
Specification of the Schema
of Spreadsheets for the Materialization
of Ontologies from Integrated Data

Sources

Sergio Alejandro Gómez1,2(B) and Pablo Rubén Fillottrani1,2

1 Laboratorio de I+D en Ingenieŕıa de Software y Sistemas de Información (LISSI),
Departamento de Ciencias e Ingenieŕıa de la Computación,

Universidad Nacional del Sur, San Andrés 800, Bah́ıa Blanca, Argentina
{sag,prf}@cs.uns.edu.ar

2 Comisión de Investigaciones Cient́ıficas de la Provincia de Buenos Aires
(CIC-PBA), La Plata, Argentina
https://lissi.cs.uns.edu.ar/

Abstract. In Ontology-Based Data Access (OBDA), a knowledge base
known as an ontology models both the problem domain and the underly-
ing data sources. We are concerned with providing with tools for perform-
ing OBDA with relational and non-relational data sources. We developed
an OBDA tool that is able to access H2 databases, CSV files and Excel
spreadsheets allowing the user to explicitly formulate mappings, and pop-
ulating an ontology that can be saved for later querying. In this paper,
we present a language for specifying the schema of the data in a spread-
sheet data application, which then can be used to access the contents
of a set of Excel books with the ultimate goal of materializing its data
as an OWL/RDF ontology. We characterize the syntax and semantics of
the language, present a prototypical implementation and report on the
performance tests showing that our implementation can handle a work-
load of Excel tables of the order of ten thousand records. We also show
a case study in which the ontology of an idealized university library can
be defined using the our tool integrating both relational and spreadsheet
data.

Keywords: Ontology-based data access · Ontologies · Relational
databases · Spreadsheets

1 Introduction

Despite their simplicity and ubiquity, spreadsheets are still relevant because they
provide a semi-structured, distributed way of representing the information of an
organization when there is no formal database; even, many times, in spite of the
existence of a centralized system, informal or operational information not cov-
ered by the main system is managed in spreadsheets. Although the spreadsheet
c© Springer Nature Switzerland AG 2021
P. Pesado and J. Eterovic (Eds.): CACIC 2020, CCIS 1409, pp. 247–262, 2021.
https://doi.org/10.1007/978-3-030-75836-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75836-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-75836-3_17

248 S. A. Gómez and P. R. Fillottrani

applications (such as MS Excel, Apache Open Office, or Libre Office) give the
possibility of making totalizations and filters, these tools allow limited function-
ality and are difficult to integrate with the rest of the organization’s informa-
tion, having to resort to data mining and datawarehousing solutions that are
not always straightforwardly useful for the layman.

Ontology-based data access [1] is a prominent approach to accessing the
content of heterogeneous and legacy databases that has gained relevance in the
past years in which the database schema along with the semantics of the business
model they are exposed as an OWL ontology and the data as RDF triples in
distributed form on the web that can be queried through SPARQL end-points.

In this research, we are interested in studying formal models and novel ways
of performing OBDA, with the goal of providing concrete implementations. In
this sense, in recent times, we have been developing a prototype that allows to
export the schema of a relational database in H2 format as an OWL ontology
and its relational instance as an RDF graph, also allowing the expression of
mappings to define concepts from of complex SQL queries [2]. In this paper,
we present an extension to our OBDA prototype that allows a user to specify a
spreadsheet application using a schema definition language. This language allows
a naive user to specify the format of the data in the tables contained in sheets
of several books, indicating the orientation of the tables, format of columns and
rows, cross-relations between tables and books. This allows the spreadsheets to
be interpreted as databases and ultimately being integrated with the rest of the
OBDA application. We assume that the reader has a basic knowledge of Descrip-
tion Logics (DL) [3], relational databases and the Web Ontology Language [4].

This work consolidates and extends results presented in [5]. As extension
of that work, we now include a discussion of how the GF OBDA systema can
be used to integrate and query information of a university library composed
in terms of relational and spreadsheet data where public open data has to be
machine processed.

The rest of the paper is structured as follows. In Sect. 2, we present a frame-
work for conceptual modeling of spreadsheets as ontologies. In Sect. 3, we show
an empirical evaluation of the performance of the prototype creating tables and
ontologies from several Excel files of increasing size. In Sect. 4, we describe
a possible solution for the publication on the Semantic Web of data from a
hypothetical university library where its data comes from several heterogeneous
sources. In Sect. 5, we discuss related work. Finally, in Sect. 6, we conclude and
foresee future work.

2 A Framework for Representing Spreadsheets

Now we present a theoretical framework to represent the data of a spreadsheet
application. Later, with this framework, we will define a language to describe
the schema of the data. Such a schema will be used to access the contents of the
spreadsheets, interpret them, generate an SQL script, create and populate an
H2 database such script, and then materialize an OWL/RDF ontology with the

Specification of the Schema of Spreadsheets 249

contents of such a database. This ontology could then be queried via a SPARQL
processor (see Fig. 1). We provide the syntax of the data description language
in the spreadsheet application using a BNF grammar and give its operational
semantics in terms of this framework. We will use a running example throughout
the article to illustrate how to use it.

files

Excel

Schema

file

Adapter H2

database

H2 to OWL

translator

OWL

ontology

SPARQL

processor

SPARQL

query

Query

result

Fig. 1. Architecture of the system

A spreadsheet application data is a set of books. More formally:

Definition 1. An spreadsheet application A is a pair (books ,m) where books is
a set of books and m is a map from a unique identifier into an object of the
application.

A book is basically a set of sheets along with further information. Formally:

Definition 2. A book b is a tuple (id , path, sheets, sheetByID) where id is the
identifier of the book, path is the absolute path of the Excel file defining the book,
sheets is a list of sheets, and sheetByID is a map from sheet identifier into a
sheet.

A sheeet is composed by a set of tables. Formally:

Definition 3. A sheet s is a tuple (id ,name, tables , tableByID , container
BookID) where id is the unique identifier of the sheet, name is the sheet’s
name in the container Excel book, tables is the set of tables contained in
this sheet, tableByID is a map from unique table identifier into a table, and
containerBookID is the identifier of the book containing the sheet.

A table has a header, a set of records, and has an orientation (either horizontal
or vertical). A cell range defines a rectangle of the data sheet specified by two
cell references. Tables can contain references to other tables. Formally:

Definition 4. A table t is a tuple (id , className, orientation, initialDataCell ,
finalDataCell , initialHeaderCell ,finalHeaderCell , headerInfo, indexOfKeyField,
crossReferences, containerSheetID, containerBookID) where id is the unique
identifier of the table, className is the class in the target ontology defined
by the table, orientation is either vertical or horizontal, initialDataCell is the

250 S. A. Gómez and P. R. Fillottrani

top-left corner of the table’s data, finalDataCell is the bottom-right corner of
the table’s data, initialHeaderCell is the top-left corner of the table’s header,
finalHeaderCell is the bottom-right corner of the table’s header, headerInfo is a
map from integer i into a header datum object hi, crossReferences is a set of
cross-references from this table into other tables, containerSheetID is the iden-
tifier of the sheet containing this table, and containerBookID is the identifier of
the book containing this table. A header datum is a tuple (i,name, type) where i
is the 1-based index of the header datum in its container map, name is the name
of the field, and type is the type of the field, that can be one of string, numeric
(either integer or real), boolean, or date. A cell has a row (a positive number)
and a column (a 1-based positive number). A range is pair (ci, cf) composed of
an initial cell ci and a final cell cf . A cross-reference is a tuple (i, t, j) where i
is the index of the field in the source table, t is the identifier of the destination
table and j is the index of the field in the destination table.

2.1 Grammar for the Spreadsheet Description Language

We need a language for expressing the elements of this framework. Let us consider
the spreadsheet in Fig. 2 containing two tables representing people and their cell
phones. We will use that example in order to introduce the elements of our
language for describing the schema of the data in the spreasheet with the goal of
materializing an ontology from it so it can be queried by means of SPARQL. We
now define the grammar for writing scripts for defining the structure of Excel
application data. We discuss each construct by giving its meaning, the BNF rules
that defines its syntax and an example describing its elements.

A B C D E F G
1
2 PersonID Name DateOfBirth Checked Weight Status
3 1 John 1/1/1981 TRUE 100.5 heavy
4 2 Mary 2/2/1982 FALSE 60.5 light
5 3 Paul 3/3/1983 TRUE 80.5 heavy
6
7
8 CellID 1 2 3 4
9 Brand Samsung Apple Nokia Samsung
10 Model S8 Iphone 11 1100 J7
11 Owner 1 2 1 2

Fig. 2. A spreadsheet named Data representing a set of people and their cell phones

A script is sequence of commands and is the start symbol of the grammar:

〈script〉 ::= 〈command〉*

There are several available commands to be used in the description of schemas
of Excel files.
〈command〉 ::= 〈book-declaration〉 | 〈sheet-declaration〉 |〈table-declaration〉

| 〈table-header-declaration〉 | 〈table-data-declaration〉 | 〈table-field-declaration〉
| 〈table-key-field-declaration〉 | 〈cross-ref-declaration〉 | 〈comment〉

Specification of the Schema of Spreadsheets 251

A book can be declared by giving it an identifier and a path. Identifiers are
sorrounded by quotation marks and are composed in the usual way.

〈book-declaration〉 ::= book 〈id〉 has-path 〈path〉
〈id〉 ::= ”〈identifier〉”
〈identifier〉 ::= 〈letter〉.(〈letter〉|〈digit〉)*
〈letter〉 ::= a | b | . . . |z | A | B | . . . | Z

〈digit〉 ::= 0 | 1 | . . . | 9

〈path〉 ::= ”. . . windows file path . . . ”

Example 1. Consider the piece of code that expresses that book b1 has as its
path the Excel file book1.xlsx located in the Escritorio8 subfolder in the
desktop folder: book "b1" has-path "c:/users/sgomez/Desktop/Escritorio8/book1.xlsx".

A book has at least one data sheet. Each sheet has an identifier in this schema
file, a name in the spreadsheet and it is located in a book.

〈sheet-declaration〉 ::= sheet 〈id〉 name 〈id〉 in 〈id〉

Example 2. Consider the code: sheet "s1" name "Data" in "b1". It expresses that the
spreadsheet s1 has been named Data and it is located in the book b1.

Each spreadsheet can have several tables. Each table has an identifier, is
contained in a certain spreadsheet, defines a class and has an orientation which
either is horizontal or vertical.

〈table-declaration〉 ::= table 〈id〉 in-sheet 〈id〉 class-name 〈id〉 orientation 〈orientation-literal〉
〈class-name〉 ::= 〈id〉
〈orientation-literal〉 ::= horizontal | vertical

Example 3. Consider the commands: table "t1" in-sheet "s1" class-name "Person"

orientation vertical and table "t2" in-sheet "s1" class-name "Phone" orientation horizontal.
They define that there are two tables: t1 and t2, which are both located in sheet
s1. Table t1 defines a class name Person while table t2 defines a class named
Phone. The orientation of t1 is vertical but the orientation of t2 is horizontal.

Every table defition is composed of header and data sections, with syntax:—

〈table-header-declaration〉 ::= header 〈id〉 range 〈range-specification〉
〈table-data-declaration〉 ::= data 〈id〉 range 〈range-specification〉
〈range-specification〉 ::= ”〈cell-spec〉:〈cell-spec〉”
〈cell-spec〉 ::= 〈letter〉+〈digit〉+

Example 4. Consider the commands for defining the limits of tables t1 and t2:
header "t1" range "b2:g2", data "t1" range "b3:g5", header "t2" range "b8:b11", and data "t2"

range "c8:f11".

252 S. A. Gómez and P. R. Fillottrani

Fields are declared specifying the table to which they belong, an index, a
name and a type. There is an special field called the key field:

〈table-field-declaration〉 ::= field 〈id〉 index 〈positive-integer〉 name 〈id〉 type 〈type-id〉
〈type-id〉 ::= integer | string | date | real

〈table-key-field-declaration〉 ::= key-field 〈id〉 index 〈positive-integer〉
〈positive-integer〉 ::= (1..9)〈digit〉*

Example 5. Consider the piece of code for defining the fields of tables t1 and t2:

field "t1" index "1" name "PersonID" type integer
field "t1" index "2" name "Name" type string
field "t1" index "3" name "DateOfBirth" type date
field "t1" index "4" name "Checked" type boolean
field "t1" index "5" name "Weight" type real
field "t1" index "6" name "Status" type string
key-field "t1" index "1"
field "t2" index "1" name "CellID" type integer
field "t2" index "2" name "Brand" type string
field "t2" index "3" name "Model" type string
field "t2" index "4" name "Owner" type integer
key-field "t2" index "1"

The table t1 has 6 fields named PersonID , Name, DateOfBirth, Checked ,
Weight and Status of type integer, date, boolean, real and string, resp. The
table t2 has 4 fields named CellID and Owner both of type integer, and Brand
and Model of type string. The key field of t1 is PersonID while the key field of
t2 is CellID . Notice that no indications are given here if the contents of a cell is
either a formula or a value and it is neither necessary. For instance the column
Status is a formula of the form: =IF(F3>=80, "heavy", "light") indicating that if the
weight of the person is greater than or equal to 80 kg, the person is considered
as heavy, otherwise is deemed as light.

A table can have cross-references to other tables.

〈cross-ref-declaration〉 ::= cross-ref from 〈id〉 index 〈positive-integer〉 into 〈id〉 index 〈positive-integer〉

Example 6. The following piece of code defines a cross-reference from field num-
ber 4 of table t2 into field number 1 of table t1:

cross-ref from "t2" index "4" into "t1" index "1"

One-line comments are allowed in our scripting language and they begin with
the hashtag character.

〈comment〉 ::= #〈character〉*
〈character〉 ::= any Ascii character excluding end of line

Specification of the Schema of Spreadsheets 253

2.2 Semantics of Spreadsheet Constructors

The semantics of the empty spreadsheet application create is ({}, {}). The
semantics of commands is given in terms of the function Sem from commands by
spreadsheet applications into spreadsheet applications. The semantics of a book
declaration is as follows:

Sem(sheet ”id” name ”n” in ”bid”, (books,m)) = (books′, {(id, s)} ∪ m) where

books
′
= books − {b} ∪ {b′}

b = m(bid) = (bid, p, sheets, sheetByID),

b
′
= (bid, p, {s} ∪ sheets, {(id, s)} ∪ sheetByID)

s = (id, n, {}, {}, bid)

The semantics of the declaration of a table id, in sheet sid, determining a
class c, with orientation o, with n fields named name1, . . . , namen of types t1,
. . . , tn, key field k, m cross-references from fields i1, ldots, im into foreign tables
tid1, . . . , tidm and foreign fields with indexes j1, . . . , jm, resp., header info in
the range h1 : h2 and data info in the range d1 : d2 is given shown in Fig. 3.

Sem(sec, (books, m)) = (books′, {(id, t)} ∪ m) where

sec = (table ”id” in-sheet ”sid” class-name ”c” orientation o

= header ”id” range ”h1 : h2”

field ”id” index ”1” name ”name1” type t1
. . .

field ”id” index ”n” name ”namen” type tn

key-field ”id” index ”k”

data ”id” range ”d1 : d2”

cross-ref from ”id” index ”i1” into ”tid1” index ”j1”

. . .

cross-ref from ”id” index ”im” into ”tidm” index ”jm”)

s = m(id) = (sid, name, ts, tableByID, containerBookID)

t = (id, c, o, d1, d2, h1, h2, head, k, cross, sid)

s
′ = (sid, name, {t} ∪ ts, {(id, t)} ∪ tableByID, containerBookID)

books′ = books − {b} ∪ {b
′}

b = (bid, p, sheets, sheetByID) = m(containerBookID)

b
′ = (bid, p, sheets′

, sheetByID)

sheets′ = {s} ∪ sheets

cross = {(i1, tid1, j1), . . . , (im, tidm, jm)}
head = λi.(i, name, ti), with i = 1, . . . , n

Fig. 3. Semantics of table declaration commands

2.3 Generation of Databases and Ontologies from Spreadsheets

We now discuss the generation of OWL/RDF ontologies from spreadsheet appli-
cations. Given a book with mapping m of identifiers into objects, let t be a
table such that t = (id, c, o, d1, d2, h1, h2, head , k, cross, s), such that cross =
{(i1, tid1, j1), . . . , (im, tidm, jm)}, and head = λi.(i,namei, ti), with i = 1, . . . , n.

254 S. A. Gómez and P. R. Fillottrani

The SQL code in Fig. 4 represents the schema of table t, where second and
sixth are the projectors of the second and the sixth components of a tuple, resp.
Then this SQL code is used to materialize an H2 database, which in turn is used
to materialize an OWL/RDF ontology using the methodology described in our
previous work [6].

create table ”c”(

”name1” t1, . . . , ”namek” tk primary key, . . . , ”namen” tn,

foreign key (”second(head(i1))”) references ”second(m(tid1))”(”second(sixth(m(tid1))(j1))”),

. . . , foreign key (”second(head(im))”) references ”second(m(tidm))”(”second(sixth(m(tidm))(jm))”));

Fig. 4. SQL script for creating a generic table t

Example 7. The spreadsheet in Fig. 2 is represented by the SQL script in Fig. 5.
Then, from this script, a database is created and the ontology materialized
from that database has the following DL axioms (that are ultimately serial-
ized as OWL/RDF): Person � ∃PersonID, ∃PersonID− � Integer, Person � ∃name, ∃name− �
String, Person � ∃dateOfBirth, ∃dateOfBirth− � Date, Person � ∃checked, ∃checked− � Boolean,

Person � ∃weight, ∃weight− � Real, Person � ∃status, ∃status− � String, Phone � ∃cellID, ∃cellID− �
Integer, Phone � ∃brand, ∃brand− � String, Phone � ∃model, ∃model− � String, Phone � ∃owner
∃owner− � Integer, Phone � ∃ref owner ∃ref owner− � Person. The assertions for represent-
ing the first record of the class Person are: PersonID(Person#1, 1), name(Person#1, JOHN),

dateOfBirth(Person#1, 1981-01-01), checked(Person#1,TRUE), weight(Person#1, 100.5), and status(

Person#1, HEAVY).

create table ”Person”(

”PersonID” int primary key, ”Name” varchar(50), ”DateOfBirth” date,

”Checked” boolean, ”Weight” real, ”Status” varchar(50));

create table ”Phone”(

”CellID” int primary key, ”Brand” varchar(50), ”Model” varchar(50), ”Owner” int,

foreign key (”Owner”) references ”Person”(”PersonID”));

insert into ”Person”(”PersonID”, ”Name”, ”DateOfBirth”, ”Checked”, ”Weight”, ”Status”)

values (1, ’John’, ’1981-01-01’, true, 100.5, ’heavy’);

insert into ”Person”(”PersonID”, ”Name”, ”DateOfBirth”, ”Checked”, ”Weight”, ”Status”)

values (2, ’Mary’, ’1982-02-02’, false, 60.5, ’light’);

insert into ”Person”(”PersonID”, ”Name”, ”DateOfBirth”, ”Checked”, ”Weight”, ”Status”)

values (3, ’Paul’, ’1983-03-03’, true, 80.5, ’heavy’);

insert into ”Phone”(”CellID”, ”Brand”, ”Model”, ”Owner”) values (1, ’Samsung’, ’S8’, 1);

insert into ”Phone”(”CellID”, ”Brand”, ”Model”, ”Owner”) values (2, ’Apple’, ’Iphone 11’, 2);

insert into ”Phone”(”CellID”, ”Brand”, ”Model”, ”Owner”) values (3, ’Nokia’, ’1100’, 1);

insert into ”Phone”(”CellID”, ”Brand”, ”Model”, ”Owner”) values (4, ’Samsung’, ’J7’, 2);

Fig. 5. SQL code obtained from the spreadsheet in Fig. 2

Specification of the Schema of Spreadsheets 255

3 Experimental Evaluation

We now discuss some of the tests we have performed in order to test how our
application handles increasing demands in database size. The performance of
our system is affected mainly by the fact that we tables are metarialized as
RDF triples and also by four factors: (i) the system is implemented in the JAVA
programming language; (ii) the database management system that we use is H21,
(iii) the handling of the global ontology is done via the OWL API [7], and (iv) the
access to the Excel files is implemented using the Apache POI library [8]. Our
tests were conducted on an ASUS notebook having an Intel Core i7, 3.5 GHz
CPU, 8 GB RAM, 1 TB HDD, and Windows 10. They involved the creation
of databases with single table extracted from Excel books containing only a
sheet with a table containing 100 fields of numeric type filled with an increasing
number of records. In Table 1, we can see the times for loading the Excel files
and the size of the materialized ontologies. Therefore, we conclude that our
application can only handle tables with a size of tens of thousands records and
is not able of handling tables of a hundred thousand records.

Table 1. Running times for ontology generation from Excel files

Number of
records

Excel file
size
[Megabytes]

Time for
loading
Excel file
[seconds]

Time for
creating
ontology
[seconds]

Size of
ontology file
[Megabytes]

10
0.012 0.901 0.276 0.115

100
0.033 1.774 0.359 0.910

1,000
0.255 5.825 1.067 8.951

10,000
2.640 29.703 4.253 90.951

100,000 26.742 Out of
memory
error

4 Case Study: OBDA for Library Management

We contend that the approach for describing the schema of spreadsheet data
described above can be used as the basis for the development of real-world OBDA
applications allowing the publication of organization data as rich OWL/RDF
ontologies. We try to validate our thesis by describing a possible solution for the

256 S. A. Gómez and P. R. Fillottrani

publication on the Semantic Web of data from a hypothetical university library
where its data comes from several heterogeneous sources.

University libraries often work with proprietary software, or spreadsheets,
to represent their inventory. When the bibliographic inventory data are rep-
resented in a relational database, they can adopt ad-hoc codings representing
domain peculiarities that are often difficult to extrapolate to other systems. The
attention is often personal, which makes it impossible to search the literature
for the material present in them as noted in [9–13].

The OBDA system called GF [2] that allows OWL/RDF ontologies to be
materialized from data represented in the form of a relational database, CSV
data sheet and now Microsoft Excel spreadsheet. We will use the system to
establish mappings to retrieve subsets of the data from the database and to
establish rich relationships between such data in the form of classes, subclasses
and properties in an ontology. This ontology, together with other similar ones
from other libraries, can be published on the internet and can be consulted
through a SPARQL endpoint in an integrated way to search for the availability of
bibliographic material, as well as on the status of their users. Thus the objective
of this section is to show how an ontology like the one presented in Fig. 6 can be
constructed from heterogeneous data sources containing ad-hoc encodings and
then show how GF can deal with a combination of data specified as relational
data and spreadsheet data.

Fig. 6. Ontology for the university library

Suppose that the data of the bibliographic material, users and loans of a uni-
versity library are stored in a relational database with the schema and instance
as shown in Fig. 7. We see that the table that models the library loans reifies
a many-to-many relationship between user and bibliographic material, which
in turn is separated into 2 tables, namely, thesis and printed matter. Printed
material is separated into books and magazines. The type of theses must encode

Specification of the Schema of Spreadsheets 257

variants such as graduate thesis, master’s thesis and doctoral thesis. This type of
simplification may, for example, need to use special values for ad-hoc encondings.
For example, notice the D for codifying doctoral thesis and the M for Master
Thesis, which, when querying the data using SQL, to search for doctoral the-
sis, requires resorting to low-level constructions such as: select * from “Thesis”
where type = “D”.

We then will show how the use of OBDA technologies makes it possible to
more naturally model the type of each document by referring to the classes
and subclasses belonging to the semantics of the application domain. Ultimately
all of the presented techniques can be implemented by a naive user in the GF
framework of which a previous version was presented in [2] and references there
in. To do this, suppose that the tables defined above are populated as in Fig. 7.

User(userNo,name, email, type)
Thesis(id, author , title, pubDate, type, institution, supervisor)

Loan(userNo, id, date, timeDays)
User
userNo name email type

1 John john@nosite.com S
2 Peter peter@nosite.com T

Loan
userNo id date timeDays

1 1 2020-09-01 40

Thesis
id author title pubDate type institution supervisor
1 Marie Recherches sur les 1903-01-01 D Faculte des Gabriel

Curie substances radioactives Sciences de Paris Lippmann
2 Claude A Symbolic Analysis of Relay 1937-01-01 M Massachusetts Institute Vannevar

Shannon and Switching Circuits of Technology Bush

Fig. 7. Relational instance of the library’s database concerning Users, Theses and
Loans

Consequently, when proposing a richer modeling of the domain, we are inter-
ested in defining two subconcepts of the Thesis concept called undergraduate
thesis and postgraduate thesis. In turn, the postgraduate thesis concept will
have two sub-concepts called MSc Thesis and PhD Thesis. Formally, we are
interested in establishing the axioms in the ontology shown in Fig. 8.

UndergraduateThesis � GraduateThesis � Thesis
UndergraduateThesis � GraduateThesis � ⊥

MScThesis � PhDThesis � GraduateThesis
MScThesis � PhDThesis � ⊥

Fig. 8. Axioms for classifying theses

Then, it is necessary to establish the link between the data in the tables and
the concepts and assertions of the ontology. This is achieved using mappings,
which are SQL expressions that define the values of the ontology assertions in
terms of the values of the relational instance. In the case of theses, the mappings
are as shown in Fig. 9. The definition of such mappings can be done visually in

258 S. A. Gómez and P. R. Fillottrani

the GF frame. The system allows you to define the name of the sub-concept,
from which table the data is obtained, automatically computes the SQL filter
and shows the records that fill the concept. It also allows you to automatically
add the axioms as shown in Fig. 8.

PhDThesis(id) ← select ”id from ”Thesis” where ”type” = ’D’
MScThesis(id) ← select ”id” from ”Thesis” where ”type” = ’M’

UndergraduateThesis(id) ← select ”id” from ”Thesis” where ”type” = ’T’

Fig. 9. Mappings for defining assertions from the table Thesis

Suppose we have the library magazines represented in a spreadsheet like
the one shown in Fig. 10. In this case, we see that the magazines table has
been represented horizontally instead of vertically as it is usuallly done as GF
supports both representations.

A B C D
. . .
3 Id 100 101
4 Author Thomas G. Rokicki James Willis
5 Title An Algorithm for Compressing Space and Time Build Your Own Turing Machine
6 PubDate 4/1/2006 4/1/1981
7 Issn 1044-789X 0360-5280
8 Publisher UBM Technology Group UBM Technology Group
9 Magazine Dr Dobb’s Journal BYTE Magazine
10 Editor Andrew Binstock Wayne Green
11

Fig. 10. Spreadsheet called Magazine for representing magazines

As shown in Sect. 2.1, it is necessary to define the schema of the data
prior to its import into the OBDA system. In Fig. 11, we show the schema
of the spreadsheet shown in Fig. 10. As implied by Fig. 1, the system gener-
ates a relational table, which is used to generate the OWL code to update the
ontology. Additionally, the axiom Magazine � Printed indicating that a mag-
azine is a type of printed matter must be included. In Fig. 12, we show, as an
example, the definition of the Editorial property of the Magazine class. From
this spreadsheet several DL assertions are produced such as: Magazine(101),
author(101, James Willis), editor(101,Wayne Green), In Fig. 13, we show
the OWL serialization of the magazine 101.

To query the data integrated in the ontology, it is necessary to use the
SPARQL language [14]. For example, to find data about copies of BYTE mag-
azine in the library, a query like the one shown in Fig. 14 can be used.

5 Related Work

XLWrap [15] constitutes an approach for generating RDF graphs of arbitrary
complexity from various spreadsheet layouts, including cross tables and tables

Specification of the Schema of Spreadsheets 259

book ”b1” has-path ”c:/users/john/Desktop/magazines.xlsx”

sheet ”s1” name ”Magazine” in ”b1”

table ”t1” in-sheet ”s1” class-name ”Magazine”

orientation horizontal

header ”t1” range ”b3:b10”

data ”t1” range ”c3:d10”

key-field ”t1” index ”1”

field ”t1” index ”1” name ”id” type integer

field ”t1” index ”2” name ”Author” type string

field ”t1” index ”3” name ”Title” type string

field ”t1” index ”4” name ”PubDate” type date

field ”t1” index ”5” name ”issn” type string

field ”t1” index ”6” name ”Publisher” type string

field ”t1” index ”7” name ”Magazine” type string

field ”t1” index ”8” name ”Editor” type string

Fig. 11. Data definition scheme for the Magazines spreadsheet

<owl:DatatypeProperty rdf:about=”http://foo.org/Magazine#Publisher”>

<rdfs:domain rdf:resource=”http://foo.org#Magazine”/>

<rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

</owl:DatatypeProperty>

Fig. 12. Part of the OWL code for publishing magazines describing the Publisher
property

<owl:NamedIndividual rdf:about=”http://foo.org/Magazine/id=101”>

<rdf:type rdf:resource=”http://foo.org#Magazine”/>

<Magazine:Author rdf:datatype=”http://www.w3.org/2001/XMLSchema#string”>

James Willis</Magazine:Author>

<Magazine:Editor rdf:datatype=”http://www.w3.org/2001/XMLSchema#string”>

Wayne Green</Magazine:Editor>

</owl:NamedIndividual>

Fig. 13. Part of the OWL code for 101 magazine

prefix foo: <http://foo.org/>
prefix r: <http://foo.org/Magazine#>

select ?r ?author ?title ?publisher

where

{
?r r:Magazine ”BYTE Magazine” .

?r r:Author ?author .

?r r:Title ?title.

?r r:Publisher ?publisher.

}

Fig. 14. SPARQL query to retrieve a BYTE journal.

260 S. A. Gómez and P. R. Fillottrani

where data is not aligned in rows. They provide a functionality similar to ours
but relying in JSON for the description of data. Our approach features a simpler
language geared towards naive users. NOR2O [16] can convert excel to Scovo and
Data Cube Vocabulary but it is no longer maintained. Excel2rdf 1 is a Java-based
command-line utility that converts Excel files into valid RDF files but as far as
we know it is not possible to make precise definitions of the data contained nor
export terminologies as done in our proposal. RDBToOnto2 allows to automat-
ically generate fine-tuned OWL ontologies from relational databases. A major
feature of this full-fledged tool is the ability to produce structured ontologies
with deeper hierarchies by exploiting both the database schema and the stored
data. RDBToOnto can be exploited to produce RDF Linked Data. It can also be
used to generate highly accurate RDB-to-RDF mapping rules (for D2RQ Server
and Triplify). Spread2RDF 3 is a converter for complex spreadsheets to RDF
and a Ruby-internal DSL for specifying the mapping rules for this conversion.
Other solutions to the problem of wrapping Excel files into semantic technolo-
gies have migrated from the academic world to the commercial world. For exam-
ple, Open Anzo4 used to include both an open source enterprise-featured RDF
quad store and a sophisticated service oriented, semantic middleware platform
that provides support for multiple users, distributed clients, offline work, real-
time notification, named-graph modularization, versioning, access controls, and
transactions, giving support to applications based on W3C semantic technology
standards like OWL, RDF and SPARQL. This project is no longer available it
has turned into a company named Cambridge Semantics5. TopBraid Composer6

can convert Excel spreadsheets into instances of an RDF schema. TabLinker7

can convert non-standard Excel spreadsheets to the Data Cube vocabulary. Our
work converts the contents of the records in Excel sheets to RDF but also allows
to precisely define the schema of the data in OWL.

6 Conclusions and Future Work

We have presented a framework for the modeling of the schema and data of
spreadsheet files by means of a description language. We have given a formal
specification of the syntax of such a language with a BNF grammar and its
formal semantics in terms of the framework of representation. We have shown
an example of how it is used in order to explain its main components. We have
also provided a prototypical implementation, showing how it is integrated into
an ontology-based data access system with the aim of publishing such spread-
sheets as freely available ontologies on the Semantic Web. We believe that this

1 https://github.com/waqarini/excel2rdf.
2 https://sourceforge.net/projects/rdbtoonto/.
3 https://github.com/marcelotto/spread2rdf.
4 https://www.w3.org/2001/sw/wiki/OpenAnzo.
5 http://www.cambridgesemantics.com.
6 https://www.topquadrant.com/knowledge-assets/faq/tbc/.
7 https://github.com/Data2Semantics/TabLinker/wiki.

https://github.com/waqarini/excel2rdf
https://sourceforge.net/projects/rdbtoonto/
https://github.com/marcelotto/spread2rdf
https://www.w3.org/2001/sw/wiki/OpenAnzo
http://www.cambridgesemantics.com
https://www.topquadrant.com/knowledge-assets/faq/tbc/
https://github.com/Data2Semantics/TabLinker/wiki

Specification of the Schema of Spreadsheets 261

language provides a valid alternative to more technical options like JSON from
which naive users can benefit while providing more control than WYSIWYG-
type applications that provide similar functionality. Also, we have carried out
experimental tests to determine what is the workload that our implementation
can effectively handle, showing that it is viable for spreadsheets containing tables
with thousands of records. We have presented a case study that shows that the
approach presented in this paper can be used to integrate several data sources
in heterogeneous formats to comprise a suitable alternative for the publication
of data of an idealized university library.

As part of future work, we are interested in continuing to explore other
types of NoSQL database models and thinking about integrating them into our
ontology-based data access prototype with the aim of developing novel algo-
rithms and techniques such as virtualization by query-rewriting to provide more
flexibility in regards to volatile data than the one offered by the materialization
approach.

Acknowledgments. This research is funded by Secretaŕıa General de Ciencia y
Técnica, Universidad Nacional del Sur, Argentina and by Comisión de Investigaciones
Cient́ıficas de la Provincia de Buenos Aires (CIC-PBA).

References

1. Xiao, G., et al.: Ontology-based data access - a survey. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-
18), pp. 5511–5519 (2018)

2. Gómez, S.A., Fillottrani, P.R.: Materialization of OWL ontologies from relational
databases - a practical approach. In: Pesado, P., Arroyo, M. (eds.) Computer Sci-
ence - CACIC 2019 selected papers, pp. 285–301. Springer International Publishing,
Cham (2020). https://doi.org/10.1007/978-3-030-48325-8 19

3. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

4. Bao, J., Kendall, E.F., McGuinness, D.L., Patel-Schneider, P.F.: OWL 2 Web
Ontology Language Quick Reference Guide (Second Edition) W3C Recommenda-
tion, 11 December 2012 (2012)

5. Gómez, S.A., Fillottrani, P.: A language for the specification of the schema of
spreadsheets for the materialization of ontologies. In Mon, A., et al. (eds.) XXVI
Congreso Argentino de Ciencias de la Computación (CACIC 2020), pp. 546–555,
October 2020

6. Gómez, S.A., Fillottrani, P.R.: Towards a framework for ontology-based data
access: materialization of OWL ontologies from relational databases. In Pesado,
P., Aciti, C., (eds.) X Workshop en Innovación en Sistemas de Software (WISS
2018), XXIV Congreso Argentino de Ciencias de la Computación CACIC 2018,
pp. 857–866 (2018)

7. Matentzoglu, N., Palmisano, I.: An Introduction to the OWL API. Technical
report, The University of Manchester (2016)

8. Minh, N.H.: How to Read Excel Files in Java using Apache POI (2019)
9. Dilroshan, T.C.: Identification of problems faced by university libraries in the pro-

cess of automation: with special reference to the libraries of moratuwa and colombo
universities. Sri Lanka J. Librarianship Inf. Manage. 1(2), 82–98 (2009)

https://doi.org/10.1007/978-3-030-48325-8_19

262 S. A. Gómez and P. R. Fillottrani

10. Malhan, I.: Challenges and problems of library and information education in India:
an emerging knowledge society and the developing nations of Asia. Libr. Philos.
Pract. 670 (2011). https://digitalcommons.unl.edu/libphilprac/670/

11. Mishra, A., Thakur, S., Singh, T.: Library automation: issues, challenges
and remedies author. Times Int. J. Res. (Issue January 2015), 9–16 (2015).
https://www.academia.edu/12808629/LIBRARY AUTOMATION ISSUES CH
ALLENGES AND REMEDIES

12. Pothumani, S., Sridhar, J.: Solving problems of library management system. Int.
J. Innov. Res. Comput. Commun. Eng. 3(7), 6466–6469 (2015). https://doi.org/
10.15680/ijircce.2015.0307167

13. Raval, A.: Problems of library automation. Int. J. Res. Educ. 2(2) (2013).
http://www.raijmr.com/ijre/wp-content/uploads/2017/11/IJRE 2013 vol02 is
sue 02 01.pdf

14. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language for RDF W3C recommen-
dation, 21 March 2013 (2013). https://www.w3.org/TR/rdf-sparql-query/

15. Langegger, A., Wöß, W.: XLWrap – querying and integrating arbitrary spread-
sheets with SPARQL. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp.
359–374. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-
9 23

16. Terrazas, B.V., Gomez-Perez, A., Calbimonte, J.P.: NOR2O: a library for trans-
forming non-ontological resources to ontologies. In: ESWC 2010 (2010)

https://digitalcommons.unl.edu/libphilprac/670/
https://www.academia.edu/12808629/LIBRARY_AUTOMATION_ISSUES_CHALLENGES_AND_REMEDIES
https://www.academia.edu/12808629/LIBRARY_AUTOMATION_ISSUES_CHALLENGES_AND_REMEDIES
https://doi.org/10.15680/ijircce.2015.0307167
https://doi.org/10.15680/ijircce.2015.0307167
http://www.raijmr.com/ijre/wp-content/uploads/2017/11/IJRE_2013_vol02_issue_02_01.pdf
http://www.raijmr.com/ijre/wp-content/uploads/2017/11/IJRE_2013_vol02_issue_02_01.pdf
https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1007/978-3-642-04930-9_23
https://doi.org/10.1007/978-3-642-04930-9_23

	Specification of the Schema of Spreadsheets for the Materialization of Ontologies from Integrated Data Sources
	1 Introduction
	2 A Framework for Representing Spreadsheets
	2.1 Grammar for the Spreadsheet Description Language
	2.2 Semantics of Spreadsheet Constructors
	2.3 Generation of Databases and Ontologies from Spreadsheets

	3 Experimental Evaluation
	4 Case Study: OBDA for Library Management
	5 Related Work
	6 Conclusions and Future Work
	References

