
Chapter 4
Nonlinear Dynamic Analysis of FGM
Sandwich Shallow Shells with Variable
Thickness of Layers

Lidiya Kurpa, Tetyana Shmatko, and Galina Timchenko

Abstract This paper considers the application of the R-functions method to a new
class of problems: the study of vibrations of sandwich FGM shallow shells with
variable thickness of layers and complex shape. The core is fabricated of FGM, and
the face sheets are made of metal. Mathematical formulation of the problem has
been done in the framework of the refined shear deformation theory of the first order.
To calculate the effective characteristics of the material, Voigt’s law was applied.
Analytical expressions have been obtained for coefficients depended on thickness.
These coefficients are to calculate the stress and moment resultants. Comparisons of
the obtained results with known ones for a special case (bi-layered object) are carried
out. Dynamic analysis is fulfilled for the shells and plates with parabolic thickness
of layers and different constituent materials of FGM. Effect of materials and layers
thickness on the natural frequencies and backbone curves of the shells is shown.

Keywords R-functions theory · Complex plan form · Timoshenko’s theory ·
FGM · Sandwich shallow shell · Free nonlinear vibrations · Variable thickness of
layers

4.1 Introduction

Sandwich plates and shells are widely employed inmany industries: aerospace, satel-
lite, industrial construction, medicine, internal combustion engines and others. The
manufacture of modern sandwich structures is often carried out from new advanced
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composite materials, called as functionally graded materials (FGM). It is connected
with the following reasons. These materials provide lightness and strength of the
construction and restrain a sharp change in the mechanical properties of the layers.
Therefore, they prevent stress concentration, destruction and delamination of layers.
Due to these reasons, the study of the static and dynamic behavior of FGM structures
draws an attention of many researchers since the issue of FGM structures calculation
is among the most important problems of modern mechanics. A huge number of
works devoted to this problem and, in particular, to vibration of the sandwich plates
and shells is known (Alijani and Amabili 2014; Swaminathan et al. 2015; Thai et al.
2014; Zenkour 2005; Bennoun et al. 2016; Li et al. 2008, Malekzaden and Ghaed-
sharaf 2014). New theory and models were developed (Thai et al. 2014; Bennoun
et al. 2016) to study a nonlinear vibration of FG sandwich plates and shells. Recently,
Birman and Kardomateas (2018) have been made a current analysis in research of
sandwich FGM structures. Thai and Kim (2015) made a comprehensive analysis of
different theories for studying FGM plates and shells. Authors analyze the theories
used widely in the modeling FGM plates and shells: the classical plate theory, first-
and higher-order shear deformation theories, simplified and mixed theories, which
are equivalent to single-layer theories. Thework ofThai et al. 2017 is devoted towide-
ranging review on the development of higher-order continuum models in predicting
the behavior of small-scale structures. In particular, the finite element solutions for
size-dependent analysis of beams and plates were also developed. Great interest for
manymodern engineering FGMsandwich structures leads to the development of new
theories (Arshid et al. 2020). For example, in Arshid et al. (2020), the vibrational
behavior of rectangular micro-scale sandwich plates resting on a visco-Pasternak
foundation is studied by a novel quasi-3D hyperbolic shear deformation theory.

It should be noted that number of papers devoted to research of the nonlinear
vibration of FGM sandwich shells with variable thickness is limited enough. Some
reviewer of theseworkswas presented in Tornabe et al. (2017). The authors employed
several higher-order shear deformation theories, defined by a unified formulation in
order to study FGM sandwich shell structures with variable thickness. The gener-
alized differential quadrature method is used as numerical tool. Due to developed
approach, the structural models can be considered as two-dimensional ones. It is one
of the advantages of the proposed method.

Awrejcewicz et al. (2013) analyze geometrically nonlinear vibrations of single-
layer shallow shells of variable thickness and complex shape using the R-functions
theory (Rvachev 1982) and variational methods (RFM). The mathematical formu-
lation of the problem is carried out within the framework of the classical theory.
A distinctive feature of the proposed approach was also an original construction of
approximate solutions to the nonlinear problem. Later in Awrejcewicz et al. (2015),
Kurpa and Shmatko (2014), this approach was developed for multilayer shallow
shells, provided that the layers had a variable thickness, but the total thickness was
constant. The mathematical formulation is based on the first-order shear deformation
theory of the shallow shells. These works have shown that this approach allows to
study the dynamic behavior of shallow shells with an arbitrary shape of their plans
and various types of boundary conditions.
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In this article, we consider the issue of geometrically nonlinear vibrations of the
FGM sandwich shallow shells, provided that the FGM core has a variable thickness.
Themethod proposed inAwrejcewicz et al. (2015, Kurpa and Shmatko (2014), Kurpa
et al. (2018), Awrejcewicz et al. 2018 is generalized to solve the problem under
consideration. Software has been developed to implement RFM for the problem.
Numerical results are presented for shallow shells with square and complex planform
for parabolic law of changing layers thickness. Effect of the different parameter
(gradient index, type of FGM, boundary conditions and others) on dynamic behavior
of the structures is shown.

4.2 Formulation Problem

Consider a three-layered shallow shell with variable thickness of layers if total thick-
ness is constant. Assume that face-sheet layers are made of metal and core is made
of functionally graded materials. The layers are symmetric relative to the middle
plane as it is shown in Fig. 4.1a and b. The functionally graded layer is made from a
mixture of two phases (metal and ceramics). The effective material properties of the
FGMs are calculated by power law (Voigt’s model). According to this model, elastic
modulus E, Poisson’s ratio ν and the density ρ of the composite are defined by the
following relations

E = (Ec − Em)Vc + Em, ν = (νc − νm)Vc + νEm, ρ = (ρc − ρm)Vc + ρm .

(4.1)

Here, Ec, νc, ρc are elastic modulus, Poisson’s ratio and the density of ceramics
relatively; Em, νm, ρm are corresponding characteristics ofmetal. Fraction of ceramic
Vc and metal phases Vm are related by formula
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Fig. 4.1 Material variation along the thickness of FGM plate
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Vc + Vm = 1. (4.2)

Take into account that thickness of FGM layers changes symmetrically relative
to the middle surface, let us present the expressions Vc for the given case:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vc = 0, z ∈ [− h
2 ,−h1(x, y)

]
,

Vc =
(
z+h1(x,y)
h1(x,y)

)p
, z ∈ [−h1(x, y), 0],

Vc =
(
h1(x,y)−z
h1(x,y)

)p
, z ∈ [0, h1(x, y)],

Vc = 0, z ∈ [
h1(x, y),

h
2

]
.

(4.3)

In formula (4.3), index p(0 ≤ p < ∞) denotes the volume fraction exponent
(gradient index), z is the distance between a current point and the shell mid-surface.
Note that if h1(x, y) = h/2, then we have so-called bi-layered object.

Solution of the problem is carried out within the first-order shear deformation
theory of shallow shells (FSDT).

According to this theory, the displacements components u1, u2, u3 at a point
(x, y, z) are expressed as functions of themiddle surface displacements u, v andw in
the Ox, Oy and Oz directions and the independent rotationsψx , ψy of the transverse
normal to middle surface about the Oy and Ox axes, respectively (Zenkour 2005,
Bennoun et al. 2016, Li et al. 2008, Malekzaden and Ghaedsharaf 2014):

u1 = u + zψx , u2 = v + zψy, u3 = w.

Strain components ε = {ε11; ε22; ε12}T, χ = {χ11;χ22;χ12}T and γ =
{
γyz; γxz

}T
, an arbitrary point of the shallow shell are:

ε =
⎧
⎨

⎩

ε11

ε22

ε12

⎫
⎬

⎭
=

⎧
⎪⎨

⎪⎩

u,x + w
Rx

+ 1
2w

2
,x

v,y + w
Ry

+ 1
2w

2
,y

u,y + v,x + w,xw,y

⎫
⎪⎬

⎪⎭
, χ =

⎧
⎨

⎩

χ11

χ22

χ12

⎫
⎬

⎭
=

⎧
⎨

⎩

ψx ′x
ψy′ y

ψx ′ y + ψy′x

⎫
⎬

⎭
,

γ =
{

γyz

γxz

}

=
{

ψy + w,y − v
Ry

ψx + w,x − u
Rx

}

.

In-plane force resultant vector N = (N11, N22, N12)
T, bending and twisting

moments resultant vector M = (M11, M22, M12)
T and transverse shear force resul-

tant Q = (
Qx , Qy

)T
are calculated by integration along the Oz-axes and defined

as:

N = [A]{ε} + [B]{χ},
M = [B]{ε} + [D]{χ}, (4.5)

where
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[A] =
⎡

⎣
A11 A12 0
A12 A22 0
0 0 A33

⎤

⎦,

[B] =
⎡

⎣
B11 B12 0
B12 B22 0
0 0 B33

⎤

⎦,

[D] =
⎡

⎣
D11 D12 0
D12 D22 0
0 0 D33

⎤

⎦. (4.6)

Elements Ai j , Bi j , Di j of the square matrices A, B and D in relations (4.5, 4.6)
are calculated by formulas:

Ai j =
3∑

r=1

zr+1∫

zr

Q(r)
i j dz,

Bi j =
3∑

r=1

zr+1∫

zr

Q(r)
i j zdz,

Di j =
3∑

r=1

zr+1∫

zr

Q(r)
i j z

2dz, (4.7)

where z1 = −h/2, z2 = −h1(x, y), z3 = h1(x, y), z4 = h/2, r = 1, 2, 3
define a number of the layers. Values Q(r)

i j (i, j = 1, 2, 3) in formulas (4.7) are
determined by the following expressions:

Q(r)
11 = Q(r)

22 = E (r)

1 − (
ν(r)

)2 , Q(r)
12 = ν(r)E (r)

1 − (
ν(r)

)2 , Q(r)
66 = E (r)

2
(
1 + ν(r)

) . (4.8)

Transverse shear force resultants Qx , Qy are defined as:

Qx = K 2
s A33γxz, Qy = K 2

s A33γyz, (4.9)

where K 2
s denotes the shear correction factor. In this paper, it is taken by 5/6.

Further, we will consider materials with the same Poisson’s ratio for ceramics
and metal, i.e., νm = νc. Then, elements Ai j , Bi j , Di j of matrices (6) [A], [B], [C]
can be calculated in a direct way. Analytical expressions of these elements for shells
with variable thickness of layers are obtained and presented below

A11 = 1

1 − ν2

(

Emh + 2Ecm
h1(x, y)

p + 1

)

, B11 = 0,
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D11 = 1

1 − ν2

(
Em

12
h3 + 2Ecmh

3
1(x, y)

(
1

p + 1
− 2

p + 2
+ 1

p + 3

))

, (4.10)

where Ecm denotes the difference between Ec, Em , that is,

Ecm = Ec − Em .

Note that values

{A22, B22, D22} = {A11, B11, D11}, (4.11)

and values A12, A66,B12, B66,D12, D66 are defined as:

{A12, B12, D12} = v{A11, B11, D11},
{A66, B66, D66} = 1 − ν

2
{A11, B11, D11}. (4.12)

The governing differential motion equations for a free vibration of shear
deformable shallow shell can be presented as

∂N11

∂x
+ ∂N12

∂y
− Qx

Rx
= I0

∂2u

∂t2
+ I1

∂2ψx

∂t2
;

∂N22

∂y
+ ∂N12

∂x
− Qy

Ry
= I0

∂2v

∂t2
+ I1

∂2ψy

∂t2
;

∂Qx

∂x
+ ∂Qy

∂y
+ N11

Rx
+ N22

Ry
+ N11

∂2w

∂x2

+ 2N12
∂2w

∂x∂y
+ N22

∂2w

∂y2
= I0

∂2w

∂t2
; (4.13)

∂M11

∂x
+ ∂M12

∂y
− Qx = I2

∂2ψx

∂t2
+ I1

∂2u

∂t2
;

∂M22

∂y
+ ∂M12

∂x
− Qy = I2

∂2ψy

∂t2
+ I1

∂2v

∂t2
,

where

(I0, I1, I2) =
3∑

r=1

zr+1∫

zr

(ρ)r
(
1, z, z2

)
dz, (4.14)

here (ρ)r is a mass density of the rth layer.
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Analytical expressions of coefficients I0, I1, I2 for shells provided that νm = νc
are presented below.

.

I0 = ρmh + 2ρcm
h1(x, y)

p + 1
, ρcm = ρc − ρm,

I1 = 0, I2 = ρm

12
h3 + 2ρcmh

3
1(x, y)

(
1

p + 1
− 2

p + 2
+ 1

p + 3

)

. (4.15)

4.3 Solution Method—Free Vibration Problem

To solve the formulated problem, we apply a variational method combined with the
R-functions theory (RFM methods). Let us indicate the main steps of developed
approach. First, we solve the linear vibration problem, applying Ritz’s method in
order to find eigenfunctions. Solution of the linear vibration problem for laminated
shells by RFM is described in works (Awrejcewicz et al. 2013, 2015, 2018; Rvachev
1982; Kurpa and Shmatko 2014; Kurpa et al. 2018, 2007). The main difference of
the considered problem is dependence of the elements Ai j , Bi j , Di j on matrices (6)
[A], [B], [C] of variables x and y. But due to an application of Ritz’s method, the
variational formulation of the linear problem is formally the same and is reduced to
finding the minimum of the total energy functional

J = Us − T, (4.16)

here, strain energy Us can be written as

Us = 1

2

∫

	

NT
s εsd	, (4.17)

where NT
s = {N , M, γ }, εTs = {ε, χ, γ }.

Kinetic energy T in (16) is defined as

T = 1

2

∫

	

I0
(
u̇2 + v̇2 + ẇ2

) + 2I1
(
u̇ψ̇x + v̇ψ̇y

)
I2

(
ψ̇2

x + ψ̇2
y

)
d	,

I = U
(
u, v, w,ψx , ψy

) − λ2V
(
u, v, w,ψx , ψy

)
, (4.18)

where λ is a vibration frequency.
Now the expressions for U and V in Eq. (4.16) are defined by relations:
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U = 1

2

¨

	

NT
s εsdxdy, (4.19)

V = 1

2

¨

	

I0
(
u2 + v2 + w2

)

+ 2I1
(
uψx + vψy

) + I2
(
ψ2

x + ψ2
y

)
dxdy. (4.20)

According to Ritz’ approach, unknown functions are presented as

u =
N1∑

i=1

aiui , v =
N2∑

i=N1+1

aivi , w =
N3∑

i=N2+1

aiui ,

ψx =
N4∑

i=N3+1

aiψxi , ψy =
N5∑

i=N4+1

aiψyi . (4.21)

Here, {ui }, {vi }, {wi }, {ψxi },
{
ψyi

}
are admissible functions that in case of a

complex shape can be constructed by the R-functions theory (Rvachev 1982).
Coefficients of this expansion {ai }, i = 1, N5 is found from Ritz’s system

∂ I

∂ai
= 0, i = 1, N5.

To solve the nonlinear problem, the approach proposed by authors earlier and
described in detail in (Awrejcewicz et al. 2015, 2018; Kurpa and Shmatko 2014;
Kurpa et al. 2018) is used. Note that the obtained nonlinear differential equations of
the second order are solved by Runge–Kutta method of the 7–8-th order.

4.4 Numerical Results

To verify an accuracy of the present results obtained by the proposed approach, we
consider the solution of several test problems.

Problem 1 Simply supported square FG bi-layered plates are considered. The
following material properties for metal and ceramic constituents are used (Li et al.
2008, Malekzaden and Ghaedsharaf 2014):

Em = 70 GPa, Ec = 380 GPa, ρm = 2707 kg/m3,

ρc = 3800 kg/m3, νm = 0.3, νc = 0.3.
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Table 4.1 Comparison of non-dimensional natural frequency of square FGM plate

h/a Method p = 0 p = 0.5 p = 1 p = 5 p = 10

0.01 Present 1.8885 1.4827 1.2718 0.9658 0.9506

Li et al. (2008) 1.888.3 1.4824 1.2716 0.9656 0.9504

Malekzaden and Ghaedsharaf (2014) 1.8882 1.4826 1.2716 0.9657 0.9505

0.1 Present 1.8244 1.4416 1.2403 0.9425 0.9251

Li et al. (2008) 1.8268 1.4461 1.2447 0.9448 0.9273

Malekzaden and Ghaedsharaf (2014 1.8268 1.4462 1.2447 0.9443 0.9258

0.2 Present 1.6697 1.3395 1.1606 0.8835 0.8613

Li et al. (2008 1.6771 1.3536 1.1749 1.8909 0.8637

Malekzaden and Ghaedsharaf (2014) 1.6772 1,3536 1.1748 0.8894 0.8683

Comparison of non-dimensional natural frequency parameter Λ = a2ω/h for
different thickness-to-length ratio h/a, and material graded index (p) is shown in
Table 4.1.

Table 4.1 shows that results presented in Li et al. (2008), Malekzaden and
Ghaedsharaf (2014) are in a good agreement with the obtained results.

Problem 2 Consider a three layer rectangular plate with layers of the variable
thickness (Fig. 4.1). Layers arrangement is symmetric about the middle plane. The
thickness of the middle layer (core) is varied.

h1(x) = −
(

t1 + 4

a2
(t2 − t1)x

2

)

, h2(x) = −h1(x). (4.22)

If t2 > t1, then middle layer has a form, as shown in Fig. 4.1a. If t2 < t1, then
form of the core is presented in Fig. 4.1b. If t1 = t2, then we have three-layered plate
with layers of constant thickness. But if t1 = t2 = h

2 types, then plate is bi-layered.
There are studied all cases in the paper. Three of FGMs for a core are considered:
M1 is a mixture of Al/ZrO2; M2 is a mixture of Si3N4/SUS304; M3 is a mixture of
Al2O3/Al.

Mechanical properties of the constituent materials of the mixtures are taken from
Alijani and Amabili (2014), Swaminathan et al. (2015) and presented in Table 4.2.

where E0 = 1 GPa, ρ0 = 1 kg/m3.

Table 4.2 Mechanical
properties of the constituent
materials

Material E ν ρ

Al 70E0 0.3 2707ρ0

Al2O3 389E0 0.3 3800ρ0

Si3N4 322.27E0 0.3 2370ρ0

SUS304 207.78E0 0.3 8166ρ0

ZrO2 200E0 0.3 5700ρ0
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Suppose that rectangular plate is clamped or simply supported along a whole
border. Introduce the geometrical parameters α = 2t1

h ; β = 2t2
h . Let these parame-

ters and ratio a
b be varied, but the total thickness is constant and is equal to

h
2a = 0.1.

Two types of FGMs are taken Al2O3/Al and Si3N4/SUS304.
Non-dimensional parameters of the natural frequency are defined as:

Λ = a2ω

√
ρc

Ec
/h. (4.23)

Table 4.3 shows the results of non-dimensional fundamental frequency parameter
for clamped rectangular sandwich plates with FGM core of the variable thickness.

Figure 4.2 depicts the fundamental frequencies parameters for different values of

Table 4.3 Effect of gradient index p on non-dimensional natural frequency of clamped rectangular
plates (α = 0.4, β = 0.8, Fig. 4.1a)

p Al2O3/Al Si3N4/SUS304
b
a = 1 b

a = 1.5 b
a = 2 b

a = 1 b
a = 1.5 b

a = 2

0 9.3482 8,2697 7.9771 6.7077 5.5478 5.2322

0.5 7,7944 6.735 6.4543 5.6455 4.5442 4.2421

1 6.9428 5.8783 5.5904 5.1821 4.1033 3.8057

2 6.0741 4.9744 4.6754 4.7819 3.7321 3.4291

4 5.4466 4.2989 3.9832 4.5269 3.4871 3.1970

5 5.3197 4.1599 3.8396 4.4744 3.4404 3.1316

7 5.1903 4.0183 3.6931 4.4154 3.3893 3.1025

10 5,1132 3.9353 3.6075 4.3723 3.3523 3.0683

Fig. 4.2 Effect of gradient
index p on non-dimensional
natural frequency (23) for
simply supported rectangular
plates (α = 0.4, β = 0.8)
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Fig. 4.3 Effect of parameters α = 2t1
h , β = 1 (Fig. 4.3a) and parameters β = 2t2

h α = 1 (Fig. 4.3b)
on non-dimensional natural frequency of rectangular plates (FGM is Si3N4/SUS304)

gradient index p of two types of FGM simply supported sandwich rectangular plates
for values α = 0.4, β = 0.8 and different ratios a/b.

Effect of parameters α and β on behavior of the non-dimensional fundamental
frequencies is shown in Fig. 4.3.

Note that for different ratio b
a the frequencies are changing slightly, when the

parameters α and β vary from 0.2 to 1.

Problem 3 Vibration of the shallow shells with a complex planform. Let us
consider the FGM sandwich shallow shells with a complex planform are shown in
Fig. 4.4. Assume that thickness of layers is varied by parabolic law according to
Eq. (4.22).

To construct a system of admissible functions, let us use the R-functions theory.
Equation of the border is ω(x, y) = 0. For the given domain function, ω(x, y) can
be constructed as:

ω(x, y) = ( f1 ∧0 f2) ∧0 ( f3 ∨0 f4) ∧0 ( f5 ∨0 f6),

f1 = (
a2 − x2

)
/2a, f2 = (

b2 − y2
)
/2b,

f3 = (b1 − y) ≥ 0; f4 = (a1 − x) ≥ 0;
f5 = (b2 − y) ≥ 0; f6 = (a2 − x) ≥ 0.

The signs ∧0 and ∨0 define the R-operators: R-conjunction and R-disjunction
relatively (Rvachev 1982). So, we have

f1 ∧0 f2 = f1 + f2 −
√

f 21 + f 22 ,
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a
a2

–a

b2

–b 

b 

b1

y 

 x 
a1

O 

Fig. 4.4 Sandwich shallow shell and its planform

f3 ∨0 f4 = f1 + f2 +
√

f 21 + f 22 .

For clamped shells, the system of admissible functions can be chosen in the
following form:

uk = ω(x, y)φ(u)
k , k = 1, N1,

vk = ω(x, y)φ(v)
k , k = N1 + 1, N2,

wk = ω(x, y)φ(w)
k , k = N2 + 1, N3,

ψxk = ω(x, y)φ(ψx )

k , k = N3 + 1, N4,

ψyk = ω(x, y)φ(ψy)
k , k = N4 + 1, N5,

where φ
(r)
k , r = u, v, w,ψx , ψy are terms of some complete system functions

Φi , i = 1, 2, 3, 4, 5. System of power polynomials is taken for the given problem.
Geometrical parameters for shell are put as:

h

2a
= 0.1; b

a
= 1,

a1
2a

= 0.3; b1
2a

= 0.25; a2
2a

= −0.3;
b2
2a

= −0.25; k1 = 2a

Rx
= 0.1; k2 = 2a

Ry
= 0.1.

Parameters α = 2t1
h , β = 2t2

h and gradient index p vary. Non-dimensional
parameters of the natural frequency are defined as:
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Λ = (2a)2ω

√
ρc

Ec
/h. (4.24)

Table 4.4 shows the influence of the gradient index on linear frequencies of the
clamped plates and spherical shells for parabolic law (see Fig. 4.1a).

All natural frequencies �i (i = 1, 2, 3, 4) are decreasing when gradient index p
increases. The difference between frequencies of the plate and shallow spherical shell
is not essential. It may be explained by boundary conditions and small curvatures of
the shell.

Effect of the gradient index on the first four natural frequencies of the clamped
spherical shells for different FGMs (M1-Al/ZrO2 andM2-Si3N4/SUS304) is shown
in Fig. 4.5. Parabolic law of thickness variation corresponds to Fig. 4.1b, parameters

Table 4.4 Effect of gradient index p on non-dimensional natural frequencies (24) of clamped plate

and spherical shell with complex shape
(
α = 2t1

h = 0.4, β = 2t2
h = 0.8

)
; FGM is Si3N4 /SUS304

p Plate Spherical shell (k1 = k2 = 0.1)

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

0 7.247 12.166 13.372 15.336 7.299 12.183 13.385 15.347

0.5 6.169 10.615 11.683 12.892 6.218 10.630 11.695 12.902

1 5.704 9.886 10.827 11.843 5.751 9.900 10.839 11.852

2 5.303 9.201 10.046 10.961 5.3477 9.215 10.057 10.970

4 5.043 8.719 9.492 10.394 5.086 8.732 9.503 10.402

5 4.988 8.612 9.365 10.270 5.031 8.625 9.576 10.279

7 4.926 8.487 9.212 10.125 4.967 8.500 9.223 10.134

10 4.880 8.393 9.092 10.014 4.920 8.4055 9.102 10.022

Fig. 4.5 Effect of gradient
index p on non-dimensional
natural frequencies (24) for
clamped spherical shell with
complex shape made of
different material FGMs(
α = 2t1

h = 0.8, β = 2t2
h = 0.4

)
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α = 2t1
h = 0.8;β = 2t2

h = 0.4.
As follows from Fig. 4.5, frequencies for core made of Al/ZrO2 (M1) are

decreasing, and they are increasing for FGM Si3N4/SUS304 (M2) if gradient index
p increases.

Table 4.5 and Fig. 4.6 show an influence of boundary conditions on the natural
frequencies while the gradient index is increasing. Two types of the mixed boundary
conditions are considered: clamped simply supported and clamped-free. It is assumed
that sides y = ±b are simply supported or free and remain part of the boundary is
clamped. Values parameters α, β are taken the following: α = 0.4, β = 0.8, Fig.
4.1a, FGMs is Al/ZrO2.

Table 4.5 Effect of gradient index p on non-dimensional natural frequency (24) of spherical shell
(Fig. 4.4) and different boundary condition for FGMs Al/ZrO2 (M1)

p Clamped-simply supported Clamped-free

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

0 10.904 16.204 21.970 23.837 10.409 12.366 14.831 20.895

0.5 9.903 15.205 20.516 22.358 9.413 11.308 13.702 19.557

1 9.347 14.646 19.702 21.452 8.851 10.698 13.069 18.744

2 8.806 14.090 18.919 20.439 8.292 10.075 12.446 17.899

4 8.483 13.746 18.454 19.615 7.943 9.676 12.076 17.386

5 8.437 13.726 18.378 19.426 7.890 9.616 12.026 17.320

7 8.405 13.716 18.305 19.213 7.851 9.573 11.999 17.290

10 8.404 13.739 18.249 19.069 7.844 9.569 12.007 17.310

Fig. 4.6 Effect of gradient
index p on non-dimensional
natural frequency parameter
(24) of spherical shell
(Fig. 4.4) with different
boundary condition
(α = 2t1

h = 0.4;
β = 2t2

h = 0.8; Fig. 4.1a)
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Comparison analysis of the behavior of the natural frequency for different FGMs
and mixed boundary conditions for values of parameters α = 2t1

h = 0.8, β = 2t2
h =

0.4 (Fig. 4.1b) is presented in Table 4.6 and Fig. 4.7. It is observed that frequencies
are essentially greater for material Al/ZrO2 than for Si3N4 /SUS304.

Nonlinear behavior of the sandwich FGM spherical clamped shallow shells with
planformdrawn in Fig. 4.4 for different FGmaterialswas studied for two values of the
parameter α, β α = (0.4; 0.8);β = (0.8; 0.4) and two values of the gradient index
p = (0.5;2). The remain geometric parameters are the same with linear problem.

In Fig. 4.8, backbone curves are presented for case α = 0.4;β = 0.8 that corre-
sponds to Fig. 4.1a. The obtained results for ratio of nonlinear frequency to linear
frequency for caseα = 0.8;β = 0.4 corresponding to Fig. 4.1b are shown in Fig. 4.9.

Table 4.6 Effect of gradient index p on non-dimensional natural frequency parameter (24) of
spherical shell with complex shape and different boundary condition made of different materials;
FGM is Si3N4/SUS304 (M2) and Al/ZrO2 (M1)

Clamped Clamped-simply supported Clamped-free

p Si3N4/SUS304 Al/ZrO2 Si3N4/SUS304 Al/ZrO2 Si3N4/SUS304 Al/ZrO2

λ1 λ1 λ1 λ1 λ1 λ1

0 7.299 11.551 7.965 10.904 6.861 10.409

0.5 6.218 10.603 6.830 9.903 5.763 9.413

1 5.751 10.08 9 6.339 9.347 5.283 8.851

2 5.3477 9.605 5.909 8.806 4.865 8.292

4 5.086 9.3367 5.626 8.483 4.595 7.943

5 5.031 9.303 5.566 8.437 4.539 7.890

7 4.967 9.288 5.496 8.405 4.476 7.851

10 4.920 9.297 5.443 8.404 4.430 7.844

Fig. 4.7 Effect of gradient
index p on non-dimensional
natural frequency parameter
(24) for spherical shell with
complex shape and different
boundary condition made of
different FGM materials(
α = 2t1

h = 0.8; β = 2t2
h = 0.4

)
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Fig. 4.8 Effect of gradient
index and FGMs on
nonlinear to linear frequency
ratio of clamped spherical
shells with variable thickness
of layers defined by law (22)
for values α = 0.4; β = 0.8
and planform is shown in
Fig. 4.4

Fig. 4.9 Effect of gradient index p and FGMs on nonlinear to linear frequency ratio of clamped
spherical shells with variable thickness of layers defined by law (22) for values α = 0.4; β = 0.8
and planform is shown in Fig. 4.4
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From these plots, it follows that effect on backbone curves is more essential for
layers arrangement corresponding to Fig. 4.1a. The ratio ωN

ωL
for FGM Al/ZrO2

greater than for FGM Si3N4 /SUS304 in both the cases.

4.5 Conclusions

The linear and geometrically nonlinear free vibration of functionally graded shallow
shells of sandwich typewith a complex planform is investigated using theR-functions
theory and variationalmethods. The considered shell consists of the layers of variable
thickness that are symmetrical about the middle surface, but the total thickness is
constant. The effective material properties are calculated according to the power law.
Analytical expressions have been obtained for dependent on thickness coefficients
needed for calculation of the stress and moment resultants.

The developed algorithm and corresponding software have been applied to plate
and shallow shells with rectangular and complex planforms with different boundary
conditions and various FGMs. As example, the parabolic law of the thickness change
of layers has been considered. Effect of different parameters (form of the parabola,
type of FGMs, boundary conditions, value of gradient index) on natural frequencies
and response curves is shown.
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