.

The enhancement task consists of processing the image to improve its quality 
concerning noise, resolution, edge definition, etc. The objective of the segmentation 

Fig. 10 Representation of 
the acquisition process 
of CBCT
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task is to identify an object in the image, determining its exact boundaries and iso-
lating it from the rest of the image. Figure 11(b) shows an example of this task 
(tooth segmentation). The identification task focuses on determining the region of 
the image that encloses an object, for example, tooth detection (Fig. 11(c)). Finally, 
the classification task consists of analyzing the entire image and its visual patterns 
to associate it to a specific class, as in the example in Fig. 11(d), in which a tooth is 
classified as normal or restored.

In the last years, the use of artificial intelligence (AI) techniques as a support to 
traditional IP has been increasing, leading to results that demonstrate their potential. 
Convolutional neural networks (CNNs) are an essential part of AI being the basis of 
most AI-based algorithms for IP nowadays. CNNs consist of a specialized kind of 
intelligent algorithm for processing data that present a grid-like topology as digi-
tal images.

The IP convolution operation is the base of CNN algorithms. Convolution con-
sists of transforming an input image using a kernel to achieve a feature map as 
output. More specifically, given two matrices, with the same numbers of elements, 
i.e., 𝑛 ×, one named kernel and the other being a part of the image to be convoluted, 
then convolution consists of multiplying correspondent position and adding them to 

Fig. 11 Example of image processing tasks: (a) enhancement, (b) segmentation, (c) detection, 
and (d) classification
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obtain a value that is used to compose the output for each position that the kernel 
can cover on the image. Figure 12 exemplifies the convolution and other operations 
that can be combined to compose a simple CNN to perform a classification task.

The output named feature map can be processed by another convolution or even 
other operations. Among the most used other types of operation are size reduction 
(or pooling), dimension reduction resulting in a 1D vector (or flatten), and mapping 
of the position to a class previously defined (or softmax).

Note that different CNN architectures can be achieved by combining convolu-
tions with those operations in various manners, modifying the number of layers and 
even the way the operations are organized. Some architectures proved to be efficient 
for a wide range of applications receiving particular names as the ResNet and 
Inception. The most straightforward application of CNNs is for classification tasks.

Some detection and segmentation tasks can be modeled as extensions of the clas-
sification. For example, consider a 95 × 20 area of the input that includes a tooth to 
be detected as in Fig. 11(c). Note that if one divides this image into two sub-images 
of size 5 × 5 and classifies each sub-image to identify if they present a tooth or not, 
then the sub-image that encloses the tooth can be identified. Therefore, the region 
that is a union of each tooth sub-image can be considered as the tooth region result-
ing in a detection. However, in real cases, the object (tooth in this example) may not 
be so well positioned, so several different subdivisions must be tested to achieve the 
segmentation that covers only one complete object. This is the main idea behind 
most AI-based detection algorithms.

The segmentation task can also be considered as an extension of the classifica-
tion task, but on a pixel scale, in the sense that each pixel is classified as belonging 
to the object’s area or not (Fig. 11(b)). The main idea behind most AI-based seg-
mentation algorithms is to analyze each pixel, considering their neighborhood, 
which is defined by a window size, to evaluate if it corresponds to the patterns that 
characterize the object. In other words, each pixel is classified as being part of the 
object or not considering a tiny sub-image as input, which is defined by a window 
that covers its neighborhood.

Fig. 12 Schematic representation of an input, a simple CNN, and an output
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Actually, the real algorithms that perform these tasks are much more complex 
than this simple description presented here since they include several layers (opera-
tions), but this gives us the main idea of how they work.

Note that all these concepts can be extended to N-dimensional signals, including 
3D data, so they can also be applied in tomographs, for example.

3.2  Identify Periodontitis

Periodontal disease (PD) is a consequence of interactions between bacterial biofilm 
and the host’s immune response [6, 8], and differences in the degree of severity and 
impairment of this disease can be influenced by extrinsic factors, such as smoking, 
and intrinsic factors, such as diabetes mellitus [9]. PD can be divided into gingivitis 
and periodontitis [6, 10]. One of the consequences of tissue destruction due to peri-
odontitis is bone loss. Radiographically and clinically, this loss can be observed as 
an increase in the distance between the enamel-cement junction to the alveolar crest.

The fact that this tissue destruction can be identified radiographically promotes 
the use of AI-based image processing techniques for this purpose. Recently, Lin 
et al. [11, 12] proposed the use of deep learning models for alveolar bone loss iden-
tification [11] and measurement [12]. The model proposed by Lee et al. [13] focuses 
specifically on the identification and severity assessment of premolars and molars 
periodontally compromised. Similarly, the studies of Carmody et al. [14] and Mol 
et al. [15] aim to classify periapical lesions according to their extent. A considerable 
part of the works that focus on identifying periodontitis/periapical diseases uses 
panoramic radiographs. For example, Ekert et  al. [16] used convolutional neural 
networks (CNNs) to detect apical lesions on panoramic dental radiographs. The 
implemented network, a custom-made seven-layer deep neural network, achieved a 
sensitivity value of 0.65, a specificity value of 0.87, a positive predictive value of 
0.49, and a negative predictive value of 0.93. Krois et al. [17] applied a seven-layer 
deep neural network to detect PBL on panoramic dental radiographs. The classifica-
tion accuracy of the CNN was 0.81, and the sensitivity and specificity were 0.81 and 
0.81, respectively.

Classifying Approximal Bone Loss in Periapical Radiographs Identification of 
periodontal diseases is a common application area for AI-based image processing, 
as exposed previously in this section. Intraoral radiography, especially periapical 
exams, is an important tool for identifying these anomalies, facilitating their diag-
nosis, treatment, and prognosis [18]. Next, this section demonstrates the use of 
some AI and image processing techniques to pre-process and classify interproximal 
regions in periapical examinations according to the presence of proximal bone loss. 
For that, a brief evaluation of the use of two CNNs architectures is performed, spe-
cifically ResNet and Inception networks, to demonstrate how different architectures 
can influence the quality of the final results.

M. B. H. Moran et al.
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This experiment used 1079 interproximal regions manually extracted from 467 
different periapical radiographs. All images are in grayscale, in “jpeg” format. This 
experiment is focused on a classification task. Therefore, the region extraction was 
performed manually. The next section covers a detection task to automatically 
extract the regions of interest from oral radiographs using image processing 
techniques.

Firstly, an adaptive histogram equalization [19] was applied to the periapical 
images in order to increase their quality. The adaptive histogram equalization is an 
image processing technique used to improve contrast in images and enhance their 
details. It adjusts the image contrast by considering its most frequent tonalities. The 
process is similar to the original histogram equalization; however, it considers parts 
of the images rather than the entire image, allowing it to create different histograms 
and use them to calculate the equalization [19]. The main idea of this technique is 
to define a neighborhood window to be considered in the histogram of the transfor-
mation function for each pixel. In this experiment, after some initial testing, an 8 × 8 
window was selected. As in the ordinary histogram equalization, the transformation 
function of the adaptive histogram equalization is proportional to the cumulative 
distribution function (CDF) of the pixel values in the neighborhood [19].

Experts marked the regions of interest (ROIs) in each exam. The ROIs cover the 
areas that can be affected by bone loss. These regions consist of interproximal 
(between two teeth) areas, limited superiorly by the enamel-cement junctions and 
inferiorly by the alveolar crests. To be used as input of a convolutional neural net-
work for the proposed classification task, all these data must be labeled, i.e., for 
each case/image an associate class must be assigned to it by experts. This process is 
called data labeling and can be performed using several auxiliary tools. This exam-
ple used the labeling tool named DataTurks (available at https://dataturks.com/). 
Two experts annotated the exams’ ROIs, using bounding boxes, denoting which of 
them present any bone loss and which do not. They are experienced dentists special-
ized in oral radiology. They annotated 1079 regions: 388 with no lesions and 691 
with bone loss (no differences between experts’ annotations).

In order to prepare the data for the classification task, this data must be organized 
into three different sets: training, validation, and test sets. This process is called 
dataset split. The test dataset was formed by 52 samples of each class randomly 
selected. The remaining images underwent a data augmentation process based on 
horizontal and vertical flips. After that, the 639 remaining annotated regions with 
vertical bone loss provided 1278 images, using only horizontal flips. The remaining 
336 images of healthy regions provided 1344 images, using both horizontal and 
vertical flips. In that way, the CNNs’ training and validation sets are formed by 
these 2622 images.

Finally, the actual classification task is performed. As mentioned, this example 
includes an evaluation of two different CNNs for the classification task in order to 
compare which is the most appropriate to the proposed problem. This experiment 
included two architectures that demonstrate good performance for a wide range of 
applications: ResNet and Inception architectures. The ResNet architecture used in 
this work has 50 layers in total. It is composed of several stacked blocks, called 
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residual units. Such units consist of two convolutional layers and two activation 
functions [20]. On the other hand, the Inception architecture is formed by blocks 
called Inception modules [21], consisting of a combination of convolutional layers 
with different kernel sizes and a pooling layer. This study used the official Keras 
ResNet and Inception implementations. The data processing performed in this work 
used the Python language and the scikit-image library. The parameters used for 
training the CNNs are outlined in Table 1.

The CNNs’ training used the backpropagation algorithm and included 180 
epochs. For each epoch, we checked the accuracy and loss values. Each epoch cor-
responds to one time in which CNN weights are updated considering all elements of 
the training dataset. The models used in this example were previously pre-trained 
using the ImageNet dataset [25] to obtain better initial weight values.

An important measure to be considered in the evaluation of CNNs in a classifica-
tion task is test accuracy (proportion of cases properly classified by the considered 
model). Other measures are sensitivity (recall), specificity, precision (positive pre-
dictive value, PPV), and negative predictive value (NPV) [26]. In this example, such 
measures are based on:

• True negatives (TN) – regions correctly classified as healthy
• True positives (TP) – regions correctly classified as regions with bone loss
• False negatives (FN) – regions with bone loss incorrectly classified as healthy
• False positives (FP)  – healthy regions incorrectly classified as regions with 

bone loss

In that way, the mentioned measures are defined as sensitivity  = 
TP

FN TP+
, 

specificity  =  TN

FP TN+
, precision  =  TP

FP TP+
, and negative predictive 

value = 
TN

FN TN+
 [26].

Most evaluations also include the receiver operating characteristic (ROC) and 
the precision-recall (PR) curves [26]. In this example, all measures were calculated 
using Python and the scikit-learn library.

At the end of the training process, the Inception model presented an in-sample 
accuracy of 0.984 and a validation accuracy of 0.933. On the other hand, the ResNet 
model had an in-sample accuracy of 0.919 and a validation accuracy of 0.818. 
Concerning the evaluation based on the test set, the results are shown in the respec-
tive confusion matrices (Table  2). Note that the test accuracy (proportion of 

Table 1 Hyperparameters used in CNNs’ training

Parameter ResNet Inception

Optimizer Momentum [22] RMSprop [23]
Batchsize 32 32
Learning rate 0.01 0.01
Loss function RMSE [24] RMSE [24]
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examples correctly classified) of the ResNet model was 0.740 and the Inception’s 
was 0.817. Table 3 summarizes the other test measures, and Fig. 13 shows the ROC 
and PR curves for each model.

Note that the Inception model had the best overall performance (Tables 2 and 3). 
The lower performance of the ResNet model consists of misclassifications almost 
equally distributed between both healthy and bone loss classes. On the other hand, 
the misclassifications for the Inception model are mainly healthy regions incorrectly 
classified as regions that present vertical bone loss. Finally, the good results of the 
considered CNNs are denoted by the ROC and PR curves.

Table 2 Confusion matrices for the ResNet and Inception models

ResNet n = 104 Predicted
Healthy Vertical bone loss

Actual Healthy 38 14
Vertical bone loss 13 39

Inception n = 104 Predicted
Healthy Vertical bone loss

Actual Healthy 37 15
Vertical bone loss 4 48

Table 3 Test results

Measure ResNet Inception

PPV (precision) 0.736 0.762
Sensitivity (recall) 0.750 0.923
Specificity 0.731 0.711
NPV 0.745 0.902
AUC-ROC 0.864 0.860
AUC-PR curve 0.868 0.847

Fig. 13 ROC (left) and PR (right) curves for each model
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3.3  Detection of Dental Caries

Dental caries is a multifactorial oral disease affected by sucrose consumption. It 
presents a high prevalence [27], and its prevention demands early detection and 
treatment. Its development depends on the presence of bacteria, especially mutant 
streptococci, that ferment carbohydrates, resulting in the demineralization of hard 
dental tissues [28–30]. The accumulation of such bacteria forms what is known as 
plaque (biofilm) [27]. It initially affects the tooth surface, and after severe deminer-
alization or cavity formation, it can penetrate the hard tissues. Clinically, when it is 
visible, dental caries presents as a matte white spot (indicating ongoing activity) or 
an opaque or dark brownish spot (indicating past activity) [6, 31]. Demineralization 
may extend into the dentin, the enamel, or even the pulp and can destroy the entire 
tooth structure [30].

Most caries lesions are visible in periapical images. Approximal caries affects 
the interproximal area between two consecutive teeth. They are generally detected 
through image examinations, especially bitewing radiographic images, because the 
positions of such lesions prevent a clinical evaluation. In bitewing images, dental 
caries appears as a darker area due to their low x-ray absorption [6].

Several previous works have focused on identifying dental caries by examining 
images such as optical coherence tomography (OCT), periapical radiography, and 
bitewing images. Although initially, traditional image processing methods were 
applied in most works [32–35], machine learning algorithms have recently become 
a more common approach to visual problems, including dental images. Deep con-
volutional neural network (CNN) algorithms have been used for human oral tissue 
classification to provide early detection of dental caries [36]. A CNN model ana-
lyzes optical coherence tomography (OCT) images of different densities of oral 
tissues and determines variations related to the demineralization process. That sug-
gests that variations in caries lesion may be identified in other image examinations 
as well, as previously mentioned.

Deep CNNs have also been applied to the detection and diagnosis of dental car-
ies on periapical radiography images [37]. A pre-trained GoogLeNet Inception v3 
model was used to process 3000 periapical radiographs. Three different models 
were created: a premolar version, a molar version, and a final version for both pre-
molar and molars. These models achieved impressive accuracy results (89.0%, 
88.0%, and 82.0%, respectively). Thus, considering the good performance of the 
presented method, the study showed the feasibility of using a deep CNN architec-
ture to detect and diagnose dental caries.

Bitewing images have also previously been evaluated to identify dental caries 
stages and potential false diagnoses [38]. In that study, several texture features were 
extracted from the evaluated images via a gray-level co-occurrence matrix (GLCM). 
These feature values were processed by an algorithm that combines a logit-based 
artificial bee colony optimization algorithm with a backpropagation neural network 
to increase the classification accuracy. The proposed approach achieved an accuracy 
of 99.16%.
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Approximal Dental Caries Detection and Classification in Bitewing Images As 
previously mentioned in this section, caries detection is a common application area 
for AI-based image processing. Next, this section demonstrates the use of some AI 
and image techniques to detect approximal caries in bitewing images and classify 
them according to their severity. Consider three different caries stages based on 
their lesion severity: normal (no lesion), incipient (superficial lesion affecting the 
enamel; Fig. 14a and b), and advanced (lesion affecting a considerable part of the 
tooth, expanding into the dentin and the pulp; Fig. 14c and d).

The first step to prepare the data for the CNN classification is to detect the teeth 
in the bitewing radiographs using image processing techniques. Each of the detected 
teeth was separated, creating individual tooth images. As previously mentioned, 
tooth detection is a task for which previous works applied deep neural networks, as 
YOLO and Fast RCNN. Nevertheless, in an ideal scenario, classic image processing 
techniques may also present a good performance, as demonstrated in this experi-
ment. This experiment excludes cases of dental implants, crowding, and malocclu-
sion. For these cases, deep learning solutions may present better results.

The teeth detection method based on classic image processing techniques has as 
the first step an equalization operation (Fig. 15) to enhance the details and differen-
tiate between background and tooth areas more easily. This example uses the adap-
tive histogram equalization. As a result of the equalization process, teeth and 
background can be more easily differentiated in the images because their tonalities 

Fig. 14 Tooth stages considering the caries severity: (a) representation of tooth with an incipient 
lesion, (b) bitewing image with incipient lesion highlighted, (c) representation with an advanced 
lesion, and (d) real example of a bitewing exam with advanced caries
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differ more substantially. Thus, a threshold can be used to transform the original 
grayscale images into binary images where the background is black and the tooth 
area is white. This example used the Otsu threshold [39].

Observe that in the resulting binary images, sometimes the gum area is consid-
ered as background, and sometimes it is included in the white tooth area due to tonal 
similarities between the tooth and gum regions. These gum regions are removed 
using morphological operators [40]. The white areas related to teeth consist of large 
regions with few holes, while the white areas pertaining to gum are mostly small 
and irregular and can easily be removed using erosion and opening morphological 
operations applied consecutively [40]. Considering the thresholded image (Fig. 16a), 
the next step is to apply erosion using a 130 × 20 rectangle as a structuring element 
(Fig. 16b). This specific element was chosen after evaluating the gum areas’ shapes. 
The use of smaller elements did not result in the correct elimination of the gum 
areas. Similarly, the use of larger elements resulted in considerable losses in the 
identified tooth regions. Furthermore, using a uniform, symmetrical square or circle 
element did not allow the separation of teeth that are close together.

Next, an opening operation was applied, using a circle with a radius of 20 pixels 
as the structural element. This operation results in the elimination of the remaining 
undesirable parts (Fig. 16c). Finally, dilation is applied using a circle with a radius 
of 15 pixels as a structuring element, which results in the inclusion of the tooth 
borders in the tooth areas (Fig. 16d).

After removing the gum areas, the binary images are composed of large white 
areas on a black background. Each area refers to a different tooth. New images of 

Fig. 15 Application of adaptive equalization: (a) original image and (b) equalized image

Fig. 16 Pre-processing using morphologic operations: (a) thresholded image, (b) eroded image, 
(c) open image, and (d) dilated image
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each tooth are created based on the bounding boxes around these areas. Thus, the 
original image is repeatedly cropped, using the bounding boxes’ limits to obtain 
individual images for each tooth.

A total of 480 different tooth images were extracted from the 112 bitewing radio-
graphs by the described detection method. To be used as an input of a convolutional 
neural network for the proposed classification task, all data must be labeled, i.e., the 
lesion severity class must be assigned for each tooth. To obtain the labels for each 
of the 480 teeth, 2 experts used a labeling tool named DataTurks (available at https://
dataturks.com/) to associate each detected tooth to 1 of the considered classes: 
healthy, incipient, or advanced. These experts are experienced dentists, and one is 
specialized in oral radiology. This labeling process pointed out that the set of 480 
detected teeth included 305 normal teeth, 113 teeth that present incipient lesions, 
and 62 teeth that present advanced lesions. There was no discrepancy between their 
annotations, i.e., they pointed to the same classes for all cases.

The next step in the data preparation for the classification task is the dataset split. 
The data must be split into training and test sets used to train and evaluate the CNN 
model, respectively. Fifteen cases of each class are used as a test set, resulting in 45 
teeth. The remaining 435 tooth images (divided into 290, 98, and 47 images for nor-
mal, incipient, and advanced classes, respectively) underwent a data augmentation 
process. The data augmentation process consists of creating variation in input images 
to increase the data volume, which was proved to be essential to achieve good results 
in deep learning models [41]. This example’s data augmentation processes consist of 
applying rotate and flip operations to the tooth images, creating 1160, 1176, and 1128 
sample images for healthy (normal), incipient, and advanced classes, respectively.

Due to the outstanding performances presented by Inception v3 models in prior 
medical image classification studies, this CNN architecture was chosen to be used 
in this experiment [42]. The parameters used for training the CNNs are outlined in 
Table 4.

The models used in this example were previously pre-trained using the ImageNet 
dataset [25] to achieve better initial weight values. The fine-tuning training process 
included 11,500 steps and 3 different values (0.1, 0.01, and 0.001) as the initial 
learning rate to evaluate which of these parameter values would be the most 
appropriate.

The final accuracy and loss values, considering the training and validation sets, 
achieved after completing the training process, pointed out that the best Inception 
model was the one with a learning rate of 0.001. Therefore, this CNN model must 
be evaluated using the test dataset. In addition to the test accuracy, CNN evaluation 

Table 4 Hyperparameters used in CNN training

Parameter Value

Optimizer Momentum [22]
Batch size 16
Learning rate 0.1, 0.01, and 0.001
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currently includes the following measures: sensitivity (recall), specificity, positive 
predictive value (PPV, or precision), negative predictive value (NPV), and the area 
under the curve (AUC) for the receiver operating characteristic (ROC) curve, to 
evaluate the model’s performance considering the data in the test dataset. The mod-
el’s evaluation for each class based on the test data resulted in the values shown in 
Table 5. The confusion matrices in Table 6 summarize the overall and the specific 
results for each class. Another essential measure considered in this evaluation is the 
ROC curve. Figure 17 shows the curves for each class.

Observe that there is some disparity in the performance considering the three 
different classes, which is perceptible in confusion matrices (Table 6), the main test 
results (Table 5), and the ROC curves (Fig. 17). Nevertheless, the results suggest the 
applicability of CNNs for the proposed task.

Table 5 Test results

Class Precision Recall Specificity NPV AUC-ROC

Normal 0.818 0.600 0.933 0.823 0.643
Incipient 0.722 0.866 0.833 0.926 0.861
Advanced 0.687 0.733 0.833 0.862 0.810

Table 6 Confusion matrix

Predicted
Normal Incipient Advanced

True Normal 60% (9) 13% (2) 27% (4)
Incipient 7% (1) 86% (13) 7% (1)
Advanced 7% (1) 20% (3) 73% (11)

Fig. 17 ROC curves of each class for the model
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3.4  Image Enhancement

The limitations in radiographic acquisition devices can result in low-resolution 
images, compromising the diagnosis process [43, 44]. Traditional image processing 
techniques, as interpolation methods, can be used to increase images’ resolution. 
However, their results can be improved by AI-based methods.

Radiographic image enhancement also includes noise removal and image recon-
struction, i.e., recovering missing parts of the image. Actually, for oral radiographs, 
these tasks are closely related since the missing data is comprehended as noise in 
this context. Moreover, noise removal demands reconstruction to replace this noisy 
data with the actual data. AI-based solutions are also popular for these tasks. As 
discussed in the section Challenge Issues, radiographs’ acquisition and image for-
mation processes can lead to a wide range of artifacts and noise. According to 
Schulze et al. [45], artifacts and noise in oral radiographs include blur, scatter arti-
facts, extinction artifacts (missing value), beam hardening artifacts, exponential 
edge gradient effects, aliasing artifacts, ring artifacts, and motion and misalignment 
artifacts. Another critical artifact that significantly affects the image quality is 
the metal artifact. Image processing techniques can aid the reduction of some of 
these artifacts, especially those that include AI-based techniques. There are a sig-
nificant number of works in literature focused on artifact removal in dental imaging. 
Among them are the works of Wang et al. and Chang et al. [46, 47] that propose 
using neural networks for ring artifact removal in CBCT images. Xie et  al. [48] 
present an algorithm based on convolutional neural networks to reduce scatter arti-
facts in CBCT. Zhang et al. [49] developed a convolutional neural network- based 
framework to reduce the effects of metal artifacts.

Increasing the Quality of Digital Periapical Radiographs Using SRCNN This 
section’s example demonstrates the application of a widely known deep learning 
algorithm, called super-resolution convolution neural network (SRCNN) [50], to 
obtain high-resolution periapical images from low-resolution ones, reaching a mag-
nitude improvement of 4×. Its results are compared with other super-resolution 
solutions based on more traditional image processing techniques, which are the 
nearest, bilinear, bicubic, and Lanczos interpolations.

SRCNN is a widely used deep learning-based super-resolution method. Dong 
[50] initially proposed it in 2016. In its pre-processing, the original low-resolution 
image is rescaled to its final size by applying the bicubic interpolation. Such a res-
caled image is the input of the network that manipulated it in three main steps: patch 
extraction and representation, nonlinear mapping, and reconstruction. In the first 
step, patches are extracted from the bicubic rescaled image. Such patches are repre-
sented as high-dimensional vectors. In the second step, these high-dimensional vec-
tors are mapped into other vectors, in a nonlinear way. In the third step, it aggregates 
the high-resolution patch-wise representations to obtain the output (high-resolution 
image). Figure 18 shows a representation of the steps that compose the SRCNN.

Combining Image Processing and Artificial Intelligence for Dental Image Analysis…



98

The training process of the SRCNN model included 10,000 epochs and used the 
Adam optimizer and a learning rate of 3 × 10−4. The dataset used in the training 
process of the SRCNN model is composed of 228 different periapical radiographs.

After the training process, the obtained model must be evaluated considering the 
test set that refers to a new set of images not used for training. The test set is formed 
by 100 selected periapical radiographs, from the 120 that compose the original data-
set provided by Rad et al. [51]. Such radiographs were collected in the Dental Clinic 
of the Universiti Teknologi Malaysia (UTM) Health Center using a Sirona device. 
All images are in grayscale, in “jpeg” format, with dimensions of 748 × 512. Also, 
a padding operation is applied to the images of both training and testing sets, in 
order to obtain squared images, with the same number of rows and columns, in 
order to facilitate the SRCNN processing.

The analysis of the results included three metrics to evaluate the similarity 
between the images achieved by the considered methods and the ground-truth high- 
resolution images: mean square error (MSE), peak signal-to-noise ratio (PSNR), 
and structural similarity index measure (SSIM). The results for all considered meth-
ods using the test dataset are presented in Table 7.

Note that the values presented in Table 7 demonstrate the SRCNN model’s supe-
riority, which outperformed all other methods for all considered measures. This 

Fig. 18 SRCNN representation

Table 7 Evaluative measures for each considered method

Method MSE PSNR SSIM

Nearest interpolation 101.04 (±47.35) 28.79 (±3.08) 0.92 (±0.02)
Bilinear interpolation 62.06 (±29.89) 31.16 (±3.48) 0.94 (±0.03)
Bicubic interpolation 53.39 (±26.01) 31.87 (±3.63) 0.94 (±0.02)
Lanczos interpolation 48.67 (±24.07) 32.33 (±3.75) 0.95 (±0.02)
SRCNN 33.69 (±14.17) 33.53 (±2.86) 0.98 (±0.01)
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quality increase can also be observed by visually analyzing the images generated by 
each method (Fig. 19). Note the aliasing effects of the nearest interpolation’s image 
and the blur effects of the bilinear’s, bicubic’s, and Lanczos’ images. On the other 
hand, the SRCNN model led to less noise and more detailed edges.

3.5  Other Applications

There is a wide range of dental imaging applications for which the techniques cov-
ered in this chapter can be applied, as mentioned in the Introduction of this chapter. 
Both Schwendicke et  al. [2] and Hung et  al. [4] pointed out the localization of 
cephalometric landmarks is a very popular application. Cephalometric landmark 
localization in dental practice is performed manually by experts or supported by 
computerized tools, mostly in a semi-automatic way. As an attempt to automatize 
this process, several AI-based image processing solutions have been proposed in the 
last years. As discussed in the Challenge Issues section of this chapter, there is no 
consensus on the number of landmarks to be used in dental practice, so the works in 
literature that cover this topic vary by considering from 10 to 43 landmarks. Half of 
the works analyzed by Hung et al. [4] presented results considered by the authors as 
promising, with accuracy values ranging from 35% to 84.70%. Nevertheless, the 

BilinearNearestSRCNN

Bicubic Lanczos

Fig. 19 Detail of images generated by the considered methods
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quality of the results of the solutions available in literature still does not suit clinical 
requirements.

In that context, Arik [52] used shape-based CNN models to recognize landmarks’ 
appearance patterns, defining probabilistic estimations for landmark locations. 
Song [53] proposed a two-step automatic method to detect cephalometric land-
marks, which consists of (1) extracting image patches for each landmark and (2) – 
detecting the associated landmark in each patch using a ResNet model. The network 
directly outputs the coordinates of the landmarks.

Another popular application in this context is the detection of osteoporosis and 
low bone mineral density (BMD). Both of these conditions can be identified in 
radiographs due to their radiodensity-related aspects. Recent works for these appli-
cations achieved around 95% for accuracy, sensitivity, and specificity, suggesting 
that their inclusion in real-world dental practice is close. A great amount of these 
works defined features to be used as input in classifiers [54–57].

Diagnosis and segmentation of maxillofacial cysts and tumors using the men-
tioned tools are also commonly assessed in literature. The work presented by 
Abdolali et al. [58] considers the symmetry of oral anatomy to identify areas refer-
ent to cysts. Mikulka et al. and Nurtanio et al. [59, 60] proposed semi-automatic 
solutions using AI-based image processing techniques to detect, segment, and clas-
sify lesions of this type. More recently, Lee et al. [61] proposed using a GoogLeNet 
Inception v3 model to detect and classify odontogenic keratocysts, dentigerous 
cysts, and periapical cysts in CBCT, achieving an AUC of 0.914, a sensitivity of 
96.1%, and a specificity of 77.1%. Kwon et  al. [62] developed a CNN model 
inspired by the YOLOv3 architecture to detect and classify odontogenic cysts and 
tumors, which present 88.9% for sensitivity, 97.2% for specificity, 95.6% for accu-
racy, and 0.94 for AUC.

Other application areas in dental imaging are detection, segmentation, and clas-
sification of other anatomical structures, including teeth, jaw bone, and root canals; 
biofilm classification; diagnosis of multiple dental diseases; classification of tooth 
types; identification of inflamed gum; identification of dental plaque; and classifica-
tion of the lower third molar stages.

3.6  Conclusions and Challenge Issues

Although there are several clinical decision support systems that have been devel-
oped in the last years, few of them are actually used in clinical settings and previous 
studies denote a low clinical acceptance of them [63–65], even considering that 
there is a consensus about their improvement in care and promotion on experts’ 
efficiency [66]. That is, the great potential of the computational tools for dental 
image analysis based on image processing and artificial intelligence techniques still 
faces a significant amount of resistance from dentists and oral radiologists. In part, 
this may happen due to their novelty aspect: Research works employing CNNs in 
dentistry started in 2015 [2, 3]. This also could be related to the fact that the great 
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majority of AI-based solutions do not consider the dentist comprehension factor, 
working basically as a 𝑏𝑙𝑎𝑐𝑘 𝑏𝑜𝑥, which affects their reliability hugely from the 
users’ point of view.

However, even the use of computer-aided image examinations is not always well 
received by dental experts, who tend to demand second opinions for these evalua-
tions, if used, since they believe it leads to an inconclusive diagnosis [67]. It is 
observed that the low quality of the images is one of the reasons that hugely present 
influences in such resistance and difficult development of user-friendly tools, which 
can aid in computer-aided diagnostic popularization and more uses [67]. 
Consequently, for oral diseases, manual clinical evaluation is still the gold standard 
in diagnosis.

Other critical aspects related to the difficulties of the development of AI systems 
are the subjectivity in expert conclusions and the lack of standards for some oral 
disease diagnosis. The perception of caries severity may vary among experts; for 
instance, it is common that there is no agreement about the amounts of the teeth that 
must be compromised in order to consider a lesion as incipient or not. As observed 
by Dave [67], there is experts’ judgment disagreement even for defining more con-
crete points when a patient presents an anatomic abnormality. This hugely affects 
the development of public databases with a ground truth that must be used for com-
putational based solutions in the dental imaging area since there is a hidden feeling 
related to fear of peers’ opinion about the correctness of the report made (𝑖.𝑒. based 
on the definition of the diagnosis), so the experts’ annotations are considered by the 
physicians as a risk to them because it may not be considered correct by other 
experts and consequently it is almost impossible to find one or promote construction 
of databases. Moreover, this tends to restrict the applications that can be considered 
in the development of computer-based solutions, and this aspect could be reduced 
when there are widely accepted diagnosis standards as in the case of BIRADS 
degree for breast researches [68].

Truthfully, this lack of public available data is the main and critical challenge 
issue to be considered, faced, and resolved in dental imaging applications. Very few 
open datasets are available, with the “ISBI 2015 Grand Challenge in Dental X-ray 
Image Analysis” being the most popular one. Most works in literature use private 
datasets from their associated institutions, which can lead to bias since different 
institutions tend to target different populations [2, 3] and so their databases are more 
representative and trustworthy. For example, public emergency hospitals tend to 
attend more to vulnerable patients with more severe lesions and often more neglected 
oral health. A dataset acquired in private institutions may have a higher number of 
healthy patients, preventing demographically correct representations and promoting 
the construction of non-generic solutions due to sub-representation aspects.

Oral radiographs are also more susceptible to present artifacts since dental pros-
theses and implants are substantially more prevalent than other body regions. 
Artifacts greatly affect dental radiographic images preventing a quality diagnosis 
and influencing the signal patterns used in detection algorithms. Moreover, oral 
radiographs are also influenced by same phenomena that affect radiographs in gen-
eral, as acquisition problems and noise resultant from limitations in the image 
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formation. The radio densities of some oral structures are difficult to detect in sev-
eral oral diseases [69]. For example, bitewing images present a low sensitivity for 
both proximal and occlusive surfaces, and oral radiographs, in general, have a poor 
performance for detecting noncavity lesions.

Finally, oral diseases are heterogeneous and hard to model computationally 
(even impracticable sometimes) [2, 3, 6, 27, 70], restricting the application prob-
lems in which the proposed methods can be applied [32, 36, 43, 56, 58, 69].
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