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Preface

The book covers different topics of nonlinear mechanics in complex structures, such
as the appearing of new nonlinear phenomena, the behavior of finite dimensional
and distributed nonlinear systems, including numerous systems directly connected
with important technological problems. We suppose that the book will be of signifi-
cant interest to Ph.D. students, researchers, practitioners and engineers working with
modern technological processes. It shows the importance to take into account effects
and phenomena exciting in nonlinear models and engineering systems, which does
not necessarily exist in the linear ones. Modern analytical and numerical modeling
techniques permit to describe the complexity of the nonlinear systems under consid-
eration. A wide thematic score of the book can stimulate an extensive exchange of
opinions among researchers dealing with different branches of nonlinear mechanics
and its applications. It can promote effective solutions of different problems, which
are current for both nonlinear theory and engineering.

Part I of the book “Investigation of Advanced Structures in Engineering” contains
papers devoted to the analysis of statics or dynamics of structures from modern
materials, in particular, composite materials or constructions like as sandwiches or
multilayer ones. Chapter 1 by Cveticanin “OnMechanical Metastructures Applied in
Vibration Suppression—A Review” presents an overview on the mechanical metas-
tructures applied for vibration suppression. Although the existing metastructures are
very suitable for vibration absorption or suppression, tests have also shown a major
anisotropy in vibration absorption, depending on the excitation force action. Hence,
the overview states that there is a need to harmonize the type of material and struc-
ture into a single whole. Chapter 2 “Debonding Resistance Evaluation in Virtual
Testing of Sandwich Specimens” of Burlayenko et al. is dedicated to the simula-
tion of the fracture testing for sandwich panels which are studied in the context of
providing an assessment of face sheet-to-core interface strength. The models exploit
both the framework of linear elastic fracture mechanics in combination with analyt-
ical consideration and numerical simulation results and one-dimensional beam theo-
ries. In Chap. 3 “Modeling of Mechanical Properties of Composite Materials Under
Different Types of Loads” written by Kryshchuk et al., the modern numerical and
analytical methods for determining the effective elasticity characteristics of layered
composite materials are presented. The effective finite element models are chosen
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based on the data of the stress–strain state of the composite structures under power
loads. In Chap. 4 by Kurpa et al. “Nonlinear Dynamic Analysis of FGM Sandwich
ShallowShells withVariable Thickness of Layers,” the application of theR-functions
method is used to study the dynamics of the sandwich functionally gradient materials
(FGM) shallow shells with variable thickness of layers and complex shapes. Math-
ematical formulation of the problem has been done in the framework of the refined
shear deformation theory of the first order. In Chap. 5 by Lvov and Kostromitskaya
“Residual Stresses in Plastic Deformed Composites,” the residual stresses at the
micro-level in a unidirectional reinforced composite that arise after rate-independent
plastic deformation are analyzed. Micromechanical analysis was performed by the
finite element method for the case of a plane stress state. Determination of residual
stresses and plastic strains at different loading paths distribution is used to iden-
tify parameters of the model. Chapter 6 “Dynamics of Curved Laminated Glass
Composite Panels Under Impact Loading” presented by Sukhanova et al. is devoted
to the analysis of dynamic state of the shallow shell laminated glasses (LG) compos-
ites under impact loading. A modeling of a rigid ball drop on LG with polyvinyl
butyral inter-layer is considered using the FEMwithin an explicit dynamics approach
in 3D statement. Chapter 7 by Ugrimov et al. “Modeling of Response of Multilayer
Glazing on Distributed and Localized Force Loading” is devoted to modeling of the
multilayer glazing response to dynamically distributed and localized loading. The
dynamic behavior of glazing is described by equations of the layerwise generalized
model that accounts for the spatial strain character and inertial loads. The responses
of the flat glazing to a shock wave and to shocks caused by a solid, soft bodies and
a bullet are considered.

Part II “Nonlinear Dynamics of Distributed Systems” contains works on nonlinear
dynamics of shells and the shroudedblade assemblies. InChap. 8 byZippo et al. “Syn-
chronicity Phenomena in Circular Cylindrical Shells Under Random Excitation,” an
experimental study on the nonlinear dynamics of a thin polymeric circular cylindrical
shell, carrying a top mass, subjected to both thermal gradients and random excitation
is presented. Tests have been performed in controlled temperature conditions, and the
shell has been excited through an electrodynamic shaker. The experimental results
pointed out that a broadband random excitation at the base of the shell can give rise to
the synchronicity of the response. Chapter 9 “Investigation of the Nonlinearity Effect
of the Shrouded Blade Assemblies on Their Forced Vibrations” by Zinkovskii et al.
presents a study of the forced vibrations of the shrouded blades with nonlinearity due
to the interaction of contact surfaces of the shrouds and the presence of fatigue crack
by the FEM. The comparative analysis of the obtained results shows a significant
difference of the linearized and nonlinear FEM models.

Part III “Nonlinear Dynamics of Discrete Systems” contains investigations on the
complex dynamic behavior of some nonlinear discrete systems. Chapter 10 “Influ-
ence of Linear andNonlinear Electromechanical Couplings onVibrationAbsorber—
Harvester System” by Kecik and Smagala presents the analysis of the electrome-
chanical problem for the pendulum absorber–harvester system containing the oscil-
lator with the attached pendulum tuned mass absorber. In the absorber, a special
mechanism consisting of the oscillating magnet in the coil is applied. The system
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response and recovered energy of the absorber–harvester system with the fixed,
linear and nonlinear electromechanical coupling models are studied. A comparison
with experimental results is made. In Chap. 11 “Crisis-Induced Intermittency and
Other Nonlinear Dynamics Phenomena in Vibro-impact System with Soft Impact”
by Bazhenov et al., the dynamics of a platform vibrator with shock are examined. The
system is described by 2-DOFvibro-impactmodel,where the soft impact is simulated
by the nonlinear contact force in accordance with the Hertzian contact theory. The
model demonstrates a complex behavior in different ranges of the control parame-
ters, namely sustained (permanent) and transient chaos, boundary and interior crises,
crisis-induced intermittency and coexisting regimes in the hysteresis zone.

Part IV “Interaction of Structures and Flow” contains three papers. In Chap. 12
“Aeroelastic Interactions Between Plates and Three-Dimensional Inviscid Potential
Flows” by Avramov et al., the method for analysis of dynamic interactions between
plates and three-dimensional potential inviscid gas is suggested. The system of the
singular integral equations with respect to aerodynamic derivatives of the pres-
sure drop is obtained and analyzed by the numerical method for singular integral
equations solutions. Loss of the plate dynamic stability is analyzed numerically. In
Chap. 13 “Hydroelastic Vibrations of Circular Sandwich Plate Under Inertial Exci-
tation” (Kondratov et al.), the bending vibrations of the circular sandwich plate,
which is the top wall of a narrow channel, under the action of inertial excitation are
considered. It is assumed that the channel bottom wall is a rigid disk mounted on a
vibrating foundation; the channel is filled with a viscous incompressible liquid, and
its movement is studied as a creeping one. The circular sandwich plate hydro-elastic
response for the main vibration mode is determined. Chapter 14 “Effect of Finite
Vessel Stiffness on Transition from Two-Dimensional Liquid Sloshing to Swirling:
Reduced-Order Modeling” by Zusman and Gendelman presents an analysis of the
liquid sloshing in partially filled tanks. The proposed reduced-order model describes
the transition from two-dimensional to three-dimensional motion, including swirling
when a finite stiffness of the vessel itself is considered. It permits to analyze the inter-
action between the sloshing liquid and the tank structural modes in conditions of the
simple horizontal harmonic forcing.

Part V “Longtime Behavior of Engineering Structures” contains three papers.
Chapter 15 “Analysis of Creep, Shrinkage and Damage in Armored Concrete Dome
at Static and Seismic Loading” by Breslavsky and Chuprynin is devoted to study
the creep and long-term strength of thin-walled structures made of concrete and
reinforced concrete. A mathematical formulation and a method for solving the creep
damage problem of thin-walled concrete elements under short-term and long-term
loading, which makes it possible to determine their bearing capacity and long-term
strength, are presented. Chapter 16 “Stress–Strain State of Nuclear Reactor Core
Baffle Under the Action of Thermal and Irradiation Fields” by Breslavsky et al.
contains a description of the method for numerical simulation of stress–strain state
variation in the structural elements of nuclear reactor in conditions of creep and
swelling. The constitutive equations account for radiation swelling, creep anddamage
accumulation in reactor steel and are solved by FEM.Nuclear reactor’s baffle initially
is regarded as 3D solid object, and subsequently the problem is reduced to a 2D one.
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In Chap. 17 “Application of Data-Driven Yield Surface to Prediction of Failure
Probability for Centrifugal Pump” by Shapovalova and Vodka, the probability of the
centrifugal pump failure-free operation is studied. Finding the probability of model
failures is based on the data-driven yield surface application taking into account the
different behavior of composite materials under tensile and compressive loads. It is
analyzed at the micro-level using the FEM. Going beyond the yield surface indicates
the possibility of transition into a plastic state.

In Part VI “Rotating Systems,” there are three papers dedicated to nonlinear
dynamics of mentioned systems. In Manevich’s paper Chap. 18 “Self-
Synchronization of Rotational Regimes of Vibro-exciters on Oscillatory Systems,”
the steady-state synchronous rotations of vibro-exciters (unbalanced rotors),
mounted on a linear oscillator (elastic base) and driven by different rotating torques,
are studied employing some analytical procedure. The obtained solution yields
to essential corrections in characteristics of the synchronized regimes in compar-
ison with some previous publications. Stability of the synchronized motions is also
studied. Chapter 19 “Stability Analysis of Rotor Motion in Nonlinear Systems with
Passive and Active Magnetic Bearings” by G. Martynenko presents an approach
to analyze the rotor motion stability in systems with passive and active magnetic
bearings. The rotor dynamics are described by the Lagrange–Maxwell magneto-
mechanical system of differential equations. The analytical–numerical approach
based on simulation modeling and stability analysis by vibrograms, spectrograms,
phase trajectories and Poincare sections is proposed. It permits to realize the analyt-
ical–numerical modeling of various dynamic modes and to study stability of rotors
of complexmagneto-mechanical systems. Chapter 20 “Computational-Experimental
Evaluation of Stiffness Response in Elastic Supports of Rotor Systems” by Tkachuk
et al. contains an analysis of the stiffness response in elastic supports found in rotor
systems such as superchargers of heavy-duty engines. Several computational models
for the response evaluation are proposed. The obtained results permit to conclude
that the force–displacement response is essentially nonlinear due to the contact.

Part VII “Satellites and Spacecrafts” contains two papers. In Chap. 21 “A Brief
Analysis of Artificial Satellites Solar Panels Deployment Considering a Nonlinear
Dynamic Model” by Avanço et al., the present analysis is focused on the nonlinear
dynamics of a solar panel opening during the motion of the satellite around the
Earth. The interaction between energy sources and the panels is taken into account.
A numerical simulation ismade for the panel directly connected to theDC engine and
for a torsion spring connected to the motor shaft and the solar panel. Chapter 22 “The
Optimal in Terms of Fuel Consumption Approach to Reorientation of a Spacecraft
Based on the Nonlinear Boundary-Value Problem Solution” by Uspenskyi et al.
presents a study of the nonlinear boundary problem connected with the reorientation
of the rigid body along the trajectory of inertial rotation. The problem solution is
given in the form of decomposition in the power series. The obtained solution can
be used to calculate the initial conditions of the inertial maneuver in the onboard
control system of the spacecraft.
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Part VIII “Nonlinear phenomena and Methods of Investigation” contains papers
on modern analytical and numerical methods of investigation of complex dynam-
ical problems in different kinds of nonlinear systems. In Kovalev’s paper Chap. 23
“Asymptotic Methods for Soliton Excitations,” an asymptotic method of determina-
tion of two-parameter dynamic envelope solitons in media with a different character
of linearwave spectrum is demonstrated for few examples. Particular attention is paid
to a method of constructing such solutions for nonlinear weakly dispersive media
with a sound-type spectrum of linear waves. Chapter 24 “Method of Superimposed
Meshes for Solving Nonlinear Dynamic Problems” by Martynenko is devoted to
the justification and application of the method of superimposed meshes for solving
continuous dynamic problems with different types of nonlinearities. Modeling of
anisotropic nonlinear mechanical properties of solid deformable bodies using finite
element codes is considered. Rearranging the Lagrangian functional shows a possi-
bility to construct any level of anisotropy of viscoelastic properties for the solution
of the dynamic problems of the polymer composites. In Chap. 25 by Shvets and
Donetskyi “New Types of Limit Sets in the Dynamic System “Spherical Pendulum-
Electric Motor””, the nonlinear interaction of a spherical pendulum and a source of
excitation is discussed. A number of unusual limit sets of the system, which can be
both regular and chaotic, have been constructed and analyzed. It is shown that these
limit sets are not attractors in the traditional sense of this term. Some scenarios of
transitions from regular limit sets to chaotic ones, as well as scenarios of transitions
from one type of the chaotic limit sets to other types are considered. In Chap. 26
“Exact Solutions to the Four-Component Merola–Ragnisco–Tu Lattice Equations”
by Zemlyanukhin et al., a class of exact kink solutions of integrable four-component
Merola–Ragnisco–Tu lattice equations is constructed. To this aim, a modification of
the geometric series method adapted for differential–difference equations is used.
This algorithm involves the analysis of a sequence of linear ordinary differential
equations, which forms a geometric progression, the sum of which is found using
the Padé approximants and gives the exact solution to the lattice equations.

The editorswould like to thankMrs.Dr.GayaneRudnyeva andDr. IvanBreslavsky
sincerely for their valuable work and support in the book preparation. In addition, we
have to thank Mrs. Mayra Castro and Ashok Arumairaj (Springer Nature) for their
support.

During the preparation of the book, Prof. Arkadiy I. Manevich passed away. After
the Preface, one can find some information about this world-renowned specialist in
the field of nonlinear mechanics.

Magdeburg, Germany
Kharkiv, Ukraine
Montreal, Canada
April 2021

Holm Altenbach
Yuri V. Mikhlin
Marco Amabili



Obituary

Professor Arkady Isaakovich Manevich (1940–2021)

Arkady Manevich was born on January 2, 1940, in the city of Mogilev, USSR (now
Belarus) to a family of physicians. In 1962, he graduated (diplomawith honors) from
Oles Honchar Dnipro National University, where he majored in mechanics. From
1962 to 1966, he worked as a senior engineer at the Rybinsk aircraft engine plant
(now UEC Saturn). In 1966, he moved back to Dnipro, where he worked until 1974
as a senior engineer and a team leader at the Institute of Engineering Mechanics.

In 1967, A. Manevich received his Candidate of Sciences degree (equivalent
to Ph.D.). His thesis was devoted to the stability of cylindrical shells reinforced by
circumferential ribs. In 1974, A.Manevich became an associate professor—and later
a full professor—at theDepartment ofMathematics of theUkrainian StateUniversity
of Chemical Technology, where he worked until 1990. A. Manevich received his
Doctor of Sciences degree (equivalent to the German habilitation) in 1989 from
Leningrad Polytechnic Institute (now Peter the Great St. Petersburg Polytechnic
University) with a thesis on the nonlinear theory of coupled buckling in reinforced
thin-walled structures. In 2001, A. Manevich joined the faculty of the Oles Honchar

xi



xii Obituary

Dnipro National University, where he worked as a full professor at the Department
of Computational Mechanics and Structural Strength, and from 2015, he was a full
professor at the Department of Theoretical and AppliedMechanics of this university.

Professor A. Manevich’s scientific interests lay in the mechanics of deformable
solids as well as in computational mathematics. He published more than 250 scien-
tific papers, as well as two books. Prof. Manevich made major contributions toward
theoretical and experimental studies of the stability of reinforced shells. He devel-
oped several analytical formulas that account for the influence of various factors
(such as initial imperfections, the eccentricity of ribs, pre-buckling deformations and
the discrete nature of reinforcing elements) on the critical values of pressure, axial
compression, torsion and bending loads. He is the founder of the nonlinear theory
of coupled buckling of reinforced thin-walled structures (such as ribbed plates and
shells). In addition, he developed a conjugate directions algorithm with orthogo-
nalization for unconstrained minimization as well as a linearized reduced gradient
method for nonlinear programming problems. It must be mentioned his contribution
into non-classical theories of beams and plates, as well to the optimal design of thin-
walled structures. He made major contributions into the study of the dynamics of
nonlinear systems with internal resonances and nonlinear interactions of rotations
and oscillations in mechanical systems with inertial excitations.

Manevich’s work exhibits a keen understanding of the essence of physical
phenomena without unnecessary generalizations and overcomplicated formulas. His
drive to explore the nature of phenomena of stability led him to develop the concept
of coupled buckling forms, and he published several groundbreaking works in this
area. The German chemist and philosopher Wilhelm Ostwald proposed a classifica-
tion of creative scientific minds that divides them into “classics” and “romantics.”
The “classics” dive deep, aiming for full comprehension of their chosen field. The
“romantics” contribute instead in the breadth of their work, initiating many inde-
pendent threads of study without committing fully to any one of them. Although
this dichotomy is not universally applicable, a better case for it could not be made
than through the works of Arkady Manevich, the classic, and his late brother Leonid
Manevich (1938–2020), the romantic (whose scientific achievements are described
in [1]).

A.I. Manevich passed away on February 8, 2021, in Dnipro, Ukraine. He will
always be remembered as a brilliant scientist, a devoted teacher and a loving father.
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Professors A.I. Manevich and L.I. Manevich

Selected Publications by A. I. Manevich

Books

1. Andrianov I.V., Manevich A.I., Mikhlin Yu.V., Gendelman O.V. (Eds.). Prob-
lems of NonlinearMechanics and Physics ofMaterials. Cham, Springer Nature,
2019

2. Manevich A.I., Manevitch L.I. The Mechanics of Nonlinear Systems with
Internal Resonances. Imperial College Press, 2005

3. Manevich A.I. Stability and Optimal Design of Reinforced Shells. Kiev-
Donetsk, Vishcha Shkola, 1979 (in Russian)

Papers

4. ManevichA.I. Stability of synchronous regimes in unbalanced rotors on elastic
base. Proc. Inst. Mech. Eng. Part C. J. Mech. Eng. Sci., 1–14, 2020

5. ManevichA.I. Discontinuities in viscoelastic Timoshenko beam undermoving
concentrated loads. In [1], 425–434

6. Manevich A.I. An oscillator-rotator system: vibrational maintenance of rota-
tion, stationary synchronous regimes, stability, vibration mitigation. J. Sound
Vib. 437(22), 223–241, 2018
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7. Manevich A.I. Dynamics of Timoshenko beam on linear and nonlinear foun-
dation: phase relations, significance of the second spectrum, stability. J. Sound
Vib. 344, 209–220, 2015

8. Manevich A.I., Kolakowsky Z. Revisiting the theory of transverse vibrations
of plates with shear deformation. Int. Appl. Mech. 50, 196–205, 2014

9. Manevich A.I., Kolakowsky Z. Free and forced oscillations of Timoshenko
beam made of viscoelastic material. J. Theor. Appl. Mech. 49(1), 3–16, 2011.

10. Manevich A.I., Boudinov E.A. An efficient conjugate direction method with
orthogonalization for large-scale quadratic optimization problems. Optim.
Meth. Soft. 22(2), 309–328, 2007

11. Manevich A.I. Coupled instability of cylindrical shells stiffened with thin
ribs. Thin-Walled Structures:Advances andDevelopments. Third Intern. Conf.
Amsterdam, New York, Elsevier, 683–691, 2001

12. Manevich A.I. Interaction of coupledmodes accompanying non-linear flexural
vibrations of a circular ring. J. Appl. Math. Mech. 58(6), 1061-1068, 1994

13. Ladygina Ye.V., Manevich A.I. Free oscillations of a non-linear cubic system
with two degrees of freedom and close natural frequencies. J. Appl. Math.
Mech. 57(2), 257–266, 1993

14. Manevich A.I. Coupled stability loss of a compressed stiffened panel. Mech.
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15. Manevich A.I., Polyanchikov P.I. A one-step method of conjugate directions.
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Chapter 1
On Mechanical Metastructures Applied
in Vibration Suppression—Review

Livija Cveticanin

Abstract This paper is an overview of the mechanical metastructures applied for
vibration suppression. The metastructures are usually the micro version of meta-
materials which are artificially produced to satisfy certain physical requirements.
Mechanical metastructures are periodical with various unit cells connected into a
complex one, two, or three-dimensional structure. Three groups ofmechanicalmetas-
tructures are considered: with negative effective mass, negative effective stiffness,
and negative Poison’s ratio. The first group of metastructures are also named elastic
and the third group auxetics. The elastic metamaterials form the frequency stopband
for vibration. The mechanical metastructure are often utilized as vibration isolator.

Keywords Elastic metamaterial · Auxetics · Effective stiffness · Effective mass ·
Negative Poison’s ration

1.1 Introduction

Vibration is one of theworst pollutants with negative effects in the living andworking
environment. Engineering structures, special lightweight ones, often suffer fromenvi-
ronmental vibration that is difficult to suppress due to its low frequency and multiple
polarizations. Decades of research have been conducted on vibration suppression,
cancellation and absorption methods. In the most cases the vibration suppression is
done after the structure is fabricated and settled in its function. The problem is solved
by implementation requiredmasses to the structure (vibration absorbers) or by adding
viscoelastic material with certain damping properties (vibration isolators). The main
lack of the suggested procedures is that the weight of the structure is increased,
the stiffness of the system is changed and the effect of vibration suppression is not
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4 L. Cveticanin

constant but variable due to the temperature (damping properties of the viscoelastic
material depend on the temperature).

To overcome the problem, the application of the newly developed mechanical
metastructuures is suggested. The emerging field of metastructure offers a practical
solution for the low frequency vibration reduction without introducing extra isolators
that have gigantic size and heavy weight.

Metastructure is an arrangement of artificial structural elements, designed to
achieve advantages and unusal physical properties. It is an artificial man-made struc-
ture which is the macro version of the metamaterial (a composite containing periodic
unit cells whose configuration affects the material properties rather than the inherent
attributes of solid materials). Metamaterial research began when the modification of
material in the molecular and nanometer scales where introduced. It was found that
the unique properties of metamaterials (optical, electric, mechanic, wave propaga-
tion, etc) result from their designed periodic structures rather than chemical reactions

Fig. 1.1 Mass-in-mass two
degree-of-freedom system

Fig. 1.2 Mass-in-spring two
degree-of-freedom system
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Fig. 1.3 a Nonauxetic structure deformation, b auxetic (re-entrant) structure deformation

duringmanufacturing. The advantage of metamaterials over their conventional coun-
terparts comes from their designability. First, the electromagneticmetamaterialswere
investigated. There is a significant number of publication considering these metama-
terials (see reviews Liu and Zhang, 2011; Priyanka, 2014; Liu et al. 2015; Singh et al.
2015; Buriak 2016; Zhang et al. 2018; Kadic et al. 2019). The material exhibited a
negative permittivity and/or negative permeability and stop the propagation of the
electro-magnetic waves. The achievements in metamaterials in the electromagnetic
field inspired other researchers branching the concept out to acoustics, water waves,
plasmonics, etc. which are governed by different mechanisms and equations. The
concept was extended to acousticmetamaterials. Themetamaterial utilizes the theory
of Bragg scattering and exhibits some type of periodicity: the lattices are created such
that when the acoustic wave reflect off the structure they destructively interfere with
each other. Mechanical metastructure, as the metamaterial inspired concept, was
developed for vibration elimination (Reichl, 2018). Mechanical or elastic metamate-
rial are combination of geometries and material properties which are integrated into
a host structure with physical property of suppression of mechanical effects: vibra-
tion, impacts, etc. Due to excellent flexibility in design the mechanical metastructure
brings a new perspective in understanding physical properties of structures. Thus,
macroscopic structures can exhibit counterintuitive response characteristics, such
as: negative effective mass density, negative stiffness and negative Poison’s ratio.
Depending on these properties three types of mechanical metastructures are consid-
ered: 1. Metastructure with continually distributed vibration absorbers for elimina-
tion vibration for certain frequency band, 2.Metastructure as vibration isolator which
decreases the amplitude of vibration and 3. Auxetic metastructure. The mechanical
metastructures with negative effective mass, negative stiffness and negative Poison’s
ratio need to have periodical structure and to have unit cells with the same property
as the whole structure. The corresponding theoretical explanation is given in papers
reported in reviews Cveticanin et al. (2016) and (2017).

Based on the theoretical investigation, in this review, the three aforementioned
groups of mechanical metastructures are considered.
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In general, it is found that the mechanical metastructures can be employed
for vibration attenuation, energy absorption and flexible engineering structures.
The application of mechanical metamaterial is very wide: in military, automobile,
aerospace industry, civil infrastructure etc., in lightweight structures, where excellent
rigidity, strength, heat isolation, vibration suppression and impact energy absorp-
tion, are required. The structures bear large global flexibility, large local deformation
within elastic limits. Metastructures are also proposed for impact energy absorp-
tion, which enables their use in packaging, protective systems and crash mitigation.
The structures are used for flexible electronics, deformable smart phone, expandable
vascular metallic stent, etc. Auxetic metastructures can be applied for designing:
body armor, packing material, knee and elbow pads, robust shock absorbing mate-
rial and sponge mops. Mechanical metastructures can be employed against impact
damages, for flexible industrial components, vibration attenuation of engineering
structures etc.

1.2 Elastic Metastructure

Milton (2007) was the first to conceive the idea of using local absorbers to create
structures with negative effective mass that varies with frequency. It was found that
the requirement of negative effective mass of the structure requires the same for
the unit cells which form the structure, i.e. to have the effective negative effective
mass of the unit (Sun et al. 2010). The unit cell is modeled as a mass-in-mass
two-degree-of-freedom system shown in Fig.1.

The system contains a basic mass m1 and an absorber. The absorber contains a
mass m2 and a spring with rigidity k2. The absorber is connected with the basic
mass. On the basic mass an external excitation force F=F0exp(i�t), with amplitude
F0 and frequency �, acts. The system has two degrees of freedom. Introducing the
two generalized coordinates are motion u1 and u2, the mathematical model of the
mass-in-mass system is

m1ü1 + k2(u1 − u2) = F

m2ü2 + k2(u2 − u1) = 0 (1)

The closed form solution of (1) is u1 = a1exp(i�t) and u2 = a2exp(i�t), where

a1 = F0
(
k2 − m2�

2
)

(
k2 − m1�2

)(
k2 − m2�2

) − k22
, a2 = F0k2(

k2 − m1�2
)(
k2 − m2�2

) − k22
(2)

Let us introduce the effective mass meff which satisfies the relation F = meff ü1

i.e. F0 = −mef f �
2a1 and F0 = mef f �

2a2
(

�2

ω2 − 1
)
where ω =

√
k2
m2

. Substituting

(2), the relation for the effective mass is obtained



1 On Mechanical Metastructures Applied in Vibration Suppression—Review 7

mef f = m1 + m2

1− �2/ω2
(3)

Analyzing the expression (3) it is obvious that the effective mass is negative for
�>ω and m2

�2

ω2
−1

> m1. For that case a1 = − Fo
mef f �2 > 0 and a2 = F0

mef f �2
(

�2

ω2
−1

) < 0,

i.e. u1 and u2 are 1800 out of phase. Then the downward pulling spring force acts
on m1 which satisfies the relation k2(a1 − a2) = F0(mef f − m1)/mef f > F0. The
consequence of action of this force is the negative effective mass of the unit.

According to suggestion given in Milton (2007) this units are suggested to be
connected into 1D beam, 2D plate and even into 3D space form. The concept of
metastructure beam (Pai et al. 2014;Wang et al. 2016) and plate (Pend and Pai, 2014;
Peng and Pai, 2015) is based on the principle of conventional vibration absorbers.
Metamaterials employ mass-spring-damper subsystems as local resonators. Meta-
materials are designed by building mechanical subunits into a natural material to
resonate with mechanical waves propagating in it. An elastic wave in a structure
may resonance with the structure’s subunits and its spread and wavelength can be
changed. This local mechanical resonance can be used to design metamaterials with
dynamic-dependent negative effective mass and stiffness.

Using the theoretical consideration for the unit cell, Cheng et al. (2008) created
the first metastructure with negative effective mass that gives a band gap at a certain
frequency. The metastructure contained the basic lattice structure in which lead
spheres coated in a silicone rubber within an epoxy matrix are settled. The lead
balls in the rubber are referred to as local resonators or local absorbers. The local
resonator mechanism is the samemechanism used for vibration suppression. Namely
these local resonators suppress vibration. The metastructure, usually called elastic
one, represents the structure with distributed vibration absorbers. In opposite to the
conventional materials, in the metastructure absorbers are integrated and there is the
geometry and material change on the centimeter level (Reichl, 2018). The benefit
of using elastic metastructures as opposed to traditional added absorbers is that the
structure is initially designed including the absorbers instead of adding them after
creation. Elastic metastructures provide advanced control of elastic wave propaga-
tion particularly through their ability to exhibit frequency band gaps where elastic
waves cannot propagate. The band gap frequencies are fixed at design time by the
metastructure geometry and constituent materials.

Zhu et al. (2014) designed the chiral-lattice-based elastic metamaterial with
multiple embedded local resonators with the aim to achieve broadband vibration
suppression. Chiral lattice is selected due to its capability for load bearing and feasi-
bility for inner resonators implementation. In an aluminum chiral beam with macro
dimensions 470x91x10 mm and frame thickness 0.5 mm, rubber-coated metal cylin-
ders are placed. Experimental measurements of the vibration characteristics of the
structure with and without inserted absorbers were done. According to different
layouts, different frequency responses are indicated, and the existence of a vibration
gap i.e. absence of vibration for certain frequencies is evident. A theoretical explana-
tion of this phenomenon is given in Cveticanin and Zukovic (2017). It was concluded
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that each of the basic units of the metastructure has a negative effective mass. The
area of existence of the negative effective mass is directly related to the elimination
of oscillations at a certain frequency. The larger the area of the negative effective
mass, the larger the area for which this absorber ensures the absence of oscillations
(Cveticanin et al. 20181). This area has been shown to be larger if the nonlinearity
of the absorber is larger (Cveticanin et al. 20182).

In Reichl (2017) and Reichl (2019) a metamaterial is investigated where an array
of small resonators is built to a host structure and tuned by design to eliminate all
vibration within a desired frequency band. 1D metastructure is composed by adding
absorbers in the hollow square cross-section tube. The sample has the length of 450
mm and cross section area of 900 mm2 and 10 absorbers are added. It is obtained
that this metamaterial concept allows structural members to fulfill their overall mass,
stiffness, strength and geometric requirements and also act on vibration suppression.
The structure eliminates the need for conventional vibration suppression.

The previously mentioned metamaterials have the disadvantage due to their
complexity in fabrication.

Hence, the new requirement was set: the basic structure and absorbers have to be
made of the same material and the metastructure has to be made as a single unit with
negative effective mass.

3D printing technique allows to create structures with extremely complex geome-
tries tuned for broadband vibration suppression. The unit in Hobek et al. (2015) is
a square structure inside which a mass as an absorber acts. Distributed arrays of
resonators have been implemented in host structure creating mechanical metastruc-
tures. The 3D-printed metastructure is suitable for passive vibration suppression. In
addition, the structures remain capable of bearing loads without adding additional
mass. The structure is made of polyurethane material on the 3D printer. Printing the
part material properties such as compliance and density can be varied throughout
a single structure and interfaces can be created. The metastructure is comprised of
a distributed system of integrated internal oscillators. Results of utilizing metas-
tructures can be quite effective at vibration suppression even with fairly simple
geometries. Each oscillator serves to absorb vibration from the entire host structure.

The improvement to elastic metamaterial is reported in Pierce et al. (2020). The
elastic metastructure is made of magneto-active elastomers which enable active
control of frequency band gaps. The magneto-active elastomers are composite mate-
rials consisting of ferro magnetic particles dispersed in an elastometric matrix. The
structure of the metamaterial is lattice-based designed and filled to form lattice-
resonator structure. The metastructure has the ability to exhibit frequency band gaps
where elastic waves cannot propagate. Control of elastic wave propagation is due to
variation of a magnetic field. By remote application of a magnetic field the band gap
can be tuned over a continuous frequency range. However, the band gap tenability
depends not only on the strength of the applied magnetic field, but also on the
interaction of the magnetic field and the metastructure geometry.

In Essink and Inman (2020) the device capable of vibration suppression under
excitation in three directions: longitudinal, transverse and torsional are designed.
This accommodation is necessary for devices to be implemented in non-laboratory
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settings to account for excitation from multiple directions. In Essink and Inman
(2020) the 3D printer is used to create themetastructructure.With this manufacturing
the absorbers and main beam can be created as a single structure. The structure is
printed out of a stiff polymer material and additional damping is incorporated using
material with higher viscoelastic effect. Comparing the beams with and without this
absorbers it is concluded that metastructures reduce vibrations in all directions of
excitation. Further increases to design bandwidth can be made by optimizing the
absorbers for each degree of freedom of vibration.

A special type of elastic metamaterial for vibration suppression of a shaft is
presented in Fan et al. (2020).An elasticmetamaterial shaftwith stack-like resonators
is investigated. Resonator consists of bonded periodically sticking annular lead rings
and annular soft rubber rings. Due to discretized rubber rings the stiffness is reduced.
The metastructure support the formation of ultra-low-frequency vibration band gap.
In the paper it is suggested that this structure can be used to reduce vibrations of
shaft-like structures at low frequencies in the practical environment.

Finally, it is concluded that the elastic metamaterial has an unusal low-frequency
bandgap behavior. Because of that it is applied in engineering for low-frequency
vibration attenuation. Increasing the absorber’s damping can increase the stopband’s
width and reduce low frequency vibration amplitudes, but too much damping can
deactivate the stopband effect. Further investigation is necessary.

1.3 Mechanical Metastructure as Vibration Isolator

Vibration isolators are widely used in engineering systems to separate objects of
interest from external vibration excitation. In order to provide effective isolation a
low natural frequency is desirable for the vibration isolators. In Sun et al. (2010)
it is explained that the metastructure with effective negative stiffness satisfies the
suggested requirement. The effective negative stiffness is defined as arising from
an applied force that is antiparallel to the displacement direction in the pre strained
object. This characteristics is different from that for most of elastic materials.

InSun et al. (2010) it is found that themetamaterialwith effective negative stiffness
need to have unit cells with the same property. The unit cell is modeled as a mass-
in-spring two degrees of freedom system (Fig.2). Mass m2 is with a spring whose
rigidity is k2 connected to a massless beam with symmetrical rigidity k1/2. For the
excitation force F=F0exp(i�t), with amplitude F0 and frequency �, motion of the
mass is u2 and of the massless beam u1. Mathematical model of the mass-in-spring
system is

m2ü2 + k2(u2 − u1) = 0

(k1 + k2)u1 − k2u2 = F (4)

The closed form solution of (4) is u1 =a1exp(i�t) and u2 =a2exp(i�t), where
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a1 = F0
(
k2 − m2�

2
)

(k1 + k2)
(
k2 − m2�2

) − k22
, a2 = F0k2

(k1 + k2)
(
k2 − m2�2

) − k22
(5)

Let us define the effective stiffness keff which satisfies the relation F = kef f u1 i.e.

F0 = kef f a1 and F0 = kef f a2
(
1− �2

ω2

)
where ω =

√
k2
m2
. Substituting (5) into the

previous relation the effective stiffness follows

kef f = k1 + k2
1− �2/ω2

(6)

For �<ω the effective stiffness becomes negative for k2
ω2

�2 −1
> k1. For �<ω and

kef f < 0 we obtain that a1 = F0
kef f

< 0 and a2 = F0
k
ef f

(
1− �2

ω2

) < 0 and u1 and u2

motions are in phase. For that case the downward pulling spring force against the

excitation force F is k2(a1 − a2) = F0(kef f −k1)
kef f

> F0. The existence of this force
explains why the effective stiffness is negative.

Vuyk and Harne (2020) suggested the metastructure made with elastomeric poly-
mers to be utilized for shockmitigation and crash absorption. Elastomeric metastruc-
ture is fabricated using thermoset silicon rubber where the microstructure contains
vertical beams separated by horizontal elastomer beams. Subjected to uniaxial
compression in the metastructure lateral buckling of the vertical beams occur leading
to elastic energy mitigation. Unfortunately, bifurcation occurs between left and right
lateral motion of the central horizontal beam and the intuition of dynamic stiffness is
very complex. Experiments on relationships among metastructure design, material
deformation and vibration mitigation are done. It is obtained that the large amplitude
excitation force changes the slope in transmitted force and causes a total compaction
of the metastructure voids which results by extreme collapse.

It is known that multi-stable structures are able to achieve significant geometric
change and retain specific deformed configurations after the loads have been
removed. Hua et al. (2019) introduced a new type unit for a metastructure convenient
for vibration isolation based on bistable unit cells. The bistable unit cell contains an
elastic ring between two elastic ones. The unit has two stable positions. Due to force
action the rings in unit change their positions and it causes variation of the stiffness.
By parallel connection of certain number of bistable units, a multistable mechanical
metastructure with negative stiffness is developed. The basic cell is a bistable struc-
ture which exhibits two different stable shapes or positions where its elastic energy
reaches a local minimum. Elastic deformation of metamaterial cylinder produces
reversible energy absorption and it is a good candidate for vibration isolation and
protecting structure from impact. The cylindrical structure is multistable and contain
multiple unit cells.

In Zhang et al. (2020) a multistable mechanical metastructure is designed. This
structure has multiple stable morphologies and is able to achieve significant geomet-
rical changes by switching between different stable configurations. These stable
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configurations do not require external loads to be maintained. The multi-stability
has been utilized in energy absorbers with tunable stiffness. The basic element of
the metastructure is a 3D bi-stable unit cell which contains 2 rigid frames connected
with elastic ligaments. By specific assembly (parallel or serial) of a number of unit
cells, the resulting multi-stable metastructure is able to exhibit translational and rota-
tional motion. The resulting structure possess multiple equilibrium states including
tilted stable configurations. These configurations offer the possibility to control the
multi-stable property of metamaterial.

To achieve the ultra-low frequency vibration isolation metastructures with quasi-
zero dynamic stiffness (QZS) are designed (Fan et al. 2020). The lightweight
elastic metastructure consists of numerous unit cells with QZS. The unit cell, which
possesses QZS, is realized by designing the sinusoidal beam and semicircular arches.
The unit cells compose the metastructure. The vibration isolation properties of the
metastructure are considered. It is concluded that the continuous structure has very
good vibration isolation performance (much better than the linear isolator) and has
great potential in the vibration isolation applications for the small scale equipment.
Vibration amplitude of the isolated object has been significantly reduced by the
metastructure. Better isolation properties are achieved for smaller damping and high
vibration excitation frequency.

Finally, metamaterials with negative stiffness have advantages in vibration isola-
tion and energy absorption due to their unique deformation behavior which cause
them to be suitable for use as deformation control devices and sensors (Duos et al.
2014).

1.4 Auxetic Structure

Usually, the conventional material has the property when it is stretched it becomes
longer in the direction of stretch and thinner in cross-section. Then the ration of
the lateral contractile strain to the longitudinal tensile strain, called Poisson ratio,
is positive. Nevertheless, an artificial material i.e. metastructure is designed with
negative Poisson ratio. When stretched the structure become thicker perpendicular
to the applied force. This phenomena occur due to the way of deformation of the
sample which is uniaxially loaded: the overall structure expands when stretched
and contracts when compressed. The metastructure is also called auxetic structure,
auxetic material or auxetics. Auxetics has a special property to expand its dimension
perpendicular to load direction. Auxetics are realized by creating periodic lattice
structures which consist of a number of unit cells. The unit cells have to satisfy the
condition of negative Poisson ration. In Fig.3 unit cells with conventional convex
and artificial concave hexagonal geometry are plotted. Thus, if the unit cell has
conventional hexagonal geometry, the cell elongates along the y-axis and close up
in x-direction if the stretching is in y-direction. Thus, the common conventional
material with such units has positive Poison’s coefficient. By maintaining the same
deformation mechanism by modifying the geometry of cell to adopt the re-entrant
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structure, the unit undergoes elongation in both directions. This structure has the
negative Poison coefficient and is called auxetic structure. In addition, it is worth to
say that the structure made of such units is anisotropic: Poison ratio differs when
loaded along x and when loaded along y direction. If the material is linear elastic and
isotropic it is found that the Poison ratio cannot be less than -1 (see Mir et al. 2014).

Based on the deformation of the unit cells and due to its internal structure which
can be of micro (auxetic material) or of macro (auxetic structure) scale, the structures
can be classified into (Xia et al. 2018):

1. Re-entrant structures, where the diagonal ribs move in such a way that leads to
auxetic effect in the direction perpendicular to loading one,

2. Chiral structure, where the coupled deformation of node rotation and ligament
bending gives the auxetic behavior,

3. Rigid or semi-rigid structures, where rotation of rigid polygons joined with each
other through hinges (rotating squares, rectangles, parallelograms, triangles,
tetrahedral, etc.) give as the result the auxetic behavior.

In the paper of Mir et al. (2014) the review of mechanics and applications of all
three groups of auxetic structures is presented.

1. The design of auxetic structure with negative Poison’s ration is inspired from
nature. Namely, it is found that, for example, the skin of salamander or snake
has quite different properties than materials which are usually in engineering.
The skin contracts or expands in any spatial direction when exposed to a stress.
Analyzing the skin structure it is seen that the macrostructure contains concave
hexagonal units. Deformation of units causes the skin to give the effect of
auxetics (Santulli and Langella, 2016).
Based on this observation the auxetic metamaterial with concave hexagonal unit
cells is designed (Proffit and Kennedy, 2020). The obtained metamaterial is the
hexagonal re-entrant structure. It is one of the most commonly studied one as it
can be defined with very few parameters unlike other more complex structures.
Themain property of the structure is that the ratio between the transverse and the
longitudinal strain produced by the application of loadF orthogonal to its section
is negative. This geometry was first invented in 2D but with the development
of additive manufacturing was extended to 3D. However, this design of auxetic
structure suffers fromdesign limitation arising out of the numerous sharp corners
and joints. Consequently, the more joints, the higher the possible points of high-
stress concentration and the higher the chances of failure of the structures due
to critical stresses generated at joints. Further, additive manufacturing, though
of great help in building 2D and 3D complex structures may result in surface
defects, often leading to stress concentration issues. It is in particular true with
metal powders consolidated.
A couple of trials were made attempting to resolve the stress concentration
aspects through local modification of sharp concerns by filtering. New and
novel unit cell configuration is given in (Meena and Singamneni, 2019), which
gives auxetic responses, and in comparisonwith standard re-entrant formgreatly
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reduces degree of stress concentration. Using the SolidWorks 2015 the CAD
models of the re-entrant and the S shaped structures were designed. The S
structure was optimized numerically by varying the geometrical parameters
application but maintaining the balance between the negative Poisson’s ratio
and the stresses generated under loading. Comparing the re-entrant and S unit
structure it is found that the stress concentration is two times higher in the first
in comparison to the second. Nevertheless, for both types of structures it is
common that they have attractive acoustic, vibration suppression and impact
properties.

2. The auxetic with chiral structure of the honeycomb type is designed as a combi-
nation of unit cells containing rigid nodes (rigs or cubes) interconnected with
elastic ligaments or ribs. Namely, rigid nodes are linked to each other by liga-
ments. Depending on the geometrical spatial relation between ligaments and
nodes chiral and antichiral systems exist. If the nodes are on the opposite side
of the ligament, the system is called chiral, while if nodes are on the same
side of the ligament the system is antichiral. Hexachiral, tetrachiral, antitetra-
chiral and antitrichiral structures are formed (Alderson et al. 2010) depending
on the number of ligament connections in the node. Under exterior loading the
main deformation features are node rotation and ligament bending. In the chiral
structure the deformation of ligament is of full-wave shape, and in antichiral
structure it of a half-wave shape. Chiral structures consisting of circular ring
nodes and tangentially connected ligaments are engineered systems that exhibit
excellent flexibility, vibration attenuation, impact resistance performance, etc.
In Li et al. 2017, a hybrid tetrachiral and antitetrachiral metastructure is consid-
ered (Fig.15). The nodes are assumed to be circular. The in-plane mechanical
properties are studied numerically and experimentally.
Using this structure an auxetic stent is designed (Li et al. 2017). Deformation
in axial and circumferential direction is controlled through adjusting the spaces
of unit cell along axial and circumferential direction of the stent.
In Ma et al. (2018) novel chiral-type cylindrical shells were designed and fabri-
cated via 3D printing method. Cylindrical shells were with various categories
of chiral-type cells. Results revealed that the anti-chiral shell and chiral–axial
shell can achieve auxetic behavior, namely, negative Poison ration behavior
and compressive-twist response, which are beneficial for energy absorption and
vibration isolation performance. Given the distinction in the geometrical config-
uration of unit cell, the cylindrical shells exhibited extremely diversemechanical
properties.
In Wu et al. (2017) an innovative hierarchical anti-tetrachiral structures based
on the auxetic deformation behaviors of anti-tetrachiral unit cell at different
structural hierarchical levels is proposed. The in-plane mechanical properties
of hierarchical anti-tetrachiral metastructures are deduced. And can be remark-
ably enhanced and manipulated through combining the auxetic deformation
behaviors of chiral structures and the mechanical benefits of structural hier-
archy, and its tunable mechanical properties can be designed within very large
range of modulus and Poisson’s ratio value. Finally, an innovative hierarchical
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anti-tetrachiral stent is proposed, and the interaction between stent and artery
vessel are studied, demonstrating the promising industrial application potential
of hierarchical chiral metastructures. The proposed chiral geometry represents
a new family of chiral hierarchical structures, and the extent of auxeticity and
its in-plane mechanical properties can be tuned through manipulating node ring
size and shape, length and thickness, and the hierarchy level, thus achieving
desired extreme mechanical properties.
Based on the rigid cubic node rotation and deformation relations of ligaments
and nodes, in Xia et al. (2018) the analytical expression for the modulus of
3D isotropic antitetrachiral structure is derived and compared with experimen-
tally obtained one, finite element analysis and theoretical studies. Mechanical
properties of 3D antitetrachiral structure can be controlled and tuned with two
independent dimensionless geometrical parameters.

3. Zhao et al. 2019 presented the 3D printed subwavelength-scale microstruc-
tures embedded into a honeycomb structure to form a lightweight metastructure
which can suppress vibrations with different polarizations at targeted frequen-
cies. Moreover, by simply he fabricated resonators from horizontal embedment
into vertical embedment, the band gaps as well as the vibration isolations can be
easily switched for different vibration sources. The deformation mechanism is
based on rotation of the rigid units. Themulti-polarization vibration suspensions
have are realized with strategically positioned resonators following interval
and segment arrangements. The theory of elasticity and also Poison’s ratio are
scale-independent properties and so the structure that is deforming may be at a
macroscopic or microstructural level.
Because of the periodic nature of this auxetic, it affects how waves propa-
gate through it and thus can be used for vibration suppression among other
applications. Namely, auxetics have mechanical properties such as high energy
and vibration absorption, fracture resistance, negative stiffness and energy
dissipation.

1.5 Conclusion and Future Investigation

This paper is a reviewon themechanicalmetastructures applied for vibration suppres-
sion and absorption. Three groups ofmetastructures are considered: the elasticmetas-
tructures, metastructures for isolation and auxetic structures. Elastic metamaterials
exhibit negative effective mass, metastructures for isolation have negative effective
stiffness and the auxetic structures have negative Poison’s coefficient. For all struc-
tures is common that they are periodical and that they contain unit cells which prop-
erties required for the whole structure. It is concluded that theseman-made structures
have significant mechanical benefits: enhanced identation resistance, enhanced frac-
ture toughness, enhanced porosity variationwhen stretched or compressed, enhanced
energy and vibration absorption. Although the existing metastructures are shown to
be very suitable for vibration absorption or suppression (depending on the structure),
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tests have also shown a major drawback. Namely, the structures show anisotropy
in vibration absorption, depending on the action of the excitation force, i.e. when
a force acts in one direction the metastructure shows good absorption property,
but if the direction of the force changes the absorption property disappears. In
addition, the characteristics of the slab with metastructure do not meet some of
the requirements that designers usually set before it: they do not have sufficient
strength, resistance to temperature changes, thermal conductivity, sufficient rigidity,
etc. Hence, there is a need to harmonize the type of material and structure into a
single whole in order to ensure: isotropy, suitability for load transfer, easy technical
implementation i.e. production, resistance to temperature changes, but also low cost
of fabrication. Mechanical properties, thermal properties, environmental properties
andmanufacturing restrictionwould give the trends for future development. Practical
implementation would take a front seat with the advent of the additive processing
technologies.

Extention of the freedom to design is necessary and development of new tech-
nologies for fabrication of more complex forms is necessary. It is time new unit cell
configurations to develop.

There is no doubt that controllable metamaterials, upon which smart structures
will be built upon, will be the trend of the next phase ofmetamaterial development. In
the future, metastructure design will be more challenging than ever before. Structural
and functional properties will be bound more and more closely together.
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Chapter 2
Debonding Resistance Evaluation
in Virtual Testing of Sandwich Specimens

Vyacheslav N. Burlayenko, Holm Altenbach, and Svetlana D. Dimitrova

Abstract Three different experimental methods used in fracture testing sandwich
panels are studied in the context of providing an assessment of face sheet-to-core
interface strength. For this reason, strain energy release rate (ERR), complex stress
intensity factors (SIFs) and mode mixity phase angle are computed. The analytical
models exploit both the framework of linear elastic fracture mechanics (LEFM) in a
combination of analytical considerations and numerical results and one-dimensional
(1D) beam theories, whereas the finite element predictions are conducted using
the capabilities of the ABAQUS package and a standalone subroutine developed
in MATLAB environment for post-processing the results of two-dimensional (2D)
finite element analysis. The results presented in this research allow drawing conclu-
sions on the accuracy of fracture analysis predictions for each of the three different
specimens by comparing 2D numerical calculations with semi-analytical results and
1D analytical solutions.

Keywords Face sheet/core interface debonding · Sandwich fracture specimens ·
Fracture mechanics analysis · Finite element analysis

2.1 Introduction

An assembly of two relatively stiff, strong layers (face sheets) and a soft, lightweight
material (core) separating them in a single sandwich material has opened up new
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possibilities in creating constructions that require an effective combination of high
rigidity and low weight (Altenbach et al. 2018; Amabili 2018). This, along with
improved acoustic and thermal insulation, enhanced protection against impacts, high
corrosion andwear resistance have alreadymade sandwich composites indispensable
structural elements for many engineering applications (Fu and Sadeghian, 2020;
Chatterjee et al. 2020; Sivaram et al. 2020). However, since the sandwich concept
suggests an abrupt change in mechanical and geometrical properties at the interfaces
of basic layers, failure related to debonding of the face sheet from the core is the most
encountered life-limiting damage mode of sandwich-type constructions. Existing
debonding in sandwich panels is insidious andmay result in their premature buckling,
excessive vibrations and loss of load-bearing capacity (Burlayenko et al. 2020a;
Szekrényes 2021). Therefore, intensive experimental and theoretical studies have
been carried out to research debonding problems of sandwich composites for their
durability and safe exploitation (Burlayenko and Sadowski 2011a,2011b; Davidson
et al. 2012; Odessa et al. 2018; Funari et al. 2018) to name a few.

To assess the debonding resistance in sandwich composites, specific tests should
be done formeasuring face sheet-to-core interfacial fracture parameters such as stress
intensity factors (SIFs), energy release rate (ERR) and mode mixity phase angle.
Among a variety of testing configurations available in the literature as discussed in
Quispitupa et al. (2009), the double cantilever beam (DCB) (Prasad and Carlsson
1994), single cantilever beam (SCB) (Ratcliffe and Reeder 2011; Adams et al. 2012)
and double cantilever beam subjected to uneven bending moments (DCB-UBM)
(Sorensen et al. 2006; Berggreen et al. 2018) specimens are frequently accepted
in dominated mode I and mixed-mode I/II laboratory tests. These test methods are
superior to others due to their adaptability to a large number of sandwich material
systems and relatively easy implementation. Herewith, the reliability of measure-
ments depends also on the accuracy of methods used for data reduction procedures
to estimate the fracture parameters.

The structural theories are often adopted to develop analytical and semi-analytical
solutions appropriate for extraction of the ERR and SIFs in DCB, SCB and DCB-
UBM laboratory specimens. Closed-form solutions based on a beam on elastic foun-
dationmodel havebeenobtained forDCBandSCBsandwich specimens inAvilés and
Carlsson (2008) and Yoshida and Aoki (2018), respectively. Semi-analytical solu-
tions with additional coefficients determined via a numerical approach have been
provided by Østergaard and Sørensen (2007); Kardomateas et al. (2013) without
accounting for shear deformation and by Li et al. (2004); Andrews and Massabò
(2007); Barbieri et al. (2018) including shear effect. 2D exact elasticity solutions
occur for very limited cases (Ustinov 2019), whereas numerical methods, in partic-
ular, the finite element method (FEM) have found a wide application. In the context
of the FEM, virtual crack extension (VCE), interaction integral (M-integral), crack
surface displacement (CSD) methods and virtual crack closure technique (VCCT)
have been used in fracture analyses of the sandwich specimens as carried out in Davis
et al. (2014); Burlayenko et al. (2019b); Farkash and Banks-Sills (2020); Burlayenko
et al. (2020b).
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This work focuses on the accuracy assessment of fracture analysis predictions
of DCB, SCB and DCB-UMB sandwich specimens. The energy release rates, mode
mixity angles and stress intensity factors in the specimens are obtained using different
computation techniques. The semi-analytic approach combining analytical consid-
erations within the linear elastic fracture mechanics and numerical estimations of
unknown coefficients based on the finite element method, the closed-form expres-
sions derived relying on the beam-like models and the results of 2D finite element
analyses exploiting either the J-integral method or the crack surface displacement
method are used in the study. Also, the strength of the face sheet-to-core interface
for each specimen has been discussed in detail.

2.2 Fracture Test Methods

We consider three different test methods DCB, SCB and DCB-UMB, chosen due
to their popularity in the experimental practice of debonding resistance testing and
their scientific rigor among academics. All the test methods are designed to result in
the debonding growth at the pre-cracked edge of the coupons as shown in Fig. 2.1.
The specimen preferred in most mode I loading tests is the DCB (Fig. 2.1a). In this
test, two piano hinges are usually used to transfer the loading to the edges of the
specimen’s cracked region. The DCB sandwich specimen is subjected to an opening
displacement by applying to the grip plates either two opposite transverse loads or
one upward load and appropriate boundary constraints (Prasad and Carlsson, 1994;
Avilés and Carlsson, 2008).

Since it has been experimentally shown and theoretically proven that during the
DCB test, the debonding may sometimes kink into the core (Prasad and Carlsson
1994; Burlayenko et al. 2019a), the SCB specimen (Fig. 2.1b) has been reported as an
alternative test configuration for predominately mode I loading (Adams et al. 2012).
Unlike the DCB test, the lower part of the SCB specimen is affixed to a rigid base
to prevent its bending deformation, and only an upward force is applied to a steel
hinge mounted on the upper debonded face sheet. Moreover, to provide an accurate
interface toughness measurement and to ensure that bending is the primary form of
loading, the dimensions of the SCB specimen and the load rod length hF have to
satisfy sizing requirements defined in Ratcliffe and Reeder (2011).

Of special interest for the debonding analysis is the case of mixed-mode loading.
Some testmethods have been developed for testing sandwich specimens under condi-
tions of simultaneous opening and shearing as discussed by Quispitupa et al. (2009).
However, in most cases, either they have a limited capability for mode mixities or
the mode mixity changes with growing the crack. In contrast to this, the DCB-UBM
test (see in Fig. 1c) allows producing a wide range of I/II mode mixity conditions
by changing the ratio of the moments applied to the specimen’s cracked edges,
MR = Me

1/M
e
2 . Also, this method keeps constant mode mixity during the test

(Berggreen et al. 2018).
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Fig. 2.1 Schemes of the
fracture sandwich
specimens: a DCB; b SCB;
and c DCB-UMB hf
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2.3 Sandwich Specimens with Finite Crack

In this section, modeling aspects used to determine the energy release rate and mode
mixity phase angle in DCB, SCB and DCB-UBM specimens are discussed. The
sandwich specimens are considered as tri-layer structures,where each layer is defined
by an elastic orthotropic material. We assume that face sheets are of equal thickness,
h f , and are made of the same materials no. 1, whereas a much thicker core layer of
thickness, hc, is made of another material no. 2. Herewith, the principal axes of each
orthotropic material are aligned with the reference coordinate axes.
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2.3.1 Fracture Mechanics Approach

Semi-analytic solutions based on the fracture mechanics approach are obtained for
the energy release rate and mode mixity phase angle in terms of forces and moments
acting at the debonded section of sandwich beam-like specimens. The derivation
of these quantities for a symmetric sandwich beam subjected to the general system
of loads has been done in Andrews and Massabò (2007); Barbieri et al. (2018).
Following these authors, the stress resultants of an elementary segment of the beam
containing the crack front shown in Fig. 2a are presented by superposition of four
independent self-equilibrium systems. Figure 2b shows a decomposition of the load
subsystem, determined only by pure bending moments and axial forces, into the two
simple load cases, while a sum of the other two basic load cases related to the shear
resultants only is illustrated in Fig. 2c.

Using the original notations in Andrews and Massabò (2007); Barbieri et al.
(2018), the generalized crack tip loads in Fig. 2b and c are defined as follows:

P = N1 − N3C1 − C2
h f
M3

M = M1 − C3M3

M∗ = M + h f

(
1
2 + 1

2η + ẽs
)
P

VD = −V2

VS = V3,

(2.1)

where the coefficients C1, C2 and C3 the geometrical and material dimensionless
parameters η, ẽs are presented in the Appendix 1.

Fig. 2.2 a General loading of a sandwich beam elementary segment with a crack front; b load
subsystem defined by pure bending moments and axial forces; and c load subsystem defined by the
shear resultants
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Following themethodology proposed by Li et al. (2004); Østergaard and Sørensen
(2007); Barbieri et al. (2018), the ERR is computed within the context of plane stress
or plane strain by taking the J-integral over the closed counter around the crack
tip cross section. In doing so, the stress components σyy , σxx and σxy caused by the
crack tip loads in each particular load case shown in Fig. 2b and c are to be calculated
first. By superimposing the solutions of all the individual load cases withM, P, VD ,
VS �= 0, the result is a positive definite quadratic form containing terms proportional
to the squared crack tip loads and their cross products as follows:

G = f 2M
M2

E f h
3
f

+ f 2P
P2

E f h f
+ 2 fM fP sin γM

PM

E f h
2
f

+ f 2VD
V 2
D

E f h f
+ f 2VS

V 2
S

E f h f

+ 2 fVD fVS sin
(
ψVD − ψVS

) VDVS
E f h f

+ 2 fM fVD sin
(
ψM − ψVD

) MVD
E f h

2
f

+ 2 fM fVS sin
(
ψM − ψVS

) MVS
E f h

2
f

+ 2 fP fVD sin γVD
PVD
E f h f

+ 2 fP fVS sin γVS
PVS
E f h f

, (2.2)

where the phase angles ψM = γM + ω − π/2, γVD = ψVD − ω + π/2 and
γVS = ψVS − ω + π/2, the positive dimensionless functions fM(�, η), fP(�, η)

and the phase angle γM(�, η) are given by analytical equations in Appendix 2,
and the positive dimensionless functions fVD (α, β), fVS (α, β) and the phase angles
ψVD (α, β), ψVS (α, β) and ω(α, β) calculated for different values of α andβ are
tabulated in Barbieri et al. (2018).

The mode mixity angle associated with the ratio of the imaginary and real parts
of the complex stress intensity factor K = K1 + i K2, where i = √−1 is derived
based on dimensional considerations and linearity as discussed in Li et al. (2004);
Østergaard and Sørensen (2007). In the general loading case at the characteristic
length defined by h f , it takes a form:

ψ = tan−1

(
fM M sinψM + fP Ph f sinω + fVD VDh f sinψVD + fVS VSh f sinψVS
fMM cosψM + fP Ph f cosω + fVD VDh f cosψVD + fVS VSh f cosψVS

)
(2.3)

The general relationships of the ERR and themodemixity phase angle in (2.2) and
(2.3), respectively, are used to determine the particular forms of these expressions
for DCB, SCB and DCB-UBM sandwich specimens.

In a DCB sandwich specimen, a transverse force F is applied to the cracked ends
of the beam (Fig. 1a). Hence, the elementary load systems are defined by the zero
loads P and VS and nonzero loads M = Fa and VD = F . Consequently, the ERR
and the mode mixity angle are reduced to the forms:

GDCB = f 2M
M2

E f h3f
+ f 2VD

V 2
D

E f h f
+ 2 fM fVD cos

(
ψM − ψVD

) VDM

E f h2f

ψDCB = tan−1

(
fMM sinψM + fVD VDh f sinψVD

fMM cosψM + fVD VDh f cosψVD

)
(2.4)
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Unlike theDCB test method, in an SCB sandwich specimen, an upward transverse
force F is applied only to the end of the debonded face sheet of the beam as shown
in Fig. 1b. Moreover, the fixity of the SCB specimen on the bottom face sheet may
also affect the stress field near the crack tip along with the shear effect caused by the
transverse force itself.

For analyzing the SCB sandwich beam, we propose for consideration two cases
of decomposition of the general load conditions into the elementary load subsystems
demonstrated in Fig. 2.2. The first one is a simplified situation when it is assumed
that the fixture has a negligible influence on the near crack tip stresses. This can
be considered as an approximation of SCB specimens with a very thick core layer,
hc >> h f . Then, all the resultants except VD are nonzero and equal to P = −C2

h f
Fa,

M = Fa − C3Fa and VS = F . It results in the following reduction of the general
expressions for the ERR and the mode mixity angle:

GSCB1 = f 2M
M2

E f h3f
+ f 2P

P2

E f h f
+ 2 fM fP sin γM

PM

E f h2f
+ f 2VS

V 2
S

E f h f

+ 2 fM fVS cos
(
ψM − ψVS

) VSM

E f h2f
+ 2 fP fVS sin γVS

VS P

E f h2f

ψ SCB1 = tan−1

(
fMM sinψM + fP Ph f sinω + fVS VSh f sinψVS

fMM cosψM + fP Ph f cosω + fVS VSh f cosψVS

)
(2.5)

An improvement to the accuracy of fracture analysis of the SCB specimen is to
account for the fixity at the bottom face sheet on the near crack tip stresses. Following
by Kardomateas and Yuan (2020), the reaction on the bottom face sheet is assumed
to be such as linear distributed force, with intensities q1 and q2 at the left and right
ends of the sandwich beam, respectively. Then, the force and moment equilibrium
gives the shear force QS and the moment MS acting at the crack front cross section
of the substrate as follows:

QS = − Fa

L∗

(
4 − 3a

L∗

)

MS = − Fa2

L∗
(
2 − a

L∗
)
, (2.6)

where L∗ = L − Lh is a length of the SCB specimen without the hinge length as
shown in Fig. 1b.

Therefore, the general load system at the crack tip cross- section is not reduced to a
simplified case, and it is decomposed into the elementary load subsystems with P =
−C2

h f

(
Fa − Fa2

L∗
(
2 − a

L∗
))
, M = Fa −C3

(
Fa − Fa2

L∗
(
2 − a

L∗
))
, VD = Fa

L∗
(
4 − 3a

L∗
)

and VS = F − Fa
L∗

(
4 − 3a

L∗
)
, which are further used to compute the ERR and the

mode mixity angle in (2.2) and (2.3), respectively.
In a DCB-UBM sandwich specimen, external two moments Me

1 and Me
2 acting

at the cracked ends of the beam (Fig. 1c) lead to the nonzero resultants P =
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−C2
h f

(
Me

1 + Me
2

)
andM = Me

1−C3
(
Me

1 + Me
2

)
in the elementary load cases,whereas

VD and VS are zeros there. Thereby, the ERR and the mode mixity angle have the
following forms:

GDCB−UBM = f 2M
M2

E f h3f
+ f 2P

P2

E f h f
+ 2 fM fP sin γM

PM

E f h2f

ψDCB−UBM = tan−1

(
fMM sinψM + fP Ph f sinω

fMM cosψM + fP Ph f cosω

)
(2.7)

2.3.2 1-D Beam Theory-Based Approach

The energy release rate generated by the interface crack in the DCB test method
(Fig. 1a) is analytically derived base on the 1D beam theory in Avilés and Carlsson
(2008). The model considers the upper (debonded) face sheet as a Euler–Bernoulli
beam partially supported by aWinkler elastic foundation representing the core. Only
Young’s moduli coinciding with the axial direction of sandwich beam are considered
for the orthotropic face sheets and core in the formulation. The final expression for
the ERR of the DCB beam of the width b takes the form:

GDCB = F2

2b2

⎧⎨
⎩

1

Gc
xzhc

+ a20(
D − B2

A

) + 12

E f h3f

(
a2 + 2aξ

1
4 + ξ

1
2

)
⎫⎬
⎭, (2.8)

where the parameter ξ = bh3f E f

3K and the elastic foundation coefficient K = 2bEc
hc

. The
1D extensional, coupling and bending stiffness coefficients A, B and D are computed
as follows:

A = E f h f + Echc, B = h f hc
2

(
Ec − E f

)

and

D = 1

12

{
E f

(
h3f + 3h f h

2
c

) + Ec
(
h3c + 3h2f hc

)}

The kinematics of the SCB specimen of the width b (Fig. 1b) described by the
Timoshenko beam—Winkler foundation model in Ratcliffe and Reeder (2011) leads
to an analytical estimation of the ERR in the SCB test method in the form:

GSCB = 4ζ F2

2bK

{
ζ 3a2 + 2ζ 2a + ζ + K

4bζkG f
xyh f

}
, (2.9)
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where the parameter ζ =
(

K
4D f

)1/4
with bending stiffness of the face sheet D f = bh3f

12

and the foundation coefficient K = bEc
hc

identical to that in (2.8), k is the shear
correction factor equal to 5/6.

The Euler–Bernoulli beam theory is also utilized to model the DCB-UBM spec-
imen of the width b. Based on the beam assumptions and the J-integral calculated
along the outer boundaries of the specimen (Fig. 1c), the ERR is calculated in
Burlayenko et al. (2019c) as follows:

GDCB−UBM = 1

2b

{
N 2

(E A)d
+ N 2

(E A)s
+ M2

(E I )d
+ M∗2

(E I )s

}
, (2.10)

where N = γ2Mb, M = M1 − γ3Mb and

M∗ = N

(
es + hc

2
+ h f

2

)
− M

are the equivalent axial load and bending moments, respectively, with

γ2 = (E A)d

(E I )b

(
e0 + hc

2
+ h f

2

)

and

γ3 = (E I )d
(E I )b

the parameters e0 and es locate neutral axes of the intact part of specimen and the
substrate, Fig. 1c; (E A)i and (E I )i are generalized axial and flexural rigidities of
the debonded portion “d,” substrate “s” and intact part of the specimen “b,” i.e., i =
{d, s, b}.

It should be noticed that all the expressions from (2.8) to (2.10) for theERRderived
based on 1D beam theories do not account for the core shearing in the specimens in
contrast to those obtained within the fracture mechanics concept in (2.2), (2.4), (2.5)
and (2.7).

2.3.3 2-D Finite Element Modeling

The 2D finite element models of the studied specimens have been developed with the
commercial package ABAQUS (2016). The specimens’ geometries were discretized
with 8-node full integration solid plane stress quadrilateral elements. The debond as
an interfacial crack was modeled by duplicate nodes between finite elements placed
along the crack flanks. The region near the crack tip was covered by a ”spider-web”
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mesh refinement as shown in Fig. 3a. Typically, about 30,000 degrees of freedom
were employed in the model. Also, to capture the square root singularity in the mesh
with 8-node isoparametric elements, the elements with the mid-side nodes on the
sides connected to the crack tip moved to the ¼-point nearest the crack tip were used
in a ring around the crack tip.

Fig. 2.3 Deformed configurations of the fracture specimens: a the DCB specimen; b the SCB
specimen; and c the DCB-UBM specimen
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By using the J-integral option available in ABAQUS (2016), the ERR and the
complex stress intensity factors associated with mode mixity phase angle relating to
a localmode I/IImixity at the near tip stress fieldwere calculated in all the specimens.
Herewith, an assumption of reducing the orthotropic properties of the laminated face
sheet into the equivalent isotropic ones has been done. While such finite element
predictions with ABAQUS built-in capabilities enable to give accurate enough
results, they do not account for the actual orthotropy of the material constituents.
For this reason, an add-on MATLAB subroutine was developed to compute the
fracture parameters of crack at bi-material orthotopic interfaces (Burlayenko et al.
2019c, 2020b). The routine implements the CSDmethod by handling a displacement
field on the crack flanks, extracted from the post-processing part of finite element
analysis in accordance with the formulas:

G = H11|K |2
4cosh2πε

= π
(
1 + 4ε2

)

8H11

(
r
l̂

)
(
H11

H22
�2

2 + �2
1

)
(2.11)

and

ψ = tan−1

(√
H11

H22

Δ1

Δ2

)
− ε ln

(
r

l̂

)
+ tan−1 2ε, (2.12)

where� j = u j (r, π)−u j (r,−π), j= 1,2 represents the relative crackflank displace-
ments (shearing and opening modes) at distance r behind the crack tip, and H11 and
H22 are components of the Hermitian matrix H, which is defined for the orthotropic
materials with material axes aligned with the coordinate axes as follows:

H11 = [
2nλ1/4√s11s22

]
#1 + [

2nλ1/4√s11s22
]
#2

H22 = [
2nλ−1/4√s11s22

]
#1 + [

2nλ−1/4√s11s22
]
#2

H12 = H 21 = i
[√

s11s22 + s12
]
#1 − i

[√
s11s22 + s12

]
#2 (2.13)

Here si j , i,j = 1,2,6, s16 = s26 = 0 are components of the compliance matrix of the
orthotropic materials (#1 or #2) in plane stress; the compliance coefficients in plane
strain are

s̃i j = si j − si3s j3
s33

Note that the parameters of anisotropy are

λ = s11/s22 and � = (2s12 + s66)

2
√
s11s22

and the coefficient n =
√

(1+�)

2 .



30 V. N. Burlayenko et al.

The expressions (2.11) and (2.12) are only valid at the limit r → 0. Since the finite
elementmodel is not able to provide this situation, the crack flank displacements very
close to the crack tip are calculated instead. Then, the values ofG andψ are estimated
by linear extrapolation of the results in the interval 10−3 ≤ r/l̂ ≤ 10−2 to r = 0.
The characteristic length is accepted as l̂ = h f .

Finally, given the G and ψ parameters, the components of the complex stress
intensity factor can be found as follows:

K1 = �e
{
Kl̂iε

}
= |K | cosψ

K2 = �m
{
Kl̂iε

}
= |K | sinψ

(2.14)

2.4 Results and Discussion

The numerically and analytically obtained results for the fracture parameters of the
fracture specimens are considered in this section. The finite element fracture analysis
was carried out using the capacities of software ABAQUS (2016). All the specimens
of an equal length of 280 mm and width of 25 mm with pre-crack of 90 mm were
assumed to be made up of the PVC H100 core of thickness 50 mm and the same
laminated glass/epoxy face sheets of thickness 2.4 mm. The material properties of
the specimen’s constituents are summarized in Table 2.1.

The specimens were subjected to loads in accordance with the test methods shown
schematically in Fig. 2.1. The loads induced approximately equal levels of the ERR
about 4.0 × 10–4 N/mm in each test. That is, F = 1 N and Me

1 = 75 N mm and
Me

2 = 1125 N mm have been accepted for comparisons in what follows.
Figure 2.3 illustrates the deformed configurations of the considered specimens

resulting from the finite element analysis. The specimens’ kinematics highlights and
confirms some issues that may arise in their laboratory testing. For instance, the
asymmetry of the DCB specimen caused by the fact that the lower part (below the
crack plane) being more rigid in flexure than the upper one (above the crack plane)

Table 2.1 Material properties of the sandwich specimens

Constituents Material constants

Glass/epoxy face sheet Ex = Ez = 16.5 GPa; Ey = 3.8 GPa;Gxy = Gxz = 1.3 GPa;Gyz =
6.6 GPa; vxy = 0.05; vxz = vyz = 0.25

PVC H 100 foam core Ex = Ey = Ez = 0.105 GPa;

Gxy = GxzGyz = 0.0389 GPa;

vxy = vxz = vyz = 0.325
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may result in a slight rotation of the specimen at large opening displacements as
shown in Fig. 3a and mentioned in Avilés and Carlsson (2008).

To provide a mode I dominated debonding associated with a face sheet peeling
from the core in a SCB specimen, the bending of the debonded face sheet has to
be the primary form of loading. It can be provided by keeping the applied force as
more perpendicular as possible to the crack plane during the testing as illustrated
in Fig. 3b. In actual tests, this condition is implemented by satisfying the load rod
length, hF (Fig. 1b) to sizing requirements defined in Ratcliffe and Reeder (2011).

Finally, the major concern of the DCB-UBM test method is to provide a proper
application of the loads producing pure bending moments at the cracked ends of
the specimen as shown in Fig. 3c. The research focusing on establishing suitable
test loading as well as a new recommended methodology for that in DCB-UBM
specimens can be found in Berggreen et al. (2018).

Figure 2.4 demonstrates the distributions of near tip stress components in the
specimens analyzed in the simulations. As general for all the contour plots, the high
stressed regions spread to large influence zones in all the specimens due to the soft-
core layer adjacent to the crack tip. The longitudinal normal stresses σxx are mainly
developed in the debonded face sheet due to its high bending resistance and play
some role in determining the values of maximum principal stresses in the vicinity
of the crack tip. In turn, the transverse normal stresses σyy achieve their maximum
in the crack tip regions as well as the shear stresses σxy , but with values an order of
magnitude smaller than the transverse normal stresses. It is also found that though
the transverse normal stresses in each specimen under dominated mode I loading are
more severe than the shear stresses, the latter ones surely exist providingmodemixity
at the crack tip. As suggested by the results of Adams et al. (2012), the sign of shear
stress is a factor that explains the debonding path direction in sandwich structures,
and the degree of mode mixity defines the elevation of fracture toughness.

Analyzing the stress distributions for each the specimen separately, one can see
that all the plots for DCB (Fig. 4a–b) and SCB (Fig. 4c–e) samples exhibit similar
trends in contrast to their counterparts for DCB-UBM beam shown in Fig. 4f–i.
Thus, differences in fracture characteristics as design parameters of the DCB, SCB
and DCB-UBM test methods are expected.

Given the material properties of actually orthotropic face sheet and core reduced
to equivalent isotropic materials, the specimens are analyzed with analytical expres-
sions presented in Sects. 3.1 and 3.2. Also, the numerical predictions with both the
orthotropic and isotropic constituents of the specimens are carried out for compar-
isons. In the numerical predictions, to compute the complex stress intensity factors,
the CSD method is used for the specimens with orthotopic constituents, while the
interaction integral method as a built-in option of the ABAQUS code is activated in
the case of constituents with equivalent isotropic properties.

Comparisons between the ERR and mode mixity phase angle values obtained by
the analytical formulas and those calculated numerically with the 2-D FEA are listed
in Table 2.2. One can see good agreement between the numerical and analytical
solutions. The analytical expressions based on the elastic foundation models for
calculation of the ERR in the DCB and SCB specimens a little overestimate those
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Table 2.2 Comparisons for the SERR calculated for the DCB, SCB and DCB-UBM sandwich
specimens

Specimen Parameter Analytic 2D FEA

Section 3.1 Section 3.2 Isotropic Orthotropic

DCB G × 10−4,N/mm 4.0334 4.3636 4.0452 4.0501

ψ , deg −19.11 – −9.23 −14.69

�e
{
Khiεf

}
, N/mm3/2 0.2778 – 0.3039 0.2966

�m
{
Khiεf

}
, N/mm3/2 −0.0927 – −0.0494 −0.0778

SCB G × 10−4,N/mm 4.0004 4.3445 4.0293 4.0254

4.0157

ψ , deg −22.98 – −12.23 −17.60

−20.66

�e
{
Khiεf

}
, N/mm3/2 0.2696 – 0.3003 0.2913

0.2745

�m
{
Khiεf

}
, N/mm3/2 −0.1081 – −0.0651 −0.0926

−0.0990

DCB-
UBM

G × 10−4,N/mm 4.5660 4.5660 4.5524 4.5568

ψ , deg 19.48 – 29.82 23.44

�e
{
Khiεf

}
, N/mm3/2 0.2949 – 0.2835 0.2984

�m
{
Khiεf

}
, N/mm3/2 0.1003 – 0.1625 0.1294

numerical and semi-analytical results. In turn, the analytical ERR derived using
the linear elastic fracture mechanics for the DCB-UBM specimen gives a value
identical to the semi-analytic result and very close to the numerical predictions. Also,
it needs to notice good compliance between the results predicted for the samples
with orthotropic material properties and those assuming properties of equivalent
isotropic materials. However, the latter case does not provide accurate values of the
mode mixity phase angle. Nevertheless, both of the numerical predictions related
to the stress intensity factors are close to each other and agree satisfactory with the
analytical results. Thus, the anisotropic properties of the bi-material interface affect
the accuracy of the fracture characteristics evaluation. Herewith, since the ERR is
an integral parameter, this value is less disturbed by the material anisotropy than the
mode mixity angle, which is very sensitive to a localized state at the crack tip. Also,
due to this fact, the essential difference in the mixity phase angles calculated by the
analytical and numerical methods occurs as the methods use different techniques in
modeling the near crack tip stress field. In Table 2.2, the parameters for the SCB
specimen in the upper parts of the cells are determined by simplified formulas (2.5),
whereas those in the lower parts of the cells are defined by (2.2) and (2.3).
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This comparison, first, confirms the accuracy and efficiency of the proposed 2D
numerical models, and second, it emphasizes the differences in the sandwich spec-
imens’ responses dependent on the test method used for estimation of the fracture
parameters. It is obvious from Table 2.2 that remote mode I loading in the specimens
leads to local mixed I/II mode in terms of transversal normal and shear stresses simul-
taneously existing at the crack tip. Also, one can see that the mode mixity increases
from the DCB to DCB-UBM specimen types as shown in Fig. 2.4. Moreover, in
contrast to the DCB and SCB specimens with an assumed crack path inside the face
sheet-to-core interface due to the negative factor K2 < 0, the DCB-UBM beam
exhibits a positive factor K2 > 0, i.e., the crack may kink into the core. There-
fore, these observations following from the considered analytical, semi-analytical
and numerical models may serve high fidelity estimations of the fracture parame-
ters in actual fracture specimens as well as the combination of these models with
experimental data may provide data reductions in such tests.

2.5 Conclusions

In this research, efforts have been focused on the evaluation of the fracture parameters
in virtual tests related to the assessment of face sheet-to-core interface strength in
sandwich panels. Both the analytical methods based on beam-like models and the
semi-analytical approach combining analytical considerations and numerical results,
and two-dimensional finite element analyses carried out with ABAQUS have been
used for computing ERR, SIFs and mode mixity phase angle in three popular DCB,
SCB andDCB-UBM sandwich fracture specimens. The numerically obtained results
have been handled in the post-processing part of the finite element analysis to evaluate
mode mixity. The J-integral method as a built-in option of the ABAQUS code was
used for solving interfacial problems of two dissimilar isotropic materials, while the
crack surface displacement method programmed in the MATLAB environment was
applied to for analyzing a general bi-material configuration of the interfaces.

In general, good agreement between the results of the numerical calculations
based on 2D modeling and those following from the semi-analytical approach and
the 1D analytical solutions is observed for all the sandwich specimens with the same
material and geometrical properties. However, the inability of the beam theories to
account for crack tip shear deformation results in overestimated values of the ERR
of the specimens, and the beam models also do not provide closed-form solutions
for the mode mixity phase angle. On the other hand, the semi-analytical technique,
which allows enforcing the root rotation compatibility at the crack tip, gives results
very close to the finite element predictions for all the fracture parameters. Herewith,
a coupling between the interfacial shear and transverse normal stresses at a crack tip
is a direct outcome of the finite element solution of the 2D elastic problem.

Comparing the results of the semi-analytical technique and those obtainedwith the
FEM, the computational aspects of the 2D numerical models in terms of their accu-
racy and efficiency have been evaluated to put them into perspective of the interface
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strength assessments of sandwich panels. It was found out that, first, the orthotropic
constituencies of the interfaces can be replaced by their equivalent isotropic counter-
parts with small deviations from the semi-analytical results for the ERR and SIFs, but
with a rough estimation of the mode mixity angle. Second, the simplified model of
the SCB sandwich should be used with strong limitations due to a high influence of
the reaction on the fixed bottom face sheet on the near tip stress field, i.e., the founda-
tion reaction should be taken into account in general. Third, given the same material
and geometrical parameters and under mode I loading conditions, the responses of
the DCB and SCB specimens are similar, but the DCB-UBM sample distinguishes
much from them. The former two specimens have mode I dominated state with a
small negative mode II component, while the latter one in such mode I dominated
regime possesses a larger positive mode II component.
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Appendix 1

Following the original notations in Østergaard and Sørensen (2007); Andrews and
Massabò (2007); Barbieri et al. (2018), the geometrical and material dimensionless
parameters of the sandwich beam cross-section are defined as follows:

η = h f

hc

α = �−1
�+1 ,with � = E f

Ec

β = G f (κc−1)−Gc(κ f −1)
G f (κc+1)+Gc(κ f +1)

ε = 1
2π ln

(
1−β

1+β

)
(2.15)

where Ei = Ei for plane stress and Ei = Ei

1−ν2
i
for plane strain with Ei and νi

the Young’s modulus and the Poisson’s ratio of the layer i = {f , c} and the shear
modulus, Gi = Ei

2(1+νi
); α andβ stand for the Dundur’s parameters with κ i = 3−νi

1+νi
for plane stress and κ i = 3 − 4νi for plane strain; ε is the oscillatory index.

The dimensionless distance of the neutral axis of the substrate at crack tip cross-
section of unit width is defined by

ẽs = es
h f

= E f h f

Echc + E f h f

h f + hc
2h f

= �(η + 1)

2(�η + 1)
, (2.16)

whereas the dimensionless bending stiffnesses of the substrate and fully bonded part
(the base) of unit width cross-section are given by
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D̃s = Ds

E f h3f
= 1

12
+

(
η + 1

2η
− ẽs

)2

+ 1

�η

(
1

12η2
+ ẽ2s

)

D̃b = Db

E f h3f
=

(
1

6
+ 1

2η2
(η + 1)2

)
+ 1

12�η3
(2.17)

The coefficients in (2.1) are calculated in the forms:

C1 = �η

1+2�η

C2 = 1
D̃b

(
1
2 + 1

2η

)

C3 = 1
12D̃b

(2.18)

Appendix 2

The positive dimensionless functions fM(�, η), fP(�, η) and the phase angle
γM(�, η) define the energy release rates for arbitrary combinations of bending
moments and axial forces (Fig. 2b). In terms of the dimensionless parameters they
take the form (Barbieri et al. 2018):

fM(�, η) =
(
1
2

(
12 + 1

D̃s

)) 1
2

fP(�, η) =
(

1
2

(
1 + �η

1+�η
+ 1

D̃s

(
1
2 + 1

2η + ẽs
)2

)) 1
2

γM(�, η) = sin−1
(

1
2D̃s fP fM

(
1
2 + 1

2η + ẽs
))

(2.19)
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Chapter 3
Modeling of Mechanical Properties
of Composite Materials Under Different
Types of Loads

Mykola Kryshchuk, Sergiy Shukayev, and Viktor Rubashevskyi

Abstract This study examines the calculation methods used to predict the load
bearing capacity of composite structures. Specifically, examined are the numerical
and analytical methods of determining the effective elastic properties of layered
composites. Presented are the results of a stress analysis performed on a space-use
honeycombpanel under different types of loads. The results of numerical experiments
conducted on models of the honeycomb panel were obtained in APDL ANSYS.
Recommendations regarding the application of efficient finite element models were
proposed based on the stress–strain state data of composite structures under loading,
obtained via simulation models of different types. Examined are the approaches
to assessing the limit state of composites under uniaxial and biaxial loading. Also
discussed are the advantages and disadvantages of using finite element models and
analytical models.

Keywords Composite materials · Honeycomb panels · Elastic properties ·
Stress–strain state · Strength · Modal analysis · Finite element models

3.1 Introduction

Due to the rapid spread of usage of composite materials in the manufacturing of
various structures, the objective of rational design of such items—for instance, of
honeycomb structures—has become increasingly relevant. The honeycomb panel is
a three-layer structure consisting of two skins and a honeycomb core sandwiched
between them (Fig. 3.1).
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Fig. 3.1 Honeycomb panel:
1 fiber-reinforced epoxy
skin, 2 honeycomb core

Structures of this type are widely used in the aerospace industry due to their high
level of technical and economic efficiency.

The calculation of the load bearing capacity of composite honeycomb panels is
an important task in modern mechanical engineering. Such calculations include the
determination of the elastic properties of the honeycomb panel components. This task
is often approached by applying analytical methods, which can be used to determine
both the properties of amonolayer and the effective elastic properties of the composite
structure as a whole.

Methods employed to determine the stress–strain state include both those devel-
oped for multilayer plates and the approaches designed to use equivalent single-
layer plates. Computer simulation models of structural components have also been
extensively utilized in recent times. The combined use of analytical and numerical
methods allows for a reduction of experimental research, while it also leads to an
early discovery of design defects in the item being manufactured.

This study presents the results of a stress analysis performed on a space-use
honeycomb panel under different types of loads. A standard honeycomb panel struc-
ture, the particulars of which are described above, serves here as the simulation
model example. Reported are the results of numerical experiments conducted on
three models of the honeycomb panel, all of which were created in APDL ANSYS
using finite elements. A comparison of the convergence and accuracy of these results
was carried out based on an evaluation of the amounts of displacement in static tests
and the calculation of ten first eigenfrequencies and mode shapes. Provided are the
examples of numerical calculations of mechanical properties and of strength assess-
ment for composite honeycomb panels. Based on these calculations, the maximum
deflection values for the panel under thermal and mechanical loading in low earth
orbits ranging from 200 to 400 km were determined.

Determined also was the stress-strained state of the target honeycomb panel under
self-weight. The transition from a multilayer to a three-layer structure was possible
due to the determination of the effective elastic properties of the panel skins. The
results obtained were verified by finite element method calculations in the ANSYS
Workbench software environment.

Additionally, a comparison was made of the numerical and analytical approaches
to assessing the limit state of a layered AS4/3501–6 carbon/epoxy laminate under
uniaxial and biaxial loading. The analytical model of the mechanical properties
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degradation of a composite layer (Kucher and Zarazovskii 2009) and the numerical
simulation method in ANSYS Workbench were applied.

3.2 Determination of Elastic Properties of Layered
Composites

Owing to the fact that the physical and mechanical properties of composites are
required for calculating strength, frequency and fatigue, their determination with the
help of numerical and analytical methods is not only an urgent task, but also a viable
alternative to experimental research.

The effective modulus of elasticity of a layered composite is one of the
most important characteristics. Numerical and analytical methods for deter-
mining the effective modulus of elasticity of a layered composite both for
the carbon fiber-reinforced plastics (CFRP) (EDT-10/TC 36S-12 K, AS4/3501–
6 carbon/epoxy, T300/BSL914C epoxy) and for the glass-fiber reinforced
plastics (E-glass 21xK43Gevetex/LY556/HT907/DY063 epoxy and Silenka E-
Glass1200tex/MY750/HY917/ DY063 epoxy) are described in a number of recent
studies (Rubashevskyi et al. 2017; Maslei and Rudakov 2019). The comparisons
of calculated and experimental data for composites of these types were conducted
by means of rule of mixtures (Voigt and Reuss models) (Altenbach et al. 2018),
coaxial cylindermethods (Christensen 1980), Vanin’smethod (Vanin 1985), Kilchin-
skyi model (Kilchinsky 1965) and methods developed by other authors Jones,
Förster/Knappe, Puck, Schneider (ECSS-E-HB-32-20 2011) and the finite element
method. Based on the research findings, it can be concluded that finite element
models of a composite monolayer produce good results for the above-mentioned
task, whereas recommended formulas do not always produce a satisfactory result.
The analysis and comparison of analytical approaches showed a certain superiority of
themethods of coaxial cylinders and Vanin’s method, which gave the best correlation
of calculated and experimental data.

Once the elastic properties of a composite monolayer have been determined, it
is possible to proceed to predicting the effective elastic properties of the composite
structure as a whole. To determine the effective elastic properties of the entire layered
composite, this study used the approach developed in (Khoroshun andMaslov 1980).
In accordance with this approach, the components of the effective stiffness tensor
of a layer, which are represented by the respective elastic parameters constants
E1, E2,G12,G23 and υ12, were averaged by volume for the target combination
of layers of the composite. As a result of the conversion of the effective stiffness
tensor to the effective stiffness matrix, effective elastic constants of the material are
obtained.
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[A] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−υ21
E2

−υ31
E3

0 0 0
−υ12
E1

1
E2

−υ32
E1

0 0 0
−υ13
E1

−υ23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.1)

Here, [A] = [λ]−1 is the effective compliance tensor and [λ] is the effective
stiffness matrix.

As an example, shown below is the calculation of the effective elasticity modulus
Ex of the layered composite AS4/3501–6 carbon/epoxy, which was carried out based
on the experimentally determined elastic constants of a monolayer (Soden et al.
2002).

E1 = 126 GPa, E2 = E3 = 11 GPa, G12 = G23 = G31 = 6.6 GPa,

υ12 = υ12 = υ12 = 0.28
〈
λi j

〉 =
[
2λ90

i j + 2λ−45
i j + 2λ45

i j + 2λ0
i j

]
�h/H (3.2)

λθ
11 = m4λ11 + 2m2n2(λ12 + 2λ66) + 4 mn

(
m2λ16 + n2λ26

) + n4λ22 (3.3)

Here, Δh and H are the thicknesses of the monolayer and the composite, respec-
tively; λθ

i j is the stiffness parameters of layers (i, j = 1,2,… 6), which are turned
at an angle of θ relative to the local coordinate frame;

〈
λi j

〉
is the components of

the averaged stiffness matrix; and n = sin(θ), m = cos(θ), Δh = 0.125 mm,
H = 1 mm

λi j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

126 4, 36 4, 36 0 0 0
4, 36 11 3, 49 0 0 0
4, 36 3, 49 11 0 0 0
0 0 0 6, 6 0 0
0 0 0 0 6, 6 0
0 0 0 0 0 6, 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

Ex = [2 · 126 + 2 · 45.68 + 2 · 45.68 + 2 · 11] · 0, 125 = 57.09 GPa (3.5)

Other effective elastic constants are determined in the same manner as above.
Thismethodwas used to calculate the effective elastic constants for other composites,
for instance, T300/BSL914C epoxy, E-glass 21xK43Gevetex/LY556/HT907/DY063
epoxy and Silenka E-Glass1200tex/ MY750/HY917/DY063 epoxy. The errors
between the experimental and calculated results ranged between 2.1 and 9.8% for
Young’s modulus, between 1.1 and 31.2% for the shear modulus, and between 1.7
and 31.5% for Poisson’s ratio.
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In order to determine the effective properties of the three-layer honeycomb panel
shown in Fig. 3.1, a combination of two methods was used. The panel consists of
two layers of composite skins (each 0.8 mm thick) with a layup schedule of [0°/90°/
± 45°]. The skins are bonded to a 76 mm thick honeycomb core made of 5056-
6-23 aluminum foil. L Khoroshun’s analytical method shown in work (Khoroshun
and Maslov 1980) was used in combination with the rule of mixtures. The resulting
data was compared to data obtained from calculations, which were performed using
the Layups module in the FEMAP v11.0.1 software environment (Kryshchuk et al.
2019). As indicated by the comparison of the results of elastic orthotropic properties
calculations for the target structure, the maximum discrepancy between the results
produced by the analytical and the numerical methods does not exceed 11%.

3.3 Phenomenological Failure Criteria of Composite
Materials

To estimate the strength of composite materials, it is necessary to know the criteria
that specify the permissible limits of stresses and strains in which the material can
operate under specified conditions without failure. In Lepikhin and Romashchenko
(2013), a review of some of the prevalent phenomenological criteria applied to assess
the strength of composite materials is given.

The phenomenological failure criteria describe the macromechanical behavior of
composite materials as a whole, without taking into account the micromechanical
features that arise as a result of deformation of the composite.

The phenomenological approach makes it possible to use the general design
requirements for materials that are different in composition and technology, but have
the same symmetry properties, as well as for materials with significant anisotropy,
for which the same stress state can lead to different limit states if the stress signs are
reversed or the stress orientation is changed.

Phenomenological failure criteria are not derived analytically; they are postulated
or proposed on the basis of generalization of experimental data. The choice of a crite-
rion depends on the nature of the material, its composition, the degree of anisotropy,
the chosen calculation concept, and the available amount of experimental data.

As noted in (Kollar and Springer 2003), the relative frequency of use of the
phenomenological criteria is as follows: maximum deformations account for 30%
of calculations, maximum stresses for 23%, Tsai–Hill for 18%, Tsai–Wu for 13%,
and all other for 19%. It is worth noting that the Tsai–Wu criterion more accurately
describes the failure of composite materials as compared to the maximum principal
strain criterion, the maximum stress criterion, and the Tsai–Hill criterion.

One of the most general formulations of the anisotropic failure criterion for the
three-dimensional case has the following form (Goldenblat and Kopnov 1965)

(Fiσi )
α + (Fi jσiσ j )

β + (Fi jkσiσ jσk)
γ + · · · ≤ 1, (i, j, k . . . = 1, 2, . . . , 6) (3.6)
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where Fi , Fi j , Fi jk are the so-called strength-surface tensors of the second, fourth,
sixth, and subsequent even ranks; σl is the stress tensor; and the exponents α, β, γ ,
etc., are determined fromexperimental data.Working solelywith the first two compo-
nents of the inequality, the authors of (Goldenblat and Kopnov 1965) most fully
developed a version of this criterion, in which it is assumed that α = 1, β = 1

2 .
More convenient for practical application was a variant of the criterion in which

the exponents were taken to be equal to unity (Alfutov et al. 1984; Wu 1974; Tsai
and Wu 1971)

α = β = γ = · · · = 1 and Fiσi + Fi jσiσ j + Fi jkσiσ jσk + · · · ≤ 1 (3.7)

This form of notation is called the tensor-polynomial failure criteria (Alfutov
et al. 1984; Wu 1974; Tsai and Hahn 1975).

3.3.1 Tsai–Wu Criterion

Owing to the large number of material constants that need to be determined experi-
mentally, the third and subsequent components in this expression are usually disre-
garded. The indicated polynomial criterion is then reduced to the Tsai–Wu criterion
(Tsai and Wu 1971) of the following form

Fiσi + Fi jσiσ j ≤ 1 (3.8)

According to the data presented in (Kollar and Springer 2003), under strict
equality, this equation can describe the failure surface, if the magnitude of mixed
components Fi j (i �= j) is constrained by the following inequality:

Fii Fj j − F2
i j ≥ 0 (3.9)

The Tsai–Wu criterion generally takes into account the difference in tensile and
compressive strengths, and the dependence of the shear strength on the direction of
shear stresses. It also has the maximum possible flexibility. This criterion does not
contain excessive parameters and facilitates the determination of the principal axes
of strength, etc. (Wu 1974).

Strength-surface tensor components can only be determined experimentally. For a
material with a general type of anisotropy of properties, 27 experiments are required
to instantiate the above inequality (Wu 1974). This leads to the fact that it is practi-
cally impossible to apply the criterion for such materials. It is thus only practically
applicable to orthotropic and transversally isotropic materials.

According to (Kollar and Springer 2003), for an orthotropic material, the criterion
in the principal axes of orthotropy of the material takes the following form

F1σ1 + F2σ2 + F3σ3 + F11σ
2
1 + F22σ

2
2 + F33σ

2
3
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+ F44σ
2
4 + F55σ

2
5 + F66σ

2
6

+ 2F12σ1σ2 + 2F13σ1σ3 + 2F23σ2σ3 ≤ 1 (3.10)

The unmixed components of strength-surface tensors in the formula are expressed
as F1, F2, F3, F11, F22, F33, F44, F55, F66. The values of these components are
uniquely determined by uniaxial tensile or compression experiments and pure shear
experiments. The mixed components of the strength-surface tensor are designated
as F12, F13, F23. The main problem with the practical application of the Tsai–Wu
criterion is the difficulty of experimental determination of the mixed components
of the strength-surface tensor. Finding them requires biaxial experiments or the use
of complex shape specimens, which entails considerable costs. The value of Fi j
depends heavily on the scatter of experimental data. At the same time, its minute
changes have a noticeable effect on the appearance of the failure surface.

As their first approximation, the authors of (Tsai and Hahn 1980) proposed the
following expression

Fi j = c
√(

Fii Fj j
)
,where |c| ≤ 1 (3.11)

In this case, there is no need to carry out biaxial experiments to determine, Fi j ,
which greatly simplifies the practical application of the criterion. At c = − 1

2 , the
specified approach has been recently widely applied to failure analysis of composites
(Evans andZhang 1987; Benzeggagh et al. 1995;Manne andHenriksen 1998; Sleight
1999; Paepegem and Degrieck 2003). Moreover, in the case of isotropic materials,
this criterion coincides with the von Mises criterion.

Due to this, the authors of (Mises 1913; Yang 1980) named the variant of the
criterion for c = − 1

2 the generalized von Mises criterion.
According to the data of (Kollar and Springer 2003; Reddy and Pandey 1987), the

components of the strength-surface tensors for the generalized von Mises criterion
can be determined as follows

F1 = 1

XT
− 1

Xc
, F2 = 1

YT
− 1

Yc
, F3 = 1

ZT
− 1

Zc
, F11 = 1

XT Xc
,

F22 = 1

YT Yc
, F33 = 1

ZT Zc
, F44 = 1

R2
,

F55 = 1

S2
, F66 = 1

T 2
, F12 = −1

2

√
XT XCYT YC , F13 = −1

2

√
XT XC ZT ZC ,

F23 = −1

2

√
YT YC ZT ZC (3.12)

Hereinafter XT ,YT , ZT represent the ultimate tensile strength in principal direc-
tions 1, 2 and 3, respectively; XC ,YC , ZC represent the ultimate compressive strength
in principal directions 1, 2, and 3, respectively; and R, S, T represent the ultimate
shear strength in 2–3, 1–3, and 1–2 principal planes, respectively.
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To instantiate the generalized von Mises criterion, it is necessary to determine 12
coefficients through 9 experiments (6 experiments for tension and compression in
three principal directions of orthotropy, and 3 experiments for shear in three principal
planes).

For a transversely isotropic material with a 2–3 plane of isotropy, according to
the data of (Kollar and Springer 2003), the following equation can be derived

F1σ1 + F2(σ2 + σ3) + F11σ
2
1 + F22

(
σ 2
2 + σ 2

3

) + 2(F22 − F23)σ
2
4 +

+ F66
(
σ 2
5 + σ 2

6

) + 2F12(σ1σ2 + σ1σ3) + 2F23σ2σ3 ≤ 1 (3.13)

The corresponding seven components of the strength-surface tensors in the
equation are determined as follows

F1 = 1

XT
− 1

Xc
, F2 = 1

YT
− 1

Yc
, F11 = 1

XT Xc
, F22 = 1

YT Yc
, F66 = 1

T 2

F12 = −1

2

√
XT XCYT YC , F23 = −1

2

√
YT YC ZT ZC (3.14)

To instantiate these components, it is necessary to carry out 5 tension–compression
experiments in directions 1 and 2, and a pure shear experiment in the 1–2 plane. It
should be mentioned that for any transversely isotropic body with a 2–3 plane of
isotropy, when applying quadratic failure criteria, the equality is as follows

F44 = 2(F22 − F23) (3.15)

According to (Evans and Zhang 1987), the generalized von Mises criterion
corresponds well with experimental data for materials with a high degree of
anisotropy.

3.3.2 Maximum Stress Criterion

According to this criterion, failure occurs when any of the following conditions is
not satisfied (Yang 1980)

−XC ≤ σ1 ≤ XT ,−YC ≤ σ2 ≤ YT ,−ZC ≤ σ3 ≤ ZT , |σ4| ≤ R, |σ5| ≤ S, |σ6| ≤ T
(3.16)

The maximum stress criterion can be expressed in terms of the tensor-polynomial
criterion as follows (Benzeggagh et al. 1995)

(σ1 − XT )(σ1 + XC)(σ2 − YT )(σ2 + YC)(σ3 − ZT )(σ3 + ZC)(σ4 − R)

× (σ4 + R)(σ5 − S)(σ5 + S)(σ6 − T )(σ6 + T ) ≤ 0 (3.17)
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Disregarding terms of higher than the second order, an approximate criterion for
maximum stress is obtained in a quadratic form, for which the nonzero components
of the strength-surface tensors are as follows

F1 = 1

XT
− 1

Xc
, F2 = 1

YT
− 1

Yc
, F3 = 1

ZT
− 1

Zc
, F11 = 1

XT Xc
,

F22 = 1

YT Yc
F33 = 1

ZT Zc
, F44 = 1

R2
, F55 = 1

S2
, F66 = 1

T 2
, F12 = − F1F2

2
,

F13 = − F1F3

2
, F23 = − F2F3

2
(3.18)

All other strength constants are equal to zero.
For a transversely isotropic material with a 2–3 plane of isotropy, taking into

account the data of (Kollar and Springer 2003), the following is true

F1 = 1

XT
− 1

Xc
, F2 = F3 = 1

YT
− 1

Yc
, F11 = 1

XT Xc
, F22 = F33 = 1

YT Yc

F55 = F66 = 1

T 2
, F12 = F13 = − F1F2

2
, F23 = − F2

2

2
(3.19)

3.3.3 Maximum Principal Strain Criterion

For the maximum principal strain criterion, it is assumed that failure occurs when
any of the following conditions is not met (Reddy and Pandey 1987)

− XεC ≤ ε1 ≤ XεT ,−YεC ≤ ε2 ≤ YεT ,−ZεC ≤ ε3 ≤ ZεT , |ε4| ≤ Rε, |ε5| ≤ Sε,

|ε6| ≤ Tε (3.20)

where ε1, ε2, ε3 are tensile strains in directions 1, 2, and 3, respectively; ε4, ε5, ε6
are shear strains in the 2–3, 1–3, and 1–2 planes, respectively; XεT ,YεT , ZεT are
ultimate tensile strains in principal directions 1, 2, and 3, respectively; XεC ,YεC , ZεC

are ultimate compressive strains in principal directions 1, 2, and 3, respectively; and
R, S, T are ultimate shear strains in 2–3, 1–3, and 1–2 principal planes, respectively.

The criterion is expressed in a tensor-polynomial form as follows (Reddy and
Pandey 1987)

(ε1 − XT )(ε1 + XεC)(ε2 − YT )(ε2 + YεC )(ε3 − ZT )(ε3 + ZεC)

× (ε4 − Rε)(ε4 + Rε)(ε5 − S)(ε5 + S)(ε6 − T )(ε6 + T ) ≤ 0 (3.21)

For a transversely isotropic material with a 2–3 plane of isotropy, taking into
account the data of (Kollar and Springer 2003), the following equations are obtained
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(3.22)

In the above equations, Si j is the components of the compliance matrix.

3.3.4 Tsai–Hill Criterion (or Modified Hill Criterion) (Azzi
and Tsai 1965)

According to (Reddy and Pandey 1987), this criterion can be expressed as follows
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)2 ≤ 1 (3.23)
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In this criterion, stress components do not occur in the first degree; therefore,
F1, F2, and F3 are equal to zero. The values Xi , Yi , and Zi take on the values of
either XT ,YT , ZT or XC ,YC , ZC depending on the sign of normal stresses σ1, σ2, σ3,
respectively.

The strength-surface tensor components for this criterion are as follows

Fi = 0, F22 = 1

Y 2
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i

)
(3.24)

For a transversely isotropic material with a 2–3 plane of isotropy, taking into
account the data of (Kollar and Springer 2003), the following is true

Fi = 0, F11 = 1

X2
i

, F22 = F33 = 1

Y 2
i

, F66 = 1
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,
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2

(
1

X2
i

)
, F23 = −1

2

(
2

Y 2
i

− 1

X2
i

)
(3.25)

Many works have been devoted to the analysis of phenomenological criteria. For
instance, it is noted in (Lepikhin and Romashchenko 2013) that, among the most
widely used criteria, the Tsai–Wu criterion and the generalized von Mises criterion
are the most accurate and general, while the generalized vonMises criterion does not
require complex experiments to be instantiated. Also, basing on the analysis of the
applicability of various phenomenological failure criteria for modeling the failure
of multilayer composites, the conclusion is made that the same criterion can be the
most accurate in some cases and produce low accuracy results in other cases.

3.4 Estimation of Strength and Modal Analysis
of a Standard Structure of a Space-Use Honeycomb
Panel

A standard honeycomb panel structure (Fig. 3.2) with known topological arrange-
ments of aluminum cells, and of upper and lower composite skins, will serve here as
the simulation model example.

To verify the data obtained from numerical experiments (Maslei et al. 2018; Ruba-
shevskyi and Shukayev 2019), three types of finite element models were developed
using theAPDLANSYSv12.1 software package (ANSYSStructuralAnalysisGuide
ANSYS Release 12.1 xxxx), which is designed to determine the structural dynamics
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Fig. 3.2 Simulation model
of a honeycomb panel
showing the arrangement of
kinematic supports (1)

Table 3.1 Calculated values of the effective elastic constants of the honeycomb panel on the basis
of the Cartesian coordinates shown in Fig. 3.2

Ex ,GPa Ey ,GPa Ez,GPa Gxy,GPa Gyz,GPa Gzx ,GPa μxy μyz μzx

1 1 462 1e–5 59.65 87.86 0.49 0.001 0.001

and assess the structural strength of a three-layer honeycomb panel. Each finite
element model type represented a different approach to displaying the elastic and
mass properties of the honeycomb core material with isotropic properties and the
multilayer anisotropic carbon fiber skins rigidly connected to the upper and lower
surfaces of the cells.

The basic model of the honeycomb panel was designed considering a just identifi-
cation of the geometric structure of the honeycomb core with diamond-shaped 6 mm
edged cells and 0.8 mm thick composite skins with a [0°/90°/ ±45°] carbon fiber
layup. The refined model of the honeycomb panel preserved the geometric structure
of the honeycomb core, but with a 12 mm cell edge of equivalent stiffness. In order
to design the through-thickness layup schedule of the upper and lower skins with
CFRP and to reproduce the cell topology of the honeycomb structure in the basic
and refined models, the SHELL181 multilayer plate finite element (FE) was used.

The equivalent model of a honeycomb panel was simulated by means of replacing
the honeycomb core structure with solid orthotropic material with effective elastic
properties. These properties were determined by numerical experiments, which
involved simple loading of the model with axial and transverse unit forces under
compression and shear deformations (Table 3.1). The procedure of discretization of
the honeycomb core was performed using SOLID185 FEs. SHELL181 FEs were
used to approximate the reinforced fiber material with known elastic properties,
which constituted the upper and lower skins of the honeycomb panel. The joining of
FEs of different types in the discrete model of the honeycomb panel was done using
the “node to node” scheme. In the discrete models corresponding to each of the three
design schemes of the honeycomb panel (basic, refined and equivalent), there were
29,880/7585/29880 nodes and 47,056/11760/17454 FEs, respectively.

When modeling the deformation of honeycomb structures and the equivalent
elastic layer of a three-layer honeycomb panel with an upper and lower skin under
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Fig. 3.3 Strain of the basic (a), refined (b), and equivalent (c) models of the honeycomb panel
under a self-weight load

Fig. 3.4 Distribution of von Mises equivalent stresses for the core parts of discrete FE models
under a self-weight load: basic (a), refined (b), and equivalent (c). The numerical values represent
the maximum von Mises equivalent stresses

self-weight, the calculation results for different FE approximations correlated within
a reasonable margin (Fig. 3.3). In Fig. 3.4, the distribution of von Mises equivalent
stresses is shown for the core part of the honeycomb panel.

As compared to the basic model, the stress calculation error for the refined model
was 12%. With regard to the equivalent model, a direct comparison of its stress
distribution to those of the basic and refined models (Fig. 3.3 a, b) is not appropriate,
the more so since the equivalent model does not provide for determining the adhesive
bond strength of the honeycomb core to the composite plates.

A comparison of the convergence and accuracy of the results obtained when
choosing adequate finite element approximations of the honeycomb panel model was
also made by means of evaluating the calculations of the first 10 eigenfrequencies
andmode shapes. The error in calculating the eigenfrequencies for the three dynamic
models of the honeycomb panel, with each of them employing different algorithms
for calculating the elastic andmass properties of the conjugate elements of the panel’s
structure, ranged from 0.8 to 8% (Fig. 3.5). This finding allows for the conclusion that
in the design calculations of such structures, the dynamic model of the honeycomb
panel that includes the replacement of its structures with solid orthotropic material
with effective properties is sufficient to make design and technological decisions.

To carry out a preliminary strength assessment of the honeycomb panel under the
action of deterministic and stochastic loads, equivalent stresses σe were determined
by vonMises criterion. The σe stresses were obtained as the sum of the static σsp,static

and dynamic σsp,ry values of von Mises stresses



52 M. Kryshchuk et al.

Fig. 3.5 Modal analysis. The fifth form of natural oscillations for the basic (a), refined (b),
equivalent, and (c) discrete FE models and their respective frequencies: 2405/2397/2408 Hz

σe = σsp,static + 3σsp,ry (3.26)

The following strength condition was used

σe < [σ ] = min
(
σy/ηy, σu/ηu

)
(3.27)

where [σ ] are allowable stresses equal to the smaller of the values determined by
offset yield strength σy or by ultimate tensile strength σu at safety factors ηy and ηu .

Using the abovemethods of mathematical modeling, other examples of numerical
calculations of mechanical properties and strength assessment were carried out for
composite honeycomb panels in space- and civilian-use structures under various
loads. Because of these calculations (Kryshchuk et al. 2019), maximum deflection
values were determined for the honeycomb panel under thermomechanical loading
in low earth orbits ranging from 200 to 400 km.

3.5 Comparative Analysis of Strength Assessment Methods
for Layered Composites

The comparative analysis of strength assessment methods for layered composites
(Soden et al. 2002; Rubashevskyi and Shukayev 2019; Hinton et al. 2004) was
carried out using 0.125 mm thick 8 ply AS4/3501–6 carbon/epoxy laminate with a
[90°/45°/–45°/0°/0°/–45°/45°/90°] layup schedule under uniaxial and biaxial stress-
state conditions. For the analysis, the analytical and numerical methodswere applied.

Applying the analytical model of the mechanical properties degradation of the
composite layer, which was proposed in Kucher and Zarazovskii 2009) , and building
on the assumptionsmade in (Maslei andRudakov2019), failure stress assessmentwas
carried out for CFRP under complex stress-state conditions using elastic constants,
whose definition is provided in paragraph 2 of the present article.

To determine the stress tensor components of the composite, the following
relations were applied
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{ 〈σi 〉 = λi j 〈εi 〉
〈εi 〉 = Ai j 〈σi 〉 (3.28)

where 〈σi 〉 is through-thickness averaged stresses of the composite, λi j is the compo-
nents of effective stiffness properties, Ai j is the components of effective compliance
properties, and 〈εi 〉 is through-thickness averaged strains of the composite.

The main principles of the analytical model for assessing the failure stresses of a
composite plate are based on the maximum stress criterion for an orthotropic body
under biaxial stress-state conditions. It is assumed that failure begins when the stress
in one of the layers reaches critical value, under which value at least one of the
following conditions is not satisfied

σ̃−1 < σ1 < σ̃+1; σ̃−2 < σ2 < σ̃+2;−σ̃12 < σ12 < σ̃12 (3.29)

where σ̃12 is the ultimate shear strength of the layer in the reinforcement plane;
σ̃−1 and σ̃+1 are the ultimate compressive and tensile strengths in the reinforcement
direction, respectively; σ̃−2 and σ̃+2 are the ultimate compressive and tensile strengths
in the transversal direction, respectively. It is considered that the layered composite
loses its load bearing capacity once all layers have failed.

Using the numerical simulation method, tubular specimens were modeled in the
ANSYSWorkbench software environment in accordancewith the experiment (Soden
et al. 2002), the required CFRP properties were set, and, with the application of the
ACP (Pre) and ACP (Post) modules (which are specifically designed for composite
calculations) and the maximum stress criterion, strength assessment was performed.

A comparison of errors for both approaches to solving this problem is shown in
Fig. 3.6. The problem area for both approaches, namely C = −5 . . . 0, is clearly

Fig. 3.6 Comparison of calculated and experimental data. The error between the experiment and
calculation is plotted on the vertical axis as a percentage, while the ratio (C) between the highest and
lowest stress values in composites under biaxial stress-state conditions is plotted on the horizontal
axis
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visible on the graph; outside this area, errors take on either nearly identical or
opposing values.

Based on the above results, it can be concluded that the degradation model for the
mechanical properties of a composite layer produces good results under biaxial stress-
state conditions with a positive C. The accuracy of the analytical method (for which
the maximum error does not exceed 12%) is close to that of the numerical method,
which is based on the algorithm for by-layer calculation of elastic properties. It must
be noted here that for the application of the analytical model, only the mechanical
characteristics of the monolayer components (i.e., fiber and matrix) are required,
while the numerical method requires the specification of mechanical properties of
the monolayer as a whole.

It was discovered that the application of the degradation model for the mechanical
properties of a composite layer to assess strength under biaxial stress-state conditions
with a negative C may lead to a significant error (up to 45%). Therefore, in order to
make it possible for the model to be applied under such conditions, it needs to be
further improved.

As a result of this study, the efficiency of the application of ACP (Pre) and ACP
(Post) modules in the ANSYS Workbench software environment for assessing the
limit state of a layered composite under uniaxial and biaxial stress-state conditions
was confirmed for all modes of loading (the maximum error does not exceed 13%).

3.6 Conclusions

1. The research findings showed that the combined use of finite element models
and analytical approaches yields good result in determining the effective elastic
properties and assessing the stress–strain state of composite structures.

2. It was demonstrated that, in design calculations, a dynamic model of the honey-
comb panel, which includes the replacement of its structures with a solid
orthotropic material with effective properties, is sufficient to make design and
technological decisions.

3. For the solutionof strength problems in composite structures, the existing analyt-
ical approaches require improvement or a setting of reasonable limits to their
application on a case-by-case basis.

References

“ANSYS Structural Analysis Guide ANSYS Release 12.1.” available at: www.ansys.com/
Alfutov, N.A., Zinoviev, P.A., Popov, B.G.: Raschet mnogosloynuh plastin i obolochek iz
kompozicionnuh materialov. Mashinostroenie, Moscow (1984)

Altenbach, H., Altenbach, J., Kissing, W.: Mechanics of Composite Structural Elements, 2nd edn.
Springer Nature Singapore Pte Ltd (2018)

http://www.ansys.com/


3 Modeling of Mechanical Properties of Composite Materials Under … 55

Azzi, V.D., Tsai, S.W.: Anisotropic strength of composites. Exp. Mech. 5(5), 283–288 (1965)
Benzeggagh, M.L., Khellil, K., Chotard, T.: Experimental determination of Tsai failure tensorial
terms for unidirectional composite materials. Compos. Sci. Technol. 55(2), 145–156 (1995)

Christensen, R.: Mechanics of Composite Materials. Wiley, New York (1980)
ECSS-E-HB-32–20. Part 1A. StructuralMaterials Handbook—Part 1: Overview andMaterial Prop-
erties and applications. (2011), available at: https://www.ecss.nl/wp-content/uploads/handbooks/
ecss-e-hb/ECSS-E-HB-32-20_Part1A.pdf

Evans, K.E., Zhang, W.C.: The determination of normal interaction term in the Tsai-Wu tensor
polynomial strength criterion. Compos. Sci. Technol. 30(4), 251–262 (1987)

Goldenblat, I.I., Kopnov, V.A.: Strength of glass-reinforced plastics in the complex stress state.
Mekhanica Polymerov (poly. Mech.) 1(2), 54–59 (1965)

Hinton, M.J., Kaddour, A.S., Soden, P.D. (eds.): Failure Criteria in Fibre-Reinforced Polymer
Composites: The Worldwide Failure Exercise. Elsevier, Amsterdam et al. (2004)

Khoroshun, L.P., Maslov, B.P.: Metody avtomatizirovanogo rascheta fiziko-mehanicheskih posto-
jannyh kompozicionnyh materialov. Naukova Dumka, Kiev (1980)

Kilchinsky, A.A.: On a model for determining the thermoelastic characteristics of materials
reinforced by fibers. Prikladnaya Mekhanika 1(12), 65–74 (1965)

Kollar, L.P., Springer, G.S.: Mechanics of Composite Structures. Cambridge University Press,
Cambridge (2003)

Kryshchuk, M.G., Maslei, V.M., Shukayev, S.M., Lavendels, J.: The dimensional stability assess-
ment of the composite honeycomb panel for the conditions of thermal and gravitational loading
in a Near-Earth Orbit. Mech. Adv. Technol. 86(2), 130–137 (2019)

Kucher, M.K., Zarazovskii, M.M.: Otsinca mitsnosti sharuvatych plastykiv iz vrachuvannjam
degradatsii mechanichnyh haracterystyk v protsesi deformuvannja (in Ukrainian, (Estimation of
Strength of Laminates of PlasticsWith Treatment ofDegradation ofMechanical Characteristics in
The Process of Deformation), No. 57, pp. 174–179. Visnyk NTUU «KPI» Mashynobuduvannya
(2009)

Lepikhin, P.P., Romashchenko, V.A.: Methods and findings of stress-strain state and strength anal-
yses of multilayer thick-walled anisotropic cylinders under dynamic loading (Review). Part 3.
Phenomenological strength criteria. Streng. Mater. 45(3), 271–283 (2013)

Manne, P.M., Henriksen, T.K.: Composites failure criteria for industrial applications. In: Proceed-
ings European Conference on Spacecraft Structures. Materials and Mechanical Testing, pp. 371–
376. Braunschweig. Germany, (ESA SP-428) (1998)

Maslei, V.N., Rudakov, K.N.: To definition of elasticity modules of plate from unidirectional
highmodules carbon fiber. Mech. Adv. Technol. 87(3), 7–15 (2019)

Maslei, V.N., Krishchuk, N.G., Tsybenko, A.S.: Analysis of harmonic vibration characteristics for
a composite honeycomb panel of the spacecraft scanner. Strength Mater. 50(4), 655–664 (2018)

Mises, R.V.: Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 582–592
(1913)

Paepegem, W.V., Degrieck, J.: Calculation of damage-dependent directional failure indices from
the Tsai-Wu Static failure criterion. Compos. Sci. Technol. 63(2), 305–310 (2003)

Reddy, J.N., Pandey, A.K.: A first-ply failure analysis of composite laminates. Comput. Struct.
25(3), 371–393 (1987)

Rubashevskyi, V.V., Shukayev, S.M.: Estimation of limit state for quasi-isotropic [90°/±45°/0°]s
AS4/3501-6 carbon/epoxy under uniaxial and biaxial loads. Mech. Adv. Technol. 86(2), 7–13
(2019)

Rubashevskyi, V.V., Shukayev, S.M.: Stress-Strain state of the honeycomb panel with carbon fiber
reinforced polymer facings under its own weight. In: Materials of the XX International Scien-
tific and Technical Conference “Progressive engineering, technology and engineering education.
Kyiv-Kherson, pp. 11–14 (2019)

https://www.ecss.nl/wp-content/uploads/handbooks/ecss-e-hb/ECSS-E-HB-32-20_Part1A.pdf


56 M. Kryshchuk et al.

Rubashevskyi, V.V., Zarazovskii, M.M., Shukayev, S.M.: Analysis of methods for determination of
the constants of elasticity unidirectional layer composite materials. Mech. Adv. Technol. 80(2),
107–112 (2017)

Sleight, D.W.: Progressive Failure Analysis Methodology for Laminated Composite Structures.
NASA/TR-1999–209107 (1999)

Soden, P.D., Hinton, M.J., Kaddour, A.S.: Biaxial test results for strength and deformation of a
range of E-glass and carbon fiber reinforced composite laminates: failure exercise benchmark
data. Compos. Sci. Technol. 62(12–13), 1489–1514 (2002)

Tsai, S.W., Hahn, H.T.: Failure analysis of composite materials inelastic behavior of composite
materials. ASME AMD 13, 73–96 (1975)

Tsai, S.W., Hahn, H.T.: Introduction to Composite Materials. Lancaster, Technomic (1980)
Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater.
5(1), 58–80 (1971)

Vanin, G.:Mikromekhanika kompozicionnykhmaterialov (in Russ.,Micromechanics of Composite
Materials). Naukova Dumka, Kiev (1985)

Wu, E.M.: Phenomenological Anisotropic Failure Criterion, Part 2 Composite Materials. In:
Sendeckyj, G.P. (ed) Mechanics of Composite Materials, pp. 353–431. Academic Press (1974)

Yang,W.H.: AGeneralized vonMises criterion for yield and fracture. Trans. ASME. J. Appl. Mech.
47(2), 297–300 (1980)



Chapter 4
Nonlinear Dynamic Analysis of FGM
Sandwich Shallow Shells with Variable
Thickness of Layers

Lidiya Kurpa, Tetyana Shmatko, and Galina Timchenko

Abstract This paper considers the application of the R-functions method to a new
class of problems: the study of vibrations of sandwich FGM shallow shells with
variable thickness of layers and complex shape. The core is fabricated of FGM, and
the face sheets are made of metal. Mathematical formulation of the problem has
been done in the framework of the refined shear deformation theory of the first order.
To calculate the effective characteristics of the material, Voigt’s law was applied.
Analytical expressions have been obtained for coefficients depended on thickness.
These coefficients are to calculate the stress and moment resultants. Comparisons of
the obtained results with known ones for a special case (bi-layered object) are carried
out. Dynamic analysis is fulfilled for the shells and plates with parabolic thickness
of layers and different constituent materials of FGM. Effect of materials and layers
thickness on the natural frequencies and backbone curves of the shells is shown.

Keywords R-functions theory · Complex plan form · Timoshenko’s theory ·
FGM · Sandwich shallow shell · Free nonlinear vibrations · Variable thickness of
layers

4.1 Introduction

Sandwich plates and shells are widely employed inmany industries: aerospace, satel-
lite, industrial construction, medicine, internal combustion engines and others. The
manufacture of modern sandwich structures is often carried out from new advanced
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composite materials, called as functionally graded materials (FGM). It is connected
with the following reasons. These materials provide lightness and strength of the
construction and restrain a sharp change in the mechanical properties of the layers.
Therefore, they prevent stress concentration, destruction and delamination of layers.
Due to these reasons, the study of the static and dynamic behavior of FGM structures
draws an attention of many researchers since the issue of FGM structures calculation
is among the most important problems of modern mechanics. A huge number of
works devoted to this problem and, in particular, to vibration of the sandwich plates
and shells is known (Alijani and Amabili 2014; Swaminathan et al. 2015; Thai et al.
2014; Zenkour 2005; Bennoun et al. 2016; Li et al. 2008, Malekzaden and Ghaed-
sharaf 2014). New theory and models were developed (Thai et al. 2014; Bennoun
et al. 2016) to study a nonlinear vibration of FG sandwich plates and shells. Recently,
Birman and Kardomateas (2018) have been made a current analysis in research of
sandwich FGM structures. Thai and Kim (2015) made a comprehensive analysis of
different theories for studying FGM plates and shells. Authors analyze the theories
used widely in the modeling FGM plates and shells: the classical plate theory, first-
and higher-order shear deformation theories, simplified and mixed theories, which
are equivalent to single-layer theories. Thework ofThai et al. 2017 is devoted towide-
ranging review on the development of higher-order continuum models in predicting
the behavior of small-scale structures. In particular, the finite element solutions for
size-dependent analysis of beams and plates were also developed. Great interest for
manymodern engineering FGMsandwich structures leads to the development of new
theories (Arshid et al. 2020). For example, in Arshid et al. (2020), the vibrational
behavior of rectangular micro-scale sandwich plates resting on a visco-Pasternak
foundation is studied by a novel quasi-3D hyperbolic shear deformation theory.

It should be noted that number of papers devoted to research of the nonlinear
vibration of FGM sandwich shells with variable thickness is limited enough. Some
reviewer of theseworkswas presented in Tornabe et al. (2017). The authors employed
several higher-order shear deformation theories, defined by a unified formulation in
order to study FGM sandwich shell structures with variable thickness. The gener-
alized differential quadrature method is used as numerical tool. Due to developed
approach, the structural models can be considered as two-dimensional ones. It is one
of the advantages of the proposed method.

Awrejcewicz et al. (2013) analyze geometrically nonlinear vibrations of single-
layer shallow shells of variable thickness and complex shape using the R-functions
theory (Rvachev 1982) and variational methods (RFM). The mathematical formu-
lation of the problem is carried out within the framework of the classical theory.
A distinctive feature of the proposed approach was also an original construction of
approximate solutions to the nonlinear problem. Later in Awrejcewicz et al. (2015),
Kurpa and Shmatko (2014), this approach was developed for multilayer shallow
shells, provided that the layers had a variable thickness, but the total thickness was
constant. The mathematical formulation is based on the first-order shear deformation
theory of the shallow shells. These works have shown that this approach allows to
study the dynamic behavior of shallow shells with an arbitrary shape of their plans
and various types of boundary conditions.
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In this article, we consider the issue of geometrically nonlinear vibrations of the
FGM sandwich shallow shells, provided that the FGM core has a variable thickness.
Themethod proposed inAwrejcewicz et al. (2015, Kurpa and Shmatko (2014), Kurpa
et al. (2018), Awrejcewicz et al. 2018 is generalized to solve the problem under
consideration. Software has been developed to implement RFM for the problem.
Numerical results are presented for shallow shells with square and complex planform
for parabolic law of changing layers thickness. Effect of the different parameter
(gradient index, type of FGM, boundary conditions and others) on dynamic behavior
of the structures is shown.

4.2 Formulation Problem

Consider a three-layered shallow shell with variable thickness of layers if total thick-
ness is constant. Assume that face-sheet layers are made of metal and core is made
of functionally graded materials. The layers are symmetric relative to the middle
plane as it is shown in Fig. 4.1a and b. The functionally graded layer is made from a
mixture of two phases (metal and ceramics). The effective material properties of the
FGMs are calculated by power law (Voigt’s model). According to this model, elastic
modulus E, Poisson’s ratio ν and the density ρ of the composite are defined by the
following relations

E = (Ec − Em)Vc + Em, ν = (νc − νm)Vc + νEm, ρ = (ρc − ρm)Vc + ρm .

(4.1)

Here, Ec, νc, ρc are elastic modulus, Poisson’s ratio and the density of ceramics
relatively; Em, νm, ρm are corresponding characteristics ofmetal. Fraction of ceramic
Vc and metal phases Vm are related by formula
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Fig. 4.1 Material variation along the thickness of FGM plate
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Vc + Vm = 1. (4.2)

Take into account that thickness of FGM layers changes symmetrically relative
to the middle surface, let us present the expressions Vc for the given case:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vc = 0, z ∈ [− h
2 ,−h1(x, y)

]
,

Vc =
(
z+h1(x,y)
h1(x,y)

)p
, z ∈ [−h1(x, y), 0],

Vc =
(
h1(x,y)−z
h1(x,y)

)p
, z ∈ [0, h1(x, y)],

Vc = 0, z ∈ [
h1(x, y),

h
2

]
.

(4.3)

In formula (4.3), index p(0 ≤ p < ∞) denotes the volume fraction exponent
(gradient index), z is the distance between a current point and the shell mid-surface.
Note that if h1(x, y) = h/2, then we have so-called bi-layered object.

Solution of the problem is carried out within the first-order shear deformation
theory of shallow shells (FSDT).

According to this theory, the displacements components u1, u2, u3 at a point
(x, y, z) are expressed as functions of themiddle surface displacements u, v andw in
the Ox, Oy and Oz directions and the independent rotationsψx , ψy of the transverse
normal to middle surface about the Oy and Ox axes, respectively (Zenkour 2005,
Bennoun et al. 2016, Li et al. 2008, Malekzaden and Ghaedsharaf 2014):

u1 = u + zψx , u2 = v + zψy, u3 = w.

Strain components ε = {ε11; ε22; ε12}T, χ = {χ11;χ22;χ12}T and γ =
{
γyz; γxz

}T
, an arbitrary point of the shallow shell are:

ε =
⎧
⎨

⎩
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⎬
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2w
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χ11
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,

γ =
{

γyz

γxz

}

=
{

ψy + w,y − v
Ry

ψx + w,x − u
Rx

}

.

In-plane force resultant vector N = (N11, N22, N12)
T, bending and twisting

moments resultant vector M = (M11, M22, M12)
T and transverse shear force resul-

tant Q = (
Qx , Qy

)T
are calculated by integration along the Oz-axes and defined

as:

N = [A]{ε} + [B]{χ},
M = [B]{ε} + [D]{χ}, (4.5)

where
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[A] =
⎡

⎣
A11 A12 0
A12 A22 0
0 0 A33

⎤

⎦,

[B] =
⎡

⎣
B11 B12 0
B12 B22 0
0 0 B33

⎤

⎦,

[D] =
⎡

⎣
D11 D12 0
D12 D22 0
0 0 D33

⎤

⎦. (4.6)

Elements Ai j , Bi j , Di j of the square matrices A, B and D in relations (4.5, 4.6)
are calculated by formulas:

Ai j =
3∑

r=1

zr+1∫

zr

Q(r)
i j dz,

Bi j =
3∑

r=1

zr+1∫

zr

Q(r)
i j zdz,

Di j =
3∑

r=1

zr+1∫

zr

Q(r)
i j z

2dz, (4.7)

where z1 = −h/2, z2 = −h1(x, y), z3 = h1(x, y), z4 = h/2, r = 1, 2, 3
define a number of the layers. Values Q(r)

i j (i, j = 1, 2, 3) in formulas (4.7) are
determined by the following expressions:

Q(r)
11 = Q(r)

22 = E (r)

1 − (
ν(r)

)2 , Q(r)
12 = ν(r)E (r)

1 − (
ν(r)

)2 , Q(r)
66 = E (r)

2
(
1 + ν(r)

) . (4.8)

Transverse shear force resultants Qx , Qy are defined as:

Qx = K 2
s A33γxz, Qy = K 2

s A33γyz, (4.9)

where K 2
s denotes the shear correction factor. In this paper, it is taken by 5/6.

Further, we will consider materials with the same Poisson’s ratio for ceramics
and metal, i.e., νm = νc. Then, elements Ai j , Bi j , Di j of matrices (6) [A], [B], [C]
can be calculated in a direct way. Analytical expressions of these elements for shells
with variable thickness of layers are obtained and presented below

A11 = 1

1 − ν2

(

Emh + 2Ecm
h1(x, y)

p + 1

)

, B11 = 0,
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D11 = 1

1 − ν2

(
Em

12
h3 + 2Ecmh

3
1(x, y)

(
1

p + 1
− 2

p + 2
+ 1

p + 3

))

, (4.10)

where Ecm denotes the difference between Ec, Em , that is,

Ecm = Ec − Em .

Note that values

{A22, B22, D22} = {A11, B11, D11}, (4.11)

and values A12, A66,B12, B66,D12, D66 are defined as:

{A12, B12, D12} = v{A11, B11, D11},
{A66, B66, D66} = 1 − ν

2
{A11, B11, D11}. (4.12)

The governing differential motion equations for a free vibration of shear
deformable shallow shell can be presented as

∂N11

∂x
+ ∂N12

∂y
− Qx

Rx
= I0

∂2u

∂t2
+ I1

∂2ψx

∂t2
;

∂N22

∂y
+ ∂N12

∂x
− Qy

Ry
= I0

∂2v

∂t2
+ I1

∂2ψy

∂t2
;

∂Qx

∂x
+ ∂Qy

∂y
+ N11

Rx
+ N22

Ry
+ N11

∂2w

∂x2

+ 2N12
∂2w

∂x∂y
+ N22

∂2w

∂y2
= I0

∂2w

∂t2
; (4.13)

∂M11

∂x
+ ∂M12

∂y
− Qx = I2

∂2ψx

∂t2
+ I1

∂2u

∂t2
;

∂M22

∂y
+ ∂M12

∂x
− Qy = I2

∂2ψy

∂t2
+ I1

∂2v

∂t2
,

where

(I0, I1, I2) =
3∑

r=1

zr+1∫

zr

(ρ)r
(
1, z, z2

)
dz, (4.14)

here (ρ)r is a mass density of the rth layer.
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Analytical expressions of coefficients I0, I1, I2 for shells provided that νm = νc
are presented below.

.

I0 = ρmh + 2ρcm
h1(x, y)

p + 1
, ρcm = ρc − ρm,

I1 = 0, I2 = ρm

12
h3 + 2ρcmh

3
1(x, y)

(
1

p + 1
− 2

p + 2
+ 1

p + 3

)

. (4.15)

4.3 Solution Method—Free Vibration Problem

To solve the formulated problem, we apply a variational method combined with the
R-functions theory (RFM methods). Let us indicate the main steps of developed
approach. First, we solve the linear vibration problem, applying Ritz’s method in
order to find eigenfunctions. Solution of the linear vibration problem for laminated
shells by RFM is described in works (Awrejcewicz et al. 2013, 2015, 2018; Rvachev
1982; Kurpa and Shmatko 2014; Kurpa et al. 2018, 2007). The main difference of
the considered problem is dependence of the elements Ai j , Bi j , Di j on matrices (6)
[A], [B], [C] of variables x and y. But due to an application of Ritz’s method, the
variational formulation of the linear problem is formally the same and is reduced to
finding the minimum of the total energy functional

J = Us − T, (4.16)

here, strain energy Us can be written as

Us = 1

2

∫

	

NT
s εsd	, (4.17)

where NT
s = {N , M, γ }, εTs = {ε, χ, γ }.

Kinetic energy T in (16) is defined as

T = 1

2

∫

	

I0
(
u̇2 + v̇2 + ẇ2

) + 2I1
(
u̇ψ̇x + v̇ψ̇y

)
I2

(
ψ̇2

x + ψ̇2
y

)
d	,

I = U
(
u, v, w,ψx , ψy

) − λ2V
(
u, v, w,ψx , ψy

)
, (4.18)

where λ is a vibration frequency.
Now the expressions for U and V in Eq. (4.16) are defined by relations:
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U = 1

2

¨

	

NT
s εsdxdy, (4.19)

V = 1

2

¨

	

I0
(
u2 + v2 + w2

)

+ 2I1
(
uψx + vψy

) + I2
(
ψ2

x + ψ2
y

)
dxdy. (4.20)

According to Ritz’ approach, unknown functions are presented as

u =
N1∑

i=1

aiui , v =
N2∑

i=N1+1

aivi , w =
N3∑

i=N2+1

aiui ,

ψx =
N4∑

i=N3+1

aiψxi , ψy =
N5∑

i=N4+1

aiψyi . (4.21)

Here, {ui }, {vi }, {wi }, {ψxi },
{
ψyi

}
are admissible functions that in case of a

complex shape can be constructed by the R-functions theory (Rvachev 1982).
Coefficients of this expansion {ai }, i = 1, N5 is found from Ritz’s system

∂ I

∂ai
= 0, i = 1, N5.

To solve the nonlinear problem, the approach proposed by authors earlier and
described in detail in (Awrejcewicz et al. 2015, 2018; Kurpa and Shmatko 2014;
Kurpa et al. 2018) is used. Note that the obtained nonlinear differential equations of
the second order are solved by Runge–Kutta method of the 7–8-th order.

4.4 Numerical Results

To verify an accuracy of the present results obtained by the proposed approach, we
consider the solution of several test problems.

Problem 1 Simply supported square FG bi-layered plates are considered. The
following material properties for metal and ceramic constituents are used (Li et al.
2008, Malekzaden and Ghaedsharaf 2014):

Em = 70 GPa, Ec = 380 GPa, ρm = 2707 kg/m3,

ρc = 3800 kg/m3, νm = 0.3, νc = 0.3.
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Table 4.1 Comparison of non-dimensional natural frequency of square FGM plate

h/a Method p = 0 p = 0.5 p = 1 p = 5 p = 10

0.01 Present 1.8885 1.4827 1.2718 0.9658 0.9506

Li et al. (2008) 1.888.3 1.4824 1.2716 0.9656 0.9504

Malekzaden and Ghaedsharaf (2014) 1.8882 1.4826 1.2716 0.9657 0.9505

0.1 Present 1.8244 1.4416 1.2403 0.9425 0.9251

Li et al. (2008) 1.8268 1.4461 1.2447 0.9448 0.9273

Malekzaden and Ghaedsharaf (2014 1.8268 1.4462 1.2447 0.9443 0.9258

0.2 Present 1.6697 1.3395 1.1606 0.8835 0.8613

Li et al. (2008 1.6771 1.3536 1.1749 1.8909 0.8637

Malekzaden and Ghaedsharaf (2014) 1.6772 1,3536 1.1748 0.8894 0.8683

Comparison of non-dimensional natural frequency parameter Λ = a2ω/h for
different thickness-to-length ratio h/a, and material graded index (p) is shown in
Table 4.1.

Table 4.1 shows that results presented in Li et al. (2008), Malekzaden and
Ghaedsharaf (2014) are in a good agreement with the obtained results.

Problem 2 Consider a three layer rectangular plate with layers of the variable
thickness (Fig. 4.1). Layers arrangement is symmetric about the middle plane. The
thickness of the middle layer (core) is varied.

h1(x) = −
(

t1 + 4

a2
(t2 − t1)x

2

)

, h2(x) = −h1(x). (4.22)

If t2 > t1, then middle layer has a form, as shown in Fig. 4.1a. If t2 < t1, then
form of the core is presented in Fig. 4.1b. If t1 = t2, then we have three-layered plate
with layers of constant thickness. But if t1 = t2 = h

2 types, then plate is bi-layered.
There are studied all cases in the paper. Three of FGMs for a core are considered:
M1 is a mixture of Al/ZrO2; M2 is a mixture of Si3N4/SUS304; M3 is a mixture of
Al2O3/Al.

Mechanical properties of the constituent materials of the mixtures are taken from
Alijani and Amabili (2014), Swaminathan et al. (2015) and presented in Table 4.2.

where E0 = 1 GPa, ρ0 = 1 kg/m3.

Table 4.2 Mechanical
properties of the constituent
materials

Material E ν ρ

Al 70E0 0.3 2707ρ0

Al2O3 389E0 0.3 3800ρ0

Si3N4 322.27E0 0.3 2370ρ0

SUS304 207.78E0 0.3 8166ρ0

ZrO2 200E0 0.3 5700ρ0
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Suppose that rectangular plate is clamped or simply supported along a whole
border. Introduce the geometrical parameters α = 2t1

h ; β = 2t2
h . Let these parame-

ters and ratio a
b be varied, but the total thickness is constant and is equal to

h
2a = 0.1.

Two types of FGMs are taken Al2O3/Al and Si3N4/SUS304.
Non-dimensional parameters of the natural frequency are defined as:

Λ = a2ω

√
ρc

Ec
/h. (4.23)

Table 4.3 shows the results of non-dimensional fundamental frequency parameter
for clamped rectangular sandwich plates with FGM core of the variable thickness.

Figure 4.2 depicts the fundamental frequencies parameters for different values of

Table 4.3 Effect of gradient index p on non-dimensional natural frequency of clamped rectangular
plates (α = 0.4, β = 0.8, Fig. 4.1a)

p Al2O3/Al Si3N4/SUS304
b
a = 1 b

a = 1.5 b
a = 2 b

a = 1 b
a = 1.5 b

a = 2

0 9.3482 8,2697 7.9771 6.7077 5.5478 5.2322

0.5 7,7944 6.735 6.4543 5.6455 4.5442 4.2421

1 6.9428 5.8783 5.5904 5.1821 4.1033 3.8057

2 6.0741 4.9744 4.6754 4.7819 3.7321 3.4291

4 5.4466 4.2989 3.9832 4.5269 3.4871 3.1970

5 5.3197 4.1599 3.8396 4.4744 3.4404 3.1316

7 5.1903 4.0183 3.6931 4.4154 3.3893 3.1025

10 5,1132 3.9353 3.6075 4.3723 3.3523 3.0683

Fig. 4.2 Effect of gradient
index p on non-dimensional
natural frequency (23) for
simply supported rectangular
plates (α = 0.4, β = 0.8)
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Fig. 4.3 Effect of parameters α = 2t1
h , β = 1 (Fig. 4.3a) and parameters β = 2t2

h α = 1 (Fig. 4.3b)
on non-dimensional natural frequency of rectangular plates (FGM is Si3N4/SUS304)

gradient index p of two types of FGM simply supported sandwich rectangular plates
for values α = 0.4, β = 0.8 and different ratios a/b.

Effect of parameters α and β on behavior of the non-dimensional fundamental
frequencies is shown in Fig. 4.3.

Note that for different ratio b
a the frequencies are changing slightly, when the

parameters α and β vary from 0.2 to 1.

Problem 3 Vibration of the shallow shells with a complex planform. Let us
consider the FGM sandwich shallow shells with a complex planform are shown in
Fig. 4.4. Assume that thickness of layers is varied by parabolic law according to
Eq. (4.22).

To construct a system of admissible functions, let us use the R-functions theory.
Equation of the border is ω(x, y) = 0. For the given domain function, ω(x, y) can
be constructed as:

ω(x, y) = ( f1 ∧0 f2) ∧0 ( f3 ∨0 f4) ∧0 ( f5 ∨0 f6),

f1 = (
a2 − x2

)
/2a, f2 = (

b2 − y2
)
/2b,

f3 = (b1 − y) ≥ 0; f4 = (a1 − x) ≥ 0;
f5 = (b2 − y) ≥ 0; f6 = (a2 − x) ≥ 0.

The signs ∧0 and ∨0 define the R-operators: R-conjunction and R-disjunction
relatively (Rvachev 1982). So, we have

f1 ∧0 f2 = f1 + f2 −
√

f 21 + f 22 ,
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a
a2

–a

b2

–b 

b 

b1

y 

 x 
a1

O 

Fig. 4.4 Sandwich shallow shell and its planform

f3 ∨0 f4 = f1 + f2 +
√

f 21 + f 22 .

For clamped shells, the system of admissible functions can be chosen in the
following form:

uk = ω(x, y)φ(u)
k , k = 1, N1,

vk = ω(x, y)φ(v)
k , k = N1 + 1, N2,

wk = ω(x, y)φ(w)
k , k = N2 + 1, N3,

ψxk = ω(x, y)φ(ψx )

k , k = N3 + 1, N4,

ψyk = ω(x, y)φ(ψy)
k , k = N4 + 1, N5,

where φ
(r)
k , r = u, v, w,ψx , ψy are terms of some complete system functions

Φi , i = 1, 2, 3, 4, 5. System of power polynomials is taken for the given problem.
Geometrical parameters for shell are put as:

h

2a
= 0.1; b

a
= 1,

a1
2a

= 0.3; b1
2a

= 0.25; a2
2a

= −0.3;
b2
2a

= −0.25; k1 = 2a

Rx
= 0.1; k2 = 2a

Ry
= 0.1.

Parameters α = 2t1
h , β = 2t2

h and gradient index p vary. Non-dimensional
parameters of the natural frequency are defined as:
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Λ = (2a)2ω

√
ρc

Ec
/h. (4.24)

Table 4.4 shows the influence of the gradient index on linear frequencies of the
clamped plates and spherical shells for parabolic law (see Fig. 4.1a).

All natural frequencies �i (i = 1, 2, 3, 4) are decreasing when gradient index p
increases. The difference between frequencies of the plate and shallow spherical shell
is not essential. It may be explained by boundary conditions and small curvatures of
the shell.

Effect of the gradient index on the first four natural frequencies of the clamped
spherical shells for different FGMs (M1-Al/ZrO2 andM2-Si3N4/SUS304) is shown
in Fig. 4.5. Parabolic law of thickness variation corresponds to Fig. 4.1b, parameters

Table 4.4 Effect of gradient index p on non-dimensional natural frequencies (24) of clamped plate

and spherical shell with complex shape
(
α = 2t1

h = 0.4, β = 2t2
h = 0.8

)
; FGM is Si3N4 /SUS304

p Plate Spherical shell (k1 = k2 = 0.1)

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

0 7.247 12.166 13.372 15.336 7.299 12.183 13.385 15.347

0.5 6.169 10.615 11.683 12.892 6.218 10.630 11.695 12.902

1 5.704 9.886 10.827 11.843 5.751 9.900 10.839 11.852

2 5.303 9.201 10.046 10.961 5.3477 9.215 10.057 10.970

4 5.043 8.719 9.492 10.394 5.086 8.732 9.503 10.402

5 4.988 8.612 9.365 10.270 5.031 8.625 9.576 10.279

7 4.926 8.487 9.212 10.125 4.967 8.500 9.223 10.134

10 4.880 8.393 9.092 10.014 4.920 8.4055 9.102 10.022

Fig. 4.5 Effect of gradient
index p on non-dimensional
natural frequencies (24) for
clamped spherical shell with
complex shape made of
different material FGMs(
α = 2t1

h = 0.8, β = 2t2
h = 0.4

)
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α = 2t1
h = 0.8;β = 2t2

h = 0.4.
As follows from Fig. 4.5, frequencies for core made of Al/ZrO2 (M1) are

decreasing, and they are increasing for FGM Si3N4/SUS304 (M2) if gradient index
p increases.

Table 4.5 and Fig. 4.6 show an influence of boundary conditions on the natural
frequencies while the gradient index is increasing. Two types of the mixed boundary
conditions are considered: clamped simply supported and clamped-free. It is assumed
that sides y = ±b are simply supported or free and remain part of the boundary is
clamped. Values parameters α, β are taken the following: α = 0.4, β = 0.8, Fig.
4.1a, FGMs is Al/ZrO2.

Table 4.5 Effect of gradient index p on non-dimensional natural frequency (24) of spherical shell
(Fig. 4.4) and different boundary condition for FGMs Al/ZrO2 (M1)

p Clamped-simply supported Clamped-free

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

0 10.904 16.204 21.970 23.837 10.409 12.366 14.831 20.895

0.5 9.903 15.205 20.516 22.358 9.413 11.308 13.702 19.557

1 9.347 14.646 19.702 21.452 8.851 10.698 13.069 18.744

2 8.806 14.090 18.919 20.439 8.292 10.075 12.446 17.899

4 8.483 13.746 18.454 19.615 7.943 9.676 12.076 17.386

5 8.437 13.726 18.378 19.426 7.890 9.616 12.026 17.320

7 8.405 13.716 18.305 19.213 7.851 9.573 11.999 17.290

10 8.404 13.739 18.249 19.069 7.844 9.569 12.007 17.310

Fig. 4.6 Effect of gradient
index p on non-dimensional
natural frequency parameter
(24) of spherical shell
(Fig. 4.4) with different
boundary condition
(α = 2t1

h = 0.4;
β = 2t2

h = 0.8; Fig. 4.1a)
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Comparison analysis of the behavior of the natural frequency for different FGMs
and mixed boundary conditions for values of parameters α = 2t1

h = 0.8, β = 2t2
h =

0.4 (Fig. 4.1b) is presented in Table 4.6 and Fig. 4.7. It is observed that frequencies
are essentially greater for material Al/ZrO2 than for Si3N4 /SUS304.

Nonlinear behavior of the sandwich FGM spherical clamped shallow shells with
planformdrawn in Fig. 4.4 for different FGmaterialswas studied for two values of the
parameter α, β α = (0.4; 0.8);β = (0.8; 0.4) and two values of the gradient index
p = (0.5;2). The remain geometric parameters are the same with linear problem.

In Fig. 4.8, backbone curves are presented for case α = 0.4;β = 0.8 that corre-
sponds to Fig. 4.1a. The obtained results for ratio of nonlinear frequency to linear
frequency for caseα = 0.8;β = 0.4 corresponding to Fig. 4.1b are shown in Fig. 4.9.

Table 4.6 Effect of gradient index p on non-dimensional natural frequency parameter (24) of
spherical shell with complex shape and different boundary condition made of different materials;
FGM is Si3N4/SUS304 (M2) and Al/ZrO2 (M1)

Clamped Clamped-simply supported Clamped-free

p Si3N4/SUS304 Al/ZrO2 Si3N4/SUS304 Al/ZrO2 Si3N4/SUS304 Al/ZrO2

λ1 λ1 λ1 λ1 λ1 λ1

0 7.299 11.551 7.965 10.904 6.861 10.409

0.5 6.218 10.603 6.830 9.903 5.763 9.413

1 5.751 10.08 9 6.339 9.347 5.283 8.851

2 5.3477 9.605 5.909 8.806 4.865 8.292

4 5.086 9.3367 5.626 8.483 4.595 7.943

5 5.031 9.303 5.566 8.437 4.539 7.890

7 4.967 9.288 5.496 8.405 4.476 7.851

10 4.920 9.297 5.443 8.404 4.430 7.844

Fig. 4.7 Effect of gradient
index p on non-dimensional
natural frequency parameter
(24) for spherical shell with
complex shape and different
boundary condition made of
different FGM materials(
α = 2t1

h = 0.8; β = 2t2
h = 0.4

)
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Fig. 4.8 Effect of gradient
index and FGMs on
nonlinear to linear frequency
ratio of clamped spherical
shells with variable thickness
of layers defined by law (22)
for values α = 0.4; β = 0.8
and planform is shown in
Fig. 4.4

Fig. 4.9 Effect of gradient index p and FGMs on nonlinear to linear frequency ratio of clamped
spherical shells with variable thickness of layers defined by law (22) for values α = 0.4; β = 0.8
and planform is shown in Fig. 4.4
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From these plots, it follows that effect on backbone curves is more essential for
layers arrangement corresponding to Fig. 4.1a. The ratio ωN

ωL
for FGM Al/ZrO2

greater than for FGM Si3N4 /SUS304 in both the cases.

4.5 Conclusions

The linear and geometrically nonlinear free vibration of functionally graded shallow
shells of sandwich typewith a complex planform is investigated using theR-functions
theory and variationalmethods. The considered shell consists of the layers of variable
thickness that are symmetrical about the middle surface, but the total thickness is
constant. The effective material properties are calculated according to the power law.
Analytical expressions have been obtained for dependent on thickness coefficients
needed for calculation of the stress and moment resultants.

The developed algorithm and corresponding software have been applied to plate
and shallow shells with rectangular and complex planforms with different boundary
conditions and various FGMs. As example, the parabolic law of the thickness change
of layers has been considered. Effect of different parameters (form of the parabola,
type of FGMs, boundary conditions, value of gradient index) on natural frequencies
and response curves is shown.
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Chapter 5
Residual Stresses in Plastic Deformed
Composites

Gennadiy Lvov and Olga Kostromitskaya

Abstract In this paper, we study the residual stresses at the microlevel in a unidi-
rectional reinforced composite that arises after rate-independent plastic deformation.
Micromechanical analysis was performed on a representative volume by the finite
element method for the case of a plane stress state. A series of basic numerical
experiments were carried out, which made it possible to determine the distribution
of residual stresses and plastic strains at different loading paths. The results of these
experiments were used to identify the parameters of the developed plastic deforma-
tion model of the composite. As governing relations for an equivalent orthotropic
material, a modification of the Chaboche theory is used. Translational hardening is
described by a plasticity function including parameters of residual micro stresses. In
known plasticity models, translational hardening is reflected by introducing parame-
ters depending on the accumulated plastic deformation. Sometimes they are formally
interpreted as micro stresses. In contrast to such models, in the proposed approach,
the residual micro stresses have real physical meaning. They are done by analyzing
the stress state of a representative volume. The advantage of this approach is the
possibility of theoretical determination of all model parameters, based on the known
properties of thematrix and reinforcing components.Numerical resultswere obtained
for unidirectional reinforced boron-aluminum composite.
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5.1 Introduction

Residual stresses at the micro and macro levels of composite can have a significant
effect on the accumulation of continuous damage and the initiation of macro cracks.
They can also cause delamination and contact failure between the matrix and the
fibers. Thus it is important to account for residual stresses when designing composite
structures.

The processing induced thermal residual stresses in metal-ceramic and metal
matrix composites are a result from the difference in the coefficients of thermal
expansion of the constituent materials. Residual stresses in cured epoxy composites
mostly arise due to chemical shrinkage of resin.

Thermal residual stresses. Thermal stresses induced during the cooling of Cr–
Al2O3 metal-ceramic composites are experimentally investigated and modeled
numerically in Węglewski et al. (2019); Węglewski et al. (2014). Microscopic
residual stresses remaining in the composites after cooling are mainly caused by the
difference in thermoelastic properties of alumina and chromium. Thermal residual
stresses were measured by three experimental methods: photoluminescence piezo
spectroscopy, X-ray diffraction, and neutron diffraction. Identical samples were used
to measure residual stresses using three methods. The gauge areas were chosen so
that the residual stress results obtained by different methods could be compared.
When constructing a geometric model of representative volume contours and posi-
tions in the ceramic phase are obtained from the µCT images. Then this model
is transformed into a finite element model using a commercial software package
ScanIP/FE. The residual stresses are calculated assuming the linear elastic model
for the alumina phase and two alternative models for the chromium phase: linear
elastic and elastoplastic. The qualitative influence of the size of reinforcements on
the residual stresses in the alumina matrix was found by experimental measurements
and numerical modeling.

Weglewski et al. 2012) is devoted to investigation of the thermal residual stresses
in Cr–Al2O3 composite induced upon cooling from the temperature of the powder
metallurgy process to room temperature. The thermal stress was calculated numeri-
cally using the finite element method (FEM) analysis with considering the porosity
and microcracking. The numerical results were obtained for two material models,
one taking into account plastic deformations, the other for linear elastic material.
Numerical analysis showed that taking into account plastic deformation of chromium
slightly affects the residual stresses in the composite.

To validate the theoretical results, Cr–Al2O3 compositewas produced.On samples
with parameters similar to the calculated the residual stresses were experimentally
measured using theX-ray diffractionmethod. Experimental results show that thermal
stresses did not lead to a high level ofmicrocracking. The decrease of elasticmodulus
was mainly caused by the initial porosity.

Internal residual stresses arise inmetal matrix composites when they are produced
at a high temperature followed by cooling to room temperature. Thermal residual
stresses are resulted frommismatch of the coefficients of thermal expansion between
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matrix and reinforcement phases. In Bouafia et al. (2012) the FEM was used to
analyze the residual stresses in composites with aluminum matrix reinforced by
silicon carbide particles. Rectangular parallelepipedswith one or two spherical inclu-
sions are selected as representative volumes. The particle (SiC) was considered as
an isotropic material and the aluminum matrix was defined as elastoplastic mate-
rial. A constant rate cooling down process was considered with the initial and final
temperature are 320 °C and 20 °C, respectively. The calculations were performed
using commercial software package ABAQUS. The finite element model consisted
of 45,641 4-node linear tetrahedron elements. As a result of numerical studies, qual-
itative and quantitative features of residual stresses are established. In particular, it
was found that the volume fraction of particles plays an important role regarding the
generation of residual stresses. On models with two particles, it is shown that the
internal residual stresses increase with a decrease in spacing.

In Sharma et al. (2016) an elastoplastic finite element model for studying the
thermomechanical behavior of aluminum–alumina particle reinforced composites is
proposed. Thermal residual stresses generated while cooling the composites from
sintering temperature to room temperature are simulated. Three-dimensional repre-
sentative volumes of composites were generated using special software that uses
a random sequential adsorption algorithm for particle distribution. To model the
irregular-shaped alumina particles this work is carried out using icosahedron-shaped
particles for the reinforcement particles. The geometrical models were exported to
the commercial software Abaqus for meshing and structure analysis. As a result
of calculations, it was found that the stress concentration within the microstructure
causes the yielding of the aluminummatrix. The matrix was modeled as elastoplastic
material with material properties adopted from literature. Alumina particles in rein-
forcement phase were modeled as elastic material with temperature-independent
properties. Comparative analysis showed that the thermal residual stresses generated
considering the elastic deformation of the matrix is much higher as compare to that
considering elastoplastic deformation.

Unlike numerical simulation in Sevostianov and Bruno (2019) Maxwell homog-
enization scheme was used to evaluate residual stresses in an aluminum matrix
composite with SiC particle reinforcement. The effect of interaction between the
matrix and particles is reduced to calculation of the additional field acting on an
inhomogeneity due to the stress-free strains in its neighbors. The method is illus-
trated by examples with a material reinforced with spherical particles with a parallel
mustache and a metal matrix containing flat randomly oriented short fibers. For vali-
dation of the proposed approach, themodel predictionwas comparedwith the data for
Al–SiC composite reported by other authors. This comparison showed that Maxwell
scheme, being applied to the calculation of the residual stresses in composites, shows
good agreement with the experimental results.

Residual stresses in polymermatrix composites. In the process of curing composite
materials with polymer matrices technological residual stresses arise. Several factors
cause residual stresses formation. Residual stresses in cured epoxy composites arise
because fiber and resin have different linear expansion coefficients. In addition
changes in resin volume can result from chemical shrinkage and thermal expansion.
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Numerical analysis was used in (Agius et al. 2016) to predict the development
of residual thermal stresses in carbon-epoxy laminates. The RVE has been high-
lighted from hexagonal fiber packing structure. The experimentally measured chem-
ical shrinkage and thermal expansion properties of the resin were used as inputs to
a finite element analysis to calculate the residual stresses in the composite.

The analysis found that the chemical shrinkage contribution to residual stress
dominates the thermal contribution for low initial cure temperatures.

To predict residual stress development in carbon fiber composite due to curing
a multiscale thermo-viscoelastic processing model is developed in Chen and Zhang
(2019). This model includes the heat transfer analysis, the governing equation for
the resin cure kinetics, and stress analysis to determine curing-induced stress devel-
opment using a viscoelastic constitutive law. The multiscale modeling approach is
used, which includes a mesoscale model at the lamina level and a micromechanics
model at the fiber and matrix scale. At the mesoscale level, the composite laminate is
considered as discrete layers of transversely isotropic laminae. At the microstructure
level, the lamina is represented as an assemblage of fiber–matrix concentric cylin-
ders. Residual stress prediction performed using different material models. Compar-
ison of residual stresses predicted by the viscoelastic and elastic processing models
shows that the viscoelastic processing model can provide an improved prediction
on curing-induced residual stresses because the viscoelastic model accounts for the
stress relaxation of the composite during curing.

Multiscale modeling was used in Yuan et al. (2018) to predict the curing residual
stresses in fiber-reinforced thermosetting composite Hexcel AS4/3501–6. At the
macroscale modeling, the laminate is assumed as a continuummedia. The governing
equations for heat transfer and macro residual stresses are solved with respect to
the realistic initial and boundary conditions. A linear viscoelastic constitutive equa-
tion has been used to predict the curing residual stresses and curing deformation in
composite structures. The temperatures, degree of cure and macro residual strains
calculated by macroscale model are used in the RVE model as boundary conditions
in the microscale modeling. Geometrical micro model was considered as a single
fiber-matrix structure with the interphase between them. Three different composite
structures are established: a square, a hexagonal, and a diamond fibre arrangement.
Numerical results were obtained by the FEM using a software package ABAQUS.
Numerical analysis showed that the maximum micro residual stresses calculated in
diamond fiber arrangement model are larger than that in hexagonal and square fiber
arrangement.

The micromechanical model was used in Tsai and Chi (2008) to calculate the
thermal residual stress of the unidirectional fiber composite. The repeating unit cell
containing fiber and matrix phase was employed for different structures: square edge
packing, square diagonal packing, and hexagonal packing. The fiber was assumed
to be linear elastic material, and the matrix was regarded as a nonlinear elastoplastic
material. The microthermal residual stresses induced during curing were calculated.
Calculations were carried out under the condition that during cooling there is no
mechanical loading applied and the macro stress state of the composites should be
equal to zero.
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A new viscoelastic constitutive model was proposed in (Zhang et al. 2016) for
numerical investigation of cure-induced residual stresses in polymer matrix compos-
ites. The constitutive equations were used in the form of the hereditary integrals
for relaxation of residual stresses. The proposed viscoelastic constitutive equa-
tions were implemented in the ABAQUS finite element code with considering the
thermal and the chemical shrinkage strains. For residual stress simulationwas created
three-dimensional geometry model of cross-ply laminate [0/90]s.

Numerical analysis made it possible to predict residual stresses resulting from
various physical processes. During the curing process, stresses are caused by
shrinkage during chemical curing. At the cooling stage, they arise from thermal
contraction. Residual stress relaxation is associated with the viscoelasticity of the
composite matrix.

The thermal and cure-induced residual stresseswere numericalmodeled in (Zhang
et al. 2018) for variable-stiffness curvilinear fiber panels. The temperature distribu-
tion in the composites was described by the 3D heat conduction equation taking
into account the anisotropy of the thermal conductivity properties. The resin curing
process was described by phenomenological cure kinetic equation with Arrhenius
temperature dependence. The mechanical properties of the composites were deter-
mined by elastic constants of the fiber and linear thermo-viscoelasticity model of
resin. A numerical study of the distribution of residual stresses in composite panels
was performed by the finite element method on a 3D model of a variable stiffness
panel with various reinforcement angles using ABAQUS software.

As a result of numerical studies, it was found that a higher temperature and the
curing degree distribution of the panel are determined by the direction of reinforce-
ment. The distribution of the degree of cure is similar to the distribution of tempera-
ture because the cure rate is highly dependent on heat release. Obtained results also
indicate that the residual stresses of the composite panels depend significantly on the
angle of reinforcement.

Experimental investigations.The experimental study of residual stresses is a complex
technical problem even for structures made of traditional homogeneous materials.
The review of residual stress measurement methods is given in Guo et al. (2019) on
the basis ofmodern publications. Destructive and non-destructive testingmethods for
homogeneous materials are reflected. A few publications are devoted to experiments
on determining residual stresses in composite materials.

In Niu et al. (2019) residual micro stresses after the fabrication of SiC fiber-
reinforced Ni–Cr–Al alloy composites were investigated by Raman spectroscopy
method. The fabrication temperatures of composites are very high. The difference
between coefficients of thermal expansion of SiC fibers and Ni–Cr–Al alloys causes
great residual stress at the interface during fabrication of the composites. Laser
Raman method allows to determine the microscopic residual stress distribution in
the interface of the composite material. Raman spectroscopy was performed using a
LabRam HR 800 Raman spectrometer. The interface morphologies of the composite
material were observed by scanning electron microscopy. As a result of Raman
spectrum analysis, it was founded that the SiC fibers are under residual compressive
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stress. But after the process that the SiC fibers are fabricated to the precursor wires,
the compressive stress inside the fibers is reduced, and the stress at the portion near
the C-rich coating becomes tensile stress.

The article (Xie et al. 2016) is devoted to experimental investigation of compres-
sive residual stress distribution caused by shot peening in the deformed surface
layer of titanium matrix composite. Shot peening treatment was performed using
an air blast machine. The shot media was cast steel balls with average diameter of
0.6 mm. The residual stresses along the depth from the surface were measured using
X-ray diffraction method by X-ray stress analyzer. To obtaining the stress distribu-
tion deeper inside the material, the thin top surface was removed layer by layer via
chemical etching. The experimental results show the average residual stresses of the
composite because the irradiation area of X-ray is larger than the dimension of rein-
forcement. The experimental results indicated that the residual stress formed in the
surface layer and the maximum appeared on the subsurface. The range of residual
stresses found in experiments correspond the simulated results obtained by 3D finite
element analysis.

Residual stresses in composite materials manufactured by the method of pultru-
sion were studied experimentally in Yuksel et al. (2019) by the hole drilling method.
The reasons for the residual stresses in pultrusion are non-uniform curing and
heating/cooling in the manufacturing process. A pultruded rectangular composite
bar of unidirectional glass fiber with polyester resin was investigated in this study.
The hole drilling with digital image correlation (Harrington and Schajer 2017; Baldi
2014; Kashfuddoja et al. 2014) have been employed by comparing two images taken
before and after drilling. The Aramis 4 M system with 2048 × 2048 pixels camera
was used to measure the strain field obtained after drilling. The FEM model was
used to interpret the measured strain distribution after hole drilling and estimate the
initial stress state locked in the profile after the manufacturing process and before
hole drilling. The residual strain obtained experimentally was compared with the
simulated strain field. The corresponding residual stress was calculated using the
measured strains in a numerical model. A good agreement was obtained for the
measured and predicted strain distribution of the drilling affected-zone.

Plasticity models of fiber composites. One of the reasons for the appearance of
residual stresses in composite materials is the difference in the elastoplastic proper-
ties of their components.When loading suchmaterials beyond the yield limits and the
subsequent complete removal of external loads, stresses remainwithin the cells of the
heterogeneity. These micro stresses are self-balanced within the cell boundaries, and
there are no statically equivalent macro stresses. Existing phenomenological plas-
ticity theories of fiber composites describe the observed effects using the concept of
kinetic hardening. The displacement of the plasticity surface is determined by internal
variables (called back-stress), which are associated with accumulated plastic macro
strains. Overview of various evolution models of the kinematic variable made by
Chaboche (2008) for homogenous materials.
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For polymer matrix and metal matrix composites, there are many plasticity theo-
ries. In Spencer (1992) the theory of anisotropic plasticity proposed with the assump-
tion that yielding is not affected by a tension in the fibre direction. The generalized
anisotropic elastoplastic constitutive model was proposed in Car et al. (2000) for the
large strain analysis of fiber-reinforced composite materials. With micromechanical
approaches fibers are assumed to be linear elastic anisotropic solids and the matrix
is modeled as an isotropic elastoplastic solid.

Constitutive thermodynamically consistent models were formulated (Nagaraja
et al. 2019) for anisotropic plasticity of polymer composites reinforced by unidirec-
tional fibers. Two nonquadratic yield functionswith nonlinear isotropic hardening are
proposed. These functions are governed by three anisotropic coefficients. In conjunc-
tion with an associated flow rule, this was enough to predict experimental data on
the plastic deformation of composites. All variants of the constitutive models were
calibrated according to experimental results for various types of stress state.

In the considered plasticity models translational hardening is reflected by intro-
ducing parameters depending on the accumulated plastic deformation. Sometimes
they are formally interpreted as micro stresses. The disadvantage of this theoretical
approach is the neglect of residual micro stresses when assessing the strength of
structural elements from composites. In contrast to such models, in the proposed
approach, the residual micro stresses have real physical meaning.

In the framework of the homogenization concept of the composite mate-
rial mechanical properties, its state is determined by the average values in the
representative volume element—macro stresses σ i j and macro strains εi j

σ i j = 1

V

∫

V

σi j dV, εi j = 1

V

∫

V

εi j dV (5.1)

where σi j , εi j—stress and stains within representative elements. In this article, all
characteristics within a representative cell will be called micro quantities.

5.2 Numerical Simulation of Residual Stress Accumulation

As a result of plastic deformation of the metal matrix composites, they accumulate
residual strains and stresses. With complex deformation programs, accompanied by
unloading and alternating loads, the determination of residual stresses requires an
analysis of the entire history of deformation. A feature of composite materials is the
heterogeneity of residual stresses and strains at the microlevel, i.e., within a repre-
sentative cell. The results of such an analysis could be the basis for the development
of a phenomenological model of plasticity at the macro level. The material parame-
ters of such a model are predicted based on the known mechanical properties of the
composite components.
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Table 5.1 Mechanical
properties of composites
components

Characteristic Fiber Matrix

Elastic modulus, GPa E = 420 E = 70

Poisson ratios v = 0.25 v = 0.34

Yield strength, MPa σ ys = 260

Tangential modulus, GPa ET = 8.75

Fig. 5.1 A representative
element

In this section, the methodology for the numerical analysis of plastic deformation
processes is described on the example of boron-aluminum composite with unidirec-
tional reinforcement. Themechanical properties of the fibers andmatrix are presented
in Table 5.1.

Plastic deformation of thematrixwas described by a time-independentmodelwith
linear isotropic hardening. Due to the double periodic structure of the composite
with the tetragonal reinforcement scheme, numerical analysis was performed on
a representative element (Fig. 5.1). All calculations were performed by the finite
element method in the ANSYS software package.

The main feature of the numerical simulation of the cell stress state is the
adequate formation of boundary conditions. These conditions should ensure that
the micro stresses within the representative element are fully consistent with the
state that occurs when the unlimited array of the composite is uniformly deformed.
For simple loading programs, when all the components of the stress tensor only
increase in proportion to one parameter, the procedure for setting the boundary
conditions is described in L’vov and Kostromitskaya (2020). This procedure is
described below for complex programs of alternating loading on the example of
uniaxial tension/compression in the direction perpendicular to the fibers.

At the first stage of the loading program, uniaxial elastoplastic extension is
simulated, when the macro stress σ x monotonically increases from zero to a certain
value. An analysis of the generalized plane strain state is performed at zero force in
the direction of reinforcement, which is equivalent to the absence of macro stress
σ z = 0. At the boundaries x = 0 and y = 0, the symmetry conditions are set, and at
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the other two boundaries the following conditions are set:

x = 1 : ux = C1, τxy = 0

y = 1 : uy = C2, τxy = 0
(5.2)

At each loading step the value of the constant C1 increases sequentially, which
corresponds to an increase in macro strain, and the value of C2 is determined by
the method of successive approximations. The goal of the iterative procedure is to
simulate a uniaxial macro stressed state. At each iteration, the average stresses σ x

and σ y are determined. The process of successive approximations continues until
the specified accuracy is reached when σ y < ε · σ x . After reaching the specified
accuracy ε < 10−3 at each step of loading, the values of macro stresses σ x and the
corresponding value of macro strain εy are found, which determines one point in the
stress–strain diagram of composite.

At the second stage of the unloading program is simulated. The restart of the
calculation ismade from the last point of the first stage of the programwith the saving
of all analysis data. At each step of unloading, the value of the constant C1 decreases
at each restart. In this case, the constantC2 is determined by themethod of successive
approximations to satisfy the condition σ y < ε · σ x , similarly to the procedure used
at the first stage of the program. Numerical simulation of the unloading process
continues until the macro stress σ x becomes equal to zero. This state corresponds to
the unloading of the compositewhen all the components of themacro stress tensor are
equal to zero. But within the representative cell, residual micro stresses are retained.
The distribution of equivalent residual micro stresses and plastic micro strains is
shown in Fig. 5.2. The presented results correspond to uniaxial pre-tension at the
first stage of the program to the value of macro strain ε = 10−2.
and plastic strains (b)

The values of residual macro strains depend on the degree of preliminary tension
of the composite. Figure 5.3 shows the dependences of residual macro strains ε̃x , ε̃y
and ε̃z on the magnitude of the preliminary macro stress σ x .

Fig. 5.2 The second stage. Equivalent von Mises residual micro stresses (a)
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Fig. 5.3 Dependences of residual macro strains ε̃x , ε̃y and ε̃z on preliminary macro stress σ x

At the third stage of the loading program, the process of compressing the
composite after tension and full unloading is simulated. To simulate uniaxial
compression after complete unloading, the calculation is performed starting from
the end-point of the second stage. In the boundary conditions (5.1), the value of
the constant C1 is successively reduced to zero, and the value of C2 at each step is
determined by the method of successive approximations using the above algorithm.
The distribution of equivalent micro stresses and plastic micro strains at the end of
the third stage of loading program is shown in Fig. 5.4.

A numerical analysis performed in the first two stages simulates a stress-closed
uniaxial tension cycle. And the results of the analysis at all three stages simulate
the strain-closed cycle of tensile and compression. The combination of these results
is presented in Fig. 5.5, which shows the relationship between macro stresses and
macro strains under uniaxial stress state of the composite.

Fig. 5.4 The third stage, Equivalent von Mises residual micro stresses (a) and plastic strains (b)
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Fig. 5.5 Macro stresses and
macro strains under uniaxial
stress state of the composite

Numerical modeling of the process of pre-tension beyond elasticity and subse-
quent compression before the appearance of secondary plastic deformations showed
that the Bauschinger effect is detected in the composite at the macro level. A detailed
analysis of strain-closed cycles with various values of pre-tension allows us to
conclude that hardening is close to translational. The difference between the yield
strengths for tensile and compression of the hardened composite differs from the
doubled yield strength of the composite in the initial state by 3–4%. For the inves-
tigated material, it is possible not to take into account the expansion of the yield
surface.

5.3 The Governing Equations of Plastic Deformation
of a Composite

The traditional way of constructing physical relations connecting strains or their
increment with stresses is based on a generalization of experimentally established
properties of materials at various loading paths. For composites, a useful alternative
is the theoretical modeling of plastic deformation processes based on the known
properties of matrix and fibers materials.

A numerical analysis of the plastic deformation of a unidirectional reinforced
composite revealed the possibility of the appearance of residual micro stresses and
the anisotropic character of hardening associated with them. The variant of physical
relations described below is based on the data of this analysis. The yield criterion of
the composite in the initial undeformed state is adopted in the form of a quadratic
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form relative to macro stresses:

Ai jklσ i jσ kl = 1 (5.3)

where Ai jkl are the components of the fourth-rank tensor, the values of which are
determined by the yield strengths of the composite in different directions. As such
limits, macro stresses are taken at which the equivalent (according to von Mises)
micro stresses in the matrix reach the yield strength. The procedure for determining
the coefficients in the yield criterion (5.3) is developed in Małachowski et al. (2017)
for orthogonally reinforced composites. To reflect the combined (translational and
isotropic) hardening, yield surface equation can be taken in the form

2 f ≡ Ai jkl
(
σ i j − σ r

i j

) (
σ kl − σ r

kl

) − ϕ2(W ) = 0 (5.4)

whereσ r
i j are the components of the tensor reflecting the influence of residual stresses,

ϕ (W ) is the scalar function of isotropic hardening, which depends on the work of
plastic deformation. In the particular case of translational hardening ϕ2(W ) = 1.

The quadratic invariant form of the plasticity function is written for the general
case of anisotropy. For transversally anisotropic and orthotropic materials, the book
(Naumenko and Altenbach 2007) contains systems of invariants for quadratic creep
potentials.

Under the conditions of active loading

f = 0,
∂ f

∂σ i j
dσ i j > 0 (5.5)

the increments of plastic strains are determined by the flow rule associated with the
equation of the yield surface (5.4):

dε
p
i j = dλ

∂ f

∂σ i j
= dλAi jkl

(
σ kl − σ r

kl

)
(5.6)

In case of unloading: f = 0, ∂ f
∂σ i j

dσ i j < 0, or neutral loading: f =
0, ∂ f

∂σ i j
dσ i j = 0, no plastic strain increments dε

p
i j = 0.

Residual micro stresses are of great importance in the analysis of the strength of
a composite since destruction processes are initiated within representative cells. For
the formation of physical dependencies at the macro level, changes in the properties
of the material during plastic deformation should be reflected by irreversible macro
parameters. The simplest way to take into account translational hardening can be
the proportional dependence σ r

i j = cε p
i j . In this case, the scalar factor dλ can be

expressed in terms of macro stresses increments. Under active loading, accompanied
by an increase in plastic strains, condition (5.2) is satisfied. Therefore, the total
differential of the yield function f is equal to zero:
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d f = ∂ f

∂σ i j
dσ i j + ∂ f

∂ε
p
i j

dε
p
i j = 0 (5.7)

Taking into account the form of the yield function (5.2) in the case of only
translational hardening, the equality (5.4) is reduced to

Ai jkl
(
σ kl − cε p

kl

)
dσ i j − c Ai jkl

(
σ kl − cε p

kl

)
dε

p
i j = 0 (5.8)

Now, taking into account the associated flow rule (5.6), we can obtain the explicit
dependence dλ from increments of macro stresses

dλ = Ai jkl
(
σ kl − cε p

kl

)
dσ i j

cAi jkl
(
σ kl − cε p

kl

) (
Ai jmn

(
σmn − cε p

mn

)) (5.9)

The elastic components of the macro strain tensor are related to macro stresses
by Hooke’s law for anisotropic bodies:

εei j = ai jklσ kl (5.10)

Identification of material parameters of the governing equations. The proposed
physical relationships include a number of material parameters of the composite
material. These are the elastic constants ai jkl in the Hooke law, the components of the
tensor Ai jkl in the yield criterion (5.1) and parameter c in the yield surface Eq. (5.2). A
numerical technique for determining effective elastic constants is described in Zadeh
andLvov (2015) for unidirectionally reinforced composites. This technique is used in
processing the results of numerical modeling of complex loading programs described
in the second section of the article. To determine the constant c, it is convenient to
use the processing of the results of numerical modeling of a pure shear in a plane
perpendicular to the direction of reinforcement. A numerical experiment simulating
a pure composites shear was carried out using the following boundary conditions:

x = 0 : uy = 0, σx = 0

y = 0 : ux = 0, σy = 0

x = 1 : uy = 0, σx = 0

y = 1 : ux = C1, σy = 0

(5.11)

The value of the constantC1 was increasing in the interval 0 ≤ C1 ≥ 10−2, which
made it possible to obtain the transverse shear diagram shown in Fig. 5.6.

Under continuously increasing loading for pure shear conditions, the yield surface
Eq. (5.4) leads to the following dependence of the shear stresses on the plastic
component of the shear strain:

A1212
(
σ 12 − cε p

12

) = 1 (5.12)
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Fig. 5.6 Macro stresses vs macro strains under pure shear of the composite

If we take into account the elastic component of the shear strain:

εe12 = a1212σ 12 (5.13)

then the theoretical dependence of shear stresses on shear deformations beyond
elasticity will have the form:

σ 12 = 1√
A1212

+ Ek

(
ε12 − a1212√

A1212

)
(5.14)

where—Ek is the tangent module of the deformation diagram in the yield area.
This module is found as a result of approximation of the calculated strain diagram
(Fig. 5.6) by a bilinear function. Nowwe can find the parameter c in the yield surface
equation:

c = Ek

1 − Eka1212
(5.15)

5.4 Conclusions

The effect of the appearance of residual micro stresses after plastic deformation was
revealed as a result of numerical simulation of unidirectional reinforced composites.
The study was performed by analyzing the microstress state within a representative
cell by the finite element method. Systems of boundary conditions are compiled that
ensure full correspondence of the loads on the representative volume element under
various programs for changing macro stresses in the composite.
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It is established that after a cycle closed by macro stresses, residual micro stresses
can reach 50% of the maximum macro stresses. For a linearly hardening matrix,
the relationship between macro stresses and macro strains can be approximated by
a bilinear function. Similar properties of residual micro stresses were also revealed
as a result of numerical modeling of a pure shear in a plane perpendicular to the
direction of reinforcement.

The features of plastic deformation and the development of residualmicro stresses
revealed as a result of numerical modeling served as the basis for the construction of
the governing equations of macro plasticity of a unidirectional reinforced composite.
The theoretical model assumes a general anisotropy of the mechanical properties of
an equivalent homogeneous material and the translational character of hardening.
The developed numerical methods make it possible to determine all the material
parameters of the model based on the known mechanical properties of the matrix
and fibers. Numerical results are given for a composite with elastic boron fibers and
a plastic aluminum matrix. The calibrated homogenized model was evaluated by
comparison to micromechanics simulations for transversal shear.
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Chapter 6
Dynamics of Curved Laminated Glass
Composite Panels Under Impact Loading

Olha Sukhanova, Oleksiy Larin, Konstantin Naumenko,
and Holm Altenbach

Abstract The study presents the results of an analysis of dynamic state of shallow
shell laminated glasses (LG) composites under impact loading. The work considers
modeling of a rigid ball drop on LG with polyvinyl butyral (PVB) interlayer. The
aim of the work is to study the dependence of LG dynamic deformation on the glass
curvature. The study carries out the dynamic strains and stress state analysis in LG
under different loading conditions. The work performs computations using a finite
element method (FEM) within an explicit dynamics approach in 3D statement. The
investigation includes a mesh-size convergence analysis.

Keywords Laminated glass · Impact loading · Polyvinyl butyral interlayer ·
Dynamic deformed state · Explicit dynamics

6.1 Introduction

Glass laminated panels are widely used in modern mechanical and structural engi-
neering. For example portholes, vehicle windows, outer parts of solar panels,
elements of building structures, etc. Their functional purpose is to protect other
sensitive elements from external factors. Laminated glass (LG) consists of two or
more glasses laminated together with one or more layers of polymeric film (inter-
layers). The interlayer improves mechanical properties, e.g. impact strength, fracture
toughness, and failure mode. As the area of impact increases, there is the possibility
of improved impact resistance (Vedrtnam and Pawar 2017a, b).
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The effect of the interlayer material on the stiffness, impact strength, fracture
pattern, and load-bearing capacity of LG plate is well known. Polyvinyl butyral film
(PVB), Ethyl Vinyl Acetate (Cross-Linked EVA), Ionoplast Polymers, Cast in Place
(CIP) liquid resin, and Thermoplastic polyurethane (TPU) are used as interlayers
most commonly.

The impact resistance of the LG plate is higher than that glass plate of the same
thickness. Studying LG dynamic behavior features under the impact loading is an
important practical task, the result of which are recommendations on internal struc-
ture, technical instructions on the operating modes, limits of use, etc. The destructive
impact behavior of the LG is complex (Naumenko and Eremeyev 2014; Eisenträger
et al. 2015; Weps et al. 2013; Schulze et al. 2012; Aßmus 2019). The combined
effects of the brittleness of glass, the nonlinear characteristic of interlayer, and the
adhesive bondingmake the impact damage behaviors of LGmuchmore complicated.
Impact failure analysis of LG is commonly performed experimentally followed by
numerical simulations or vice versa (Vedrtnam and Pawar 2017a, b, 2018; Keller and
Mortelmans 1999).

Experimental studies are quite expensive and complicated due to the high fragility,
optical transparency, high smoothness of the glass surface, have significant limita-
tions on the possibilities for the use of experimental equipment. Preliminary compu-
tational modeling allows reducing the number of necessary experimental analyses,
formulating practical recommendations, and defining restrictions.

Most of the studies known in the literature have been done for straight panels.
However, curvilinear ones are of particular interest since they have been able to
exhibit improved additional functional/operational characteristics such as aerody-
namics, high load capacity, etc. Their usage becomes quite spread in modern struc-
tural engineering, in transport engineering since it is possible to mold them into
various bending shapes. It should be claimed that a curved LG differs from a straight
LG in its static and especially dynamic behavior (Aşik et al. 2014).

Thus, the current paper deals with the study of the dynamic behavior of curved
composite glass packets under impact loading, which is motivated by practical
interest.

6.2 Formulation of the Problem

The aim of this work is to study the dynamic response of laminated multilayer glass
composites with different LG curvatures arising under the rigid ball impact loading
and to study the dependence of dynamic deformations level, occurring in the elements
of these composites on the conditions of the influence.

The following tasks are set in this study:

(1) to model a three-layer LG with different curvatures.
(2) to develop a computer mathematical model that allows studying the impact

interaction of an absolutely rigid spherical body with LG models;
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Table 6.1 Material
properties

Material Density, ρ

(kg/m3)

Young’s modulus,
E (Pa)

Poisson ratio, ν

Steel 7850 2 ×1011 0.3

Glass 2500 7 ×1010 0.23

PVB 1100 2.2 ×108 0.495

a b

Fig. 6.1 LG with different curvatures a straight LG, b curved LG

(3) to carry out a complex of numerical studies concerning definition of influence
parameters regularity of ball falling on the laminates.

In current work, the different curvatures of three-layer LG have been modeled.
The curvature parameter has been varying from 0 to 152.5mm (i.e. from flat LG up to
the curved as cylindrical shell with radius equal to half the side length). Curved LG,
which was subjected to impact loading through contact with the 83 mm diameter
smooth solid steel ball (2.3 kg), is considered. The laminate is a combination of
two skin glass layers of thickness 5 mm each with a PVB interlayer of 1.52 mm
thicknesses. The size of beams is 305 × 305 mm. The material properties of the
glass and interlayers are taken from manufacturer’s data tables and verified by the
initial properties considered in (Zhang et al. 2013) and shown in Table 6.1. The
geometric models are shown in Fig. 6.1.

6.3 Simulation Model

The behavior of the impact of LG samples with PVB interlayer was modeled using
Explicit Dynamics analysis in the framework of 3D modeling by the finite element
method (FEM). Hexagonal FE with 8 nodes with 3 degrees of freedom in each was
used.

The geometric models of LG with different curvatures are presented in Fig. 6.1.
The straight LG is a special case of curved glasses with a zero curvature parameter
(c = 0 mm) in Fig. 6.1a, and one of the curved LG (c = 76 mm) in Fig. 6.1b, as an
example. The side sizes in all models are equal (a = 305 mm).
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Fig. 6.2 Boundary conditions a vector of initial velocity, b fixed support of composite

As a boundary condition, LGwas clamped on two sides, and the impact of the ball
was simulated in the center of the LG, as shown in Fig. 6.2. The ball was modeled as
an absolutely rigid body. The laminate was modeled in a three-dimensional setting
as part of a physical linear-elastic state. The interaction of the ball and the laminate
was carried out in the framework of solving the problem of one-way contact by the
“surface to surface” (STS) algorithm. The resistance caused by air during impact
was neglected.

For the studied straight LG, FEmesh with elements of different sizes was created.
For each mesh size, the calculations of maximum magnitude of the displacement
vector and maximum Equivalent (von Mises) Stress were performed to determine
the computational error. TheLG-PVBmodelwith different height of ball-free fallwas
analyzed. Similar computational studies for the laminate with the same dimensions
and conditions have been studied in the work of Vedrtnam and Pawar (2017a, b). The
closest value of the mesh size is 2 mm. The error between the values of magnitude of
the displacement vector for calculations with FE meshes with dimensions of 5 and
4 mm is quite large—24%, but then it is significantly reduced to 3% between meshes
of 4 and 3 mm and between 2 and 1 mm is 2.8%.

6.4 Calculation of Nonlinear Dynamics of the Laminated
Glass

The impact loading of a steel ball on LG with different curvatures and the height
of the ball fall (hbff) were calculated. The results of maximum magnitude of the
displacement vector (|umax|), Intensity Stress (σ int is defined as the largest of the
absolute values of |σ 1 – σ 2|, |σ 2 – σ 3| or |σ 3 – σ 1|) and Intensity Strain (εint is defined
as the largest of the absolute values of |ε1 – ε2|, |ε2 – ε3| or |ε3 – ε1|) at characteristic
points (Fig. 6.3) at time t0 (corresponding to the maximum displacement) and tmax

(corresponding to the maximum value of stresses over the entire time period) are
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Fig. 6.3 Main investigated points of the model

derived. The characteristic point H is chosen, where the largest maximum displace-
ment and high-stress localization are observed, but there is no singularity of stress
concentration, as at the point of direct interaction of the LG with the rigid ball. The
obtained values as a result of the calculation are shown in Table 6.2.

Figures 6.4 and 6.5 show the magnitude of the displacement vector and Intensity
Stress in LG with different curvatures under the impact loading of a solid ball with
490 mm height of the ball fall. For LG with other ball heights, it was also evaluated
similarly. The maximum magnitude of the displacement vector is observed in the
center of impact zone, and the minimum displacement—in the fixed sides of the
model. With a curvature parameter increasing, the distribution of maximum magni-
tude of the displacement vector can be traced along the LG. The Intensity Stress
distribution reflects that the maximum values are placed in the center of impact zone
of the LG. It can be found that starting approximately from the 40 mm of curvature
parameter c (i.e. from 15% of shell width) a distribution of the elastic wave has been
considered.

Additional calculations were done with different mesh sizes (1.5, 2, 2.5 mm) for
a height of 490 mm of the ball fall. A fitting analysis of the data was performed
to analyze the dependence of magnitude of the displacement vector and Intensity
Stress on the curvature parameter. The magnitude of the displacement vector data
was approximated by an exponential function:

umax = y0 + S · exp(R0 · c) (6.1)

where

y0 is the offset,
S is the initial value and
R is the rate.

The Intensity Stress data were approximated by a cubic polynomial function:

σint = A0 + A1 · c + A2 · c2 + A3 · c3 (6.2)
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Table 6.2 The results of the simulation

c (mm) FE
mesh
size
(mm)

hbff (mm) umax (mm) Point σ int in
t0 (MPa)

σ int in
tmax (MPa)

εint 10−3 in
t0

εint 10−3 in
tmax

0 2 490 1.8789 H 214.28 240.17 3.7653 4.2202

1200 2.9755 360.96 398.85 6.3426 7.0084

1450 3.2372 395.51 438.48 6.9496 7.7047

1900 3.6405 449.52 500.01 7.8988 8.7859

19.06 2 490 1.2923 H 299.98 305.72 5.271 5.3719

1200 2.0797 494.5 502.58 8.6891 8.831

1450 2.2811 539.55 550.38 9.4806 9.671

1900 2.5877 608.72 623.92 10.696 10.963

23.8 2 490 1.2227 H 301.43 312.5 5.2966 5.4911

1200 1.9582 496.13 510 8.7177 8.9614

1450 2.1558 541.49 557.25 9.5148 9.7918

1900 2.4458 615.9 635.95 10.822 11.175

28.6 2 490 1.179 H 309.31 317.98 5.4351 5.5874

1200 1.8959 498.78 520.05 8.7643 9.138

1450 2.076 559.38 570.12 9.8291 10.018

1900 2.356 626.09 650.24 11.001 11.426

38.13 2 490 1.1002 H 290.82 294.53 5.1102 5.1752

1200 1.7662 480.99 481.33 8.4516 8.4576

1450 1.9343 528.41 528.41 9.285 9.285

1900 2.198 601.07 601.07 10.562 10.562

57.2 2 490 1.0252 H 280.5 294.28 4.9289 5.1709

1200 1.6508 451.96 485.63 7.9416 8.5333

1450 1.8249 496.73 532.87 8.7282 9.3633

1900 2.0768 559.7 601.42 9.8348 10.568

76.25 2 490 0.99523 H 286.54 303.66 5.035 5.3357

1200 1.6272 451.57 494.92 7.9347 8.6964

1450 1.7839 494.41 542.8 8.6875 9.5379

1900 2.0285 561.57 616.37 9.8676 10.831

114.4 2 490 1.0196 H 210.43 262.25 3.6975 4.6081

1200 1.6515 352.15 420.84 6.1877 7.3948

1450 1.8099 366.22 461.93 6.435 8.1167

1900 2.0566 418.07 525.45 7.346 9.2328

152.5 2 490 1.0588 H 150.044 212.59 2.6434 3.7354

1200 1.7085 239.75 349.89 4.2128 6.1481

1450 1.8677 258.59 383.46 4.5437 6.7379

(continued)
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Table 6.2 (continued)

c (mm) FE
mesh
size
(mm)

hbff (mm) umax (mm) Point σ int in
t0 (MPa)

σ int in
tmax (MPa)

εint 10−3 in
t0

εint 10−3 in
tmax

1900 2.1184 294.76 434.61 5.1794 7.6367

ba

dc

Fig. 6.4 Magnitude of the displacement vector in LG with the ball free fall height 490 (mm) a c=
0 (mm), b c = 38 (mm), c c = 76 (mm), d c = 152.5 (mm)

where A0 is the offset and A1, A2, A3—are coefficients. The values of the regression
parameters are shown in Table 6.3. The maximum magnitude of the displacement
vector decreases with increasing the curvature parameter, but with a high curvature
parameter, it can increase slightly (Fig. 6.6). The Intensity Stress was considered at
point H at tmax. It increases with increasing curvature parameter until about 45 mm
and then decreases (Fig. 6.7).

The Intensity Strain distribution, especially in the PVB interlayer, reflects that the
maximum values are placed in the impact zone of the LG, and the minimum strain
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ba

dc

Fig. 6.5 Intensity Stress in LGwith the ball free fall height 490 (mm) a c= 0 (mm), b c= 38 (mm),
c c = 76 (mm), d c = 152.5 (mm)

Table 6.3 Regression parameters

Parameter y0(mm) S (mm) R0(1/mm) A0(MPa) A1(MPa/mm) A2(MPa/mm2) A3(MPa/mm3)

Value 1.049 0.922 −0.095 245.468 3.223 −0.045 1.435 × 10-4

can be observed at the edges of the model. With increasing a curvature parameter,
the distribution of Intensity Strain can be observed along the LG (Fig. 6.8).

6.5 Conclusions

This work investigates the dynamics of the stress–strain state in LG with different
curvatures, which consisted of two glasses with a thickness of 5 mm, laminated
together with PVB interlayer thickness of 1.52 mm. The curvature parameter has
been varying from0 to 152.5mm (i.e. from straight LGup to the curved as cylindrical
shell with radius equal to half the side length). The dynamic excitation was formed
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Fig. 6.6 Dependence ofmaximummagnitude of the displacement vector on the curvature parameter
with the ball free fall height 490 (mm)

Fig. 6.7 Dependence of Intensity Stress at point H at tmax on the curvature parameter with the ball
free fall height 490 (mm)

due to the impact loading on the composite, which was modeled as a dynamic one-
way interaction with a rigid spherical body with a diameter of 83 mm (2.3 kg) to
simulate a ball impact test on the composite with different free ball fall heights.

The computermodelwas developedwithin the FEM in a three-dimensional setting
with explicit dynamic modeling of each structural element of the composite. The
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ba

dc

Fig. 6.8 Intensity elastic strain in PVB interlayer with the ball free fall height 490 (mm) a c =
0 (mm), b c = 38 (mm), c c = 76 (mm), d c = 152.5 (mm)

curvature parameter and the height of free ball fall are varied. The results ofmaximum
displacements, intensity stresses, and strains are obtained and analyzed. The results
showed that the distribution of maximum magnitude of the displacement vector,
Intensity Stress, and Strain can be traced along the LG, with a curvature parameter
increasing.

A fitting analysis of the data was performed to analyze the dependence of magni-
tude of the displacement vector and Intensity Stress on the curvature parameter.
The maximum magnitude of the displacement vector decreases with increasing the
curvature parameter, but with a high curvature parameter, it can increase slightly.
The Intensity Stress was considered at point H at tmax. It increases with increasing
curvature parameter until about 45 mm and then decreases.
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Chapter 7
Modeling the Response of Multilayer
Glazing to Distributed and Localized
Force Loading

Sergey Ugrimov, Natalia Smetankina, and Vladislav Kobylnik

Abstract The problems of modeling the response of multilayer glazing to dynamic
distributed and localized force loading are considered. The dynamic behavior of
glazing is described by equations of the layerwise generalized model that accounts
for the spatial strain character and inertial loads. The stress distribution pattern is
shown to be essentially nonlinear for localized loading. The response of flat glazing to
a shock wave and to shocks caused by a solid, soft bodies and a bullet is considered.
Computational results are compared to experimental data, as well as to those of
similar computations by other investigators.

Keywords Multilayer glazing · Transient vibrations · Impact · Blast loading ·
Bird strike collision · Bullet resistance

7.1 Introduction

Transparent multilayer structural elements are used widely in modern civil engi-
neering and transportmachine building. Themultilayer imparts the required strength,
and thermal and weight properties to the glazing and it ensures its nonshattering
destruction. Both static and dynamic forces affect the glazing. Dynamic loads
are meant to be impulse loading, and impact with various solid and soft bodies
(Dharani and Wei 2004; Larcher et al. 2012; Mohagheghian et al. 2017; Shim et al.
2016). Special-purpose glazingmust meet additional requirements imposed on bullet
resistance and on resistance to impact with splinters and other strike elements.
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Glazing can be made of silica glass (SG), organic glass (OG) and polycar-
bonate layers joined together by polymer adhesive layers. SG reinforced by chem-
ical etching, ion hardening, and thermal hardening is used widely in the glazing
of transport vehicles. The mechanical properties of the layers differ significantly
(by a factor of hundreds to tens of thousands). The adhesive layers can be thin as
well as commensurable to the thickness of the load-bearing layer. The total package
thickness can be substantial. Therefore, a qualitative description of the process of
layerwise glazing strain calls for using discrete-structural shell models that account
for transverse strains. When space-localized loads act on the glazing, higher-order
shell theories or three-dimensional models must be used.

Existingmultilayer glazing designmethods are based on two-dimensional models
developed for laminated structures (Amabili and Reddy 2020; Carrera et al. 2011;
Carrera and Cinefra 2013; Demasi 2009; Matsunaga 2002; Reddy 2003; Smetankina
et al. 2007) or on three-dimensional modeling with the finite element method. As
a rule, two-dimensional models use simplified models that approximately describe
the transverse shear strain and fail to account for package reduction. In fact, such
models can be used effectively only for thin and medium-thickness structures
subjected to distributed loading. Problems in theoretical evaluation of multilayer
glazing with dynamic localized loading, when the stress–strain state is essentially
three-dimensional, have been poorly explored thus far.

Besides, the following problems have been investigated insufficiently: evaluating
the strength of multilayer glazing subjected to real dynamic loads; analyzing the
process of destruction and penetration of amultilayer glazing. This is due to themath-
ematical complexity of describing external actions, dynamic response of glazing, and
the glass destruction process (Hu et al. 2013; Holmquist and Johnson 2011). Real
dynamic loads can be distributed or localized in space. They can also have an intricate,
and in some cases, an a priori unknown time behavior. Distributed loads are forces
applied to areas whose typical size is significantly greater than the package thickness
(or that of the external glazing layer). Local loads are those when the loading area
is commensurable with the package thickness. The action of air shock waves and
bird strikes are examples of action of distributed loads on a glazing. Impacts with
airborne particles, solids, and bullets are examples of local actions. Each of these
problems has its own features.

The glazing of motor vehicles and military equipment is designed with account
for its being subjected to the action of blast shock loads. The shock wave load affects
the external surface of the structure. The loading in this case is a distributed one.
As a rule, its time behavior is defined by the mass of the blasting agent and the
glazing distance to the blast point. The basic factor involved in assessing the blast
danger is the excess pressure on the shock wave front. However, in some cases, it is
necessary to account for the influence of not only the increased pressure phase but
also of that of the low-pressure phase (Dharani and Wei 2004; Larcher et al. 2012).
L. R. Dharani and J. Wei conducted a detailed numerical modeling of the response
of architectural three-layer glass to the effects of air shock waves. It was found that,
with allowance for the influence of the negative phase, deflection and stress in the
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glass can be almost twice as much as the values observed when only the increased
pressure phase is considered.

Ensuring aircraft survivability during bird strike collisions is a topical issue
(Dolbeer et al. 2011). In 2008–2015, the International Civil Aviation Organization
(ICAO) registered 97,751 collisions of aircraft with birds (ICAO 2017). A most
dangerous kind of collision is that of a bird with the transparencies, causing their
failure and cabin depressurizing. Thereat, transparencies account for 15 to 18%
of all collisions of passenger and transport aircraft with birds. All modern aircraft
structures are designed with account for likely collision with birds. Thus, aviation
standards require that the aircraft glazing would allow the crew to conclude the
flight safely after collision with a 1.81-kg bird (Federal Aviation Regulation 2020).
Theoretical analysis of the bird strike resistance of aircraft glazing components calls
for developing special methods for their strength design to take into account bird
strikes (Heimbs 2011; Hedayati et al. 2014). It should be noted that the area of glass
loading with a bird strike is large. This is a distributed load (with the exception of
a small initial period of glass-bird interaction). The complexity of these problems
stems from the difficulty of describing the contact interaction of the bird with an
obstacle, and from bird nonuniformity. To date, a number of approaches have been
developed to evaluate glazing strength under impact. These approaches are based
on the finite-element modeling of both the glazing and the bird. The underpinning
of each approach is always a number of assumptions on the form and mechanical
parameters of the bird, with one or other equation of state being used. In the general
case, these parameters are known poorly and should be found experimentally. In the
majority of cases, bird strike action on an obstacle is restricted to considering the
hydrostatic pressure (the Hugoniot impulse is neglected). Finite-element modeling
can yield qualitative results. However, in the majority of cases, it is computation-
intensive. However, in the event of impact with small-deformation obstacles, which
in the majority of cases are the glazing of civil aircraft, a no less effective method
can be the application of certain semi-empirical relationships that specify the contact
interaction parameters. This simplifies computations substantially.

Analysis of glazing strength calls for solving several specific problems related
to structural design for low-velocity impact with a solid (Heimbs et al. 2019; Hu
et al. 2013). Such problems are as follows: impact on the glazing of buildings by
solid particles brought with the wind; impact on the glazing of vehicles by blast
fragments; impact on the glazing of aircraft and motorcars by road and airfield
pavement fragments; locomotive glazing impact with a solid, and so forth. As a rule,
such loadings are localized ones. Thereat the parameters of contact interaction are
unknown a priori and must be found when solving the problem. For this purpose,
the glazing motion equations are complemented with indenter motion equations and
the condition of compatibility of displacement of interacting bodies. Indenter motion
is often considered as the motion of a solid, with Hooke’s law used to account for
deformations in the impact point.

The task of evaluating glazing bullet resistance is one of the most challenging
problems (Ben-Dor et al. 2013; Chou et al. 2020; Holmquist and Johnson 2011; Shim
et al. 2016). To date, the bullet resistance of multilayer glazing is analyzed, as a rule,
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by using finite-element systems. They allow account for glazing deformation and
destruction processes with a qualitative result. To achieve this, these systems require
the following: a knowledge of the parameters of the state of interacting bodies with
allowance for their deformation rates; a consideration of crack propagation processes
and methods of reinforcing the glazing. In the majority of cases, these methods have
been investigated insufficiently for multilayer glazing materials. A solution to this is
the use of semi-empirical relationships for preliminary evaluation of glazing bullet
resistance.

The main purpose of this paper is to develop a universal 2-dimensional model
of multilayer glass that can be used for transient analysis of the stress–strain state
(SSS) of glazing with a different structure and thickness. Another objective is the
development of a complex of analytical–numerical methods for analyzing the SSS
of multilayer glazing subjected to intense force actions of different origin.

7.2 Mathematical Model of Multilayer Glazing
and the Governing Equations

Amultilayer glazing is considered, which is secured on the edge and subjected to an
external loading force P(p1, p2, p3) applied to the first layer. The glazing (Fig. 1)
consists of I layers of constant thickness; hi is the thickness of the i-th layer. The
mechanical parameters of the i-th layer of the glazing are designated as follows:Ei

is Young’s modulus, νi is Poisson’s ratio, ρi is density. Contact between layers is
assumed to exclude their delamination and mutual slipping.

The behavior of a multilayer glazing is described by equations of the general-
ized theory of multilayer plates (Ugrimov 2002). It allows choosing the required
accuracy of the SSS description, depending on the package composition and loading
conditions. The displacements of an i-th layer point are described by the following
kinematic relationships:

Glass layer

Glass layer

A

B

x1
x3

x2 x1

x3

x

h2

h3

x1x

h1

p =p t( )

PVB interlayer

3

Fig. 1 Multilayer glazing
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uiα(x1, x2, x3, t) = uα +
Kα∑

k=1

⎡

⎣
i−1∑

j=1

hkju
j
αk + (x3 − δi−1)

kuiαk

⎤

⎦ (1)

where hkj = (h j )
k ; δi = ∑i

j=1 h j , δi−1 ≤ x3 ≤ δi , i = 1, I ; uiα(α = 1, 3)
are displacements of an i-th layer point in the direction of the coordinate axes
Oxα; uα, uiαk are terms in power series expansions depending on x1, x2, t ; Kα

are maximum powers of terms retained in a power series for in plane (α = 1, 2)
and transverse displacements (α = 3), with the values of parameters Kα being
chosen depending on the required approximation accuracy. In so doing, K1 and K2

will be the same and equal to K . Henceforth, the generalized theory will be desig-
nated by the number of retained terms in power series (1) for plane and transverse
displacements—theory {K , K3} .

The accepted kinematic relationships (1) are equivalent to the following
hypotheses: for {1, 0}, of the E. I. Grigoliuk and P. P. Chulkov model; for {1, 1},
of the first-order refined model that accounts for reduction of each layer; for {3, 2},
of the higher-order model that enables studying localized loading (Shupikov et al.
1998; Ugrimov 2002).

The strains εiαβ of the layers are assumed small and are described by Cauchy’s
formulas. The stresses piαβ in the layers are calculated based on Hooke’s law.

piαβ = λiδαβεill + 2μiεiαβ, εill

= εi11 + εi22 + εi33, ε
i
αβ = (uiαβ + uiβ,α)/2,

λi = Eivi/((1 + vi )(1 − 2vi )), μ
i

= 0.5Ei/(1 + vi ), α, β = 1, 3, i = 1, I ,

where δαβ is Kronecker delta; εiαβ is strain tensor; λi , μi are Lame’s coefficients of
an i-th layer; Ei, ν i are Young’s modulus and Poisson’s coefficient of an i-th layer.

The equations of motion and the boundary conditions are found using the
Ostrogradsky-Hamilton variational principle as this was done for layered plates
(Shupikov et al. 1998). The equations of motions in term of the resultant stress
have the following form (Ugrimov 2002):

I∑

i=1

[
Li

α − I iα1
] + pα = 0,

Nikα

1α,1 + Nikα

α2,2 − kαN
ikα−1
α3

+ hkα

i

I−1∑

j=i

[
L j+1

α − I j+1
α1

]
− I iαkα+1 = 0 (2)
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where Li
1 = Ni0

11,1 + Ni0
12,2, L

i
2 = Ni0

22,2 + Ni0
12,1, L

i
3 = Ni0

13,1 + Ni0
23,2, N

ik
αβ = Nik

βα =
δi∫

δi−1

(x3 − δi−1)
k piαβdx3, I

i
αr = ρi hri

r

(
uα0,t t +

Kα∑
k=1

[
i−1∑
j=1

hkju
j
ak,t t + rhki

k+r u
i
αk,t t

])
, α =

1, 3, kα = 1, Kα, i = 1, I i = 1, I .
Thus, the dynamic response of a plate is described by (2K +K3)I +3 differential

equations, with the number of governing equations depending on the number of
layers.

The glazing in motorcars, locomotives, and aircraft is secured using a rubber-
sealing strip. It is held in place along the perimeter with a polymer or rubber retainer.
This allows considering glazing elements as simply supported ones. Therefore, for
rectangular glazing (A × B), the components of the external load P as well as
displacement functions uα, uiαk are expanded into a series in terms of functions
Bamn(x1, x2) satisfying the simply supported conditions.

[
uα, uiαk, pα

] =
∞∑

m=1

∞∑

n=1

[
	amn(t),	

i
αkmn(t), pamn(t)

] · Bamn(x1, x2)

B1mn = cos d1x1 · sin d2x2,
B2mn = sin d1x1 · cos d2x2,
B3mn = sin d1x1 · sin d2x2,

d1 = mπ/A, d2 = nπ/B.

Hence, the problem of non-stationary vibrations of a multilayer glazing for each
pair of values m and n is reduced to integrating a system of ordinary differential
equations with a constant coefficient.

� · 	
mn
tt − �mn · 	

mn = Q
mn

, 	
mn

∣∣∣
t=0

= 0, 	
mn
,t

∣∣∣
t=0

= 0.

where �, �mn is mass matrix and stiffness matrix (Ugrimov 2002); 	
mn
, Q

mn
are

vectors.

(	
mn

)T = (
	amn,	

i
αkαmn

)
, (Q

mn
)T = (pamn, 0, . . . 0), i = 1, I , kα = 1, Kα.

The system obtained is integrated by using the modified method of expanding the
solution into Taylor’s series.
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7.3 Investigation of the SSS in Glazing Under Dynamic
Force Loading

7.3.1 Distributed and Localized Loading. Transient Dynamic
Analysis

The essentially dissimilar mechanical properties of layers in multilayer glass require
that transverse normal and shear strains in the applied mathematical model are
accounted for. Localized loading poses yet more strict requirements to the model
being used. The limits to the applicability of different glass models obtained in terms
of hypothesis (1) for different values of Kα were investigated.

The effect of accounting for transverse reduction (strain ε33) in the mathematical
model was studied. The glass was modeled using the E.I. Grigoliuk and P.P. Chulkov
model {1, 0}, which fails to account for transverse reduction, and the refined first-
order model {1, 1} that takes into consideration the reduction of each layer. Let
us consider the dynamic behavior of a three-layer square-shaped simple-supported
glazing (A = B = 0.5 m, h1 = h3 = 0.015 m, h2 = 0.003 m) with impulse loading.

p1 = p2 = 0, p3 = 1

2
P0

[
1 + sign(t1 − t)

]
sin

π t

t1
sin π

x1 − x11
x12 − x11

sin π
x2 − x21
x22 − x21

(3)

applied to the outer surface of the first layer over a rectangular area x11 ≤ x1 ≤ x12,
x21 ≤ x2 ≤ x22, t1 = 4 ms.

The glazing is composed of two SG bonded by a polyvinyl butyral (PVB) layer.
The mechanical properties of layers are: E1 = E3 = 61.2 GPa, ν1 = ν3 = 0.22, ρ1

= ρ3 = 2500 kg/m3, E2 = 0.28 GPa, ν2 = 0.38, ρ2 = 1200 kg/m3.
The SSS in glass under impulse distributed and localized loading (3) is studied.

The distributed loading that acts almost over the entire outer layer surface has the
following parameters x11 = x21 = 0.01 m, x12 = x22 = 0.49 m, P0 = 7.8125 kPa.
The localized loading that is distributed over a square area 0.0048 m× 0.0048 m has
the parameters x11 = x21 = 0.2476 m, x12 = x22 = 0.2524 m, P0 = 78.125 MPa.

Figure 2a, b show the through-the-thickness distribution of normal stresses pi11
at the center of the glazing. The distributions are given for time instances when they
achieve their maximum values on the outside surface of the first layer. Figure 2a
shows the distributed loading and Fig. 2b, the localized one. The stresses in the
polymer material layer (i = 2) are not shown in the figures because they are much
smaller than the similar values for bearing layers (i = 1, 3), and they can be omitted
for the graph scale shown.

It is evident from Fig. 2 that, with distributed loading, the results obtained without
taking into consideration the transverse reduction of layers are in good agreement
with similar computational data obtained by using the suggested refined first-order
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(a) (b)

Fig. 2 Through-the-thickness distribution of stresses pi11 for distributed (a) and localized (b) load-
ings (the solid lines are for the refinedfirst-order theory, and the dashed lines are for theE.I.Grigoliuk
and P.P. Chulkov theory)

theory (Fig. 2a). When localized loading acts on the glazing, the results obtained
with the discussed models differ significantly (Fig. 2b).

The influence of the characteristic size of the loading area (3) on the maximum
stresses in glazing was investigated. As before, the load is assumed to be applied
to a square area with the sides L = x12 − x11 = x22 − x21 arranged symmetrically
relative to the center of the outer glass plate surface. The total force applied to the
plate is always constant and equal to 1.8 kN. The characteristic size of loading area
L varies within 0.48–0.0048 m. The ultimate range values correspond to the cases of
distributed and local loading studied earlier.

Figure 3 shows the maximum stresses at the center of the outer surfaces of the
bearing layers. The difference in the results obtained by {1, 0} and {1, 1} theories
increases with decreasing dimensions of the loading area. The differences become
evident for loading area dimensions smaller than 0.1 m. This corresponds to about
three glazing thicknesses. According to the E.I. Grigoliuk and P.P. Chulkov theory,
which fails to account for transverse strain of layers, the moduli of the stresses found
for the glazing on the outer layers were equal. However, under localized loading, the
pattern of the through-the-thickness distribution of real stresses is non-symmetrical
(see Fig. 2b). As a result, according to the {1, 0} model, the bending stresses on
the outer surface of the first layer are smaller than similar values found according
to the suggested refined theory. On the outer surface of the third layer, these values
are bigger. In the case being discussed, the E. I. Grigoliuk and P. P. Chulkov theory
yields averaged values of real stresses.

For the case of localized loading of a square three-layer glazing, A = B = 0.5 m
with a symmetrical structure (h1 = h3) and the same mechanical parameters of the
layers as those of the glass considered above, the impact of the ratio of the layers’
thicknesses were investigated for maximum bending stresses. The thickness of the
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Fig. 3 Maximum flexural
stresses vs. characteristic
size of the loading area (the
solid lines show the result for
the refined theory, and the
dashed lines are for the E.
I. Grigoliuk and P.
P. Chulkov theory)

second softer layer was varied within 0.003 m to 0.027 m with a constant glazing
thickness of 0.033 m.

Figure 4 shows the variation of the stresses in the outer layers vs. second layer
thickness under localized loading. With increasing thickness of the soft layer, glass
reduction becomes more pronounced and the difference between the results obtained
according to the models, which account and do not account for reduction, increases.

When studying glazing response to force loading, the need to account for nonlinear
terms of expansion (1) was also considered.

Fig. 4 Maximum bending
stresses vs. second layer
thickness under localized
loading The solid lines are
for the refined theory, and
the dashed lines are for the
E. I. Grigoliuk and P.
P. Chulkov theory
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The response of three-layer glazing to impulse load action was investigated. The
glazing has the following geometric parameters: A = 0.47 m; B = 0.42 m, h1 =
h3 = 0.012 m, h2 = 0.002 m. The bearing layers (i = 1, 3) are made of SG (E1 =
E3 = 66.7 GPa, ν1 = ν3 = 0.22, ρ1 = ρ3 = 2500 kg/m3). The adhesive layer (i =
2) is made of a polymer (E2 = 0.274 GPa, ν2 = 0.38, ρ1 = ρ3 = 1200 kg/m3). The
impulse load is applied to a rectangular area x1 ≤ x ≤ x2, y1 ≤ y ≤ y2 according
to the law.

p1 = p2 = 0, p3 = P0H(t).

Here P0 is load intensity and H(t) is Heaviside’s function. The value P0 is selected
for the total force to be P = 2 kN in all the cases being investigated. Distributed
loading acts on the entire external surface of the first layer with the load intensity
P0 = 10.13 kPa. Localized loading is distributed evenly over a square with the side
0.005m at the center of the external surface of the first layer with the load intensityP0

= 80 MPa.
Figure 5a, b shows the through-the-thickness distribution of normal stresses at the

glazing center when they reach their maximum values for distributed (Fig. 5a) and
localized (Fig. 5b) loading. The stresses in the bearing layers (i = 1, 3) significantly
exceed those in the adhesive layer (i = 2). Therefore, their pictorial presentation for
the accepted scale in Fig. 5 is problematic.

A good match of results is achieved based on the first-order theory and the high-
order theory for distributed loads. When localized loads act on the glazing, the
results differ drastically. In this case, the through-the-thickness stress distribution

(a) (b)

Fig. 5 Through-the- thickness distribution of normal stresses in a three-layer glazing for distributed
(a) and localized (b) loadings. The solid lines show the result for the theory {3, 2}, and the dashed
lines are for the first-order theory {1, 0}
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in the glazing is a nonlinear one (Ugrimov 2002). It is approximated poorly by clas-
sical models and models based on the broken normal hypotheses (Timoshenko-type
models).

Note that the through-the-thickness distribution of transverse shear stresses in the
glazing even for distributed loading is nonlinear and cannot be described using linear
approximations.

The three-layer glazing (A = B = 0.5 m, h1 = h2 = h3 = 0.01 m) subjected to
impulse distributed loading was considered. The impulse load has the form.

p3 = P0 · H(t) · sin πx1
A

· sin πx2
B

, p1 = p2 = 0,

where P0 = 0.1 MPa.
The character of the through-the-thickness distribution of transverse shear stresses

that depend on the filler susceptibility in a three-layer plate whose external layers
are made of SG (E1 = E3 = 66.7 GPa, ν1 = ν3 = 0.22, ρ1 = ρ3 = 2500 kg/m3)
is investigated. The other mechanical characteristics (Poisson’s ratio, density) of the
inner layer were assumed equal to the SG characteristics (v1 = v2 = v3, ρ1 = ρ2 =
ρ3).

Figure 6 shows the through-the-thickness distribution of transverse stresses pi13
in the glazing being considered for three E2

/
E1 ratios. The stresses are taken in

points x1 = 0.125 m, x2 = 0.25 m. The distributions are given for time instances
when they achieve their maximum values on the outside surface of the first layer.
The results of computations according to the theory described are compared against
the exact solution found by the analytic method (Ugrimov 2002).

Figure 6 shows that the generalized theorywith parameters {3, 2} and {7, 6} yields
a distribution very close to a real one. By applying the {1, 1} theory, which accounts
only for shear strains averaged over layer thickness, it is impossible to describe
precisely the through-the-thickness stress distribution and to meet, even approxi-
mately, the interlayer contact conditions (pi13 = pi+1

13 ). For the case of homogeneous
glazing (E2 = E1), the through-the-thickness distribution of stresses is parabolic.
With a decreasing elasticity modulus of the middle layer, the external layers take
the greater part of the load. The through-the-thickness distribution of stresses in the
middle layer becomes close to a linear one, whereas in the external layers it remains
nonlinear. At E2 = E1 and E2 = 10−3E1, the through-the-thickness distribution of
stresses is nearly symmetrical relative to the packet median line; at E2 = 10−6E1, it
is nonsymmetrical. This is because that with a very soft aggregate, the glazing outer
layer begins to take the greater part of the external load.

Next, the SSS in a multilayer glazing for real distributed and localized loadings
were considered.
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Fig. 6 Through-the-thickness distribution of shear stresses in a three-layer glazing at distributed
loadings (the solid lines are for the 3-dimensional solution; the dashed lines are for the theory {7, 6};
the dotted lines are for the theory {3, 2}; the dash-dot lines are for the theory {1, 1})
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7.3.2 Blast Loading

Transient analysis of multilayer glazing response to the impact of an air shock is
considered. The impulse acting on the structure during a blast is described as follows
(Dharani and Wei 2004).

p1 = p2 = 0, p3 = p · (1 − t/τ+) · exp(−γ t/τ+).

Here p is maximum pressure at t = 0;τ+ is duration of action of the increased
pressure phase; γ is decomposition factor. Here it is assumed that the glazing is
arranged perpendicularly to the wave propagation direction and fairly far from the
blast point. This allows considering the wave a plane one. The load is applied across
the entire outer surface of the first layer.

A numerical study was performed for the impact of an air shock wave on archi-
tectural three-layer glazing with the geometrical characteristics A = B = 1.325 m,
h1 = h3 = 0.00476 m, h2 = 0.00152 m whose external layers are made of SG with
the mechanical properties: Ei = 72 GPa, ρ i = 2500 kg/m3, vi = 0.25, i = 1, 3. The
other layer is made of PVB: E2 = 0.274 GPa, ρ2 = 1100 kg/m3, v2 = 0.38.

Figure 7 shows the time dependence of deflections at the center of the glazing
caused by an air shock wave with and without account for the low-pressure phase.
The shock wave parameters are τ + = 7.7ms, γ = 0.55,p = 6894.8 Pa. Calculation
results were compared with data obtained by L. R. Dharani and J. Wei (Dharani and
Wei 2004). The close agreement of results confirms the applicability of the suggested
approach for distributed loading.

Fig. 7 Deflections in three-layer glazing under blast loading (the solid and dashed lines show the
result of deflection for the suggested model with account for the low-pressure phase and without
account for it correspondingly, the dot-and-dash and dotted lines are for similar results obtained by
L. R. Dharani and J. Wei)
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7.3.3 Bird Collision

Transient analysis of a glazing system subjected to bird strike is considered. A bird
with massM collides with the glazing system with velocity V. The bird’s trajectory
of motion is at angle α to the target plane (Fig. 8). The bird’s geometrical and
physical body characteristics should be known to describe the parameters of the bird
strike impact on the target. As a rule, the bird’s body is simulated using a cylinder,
a cylinder with mating hemispheres, and an ellipsoid (Shupikov et al. 2013). An
ellipsoid describes the shape of the bird’s body with best accuracy. This is why the
bird’s body model was an ellipsoid with axes 2c, 2a, 2b, and with the average body
mass density of 0.93 g/cm3.

The area of contact of the bird with a flat glazing is elliptical in shape. The
components of the vector of the external load acting on the glazing system during a
strike are represented as

p1 = p2 = 0, p3 = 1

2

[
1 + sign(τp − t)

]
F sin α,

where τ p is time of the bird-and-target interaction; F = F(x1, x2, t) is function of
contact pressure over the load area. Here it is assumed that, with a bird strike, the
values of the load tangential components are much less than those of the normal
component, and they can be ignored when the glazing strength is analyzed. This can
be justified in part in that the normal load is more dangerous for the glazing, and that
bird density is close to that of water.

The distribution of the contact pressure over the load area is assumed to be

x2

x1

x3

C(   ,     )x1 x2
CC

V

c
a

Fig. 8 Bird strike collision with a flat glazing
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F = P0
[
1 − (x1 − xc1 − δ)2/u2b − (x2 − xc2)

2/v2
b

]1/2
,

where P0 = P0(t) is load intensity; ub and vb are lengths of semiaxes of the elliptical
load area; xc1, xc2 are coordinates indicating the pointwhere the trajectory ofmotionof
the bird’s center of mass intersects the glazing system; δ is a parameter characterizing
the displacement of the center of the load area during oblique strikes.

The force of contact interaction (instantaneous impact force) of the bird and plate
relates to load intensity as follows:

Pb =
∫

�(t)

p3(x1, x2, t)dx1dx2 = 2

3
P0πubvb,

where Pb = Pb(t) is contact force; �(t) is the elliptical area of bird and glazing
contact.

Values ub, vb, δ, Pb vary with time and depend on the bird mass, impact angle,
and velocity. In the general case, they should be found from experimental data.

According to the fluid dynamic theory suggested, the first approximation of the
contact interaction force Pb is assumed to be represented by the value found from the
fluid dynamic theory. During normal impact, it takes the form Pb(t) = ρb V 2 π ubvb,
where ρb is bird tissue density, ρb = 3M/(4πabc). Variation of ub, vb in time is
approximated as the dimensions of the ellipsoid section with a plane simulating a
flat target. The load action time is known to depend on the impact angle, and it is
slightly greater than the squashing time. It can be found approximately using the
formula tb = 2ck

/
V , where k is a coefficient selected from experimental data.

The response of five-layer aircraft glazing (A= 0.66m,B= 0.33m, h1 = 0.005·m,
h2 = 0.003·m, h3 = 0.015·m, h4 = 0.002·m, h5 = 0.02·m) during collision with a
1.8-kg bird at different impact velocities (134 and 191 m/s) and an impact angle
of α = 30◦ is investigated. The glazing is composed of three PVB-bonded SGs.
The mechanical properties of SG are E = 64 GPa, ν = 0.22, ρ = 2500 kg/m3. The
PVB mechanical properties are E = 0.25 GPa, ν = 0.39, ρ = 1200 kg/m3. Figure 8
shows the theoretical and experimental data of glazing stress p522 in point x1 = A/2,
x2 = B/2, x3 = δ5 at the collision velocities 191 m/s (Fig. 9a) and 134 m/s (Fig. 9b).
The solid line is the theoretical curve and the dashed line denotes the experimental
data (Onhirsky et al. 2009).

7.3.4 Low-Velocity Impact Loading

The multilayer glazing transient response to low-velocity impact loading was also
investigated. In this problem, the system of Eq. (2) is to be complemented with
the ball motion equation and the condition of compatibility of displacements of the
indenter and the glazing (Smetankina et al. 2007; Shupikov et al. 1998).
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(а) (b)

Fig. 9 Response of a glazing element to bird strike at the collision velocities 191 m/s (a) and
134 m/c (b) (the solid line is the theoretical curve, and the dashed line denotes the experimental
data)

u13(x10, x20, 0, t) + χ(t) − z(t) ≥ 0,

where χ(t) is contact indentation, z = z(t) are coordinates of the indenter center of
mass.

Contact indentation is defined by Hertz law χ = kP2/3, where P is contact force,
k is a coefficient, which depends on the material and form of interacting bodies.

The radius of the contact area r(t) in case of impact by a ball of radius R is
computed by formula (Smetankina et al. 2007, Shupikov et al. 1998).

r(t) = [3P(t) · R · (θ + θ1)/16]
1/3,

θ1 = 4(1 − v2
1)/E1, θ = 4(1 − v2)/E,

where E, ν are Young’s modulus and the Poisson ratio for the ball material, and
E1, ν1 are values of Young’s modulus and the Poisson ratio for the first layer.

The contact force is found on the assumption of compatibility of displacements
at each time step. This is a nonlinear equation of a relatively unknown contact force.
The procedure for solving this problem is described in Smetankina et al. (2007);
Shupikov et al. (1998).

The dynamic response of a five-layer aviation glazing to impact loading is consid-
ered. The numerical results are compared with experimental data. The geometrical
characteristics for a five-layer glazing are as follows: A = 0.6 m; B = 0.28 m; h1
= 0.005 m; h2 = 0.003 m; h3 = 0.015 m; h4 = 0.002 m; h5 = 0.02 m. The bearing
layers (i= 1, 3, 5) are made of SG (Ei = 64 GPa, νi = 0.22, ρ i = 2500 kg/m3) and the
adhesive ones (i = 2, 4), of a polymer (Ei = 0.25 GPa, νi = 0.39, ρ i = 1200 kg/m3).
Impact loading was effected by an indenterM = 0.215 kg, R = 0.03 m dropped from
the height h = 1 m. The indenter was made of OG (E = 5.59 GPa, ν = 0.38, ρ =
1200 kg/m3). The impact was on the external surface of the first layer at the center
of the plate. The strains are calculated for the external surface of the last layer in the
impact point.
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Fig. 10 Deflections in a five-layer glazing under impact

(a) (b)

Fig. 11 Strains in a five-layer glazing vs time under impact loading: a ε11, b ε22 (the solid line
designates the numerical result, and the dashed line shows the experimental one (Shupikov et al.
1998)

Figure 10 shows the numerical values of deflections of the external surfaces of
the first (solid line) and last (dashed line) layers in the impact point.

Figure 11 shows the strains in a five-layer glazing versus time. A comparison of
theoretical and experimental data in Fig. 5 shows that the suggested theory consis-
tently describes the process of transient strain of multilayer glazing under localized
loading.

7.3.5 Bullet Resistance

A vital problem for military equipment is to increase the bulletproof performance of
aircraft cockpits and glazing of armored ground vehicles. Analyzing the bullet resis-
tance of glazing is a challenging mathematical problem (Shim et al. 2016; Cho et al.
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2020). In this case, two processes need to be accounted for, namely, the penetration
process and the deformation process in the glazing at impact. Further, in the paper,
we will consider only the process of indenter penetration. For simplicity, the process
of penetration of a rigid indenter into multilayer glazing at the initial stage can be
represented as follows: indenter penetration into an unbounded medium; knockout
of the so-called Hertz cones during direct contact with the silica glass layers and
involvement of the cones in joint motion. As a result, up to the instance of destruc-
tion of the cone proper, the pressure from the indenter is transmitted to the next layers
across an area much bigger than that resulting from the bullet diameter. Due to this,
the bullet kinetic energy decreases faster. Following cone destruction, the indenter
starts penetrating into the glass fragments.

The stresses on the surface of indenter contact with the obstacle are calculated
using the above empirical formula. The dynamic penetration of a rigid axisymmet-
rical body into a plate with impact velocities (102 – 103 m/s) is described by the
empirical formula σ = Hd + kρV 2 (Ben-Dor et al. 2014). Here σ is specific pene-
tration resistance force, Hd is dynamic hardness of the medium material, k is shape
coefficient of the indenter nose, ρ is density, V is current velocity.

Figure 12 shows how indenters with a conical nose and a truncated cone nose
penetrate into a layered medium.

The equation motion of an indenter with a conical nose in the i-th layer is

d(V 2)

dx
= −4π tg2α

x∫

a

(x − ξ)(Hi + kρi V
2)dξ

− 4π tg2α
i−1∑

j=i+1

δ j∫

δ j−1

(δ j − ξ)(Hj + kρ j V
2)dξ

Fig. 12 Indenter penetration into a layered structure: a with a conical nose, bwith a truncated cone
nose
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Table 1 Glazing composition and bullet penetration depth

No. Glazing composition Glazing thickness (m) Bullet penetration depth (m)

1 4(1) 4(1) 4(1) 4(1) 4(1) 4(1) 4(1)
4(1) 4

0.044 0.0175

2 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 6 0.048 0.0166

3 10(1) 8(1) 8(1) 6(1) 4(1) 4 0.045 0.0158

− 4π tg2α

m

δr∫

x−l

(δr − ξ)(Hr + kρr V
2)dξ − 2Ei+1

mhi+1
(x − δi−1)Si,

where Hi is dynamic hardness of the i-th layer material, Si is area of the bottom
surface of the deformed cone in the i-th layer.

The depth of penetration of a 3.4-g bullet with a steel non-heat hardened core
into multilayer glazing at an impact velocity of 900 m/s was investigated. Several
multilayer compositions of silica glass and filling adhesive were considered. The
adhesive layers are made of a polymer (E = 0.001 GPa, ν = 0.39, ρ = 1200 kg/m3);
SG is unreinforced. Table 1 shows the glazing compositions considered and the
results of calculating the bullet penetration depth. In the compositions, the thicknesses
are shown in millimeters in succession, starting from the face layer. The SG layer
thicknesses are without parentheses, and the thicknesses of the adhesive layers are in
parentheses. The calculations yield slightly overestimated penetration depth values
as compared to real ones.

7.4 Conclusions

Problems in modeling the response of a multilayer glazing to dynamic localized
and distributed force loadings were considered. A generalized model was used to
describe glazing behavior. This theory is based on a power series expansion of the
displacement vector component in each layer for the transverse coordinate.

Analysis of the SSS in glazing under different loading conditions, geometric
characteristics, and mechanical parameters of the layers leads to the following
conclusions:

• for dynamic distributed load action, analysis of displacements and stresses p11
(or p22) in thin and medium-thickness glazing can be based on the refined model
{1, 1} variant, whereas for thicker glazing, higher-order models must be used, for
instance, the {3, 2} theory, etc.;

• when a localized load acts on the glazing, higher-order models ({3, 2} (or even
higher ones) must be used to investigate displacements and stresses p11 (or p22)
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in the load application domain and its neighborhood because the distribution of
loads through the glazing thickness is essentially nonlinear;

• when investigating transverse stresses p13.(or p23, p33), a generalized more
higher-order theory must be applied, for example {5, 4} or {7, 6} models.

The capabilities of the suggested model are demonstrated by the example of
solving a number of real problems in the dynamic loading of glazing. The response
of a flat glazing to shock wave action, bird strike collision, and low velocity impact
with a ball was analyzed. In the first two cases, a distributed load acts on the glazing,
and in the third one, the glazing loading is local. Besides, the problem of glazing
penetration at high-velocity bullet impact is given. In this case, at the initial impact
stage, the penetration process depends weakly on the boundary support conditions
and it is essentially local. The complex nonlinear action of external loads is common
for all the problems considered.
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Chapter 8
Synchronicity Phenomena in Circular
Cylindrical Shells Under Random
Excitation

Antonio Zippo, Giovanni Iarriccio, and Francesco Pellicano

Abstract In many engineering areas, the structures are subjected to external forcing
with a prevalent harmonic component in conjunction with significant likely non-
deterministic contribution; moreover, the coupling between loading conditions and
extreme environmental temperatures can lead to complex dynamic phenomena. In
this paper, an experimental study on the nonlinear dynamics of a thin polymeric
circular cylindrical shell, carrying a top mass, subjected to thermal gradients and
random excitation is presented. Tests have been performed in controlled temperature
conditions and the shell has been excited through an electrodynamic shaker. The
experimental results pointed out that a broadband random excitation at the base of the
shell can give rise to the synchronicity of the response to the resonance corresponding
to thefirst axisymmetricmodeof the shell; the vibration energy is conveyed to specific
harmonics, some of which are outside and far from the excitation band.

Keywords Thin-walled structures · Synchronicity; random vibrations ·
Experimental · Thermal gradients · Polymers

8.1 Introduction

The vibration behavior of structures excited by non-deterministic dynamic forcing
is an important topic for engineers operating in several fields: Aerospace, Nuclear,
Naval, Mechanics. The intrinsic difficulty in analyzing and modeling the structural
behavior of systems subjected to random excitation is magnified when the system
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under investigation presents some peculiarities: modeling complexity, high modal
density, nonlinearities. In many applications, vibration problems are joined with a
complicating factor, i.e., a significant temperature variability, which can sensibly
change the material properties. When shell-like structures are subjected to strong
random excitations and exposed to high thermal gradients, the dynamics can be char-
acterized by strong nonlinearity, which leads to the rise of unexpected phenomena
that cannot be predicted by standard design tools.

Usually, systems subjected to a random excitation vibrate randomly following the
amplitude amplification of the linear transfer function; however, in some particular
conditions, like internal or parametric resonances, the presence of nonlinearities in
the system can give rise to unexpected phenomena. For example, a chain of nonlinear
oscillators subjected to a random forcing could lead to synchronization that induces
a harmonic response; this phenomenon has been partially studied in the literature for
its remarkable characteristics of conveying a broadband spectral energy to specific
frequencies (Ibrahim et al. 1976).

The literature on shell vibration as well as on random vibrations is remarkably
extensive, due to the importance of these topics. Nevertheless, the publications
containing experimental results related to the topics of the present paper are not
so common. A relevant monograph due to Bolotin (1984) is focused on random
vibrations of elastic systems; the topic gained attention thanks to the aerospace and
marine applications, where the excitation due to the fluid turbulence and waves leads
to broadband forcing spectrum acting on the structure. This topic was investigated by
the same author in Bolotin (1966), an asymptotic method was used for investigating
a broadband excitation on an elastic system; the approach consists in replacing the
contribution of each mode with the integration over a defined band in wave number
space.

Several aspects of randomvibrations have been studied in the past, involving linear
and nonlinear behaviors. A recent contribution to the determination of nonlinear
response under random excitation is Malara et al. (2018), where a boundary element
method in conjunction with a Newmark integration scheme were applied for esti-
mating the response in the time domain with a compatible spectrum of the exci-
tation. In Spanos et al. (2010) the random response of a nonlinear system was
analyzed, considering a frequency-dependent restoring force; the authors approached
the problem in frequency domain through the method of statistical linearization.

A chain of nonlinear oscillators, subjected to intense periodic forcing, can exhibit
the “mode-locking” phenomenon that synchronizes the forcing load with the system
response, such phenomenon is described in several textbooks. The synchronization
of nonlinear oscillators under random excitation is much less known, in this case, the
broad band spectral energy of the random forcing is conveyed to specific frequencies,
determining large vibration amplitudes.

Jansen (1998, 2002) showed that a single, non-resonant periodic forcing is insuf-
ficient to activate the mode-locking phenomenon, but the supplement of a reasonable
quantity of broadband noise allows transient mode locking to the original periodic
drive to occur. Ibrahim et al. (1976) studied the response of a system with auto-
parametric coupling subjected to a broadband random forcing, steady oscillations
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were observed in the response moments; the authors claimed: “This suggests the
occurrence of entrainment of regular harmonic responses by the system”.

Different synchronization mechanisms in dynamical systems were deeply
discussed in Boccaletti et al. (2002), the synchronization of chaos was referred to as a
process in which, several chaotic systems adapt a certain property of their dynamics
to a common behavior, due to a coupling or a periodic or random forcing. An analyt-
ical and numerical work was published in Toral et al. (2001), they discussed the
synchronization induced by noise in chaotic systems. Cicek et al. (2002) conducted
a set of experiments on a beam tip mass and pendulum system subjected to random
excitation, to determine the autoparametric interaction between two modes of the
system in the neighborhood of the autoparametric region; in particular, the response
behaves as ultra-narrowband process in the neighborhood of exact internal resonance
that converge into a periodic response. Some experimental studies on very simple
systems can be found in the literature, Ibrahim (1991) presented a review article
on experimental investigations of random excitation of dynamic systems; the same
author (Ibrahim et al. 1990) presented experimental results regarding a nonlinear
two-degree-of-freedom system excited with random loading in the neighborhood of
internal resonance.

A study carried out by Roberts (1980) presented an analytical and experimental
investigation on a two degree of freedom vibratory system, with nonlinear coupling
of autoparametric type, subjected to a broad band random excitation; the system
consists of a cantilever beam supporting on its free end another orthogonal beam;
the primary beam, is excited by a vibration generator. The transversal vibration of
the primary beam imposes an axial motion to the secondary cantilever. The system
is a common structural arrangement, representing the fuselage-tail plane coupling in
aircraft structures.

In Zippo et al. (2017) thin circular cylindrical shells were experimentally studied.
Results showed the coexistence of more than one stable state when the shell is
pre-loaded and excited with a moderately large sinusoidal excitation.

The effects of extreme temperature conditions and thermal gradients across a
polymeric shell have been studied in Zippo et al. (2019, 2020) and Iarriccio et al.
(2020): different dynamic scenarios have been observed due to the strong dependence
of the material properties (elastic and dissipative) from the temperature.

In the present study, the dynamic response of a circular cylindrical shell excited by
a high-energy random excitation is investigated. The shell is clamped at the base to an
electrodynamic shaker, which provides a seismic excitation. On the top of the shell a
rigid disk is mounted, it allows only a rigid body motion of the top end of the shell;
moreover, due to the seismic motion, the disk inertia exerts axial loads to the shell.
The environmental conditions (temperature) are controlled both inside and outside
of the shell. Several tests were carried out by varying temperature and excitation
parameters; the synchronicity phenomenon was detected for particular thermal and
loading conditions: a severe transfer of energy from a broadband excitation to almost
harmonic response is experimentally observed; energy transfer to low frequencies
was observed as well.
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8.2 Description of the Experimental Setup

The experimental setup consists of a specimenmounted on an electrodynamic shaker
coupled with a climate chamber and monitored by accelerometers, laser vibrometer,
and a telemeter.

The specimen under investigation is a thin cylindrical shell made of Polyethy-
lene terephthalate (P.E.T.), a thermoplastic polymer, obtained by a production batch
of plastic bottles; the single bottle has been prepared, to get the testing specimen,
cutting the top and the bottom. The whole production batch reduces the presence of
geometrical imperfection between different specimens and allows the repeatability
of the experimental campaign without undue geometrical errors.

Once the specimen is ready, a disk made of aluminum alloy is glued to the top
side of the shell; to avoid the tilt motion of the top mass, a special care was given to
the orthogonality of the disk with respect to the longitudinal axis of the shell. The
top disk has been designed to be enough rigid in order to achieve its first natural
frequency far away from the frequency bandwidth of the test requirements.

The bottom side of the shell is clamped to the vibration table adapter (VTA)
through a bolted shaft collar. Those mounting conditions allow a clamped–clamped
connection of the shell to the top disk and to the vibration table adapter, respectively.
In Table 8.1, the geometrical and material parameters of the shell and the material
properties of the fixture and top disk are reported. In Fig. 8.1 a schematic representa-
tion of the whole setup and its components is shown; the control system, the shaker,
and the climate chamber are described as well.

Inside the shell, a cartridge heater is mounted in order to set the inner temperature
and to obtain the desired thermal gradient across the shell thickness, see Fig. 8.2.
Eight aluminum foil wings are mounted on the thermal cartridge in order to increase
the heat transfer capabilities; the heating group is isolated from the fixture by means
of high-temperature-resistant silicon glue in order to avoid interference with the
dynamics of the system under investigation. A mirror periscope has been designed
and built to reflect the laser beam of the vibrometer and to allow reaching a lateral
point of the shell located in a shadow position with respect to the climate chamber
window (see the yellow circle in Fig. 8.2). In addition, a laser telemeter measures the

Table 8.1 Geometrical and material parameters of the shell, the fixture, and top disk

Fixture and top disk Shell

Material Aluminum
alloy

Material P.E.T Diameter 0.080 m

Mass density 2700 kg/m3 Mass
density

1366 kg/m3 Thickness 0.38×10−3 m

Young’s modulus 68.9 GPa Young’s
modulus

3.2 GPa at
20 °C

Height 0.160 m

Poisson’s ratio 0.33 Poisson’s
ratio

0.417
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Fig. 8.1 Scheme of the experimental setup

Fig. 8.2 Detail of the
specimen inside the climate
chamber: laser Doppler
Vibrometer spotlight (orange
circle) and laser telemeter
spotlight (green circle)

displacement of another point of the shell lateral surface, highlighted with a green
circle in Fig. 8.2, out of phase of about 135° respect to the vibrometer measurement
point (Fig. 8.3).

A detailed drawing of the assembly of the shell and of the top mass is shown in
0a; while in 0b the drawing of the top disk is presented, the top disk mass is 0.200 kg.

In order to complete sensors description, we have to mention an accelerometer
located on the base of fixture, such accelerometer is used by the control system of
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a) b)

Fig. 8.3 System dimensions and detail of the mechanical constraints. a Shell; b top disk

the shaker for the closed-loop vibration control; three triaxial accelerometers are
located equally spaced on the top disk, they are used to measure all the six dofs
of the rigid body motion, this allows to detect axisymmetric modes, asymmetric
modes, beam-like modes, and torsional modes. The specimen is mounted on an Es40
Dongling electrodynamic shaker (40,000 N, 1–3000 Hz) coupled with a climate
chamber (temperature limits − 70 °C and + 180 °C) that allows to set the outer
temperature of the shell. Two thermocouples are used to measure the temperature of
the inner and outer surface of the shell. The experimental test campaign consists of a
randombroadband loading that is imposed to the base of the circular cylindrical shell.
The electrodynamic shaker is controlled by a Siemens LMS Scadas Mobile, which
is used to measure the response and simultaneously to generate the random signal,
the controller feedback is based on the signal of a control accelerometer placed at the
base of the shell in vertical direction. Each test is carried out with random excitation
having a specific bandwidth, different overall RMS levels are considered. As an
example, in Fig. 8.4 the time history base acceleration is shown, this clarifies that the
random excitation is exerted with increasing amplitude levels, a single time history
is recorded for the whole test; this procedure is repeated for each test at different
temperatures and gradients as well as different frequency bands. Experimental data
were processed with a MATLAB code, where the different levels were separated in
order to extract spectra and rms. Different combinations of temperature and forcing
load have been tested changing the temperature inside the shell, using the heater,
and outside the shell, using the climate chamber; indeed, the setup allows an easy
control of environmental conditions, i.e. homogenous temperature and gradients can
be accurately set.

8.3 Natural Frequencies and Modes

In order to prepare the basis for interpreting the novel results regarding nonlinear
dynamics, which will be shown in the next section, it is useful to have a clear idea
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Fig. 8.4 Example of base acceleration time history, 24 °C outer temperature—74 °C inner
temperature

of the natural frequencies and mode shapes of the system under investigation. The
analysis is carried out numerically after a validation with experimental data.

Numerical linearmodal analysis has been performed using a Finite Elementmodel
(Nastran solver), see Tables 8.2 and 8.3. It is important to note that the material
properties of the shell are strongly dependent on temperature, Zippo et al. (2019)
and Fig. 8.5. In particular, one can see that the behavior of the Young modulus is
monotonic and drops down with the temperature, as expected; the damping behaves
differently, the polymer displays the lowest damping from 40 to 70 °C, for lower and
higher temperatures the damping increases.

Due to the aforementioned dependence of the mechanical properties from the
temperature, the natural frequencies obtained from the simulation could be slightly
different with respect to the experiments; moreover, the specimen presents amarginal
uncertainty in the geometry. The experimental tests are carried out by exciting the
shell from the base, using a very low energy random excitation with closed-loop
control, the spectrum is flat in the band 0–2000 Hz, see Fig. 8.6. The excitation due
to the base motion is mainly the inertia force created by the top disk acceleration;
therefore, the base excitation mainly pumps into the first axisymmetric mode, see
Table 8.2; the results are summarized in the FRF of 0, where a resonance of the
first axisymmetric mode is found at 462.5 Hz. The numerical finite element analysis
returns 457.6 Hz, with a difference of the 1%, which is fully satisfactory. The numer-
ical simulation has been performed using, for the shell, the properties of the material
(PET) reported in Table 8.1 and the Young modulus at 30 °C from Fig. 8.5a.
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Table 8.2 lists the mode shapes and the corresponding natural frequencies of the
shell. The experimental test rig allows the identification of the first axisymmetric
mode, only, because the other modes are not excited when the forcing level at the
base is very low (as needed for linear vibration analyses). The firstmodes presented in

Table 8.2 Numerical modal analysis 30 °C homogenous temperature: mode shapes, natural
frequencies

Mode m n Natural frequency
[Hz]

Mode shapes

1st cantilever
beam like

97.57

1st
axisymmetric

1 0 457.56

1st shell like
mode

1 4 504.56

(continued)
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Table 8.2 (continued)

Mode m n Natural frequency
[Hz]

Mode shapes

2nd shell like
mode

1 5 533.18

m number of longitudinal half waves, n number of nodal diameters

Table 8.3 Numerical modal analysis 30 °C homogenous temperature: mode shapes, natural
frequencies

Mode m n FEM [Hz]

1st cantilever beam like – 1 97.57

2nd cantilever beam like – 1 97.60

1st axisymmetric 1 0 457.56

1st shell like mode 1 4 504.56

2nd shell like mode 1 5 533.18

3rd shell like mode 1 3 660.29

4th shell like mode 1 6 684.05

m number of longitudinal half waves, n number of nodal diameters

a) b)

Fig. 8.5 Experimental results reprinted from (Zippo et al. 2019)] with permission from Elsevier:
Young modulus (a) and quality factor (b) versus temperature
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Fig. 8.6 PSD of driven base forcing load, random broadband between 10 and 2000 Hz

Tables 8.2 and 8.3 will be useful for the comprehension of experimental phenomena
presented in Sect. 8.5.

8.4 Test Procedure

The test procedure consists of a random base excitation provided by a shaking table
(see 0). The excitation is applied at different levels for each test (tests are also called
runs), in order to investigate nonlinear phenomena arising at high vibration energies.
Several frequency bands of the random spectrum are considered as well as different
thermal conditions: homogeneous temperature and thermal gradients between the
outer and inner shell surface are considered.

In order to provide a stationary thermal condition, an adequate amount of time
has been left to avoid variation of temperatures in time. Two thermocouples were
placed inside and outside the shell, the temperature was checked every 10 min for
5 h, this step is fundamental to obtain a uniform temperature along the shell surface.

Table 8.4 reports the environmental and the excitation conditions considered in
this work. Note that only the most interesting cases, where unknown phenomena
occurred, are reported and analyzed in this paper. Moreover, it is to note that the
excitation frequency bandwidths and the intensity levels are not always uniform; in
fact, for some cases, the tests could not be completed, due to limitations of the shaker
performances and system controller capabilities. The shaking table is a Dongling ET-
40-370, 40kN peak force, 100 g maximum acceleration, 500 kg max static payload,
1–2800 Hz frequency band.
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Table 8.4 Test campaign schedule

Temperature [°C] Frequency
bandwidth [Hz]

Overall rms[
m
s2

] Case

Type Inner Outer Gradient

Homogeneous 30 30 0 10–2000 200 1

25 25 0 900–3000 45–273 2

20 20 0 10–2000
800–2000
900–2000

25
170–350
180–370

3a
3b
3c

Gradient 48 20 28 900–3000 43–298 4a
4b175–515

74 24 50 900–3000 68–426 5

48 20 28 900–1500 150–490 6

8.5 Experimental Results: Excitation and Dynamic
Response

In this section results of a wide experimental campaign are presented, the excita-
tion is random, following Table 8.4, several bandwidths are investigated as well as
several environmental conditions, uniform and differential temperature. The kind of
excitation, which is from the base, and the frequency band, from 10 to 3000 Hz, with
different sub-intervals, lead to a direct excitation of the first axisymmetric mode;
other modes could be indirectly excited when auto-parametric resonances due to
high energy excitation, other minor sources of excitation of asymmetric modes are
geometric imperfections. The goal is to investigate possible energy transfer and
concentration, leading to a synchronization of the system response to a specific
frequency or a very narrow band.

8.5.1 Case 1. Standard Homogeneous Temperature, 30 °C,
Broadband Excitation, 10–2000 Hz

For this series of tests homogenous temperature of 30 °C is considered, the random
excitation presents a uniform spectrum on the bandwidth 10−2000Hz, the excitation
level is 200 m

s2 overall rms. The signal is recorded for 1s. It should be noted that the
first axisymmetricmode frequency is 462.5Hz. In Fig. 8.6 the randombase excitation
PSD (Power Spectral Density) is shown; the shaker controller assures a flat spectrum

of 13

(
m
s2

)2

Hz in the band 10 − 2000Hz, corresponding to 200 m
s2 overall rms; there

is a peak with negligible level at 3162Hz, 10 decades smaller than the main band.
Figure 8.7 shows the PSD of the top disk acceleration, which displays the resonance
of the first axisymmetricmode. Figure 8.8 shows the PSDof the electric signal, which
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Fig. 8.8 PSD of the electric signal sent to shaker amplifier

is the input of the shaker amplifier, obviously, there is energy only on the band 10–
2000 Hz; within this frequency range the spectrum is not flat because the closed-loop
controller, checks the base acceleration (controlled signal) andmodulates the electric
amplifier input (controller signal) in order to maintain flat the base acceleration in the
range 10–2000 Hz; the controller cannot have any action in the out of band spectrum
(below 10Hz and over 2000Hz).
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8.5.2 Case 2. Homogeneous Temperature 25 °C,
900–3000 Hz, 45–273 m

s2

In this case, the temperature is uniform 25 °C, the frequency band is 900–3000 Hz,
six excitation levels, from 45 to 273 m

s2 overall rms, are considered; Table 8.5 shows
the RMS versus time of base, top disk, and lateral vibration, note that the shell is
vibrating with a non-negligible amplitude even though shell like asymmetric modes
are not directly excited. Table 8.6 summarizes the results; it shows that increasing
the amplitude of the excitation produces a proportional increment of the system
vibration.

Figures 8.9, 8.10 and 8.11 show the spectra of the base and top acceleration and

Table 8.5 Evolution of rms over time of case 2: 25 °C homogeneous temperature, bandwidth
900–3000 Hz

(a) Base acceleration (b) Top acceleration

(c) Lateral velocity

Table 8.6 Case 2: vibration
levels

Level Base (m/s2) Top (m/s2) Lateral velocity (m/s)

I 45.11 8 0.00239

II 63.09 11.55 0.00336

III 92.78 16.8 0.00463

IV 135.1 23.98 0.00736

V 195.2 34 0.01035

VI 273.4 48 0.01546
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Fig. 8.9 PSD of base acceleration case 2 at uniform temperature at 25 °C and bandwidth 900–
3000 Hz
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Fig. 8.10 PSD of top acceleration case 2 at uniform temperature at 25 °C and bandwidth 900–
3000 Hz

the lateral velocity, two harmonics are present below the excitation band, i.e., at 112.5
and 475Hz (first beam like mode and first axisymmetric mode). This is an unusual
out of band energy transfer to subharmonic frequencies.



8 Synchronicity Phenomena in Circular … 141

0 1 2 3 4 5 6 7
10-14

10-12

10-10

10-8

10-6

10-4
I
IV
VI

Fig. 8.11 PSD of lateral velocity case 2 at uniform temperature at 25 °C and bandwidth 900–
3000 Hz

8.5.3 Case 3. 20 °C Homogeneous Temperature

The goal of this section is to investigate the effect of the excitation level as well as
the frequency band. Tests are carried out at uniform 20 °C, three subsections are
present, depending on the bandwidth:

Case (3a) 10–2000 Hz, 25.39 m
s2

Case (3b) 900–2000 Hz, 180–370 m
s2 .

For each case, at same temperature conditions, several tests have been performed:
each experiment consists in applying a random signal, controlled through the
accelerometer applied at the base in the Z direction (vertical), for a certain period of
time and at different levels of rms. The rms levels have been chosen according to the
maximum force applicable by the shaker and the bandwidth of the test, therefore,
between different tests, the levels and the duration of the same are slightly different.

8.5.3.1 Case 3a. 10–2000 Hz 25.39m/s2

These tests are carried out using a broadband excitation, the goal is to check the
overall system behavior and detect linear resonances of the shell. The use of the
broadband signal, including low frequencies, limits the excitation level due to the
shaker limitations in terms of max force, max acceleration, max velocity, and max
displacement.

Table 8.7 presents the system behavior at low excitation level at 25.39 m
s2 overall

rms (base acceleration); the closed-loop controller imposes a flat spectrum of the
base vibration (see Table 8.7b), this controller action can be appreciated by noting
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that, in order to impose the base spectrum, the electric signal provided to the shaker
amplifier is suitably adjusted in real-time (Table 8.7c).

From the top acceleration spectrum (Table 8.7c) we can observe the effect of the
temperature, the first axisymmetric mode frequency at 20 ◦C is now 477Hz, with an
increment of 15Hz with respect to the case at 30 ◦C (462.5Hz): a relatively small
reduction of temperature (10 ◦C) induces an increment of the fundamental frequency
of 3%.

As expected, the low-level broad band excitation reveals the linear spectrum of
the structure, the overall rms of the top disk is 99.37m

s2 , four times bigger than the
base, this is due to the fact that the resonance of the first axisymmetric mode is inside
the excitation frequency band. The PSD of the lateral velocity does not show any
interesting aspect, the regular peaks are only due to electric disturbances at 50 Hz
and its multiples. The lateral displacement is below the sensor range (Tables 8.8 and
8.9).

Table 8.8 Evolution of rms over time, case 3c at uniform temperature at 20 °C and bandwidth
900–2000 Hz

(a) Base acceleration (b) Top acceleration

(c) Lateral velocity

Table 8.9 Case 3c: vibration
levels

Level Base (m/s2) Top (m/s2) Lateral velocity (m/s)

I 183 41 0.0000474

II 215 51 0.0000479

III 373 84.15 0.0000485
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8.5.3.2 Case 3b. Uniform Temperature 20 °C, 900–2000 Hz, 180–370 m
s2

In these tests, the excitation band is reduced of 100 Hz with respect to the Case 3b
in order to increase the level of the PSD but avoiding increment of the overall rms
that is limited by the shaker max performances.

Table 8.10 shows the evolution of RMS of the base acceleration (a), the response
of top acceleration (b), and the lateral velocity (c); the evolution shows a regular
behavior for the base and the top, while the lateral vibration.

displays an irregular behavior. Three levels of excitation are considered, Table 8.11
summarizes the results and confirm the situation of Case 3b, the lateral vibration is
negligible.

Table 8.10 Evolution of rms over time of case 4a: thermal gradient 20–48 °C, bandwidth 900–
3000 Hz

(a) Base acceleration (b) Top acceleration

(c) Lateral vibration

Table 8.11 Case4a: vibration
levels

Level Base (m/s2) Top (m/s2) Lateral velocity (m/s)

I 43.12 7.142 0.003

II 62.35 10.96 0.005

III 90.15 16.57 0.009

IV 132.9 24.38 0.014

V 199.4 37.23 0.025

VI 298.2 55.25 0.040
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Spectra are shown in Figs. 8.12, 8.13 and 8.14, a small subharmonic at 375Hz,
while the lateral vibration does not reveal any noteworthy phenomenon, just electric
disturbances are visible.
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Fig. 8.12 PSD of base acceleration case at uniform temperature at 20 °C and bandwidth 900–
2000 Hz
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Fig. 8.13 PSDof top acceleration case at uniform temperature at 20 °C and bandwidth 900–2000Hz
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Fig. 8.14 PSD of lateral velocity on case at uniform temperature at 20 °C and bandwidth 900–
2000 Hz

8.5.4 Case 4. Thermal Gradient, 20 °C Outside, 48 °C Inside,
900–3000 Hz, 43–298 m

s2

In this section the effect of a thermal gradient is investigated, the shell has been
subjected to a 28 ◦C thermal gradient with 20 °C in the outer surface and 48 °C in
the inner surface.

Two series of tests are carried out: case 4a, low medium levels (43–298 m
s2 ); case

4b, high levels (175–516 m
s2 ), for sake of brevity only results of case 4a will be shown.

In case 4a Low medium levels 43–298 m
s2 six vibration levels are considered

from 43 to 298 m
s2 , in Table 8.12 shows the different rms levels of the base, top, and

lateral vibration. Table 8.13 summarizes the overall vibration levels; note that the
lateral shell vibration is not negligible. Spectra of the base vibration for the six levels
are shown in Fig. 8.15, the PSD is flat in the frequency band where the controller
is active (900–3000 Hz); while the spectrum of the top acceleration. Figure 8.16
presents two sharp peaks below the excitation band, corresponding to the first bending
mode (112.5 Hz) and the first axisymmetric mode (475 Hz); an amplification of the
response at 3000 Hz is present. The lateral vibration presents a strong sensitivity to
the variation of the base vibration amplitude, see Fig. 8.17, where the spectrum is
irregular and jagged; in particular, a pure tone of high intensity is present at 2988 Hz
and smaller pure tone is visible at 1000 Hz.
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Table 8.12 Case 6: evolution of rms versus time

(a) Base acceleration (b) Top acceleration

(c) Lateral vibration (d) Lateral displacement

Table 8.13 Case 6: vibration levels

Level Base (m/s2) Top (m/s2) Lateral displacement (µm) Lateral velocity (m/s)

I 150 42 3.92 0.00913

II 212 58 3.72 0.01252

III 301 82 4.65 0.01799

IV 490 116 6.9 0.03303

8.5.5 Case 6. Gradient Temperature (Inner 48 °C, Outer
20 °C), Narrow Band Excitation, 900–1500 Hz

The specimen has been forced with a uniform random signal having a flat spectrum

of 15

(
m
s2

)2

Hz in the band 900 − 1500Hz, corresponding to 102 m
s2 overall rms, see

Fig. 8.18; the closed-loop shaking table controller acts only on the aforementioned
band. A 28 °C thermal gradient is imposed, 48 °C in the inner surface and 20 °C in
the outer surface.

Figures 8.19, 8.20 and 8.21 show the PSD of the top acceleration in vertical
direction, lateral displacement, and lateral velocity, respectively. In Fig. 8.19 the PSD
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Fig. 8.15 PSD of base acceleration case 4a with thermal gradient at 20–48 °C and bandwidth
900–3000 Hz.

0 1 2 3 4 5 6 7
10-8

10-6

10-4

10-2

100

102
I
II
V
VI

Fig. 8.16 PSD of top acceleration case 4a with thermal gradient at 20–48°C and bandwidth 900–
3000 Hz

of the top acceleration in the axial direction (Z) is presented and the presence of a low-
frequency harmonic is clearly visible, which coincides with the first axisymmetric
mode (467Hz); it is important to note that, as shown in Fig. 8.18, in the PSD of
the base acceleration no energy is provided below 900Hz; this proves that there
is a transfer of energy from a broadband source to a specific sub-harmonic, i.e., a
synchronization; this energy transfer is accompanied by a very annoying single tone
noise. In the band 900–1500 Hz, the spectrum of the top acceleration is continuous,
but it is not flat, it drops down of three decades; this is perfectly coherent with the
transfer function of the shell near the first axisymmetric mode, see the spectrum
in Table 8.7 in the range 900–1500 Hz. The spectrum of the lateral vibration is
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Fig. 8.17 PSD of lateral velocity case 4a with thermal gradient at 20–48 °C and bandwidth 900–
3000 Hz
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Fig. 8.18 PSD of random forcing load measured at VTA base

represented in Fig. 8.20 (displacement measured by a Laser telemeter) and Fig. 8.21
(velocity measured by a Laser Doppler); in the band 900–1500 Hz both spectra show
marked peaks close to the extrema of the excitation band (1000 and 1300Hz).

Spectra of Figs. 8.18, 8.19, 8.20 and 8.21 are extracted from a test database of
about 370 s; the test consists of a random excitation having four different levels,
see Table 8.14, the complete dataset is presented in terms of evolution of rms over
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Fig. 8.21 PSD of lateral velocity

the time; the four levels are marked with roman numbers, the black vertical lines
indicate the change of amplitude. In Table 8.15 the overall rms value for each level
is presented, a subset of 5 s for each level is used for calculating the rms. For sake of
brevity, only the vertical measurement of the first accelerometer is shown.

Note that the overall rms level of the top acceleration is about 4 times less than
the excitation at the base.

Signals corresponding to rms of Table 8.15 are now analyzed, extracting a subset
of 5 s from time histories for each measurement level, in order to compute the PSDs.

Figure 8.13 shows the PSD of the base acceleration for different excitation levels,
the light blue strip highlights the excitation band (900–1500 Hz); it is worthwhile to
stress the closed-loop control is active only in this band, it can be seen that the levels
in the excitation band are several decades higher than other parts of the spectrum.
Under 900Hz no energy is provided to the system, while at higher frequencies peaks
are present at about 2 and 3 kHz, it’s to point out that this peak can be related to the
shaker resonance. For the level IV only (black line of Fig. 8.22) the peak at 3 kHz is
of the same order of the level in the excitation band.

Consider now the response of the top mass in vertical direction, Fig. 8.23, it can
be seen that the acceleration response presents a subharmonic peak at 462.5 Hz, that
corresponds to the first axisymmetric mode, even though no energy is furnished in
that frequency band, see Fig. 8.22. In Fig. 8.24 the PSD of the lateral displacement
is shown; for the lowest level “I” the spectrum mainly shows energy in the excitation
band; for higher forcing levels (II, III, and IV) the lateral response shows out of band
peaks, which are more and more evident as the energy increases.
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Fig. 8.22 PSD of random forcing load measured at VTA base, highlighted in light blue the
controlled bandwidth
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Fig. 8.23 PSD of top acceleration, highlighted in light blue the controlled bandwidth

In Fig. 8.24, yellow color shows two areas A and B where the spectrum presents
interesting symmetries with respect to the carrier frequencies 5 and 10 kHz, this
could be related to a masked quasiperiodic response originating the sidebands.

In Fig. 8.25, the lateral velocity measured with the Laser Doppler shows an irreg-
ular response both in the controlled excitation band; two prominent peaks are present
at 1000 and 1325Hz; below the excitation band a small peak is present, close to the
first axisymmetricmode (475Hz); at higher frequencies, a strong harmonic is present
at 3537Hz, other important harmonics are observed at 3875, 4000 and 6025Hz.

There is a clear transfer of energy from a broadband input to specific frequencies;
this explains the highly annoying single tone structure born sound.
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Fig. 8.24 PSD of lateral displacement, highlighted in light blue the controlled bandwidth
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Fig. 8.25 PSD of lateral velocity, highlighted in light blue the controlled bandwidth

8.6 Conclusions

In this work, an experimental investigation on nonlinear dynamics of randomly
excited shells is presented; a thin cylindrical shell, carrying a rigid disk on the top
is excited from the base through a random excitation. Different excitation bands and
levels are considered, as well as different environmental conditions.

Experiments show that the broadband random excitation at the base gives rise to
an interesting phenomenon, called in literature “Synchronicity”, i.e. a conveying of
the broadband excitation energy to specific frequencies.
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An energy transfer to the first axisymmetric mode has been observed, 450 Hz,
which is far from the excitation band and no energy is provided at such low
frequencies.

The temperature variation and the thermal gradient seems to have a role in the
rising of the Synchronicity, a quasiperiodic vibration is observed.

The increment of temperature plays a role in increasing the occurrence of the
synchronicity, in particular, the lateral shell vibration seems to be more sensitive to
presence of gradients.
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Chapter 9
Investigation of the Nonlinearity Effect
of the Shrouded Blade Assemblies
on Their Forced Vibrations

Anatoliy Zinkovskii, Kyrylo Savchenko, and Yevheniia Onyshchenko

Abstract The paper presents the approaches to finite element studying of the forced
vibrations of the shrouded blades with nonlinearity due to the interaction of contact
surfaces of the shrouds and the presence of fatigue crack. The dynamic characteristics
have been calculated for the developed linearized and nonlinear finite elementmodels
of the set of two blades and damaged airfoil. The comparative analysis of the obtained
results shows their significant difference for the linearized and nonlinear models in
both cases of study.

Keywords Assembly of shrouded blades · Compressor blade airfoil · Breathing
crack · Forced vibration · Nonlinearity effects

9.1 Introduction

A peculiar feature of shrouded blade assemblies, which are widely used in the design
of turbine machines, is the presence of contact surfaces both between adjacent blades
and in their joints with the disc (Petrov and Ewins 2006; Savchenko et al. 2018;
Siewert et al. 2010; Szwedowicz et al. 2008; Zucca et al. 2012). This fact determines
the nonlinearity of the blade assembly as a vibration system with a structural rota-
tional symmetry,which can becomemore intense due to fatigue cracks (Dimarogonas
1996; Huang and Kuang 2006; Onishchenko et al. 2018; Shen and Chu 1992).

At present, a computational experiment with modern methods of computer
modelling based on their three-dimensionalmodels, one ofwhich is the finite element
method (FEM), becomes increasingly important in the determination of the dynamic
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state of blade assemblies. It is used to solve the problem of determining the dynamic
stress state of the objects under investigation.

Despite the actual nonlinearity of blade assemblies, it is common to use both
linear (Rzadkowski et al. 2007; Soliman 2019; Zinkovskii et al. 2016) and nonlinear
(Dimarogonas 1996; Petrov and Ewins 2006; Onishchenko et al. 2018; Shen and Chu
1992; Siewert et al. 2010; Szwedowicz et al. 2008) approaches to the investigation
of their vibration characteristics.

In the first case, the use of linearized finite element models is typical, where the
contact conditions are replaced with kinematic constraints (Zinkovskii et al. 2016) or
they are neglected (Soliman 2019). The areas with kinematic constraints are mainly
specified from the results of the preliminary solution to the static contact interaction
between the corresponding surfaces (Szwedowicz et al. 2008). It should be implied
that the results of the linearized models often have low sensitivity and noticeable
differences as compared with the experimental data.

The nonlinear analysis allows one to consider the dynamic variation in the contact
between the surfaces. In turn, this leads to a qualitative and quantitative change in the
vibration characteristics of the blade assemblies as compared with those obtained
using linearized models, in particular, the occurrence of sub- and superharmonic
resonances in the presence of fatigue cracks (Dimarogonas 1996; Matveev et al.
2010; Onishchenko et al. 2018; Shen and Chu 1992).

The analysis of some scientific papers demonstrates that the accuracy of the
obtained results depends significantly on the approaches to the modelling of the
contact conditions between their constituent elements. Therefore, the aim of this
paper lies in the generalization of the test results in the determination of the effect
of possible nonlinearity of the shrouded blade assemblies on the characteristics of
their forced vibrations.

9.2 Approaches to Finite Element Modelling of the Object
Nonlinearity

Let us consider two possible sources of the nonlinearity of the blades under study:
shrouded coupling between the blades and a crack in the blade airfoil.

9.2.1 Shrouded Flange Coupling of the Blades

The analysis of forced vibrations of the blade assemblies is usually performed
assuming that they are cyclically symmetric systems, namely all blades have iden-
tical geometric and mechanical characteristics. Here, the investigation of the blades
is based on the use of their period with the appropriate boundary conditions. Such
a period is assumed to have one blade. However, it is required to select a set of two
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Fig. 9.1 General view of the
FE model of the set of blades
(a) and scheme of the
interaction between the
contact surfaces (b)

blades to consider the conditions of interaction between the shrouded flanges as a
period. Noteworthy is that it is also the simplest regular system that allows one to
determine the influence of structural and operational force factors on the formation of
its vibrations, including the frequency detuning of the blades. Therefore, for compu-
tational experiments, a set of two blades with a straight shrouded flange was chosen
(see Fig. 9.1a).

In study (Savchenko et al. 2020), you will find a detailed description of the
approaches to modelling this set of blades. Therefore, let us concentrate on the
basic principles of the solution to this task.

The shrouded flanges interact on the contact surfaces K as shown in Fig. 9.1b,
where α is the angle of their inclination relative to the rotation plane; ts is the blade
spacing; FN is the resultant normal force to the contact surfaces K.

An eight-node finite element and itsmodifications were used to construct the finite
element (FE) model of the set of blades, and a four-node contact element was used to
model the contact interaction between the shrouded flanges, which make it possible
to track the relative position of the corresponding contact surfaces.

9.2.2 Fatigue Crack

From the previous experience (Onishchenko et al. 2018), the fatigue crack was
modelled in the form of a mathematical cut, which allows one to consider both
its closing and opening during blade deformation. It should also be noted that the
mass of the blade is the same, and only its stiffness undergoes variations on the
deformation cycles. The edges of the open crack do not interact with each other.
In case of a breathing crack, the mutual non-penetration of its edges is ensured by
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Fig. 9.2 General view of the FE model of the compressor blade airfoil (a) and its cross section
with a fatigue crack (b)

the introduction of the surface contact finite elements and the solution to the contact
problem as in the modelling of the interaction between the shrouded flanges of rotor
blades.

Figure 9.2 illustrates the example of the FE model of the compressor blade airfoil
and its cross section with a fatigue crack.

9.3 Calculation of the Forced Vibrations of the Blade
Assemblies

As noted earlier, the dynamic variation in the contact interaction along the flanges
arises under the action of structural and operational factors and leads to the nonlin-
earity of the assemblies. This is corroborated both by the results of the analysis
of the static stress state (Szwedowicz et al. 2008) and from the data of full-scale
experiments (Savchenko et al. 2018).

The matrix equation of forced vibrations of arbitrary nonlinear systems has the
following form:

[M]{u̇} + [D]{u̇} + ([Kl] + [Knl]){u} = {F(t)}, (9.1)

where [M], [D] are the inertia and dissipative matrices of the system, correspond-
ingly; [Kl], [Knl] are the linear and nonlinear components of its stiffness matrix [K ];
{F(t)} is the column vector of the generalized forces acting on the system {u}; {u̇} {ü}
are the column vectors of displacements, velocities and accelerations, respectively.

All matrices and column vectors of Eq. (9.1) are presented as units. The order of
the matrix units is determined by the dimension of the FE mesh of the system under
investigation.

The size of [Knl], which is due to the contact interaction (Wriggers 2006), depends
on the number of contact nodes where each element is presented as:
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where k is the coefficient in q-th node; n, s are the indexes characterizing the normal
and tangential components of the stress state characteristics.

The components ks of the stiffness coefficient k should satisfy the following
conditions:

{

ks �= 0, if η|Fn| > |Fs |;
ks = 0, if η|Fn| = |Fs |, (9.3)

Here F is the internal force in the considered node; η is the friction factor of the
contact surfaces of the shrouded joint.

To determine the nonlinear component [Knl] of the stiffness matrix [K ], let us use
the Newton–Raphson method (Zienkiewicz 1972), which is based on the solution to
the static nonlinear contact task described as follows:

([Kl ] + [KBN ]){u} = {F(ti )}, (9.4)

As a result, q and p are determined, which are in contact:

Fn = kn
(

uqn − u p
n − �n

) �= 0; Fn = ks
(

uqs − u p
s − �s

) �= 0, (9.5)

where � is the parameter of the iteration process in compliance with the Newton–
Raphson procedure.

Under internal and external frictions, the dissipativematrix [D] has a general view
as:

[D] = α[M] + β[K ], (9.6)

Here α and β are the coefficients characterizing the internal and external frictions,
respectively.

Let us confine to considering energy dissipation due to internal friction, then
Eq. (9.6) takes the following view:

[D] = β[K ]. (9.7)

With the vibration decrement δ, which is independent of the strain amplitude, coef-
ficient β during vibrations of the blade by j-th mode with frequency ωj is determined
as:
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β j = δ j

2π2ω j
, (9.8)

where ωj is the resonant j-th mode of the blade vibrations.
The total systemof nonlinear differential Eq. (9.1) is solved in its integration by the

Newmark method (Zienkiewicz 1972). It implies the partition of time T on N steps:
�t = T /N. Then, for each time element 0, �t, 2�t, …, T there is an approximate
solution considering the solution for the preliminary time value at each half-step:

{ {u̇}t+�t = {u̇}t + [

(1 − λ){u̇}t + λ{u̇}t+�t
]

�t;
{u}t+�t = {u}t + {u̇}�t + [(

1
2 − ψ

){u̇}t + ψ{ü}t+�t
]

�t,
(9.9)

where ψ, λ are the parameters defining accuracy and stability of integration.
The next step in solving the problem is harmonic analysis, for which the fast

Fourier transformation procedure is used:

u(t) =
∞

∑

j=1

A( j) cos(ω j t − φ j ), (9.10)

Here A(j), ωj , ϕj are the amplitude, frequency and phase shift corresponding to the
j-th harmonic of the Fourier transformation.

9.4 Results of the Computational Experiments

Using the developed FE models, computational investigations were performed to
determine the influence of the considered nonlinearities on the characteristics of
forced vibrations of the blades of the turbine machine assemblies. The calculations
were carried out assuming the first flexural mode of vibrations.

A set of blades was chosen to study the nonlinearity effect due to the contact
in the shrouded joint. The blades are made of heat-resistant nickel alloy with the
following mechanical characteristics: E = 1.9 × 1011 Pa; ρ = 8570 kg/m3; μ = 0.3.
Moreover, it was assumed that the set consists of identical blades. Therefore, only
in-phase vibrations are observed during kinematic excitation.

Harmonic displacement Q0 sin (ωt) of the end elements of the blade airfoil to the
plane rotation of the rotor wheel along axis 0y (amplitudeQ0 varied in the range from
0.01 to 0.1 mm) was used to model the kinematic (in-phase) excitation of the blade
vibrations. The frequency of the driving force ω varied in the range of the spectrum
of natural frequencies of the blade vibrations.

In accordance with the outlined method of calculating forced vibrations, the time
dependences of the displacements in node A (see Fig. 9.1a) were obtained. From the
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Fig. 9.3 Amplitude-frequency characteristics of the displacements along axis 0y for nonlinear
(solid lines) and linearized (dashed lines) models of the blades

results of harmonic analysis of these dependencies, which characterize the steady-
state vibration mode, the amplitude-frequency characteristics (AFC) of the set of
blades were constructed (see Fig. 9.3). Here, for comparison, the data obtained in
the linear setting are also presented.

The following conclusions can be drawn:

1. TheAFC obtained using nonlinear and linearized computational models is prac-
tically identical in the in-phase excitation of vibrations of the blades, which
is consistent with the data in Larin (2010). However, the level of maximum
displacement amplitudes obtained in the linear settlement is 20% lower.

2. The excitation frequency, when the maximum displacement amplitude is
attained, is 5% lower for the linearized calculation model, which is explained
by the system stiffness variation.

Based on the calculations results, the AFC of the blades in the variation of ampli-
tude Q0 of the kinematic displacement of the root section were determined (see
Fig. 9.4).

For a more detailed analysis, the values of the logarithmic decrement of vibrations
δ were determined. Figure 9.5 illustrates its dependence on the excitation amplitude
Q0.

As seen from the results, with the increase of the excitation amplitude Q0 within
the selected range of its values, there is a linear character of the increase in the
amplitude of the displacement of the blades. Here, the level of energy dissipation
in the set of blades decreases more than twice with the increase of Q0 to 0.05 mm;
however, atQ0 ≥ 0.05mm, it does not change practically. This is due to the significant
decrease of the relative displacements of the contact surfaces between the shrouded
flanges, which also reduces its efficiency as the structural damper.
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Fig. 9.4
Amplitude-frequency
characteristics of
displacements along axis
0y at Q0 = 0.01 (1), 0.05 (2),
0.07 (3), and 0.1 mm (4)

Fig. 9.5 Dependence of the
logarithmic decrement of
vibrations on the excitation
amplitude

Next, consider the results of the calculation experiments on the determination of
nonlinearity due to the presence of fatigue crack in the blade airfoil.

The two locations of the crack were investigated: on the suction side and leading
edge of the blade airfoil at the height of T = 0.1L (see Fig. 9.2). Its size was 10% of
the cross-sectional area of the airfoil. To simplify the numerical calculations, only
the blade airfoil was considered.

A titanium alloy with the following technical characteristics was selected as the
material of the blade under investigation: E = 1.15 × 1011 Pa; ρ = 4500 kg/m3; μ

= 0.3.
The forced vibrations were excited via the harmonic displacement Q0 sin (ωt) of

the end elements along axis 0y, which denotes the first flexural mode of vibrations
within the plane of its minimum stiffness. The displacement amplitude was Q0 =
0.01 mm.
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Fig. 9.6
Amplitude-frequency
characteristics of the blade
airfoil with open (◯, �) and
breathing cracks (•, �) on
the suction side (◯, •) and
leading edge (�, �). Dashed
line denotes the undamaged
airfoil of the blade

TheAFCof the blade airfoilwere determined in the presenceof open andbreathing
cracks, which are shown in Fig. 9.6. For comparison, it also illustrates the frequency
response of an undamaged airfoil.

Analysis of the data implies an insignificant decrease (less than 1%) in the
frequency of vibrations of the blade with cracks, which correspond to the maximum
amplitude of vibrations, as compared with the undamaged blade. At the same time,
the level of the maximum vibration amplitudes of an undamaged airfoil with an open
crack is also almost identical, and for the airfoil with a breathing crack, it is 10%
lower. This can be explained by the fact that, due to the complex geometry of the
blade airfoil, the crack type affects its stiffness considerably. It can be concluded that
the model of an open crack, which does not consider the system nonlinearity, does
not allow one to reliably estimate the level of vibrations of the object in question.

9.5 Conclusions

From the performed experiments, the following conclusions were drawn:

• In the in-phase excitation, the character of the AFC obtained using the nonlinear
and linearized calculation models is almost identical. However, here, the differ-
ence in the level of the maximum amplitudes is 20%.

• The blade damage in the form of the model with a breathing crack allows one to
describe the level of the maximum vibration amplitudes more accurately, as well
as their corresponding frequencies, as compared with the model having an open
crack. This fact enhances the efficiency of the model for the diagnostics of the
presence of fatigue cracks of the blades.
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Chapter 10
Influence of Linear and Nonlinear
Electromechanical Couplings
on Vibration Absorber–Harvester
System

Krzysztof Kecik and Arkariusz Smagala

Abstract This paper presents analysis of the electromechanical coupling problem in
the pendulum absorber–harvester system. The system consists of an oscillator with
the attached pendulum tuned mass absorber. In an absorber, a special mechanism
consisting of the oscillating magnet in the coil is applied. It uses electromagnetic
induction effect for energy harvesting. We have compared the response behavior
and recovered energy of the absorber–harvester system with the fixed, linear and
nonlinear electromechanical coupling models. These models have been developed
using experimental results of the electromechanical coupling determination. The
obtained results show that the recovered energy depends on the electromechanical
coupling models, but the vibration mitigation effect does not depend on them.

Keywords Energy harvesting · Vibration mitigation · Pendulum · Magnetic
levitation · Electromechanical coupling

10.1 Introduction

The presence of mechanical vibration is an important problem in many engineering
applications. Usually, we want to reduce the vibration to an acceptable level. For
this purpose, additional special isolators between the vibrating machine and the
excitation source are applied. Another solution is the structural modification to shift
the unwanted oscillation away from the resonance or dissipate vibration by external
devices (Lu et al. 2016; Sun and Jahangiri 2018). The vibration energy harvester is a
device that converts mechanical energy to electrical energy via a special transduction
mechanism. Energy harvester has to be a viable alternative to batteries for low-power
electronic devices. The mechanical energy is derived from ambient energy (wind,
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solar, thermal, kinetic energy, etc.). Wiercigroch (2005) patented the concept of
energy extraction from sea waves.

A very promising technique in engineering is the simultaneous vibration mitiga-
tion and energy harvesting. Themethodologyof the dynamical vibration absorber and
energy harvester is similar. Energy recovery from the dynamical vibration absorbers
will give the added advantage of harvesting energy while unwanted vibrations are
suppressed. The energy harvesters require transducer mechanisms, usually be it
electromechanical, piezoelectric or electrostatic. The vibration absorber–harvester
system should be designed to maximize the energy harvesting while maintaining the
effectiveness of vibration suppression.

There are numerous papers that describe energy harvesters, microgenerators,
microelectromechanical systems (MEMS generators) for converting mechanical
energy to electricity (Williams and Yates 1996; Mitcheson 2004; Lueke et al. 2011).
In general, the vibration absorber–harvester system combines absorption ability
and harvesting capability. Ali and Adhikari (2013) have investigated the vibration
absorber design integrated with a piezoelectric stack harvester for both vibration
reduction and energy recovery. They showed that with proper parameters, the energy
harvesting and vibration control are possible. Hassan (2014) presented amass-spring
absorber as an energy harvester. The “harvesting frequency” at which the maximum
amplitude of the absorber depends only on the absorber’s mass was defined. Kecik
(2021) proposed a pendulum absorber-harvester system for energy harvesting and
vibration mitigation. The electromechanical coupling coefficient was modeled as the
high-complicated nineteenth-degree nonlinear function of the magnet position. The
obtained results prove that both vibration mitigation and energy harvesting could
be achieved. Comparison of the vibration absorber and the vibration absorber–
harvester was demonstrated. Dipak et al. (2013) have presented the possibility of
harnessing vibration energy from the linear vibration absorber with a piezoelec-
tric energy harvester. They have optimized the system parameters for simultaneous
vibration mitigation and energy recovery. In the papers of Davies and Mc Dowell
(2016,2017), the prototype device for simultaneous vibration absorption and energy
harvesting has demonstrated. Authors have used a system with the post–buckled
beam spring. The piezo elements over the beam for energy harvesting were attached.
Rasil Raj and Santhosh (2019) have studied two degrees of freedom nonlinear system
used for vibration mitigation and energy harvesting simultaneously. Multi-harmonic
balance method (MHBM) along with arc length continuation for frequency response
analysis was used.

In general, the electromagnetic energy harvesters are based on the induced voltage
in a coil when a magnet moves relative to it (the change in magnetic flux is either due
to having a fixed coil and a moving magnet, or the opposite). The induced voltage
(well–known as electromotive force) is proportional to the velocity of the relative
motion and the number of turns of the coil. There are two basic types of transducer
mechanisms in terms of the relative displacement. Thefirst is themechanismof lateral
motion between the magnet and the coil. The second type is based on the magnet
motion in of the coil terminal (or in and out). The harvester efficiency depends
largely on the architecture of the transduction mechanism and the electromechanical
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coupling. Therefore, the simplemethod to increase the harvesting efficiency is higher
harvester size (higher magnet, more coil windings). As reported by Beeby (2007)
the electromagnetic generators perform better on macro-scale than on micro-scale.

In the literature, the electromechanical coupling can be modeled as a constant
value, because the magnetic flux density is treated as uniform (Stephen 2006; Mann
and Sims 2010). Stephen derived the coupling coefficient parameter and its influ-
ence on the optimum load resistance. Mann and Sims have assumed the coupling
as the constant including the coil inductance. O’Donnel et al. (2007) also reported
a similar approach but neglected the coil inductance. Moreover, the author showed
that the induced current of the harvester is equivalent to an additional damping
called “electrical damping”. This assumption simplifies analysis and the current flow
equation was reduced. Cepnik et al. (2011) used the time-optimized simulation of
the electromagnetic coupling by analytical calculation. Some papers have shown an
experimentally determined coupling coefficient (Liu andGarrett 2005). Kecik (2017)
demonstrated some differences in the experimental determination of the electrome-
chanical coupling during the static and dynamic tests. Other methods are expressing
the magnetic flux density by elliptic integrals (Spreemann 2008) or by finite element
method (Zuo et al. 2010). Mosch and Fischerauer (2019) have presented an inter-
esting review paper describing different methods for coupling coefficient measure-
ment. Additionally, they have recommended some methods for determination of
the electromechanical coupling coefficient and the optimum load resistance for the
maximum power harvesting.

In this paper, we present a frequency response analysis of the absorber–harvester
system with four different electromechanical couplings: fixed model, linear model
and two nonlinear models. All models were determined based on the experiment
dynamic tests. The main aim is to show the differences between various electrome-
chanicalmodels and estimate how thesemodels influence the vibrationmitigation and
energy harvesting. The obtained results show that the modification in the coupling
coefficient by changing the magnet–coil position does not influence the vibration
suppression, but influences the energy harvesting.

10.2 Absorber-Harvester Architecture

In this section, we present the architecture of the vibration absorber-harvester system.
This system was originally designed as the pendulum tuned mass absorber (Kecik
2015). Next, themodification and adding themagnet–coil harvester allows for energy
recovery during the operation of the absorber. Themain problemseemshow the added
harvester influences the vibration mitigation.
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10.2.1 Model of Vibration Absorber System with Energy
Harvester

Figure 10.1 shows the schematic diagram of the proposed dynamic pendulum vibra-
tion absorber with energy harvesting component. It consists of three main subsys-
tems: the main system (I), the tuned mass absorber (II) and the magnetic levitation
harvester (III). The primary system (mass m1) is suspended on the classical suspen-
sion consisting of a linear spring with stiffness k1 and a damper with damping coef-
ficient c1. This system is excited in a kinematic way with the amplitude k2x0, where
k2 is the linear stiffness of the excitation’s spring and x0 is its end displacement.
Frequency of the harmonic excitation is denoted by ω. The tuned mass damper has
mass m2 and length l. The pendulum to the main system is attached. The pivot’s
damping is assumed to be linear and denoted by c2. The subsystem can absorb the
energy from themain system and the vibrations of the primary system are suppressed.
The third harvester subsystem is mounted in the pendulum structure. It consists of
the levitatingmagnet (m3) in the coil (Fig. 10.1c). The levitatingmagnet is suspended
between two repulsive arranged magnets. The magnetic levitation system in the liter-
ature as the stronglymechanical nonlinear oscillator is assumed. Themagnetic forces

Fig. 10.1 Absorber–harvester scheme (a), the electromechanical energy harvester installed in the
tunedmass absorber structure (b) and the energy harvester circuit diagram (c). The pendulummotion
causes vibration mitigation of the main system and the current is induced in the coil winding
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usually are treated as nonlinear springs (Mann and Sims 2009). The detailed descrip-
tion of the experimental absorber–harvester system and the magnetic levitation part
is presented by Kecik (2021).

The motion of the pendulum causes vibration mitigation of the main system
and causes the magnet to oscillate in the coil and finally the current is induced.
Note that the energy is recovered for the pendulum swinging (non–trivial solution)
and for the pendulum rest (semi–trivial solution). The electrical circuit consists of
the coil terminal with the resistance RC and the resistor with a load resistance RL.
This circuit dissipates the produced energy across the load resistor and it is not
capable of storing energy. The electromechanical coupling parameter α(r) couples
mechanical and electrical subsystems. The electromagnetic harvester can bemodeled
as a mechanical nonlinear oscillator. The total system has four degrees of freedom:
the displacement of the main system (x), the pendulum angular displacement (ϕ),
the levitating magnet displacement (r) and the induced current (i). The equations of
motion are derived from Lagrange approach. The kinetic and potential energies in
the paper of Kecik (2021) are defined. The equations of motion are:

(m1 + m2 + m3)ẍ + c1 ẋ + (k1 + k2)x

= k2x0 sinωt −
(
m2

l

2
+ m3(z + r)

)[
ϕ̈ sin ϕ + cos ϕ̇2]

+ m3(2ṙ ϕ̇ sin ϕ − r̈ cosϕ), (10.1)

(
I0 + m3(z + r)2

)
ϕ̈ + c2ϕ̇ + (ẍ + g)[m2s + m3(z + r)] sin ϕ + 2m3ϕ̇ṙ(z + r) = 0.

(10.2)

m3r̈ − m3
[
ẍ cosϕ + ϕ̇2(z + r)

] + c3ṙ + k3r + k4r
3 − m3g cosϕ + α(r)i = 0,

(10.3)

Li̇ + i(RL + RC) = α(r)ṙ . (10.4)

Here, I0 denotes the pendulum mass moment of inertia, z is the magnet’s position
vs. the pendulum pivot, and L is the coil inductance. Equation (10.4) is the electrical
differential equation characterizing the current flow in the circuit (Fig. 10.1c). These
equations of motion are strongly nonlinear and additionally coupled by inertial terms
leading to so-called autoparametric systems. Therefore, there is an energy transfer
between different subsystems.

10.2.2 Electromechanical Coupling Modeling

Asmentioned earlier, the electromechanical coupling coefficientα(r) of the transduc-
tion mechanism couples the mechanical and electrical systems (Eqs. 10.3 and 10.4).
This parameter characterizes the ability to convert mechanical vibration energy into
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electricity. The electromechanical transducer mechanisms generally differ in size,
architecture and output performance. Therefore, the electromechanical coupling is
determined in various ways. In our case, the transducer architecture consists of a
cylindrical magnet oscillating inside a coil (or oscillating outside the coil).

In the literature, the electromechanical coupling in themagnet–coil system is often
assumed as the constant value due to the low coil inductance. Then the equation of
induced current (Eq. 10.4) is reduced and the electromechanical coupling represents
only an additional damping term (Stephen 2006; Mosch and Fischerauer 2019).

L ≈ 0, i = αṙ

RL + RC
, αi = α2ṙ

RL + RC
. (10.5)

This means that the induced current equations are omitted. As reported by Kecik
(2017) this approach is correct provided that the constant value of the electromechan-
ical coupling coefficient is properly chosen. To find the electromechanical coupling
function (parameter), one can start by examining how the induced voltage in the coil
terminal is related to the velocity of the magnet. For this aim, the dynamic test of
the moving magnet through the coil was applied. Applying Kirchhoff’s voltage law
yields (Kecik 2017)

α(r) = Li̇ + i(RL + RC)

ṙ
. (10.6)

Finally, the electromechanical coupling function in Fig. 10.2 is obtained. The
black line means the experimental electromechanical coupling coefficient relative to
the magnet position in the coil. The dashed lines show the coil ends. As we can see,
this function is strongly nonlinear and its value depends on the magnet’s position.
The maximal α(r) value of 80 Vs/m close to the coil’s end is obtained. For small
oscillations (close to the coil’s center) the function is linear.

Therefore, the first proposed model is linear that depends on the magnet position
in the coil (blue circle in Fig. 10.2). This model has simply form

α(r) = α11r, (10.7)

where α11 is the parameter estimated from the experiment. Generally, this model for
the small magnet oscillation close to the coil’s center is designed.

The second electromechanical coupling model is the nonlinear (called nonlinear
I) that depends also on the magnet position in the coil according to the square
polynomial function

α(r) = α21 + α22r + α23r
2. (10.8)
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Fig. 10.2 Electromechanical coupling coefficient in function of the magnet position obtained from
the experiment (black line). For themagnet oscillation close to the coil’s center the electromechanical
coupling can be described by the linear function (blue circle), for the magnet oscillation close to
the coil’s end the electromechanical coupling is a nonlinear function (red circle)

Parametersα21,α22, andα23 are obtained by the curve fitting technique (red circles
in Fig. 10.2). This model is dedicated to the magnet oscillation close to the coil’s
end.

The strongly nonlinear polynomial model (called nonlinear II) based on the
full shape of the experimental electromechanical coupling function (black line in
Fig. 10.2) has been proposed by Kecik (2019). This polynomial nonlinear model has
the form

α(r, d) = a0(r − d) +
9∑

i=1

ai (r − d)2i+1, (10.9)

where d is the position magnet versus the coil. The coefficients a1–a9 are determined
by the curve fitting technique. This model can be used for all magnet coil positions.
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10.3 Results

10.3.1 Parameters Identification

The equations governing the model appear as fully implicit ordinary differential
equations. Therefore, the numerical continuation method (Auto07) and verification
with the solver ode15i (MATLAB) which can handle fully implicit differential equa-
tionswere used.Theparameters of the absorber-harvester systemhavebeen estimated
from the laboratory rig. Most of these are readily measurable (mass, length, stiffness,
resistance, inductance), others had to be identified (damping and electromechanical
coupling). The damping coefficients have been estimated from well-known the loga-
rithmic decrement of the damping method. The identified system parameters are:m1

= 0.55 kg, m2 = 0.3 kg, m3 = 0.1 kg, c1 = 12 Ns/m, c2 = 0.03 Nsm/rad, c3 = 0.085
Ns/m, z = 0.15(m), k1 = 600 N/m, k2 = 800 N/m, k3 = 400 N/m, k4 = 260 kN/m3, I
= 0.004 kgm2, L = 1.5 H, RL = 1 k�, RC = 1 k�. The electromechanical coupling
parameters are: α = 75 Vs/m, α11 = 9000 Vs/m2, α21 = − 12.07 Vs/m, α22 = 7751
Vs/m2, α22 = 237,700 Vs/m3. The parameters of the nonlinear model II are listened
by Kecik (2019). The amplitude of kinematic excitation equals x0 = 0.035 m.

10.3.2 Comparison of Electromechanical Coupling Models

At the beginning, the comparison of the frequency response curves of themain system
(Fig. 10.3a), the absorber (Fig. 10.3b), the harvester (Fig. 10.3c) and the induced
current (Fig. 10.3d) for all coupling models are shown. The black color means the
constant coupling model (Eq. 10.5), the purple line is the result of the linear coupling
model (Eq. 10.7), the red color shows the nonlinear Imodel (Eq. 10.8), the yellow line
denotes the nonlinear II model (Eq. 10.9) and the green triangles are the experimental
results.

The marked circle points mean the period doubling bifurcation that causes the
destabilization of the semi-trivial solution and the pendulum starts to oscillate from
rest. The continuous and dashed lines are stable and unstable solutions, respectively.

From all diagrams, it can be seen that all electromechanical couplingmodels prac-
tically do not influence the main system (Fig. 10.3a) and the absorber (Fig. 10.3b)
oscillation. However, the magnet dynamics and the induced current are different
for each model. This suggests that the electromechanical coupling influences the
harvester only. Therefore, the increase of energy recovery without loss of vibration
mitigation effectiveness is possible by simple modification in the magnet coil config-
uration. As we can see, for the small pendulum’s oscillation the induced currents for
all analyzed models agree with the experiment. However, for higher oscillations, the
induced current is better described by the nonlinear I and II models.

Interestingly, for some frequency ranges, the recovered current is higher if the
pendulum was swinging (constant, nonlinear I and nonlinear II models close to
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Fig. 10.3 Absorber–harvester responses with constant, linear and nonlinear electromechanical
coupling models: main system (a), the tuned mass damper (b), the harvester (c) and the induced
current (d). The continuous line means the stable response while the dashed line denotes an unstable
solution. The marked circle points are the period doubling bifurcations that cause destabilization
and motion of the tuned mass absorber

frequency of ω ≈ 40 rad/s). This means that the harvester recovered more energy if
the pendulum is swinging. In other words, this means that activation of the absorber
improves energy harvesting.

10.3.3 Analysis of Linear Electromechanical Coupling Model

The detailed analysis of influence of the linear electromechanical coupling coefficient
model on the energy harvesting and vibration maximal amplitudes is presented in
Fig. 10.4. Three different values of parameter α11 have been compared. The black
line shows result for α11 = 100 Vs/m, the purple line for α11 = 5000 Vs/m and the
red line for α11 = 10,000 Vs/m. Analysis of Fig. 10.4a, b indicates small changes in
the primary system and the absorber responses. Only at the high value of coefficient
α11 the absorber amplitude is slightly less.

Of course, the highest recovered current is obtained for high coefficient α11. As
we can see, the modification of the linear electromechanical coupling model strongly
influences the induced current. Interestingly, the harvester’s mass executes smaller
oscillations (the pendulum also vibrates less), but the induced current is higher.
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Fig. 10.4 Influence of the linear electromechanical coupling on: main system (a), the tuned mass
damper (b), the levitating magnet (c) and the induced current (d). The continuous line means the
stable response while the dashed line is an unstable solution. The marked points are the period
doubling bifurcations that cause destabilization and motion of the tuned mass absorber

10.3.4 Analysis of Nonlinear Electromechanical Coupling
Model

The nonlinearmodel I is dedicated to themagnet’s oscillation close to the coil end. As
we can see in Fig. 10.2, in this position, the electromechanical coupling reaches the
highest value and the coupling function is strongly nonlinear. Therefore, the linear
model rather should not be used for the energy harvesting analysis if the magnet
vibrates near the end of the coil and can leave it.

In Fig. 10.5a we show the influence of the nonlinear electromechanical coupling
model I. The main parametric resonance is located close to ω ≈ 30–40 rad/s. We
change the parameters α21, α22 and α23 and compare with the nonlinear model I from
Fig. 10.3 (red line). It is clear, that the change of α21, α22 and α23 practically does
not affect the primary system vibrations. Additionally, no significant influences on
the absorber (pendulum) amplitudes were observed (Fig. 10.5b).

However, we note again that these parameters influence the induced current
(Fig. 10.5d) and themagnet oscillation amplitude (Fig. 10.5c). In general, the increase
values of α21, α22 and α23 cause higher induced current, but the magnet harvester
amplitude may increase or decrease.
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Fig. 10.5 Influence of the nonlinear electromechanical coupling model I on: main system (a), the
tuned mass damper (b), the levitating magnet (c) and the induced current (d). The continuous line
means the stable response while the dashed line is an unstable solution. The marked points are the
period doubling bifurcations that cause destabilization and motion of the tuned mass absorber

The obtained results suggest that the modification of the levitating magnet posi-
tion can be an easy way to increase the recovered energy while maintaining the
effectiveness of vibration reduction.

Because the polynomial nonlinear model II is complicated and has as many as
nine coefficients, therefore their influence has not been studied here.Moreover, Kecik
(2021) reported the detailed analysis of the nonlinear model II and its influence on
the unstable region.

10.4 Conclusions

Thiswork is devoted to simultaneous vibrationmitigation and energy harvesting. The
main aim of the research is to recover energy from the dynamic vibration absorber
without reducing its vibration reduction efficiency. Therefore, we propose the control
of energy harvesting via simple modification of the magnet–coil position. Then, we
have not observed the reduction in the effectiveness of vibration.

The different modeling of the electromechanical coupling in the vibration
absorber–harvester system is proposed. Electromechanical coupling model variants
have been estimated based on the experiment test. The linear and nonlinear models
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have been compared with the most used approach (constant value). The experimental
test shows that themaximal value of the electromechanical coupling coefficient close
to the coil’s end was obtained. In this position, the electromechanical coupling is a
strongly nonlinear function.

The obtained results confirmed that the modification of the electromechanical
coupling by the magnet–coil position practically does not influence the vibration
mitigation. The linear and nonlinear models influence the harvester only. However,
for small oscillations (below 0.01 m of the magnet’s amplitude) all models give
similar results. The electromechanical coupling description is essential especially
for higher vibration amplitudes.

The next step will be modification of the electromechanical coupling models by
design and optimization of the oscillating magnet by applying the special stock of
magnets and separators.
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Chapter 11
Crisis-Induced Intermittency and Other
Nonlinear Dynamics Phenomena
in Vibro-impact System with Soft Impact

Victor Bazhenov, Olga Pogorelova, and Tatiana Postnikova

Abstract The dynamic behavior of a platform-vibrator with shock is studied. It is
the main molding equipment in the production of precast concrete elements and is
widely used in the construction industry for compacting and molding large concrete
products. Its mathematical model corresponds to a two-body 2-DOF vibro-impact
system with a soft impact. This model has several peculiar properties. Comparing a
soft impact simulation with a linear force and a nonlinear contact force in accor-
dance with the Hertzian contact theory showed that it is preferable to use the
Hertz force. When various control parameters are changing, the model demonstrates
interesting phenomena, inherent in non-smooth nonlinear discontinuous systems,
namely, sustained (permanent) and transient chaos, boundary and interior crises,
crisis-induced intermittency, coexisting regimes in the hysteresis zone. The ranges
of control parameters in which unwanted modes can be implemented are shown.

Keywords Platform-vibrator · Vibro-impact · Mold with concrete · Soft impact ·
Hysteresis · Crisis · Intermittency · Chaotic · Time series · Lyapunov exponent

11.1 Introduction

The vibro-impact system with soft impact is a mathematical model of a platform-
vibrator with shock that is widely used in the construction industry for the production
of precast concrete elements. But their operational efficiency, the choice of design
parameters, the effect on the machine dynamics of the concrete mix (first liquid and
then gradually hardening) and other problems are still being discussed at present
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Fig. 11.1 Schematic diagram of platform-vibrator with four blocks

(Vasiliev 2019; Nazarenko et al. 2017a, b, 2019). A schematic diagram of vibration
equipment that implements the shock-vibration technology for concrete mixtures
compaction and reinforced products molding is shown in Fig. 11.1.

The shock-vibration platform of the block type consists of separate blocks on
which rubber plate limiters are fixed. Two general vibration exciters with periodic
excitation are installed on each block. The mold with concrete mix is installed on the
stops without fastening. But the platform table is equipped with stops that prevent
the mold from sliding and rotating. For volumetric compaction, this machine uses
vertically directed mold vibrations. A mold with concrete, which has a huge mass,
breaks off the stops for a very short distance. The platform table and the mold with
concrete move separately for a very short time. Then the mold falls with a shock
onto a rubber gasket attached to the table. The mold collides with the limiters with
oncoming movement. Then it comes off again and falls on the gasket and so on. The
vibro-impact movement is accompanied by a soft, even very soft, impact due to the
softness, flexibility of the rubber gasket. These peculiar properties give the reason to
consider the mechanical system as an unusual vibro-impact system.

The special attention was paid to the way for simulating the soft impact. The
systems with a soft impact are discussed in Andreaus et al. (2013), Fu et al. (2020).
In Andreaus et al. (2013), the authors simulate an impact by interposing a linear
spring between the bodies at their contact point.

When varying the control parameters, this model exhibits many phenomena
inherent in nonlinear systems. The exciting frequency, the technological mass of
the mold with concrete, and the stiffness of the vibro-isolating spring were chosen
as control parameters. The model demonstrated permanent and transient chaos;
boundary and interior crises; crisis-induced intermittency; jump phenomena of
hysteresis, where coexisting regimes existed. To identify the observed modes, the
generally accepted techniques were used, namely, the graphs of time series, trajec-
tories in phase space, Poincaré maps, Fourier spectra, the largest Lyapunov expo-
nents, and wavelet characteristics, which were obtained using Continuous Wavelet
Transform.

Many phenomena of nonlinear dynamics were discovered in 70s and 80s of the
twentieth century (Grebogi et al. 1983, 1987; Lorenz 1972; Pomeau and Manneville
1980). At present, they are widely discussed in the world scientific literature (Wang
et al. 2016; Danca 2016; Mishra et al. 2020; Noël and Kerschen 2017). Well-known
authors (Elaskar 2018; Elaskar and delRío 2017;Macau 2019; Lai andTél 2011) have
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written several comprehensive monographs. Many works consider the emergence of
chaotic and chaos-related events and their analysis in different dynamical systems in
various fields of science (Bhalekar et al. 2012; Macek 2015).

In authors’ opinion, the study of themanifold of nonlinear phenomena in a specific
vibro-impact system may be interesting from three points of view. Firstly, it adds
information to fundamental knowledge about phenomena that occur in nonlinear
dynamical systems. Secondly, it shows the behavior of a specific vibro-impact system
(a platform-vibrator with shock) with varying different control parameters. Thirdly,
it allows us to point out at what values of the control parameters an undesirable and
possibly dangerous state, such as permanent and transient chaos and chaos-related
events, can occur.

Thus, the goals of this paper are:

• To show that it is preferable to simulate a soft impact using the nonlinear Hertz
force;

• Clearly, graphically, and persuasively show the manifold of the nonlinear
dynamics phenomena that can occur in the specific vibro-impact system (a
platform-vibrator with shock) when varying the control parameters.

11.2 Brief Description of Platform-Vibrator Mathematical
Model

The two-mass platform-vibrator with shock is one of the successful solutions
for vibration equipment that implements shock-vibration technology for concrete
mixtures compaction and reinforced products molding. The creation of a platform-
vibrator mathematical model was described in detail in Bazhenov et al. (2020). Now
the basic statements required to understand its dynamical behavior will be repeated.

The accepted simplified design scheme of the platform-vibrator with shock is
shown in Fig. 11.2. Since the limiters on the platform table prevent the mold from
sliding and turning, the movement is only vertical. The exciting force is F(t) =
Pcos(ωt + φ0), and its period is T = 2π

/
ω.

Fig. 11.2 Design scheme of
a platform-vibrator with
shock. The platform table
with a fastened rubber gasket
is attached to the base with a
linear vibro-isolating spring.
The mold with concrete is
installed on the gasket
without fastening
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A platform tablewithmassm1 is attached to the base by a linear vibration isolating
spring with a stiffness k1 and a linear dashpot with a damping factor c1. The exciting
external periodic force F(t) is generated by electric motors mounted under the table.
An elastic rubber gasket with thickness h and stiffness k0 is attached to the table. A
linear dashpot with a damping factor c0 is placed between the table and the mold. A
mold with concrete of mass m2 is installed on the gasket, but is not fastened either
to the gasket or to the table.

The machine starts its movement when the electric motors begin their work.
This motion has several peculiar properties. First, the table and the mold move
vertically together. Then the mold with huge mass comes off from the gasket for
a very short distance and “bounce”. The table and the mold are moving separately
until the mold falls down onto the rubber gasket. A soft impact occurs. The bodies
move together again until the mold comes off the gasket and so on. Themathematical
model corresponds to the two-body 2-DOF vibro-impact system with a soft impact.
It is a strongly nonlinear non-smooth discontinuous system.

In the two-body model, the masses are concentrated in the mass centers of both
bodies. The parameters y1 and y2 represent the coordinates of these centers for the
lower body (a platform table) and the upper body (a mold with concrete) respectively
in the selected coordinate system. The origin of the y coordinate is chosen in the table
center in a state of static equilibrium.

To compose the motion equations, let us consider the forces acting on the system
bodies. The elastic forces are:

• in the spring—Fk1 = k1�l1 = k1(y1 − λst );
• in the rubber gasket—Fk0 = k0�l0 = k0[h − (y2 − y1)].

Here λst is the static deformation of the spring, λst = (m1 + m2)g/k1; g is the
acceleration due to gravity; [h − (y2 − y1)] is the bodies’ rapprochement, further it
will be noted as z.

The damping forces are taken to be proportional to the first degree of velocity:
Fdamp1 = c1 ẏ1, Fdamp0 = c0 ẏ1. The influence of the concrete mixture can be taken
into account as some additional damping—Fdamp2 = c2 ẏ2.

There are three states of the platform-vibrator: the initial joint movement of both
bodies, the separate movement in the case of loss of contact between them, and the
joint movement during the impact due to the mold falling onto the gasket.

The basic law of dynamics gives the following equations of the primary joint
movement:

ÿ1 = gχ − ω2
1 y1 − ω2

2χ [h − (y2 − y1)]

− 2 ẏ1(ξ1ω1 − ξ0ω2χ) + 1

m1
F(t)

ÿ2 = −g + ω2
2[h − (y2 − y1)] − 2ω2(ξ2 ẏ2 + ξ0 ẏ1) (11.1)

The initial conditions are:
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at t = 0 there are φ0 = 0, y1 = 0, ẏ1 = 0, y2 = h − λ0, ẏ2 = 0. (11.2)

Here λ0 is the static deformation of the gasket, λ0 = m2g/k0.
After the finish of the primary joint movement, the platform-vibrator performs a

vibro-impact motion. The basic law of dynamics gives the following equations of
this movement:

ÿ1 = gχ − ω2
1 y1 − 2ξ1ω1 ẏ1 + 1

m1
F(t)

+ H(z)

{
2ξ0ω2χ ẏ1 − ω2

2χ
[
h − (y2 − y1)

] − 1

m1
Fcon(z)

}

ÿ2 = −g − 2ξ2ω2 ẏ2+
+ H(z)

{
ω2
2

[
h − (y2 − y1)

] − 2ξ0ω2 ẏ1 + 1

m2
Fcon(z)

}
(11.3)

Here the standard notations are introduced:

k1
m1

= ω2
1,

k0
m2

= ω2
2,

c0
m2

= 2ξ0ω2,
c1
m1

= 2ξ1ω1,

c2
m2

= 2ξ2ω2,
m2

m1
= χ. (11.4)

H(z) is the Heaviside function relatively the bodies’ rapprochement z = h −
(y2 − y1).

H(z) =
{
1, z ≥ 0
0, z < 0

(11.5)

Fcon(z) is the contact interactive force that simulates an impact and acts only
during an impact. It also depends on the bodies’ rapprochement z. Since the impact
of the mold with concrete on the rubber gasket attached to the table is soft one, the
problem of a soft impact simulation and choice of the type of contact force Fcon(z) in
this system is very important. This problem will be discussed in the next Sect. 11.3.

The main numerical parameters were taken in accordance with the technical liter-
ature (Gusev et al. 1986). Some parameters were chosen in such a way that the
created model would meet the requirements for a real machine. In particular, the
damping ratios ξ 1, ξ 2, ξ 0 should remain in the range 0 ≤ ξ ≤ 1 (Sönnerlind 2019).
The parameters have to provide firstly, a steady-state T-periodic oscillatory process
with one impact per cycle after a transient period; secondly, the oscillation amplitude
of the mold close to the required 0.8–1 mm; thirdly, a satisfactory value of the asym-
metric acceleration coefficient. The parameters that meet these requirements have
been selected through many numerical experiments and are shown in Table 11.1.
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Table 11.1 Parameters of platform-vibrator with shock

Mass of table m1, kg 7400 Damping ratio of dashpot in
spring ξ1

0.5

Mass of mold with concrete m2, kg 15,000 Damping ratio of dashpot in
gasket ξ0

0.02

Stiffness of rubber gasket k0, Nm−1 3.0 × 108 Damping ratio in concrete
mixture ξ2

0.03

Stiffness of spring k1, Nm−1 2.6 × 107 Elastic modulus of mold E2,
Nm−2

2 × 1011

Thickness of gasket h, m 0.0275 Elastic modulus of rubber gasket
E1, Nm−2

3.5·106

Poisson’s ratio of mold ν2 0.3 Amplitude of exciting force P, N 2.44·105
Poisson’s ratio of rubber gasket v1 0.4 Frequency of exciting force ω, Hz 25

Radius of gasket R, m 5

11.3 Soft Impact Simulation

Soft impact simulation, based on the classical theory of impact, called stereome-
chanics, is not successful (Bazhenov et al. 2013). It is known that, in accordance
with this theory, at the impact moment, the displacements equality and the reversals
in the colliding bodies’ velocities are fixed. The change in velocities is calculated
using Newton coefficient of restitution. The impact is considered as instantaneous;
the velocities change by jump; local deformations in the contact area are not allowed.
However, in fact, a soft impact is not instantaneous; its duration is quite long.

It is more expedient to simulate a soft impact using an interactive contact force,
which can be linear or nonlinear. This force acts only during the impact, the rest of
the time it is absent. Local deformations of the contact surfaces are permissible; you
can see the bodies’ penetration into each other.

11.3.1 With Linear Force

InAndreaus et al. (2013), the authors admit the presence of elastic deformations at the
contact upon an impact of finite duration. It is achieved by interposing a concentrate
spring between the bodies at their contact point, simulating their deformability at the
interaction zones. The influence of the rigidity of the contact spring on the system
response is examined.

The linear force is similar to the elastic one, that is, a virtual linear spring with
rigidity k is interposed between the colliding bodies. The hardness of the impact is
measured by the k parameter. Numerical investigations allow to examine the effect
of spring rigidity on the system response.
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Fcon(z) = kz(t), (11.6)

where z(t) is the rapprochement of the bodies, z = h− (y2 − y1), when (y2 − y1) ≤
h.

Five values of the virtual spring rigidity k are considered. All the system parame-
ters and parameters of the exciting force are the same in all numerical experiments.
The results of these experiments are shown in Fig. 11.3 and 11.4. The impact dura-
tion becomes shorter; the bodies penetrate into each other less with an increase in
the rigidity of the virtual spring k, since the impact becomes more rigid (Fig. 11.3).

On the other hand, the higher the rigidity k of the virtual spring, the greater the
contact force between the two bodies (Fig. 11.4).

Fig. 11.3 Time histories for the smallest and the largest values of k coefficient in linear contact
force: a k = 1.5 × 106 N/m, b k = 1.5 × 109 N/m. The larger k, the shorter the impact duration
and the less the bodies’ penetration into each other, because the impact becomes more rigid

Fig. 11.4 a, b contact forces; c distance between bodies, when impact simulating by: 1 Hertz force;
linear force with: 2 k = 1.5×107 N/m; 3 k = 1.5×108 N/m; 4 k = 8.0×108 N/m; 5 k = 1.6×109

N/m; 6 − k = 1.5 × 106 N/m; the exciting force F(t) is shown by the dotted line.
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The acceleration of the upper body in its lowest position varies significantly with
increasing spring rigidity. The ratio of this acceleration to the acceleration of the upper
body in the uppermost position is important for the platform-vibrator with shock.
The magnitude of this ratio affects the quality of the concrete compaction. Thus,
these experiments show a strong dependence of the vibro-impact system response
on the spring rigidity k.

11.3.2 With Nonlinear Hertz’s Force

The nonlinear contact Hertzian force, according to the quasi-static contact Hertz’s
theory, is used to simulate a soft impact.

Fcon(z) = K [z(t)]3/2,K = 4

3

q

(δ1 + δ2)
√
A + B

,

δ1 = 1 − ν2
1

E1π
, δ2 = 1 − ν2

2

E2π
(11.7)

Here z(t) is the rapprochement of the bodies, as before, z = h − (y2 − y1), when
(y2 − y1) ≤ h; νi and Ei—are Poisson’s ratios and Young’s moduli of elasticity for
both bodies; A, B, q—are constants characterizing the local geometry of the contact
zone. The gasket surface is flat, but here it is advisable to consider it as a sphere
of the large radius R. Then in the collision of a plane (mold) and a sphere (rubber
gasket)A = B = 1/2R, q = 0.318.

The contact impact forces are shown in Fig. 11.4a, b in different scales. These
are the linear contact forces with different values of the coefficient k and a nonlinear
contact Hertz force. A strong increase in the linear contact force and a decrease in
the duration of the impact with increasing spring stiffness k are clearly seen. The
contact Hertz force is less and corresponds to a soft impact.

The dependence of the distance between bodies z = [(y2 − y1) − h] on time,
when simulating an impact by linear forces with different values of the virtual spring
rigidity k and a nonlinear Hertz contact force is shown in Fig. 11.4c. Both the pene-
tration of the bodies into each other, and the impact duration decrease with increasing
the virtual spring rigidity k. In the case of the Hertz force, the curve 1 almost merges
with the curve 6 for a soft impact at k = 1.5 × 106 N/m.

The use of both the nonlinear Hertzian contact force and the linear force provides
the motion law along the entire time axis, including the impact phase. It is possible
to determine local deformations in the contact area and mutual bodies’ penetration.
But the mechanical characteristics of colliding bodies are taken into account by the
coefficient K in (11.7); this coefficient is quite definite. While different values of the
coefficient k in (11.6) give different responses of the vibro-impact system; this coef-
ficient is not well defined. Therefore, a soft impact simulation by a nonlinear Hertz
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contact force in accordance with his quasi-static contact theory seems preferable.
However, the limitations of this theory should be considered.

This problem formulation, namely the integration of the movement Eqs. (11.3)
with the parameters values given in Table 11.1, and the use of the nonlinear Hertz
force (11.7) as the contact interactive force Fcon(z) provides a fairly good coincidence
of results with experiment (see Sect. 11.4). This made it possible to observe many
interesting phenomena inherent in non-smooth nonlinear systems when the control
parameter is varied.

11.4 About the Model Verification and Validation

The described model is focused on the vibro-impact platform SMZH-538 (CM�-
538 by Ukranian)—a platform with a non-fixed mold and only vertical oscillations.
For its simplified model, the characteristics have been got that have been confirmed
experimentally. The following experimental data obtained during the design and
operation of this low frequency machine are presented in Nazarenko et al. (2017a;
b):

• After the overclocking, a periodic mode with one impact per cycle is established
in the platform-vibrator.

A steady-state T-periodic one-impact regime is established in model after the
transient process finish. Direct numerical integration of stiff differential Eq. (11.1),
and then (11.3) with Fcon(z) according to (11.7) gives a complete movement picture,
which is shown in Fig. 11.5. A primary joint motion from the equilibrium position
before the first separation (up to the vertical line I), a short transient process (up to
the line II), and then the T-periodic one-impact regime are well visible.

• The oscillation amplitude of the mold with concrete should be 0.8–1 mm
(Nazarenko et al. 2017a, b; Gusev et al. 1986).

After direct numerical integration of stiff differential Eq. (11.3), the oscillatory
amplitude for non-harmonic vibrations is calculated hereinafter with the simple
formula.

Amax = ymax − ymin

2
(11.8)

The amplitude of the mold with concrete in steady-state T-periodic one-impact
regime is 0.79 mm.

• The coefficient of asymmetric acceleration should be ~ 4.

This coefficient is the ratio of the lower acceleration to the upper acceleration.
The lower acceleration wL is the acceleration of the mold with concrete at its lowest
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Fig. 11.5 The movement of
the model bodies from the
equilibrium position

Fig. 11.6 The accelerations of both model bodies

position; the upper acceleration wU is the mold acceleration at its highest position.
For the described vibro-impact system, it is wL

wU
= 3.6 (Fig. 11.6).

The coincidence of the vibro-impact system response with the experiment gives
ground to believe that the created model may adequately characterize the operation
of the vibro-impact platform with shock.

11.5 Coexisting Regimes—Hysteresis

Themodel exhibits coexisting regimes, i.e., the hysteresis effect (jump phenomenon)
under different initial conditions when the control parameter varies. This
phenomenon is observed under different control parameters, namely, exciting
frequency, technological mass of the mold with concrete, and stiffness of the
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Fig. 11.7 Dependence on the exciting frequency ω: a the oscillatory amplitude Amax; b the largest
Lyapunov exponent λmax

vibro-isolating spring. The dynamical systems in general and nonlinear systems
in particular may typically have the coexisting solutions at certain fixed parameter
values.

11.5.1 When the Exciting Frequency Ω is Varied

The platform-vibrator with shock is a low frequency machine. It often operates
with an exciting frequency ω = 157rad·s−1 (25 Hz). Does the model show any
nonlinear phenomenawith a change in the exciting frequency?Yes, at a lower exciting
frequency, the model exhibits the presence of coexisting regimes in the hysteresis
zone.

Figure 11.7 clearly shows the hysteresis effect in a narrow range of low values of
the exciting frequency, which is the control parameter. Direct numerical integration
of stiff differential Eq. (11.3) with different initial conditions and the oscillatory
amplitude calculation with formula (11.8) give the graph in Fig. 11.7a. The black
and gray curves correspond to the main periodic (1,1)-regime1 for the lower and the
upper bodies, respectively. The yellow and red curves show the amplitude-frequency
responses for these bodies under other initial conditions.

The graph of the largest Lyapunov exponent λmax, computed by Benettin’s algo-
rithm, is shown in Fig. 11.7b. On the lower black curve, it corresponds to the main
periodic (1,1)-regime, its sign is negative. On the upper red curve, it corresponds to
the coexisting modes. The largest Lyapunov exponent λmax has a positive sign in a
narrow frequency range. One can assume that a chaoticmode occurs in this frequency
range. The chaotic regime at ω = 95 rad·s−1 will be shown further in Fig. 11.12.

1 (n,m)-regime is the mode with period nT and m impacts per cycle.
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Fig. 11.8 Dependence on the technological mass of the upper bodym2: a the oscillatory amplitude
Amax; b the largest Lyapunov exponent λmax

11.5.2 When the Technological Mass m2 is Varied

The platform-vibrator with shock is used for compaction and molding large concrete
products (up to 15,000–18,000 kg). How will the model behave if the product is not
so large?

The control parameter is technological mass of the upper bodym2.When it varies,
the coexisting regimes are again observed in narrow hysteresis zone (Fig. 11.8). As
before, the black and gray curves in Fig. 11.8a correspond to the main periodic (1,1)-
regime for the lower and the upper bodies, respectively. The yellow and red curves
show the dependence of the amplitudes on the mass m2 in coexisting modes under
other initial conditions.

In Fig. 11.8b the gray curve with black markers corresponds to the main regime,
the red curve—to the coexisting regimes. For the small masses, the largest Lyapunov
exponent λmax is positive even in the main mode; this means that chaotic motion may
occur in this range.

The coexisting regimes alternate several times in a narrow parameter range, which
follows from the change in the sign of the largest Lyapunov exponent. There are
periodic windows in this parameter range. Exactly within the periodic windows, the
transient chaos can occur. It will be shown below in Sect. 11.6.

11.5.3 When the Stiffness of Vibro-isolating Spring k1 is
Varied

The control parameter is the stiffness of vibro-isolating spring k1. The parameters of
the stiffness in general and the stiffness of vibro-isolating spring in particular strongly
affect the platform-vibrator dynamic behavior. The nonlinear effects are observed in
the model at very low values of the vibro-isolating spring stiffness. When it is small,
one can watch the coexisting regimes in the hysteresis zone (branches I, II, III, IV
in Fig. 11.9a), which were obtained by direct integration of stiff Eq. (11.3) under
different initial conditions. In Fig. 11.9b, the black curve corresponds to the branch
I, the red curve—to the branch II. The curves for branches III and IV coincide with
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Fig. 11.9 Dependence on the stiffness of vibro-isolating spring k1: a the oscillatory amplitude for
platform table Amax; b the largest Lyapunov exponent λmax

the red curve. For very small parameter values, the largest Lyapunov exponent is
positive; a chaotic regime can arise.

As an example, four different regimes for small value k1= 2.6·104 Nm−1 in I, II,
III, IV branches are shown in Fig. 11.10. The phase trajectories are very close one
to another at each period of the external force and almost merge in the (3,1)-regime
in the IV branch. But the contact force graph clearly shows that the regime has a
periodicity of 3T and 1 impact per cycle. The external force F(t) is shown on a
reduced scale. The red dotes on the phase trajectories are Poincaré sections: n dots
for an nT-periodic mode, and an undefined set of dots for a chaotic signal. Fourier
spectra have frequencies that are multiples of ω/n for nT-periodic regime. A chaotic
signal produces a broad continuous spectrum.

I branch
Chaos  = 0.54 II branch

(4,2)-regime= −0.21 III branch
(6,3)-regime= −0.21 IV branch

(3,1)-regime= −0.21

a

b

Fig. 11.10 a Phase trajectories with Poincaré maps; b Hertz contact force in coexisting regimes at
k1 = 2.6 × 104 Nm−1.
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11.6 Interior Crisis. Crisis-Induced Intermittency

A crisis is a bifurcation event in which a chaotic attractor and its basin of attraction
suddenly disappear or suddenly change in size as some control parameter is varied.
The termcrisis in dynamical systemswasfirst introduced in (Grebogi et al. 1983). The
interior crisis leads to the sudden widening of a chaotic attractor (Lai and Tél 2011),
that is, to a sudden increase (or decrease) in its size. Following an interior crisis, a
crisis-induced intermittency is observed. This type of intermittency is characterized
by permanent jumps between two chaotic attractors (Kapitaniak and Bishop 1999).

An interior crisis and crisis-induced intermittency were watched, when there was
a sudden discontinuous change in the chaotic attractor with a change in the techno-
logical mass of the upper body m2. Interior crisis and crisis-induced intermittency
develop little by little starting from periodic movement with a mass m2 = 5600 kg
and ending with the intermittency by Pomeau and Manneville (1980) with a mass
m2= 3200 kg. This development is observed when the control parameter changes in
the opposite direction, that is, when it decreases. First, you can see the alternation of
the chaos of different sizes during the interior crisis. Then the chaos between bursts
expands and becomes more “smooth” (with smaller amplitude difference). At last,
the intermittencywith sufficiently wide regions of approximately periodicmovement
is well seen (Fig. 11.11).

Fig. 11.11 Development of crisis-induced intermittency (for the upper body) with a change in
control parameter m2
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time

a 

b 

Fig. 11.12 Wavelet characteristics for chaotic motion at ω = 95 rad·s−1: a projection of wavelet
surface; b surface of wavelet coefficients. The largest Lyapunov exponent is positive λmax= 2.12.
See also Fig. 11.8b

11.7 Permanent and Transient Chaos

11.7.1 Permanent (Sustained) Chaos

Chaotic motion was observed with a change in each of the three control parame-
ters. When the exciting frequency ω was chosen as the control parameter, chaotic
movement was watched in a narrow range of the low frequencies. The typical form of
phase trajectories with Poincaré maps, a broad continuous Fourier spectrum, a fractal
structure of Poincaré maps, and a specific form of wavelet characteristics confirmed
its chaoticity. The route to chaos on its left border was very similar to the transition
through a period doubling, that is, Feigenbaum route. On the right border, the chaotic
attractor suddenly disappeared, which is typical of a boundary (exterior) crisis.

One can see the chaoticity of thismovement very clearly using drawings ofwavelet
characteristics (Fig. 11.12). In the drawing of wavelet surface projection, in addi-
tion to a bright light strip for high frequency, there are many bursts for the lower
frequencies, which change over time. The “mountain ranges” of different heights
correspond to these frequencies on the wavelet coefficients surface. Their heights are
not constant in time. The wavelet characteristics were constructed using Continuous
Wavelet Transform with Morlet wavelet in MATLAB software (MathWorks).

With a change in the technological massm2, the chaotic motion was implemented
in the range of small masses and in the hysteresis zone (Fig. 11.8).

11.7.2 Transient Chaos

The appearance of chaos with a finite lifetime is known as transient chaos. When a
transient chaos is observed in the system, the trajectory is chaotic initially for some
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time and then becomes periodic (Bhalekar et al. 2012). In Lai and Tél (2011), the
authors note that a typical occurrence of the transient chaos is in the periodicwindows
inside the chaotic region.

Indeed, the transient chaos was observed exactly in the region of the periodic
windows, when the technological mass m2 was chosen as a control parameter (see
also Fig. 11.8b).

When the initial conditions correspond to permanent chaos form2 = 6000 kg, the
transient chaos was got in a narrow range of the control parameter values. Chaotic
vibrations, arising at certain system parameters values, degenerate into a periodic
subharmonic (2,2)-regime after some time. Time series, contact force, and phase
trajectories for m2=6330 kg are shown in Fig. 11.13. The figures of the time series
(Fig. 11.13a) and the contact force (Fig. 11.13b) clearly show how the chaotic regime
suddenly turns into a periodic one. The phase trajectories corresponding to a periodic
motion are shown in red in Fig. 11.13c, d. Analysis of the largest Lyapunov exponent
λmax over a quite long time helps to determine the existence of transient chaos. Its
sign is positive for the phase of chaotic motion, then, after a long procedure, the
exponent converges to a negative value, which is typical for periodic movement.
Figure 11.14 clearly shows how after some time the largest Lyapunov exponent λmax

crosses the abscissa axis and becomes negative. It is worth to emphasize once more
that the value of the control parameter remains the same.

Fig. 11.13 a Time histories; b Hertz contact force; c, d phase trajectories in transient chaos at m2
= 6330 kg.

Fig. 11.14 Convergence of the largest Lyapunov exponent to negative value during the transient
chaos: m2 = 6330 kg, start from permanent chaos at m2 =6000 kg
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Table 11.2 Average lifetime of transient chaos 〈T〉, (s)
Mass m2 (kg) 6300 6310 6320 6330 6340 6350 6360 6370 6380 6390 6400

〈T〉, (s) 773 304 97 28 10 5.8 3.6 1.5 2.0 1.8 1.3

Fig. 11.15 Dependence of average chaotic transient lifetime 〈T〉 on m2 on a linear–linear plot and
on a logarithmic versus linear scale (inset). All points are the result of averaging 12 realizations

The transient chaos lifetime sensitively depends on both the control parameter
value and the initial conditions. The sensitive dependence of the transient chaos on
the initial conditions brightly demonstrates “the butterfly effect”, that is, the main
feature of chaotic dynamics.

The average transient chaos lifetime for different control parameter values is
shown in Table 11.2. It is the result of averaging twelve realizations obtained for
different initial conditions. The average transient lifetime obeys an exponential law
(Fig. 11.15), which is typical for many chaotic systems.

The average transient lifetime obeys an exponential law 〈T〉 ≈ Ce−km2 where k
> 0. Then, in a logarithmic versus linear scale, there is a straight line with slope—k;
the escape rate k = 0.089. The red curve on linear–linear plot and the red straight line
on a log-linear plot were plotted according to the exponential law and the equation
of the straight line, respectively.

11.8 Conclusions

For this unusual vibro-impact system with a soft impact, which is a mathematical
model of a platform-vibrator with shock, the following has been established.

• It is preferable to simulate a soft impact in this model by the nonlinear contact
Hertzian force.
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• Many phenomena inherent in a nonlinear non-smooth discontinuous dynamical
system occur when the control parameter is varied. For this model of a vibro-
impact system, these nonlinear eventswere detected for the first time. The exciting
frequency, the technological mass of the upper body, and the stiffness of the
vibro-isolating spring were chosen as control parameters.

• The model demonstrated: the permanent and transient chaos, boundary and inte-
rior crises, crisis-induced intermittency, coexisting regimes in the hysteresis zone
under different initial conditions.

• A sensitive dependence of the transient chaos on both the control parameter value
and the initial conditions was demonstrated. The average transient lifetime obeys
an exponential law, which is typical to many chaotic systems.

• The ranges of control parameters, in which unwanted chaos-related events may
be implemented, are in the regions of small control parameters values and are
visible on numerous graphs.

We hope in the future to study in more detail the model dynamical behavior when
the spring stiffness changes.

References

Andreaus, U., Chiaia, B., Placidi, L.: Soft-impact dynamics of deformable bodies. Continuum.
Mech. Thermodyn. 25(2–4), 375–398 (2013). https://doi.org/10.1007/s00161-012-0266-5

Bazhenov, V.A., Pogorelova, O.S., Postnikova, T.G.: Comparison of two impact simulationmethods
used for nonlinear vibroimpact systems with rigid and soft impacts. J. Nonlinear Dyn. (2013).
https://doi.org/10.1155/2013/485676

Bazhenov, V.A., Pogorelova, O.S., Postnikova, T.G.: Creation of mathematical model of platform-
vibrator with shock, designed for concrete products compaction and molding. Strength Mater.
Theor. Struct. 104, 103–116 (2020). https://doi.org/10.32347/2410-2547.2020.104.103-116

Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Transient chaos in fractional Bloch equa-
tions. Comput. Math. Appl. 64(10), 3367–3376 (2012). https://doi.org/10.1016/j.camwa.2012.
01.069

Danca, M.F.: Hidden transient chaotic attractors of Rabinovich-Fabrikant system. Nonlinear Dyn.
86, 1263–1270 (2016). https://doi.org/10.1007/s11071-016-2962-3

Elaskar, S., Río Del, E.: New Advances on Chaotic Intermittency and its Applications. Springer
International Publishing (2017).https://doi.org/10.1007/978-3-319-47837-1

Elaskar, S.: Studies onChaotic Intermittency. PhDThesis,UniversidadPolitecnica deMadrid (2018)
Fu, S., Liu, Y., Chávez, J.P.: Discontinuous bifurcation of a soft-impact system. Int. j. Bifurcation
Chaos 30(09), 2050132 (2020). https://doi.org/10.1142/S0218127420501321

Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos.
Phys. D 7(1–3), 181–200 (1983). https://doi.org/10.1016/0167-2789(83)90126-4

Grebogi, C., Ott, E., Romeiras, F., Yorke, J.A.: Critical exponents for crisis-induced intermittency.
Phys. Rev. A 36(11), 5365–5380 (1987). https://doi.org/10.1103/physreva.36.5365

Gusev, B.V., Nazarenko, I.I., Shmigalsky, V.N.: Recommendations on Vibration Forming of Rein-
forced Concrete Products (1986) (in Russian). www.gostrf.com/normadata/1/4294847/429484
7727.htm

Kapitaniak, T., Bishop, S.R.: The Illustrated Dictionary of Nonlinear Dynamics and Chaos. Wiley
(1999).https://doi.org/10.1002/rnc.560

https://doi.org/10.1007/s00161-012-0266-5
https://doi.org/10.1155/2013/485676
https://doi.org/10.32347/2410-2547.2020.104.103-116
https://doi.org/10.1016/j.camwa.2012.01.069
https://doi.org/10.1007/s11071-016-2962-3
https://doi.org/10.1007/978-3-319-47837-1
https://doi.org/10.1142/S0218127420501321
https://doi.org/10.1016/0167-2789(83)90126-4
https://doi.org/10.1103/physreva.36.5365
http://www.gostrf.com/normadata/1/4294847/4294847727.htm
https://doi.org/10.1002/rnc.560


11 Crisis-Induced Intermittency and Other Nonlinear … 203

Lai, Y.C., Tél, T.: Transient Chaos: Complex Dynamics on Finite Time Scales, vol. 173. Springer
Science & Business Media (2011). https://doi.org/10.1007/978-1-4419-6987-3

Lorenz, E.: Predictability: does the flap of a butterfly’s wing in Brazil set off a tornado in Texas?
J. Sci. Educ. RESONANCE 20(3), 261–263 (1972). www.ias.ac.in/article/fulltext/reso/020/03/
0260-0263

Macau, E.E. (ed.): A Mathematical Modeling Approach from Nonlinear Dynamics to Complex
Systems. Springer International Publishing (2019). https://doi.org/10.1007/978-3-319-78512-7

Macek,W.M.: Intermittency in the Generalized LorenzModel. Chaotic Modeling Simul. (CMSIM)
4, 323–328 (2015)

MathWorks. Wavelet Toolbox. www.mathworks.com/help/wavelet/
Mishra, A., Leo Kingston, S., Chittaranjan, H., Kapitaniak, T., Feudel, U., Dana, S.K.: Routes to
extreme events in dynamical systems:Dynamical and statistical characteristics. Chaos Interdiscip.
J. Nonlinear Sci. 30(6), 063114 (2020). https://doi.org/10.1063/1.5144143

Nazarenko, I.I., et al.: Investigation of vibration machine movement with a multimode oscillation
spectrum. Eastern-Euro. j. Enterprise Technol. 6(1), 28–36 (2017a). https://doi.org/10.15587/
1729-4061.2017.118731

Nazarenko, I.,Dedov,O.,Dyachenko,O., Sviderskyi,A.:Ohlyad i analiz vibratsiynohoobladnannya
dlya formuvannya ploskykh zalizobetonnykh vyrobiv (Review and analysis of vibrating equip-
ment for the formation of flat reinforced concrete products). Mining Constr. Road Melioration
Mach. 90, 49–58 (2017b) (in Ukrainian). https://gbdmm.knuba.edu.ua/article/view/143522

Nazarenko, I.I., Rukhinskyi, M.M., Sviderskyi, A.T., Kobylanska, I.M., Harasim, D., Kalizhanova,
A., Kozbakova, A.: Development of energy-efficient vibration machines for the building-and-
contruction industry. Przeglad Elektrotechniczny. 1(4), 55–61 (2019). https://doi.org/10.15199/
48.2019.04.10

Noël, J.P., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years
of progress. Mech. Syst. Signal Process. 83, 2–35 (2017). https://doi.org/10.1016/j.ymssp.2016.
07.020

Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical
systems. Commun. Math. Phys. 74(2), 189–197 (1980). https://doi.org/10.1007/BF01197757

Sönnerlind, H.: COMSOL Blog. Damping in structural dynamics: theory and sources.
COMSOL Multiphys. (2019). www.comsol.com/blogs/damping-in-structural-dynamics-theory-
and-sources/

Vasiliev,V.G.:Vyibor optimalnyih parametrov vibratsionnogo formovanii Zhelezobetonnyih izdeliy
(Selection of optimal parameters of vibration molding of reinforced concrete products). Dig.
J. Techn. Technol. Transp. S13 (2019) (in Russ.). https://transport-kgasu.ru/index.php?option=
com_content&view=article&id=10&Itemid=2

Wang,G., Lai, Y.-C., Grebogi, C.: Transient chaos—a resolution of breakdown of quantum-classical
correspondence in optomechanics. Sci. Rep. 6, 35381 (2016). https://doi.org/10.1038/srep35381

https://doi.org/10.1007/978-1-4419-6987-3
http://www.ias.ac.in/article/fulltext/reso/020/03/0260-0263
https://doi.org/10.1007/978-3-319-78512-7
http://www.mathworks.com/help/wavelet/
https://doi.org/10.1063/1.5144143
https://doi.org/10.15587/1729-4061.2017.118731
https://gbdmm.knuba.edu.ua/article/view/143522
https://doi.org/10.15199/48.2019.04.10
https://doi.org/10.1016/j.ymssp.2016.07.020
https://doi.org/10.1007/BF01197757
http://www.comsol.com/blogs/damping-in-structural-dynamics-theory-and-sources/
https://transport-kgasu.ru/index.php%3Foption%3Dcom_content%26view%3Darticle%26id%3D10%26Itemid%3D2
https://doi.org/10.1038/srep35381


Part IV
Interaction of Structures and Flow



Chapter 12
Aeroelastic Interactions Between Plates
and Three-Dimensional Inviscid Potential
Flows

Konstantin V. Avramov, Darkhan S. Myrzaliyev,
and Kazira K. Seitkazenova

Abstract Themethod for analysis of dynamic interactions between plates and three-
dimensional, potential, inviscid gas is suggested. The system of the singular integral
equations with respect to aerodynamic derivatives of the pressure drop is obtained.
The numerical method for the singular integral equations solutions is suggested. Loss
of the plate dynamic stability is analyzed numerically.

Keywords Singular integral equation · Inviscid gas · Dynamic instability ·
Aerodynamic derivative

12.1 Introduction

The singular integral equations with respect to a circulation density are used basically
to analyze aeroelasticity of plates in three-dimensional potential flow. In this case, the
vorticity shed from the trailing edge of the plate and wake formation are considered.
This leads to significant computational burden. The calculations of the plate transient
responses reduce to the analysis of the characteristic exponents, which is transformed
to high dimension eigenvalue problem (Tang et al. 1999a, b).
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In this paper, the singular integral equations with respect to the pressure drop are
suggested. The pressure drop outside the plate is equal to zero. Therefore, the wake is
not considered. The mechanical steady-state vibrations can be analyzed using single
harmonic approximation in time of plate pressure drop. The characteristic exponents
are calculated to analyze dynamic stability of the plate. Assuming, that the gas is
three-dimensional, potential, inviscid and incompressible, the system of the singular
integral equations with respect to the pressure drop is derived. The numerical method
for the solutions of the obtained singular integral equations system is suggested.

Now the results of others researchers in this field are considered. The singular
integral equation with respect to pressure acting on the plate was derived by Albano
and Rodden (1969). The series of spatial functions is used to approximate a pres-
sure. The vortex method is used to analyze the aerodynamics of wings by Katz
(1985). Morino et al. (1975) suggested the method to predict the flowing of finite
thickness curved surfaces. Morino and Kuo (1974) derived the integro-differential
equation to describe the plate interaction with the compressible gas flow. Djojodi-
hardjo and Widnall (1969) suggested the numerical approach to solve the singular
integral equation with respect to a circulation density. Hess (1975) proposed the new
method to analyze a gas flowing of three-dimensional bodies. Landahl and Stark
(1968) investigated different types of the singular integral equations with respect to
both a circulation density and a pressure. The advantages and shortcomings of these
integral equations were discussed. Strganac and Mook (1990) analyzed the wings
flowing at arbitrary angle of attack. The vortex method was used to solve the aero-
dynamic problem. Mook and Dong (1994) suggested the methods for calculations
of incompressible flows past airfoils and their wakes. The properties of the wake
behind airfoils were considered. Eloy et al. (2007) assumed that the flutter mode is
two-dimensional but the potential flow is assumed to be three-dimensional. Using the
Galerkin method and the Fourier transformations, the flutter mode is predicted. Prei-
dikman and Mook (1998) analyzed the dynamics of the rigid plate with two degrees
of freedoms. The method of discrete vortices was applied to predict the wind loads
acting on the plate. The self-sustained vibrations of a wing are absorbed using the
saturation phenomenon (Hall et al. 2001). Three-dimensional vortex lattice method
was applied to describe the aerodynamic problem. Watanabe et al. (2002) discussed
different methods for the paper flutter analysis. Both the Navier-Stokes equations
simulations and the potential flow analysis were considered to calculate unsteady
lift forces. The authors concluded that the potential theory was enough to predict
the paper flutter. Guo and Paidoussis (2000) analyzed the plate stability. The Fourier
transformation was used to solve the Laplace equation with respect to the velocity
potential. Ellen (1972) considered the clamped plate flowing by an incompress-
ible gas. The pressure drop is described by the integral of the plate displacements.
The plate divergence was analyzed analytically. Kornecki et al. (1976) and Huang
(1995) considered flutter of cantilever plates using Theodorsen theory. Shayo (1980)
analyzed the linear vibrations of the plate interacting with moving gas. The singular
integral equations with respect to the pressure acting on the lifting surface were
treated in the book (Dowell et al. 1995). The self-sustained vibrations of the plates
with geometrical nonlinearity flowing by gas were studied in the papers (Attar and
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Dowell 2003; Tang et al. 1999b; Tang and Dowell 2002; Tang et al. 1999a). The
vortex lattice method was used to simulate a potential stream. The pressure drop on
the vibrating plate was analyzed in the paper (Breslavsky 2011). The almost periodic
and the chaotic vibrations of the plates with internal resonances flowing by gas were
considered in the paper (Avramov 2012). Themethod of discrete vortices for inviscid
potential flows analysis was treated in the books (Belotserkovskii and Lifanov 1993;
Lifanov et al. 2004).

Thus, the singular integral equationswith respect to a circulation density are gener-
ally used to describe the interactions of thin-walled structures with a stream. Due
to the wake formation, transients are observed and analyzed mandatory. Numerical
analysis of these motions leads to significant computational burden.

The system of the singular integral equations with respect to the aerodynamic
derivatives of the plate pressure drop is derived in this paper. Then there is nonecessity
to account thewake shed from the trailing edge. In this case, the numerical analysis of
the plate vibrations in gas flow is simpler than the analysis, which is used the singular
integral equations with respect to a circulation density. The numerical method for the
solution of the singular integral equationswith respect to the aerodynamic derivatives
of the pressure drop is suggested. Validity of the plates dynamic stability analysis is
verified by comparison with the results of others researchers.

Many models of plate vibrations in stream exist. The plates of wing-type are
described by 2D models (Tang et al. 1999a, b). The plates of flag-type are described
by 1D models (Eloy et al. 2007; Tang and Dowell 2002). The general method for
analysis of plate stability in stream is suggested in this paper.

12.2 Equations of Plate Motions

The flexural vibrations of the rectangular plates in stream (Fig. 12.1) are analyzed.
Transversal vibrations of the plates are described by the function w(x, y, t), which
satisfies the following partial differential equation:

h2

12
∇4w + 1 − ν2

E

(
ρ ẅ + cẇ + � p(x, y, t)

h

)
= 0, (12.1)

where ∇4w = ∂4w
∂x4 + 2 ∂4w

∂x2∂y2 + ∂4w
∂y4 ; ẅ = ∂2w

∂t2 ; h is plate thickness; E, ν are
Young’s modulus and the Poisson’s ratio; ρ is thematerial density; c is the coefficient
of the material damping; � p(x, y, t) is a pressure drop on the plate.

The plate dynamics is expanded by using the eigenmodes ψ j (x, y):

w(x, y, t) =
N1∑
j=1

q j (t) ψ j (x, y) , (12.2)
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Fig. 12.1 Sketch of the
system

where q j (t) are the generalized coordinates of the plate. It is assumed, that the plate
vibrations are single harmonic:

q j (t) ≈ γ j cos(ω t) + δ j sin(ω t); j = 1, . . . , N1 . (12.3)

12.3 System of Singular Integral Equations with Respect
to Aerodynamic Derivatives of Pressure Drop

The plate is streamed by three-dimensional, potential, inviscid and incompressible
gas. On significant distance from a plate, the flow has constant velocity U∞, which
is parallel to x axis. The projections of the flow velocities on x, y, z axes are denoted
by u(x, y, z, t) ; v(x, y, z, t) ; w(x, y, z, t), respectively. The velocity potential
ϕ(x, y, z, t) satisfies the following equations: u = U∞ + ∂ϕ

∂x ; v = ∂ϕ

∂y ;w = ∂ϕ

∂z .
The velocity potential and pressure p(x, y, z, t) satisfy the Laplace equations:

∇2ϕ = 0 ; ∇2 p = 0, (12.4)

where ∇2ϕ = ∂2ϕ

∂ x2 + ∂2ϕ

∂ y2 + ∂2ϕ

∂ z2 .
The boundary conditions for the Laplace equation (12.4) are considered. The

Sommerfeld radiation condition is fulfilled:

lim
x2+y2+z2→∞

grad ϕ = 0. (12.5)
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The no penetration boundary condition satisfies on the plate surface:

∂ϕ

∂z

∣∣∣∣
z=0

= ∂ w

∂ t
+U∞

∂ w

∂ x
. (12.6)

The pressure drop

� p(x, y, t) = p(x , y, z)|z=0+ − p(x , y, z)|z=0−

is equal to zero outside the plate on the plane z = 0. The pressure drop is equal to
zero on the plate boundary ∂S:

�p|∂S = 0. (12.7)

The aerodynamic derivatives (Belotserkovskii and Lifanov 1993; Lifanov et al.
2004) are used to calculate the flow perturbations induced by the plate vibrations:

ϕ (x, y, z, t) =
N1∑
j=1

[
ϕ

(0)
j (x, y, z)q j (t) + ϕ

(1)
j (x, y, z)q̇ j (t)

]
; (12.8)

p(x, y, z, t) =
N1∑
j=1

[
p(0)
j (x, y, z)q j (t) + p(1)

j (x, y, z)q̇ j (t)
]
. (12.9)

Following (Belotserkovskii and Skripach 1975), the functions ϕ
(0)
j (x, y, z),

ϕ
(1)
j (x, y, z), p(0)

j (x, y, z), p(1)
j (x, y, z) satisfy the Laplace equations:

∇2ϕ
(k)
j = 0 ; (12.10)

∇2 p(k)
j = 0 ; k = 0, 1; j = 1, . . . , N1. (12.11)

Index j indicates the number of eigenmode, which induce the pressure drop. The
solutions of Eqs. (12.10, 12.11) satisfy the boundary conditions (12.5, 12.6, 12.7).
The solutions of Eq. (12.11) take the following form (Dowell et al. 1995):

p(k)
j (x , y , z) = 1

4 π

∫
S

∫
� p(k)

j (x1 , y1)

[
∂

∂ z1

(
1

r

)]
z1=0

d x1d y1, (12.12)

where r =
√

(x − x1)
2 + (y − y1)

2 + (z − z1)
2; S is region of the plate middle

plane; � p(k)
j (x1, y1) = p(k)

j (x1, y1, z1)|Z1=0+ − p(k)
j (x1, y1, z1)|Z1=0− are aerody-

namic derivatives of the plate pressure drop; x1, y1, z1 are integration variables.
Bernoulli’s equation is used in the following form:
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p(x, y, z) = −ρ∞
(

∂ϕ(x, y, z, t)

∂ t
+U∞

∂ϕ(x, y, z, t)

∂ x

)
, (12.13)

where ρ∞ is a gas density. Equations (12.8, 12.9) is substituted into Eq. (12.13). As
a result, the following system of the partial differential equations is obtained:

U∞
∂ϕ

(0)
j

∂ x
− ω2 ϕ

(1)
j = − p(0)

j

ρ∞
;

U∞
∂ϕ

(1)
j

∂ x
+ ϕ

(0)
j = − p(1)

j

ρ∞
. (12.14)

The method of constants variation is used to solve Eq. (12.13). The solution of
this system takes the following form:

ϕ
(0)
j (x, y, z) = B(1)

j (x, y, z) exp

(
i

ω

U∞
x

)
+ B(2)

j (x, y, z) exp

(
−i

ω

U∞
x

)
;

ϕ
(1)
j (x, y, z) = i

ω
B(1)

j (x, y, z) exp

(
i

ω

U∞
x

)
− i

ω
B(2)

j (x, y, z) exp

(
−i

ω

U∞
x

)
,

(12.15)

where i is the imaginary unit. Equation (12.15) is substituted into (12.14). As a result,
it is derived:

2U∞ρ∞
∂B(1)

j (x, y, z)

∂x
=

[
iω p(1)

j (x, y, z) − p(0)
j (x, y, z)

]
exp

[
−i

ω

U∞
x

]
;

2U∞ρ∞
∂B(2)

j (x, y, z)

∂x
= −

[
iω p(1)

j (x, y, z) + p(0)
j (x, y, z)

]
exp

[
i

ω

U∞
x

]
.

(12.16)

The integration of Eq. (12.16) is carried out using the Sommerfeld conditions
(12.5). The results are substituted into (12.15). It is obtained:

ϕ
(1)
j (x, y, z) = − 1

U∞ρ∞ω

x∫
−∞

[
ωp(1)

j (ξ, y, z) cos

(
ω

U∞
(ξ − x)

)

+ p(0)
j (ξ, y, z) sin

(
ω

U∞
(ξ − x)

)]
dξ ;

ϕ
(0)
j (x, y, z) = 1

U∞ρ∞

x∫
−∞

[
−p(0)

j (ξ, y, z) cos

(
ω

U∞
(ξ − x)

)

+ ωp(1)
j (ξ, y, z) sin

(
ω

U∞
(ξ − x)

)]
dξ. (12.17)
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The expansions (12.8, 12.9) are substituted into the boundary condition (12.6).
As a result, the time-independent boundary conditions are obtained:

∂ϕ
(0)
j

∂ z

∣∣∣∣∣
z=0

= U∞
∂ψ j

∂x
; (12.18)

∂ϕ
(1)
j

∂ z

∣∣∣∣∣
z=0

= ψ j . (12.19)

The solution (12.12) is substituted into Eq. (12.17) and the result is substituted
into (12.8, 12.9). As a result, the following system of the singular integral equations
is obtained:

4π U 2
∞ρ∞

∂ψ j (x, y)

∂x
= −ω

¨

S

�p(1)
j (x1, y1)KS(x − x1, y − y1)dx1dy1

+
¨

S

�p(0)
j (x1, y1)KC(x − x1, y − y1)dx1dy1 ;

4π U∞ρ∞ωψ j (x, y) = ω

¨

S

�p(1)
j (x1, y1)KC(x − x1, y − y1)dx1dy1

+
¨

S

�p(0)
j (x1, y1)KS(x − x1, y − y1)dx1dy1, (12.20)

where

KC(x − x1, y − y1) = −
x−x1∫

−∞

cos ω(λ+x1−x)
U∞[

λ2 + (y − y1)2
]3/2

dλ;

KS(x − x1, y − y1) = −
x−x1∫

−∞

sin ω(λ+x1−x)
U∞[

λ2 + (y − y1)2
]3/2

dλ. (12.21)

The kernels KC(x̃, ỹ) and KS(x̃, ỹ) satisfy the following relations:

lim
x̃→0
ỹ→0

KC(x̃, ỹ) = ∞; lim
x̃→0
ỹ→0

KS(x̃, ỹ) = −∞.

The following dimensionless variables and parameters are used:

χ = ω a

U∞
; λ̄ = λ

a
; x̄1 = x1

a
; ȳ1 = y1

b
; x̄ = x

a
; ȳ = y

b
;
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r = a

b
; τ = ω t ; ϑi = qi

h
;

KS = a K̄S

b3
; KC = aK̄C

b3
; � p̄(1)

j = ω a�p(1)
j

ρ∞U 2∞
; � p̄(0)

j = a�p(0)
j

ρ∞U 2∞
, (12.22)

where χ is the Strouhal number. The system of the singular integral Eq. (12.20) with
respect to the dimensionless variables takes the following form:

¨

S̄

[
−� p̄(1)

j (x̄1, ȳ1)K̄S(x̄ − x̄1, ȳ − ȳ1) + � p̄(0)
j (x̄1, ȳ1)K̄C(x̄ − x̄1, ȳ − ȳ1)

]

dx̄1dȳ1 = ∂ψ j (x̄, ȳ)

∂ x̄

4π

r2
; (12.23)

¨

S̄

[
−� p̄(1)

j (x̄1, ȳ1)K̄S(x̄ − x̄1, ȳ − ȳ1) + � p̄(0)
j (x̄1, ȳ1)K̄C(x̄ − x̄1, ȳ − ȳ1)

]

dx̄1dȳ1 = ∂ψ j (x̄, ȳ)

∂ x̄

4π

r2
; (12.24)

K̄S(x̄ − x̄1, ȳ − ȳ1) = −
x̄−x̄1∫

−∞

sin χ
(
λ̄ + x̄1 − x̄

)
[
r2λ̄2 + (ȳ − ȳ1)2

] 3/ 2 dλ̄ ;

K̄C(x̄ − x̄1, ȳ − ȳ1) = −
x̄−x̄1∫

−∞

cos χ
(
λ̄ + x̄1 − x̄

)
[
r2λ̄2 + (ȳ − ȳ1)2

] 3/ 2 dλ̄,

where S̄ is the region of the plate middle plane with respect to dimensionless
coordinates.

The kernels of the singular integral Eqs. (12.23, 12.24) satisfy the following
relations:

∂

∂ x̄
K̄s(x̄ − x̄1, ȳ − ȳ1) = −χ K̄c(x̄ − x̄1, ȳ − ȳ1);

∂

∂ x̄
K̄c(x̄ − x̄1, ȳ − ȳ1) = −[

r2(x̄ − x̄1)
2 + (ȳ − ȳ1)

2]−3/ 2 + χ K̄s(x̄ − x̄1, ȳ − ȳ1).

(12.25)

Equation (12.23) is differentiated with respect to x̄ and the result is substituted
into Eq. (12.24). As a result, the following singular integral equation is derived:

¨

S̄

� p̄(1)
j (x̄1, ȳ1)dx̄1dȳ1[

r2(x̄ − x̄1)2 + (ȳ − ȳ1)2
] 3/ 2 = −8πχ

r2
∂ψ j (x̄, ȳ)

∂ x̄
. (12.26)
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The index j indicates on the number of eigenmode, which induced the pressure.
Equation (12.24) is differentiated with respect to x̄ and the result is substituted into
(12.23). As a result, the following singular integral equation is derived:

¨

S̄

� p̄(0)
j (x̄1, ȳ1)dx̄1dȳ1[

r2(x̄ − x̄1)2 + (ȳ − ȳ1)2
] 3/ 2 = 4π

r2

[
χ2ψ j (x̄, ȳ) − ∂2ψ j (x̄, ȳ)

∂ x̄2

]
. (12.27)

Thus, the system of the singular integral equations with respect to the aerody-
namic derivatives (12.26, 12.27) is derived. Equations (12.26) and (12.27) are solved
independently. The vortex method (Belotserkovskii and Lifanov 1993; Lifanov et al.
2004) is used to solve these equations. If the solution of this system is obtained, the
pressure drop on the plate is obtained using Eq. (12.9).

The system (12.26, 12.27) has several advantages in comparison with the
frequently used singular integral equations with respect to the circulation density.
The wake shed from the trailing edge is taken into account, if the system of singular
integral equations with respect to the circulation density is solved. Then the plate
transients are analyzed mandatory.

12.4 Finite Degrees of Freedom Model of Plates Vibrations

Equations (12.2) and (12.9) are substituted into (12.1). The Galerkin method is
applied. As a result, the linear dynamical system with respect to the general-
ized coordinates ϑ1, ϑ2, . . . is derived. This dynamical system with respect to the
dimensionless variables (12.22) takes the following form:

N1∑
j=1

Ri j
(
χ2ϑ ′′

j + αχ2ϑ ′
j + χ2

1�2
jϑ j

) + ε

N1∑
j=1

(
Ai jϑ j + Bi jϑ

′
j

) = 0;

i = 1, . . . , N1, (12.28)

where

ϑ ′
j = dϑ j

dτ
;

Ri j =
¨

S̄

ψ j (x̄, ȳ) ψi (x̄, ȳ)dx̄ dȳ;

Ai j =
¨

S̄

p̄(0)
j (x̄, ȳ) ψi (x̄, ȳ)dx̄ dȳ;
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Bi j =
¨

S̄

p̄(1)
j (x̄, ȳ) ψi (x̄, ȳ)dx̄ dȳ;

� j = ω j

ω1
; χ1 = ω1a

U∞
; ε = aρ∞

hρ
; α = c

ωρ
.

Stability analysis of the plate equilibrium is reduced to the investigations of the
trivial equilibrium of the dynamical system (12.28). The characteristic exponents λ̃

are calculated to analyze this stability. The solution of the system (12.28) has the
following form:

[
ϑ j , ϑ

′
j

] = [
Q j , Vj

]
exp

(
λ̃ t

)
; j = 1, . . . , N1, (12.29)

where Q j , Vj are unknown parameters. The characteristic exponents are determined
from the eigenvalue problem:

(
C(1) C(2)

−χ2E 0

)(
V
Q

)
= −λ1

(
V
Q

)
, (12.30)

where (E) is identity matrix;

λ1 = χ2 λ̃;
C(1) = εR−1B + αχ2E;
C(2) = εR−1A + χ2

1�
2;

�2 = diag
(
�2

1; . . . ;�2
N1

);
Q = [

Q1, . . . , QN1

]; V = [
V1, . . . , VN1

];
A = {

Ai j
}; B = {

Bi j
}; R = {

Ri j
}
.

The values of the system parameters, where the Hopf bifurcation are observed, are
called critical. Now the approach for the critical parameters calculation is considered.
The parameter χ is preset with the step hχ : χ( j) = χ0 + jhχ . For every value
of χ( j) the system of the singular integral Eqs. (12.26, 12.27) is solved. Using the
results of the system (12.26, 12.27) solution, the finite degrees of freedom dynamical
system (12.28) is obtained numerically. The critical values of the parameter χ1 are
calculated. If the system has critical parameters, two characteristic exponents are
complex conjugate with zero real parts: λ̃1,2 = ±i �̄. As a result of the calculations,
the curve on the plane (χ, χ1) is obtained. Only one point on this curve has the
critical parameters (χ, χ1).

The approach for determination of this point is considered. On the boundary of
stability, the frequency of the system (12.28) vibrations is ω̄ = 1. As follows from
Eq. (12.30), the following relation satisfies at the Hopf bifurcation:

�̄ = χ2.
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This additional equation is used to obtain the critical parameters of the system
(12.28).

12.5 Numerical Methods of Singular Integral Equation
Solution

The singular integral Eqs. (12.26, 12.27) are solved independently. The numerical
methods for their solution are identical.

The plate is split into n vertical and N horizontal bands. As a result, the plate
consists of n N rectangles (Fig. 12.2). The vertexes of these rectangles have the
following coordinates: xk = k hx ; k = 1, . . . , n ; yp = p hy ; p = 1, . . . , N . The
region of the rectangle k + n(p − 1) is determined as:

Sk+n(p−1) = {
(x, y) ∈ R2

∣∣xk−1 < x < xk; yp−1 < y < yp
}
. (12.31)

The gravity center of the rectangle is denoted by
(
ξk, ηp

)
.

The rectangles are so small, that the functions � p̄(1)
j (x̄1, ȳ1) and � p̄(0)

j (x̄1, ȳ1)
are assumed constants on them. These constants values are equal to the functions in
the rectangles gravity centers:

� p̄[k+n(p−1)]
0, j = � p̄(0)

j

(
ξk, ηp

) ;
� p̄[k+n(p−1)]

1, j = � p̄(1)
j

(
ξk, ηp

)
.

Fig. 12.2 The diagram of
the plate discretization
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The integral (12.26) is expressed as the sum of the integrals on all rectangles
Sk+n(p−1). Then Eq. (12.26) is satisfying in the collocation points (ξl, ηm) ; l =
1, . . . , n; m = 1, . . . , N . As a result, the following system of linear algebraic
equations with respect to � p̄[μ]1, j ;μ = 1, . . . , nN is derived:

n∑
k=1

N∑
p=1

Al+n(m−1),k+n(p−1) � p̄[k+n(p−1)]
1, j = B(1, j)

l+n(m−1) ; (12.32)

l = 1, . . . , n; m = 1, . . . , N ,

where

Al+n(m−1),k+n(p−1) =
√(

ηm − yp
)2 + r2(ξl − xk−1)

2

(
ηm − yp

)
(ξl − xk−1)

−
√(

ηm − yp
)2 + r2(ξl − xk)

2

(
ηm − yp

)
(ξl − xk)

+
√(

ηm − yp−1
)2 + r2(ξl − xk)

2

(
ηm − yp−1

)
(ξl − xk)

−
√(

ηm − yp−1
)2 + r2(ξl − xk−1)

2

(
ηm − yp−1

)
(ξl − xk−1)

;

B(1, j)
l+n(m−1) = −8πχ

∂ψ j (x̄l , ȳm)

∂ x̄
.

Thus, the solution of the singular integral Eq. (12.26) is reduced to the system
of linear algebraic Eq. (12.32). The singular integral Eq. (12.27) is approximated by
the following system of linear algebraic equations:

n∑
k=1

N∑
p=1

Al+n(m−1),k+n(p−1) � p̄[k+n(p−1)]
0, j = B(0, j)

l+n(m−1) ;

B(0, j)
l+n(m−1) = 4π

[
χ2ψ j (x̄l , ȳm) − ∂2ψ j (x̄l , ȳm)

∂ x̄2

]
.
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12.6 Results of Numerical Analysis

Validation of the plate aeroelasticity by the systemof the singular integral Eqs. (12.25,
12.26) and the numericalmethod for their solution is themain goal of stability numer-
ical analysis. Dynamic stability of the plate (Fig. 12.3) is investigated numerically.
This plate is analyzed in the paper (Tang et al. 2003). 1D model is used to analyze
such plates in the papers (Eloy et al. 2007; Tang and Dowell 2002). However, 2D
model is used to investigate this plate here. The following numerical values of the
parameters are used:

E = 70.56 · 109 Pa ; ρ = 2.84 · 103 kg/m3;
ρ∞ = 1.43 kg

/
m3; ν = 0.3 ; h = 0.39 · 10−3 m ; b = 0.127.

Figure 12.4 shows the first four modes of the plate vibrations at r = 4. Aerody-
namic derivatives of the pressure, which are induced by these eigenmodes, are shown
in Figs. 12.5 and 12.6.

Loss of the plate dynamic stability is analyzed. The critical streamvelocityU∞ and
the vibrations frequencyω are calculated. The plate with r = 2.12 is considered. The
critical stream velocityU∞ and the plate vibrations frequency ω are calculated using
the approach from Sect. 12.4. It is obtained: U∞ = 30.52m/ s ; ω = 124 rad

/
s.

The results of the calculations of the structure, which is treated in the paper (Tang
et al. 2003), are U∞ = 29.5m/ s ; ω = 141.3 rad

/
s. Thus, the results, which are

published here, and the data from the paper (Tang et al. 2003) are close.
Changing the plate aspect ratio r , the loss of the plate dynamic stability is analyzed.

Figure 12.7 shows the dependence of the critical stream velocity on the plate aspect
ratio. The flutter onset frequency versus the plate aspect ratio is presented in Fig. 12.8.
If the plate is lengthen, the stream velocity and the flutter onset frequency are

Fig. 12.3 Sketch of the plate
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Fig. 12.4 The eigenmodes of the plate at r = 4. Figures a, b, c, d show the first, the second,
the third and the fourth vibrations eigenmodes of the plate with the following parameters: E =
70.56 · 109 Pa ; ρ = 2.84 · 103 kg/m3; ρ∞ = 1.43 kg

/
m3; ν = 0.3 ; h = 0.39 · 10−3 m ;

b = 0.127

decreased. The calculations results from the paper (Tang et al. 2003) are shown
by point on Figs. 12.7 and 12.8.

The influence of damping coefficient α on parameters of flutter is analyzed. The
results of analysis are shown in Figs. 12.9 and 12.10. Figure 12.9 shows the depen-
dence of damping coefficient on critical stream velocity and Fig. 12.10 shows the
dependence of flutter onset frequency on damping coefficient.

The data of stability analysis are obtained by 2D model and the results of 1D
model analysis (Tang et al. 2003) are close.
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Fig. 12.5 The aerodynamic derivatives of the general coordinates. Figures a, b, c, d shows the
aerodynamic derivatives induced by the first, the second, the third and the fourth eigenmodes of
the plate with the following parameters: E = 70.56 · 109 Pa ; ρ = 2.84 · 103 kg/m3; ρ∞ =
1.43 kg

/
m3; ν = 0.3 ; h = 0.39 · 10−3 m ; b = 0.127

Dynamic stability of the plate (Fig. 12.1) is considered. The stream is parallel to x
axis. The side y = 0 is clamped and all others sides are free. Aeroelastic stability of
such plates is studied in the papers (Tang et al. 1999b; Avramov 2012). This system
has the following numerical values of parameters:

a = b = 0.3m ; h = 0.001m ; E = 0.69 · 1011 Pa ;
ν = 0.3 ; ρ = 2.7 · 103 kg

m3
; α = 0.005 .
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Fig. 12.6 The aerodynamic derivatives of the general velocities. Figures a, b, c, d show the aero-
dynamic derivatives induced by the first, the second, the third and the fourth eigenmodes with the
following parameters: E = 70.56 · 109 Pa ; ρ = 2.84 · 103 kg/m3; ρ∞ = 1.43 kg

/
m3; ν =

0.3 ; h = 0.39 · 10−3 m ; b = 0.127

For the considered parameters the critical velocity is obtained: V∞ = 39.76 m/ s.
The plate frequency for the critical system parameters is ω = 86.13 rad

/
s. The

following values of the plate critical velocity and frequency are published in Tang
et al. (1999b): V∞ = 42.00 m/ s ;ω = 84.85 rad

/
s. The results, which are published

here, and the data from the paper (Tang et al. 1999b) are close.
Only dynamic instability of the plate is treated in this paper. The nonlinear vibra-

tions of the structure (Avramov 2002, 2003, 2009; Avramov and Mikhlin 2004) are
not considered.
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Fig. 12.7 The dependence of the critical stream velocity on the plate aspect ratio. The plate has
the following parameters: E = 70.56 · 109 Pa ; ρ = 2.84 · 103 kg/m3; ρ∞ = 1.43 kg

/
m3; ν =

0.3 ; h = 0.39 · 10−3 m ; b = 0.127

Fig. 12.8 The dependence of flutter onset frequency on the plate aspect ratio. The plate with
the following parameters is considered: E = 70.56 · 109 Pa ; ρ = 2.84 · 103 kg/m3; ρ∞ =
1.43 kg

/
m3; ν = 0.3 ; h = 0.39 · 10−3 m ; b = 0.127

Fig. 12.9 The dependence of damping coefficients on critical stream velocity
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Fig. 12.10 The dependence of flutter onset frequency on the damping coefficient

12.7 Conclusions

The system of the singular integral equations with respect to the aerodynamic deriva-
tives of pressure drop is suggested this paper. This system is very suitable for aeroe-
lastic analysis, as there is unnecessary to analyze thewake shed from the trailing edge.
Moreover, the approach for numerical solutions of the singular integral equations,
based on the vortex method, is suggested.

For verification of the obtained system of singular integral equations and the
method of their solution, the dynamic stability of several plates, which are treated
in the previous papers, is analyzed. The obtained results are consistent with the data
published by other researches.

The suggested system of singular integral equations will be used to analyze bifur-
cations and stability of nonlinear self-sustained vibrations of plates flowing by gas,
using the modern methods of nonlinear dynamics.

Funding This study was particularly funded by National Research Foundation of Ukraine (grant
number 128/02.2020).
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Chapter 13
Hydroelastic Vibrations of Circular
Sandwich Plate Under Inertial Excitation

Dmitry V. Kondratov, Lev I. Mogilevich, Victor S. Popov,
and Anna A. Popova

Abstract In this paper, a bending vibrations problem for a circular sandwich plate,
which is the top wall of a narrow channel, under the action of inertial excitation
was considered. We assumed the channel bottom wall is an absolutely rigid disk
mounted on a vibrating foundation and considered the case when the circular sand-
wich platewas a three-layered disk formed by twometal face sheets and a lightweight
incompressible core located between them. Due to the channel axial symmetry, the
axisymmetric problem was studied. To describe the dynamics of the circular sand-
wich plate,we used the equations obtained in the framework of the zig-zag hypothesis
for the normal in the plate cross-section. As part of the study, we assumed the channel
was filled with a viscous incompressible liquid, and its movement was studied as a
creeping one.We had formulated the coupled hydroelasticity problem for the circular
sandwich plate under vibration acceleration of the channel foundation. Taking into
account the channel narrowness, the dynamics equations for the viscous liquid were
solved and the stresses acting on the circular sandwich plate from the liquid side were
found. As a result, we obtained the equation for bending hydroelastic vibrations of
the circular sandwich plate. The solution of this equation was found by the variables
separation method. The hydroelastic response of the circular sandwich plate for the
main mode of vibrations was determined. The study of this response was carried out
for the sandwich plate with face sheets made of duralumin and a fluoroplastic core.
The hydroelastic responses for the sandwich plate and the single-layered plate were
compared.
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Keywords Hydroelasticity · Sandwich plate · Viscous incompressible fluid ·
Vibration

13.1 Introduction

Plates and beams are the main structural elements of various structures and they
are usually applied for mathematical modeling of the complex mechanical systems
behavior (Amabili 2008). Currently, sandwich plates and beams are widely used
in civil engineering, mechanical engineering, and other industries. These structural
elements possess a number of important properties, such as protection from aggres-
sive environments, high energy absorption, impact resistance, noise and vibration
reduction, etc. (Birman and Kardomateas 2018). Modern installations of transport
systems are subject to intense vibration loads with a wide range of frequencies and
high intensity of impact and at the same time are their sources. The reliability and
service life of modern high power density products are largely determined by the
vibration level of its assemblies and parts. Therefore, various vibration damping
systems based on hydrodynamic dampers and vibration dampers are widely used in
mechanical engineering and instrument making. In this regard, it becomes urgent
to study the dynamics of the interaction of elastic sandwich structures that are part
of hydrodynamic dampers and supports with a working fluid. Thus, already at the
design stage of vibration damping systems, there is a need to calculate and assess the
behavior of a sandwich plate—liquid system under dynamic loads, and this is asso-
ciated with the formulation and solution of the dynamic problem of hydroelasticity
of a hydrodynamic damper, which includes an elastic sandwich structure. Thus, we
can say that the presented research topic is relevant for the modern development of
technology.

Well-knownclassical theories such asEuler-Bernoulli beam theory andKirchhoff-
Love plate theory applied to the study of single-layered beams and plates are not
suitable for sandwich ones. Therefore, to describe their behavior, zig-zag theories
are used that take into account a piecewise form of transverse stress and displacement
fields for multilayered structure (Carrera 2003; Gorshkov et al. 2005; Tessler 2015).
For example, in Starovoitov et al. (2018), Starovoitov and Leonenko (2019) the study
of thermoelastic deformation for elastic and elastoplastic three-layer circular plates
possessing asymmetry across its thickness was carried out. The authors obtained
the equilibrium equations for sandwich plates with the incompressible core using
Lagrange variational principle and the zig-zag hypothesis for the normal in the plate
cross-section.

On the other hand, in recent decades, interest in the problems of hydroelasticity for
single-layered plates has not diminished. Among these problems, we can distinguish
studies for plates interacting with an ideal and viscous liquid. For example, in one
of the first papers (Lamb 1921), free vibrations of a clamped circular plate with an
ideal liquid located on one side of it were considered. In Amabili and Kwak (1996),
the results of Lamb (1921) are generalized on the basis of a study of the coupled
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hydroelasticity problem for a circular platewith various edge conditions, in particular,
for both free-edge, simply supported and clamped plates, as well as for supported
plates with an elastic moment edge constraint. The free hydroelastic vibrations of
circular and annular plates interacting with an ideal fluid either bounded by a free
surface or by a solid wall are investigated in Amabili (1996). The paper of Amabili
(2001) deals with the vibrations of a circular plate resting on a sloshing liquid-free
surface. The author considered the case of an ideal incompressible fluid, the domain
of which is limited by a rigid cylinder and a rigid flat bottom. Hydroelastic vibrations
of container walls formed by a cylindrical shell and a circular plate are investigated
in Amabili (1997, 2000). In these papers, the hermetic and open tanks filled with an
ideal liquid are investigated.Hydroelastic vibrations of a circular plate immersed in an
ideal liquid, having a free surface and located in a cylindrical tank were theoretically
and experimentally investigated in Askari et al. (2013). In Askari et al. (2020), a
new approach to mathematical modeling for fluid-coupled vibration of axisymmetric
plate structures with asymmetries was proposed. The authors determined the mode
shapes of the vibrating plate with asymmetries without fluid and in turn, they used
them to study vibrations of the fluid-coupled plate structure. Mathematical modeling
of the hydroelastic behavior of the circular plate which is the pipeline end seal
and contacting with an ideal liquid filled the pipeline was carried out in Velmisov
and Pokladova (2019). Results of the experimental study of the rectangular plate’s
natural vibrations for both in the air or on the liquid-free surface were presented
in (Bochkarev et al. 2020). Bochkarev and Lekomtsev (2016) are devoted to the
research of the hydroelastic stability for two parallel rectangular plates forming a
narrow channel and interacting with a flowing ideal fluid in it.

Among the papers devoted to the hydroelasticity problems for plates interacting
with a viscous liquid, the following can be distinguished. Kozlovsky (2009) gener-
alizes the well-known study of Lamb (1921) taking into account the viscosity of a
liquid located on one side of the circular plate. The dynamics and stability of the plate
separating two viscous liquids were investigated in Velmisov and Ankilov (2017).
Plane problems of hydroelastic vibrations for rectangular plates forming the walls of
a narrow channel filledwith a viscous liquid and resting on an elastic foundationwere
studied in Mogilevich et al. (2016, 2017), Tulchinsky and Gat (2019). Mogilevich
et al. (2018) was devoted to the study of longitudinal and transverse hydroelastic
vibrations of the wall of narrow tapered channel resting on vibrating foundation and
filled with viscous liquid.

Currently, we can point there are few studies for the hydroelastic behavior of
composite plates. For instance, the natural vibrations of composite cantilevered plates
interacting with air and in water were studied in Kramer et al. (2013), Liao et al.
(2019). Grushenkova et al. (2015), Mogilevich et al. (2017), Chernenko et al. (2019)
consider the issues of the hydroelastic response of three-layer beams and plates inter-
acting with a viscous liquid layer and being the walls of narrow channels, including
cases of taking into account the elastic properties of the foundation on which they
are placed. However, among the abovementioned papers, there are no investiga-
tions devoted to hydroelastic vibrations of a circular sandwich plate interacting with
a viscous liquid layer and installed on a vibrating foundation. The article is the
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first to solve the associated problem of hydroelastic vibrations of a round sand-
wich plate, installed on a vibrating foundation, interacting with a layer of a viscous
incompressible fluid.

13.2 The Problem Statement

Let us consider a mechanical system consisting of two coaxial disks parallel to
each other, between which there is a layer of viscous incompressible liquid. The
disks have a radius R (see Fig. 13.1). The bottom disk is absolutely rigid, and the
top one is a circular three-layer plate, clamped along its contour. We assume the
presence of an end cavity filled with the same liquid in which constant pressure is
maintained. Therefore, the liquid can freely flow from the narrow channel formed
by two disks into the end cavity. The system is placed on a vibrating foundation.
Thus, the sandwich plate can vibrate due to the foundation vibration. We introduce a
cylindrical coordinate system rθz, the pole O of which is connected with the center
of the top surface of the bottom disk. Due to the axial symmetry, we will next focus
on the study of the axisymmetric problem. In the introduced coordinate system, the
foundation oscillates along the z-axis with an amplitude zm. We assume that the
distance between the disks is h0 � R, and the amplitude of elastic deflections of the
circular sandwich plate wm is significantly less than the liquid layer thickness, i.e.,
wm � h0.

Let us assume the foundation vibration law has the form zf = zmf (ωt), where
f (ωt) = sin(ωt), ω is the oscillation frequency. Then the foundation acceleration is

z̈ f = zmd
2 f (ωt)

/
dt2 = −zmω2 f (ωt).

Further, the foundation acceleration amplitude is represented in units of gravity
g, i.e., we assume that zm = kg/ω2, where k is the vibration overload coefficient.

The sandwich plate is a three-layer structure consisting of two face sheets and
a core between them. The face sheets bear the load bulk, and the core enables the
three-layer structure to work together. The core material is rigid and lightweight, i.e.,

Fig. 13.1 Oscillatory mechanical system: 1—absolutely rigid disk, 2—circular sandwich plate
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we neglect the core work in the tangential direction. We consider the kinematics of
the circular sandwich plate in the approach proposed in Gorshkov et al. (2005), i.e.,
we assume that the top and bottom face sheets obey theKirchhoff hypotheses, and the
normal to the middle surface of the deformed core remains straight, but rotates by an
angle ϕ. In other words, we use the zig-zag hypothesis for the normal. In addition, we
will study bending vibrations of the sandwich plate, i.e., exclude from consideration
the inertial forces of the plate in the radial direction. In this case (Gorshkov et al.
2005; Starovoitov et al. 2018; Starovoitov and Leonenko 2019), the stress-strain state
of the sandwich plate is completely described by means of radial displacement u and
deflection of the core middle surface w, as well as the rotation angle of the normal ϕ.
The dynamics equations of the circular sandwich plate (Gorshkov et al. 2005), taking
into account the reference-frame acceleration, i.e., the foundation acceleration, can
be written in the form

L2

(
a1 u + a2 ϕ − a3

∂w

∂r

)
= −qzr ,

L2

(
a2 u + a4 ϕ − a5

∂w

∂r

)
= 0,

L3

(
a3 u + a5 ϕ − a6

∂w

∂r

)
− M0

(
∂2w

∂t2
+ z̈ f

)
= −qzz,

L2(g) = ∂

∂r

[
1

r

∂

∂r
(rg)

]
, L3(g) = 1

r

∂

∂r
[r L2(g)],

a1 = h1 K
+
1 + h2 K

+
2 + 2 c K+

3 , a2 = c (h1 K
+
1 − h2 K

+
2 )

a3 = h1

(
c + 1

2
h1

)
K+

1 − h2

(
c + 1

2
h2

)
K+

2 ,

a4 = c2
(
h1 K

+
1 + h2 K

+
2 + 2

3
c K+

3

)
,

a5 = c

(
h1

(
c + h1

2

)
K+

1 + h2

(
c + h2

2

)
K+

2 + 2

3
c2K+

3

)
,

a6 = h1

(
c2 + ch1 + h21

3

)
K+

1

+ h2

(
c2 + ch2 + h22

3

)
K+

2 + 2c3

3
K+

3 ,

K+
k = Kk + 4

3
Gk, k = 1, 2, 3, M0 = ρ1h1 + ρ2h2 + ρ32c. (13.1)

Here u is a radial plate displacement; w is a plate deflection; ϕ is a rotation angle
of deformed normal in the plate core; qzr and qzz are shear and normal liquid strkesses
acting on the top plate surface, respectively. Gk is a shear modulus of the k-th layer;
Kk is a bulk modulus of the k-th layer; ρk is a density of the k-th layer material. The
expressions for a1, …, a6 were obtained in Gorshkov et al. (2005).

The boundary conditions for Eq. (13.1) are
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u = ϕ = w = ∂w

∂r
= 0 at r = R, (13.2)

and the condition of limited deflection on the symmetry axis

r
∂w

∂r
= 0 at r = 0. (13.3)

Following (Loitsyanskii 1966), we consider the viscous incompressible liquid
motion in a narrow channel as a creeping one and neglect gravity. In this case,
the dynamics equations of the viscous liquid are the Navier-Stokes equations, in
which the local and convective terms of inertia are neglected, but take into account
the reference-frame acceleration. These equations are written together with the
continuity equation. As a result, we obtain

1

ρ

∂p

∂r
= ν

(
∂2Vr

∂r2
+ 1

r

∂Vr

∂r
+ ∂2Vr

∂z2
− Vr

r2

)
,

z̈ f + 1

ρ

∂p

∂z
= ν

(
∂2Vz

∂r2
+ 1

r

∂Vz

∂r
+ ∂2Vz

∂z2

)
,

∂Vr

∂r
+ 1

r
Vr + ∂Vz

∂z
= 0. (13.4)

Here Vr and V z are liquid velocity projections on the coordinate system axes, p
is the liquid pressure, ν is the kinematic viscosity coefficient of the liquid, ρ is the
liquid density.

Since the model of a viscous incompressible fluid is used, then the boundary
conditions for Eq. (13.4) are the non-slip conditions

Vr = 0, Vz = 0, at z = 0,

Vr = ∂u

∂t
, Vz = ∂w

∂t
, at z = h0 + w. (13.5)

and conditions for the pressure at the channel edge and the symmetry axis

p = p0 − ρ z̈ f (z − h0
/
2) at r = R, (13.6)

r
∂p

∂r
= 0 at r = 0. (13.7)

The stresses –qzz, –qzr in the right-hand sides of Eq. (13.2) are viscous liquid
stresses, i.e., they have the form (Loitsyanskii 1966)

−qzr = −ρν
(

∂Vz

∂r + ∂Vr
∂z

)∣
∣∣
z=h0+w

,

−qzz =
(
−p + 2ρν

∂Vz

∂z

)∣∣∣
z=h0+w

.
(13.8)
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13.3 Solving the Hydroelasticity Problem

Let us designate the amplitudes of radial displacement, deflection, and rotation angle
of the normal for the sandwich plate as um, wm, ϕm, respectively. Next, we take into
account that wm � h0 and h0 � R and introduce small parameters of the problem
and dimensionless variables

ψ = h0
R

� 1, λ = wm

h0
� 1, ζ = z

h0
, ξ = r

R
, τ = ωt. (13.9)

The functions included in the equations are represented as

Vz = wmωUζ (ξ, ζ, τ ), Vr = wmωR

h0
Uξ (ξ, ζ, τ ),

p = p0 + ρνwmω

h0ψ2
P(ξ, ζ, τ ) − ρh0 z̈ f (ζ − 1/2),

w = wmW (ξ, τ ), u = umU (ξ, τ ), ϕ = ϕmΦ(ξ, τ ). (13.10)

Taking into account (13.9), (13.10) into Eq. (13.4), we obtain

∂P

∂ξ
= ∂2Uξ

∂ζ 2
+ ψ2

(
∂2Uξ

∂ξ 2
+ 1

ξ

∂Uξ

∂ξ
− Uξ

ξ 2

)
,

∂P

∂ζ
= ψ2

[
ψ2

(
∂2Uζ

∂ξ 2
+ 1

ξ

∂Uζ

∂ξ

)
+ ∂2Uζ

∂ζ 2

]
,

∂Uξ

∂ξ
+ 1

ξ
Uξ + ∂Uζ

∂ζ
= 0. (13.11)

Neglecting the terms of order ψ in these equations (van Dyke, 1975), we write
the equations for the dynamics of a thin layer of a viscous liquid

∂P

∂ξ
= ∂2Uξ

∂ζ 2
,

∂P

∂ζ
= 0,

∂Uξ

∂ξ
+ 1

ξ
Uξ + ∂Uζ

∂ζ
= 0. (13.12)

Note that according to the second equation, pressure is a function of the radial
coordinate and time, i.e., we further assume P(ξ, τ ).

The boundary conditions (13.5) in dimensionless form are

Uξ = 0, Uζ = 0 at ζ = 0,
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Uξ = ψ
um
wm

∂U

∂τ
, Uζ = ∂W

∂τ
at ζ = 1 + λW.

In the problem under consideration, we assume um/wm = O(1), so up to ψ and λ

(van Dyke, 1975), the boundary conditions (13.5)–(13.7) are written as

Uξ = 0, Uζ = 0 at ζ = 0,

Uξ = 0,Uζ = ∂W

∂τ
at ζ = 1,

P = 0 at ξ = 1,

ξ
∂P

∂ξ
= 0 at ξ = 0. (13.13)

By solving Eq. (13.12) bearing in mind boundary conditions (13.13), we obtained

Uξ = ∂P

∂ξ

ζ(ζ − 1)

2
,

Uζ = 1

ξ

∂

∂ξ

(
ξ
∂P

∂ξ

)(
3ζ 2 − 2ζ 3

12

)
,

P = −12

1∫

ξ

⎡

⎣1

ξ

ξ∫

0

ξ
∂W

∂τ
dξ

⎤

⎦dξ . (13.14)

Taking into account above, we write the stresses (13.8) as

−qzr = − ρν wm ω

h0 ψ

∂Uξ

∂ζ

∣∣∣
ζ=1

,

−qzz = −p0 + ρh0 z̈ f
/
2 − ρ ν wm ω

h0 ψ2 P.
(13.15)

It can be noted that qzr /qzz = O(ψ), i.e., qzz � qzr . Therefore, we assume qzr = 0
and substituting (13.9), (13.10), (13.14), (13.15) into Eq. (13.1), we obtain

L2

(
a1 umU + a2 ϕmΦ − a3 wm

R

∂W

∂ξ

)
= 0,

L2

(
a2 umU + a4 ϕmΦ − a5wm

R

∂W

∂ξ

)
= 0,

L3

(
a3 umU + a5 ϕmΦ − a6wm

R

∂W

∂ξ

)
− M0ω

2

(
wm

∂2W

∂τ 2
+ z̈ f

ω2

)

= −p0 + ρh0 z̈ f
/
2 + 12

ρ ν wm ω

h0 ψ2

1∫

ξ

⎡

⎣1

ξ

ξ∫

0

ξ
∂W

∂τ
dξ

⎤

⎦dξ . (13.16)



13 Hydroelastic Vibrations of Circular Sandwich … 235

with L2(g) = ∂
R2∂ξ

[
1
ξ

∂
∂ξ

(ξg)
]
, L3(g) = ∂

ξ R∂ξ
[ξL2(g)].

Using the first and second Eq. (13.16) we find

u = umU = b1
R

wm
∂W

∂ξ
,

ϕ = ϕmΦ = b2
R

wm
∂W

∂ξ
. (13.17)

where b1 = a4a3−a2a5
a1a4−a22

, b2 = a1a5−a2a3
a1a4−a22

. Substituting (13.17) in (13.16), we obtain the
bending hydroelastic vibrations equation for the circular sandwich plate due to the
foundation vibration

L3

(
Ds

wm

R

∂W

∂ξ

)
+ M0ω

2

(
wm

∂2W

∂τ 2
+ z̈ f

ω2

)

= p0 − ρh0 z̈ f
/
2 − 12

ρ ν wm ω

h0 ψ2

1∫

ξ

⎡

⎣1

ξ

ξ∫

0

ξ
∂W

∂τ
dξ

⎤

⎦dξ

. (13.18)

Here we use the following notation Ds = [a6 − a3b1 − a5b2]. Note that if Ds is
understood as the flexural rigidityD=Eh3/(12(1–μ2)) andm0 = ρph is assumed then
we make the transition to a homogeneous single-layered circular plate of thickness
h, the material of which has a young’s modulus E, Poisson’s ratio μ and density ρp.

Taking into account the boundary conditions (13.2), (13.3) we offered the solution
of (13.18) as the eigenfunctions series for the Sturm-Liouville problem

w = wm

∞∑

k=1

(
R0
k + Rk(τ )

) [
J0(βk ξ)

J0(βk)
− I0(βk ξ)

I0(βk)

]
, (13.19)

with R0
k , Q

0
k , T

0
k mean the coefficients, corresponding to the static pressure p0 and

Rk , Qk , Tk are the time functions, corresponding to the foundation vibrations, J0,
J1 are the Bessel function of the first kind, I0, I1 are the modified Bessel function,
βk is eigenvalue determined from the solution of the equation I1(βk)/I0(βk) = –
J1(βk)/J0(βk) (Gorshkov et al. 2005).

By substituting (13.19) in (13.18) we get

wm

∞∑
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(
R0
k + Rk(τ )

)Dsβ
4
k

R4

[
J0(βk ξ)
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dτ 2
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J0(βk ξ)

J0(βk)
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]

+ M0 z̈ f = p0 − ρh0 z̈ f
/
2
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− 12
ρ ν wm ω

h0 ψ2
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1
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k
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J0(βk ξ)

J0(βk)
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I0(βk)
− 2

]
dRk

dτ
. (13.20)

In the obtained Eq. (13.20), there are terms other than eigenfunctions, therefore,
we performing the re-decompositions these terms in the form of eigenfunctions
series. As a result, we obtain the following equations
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. (13.21)

Further, we assume k = 1, 2, …, n, i = 1,2, …, n and equating in (13.21) the
coefficients at the same eigenfunctions we define the expressions for R0

k

R0
1 = p0

2R4

Ds

J1(β1)

J0(β1)β
5
1wm

, . . . , R0
n = p0

2R4
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nwm

, (13.22)

and alsoweobtain the systemof linear ordinary differential equations for determining
Rk(τ )
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R4
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. (13.23)

Thus, by setting the number for retained terms of the series, we can find the
desired coefficients R0

k and solving the system of Eq. (13.23) to find the functions
Rk(τ ), thereby determining the deflections of the circular sandwich plate.

For instance, consider the steady-state harmonic oscillations of the circular sand-
wich plate on the main mode, i.e., we assume k = 1, i = 1 and write Eqs. (13.22),
(13.23) as

R0
1 = p0

2R4

Ds

J1(β1 )

J0(β1)β
5
1wm

, (13.24)
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+ 12
ρνwmω

h0ψ2
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Taking into account that for harmonic oscillations d2Rn(τ )
/
dτ 2 = −Rn(τ ) and

solving (13.25), we obtain

R1(τ ) = kg(M0+ρh0
/
2)

2

wmβ1

J1(β1)

J0(β1)

× 1
√(

Dsβ
4
1

/
R4 − M0ω2

)2 + (K1ω)2
sin(τ + θ),

where K 1 = 12 ρν

h0ψ2
1
β2
1

(
J 21 (β1)

J 20 (β1)
− 4

β1

J1(β1)

J0(β1)

)
, tgθ = K1ω

M0ω2−(Dsβ
4
1

/
R4)

.

As a result, we present the deflections of the circular sandwich plate on the main
mode of oscillation as

w = p0
2R4

Ds

J1(β1 )

J0(β1)β
5
1

[
J0(β1 r

/
R)

J0(β1)
− I0(β1 r

/
R)

I0(β1)

]

+ kg(M0 + ρh0
/
2)A(r, ω) sin(ωt + θ). (13.26)

Writing (13.26), we introduced the frequency-dependent distribution function of
the deflection amplitudes for the circular sandwich plate

A(r, ω) = 2

β1

J1(β1)

J0(β1)

1
√(

Dsβ
4
1

/
R4 − M0ω2

)2 + (K1ω)2

×
[
J0(β1 r

/
R)

J0(β1)
− I0(β1 r

/
R)

I0(β1)

]

. (13.27)

Expression (13.27) allows us to find the hydroelastic response of the circular
sandwich plate at its main mode vibration due to the foundation vibration. To do
this, it is sufficient to consider the ratio of the function A(r, ω) to its value at ω = 0,
i.e., we have defined the hydroelastic response as

α(ω) = A(r, ω)
/
A(r, 0) = R4

Dsβ
4
1

1
√(

Dsβ
4
1

/
R4 − M0ω2

)2 + (K1ω)2
, (13.28)

where A(r, 0) = 2R4

Ds

J1(β1 )

J0(β1)β
5
1

[
J0(β1 r/ R)

J0(β1)
− I0(β1 r/ R)

I0(β1)

]
.
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13.4 Calculation Results

As an example, we carried out a numerical study for the hydroelastic response of the
circular sandwich plate, the face sheets of which are made of duralumin and the core
is made of fluoroplastic. We examined the channel with the following parameters
(Gorshkov et al. 2005): R = 0.3 m, h0/R = 0.04, h1/R = 0.005, h2/R = 0.0075, c/R
= 0.01, ρ = 103 kg/m3, ρ1 = ρ2 = 2.7 × 103 kg/m3, ρ3 = 2.15 × 103 kg/m3, K1 =
K2 = 8 × 103 Pa, K3 = 4.7 × 109 Pa, G1 = G2 = 2.67 × 1010 Pa, G3 = 9 × 107 Pa,
ν = 10−6 m2/s.

In addition, we calculated the hydroelastic response for the single-layered circular
plate of similar geometric dimensions made of duralumin. The calculation results
are shown in Fig. 13.2.

We have formulated the coupled hydroelasticity problem for the circular sandwich
plate placed on a vibrating foundation. In the framework of this problem, the equation
of bending vibrations of the circular sandwich plate interacting with the viscous
liquid layer under the reference-frame acceleration is derived. Using the separation
of variables, the system of ordinary differential equations is obtained, which makes it
possible to study the hydroelastic response of the plate. It can be noted that for steady-
state harmonic oscillations, this equation system is transformed into the system of
algebraic equations that can be solved by known methods. We presented the solution
for themainmode of harmonic vibrations and determined an analytical expression for
plate deflections (13.26). This made it possible to consider the frequency-dependent
distribution function of the sandwich plate deflections (13.27), which completely
determines its stress-strain state, and also makes it possible to find the frequency

Fig. 13.2
Amplitude-frequency
responses for bending
vibrations of the circular
plate on the main mode:
1—the circular sandwich
plate (the face sheets
material is duralumin, the
core material is
fluoroplastic), 2—the
circular homogeneous
single-layered plate (the
plate material is duralumin)
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response of the sandwich plate. We note that the first term of solution (13.26) can
be represented as p0A(r, 0), i.e., A(r, 0) is the static deflection of the plate under the
uniformly distributed load 1 Pa. We obtained the frequency response of the circular
sandwich plate to the reference-frame acceleration as the ratio A(r, ω)/A(r, 0) =
α(ω). Our calculations of α(ω) showed a significant difference between the resonant
frequencies of the sandwich plate from a homogeneous single-layered plate of the
same geometric dimensions and made of the face sheets material. In particular, as
follows from Fig. 13.2, for the sandwich plate, a shift of the resonance frequency to
the low-frequency region and a decrease in the response amplitude is observed in
comparison with a homogeneous single-layered plate.

13.5 Summary and Conclusion

The problem of hydroelasticity of a multilayer plate on a vibrating base is formulated
and amethod for its solution is presented. The obtained analytical solution determines
the hydroelastic response of a round sandwich plate to the main vibration mode. The
presented analytical solution can be the main one for the development of scientific
software products for simulating similar problemsof hydroelasticity. Thus, the results
obtained in this work can be used to analyze the dynamic response of a circular
sandwich plate interacting with the viscous liquid layer under inertial excitation.
The developed model can make it possible to design highly efficient and low-power
mechanical vibrators for various technological processes. For example, vibrators for
creating optimal conditions and accelerating the impregnation of porous products
with liquid and others.

Acknowledgements The study was funded by Russian Foundation for Basic Research (RFBR)
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Chapter 14
Effect of Finite Vessel Stiffness
on Transition from Two-Dimensional
Liquid Sloshing to Swirling:
Reduced-Order Modeling

Dar Zusman and Oleg V. Gendelman

Abstract Liquid sloshing in partially filled tanks is rather complex. Thus, reduced-
order dynamical models are often used in attempt to describe the dynamics of the
contained liquid. One of the most important sloshing phenomena is the transition
from two-dimensional to three-dimensional motion, including swirling. This paper
addresses a reduced-order model that describes this transition, with one substan-
tial addition—it considers finite stiffness of the vessel itself. Most classical models
were obtained under the assumption of infinite stiffness of the vessel and there-
fore neglected the interaction between the sloshing liquid and the tank structural
modes. However, this interaction was proven to be extremely significant. This paper
suggests a reduced-ordermodel of the sloshing liquid in a tankwith finite stiffness and
analyzes themodel in conditions of simple horizontal harmonic forcing. The effect of
vessel stiffness on the transition from two-dimensional to three-dimensional motion
is studied.

Keywords Liquid sloshing · Reduced-order models · Swirling

14.1 Introduction

Vessels filled with liquid are widely used over the world, from containers used to
store different chemicals in factories, to fuel tanks in aircrafts, missiles or rockets.
Resonant excitations of the free surface of the liquid may cause a well-known effect
called liquid sloshing. This kind of excitation, in particular, can take place in either
liquid cargo or stationary tanks exposed to earthquakes. During the slosh motion,
hydraulic pressures and impacts are applied to the vessel’s inner walls. These, in turn,
may alter the dynamics of the system and its stability significantly, and thus, may
have a tremendous effect on its robustness (Farid and Gendelman 2016). Failure of
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tanks which contain hazardous liquids might lead to severe pollution or even loss of
human lives. Therefore, the ability to predict the dynamics and the resulting stresses
is crucial.

When the tank is excited, different response regimes can take place. In order to
have a better understanding of sloshing dynamics, various phenomenological models
have been presented over the years. Numerous studies assumed the vessel walls to be
rigid, and hydrodynamic pressures were separated into "impulsive" and "convective"
decoupled components (Jolie et al. 2013). In the mid-1950s, Housner (1957, 1963)
formulated a simplified two-dimensional mechanical model consisting of equivalent
masses. Following Housner’s work, Dodge (1966) and Abramson (1966) suggested
two equivalent mechanical models to simulate two-dimensional sloshing response: a
spring-mass system and a pendulum. They derived the values of different parameters
for both types of models and for different tank shapes.

More models intended to describe three-dimensional behavior including swirling
(also referred to as rotary sloshing by Ibrahim et al. 2005) in rigid tanks have also
been introduced. The most popular one is that of a horizontally forced spherical
pendulum, which was first presented by Miles (1961, 1984a, 1984b). Kana (1989)
developed a model of a compound pendulum (a spherical pendulum coupled with
a simple linear pendulum). Bauer (1966) developed a different nonlinear model,
which includes a slidingmass point on a parabolic surface with an attached nonlinear
spring, represented byhigh exponent.Additional analyticalwork concerning swirling
was conducted by Faltinsen and Timokha (e.g., Faltinsen et al. 2003, 2005, 2006),
who developed a multimodal approach to rotary sloshing in a square base tank.
Faltinsen et al. (2016) developed a similar approach for a cylindrical tank. These
studies showed, inter alia, that with increasing liquid level, the characteristics of the
two-dimensional steady-state response change from hard to soft. In a rectangular
tank with liquid depth h and breadth b, this transition occurs in the critical depth
of h*≈ 0.3368b. In a cylindrical tank with radius R, this transition occurs in h*≈
0.5059R. It should be noted that in cylindrical tanks, the swirling keeps a hardening
response for h* ≥ 0.2R.

Experimental studies have also been carried out, such as the one presented by
Royon-Lebeaud and Hopfinger (2007). They described the bounds of steady-state
wavemotion in a cylinder according to bifurcation points βi first determined byMiles
(1984b). For a tank with radius R and natural frequency ω1, which is forced with
excitation amplitude Af and frequency ω, these lines are given by:

A f

R
= 1

1.684

[(
ω

/
ω1

)2 − 1

βi

]3/2

(14.1)

where i = 2, 3, 4 and β2 = −0.36, β3 = −1.55 and β4 = 0.735. These bounds are
plotted in Fig. 14.1. It is shown that in the vicinity of resonance (ω/ω1 = 1), the liquid
becomes nonplanar and starts to swirl. Chaos was exhibited in excitation frequencies
on the left side of resonance.
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Fig. 14.1 Phase diagram of
dimensionless forcing
amplitude Af/R versus
frequency ratio ω/ω1.
Bounds of steady-state wave
motion were determined
according to Miles (1984b)
and Royon-Lebeaud and
Hopfinger (2007)

In 1964, a major earthquake took place in Alaska and caused great damage to
the oil tanks. The main conclusion from this event was that the flexibility of the tank
plays a substantial role in the seismic performance of liquid storage tanks. It was
stated that the vibrations of the tank are always coupled with the vibrations of the
free surface of the contained liquid (Barton and Parker 1987). Since then, additional
considerable efforts were invested in understanding the response of flexible tanks.
For example, Bauer et al. (1967) showed that the natural frequency of a container
with flexible walls increases with the decrease of liquid depth. Further analytical
work concerning the hydrodynamic forces induced in a seismically excited flexible
tank was presented byVeletsos (1974), Fischer (1979), Balendra et al. (1982), Parkus
(1982), Tedesco et al. (1989), Fischer and Rammerstorfer (1999) and many others.
These investigations revealed that the hydraulic forces in flexible tanks are consider-
ably higher than those in rigid tanks. Moreover, studies dealing with this nonlinear
coupling such as those of Ibrahim and Barr (1975a, and 1975b) and Ibrahim (1976)
indicated that conditions of internal resonance may lead to amplified response.

Following these findings, Haroun and Housner (1981) developed a generalized
model for two-dimensional sloshing, based on Housner’s model from the 1960s, that
takes tank wall flexibility into account. Moreover, Zou and Wang (2015) studied
the effects of tank wall stiffness and filling ratio on the coupled sloshing modes, by
modeling the wall as a flexible bulkhead. They found that a higher filling ratio and
smaller bending stiffness of the bulkhead cause a stronger coupling effect, leading
to a decrease in water wave frequencies. These two models are intended to describe
two-dimensional sloshing in flexible tanks.
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Fig. 14.2 Scheme of the
suggested equivalent
mechanical model for rotary
sloshing in a flexible vessel

14.2 Description of the Model

14.2.1 Introducing the Model

The suggested ROMconsists of a massmwhich is mounted in a cylindrical container
with horizontal displacement Z. The mass m represents the first liquid sloshing mode
mass, whereas mass M is the total mass of the container-liquid system. A dashpot
with damping coefficient C2 and a nonlinear spring with linear, cubic and quintic
stiffness coefficients K2, α and β, respectively, are attached to the sloshed mass. A
linear spring with stiffness coefficient K1 and a dashpot with damping coefficient
C1 attach the container to an oscillating wall with horizontal displacement U and
represent the structure’s elasticity.U is considered to be harmonic, with displacement
amplitude P and frequency ω. The model is schematically shown in Fig. 14.2.

As themain purpose of the model is to provide a general insight into the formation
of rotary motion in non-rigid containers, it is designed to be as simple as possible.
For this reason, the model is formulated as a top view of the container. Practi-
cally, planar waves (linear sloshing) are two-dimensional, and swirling is three-
dimensional. However, in the model discussed in this study, planar waves will be
expressed as one-dimensional motion and swirling as two-dimensional. Further-
more, it is assumed that the dimensions of the container are big enough so that mass
m does not impact with the tank walls.

14.2.2 Equations of Motion

The equations of motion governing the system are developed according to Lagrange
formalism. The kinetic and potential energies, T and V, are expressed as:

T = 1
2M(Ut + Zt )

2 + 1
2m

[
(Ut + Zt + Xt )

2 + Y 2
t

]
(14.2)
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V = 1
2K1Z

2 + 1
2K2�

2 + 1
4α�4 + 1

6β�6 (14.3)

Here, � is the geometrical length � = √
X2 + Y 2. The Lagrangian is given by:

L = T − V = 1
2M(Ut + Zt )

2 + 1
2m

[
(Ut + Zt + Xt )

2 + Y 2
t

]
− 1

2K1Z
2 − 1

2K2�
2 − 1

4α�4 − 1
6β�6 (14.4)

The damping is described by Rayleigh’s dissipation function:

D = 1
2C1Z

2
t + 1

2C2
(
X2
t + Y 2

t

)
(14.5)

Using (14.4) and (14.5) and applying some simple manipulations, one obtains the
following non-dimensional equations of motion:

xττ + (1 + μ)
[
1 + γ

(
x2 + y2

) + χ
(
x2 + y2

)2]
x

+ (1 + μ)c2xτ − μκz − c1zτ = 0

yττ +
[
1 + γ

(
x2 + y2

) + χ
(
x2 + y2

)2]
y + c2yτ = 0

zττ − μ
[
1 + γ

(
x2 + y2

) + χ
(
x2 + y2

)2]
x − μc2xτ + μκz + c1zτ = F sin(
τ)

(14.6)

where x = X/w, y = Y/w and z = Z/w, w is a factor of normalization of length,
subscripts τ represent differentiation with respect to normalized time, and the non-
dimensional parameters governing the system dynamics are defined as follows:

ω2
0 = K2

m
,
 = ω

ω0
, F = P
2

w
,μ = m

M
, κ = K1

K2
,

γ = αw2

K2
, χ = βw4

K2
, c1 = C1

Mω2
0

, c2 = C2

mω2
0

(14.7)

It is noteworthy that the parameter κ is used as a measure of tank flexibility.
Specifically, κ → ∞ corresponds to the case of a perfectly rigid tank.
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14.3 Numerical Study

14.3.1 Effect of Finite Vessel Stiffness on the Critical
Excitation Amplitude

Preliminary numerical study showed that 2D motion, which is related to swirling, is
formed merely in the vicinity of primary resonance (Ω = 1). These results are
encouraging as they are consistent with all past studies treated rotary sloshing.
Figure 14.3 presents an example of a typical phase diagram of (14.6), in which
simulations resulting in one-dimensional (1D) and two-dimensional (2D) motion are
plotted in different colors, for different values of excitation amplitudes and excitation
frequencies.

At this point, the comparison toFig. 14.1 is called for. In accordancewith Fig. 14.1,
excitationswith frequencies higher than resonance are required to be stronger in order
for a rotary motion to transpire. Nevertheless, there is also a remarkable difference
between this work and past analyzes. Previous studies showed that in frequencies
slightly lower than resonance, chaotic motion is much likely to take place. In contrast
with these findings, in the current model, chaos is exhibited only in specific cases
(which will be discussed later on). One may witness this difference when comparing
Figs. 14.3 and 14.1. Even so, it is important to bear in mind that the model suggested
in this work is very simple and is not destined to fully describe the properties of
three-dimensional dynamics in tank-liquid systems.

More numerical study was targeted at discovering whether there is a correlation
between degree of vessel stiffness and formation of the 2D response. For this matter,
additional simulations were performed to find the critical value of the excitation
amplitude, F, in which the system response changes from one to two-dimensional,
for various parameter sets. It was found that generally, as the flexibility of the vessel
increases, so does the value of the excitation amplitude needed for the swirling regime
to be formed. This trend is evident in Fig. 14.4. Nonetheless, some kind of spikes
about the values 35 ≤ κ ≤ 45 can also be exhibited in this figure. Interestingly, it

Fig. 14.3 Classification of
response dimensions for
different excitation
amplitudes and excitation
frequencies. Each point
represents a simulation
resulted in two-dimensional
(green) or one-dimensional
(blue) response. Simulation
results are presented for μ =
0.2, κ = 50, c1 = 0.07, c2 =
0.01, γ = −0.15 and χ =
0.025
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Fig. 14.4 Critical excitation amplitude, FC, in which the system dynamics change from one-
dimensional to two-dimensional response, for different values of κ: a
 = 1; b
 = 0.98. Simulation
results are presented for μ = 0.2, c1 = 0.001, c2 = 0.001, γ = −0.06 and χ = 0.01

turns out that in this narrow parameter range, unstable chaotic motion is observed.
This phenomenon takes place in the vicinity of 3:1 internal resonance, which will be
discussed in Sect. 14.3.3.

14.3.2 Effect of Finite Vessel Stiffness and Finite Liquid
Depth on the Sloshing Modes

The natural frequencies of (14.6) can be easily obtained by performing linearization
about the trivial equilibrium point: X̄s = (x, y, z, xτ , yτ , zτ ) = 0:

ω2
1 = 1

2

[
μ(κ + 1) + 1 +

√
[μ(κ + 1) + 1]2 − 4μκ

]

ω2
2 = 1

2

[
μ(κ + 1) + 1 −

√
[μ(κ + 1) + 1]2 − 4μκ

]

ω2
3 = 1 (14.8)

Figure 14.5 displays the frequencies ω1 and ω2 versus κ for different values
of μ. In this figure, the effect of tank flexibility and filling ratio on the sloshing
modes is demonstrated: Higher flexibility of the tank or a higher filling ratio (which
corresponds to smaller values of μ) leads to a decrease in the natural frequencies. As
κ reaches infinity, which corresponds to the case of a rigid tank, the natural frequency
ω2 gets closer to unity, which is the modal frequency of the uncoupled system. These
results are consistent with results of previous works.



250 D. Zusman and O. V. Gendelman

Fig. 14.5 Natural frequencies ω1 (a) and ω2 (b) versus κ for different values of μ. The following
values of μ are presented: μ = 0.1, μ = 0.2, μ = 0.3, μ = 0.4, μ = 0.5, μ = 0.6, μ = 0.7, μ =
0.8, μ = 0.9, μ = 1

14.3.3 3:1 Internal Resonance

Following (14.8), the condition for 3:1 internal resonance can be determined by
values of κ and μ that uphold:

9μ2κ2 + 2μ(9μ − 41)κ + 9(μ + 1)2 = 0 (14.9)

Clearly, the 3:1 internal resonance is obtained for different combinations of κ and
μ (see Fig. 14.6). For example, for a mass ratio of μ = 0.2, 3:1 this resonance is
obtained for κ ≈ 42.8.

To examine the effect of 3:1 internal resonance on system response, different
numerical simulations have been carried out, in the vicinity of the internal resonance
and far from it. All parameter values remained constant, except for κ which varied

Fig. 14.6 Natural
frequencies ratio vs. κ for
different values of μ. The
following values of μ are
presented: μ = 0.1, μ = 0.2,
μ = 0.3, μ = 0.4, μ = 0.5, μ
= 0.6, μ = 0.7, μ = 0.8, μ
= 0.9, μ = 1
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Fig. 14.7 Effect of 3:1 internal resonance in configurational space, μ = 0.2. a System response for
κ = 45, far from 3:1 internal resonance. b System response for κ = 42.8, at 3:1 internal resonance.
Simulation results are presented for 
 = 1, F = 0.28, c1 = 0.03, c2 = 0.01, γ = −0.15 and χ =
0.025

Fig. 14.8 Effect of 3:1 internal resonance - μ = 0.2. FFT of x (a), y (b) and z (c) signals, for κ =
45 (blue) and κ = 42.8 (red). Simulation results are presented for 
 = 1, F = 0.28, c1 = 0.03, c2
= 0.01, γ = −0.15 and χ = 0.025

to study its impact. Fast Fourier transforms (FFT) were performed to exemplify the
significance of the modes. It is shown that far from 3:1 internal resonance, the first
mode is substantially more dominant than the others. As κ approaches the value
that corresponds to 3:1 resonance, the following mode is amplified. To illustrate this
point, numerical results are presented in Figs. 14.7 and 14.8. It is noteworthy that in
the vicinity of 3:1 internal resonance, the system exhibited a chaotic response. This
type of response will be discussed in Sect. 14.3.4.2.

14.3.4 Effect of Finite Vessel Stiffness on the Formation
of Chaotic Response

Numerical exploration revealed the existence of unstable regimes in two cases: for
very flexible tanks and in the vicinity of 3:1 internal resonance. These regimes were
characterized as chaotic by evaluating the Lyapunov exponents—asymptotic quan-
tities commonly used to describe the rate of convergence or separation of two close
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Fig. 14.9 Chaos in very flexible tanks. a Evolution of Lyapunov exponents; b System response.
Simulation results are presented for 
 = 1, F = 0.278, μ = 0.2, κ = 8, c1 = 0.001, c2 = 0.001, γ
= −0.06 and χ = 0.01

trajectories and thus indicate chaotic behavior. If we consider an initial deviation
from a specific trajectory, δ̄(0), and describe its evolution by:

δ̄(t) = eλt δ̄(0) (14.10)

Then, the Lyapunov exponents are defined as:

Λ = λ
t→∞

= lim
t→∞

1
t ln

( ‖δ(t)‖
‖δ(0)‖

)
(14.11)

A dynamical system with at least one positive Lyapunov exponent is consid-
ered chaotic. In this work, the Lyapunov exponents are calculated with the help of
Govorukhin (2004), which is based on an algorithm suggested by Wolf et al. (1985).

14.3.4.1 Chaos in Very Flexible Tanks

Chaos was exhibited for small values of κ and for relatively small damping coeffi-
cients. An example is illustrated in Fig. 14.9, which shows there are three positive
exponents.

14.3.4.2 Chaos in the Vicinity of Internal Resonance

Simulations which were carried out in the vicinity of 3:1 internal resonance revealed
the existence of an unstable regime in a narrow range of parameter sets (see Fig. 14.4).
The formation of this regime is demonstrated in Fig. 14.10. Positive Lyapunov
exponents indicate chaotic behavior, as shown in Fig. 14.11.
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Fig. 14.10 Formation of chaotic response when approaching 3:1 internal resonance with μ = 0.2.
Linear stiffness parameter value: from left to right: κ = 35, κ = 38, κ = 39, κ = 39.42. Simulation
results are presented for 
 = 1, F = 0.28, c1 = 0.03, c2 = 0.01, γ = −0.15 and χ = 0.025

Fig. 14.11 Evolution of
Lyapunov exponents in the
vicinity of 3:1 internal
resonance with μ = 0.2.
Simulation results are
presented for 
 = 1, F =
0.28, κ = 39.42, c1 = 0.03,
c2 = 0.01, γ = −0.15 and χ

= 0.025
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14.4 Analytical Treatment

In order to study the transition from one-dimensional to two-dimensional response,
we firstly focused on one-dimensional motion. This means that (14.6) can be reduced
to:

xττ + (1 + μ)
(
1 + γ x2 + χx4

)
x + (1 + μ)c2xτ − μκz − c1zτ = 0

zττ + μκz − μ
(
1 + γ x2 + χx4

)
x − μc2xτ + c1zτ = F sin(
τ) (14.12)

Supposing that the first harmonic is the most dominant allows us to use the ansatz:

x = αx cos(
τ) + βx sin(
τ)

z = αz cos(
τ) + βz sin(
τ) (14.13)

where αx , βx , αz and βz are slowly varying amplitudes (α j = α j (ετ ), β j = β j (ετ )).
Differentiation of (14.13) while neglecting insignificant terms (O(ε2)) yields:
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xτ = [αxτ + βx
] cos(
τ) + [βxτ − αx
] sin(
τ)

xττ = [
2
βxτ − 
2αx

]
cos(
τ) − [

2
αxτ + 
2βx
]
sin(
τ)

zτ = [
αzτ + βz


]
cos(
τ) + [

βzτ − αz

]
sin(
τ)

zττ = [
2
βzτ − 
2αz

]
cos(
τ) − [

2
αzτ + 
2βz
]
sin(
τ) (14.14)

As a first step, in order to find the fixed points, amplitude derivatives of (14.14)
are eliminated (αxτ = βxτ = αzτ = βzτ = 0). Substituting (14.13) and (14.14) to
(14.12) and balancing the harmonics yield the following equations:

−
2αx + (1 + μ)
[
1 + 3

4γ
(
α2
x + β2

x

) + 5
8χ

(
α2
x + β2

x

)2]
αx + (1 + μ)
c2βx − μκαz − 
c1βz = 0

−
2βx + (1 + μ)
[
1 + 3

4γ
(
α2
x + β2

x

) + 5
8χ

(
α2
x + β2

x

)2]
βx − (1 + μ)
c2αx − μκβz + 
c1αz = 0

−
2αz − μ
[
1 + 3

4γ
(
α2
x + β2

x

) + 5
8χ

(
α2
x + β2

x

)2]
αx − 
μc2βx + μκαz + 
c1βz = 0

−
2βz − μ
[
1 + 3

4γ
(
α2
x + β2

x

) + 5
8χ

(
α2
x + β2

x

)2]
βx + 
μc2αx + μκβz − 
c1αz = F (14.15)

(14.15) may yield up to five different combinations of αx , βx , αz and βz . Each
combination represents a possible stationary solution of (14.12). Mathematically,
some of these solutions can be complex. We are interested only in the real solutions.
Stationary solutions will be denoted by subscript “s” further on in this work.

In order to determine whether the solutions of (14.15) are locally stable, one
should analyze the response to small perturbations. In order to perform this analysis,
slow-flow equations need to be obtained. For this matter, (14.14) is reexamined.
Substitution of (14.13) and (14.14) to (14.12) yields:

αxτ = A11αx + A12βx + A13αz + A14βz

+
[
1 + 3

4γ
(
α2
x + β2

x

) + 5
8χ

(
α2
x + β2

x

)2]
(B11αx + B12βx ) + C11

βxτ = −A12αx + A11βx − A14αz + A13βz

+
[
1 + 3

4γ
(
α2
x + β2

x

) + 5
8χ

(
α2
x + β2

x

)2]
(−B12αx + B11βx ) + C21

αzτ = A21αx + A22βx + A23αz + A24βz

+
[
1 + 3

4γ
(
α2
x + β2

x

) + 5
8χ

(
α2
x + β2

x

)2]
(B21αx + B22βx ) + C31

βzτ = −A22αx + A21βx − A24αz + A23βz

+
[
1 + 3

4γ
(
α2
x + β2

x

) + 5
8χ

(
α2
x + β2

x

)2]
(−B22αx + B21βx ) + C41 (14.16)
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Coefficients Ai j , Bi j ,Ci j are defined in the Appendix. The Jacobian matrix of
(14.16) can be derived and defined as follows:

JSFX̄=X̄s
=

⎡
⎢⎢⎣
J11 J12 A13 A14

J21 J22 −A14 A13

J31 J32 A23 A24

J41 J42 −A24 A23

⎤
⎥⎥⎦ (14.17)

where coefficients Ji j are expressed as follows:

J11 = A11 + S1
(
B11αxs + B12βxs

)
αxs + S2B11

J21 = −A12 + S1
(−B12αxs + B11βxs

)
αxs − S2B12

J31 = A21 + S1
(
B21αxs + B22βxs

)
αxs + S2B21

J41 = −A22 + S1
(−B22αxs + B21βxs

)
αxs − S2B22

J12 = A12 + S1
(
B11αxs + B12βxs

)
βxs + S2B12

J22 = A11 + S1
(−B12αxs + B11βxs

)
βxs + S2B11

J32 = A22 + S1
(
B21αxs + B22βxs

)
βxs + S2B22

J42 = A21 + S1
(−B22αxs + B21βxs

)
βxs + S2B21 (14.18)

and:

S1 = 3γ

2
+ 5χ

(
α2
xs + β2

xs

)
2

S2 = 1 + 1

2

(
α2
xs + β2

xs

)
S1 (14.19)

Eigenvalues of (14.17) can be calculated for each set of αxs , βxs , αzs and βzs .
Fixed solutions which yield Jacobian eigenvalues that lie in the open left half plane
(OLHP) will be defined as stable.

Figure 14.12 is an example of a bifurcation diagram which displays some of
the possible solutions of (14.15), for varying values of excitation amplitudes. Adja-
cent fixed points which formed continua are represented by continuous curves or
branches. A branch comprising stable fixed points is considered stable, whereas a
branch consisting of unstable solutions is considered unstable. Solid and dashed lines
represent stable and unstable branches, respectively. In order to evaluate the accu-
racy of these branches, numerical simulation results of the full system, (14.6), for the
same parameter sets, are also plotted. Different initial conditions were examined.

It seems that generally, for the same set of parameters, different initial conditions
may yield up to two different solutions, which are located on two different branches.
When the excitation amplitude is varied, the solutions “jump” between branches.
For relatively small excitation amplitudes and about the critical amplitude, there is
a satisfactory correspondence between the full numerical solution and the branches
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Fig. 14.12 Comparison between numerical simulation results and solutions obtained by harmonic
balancing for κ = 20 and 
 = 1. The black line represents the stable (solid) and unstable (dashed)
analytical solutions. The diamonds and circles represent full numerical simulation results:Diamonds
represent 1D response, whereas circles represent 2D response. Different colors represent different
initial conditions. Simulation results are presented for μ = 0.2, c1 = 0.07, c2 = 0.01, γ = −0.15
and χ = 0.025

obtained by the harmonic balance. This means that the first harmonic is the dominant
one in these cases. However, as the excitation amplitude increases and becomes
greater than the critical excitation amplitude, this fit becomes poor, and the branches
fail to predict the system response. This is also true concerning all cases inwhichmore
than one mode takes part in the dynamics. This point is emphasized in Figs. 14.13
and 14.14.

In addition, Figs. 14.15, 14.16 and 14.17 present three types of frequency
responses. For small excitation amplitudes, we get a softening effect, whereas for
relatively larger excitation amplitudes, we get a hardening effect. This finding is

Fig. 14.13 Time series comparison between numerical simulation results (blue) and the analytical
solution (red), for κ = 70 and 
 = 0.97. The significance of the second mode is not reflected in in
the HB solution for z for some initial conditions. Simulation results are presented for F = 0.1, μ =
0.2, c1 = 0.03, c2 = 0.01, γ = −0.15 and χ = 0.025. a Initial conditions: x0 = 0.5, xτ0 = y0 =
yτ0 = z0 = zτ0 = 0; b Initial conditions: x0 = 2.5, xτ0 = y0 = yτ0 = z0 = zτ0 = 0



14 Effect of Finite Vessel Stiffness on Transition … 257

Fig. 14.14 FFT diagrams of x (a) and z (b), with the same parameter set and initial conditions as
for Fig. 14.13a

Fig. 14.15 Frequency response graph for F = 0.01. Softening nonlinearity is exhibited. Results
are presented for μ = 0.2, κ = 20, c1 = 0.07, c2 = 0.01, γ = −0.15 and χ = 0.025

Fig. 14.16 Frequency response graph for F = 0.05. A sort of combination of softening and hard-
ening nonlinearities is exhibited. Results are presented for μ = 0.2, κ = 20, c1 = 0.07, c2 = 0.01,
γ = −0.15 and χ = 0.025
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Fig. 14.17 Frequency response graph for F = 0.25. Hardening nonlinearity is exhibited. Results
are presented for μ = 0.2, κ = 20, c1 = 0.07, c2 = 0.01, γ = −0.15 and χ = 0.025

consistent with previous analytical works, which argued that planar waves are related
to softening nonlinearity and swirling—to hardening nonlinearity.

For intermediate values of the excitation amplitudes, we get a sort of combination
of softening and hardening response. There is a possible reason for this unique shape:
In the previous sections, it was found that the critical excitation amplitude is much
lower for frequencies in the vicinity of primary resonance, than those for resonant
frequencies. Thus, there is a wide range of excitation amplitudes which are strong
enough to cause 2D motion in the vicinity of resonance, but not strong enough to
trigger this bifurcation at resonance. This makes as reasonable for both softening and
hardening characteristics to exist in the same frequency response graph.

14.5 Discussion and Concluding Remarks

This work is aimed at describing the transition between two-dimensional liquid
sloshing and three-dimensional swirling motion, in a flexible cylindrical tank, under
external horizontal excitation. For thismatter, a reduced-ordermodelwas introduced.

It was shown that rotary sloshing in flexible containers is formed in the case of
higher excitation amplitudes. This finding is reasonable. In the general case in which
the liquid-tank system is horizontally excited, the liquid has to obtain a critical
amount of energy to bifurcate to the swirling motion. In flexible containers, some of
this energy is converted to a strain energy. Thus, more energy is required to enter the
system to form the rotary sloshing.

Further numerical exploration revealed the existence of chaos in veryflexible tanks
with relatively small damping coefficients and in the vicinity of internal resonance.
This regime was validated by determination of positive Lyapunov exponents and
simulations of the system with different initial conditions.

One-dimensional motion was assumed (i.e., y = 0) , and simple harmonic
balancing was performed. It was demonstrated that in most cases, balancing the
first harmonic provides a satisfactory agreement with numerical simulations of the
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full system. However, it was found to be inaccurate in relatively high excitation
amplitudes or in any case where additional modes become significant.

The considered model succeeds in predicting the features of fluid-structure inter-
action in coupled liquid-tank systems. It also succeeds in exhibiting softening nonlin-
earity of planarwaves and hardening nonlinearity of rotarywaves, in accordancewith
previous works. The model makes it possible to study the dependence of the transi-
tion to the swirling on the vessel stiffness, a subject which, as far as we know, has yet
to be studied. Moreover, it allows to reveal more interesting dynamical phenomena
of liquid sloshing which take place in very flexible tanks.
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Appendix

A11 = − c2
2
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4(μ + 1)
2 + c21

]
16
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A24 = −
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Chapter 15
Analysis of Creep, Shrinkage,
and Damage in Armored Concrete Dome
at Static and Seismic Loading

Dmytro Breslavsky and Aleksandr Chuprynin

Abstract The main approaches and methods for studying creep and long-term
strength of thin-walled structures made of concrete and reinforced concrete are
considered. A mathematical formulation and a method for solving the creep-damage
problem of thin-walled concrete elements under short-term and long-term loading,
which makes it possible to determine their bearing capacity and long-term strength,
are presented. An example of calculations the resistance to dynamic loading and
long-term strength of a reinforced concrete dome is given.

Keywords Creep · Damage · Shrinkage · Concrete dome · Static and seismic
loading

15.1 Introduction

With proper operation, reinforced concrete structures can serve indefinitely without
reducing the bearing capacity. This is due to the fact that, unlikemost other materials,
the strength of concrete increases over time. However, with design errors, irreversible
creep strains can increase significantly over time and reach critical values (Neville
1973). Microcracks and initial voids can appear in the concrete before any loads are
applied (Baron and Sautgrey 1982). The brittle fracture that occurs as a result of the
growth of internal damage is highly dependent on the load type. At the same time, the
rate of the damage accumulation increases at the last stages of loading the structure,
eventually leading to the appearance of macroscopic defects or cracks (Lemaitre and
Chaboche 1994).

It is well known that concrete has a strain delay effect, which determines its long-
term mechanical behavior (Ulm et al. 2013) and the long-term strength of structures
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(Tanabe et al. 2013). Ensuring reliable and safe operation of building concrete and
reinforced concrete structures, in particular, those that correspond to the models
of plates and shells, necessitates the development of adequate models, calculations
using which can confirm the fact of safe operation during the design period.

Creep models for concrete should take into account several important phenomena
that significantly affect the behavior of structures during long-term operation (Sellier
et al. 2016). When constructing the constitutive equations, the characteristic of the
water content varying in concrete is of great importance, which, in turn, depends on
operational factors, such as temperature and humidity of the environment, as well
as the contact area of the structure with open air (Rossi et al. 2012; Jennings et al.
2013). Analysis of experimental results on long-term deformation of concrete makes
it possible to formulate the corresponding constitutive equations that describe its
creep and shrinkage, to determine the values of constants included in them (Hubler
et al. 2015; RILEM 2015). For specific materials often used in thin-walled building
structures, data were obtained on their sensitivity to creep and shrinkage (Bazant
2000). These data are processed in order to concretize the constitutive equations
(Torrenti and Le Roy 2018) based on data that determine the influence of various
factors on the rate of creep and shrinkage of concrete. The influence of tempera-
ture (Gernay 2012) and relative humidity on concrete aging (Gawin et al. 2007) is
considered separately.

Analysis of the experimental data allows us to formulate recommendations for
refining the existing calculation methods (Sakata et al. 2008). In the calculations of
structures made of concrete and reinforced concrete, much attention has recently
been paid to the investigation of the creep mechanism in the course of changes in
the structure of the material over time, especially during drying and loading, which
can ultimately lead to failure (Pignatelli et al. 2016). In addition, attention is paid to
material tests not only for uniaxial loading, but also for biaxial loading, which also
reflects the properties of a complex material—reinforced concrete (Charpin et al.
2018).

Thus, the improvement of methods for calculating reinforced concrete structural
elements of complex shapes is one of the priority tasks arising in the design of
buildings and structures (Mancinelli 1989; Bari 2000; Widianto 2006). The paper is
devoted to the analysis of the long-term strength and creep of thin-walled reinforced
concrete elements, the solution of which makes it possible to formulate recommen-
dations necessary for the design of structures with a given resource, including taking
into account possible seismic effects. The formulated constitutive equations include
strains caused by creep and shrinkage of concrete and also describe the processes
of damage accumulation in it. The problem is solved by the finite element method
(FEM) combined with the finite difference method for solving the initial problem.
The problem of creep of a reinforced concrete dome is considered as an example.
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15.2 Problem Statement and Constitutive Equations

15.2.1 Problem Description

Let us consider the mathematical formulation of the problem of long-term deforma-
tion of thin-walled reinforced concrete structures, taking into account the possibility
of dynamic effects due to seismic activity. Focusing on the calculation method, a
conical shell of revolution is considered under arbitrary non-axisymmetric loading,
which determines the shape of the finite element used. The classical approach of
the theory of thin shells with finite deflections is applied to the physically nonlinear
problem of deformation, including the description of the complex action of shrinkage
together with creep and damage under static and dynamic action.

Let us consider an open conical shell. We use the equations of the Donnell shell
theory (Donnel 1933) anduse the assumption, that plane section are initially normal to
themiddle surface remain plane and normal to it, which is valid for thin shells (Volmir
1974). We consider the case when the deflections of the shell are commensurate with
its thickness. So, for the coordinates x1 ≡ x, x2 ≡ ϕ, x3 ≡ z, the static equations
are obtained for the stress resultants reduced to the middle surface: transverse Qii ,
longitudinalNii and shear forces Nxθ , Nθx ; bending momentsMii and momentsMxϕ ,

Mϕ :, Qii = ∫ h/ 2
−h/ 2 σzidz, i = x, ϕ, Ni j = ∫ h/ 2

−h/ 2 σi jdz, Mi j = ∫ h/ 2
−h/ 2 σi j z dz, i,j = x, ϕ.

These equations do not neglect the projections of the membrane forces on the middle
surface, which may turn out to be significant during long-term creep deformation
(Volmir 1974).

For the formulation of geometric equations, the deformed state is considered under
the assumption that deflections can reach values of the same order of magnitude
as the shell thickness, taking into account the assumption of an inextensible and
incompressible material in the direction perpendicular to the median surface (Volmir
1974; Breslavsky et al. 2019). Strains in the shell can be described in terms of the
deformation of the middle surface. Taking this into account, the linear (εxx , εφφ) and
angular (εxφ) components of the deformed state are presented as the sum of the linear
and nonlinear components.

Physical equations express the relationship between the stress σ and strain ε

tensors. In the FE formulation of problems in the shell theory, it is customary to intro-
duce the corresponding vectors that describe the stress and deformed states.We repre-
sent the stress vector in the following form: σ = (

Nxx , Nφφ, Nxφ, Mxx, Mφφ, Mxφ
)T
.

Using the accepted assumptions, the strains of an arbitrary point of the solid
can be expressed through the values of strains of its middle surface ε[0]

xx , ε
[0]
φφ, ε

[0]
xφ

and the varying in the corresponding curvatures (kxx, kφφ, kxφ). We introduce
a strain vector defined at the points of the middle surface of the shell: ε =
(
ε[0]
xx , ε

[0]
φφ, ε

[0]
xφ , kxx, kφφ, kxφ

)T
. Then we represent the physical equations as follows

(i, j = x, ϕ; k, l = x, ϕ):
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σi j = bi jkl ·
(
ε0kl − ckl − ε

(V )
kl

)
+ z · di jkl · (kkl − k̄kl) (15.1)

where ckl is the components of the tensor of creep strains, ε(V )
kl is volumetric strains

caused by temperature varying and concrete shrinkage. Specifying these equations
will allow us to determine the forces and moments reduced to the middle surface
(Breslavsky et al. 2019):

Ni j = bi jklε
(l)
kl + N (n)

i j − N (V )
i j − N (C)

i j , Mi j = di jklχkl − M (V )
i j − M (C)

i j (15.2)

where bi jkl = bi jkl
/
h, di jkl = 12 · di jkl

/
h3,

bi jkl = B ·
[
δikδ jl · (1−ν)

2 + ν · δi jδkl

]
, B = Eh

(1−ν2)
,

di jkl = D ·
[
δikδ jl · (1−ν)

2 + ν · δi jδkl

]
, D = Eh3

12(1−ν2)
.

Here E is Young’s modulus, ν is Poisson’s ratio, δi j is Kronecker’s delta, h is the
shell thickness. Equation (15.2) contains both linear (l) and nonlinear (n) quadratic
terms (Breslavsky et al. 2019), which allow us to decompose the strain state into
linear and nonlinear parts: ε[0]

i j = ε
(l)
i j + ε

(n)
i j .

In Eq. (15.2), the components of forces and moments depend on the nonlinear
components of elastic strains as well as volume changes and creep process. They are
defined as follows (Breslavsky et al. 2019): N (n)

i j , N (C)
i j , N (V )

i j are the components of
membrane forces, which are caused by geometrically nonlinear strain components,
irreversible creep strains, and changes in volume in the material, respectively; M (C)

i j

andM (V )
i j are themoments reduced to themiddle surface, determined by the influence

of creep and volume changes.

15.2.2 Constitutive Equations

Let us represent volumetric strain in the following form (Bazant et al. 1993):

ε
(V )
kl = ε

(T )
kl + ε

(R)
kl , ε

(T )
i j = αi j�T, ε

(R)
i j = ε

(R)
0 δi j , αi j = α0δi j . (15.3)

where ε
(T )
kl , ε

(R)
kl are the temperature and shrinkage strains, α0 is the coefficient of

thermal expansion of concrete, ε(R)
0 is the shrinkagemean strain (is proportional to the

first invariant of shrinkage strain tensor). Currently, research shows that the shrinkage
rate depends on many structural, technological, and physicochemical factors. In the
design and strain analysis, themethod of calculating shrinkage is often used, inwhich
the strain components are calculated by the formula from EN 1992-2-1:

ε
(R)
kl = εdkl + εakl (15.4)
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where εdkl = βdsε
d∞δkl is the part of shrinkage, which is caused due to the evaporation

of moisture from concrete (for waterproofing reinforced concrete structures βas →
0); εakl = βasε

a∞δkl is part causedby solidification processes (DINEN1992-1-1:2005-
10); βds = (t−ts )

0.04
√

h30+(t−ts )
is the function which reflects the shrinkage development in

time; εd∞ is shrinkage limit value caused by evaporation ofmoisture; t is concrete age;
ts is age of concrete at the time of the finishing the wet storage period; h0 = 2Ac

u (here
Ac, u are the area and perimeter of the section of the element);βas = 1−exp

(
0.2t0.5

)

is the function of the shrinkage development in time; εa∞ is limit value of shrinkage
caused by solidification processes.

The relationship between the components of the stress deviator at a point of the
solid (taking into account that, according to the accepted hypotheses, the stresses
on the areas parallel to the median surface are small compared to other stresses)
and creep strains, taking into account the damageability of the material, are spec-
ified by the constitutive equations. Damage parameter ω (Lemaitre and Chaboche
1994) (0 < ω < 1) can be considered as a characteristic of the inhomogeneity of
a substance caused by the accumulation of hidden defects. For many materials,
the hypothesis of isotropic damage is quite acceptable, which says that cracks and
cavities with different orientations are uniformly distributed in all directions. The
quantitative assessment of damage, as well as for any physical variable associated
with the determination of the internal variables chosen to describe the phenomenon,
is carried out indirectly, by investigations the properties of materials and the laws of
its deformation.

The effect of long-term loading on the creep of concrete and reinforced concrete
is taken into account based on the theory of aging. For this, obtained experimental
curves are used and so-called isochrones are built for concretes of various classes.
Each isochronous diagram corresponds to a certain moment of time t, and for each
specific loading time the relationship between stress and strain “σ − ε” is estab-
lished, which can be represented in a form similar to Hooke’s law: ε(t) = σ(t)

E(t) . The
normative values of the parameters for the “σ − ε” diagram and their calculated
values are known for different classes of concrete, depending on the compressive
strength (Shmukler et al. 2010). At t = 0, the isochronous diagrams are conventional
short-term deformation diagrams. For an arbitrary point of the solid under creep
conditions, equations of state, that reflect the response of the system to the effect of
the load and the environment, are formulated. At an arbitrary point in time, strains
in concrete can be described by a dependence of the form (Prandtl 1925):

ε(σ, t) = σ(t)

E(t)

(
1 + C∗

0 (t, τ )
)

(15.5)

where t is the time value at which the strain is determined; τ is the moment of time
at which the load was applied; C∗

0 (t, τ ) is the creep measure, which designates the
creep strain at time t from the action of an unit stress applied at time τ . The measure
of creep can be determined by the following relationship:
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C∗
0 (t, τ ) = ξ · θ(τ ) · (1 − e−ϕ(t−τ)

)
(15.6)

where ξ = [
1.3 − 0.79 · e−0.404m0

] · [1.27 − 0.01334 · (Φ − 40)]·[
1 + 0.0482 · e(T−20)

]
is the parameter that describes the conditional age of

concrete; (m0 is the part of structure in %, which is in contact with air (for water-
proofing reinforced concrete structuresm0 → 0);F is relative humidity; T is average
working temperature; θ(τ ) = A1

/
τ + C0 is the function that reflects concrete

aging; A1 = 0.7 day, C0 = 0.5 are the experimental constants (Klovanich 2009);
ϕ

[
day−1

]
is the coefficient allowing explicit time allocation in state equations,

and which for concrete of various classes is varied from 2.2 to 2.5. The functions
proposed here are constructed due to the condition of minimizing the number of
approximating constants, which are determined from basic standard experiments.

When calculating the long-term strength, expressions (15.5-15.6) can be trans-
formed taking into account the accumulated damage to estimate the time until the
structure failure. In this case, the constitutive equations, which are written for the
creep strains and damage parameter rates, are used. In practical calculations, taking
into account the fact that the loads can change during operation, the creep equation
should be represented using the hardening law. For a complex stress state (Rabotnov
1969):

ċi j c
α̂
i = B

(σi )
n

(1 − ω)k
σi j (15.7)

ω̇ = D
(σ )m

(1 − ω)l
(15.8)

where cij is the components of irreversible creep strain and ci the is von Mises
equivalent creep strain; ω(t) is scalar damage parameter, ω(0)= 0, ω (t*)= ω*; ω* is
the value of the damage parameter at the moment of time t* (the finish of the process
of hidden damage accumulation). Here B, D, n, k, m, l and α̂ are constants describing
the behavior of an isotropic material under prolonged loading.

In the case of presence of additional vibrational loading on the structure, for
example due to seismic actions, Eqs. (15.7–15.8) take form (Rabotnov 1969;
Breslavsky et al. 2014):

ċi j c
α̂
i = BH(A)

(σi )
n

(1 − ω)k
σi j (15.9)

ω̇ = DK (A)
(σ )m

(1 − ω)l
(15.10)

where A = σ
(a)
i /σi is the stress cycle asymmetry coefficient, σi is the von

Mises equivalent stress, calculated by use of static stress components, σ a
i is the

von Mises equivalent stress, calculated by use of amplitude stress components;
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H(A) = ∫ 1
0 (1 + A sin(2πξ))ndξ , K (A) = ∫ 1

0 (1 + A sin(2πξ))rdξ , are the func-
tions reflecting the influence of the cyclic component of the load on the rate of
accumulation of strains anddamageparameters, respectively (Breslavsky et al. 2014).

15.2.3 Method of Numerical Modeling

In problems of the creep theory, the FEM equations include additional forces and
moments from irreversible creep and volumetric strains, in particular, from concrete
shrinkage. At an arbitrary point in time, the creep and shrinkage strains are assumed
to be known.Using the standard FEMprocedure (Zienkiewicz et al. 2014; Breslavsky
et al. 2017), a system of differential equations for the vector of generalized nodal
displacements is obtained. It is solved using finite difference procedures (Breslavsky
et al. 2019). At each time step, the components of the vectors of displacements,
strains, stresses, and damage parameters are determined. The number of nodes and,
accordingly, elements in the scheme of spatial discretization of the investigated solid
according to theFEMshouldbe chosen so as to ensure the adequacyof the real process
to the computationalmodels. In calculations of creep and long-term strength in shells,
such a correspondence is selected by numerical experiments from the analysis of the
possibility of obtaining the effect of stress redistribution at points of the shell surface.
In the calculations, the SCC software package (Breslavsky et al. 2014; Breslavsky
et al. 2017) was used. It was designed for numerical simulation of creep-damage
processes in thin shells of revolution under asymmetric loading. A comprehensive
check of the method was also carried out by comparing the numerical results with
the experimental ones obtained during a full-scale experiment on the creep of a
reinforced concrete slab for 3 months (Shmukler et al. 2010).

15.3 Numerical Simulation of Spherical Dome Loaded
by Long-Term Static and Seismic Actions

The presented approach and method were used to analyze the stress–strain state of a
dome, themiddle surface ofwhich is a part of a sphere of the corresponding radius. As
a design scheme, a shell that deforms under its own weight and, possibly, additional
load, was used. The dome is rigidly clamped around the base circumference.

A shell of thickness h, round in plan (with a base diameter d = 10 m), made
of reinforced concrete is considered. In the calculations, the lifting height and the
external load perceived by the shell varied. Figure 15.1 shows the considered shell
with its division into finite elements: 20 along the generatrix and 20 along the circum-
ference direction. This number of elements is established by preliminary calculations
to ensure adequate accuracy.
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Fig. 15.1 FE model of spherical dome

A shell with a thickness of h = 20 cm (1/50 of the dimensions in the plane) made
of reinforced concrete B40 was considered. Its mechanical characteristics: elastic
modulus E = 3.6 × 104 MPa, Poisson’s ratio υ = 0.16, mass density ρ = 1.9·103

kg/m3.
For such a shell, the radius of the sphere is equal to: R = ĥ

2 + d2

8ĥ
, where ĥ is the

height of the dome, d is the size in plan, which corresponds to the opening angle of

the sphere, which is determined by the formula: α = 2 arccos
(
1 − ĥ

R

)
. For practical

use in the design of buildings and structures, the value of the reduced height is used

in the analysis:
�

h = ĥ
/

d , i.e., height divided into the base size.

In this formulation, let us consider the deformation of the considered shell during
long-term operation for 100 years. According to the above scheme, the shape of the
dome was selected using numerical modeling. The criterion of the minimum von
Mises stress and, consequently, the minimum damage accumulation is used.

The values of shrinkage and creep constants in Eqs. (15.3–15.4) and (15.7–15.10)
are determined after processing experimental curves (Handbook 2003, Shmukler
et al. 2010) of B40 concrete (C32/40 according to EN 206-1) at an average
temperature of 20 °C and waterproofing of the structure:

B = 1.443 × 10−11 (MPa)−n/(h); D = 7.402 × 10−11 (MPa)−m/(h); α̂= 1.437; n =
2.198; m = 1.489; k = 3.142; l = 2.096; εa∞ = 0.00025.

The performed calculations of long-term deformation indicate that a dome with
a minimum level of damage accumulation can be selected based on an estimate of
the magnitude of the von Mises stress at the initial time moment. So, after set of
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Fig. 15.2 Maximum values of vonMises equivalent stress σ i and damage parameterω versus time.
Unloaded dome

the calculations we obtained, that the minimum von Mises stress will be at
�

h =
0.242. For such a shell, the dependence of the magnitude of the maximum vonMises
equivalent stress σ i (during the entire period of operation this value is concentrated
in supports area) and the maximum value of the damage parameter ω on time is
shown (Fig. 15.2).

These data indicate a fairly moderate redistribution of stresses during the period
of operation. In addition, the accumulated value of damage for the considered time
does not exceed 0.1. This allows us to assume that the calculated results obtained
can with a sufficient degree of accuracy confirm the absence of the risk of cracking
in the calculation period.

Analysis of the results shows that due to the flatness of the shell, the difference
in the stress level for shells of different curvature is insignificant. Bending moments
appear only in the part of the shell that is in contact with the supports. Most of the
shell material is usually subjected only to longitudinal compressive forces. At the
base of the shell, shear forces and bending moments reach values that can no longer
be neglected. This causes the appearance of significant stresses in these places.

Similar dependencies are observed in the case when the dome is loaded. Let us
analyze the deformation of the dome under the action of the structure’s own weight
and the same loading q = 1.0p, where p is the shell’s own weight per unit area
(Fig. 15.3). In the calculations, as well as for operation only under its own weight,
the value of lifting height was varied. It was found that the lowest von Mises stress

will be in the shell, the relative height of which is
�

h = 0.222. A similar result was
also obtained for a dome under the action of its own weight of the structure and a
twice loading that, q = 2.0p. It has been established that the lowest von Mises stress

will be in the dome, the relative height of which is
�

h = 0.189 (Fig. 15.4). Additional
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q = 2.0p

loading leads to a significant increase in damage accumulation and moderate stress
redistribution. And at load q = 2.0p, the damage parameter for 100 years reaches the
0.7, which is close to the critical value.

When designing buildings and structures, in addition to analyzing the long-term
strength under static load, it is also necessary to take into account the possibility of
dynamic loading at some points in time. Such loads can arise, in particular, during
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Table 15.1 Values of damage parameters after 100 years of operation and additional dynamic
loading

Vertical acceleration
(m/s2)

The level of basic loading 

q=0 p q=1.0 p q=2.0 p

0.5 0.113 0.245 >1

1.0 0.147 0.485 >1

2.0 0.231 >1 >1

earthquakes. Moreover, the structure itself must withstand such loading at any period
of operation. Since the level of damage in the material grows over time (Figs. 15.2,
15.3, and 15.4), it is obvious that the most dangerous moment of loading with addi-
tional dynamic action will be at the end of the design period (near the time of
100 years).

Let us consider the problem of vibration loading of the shell caused by oscillations
of the Earth’s surface during seismic impacts at the end of its operation. To simplify
the analysis at this stage, we will consider one-harmonic oscillations passing contin-
uously for 0.5 h. Such loading can be considered as close to the limiting one (in
reality, oscillations occur periodically).

We consider the oscillations of the dome with a frequency which is far from the
resonance values, while analyzing the loading by the base load of various intensities.
The value of the additional loading is chosen to implement various values of vertical
accelerations, which are 0.5, 1.0, and 2.0 m/s2. These values of accelerations occur
during earthquakes of 7, 8, and 9 points, respectively (SP 14.13330. 2014). Table 15.1
shows the maximum values of the damage parameter that occur after the described
dynamic impact. Dark gray filling in a Table 15.1 shows cells that correspond to the
critical value of the damage parameter and, accordingly, to the destruction of the
dome.

15.4 Conclusions

The presented method for analyzing the long-term strength of concrete structural
elements in the form of shells of revolution makes it possible to assess the possibility
of their destruction under static and dynamic loads. Obtained by processing experi-
mental data such as creep and shrinkage curves, the effect of moisture for different
grades of concrete and the constants included in the proposed constitutive equations
are obtained. Using numerical simulation, the best configurations of spherical domes
from the point of view of long-term strength have been obtained. The assessment of
the possibility of destruction of fairly old structures, which are subjected to short-
term dynamic impact, is carried out. It is shown that, in this case, at some rather
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high levels of external loads, concrete destruction is possible, despite the safety of
the dome operation under static loading.
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Chapter 16
Stress–Strain State of Nuclear Reactor
Core Baffle Under the Action of Thermal
and Irradiation Fields

Dmytro Breslavsky, Alyona Senko, Oksana Tatarinova, Victor Voevodin,
and Alexander Kalchenko

Abstract The paper describes the method for numerical simulation of stress–strain
state variation in the structural elements of nuclear reactor under creep and swelling
conditions. The mathematical statement of the initial–boundary value creep problem
is presented. The constitutive equations account the radiation swelling, creep, and
damage accumulation in reactor steel. The nonlinear system of differential equa-
tions is linearized by use of time integration schemes. The boundary problem, which
appears at each time step, is solved by the finite element method. Nuclear reactor’s
baffle initially is considered as a 3D solid object, and subsequently, the problem
is reduced to 2D one. The long-term deformation and hidden damage accumula-
tion processes are considered for simplified problem of baffle’s operation without
shutdowns.
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16.1 Introduction

One of the most important problems of modern power engineering is ensuring
the durability of existing nuclear reactors in compliance with the necessary safety
measures. Increasing the life time of a reactor comparing to the value specified during
design requires effective methods and software for predicting the deformation level
and ensuring long-term strength.

Development of such calculation methods that require the formulation, justifica-
tion, and comprehensive verification of the constitutive equations, in which the rela-
tion between the components of strains arising from the combined action of thermal
force and radiation fields and stresses at a point of the solid, is reflected. The first
step was analysis the behavior of structural materials under the influence of neutron
fluxes under prolonged loading. Such work has continued since the beginning of the
use of nuclear reactors (Ma 1983).

The main experimental facts and approaches to the construction of constitutive
equations, suitable for use in solving problems of solid mechanics, are described in
Aktaa and Schmitt (2006), Duderstadt and Hamilton (1976), Andersson-Östling and
Sandström (2009), Garner (2012), Likhachev and Pupko (1975), Kiselevsky (1977),
Ma (1983), Takakura et al. (2009), Margolin et al. (2006), Margolin et al. (2012),
and others.

Strains of radiation creep and radiation swelling are the main components of the
total strain tensor, which cause their growth with time, for relatively low-temperature
operating modes of WWER-type reactors. Experimental data show that, in most
cases, the relationship between the components of the tensor of radiation creep rates
and stresses is linear or close to it (Foster et al. 2003; Ma 1983; Gorokhov et al.
2020). To construct the constitutive equations describing the process of radiation
swelling, experimentally obtained dependences for the strain components or their
rates on the temperature and neutron fluence are used (Garner 2012; Kalchenko et al.
2010; Kalchenko et al. 2013). Recently, there have been attempts to take into account
the effect of the stress state on the swelling strains growth Margolin et al. (2012).
Similar equations can be used in a simplified analysis of the swelling processes at a
point of a loaded body under a complex stress state. Their use in the calculations of
structural elements can lead to double consideration of the effect of the level and sign
of stresses: the first time due to direct consideration in the equation and the second
time due to the effect of stress redistribution on the current level of total strain when
the strain compatibility condition is ensured. It is well known that radiation swelling
strains are inherently volumetric (Likhachev and Pupko 1977). In this regard, it seems
necessary to take it into account using the equations obtained for free swelling (e.g.,
Kalchenko et al. 2013) in the same way as calculating temperature strains, which are
also volumetric.

To construct an effective scheme for the analysis of long-term deformation of
elements of reactor in-vessel components, it is necessary to take into account the time
variation of themain factors: stress redistribution, accumulation of strains, and hidden
damage in the material (Lemaitre and Chaboche 1994). Such an account is only



16 Stress–Strain State of Nuclear Reactor Core Baffle … 281

possible when formulating the problem as a boundary–initial value one (Likhachev
and Pupko 1977; Breslavsky et al., 2019; Gorokhov et al. 2020).

Most of the elements used in the construction of a nuclear reactor have a complex
geometric shape. Due to this, the finite element method (FEM) is most widely used in
calculations (Zienkiewicz et al., 2014). Nordlund (2019) in his review of methods for
computer modeling of radiation effects in materials noted that FEM is currently used
not only in solving problems ofmathematical physics (heat transfer, solidmechanics,
etc.), but also when simulating the effects of radiation exposure on the long-term
behavior of structures.

The use of the ANSYS software package for modeling the thermo-physical prop-
erties of reactors and fuel assemblies and individual elements of research nuclear
reactors considered in Piro and Williams (2015). They note that the use of such a
powerful FEmodeling toolmakes it possible to assess the real properties of processes
without carrying out costly field experiments when designing new nuclear power
station equipment.

A model that is able to provide a macroscopic estimate of the stresses caused by
irradiation using information on the distribution of radiation defects produced by
high-energy neutrons in the microstructure of materials developed in Dudarev et al.
(2018). The analytical solutions are compared to the FE solution.

Creep problems can be solved in the ANSYS software package, but the package
does not have tools for modeling the stress redistribution under the influence of
radiation swelling and damage accumulation. This feature is implemented in the
FEM Creep software package (Breslavsky et al. 2017).

The paper discusses a method for calculating radiation creep and swelling, used to
analyze the level of deformation and the possibility of fracture of the core baffle of a
WWER-type nuclear reactor. The formulation of an initial–boundary value problem
describing theprocesses of strain accumulationof radiation creep and swelling aswell
as the hidden damage in the material of the baffle is described. A finite difference
method is used to solve the initial problem, and at each time step, the resulting
boundary value problem is solved byuse of the FEMscheme.The results of numerical
simulation of the strain and damage accumulation in the baffle cross section are
presented.

16.2 Solution Procedure

16.2.1 Problem Statement

Let us consider a solid with a volume� and surface area S. To describe the processes
of temperature – stress and radiation deformation of isotropic materials, we use a
system of differential equilibrium equations written in tensor form (Lemaitre and
Chaboche 1994)
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dσi j

dx j
= Pi i, j = 1, 2, 3 σi j = σi j (ui ), (16.1)

where ui are the components of displacement vector, σi j are the stress tensor compo-
nents, Pi is the vector of volume forces. Cartesian coordinate system xi , i = 1, 2, 3
is used.

Let us restrict ourselves to the case of small strains that occur in most structural
elements. To determine the components of the strain tensor, the Cauchy equations
are used

εi j = 1

2

(
ui, j + u j,i

)
. (16.2)

It is postulated (Lemaitre and Chaboche 1994) that at each moment of time the
total strain tensor can be represented as a sum of the tensors of elastic, thermal,
radiation creep, and swelling strains:

εi j = eei j + eTi j + ci j + eswi j , (16.3)

and for any time moment Hooke’s law is applicable:

σi j = (λ̂δi jδkl + μ̂(δikδ jl + δilδ jk))
(
εkl − eTkl − ckl − eswkl

)
, (16.4)

where δi j is Kronecker’s delta, λ̂, μ̂ are Lame constants: λ̂ = νE
(1+ν)(1−2ν)

; μ̂ = E
2(1+ν)

.
E is Young modulus, ν is Poisson ratio.

The components of the temperature strain tensor are dependent on the temperature
difference �T = T − T0

eTi j = αexpan�T δi j , (16.5)

where αexpan is the coefficient of thermal expansion ◦K−1, T, T 0 are current and initial
temperature values, T = T (xi ).

The radiation swelling strain tensor describes the dependence of the occurrence
of strains as the function of the integral neutron fluence, temperature, and time. The
integral fluenceF describes the interaction of charged particles with the microstruc-
ture of the material being irradiated and depends on a number of factors: their energy,
spectral density, fluence density, etc. The functional dependence of the tensor of the
strain rate of radiation swelling from the rate of the integral fluence function has the
form

ėswi j = 1

3
Ṡ


(

̇, t, T

)
δi j . (16.6)
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At present, the functional expression for the radiation swelling function SF is
obtained experimentally, by the processing of the obtained data using the mathemat-
ical methods, for example, the least squares method. In the calculations, we use the
model obtained in Kalchenko et al. (2013):

S
 = (0.25 − 0.022 ln k)ϕ(D − 103 + 0.1T − 2.6 ln k)

exp

(
− (T − 690 − 15.5 ln k)2

2(12.3 − 1.9 ln k)2

)
, (16.7)

where D is damaging dose, φ(x) is Heaviside function:φ(x) = xθ(x); θ(x) =
1, x > 0; θ(x) = 0, x ≤ 0; k is the dose rate, dpa/s.

To describe the processes of radiation creep, accompanied by the accumulation of
hidden damage, which arises as a result of the action of temperature stress and radia-
tion factors, the constitutive equations with Norton law and the Rabotnov–Kachanov
model for scalar damage parameter ω were applied (Lemaitre and Chaboche 1994):

ċi j = 3

2

Bσ n−1
i Si j

(1 − ω)l
exp

(
−Qc

T

)
, Qc = Uc

R
, (16.8)

ω̇ = Dσ r
i

(1 − ω)l
exp

(
−Qd

T

)
, Qd = Ud

R
, (16.9)

Here Si j are the components of stress deviator, σ i is the von Mises equivalent
stress, B, D, n, m, r, l are the constants, obtained experimentally in creep and long-
term strength tests, Uc and Ud are the values of activation energies for processes of
radiation creep and damage accumulation, R is Boltzmann constant.

Radiation creep usually runs by linear mechanisms: ε̇i = B̃σi , εi is the von Mises
equivalent strain, B̃ is the radiation creep constant (Ma 1983).

It is considered that on some part of the surface S1 the boundary conditions in the
form of a given displacements which is a function of time are specified. On a part of
the surface S2, there are boundary conditions in the form of traction:

u|S1 = u0, σi j n j |S2 = h j . (16.10)

At the initialmoment of time, the damage parameters aswell as creep and radiation
swelling strains have zero values

ω(0) = 0, erci j (0) = 0, esi j (0) = 0. (16.11)
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16.2.2 Solution of Heat Conductivity Problem

To obtain the temperature distribution, it is necessary to solve the problem of heat
conductivity. In the proposed approach, this is the problem of stationary thermal
conductivity (Lemaitre and Chaboche 1994), solved for the moment of finishing the
temperature distribution in the baffle.

The core baffle of the WWER-1000 reactor (Fig. 16.1) is a monolithic cylindrical
structure with an outer diameter of 3470 mm, and the inner surface of which in
cross section repeats the configuration of the core. It has 90 longitudinal channels
for cooling. The total height of the baffle in the reactor is made up of five elements
at a height of 4070 mm. The height of each element is 814 mm.

The core baffle is an important element of the nuclear reactor, and it provides
the necessary thermal power mode of its operation. The baffle of WWER reactors
operating at nuclear power plants in Ukraine is made of 18Cr10NiTi austenitic steel.
In this regard, we will pay attention to the results of experimental studies and the
constructed equations of state for steels of this type.

The following physical and mechanical properties of above-mentioned steel in
the range of operating temperatures of the baffle 710 K–573 K were used: density
7900 kg/m3, coefficient of linear thermal expansion 1.75 × 10–5 K−1, specific heat
500 J/(kg K), thermal conductivity coefficient 43 W/(m K).

According to the approach in Troyanov et al. (1998), as a boundary condition the
surface temperature distribution was set. It is considered that on the baffle internal
surface, there is a constant temperature of 710 K, and for external surfaces, it is
670 K. Cooling channels have the temperature 573 K.

Fig. 16.1 Configuration of
the core baffle
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Fig. 16.2 Temperature
distribution in the baffle
cross section (at a distance of
0.1 m from its upper edge)

The problem was solved in a general three-dimensional statement. Due to the
symmetry of the baffle, the calculation model was built for its one-fourth part. Based
on the results of numerical experiments on the analysis of their convergence, a FE
model with 82,290 elements and 392,105 nodes was chosen.

Based on the data of numerical investigations, it has been established that the
temperature field in the baffle is practically unchanged along its height. As an
example, Fig. 16.2 shows the temperature distribution in the cross section, which
is located at a distance of 0.1 m from baffle upper edge.

The invariance of the temperature field along the height of the baffle means that
in further simulation it is possible to proceed to the calculation model originating
from the two-dimensional problem formulation. The same conclusion was obtained
in Troyanov et al. (1998).

16.2.3 FEM Calculation Scheme

As explained in the previous subsection, we will formulate the problem as a plane
strain problem. It is described by the mathematical formulation (16.1)–(16.11) for i,
j = 1,2. We will solve it using FEM.

Resolving system of equations has the following form (Breslavsky et al. 2017,
2019; Altenbach et al. 2020):

[K ]{u̇} = {
Ḟ

} + {
Ḟc

} + {
Ḟ sw

}
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{
Ḟ

} =
∑

Nβ

∫

Vβ

[
N p

]T · {
Ṗ

}
dV +

∑

Nβ

∫

Sβ

2

[
N p

]T {
ḣ
}
dV

+
∑

Nβ

∫

Vβ

[
B

]T
[C]

{
ε̇T

}
dV

{
Ḟ sw

} =
∑

Nβ

∫

Vβ

[
B

]T
[C]

{
ėsw

}
dV

{ε} = {
εe

} + {
εT

} + {c} + {
esw

}

{
Ḟc

} =
∑

Nβ

∫

Vβ

[
B

]T
[C]{ċ} dV ;

{ċ} = 3

2
B

σ n−1
i

(1 − ωr )k
exp

(
−Qc

T

)
[Ĉ]{σ }, Qc = Uc

R
;

ω̇ = D
σm
i

(1 − ωr )k
exp

(
−Qd

T

)
, Qd = Ud

R
,

ω(0) = ω0, ω(t∗) = ω∗. (16.12)

Here K is the stiffnessmatrix of system; u is global vector of nodal displacements;
F is the vector of nodal loads caused by surface and volume forces and temperature
strains; Fsw is nodal loads caused by radiation swelling strains; Fc is nodal loads
caused by radiation creep strains; B is the is the matrix differentiation operator;
C is the matrix of elastic constants; N is a matrix of shape functions; β is finite
element number; Vβ is the volume of the finite element;

∑

Nβ

is summation over all

finite elements; Sβ

2 is the surface area of a finite element that is under a traction

(Zienkiewicz et al. 2014). Matrix
[
Ĉ

]
has the following form:

[
Ĉ

]
=

⎡

⎣
1 −1

/
2 0

−1
/
2 1 0

0 0 3

⎤

⎦.

A triangular three-nodal finite element is used in the calculations. Its degrees of
freedom are six components of the displacement rate vector.

Let us consider the specification of the constitutive equations associated with the
description of the effects arising from irradiation.

To describe radiation creep, we use the linear dependence of the strain rate on
stresses (Ma 1983). For 08Kh18N10T steel in the operating temperature range of the
baffle 573–710 K [47] n = 2, B = 1.214·10–12 (MPa−1)·h−1.

In the case when the distribution law of the radiation dose along the radius is
known, it is possible to introduce it into the calculationmodel. For steel 08Kh18H10T
in the range of working temperatures of the baffle, the following data obtained in
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Fig. 16.3 Dependence of dose accumulation rate on radius

OKB “GIDROPRESS” are known (Margolin et al. 2012). In this regard, it is possible
to enter into the calculation the function of the dependence of the radiation swelling
strain on the baffle radius r, which is hyperbolic in the first approximation (Fig. 16.3):

Ṡ
 = Â
Ṡ


r
, (16.13)

where Â is a coefficient.
To describe the process of accumulation of hidden damage for relation (9)

according to the data in Takakura et al. (2009), which shows a graph of long-term
strength for irradiated steel of the type that is being analyzed, the value of the constants
was determined: k = m = 15.52; D = 9.55·10–48 MPa−m/h, Qd = 1023 K.

16.3 Results of Numerical Simulation

The calculations were performed for a simplified case. It was assumed that core
baffle works without any reactor’s shutdowns during 60 years. This case may be
regarded as limiting, because in time intervals of shutdowns the deformation may be
considered as negligible. From the other hand, the cyclic character of loading and
heating can essentially accelerate the deformation process.
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16.3.1 Deformation of a Thick Tube of Equivalent
Dimensions

To understand the processes occurring during long-term deformation of the baffle,
we first consider the results of numerical simulation of a simpler structure—a thick-
walled tube with the same outer radius as the baffle. The inner radius was specified
by the average values of its points on the inner surface.

This model makes it possible to identify the main factors affecting the processes
of stress redistribution and strain growth in structure. This is primarily the role of
temperature strains and strains of radiation swelling on the outer and inner sides of
the tube.

Calculations are carried out using FEM; therefore, if the degree of discretization is
insufficient, especially in the areas of cooling holes, it will be impossible to accurately
determine the magnitude of their influence on the overall deformation process.

The influence of design features (geometry at the inner radius, cooling holes)
will be considered additionally when analyzing the complete geometric model of the
baffle.

Let us consider the results of calculations for the case when the maximum dose,
which was accumulated over 60 years, is 104 dpa (linear interpolation from the data
provided in Margolin et al. (2012).

The calculation results show that under free swelling [without taking into account
the dependence of the dose on the radius likes (16.13)], the maximum of the von
Mises equivalent strains obtained is 14.5%. At the same time, when the dose distri-
bution along the radius is taken into account, the maximum values of the von Mises
equivalent strains are 12.7%. (Fig. 16.4).

Analyzing the results, we can make conclusion that in the case of consideration
the dose dependence from the radius, the maximum level of strains is observed at
the inner radius, where there is a maximum dose (Fig. 16.4). With completely free

Fig. 16.4 Distribution of
total von Mises strains in a
tube cross section, t =
60 years
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swelling, the maximum strains are at the outer radius, which does not agree with the
experimental data.

16.3.2 Long-Term Behavior of Core Baffle

Next, we consider the cross section of the baffle, assuming that any of those that are
spaced from the edges work similarly. As a result of its symmetry, we construct a
FE model for the one-fourth part of the section. As boundary conditions: we set the
possibility of free displacement of the ends in the direction x1 (at x2 = 0) and x2 (at
x1 = 0).

After the convergence study (the maximum number of elements was 135,697), a
FE model, which was selected for simulations, had 72,264 elements. The results of
calculating the stress state of the baffle, carried out in the FEM Creep (Breslavsky
et al. 2017) and ANSYS software packages, are shown in Fig. 16.5 in the form of the
von Mises stress distribution over the cross section. The calculation data differ by
2–3%. The distribution map shows that the highest stress values are observed in the
vicinity of the holes and internal lugs of the section and range from 136 to 401 MPa.
The maximum stresses take place in the region of transition from lugs to holes, and
their values reach 460–461 MPa. Let us note that similar distributions were obtained
in Margolin et al. (2012), Troyanov et al. (1998), where the maximum von Mises
stress values are in the range of 440–460 MPa.

Numerical simulation of the process of long-term deformation of the baffle was
carried out, and the strain fields were determined over its cross section at different
times. The following conclusions inTroyanov et al. (1998)were confirmed in general:
in the first 20 years of operation, the main contribution to the deformation process
is made by radiation creep, and in the following years, the radiation swelling is
dominant.

Fig. 16.5 Distribution of
von Mises equivalent stress
over baffle cross section, t =
0
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As an example, we present the cross-sectional distributions of the von Mises
equivalent strains. Such distribution for t = 30 years with accumulated dose of 52
dpa is shown in Fig. 16.6. Figure 16.7 presents similar data for t = 60 years, and
accumulated dose is 104 dpa.

The performed numerical calculations and the results obtained using the KIPT
radiation swelling model (Kalchenko et al. 2013) show that the maximum vonMises
strain values over 60 years will be approximately 14%.

Using the approaches of the continuum damage mechanics (CDM, Lemaitre and
Chaboche 1994) in order to estimate the long-term behavior of the baffle under
conditions of initial non-uniform heating, radiation creep and swelling, a damage

Fig. 16.6 Distribution of
von Mises equivalent strains
over baffle cross section,
accumulated dose 52 dpa,
t = 30 years

Fig. 16.7 Distribution of
von Mises equivalent strains
over baffle cross section,
accumulated dose 104 dpa,
t = 60 years
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Fig. 16.8 Distribution of
damage parameter over
baffle cross section,
accumulated dose 81 dpa,
t = 47 years

kinetic equation with the implemented dependence on temperature (16.9) was added
to the system of governing equations. The data of numerical modeling are presented
in Fig. 16.8, where the distribution of the damage parameter over the section of the
baffle for the case of themaximum dose 81 dpa, accumulated over 47 years, is shown.
Numericalmodeling has demonstrated that after 47 years of operation in the sectional
zone of the baffle, located between the 9th and 10th holes from the bottom side of
Fig. 16.8 and in which high stress values take place (Fig. 16.5), the accumulation of
hidden damage ends and a crack nucleus appears.

It can be seen from the damage distribution that in this zone, in contrast to
others, the damage parameter reaches a critical value (ω* = 0.95). This means that
macroscopic defects appear in the areas marked by red.

This conclusion correlates with the results in Margolin et al. (2012) which
provided data on the analysis of the possibility of initiation of the fracture of the
baffle using the IASCC model (Takakura et al. 2009).

16.4 Conclusions

The paper presents a solution method and the results of computer simulation of the
processes of the stress–strain state varying and the accumulation of hidden damage
in the core baffle of a WWER-type nuclear reactor. The simplified problem of the
baffle operation during 60 years without shutdowns was considered as an example
of the method application. The values of stresses, strains, and damage parameters,
distributed over the cross section of the baffle,were obtained. The location of possible
occurrence of a macroscopic defect was established.

The homogeneous temperature distribution along the baffle’s height was
confirmed. This made it possible to use a two-dimensional formulation using the
plane strain model.
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When comparing the results obtained from the numerical simulation data for the
equivalent tube and for the baffle, it was determined that in the latter a little more
strains occur than in the tube, by about 1%. This can be explained by the satisfaction
of strain compatibility condition in the vicinity of the holes and borders of the baffle.
Such a comparison can be considered as verification of the results obtained for a
cross section of complex geometry. It was found that the maximum value of the von
Mises equivalent strain, which is about 14% at the maximum radiation dose 104 dpa,
takes its place near the inner zones of the baffle section.

Calculations carried out using theCDMapproach revealed the possibility of occur-
rence, in about 47 years, of a small macroscopic defect. The zone of its occurrence
corresponds to the stress concentrator in the area of the cooling hole. The time and
place of occurrence correlate with the data reported in Margolin et al. (2012) using
the IASCC model (Takakura et al. 2009).

Further studies should focus on the refinement of constitutive equations for radi-
ation swelling as well as on taking into consideration the cyclic character of baffle’s
operation.
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Chapter 17
Application of Data-Driven Yield Surface
to Prediction of Failure Probability
for Centrifugal Pump

Mariya Shapovalova and Oleksii Vodka

Abstract Themodernworld is often facedwith the problemof the equipment design
lifetime ending. Researches related to determines the residual lifetime, extension of
service life, and prediction of failure-free operation is important, especially when it
comes to equipment for nuclear and thermal power plants. Such interest is associated
with the difficult economic situation, high cost of equipment and its components,
requirements for safe working conditions, etc. The main objective of this work is
to study the probability of the centrifugal pump failure-free operation. Attention is
paying to thewater elbowpart of a centrifugal pump. Finding the probability ofmodel
failures is based on data-driven yield surface application. Takes into account the
different behavior of compositematerials under tensile and compressive loads, which
is analyzed at themicro-level using the finite elementmethod.Going beyond the yield
surface indicates the possibility of transition into a plastic state. The proposedmethod
of analysis of a centrifugal pump type WD 16/25 leads to predict the probability of
failure during normal operation and in hydro testing mode. Consideration of the
influence of corrosion-erosive processes and uniform thinning of the water pump
elbow wall, an analysis of the probability of failure-free operation in time is carried
out.
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17.1 Introduction

It’s important to predict the failures, especially when it comes to the equipment of
nuclear and thermal power plants. The limited financial resources do not allow the
renewal of power units, the design lifetime of which is almost exhausted. There-
fore, the research deals with predicting the probability of non-failure operation,
the assessment of the residual lifetime (Kelin et al. 2019), and extend the design
lifetime (Kahlman 2016; Verhuelsdonk 2005), which are in demand and relevant
nowadays. During operation, pumping units under the influence of corrosion and
erosion inevitably encounter thinning of the housing walls. The negative effects of
redistribution of mechanical stresses in the structure are required close attention. It is
also necessary to take into account the various modes of operation of the pump, such
as normal operating conditions and hydro testing, which is provided by the relevant
standards to calculate the strength of the pump equipment (IEC 60041:1991; ISO/TR
17766:2005; ISO 9906:2012).

There are various methods to assess the unit’s lifetime. In some works, the reli-
ability and probability of failure are assessed (Cheng et al. 2016; Patel et al. 2005).
Other ones are based on deterministic models (Jacobs et al. 2018). The authors use
the principle of stress state determination to estimate the operational life. In this
work, it is proposed to evaluate the failure-free operation of the pump based on
the yield surface data-driven approach. Nowadays, a data-driven approach helps to
analysis of the collected data and scientifically make decisions. Widely used in artifi-
cial intelligence, engineering (Siddiq 2020; Lvov and Kostromytska 2020), strategy,
marketing, policy, medicine, etc.

On the one hand, materials science and modern microscopy have contributed to
the development of methods for predicting material properties based on their internal
structure. On the other hand, the traditional sciences of continuum mechanics, the
theory of elasticity, the theory of vibrations, and reliability provide ample oppor-
tunities for multilevel modeling and analysis of materials. During the construction
of the model, such a connection leads to the loss of a significant part of the infor-
mation accumulated during the experimental research. Therefore, the technology of
obtaining as complete information on the micro-level as possible and transferring it
to the macro model is important, will contribute to the expansion and improvement
of existing methods.

As a bridge of communication between the micro and macro levels, approaches
based on obtaining large data sets (datamining), and subsequent statistical processing
(data science) can serve, which allow obtaining, accumulating, and processing signif-
icant amounts of data. The revealed dependences and probabilistic characteristics of
the microstructure were used in further modeling of the material—to help improve
the quality, accuracy, and completeness of the analysis.

Investigation of the probabilistic characteristics of the anisotropic materials yield
surface (Banabic et al. 2010; Shapovalova and Vodka 2019a, b), makes it possible to
describe the behavior of a structure under a complex stress state. Computer modeling
for predicting material behavior is an alternative to such an approach. The main
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principle proposed in this article is to predict possible macro failure of the model
based on the study of processes at the micro-level. To evaluate the probability of
failure-free operation in the time of the waste dynamic pump (WD 16/25) during
normal operation and hydro test mode.

17.2 Objectives

The main objective of this study is to use the yield surface data-driven approach to
determine the failure-free probability of a centrifugal pump. This objective requires
the completion of such tasks:

• construction of a geometric model of the waste dynamic pump (WD 16/25); the
simulation of the uniform casing walls thinning process under the influence of
erosion effects; meshing the model with finite elements; calculating the stress–
strain state at the normal operating conditions and hydro-testing;

• apply the previously obtained material properties (modulus of elasticity) to the
most critical pump unit (the water elbow part of the pump); to use a method for
assessing the probability of plastic stress occurrence, based on data-driven yield
surface application.

17.3 Modeling of Centrifugal Pump WD 16/25

The centrifugal pumpWD 16/25 is designed for pumping waste, industrial, domestic
contaminated, and waste liquids. The analysis takes into account various operating
conditions such as normal operating conditions (NOC) and hydro testing (HT)mode.
The geometric model of the pump is presented in Fig. 17.1, and consists of: 1—inlet
branch, 2—outlet branch, 3—water pump elbow, 4—shaft, 5—motor, 6—stand,
7—bearing, 8—supports, 9—bolts (M8, M12, M14, M16).

According to studies of the pump under similar operating conditions (Kelin
et al. 2020), based on the requirements of the standard for strength analyzes (IEC
60041:1991; ISO/TR 17766:2005), a uniform thinning of the walls of the pump
elbow is assumed. This thinning corresponds to 18 years of operationwith an average
running time of 135 h per year (equal to 0.5% thinning per year). A three-dimensional
geometric model of complete and partial wall thinning at 0 and 9% is shown in
Fig. 17.2.

A finite element (FE)mesh based on linear FE of hexagonal and tetrahedral shapes
is applied to the geometricmodel. The grid used for calculations is shown in Fig. 17.3.

For the calculations, the physical and mechanical characteristics of the material
are used for the entire model (steel 20), except for the water pump elbow (orthotropic
material, the mechanical properties of which are obtained earlier during the analysis
of an artificially generated statistically equivalent material (Shapovalova and Vodka
2020). The corresponding data for the test materials are presented in Table 17.1.
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Fig. 17.1 The geometric model of the WD 16/25 pump

Fig. 17.2 The water elbow part of the pump walls thinning at 0 and 9%

According to strength standards by PNAE G-7-002-86 or similar standards ASME
Boiler and Pressure Vessel Code, Vol. III, the nominal allowable stress for elements
of equipment and pipelines loaded with internal pressure is selected as the minimum
of the following values:

[σ ] = min{σB/2.6; σ0.2/1.5} (17.1)

where σB—tensile strength; σ0.2—yield strength.
To calculate the stress–strain state, the boundary conditions are set:
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Fig. 17.3 Finite element mesh of the model (general view)

Table 17.1 Mechanical properties of the materials

Elastic
modulus, E,
GPa

Poisson
ratio, ν

Shear
module,
G, GPa

Ultimate
tensile
strength,
(σB ), MPa

Yield
strength,
(σ0.2),
MPa

Allowable stress, (σ ), MPa

Steel 20

200 0.30 79.30 402 216 144

Artificial microstructure with concentration of inclusions ψ = 0.100 (Shapovalova and Vodka
2020)

Ex = Ey = Ez νx = νy
= νz

Gx = Gy
= Gz

Macrolevela Micro-level Macrolevel

186.16 0.31 68.93 350 220 3.3 135
aMacrolevel data taken from cast iron material properties

• surface adjacent to the floor—rigid fixation;
• volumetric force—gravity (acceleration of gravity g = 9.8 m/s2);
• the tightening torque of the bolts in the absence of passport data takes according

to Table 17.2;
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Table 17.2 Standard forces
of tightening

Standard size Preload force,
kN

Standard size Preload force,
kN

M8 3.17 M14 10.10

M12 7.38 M16 20.90

• inlet andoutlet nozzles are connected to fragments of pipelines,which aremodeled
to the nearest support. A rigid fixation is set in the axial direction for the working
fluid supply pipe and its outlet pipe, and elastic supports with a rigidity of 0.1 N/m
are placed in the plane perpendicular to the axis of these pipes;

• internal pressure during normal operation p = 0.2452 MPa is set in the volume
and the outlet pipe; under the condition of hydro testing, the pressure is increasing
to 1.5 times (p = 0.3678 MPa) and is set in water pump elbow, in the inlet, and
outlet pipes.

According to the result in Fig. 17.4, the maximum stresses occur in the water
elbow part of the pump. Therefore, in this part of the model, it is advisable to assess
the probability of plastic deformations. The von Mises equivalent stresses are shown
in Fig. 17.5 under NOC and during HTmode for the nominal model and at 9% of the
elbow walls thinning. According to the results of the calculation (Fig. 17.5a–c), the
strength condition is satisfied (the maximum stress value is less than the limit value

Fig. 17.4 Distribution of equivalent von Mises stresses (Pa), under NOC, at 9% wall thinning
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Fig. 17.5 Von Mises equivalent stress (Pa): a under NOC at 0% walls thinning; b under NOC at
9% walls thinning; c under HT mode at 0% walls thinning; d under HT mode at 9% walls thinning

[σ ] = 135 MPa). During HT mode (Fig. 17.5d) with wall thinning up to 9% in the
model arise stresses exceeding the permissible ones (the maximum stress value [σ ]
= 229 MPa), which indicates the occurrence of plastic deformations of the model
at the macrolevel. This is unacceptable according to the standards for this type of
equipment (IEC 60041:1991; ISO 9906:2012).

For the analysis of the water elbow part of the pump, five control points are
selected, which corresponds: A—the upper part of the housing near the outlet; B—
the outer part of the elbow, which passes into the outlet; C, D—points of contact
water pump elbow with supports; E—point with maximum stress in the model.

The dependence of the principal’s stress on the water pump elbow walls thinning
during the normal operation condition and the hydro test mode in control points are
shown in Fig. 17.6.
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Fig. 17.6 The dependence of the principals stress on the elbow walls thinning: a the first principals
stress under NOC; b the third principals stress under NOC; c the first principals stress under HT
mode; d the third principals stress under HT mode

17.4 Application of Data-Driven Yield Surface to Prediction
of Failure Probability for Centrifugal Pump

The proposed technology for studying the occurrence of plastic deformations
involves several stages. At the first step, an artificial microstructure of a statistically
equivalent material is created for the analysis of the stress–strain state. Artificial
microstructure generation is implemented by establishing the dependence between
the size and concentration of inclusions (Shapovalova andVodka2019a, b, 2020). The
information about the quantity and size of inclusions located on a plane is collecting
by using computer vision technology. The mathematical expectation dataM[R] and
the variance D[R] of the radii inclusions dependence on the concentration have been
obtained.

The location is followed by a uniform distribution and the size of inclusions is
followed to a normal distribution function of concentration. Concentration (ψ) is
defined as the ratio of the area of the inclusion to the area of the sample. For this
study, the concentration of inclusions is equal to ψ = 0.100.
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Fig. 17.7 Microstructure research process

The finite element model construction is based on the artificial generated
geometric model of the spheroidal graphite cast iron microstructure. To create the
mesh grid, a two-dimensional 8-node finite element with two degrees of freedom
in each node is used (Zienkiewicz 1971). For calculation, is assumed that the
main matrix of the investigate sample is isotropic ferrite and the inclusions are an
orthotropic graphite material. The corresponding materials properties and elastic
constants are given in Table 17.1. Various material properties and their resistance to
tension and compression are taken into account. An example of the initial image of
the nodular cast iron microstructure, the recognized inclusions, the artificial statisti-
cally equivalent generated microstructure, and the mesh of the model are shown in
Fig. 17.7.

The next step for the probability of pump failure investigation is the yield surface
calculation. One of the tasks of materials engineering is to establish the loading
conditions that cause plastic deformation. This is important to determine the load
combination which leads to a transition from the elastic to the plastic. In the case of
uniaxial loading, this task is not particularly difficult. It is enough to have a relation
between stress and strain. Such data can be obtained from experiments on simple
tension and compression. However, for materials that are in multi-dimensional stress
state conditions, plasticity predicting requires additional information. In the case of a
three-dimensional stress state, determining the yield surface is a difficult task. This is
due to several technical difficulties caused on the one hand by the complexity of the
experimental environment, and on the other hand, by the huge number of samples that
need to be tested. This problem is especially acute for composite and heterogeneous
materials. To solve this problem, computer simulation methods are used.

In this work to construct the yield surface, the model is considered under different
loadings. One of the typical load cases for concentration ψ = 0.100 is shown in
Fig. 17.8. Themodel is represented by a square plate with a side—l. The deformation
is set equal to Eρ = �l/l = 10–5, then the displacement is calculated by (2):

Ux = ερl cos�

Uy = ερl sin�
(17.2)

whereUx, Uy—displacement along the corresponding axis, 8= (0…360)° the angle
changes in a range, with a step in 3.6°.
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Fig. 17.8 Displacement (m) and von Mises equivalent stress (Pa) for the microstructure model, ψ
= 0.100

Computer simulation methods are used to calculate the yield surface in a multidi-
mensional stress state. This approach uses the hypothesis of yield strength under diffi-
cult loading conditions (Larin et al. 2018; Wu et al. 2020). Finding the yield surface
is based on the hypothesis of the maximum distortion energy theory (the Huber-von
Mises-Hencky hypothesis), (Ambartsumian 1967). According to it, plastic strains
of a sample in a complex stress state occurs when the specific formation energy
becomes equal to or exceeds the specific formation energy of the material under the
action of a uniaxial stress state.

For statistical equivalent artificial generate microstructure which is consists of
two types of materials (ferrite and graphite), the maximum stresses are found. For
graphite, the tensile and compressive strengths differ significantly, therefore, sepa-
rately for each type of stress state, the ratios maximum stresses to the corresponding
allowable tensile strength are found. The yield surface is determined by the ratio
of the principal stresses to the safety factor (Shapovalova and Vodka 2020). The
calculation results of 250 random typical implementations of the yield surface are
presented graphically in Fig. 17.9.

The accumulated statistical information on possible yield surface variants helps
to determine the area of stress impact. The construction of a line passing through the
origin of the coordinates with control points along it is used (Fig. 17.10). The theta
angles that correspond to the loading trajectory are calculated according to (3).

tg� = σ2

σ1
(17.3)

where σ 1 and σ 2—the principal stresses.
Information about the number of the yield surfaces that have fallen into the control

points along the line is obtained. This method allowing to define the inverse cumu-
lative distribution function, which in turn determines the parameters of descriptive
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Fig. 17.9 Typical
implementations of the yield
surface arrangement for ψ =
0.100

statistics as mathematical expectation (mean), and variance of the random radius
function.

In the third step of investigating pump failure-free operation probability, themicro
material analysis technology is applied. The material properties for the generated
microstructure from Table 17.1 are used, the finite element method is applied for
the model with different modes of operation. The probability of failure-free oper-
ation in five control points of the water elbow part of the pump depending on the
walls thinning under NOC and HT modes are shown in Fig. 17.11. The probability
of microplastic deformations at the control points increases even when the walls
are thinned by 1%, and tend to 1 already at 4% thinning (Fig. 17.11, a). Which
corresponds approximately to 8 years of normal operation. During hydro testing,
the probability of microplastic deformations increases to 1 even at thinning close
to 2% (Fig. 17.11b), which corresponds to 3–4 years of equipment operation. The

Fig. 17.10 Bounds on the
yield surface stress
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Fig. 17.11 The probability of failure-free operation of the pump depending on the elbow walls
thinning: a for NOC at the micro-level; b for HT mode at the micro-level; c for NOC at the
macrolevel; d for HT mode at the macrolevel

occurrence of plastic deformations at the micro-level can lead to the development
of cracks and structural failure at the macro level. Consequently, such areas require
careful study and control over the entire life of the equipment.

The criterion for strength at the macrolevel is the yield stress σ 0.2, which already
implies 0.2% plastic deformation. The score for an artificially generated structure
assumes 0% plastic deformation, and it’s much less. But in practice, the σ 0.2 criterion
is used. According to Table 17.1, the passport data to comparing the strength criterion
are taken for a similarmaterial bywhich an equivalent structure is created (spheroidal
cast iron 35). Therefore, a transition coefficient is introduced, which corresponds to
the expansion of the yield surface curve at the macro level without changing its
shape. The results for the control points at NOC and under HT mode are shown in
(Fig. 17.11c, d). The results of macroplastic deformation probability in the model
occur when the wall thinning is close to 9%, which corresponds to 17–18 years of
equipment operation.

Visualization of the entire model plastic deformation probability implemented
by using the pyansys (Kaszynski 2020) library (Fig. 17.12). For the case of normal
operating conditions with 0%wall thinning, the probability at themacro level and the
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Fig. 17.12 The probability of plastic deformation in the pump under NOC with 0% walls
thining, visualized by pyansys library (Kaszynski 2020). a Probability of macroplastic deformation;
b probability of microplastic deformation

micro-level is different. This corresponds to the onset of microplastic deformations,
which do not significantly affect the macrolevel.

17.5 Conclusions

The paper discusses steps at studying the probability of the centrifugal pump failure-
free operation with data-driven yield surface application. The construction of a
geometric model of the WD 16/25 pump was carried out taking into account the
uniform thinning of the body walls under the influence of corrosive effects. Distri-
butions of equivalent stresses in the pump construction elements under normal oper-
ating conditions and hydro-testing mode are obtained. To the most critical pump unit
(the elbow part of the pump) applying previously obtained material properties. The
investigation of the elbow part of a centrifugal pump is based on the microstructure
estimation of thematerial for obtaining information about the state and predicting the
probabilistic characteristics. A set of yield surfaces is determined from an artificially
generated statistically equivalent material structure using the finite element method.
Takes into account the different behavior of composite materials under tensile and
compressive loads. Going beyond the yield surface indicates the possibility of transi-
tion into a plastic state. Understanding the processes in the structure at themicro-level
allows one to predict possible macro destruction of the model in advance. The results
of the work show the probability of failure-free operation in the time of the pump
during normal operation and hydro test mode.
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Rotating Systems



Chapter 18
Self-synchronization of Rotational
Regimes of Vibro-exciters on Oscillatory
Systems

Arkadiy I. Manevich

Abstract The steady-state synchronous rotations of vibro-exciters (unbalanced
rotors), mounted on a linear oscillator (elastic base) and driven by different rotating
torques, are studied employing the proposed in our previous work analytical proce-
dure. The obtained solution which is validated in the numerical simulation yields to
essential corrections in characteristics of the synchronized regimes in comparison
with some previous works. Stability of the synchronized motions is studied, and a
new stability criterion is proposed and discussed.

Keywords Vibro-exciter · Synchronized regimes · Stability

18.1 Introduction

Synchronization of rotating bodies on elastic support has been discovered in the
middle of the twentieth century and since that time has found various technical
applications. It seems that the first theoretical analysis of interaction of vibration
and rotation, in particular, vibrational retardation of rotation, and explanations of
effects caused by this interaction can be found in Rocard (1949); Mazet (1955);
Kononenko (1969); Blekhman (1971). Systematic and extensive studies have been
conducted, among others, by I.I. Blekhman, his co-workers and followers and have
been summarized in Blekhman (1999). However, the solution for the problem of
self-synchronization of several vibro-exciters, presented in this monograph, suffers
with some drawbacks; in particular, it misses the Sommerfeld effect (in distinction
on presented there solutions for oscillatory systems with one vibrator or rotator), and
therefore, it leads to inexact characteristics of synchronized modes.

Note also that during last decades, the results of theoretical investigation and
numerical simulation of the Sommerfeld effect in different systems can be found
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in numerous publications. For review of these investigations, we refer to Balthazar
et al. (2003, 2018).

In Manevich (2018, 2020), the problems of vibrational maintenance and retarda-
tion of rotation in oscillatory systems with one vibrator or rotator are considered, and
a straightforward analytical procedure has been proposed for description of stationary
synchronous oscillation—rotation regimes. This approach, which accounts for the
nonlinear interaction of rotation and oscillation without unjustified introduction of
small parameters and associated with them asymptotic procedures, nicely correlates
to numerical simulations.

In the present work, a similar approach is employed to study the self-
synchronization of a multiple vibrators on a linear oscillator. The obtained solu-
tion has some fundamental differences from one presented in Blekhman (1999), and
in particular, it entirely agrees with the Sommerfeld effect and with results of the
numerical simulation.

18.2 The Model and Governing Equations

The mechanical system consists of a few vibro-exciters with masses mk (k = 1, …,
s), installed on an common elastic base—linear oscillator of mass m0 with springs
of total stiffness c and viscous friction coefficient β∗

0 . We adopt that the oscillator
moves only in the vertical direction. The rotors are driven by rotating moments Mk

and are considered as physical pendulums with radius of inertia r and reduced length
lc (see Fig. 18.1, where for the simplicity, only two vibro-exciters are shown).

The Lagrangian and the Rayleigh dissipative function in terms of displacement y
of the mass m0 and the angles of rotation ϕk (with account of viscous friction in the
oscillating base and in the vibro-exciters) are written as follows:

Fig. 18.1 Mechanical
system under consideration
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L = m
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dt
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+
∑
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wherem = m0+∑s
k=1 mk . Equations of motion in dimensionless variables τ = ω0t ,

Y = y/ lc ω0 = √
c/m are presented as follows:
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0
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μk
d2ϕk

dτ 2
+ β∗

k

dϕk

dτ
+ μk

(
p2 − η2 d

2Y

dτ 2

)
sin ϕk = M∗

k

(
dϕk

dτ

)
, (k = 1, . . . , s)

(18.3)

where

μk = mk

m
, p = ωp

ω0
ωp =

√
glc
r

η = lc
r

β∗
0 = β0

mω0
β∗
k = βk

mr2ω0

M∗
k = Mk

mr2ω2
0

(18.4)

Here, ω0 is the natural frequency of the oscillator with pendulum vibro-exciters,
and ωp is the partial frequency of the pendulum on immovable base. Parameter p
specifies the relationship between the partial frequencies of the pendulum and the
main body (base). The time is normalized by period of natural oscillations of themain
body (with vibrators fixed on it), so the normalized frequency ω = 1 corresponds to
oscillations with natural frequency ω0.

In this system, different characteristic time scales can be indicated, which are
determined by the following frequencies:

1. Natural frequency of the main body with the fixed pendulums,
2. Natural frequency of the unbalanced pendulum swinging ωp (the natural

frequency is the same for each identical pendulum), and
3. Frequencies (or average angular velocities of rotation) of the rotors on the immo-

bile base, which depends on relationships between the rotating moments and
damping moments in the rotors.

In general case, “quick” and “slow” motions cannot be separated.
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18.3 Solution in the First Approximation: Averaged
Synchronous Regimes

18.3.1 Averaged Characteristics of the Synchronous Regimes

18.3.1.1 Averaged Equations

We are seeking stationary regimes of synchronous rotation of the rotors-vibrators and
oscillation of the base (1:1 stationary synchronous rotation-oscillation regimes, or
SSRO-regimes). The problem is solved in two stages. At the first stage, the averaged
(per period) characteristics of stationary synchronousmodes are determined. Solution
of Eq. (18.2) is sought in the form of harmonic oscillations, and Eqs. (18.3) for the
rotors are satisfied in integral sense (i.e., rotation of the rotors is assumed uniform):

Y = a cosωτ ; ϕk = σk(ωτ + γk) (k = 1, . . . , s), (18.5)

where σk = ±1, depending on the directions of rotation of the kth rotor;
Equation (18.2) after substitution of (18.5) is reduced to the following form:

[
a(1 − ω2) −

∑
k

μkω
2 cos γk

]
cosωτ + (−β∗

0aω +
∑
k

μkω
2 sin γk) sinωτ = 0

(18.6)

Equation (18.3) for averaged (over the period) steady-state rotations yields the
equalities:

ω

2π

2π/ω∫
0

[
σkβ

∗
k ω + μk

(
p2 + η2aω2 cosωτ

)
σk sin(ωτ + γk) − M∗

k

]
dτ = 0

(k = 1, . . . , s) (18.7)

We come to a set of s+2 transcendental equations for the synchronous frequency
ω, amplitude of the base oscillations a, and phases of the each rotor rotation γk (with
respect to oscillations of the base):

a(1 − ω2) − ω2
∑
k

μk cos γk = 0 (18.8a)

−β∗
0a ω + ω2

∑
k

μk sin γk = 0 (18.8b)

−β∗
k (ωk − σkω) + 0.5 η2σkμka ω2 sin γk = 0. (k = 1, . . . , s) (18.8c)
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where ωk = M∗
k /β

∗
k are the partial angular velocities of the rotors (speeds of their

stationary rotation on a fixed base). The quantity

Vk = −0.5σkη
2μka ω2 sin γk (18.9)

is the average value (over the period) of the normalized moment of the translational
inertia force applied to the kth rotor from the oscillating base. In the literature, it
is called “vibrational moment” (Blekhman 1999); (in dimensional form vibrational
moment (18.9) ismultiplied bym r2ω0). Equation (18.8c) has ameaning of balancing
the averaged moments of friction forces, the external moment, and the vibrational
moment for each rotor.

Stationary synchronous regimes of rotors rotations—oscillations of the base exist
if there are real roots to the transcendental set of Eqs. (18.8). Numerical simulation
have shown that, and it is typical for n-DOF nonlinear systems, for given parameters
of the system (μk , β∗

0 , β∗
k , η) and givenωk (i.e., driving moments), several stationary

synchronous modes can exist that differ by frequency, amplitude and also by phase
relationships (in particular, for system with two vibrators, we can obtain up to six
modes, as it will be shown in the examples presented below). It does not seem
possible to determine an exact number of synchronous modes in such systems, but
this problem will be discussed in the next sub-section.

18.3.1.2 Solution for the Averaged Modes

Expressing the sin γk from (18.8c), namely

sin γk = 2β∗
k (σk ωk − ω)

η2μka ω2
(k = 1, . . . , s) (18.10)

we obtain from (18.8b) the relationship between the base oscillation amplitude and
the synchronous frequency ω of the 1:1 SSRO-regimes that we can write in two
following forms:

ω =
∑

k β∗
k σkωk

0.5β∗
0η

2a2 +∑k β∗
k

, a2 = 2

β∗
0 η2ω

∑
k

β∗
k ( σkωk − ω), (18.11)

First Formula (18.11) principally differs from analogous relation given in
Blekhman (1999, Chap. 7). It includes the term in the denominator, which depends on
the oscillation amplitude a accounting for the effect of vibrations of the base on rota-
tion of the rotors (energy loss in vibrations), i.e., the Sommerfeld effect for the system
under consideration. The absence of this term in solution for self-synchronized vibro-
exciters obtained in Blekhman (1999, see expressions (7.2.47) and (7.2.54) there),
which is caused by oversimplified expression for the “vibrational moment,” leads
to incorrect assertions. Namely, it is stated that the synchronous frequency cannot
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be less than the minimal of the partial angular velocities, and that the sum of vibra-
tional moments on all vibro-exciters equal to zero, and a number of other wrong
conclusions. We should underline that the numerical simulation described below
(see Sect. 4.2) convincingly confirms expressions (18.11).

Excluding from the set (18.8) a, γk (k = 1−s) by using of (18.10) and the second
formula (18.11), we obtain equation for the synchronous frequency in dependence
on the partial angular velocities ωs(normalized rotating moments):

2(1 − ω2)
∑
k

β∗
k (σk ωk − ω)

−ω
∑
k

sign(cos γk)

√
2ω3η2μ2

k

∑
k

β∗
0β

∗
k ( σkωk − ω) − 4(β∗

0β
∗
k )

2(σkωk − ω)2 = 0

(18.12)

Equations (18.12), (18.11), and (18.10) entirely determine the averaged 1:1SSRO-
regimes in the system. Different combinations of signs in front of the radical are
possible in Eq. (18.12), depending on signs of cosγ κ , as well as two options for
the direction of rotation of each rotor. For each of the options, several solutions can
take place. Thus, for given parameters of the system μk , β∗

0 , β∗
k , η, at given ωk

(i.e., torques), a few stationary synchronous modes (SSRO) can exist, differing in
frequency, amplitude, and phase relationships. Their number is determined by the
number of real roots of Eq. (18.12).

As the right-hand side in (18.10) cannot exceed unity by modulus, the following
constraint from below on the amplitude of the support oscillation for SSRO-regimes
follows from (18.10):

a ≥ amin = max
k

∣∣∣∣2β
∗
k (σkωk − ω)

η2μkω2

∣∣∣∣ (18.13)

18.3.1.3 Phase Angles and Mechanism of the Self-synchronization

Let us consider the physical meaning of different signs of sinγ κ and cosγ κ . Since
phase angles of the rotors γk are defined with respect to oscillations of the support
(see (18.5), condition sin γk > 0 (or 0 ≤ γk ≤ π ) means that the rotation of this
rotor is ahead of the support oscillations in phase, and if sin γk < 0 (−π ≤ γk ≤ 0),
then the rotor lags behind the support oscillations. Let, for definiteness, σk = 1. As
is seen from expression (18.10), sin γk is positive if the partial angular velocity of the
kth rotor and ωk is greater than the synchronous frequency ω. In this case, vibration
moment (18.9) (transmitted from the oscillating support to the kth rotor) is negative,
the rotor transfers part of its energy to the oscillator, slowing down the own rotation
(in comparison with the case of the rigid support, its angular velocity decreases
from ωk to ω). For those vibrators whose partial angular velocity ωk lesser than the
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Fig. 18.2 Possible phase relations in case of two vibrators

synchronous frequency ω, the picture will be opposite, sin γk < 0, the vibrational
moment Vk is positive, and it accelerates rotation of the rotor by the energy of the
support (such rotors operate in the generator mode). Due to this, redistribution of
energy the self-synchronization occurs: vibrators with large partial angular velocities
slow down, those with small ones are accelerated until velocities of all the rotors
become equal.

Thus, namely the sign of sinγ κ determines whether the kth rotor is accelerated or
retarded by the vibrations of the base. All rotors that are phase-ahead of the support
oscillations transmit energy to the oscillations, and those lagging in phase receives
energy from the oscillations.

In the particular case of one rotor on an elastic support, when the source of motion
is a rotating torque (vibrational retardation of rotation), the rotation of the rotor is
always ahead of the oscillation of the support in phase (0 ≤ γk ≤ π ). When the
source of motion is the support oscillations (vibrations maintenance of rotation),
then the pendulum rotation lags behind the oscillations in phase (−π ≤ γk ≤ 0). In
the case of two rotors on an elastic support, when the source of motion is torques
(on two or one rotor), either both rotors operate in the engine mode or one of them
(with a lower torque) operates in the generator mode (Fig. 18.2a, b).

As for cosγ κ , their signs determine whether the angle γk is acute or obtuse. In the
first case, we can conditionally say that the rotor rotates “in phase” with oscillation
of the support, and in the second case, it rotates “in out-of-phase.”

In conclusion of the section, we note that Eq. (18.8) for SSRO-regimes takes into
account the interaction of rotation and oscillation (centrifugal inertia forces from
the rotors in the equation of support oscillations and translation inertia forces in
equations of the rotors). Therefore, they determine the exact values of the aver-
aged characteristics of synchronous motions of the system, namely synchronous
frequency, amplitude of oscillations, and phase angles. To the contrary, the solutions
obtained in the first approximation of the small parameter method do not take into
account the centrifugal inertia forces.
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18.3.2 Stability of the Synchronous Regimes in the First
Approximation

Exploration of the stability of obtained averaged regimes requires the analysis of non-
stationary motions. Such analysis for a system with one vibrator has been performed
inManevich (2020). In this paragraph, a similar analysis is carried out for the system
of several vibro-exciters on the elastic base. The differential equation determining
the averaged angular velocity for non-stationary rotation of the rotors yields from
Eq. (18.3) after substituting Y = a cosωτ , ϕk = σk(ωτ + γk) and averaging for
period (here, ω is a slowly varying function):

ω

2π

2π/ω∫
0

[
σkμk

d ω

dτ
+ σkβ

∗
k ω + μk(p

2 + aη2ω2 cosωτ)

σk sin(ωτ + γk) − M∗
k

]
dτ = 0

(k = 1, . . . , s) (18.14)

Accounting equalities for average quantities: 〈 cosωτ sin(ωτ + γk)〉 = 0.5 sin γk〈
p2 sin(ωτ + γk

〉 = 0 and expressions ωk = M∗
k /β

∗
k , after multiplying by σk , we

come to the differential equation:

μk
d ω

dτ
= β∗

k (σkωk − ω) − 0.5μk η2aω2 sin γk, (k = 1, . . . , s) (18.15)

(for stationary regimes right-hand sides (RHS) in (18.15) vanish by virtue of
Eq. (18.8c)). Equations (18.14) and (18.15) are similar to Eq. (18.19) and(18.20)
from Manevich (2020). But now, we should consider a coherent movement of the
ensemble of rotors. We summarize Eq. (18.15) for all the rotors and obtain equation

dω

dτ

∑
k

μk =
∑
k

σkβ
∗
k ωk − ω

∑
k

β∗
k − 0.5 η2aω2

∑
k

μk sin γk (18.16)

Supposing that the regime of motion is quasi-static, we assume that phase angles
γk have time to change in accordance with Eq. (18.8a and 18.8b). Then, following
relationships yield from (18.8a and 18.8b) are presented:

∑
s

μs sin γs = β∗
0

ω
a,

∑
s

μs cos γs = 1 − ω2

ω2
a (18.17)

With account of the first Formula (18.17), Eq. (18.16) takes the form

dω

dτ

∑
k

μk =
∑
k

σkβ
∗
k ωk − ω

∑
k

β∗
k − 0.5β∗

0η
2a2ω (18.18)
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Amplitude a can be expressed in terms of ω from (18.17) (here, the lower index
“*” indicates that the quantities γ j − γk are computed for the considered stationary
synchronous regime):

a2 = ω4∑s
j=1

∑s
k=1 μ jμk cos(γ j − γk)∗(

1 − ω2
)2 + β∗2

0 ω2
(18.19)

Denote the right-hand side of (18.18) by�(ω)(it corresponds to the non-stationary
regimes). Then, Eq. (18.18) is written as

dω

dτ

∑
k

μk = �(ω) �(ω) ≡ Msum(ω) − F(ω), Msum(ω) =
∑
k

σkβ
∗
k ωk,

(18.20)

F(ω) = ω
∑
k

β∗
k − V (ω), V (ω) = −0.5ωβ∗

0η
2a2, (18.21)

Here, Msum is the algebraic sum of the normalized rotating moments applied
to the rotors. Function V (ω) can be considered as a complete moment of trans-
lational inertia forces acting from the oscillating base to the ensemble of rotors.
Equation (18.20) together with expressions (18.21) generalizes Eq. (18.21) obtained
in Manevich (2020) for the case of several vibro-exciters.

Then, the stability criterion for given stationary motion ω = ω∗, γ j − γk =(
γ j − γk

)
∗ with respect to disturbances in frequency ω is reduced to a negativity

condition for derivative of the right-hand side in Eq. (18.20): �′( ω)
∣∣∗ < 0 (where

amplitude a depends on ω in accordance to (18.19)). In case of the constant rotating
moments (ωk = const), we come to the following stability condition:

[F ′(ω)]∗ > 0, or
∑
k

β∗
k − [V ′(ω)]∗ > 0 (18.22)

This criterion is similar to those obtained in several works for the problem of
vibration retardation of rotation in oscillatory systems with one vibrator, including
Blekhman (1999) and Manevich (2020), but function V (ω) here has more general
sense. As it was noted inManevich (2020), condition of type (18.22) is not a sufficient
condition of stability, because it is obtained for the averaged regimes; it does not
take into account the non-uniformity of rotation. In addition, in the case of several
vibrators, “summary” Eq. (18.16) is not equivalent to set of s equations (18.15),
and only special perturbations of the averaged regimes are accounted for (there was
assumed that at deviations of the synchronous frequency the deviations of the phase
angles of all the rotors are the same). So condition (18.22) is a necessary condition
of stability.

Typical shape of F(ω) is presented in Fig. 18.3 for a system with two vibro-
exciters (for given parameters of the system). The condition (18.22) is violated on



322 A. I. Manevich

Fig. 18.3 Function F(ω)
determining the necessary
condition of stability for
averaged SSRO-regimes
(case of two vibrators)

the descending portion of the curve F(ω) in the post-resonance frequency diapason
(close to the resonance).

18.4 Solution in the Second Approximation: Non-uniform
Synchronous Regimes

18.4.1 Analytical Solution

Non-uniformity of the rotation is caused by translational inertia forces generated by
vibration of the base and gravity forces related to the eccentricities of the rotors.
These non-uniform rotations can be determined for each rotor at given oscillation of
the support independently on others rotors since both abovementioned factors do not
depend explicitly on their motions. So in the second approximation, wemay consider
separately rotation of the kth rotor, using the approach and results of the previous
analytical solution for systems with one rotor (Manevich 2020). But in view of some
distinctions in statements of the problem, we have to present briefly general stages
of the analysis. We are seeking solution of Eqs. (18.2) and (18.3) in the form

Y = a cosωτ, ϕk(τ ) = σk(ωτ + γk + ψk(τ )) (k = 1, . . . , s), (18.23)

withω and γ k obtained in the first approximation. Functionsψk(τ ) are 2π /ω-periodic
functions with zero average value, which are assumed small with respect to unity.
Substitution of (18.23) into Eq. (18.3) with ωk = M∗

k /β
∗
k yields the nonlinear

equation for function ψk(τ ):
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μk
d2ψk

dτ 2
+ β∗

k

dψk

dτ
+ μk

(
p2 + a η2 ω2

k cosωτ
)
sin(ωτ + γk + ψk)

= 0.5 aμk η2 ω2
k sin γk (18.24)

Linearization with account of smallness of ψk(τ ) compared to unity reduces
(18.24) to the following inhomogeneous Hill equation:

μk
d2ψk

dτ 2
+ β∗

k

dψk

dτ
+ ψkμk

[
p2 cos(ωτ + γk) + 0.5aη2ω2(cos γk + cos(2ωτ + γk))

]
= −μk p

2 sin(ωτ + γk) − 0.5aμkη
2ω2 sin(2ωτ + γk) (18.25)

Solution to this equation is sought in the form of the Fourier series,

ψk =
∞∑
n=1

(ψ
(1)
kn cos n ω τ + ψ

(2)
kn sin n ω τ) (18.26)

Substitution of (18.26) into Eq. (18.25) yields to a set of linear algebraic equa-
tions for the Fourier coefficientsψ

(1)
kn ,ψ

(2)
kn . The analysis showed that only four equa-

tions for coefficients at two lower harmonics ψ
(1)
k1 , ψ

(2)
k1 , ψ

(1)
k2 , ψ

(2)
k2 are of principal

importance. We come to the set

Akk = bk, �k = [ψ(1)
k1 ψ

(2)
k1 ψ

(1)
k2 ψ

(2)
k2 ]T, (18.27)

bk = μk

[
−
( p
ω

)2
sin γk −

( p
ω

)2
cos γk − 1

2
aη2 sin γk − 1

2
aη2 cos γk

]T

Ak = μk

⎡
⎢⎢⎢⎢⎢⎣

(
3
4a η2 cos γk − 1

) β∗
k

μkω
− 1

4a η2 sin γk
1
2

( p
ω

)2
cos γk − 1

2

( p
ω

)2
sin γk

− 1
4a η2 sin γk − β∗

k
μkω

(
1
4a η2 cos γk − 1

)
1
2

( p
ω

)2
sin γk

1
2

( p
ω

)2
cos γk

1
2

( p
ω

)2
cos γk

1
2

( p
ω

)2
sin γk

(
a η2 cos γk

2 − 4
)
2 β∗

k
μkω

− 1
2

( p
ω

)2
sin γk

1
2

( p
ω

)2
cos γk −2 β∗

k
μkω

(
a η2 cos γk

2 − 4
)

⎤
⎥⎥⎥⎥⎥⎦

(18.28)

Note that matrix Ak and vector bk for each rotor depend on three dimensionless
parameters of the system (β∗

k /(μkω), p/ω, andη2) andparameters of the synchronous
regime a, ω and γk . After solving the set (18.27) the solution for the angle of rotation
with account of its non-uniformity takes the form

ϕk(τ ) = ωτ + γk + (ψ
(1)
k1 cosωτ + ψ

(2)
k1 sinωτ)

+ (ψ
(1)
k2 cos 2ωτ + ψ

(2)
k2 sin 2ωτ), (k = 1, . . . , s) (18.29)
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(together with the averaged solution for a, ω and γk (18.10)–(18.12)).
At p= 0matrix (18.28) disintegrates into two separate minors of the second order,

and vector bk has two zero elements. Then, set of Eq. (18.27) factorizes into two sets
of second order equations:

Ak1k1 = 0, �k1 =
[
ψ

(1)
k1 ψ

(2)
k1

]T
,

Ak1 = μk

((
3
4aη2 cos γk − 1

) β∗
k

μkω
− 1

4a η2 sin γk

− 1
4aη2 sin γk − β∗

k
μkω

(
1
4aη2 cos γk − 1

)
)

, (18.30)

Ak2 k2 = bk2, �k2 = [ ψ
(1)
k2 ψ

(2)
k2 ]T

Ak2 = μk

⎛
⎜⎜⎜⎝

(
a η2 cos γk

2
− 4

)
2

β∗
k

μkω

−2
β∗
k

μkω

(
a η2 cos γk

2
− 4

)
⎞
⎟⎟⎟⎠ (18.31)

bk2 = μk

[
−1

2
aη2 sin γk − 1

2
aη2 cos γk

]T

Coefficientsψ
(1)
k1 ,ψ

(2)
k1 become equal to zero, if detAk1 �= 0. Then, in (18.29), only

the second harmonics remain, whose coefficients ψ
(1)
k2 , ψ

(2)
k2 can be easily obtained

from (18.31) in closed form.

18.4.2 Instability of Stationary Synchronous Regimes Caused
by the Translational Inertia Forces

Stability analysis of obtained solution (18.29) also is similar to that of Manevich
(2020). This solution becomes unstablewhen the corresponding to Eq. (18.25) homo-
geneous Hill equation has increasing solutions that means occurrence of parametric
resonance for oscillations of angular velocity of rotors. Bounds of the stability and
instability zones in the system parameters space correspond to periodic solutions of
the homogeneous Hill equation.

Here, we consider only the parametric resonance with period 2π which is caused
by harmonic perturbing terms of period π in the left hand side of (18.25) (case
p = 0). So we deal with Mathieu equation. Applying the standard technique, we
obtain for the lower boundary of the first instability zone for kth rotor the following
condition:

�k ≡ 1

4
a2η4

(
cos2 γk − 1

4

)
− aη2 cos γk + 1 +

(
β∗
k

μkω

)2

= 0 (18.32)
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With account of smallness of
(
β∗
k /(μkω)

)2
with respect to unity, we come to the

following necessary condition of stability in terms of critical amplitude a∗:

a ≤ a∗ = 1

η2
min
k

∣∣∣∣∣
4

2 cos γk ± 1
±
(

β∗
k

μkω

)2
∣∣∣∣∣ (18.33)

Note that, as a rule, for many realistic values of the system parameters,
dimensionless critical amplitude a∗ is very close to 4/3.

18.5 Results of the Numerical Analysis and Comparison
with the Numerical Simulation

As a basic variant for numerical analysis of the obtained analytical solution, there
was considered the system of two vibrators on oscillatory system with following
parameters: μ1 = μ2 = 0.1, β∗

1 = β∗
2 = 0.01, p = 0, η = 1. The direction of

rotation of both the rotors was taken to be the same. The value of the partial angular
frequency for the first rotor was taken equal to ω1 = 1 (this corresponds to the
application to this rotor of torque, which would rotate the rotor on an immovable
support with a resonant angular velocity (equal to the natural oscillation frequency
of the real support with the fixed rotors). The value of the partial angular frequency
ω2 (and, respectively, the value of torque M2) for the second rotor is varied over a
wide range, from 0 to 7.0.

18.5.1 The Averaged Characteristics of the Synchronous
Regimes

First, consider results of the averaged solution presented in Sect. 2.1. Two values of
ω2 were chosen for the numerical simulation, namely 0.6 and 4.0 (i.e., ratios of the
torques M2/M1 were equal to 0.6 and 4). Table 18.1 presents characteristics of the
SSRO-modes obtained from Eqs. (18.10)–(18.12), for the different combinations
of signs of cosines for the phase angles (denoted sgn1 and sgn2)—synchronous
frequencyω, vibration amplitude of the support a, phase angles γ1, γ2, and also values
of function F ′(ω) (see (18.21)) determining the necessary condition of stability
(18.22) for SSOR-regimes. The last column indicates stability or instability of the
synchronous regimes in the numerical simulation with the original set of nonlinear
Eqs. (18.2) and (18.3).

As is seen from Table 18.1, there exist two SSOR-regimes in case ω2 = 0.6 and
six regimes at ω2 = 4.0. The signs of angles γ1, γ2 show that in both regimes at ω2

= 0.6 the first rotor (with larger torque) operates in engine mode and the second
rotor—in generator mode. Both these regimes are pre-resonance (ω < 1) and differ
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Table 18.1 Characteristics of the synchronous stationary modes in system with parameters: μ1 =
0.1, μ2 = 0.1, β∗

0 = 0.1, β∗
1 = 0.01, β∗

2 = 0.01

ω2 sgn1, sgn2 ω a γ1 γ2 F ′(ω) Stability in numerical
simulations

0.6 + +
−+

0.7253
0.7912

0.2030
0.0667

0.5405
1.5741

−0.2368
−1.1572

0.0407
−1.836

Stable
Unstable

4.0 + +
+ −
− +
− −
− −
− −

0.9210
0.9753
1.0229
1.1657
2.1750
2.4846

0.8281
0.7908
0.7600
0.6767
0.2445
0.0497

0.0225
0.00657
−3.1362
−3.1057
−2.9370
−1.8290

1.0688
2.2072
0.8461
2.4773
2.8205
1.7330

0.810
0.404
−0.515
−0.169
0.021
0.034

Stable
Unstable
Unstable
Unstable
Unstable
Stable

with sign of cos γ1 (acute angle with respect to the base oscillation in the first mode
and obtuse—in the second one).

At ω2 = 4.0 the second rotor (now with larger torque) in all regimes operates as
engine; the first rotor is also operates as engine in both pre-resonance regimes and
in generator mode—in four post-resonance regimes (ω > 1). All these regimes have
different combinations of the phase angles with different signs of sines and cosines
for each rotor. Physically, this means a transfer from engine mode to generator one
and (conditionally) transfer from in phase to out-of-phase rotation with respect to
the base oscillation, for each rotor.

The numerical simulations (these simulations dealing with non-uniform motions
are described below) excellently confirm the characteristics of the SSOR-regimes
presented in Table 18.1.

As for stability of the SSOR-regimes, in those three cases, when the criterion
(18.22) was violated (F ′(ω) < 0), these regimes are found to be unstable. Neverthe-
less, in other cases, when F ′(ω) > 0, two modes (of five) are proved to be unstable.
This confirms that inequality (18.22) is necessary but not sufficient condition of
stability of synchronous regimes in the systems under consideration.

18.5.2 Verification by Numerical Simulation

The obtained solution in the second approximation [with account of non-uniform
rotation (18.23) and (18.29)] was verified by numerical simulation with the primary
set of governing Eqs. (18.2) and (18.3). The initial conditions were set using the
analytical solution for the averaged steady-state regimes (18.29):

Y (0) = a, Ẏ (0) = 0 ϕk(0) = σk

(
γk + ψ

(1)
k1 + ψ

(1)
k2

)

ϕ̇k(0) = σkω (1 + ψ
(2)
k1 + 2ψ(2)

k2 ) (k = 1 − s) (18.34)
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Due to putting rather exact initial conditions, the SSOR-regimes were established
in the numerical simulation very quickly.

Typical results for stable SSOR-modes for the same system (μ1 = μ2 = 0.1,β∗
0 =

0.1, β∗
1 = β∗

2 = 0.01, p = 0) at ω1 = 1, ω2 = 4.0 (normalized torques on two rotors
M∗

1 = 0.01 andM∗
2 = 0.04) are presented inFig. 18.4.We take thefirst pre-resonance

mode with normalized synchronous frequency ω = 0.9210, which is presented in
Table 18.1 (third line). In Fig. 18.4, there are constructed the time dependences for
oscillation of the support Y (a), angles of rotation of the rotors ϕ1, ϕ2 (b, c), their
angular velocities ϕ̇1, ϕ̇2 (d, e), and phase curve ϕ̇1-Y (f ). Black curves describe the
numerical simulation results; red and blue points and curves describe the analytical
solution.

Fig. 18.4 Comparison of the analytical results and the numerical simulation for systemμ1 = μ2 =
0.1, β∗

0 = 0.1, β∗
1 = β∗

2 = 0.01, p = 0 with two rotors excited by the torques corresponding to
partial angular velocities ω1 = 1, ω2 = 4.0, pre-resonance mode with synchronous frequency ω

= 0.9210; (a) the base oscillation; (b, c) angles of rotation; (d, e) angular velocities of the rotors;
f -phase curve ϕ̇1-Y. Black curves—numerical simulation, red and blue points and curves—the
analytical solution (red—rotor 1, blue—rotor 2)
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As it can be seen from Fig. 18.4, the stationary synchronous oscillation-rotation
modes are actually established in the system, and practically, from the very beginning,
this indicates that the accepted initial conditions are very close to the actual conditions
for these modes. The theoretical solution in Fig. 18.4a–d is shown by dots, since
the corresponding curves almost completely merge with the curves obtained in the
numerical simulation. The complete synchronization of rotation of the vibrators is
clearly visible, especially in Figs. 18.4e, we can see not only the mean values of
angular velocities are equal but also the deviations from the mean value, as well
as a constant phase shift between the rotors. The oscillation of the angular velocity
(Fig. 18.4d, e) relatively to the mean value has a frequency equal to the doubled
frequency of the base oscillations, in accordance with the formula (18.29) (at p = 0
the first harmonics are absent). The phase curve f shows the synchronization of the
support oscillation and rotation of the vibrators (in average per period).

Practically, the same good agreement of the analytical predictions and the numer-
ical simulation was observed for other stable synchronous modes, at least for p = 0
(some small discrepancies appear at not too small p-values).

In case of unstable regimes, there were observed different pictures. Figure 18.5
shows the results for the same system in case ω1 = 1, ω2 = 0.6 (M∗

1 = 0.01 and
M∗

2 = 0.006); for the pre-resonance mode with synchronous frequency ω = 0.7912
(this case is presented in the second line of Table 18.1).

At the initial interval (approximately up to t = 40), the predicted synchronous
regime is realized, but then it loses stability, and synchronization of two rotors is
violated.

18.5.3 Checking the New Stability Criterion (18.33)

For checking the obtained in Sect. 3.2 the stability criterion (18.33), detecting insta-
bility of SSRO-regimes caused by the translational inertia forces, we consider the
same system μ1 = μ2 = 0.1, β∗

1 = β∗
2 = 0.01, p = 0 at rotating torques corre-

sponding to partial angular velocitiesω1 = 1,ω2 = 4.0(M∗
1 = 0.01 and.M∗

2 = 0.04).
However, parameter of the viscous friction for the base β∗

0 , which has principal effect
on amplitudes of the base oscillations, was varied from 0.1 to 0.035. For each value
of β∗

0 , we take the pre-resonance synchronous regime with minimal synchronous
frequency (presented for β∗

0 = 0.1 in the third line of Table 18.1 and in Fig. 18.4).
Table 18.1 provides characteristics of the averaged synchronous regimes, obtained

analytically, namely synchronous frequency ω, amplitude of the base oscillation a,
phase angles γk . In the last four columns, values of function F ′(ω) are given (see
(18.21)) governing the necessary condition of stability (18.22), and �k represents
values (18.32) for detecting change of sign of the minimal �k-value indicating on
occurrence of the rotational instability. In the last column, results of checking stability
in the numerical simulation are presented.

The values F ′(ω) are positive in all the cases, i.e., necessary stability condition
(18.22) is satisfied. As is seen fromTable 18.2, angles γ1 are very small, cos γ1-values
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Fig. 18.5 Results of the numerical simulation for the system μ1 = μ2 = 0.1, β∗
0 = 0.1 β∗

1 =
β∗
2 = 0.01, p = 0 with two rotors excited by the torques corresponding to partial angular velocities

ω1 = 1, ω2 = 0.6; pre-resonance synchronous mode with frequency ω = 0.7912; a the base
oscillation; b, c angles of rotation; d, e angular velocities of the rotors; black curves—numerical
simulation, red and blue curves—analytical solution (red—rotor 1, blue—rotor 2). Initial conditions:
Y (0) = a = 0.0667, Ẏ (0) = 0, ϕ1(0) = 1.5824, ϕ2(0) = −1.1646, ϕ̇1(0) = 0.790, ϕ̇2(0) =
0.7973

Table 18.2 Characteristics of synchronous pre-resonance modes and their stability (μ1 = μ2 =
0.1, β∗

1 = β∗
2 = 0.01, p = 0, ω1 = 1, ω2 = 4.0) at different values of the friction parameter for

the base β∗
0

β∗
0 Frequency

ω

Amplitude
a

Phase angles F ′(ω) �1 �2 Stability by
numerical
simulation

γ1 γ2

0.10
0.06
0.05
0.04
0.038
0.037
0.036
0.035
0.030

0.9210
0.9270
0.9307
0.9356
0.9367
0.9373
0.9379
0.9386
0.9420

0.8281
1.0635
1.1614
1.2930
1.3254
1.3425
1.3603
1.3788
1.4850

0.0225
0.0160
0.0138
0.0114
0.0109
0.0106
0.0104
0.0101
0.0088

1.0688
0.7374
0.6562
0.5721
0.5548
0.5460
0.5372
0.5283
0.4827

0.810
0.922
0.978
1.056
1.064
1.074
1.085
1.107
1.170

0.310
0.160
0.103
0.032
0.015
0.007
−0.002
−0.011
−0.060

0.61
0.31
0.21
0.12
0.092
0.080
0.068
0.056
−0.009

Stable
Stable
Stable
Unstable
Unstable
Unstable
Unstable
Unstable
Unstable
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are very close to 1, and the critical value of the normalized amplitude according to
(18.33) is close to 1.35.

As we can see at Table. 18.2, with decreasing β∗
0 amplitude a increases and

approaches 1.35 at β∗
0 ≈ 0.0365. At this β∗

0 -value, �1 changes its sign. The onset
of instability in the numerical simulation is detected a little earlier (approximately at
β∗
0 = 0.04), when �1 becomes very small.
Comparisonof the analytical predictions and the numerical simulation is presented

in Fig. 18.6 for two β∗
0 -values—0.05 and 0.035 (results for β∗

0 = 0.1 were shown
above in Fig. 18.4). In Fig. 18.6a–c angular velocities for two rotors and the phase
curve at β∗

0 = 0.05 and in Fig. 18.6d–f—these quantities at β∗
0 = 0.035 are shown.

In case β∗
0 = 0.05, the synchronous mode remains stable, but coincidence of the

analytical (color points and curves) and numerical (black curves) results is not so
precise as for β∗

0 = 0.1. There appear harmonics with double period in numerical
time-dependencies of angular velocities of two rotors (these harmonics have the same
frequency as oscillation of the support). In the case of β∗

0 = 0.035 (Fig. 18.6d–f),

Fig. 18.6 Results of the analytical solution and numerical simulation for system μ1 = μ2 = 0.1,
β∗
1 = β∗

2 = 0.01, p = 0 atω1 = 1,ω2 = 4.0, figures a, b, c for β∗
0 = 0.05; d, e, f—for β∗

0 = 0.035;
a, b, d, e—angular speeds of rotors 1, 2; c, f—phase curves. Black curves—numerical simulation,
color points and curves—analytical solution
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the onset of parametric resonance for oscillations of the angular velocity because of
increasing amplitudes of the double period harmonics is clearly visible. The phase
curve (Fig. 18.6f) shows gradual violation of the periodicity.

Stability criterion (18.33) in this case is well agreed with the numerical simu-
lation. But more extensive computations, in particular, for other SSOR-regimes in
the considered systems, show that this criterion is not sufficient. So the problem of
stability of synchronous regimes in systems under consideration remains open.

18.6 Conclusions

An analytical investigation of stationary synchronized regimes in the oscillatory
system with a few vibrators is presented. It is shown that the analytical procedure
proposed in previous author’s papers for problems of vibrational retardation, and
maintenance of rotation in oscillatory systems with one rotator is very efficient also
in analysis of synchronizationof several vibro-exciters on elastic base.This procedure
in the first approximation gives the exact description of averaged characteristics of the
synchronizedmodeswith account of the centrifugal inertia forces in rotors, unlike the
proposed earlier asymptotic procedures based on assumption of smallness of these
forces. Already on this stage, the mechanism of synchronization of rotors is clearing
up. Certain phase relations between the rotations of the rotor and oscillation of the
base secures the necessary energy exchange between all elements of the system.

The obtained solution essentially corrects the characteristics of the synchronized
regimes in comparison with a few previous works, in particular, to Blekhman (1999).

In the second approximation, the presented solution results in analytical descrip-
tion of non-uniform rotation of vibro-exciters caused by interaction of the rotation
and oscillation. Both the solutions (for averaged modes and for actual non-uniform
motions) are validated by the numerical simulation with very high accuracy.

It is shown that stability criteria based on analysis of averaged synchronousmodes
are not sufficient. The stationary synchronous regimes in systems with several rotors
can becomeunstable because of the parametric resonance for oscillations of the rotors
velocity generated by the translational inertia forces from the base. A new stability
criterion is obtained based on the refined solution in the second approximation. This
criterion is similar to one obtained earlier for one rotator-oscillator systems, but in
a case of several rotors, the occurrence of instability is more probable due to larger
number of rotors. In the same time, this criterion also is not sufficient one, so the
problem of stability of the synchronized modes in case of several rotors remains
open.
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Chapter 19
Stability Analysis of Rotor Motion
in Nonlinear Systems with Passive
and Active Magnetic Bearings

Gennadii Martynenko

Abstract The paper proposes an approach to analyzing the stability of rotor motion
in systems and machines with passive and active magnetic bearings. The rotor
dynamics is mathematically described using the Lagrange-Maxwell magnetome-
chanical system of differential equations. It contains unknown components namely
generalized coordinates and flux linkages in coils of electromagnets of active
magnetic bearings. This system of equations is nonlinear due to nonlinearity of
magnetic forces in the bearings. Complexity of this system makes difficult the anal-
ysis of motion stability in non-resonant and resonant modes using analytical and
semi-analytical methods. Therefore, an analytical–numerical–graphical approach
based on simulation modeling and stability analysis by vibrograms, spectrograms,
phase trajectories and Poincare sections is proposed. This algorithm was tested in
the analysis of dynamic behavior of a rotor of a laboratory rig in radial passive and
axial active magnetic bearings. Validation was performed by comparing calculated
and experimental results. Advantages of the approach include accuracy of analytical–
numericalmodeling of various dynamicmodes, ability to analyze stability of rotors of
complexmagnetomechanical systems, as well as numerical and visual representation
of nonlinear phenomena of rotor dynamics.

Keywords Rotor dynamics · Magnetic bearings · Mathematical simulation ·
Nonlinear phenomena

19.1 Introduction

Rotor systems with magnetic bearings (MBs) of various types (Yonnet 1978; Zhang
and Zhu 2017) are widely used in practice (Maslen and Schweitzer 2009). Permanent
magnet passivemagnetic bearings (PMBs) are used as rotor supports inwind turbines
with vertical axis (Mahmoud et al. 2020, 2019), flywheel energy storage systems
(Amiryar and Pullen 2020; Wen et al. 2020), pumps (Chen et al. 2019; Prusa et al.
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2018), bearingless motors (Kato et al. 2020; Yuan et al. 2020) and other small-
medium sizes rotor machines and systems. Active magnetic bearings (AMBs) are
currently used in almost all fixed rotor machines and systems. They are installed in
industrialmachines such as compressors (Anantachaisilp and Lin 2020), turbines and
generators (Grönman et al. 2020; Khatri et al. 2020; Pilotto and Nordmann 2019),
pumps (Bangcheng et al. 2020; Barbosa Moreira and Thouverez 2020) and motors
(Żokowski et al. 2020).

When developing or modernizing rotor systems and machines with MBs,
approaches and tools for a variant assessment of their dynamic state are required.
They should have the ability to perform parametric calculations at low cost of
resources and time. The dynamic characteristics can be determined from the results
of the modal (Čorović and Miljavec 2020; Martynenko and Martynenko 2020a),
harmonic (Chalageri et al. 2020; Martynenko and Martynenko 2020b) and spec-
tral analyses (Xiang et al. 2020). Their accurate determination allows achieving
the high quality of created or modified rotary machines, namely the strength
of structural elements (Martynenko 2020c; Martynenko et al. 2020b), dynamics
stability (Martynenko 2016), reliability (Rusanov et al. 2018), performance and other
parameters.

When developing rotor machines and units, an actual issue is the mathematical
modeling of rotor dynamics taking into account various nonlinearities in the system.
They are mainly due to nonlinear force characteristics of the magnetic field (Marty-
nenko and Martynenko 2019; Santra et al. 2017). To simulate the dynamics of rotors
in the magnetic field, numerical methods (e.g., finite element or finite difference
ones) (Ran et al. 2018) and analytical approaches (Ebrahimi et al. 2018) can be
used. In the first case, when using general-purpose software systems, the analysis
of stability of rotor motion can be performed according to the Campbell diagram
(Matsushita et al. 2017, 2019). It shows the dependence of critical velocities on
rotational speed with an assessment of stability according to cylindrical or conical
precession by the roots of the characteristic equation. However, such an analysis is
linear and does not take into account the features of nonlinear dynamic processes
(Lacarbonara et al. 2020; Worden and Tomlinson 2019). However, this nonlinear
behavior is also characteristic of rotor systems (Nan et al. 2020), including the ones
with magnetic bearings (Zhang et al. 2020). In the second case, simplified math-
ematical models of rotor dynamics are used to assess stability using approximate
analytical mathematical methods for analyzing nonlinear oscillatory systems. In this
instance, although the nonlinear properties of the rotor system with MPs are taken
into account (Wu et al. 2018), this accounting is very limited. Often this fact does not
allow relying on the accuracy of the analysis for the synthesis of such a mechatronic
rotor system. In this case, in order to increase reliability of modeling of the nonlinear
phenomena and assess stability of rotor motion inmagnetic fields, it is possible to use
analytical approaches (Martynenko 2018) and graphoanalytical methods (Ebrahimi
et al. 2017).

For example, Qiao and Tang (2020) consider the influence of the gyroscopic effect
on the dynamics of a high-speed electrospindle in active magnetic bearings. The
analysis is performed for a simplified systemwith four degrees of freedom and on the
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basis of the real part of the characteristic equation roots. The work (Xia et al. 2019) is
devoted to the analysis of the stability of the gyroscope rotor with a magnetic bearing
using pseudo-linear equivalent transformation and extended double-frequency Bode
diagram. To ensure stability control in slidingmode and control based on Lyapunov’s
theory are used in (Mystkowski 2019). Soni et al. (2020) uses Floquet-Liapunov
theory on stability of periodic system to analyze the stability of the rotor motion
in the AMBs, taking into account the mobility of the system base. This allows the
response under parametric excitation in such machines as an aircraft turbo engine
or a ship propeller shaft to be assessed. The analysis of the rotor motion in passive
magnetic bearings using numerical simulation is proposed in Goleman et al. (2018).
Numerical calculations and a graphical approach to the analysis of the behavior of
elements of rotary machines are presented in Zhao et al. (2016). It involves the use
of several methods, including the construction of graphs of control point motions
as well as trajectories, wavelet transform and others. Cui et al. (2018) proposes
a method for evaluating vibration resistance based on the standard ISO14839 for
rotating equipment elements with AMBs.

The approaches given as examples are quite acceptable in the case of a simplified,
often linearized,mathematical description of the rotor dynamics inmagnetic bearings
of passive and active types. But they are practically not applicable in the case of a
full accounting of the nonlinear relationship of electrical, magnetic and mechanical
processes that are inherent in rotary systems with magnetic bearings. This work is
devoted to filling this gap.

19.2 Object and Aim of Research

19.2.1 Analyzed Design and Initial Data

The numerical-graphical approach to the study of the motion stability of rotors in
magnetic bearings of various types involves the construction of amathematicalmodel
of the system dynamics, the use of numerical methods for solving, numerical and
graphical representation of processes and the analysis of these results to assess the
rotor motion stability in various operating modes. Its essence can be described most
fully and clearly when considering a specific rotor system with magnetic bearings,
which comprehensively manifests its nonlinear properties. Such a system can be a
complete magnetic suspension of the rotor in two different types of bearings.

Therefore, the paper considers a nonlinear controlled mechatronic electro-
magneto-mechanical system with a rotor in passive and active magnetic bearings
(Martynenko and Ulianov 2019; Martynenko et al. 2020a). Two radial passive MBs
consist of ring permanent magnets with an axial magnetization. The axial active
magnetic bearing for stabilizing the rotor in an axial direction uses an automatic
control system which utilizes an original control algorithm. This system is imple-
mented as a laboratory rig and is a prototype of complete passive-active magnetic
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suspensions of small and medium-sized rotors such as compressors, expanders, and
engines. It is presented in Fig. 19.1. Figure 19.2 shows the control system of the axial
AMB and the rotor calculation scheme.

Both radial PMB has the following dimensions of the rings (Fig. 19.2): diameters
of an outer fixed (stator) ring D1 = 58 mm and D2 = 40 mm, and an inner movable
(rotary) ring D3 = 29 mm and D4 = 15 mm, a thickness of both the rings H =
10.5 mm. The rings are made of an NdFeB alloy with a residual induction of Br

= 1.07 T and a coercive force Hc = 808,000 A/m. The axial magnetization of
the rings provides the rotor with self-centering due to repulsive forces. The power
characteristics of the PMBs are shown in Fig. 19.2. Axial AMP has the following
parameters: electromagnet (EM) inner and outer diameters are 0.12 and 0.05 m, each
EM length in the axial direction is 0.021 m, winding inner and outer diameters are
0.1 and 0.072 m, an amount of turns is 300, resistance of windings is rc = 5 �,

Fig. 19.1 Themodel rotor in the radial PMBs and the axial AMB—the appearance of the laboratory
rig

Fig. 19.2 The model rotor in the radial PMBs and the axial AMB—the control system diagram,
design model and force characteristics of the PMB within the gaps
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Fig. 19.3 Experimental amplitude-frequency characteristic of the rotor and the dependence of the
amplitudes of multiple harmonics on the excitation frequency (rotation): a fundamental harmonic
with subharmonics and b fundamental harmonic with superharmonics

thickness of the disk is 0.02 m, a nominal clearance on each side is δa = 0.003 m
(Martynenko and Martynenko 2019), and the parameters of the control system and
law are: control frequency—300–400 Hz, voltage U0 = 24 V, the rest are given in
(Martynenko and Ulianov 2019). The range of rotor operational rotational speeds is
from 0 to 3000 rpm.

The fact that the structure includes the PMBs with permanent magnets made
of rare-earth materials, as well as the axial AMB with a relatively large air gap,
generates pronounced nonlinear effects. Their analysis and influence on the rotor
motion stability are the purpose of this work.

The experimental dependences of the amplitudes of the fundamental and multiple
harmonics are presented in Fig. 19.3 (Martynenko 2018). They characterize the
dynamic nonlinear behavior of the “rotor in the MBs” system in the operating
frequency range. Dependencies of fundamental harmonics are amplitude-frequency
characteristics (AFCs). Only the fundamental harmonics and subharmonics with
different multiplicity are presented in (a) and only the fundamental harmonics and
superharmonics are shown in (b) to improve the legibility of the graphs in Fig. 19.3
for the comparative analysis of nonlinear resonances.

Confirmation of the nonlinear behavior of the system is the presence of sub-
and superharmonic oscillations and resonances, as well as the connection between
radial and axial oscillations of the rotor. Figure 19.3 indicates that the amplitudes
of subharmonics exceed the amplitudes of the fundamental frequency and are more
dangerous in some modes.

19.2.2 Research Objectives

The object of the research is the dynamic behavior of a rotating rotor excited by its
own imbalance, taking into account nonlinear relationships of electrical, magnetic
and mechanical phenomena in the considered mechatronic system. The complex
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mathematical description of the nonlinear rotor dynamics of such a system makes it
almost impossible to use standard methods (asymptotic, small parameter, harmonic
balance, normal forms, etc.) for analyzing the stability of its motion. Therefore, the
proposed analytical–numerical-graphical approach aims to evaluate the stability of
different operational modes.

19.3 Mathematical Modeling of the Nonlinear Rotor
Dynamics in Magnetic Bearings

Since preliminary studies in the range of possible deviations of the rotational speed
showed that the rotor vibrates only as a rigid body, a mathematical model can be
built for a rigid rotor. If in some system the rotor is flexible, then the principle
of constructing a mathematical model and research technique is the same with the
increased number of degrees of freedom and equations.

19.3.1 Formation of a System of Electromechanical
Equations

It is known that the Lagrange-Maxwell equations are used to describe the dynamic
behavior of electromechanical systems. One of the forms of their notation is similar
to the Routh equations in mechanics and has the form (Maslen and Schweitzer 2009;
Routh 2018, 2012):

⎧
⎪⎨

⎪⎩

d
dt

∂T
∂q̇ j

− ∂T
∂q j

+ ∂�
∂q j

+ ∂ D
∂q̇ j

= − ∂W
∂q j

+ Q j ( j = 1, . . . , M);
∂�k
∂t +

N∑

s=1
rC ks

∂W
∂�s

= Ek (k = 1, . . . , N ),
(1)

where T—kinetic energy;P—potential energy; qj—generalized mechanical coordi-
nates; Qj—non-potential generalized forces; D—dissipative function; M—number
of mechanical generalized coordinates; W—magnetic field energy; �k—induction
fluxes (flux linkages), rC ks—active resistances of electrical circuits; Ek—algebraic
sum of external electromotive forces; ik—contour currents; N—number of closed
unbranched contours, and �k = ∂W/∂ik , ik = ∂W/∂�k .

The kinetic energy of the rotor should be substituted into these equations. Its
expression is written in terms of generalized coordinates. In the case of a rigid rotor,
there are five of these coordinates. A fixed Cartesian coordinate system Oxyz is
introduced in the design scheme (Fig. 19.3). In this case of a rotor with a disk, the
coordinates x0, y0, z0 of the pole O and Euler angles ψ, ϑ, ϕ can be specified as the
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generalized coordinates q0 of the rigid body, and generalized velocities are the first
time derivatives of these quantities. Then the expression for kinetic energy has the
form:

T = 1

2

[
mv2

0 + 2m(v0 × ω) · r ′
C + ω
0ω

]
(2)

here v0—velocity of the poleO;ω—angular velocity of the body (the rotor); rC
′—the

radius vector OC of the center of inertia of the body in the system of moving axes
starting at the pole O; 
0—the tensor of inertia of the body at this point.

Then the formation of a system of equations requires: representing the expressions
for the projections of the body angular velocityω onto the axesO ξηζ connectedwith
the body and the expressions for the projections on the sameaxes of the velocity vector
v0 of the poleO; further considering the radius vector projection rC

′ on the axesO ξηζ

and the tensor of inertia of the rotor with the disk in the pole O; making the transition
to the fixed coordinate system Oxyz, and simplifying by replacing trigonometric
functions by power series with keeping terms up to the third order for preservation
of nonlinearities in the representations. For the convenience of determining and
monitoring the position of the rotor in the MBs, the second group of generalized
coordinates q = (x1, y1, x2, y2, z3) can be used in addition to the first one q0. These
are the coordinates x and y of the points O1 and O2 (Fig. 19.3) in the fixed coordinate
system and the coordinate z of some point O3 placed on the rotor axis. Points O1

and O2 are the centers of rotor supporting sections in the radial direction, i.e., the
centers of mass of journals of the radial PMBs, and the point O3 is the center of a
rotor supporting section in the axial direction, i.e., the center of mass of the axial
AMB disk.

In the case of a flexible rotor, lateral vibrations of the axis are considered. Then,
either a larger number of degrees of freedom is introduced, or a continual approach
is used (Van Osch 2006).

In the case of a rigid rotor for the mathematical description of the rotor dynamics
(Fig. 19.3) uses a nonlinear differential equation system (NDES) relative to general-
ized coordinates (displacements of support sections centers, points of disks-to-shaft
attachments) and fluxes in coils of AMB electromagnets (Martynenko 2018). Such
a system is formed on the basis of the Lagrange-Maxwell Eqs. (19.1) taking into
account (19.2) and has the form (19.3).

In (19.3), m is a rotor overall mass; J1 and J3 are rotor moments of inertia; l1, l2
and l3 are distances from the coordinate system center to centers of the radial and
axial supporting sections (l1 + l2 = l); members −∂�/∂qj are potential forces—
magnetic forces in the PMBs; Pqj = −∂W /∂qj are electromagnetic reactions of the
AMB; Hq(t) are external periodic loads caused by the dynamic rotor imbalance; Qj

are other non-potential generalized forces; f′′qj(qi), f′′′qj(qi) are nonlinear members of
the equations of motion, caused by inertia forces and a potential field of the second
and third order; bx1,…,z3 are viscosity coefficients; rc1,…,N are active resistances in
winding circuits; uc1,…,N are control voltages supplied to the AMB windings, the
value of which is formed in accordance with the adopted control law; �ck are the
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fluxes of induction (flux linkage); W (�c1,…, �cN , x1, …, z3) is the magnetic field
energy of the AMB.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ml22 + J1)ẍ1
/

l2 + (ml1l2 − J1)ẍ2
/

l2 + ωJ3(ẏ1 − ẏ2)
/

l2
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/
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/
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/
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/

l2 − ωJ3(ẏ1 − ẏ2)
/
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+bx2 ẋ2 + f ′′
x2 + f ′′′

x2 = ∂ �
/
∂x2 − ∂W

/
∂x2 + Qx2 + Hx2(t);
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/
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/

l2 − ωJ3(ẋ1 − ẋ2)
/

l2

+by1 ẏ1 + f ′′
y1 + f ′′′

y1 = −∂ �
/
∂y1 − ∂W

/
∂y1 + Qy1 + Hy1(t);

(ml21 + J1)ÿ2
/

l2 + (ml1l2 − J1)ÿ1
/

l2 + ωJ3(ẋ1 − ẋ2)
/

l2

+by2 ẏ2 + f ′′
y2 + f ′′′

y2 = −∂ �
/
∂y2 − ∂W

/
∂y2 + Qy2 + Hy2(t);

mz̈3 + bz3 ż3 + f ′′
z3 + f ′′′

z3 = −∂ �
/
∂z3 − ∂W

/
∂z3 + Qz3 + Hz3(t);

∂�c 1
/
∂t + rc 1∂W

/
∂�c 1 = uc 1(x1, .., z3, ẋ1, .., ż3, i1, .., iN );

. . .

∂�c N
/
∂t + rc N ∂W

/
∂�c N = uc N (x1, .., z3, ẋ1, .., ż3, i1, .., iN ).

(3)

The expression of the magnetic energy of an AMB is recorded on the basis of the
analysis of magnetic circuits taking into account the magnetic resistances all sections
of magnetic cores (Martynenko 2020a, b). The nonlinear force characteristics of the
PMBs are included in the right-hand sides of the equations ofmotion,which represent
the first part of the DES. There are members depending on the flux linkages here too.
The second part of the system consists of the first-order differential equations for the
flux linkages. These equations correspond to the second Kirchhoff law for magnetic
circuits and are a representation of the total current law for each electrical circuit
of the system (each winding of the AMB). The right-hand side of these equations
contains terms that depend on the generalized coordinates. This is the AMB control
law (uc 1,…,N ), in which both generalized coordinates and generalized velocities can
be present.

19.3.2 Solving the Nonlinear Differential Equation System

The analytical solution of such a complex NDES (19.3) does not exist at the moment,
as well as a stability analysis based on analytical methods of the nonlinear vibrations
theory is impossible. Therefore, the following technique aims to evaluate the dynamic
behavior and stability of the rotor in the range from zero to the nominal rotation
speeds. The solution of the NDES for frequencies selected with a certain step in
a given frequency range is performed by the 7th order Runge–Kutta method with
checking the uniqueness of the solution (the ambiguity of the solution is determined
and excluded by multiple calculations at each frequency, performed under different
initial conditions).
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Fig. 19.4 The results of the linear rotor dynamics analysis: natural frequencies and forms of the
non-rotating rotor (a); Campbell diagram (b)

19.4 Numerical-Graphical Analysis of Rotor Motion
Stability in Magnetic Bearings

19.4.1 Estimation of the Parameters of the Linearized
Oscillatory System

The calculation of the parameters of rigid rotor natural vibrations was performed
using a linearized system of equations without taking into account damping. Natural
forms and frequencies are presented in Fig. 19.4a. Force characteristics of PMBs
are axisymmetric. However, the values of the first natural frequencies (NFs) p1x,
p1y and second ones p2x, p2y are different. This bifurcation of the resonance at the
fundamental frequency is observed due to the fact that the stiffness values in PMB1
and PMB2 in the x and y directions correspond to the static equilibrium position of
the rotor, taking into account the force of gravity. Figure 19.4a shows it by dashed
lines in absolute units. First (without nodes) and second (with one node) NFs in both
directions are identical and correspond to cylindrical and conical precessions. The
Campbell diagram (Fig. 19.4b) precises the critical speeds ω1x, ω1y and ω2x, ω2y

considering the gyroscopic moment. It is found that at ω1x < ω < ω1y and ω2x < ω

< ω2y, rotor unbalance causes the backward precession, and at the other values of
ω—the forward one.

19.4.2 Simulation of the Nonlinear Dynamics of a Rotor
in Magnetic Bearings

The results of computational studies of forced vibrations are solutions at stationary
sections for generalized coordinates x1, y1, x2, y2, z3 in the range of angular velocities
of 0–100π rad/s. These solutions were performed for a given number of frequency
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values within the range. Their number was selected based on the possible funda-
mental, sub- and super resonances, and the Campbell diagram allows predicting
their presence (Fig. 19.4b).

There are vibrograms of vertical and horizontal motion of centers of the rotor
supporting sections, their motion trajectory within the gaps of the radial PMB and
vibrograms of the axial motion of the center of the rotor supporting section in the
axial AMB formed and visualized for each frequency. For some of the frequencies,
they are shown in Figs. 19.5, 19.6 and 19.7. These are the four graphs in the top row.
The first graph shows the horizontal displacements of the centers of the radial bearing
sections of the rotor (O1 andO2, see Fig. 19.2) depending on time x1(t) and x2(t). The
time interval corresponds to the steady-state oscillatory process. The second graph
shows the dependence of the vertical displacements of the same points on time y1(t)
and y2(t). In both of these figures, horizontal straight lines indicate possible extreme
deviations, that is, air gaps in the PMBs. On the y-axis, the maximal displacements
are smaller due to the downwardly shifted static equilibrium position. This is due
to the action of gravity on the rotor. The third graph shows the motion orbits of the
points (O1 and O2, see Fig. 19.2) for the same time range. The fourth graph shows
dependencies of displacements of the center of the axial supporting rotor section
(O3, see Fig. 19.2) depending on time z3(t). These graphs, in contrast to the previous
ones, are not scaled by the value of the axial clearance due to the smallness of the
amplitudes of axial vibrations.

Values of dangerous resonant frequencies in Figs. 19.5, 19.6 and 19.7 are high-
lighted with a background color that matches the color of the dotted lines of the
corresponding mode in the Campbell diagram (Fig. 19.4). Figs. 19.5, 19.6 and 19.7
represent the results of calculations in three subranges of the considered range 0–50
× 2π rad/s (see Fig. 19.4a). The first subrange 9–12.5× 2π rad/s (Fig. 19.5) contains
the first fundamental bifurcated resonance. The second subrange 21–23.5× 2π rad/s
(Fig. 19.6) contains the first frequency of the second fundamental resonance. The
third subrange 23.5–34× 2π rad/s (Fig. 19.7) contains the subresonance with multi-
plicity ½ and the second frequency of the second bifurcated resonance. This is the
most dangerous frequency region in the studied range with the highest amplitudes.

The vibrograms and motion trajectories allowed to analyze the nature of motion
and amplitudes of oscillations in non-resonant modes for the rotor of the laboratory
rig. The magnitudes of the amplitudes, which are much smaller than the gaps during
the movement of cylindrical and conical precession types, testified to the stability of
the rotor motion for these modes. Identifying the stability of the rotor motion in the
entire range of study requires an in-depth analysis at resonant frequencies (critical
speeds), which contain sub- and superharmonic vibrations. To do this, it is proposed
to analyze the spectrograms of lateral vibrations, phase trajectories and Poincare
sections. There are four graphs for each frequency in Figs. 19.5, 19.6 and 19.7 in the
bottom row. The spectrograms shown in the first and second of these four graphs in
the amplitude-frequency coordinates Ax1(f ), Ax2(f ) i Ay1(f ), Ay2(f ) are the spectral
expansions of dependences x1(t), x2(t) and y1(t), y2(t), respectively. It is done using
Fast Fourier Transform. The constant component at zero frequency was excluded
from consideration. It corresponds to a shift in the position of static equilibrium. The
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Fig. 19.5 Results of the nonlinear rotor dynamics analysis in the frequency range in the first
fundamental bifurcated resonance region
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Fig. 19.6 Results of the rotor dynamics nonlinear analysis in the frequency range in the region of
the first frequency of the second fundamental resonance



19 Stability Analysis of Rotor Motion in Nonlinear Systems … 345

Fig. 19.7 Results of the nonlinear rotor dynamics analysis in the frequency range in the region of
subresonance with a factor of ½ and the second frequency of the second bifurcated resonance
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third graph is the phase plane onwhich the phase trajectories ẋ1(x1), ẋ2(x2), ẏ1(y1) and
ẏ2(y2) are depicted. The fourth graph is the Poincare sections (stroboscopic images
for the period of an external force).

19.4.3 Stability Rating of the Rotor Motion in MBs Using
Numerical and Graphical Data

For such an analysis, the proposed method suggests to generate and visualize signal
spectra, phase trajectories and Poincare sections at each of the problematic frequen-
cies. The latter were obtained on the basis of the stroboscopic examination method,
which is a special case of the Poincare point mappings method. An analysis of these
results allows to comprehensively evaluate the stability of a periodic polyharmonic
oscillatory process. An analysis of the radial vibrations (precession motion) of the
rotor of the laboratory rig in resonance modes made it possible to determine that the
rotor executes both harmonic vibrations with a fundamental frequency (with a rota-
tional speed) and sub- and superharmonic vibrations. The assessment was performed
on the basis of signal spectra, as well as phase trajectories and Poincare sections. It
testified to the stability of the rotor. Thus, singular points of the “center” type were
observed on the phase trajectories, and the Poincare sectionswere either stroboscopic
points for each of the radial generalized coordinates (there was a rational ratio of
the periods of vibrations and an impact—in this case they were simply equal), or the
form of the trajectories corresponded to stable resonant orbits.

19.4.4 Validation of the Proposed Approach to the Stability
Analysis

Validation of the proposed method was performed by comparing the calculated and
experimental data presented in the form of amplitude-frequency characteristics and
dependences of the amplitudes of sub- and superharmonics on the frequency of
excitation (rotation).

Figure 19.8 shows the calculated dependences of amplitudes of the funda-
mental (AFC) and multiple harmonics of lateral vibrations on excitation (rota-
tional) frequency. Subharmonics and superharmonics together with the fundamental
harmonics are presented in different pictures (a) and (b) in Fig. 19.3 for a better
perception. They are built on the basis of spectrograms by combining them along the
frequency axis. Figure 19.8 have the following notation: A(1)—amplitudes of the first
harmonics, A(1/n), A(n)—amplitudes of sub- and superharmonics, where the value in
parentheses is a multiplicity of harmonics frequency to the fundamental frequency
ω0, and the dashed lines show skeletal curves. Critical speeds of the rotating rotor
are designed by ω1x, ω1y, ω2x, ω2y (see Fig. 19.4b).
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Fig. 19.8 The calculated dependences of amplitudes of the fundamental and multiple harmonics
of lateral vibrations on excitation (rotational) frequency: a of the fundamental and subharmonics,
b of the fundamental and superharmoincs

Comparison of these dependencies with the same experimentally obtained results
gives a sufficient degree of coincidence both in terms of the qualitative reflection of
the phenomena and in terms of quantitative indicators (values of the fundamental and
multiple resonance frequencies, vibration amplitudes). This confirms the reliability
of the proposed approach. Some discrepancy between the oscillation amplitudes in
the shaded region in Fig. 19.3 is explained by the fact that additional damping was
introduced to avoid collisions during the passage of the second resonance in the
experiment.

19.5 Conclusions

The paper showed that the proposed approach to analytical modeling allows a correct
numerical study of the spatial nonlinear oscillation excitationmechanisms of rotating
rotors in magnetic bearings of different types to be performed. It enables clarification
of the conditions for the existence of various resonance modes inherent in such the
systems, as well as simulation of super-, subharmonic and combined oscillations.
Visualization of nonlinear processes and characteristics underlies the analysis of the
stability of the rotor motion in various modes.

Studies were performed for a real rotor system with passive and active magnetic
bearings and demonstrated the possibility of recognizing and evaluating various
nonlinear phenomena of rotor dynamics. Validation based on experimental data
confirmed the correctness of the simulation.

The proposed approach to assessing the stability of motion is applicable to other
rotary systems with periodic excitations, which contain elements with a complex
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form of the mathematical description of their dynamic behavior in terms of the
analytical analysis.
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Chapter 20
Computational–Experimental Evaluation
of Stiffness Response in Elastic Supports
of Rotor Systems

Mykola M. Tkachuk, Andriy Grabovskiy, Mykola A. Tkachuk,
and Olexandr Shut

Abstract The paper contains analysis of stiffness response in elastic supports found
in rotor systems such as superchargers of heavy-duty engines. A particular design of
flexible bushings in the form of a circular ring with grooves is considered. Several
computational models for the evaluation of their response are proposed. The numer-
ical results were obtained for various numbers of inner and outer flanges that serve
as contact points. The elastic bushing displays stiffer response for wider groove arcs
and larger number of flanges. It has been shown that the elastic response of the ring is
linear up to a certain displacement limit. Once the initial gap in the grooves is closed,
the bushing becomes essentially rigid. The obtained numerical results are compared
with the experimental data, which display good agreement. It can be concluded that
the force–displacement response is essentially nonlinear due to the contact. This
nonlinearity is expected to have profound effect on rotor dynamics.

Keywords Rotor system · Elastic bushing · Finite element analysis · Contact
interaction · Complementary energy principle

20.1 Introduction

Analysis and control of vibrational characteristics are crucial for the design of
machine components that have rotating parts (Rao 1996). The choice of elastic
supports has a great effect on the rotational dynamics (Kelson et al. 1982). The
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critical velocity strongly depends on the transverse stiffness of these supports more.
That is why adjustment of these parameters is the principal method of detuning rotor
systems away from resonance. Nevertheless, this solution is not universality effi-
cient. Often the moderation of vibrations in a broad spectrum of operational regimes
is not successful by standard methods. The real response of elastic supports to the
displacements of the shaft turns out to play nontrivial role. It may display significant
nonlinearity, which requires further analysis.

Unsolved problems of rotor dynamics can be found in heavy-duty engines that
have a supercharger with is a dual-drive design. This means that the torque coming
from the crankshaft of the engine and the exhaust turbine drives the compressor
simultaneously. This inevitably causes abrupt power ripple in the dynamic system.
In such circumstances, the properties of the rotor support system become even more
important than in the traditional cases.

20.2 Literature Overview

Numerous models of rotor systems (Rao 1996; Kelson et al. 1982; Martynenko
2016a, b; Neilson and Barr 1988) have been developed up to this point. The focus is
set on the critical rotational velocities and vibration damping. Coupled bending and
torsional vibrations of a rotor system with nonlinear friction are studied in Hua et al.
(2017, 2015), Shi et al. (2013). Parametrical instability of a flexible rotor system is
described in Mutra and Srinivas (2016), Han and Chu (2015), Avramov et al. (2015),
Matthew and Glavatskih (2015). Passive and active magnetic bearings are proposed
for amplitude moderation of turbochargers in resonance.

Despite the abundant research effort, the studies did not cover all actual problems.
In particular, this concerns turbocompressors of high-power engines with high-speed
rotations. The cantilever design of the impeller installation poses new challenges due
to the heavyweight of the disk and size limitations regarding the shaft length and
support distance.

This contribution addresses several important issues for the impeller design shown
in Fig. 20.1. A known method of vibration damping by means of elastic bushing is
analyzed for this rotary unit. The contact response of the flexible ring in bearing
supports was analyzed in lie with the approach proposed in Tkachuk et al. (2020,
2021). The ultimate effect of the stiffness on the dynamical characteristics of the
studied rotor system is further evaluated.
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Fig. 20.1 Cantilever installation of the impeller

20.3 The Design of the Flexible Ring with Intermeshed
Inner and Outer Flanges

The compressor may have unconventional configuration of supports. The considered
design includes an additional elastic bushing between the rolling bearings and the
rigid socket of the housing. Each of the elements of this structure has its elastic char-
acteristics. These characteristics can be determined either by numerical computations
or experimentally. However, at the design stage, it is important to have information
on the dependence of the force–displacement characteristics on the variable param-
eters. In particular, it concerns the elastic insert, as it is the element that allows one
to control the ultimate properties of the elastic support. This contribution elaborates
on computational and experimental evaluation of elastic response of this structural
element.

The elastic insert is a cylindrical thin ring with a set of grooves machined along
the inner and outer surfaces. The center of each grove on one side of the ring is placed
exactly between the centers of two other groves on the opposite side. The arch of the
groove is much larger than the width of each of the narrow flanges. This creates a
set of alternating contacts between the busing and the bearing on inner side and the
insert and the socket on the other side upon which the ring is rested. The section of
the ring between the edges of two adjacent flanges deforms elastically as a curved
beam, thus providing the flexibility of the entire structural element. As a result, the
slender elastic ring is far more compliant to radial displacements than the rest of the
structure, in particular the bearings themselves. The variable design parameters are
the width and thickness of the ring, number of grooves and their depth as well as the
amount of gap or pretension in the assembly. The computer geometrical model of a
ring with 10 grooves on each side is shown in Fig. 20.2.
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0,12

Fig. 20.2 CAD model of an elastic ring with 10 grooves (mm)

20.4 Computational Models for the Elastic Ring

Given the presence of contact interaction in the elastic support its response turns out
to be essentially nonlinear. Three types of models are developed for the analysis of
deformations.

The first model considers the elastic ring as a curved beam ring of variable thick-
ness. TheEuler–Bernoulli approximation is applied to describe the elastic response of
the beam. The radial displacements of this beam are constrained by contacts from the
both sides of the insert. The deformations occur in the form of transverse bending
and linear extension. A variational complementary energy principle is formulated
for this system. The optimality conditions provide a set of equations and inequal-
ities that determine the unknown internal stresses in the elastic ring as well as the
unknown contact reactions. The obtained solution is used to acquire the thought—for
force–displacement curve for the response of the elastic insert.

The other two types of models are created in commercial finite element modeling
software in 2D in plane stress formulation and in full 3D statement with various types
of contact in the analysis.

20.5 Numerical Evaluation of Elastic Supports Stiffness
and Critical Velocities

Two major factors are analyzed numerically in this study. Firstly, the stiffness of the
elastic response of the flexible ring in contact with the bearing and the rotor housing
is evaluated. The parametric study of number of grooves on the elastic ring with
respect to the resulting stiffness is performed. Secondly, the critical velocities of the
rotor for the obtained support stiffness values are assessed.
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20.5.1 Stiffness of Elastic Supports for Various Number
of Grooves on the Elastic Ring

The appropriate choice of geometrical parameters of the flexible ring is required in
order to get the exact stiffness in elastic supports. The number of grooves on each
side of the ring is considered in the range between 3 and 10 for the given width and
height of narrow flanges presented in Fig. 20.2. The model for the contact of this
flexible bushing with stator housing and the bearing is presented in Fig. 20.3. The
deformations in the journal and the rotor housing are disregarded, and thus, they are
defined as two rigid bodies. Correspondingly, they can be introduced in a simplified
form as two cylindrical rings. Two pairs of contacts are introduced on the inner and
outer sides of the ring. The finite element model of this system is shown in Fig. 20.4.
The loading is introduced kinematically as a rigid translation w of the bearing in the
range 0–0.15 mm.

The deformed shape and the stress distribution in the elastic ring for various
number of grooves are shown in Figs. 20.5, 20.6, 20.7, 20.8, 20.9, 20.10, 20.11 and
20.12. The corresponding reaction force P to radial displacement w diagrams are
shown for small and large numbers of grooves in Fig. 20.13.

The results obtained simultaneously by the three models display excellent consis-
tence. In particular, it is established that the curve “force P—radial displacement w”
has two characteristic sections. The first corresponds to the elastic bending of thin
parts of the elastic insert while being only partially supported by contacts outside of
the cutout grooves. The plot clearly demonstrates the linear nature of the response in

elastic bushing

rigid internal ring

rigid external ring

Fig. 20.3 Contact of the elastic bushing with the stator housing and the bearing

Fig. 20.4 Finite element model of the elastic ring in contact with two rigid cylindrical bodies
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Fig. 20.5 Von Mises stress (MPa) distribution in the deformed configuration of the elastic ring
with 3 grooves at radial displacement w = 0.15 mm

Fig. 20.6 Von Mises stress (MPa) distribution in the deformed configuration of the elastic ring
with 4 grooves at radial displacement w = 0.15 mm

Fig. 20.7 Von Mises stress (MPa) distribution in the deformed configuration of the elastic ring
with 5 grooves at radial displacement w = 0.15 mm

this regime determined by relation dP = c1dw, where the stiffness c1 is determined
by the bending stiffness of the segments of the ring. The other type of response
is observed when the gap in the groves is closed. When this happens, the system
gets abruptly much stiffer transferring to the other elastic regime with dP = c2dw,
where the much greater stiffness c2 � c1 is defined by the compression of the
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Fig. 20.8 Von Mises stress (MPa) distribution in the deformed configuration of the elastic ring
with 6 grooves at radial displacement w = 0.15 mm

Fig. 20.9 Von Mises stress (MPa) distribution in the deformed configuration of the elastic ring
with 7 grooves at radial displacement w = 0.15 mm

Fig. 20.10 Von Mises stress (MPa) distribution in the deformed configuration of the elastic ring
with 8 grooves at radial displacement w = 0.15 mm

insert between the bearing and the housing. The transition occurs at a very small
displacement increment interval.

Besides, there might be a portion with zero response P ≡ 0 on the force–displace-
ment curve in case there is an initial gap between the elastic bushing and either the
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Fig. 20.11 Von Mises stress (MPa) distribution in the deformed configuration of the elastic ring
with 9 grooves at radial displacement w = 0.15 mm

Fig. 20.12 Von Mises stress (MPa) distribution in the deformed configuration of the elastic ring
with 10 grooves at radial displacement w = 0.15 mm
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Fig. 20.13 Reaction force P to radial displacement w diagrams are shown for small (left) and large
(right) numbers of grooves

bearing or the housing or both. It continues until this gap is not closed by the displace-
ment w ≤ δ. To the contrary, if there is a pretension �, the ring is permanently in
contact with other parts in the assembly. Furthermore, its response becomes stiffer
with a shorter first section on the force–displacement curve.
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Fig. 20.14 Stiffness c1 of
the elastic ring depending on
the number of grooves
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The stiffness of the elastic ring for small oscillations depends on the number of
grooves and flanges as can be seen in Fig. 20.14. The variation of this parameter that is
essential for rotor dynamics spans over three orders of magnitude. Hence, it provides
broad control over the desired characteristics of the rotor system. In particular, critical
velocities of the cantilever impeller can be detuned from operational range of the
supercharger by the appropriate choice of the ring geometry as illustrated next.

20.5.2 Critical Rotation Velocities of the Cantilever Rotor
Depending on the Stiffness of the Elastic Supports

The rotor shown in Fig. 20.1 weighs 2.58 kg, largely due to amassive rotor. Although
it is made of aluminum, it is much heavier that the steel shaft not to mention its
moment of inertia. The finite element model of the assembly with approximately
140 thousand nodes is shown in Fig. 20.15.

Fig. 20.15 Finite element model of the cantilever impeller
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Fig. 20.16 First eigenform of the rotor for the nominal stiffness of bearings c01 = 6.36 × 106 N/m

Fig. 20.17 Second eigenform of the rotor for the nominal stiffness of bearings c01 = 6.36 × 106

N/m

The first and the second eigenforms of the rotor for the nominal stiffness of
bearings c01 = 6.36 × 106 N/m are shown in Figs. 20.16 and 20.17. The compliance
of the bearings even without the additional damping of the flexible bushing has
the decisive effect on the first two oscillation modes. As can be noted that they
are essentially translational. The disk and the shaft perform rigid body motion with
negligible deformations.

The introduction of the flexible bushing decreases dramatically the stiffness of
the elastic supports. According to the analysis of the compliance of the ring insert
the resulting stiffness values below the nominal value c1 < c01 = 6.36× 106 N/m are
considered. The dependence of eigenfrequencies on this variable parameter is given
in Figs. 20.18 and 20.19. It can be seen that the eigenfrequencies and accordingly
the critical rotational velocities vary significantly for the support stiffness values in
the range 102–106 N/m and level out at the support response approaching the rigid
limit.
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Fig. 20.18 First
eigenfrequency and critical
rotational velocities
(backward and forward
whirl), Hz as function of
support stiffness, N/m
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Fig. 20.19 Second
eigenfrequency and critical
rotational velocities
(backward and forward
whirl), Hz as function of
support stiffness, N/m
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20.6 Experimental Measurement of Elastic Support
Stiffness

The stiffness of the elastic support with a flexible ring bushing for an actual
design of the supercharged engine was measured experimentally in addition to the
performed numerical analysis. The experimental installation is shown in Fig. 20.20.

Fig. 20.20 Experimental installation for measurement of elastic support stiffness
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Fig. 20.21 Experimentally
measured
force–displacement curve for
the elastic support with a
flexible bushing with 10
grooves
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The obtained relation between the radial force P and the displacement w for the flex-
ible ringwith 10 grooves is shown in Fig. 20.21. Themeasured elastic response agrees
well with the computational model. The loading curve contains the initial section
with low stiffness succeeded by a transition to significantly stiffer response.

The test run of the rotorwith the control of disk tip displacementswas performed as
well. The excessive amplitudes of lateral oscillations have been detected on certain
rotational velocities. This confirms the existence of critical regimes in the system
that correlates with the estimates of eigenfrequencies obtained from the numerical
analysis.

20.7 Results Analysis

Comparison between the numerical and computational results displays good agree-
ment. The response of the flexible bushing is essentially nonlinear when lateral
displacements exceed the initial gap in the grooves of the ring. The stiffness of the
elastic ring depends besides its thickness on the number of groves aswell as the height
and the width of the flanges. The compliance of the flexible ring exceeds significantly
the deformations of the other parts of the supports. The resulting stiffness in turn has
effect on the critical rotational velocities of the cantilever impeller.

20.8 Conclusions

1. The experimental and computational studies have established the essentially
nonlinear response of the elastic supports of a rotor with a bushing in the form
of a flexible ring with intermeshed grooves on opposite sides. This nonlinearity
needs to be accounted for in the rotor dynamics model.
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2. The compliance of the flexible ring is typically higher than the compliance of
the journal bearings. Thus, the former mainly determines the ultimate stiffness
of the elastic supports.

3. The stiffness of the elastic ring depends strongly on the number of grooves and
flanges. The larger is the stiffer which is the response of the ring in contact with
the stator housing and the bearing.

4. Critical velocities depend greatly on the stiffness of the elastic supports. Control-
ling this crucial parameter through rational choice of elastic ring geometry is an
effective way to influence the dynamics of the studied cantilever rotor setup. In
particular, it can be detuned from resonance by separating the operational range
of rotational velocities from the first two critical velocities.

The obtained functional and parametric dependence enters the equations of
dynamics of the studied rotor system. As noticed, this nonlinear response in supports
can be approximated by a piece-wise linear. Accordingly, after analyzing the solu-
tions of differential equations, the influence of the varying parameters on the vibra-
tions is determined. In particular, it is possible to determine the amplitudes of steady-
state oscillations of the rotor system and the subharmonic modes. It also enables
qualitative and quantitative analysis of the behavior of the nonlinear studied rotor
system. Phase portraits, Poincaré maps and repetition rates are used for this purpose.
The latter enables to evaluate more accurately the multiplicity of the subharmonic
mode, especially for the case of numerical integration of the differential equations
of motion of the rotary system under study.
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Chapter 21
A Brief Analysis of Artificial Satellites
Solar Panels Deployment Considering
a Nonlinear Dynamic Model

Rafael Avanço, Raibel Arias, José Manoel Balthazar, Ângelo Marcelo Tusset,
Maurício Aparecido Ribeiro, Frederic Conrad Janzen,
and Átila Madureira Bueno

Abstract The present analysis is focused on the nonlinear dynamics of a solar panel
opening during the trajectory of a satellite around the Earth, analyzing the dynamics
between energy sources and structural response that must not be ignored in real
engineering problems. The governing equations were obtained with the Lagrangian
function and the results were found using the Runge–Kutta method for integration.
These results were found using two differentmodels. One of them considers the panel
directly connected to a DC motor and the other considers a torsion spring connected
to the motor shaft and the solar panel. As a result, we obtained the time series of the
mathematical model proposed.
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21.1 Introduction

The study of non-ideal vibrations, that is, when the source of energy is influenced
by the response of the system, has been considered a major challenge in theoretical
and practical engineering research (Balthazar et al. 2003). This phenomenon was
called limited power supply in Kononenko (1969), when the source of energy was
affected by the system vibrated, so-called non-ideal. When the energy source is not
affected by the vibratory system, the case is considered ideal energy source (IS) and
it is called non-ideal energy source (RNIS) or limited power supply when the energy
source is affected by the system. The relevance of non-ideal effects in the mechanical
systems was studied in Krasnopolskaya and Shvets (1990) and Krasnopolskaya and
Shvets (1992), when a numerical analysis of a pendulum vibrated by a DC motor
was performed. These results demonstrated the change from regular motion of the
pendulum to the chaotic motion due to this interaction between the pendulum and
the motor. A pendulum horizontally excited by limited power supply was studied
in Avanço et al. (2018). It was considered a case of limited power supply, on the
one hand by the characteristics of a particular energy source, and on the other hand,
limited by the dependence of the motion of the vibrated system on the motion of
the energy source. The results of pendulum motion cover chaotic motion, regular
rotation and oscillation with quasiperiodic motions.

The connection in non-ideal systems is expressed by a system of differential equa-
tions of motion of the mechanical system and the electro-mechanical equations of
the energy source. For non-ideal dynamical systems, someone must add an equation
that describes how the energy source supplies the energy to the mechanical system.
In order to review different theories on this subject, see Balthazar et al. (2003),
Balthazar et al. (2018) and Cveticanin et al. (2018).

It is also known that Solar Panels are used in space applications and they are impor-
tant in structures like satellites. Space solar power satellite (SSPS) is a tremendous
energy system that collects and converts solar power to electric power in space, and
then transmits the electric power to earth wirelessly. Design for any satellite includes
its electrical power needs and the system to supply them. However, its dynamics and
control of the position is a challenging work, because the flexibility leads the system
to vibrate in larger amplitudes (Cveticanin et al. 2018; Omidi and Mahmoodi 2015).

In this book chapter, two simplified models of a solar panel are analyzed, one of
them directly connected to a DC motor and the other considering a torsion spring
linked to the axis of the motor and the solar panel. It is announced that a preliminary
discussionof this notewas reported inFenili (2000) andPorro et al. (2004). Therefore,
we will extend these preliminary results.

This chapter was organized as follows. In Sect. 21.2 we present the non-ideal
model for the dynamics in the opening of the simplified solar panel and the ideal
model for the dynamics of the simplified model of solar panel. In Sect. 21.3, we will
show the numerical results from the non-ideal and ideal model of the solar panel.
In Sect. 21.4 we present the concluding remarks and future works. So, finally we
present some acknowledgments and list the main bibliographic references used.
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21.2 The Non-ideal and Ideal Model for the Simplified
Solar Panel

Figure 21.1a illustrates the adapted model used here and in Fig. 21.1b we show the
reference systems and variables considered in this problem. In the considered non-
ideal model there is a torsion spring connected between the DC motor and the solar
panel. The deflection of this spring is given by the difference of angle θ2 and θm ,
where θm is the angle of the motor and θ2 is angle of the panel with the satellite. The
satellite describes a circular orbit and therefore the potential gravitational energy is
not considered. The motion occurs in circular plane where is contained the center of
mass of the Earth. The spin of the satellite is neglected in the calculus.

21.2.1 The Non-ideal (RNIS) and Ideal (IS) Model
for the Dynamics in the Opening of the Simplified
Solar Panel

The Lagrangian function is written taking the kinetic energy of the main mass of
satellite and the kinetic energy of translation and rotation for the solar panel. The
term m1 represents the mass of the main body of the satellite, I2 the moment of
inertia of the solar panel and m2 the mass of the solar panel. The kinetic energy
of the satellite is given by B1 and the kinetic energy of the solar panel is B2, these
energies are present in Eqs. (21.1) and (21.2):

B1 = 1

2
m1

(
ẋ1

2 + ẏ1
2
)

(21.1)

Fig. 21.1 Adapted from Porro et al. (2004). a Satellite with its parts, b Angles and position of the
satellite-related with Earth center
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B2 = 1

2
m2

(
ẋ2

2 + ẏ2
2
) + 1

2
I2θ̇2

2
(21.2)

The moment of inertia of solar panel I2 referenced by its center is determined
according to its length l:

I2 = 1

12
m2l

2 (21.3)

The position of satellite is given by coordinates x1 and y1 depending on the angle
θ1, that is the angular position of the satellite around the Earth.

x1 = r · cos θ1

y1 = r · sin θ1
(21.4)

In Eq. (21.5) the coordinates x2 and y2 give the position of the center of the solar
panel. The symbol w represents the width and h is the height of the satellite. The
angle θ2 was previously mentioned in Fig. 21.1.

x2 = x1 + w
2 + l

2 sin θ2

y2 = y1 + h
2 − l

2 cos θ2
(21.5)

The potential energy U in Eq. (21.6) is determined by the deflection in torsion
spring with elastic constant k.

U = 1

2
k(θ2 − θm)2 (21.6)

The Lagrangian function in Eqs. (21.7) and (21.8) considers the translation of the
satellite around the Earth. The gravitational potential energy is not taken into account
because the orbit is circular and therefore it is not affected.

L = B1 + B2 −U (21.7)

The Lagrangian equation may be written in the form presented in Eq. (21.8) after
the derivation was applied in Eqs. (21.4) and (21.5).

L = 1

2
m1r

2θ̇1
2 + 1

2
m2r

2θ̇1
2 + 1

8
m2l

2θ̇2
2 + 1

2
m2rl θ̇1θ̇2sin(θ2 − θ1)

+ 1

2
I2θ̇2

2 − 1

2
k(θ2 − θm)2 (21.8)

The Lagrangian equations are derived from the Lagrangian function related to the
coordinates θ1 and θ2:
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d

dt

∂L

∂θ̇1
− ∂L

∂θ1
= Qθ1

d

dt

∂L

∂θ̇2
− ∂L

∂θ2
= Qθ2 (21.9)

In Eq. (21.10) the differential equations of motion are found without non-
conservative generalized forces in the right-hand side of equation. In the present
analysis, the generalized coordinates are the angles θ1 and θ2. When the general-
ized coordinates are angles, the generalized forces are given by torques acting in
these angles. In the non-ideal model (RNIS) the generalized forces Qθ1 and Qθ2 are
equal to zero, because the force of the spring is included in the potential energy in
the Lagrangian system. The DC motor is externally acting over the angle θm and the
force from the spring comes according to the potential energy in the spring deflection
given by the difference in the angles θ2 and θm . If the torsion spring is not considered
in the Lagrangian system and treated as an external force, the same final equation
would be found. The differential equation for the angle θm is described by Eq. (21.14)
determined through torque balance.

m1r
2θ̈1 + m2r

2θ̈1 + 1

2
m2rl θ̈2 sin(θ2 − θ1) + 1

2
m2rl θ̇

2
2 cos(θ2 − θ1) = 0

1

4
m2l

2θ̈2 + 1

2
m2rl θ̈1 sin(θ2 − θ1) − 1

2
m2rl θ̈

2
1 cos(θ2 − θ1) + I2θ̈2

+ k(θ2 − θm) = 0 (21.10)

The electric equation of the motor in Eq. (21.11) shows the voltage set given by
the symbol V. The armature inductance is the term L, and the resistance is given by
Ra . The electric current is the ia , KE is the electric constant of the motor and θ̇m is the
angular speed of the motor. The derivative of the current is isolated in the left-hand
side of the Eq. (21.12).

V = L
dia
dt

+ Raia + KE · θ̇m (21.11)

dia
dt

= V

L
− Raia

L
− KE θ̇m

L
(21.12)

Themechanical equation of theDCmotor is determined by the torques acting over
the rotor. The constant of torque is symbolized by the term KT , the moment of inertia
of the rotor by the term Im , the angular acceleration with the term θ̈m and the term
cm is the viscous friction neglected in the present analysis. The reason for ignoring
the viscous friction is the absence of gravitational field. According to Budynas and
Nisbett (2014), the Petroff equation determines the viscous friction based on same
parameters, including the shaft radial load that in the present problem is equal to
zero.
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Im θ̈m = −k · (θm − θ2) + KT ia − cm θ̇m (21.13)

θ̈m = −k(θm − θ2)

Im
+ KT ia

Im
− cm θ̇m

Im
(21.14)

21.2.2 Ideal (IS) Model for the Dynamics of the Simplified
Model of the Solar Panel

The results from the ideal case (IS) consider the motor directly connected to the joint
where the panel is opened. The Lagrangian equations do not consider the spring as
used in the non-ideal model. Then, in Eq. (21.15), the Lagrangian function does not
contain the potential energy of the spring.

L = 1

2
m1r

2θ̇2
1 + 1

2
I1α̇

2
1 +

1

2
m2r

2θ̇2
1 + 1

8
m2l

2θ̇2
1 + 1

2
m2rl θ̇

2
1 θ̇

2
2 sin(θ2 − θ1)

+ 1

2
I2θ̇

2
2 (21.15)

Applying again the derivatives for the coordinates θ1 and θ2 we may obtain the set
of differential equations where Qθ1 equals zero and Qθ2 is equal to TG . This term TG
is the torque of coupling between the motor and axis of the solar panel. The torque
present is the same because it is not considered a gear ratio. Specifically, in the case,
it was considered the same size for gear and pinion. Hence, the same torque and
speed for both axes.

The first Lagrangian equation related to the coordinate θ1 leads to the following
differential equation:

m1r
2θ̈1 + m2r

2θ̈1 + 1

2
m2rl θ̈2 sin(θ2 − θ1) + 1

2
m2rl θ̇

2
2 cos(θ2 − θ1) = 0. (21.16)

The second Lagrangian equation leads to Eq. (21.17) where the right-hand side
stands for the external nonconservative force. The DC motor is not included in the
Lagrangian system, so there is an external force represented by TG, the torque of the
gearing.

1

4
m2l

2θ̈2 + 1

2
m2rl θ̈1 sin(θ2 − θ1) − 1

2
m2rl θ̇

2
1 cos(θ2 − θ1) + I2θ̈2 = TG . (21.17)

The torque generated by the DCmotor is represented by TM and it is proportional
to the current in the motor armature.

TM = KT · ia (21.18)
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The voltage determines the power provided to the system according to the electric
equation of the DC motor. The rotor speedy θ̇m is equal to the angular speedy θ̇2 of
the opening in the solar panel in the model of ideal energy source (IS). Therefore,
the symbol θ̇m is not present in Eqs. (21.15)–(21.21). For this reason, the term θm is
replaced by θ2 in the modeling of the ideal case.

V = L
dia
dt

+ Raia + KE · θ̇2 (21.19)

The derivative of the current is given by Eq. (21.20) and may be used in the
differential equations.

dia
dt

= V

L
− Raia

L
− KE θ̇2

L
(21.20)

Through the equilibrium of the torque over the rotor in the DCmotor, the equation
of the angular acceleration is written:

Im θ̈2 = −TG + Tm − cm θ̇2 (21.21)

21.3 Numerical Results from the Non-ideal (RNIS)
and Ideal (IS) of the Simplified Model of the Solar
Panel

The results found are time series obtained through the Runge–Kutta method of inte-
gration with 4th and 5th order published in Dormand and Prince (1980) and imple-
mented in MatLab with the internal function ode45. The process does not demand a
step size to be set. The user must choose the relative and absolute tolerances. In this
analysis the relative tolerance set was 10−2 and the absolute tolerance 10−4.

21.3.1 Results from the Non-ideal Model (RNIS)
of the Simplified Model of the Solar Panel

The numerical simulations were performed with the following conditions. The mass
m1 and m2 equal to 1 kg, r is the distance to the center of the Earth to the satellite
equal to 42,000 km (Soler and Eisemann 1994), length of the solar panel l is equal
to 0.5 m. The constant of torque KT is 250 × 10−3 Nm/A. The electric constant
KE is equal to KT . The inductance L used was 0.6× 10−3 Henry and the armature
resistance is 1.4 �, the moment of inertia of the solar panel I2 is 10 kgm2. The
moment of inertia Im of the rotor present in the DC motor is equal to 0.13 kg m2.
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The elastic constant k of this torsion spring is 300 N/rad. These parameters for DC
motors are coherent with the range of values in the catalog of Maxongroup (2020),
where the motor used is a 600 W.

The initial condition for θ̇1 is 7.2×10−5 rad/s, which stands for the angular speed
of the satellite around the Earth. Considering the satellite is geostationary, its speed
follows the rotation speed of the Earth. The other initial conditions for θ1 , θ2 and θ̇2
are equal to zero.

A sinusoidal signal was applied using the DC motor. The voltage pulse is half
a period of a wave. The pulse in Fig. 21.2 is an input signal for the voltage in the
DC motor. The period chosen was based on the natural frequency of the parameters
present in the equation. The natural frequency ω0 is approached to the formula in
Eq. (21.22):

ω0 =
√

k

I2 + 1
4m2l2

(21.22)

In Fig. 21.3 it is plotted the angular speedy of the solar panel versus the time in
seconds. The symbol ω2 is the same as θ̇2, which means an angular speedy with unit
equal to rad/s. The angle of the solar panel along time is represented in Fig. 21.4. This
figure demonstrates a continuous increase even after the pulse. The angle is likely
to reach a maximum due to the energy dissipated by resistance of the armature.
Figure 21.5 demonstrates the electric current ia in Amperes versus the time t in
seconds. As the pulse of voltage in Fig. 21.2, it is possible to observe a similar
pulse for the current in Fig. 21.5. The angle θm in Fig. 21.6 and the angular speed
ωm in Fig. 21.7 demonstrate the vibration in the motor coherent with the vibration
in the solar panel. It is possible to observe some oscillation of ω2 in Fig. 21.3 but
maintaining a positive speed. The vibrations in Fig. 21.7 alternates positive and

Fig. 21.2 Voltage pulse
from de DC motor. V (Volts)
versus t(s)
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Fig. 21.3 Angular speedy
ω2 versus time t(s)

Fig. 21.4 Angle θ2 versus
time t(s)

Fig. 21.5 The response in
electric current in the
armature ia (A) versus time
t(s)
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Fig. 21.6 Angle θm of the
rotor of the DC motor versus
time t(s)

Fig. 21.7 Angular speedy
ωm of the rotor of the DC
motor

negative velocities for the DC motor. This behavior may be justified since the rotor
in the motor has a much smaller moment of inertia when compared with the solar
panel.

21.3.2 Results from the Ideal (IS) Model of the Simplified
Solar Panel

The same input was set for the voltage using the ideal model (IS). The ideal model,
as previously mentioned, consists of the motor spinning at the same velocity as the
solar panel, due to the fact they are directed linked. Therefore, there are no more the
graphics for the motor. The results of the kinematics of the motor are the same of
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the solar panel. The input signal of voltage was the same that in Fig. 21.2 and the
current i A was graphically identical to that in Fig. 21.5.

A pulse in the speed is present in Fig. 21.8, where is possible to see an oscillation
with a negative zone for the angular speed caused by the inductance opposing to
the rise on the electric current. In Fig. 21.9, the angle increases and diminishes
immediately, but the angular position goes on increasing after the pulse because of
the inertia maintaining the velocity. Continue oscillations in Figs. 21.8 and 21.9 are
present after the pulse because of the armature inductance.

Fig. 21.8 Angular speed of
the solar panel ω2 versus
time t(s)

Fig. 21.9 Angle of the solar
panel θ2 versus time t(s)
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Fig. 21.10 Voltage versus
time t(s)

21.3.3 Non-ideal (RNIS) with Constant Sinusoidal Voltage
from the Motor

A non-ideal interaction (RNIS) physically like case treated in Sect. 3.1 is analyzed
again but now with a sinusoidal input for the voltage set. The model and the initial
conditions are the same used in Sect. 3.1. The unique difference is the voltage ampli-
tude used equal to 0.23 V, which is represented in Fig. 21.10. The frequency of
the tension applied is 8 times greater than the natural frequency ω0 in Eq. (21.22).
Figure 21.11 shows the increase of the angle θ2 with the characteristic of beats in
waves. Beats are caused by interference of waves. They are characterized by an
envelope of the maxima and minima of a wave whose frequency is half the differ-
ence between the frequencies of the two original waves (Crawford Jr. 1968). Using

Fig. 21.11 Angle θ2 of the
solar panel versus time t(s)
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trigonometry, it is possible to write in Eq. (21.23) the result of sum of two waves
with the same amplitude and different frequencies f1 and f2. The frequency of the
envelope is equal to ( f1 − f2)/2 and the wave inside the envelope has the frequency
( f1 + f2)/2.

cos(2π f1t) + cos(2π f2t) = 2 cos

(
2π

f1 + f2
2

t

)
· cos

(
2π

f1 − f2
2

t

)
. (21.23)

These beats are also observed in Fig. 21.12 where is plotted the angular speed ω2.
In Fig. 21.13 the angle θm clearly demonstrates its beats as much as in Fig. 21.14
with the angular speed ωm .

Fig. 21.12 Angular speed
ω2 versus time t(s)

Fig. 21.13 Angular position
of the rotor of the DC motor
θm versus t(s)
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Fig. 21.14 Angular speed
ωm of the DC motor versus
time t(s)

21.4 Conclusions

The present analysis was focused on the dynamics of the deployment of a solar
panel during the trajectory of a satellite around the Earth, analyzing the dynamics
between energy sources and structural response. Differences between both (IS) and
(RNIS) were observed. In the Sect. 3.1, the (RNIS) case demonstrated a sequence of
oscillations in the motor and solar panel linked by a spring. These oscillations were
damped because of the internal resistance of the DC motor. In the Sect. 3.2, the ideal
model (IS) showed results where the kinematics of the engine is the same as that of
the solar panel, as shown in the graphs of the results for the IS case in Figs. 21.8 and
21.9. The angular position of motor and solar panel continues to move even after the
electric pulse has ceased. In the Sect. 3.3, the (RNIS) case with sinusoidal voltage
gives rise to beats in oscillations, like those we find when overlapping waves with
near frequencies. There is an envelope of waves in Fig. 21.11 with an increase in
the angle θ2. The angular speed ω2 in Fig. 21.12 also presents these characteristics
with envelope. In Figs. 21.13 and 21.14 the angle θm and speed ωm have a high
similarity with ω2 in Fig. 21.12, indicating the same frequencies with differences in
amplitudes. For future works, it is suggested to consider a flexible panel and analyze
its deformation. Furthermore, it would be interesting to insert some dampers and
springs in the coupling of the solar panel and the DC motor.
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Chapter 22
The Optimal in Terms of Fuel
Consumption Approach to Reorientation
of a Spacecraft Based on the Nonlinear
Boundary Value Problem Solution

Valerii B. Uspenskyi, Natalia V. Shyriaieva, and Mariia V. Nekrasova

Abstract In this paper, there has been considered the nonlinear boundary problem
connected with the reorientation of a rigid body along the trajectory of inertial rota-
tion. The problem solution is offered to search in the form of decomposition in
the power series. In this case to determine the problem solution, there was devel-
oped a special circulation procedure of the series and was investigated the condi-
tions of convergence. As a result, the obtained solution can be used to calculate
the initial conditions of the inertial maneuver in the onboard control system of the
spacecraft. Thus, the predicted control approach would minimize fuel costs for the
implementation of angular maneuvers.

Keywords Attitude control system (ACS) · Satellite · Boundary problem ·
Reorientation accuracy · Series inversion

22.1 Introduction

Nowadays, the most of the modern spacecrafts (SC) are characterized by a long-life
span. This quality is ensured by the increased service life of all spacecraft systems.
The one of the most important SC systems is the attitude control system (ACS).
Despite the undoubted successes of the practical astronautics, there is still paid a
considerable attention to improving the efficiency of the ACS functioning. Currently,
there can be distinguished the following areas of increasing the ACS efficiency (He
et al. 2020):

V. B. Uspenskyi (B) · N. V. Shyriaieva · M. V. Nekrasova
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv 61002, Ukraine
e-mail: uspensky61@gmail.com

N. V. Shyriaieva
e-mail: natalia.shyriaieva@gmail.com

M. V. Nekrasova
e-mail: masha12dec@gmail.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
H. Altenbach et al. (eds.), Nonlinear Mechanics of Complex Structures, Advanced
Structured Materials 157, https://doi.org/10.1007/978-3-030-75890-5_22

385

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75890-5_22&domain=pdf
mailto:uspensky61@gmail.com
mailto:natalia.shyriaieva@gmail.com
mailto:masha12dec@gmail.com
https://doi.org/10.1007/978-3-030-75890-5_22


386 V. B. Uspenskyi et al.

• hardware improvement of the ACS, in particular, increasing the accuracy of
information sensors and actuators;

• improvement of the ACS methodical and software support regarding the determi-
nation of the attitude from the measurements of the angular velocity sensors and
control.

The second case has been characterized by the development of the new ways
of responding effectively to the determination and control of the attitude and the
implementation of these ways in the software and mathematical support of the ACS.
This paper focuses on the development of the one of these methods. There were
described the classical structure of the ACS, as well as problems and the modern
level of solving various tasks of the SC control (Bong 2016).

The typical composition of the onboard attitude control system forms a closed
loop along with information links in it (Fig. 22.1). The figure schematically shows a
spacecraft, on a board of which the next blocks are located:

• the unit of gyroscopic angular velocity sensors that measure the vector of the
absolute angular velocity of the spacecraft rotation ω in projections onto the axes
connected with the spacecraft. The measurement vector ω̂ includes the true value
of the absolute angular velocity of the spacecraft rotation ω, but also contains
sensor errors and a noise;

The unit of 
on-board 
actuators

The unit of 
on-board 
angular 
velocity 
sensors

The algorithm for 
calculating 

control 
commands

The algorithm 
for calculating 
the spacecraft 

attitude

On-board computer

Fig. 22.1 Composition of the onboard attitude control system and information links in it
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• the onboard computer in conjunction with other programs, implements the algo-
rithm for calculating the vector of spacecraft attitude parameters g based upon
measurements ω̂ and the algorithm for calculating control commands U , taking
into account the current values of the actual angular velocity and attitude;

• the unit of actuators includes reaction jets, reaction wheels and control moment
gyros. In the paper, there is assumed that the unit consists of low-thrust gas-jet
engines, that are switched on or off by a command U . The jet engines create a
control torque M that affects the spacecraft structure and has nonzero projections
onto the three axes connected with the spacecraft. The actual angular velocity of
the spacecraft rotation ω changes under the influence of the latter.

Generally, the main purpose of the ACS is to maintain the given attitude of the
spacecraft in space and to implement the reorientation of it at significant angles for
the given time. At the present time, the listed problems are being solved on the basis
of different theories. In particular:

• in order to solve the problem of bringing the SC into the given angular position
and hold it in this position for an indefinitely long time, there have been proposed
the various control laws based on the stability theory (MacKunis et al. 2016), the
analytical design of the optimal controller (Gadelha de Souza and De Souza Alain
2014), as well as on artificial intelligence technologies where the systems based
on fuzzy logic (Glumov et al. 2004; Salah and Bayoumi Gamal 2015; Kosari et al.
2017), and neural networks (Leeghim et al. 2009; Montenegro and Lenin 2011;
MacKunis et al. 2016).

• in order to solve the problems of the SC reorientation to the significant angles
in the finite (given or not given) time with an arbitrarily finite angular velocity,
there has been used the concept of inverse dynamic problems (Uspenskiy 2006;
Boyarko et al. 2011) and the methods of optimal control theory (Levskii 2016,
2020; Park 2018).

In terms of the achieved quality indicators, the algorithms based on the optimal
solution of the reorientation problem are the most effective. Some of them are as
follows:

• the algorithms optimally based on the criterion of the reorientation maneuver
duration (Boyarko et al. 2011; Phogat et al. 2017; Levskii 2020);

• the algorithms optimally based on the quadratic criterion of energy consumption
for the power supply of reaction wheels and control moment gyros (Zhang et al.
2011);

• the algorithms optimally based on the terms of fuel consumption or the criteria
close to it (Levskii 2019).

Apparently, that the ability of the SC to perform its functions depends on the
performance of the ACS. Hence, it follows that saving resources (fuel, working
body) is the most important task in designing the SC control system.

The well-known solutions to the problem of the SC optimal reorientation
according to the minimum fuel consumption and near-term criteria are related to
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the particular cases of the SC symmetry (Levskii 2019) or particular reorientation
conditions. As opposed to such solutions, there has been considered the problem
of optimal reorientation for the SC with arbitrary moments of inertia and without
restrictions on the angles.

It is obvious that if the planned duration of the maneuver is sufficiently long, the
optimal strategy for the fuel consumption optimization will turn the SC by inertia.
Therefore, the SC is accelerated to the certain angular velocity and the rotation
by inertia is performed. After turning to the specified angle, the spacecraft brakes
to zero velocity. Under these conditions, in order to implement this strategy, it is
necessary to determine the required initial angular velocity for the planned section
of inertial rotation with the aim of its further implementation using the ACS. The
main requirement for the velocity is to provide the given spacecraft reorientation
in space for the given time by inertial rotation. Mathematically, this is a two-point
boundary value problem.

Taking into account the insignificance of dynamic influences from the external
environment and low-thrust engines, the design of the spacecraft is taken as an
absolutely rigid body. In this case, the solution of the indicated boundary value
problem is trivial only in special cases: for a spherically symmetric rigid bodyor under
strictly defined boundary conditions. For the real spacecraft, the general case of mass
distribution is distinctive. Under these conditions, the solution of the boundary value
problem presents a problem that is associated with the significant nonlinearity of
differential equations and the need to obtain a high-precision solution. The expected
solution of the mentioned problem in the form of formula expressions can be used in
the future in the algorithm for calculating control commands in the onboard computer
of the spacecraft and provide the formation of commands to turn on or off low-thrust
engines, bearing in mind the actual value of the angular velocity of the spacecraft.

Thus, there has been obtained the new solution to the problem of optimal fuel
consumption reorientation for the SC with arbitrary moments of inertia and without
restrictions on the angles. The obtained solution is based on solving the nonlinear
boundary value problem using the adapted power series method. It is shown that the
further increasing of the algorithm order leads to the improvement of the decision
accuracy.

22.2 Formulation of the Problem

In the considered optimal control strategy, the free rotation area is the main area
on which the spacecraft is reoriented. Therefore, we determine the initial spacecraft
angular velocity for this area, which will provide the required reorientation of the
spacecraft in a given time.

To this end, let us consider the dynamic and kinematic equations of a rigid body
free rotation (Lur’e 1961; Frolov and Shipulina 1985):

Ii ω̇i − (I j − Ik)ω jωk = 0, i, j, k = 1, 2, 3, (22.1)
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ġ =
(
1 − g2

16

)
· ω + 1

2
[g × ω] + 1

8
g(g, ω), (22.2)

where ωi , ω j , ωk are the projections of the angular velocity vector ω on the axes
associated with the spacecraft (these axes are further considered as the main axes of
inertia); Ii , I j , Ik are the main moments of inertia; g2 = ∑3

i=1 g
2
i = (g, g); (◦, ◦) is

the vector dot product notation; [◦ × ◦] is the cross-product of vectors notation.; g
is the vector of the modified final rotation associated with the well-known vector of
four normalized Rodrigue–Hamilton’s parameters, traditionally denoted as λ0 and
λi , i = 1, 3, by the relations (Frolov and Shipulina 1985)

gi = 4λi

1 + λ0
, i = 1, 3. (22.3)

The kinematic Eq. (22.2) for the vector of parameters g was obtained by time
differentiation of the ratios (22.3). There were used the known differential equations
for Rodrigue–Hamilton parameters. Subsequently, the parameters were excluded
from the final expressions.

Thereby, the problem of inertial maneuver is formulated in the following manner:
It is required to find the initial value of the angular velocity ω0, that will ensure the
transfer of the vector g from a known point g0 to a given point gT in time T taking
into account (22.1), (22.2).

Without diminishing of generality, we shall consider that g0 = 0. This can
be always done by virtually changing the position of the coordinate system
against which the spacecraft orientation is measured. For this purpose, it is suffi-
cient to take the components of the so-called mismatch quaternion �M(0) =
[1; 0; 0; 0], �M(T ) = �̃(0) ◦ �(T ) with parameters λ j , j = 0, 3 in formulas
(22.3) at time t = 0 and t = T . Here �(0), �(T ) are the known values of the
proper quaternion characterizing the orientation of the spacecraft against to an arbi-
trarily given basis at time t = 0 and t = T ; �̃ is the conjugate quaternion; ◦ is the
sign of the quaternion product (Branec and Shmyglevskij 1973).

The problem of inertial maneuver is a nonlinear two-point boundary value
problem. What is more, there are still unknown the general methods for solving
it. Therefore, in this paper the method for solving differential equations using power
series was adapted.

The solution of Eqs. (22.1), (22.2) was searching in the form of Taylor series near
the point (t = 0, ω0, g0 = 0) on the limited interval of variation t ∈ [0, T ]:

ω(t) = ω0 + ω̇0 · t + 1

2
ω̈0 · t2 + 1

6

...
ω0 · t3 + · · · , (22.4)

g(t) = g0 + ġ0 · t + 1

2
g̈0 · t2 + 1

6

...
g 0 · t3 + 1

24
gIV
0 · t4 . . . (22.5)
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Considering (22.2), the consecutive calculation of derivatives g(m)
0 , where m = 1,

2, 3, … is an order of derivative, at time t = 0, allows to bind the vector g(m)
0 and

vectorsω
(m−1)
0 , ω

(m−2)
0 , . . . , ω̇0, ω0. Following the mentioned process of calculation,

the next formula is written:

g(m)
0 = f (ω(m−1)

0 , ω
(m−2)
0 , . . . , ω̇0, ω0) (22.6)

In its turn, using (22.1), the following derivatives are similarly rewritten:

ω̇0i = αi · ω0 j · ω0k,

ω̈0i = αiα j · ω0 j · ω2
0k + αiαk · ω0i · ω2

0 j ,
...
ω0i = α2

i α j · ω0i · ω3
0k + 4αiα jαk · ω2

0i · ω0 j · ω0k + α2
i αk · ω3

0 j · ω0k, . . . . (22.7)

where αi = (I j−Ik )
Ii

, (i, j, k) = (1, 2, 3).
Hence, it follows that the initial value of the ith component of the (m − 1) order

derivative of the angular velocity vector can be written as

ω
(m−1)
0i = ϕim(ω

Si
0i · ω

Sj

0 j · ω
Sk
0k),

where the power indexes Si , Sj , Sk are non-negative integers and Si + Sj + Sk = m;
ϕim is linear function of its arguments for different set of powers Si , Sj , Sk .

Substituting (22.7) into (22.6), and then the result into (22.5), the final expressions
are calculated. The new expressions associate the values of vector g at time T with
the initial angular velocity ω0:

gi (T ) = �i + 1

2
αi� j�k + 1

6

{(
αiα j − α j

2
+ 1

8

)
· �i�

2
k

+
(

αiαk + αk

2
+ 1

8

)
· �i�

2
j + �3

i

8

}

+ 1

24

{
αi

(
αiα j − α j + 1

4

)
· � j�

3
k + αi

(
αiαk + αk + 1

4

)
· �k�

3
j

+
(
4αiα jαk + 3

4
αi + 1

2
(α j + αk)

)
· �2

i � j�k

}
+ · · · , i, j, k = 1, 2, 3

(22.8)

where � = {�1,�2,�3} is unknown vector associated with the vector of the
required angular velocity by the relation � = ω0 · T .

Thus, the problem of inertial maneuver was reduced to finding a vector � for a
given g(T ) = gT . The components of � are the elements of an infinite series (22.8).

The final solution of the problem is to “convert” the series (22.8) relatively to �.
To realize this conversion, the vector � = {�1,�2,�3} is searched then in the

form:
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�i =
∞∑

m=1

him(gSim
T i · gSjm

T j · gSkm
T k ), i, j, k = 1, 2, 3, (22.9)

where gT i , gT j , gTk are the components of the vector gT ; him(·) is the unknown
linear form of gT arguments; Sim, Sjm, Skm are arbitrary non-negative integers such
that Sim + Sjm + Skm = m.

It should be noticed that the sum (22.9) is an infinite power series, similar to the
series (22.8) by the structure.

To find the linear forms him , the circulation procedure of the series (22.8) is
applied. It consists of a recurring calculation of partial sums.

�i[q] =
q∑

m=1

him(gSim
T i · gSjm

T j · gSkm
T k ) (22.10)

at q → ∞.
Assuming q as a number of “approximation” or iteration (q = 2, 3, . . .), the

working formula for the recurrent procedure is obtained from (22.8) by trivially
separating the first term on the right-hand side in the form

�i[q] = gv − 1

2
αi� j[q−1]�k[q−1]

− 1

6

{(
αiα j − α j

2
+ 1

8

)
· �i[q−1]�2

k[q−1]

+
(

αiαk + αk

2
+ 1

8

)
· �i[q−1]�2

j[q−1] + �3
i[q−1]
8

}

− 1

24

{(
α2
i αk + αiαk + αi

4

)
· �3

j[q−1]�k[q−1]

+
(
α2
i α j − αiα j + αi

4

)
· � j[q−1]�3

k[q−1]

+
(
4αiα jαk + 3

4
αi + 1

2
α j + 1

2
αk

)
· �2

i[q−1]� j[q−1]�k[q−1]
}

− · · · ,

i, j, k = 1, 2, 3 (22.11)

Next, consider a few steps of the iteration procedure realization.
Assume that the initial value of q is 1. Then, taking into account the first term

in formula (22.11) and in accordance with (22.10), the following expression can be
taken

�i[1] = gT i . (22.12)

If q = 2, then it follows from (22.11)
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�i[2] = gT i − αi

2
gT j · gTk for i, j, k = 1, 2, 3; (22.13)

if q = 3, then

�i[3] = gT i − αi

2
gT j · gTk + 1

12

(
αiαk − αk − 1

4

)
· gT i · g2T j

+ 1

12

(
αiα j + α j − 1

4

)
· gT i · g2Tk − 1

48
g3T i , (22.14)

if q = 4, then

�i[4] = gT i − αi

2
gT j · gTk + 1

12

(
αiαk − αk − 1

4

)
· gT i · g2T j

+ 1

12

(
αiα j + α j − 1

4

)
· gT i · g2Tk − 1

48
g3T i

+ 1

24

(αi

2
− α2

i

)
· g3T j · gTk + 1

24

(αi

2
+ α2

i

)
· gT j · g3Tk

+ 1

24

(
αi (α j − αk) − αiα jαk + αi

2

)
· g2T i · gT j · gTk, (22.15)

and so on.
Thus, the sequence being formed for q = 4 is the most accurate of the above

algorithm for calculation of the vector � by the final value of the modified rotation
vector gT . Adequacy of such solution is determined by the condition of the circulation
process convergence: limq→∞

∥∥�[q+1] − �[q]
∥∥ = 0. In this case, it is only possible to

specify the area of the state space Q = {
gT ∈ R3||gi | < 1, i = 1, 2, 3

}
. It is defined

that the sufficient convergence condition is the belonging of the vector gT to the set
Q.

The series (22.10) can be majorant by a constant sign power series, in which,
gmax = maxi=1,3|gT i |, |�i[q]| ≤ �̃i[q] = ∑q

m=1 g
m
max. Based on the d’Alembert

criterion, the limit relation limq→∞
|�̃i[q+1]− �̃i[q]|
|�̃i[q]− �̃i[q−1]| = gmax < 1 implies the convergence

of the series under consideration in the domain Q. For this reason, the series (22.10)
also converges under these conditions, and absolutely. It should be noted that the set
covers quite wide range of targets, up to the value of turning in 56°. The modeling
shows that the analytical estimate of the convergence region is underestimated.

At the same time, the calculation of ω0 = �
T completes the solution of the inertial

maneuver problem.Thus, according to the general schemeof solving the problem, the
vector �, and consequently, the vector ω0 are calculated with the different accuracy
corresponding to the chosen value of q. Thereafter, a certain partial sum of the series
(22.10) will correspond to this q. In these conditions, it is obvious that (22.10) is an
algorithm of the inertial maneuver, and q is its order.
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For modeling and practical use, we can recommend a fourth-order algorithm
(22.15). It can also be used as a lower order algorithm. For this, it is sufficient to take
into account the terms containing gSi

T i · gSj

T j · gSk
T k at Si + Sj + Sk ≤ 3.

To increase the solution accuracy of the boundary value problem when the condi-
tion of absolute convergence of the series (22.10) is violated, for example, at reorien-
tation angles greater than 56°, one can increasemore andmore the order of expansion
in the series (22.8) and, accordingly, increase the value of q in the series (22.10).

However, in practice, when using the algorithm in the attitude control system,
taking into account the current values of time, velocity, and orientation, it is advisable
to provide the periodic recalculation of the required velocity of the inertial section. It
is desirable to carry out additional corrections during the maneuver, in consideration
of the newvalue of the required velocity. In this case, the requirements to the accuracy
of determining the required velocity are significantly reduced and the scope of the
algorithm application, even of a low order, expands.

22.3 Results of Modeling

To investigate the convergence of the formula for calculating the required angular
velocity, as well as to obtain the accuracy indicators of the algorithms, there was
carried out a numerical simulation of the spacecraft reorientation process in the
section of inertial rotation. In order to achieve this result, a rigid body with moments
of inertia, I1 = 3300 kg m2, I2 = 3000 kg m2, I3 = 1200 kg m2 was considered.
Then Eqs. (22.1) and (22.2) were numerically integrated, and the following initial

conditions were taken: t = 0, g(0) = 0, ω(0) = ω0, where ω0 = �[q]
T is the required

value of the initial angular velocity for the area of free rotation; q = 1, 2, 3, 4 is
an order of the algorithm for calculating the required velocity. The simulation was
carried out over time T for different set points g(T ) = gT . To analyze the influence
of the algorithm order on the reorientation accuracy, the solution was constructed
for various values of the parameter q. The Euler angle value θ(T ) was taken as a
criterion for the reorientation accuracy. The angle value corresponds to the deviation
of the spacecraft actual orientation at time t = T. The spacecraft actual orientation
was obtained through numerical integration, from the required position characterized
by the value gT . With the ideal operation of the algorithm, such an angle at time t
= T should be zero. The higher its absolute value was, the lower the reorientation
accuracy was obtained.

Adduce formulas for calculating the current value of the Euler angle θ(T ) corre-
sponding to the angular mismatch between the required position of the spacecraft
and the current actual position. Since in this formulation the orientation of the space-
craft is characterized by the vector of kinematic parameters g, for which there is no
formula for adding turns, we will use the quaternionic representation of the orienta-
tion as an intermediate one. Under these conditions, in accordance with the definition
of the Euler angle (Lur’e 1961), we have:
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θ(t) = 2 · arccos (
λs
0(t)

)
, (22.16)

whereλs
0(t) is a scalar part of themismatch quaternion�s(t) = �̃T ◦�(t), calculated

according to the formula for adding turns. The values of used quaternions, as a set
of components, are calculated in accordance with (22.3):

g2T = g2T1 + g2T2 + g2T3,

�̃T = 1

16 + g2T
· [
16 − g2T ; −8 · gT1; −8 · gT2; −8 · gT3

]
, (22.17)

g2(t) = g21(t) + g22(t) + g23(t),

�(t) = 1

16 + g2(t)
· [
16 − g2(t); 8 · g1(t); 8 · g2(t); 8 · g3(t)

]
(22.18)

The dependencies θ(t) that have been calculated in this way for different orders
of the algorithm are used further to demonstrate the dynamic error of the algorithms.

In order to study the influence of the reorientation angle on the accuracy of reori-
entation algorithms, there was carried out a series of computational experiments,
where the final values of parameters gT are set in different ways. Let us describe the
procedure for forming the final conditions.

The initial and required final orientation of the spacecraft relative to a certain
reference coordinate system will be set by using the generally accepted angles of
yaw ψ(τ), pitch β(τ), and roll γ (τ), τ = 0, T , that have physical clarity. Then the
corresponding orientation quaternions are calculated by the formula:

�(τ) =
[
cos

ψ(τ)

2
; 0; sin

ψ(τ)

2
; 0

]
◦

[
cos

β(τ)

2
; 0; 0; sin

β(τ)

2

]

◦
[
cos

γ (τ)

2
; sin

γ (τ)

2
; 0; 0

]
(22.19)

Further, themismatch quaternion�M (T ) = �̃(0)◦�(T ) = [
λM
0 ; λM

1 ; λM
2 ; λM

3

]
and gT i = 4·λM

i

1+λM
0
, i = 1, 3 are carried out. At the same time, it should be recalled that

g0i = 0.
The initial data for modeling are given in Table 22.1. The boundary conditions

were set from those assumptions to consider both small reorientation angles and
large ones. It is important to mention that the reorientation time in all cases was
taken equal to T = 100 s.

Let us consider the operation of the fourth-order algorithm (22.15) in the condi-
tions of the five tasks. The change in the Euler angle during the reorientation reflects
the efficiency of the algorithm (see Figs. 22.2 and 22.3).

The above-cited results demonstrate a fairly high efficiency of the algorithm
(22.15) when solving the tasks #1, #2, and #3 (Table 22.2). In the task #4, the
actual orientation at the end of the maneuver differs from the required one by more
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Table 22.1 Initial data for modeling

Task
#

Yaw ψ(0),
deg.

Pitch
β(0), deg.

Roll
γ (0),
deg.

Yaw ψ(T ),

deg.
Pitch
β(T ), deg.

Roll
γ (T ),
deg.

The
initial
value
of
Euler
angle
θ , deg

Vector gT

1 1 2 −2 −2 3 1 4.3 0.0501
−0.0525
0.0170

2 10 −10 −5 0 0 0 15.3 0.1022
−0.1819
0.1667

3 −30 45 −25 0 0 0 63.6 0.6268
0.6778
−0.6685

4 −30 45 −25 60 90 20 138.6 2.5224
0.7640
0.8338

5 −20 20 −55 60 90 20 159.6 2.7172
0.7458
1.8005
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Fig. 22.2 Euler angle change during reorientation
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Fig. 22.3 Euler angle change on the logarithmic scale during reorientation

Table 22.2 Finite error of reorientation algorithms of different orders

Task # The initial
value of the
Euler angle
θ(0), deg.

The final value of the Euler angle θ(T ), deg.
T = 100 s

The 1-st order
algorithm
(22.12)

The 2-nd order
algorithm
(22.13)

The 3-rd order
algorithm
(22.14)

The 4-th order
algorithm
(22.15)

1 4.3 0.03 0.00 0.00 0.00

2 15.3 0.59 0.05 0.00 0.00

3 63.6 10.19 3.39 0.44 0.11

4 138.6 40.19 28.94 5.63 3.69

5 159.6 73.12 69.74 25.24 12.76

than 3.5°. In the task #5—by more than 12.5°. The difference in the efficiency of the
algorithm is explained by the different initial deviation of the spacecraft orientation
from the required final position. The larger this deviation, the lower the accuracy of
calculating the required velocity for the truncated row, and the lower the efficiency
of the algorithm.

Furthermore, Table 22.2 shows the actual values of the Euler angle at time T =
100 s, which determine the final error of the reorientation algorithm, for five tasks
and for algorithms of different orders.

Obviously, the accuracy of solving the task increases with the increase of the
algorithm order. Of the algorithms considered, the highest accuracy is for the fourth-
order algorithm (22.15).

Figure 22.4 shows the change in the Euler angle when solving the task #5 by the
algorithms of various orders. The ordinate of the end point, to which the various line
charts come, reflects the accuracy of the corresponding algorithm.
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Fig. 22.4 Euler angle
change when solving the task
#5 by the algorithms of
various orders
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It can be concluded that the algorithms of the first (Alg (22.12)) and second (Alg
(22.13)) orders do not provide monotonic convergence to the final value. This is due
to the fact that the order of these algorithms is insufficient for accurate reorientation
at an angle of more than 150°. At the same time, the algorithms of the third and
fourth orders operate effectively almost at the maximum possible angle of the initial
deviation.

In the process of finalizing the analysis of the numerical simulation presented
in this section, Figs. 22.5 and 22.6 were performed. The dynamics of the angular
velocity in the process of reorientation of the spacecraft along the trajectory of free
rotation is shown in Fig. 22.5. The dynamics of the quaternion components �s(t),
tending to the value [1; 0; 0; 0] upon successful reorientation of the spacecraft is
presented in Fig. 22.6. Both mentioned figures are the visualization of the task #5
solution by the fourth-order algorithm.

The figure shows w1 = ω1, w2 = ω2, w3 = ω3 are projections of the angular
velocity vector ω onto the axes connected with the vehicle, calculated by inte-
grating Eqs. (22.1) from the initial conditions obtained during the boundary value
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Fig. 22.5 Change of the angular velocity projections in the process of reorientation
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Fig. 22.6 Change of the quaternion �s(t) components in the process of reorientation

problem solution. The behavior of the projections (increasing, decreasing) is directly
explained by the sign of their derivatives calculated using (22.1) for the apparatus
given moments of inertia I1 = 3300 kg m2, I2 = 3000 kg m2, I3 = 1200 kg m2.

In Fig. 22.6, the variables L0, L1, L2, L3 indicate the components of the previ-
ously introduced the mismatch quaternion �s(t) = �̃T ◦ �(t), computed using
(22.17) and (22.18) according to the procedure described above.

In such a way, from the charts of the angular velocity of free rotation (Figs. 22.5
and 22.6), which have a fairly general form, it can be concluded that the problem
of determining the initial values is not trivial. The actual behavior of the quaternion
components, tending to the true final value [1; 0; 0; 0], shows the efficiency of the
reorientation algorithm.

22.4 Discussion of the Solution Practical Implementation

The practical implementation of the obtained solution to the boundary value problem
consists in the usage of the formula (22.15) as an algorithm for calculating control
commands in the onboard attitude control system of the spacecraft. The paper
analyzes the methodological error of the method due to the final representation of
the equations’ solutions that are expanded in series. It is shown that with the high
order of the algorithm, the methodical error is acceptable for a wide range of tasks.
Nevertheless, with the practical usage of the inertial reversal algorithm, the additional
sources of the control error will most likely occur. These include:

• a spacecraft acceleration to gain the required angular velocity of free rotation and
the spacecraft deceleration at the end of the inertial section. These control stages,
firstly, have a certain duration and require registration, and secondly, they lead to
an unaccounted change in the actual orientation of the spacecraft;
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• the parametric errors such as inaccuracy of knowledge of the spacecraft inertia
moments and non-coincidence of the coordinate system, associated with the
spacecraft, with the main axes of inertia;

• an error in the propulsion system;
• an inaccuracy of the angular velocity measurements and the actual orientation of

the spacecraft, etc.

All of the listed factors will definitely bring an additional error in the implementa-
tion of the reorientation maneuver. The assessment of this error is not considered in
this paper, since it depends on the empirical data that are having not being collected
yet. However, the proposed scheme of the algorithm operation using a feedback loop
on the information about the SC orientation and the possible correction of the SC
velocity within the reorientation section will provide some compensation for the
negative effect.

To reduce the control error under these conditions, it is necessary:

• to predict the accuracy of the reorientation maneuver,
• to recalculate the required free rotation velocity (in some cases), and
• to correct the actual velocity during the reorientation process.

Since the development and the justification of the mentioned control strategy
is beyond the scope of this study, we will confine ourselves here to its informal
description.

Let the actual angular velocity of the spacecraft ω̂(t) and its orientation be
measured at every moment of time t ∈ [0; T ). Assuming the current orientation
to be the initial one, we calculate the true value of the vector gT−t , corresponding to
the required position of the spacecraft in time (T − t). After that, using the formula
(22.8), into which the equality� = ω̂(t) · (T − t) is substituted, we predict the value
of the vector ĝ(T ) and compare it with gT−t . When the vectors are close by the value,
additional correction of the velocity is not performed, and the object continues its
free rotation. If the vectors differ significantly, then using the formula (22.15) wewill

calculate �[4] and the new value of the required velocity ω0 = �[4]
T−t . Subsequently,

with the help of low-thrust engines, the apparatus is accelerated to the required
velocity. It is necessary to mention that the acceleration is controlled by comparing
the required velocity with the current actual estimated (measured) velocity. Since the
deviation of the actual velocity from the required one within the inertial turn area
cannot be significant, the duration of such correction is insignificant.

As a justification for the described strategy convergence to the exact solution,
we would like to add that the more accurate the used formula expressions are, than
the smaller the reorientation angle is. Therefore, their application becomes more
accurate when they approach the end point.
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22.5 Conclusions

By way of conclusion, there has been solved the problem of definition of the initial
angular velocity for the reorientation of a rigid body at a specified angle in a given
time along the trajectory of the inertial rotation. In addition, this problem is the
boundary value problemwith the essential nonlinearity. The obtained solution can be
used for the spacecraft orientation control system to minimize the fuel consumption.
The simulation allowed to determine an order of the algorithm that is sufficient and
to estimate the control accuracy for conditions close to the real ones. The main
aspects of the method practical application in the spacecraft onboard control system
are indicated. The aim of the aspects is the improvement of the control accuracy,
regardless of the initial orientation mismatch value.
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Chapter 23
Asymptotic Methods for Soliton
Excitations

Alexander Kovalev

Abstract An asymptotic method for finding the solutions for two-parameter
dynamic envelope solitons in media with a different character of linear wave spec-
trum is demonstrated for several examples. Particular attention is paid to method of
constructing such the solutions for nonlinear weakly dispersive media with a sound-
type spectrum of linear waves. The features of the proposed procedure are illustrated
with example of the modified Boussinesq equation.

Keywords Soliton · Dispersion · Asymptotic expansion

23.1 Introduction

In some cases, nonlinear dynamical systems with distributed parameters admit an
existence of spatially localized excitations of various types or the so-called solitons
(Dodd 1984; Newell 1985). In some cases, the corresponding evolution equations are
completely integrable, and in mathematical sense of the word, the exact solutions of
such equations are called solitons. But physical systems aremainly described by non-
integrable equations, although they allow an existence of experimentally observed
long-lived localized soliton-type excitations (Kivshar and Agraval 2003; Sulymenko
et al. 2018). In some cases, stability of such excitations is guaranteed by choice of
certain fixed boundary conditions (Menton and Sutcliff 2004). In other cases, such
solitons are excited under experimental conditions or due to thermodynamic reasons
(Sulymenko et al. 2018). The soliton excitations are widely studied experimentally,
and possibilities of using them in information transmission systems (optical solitons)
and spintronic devices (magnetic solitons) are now being considered (Kivshar and
Agraval 2003; Silymenko et al. 2018). Great interest in solitons is shown in the study
of ocean waves (“tsunamis” and “strange” waves). Usually, the equations arising in
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a different physical situation can be reduced to a small set of simple equations, such
as the nonlinear Schrödinger equation (NSE) (23.9), the Boussinesq equation (BE)
(23.13) and its modified analogue (mBE) (23.14), the Korteweg-de Vries equation
(KdV) and its modification (mKdV) (23.20), the nonlinear Klein–Gordon equation
(nKGE) (23.8) and its elliptic version (eKGE) (23.1). In physical applications, the
so-called two-parameter dynamical solitons (or envelope solitons) play a special
role. The solutions for such solitons are well known in the case of the integrable
NSE, mKdV and the sinusoidal Klein–Gordon equation (SGE) (Braun and Kuvshar
2004). On the other hand, it is known that in such integrable equations as the KdV
equation and the BE, the complete set of solutions, into which the initial conditions
of a rather wide form decompose, consists of one-parameter dynamic solitons and
linearwaves. Those, there are no two-parameter solitons in this systems. The question
arises about existence of envelope solitons in non-integrable systems and systems
close to the integrable one. In addition, are there any approximate long-lived states of
the envelope soliton type in integrable systems that do not admit exact two-parameter
soliton solutions?

To explain the problem, let us give the following example. An exactly integrable
BE does not allow the existence of an envelope soliton. However, at the first step of
the perturbation theory based on the method of multiple time scales (Nayfeh 1981), it
is reduced to the nonlinear Schrödinger equation, which allows the existence of such
solitons (Newell 1985). In some cases, the reason for this discrepancy is the decay
of the soliton state due to the emission of linear waves of the continuous spectrum
at frequencies that are multiples of the soliton frequency, as for example in the case
of KGE (Eleonskii et al. 1982, 1961). However, as it was shown by Eleonskii et al.
(1982, 1961), this radiation is exponentially small. It is proportional to exp(−1/ε),
where ε is a small amplitude of the soliton (Eleonskii et al. 1961, 1982; Eleonskii
and Silin 1969, 1970). Therefore, we can discuss the approximate soliton excitations
and construct their approximate solutions with a power law accuracy in ε. In this
case, to clarify the difference between soliton solutions in various physical systems,
it is necessary to construct these solutions with an accuracy greater than the basic
approximation. The multi-timescale method is rather cumbersome. Therefore, it is
preferable to use different versions of asymptotic expansion methods. Some of them
were proposed in Eleonskii and Silin (1969, 1970) and Kosevich and Kovalev (1974)
for systems with large dispersion of the dispersion law of linear waves, in particular,
for nKGE and eKGE. In this paper, we will discuss briefly this question, but the
main content of the paper will be devoted to the development of the soliton theory
of asymptotic expansions for weakly dispersive media.

23.2 Asymptotic Method for Envelop Solitons

For the first time, an asymptotic procedure of finding the two parametric soliton
solutions was developed in Eleonskii and Silin (1969, 1970) for three-dimensional
stationary states of nonlinear electromagnetic field. Later, a similar procedure was
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proposed in Kosevich and Kovalev (1974) for self-localized elastic antiphase oscilla-
tions with frequencies near the upper boundary for phonon spectrum. In both cases,
the problem is reduced to finding the soliton solutions to nonlinear equation with an
elliptic differential part. The main features of the method can be demonstrated by
the example of the following simple equation

ü + u′′ + f (u) = 0 (23.1)

This equation is invariant under the transformation x ′ = (x − V t)/
√
V 2 − 1

and t ′ = (t + V x)/
√
V 2 − 1. So it is enough to find a motionless solution for the

envelope solitons. For the function f (u) of the form f = u + αu2 + βu3 + · · ·
the spectrum of linear waves ω = ω(k) = √

1 − k2 is bounded from above by the
value ω0 = 1, and soliton frequencies ω > ω0 for k = 0 lie above this spectrum (see
Fig. 23.1a).

Since the solution for a motionless soliton is purely periodic in time, it can be
represented as the Fourier time series of the form

u =
∞∑

n=0

An(x) cos(nωt), (23.2)

for amplitudes of which An(x) the infinite set of ordinary differential equations is
obtained with an infinite number of nonlinear terms in each equation. At the second
step of this asymptotic procedure, the amplitudes An(x) of the Fourier series are
expanded into the infinite power series in powers of a small parameter, which is the
amplitude of the soliton or the deviation of its frequency from the edge of linear wave
spectrum:

A0 =
∞′∑

m=1

A0,m+1(x) εm+1, An =
∞′∑

m=1

An,m+n−1(x) εm+n−1, (23.3)

where the small parameter ε = √
ω2 − 1 � 1 and summation occur over all odd

numbers. Substituting the expansions (23.2) and (23.3) into Eq. (23.1) and equating
to zero the coefficients at different degrees of the parameter ε, we obtain an infinite
system of ordinary differential and algebraic equations for the functions Ap,q with

Fig. 23.1 a Spectrum of
linear waves and region of
parameters for the existence
of small-amplitude
two-parameter solitons
(shaded in the figure) for the
elliptic systems (23.1) and
b for the parabolic systems
(23.8)
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a finite number of terms in each equation. The first index indicates the number of
harmonic, and the second indicates the degree of small parameter. At the same time, it
is assumed that the spatial gradients of the solution are small as well: ∂/∂x ∼ ε. The
procedure of solving the resulting series of equations is as follows: The expressions
which are proportional to ε2 give the relations A02 = −αA2

11/2 and A22 = αA2
11/6.

With these relations, the expression proportional to ε3 leads to a closed equation for
the main approximation of soliton excitation:

A′′
11 − A11 + (

5α2/6 − 3β/4
)
A3
11 = 0, (23.4)

where A′ ≡ dA/dεx . The soliton solution to Eq. (23.4) has the standard form

A11 = √
2sech(εx)/

√
5α2/6 − 3β/4. (23.5)

Thus, up to the value ε2, the solution for the envelope soliton reeds

u = εg
cosωt

chεx
− ε2

α g2

2

1

ch2εx
+ ε2

α g2

6

cos 2ωt

ch2εx
(23.6)

with the parameter g = 2
√
6/

√
10α2 − 9β. It can be seen from the expression (23.5)

that soliton solution exists only if the inequality for nonlinear constants
(
10α2 > 9β

)

is satisfied. In the following steps of the procedure, for ε4 we obtain the connections
A04 = aA2

11 + bA4
11 − αA11A13 and A24 = cA2

11 + d A4
11 + αA11A13, where a, b,

c, d are the constants. Finally, at the next step, for terms of order of ε5, we obtain a
closed equation for A13 of the form

A′′
13 − A13 − 24A2

11A13/g
2 = pA3

11 + q A5
11 (23.7)

with the solution A13 ∼ 1/ch(εx), 1/ch3(εx). Thus, the proposed scheme allows
one to construct the soliton solutions with any power-law accuracy in the param-
eter ε. The main information about the soliton solution is found at the first step
from the basic nonlinear equation. All other equations are the second-order linear
ordinary differential equations with variable coefficients and right-hand sides. The
requirement for the solution to decrease at infinity makes this procedure unique. The
discussed asymptotic method is similar to the method proposed by A. Poincaré in
the theory of nonlinear oscillations of finite-dimensional systems (Bogoliubov and
Mitropolsky 1961; Moiseev 1969).

Since the frequencies of all harmonics of soliton solution lie above the spectrum
of linear waves, there is no emission of such waves by soliton. Therefore, the found
expression represents the real solution to Eq. (23.1).

A different situation arises for analogous equations of the elliptic type (see
Fig. 23.1b), for example, in the case of the nonlinear Klein–Gordon equation.

ü − u′′ + f (u) = 0 (23.8)
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and its generalizations with higher spatial derivatives. In this case, the spectrum of
linear waves ω = √

1 + k2 is bounded from below. The asymptotic method for the
soliton solutions of such systems was proposed in Kosevich and Kovalev (1974).
Equation (23.8) is not exactly integrable and it is difficult to judge all its exact
solutions. But usually the low-amplitude limit is considered, in which Eq. (23.8) can
be approximately reduced to the exactly integrable nonlinear Schrödinger equation
(NLSE). In the method of multiple time scales (Nayfeh 1981), the simplest case
of Eq. (23.8) with α = 0 and β = −1 at the first step of the procedure for the
function u = a exp(kx − ωt) + cc in terms of the effective Gardner coordinate
ξ = ε(x − kt/ω) and time τ = ε2t , where ε = √

1 − ω2 leads to the following
nonlinear Schrodinger equation (Newell 1985):

iaτ + aξξ /2 + 3|a|2a/2 = 0. (23.9)

Its exact soliton solution is well known. In terms of initial variables of Eq. (23.8),
this solution in the particular case for motionless excitations has the following form:

u = εA11 cosωt = 2
√
2√
3

√
1 − ω2 cosωt

ch
√
1 − ω2x

. (23.10)

The solution for a moving solitons is obtained from (23.10) by the Galilean trans-
formation. The region of the existence of two-parameter NLSE solitons is shown
as the dashed area in Fig. 23.2a. For solitons a more natural characteristic than the
wave number k is the velocity of its motion V . Therefore, in Fig. 23.2b, the region of
existence of two-parameter solitons of general type is shown on the plane of velocity
V and frequency ω̃ = ω − kV in a frame of reference moving with the velocity
V . For linear waves in the same figure, the role of velocity is played by the group
velocity Vg = ∂ω/∂k.

Fig. 23.2 a Region of the existence for two-parameter NLSE solitons (shaded) and the region of
applicability of the NLSE approximation (23.10) for describing the solitons of the nonlinear Klein-
Gordon Eq. (23.8) (double shaded). b The same is for the plain of variables V = ∂ω/∂k (group
velocity linear waves and the velocity of solitons) and ω̃ = ω − kV (the frequency in mowing with
V frame of reference)
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But in the case of non-integrable initial Eq. (23.8), the expression (23.10) corre-
sponds only to the first step of the asymptotic procedure for finding the solution
(double-hatched area in Fig. 23.2a). The complete asymptotic procedure has the same
form as (23.2, 23.3) and gives an asymptotically accurate solution with a power-law
accuracy in the small expansion parameter (soliton amplitude). The peculiarity of
this case is that for exactly integrable equations of type (23.8) (e.g., for the sinusoidal
Klein–Gordon equation), the asymptotic power series expansions in a small param-
eter converge to the exact soliton solutions for two-parameter dynamic solitons. In
the cases of non-integrable equations with a general form of a nonlinear force f (u)

or with dispersion term of the type ∼ uIV , the power expansions do not take into
account the exponentially small additions of the type of exp(−1/ε), where ε � 1 is
an amplitude of the soliton (Eleonskii et al. 1982, 1961). In the example under consid-
eration with α = 0 for the triple harmonic cos 3ωt in the main approximation of the
order of ε3 for a stationary soliton, the algebraic relation

(
9ω2 − 1

)
A33 + A3

11/4 = 0
arises, where all the terms are of order of ε3. In this case, the function A′′

33 has a
higher order of smallness

(∼ ε5
)
and is omitted in the corresponding equation. If

this term is left in accordance with the Tamm–Dankov method, the equation for A33

will take the form

A′′
33 + (

9ω2 − 1
)
A33 + A3

11/4 = 0. (23.11)

with the solution asymptotic

A33(+∞) ≈ 8π

3
√
3

sin
(√

9ω2 − 1 x
)

ε3ch
(
π

√
2/ε

) ∼ sin(k(3ω)x) exp

(
−

√
2π

ε

)
. (23.12)

This expression describes the emission of exponentially weak wave with triple
frequency from the soliton (the point A in Fig. 23.1b). Thus, asymptotic expansions
generally yield only approximate solutions for the dynamic solitons. In real physical
systems, such small-amplitude solitonswill decay exponentiallywith time. However,
in the case of special excitation of such solitons, for example, in optical data transmis-
sion lines or magnetic delay lines, the soliton nature of the excited pulses improves
their stability in comparison with linear wave packets and makes it possible to use
them in technological devices (Kivshar and Agraval 2003; Sulymenko et al. 2018).
In addition, two-parameter envelope solitons in a quasi-classical approximation can
be interpreted as the bound state of elementary excitations of the system (Kosevich
and Kovalev 1989). In this approximation, the energy per one quasiparticle in it is
smaller than the energy of a free quasiparticle. Therefore, the existence of such soli-
tons is determined by thermodynamic reason and it gives a finite soliton contribution
to thermodynamics. Thus, although the approximate solutions of nonlinear evolu-
tion equations found by asymptotic methods are not true solutions in mathematical
sense, their knowledge is necessary for study of real physical systems described by
equations that are not integrable in the general case.
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Until now,we considered the envelope solitons in systemswith a strong dispersion
of the linear wave velocities. In such systems, it is easy to construct the solutions for
motionless solitons and then to generalize them for moving solitons.

23.3 Asymptotic Method for Solitons in Weakly Dispersive
Media

As applied to weakly dispersive media, the above method for finding soliton solu-
tions for envelope solitons requires substantial modification. The optical waveguides,
elasticmedia, easy-planemagnets, liquids (including superfluids), the Bose–Einstein
condensates, etc., represent the examples of weakly dispersive media with a sound
spectrum of elementary excitations With an increase in the level of excitation of
the nonlinear system, it becomes necessary to take into account the deviation of the
wave dispersion law from linear (sound) one. In long-wavelength limit, the depen-
dence of the wave frequency ω in the laboratory frame of reference on its wave
number k can be represented in the first approximation with the wave dispersion in
the form ω = ck + Ak3, where c is the sound velocity, and the dispersion of sound
waves is equal to D = ∂2ω/∂k2 = 6Ak. In weakly dispersing media in the limit
k → 0, dispersion disappears (D → 0), and the group velocity of linear waves
Vg = ∂ω/∂k = c + 3Ak2, together with the phase velocity V f = ω/k = c + Ak2,
tends to the value of the sound velocity (see Fig. 23.3a for the negative dispersion
with A < 0 and Fig. 23.4a for positive dispersion with A < 0).

For the nonlinear waves with a stationary profile, their “nonlinear dispersion law”
can be introduced as ω(k, a) = ω0(k) + N (k)a2, where ω0(k) is the dispersion law
of linear waves and the value N (k) = ∂ω(k)/∂k is the nonlinearity characteristic
of the system. In the situation with DN > 0 according to the Lighthill criterion
(Whitham 1974), periodic waves (cnoidal waves) are modulation stable, and in the
case DN < 0, they are modulation unstable in the linear limit. These cases with
DN < 0 are presented in Figs. 23.3 and 23.4. In non-integrable systems, this fact

Fig. 23.3 a Characteristics of linear and nonlinear waves in systems with negative dispersion and
“hard” nonlinearity (α > 0 and β > 0 in the modified Boussinesq Eq. (23.14)) in the plane (ω, k).
b The same is for the plane (ω̃, V ). c The same is for the modified Korteweg-de Vries equation
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Fig. 23.4 a Characteristics
of linear and nonlinear waves
in systems with positive
dispersion and “soft”
nonlinearity (α < 0 and
β < 0) of the modified
Boussinesq Eq. (23.14)) in
the plane (ω, k). b The same
is for the plane (ω̃, V )

indicates the possibility for the existence of localized excitations such as envelope
solitons (in dashed areas in Figs. 23.3a, b and 23.4a, b). In the low-amplitude limit,
these solitons represent a “carrier wave” propagating with a velocity close to the
phase velocity of linear waves, in which the amplitude of the envelope moves with a
velocity close to the group velocity of these waves. Solutions for envelope solitons
(or breathers) contain four parameters: carrier wave frequencyω and its wave number
k, the envelope velocity V , and its amplitude a. Two of these four parameters are
independent for two-parameter solitons, for which, for example, the amplitude and
value of the wave vector can be chosen. The difficulty arising in systems with weak
dispersion is related to the fact that only moving breathers are possible in these
systems. To find the approximate solutions for them, it is necessary already at the
first step of the procedure to carry out the expansions in power series in a small
parameter both the shape of a soliton and its two dynamic parameters.

As examples of weakly dispersive media, let us consider elastic media and surface
of a shallow water described by the Boussinesq equation and its modification:

ü − u′′ − α uIV − γ u′u′′ − β u′2u′′ = 0, (23.13)

where the case β = 0 corresponds to the Boussinesq equation (BE), and the case γ =
0 corresponds to the modified Boussinesq equation (mBE), for example, for shear
displacement u in an elastic medium. In dimensionless variables, the sound velocity
in a medium is equal to unity. Note that we use this equation for displacements in a
nonlinear elastic medium, although more often it is written for deformations of solid
mediumor for the height of surface displacements in a shallowwaterw = ∂u/∂x . The
sign of the so-called dispersion term uIV follows from the specific type of interaction
of atoms in the elastic media. With an arbitrary nature of the interaction, this term
can changes the sign. For example, in the case of transverse flexural vibrations of a
rigid chain or plate, the dispersion term in (23.13) has the form +α uIV (Kosevich
and Kovalev 1989).

Equation (23.13) with β = 0 (BE) is completely integrable (Novikov et al. 1984).
In the long-wavelength low-amplitude limit in variables similar to Gardner’s vari-
ables, it reduces to the integrable KdV equation (Gardner et al. 1968). For an arbitrary
sign of the parameters, this KdV equation has only one-parameter soliton solutions
and no breather solutions. The original Eq. (23.13) (BE) with α > 0 admits two-
parameter envelope solitons, but it does not have any breather solutions at α < 0
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(Tajiri and Murakami 1989). Below, we will mainly consider the MBE, since it is
easier to analyze this equation within the framework of asymptotic methods than the
BE. Let us demonstrate the proposed procedure using the example of the mBE or
nonlinear string equation with arbitrary signs of nonlinearity and dispersion:

ü − u′′ − α uIV − β u′2u′′ = 0, (23.14)

where α = ±1 and β = ±1.
Equation (23.14) is not completely integrable and the question of the complete

set of its solutions is open. It can be approximately reduced to the fully integrable
mKdV equation, which admits both one-parameter and two-parameter breather-type
solutions (Kosevich and Kovalev 1989) (see Fig. 23.3c). In Fig. 23.3c, the domain
of two-parameter solitons (breathers) is shaded. The segment of the velocity axis
with V > c = 1 corresponds to one-parameter solitons (S) and antisolitons

(
S
)
. For

the initial Eq. (23.14) only the solutions for linear waves, one-parameter dynamic
solitons (and antisolitons) and nonlinear periodic waves of a stationary profile are
known. Although the mKdV equation, close to (23.14), has the breather solutions,
such exact solutions for themBE itself are unknown.Belowwepropose an asymptotic
procedure for finding approximate solutions of themBE for nonlinear two-parameter
localized excitations of the envelope soliton type in the double-hatched area of the
parameters in Fig. 23.3c.

Linear waves of the type u = a cos(kx − ωt) have the dispersion law of sound-
type ω = k

√
1 − α k2 for the frequency in the laboratory frame of reference

(Fig. 23.3a). For the case α < 0, the spectrum has the Bogoliubov form (Fig. 23.4a).
In long-wave approximation, which was assumed when deriving the evolutionary
partial differential equations, the dependence of the group velocity V = dω/dk on
the wave number is reduced to the expression V ≈ 1 − 3αk2/2, and the dispersion
parameter D = d2ω/dk2 ≈ −3α k. It is convenient to enter the frequency in the
frame of reference moving with group velocity ω̃ = ω − kV ≈ (

1 − V 2
)3/2

/
√
27α

(see Fig. 23.3b).
In addition to these linear waves, only one-parameter solitons with stationary

profile are easily found. The corresponding solution reeds

u = ±2
√
6α/β Arth exp

(√(
V 2 − 1

)
/α(x − V t)

)
. (23.15)

and it has a standard soliton form. In the case of dispersion with α > 0, which is
normal for the theory of elasticity, the “fast” solitons exist only at a “hard” nonlin-
earity with β > 0, and their velocity |V | > 0 (the half-axes

(
SS

)
for solitons S and

antisolitons S in Fig. 23.3b). In the systems with the Bogoliubov spectrum (α < 0),
the “slow” solitons exist at a “soft” nonlinearity with β < 0, and their velocity
|V | < 0 (Fig. 23.4b). The intervals of velocities values, in which one-parameter
solitons exist, are complementary to the regions of group velocities of linear waves.
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The question about the existence of two-parameter envelope solitons is rather
complicated. The following circumstances indicate the possibility for an existence of
such excitations. First of all, it is indicated bymodulation instability of two-parameter
nonlinear waves of a stationary profile with constant amplitude (the so-called cnoidal
waves). Such excitations are described by solutions of the form

u =
√
6α

β
am

(√ (
V 2 − 1

)

α
(
2 − q2

) (x − V t), q

)
− G(x − V t), (23.16)

where the function am(z, q) is the Jacobi elliptic amplitude and q is its modulus,
the constant G is chosen from the condition of vanishing of the total deforma-
tion of the system. In the extremely nonlinear case (q → 1), the solution (23.16)
transforms into the soliton solution (23.15), and at small amplitudes, the solution
u ≈ a cos(kx − ωt) has the form of almost harmonic waves with a “nonlinear
dispersion law.” It is easily to obtain this law in the resonant approximation:

ω2 ≈ k2 − α k4 + β a2k4/4 (23.17)

From the dispersion law (23.17), it follows that under the condition α · β > 0
the inequality J = (

∂2ω/∂k2
)
/
(
∂ω/∂a2

)∣∣
a=0 = −24α/βk2 < 0 is satisfied, and

according to the Lighthill criterion (Whitham 1974) for such combinations of the
parameters α and β signs, the mentioned cnoidal waves (23.16) are modulation
unstable. This fact can lead to the formation of envelope solitons.

In addition, Eq. (23.14) is approximately reduced to the integrable mKdV and
the nonlinear Schrödinger equations, which admit exact solutions in the form of the
envelope solitons (shaded areas in Figs. 23.2 and 23.3c). Indeed, representing the
variable u(x, t) in the form u = a exp(ikx − iωt) + cc and using the variables of
the Gardner type a = ε f , ξ = ε(x − V t) and τ = ε2t , for the value f , we obtain
the nonlinear Schrödinger equation (NLSE) (Zakharov and Shabat 1972):

−2iω0(k) fτ − D(k)k2 fξξ − f + k4| f |2 f = 0. (23.18)

(the commonly used theNLS equation does not contain the term f , which is removed
by the gauge transformation).

The retention of the dependences on the wave number k in the dispersion law
of linear waves ω0(k) and in the dispersion D(k) in this Eq. (23.18) emphasizes
that it is valid for arbitrary values of k, and the approximation is associated with
the first step in ε of the method of multiple time scales. Parameter ε describes the
smallness of the frequency deviation from the linear wave frequencies. In the long-
wave approximationwith k � 1, the soliton solution of Eq. (23.18) gives the solution
for envelope soliton of the original Eq. (23.14) in the form

u =
(
2
√
2ε/k2

)
sech

(
ε(x − V t)/

√
3k

)
cos(kx − ωt). (23.19)
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In the Gardner variables ξ = ε(x − V t) and τ = ε2t and in the same approxima-
tion, the equation for the oscillation of a nonlinear string (23.14) is also reduced to
the modified KdV equation of the form

2uτ − α uξξξ − β u3ξ = 0. (23.20)

As it is known, two-parameter soliton solutions of this equation exist only if
the relation αβ > 0 is satisfied, which corresponds to the condition of modulation
instability of cnoidal waves of the original modified Boussinesq equation. The exact
two-parameter mKdV soliton solution is well known. For α = β = 1 in the initial
field variable, it reads

u = 2
√
6 arctg

λ

μ

sin(μξ − ντ)

chλ(ξ − sτ)
, (23.21)

whereλ =
√(

μ3 − 2ν
)
/3μ and 2s = 3μ2−λ2. In the original variables, the solution

u =
(
2
√
6κ/k

)
sech(κ(x − V t)) cos(kx − ωt) (23.22)

coincides with the expression (23.19). In the limit of small amplitudes (areas with
double shading in Figs. 23.2 and 23.3c) solutions (23.19) and (23.21) correspond
to the first step of the approximate procedure for finding soliton solutions of equa-
tions that are not exactly integrable. Two parameters of the soliton solution κ and
k characterize the spatial size of the soliton envelope and the wave vector of the
carrier wave. The frequency ω (in the laboratory frame of reference) and the soliton
velocity V depend on parameters k and κ as follows: ω = k − αk3/2 + 3βkκ2/2
and V = 1 − 3αk2/2 + βκ2/2. The first of these relations represents the nonlinear
dispersion law similar to relation (23.17).

The following main steps in the method of multiple time scales are rather cumber-
some. In addition, the original equations can be more varied than the ones given
above, and the question remains about the existence of approximate breather solu-
tions for them and the method for finding such the solutions. In many cases, the basic
approximation is not enough, and the development of methods is required to find the
solutions with greater accuracy. Therefore, it is easier to search for soliton solutions
with different orders of the amplitude using the proposed methods of asymptotic
expansions.

The analysis of the asymptotic procedure given above for the systems with strong
dispersion suggests the necessary modernization of the method of asymptotic expan-
sions. We are looking for a soliton solution in the form of a “carrier” traveling wave
with frequency ω and wave number k. Its spatially localized envelope moves with a
constant velocity V . The asymptotic procedure takes into account the smallness of
the amplitude of the solution. However, it does not imply that the group velocity of
the carrier wave Vg is close to the sound velocity and the velocity of the envelope.
As it will be shown below, these velocities differ by values of the order of k2. In this
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case at a small wave amplitude a, the soliton parameters (frequency and velocity)
are close to those for the linear waves with an arbitrary wave number k. Its value is
limited by the condition of long-wave consideration of the initial dynamical system,
but within the framework of differential Eq. (23.14) it is arbitrary. This the soliton
amplitude is the small parameter of the asymptotic expansion rather than the wave
vector k.

The main principle of the proposed asymptotic procedure is the expansion of
the solution in the Fourier series in harmonic functions of the moving phase of the
“carrier wave” ϑ = kx−ωt with the additional expansion of the Fourier coefficients
in a power series in a small parameter associated with the amplitude of the soliton.
The Fourier coefficients depend on their phase (x − V t) moving with a velocity
close to the group velocity of linear waves.

Since the solution is periodic in coordinate and time in the coordinate frame of
reference moving with the velocity of the envelope of a soliton V , we represent it in
the form of the following expansion:

u(x, t) =
∞′∑

n=1

( fn(x − V t) cos n(kx − ωt) + ϕn(x − V t) sin n(kx − ωt)),

(23.23)

where summation, as above, is performed over positive odd integers. After substi-
tuting (23.23) into the original Eq. (23.14), we obtain the following infinite system
of equations:

α fnX X XX − (
V 2 − 1 + 6α n2k2

)
fnX X − n2

(
k2 − ω2 − α n2k4

)
fn

+ 4α nk ϕnX XX + 2n
(
k − ωV − 2α n2k3

)
ϕnX + β Pn = 0, (23.24)

α ϕnX XXX − (
V 2 − 1 + 6α n2k2

)
ϕnX X − n2

(
k2 − ω2 − α n2k4

)
ϕn

− 4α nk fnX XX − 2n
(
k − ωV − 2α n2k3

)
fnX + β Qn = 0, (23.25)

where the quantities Pn and Qn represent the infinite series of the triple products of
functions fn and ϕn and their spatial derivatives. The explicit form of the expressions
for Pn and Qn is given in the Appendix.

The convergence of expansion (23.23) assumes a decreasing of the functions fn
and ϕn with number n. Let us introduce the expansion parameter ε. It is natural to
assume that the parameter ε determines the amplitude of the soliton and the degree
of localization for its envelope. However, now, for a given wave number k, the
parameter ε determines not only the splitting of the soliton frequency ω from the
frequency of linear waves with the same k, i.e., the value ω2 − ω2

0(k) ∼ ε2 with
ω0 ≈ k − αk3/2 (see (23.17)), but also the difference between the soliton velocity
V and the group velocity of linear waves with this specified value of k: V −Vg ∼ ε2

with Vg ≈ 1 − 3αk2/2. (We will verify this statement below). Let us emphasize
the necessity to take into account the dispersion of linear waves (deviation from the
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sound spectrum at finite values of the wave number). In addition, it is necessary to
know the hierarchy of smallness for two sets of the functions fn and ϕn . The form
of the asymptotic expansion varies depending on the choice of ε: the amplitude of
soliton, the amplitude of its fundamental harmonic, the region of localization or the
splitting off for the frequency can be taken as a basis. But this ambiguity is of a
formal nature and leads to a trivial decomposition of the solution parameters. The
choice for ε is convenient and consistent in which it determines the spatial derivatives
of the envelope, i.e., the functions fn and ϕn . For it in the main approximation in
the parameter ε, the nonlinear frequency shift is equal to ω2 − ω2

0(k) = γ ε2, where
γ = ±1 for a different choice of nonlinearity signs in (23.14). In this case in the
linear limit in (23.24, 23.25), the coefficients for f1 and ϕ1 (but not for fn and ϕn

with n > 1) vanish.
The system of Eqs. (23.24, 23.25) is satisfied by the following power expansion

in the small parameter ε:

fn =
∞′∑

s=n

fnsε
s, ϕn =

∞′∑

s=n+1

ϕnsε
s, (23.26)

where the prime denotes the summation through one. Because the dispersion law
of linear waves has the form ω2

0(k) = k2 − α k4, the expansion (23.26) must be
supplemented with an expansion in the small parameter for nonlinear frequency
shift

ω2 = k2 − α k4 + γ ε2 + N4ε
4 + N6ε

6 + · · · , (23.27)

where γ = ±1, depending on dispersion and nonlinearity, and Ns are constants
to be determined. In the linear limit for the group velocity of the waves we have
Vgω0(k) = k − 2α k3; i.e., the coefficients at ϕ1X and f1X in (23.24, 23.25) also
vanish. Therefore, it is necessary to introduce an additional expansion in terms of a
small parameter of the nonlinear shift of the group velocity or parameter:

ω V = k − 2α k3 + ε2M2/2 + ε4M4/2 + · · · (23.28)

(In fact, this is a series representation in terms of ε for the soliton velocity.) In this
case, the quantities k and ε represent the parameters of the soliton solution. The self-
consistency of the asymptotic procedure also requires the smallness of the spatial
derivatives of the amplitudes fn and ϕn . We assume that they depend on coordinates
and time in the form fn = fn(z) and ϕn = ϕn(z) with z = ε(x − V t). Thus, the
spatial characteristics of the envelope and the carrier wave can be considered as the
parameters of the soliton.

The nonlinear terms of Eqs. (23.24, 23.25) are also expanded into series in ε. The
first terms of these series for P1, P3, Q1, and Q3 are given explicitly in the Appendix
(see (23.46–23.49)). Substituting expressions (23.26–23.28) in (23.45–23.48) and
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Eqs. (23.24, 23.25), we get an infinite system of ordinary differential equations for
functions fns , ϕns and coefficients Nn i Mn .

Let us demonstrate the proposed asymptotic procedure using the example of
finding a solution up to the including value ∼ ε4:

u = ε f11 cosϑ + ε2ϕ12 sin ϑ + ε3 f13 cosϑ + ε3 f33 cos 3ϑ

+ ε4ϕ14 sin ϑ + ε4ϕ34 sin 3ϑ, (23.29)

where the phase ϑ is ϑ = kx − ωt . To find the soliton solution with the specified
accuracy, it is necessary to write out the equations determined by the coefficients at
different harmonics cos(nϑ) and sin(nϑ) with different degrees εμ: μ = 3, 4, 5, 6
for six functions f11, f13, f33, ϕ12, ϕ12, ϕ14 and ϕ34. If we take into account that
α2 = 1 and introduce the notations S2 = V 2

g

(
M2/k

(
1 − 2αk2

) − γ /k2
(
1 − αk2

))

and d = V 2 − 1 + 6αk2 ≈α k2
(
3 − 2α k2

)
/
(
1 − α k2

)
, then these equations can be

written in the form

d f ′′
11 − γ f11 + (

βk4/4
)
f 311 = 0, (23.30)

d f ′′
13 − γ f13 − (3β k4/4) f 211 f13 = α f I V11 − S2 f

′′
11 + N4 f11

+ 4αkϕ′′′
12 − M2ϕ

′
12 + βP15( f11, ϕ12, f33; f13 = 0), (23.31)

72α k4 f33 = −(
βk4/4

)
f 311, (23.32)

d ϕ′′
12 − γ ϕ12 − β k4 f 211ϕ12 = 4α k f ′′′

11 + M2 f
′
11 + (

3β k3/2
)
f 211 f

′
11, (23.33)

d ϕ′′
14 − γ ϕ14 − (

β k4/4
)
f 211ϕ14 = αϕ I V

12 − S2ϕ
′′
12 + N4ϕ12 − 4α k f ′′′

13

+ M2 f
′
13 + M4 f

′
11 + β Q16( f11, f13, f33, ϕ12, ϕ34;ϕ14 = 0), (23.34)

72α k4ϕ34 + 96α k3 f ′
33 + β Q34( f11, ϕ12) = 0, (23.35)

where the primes denote the derivatives with respect to the argument z = ε(x − V t).
(Taking into account, the higher powers of the dispersion terms and the higher powers
of the nonlinear terms in the original equation changes only the right-hand sides of
these equations, which is not essential for solving the entire system of equations.)
Equations (23.30–23.35), in addition to the functions of the argument z, contain three
unknown constants N4, M2 and M4, which are found from the condition of the decay
of soliton solutions at infinity. (With our choice of expansions, we have N2 = 1.)
Equation (23.30) is the only nonlinear equation in the system. It determines the main
characteristics of the soliton. The rest of the equations are the second-order linear
differential equations with variable coefficients and with right-hand sides (equations
for the quantities f1n and ϕ1n), and algebraic equations for the remaining quantities
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fmn and ϕmn with m > 1. Differential equations are of the same type and contain
the same nonlinear terms f 211 f1n and f 211ϕ1n with different numerical factors. From
Eq. (23.30), it follows that for normal dispersion (α > 0) solitons exist only for
β > 0, and in this case γ > 0. Those, the soliton frequencies lie above the linear
spectrum in the region of instability of nonlinear waves of a stationary profile with a
constant amplitude. Similarly, forα < 0we have β < 0 and γ < 0. This corresponds
to the results obtained above. A localized solution to Eq. (23.30) is easily found:

f11 =
(
2
√
2/k2

)√
γ /βsech

(√
γ /d(x − V t)ε

)
. (23.36)

Thus, in the main approximation, the soliton solution has the following form (for
simplicity, we put α = β = γ = 1):

u =
(
2
√
2ε/k2

)
sech

(
ε(x − V t)/

√
d
)
cos(kx − ωt), (23.37)

which naturally coincides with the expressions (23.19) and (23.22) obtained above.
(Note that d ≈ 3k2 for small k and κ = ε/

√
3k in (23.22).)

The proposed asymptotic procedure is sufficient to obtain the soliton solutions
with any (power-law) degree of accuracy. Substituting (23.36) into Eq. (23.32), we
find for f33:

f33 = − f 311/288 = −
(√

2/18k6
)
sech3

(
ε(x − V t)/

√
d
)
. (23.38)

From Eq. (23.33), we find the following expression for ϕ12:

ϕ12 = 12
√
2
(
d + 2k2

)

7k3d3/2

sh
(
ε(x − V t)/

√
d
)

ch2
(
ε(x − V t)/

√
d
) (23.39)

and the valueM2(k) = 4k/d(k) for the parameterM2 from the condition of the decay
of the solution ϕ12 at x → ±∞. The solution for f13 of Eq. (23.31) with the known
functions f11, f33, ϕ12 and parameter M2 has the form f13 = AsechZ + Bsech3Z
with Z = ε(x − V t)/

√
d . From the requirement for the absence of a reso-

nant term in the right-hand side of Eq. (23.30), the parameter N4 is determined:
N4(k) = −1/d2(k). Then, from the relation (23.34), the function ϕ34 is found,
and from Eq. (23.34), the function ϕ14 and the coefficient M4 are found. This
completes the construction of the solution accurate to ε4. The nonlinear shifts of
the frequency and velocity of the soliton relative to the corresponding quantities
in the linear wave are determined by the formulas: ω ≈ ω0(k)

(
1 + βε2/2ω2

0

)
and

V ≈ V0(k)
(
1 + βε2/2ω2

0

(
1 − 2k2

)(
3 − 2k2

))
. In the limit of small values of k,

the obtained formulas coincide with the correspondent expressions in the mKdV
approximation (it is necessary to make the replacement ε → κ = ε/

√
3k). From the
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obtained formulas, it follows that the value (ε/k)2 represents the real small param-
eter of the expansion. It follows that as the wave number k decreases, the region of
validity of the obtained solution for low-amplitude envelope solitons narrows (see
shaded areas in Figs. 23.1f and 23.2a).

The proposed asymptotic procedure can also be used to construct the soliton
solutions for multidimensional nonlinear systems. For example, the first steps of
this procedure were used to construct the solutions for soliton excitations in plates
(Kovalev and Sokolova 2010) and for surface solitons (Kovalev et al. 2002).

23.4 Conclusions

In thiswork, the features of the asymptoticmethod for obtaining the solutions for two-
parameter envelope solitons are studied in detail. The method is similar to the variant
of asymptotic expansions in the theory of nonlinear oscillations (A. Poincaré). The
main point is the expansion of the solutions in the Fourier series in terms of periodic
linear waves, followed by the expansion of the amplitudes in a power series in terms
of small deviations of the soliton parameters from the parameters of linear wave
dispersion relation. The conditions for the existence of such excitations are analyzed,
and thismethod is comparedwith other possible approaches to the problem. Themain
attention is paid to the features of the proposed method as applied to the nonlinear
dynamics of weakly dispersive media. The peculiarities of the procedure for finding
the breather solutions are demonstrated with the example of the modified Boussinesq
equation.

Appendix

Explicit expressions for infinite polynomials Pn and Qn are as follows:

Pn =
∞′∑

m=1

(
a2m − b2m + Am�m+n + Bm�m+n

)
/2 +

∞′∑

m=2

(Am+n�m + Bm+n�m)/2

+ (A1�n−1 + A3�n−3 + · · · + An−2�2)/2

− (B1�n−1 + B3�n−3 + · · · + Bn−2ψ2)/2, (23.40)

Qn =
∞′∑

m=1

(
a2m − b2m + Am�m+n − Bm�m+n

)
/2 −

∞′∑

m=2

(Am+n�m − Bm+n�m)/2

+ (A1�n−1 + A3�n−3 + · · · + An−2�2)/2−
(B1�n−1 + B3�n−3 + · · · + Bn−2�2)/2, (23.41)
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where the expansion coefficients of the function ∂u/∂x are denoted by

an = f ′
n + knϕn, bn = ϕ′

n − kn fn, (23.42)

and the expansion coefficients of the second derivative ∂2u/∂x2 are denoted by

An = f ′′
n − k2n2 fn + 2knϕ′

n, Bn = ϕ′′
n − k2n2ϕn − 2kn f ′

n . (23.43)

In addition, the following notation is introduced in formulas (23.40, 23.41):

�n =
n−1′∑

s=1

(asbv−s + bsan−s)/2, (23.44)

�n =
n−1′∑

s=1

(asav−s − bsbn−s)/2 +
∞′∑

s=1

(asas+n + bsbs+n). (23.45)

Taking into account expansions (23.26), formulas (23.40, 23.41) for the first
harmonics can be approximately rewritten in the form of series in powers of ε:

P1 = ε3P13 + ε5P15 + · · · = ε3
(−k4 f 311/4

)

+ ε5
(
k2 f11 f

′2
11 − k4 f11ϕ

2
12 − 9k3 f 211ϕ

′
12

+3k4 f 211 f13 − 3k2 f 211 f
′′
11 + 3k4 f33 f

2
11

)
/4 + · · · (23.46)

P3 = ε3P33 + ε5P35 + · · · = ε3
(
k4 f 311/4

)

+ ε5
(−5k2 f11 f

′2
11 − 3k4 f11ϕ

2
12 − 4k3 f 211ϕ

′
12

+3k4 f 211 f13 − k2 f 211 f
′′
11 − 8k3 f11 f

′
11 + 18k4 f33 f

2
11

)
/4 + · · · (23.47)

Q1 = ε4
(
k4 f 211ϕ12 + 3k3 f 211 f

′
11/2

) + ε6Q16 + · · · , (23.48)

Q3 = ε4
(
3k4 f 211ϕ12/4 + k3 f 211 f

′
11

) + ε6Q36 + · · · . (23.49)
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Chapter 24
Method of Superimposed Meshes
for Solving Nonlinear Dynamic Problems

Volodymyr Martynenko

Abstract The paper presents a theoretical justification and examples of applications
of the previously developed method of superimposed meshes for solving continuous
dynamics problemswith different types of nonlinearities. The proposedmethod aims
to benefit the relevant scientific question of an adequate modeling of anisotropic
nonlinear mechanical properties of solid deformable bodies using finite element
codes since there is no a universal approach to such the modeling at the moment.
Rearranging the Lagrangian functional of a total energy of a deformed body shows
a possibility to apply the method of superimposed meshes to modeling of a full level
of anisotropy of nonlinear mechanical properties when solving dynamic problems.
Consideration of the proposed solution procedure shows that the use of themethod of
superimposed meshes does not affect the problem scale and only influences the post
processing stage.A theoretical schemepresented in the paper allows either the current
tools of commercial finite element codes to be used or user subroutines to be created
in order to implement the method of superimposed meshes. Presented algorithm
indicates a fact that this method extends modeling capabilities of the computer-aided
engineering software and user-created finite element codes.

Keywords Finite element method · Anisotropic viscoelasticity · Nonlinear
dynamics · Method of superimposed meshes · Total energy · Solid deformable
body

24.1 Introduction

Consideration of the nonlinear dynamics of complex solid structures is crucial for
different cases; for example, when there is a need to model the opening contacts
as it was discussed in Rusanov et al. (2018), when the highly nonlinear properties
significantly influence the time andmode of the dynamic rupture, as itwas determined
inMartynenko et al. (2018), or when the nonlinear bearing properties impact the rotor
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dynamics behavior of turbomachines, as it was studied in Martynenko (2016, 2018),
Martynenko and Martynenko (2019, 2020).

When modeling the nonlinear dynamic behavior of composite structural elements
and machines, engineers and scientists face a number of problems related to the
need of taking into account anisotropy of composite physical properties. There is
a sufficiently developed mathematical apparatus for their linear elastic behavior, as
evidenced by Peters (1998), but there is a lack of modeling methods for complex
nonlinear properties such as plasticity, creep, and viscoelasticity.

24.1.1 The Sources of Anisotropy of Polymer Composite
Properties

The dynamic viscoelastic behavior of polymer composites strongly depends on their
microstructure that was shown in Kligman et al. (1981) and Nikkeshi et al. (1998),
and it is also conditioned by the viscous properties of their polymer matrix which
were investigated in Guo et al. 2011; Kosukegawa et al. 2008; Marin et al. 1975. The
anisotropic nature of compositematerials affects their fracture whichwas established
by the explicit dynamics investigations in Radchenko and Radchenko (2012). Luo
et al. 2018 performed a series of experiments and experimentally proved the crucial
influence of the molecular orientation on the dynamic viscoelastic properties of
polymers. Another experimental investigation of the dynamic viscoelastic behavior
of a polymer for different temperatures wasmade in Liu et al. (2014). Free and forced
vibration characteristics of sandwich plates with isotropic skins and viscoelastic core
were determined in Ojha and Dwivedy (2019). The viscoelastic response of a carbon
fiber reinforced polymer composite under the dynamic loading was studied in Zhang
et al. 2007. The curing process also affects the dynamic viscoelastic properties of
polymer composites which were discussed in Kim et al. 2010; Niu et al. 2019.
Another studies of viscoelastic storage and loss moduli were carried out in the paper
(Javidan and Kim 2020).

24.1.2 The Different Degrees of Anisotropy of Elastic
and Viscoelastic Properties

There are several approaches to modeling of anisotropy of viscoelastic properties—
from the ones in which their level of anisotropy is determined by the level of
anisotropy of elastic properties to the general independent models of elastic and
viscoelastic parts discussed in Skrzypek and Ganczarski (2015) and Vinson and
Sierakowski (2006).

The material models in which the level of anisotropy of time-dependent
viscoelastic properties corresponds to the level of anisotropy of elastic ones have
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been widely used for different materials. For example, the work Lif et al. (1998) uses
this model for simulations of the nonstationary response of paper sheets. Liefeith and
Kolling (2007) consider this type of elasticity for its implementation while solving
the explicit dynamics problem of rubber bodies.

However, there are a number of situations where the general degree of anisotropy
should be taken into account. Shu and Onat (1967) first raised a question of the
need for anisotropic viscoelasticity model to solve practical problems and made its
formulation. Taylor et al. (2009) proved the necessity to model anisotropic viscoelas-
ticity for biomechanical problems. Nedjar (2007) presented a method for solving
nonlinear anisotropic viscoelastic models to describe the mechanical behavior of
fibrous composites. Santos et al. (2011) investigated a propagation of waves in
transversally isotropic viscoelastic thin plates when solving elliptic boundary value
problems formulated in a space–frequency domain using the finite element (FE)
Galerkin procedure. Bretin and Wahab (2011) demonstrated an applicability of
Green’s functions to a solutionof an anisotropic viscoelasticmaterialmodel.Hwuand
Chen (2011) applied the finite boundary method to the consideration of anisotropic
viscoelastic plane bodies with defects. Bai and Tsvankin (2016) presented a space–
time finite difference algorithm for modeling of a transversely isotropic body with a
vertical axis of symmetry. Hilton (2012) proposed the fractional derivative approach
to modeling of the full anisotropy of the viscoelastic materials. Nguyen et al. (2007)
developed constitutive models for the anisotropic, finite deformation viscoelastic
behavior of soft fiber-reinforced composites. Kuo and Hwu (2013) discussed the
extended Stroh formalism for the linear anisotropic viscoelasticity modeling. Tzeng
et al. (2012) applied anisotropic a viscoelastic material model to the analysis of the
overwrap cylinders with its experimental validation.

24.1.3 Effects and Methods in Modeling of Nonlinear
Dynamic Anisotropic Viscoelastic Properties

The dynamic viscoelastic properties of polymer composites can be essentially
anisotropic which was shown in Amiri-Rad et al. (2019). They significantly affect
the dissipation power of the material considered in Mika et al. (2019) and damping
properties discussed in Zamani et al. (2015). The role of the nonlinear dynamic
viscoelastic properties in accurate predictions of the solid body mechanics is crucial
when modeling thermoforming processes of thermoplastics determined in Erchiqui
et al. (2005) and loading of asphalt mixtures performed in Zhang et al. (2011).

The anisotropic dynamic viscoelastic material properties can be modeled by
considering the different storage and loss moduli in different directions, as it was
done for a transversally isotropic lamina in Pathan et al. (2017). Another approach
to modeling of the generally anisotropic viscoelastic composite dynamics is the
investigation of wave propagations in the media presented in Castaings and Hosten
(2003); Hernando Quintanilla et al. (2015); Zhu et al. (2020). The dynamic fracture
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of compositematerials can also be estimated by the damage accumulation calculation
which includes the anisotropic viscoelastic model proposed in Nciri et al. (2017).

24.1.4 The Reasons and Benefits of Using the Method
of Superimposed Meshes

As it follows from the literature review, simulations of the nonlinear static and
dynamics problems of the polymer composite mechanics should be performed with
a careful consideration of composite anisotropic elastic and viscoelastic properties.

While the possibility to model the elastic anisotropic properties is widely devel-
oped, the general anisotropy of composite viscoelastic properties not always is taken
into account due to the complexity of the resulting model.

The modern commercial finite element (FE) computer-aided engineering (CAE)
codes provide users with a wide range of possibilities to solve the nonlinear problems
of solid deformable bodies (SDB) of any three-dimensional shape. However, all the
presented commercial FE algorithms cannot take into account any level of anisotropy
of viscoelastic properties when solving nonlinear static and dynamic SDB problems.
To eliminate this, the method of superimposed meshes (MSM) was proposed and
tested using various computational models in Martynenko (2017) for commercial
CAE codes. The necessity of modeling of independent anisotropic properties of
fiber reinforced composites was proved by the numerical (Martynenko and Lvov
2017) and natural (Martynenko et al. 2019) experiments and applied to solving real
problems of composite mechanics in Martynenko et al. (2020). The following paper
shows the possibility to use theMSM for the solution of nonlinear dynamic problems
with material nonlinearities.

24.1.5 The Insight of the MSM

The simplest application of the method of superimposed meshes can be imple-
mented with two identical volumes created in the same place. They are consequently
divided into finite element meshes—each volume with its own properties (elastic
or viscoelastic). Since the algorithm for constructing a finite element (FE) meshes
(mesher)works in the samemanner for identical volumeswith the samefinite element
partitioning settings, the nodes and elements of both grids are spatially identical.
The next step is to merge all the nodes. Thus, the resulting nodes correspond to the
elements of the elastic and viscoelastic groups at the same time, their number after
merging gets twice smaller, and the number of elements remains unchanged. After
this, the combined finite element model will deform together, and each of the layers
of the FE mesh will make its own contribution to the energy potential. This means
that the elements of each group of the material will be in the individual stress state in
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the same displacement field. The resulting stress tensor field of the model is the sum
of the stress tensors for each group of elements. Schematically, the methodology is
shown in Fig. 24.1 (for the simplicity of representation, it deals with flat sheets of
material; however, the concept works for the volumetric domains as well).

It is assumed that the usual viscoelastic model is identical to the combined model,
consisting of layers of elastic and viscoelastic finite element meshes with a corre-
sponding selection of elastic and viscoelastic parameters. Figure 24.2 shows the
portions of elastic and viscoelastic elements in the combined rheological model.

Fig. 24.1 Schematic
representation of the
application of the method of
superimposed meshes to
modeling of anisotropic
viscoelasticity of a square
sheet of material

Fig. 24.2 Rheological model of the combined material connecting its elastic (green) and
viscoelastic (blue) components
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Fig. 24.3 One- and two-dimensional models for checking the correctness of applying the method
of superimposed meshes

Martynenko (2017) considered a series of comparative numerical experiments on
one-dimensional and two-dimensional models as shown in Fig. 24.3 for numerical
confirmation of the proposed methodology which allowed it to be verified.

The current work covers the theoretical basis of the application of the MSM to
solve the nonlinear dynamics problems.

24.2 Formulation of the MSM for the Elasticity Problem

24.2.1 Lagrangian Functional of the Elastic Material

The geometric relations in the three-dimensional Euclidean space with the coordi-
nates x1, x2, x3 can be written as follows:

ε = Du (24.1)

where ε is a strain vector; u is a displacement vector; D is a matrix of differential
operators.

Physical relations for the case of a linear elastic body have the view:

σ = Cε (24.2)
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where σ is a stress vector; C is an elasticity matrix.
Then the Lagrangian functional for a three-dimensional elastic body is written in

the following form:

W =
∫

V

1

2
uT(DTCD)udV −

∫

V

fTudV −
∫

Su

pTudS (24.3)

where W is an elastic deformation energy; V is a volume of the elastic body; Su is
a part of an external surface of the body without deformations; f is a vector of bulk
loads; p is a vector of surface loads.

The displacement vector is approximately represented as a linear superposition of
the product of the nodal displacements of the finite element model and the orthogonal
shape functions:

u = nU (24.4)

where n is a shape function vector; U is a nodal displacement matrix.
Application of the projection (24.4) to the functional (24.3) gives the following:

W =
∫

V

1

2
UT(nTDTCDn)UdV −

∫

V

(fTn)UdV −
∫

Su

(pTn)UdS (24.5)

24.2.2 Subdivision into Several Finite Element Meshes

If to considerM finite element meshes, then each of them will correspond to its own
energy functional:

Wm =
∫

Vm

1

2
UT

m(nTDTCmDn)UmdVm −
∫

Vm

(fTmn)UmdV −
∫

Su m

(pTmn)UmdS (24.6)

where m = 1, …, M; Vm is a volume of the body with the mth FE mesh; Su m is a
free-of-deformation part of the body external surface with the mth FE mesh; Wm is
an elastic deformation energy of themth FEmesh;Um is a nodal displacement matrix
of the mth FE mesh; fm is a bulk load vector of the mth FE mesh; pm is a surface
load vector of the mth FE mesh; Cm is an elasticity matrix of the mth FE mesh.

The generally anisotropic material model can be represented by 21 coefficients of
the stiffness matrix. If to denote the number of nonzero components in the stiffness
matrix with M, then it will be equal to 21 for the generally anisotropic material and
less than 21 for the specific cases of anisotropy (e.g., 9 for orthotropy): M ≤ 21.
To represent the anisotropic nature of the stiffness matrix C, the matrices Cm are
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constructed by the following rules:

[C1]abcd = 0, abcd �= 1111, [C1]1111 = C1111;
[C2]abcd = 0, abcd �= 1122 or 2211, [C2]1122 = [C2]2211 = C1122;
[C3]abcd = 0, abcd �= 1133 or 3311, [C3]1133 = [C3]3311 = C1133;
. . .

[CM ]abcd = 0, abcd �= 1212, [CM ]1212 = C1212. (24.7)

These matrices are positively defined, and their sum exactly coincides with the
original stiffness matrix C since each of the matrices Cm has one or two nonzero
components of the stiffness matrix C:

M∑
m=1

Cm = C (24.8)

The assumption that all the M FE meshes occupy the same volume bounded by
the same surface, which is analogous to creating themeshes on a single volume basis,
leads to simplifications in (24.6):

Vm = V ; Su m = Su (24.9)

24.2.3 Combination of Superimposed Meshes

The requirement that the nodal displacements of all finite element meshes are equal
(which is analogous to merging nodes of the meshes in the finite element code) has
the following form:

U1 = U2 = . . . = Um = . . . = UM = U (24.10)

A sum of all the expressions in system (24.6), taking into account for the
requirements (24.9) and (24.10), is:

M∑
m=1

Wm =
∫

V

1

2
UT

(
nTDT

{
M∑

m=1

Cm

}
Dn

)
UdV

−
∫

V

({
M∑

m=1

fTm

}
n

)
UdV −

∫

Su

({
M∑

m=1

pTm

}
n

)
UdS (24.11)

Incorporating it with the rule (24.8) and considering, that:
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M∑
m=1

fm = f;
M∑

m=1

pm = p (24.12)

delivers an expression:

M∑
m=1

Wm =
∫

V

1

2
UT(nTDTCDn)UdV −

∫

V

(fTn)UdV −
∫

Su

(pTn)UdS (24.13)

If to compare it with the formula (24.5), the following conclusion can be made:

M∑
m=1

Wm = W (24.14)

This means that a sum of the energies of all FEmeshes with merged nodes and the
physical properties described by the matrices Cm is equivalent to the energy of one
FE mesh with the physical properties described by the matrix C. The minimization
of the energy of the combined FEmesh presented in the relation (24.13) is equivalent
to the minimization of the energy of the initial single FE mesh shown in the relation
(24.5). The energy minimization procedure is an initial step of the solution of the
finite element problem in the CAE codes and the equivalence of two minimizations
indicates the equivalence of all further finite element algorithms and results.

24.2.4 Total Stress–Stain State Basing on Stress–Strain
States in Superimposed Meshes

According to the geometric relations (24.1), deformations of eachfinite elementmesh
are identical and determined by the joint displacements εm = ε, and the stresses are
included in the physical relations:

σm = Cmε (24.15)

A sum of all the expressions in the system (24.15) is:

M∑
m=1

σm =
{

M∑
m=1

Cm

}
ε (24.16)

Comparing this relation with the relations (24.8) and (24.2) gives:
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σ =
M∑

m=1

σm (24.17)

Thus, a sum of stress tensors in all the combined finite element meshes described
by the relations (24.15) is equivalent to the stress tensor of the initial single finite
element mesh shown in the physical relation (24.2). On top of that, the resulting
surface and bulk loads are also determined by the sum of such loads on each of the
finite element meshes according to (24.12).

24.2.5 Extension of MSM to Nonlinear Nonstationary
Problems

The functional of the total energy of an elastic body taking into account inertial and
damping forces can be represented in the following form:

W =
∫

V

1

2
uT(DTCD)udV −

∫

V

1

2
uTMüdV −

∫

V

uTBu̇dV −
∫

V

fTudV −
∫

Su

pTudS

(24.18)

where M is a mass matrix; B is a damping matrix; u̇ is a nodal velocity vector; ü is
a nodal acceleration vector.

The procedure of decomposition similar to the relations (24.7) is possible for the
kinetic and dissipation energy terms. Then the resultant mass and damping matrices
for the combined finite element model are written as a sum of similar matrices of
each mesh of the model:

M∑
m=1

Mm = M,

M∑
m=1

Bm = B (24.19)

However, since the mass and damping matrices do not represent the material
anisotropy in most of cases, they can be completely specified for one of the mate-
rials—the first one, for example—and set to zero for the rest of materials:M1 = M,
B1 = B, Mm = 0, Bm = 0, m = 2, …, M. Note that the general view of damping is
considered here. Combination of damping matrices in the case of Rayleigh damping
requires additional proofs but specification of the complete damping andmassmatrix
for one of the materials avoids this problem at least for the mass-dependent damping.

For viscoelastic behavior, the stress dependence is written similarly to the relation
(24.2):



24 Method of Superimposed Meshes for Solving Nonlinear Dynamic … 433

σ =
t∫

0

C(t − ξ)
d

dξ
εdξ (24.20)

Comparison of the expressions (24.3) and (24.20) gives the potential energy of a
viscoelastic body:

W =
∫

V

1

2
uTDT

t∫

0

C(t − ξ)D
d

dξ
udξdV −

∫

V

fTudV −
∫

Su

pTudS (24.21)

The time integral in this relation introduces the necessity of the numerical solution
of the integral equation. Each iteration solves a problem similar to a regular static
problem, but with a matrix C corresponding to a specific point in time. Obviously, it
will not violate the rule (24.8), which in this case looks as follows:

M∑
m=1

Cm(t) = C(t) (24.22)

Combination of Eqs. (24.18) and (24.21) allows total energy for dynamic behavior
to be obtained:

W =
∫

V

1

2
uTDT

t∫

0

C(t − ξ)D
d

dξ
udξdV −

∫

V

1

2
uTMüdV

−
∫

V

uTBu̇dV −
∫

V

fTudV −
∫

Su

pTudS (24.23)

This equation contains material property matrices with the relations (24.19) and
(24.22)which proves an applicability of theMSM to dynamic problemswithmaterial
nonlinearities.

24.3 Calculation Using the MSM

24.3.1 Benchmarking

Obviously, the additional finite elements of the superimposed meshes in comparison
with the original one should increase a computational time. To determine the depen-
dence of computational time on number of materials used in the combined material
model, one-, two-, three-, four-, and five-material meshes were built for the square
finite element model as shown in Fig. 24.3. The end time is 100 s, and the number
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Fig. 24.4 Computational time versus number of materials dependence

of substeps is 200. The elastic properties were modeled for the one material, and
viscoelastic properties were equally distributed among the rest of materials in the
superimposed mesh model.

The solution process was performed using ANSYS Mechanical’s direct solver
using two 8-core Intel Xeon-2620 processors workstation operating at a maximum
core frequency 2.4 GHz and with 128 Gb of RAM. This allowed a solution to be
performed using the in-core memory mode with 16 parallel processes.

Figure 24.4 shows a dependence of a computational time on a number of materials
in the combined material model.

As it follows from the diagram, the computational time increases not significantly
when adding new materials to the combined material model. This is connected with
the fact that the number of nodes and degrees of freedom are not increased by intro-
duction of new superimposed meshed to the model due to merging of all added nodes
with the existing ones. The total system of equations containing nodal displacements
is not increased either and the solution time at each substep remains the same.

The computational time is affected by the additional equations in physical relations
for the new superimposed meshes which matters only for recalculations between two
substeps and is not as heavy procedure in terms of calculation time as the solution of
equations containing nodal displacements. Thereby the proposed technique should
not decrease the solution performance dramatically.

24.3.2 Verification

The verification of the MSM was performed using the model as shown in Fig. 24.5.
The sections of the fiberglass pipeline modeled by a circular shell in a frictional
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Fig. 24.5 Calculation and finite element models of the verification problem (values are in
millimeters)

contact with a steel elastic foundation are fixed in the axial direction and against the
rotation about the axial direction.

The model is under an action of the load in the middle of the section. The value
of load is 2000 N, and it is distributed among several nodes to avoid the singularity
of the point load application. The value of the internal pressure is 105 kPa.

Table 24.1 contains the input ofmaterial properties for the problem. The symmetry
condition is further taken into account in two vertical planes which can be further
observed in the contour plots of the Von Mises stresses—the only quarter of the
initial model is displayed in Fig. 24.6.

The first calculation considers the regular one-material model of the fiberglass
pipeline which incorporates both elastic and viscoelastic properties. The second
calculation uses the two-material model with the merged meshes one of which is
responsible for the fiberglass elastic properties and the second one represents only
time-dependent properties. This simple two-material model was built to fully corre-
spond to the regular finite element model which enables the possibility to perform
further comparison of the results.

Figure 24.6a, b shows contour graphs of the displacement and von Mises equiva-
lent stress fields, respectively, in the construction solved for isotropic viscoelasticity
using the one-material shell model for the final time 100 s. Figure 24.6c, d shows
similar graphs for isotropic viscoelasticity in case of the combined two-material
model. The stress field is averaged for two materials of the shell in this case.

Figure 24.7a, b presents the dependencies of the vertical displacement and von
Mises equivalent stress on time for the location of the point load (black curves) and
point, located in the opposite top end of the pipe (gray curves) for the one-material
case. The same curves for the two-material case are identical to these ones taking
into account the discussed feature of the stress distribution. They are not presented
due to a negligible error which is evaluated in Table 24.2.
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Table 24.1 Calculation and finite element models of the verification problem (values are in
millimeters)

Material Material parameter Designation Value Unit

Steel Elastic modulus Es 2 × 1011 Pa

Poisson’s coefficient νs 0.26 –

Density ρs 7800 kg/m3

Fiberglass Elastic moduli in circumferential and
axial directions

Eθ , Ez 2 × 1010 Pa

Elastic modulus in radial direction Er 8 × 109 Pa

Shear moduli between
circumferential/axial and radial
directions

Grθ , Grz 2.5 × 109 Pa

Shear modulus between circumferential
and axial directions

Gθz 1.5 × 109 Pa

Poisson’s ratio between circumferential
and axial directions

νθz 0.3 –

Poisson’s ratio between circumferential
and radial directions/axial and radial
directions

νθr , νzr 0.75 –

Prony series multipliers a1, a2, a3, a4 0.1, 0.15, 0.2, 0.3 –

Relaxation times τ 1, τ 2, τ 3, τ 4 10, 12, 15, 20 s

Density ρf 2000 kg/m3

This table presents the total displacement values and equivalent stress in the loca-
tion of the point load for the one- and two-material shell models with an evaluation
of errors for the two-material case in comparison with the one-material one.

As it follows from the table and the figures above, the stress error connected with
a use of the proposed combined material model is negligible and comparable with
an engineering accuracy.

Note that this is just a modeling example not intended to represent all the capa-
bilities of the MSM but to verify its adequacy in comparison with the standard finite
element approaches used in the CAE software ANSYS in these case.

The further use of the MSM can then be extended to the anisotropic viscoelastic
properties and dynamic problems, arising for the considered example in case of
pulsations of internal pressure in the pipe.

There is a various range of applications where the nonlinear dynamics problems
of anisotropic viscoelastic composites are relevant but limited by the modeling capa-
bilities of the CAE codes, namely composite blades of fans and turbofans, casings,
plane sheathing.
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Fig. 24.6 Comparison of the results: a total displacement distribution for the one-material shell
model, (m); b vonMises equivalent stress distribution for the one-material shell model, (Pa); c total
displacement distribution for the two one-material shell model, (m); d von Mises equivalent stress
distribution for the two-material shell model, (Pa)

24.4 Conclusions

The paper presented a theoretical justification of themethod of superimposedmeshes.
Consideration of the energy functional of the anisotropic body for the single mesh
and a set of artificially constructed meshes with merged node indicate their equiv-
alence for both static and dynamic problems. This fact proves the identity of the
further solution procedures for single and combined meshes. Since the finite element
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Fig. 24.7 Dependencies on time: a vertical displacement versus time curves; b equivalent stress
versus time curves

Table 24.2 Equivalent stresses and relative error estimations

Case Tot. disp., 10−3 m Stress, 106 Pa Relative error, %

Tot. disp. Stress

One-material
ANSYS test

Elastic 9.251 129.8 – –

Viscoelastic 5.282 31.3 – –

Total 14.533 98.5 – –

Two-material
ANSYS test

Elastic 9.253 130.2 < 0.1 0.3

Viscoelastic 5.325 31.2 0.8 0.3

Total 14.578 99 0.3 0.5

procedures used in the CAE codes are based on the minimization of the energy func-
tional at the first step, the superimposed meshes with merged nodes allow obtaining
the same result as a regular finite element mesh. On top of that, using these meshes
open the opportunities to construct any level of anisotropy of viscoelastic properties
for the solution of dynamic problems of polymer composites which is not available
in the commercial CAE codes by default. This fact allows the MSM to be considered
as an addition to the finite element method.

The proposed method of superimposed meshes allows taking into account the
anisotropic viscoelastic properties of the material in the finite element codes, which
reveals all the possibilities of the solution of two- and three-dimensional viscoelas-
ticity problems, including homogeneous and multilayer shells. The method includes
differences in relaxation kernels and temperature shear functions for different spatial
directions. The MSM, originally designed for CAE FE codes to extend their capa-
bilities in modeling of anisotropic viscoelasticity of materials, is not only practically
but theoretically justified. This allows considering it as a modernization of the FE
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method,which in some cases greatly simplifies algorithms for solving a finite element
problem, especially where it is necessary to set the relaxation matrix of a viscoelastic
or creeping material to make each of matrix components expressed by the hereditary
function generally independent of the others. The presented approach indicates an
applicability of this method to dynamic problems with material nonlinearities that
enhances its capabilities significantly.

The method of superimposed meshes introduces the following benefits:

1. It provides commercial CAE codes with the possibility to solve nonlinear static
and dynamic problems of solid deformable bodies with the general level of
anisotropy of viscoelastic properties which is unavailable option by default.

2. It allows users of the finite element codes, either commercial or individual,
to implement the anisotropic properties of the material without creation of
additional user subroutines or algorithms.

3. Its simplicity in combination with a theoretical justification allows scientists
and engineers to use it not only in scientific, but also in common engineering
purposes for the solution of nonlinear dynamic problems of solid deformable
bodies using the finite element method.

4. Thehighpopularity of thefinite element algorithmsmakes theMSMcompetitive
and easy-to-use in comparison with non-FE procedures developed to solve the
nonlinear problems of anisotropic viscoelastic solid deformable bodies.
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Chapter 25
New Types of Limit Sets in the Dynamic
System “Spherical Pendulum—Electric
Motor”

Aleksandr Shvets and Serhii Donetskyi

Abstract The nonlinear interaction of a spherical pendulum with a source of exci-
tation of its oscillations, an electric motor of limited power, is considered. This
deterministic dynamic system is nonideal in the sense of Sommerfeld–Kononenko.
A number of unusual limit sets of the system, which can be both regular and chaotic,
have been constructed and analyzed. It is shown that the discovered limit sets are
not attractors in the traditional sense of this term. Some scenarios of transitions from
regular limit sets to chaotic ones, as well as scenarios of transitions from chaotic
limit sets of one type to chaotic limit sets of another type are considered.

Keywords Spherical pendulum · Nonideal excitation · Chaotic limit sets ·
Regular limit sets

25.1 Introduction

Various pendulumsystems are classic examples of oscillatory dynamic systems. Such
fundamental effects as parametric resonance (Faraday 1831; Kelvin 1982; Rayleigh
1887), high frequency stabilization of unstable equilibrium positions (Erdeli 1934;
Bogolyubov 1950; Kapitsa 1951; Bogolyubov and Mitropolskii 1961; Mitropol-
skii 1971) and many others were found in pendulum systems. However, interest
in the study of various aspects of dynamic behavior of pendulum systems is mainly
explained by the fact thatmany effects and phenomena firstly discovered in pendulum
systems, subsequently, were discovered for systems of much more complex physical
nature such as rings, shells, plates and various media in cylindrical and spherical cav-
ities. Moreover, dynamic behavior in some more complex vibrational system can be
successfully mathematically described by pendulum models (Miles 1962, 1984a, b;
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Meron and Procaccia 1986; Crawford and Knobloch 1991; Krasnopol’skaya and
Shvets 1994; Ibrahim 2005; Lukovsky 2015; Raynovskyy and Timokha 2021).

In this paper, the oscillations of a spherical pendulum are considered, the suspen-
sion point of which is excited by an electric motor of limited power. Moreover, the
interaction of the oscillatory system (the pendulum itself) and the source of excita-
tion (the electric motor) is fundamentally taken into account. Dynamical systems of
this kind are called nonideal, in the sense of Sommerfeld–Kononenko, or systems
with limited excitation. For the first time, the study of such systems had begun in
the papers of Sommerfeld (1902a, b). And after the publication of the monograph of
Kononenko (1969), the theory of systems with limited excitation had become one of
the important scientific directions in the modern theory of oscillations. The theory of
systems with limited excitation explores the interaction of oscillatory systems with
excitation sources of their oscillations. Within the framework of this theory, it is
assumed that oscillation excitation sources have a power comparable to the power
consumed by the oscillatory load. In this case, operation of energy source depends
on the regime of oscillation load and influence of source cannot be expressed as a
predetermined explicit time function. Whereas in the traditional mathematical mod-
eling of oscillatory systems, idealized sources of excitation of unlimited power are
considered. In many cases, the “ideal” approach is fundamentally wrong, which in
practice leads to gross errors in describing the dynamics for both oscillatory system
and source of excitation.

The discovery of deterministic chaos stimulated the emergence of a new direction
in theory of systems with limited excitation associated with the search for chaotic
modes of interaction of oscillatory systems with sources of excitation. Of particular
interest are those chaotic regimes whose appearance is associated with nonlinear
interaction between the oscillatory system and the excitation source, and not with
their autonomous properties. In publications Krasnopol’skaya and Shvets (1992),
Shvets (2007), Shvets and Makaseyev (2019), the occurrence of chaotic steady-state
regimes in a number of deterministic nonideal pendulum systems was described.
In these systems, chaos is fundamentally impossible without taking into account
the interaction between the pendulum system and the source of excitation of its
oscillations.

25.2 Equations of Motion of Spherical Pendulum
with the Limited Exitation

Suppose that the oscillations of a physical spherical pendulum are excited by an elec-
tric motor of limited power. The pendulum is excited through the crank mechanism.
Moreover, it is assumed that the point of suspension of the pendulummoves vertically
and pendulum can perform spatial oscillations. The case of parametric resonance in
the system is considered, at which the speed of rotation of the electric motor shaft
is close to the doubled eigenfrequency of the pendulum. In papers Krasnopol’skaya
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and Shvets (1992), Shvets (2007), the equations of motion of the dynamic system
“spherical pendulum—electric motor” were derived, which have the form

dy1
dτ

= Cy1 −
[
y3 + 1

8
(y21 + y22 + y24 + y25)

]
y2 − 3

4
(y1y5 − y2y4)y4 + 2y2,

dy2
dτ

= Cy2 +
[
y3 + 1

8
(y21 + y22 + y24 + y25)

]
y1 − 3

4
(y1y5 − y2y4)y5 + 2y1,

dy3
dτ

= D(y1y2 + y4y5) + Ey3 + F,

dy4
dτ

= Cy4 −
[
y3 + 1

8
(y21 + y22 + y24 + y25)

]
y5 + 3

4
(y1y5 − y2y4)y1 + 2y5,

dy5
dτ

= Cy5 +
[
y3 + 1

8
(y21 + y22 + y24 + y25)

]
y4 + 3

4
(y1y5 − y2y4)y2 + 2y4.

(25.1)

Here, y1, y2, y4, y5 is the phase coordinates of the system, which determine the posi-
tion of the pendulum, and y3 is the phase coordinate proportional to the speed of
rotation of the motor shaft. The independent variable t is time. The system parame-
ters that denoted byC,D,E,F dependon the reduced length of pendulum, the driving
moment of the electric motor, internal moment of forces of resistance to rotation of
rotor of electric motor, eigenfrequency of the pendulum, coefficient damping the
resistance force of the medium in which the pendulummoves, angle of inclination of
the static characteristic of electric motor, geometric parameters of the crank mech-
anism and so on. A detailed description of the parameters of the system (25.1) is
given in Krasnopol’skaya and Shvets (1992), Shvets (2007).

The resulting system of differential equations describes a complex process of
interaction of the rotation of the motor shaft (formation exciting force) and spatial
oscillations of the pendulum. This system of Eq. (25.1) is nonlinear. It is impossible
to write down the exact solution of this system in the form of an analytical formula.

Themain aimof the research is construction and study of the possible types of limit
sets of the system (25.1). Since this system is a rather complex nonlinear system of
equations, then for constructing its limit sets, a whole complex of numerical methods
and algorithmswere used. The technique for carrying out such numerical calculations
for systems with limited excitation is described in Shvets (2007), Krasnopol’skaya
and Shvets (1994, 2009). We emphasize that we have created our own complex of
computer programs for carrying out numerical studies on the regular and chaotic
dynamics of such systems.

25.3 Results of Numerical Constructions of Limit Sets

Let us start by studying equilibrium positions. All equilibrium positions can be found
by solving the system of equations, which is obtained by equalizing the right-hand
side of Eq. (25.1) to zero. It can easily be verified that one of equilibrium positions
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has the form

y1 = 0, y2 = 0, y3 = −F

E
, y4 = 0, y5 = 0. (25.2)

This equilibrium position is unique in the sense that it is isolated from other equi-
librium positions, i.e., there is neighborhood of this equilibrium position such that
it does not contain any other equilibrium. To study stability of this equilibrium, we
must study its characteristic equation which has the form

(
λ − C −

√
4E2 − F2

E

)2

(λ − E)

(
λ − C +

√
4E2 − F2

E

)2

= 0.

Therefore, the equilibrium position (25.2) will be asymptotically stable under the
conditions

C < 0 ∧ E < 0 ∧ C2 > 4 − E2

F2
. (25.3)

Finding the rest equilibrium positions of (25.1) analytically can be cumbersome,
so it can be done using various numerical methods, for example, by Newtone’s one.
Thus, it can be numerically verified that for

C = −0.5,D = −2.6,E = −0.45,F = 0.5 (25.4)

the rest of equilibrium positions belong to one family, which has the form

y+ = (0.85
√
6.97 − 86z2, 0.11

√
6.97 − 86z2,−2.57, 7.87z, z)

y− = (−0.85
√
6.97 − 86z2,−0.11

√
6.97 − 86z2,−2.57, 7.87z, z)

z ∈ R (25.5)

when {y+, y−} ⊂ R
5.

This family consists of infinitely many equilibrium positions that form some
closed line in the phase space. None of the equilibrium positions of this family is iso-
lated one. Due to this, none equilibriums of the family can possibly be asymptotically
stable. But instead, the whole family can exhibit attractor properties. That is, there
are values of parameters such that almost any trajectory tends to some equilibrium
position that belongs to family. And it is the case for values of parameters (25.4).

In addition, it is worth noting that every single representative has exactly the
same Lyapunov’s characteristic exponent (LCE), the signature of which has the form
< “0”, “ − ”, “ − ”, “ − ”, “ − ” >. This pushes us to think of family as awhole. This
can be somewhat achieved by a concept of maximal attractor, which we will discuss
further.

In Fig. 25.1, family of equilibrium positions that attract to itself all nearby trajec-
tories is presented in the form of a closed line plotted in black along with isolated
equilibrium in the form of a single dot plotted in black. To demonstrate that family
has attraction properties, two trajectories that tend to two different representatives of
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Fig. 25.1 Attractive family
of equilibrium positions
(closed line in black) and
few trajectories that tend to
its representatives (in red and
blue); isolated equilibrium
position (single dot in black)
at C = −0.5,D =
−2.6,E = −0.45,F = 0.5

the family are presented in red and blue. It follows from the conditions (25.3) that
the isolated equilibrium is unstable.

Besides the family that exhibit attractor properties, there exist families of non-
isolated equilibrium positions that do not. It means that any trajectory moves away
from such family. In either case, it makes sense to talk about stability of the family
as a whole, not stability of family representatives themselves. Since, as it was said,
nonisolated equilibriums can not be asymptotically stable.

Consider another values of parameters

C = −0.5,D = −1,E = −1.4,F = 0.5. (25.6)

For this values of parameters, family of equilibrium positions has the form

y+ = (0.063
√
174.078 − 4z2, 0.5

√
174.078 − 4z2,−3.59, 0.127z, z)

y− = (−0.063
√
174.078 − 4z2,−0.5

√
174.078 − 4z2,−3.59, 0.127z, z)

z ∈ R

(25.7)
when {y+, y−} ⊂ R

5.
Analogically to the previous family, every single representative of this one has

exactly the same value of LCE, the signature of which has the form < “ + ”, “ +
”, “0”, “ − ”, “ − ” >. Therefore, this family is unstable.

All equilibrium positions of the system (25.1) are plotted in Fig. 25.2
Next, we define and analyze the divergence (∇) of the vector field generated by

the right-hand side of the system (25.1). Divergence can be written as
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Fig. 25.2 Equilibrium
positions of the system
(25.1) at C = −0.5,D =
−1,E = −1.4,F = 0.5

∇ = C − 1

4
(y1y2 + 3y4y5) + C + 1

4
(y1y2 + 3y4y5) + E

+ C − 1

4
(3y1y2 + y4y5) + C + 1

4
(3y1y2 + y4y5) = 4C + E.

Therefore, condition of dissipativity will look as follows

∇ = 4C + E < 0. (25.8)

And, this is true due to the physical sense of quantities included in formula (25.8).
Since C (coefficient of resistance of the medium) and E (angle of inclination of
the static characteristic of electric motor) are always negative. This means that the
system is always dissipative, in particular for all considered values of parameters.

In the spaceof parameters of the system (25.1), there exist sufficiently large regions
in which all equilibrium positions become unstable. As all equilibrium positions of a
compact family that are everywhere densely located on a certain curve, as the isolated
equilibrium position (0, 0,−F/E, 0, 0) will be unstable.

Since the system (25.1) is dissipative, in the regions of instability of all equilibrium
positions limit sets of other types arise. Such sets can be both regular and chaotic.
Moreover, these sets form new families of limit sets and are not attractors in the tradi-
tional sense of this term.Let us consider someexamples of such families. Suppose that
the parameters of the systemare equal:C = −0.5,D = −1,E = −1.4,F = 0.5. For
such values of the parameters, a very unusual limit set arises in the system. This set
consists of an infinite number of closed trajectories. None of the trajectories is iso-
lated one. However, they do not intersect and do not have tangent points. Periodic
solutions of the system of Eq. (25.1) correspond to each trajectory. That is, these tra-
jectories form a family of cycles. All of these cycles exist simultaneously. Moreover,
since these cycles are not isolated in the phase space, none of the cycles is a limit
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Fig. 25.3 Five
representatives of maximal
regular attractor

cycle. All cycles have the same periods, the same spectrum of Lyapunov’s charac-
teristic exponents, and the same finite number of fixed points in Poincare sections.
In the phase space of the system (25.1), there is a sufficiently large region such that
almost all trajectories starting from this region in limit (t → +∞) tend to one of the
cycles of the family.

In Fig. 25.3, the projections of the phase portrait of such a limit set are shown.
Each cycle is plotted in different color. Total of five cycles are shown, each of which
is representative of the infinite family of cycles. We also emphasize that such limit
sets are not attractors in the traditional sense of this term.

In our opinion, the most suitable term for describing such family is the concept
of maximal attractor. Following (Milnor 1985; Kuznetsov 2006; Anischenko and
Vadivasova 2011; Sharkovsky 2013), we define the maximal attractor.

Definition of maximal attractor. Let the dynamical system be given by the evo-
lution operator T τ : Rn → Rn and let U be the absorbing domain in Rn, that is for U
the condition holds:

T τU ⊂ U, τ > 0.

The maximal attractor Amax in the absorbing region U is the set

Amax =
⋂
τ>0

T τU.

We call some invariant set A the attractor of a dynamical system if there is an
absorbing domain for which A is the maximal attractor. Basins of attraction of the
attractor A is called the set B, so that all trajectories from B go to A at t → +∞.
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Fig. 25.4 Phase-parametric
characteristic of the system

Thus, in accordance with this definition, both the family of equilibrium positions
and the family of cycles are the maximal attractors of the system “pendulum-electric
motor.”

With increasing parameter E, the rearrangement of the types of limit sets occurs
in the system, which leads to the emergence of a chaotic limit set of very unusual
structure. For a detailed study of this process, we construct a phase-parametric char-
acteristic (“bifurcation tree”) of the system (25.1).

In Fig. 25.4, such a tree is constructed with respect to the phase variable y2 and the
parameter E. Note that bifurcation trees with respect to other phase variables have a
qualitatively similar structure. We also emphasize that this tree is built relative to one
of the representatives of the maximal attractor. However, for any other representative
of the maximal attractor, such structure remains qualitatively unchanged and only
the quantitative scale factor might change. In Fig. 25.4, separate branches of the
“bifurcation tree” and their branch points are clearly visible. In the intervals of
changing of the parameterE corresponding to individual branches of the “bifurcation
tree,” the limit sets of the system (25.1) will be families of cycles. In turn, chaotic
limit sets correspond to densely black sections of the “bifurcation tree.”

In Fig. 25.5, one of such chaotic limit sets is constructed. The arising family
includes an infinite number of chaotic trajectories. It is known that the chaotic attrac-
tor in “classical” consists of an infinite number of unstable trajectories. The resulting
family, at first glance, is an union of an infinite number of chaotic attractors. How-
ever, each representative of this family is not an attractor in the “classical” sense.
Such chaotic family can be classified as the chaotic maximal attractor. One of the
main signs of the emergence of deterministic chaos is the appearance of a positive
Lyapunov’s exponent. All trajectories of the chaotic maximal attractor have the same
Lyapunov’s characteristic exponents, including positive one. The signature of such
a spectrum is: “ + ”, “0”, “0”, “ − ”, “ − ”. We emphasize that the sum of all Lya-
punov’s exponents will always be negative. The Poincare sections of each trajectory
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Fig. 25.5 Five
representatives of maximal
chaotic attractor

of the family are structurally similar chaotic sets consisting of an infinite number
of points. Each representative of the chaotic maximal attractor is plotted in its own
color. In total, there are five chaotic trajectories of the family are presented.

25.4 Scenarios of Transitions Between Limit Sets
of Various Types

Despite the fact that maximal attractors are not attractors in the traditional sense of
this term, the transition from regular maximal attractors to chaotic ones can occur
in accordance with the main scenarios of chaotic dynamics, for example, according
to Feigebaum’s scenario through a cascade of bifurcations of doubling the cycle
period (Feigenbaum 1978, 1979) and according to theManneville–Pomeau scenario
through intermittency (Manneville and Pomeau 1980) and according to various sce-
narios of generalized intermittency (Krasnopol’skaya and Shvets 1994, 2009; Shvets
and Sirenko 2019; Shvets and Donetskyi 2019).

The constructed phase-parametric characteristic (Fig. 25.4) allows us to under-
stand the implementation of such scenarios. When the value of the parameter E
increases, the branch points of the bifurcation tree are clearly visible on the left side
of Fig. 25.4. Such branch points are period-doubling bifurcation points. At the same
value of the bifurcation parameter, the period of all cycles, that form the maximal
attractor, is doubled. Then, at the next bifurcation point, the period of all cycles of
the maximal attractor is again doubled and so on. This endless process of period-
doubling bifurcations ends with the emergence of a chaotic maximal attractor. That
is, the transition from a periodic limit set to a chaotic limit set is realized according
to the classical Feigenbaum’s scenario.
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Fig. 25.6 Fragment of phase-parametric characteristic of the system

Figure 25.6 shows a fragment of the phase-parameter characteristic of the system.
This fragment clearly shows a large “periodicity window” (−1.295 < E < −1.292)
at the exit from which a transition to chaos occurs for one rigid bifurcation through
intermittency. That is, the Manneville–Pomeau’s scenario is being implemented.
When leaving the “periodicity window” in the direction of increasing the parameter
E, a cascade of bifurcations of doubling the cycle period begins, which ends with
the appearance of a chaotic maximal attractor. Then at E ≈ −1.2086, there is a
transition from the chaotic maximal attractor of one type to the chaotic maximal
attractor of another type according to the scenario of generalized intermittency. This
scenario is described in papers Krasnopol’skaya and Shvets (1994, 2009), Shvets and
Sirenko (2019). Let us dwell in more detail on the implementation of the generalized
intermittency scenario.

In Fig. 25.7a, the distribution of the invariant measure over the phase portrait
projection of the representative of the chaotic maximal attractor of the system is
shown. This chaotic maximal attractor appears as a result of an infinite cascade of
period doubling of cycles at E ≈ −1.209. At E = −1.20857, this maximal attractor
disappears and chaotic maximal attractor of new type is born in the system. The
distribution of the invariant measure over the projection of the phase portrait of the
representative of the new chaotic maximal attractor is shown in Fig. 25.7b. The tran-
sition from one type of chaotic maximal attractor to the chaotic maximal attractor
of another type occurs according to the scenario of generalized intermittency, which
was described for attractors in the traditional sense of this term. At such transition,
the scenario of generalized intermittency is simultaneously fulfilled for all represen-
tatives of both chaotic maximal attractors. For each representative of the new chaotic
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Fig. 25.7 Distribution of invariant measure at: E = −1.209 (a); E = −1.20857 (b)

maximal attractor, the motion along the trajectory consists of two alternating phases,
namely rough-laminar phase and turbulent phase. In the rough-laminar phase, the
trajectory makes chaotic movements in the neighborhood of the trajectories of the
representative of the disappeared chaoticmaximal attractor. Then, at an unpredictable
moment of time, the trajectory leaves the localization region of the representative of
the disappeared maximal attractor and moves to distant regions of the phase space.
Rough-laminar phase corresponds to the much blacker areas in Fig. 25.7b. These
areas from Fig. 25.7b are nearly the same as the distribution of the invariant mea-
sure from Fig. 25.7a. In turn, turbulent phase corresponds to much less darkened
areas in Fig. 25.7b. After some time, the movement of the trajectory returns to the
rough-laminar phase again. Then, trajectories switch to turbulent phase again. Such
transitions are repeated an infinite number of times. Note that the duration of both
rough-laminar and turbulent phases is unpredictable as are the moments of times of
transition from one phase to another.

25.5 Conclusion

In the dynamic system, “spherical pendulum—electric motor of limited power” fam-
ilies of limit sets (maximal attractors) have been found, which can be both regular
and chaotic. Despite the fact that maximal attractors are not attractors in the tra-
ditional sense of this term, it is shown that the transition from one type of maxi-
mal attractor to another occurs according to scenarios inherent in such transitions
for ordinary attractors. In particular, the possibility of transition between maximal
attractors of different types was established according to the scenarios of Feigen-
baum, Manneville–Pomeau and through generalized intermittency. It was found that
the only traditional attractor of the system is the equilibrium position (25.2).
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Chapter 26
Exact Solutions to the Four-Component
Merola–Ragnisco–Tu Lattice Equations

Aleksandr I. Zemlyanukhin, Andrey V. Bochkarev,
and Aleksandr V. Ratushny

Abstract We construct a class of exact kink solutions of integrable four-component
Merola–Ragnisco–Tu lattice equations. To this aim, a modification of the geometric
seriesmethod adapted for differential-difference equations (DDE) is used. Algorithm
involves the analysis of a sequence of linear ordinary differential equations (ODEs)
with the same structure of homogeneous parts. Sequence of the ODE solutions forms
a geometric progression, the sum of which is found using the Padé approximants and
gives the exact solution to the lattice equations. The geometricity of the constructed
series can be considered as a new simple and easily verified integrability criterion
for DDE. The proposed approach is much simpler than existing method that requires
the construction of Darboux–Bäcklund transformations of discrete Lax pairs. The
accuracy of the approach is confirmed by direct numerical simulation, in which the
exact solution found is used as initial condition for the integration of the lattice
equations by the high-order Runge–Kutta method.

Keywords Differential-difference equation · Geometric series method · Exact
solution · Padé approximant

26.1 Introduction

Currently, complicated discrete systems arising in physics, engineering, biology, etc.,
have attracted interest from researchers. For modeling processes in discrete systems,
nonlinear differential-difference equations (DDE) and systems of such equations are
often used (Cooke 1963). The list of analytically solvable nonlinear DDE contains
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only integrable models, while non-integrable systems appear most often in applica-
tions. The main methods for analyzing non-integrable systems are continualization,
which leads to adequate results only in the long-wave approximation, and numerical
simulation. A canonical example here is a non-integrable Fermi-Pasta-Ulam lattice,
which, upon continualization, transforms into the Korteweg-de Vries equation and
its higher order generalizations.

One of the common methods for constructing exact solutions to nonlinear DDE is
based on the application of Darboux transformation (Xu 2015). The solution process
consists of several steps. First, the Lax representation of the equation is found, and
then the Darboux transformation is performed. The result is Bäcklund transforma-
tions, which are used to generate exact solutions (Kudryashov 2010). The first step
of the method is often used to prove integrability of solved DDE. Unfortunately,
there is currently no general method for finding the Lax representation for a given
equation. Also, to build exact solutions, inverse scattering method (Ablowitz 1975),
Hirota method (Silindir 2012), Riemann theta functions (Krichever 1998), Casorati
determinant (Ohta 1991), Pfaffian (Tsujimoto 1996) representations methods, along
with methods of hyperbolic tangents (Baldwin 2004), truncated expansions (Ryabov
2010) and geometric series (Bochkarev 2017; Zemlyanukhin 2020; Andrianov et al.
2020) are used. Despite the large number of methods, exact solutions have not been
found even for all integrable equations.

The purpose aimof this article is exact solution of the four-field integrableMerola–
Ragnisco–Tu lattice (Merola et al. 1994). This lattice arose as one of the differen-
tial–difference versions of the Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy
(Merola et al. 1994). As is known, the most important integrable models can be
obtained from this hierarchy, including the sine-Gordon, KdV and the nonlinear
Schrödinger equation. We also provided numerical simulations to verify that the
found traveling wave solutions retain their shape unchanged. The article is organized
as follows. In the first section, the instability of constant solutions of a two-component
subsystem of the original lattice is established. In the second section, this subsystem
is continualized. The exact solution and the numerical simulation of the original
four-field lattice are carried out in the third section. The fourth section shows how
different branches of the exact solution can be combined to build a new solution of
a more complex shape. Finally, the last section presents the concluding remarks.

26.2 Linear Stability Analysis of Constant Solutions

The Merola–Ragnisco–Tu system (Merola et al. 1994) consists of 4 DDEs

(rn)
′
t = rn+1 − r2n sn, (26.1)

(sn)
′
t = rns

2
n − sn−1, (26.2)
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(un)
′
t = −rn+1 + r2n sn + un+1 − 2rnsnun − r2nwn, (26.3)

(wn)
′
t = −rns

2
n + sn−1 − wn−1 + 2rnsnwn + s2nun. (26.4)

Equations (26.1) and (26.2) form an independent system for variables rn(t) and
sn(t), called two-component Ragnisco–Tu system (Liu 2011). This system has trivial
and constant nonzero solutions

sn = rn = 0, (26.5)

sn = 1

rn
. (26.6)

It is known (Khanizadeh et al. 2013) that there is a reversible transformation
connecting the Ragnisco–Tu system with the nonlinear Schrödinger equation (Adler
1994), which is traditionally used to model the evolution of weakly modulated
harmonic waves in continuous media with weak nonlinearity and strong dispersion.
In a recent paper (Wang 2020), it was shown that an explicit one-wave solution of
the Ragnisco–Tu system is unstable, and a two-wave solution retains only the phase
shift, but not the waveform after interaction.

Let us show that constant solutions (26.5) and (26.6) is unstable under small
periodic perturbations. Substituting

rn = εRn(t), sn = εSn(t) (26.7)

into Eqs. (26.1) and (26.2), in the leading order with respect to the small parameter
ε we have

R′
n = Rn+1,

S′
n = −Sn−1.

(26.8)

System (26.8) have solution Rn(t) = exp[i(dn + ωRt)], Sn(t) =
exp[i(dn + ωSt)], where

ωR = −i exp(id), ωS = i exp(−id). (26.9)

The imaginary parts Im(ωR) = − cos d, Im(ωS) = cos d of frequencies (26.9)
have opposite signs, therefore, an exponential increase in time of the amplitude of
small perturbations will be observed for any values of d, d �= π

2 + πk.
Substituting

rn = R0 + εRn(t), sn = R−1
0 + εSn(t) (26.10)
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into Eqs. (26.1) and (26.2), in the leading order with respect to ε we have system

R′
n = Rn+1 − R2

0Sn − 2Rn,

S′
n = 2Sn + R−2

0 Rn − Sn−1, (26.11)

which reduces to the equation

R′′
n − R′

n+1 + R′
n−1 + 2Rn+1 − 4Rn + 2Rn−1 = 0. (26.12)

Equation (26.12) has periodic solution Rn(t) = exp[i(dn + ωt)] under condition

ω = − i

2

(
eid − e−id

) ± 1

2

(
8eid + 8e−id − e2id − e−2id − 14

)1/2

= sin d ±
√
4 cos d − cos2 d − 3. (26.13)

For any values of d, d �= 2πk, the frequency (26.13) has a nonzero imaginary
part, which is responsible for the growth of the amplitude of small perturbations. The
maximum growth rate is achieved under condition d = π +2πk, which corresponds
to the initial perturbation of the sawtooth profile Rn(0) = ± exp[iπn] = ±(−1)n .

26.3 Continualization

Let us analyze the behavior of solutions of system (26.1), (26.2) in the long-
wavelength limit when the distance h between adjacent lattice nodes tends to zero.
Let us introduce the continuous coordinate z scaled in such a way that z = nh at the
nodes of the lattice. We assume that rn(t), sn(t) are discrete approximations to a pair
of continuous functions r = r(z, t), s = s(z, t), i.e.,

rn(t) = r(nh, t), sn(t) = s(nh, t) (26.14)

and replace them in (26.1), (26.2) with the corresponding Taylor series expansions

rn(t) = r, sn(t) = s,

rn±1(t) = r ± h
∂r

∂z
+ h2

2

∂2r

∂z2
± h3

6

∂3r

∂z3
+ O

(
h4

)
,

sn±1(t) = s ± h
∂s

∂z
+ h2

2

∂2s

∂z2
± h3

6

∂3s

∂z3
+ O

(
h4

)
, (26.15)

to obtain

∂r

∂t
= r − r2s + h

∂r

∂z
+ h2

2

∂2r

∂z2
+ h3

6

∂3r

∂z3
+ O

(
h4

)
,
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∂s

∂t
= −s + rs2 + h

∂s

∂z
− h2

2

∂2s

∂z2
+ h3

6

∂3s

∂z3
+ O

(
h4

)
. (26.16)

Eliminating variable s from system (26.16), we write

(
∂r

∂t

)2

− r
∂2r

∂t2
+ 2h

(
r

∂2r

∂t∂z
− ∂r

∂t

∂r

∂z

)

+ h2
((

∂r

∂t
− 2r

)
∂2r

∂z2
+ 2

∂r

∂z

∂2r

∂t∂z
+

(
2 − 3

r

∂r

∂t

)(
∂r

∂z

)2
)

+ O
(
h3

) = 0.

(26.17)

In the main order, we have equation

(
∂r

∂t

)2

− r
∂2r

∂t2
= 0, (26.18)

solution of which

r = F2 exp(F1t) (26.19)

contains two arbitrary functions F1 = F1(z) and F2 = F2(z). Substituting (26.19)
in the next order in h:

r
∂2r

∂t∂z
− ∂r

∂t

∂r

∂z
= 0, (26.20)

we have equation

exp(4F1t)F
4
2 F

′
1 = 0 (26.21)

with nonzero solution

F1 = C = const. (26.22)

Finally, using (26.19) and (26.22) in the equation corresponding to order of h2:

(
2r − ∂r

∂t

)
r2

∂2r

∂z2
− 2

∂r

∂z
r2

∂2r

∂t∂z
−

(
2r − 3

∂r

∂t

)
r

(
∂r

∂z

)2

= 0, (26.23)

we obtain

F2
2 exp(4F1t)(F1 − 2)

[
F2F

′′
2 − (

F ′
2

)2] = 0. (26.24)

The last equation has two nonzero solutions
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[
F1 = 2,

F2 = C1 exp(C2z).
(26.25)

It is easy to verify that the equation corresponding to order of h3 is identically
satisfied by substituting the solutions (26.19) and (26.25) into it.

The first of solutions (26.25) leads to exponential growth in time of solution
(26.19) for any nonzero function F2(z). The second solution is unbounded in the
spatial coordinate and is not applicable to both an infinite lattice and a finite lattice
with periodic boundary conditions. Thus, a direct transition to continuous equations
without preliminary scaling of the dependent and independent variables does not
allow to obtain physically meaningful solution of the lattice.

26.4 Exact Solution to the System

A complete four-field integrable Merola–Ragnisco–Tu lattice can be regarded as
a first-order perturbation of a two-component Ragnisco–Tu system (Xu 2010).
To construct exact solutions, we use the modified geometric series method
(Zemlyanukhin 2020; Andrianov et al. 2020) previously proposed by the authors
for nonlinear PDEs (Bochkarev 2017). The idea of the method can be explained as
follows. The linearized lattice equations have a solution in the form of an exponential
function of a traveling wave variable. The solution to the original nonlinear equa-
tions is sought in the form of a series in powers of this exponential solution. Having
determined the first few coefficients of this series, we require that the corresponding
terms of the series form a geometric progression. The last requirement is equivalent
to the coincidence of the successive diagonal Padé approximants calculated for the
series (Baker and Graves-Morris 1996). The sum of the geometric progression gives
an exact solution to the original nonlinear lattice equations.

A remarkable feature is that for all integrable lattices known to the authors, a
geometric series in powers of the exponential function can be obtained, and the sum
of the series gives exact solution (Zemlyanukhin 2021). Thus, the geometricity of the
constructed series can be considered as a new simple and easily verified integrability
criterion for DDE.

In the system (26.1)–(26.4) we pass to the traveling wave variable z = dn + ωt :

−ωr ′ + r+ − r2s = 0, (26.26)

−ωs ′ + rs2 − s− = 0, (26.27)

−ωu′ − r+ + r2s + u+ − 2rsu − r2w = 0, (26.28)

−ωw′ − rs2 + s− − w− + 2rsw + s2u = 0, (26.29)
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where r = r(z), r+ = r(z + d), s− = s(z − d) and so on. Noting that Eqs. (26.26)
and (26.27) can be solved separately, we make substitutions

r =
∞∑

n=0

Rne
nz, s =

∞∑

n=0

Sne
nz, (26.30)

r+ =
∞∑

n=0

Rnδ
nenz, s− =

∞∑

n=0

Snδ
−nenz, (26.31)

where Rn, Sn are required coefficients and δ = ed . Equating to zero the coefficients
in the resulting equations at enz, n = 0, 1, 2, . . ., we find

n = 0 : S0 = R−1
0 ;

n = 1 : ω = −X + δ − 2, S1 = XR1/R2
0;

n = 2 : R2 = (Xδ + 1)R2
1/

[
2(δ − 1)2R0

]
,

S2 = δ
[
X

(
δ2 − 4δ + 2

) − δ
]
R2
1/

[
2(δ − 1)2R3

0

];
n = 3 : R3 = [Xδ(δ − 3) − δ − 1]R3

1/
[
4(δ − 1)3R2

0

]
,

S3 = δ2
[
X(δ − 2)

(
δ2 − 5δ + 2

) − δ(δ − 3)
]
R3
1/

[
4(δ − 1)3R4

0

];
n = 4 : R4 = [

Xδ
(
δ2 − 6δ + 7

) − δ2 + 2δ + 1
]
R4
1/

[
8(δ − 1)4R3

0

]
,

S4 = δ3
[
X

(
δ4 − 10δ3 + 31δ2 − 32δ + 8

) − δ
(
δ2 − 6δ + 7

)]

R4
1/

[
8(δ − 1)4R5

0

];
. . .

(26.32)

where X = −1 + δ−1
2δ

(
δ − 1 ± √

δ2 − 6δ + 1
)
.

In order to show that the series (26.30) are geometric, we make replacements
enz → xn and calculate for the obtained power series the diagonal Padé approximants
[1/1], [2/2], [3/3], …. It turns out that starting from [2/2], all the approximants
coincide. This means that the power series are geometric and the approximants [2/2]
after the reverse replacement xn → enz give exact sums of the series (26.30):

r = R0

(

1 +
(
Xδ − δ2 + 4δ − 2

)
R1e2z + 2(δ − 1)2R0ez

R1e2z − (δ − 1)(δ − 3)R0ez + 2(δ − 1)2R2
0R

−1
1

)

,

s = 1

R0

(
1 − δ(X + δ)R1e2z − 2(δ − 1)2R0Xez

δ2R1e2z − δ(δ − 1)(δ − 3)R0ez + 2(δ − 1)2R2
0R

−1
1

)
. (26.33)

We substitute (26.33) into Eqs. (26.28), (26.29) and apply the geometric series
method to them. The series for u, w are geometric and have sums

u = R2
0W0 + a4e4z + a3e3z + a2e2z + a1ez

(
R2
1e

2z − 8R0R1ez + 8R2
0

)2 ,
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w = W0 + b4e4z + b3e3z + b2e2z + b1ez

R0
(
R2
1e

2z − 8R0R1ez + 8R2
0

)2 , (26.34)

where

a4 = R0R
4
1[R0W0(δ + 1) − 3δ + 1],

a3 = 8R2
0R

2
1

[
δR2

0W1 − 2R1(R0W0(δ + 1) − 2δ + 1)
]
,

a2 = −8R3
0R1

[
R1(9δ − R0W0(3δ + 11) − 11) + 2R2

0W1(δ + 1)
]
,

a1 = 64R4
0

[
R2
0W1 − R1(2R0W0 − δ + 3)

]
,

b4 = R4
1[R0W0(δ − 7) + 3δ − 17],

b3 = −8R0R
2
1

[
R2
0W1(δ − 6) − R1(2R0W0 − δ + 5)

]
,

b2 = 8R2
0R1

[
2R2

0W1(δ − 7) − R1(R0W0(δ + 1) − δ + 3)
]
,

b1 = 64R5
0W1 (26.35)

and δ = 3 ± 2
√
2. Equations (26.33), (26.34) contain 4 arbitrary constants

R0, R1,W0,W1 and can be considered as a general solution of system (26.26)–
(26.29). Under condition R0R1 < 0 this solution is bounded, since the denominators
of (26.33) and (26.34) not equal to zero at any value of z. The profiles of traveling
kink waves at R0 = 1, R1 = −10,W0 = 1,W1 = 20 and δ = 3 + 2

√
2 are shown

in Fig. 26.1.
To verify the invariability of the traveling wave profile over time, the input system

(26.1)–(26.4)was solved by the high-order Runge-Kuttamethod (Butcher 2008). The
calculation results shown in Figs. 26.2 and 26.3 indicate that the initial deviations
(see Fig. 26.1) propagate as steady-state waves.

Fig. 26.1 Traveling wave profiles determined by exact solution (26.33), (26.34) at R0 = 1, R1 =
−10,W0 = 1,W1 = 20 and δ = 3 + 2

√
2



26 Exact Solutions to the Four-Component Merola–Ragnisco–Tu … 465

Fig. 26.2 Steady-state traveling waves for variables rn(t), sn(t)

Fig. 26.3 Steady-state traveling waves for variables un(t), wn(t)

The found exact solution contains regions in which the dependent variables are
practically constant. As shown in Sect. 26.1, the constant solutions of the system
are unstable. This theoretical conclusion is confirmed by the results of numerical
simulations. Continued observation of the traveling wave shown in Figs. 26.2 and
26.3, reveals a sawtooth disturbances, the amplitude of which grows exponentially
with time (Fig. 26.4). Parameter T in Figs. 26.2, 26.3 and 26.4 denotes the time
during which the wave front passing distance h.
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Fig. 26.4 Loss of stability

26.5 Combined Kink Wave

In the previous section, it was shown that the exact solution (26.33), (26.34) exists if
parameter δ takes one of two values: δ1 = 3 + 2

√
2 or δ2 = 3 − 2

√
2. These values

correspond to frequencies andwave numberswith opposite signs:ω1 = −ω2 = 2
√
2,

d1 = −d2 ≈ 1.763, therefore, the phase velocities ω
d of the waves in the two

considered cases coincide. Taking into account that z = dn + ωt, it is easy to
obtain for the exact solutions (26.33), (26.34)

lim
n→+∞ r1 = −δ1R0, lim

n→−∞ r2 = −δ2R0, lim
n→+∞ s1 = − 1

δ1R0
, lim

n→−∞ s2 = − 1

δ2R0
,

lim
n→+∞ u1 = (δ1R0W0 − 3δ1 + 1)R0, lim

n→−∞ u2 = (δ2R0W0 − 3δ2 + 1)R0,

lim
n→+∞ w1 = −δ1W0 + 1 − 3δ1

R0
, lim

n→−∞ w2 = −δ2W0 + 1 − 3δ2
R0

, (26.36)

lim
n→−∞ r1 = lim

n→+∞ r2 = R0, lim
n→−∞ s1 = lim

n→+∞ s2 = 1

R0
,

lim
n→−∞ u1 = lim

n→+∞ u2 = −R2
0W0, lim

n→−∞ w1 = lim
n→+∞ w2 = W0, (26.37)

where variables r1, s1, u1, w1, are obtained from (26.33), (26.34) by substitution
δ = δ1 and variables r2, s2, u2, w2 correspond to the second case δ = δ2. Equa-
tions (26.37) allow one to construct an approximate combined solution, the shape of
the left side of which is determined by functions r2, s2, u2, w2, and the shape of the
right side—by functions r1, s1, u1, w1. The plots of the solution obtained in this way,
representing a traveling wave of a constant profile, are shown in Fig. 26.5. Numerical
modeling shows that, due to the instability of the constant solutions of the system
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Fig. 26.5 Combined kink wave at R0 = 1, R1 = −10,W0 = 1,W1 = 20

under consideration, the lifetime of approximate solutions before the appearance of
significant distortions is not inferior to the lifetime of the exact solution.

26.6 Conclusions

In this work, a four-field integrable lattice is investigated. Instability of constant
exact solutions is shown, and the highest growth rate of the perturbation amplitude
is observed for small initial perturbations of the sawtooth profile. The direct passage
to the limit to a partial differential equation as a result of the continualization process
does not lead to an equationwhose solution is bounded in space and stable in time. An
exact kink solution is found using the modified geometric series method. Numerical
simulations have shown that, despite the instability of constant solutions, a traveling
wave corresponding to an exact kink solution propagates for some time without
changing its shape. The combination of kinks of the exact solutionwith increasing and
decreasing slopes made it possible to construct an approximate combined solution.

The work presents an application of the modified geometric series method for
constructing exact solutions of a system of nonlinear DDEs. The advantage of the
method is the simplicity of its algorithmization and implementation in any modern
system of symbolic calculations (e.g., in Maple). In addition, it is much easier to
establish the geometricity of the power series for a given equation than to find the
Lax representation for it. Thus, the geometricity of the series in exponential functions
seems to be the simplest of the known criteria for integrability of DDE.
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