
Chapter 12
Aeroelastic Interactions Between Plates
and Three-Dimensional Inviscid Potential
Flows

Konstantin V. Avramov, Darkhan S. Myrzaliyev,
and Kazira K. Seitkazenova

Abstract Themethod for analysis of dynamic interactions between plates and three-
dimensional, potential, inviscid gas is suggested. The system of the singular integral
equations with respect to aerodynamic derivatives of the pressure drop is obtained.
The numerical method for the singular integral equations solutions is suggested. Loss
of the plate dynamic stability is analyzed numerically.

Keywords Singular integral equation · Inviscid gas · Dynamic instability ·
Aerodynamic derivative

12.1 Introduction

The singular integral equations with respect to a circulation density are used basically
to analyze aeroelasticity of plates in three-dimensional potential flow. In this case, the
vorticity shed from the trailing edge of the plate and wake formation are considered.
This leads to significant computational burden. The calculations of the plate transient
responses reduce to the analysis of the characteristic exponents, which is transformed
to high dimension eigenvalue problem (Tang et al. 1999a, b).
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In this paper, the singular integral equations with respect to the pressure drop are
suggested. The pressure drop outside the plate is equal to zero. Therefore, the wake is
not considered. The mechanical steady-state vibrations can be analyzed using single
harmonic approximation in time of plate pressure drop. The characteristic exponents
are calculated to analyze dynamic stability of the plate. Assuming, that the gas is
three-dimensional, potential, inviscid and incompressible, the system of the singular
integral equations with respect to the pressure drop is derived. The numerical method
for the solutions of the obtained singular integral equations system is suggested.

Now the results of others researchers in this field are considered. The singular
integral equation with respect to pressure acting on the plate was derived by Albano
and Rodden (1969). The series of spatial functions is used to approximate a pres-
sure. The vortex method is used to analyze the aerodynamics of wings by Katz
(1985). Morino et al. (1975) suggested the method to predict the flowing of finite
thickness curved surfaces. Morino and Kuo (1974) derived the integro-differential
equation to describe the plate interaction with the compressible gas flow. Djojodi-
hardjo and Widnall (1969) suggested the numerical approach to solve the singular
integral equation with respect to a circulation density. Hess (1975) proposed the new
method to analyze a gas flowing of three-dimensional bodies. Landahl and Stark
(1968) investigated different types of the singular integral equations with respect to
both a circulation density and a pressure. The advantages and shortcomings of these
integral equations were discussed. Strganac and Mook (1990) analyzed the wings
flowing at arbitrary angle of attack. The vortex method was used to solve the aero-
dynamic problem. Mook and Dong (1994) suggested the methods for calculations
of incompressible flows past airfoils and their wakes. The properties of the wake
behind airfoils were considered. Eloy et al. (2007) assumed that the flutter mode is
two-dimensional but the potential flow is assumed to be three-dimensional. Using the
Galerkin method and the Fourier transformations, the flutter mode is predicted. Prei-
dikman and Mook (1998) analyzed the dynamics of the rigid plate with two degrees
of freedoms. The method of discrete vortices was applied to predict the wind loads
acting on the plate. The self-sustained vibrations of a wing are absorbed using the
saturation phenomenon (Hall et al. 2001). Three-dimensional vortex lattice method
was applied to describe the aerodynamic problem. Watanabe et al. (2002) discussed
different methods for the paper flutter analysis. Both the Navier-Stokes equations
simulations and the potential flow analysis were considered to calculate unsteady
lift forces. The authors concluded that the potential theory was enough to predict
the paper flutter. Guo and Paidoussis (2000) analyzed the plate stability. The Fourier
transformation was used to solve the Laplace equation with respect to the velocity
potential. Ellen (1972) considered the clamped plate flowing by an incompress-
ible gas. The pressure drop is described by the integral of the plate displacements.
The plate divergence was analyzed analytically. Kornecki et al. (1976) and Huang
(1995) considered flutter of cantilever plates using Theodorsen theory. Shayo (1980)
analyzed the linear vibrations of the plate interacting with moving gas. The singular
integral equations with respect to the pressure acting on the lifting surface were
treated in the book (Dowell et al. 1995). The self-sustained vibrations of the plates
with geometrical nonlinearity flowing by gas were studied in the papers (Attar and
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Dowell 2003; Tang et al. 1999b; Tang and Dowell 2002; Tang et al. 1999a). The
vortex lattice method was used to simulate a potential stream. The pressure drop on
the vibrating plate was analyzed in the paper (Breslavsky 2011). The almost periodic
and the chaotic vibrations of the plates with internal resonances flowing by gas were
considered in the paper (Avramov 2012). Themethod of discrete vortices for inviscid
potential flows analysis was treated in the books (Belotserkovskii and Lifanov 1993;
Lifanov et al. 2004).

Thus, the singular integral equationswith respect to a circulation density are gener-
ally used to describe the interactions of thin-walled structures with a stream. Due
to the wake formation, transients are observed and analyzed mandatory. Numerical
analysis of these motions leads to significant computational burden.

The system of the singular integral equations with respect to the aerodynamic
derivatives of the plate pressure drop is derived in this paper. Then there is nonecessity
to account thewake shed from the trailing edge. In this case, the numerical analysis of
the plate vibrations in gas flow is simpler than the analysis, which is used the singular
integral equations with respect to a circulation density. The numerical method for the
solution of the singular integral equationswith respect to the aerodynamic derivatives
of the pressure drop is suggested. Validity of the plates dynamic stability analysis is
verified by comparison with the results of others researchers.

Many models of plate vibrations in stream exist. The plates of wing-type are
described by 2D models (Tang et al. 1999a, b). The plates of flag-type are described
by 1D models (Eloy et al. 2007; Tang and Dowell 2002). The general method for
analysis of plate stability in stream is suggested in this paper.

12.2 Equations of Plate Motions

The flexural vibrations of the rectangular plates in stream (Fig. 12.1) are analyzed.
Transversal vibrations of the plates are described by the function w(x, y, t), which
satisfies the following partial differential equation:

h2

12
∇4w + 1 − ν2

E

(
ρ ẅ + cẇ + � p(x, y, t)

h

)
= 0, (12.1)

where ∇4w = ∂4w
∂x4 + 2 ∂4w

∂x2∂y2 + ∂4w
∂y4 ; ẅ = ∂2w

∂t2 ; h is plate thickness; E, ν are
Young’s modulus and the Poisson’s ratio; ρ is thematerial density; c is the coefficient
of the material damping; � p(x, y, t) is a pressure drop on the plate.

The plate dynamics is expanded by using the eigenmodes ψ j (x, y):

w(x, y, t) =
N1∑
j=1

q j (t) ψ j (x, y) , (12.2)
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Fig. 12.1 Sketch of the
system

where q j (t) are the generalized coordinates of the plate. It is assumed, that the plate
vibrations are single harmonic:

q j (t) ≈ γ j cos(ω t) + δ j sin(ω t); j = 1, . . . , N1 . (12.3)

12.3 System of Singular Integral Equations with Respect
to Aerodynamic Derivatives of Pressure Drop

The plate is streamed by three-dimensional, potential, inviscid and incompressible
gas. On significant distance from a plate, the flow has constant velocity U∞, which
is parallel to x axis. The projections of the flow velocities on x, y, z axes are denoted
by u(x, y, z, t) ; v(x, y, z, t) ; w(x, y, z, t), respectively. The velocity potential
ϕ(x, y, z, t) satisfies the following equations: u = U∞ + ∂ϕ

∂x ; v = ∂ϕ

∂y ;w = ∂ϕ

∂z .
The velocity potential and pressure p(x, y, z, t) satisfy the Laplace equations:

∇2ϕ = 0 ; ∇2 p = 0, (12.4)

where ∇2ϕ = ∂2ϕ

∂ x2 + ∂2ϕ

∂ y2 + ∂2ϕ

∂ z2 .
The boundary conditions for the Laplace equation (12.4) are considered. The

Sommerfeld radiation condition is fulfilled:

lim
x2+y2+z2→∞

grad ϕ = 0. (12.5)
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The no penetration boundary condition satisfies on the plate surface:

∂ϕ

∂z

∣∣∣∣
z=0

= ∂ w

∂ t
+U∞

∂ w

∂ x
. (12.6)

The pressure drop

� p(x, y, t) = p(x , y, z)|z=0+ − p(x , y, z)|z=0−

is equal to zero outside the plate on the plane z = 0. The pressure drop is equal to
zero on the plate boundary ∂S:

�p|∂S = 0. (12.7)

The aerodynamic derivatives (Belotserkovskii and Lifanov 1993; Lifanov et al.
2004) are used to calculate the flow perturbations induced by the plate vibrations:

ϕ (x, y, z, t) =
N1∑
j=1

[
ϕ

(0)
j (x, y, z)q j (t) + ϕ

(1)
j (x, y, z)q̇ j (t)

]
; (12.8)

p(x, y, z, t) =
N1∑
j=1

[
p(0)
j (x, y, z)q j (t) + p(1)

j (x, y, z)q̇ j (t)
]
. (12.9)

Following (Belotserkovskii and Skripach 1975), the functions ϕ
(0)
j (x, y, z),

ϕ
(1)
j (x, y, z), p(0)

j (x, y, z), p(1)
j (x, y, z) satisfy the Laplace equations:

∇2ϕ
(k)
j = 0 ; (12.10)

∇2 p(k)
j = 0 ; k = 0, 1; j = 1, . . . , N1. (12.11)

Index j indicates the number of eigenmode, which induce the pressure drop. The
solutions of Eqs. (12.10, 12.11) satisfy the boundary conditions (12.5, 12.6, 12.7).
The solutions of Eq. (12.11) take the following form (Dowell et al. 1995):

p(k)
j (x , y , z) = 1

4 π

∫
S

∫
� p(k)

j (x1 , y1)

[
∂

∂ z1

(
1

r

)]
z1=0

d x1d y1, (12.12)

where r =
√

(x − x1)
2 + (y − y1)

2 + (z − z1)
2; S is region of the plate middle

plane; � p(k)
j (x1, y1) = p(k)

j (x1, y1, z1)|Z1=0+ − p(k)
j (x1, y1, z1)|Z1=0− are aerody-

namic derivatives of the plate pressure drop; x1, y1, z1 are integration variables.
Bernoulli’s equation is used in the following form:
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p(x, y, z) = −ρ∞
(

∂ϕ(x, y, z, t)

∂ t
+U∞

∂ϕ(x, y, z, t)

∂ x

)
, (12.13)

where ρ∞ is a gas density. Equations (12.8, 12.9) is substituted into Eq. (12.13). As
a result, the following system of the partial differential equations is obtained:

U∞
∂ϕ

(0)
j

∂ x
− ω2 ϕ

(1)
j = − p(0)

j

ρ∞
;

U∞
∂ϕ

(1)
j

∂ x
+ ϕ

(0)
j = − p(1)

j

ρ∞
. (12.14)

The method of constants variation is used to solve Eq. (12.13). The solution of
this system takes the following form:

ϕ
(0)
j (x, y, z) = B(1)

j (x, y, z) exp

(
i

ω

U∞
x

)
+ B(2)

j (x, y, z) exp

(
−i

ω

U∞
x

)
;

ϕ
(1)
j (x, y, z) = i

ω
B(1)

j (x, y, z) exp

(
i

ω

U∞
x

)
− i

ω
B(2)

j (x, y, z) exp

(
−i

ω

U∞
x

)
,

(12.15)

where i is the imaginary unit. Equation (12.15) is substituted into (12.14). As a result,
it is derived:

2U∞ρ∞
∂B(1)

j (x, y, z)

∂x
=

[
iω p(1)

j (x, y, z) − p(0)
j (x, y, z)

]
exp

[
−i

ω

U∞
x

]
;

2U∞ρ∞
∂B(2)

j (x, y, z)

∂x
= −

[
iω p(1)

j (x, y, z) + p(0)
j (x, y, z)

]
exp

[
i

ω

U∞
x

]
.

(12.16)

The integration of Eq. (12.16) is carried out using the Sommerfeld conditions
(12.5). The results are substituted into (12.15). It is obtained:

ϕ
(1)
j (x, y, z) = − 1

U∞ρ∞ω

x∫
−∞

[
ωp(1)

j (ξ, y, z) cos

(
ω

U∞
(ξ − x)

)

+ p(0)
j (ξ, y, z) sin

(
ω

U∞
(ξ − x)

)]
dξ ;

ϕ
(0)
j (x, y, z) = 1

U∞ρ∞

x∫
−∞

[
−p(0)

j (ξ, y, z) cos

(
ω

U∞
(ξ − x)

)

+ ωp(1)
j (ξ, y, z) sin

(
ω

U∞
(ξ − x)

)]
dξ. (12.17)
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The expansions (12.8, 12.9) are substituted into the boundary condition (12.6).
As a result, the time-independent boundary conditions are obtained:

∂ϕ
(0)
j

∂ z

∣∣∣∣∣
z=0

= U∞
∂ψ j

∂x
; (12.18)

∂ϕ
(1)
j

∂ z

∣∣∣∣∣
z=0

= ψ j . (12.19)

The solution (12.12) is substituted into Eq. (12.17) and the result is substituted
into (12.8, 12.9). As a result, the following system of the singular integral equations
is obtained:

4π U 2
∞ρ∞

∂ψ j (x, y)

∂x
= −ω

¨

S

�p(1)
j (x1, y1)KS(x − x1, y − y1)dx1dy1

+
¨

S

�p(0)
j (x1, y1)KC(x − x1, y − y1)dx1dy1 ;

4π U∞ρ∞ωψ j (x, y) = ω

¨

S

�p(1)
j (x1, y1)KC(x − x1, y − y1)dx1dy1

+
¨

S

�p(0)
j (x1, y1)KS(x − x1, y − y1)dx1dy1, (12.20)

where

KC(x − x1, y − y1) = −
x−x1∫

−∞

cos ω(λ+x1−x)
U∞[

λ2 + (y − y1)2
]3/2

dλ;

KS(x − x1, y − y1) = −
x−x1∫

−∞

sin ω(λ+x1−x)
U∞[

λ2 + (y − y1)2
]3/2

dλ. (12.21)

The kernels KC(x̃, ỹ) and KS(x̃, ỹ) satisfy the following relations:

lim
x̃→0
ỹ→0

KC(x̃, ỹ) = ∞; lim
x̃→0
ỹ→0

KS(x̃, ỹ) = −∞.

The following dimensionless variables and parameters are used:

χ = ω a

U∞
; λ̄ = λ

a
; x̄1 = x1

a
; ȳ1 = y1

b
; x̄ = x

a
; ȳ = y

b
;
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r = a

b
; τ = ω t ; ϑi = qi

h
;

KS = a K̄S

b3
; KC = aK̄C

b3
; � p̄(1)

j = ω a�p(1)
j

ρ∞U 2∞
; � p̄(0)

j = a�p(0)
j

ρ∞U 2∞
, (12.22)

where χ is the Strouhal number. The system of the singular integral Eq. (12.20) with
respect to the dimensionless variables takes the following form:

¨

S̄

[
−� p̄(1)

j (x̄1, ȳ1)K̄S(x̄ − x̄1, ȳ − ȳ1) + � p̄(0)
j (x̄1, ȳ1)K̄C(x̄ − x̄1, ȳ − ȳ1)

]

dx̄1dȳ1 = ∂ψ j (x̄, ȳ)

∂ x̄

4π

r2
; (12.23)

¨

S̄

[
−� p̄(1)

j (x̄1, ȳ1)K̄S(x̄ − x̄1, ȳ − ȳ1) + � p̄(0)
j (x̄1, ȳ1)K̄C(x̄ − x̄1, ȳ − ȳ1)

]

dx̄1dȳ1 = ∂ψ j (x̄, ȳ)

∂ x̄

4π

r2
; (12.24)

K̄S(x̄ − x̄1, ȳ − ȳ1) = −
x̄−x̄1∫

−∞

sin χ
(
λ̄ + x̄1 − x̄

)
[
r2λ̄2 + (ȳ − ȳ1)2

] 3/ 2 dλ̄ ;

K̄C(x̄ − x̄1, ȳ − ȳ1) = −
x̄−x̄1∫

−∞

cos χ
(
λ̄ + x̄1 − x̄

)
[
r2λ̄2 + (ȳ − ȳ1)2

] 3/ 2 dλ̄,

where S̄ is the region of the plate middle plane with respect to dimensionless
coordinates.

The kernels of the singular integral Eqs. (12.23, 12.24) satisfy the following
relations:

∂

∂ x̄
K̄s(x̄ − x̄1, ȳ − ȳ1) = −χ K̄c(x̄ − x̄1, ȳ − ȳ1);

∂

∂ x̄
K̄c(x̄ − x̄1, ȳ − ȳ1) = −[

r2(x̄ − x̄1)
2 + (ȳ − ȳ1)

2]−3/ 2 + χ K̄s(x̄ − x̄1, ȳ − ȳ1).

(12.25)

Equation (12.23) is differentiated with respect to x̄ and the result is substituted
into Eq. (12.24). As a result, the following singular integral equation is derived:

¨

S̄

� p̄(1)
j (x̄1, ȳ1)dx̄1dȳ1[

r2(x̄ − x̄1)2 + (ȳ − ȳ1)2
] 3/ 2 = −8πχ

r2
∂ψ j (x̄, ȳ)

∂ x̄
. (12.26)
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The index j indicates on the number of eigenmode, which induced the pressure.
Equation (12.24) is differentiated with respect to x̄ and the result is substituted into
(12.23). As a result, the following singular integral equation is derived:

¨

S̄

� p̄(0)
j (x̄1, ȳ1)dx̄1dȳ1[

r2(x̄ − x̄1)2 + (ȳ − ȳ1)2
] 3/ 2 = 4π

r2

[
χ2ψ j (x̄, ȳ) − ∂2ψ j (x̄, ȳ)

∂ x̄2

]
. (12.27)

Thus, the system of the singular integral equations with respect to the aerody-
namic derivatives (12.26, 12.27) is derived. Equations (12.26) and (12.27) are solved
independently. The vortex method (Belotserkovskii and Lifanov 1993; Lifanov et al.
2004) is used to solve these equations. If the solution of this system is obtained, the
pressure drop on the plate is obtained using Eq. (12.9).

The system (12.26, 12.27) has several advantages in comparison with the
frequently used singular integral equations with respect to the circulation density.
The wake shed from the trailing edge is taken into account, if the system of singular
integral equations with respect to the circulation density is solved. Then the plate
transients are analyzed mandatory.

12.4 Finite Degrees of Freedom Model of Plates Vibrations

Equations (12.2) and (12.9) are substituted into (12.1). The Galerkin method is
applied. As a result, the linear dynamical system with respect to the general-
ized coordinates ϑ1, ϑ2, . . . is derived. This dynamical system with respect to the
dimensionless variables (12.22) takes the following form:

N1∑
j=1

Ri j
(
χ2ϑ ′′

j + αχ2ϑ ′
j + χ2

1�2
jϑ j

) + ε

N1∑
j=1

(
Ai jϑ j + Bi jϑ

′
j

) = 0;

i = 1, . . . , N1, (12.28)

where

ϑ ′
j = dϑ j

dτ
;

Ri j =
¨

S̄

ψ j (x̄, ȳ) ψi (x̄, ȳ)dx̄ dȳ;

Ai j =
¨

S̄

p̄(0)
j (x̄, ȳ) ψi (x̄, ȳ)dx̄ dȳ;
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Bi j =
¨

S̄

p̄(1)
j (x̄, ȳ) ψi (x̄, ȳ)dx̄ dȳ;

� j = ω j

ω1
; χ1 = ω1a

U∞
; ε = aρ∞

hρ
; α = c

ωρ
.

Stability analysis of the plate equilibrium is reduced to the investigations of the
trivial equilibrium of the dynamical system (12.28). The characteristic exponents λ̃

are calculated to analyze this stability. The solution of the system (12.28) has the
following form:

[
ϑ j , ϑ

′
j

] = [
Q j , Vj

]
exp

(
λ̃ t

)
; j = 1, . . . , N1, (12.29)

where Q j , Vj are unknown parameters. The characteristic exponents are determined
from the eigenvalue problem:

(
C(1) C(2)

−χ2E 0

)(
V
Q

)
= −λ1

(
V
Q

)
, (12.30)

where (E) is identity matrix;

λ1 = χ2 λ̃;
C(1) = εR−1B + αχ2E;
C(2) = εR−1A + χ2

1�
2;

�2 = diag
(
�2

1; . . . ;�2
N1

);
Q = [

Q1, . . . , QN1

]; V = [
V1, . . . , VN1

];
A = {

Ai j
}; B = {

Bi j
}; R = {

Ri j
}
.

The values of the system parameters, where the Hopf bifurcation are observed, are
called critical. Now the approach for the critical parameters calculation is considered.
The parameter χ is preset with the step hχ : χ( j) = χ0 + jhχ . For every value
of χ( j) the system of the singular integral Eqs. (12.26, 12.27) is solved. Using the
results of the system (12.26, 12.27) solution, the finite degrees of freedom dynamical
system (12.28) is obtained numerically. The critical values of the parameter χ1 are
calculated. If the system has critical parameters, two characteristic exponents are
complex conjugate with zero real parts: λ̃1,2 = ±i �̄. As a result of the calculations,
the curve on the plane (χ, χ1) is obtained. Only one point on this curve has the
critical parameters (χ, χ1).

The approach for determination of this point is considered. On the boundary of
stability, the frequency of the system (12.28) vibrations is ω̄ = 1. As follows from
Eq. (12.30), the following relation satisfies at the Hopf bifurcation:

�̄ = χ2.
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This additional equation is used to obtain the critical parameters of the system
(12.28).

12.5 Numerical Methods of Singular Integral Equation
Solution

The singular integral Eqs. (12.26, 12.27) are solved independently. The numerical
methods for their solution are identical.

The plate is split into n vertical and N horizontal bands. As a result, the plate
consists of n N rectangles (Fig. 12.2). The vertexes of these rectangles have the
following coordinates: xk = k hx ; k = 1, . . . , n ; yp = p hy ; p = 1, . . . , N . The
region of the rectangle k + n(p − 1) is determined as:

Sk+n(p−1) = {
(x, y) ∈ R2

∣∣xk−1 < x < xk; yp−1 < y < yp
}
. (12.31)

The gravity center of the rectangle is denoted by
(
ξk, ηp

)
.

The rectangles are so small, that the functions � p̄(1)
j (x̄1, ȳ1) and � p̄(0)

j (x̄1, ȳ1)
are assumed constants on them. These constants values are equal to the functions in
the rectangles gravity centers:

� p̄[k+n(p−1)]
0, j = � p̄(0)

j

(
ξk, ηp

) ;
� p̄[k+n(p−1)]

1, j = � p̄(1)
j

(
ξk, ηp

)
.

Fig. 12.2 The diagram of
the plate discretization
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The integral (12.26) is expressed as the sum of the integrals on all rectangles
Sk+n(p−1). Then Eq. (12.26) is satisfying in the collocation points (ξl, ηm) ; l =
1, . . . , n; m = 1, . . . , N . As a result, the following system of linear algebraic
equations with respect to � p̄[μ]1, j ;μ = 1, . . . , nN is derived:

n∑
k=1

N∑
p=1

Al+n(m−1),k+n(p−1) � p̄[k+n(p−1)]
1, j = B(1, j)

l+n(m−1) ; (12.32)

l = 1, . . . , n; m = 1, . . . , N ,

where

Al+n(m−1),k+n(p−1) =
√(

ηm − yp
)2 + r2(ξl − xk−1)

2

(
ηm − yp

)
(ξl − xk−1)

−
√(

ηm − yp
)2 + r2(ξl − xk)

2

(
ηm − yp

)
(ξl − xk)

+
√(

ηm − yp−1
)2 + r2(ξl − xk)

2

(
ηm − yp−1

)
(ξl − xk)

−
√(

ηm − yp−1
)2 + r2(ξl − xk−1)

2

(
ηm − yp−1

)
(ξl − xk−1)

;

B(1, j)
l+n(m−1) = −8πχ

∂ψ j (x̄l , ȳm)

∂ x̄
.

Thus, the solution of the singular integral Eq. (12.26) is reduced to the system
of linear algebraic Eq. (12.32). The singular integral Eq. (12.27) is approximated by
the following system of linear algebraic equations:

n∑
k=1

N∑
p=1

Al+n(m−1),k+n(p−1) � p̄[k+n(p−1)]
0, j = B(0, j)

l+n(m−1) ;

B(0, j)
l+n(m−1) = 4π

[
χ2ψ j (x̄l , ȳm) − ∂2ψ j (x̄l , ȳm)

∂ x̄2

]
.
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12.6 Results of Numerical Analysis

Validation of the plate aeroelasticity by the systemof the singular integral Eqs. (12.25,
12.26) and the numericalmethod for their solution is themain goal of stability numer-
ical analysis. Dynamic stability of the plate (Fig. 12.3) is investigated numerically.
This plate is analyzed in the paper (Tang et al. 2003). 1D model is used to analyze
such plates in the papers (Eloy et al. 2007; Tang and Dowell 2002). However, 2D
model is used to investigate this plate here. The following numerical values of the
parameters are used:

E = 70.56 · 109 Pa ; ρ = 2.84 · 103 kg/m3;
ρ∞ = 1.43 kg

/
m3; ν = 0.3 ; h = 0.39 · 10−3 m ; b = 0.127.

Figure 12.4 shows the first four modes of the plate vibrations at r = 4. Aerody-
namic derivatives of the pressure, which are induced by these eigenmodes, are shown
in Figs. 12.5 and 12.6.

Loss of the plate dynamic stability is analyzed. The critical streamvelocityU∞ and
the vibrations frequencyω are calculated. The plate with r = 2.12 is considered. The
critical stream velocityU∞ and the plate vibrations frequency ω are calculated using
the approach from Sect. 12.4. It is obtained: U∞ = 30.52m/ s ; ω = 124 rad

/
s.

The results of the calculations of the structure, which is treated in the paper (Tang
et al. 2003), are U∞ = 29.5m/ s ; ω = 141.3 rad

/
s. Thus, the results, which are

published here, and the data from the paper (Tang et al. 2003) are close.
Changing the plate aspect ratio r , the loss of the plate dynamic stability is analyzed.

Figure 12.7 shows the dependence of the critical stream velocity on the plate aspect
ratio. The flutter onset frequency versus the plate aspect ratio is presented in Fig. 12.8.
If the plate is lengthen, the stream velocity and the flutter onset frequency are

Fig. 12.3 Sketch of the plate
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Fig. 12.4 The eigenmodes of the plate at r = 4. Figures a, b, c, d show the first, the second,
the third and the fourth vibrations eigenmodes of the plate with the following parameters: E =
70.56 · 109 Pa ; ρ = 2.84 · 103 kg/m3; ρ∞ = 1.43 kg

/
m3; ν = 0.3 ; h = 0.39 · 10−3 m ;

b = 0.127

decreased. The calculations results from the paper (Tang et al. 2003) are shown
by point on Figs. 12.7 and 12.8.

The influence of damping coefficient α on parameters of flutter is analyzed. The
results of analysis are shown in Figs. 12.9 and 12.10. Figure 12.9 shows the depen-
dence of damping coefficient on critical stream velocity and Fig. 12.10 shows the
dependence of flutter onset frequency on damping coefficient.

The data of stability analysis are obtained by 2D model and the results of 1D
model analysis (Tang et al. 2003) are close.
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Fig. 12.5 The aerodynamic derivatives of the general coordinates. Figures a, b, c, d shows the
aerodynamic derivatives induced by the first, the second, the third and the fourth eigenmodes of
the plate with the following parameters: E = 70.56 · 109 Pa ; ρ = 2.84 · 103 kg/m3; ρ∞ =
1.43 kg

/
m3; ν = 0.3 ; h = 0.39 · 10−3 m ; b = 0.127

Dynamic stability of the plate (Fig. 12.1) is considered. The stream is parallel to x
axis. The side y = 0 is clamped and all others sides are free. Aeroelastic stability of
such plates is studied in the papers (Tang et al. 1999b; Avramov 2012). This system
has the following numerical values of parameters:

a = b = 0.3m ; h = 0.001m ; E = 0.69 · 1011 Pa ;
ν = 0.3 ; ρ = 2.7 · 103 kg

m3
; α = 0.005 .
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Fig. 12.6 The aerodynamic derivatives of the general velocities. Figures a, b, c, d show the aero-
dynamic derivatives induced by the first, the second, the third and the fourth eigenmodes with the
following parameters: E = 70.56 · 109 Pa ; ρ = 2.84 · 103 kg/m3; ρ∞ = 1.43 kg

/
m3; ν =

0.3 ; h = 0.39 · 10−3 m ; b = 0.127

For the considered parameters the critical velocity is obtained: V∞ = 39.76 m/ s.
The plate frequency for the critical system parameters is ω = 86.13 rad

/
s. The

following values of the plate critical velocity and frequency are published in Tang
et al. (1999b): V∞ = 42.00 m/ s ;ω = 84.85 rad

/
s. The results, which are published

here, and the data from the paper (Tang et al. 1999b) are close.
Only dynamic instability of the plate is treated in this paper. The nonlinear vibra-

tions of the structure (Avramov 2002, 2003, 2009; Avramov and Mikhlin 2004) are
not considered.
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Fig. 12.7 The dependence of the critical stream velocity on the plate aspect ratio. The plate has
the following parameters: E = 70.56 · 109 Pa ; ρ = 2.84 · 103 kg/m3; ρ∞ = 1.43 kg

/
m3; ν =

0.3 ; h = 0.39 · 10−3 m ; b = 0.127

Fig. 12.8 The dependence of flutter onset frequency on the plate aspect ratio. The plate with
the following parameters is considered: E = 70.56 · 109 Pa ; ρ = 2.84 · 103 kg/m3; ρ∞ =
1.43 kg

/
m3; ν = 0.3 ; h = 0.39 · 10−3 m ; b = 0.127

Fig. 12.9 The dependence of damping coefficients on critical stream velocity
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Fig. 12.10 The dependence of flutter onset frequency on the damping coefficient

12.7 Conclusions

The system of the singular integral equations with respect to the aerodynamic deriva-
tives of pressure drop is suggested this paper. This system is very suitable for aeroe-
lastic analysis, as there is unnecessary to analyze thewake shed from the trailing edge.
Moreover, the approach for numerical solutions of the singular integral equations,
based on the vortex method, is suggested.

For verification of the obtained system of singular integral equations and the
method of their solution, the dynamic stability of several plates, which are treated
in the previous papers, is analyzed. The obtained results are consistent with the data
published by other researches.

The suggested system of singular integral equations will be used to analyze bifur-
cations and stability of nonlinear self-sustained vibrations of plates flowing by gas,
using the modern methods of nonlinear dynamics.

Funding This study was particularly funded by National Research Foundation of Ukraine (grant
number 128/02.2020).
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