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Abstract. Architectural pathologies resulting from complex factors such as cli-
matic parameters have had negative impacts on the protection and preservation of
cultural relic masonry buildings. The study of correlations between the building’s
degree of damage and its construction date can reveal and even predict the develop-
ment of architectural pathologies, which can help to protect cultural relic masonry
buildings more effectively and specially. The aim of this research is to investigate
the relevance and correlations between these two factors in cultural relic masonry
buildings, and introduce the rate of change in heat transfer coefficient of building
walls as a quantitative index that characterizes the severity of building pathologies.
Based on the statistical method LS-SVM (Least Square-Support Vector Machine)
implemented through machine learning in the computer field, a quantitative rel-
evance model between these two factors (LS-SVM MODEL) was established,
allowing for the prediction of the rate of change in the thermal transfer coefficient
of building walls. In addition, considering how Harbin is representative of cold
climate cities, the study region is limited to Harbin City.

Keywords: Architectural pathology · Prediction mechanism · Cultural
buildings · Cold climate regions · Thermal transfer coefficient

1 Introduction

In China, its cold regions are widely distributed. According to statistics, China’s cold
regions have an area of 4.17 million square kilometers which accounts for 43.5% of
China’s total land area. A large number of heritage buildings are distributed across
China’s wide-range cold region and therefore cold bad weather greatly threatens the
protection of heritage buildings. Therefore, it is very important to study frost damage
and develop a prediction mechanism for heritage buildings in such regions. Here, the
main pathologies of heritage buildings are related to frost damage. In particular, freeze-
thaw cycles have causedmuch damage to the internal structure of thewalls. Thewinter in
the northern part of China has the characteristics of fast freezing, a long freezing period
and high freeze-thaw frequency. The snow falls for a period of up to 7 months from

© Springer Nature Switzerland AG 2021
S. Xu et al. (Eds.): East Asian Architecture in Globalization, pp. 142–155, 2021.
https://doi.org/10.1007/978-3-030-75937-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75937-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-75937-7_12


Research on a Prediction Mechanism 143

September or October of every year to next April, resulting in a long period of snowfall
and freezing; according to statistics, there are approx. 120 freeze- thaw cycles occurring
in northeast China every year on average (Liu and Chen 2016). Based on this, it can be
estimated that heritage buildings in the cold regions of China have experienced up to ten
thousand freeze-thaw cycles during their 100-year-plus existence. Freeze-thaw cycles
will increase the porosity and water absorption of red bricks (Huan et al. 2014) and the
porosity inside the red bricks directly affects the thermal transfer coefficient of building
exterior walls. The thermal transfer coefficient refers to the heat transferred when it
passes through an area of one square meter within 1 s, with an air temperature difference
of 1 (K, °C) on both sides of the envelope under stable thermal transfer conditions, and
is measured as watt per square meter per Kelvin or W/(m2 K) (Liu 2009).

The thermal transfer coefficient of the building envelope is one of the important
indicators of the building wall’s insulation performance and also serves as an important
indicator of the health status of historical buildings in cold regions. Therefore, this paper
studies the pathological principles of masonry heritage buildings in cold regions, from
the viewpoint of changes in the thermal transfer coefficient of external building walls.

There are many factors, including wall moisture content, that result in changes to the
thermal transfer coefficient of exterior building walls, and which fall into the category
of artificial and uncontrollable factors, so we cannot quantify and accurately grasp such
information. But time is an intuitive direct parameter that can allow us to measure and
affect the building pathologies. Therefore, this paper considers pathology as a quantity
that varies as a function of time and the relationship between time and other parameters.
This relationship is identified with a computer method which is called “time series
analysis” in the computer field (Heather 2007). This technology has becomemoremature
at the present time (Durbin and Koopman 2011).

2 Data Acquisition

2.1 Object of Study

For this study, 20 masonry buildings in the Harbin area have been selected for measuring
their thermal transfer coefficients on site. These buildings were all constructed in a
60-year period from the 1900s to the 1960s and differ in terms of construction date
and their wall thickness, but are almost consistent in regards to construction material,
structure, surrounding artificial environment and other conditions. The distribution of
these buildings in Harbin is shown in Fig. 1. The building materials used for these
buildings are early red clay bricks with clay serving as the main component, accounting
for about 65%. As shown in Fig. 2, such bricks feature a low degree of sintering, poor
compactness, loose structure and strong water absorption, and may suffer a change in
porosity under the action of freeze-thaw cycles, thereby causing the change in thermal
transfer coefficient of the walls (Liu and Chen 2017).

2.2 Field Measurements

Measurement Methods and Principles. In this paper, the thermal transfer coefficient
of the historical building envelope is measured with the heat flow meter method, which
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Fig. 1. Distribution of the selected 20 buildings on a map of Harbin. Source: authors.

Fig. 2. Diagram for standard structure of the walls of the selected buildings.

works as follows: The thermal transfer coefficient of the building envelope is measured
based on the relationship between the thermal flux and thermal transfer temperature
difference on both sides of the envelope. The thermal flux through the envelope is
measured with a thermal flow meter sheet and the surface temperature on both sides of
the envelope is measured with a temperature sensor. The thermal transfer coefficient of
the envelope is calculated according to the thermal transfer principle. And the thermal
transfer coefficient of the building envelope is measured to ensure that a certain thermal
flux and thermal transfer temperature difference is formed on both sides of the envelope,
and ensure that the indoor and outdoor temperature difference is higher than 20 °C so
as to achieve a quasi-stable state of thermal transfer during winter heating (Shou 2015).

Measurement Position and Operation. In the process of testing, the selected test posi-
tions should not be located at thermal bridges, cracks, windows and other places vul-
nerable to the outdoor environment and should not be affected by heating or ventilation
devices. The thermal flow meter should be installed in such a way that it is as close as
possible to the surface of the envelope and the envelope surface should also be kept flat
to the maximum possible extent. The meter is to be mounted by affixing it to the exterior
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so as to ensure that the historical buildings are not damaged. The thermal flow meter
should be affixed in such a way that the meter is closely attached onto the surfaces on
both sides of the envelope, so that the clearance will not affect measurement accuracy
(Liu et al. 2014). The temperature sensors are installed on the surfaces of both sides
of the building envelope. The indoor temperature sensor should be located as close as
possible to the thermal flow meter and the outdoor temperature sensor should be located
at the position that corresponds with the position of the indoor heat flow sensor.

Furthermore, the thermal transfer coefficient was measured by selecting four verti-
cal sides of a building in the process of measurement, and the measured values were
averaged to obtain the mean value of the thermal transfer coefficient for the building’s
walls in order to ensure the universality of the test data. The impact of the building envi-
ronment, orientation and special circumstances on the building heat transfer coefficient
was minimized.

Measurement Results. Table 1 reports the on-site measurement results for the thermal
transfer coefficients of building walls. The calculation results of the theoretical value of
the wall thermal transfer coefficient are shown in Table 2.

Table 2. Calculation of the theoretical value of wall heat transfer coefficient.

Physical parameter Signs Unit Formula

Thermal transfer coefficients K W/(m2 K) K = 1/R0

Thermal resistance R0 (m2 K)/W R0 = Ri + ∑
R + Re

Internal surface thermal
exchange resistance

Ri (m2 K)/W Ri = 0.11

Thermal exchange resistance
of external surface

Re (m2 K)/W Re = 0.04

Thermal resistance of each
material layer

∑
R (m2 K)/W

∑
R = R1 + R2 + R3

R1 R1 = d1/λ1

R2 R2 = d2/λ2

R3 R3 = d3/λ3

Material thickness d1 m d1 = 15 mm Cement sand plaster

d2 d2 = 545 m
m/645
mm/7 70 mm

Old red brick wall

d3 d3 = 15 mm Cement sand plaster

Thermal conductivity of
materials

λ1 λ1 = 0.87 Cement sand plaster

λ2 λ2 = 0.81 Old red brick wall

λ3 λ3 = 0.87 Cement sand plaster
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3 Method

A largely non-linear relationship exists between the building’s completion date, wall
thickness and rate of change in the wall’s thermal transfer coefficient, that is, the rate
of change in the thermal transfer coefficient does not simply increase with time, so an
algorithm that fits a nonlinear variable relationship is required to predict the change
tendency in the thermal transfer coefficient reasonably and accurately. To this effect,
the LS-SVM (least-squares support-vector machine) method can identify the nonlinear
relationship between building completion time, wall thickness and rate of change in the
thermal transfer coefficient, and accurately predict the development of the rate of change
in the thermal transfer coefficient, according to the time provided. Therefore, this paper
predicted the change tendency of the thermal transfer coefficient of the wall based on
the least-squares support-vector machine.

3.1 Fundamental Principle of LS-SVM

The LS-SVM algorithm sticks to the core principle of structural risk minimization of the
support vector machine, and has solved such problems as the slow rate of convergence
and long training time of the SVM algorithm. The solving of quadratic programming is
converted into the solving of a linear equation set (Liu et al. 2014). For the given training
sample set:

s = {(x1, y1)(x2, y2), . . . (xn, yn)} (1)

x1 is the characteristic model input variable, y1 is target variable, and n is sample
size.

Generally, a non-linear relation exists between y and x. In order to realize the linear
parameter regression, through a non-linear function φ (), the sample is mapped to a
high-dimensional characteristic space, in which the set is:

ϕ(x) = (φ(x1), φ(x2) . . . φ(xn)) (2)

As for the selected RBF kernel function, the expression is,

K(x, y) = e( − (x − y)2
/

2σ 2) (3)

where σ is the kernel width parameter.
Subsequently, the linear regression is conducted for the training results in the high-

dimensional characteristic space, the regression function being:

f (x) = wT · φ(x) + b (4)

where wT is the weight vector, b is the offset value, and φ(x) is the non-linear function.
After that, based on the structural risk minimization principle, the model parameters w
and b are determined. The structural risk expression is:

R = γ · Remp + 1

2
‖w‖2R (5)
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where, γ is the regularization parameter, and γ > 0,Remp is loss function or cost function;
it is also called empirical risk function. The LS-SVM algorithm adopts the quadratic loss
function:

Remp =
∑n

i
ε2i (6)

where εi is the prediction error of the support vector machine model for the training
sample.

The determination of model parameters w and b based on the structural risk mini-
mization principlemaybe equivalent to the solving of the optimal parameter optimization
under the structural risk minimization conditions:

y = wT · φ(x) + b (7)

The Lagrangian function (L) is introduced as,

L(w, b, εi, a) = γ ·
n∑

i

ε2i + 1

2
‖w‖2 −

n∑

i=1

(
ai ·

(
wT · φ(x) + b − yi

))
(8)

where a = [a1, a2,…an] is the Lagrangian multiplier. According to the optimization
conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w = 0 → w =

n∑

i=1
ai · φ(xi)

∂L
∂b = 0 →

n∑

i=1
ai = 0

∂L
∂εi

= 0 → ai = 2γ εi
∂L
∂ai

= 0 → yi = wT · φ(xi) + b + εi

(9)

After the systemization of Formula (9),

yi =
n∑

j=1

(aj · 〈
φ(xj), φ(xi)

〉 + b + 1

2γ
ai (10)

After it is placed into a kernel function,

yi =
n∑

j=1

(aj · K(xi, xj)) + b + 1

2γ
ai (11)

The simultaneous matrix form of linear equation set is as follows:
[
0 1T

1 K(xi,xj) + γ −1I

]

·
[
b
a

]

=
[
0
Y

]

(12)

According to the training sample s = {(x1, y1) (x2, y2), … (xn, yn)}, after formula
(12) is solved, the values of a and b may be figured out. Finally, the function estimate
of LS-SVM is:

f (x) =
n∑

j=1

aj · K(xi, xj) + b (13)
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Finally, after setting the features of the actual data set, we can obtain the input/output
data model for the LS-SVM bymeans of kernel mapping, minimization of the risk factor
and least square error criterion. By inputting the sample data, the model can be used to
predict the rate of change in the thermal transfer coefficient of building walls.

3.2 Method Implementation

In Fig. 3, for the given change rate data of the thermal transfer coefficient, through this
group of data, the characteristic variable and target variable should be built up first,
and then the data are normalized. The normalization has the function of converting the
original data into a standard normal distribution. The parameter setting involves the
selection of the kernel and regularization parameters. The regularization parameter is
used for balancing the loss function, and the kernel function is used for guaranteeing
good linear characteristic mapping effects. The standardized data are mapped to a high-
dimensional space through the kernel function.

Fig. 3. Diagram of procedural steps for devising the thermal transfer coefficient prediction
framework, based on a least-squares support-vector machine.

After the data are mapped to the high-dimensional space, the non-linear relation
between the characteristic variable and target variable becomes a linear relation. Through
the solution formula of LS-SVM, the mapping relation between them is made clear.

As for the characteristic mapping, through the selection of a linear function and a
kernel function, the original data are linearly converted into the characteristic space,
for the purpose of linear regression. As for the parameter estimation, by virtue of the
characteristic sample, according to the function estimation formula (13), the parameter
value is calculated.

Figure 4 illustrates the building pathology prediction process based on a least-squares
support-vector machine. Firstly, the data is divided into the sample set and test set. The
relationship between building completion time, wall thickness and rate of change is
established by LS-SVM. Themathematical model is established according to the sample
set, and the time and wall thickness of the test set are inputted into the model to obtain
the prediction results for the rate of change. In order to verify the accuracy of the model,
the error is obtained by comparing the predicted rate of change with the known rate
of change in the test set. We can understand the rationality of the modelling and the
accuracy of the prediction through error analysis.
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Fig. 4. Diagram explaining the thermal transfer coefficient prediction process, based on a least-
squares support-vector machine

After the sample set and test set are selected, the characteristic and target variables
are built, and the parameter values in the algorithm are reasonably set, the excellent
performance of the algorithm may be guaranteed. Table 3 lists the input and output
parameters of LS-SVM in the prediction of the change rate. After setting all of the
parameters, we can train the sample data so as to build up the predictive model.

Table 3. Input and output parameters for the LS-SVM in the change rate prediction.

Input parameters Output parameters

Sample set of time, wall thickness, change rate Change rate predicted value

Test set of time, wall thickness, change rate

Regularization parameter: 69

Kernel function parameter: 29
Kernel parameter: Gaussian radial basis kernel function

4 Experiment Phase

In this paper, 20 buildings were measured on site in Harbin in order to verify the accu-
racy and rationality of the proposed method. The corresponding construction year, wall
thickness and rate of change of these 20 buildings were respectively obtained. Due to
the limited data that had been acquired, in order to fully verify the method proposed
in this paper, the data for the 20 buildings was divided into 4 copies, with each copy
containing the data of 5 buildings. Four experiments were conducted in total. For every
experiment, one set of data is taken as a test set and the remaining three sets of data are
taken as sample sets. In this way, the data for each building can be modelled as a sample
set and can be verified as a test set.

The predicted results of the four experiments are shown in Fig. 5.
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(a) Test and experiment results of the first group of buildings.

(b) Test and experiment results of the second group of buildings.

(c) Test and experiment results of the third group of buildings. 

(d) Test and experiment results of the fourth group of buildings.

Fig. 5. Results of the four tests and experiments for the 20 historic buildings.
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(a) Test and experiment error curve for the first group of buildings.

(b) Test and experiment error curve for the second group of buildings.

(c) Test and experiment error curve for the third group of buildings.

(d) Test and experiment error curve for the fourth group of buildings.

Fig. 6. Test and experiment error curves for the data set of 20 historic buildings.
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The red solid line in the figure is the real rate of change curve for the 20 buildings,
and the blue line is the rate of change predicted by the time and wall thickness relation
provided by the corresponding buildings. It can be seen that the blue line can follow
the red line very closely, indicating that the model established in this paper is accurate
and thus we can predict the rate of change based on the time and wall thickness of the
building. The corresponding prediction error curve is shown in Fig. 6.

From the four figures above, it can be seen that the error of the rate of change for
each building is basically no more than 10%. The level of accuracy is high and relatively
stable. This paper uses three error indicators to measure the accuracy of the algorithm:
the mean square error, mean absolute error and mean error. The results are summarized
in the Table 4:

Table 4. Statistics sheet for the three error indicators.

1st Group 2nd Group 3rd Group 4th Group

MSE 0.0187 0.0417 0.1556 0.0209

MAE 0.0242 0.0637 0.0850 0.0379

ME – 0.0035 0.0049 0.0600 – 0.0331

5 Conclusion

In this paper, the measured heat transfer coefficient values for the exterior walls of 20
masonry historical buildings (built in different years in the Harbin area) were obtained
through an on-site measurement of the heat transfer coefficient of the exterior walls of
these buildings, and the theoretical value of the heat transfer coefficient of the corre-
sponding wall was calculated based on such parameters as the wall thickness of these
buildings and the thermal conductivity of old red brick walls.

On the basis of these data, the mathematical model for the non-linear relationship
between the building completion time, wall thickness and rate of change of thermal
transfer coefficient was established with the least-squares support-vector machine (LS-
SVM) algorithm. This allowed us to achieve the prediction of the tendency of change of
the thermal transfer coefficient for the exterior walls of masonry heritage buildings in
the cold regions of China. Furthermore, the actual data show that the predicted results
obtained from the model have a high level of accuracy and stability. The application of
the least-square support-vector machine method in the field of building pathology pre-
diction provides effective technical and evidential support for the preventive protection
of building heritage sites in the cold regions of China, which will further promote the
development of the general protective measures for such cases.
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