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Chapter 19
The Input-Output Organization 
of the Cerebrocerebellum as Kalman Filter

Shinji Kakei, Hirokazu Tanaka, Takahiro Ishikawa, Saeka Tomatsu, 
and Jongho Lee

19.1  �Recognition of the Cerebrocerebellum as Loci 
of Internal Models

The seminal publication of the book on the cerebellum by Eccles et al. (1967) inspired 
the publication of major theories of the cerebellum and motor control by David Marr 
(1969), James S. Albus (1971), and Masao Ito (1970). Their legendary papers marked 
the beginning of the ongoing effort to understand the relationship between the cere-
bellar neuron circuitry and motor/cognitive control. In particular, Ito (1970) first pro-
posed how the cerebrocerebellum participates in acquiring skilled movements in 
terms of a control system model (Fig.  19.1a). In voluntary unskilled movements 
(Fig. 19.1a(1)), the initial instruction arising from the association cortex (AC) is trans-
ferred to the motor cortex (MX) and transformed into the motor command and relayed 
to the spinal motor system (SM) through the pyramidal tract (PT). The outcome of the 
motor command is evaluated by AC using information relayed by the sensory 
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Fig. 19.1  Two types of cerebellar internal models. Model by Ito (1970) (a) is consistent with a 
forward model, while the model by Allen and Tsukahara (1974) (b) is consistent with an inverse 
model. (a) Diagram of the possible control system for voluntary movements (Reproduced from Ito 
(1970), Fig. 19.7). Note the caption is also original. (1) Feedback system used in unskilled move-
ment. AC cerebral association area, Small gray circle (W) indicates the origin of the will. SC cere-
bral sensory area, MC cerebral motor area, PT pyramidal tract, SM spinal motor system, MA motor 
activity. H, feedback pathway through the external world. (2) Feedforward system formed after 
learning. NC neocerebellum in which SM, MA, H, SC, and AC in A are indicated in a minimized 
form (Note Ito (1970) assumed that AC, SC, SM, MA, and H are all modeled in neocerebellum 
(NC) (= cerebrocerebellum)). (b) Scheme showing proposed roles of several brain structures in 
movement (Reproduced from Allen and Tsukahara (1974), Fig. 9). Note the caption is also original.
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feedback loops (H + SC in Fig. 19.1a). However, with practice, the movement becomes 
more skilled and predictive while less dependent on the sensory feedback informa-
tion. In other words, as the learning progresses, the long loop through the external 
world may be effectively replaced by an internal loop passing through the cerebrocer-
ebellum (= neocerebellum (NC) in Fig. 19.1a), which would serve as a model of the 
combination of SM, the external world, and the sensory pathways (Fig. 19.1a(2)). 
According to Ito (1970), it is possible to understand this arrangement as a type of 
model inference adaptive control system. Cerebellar ataxia, such as dysmetria or 
intention tremor, could be explained as impairment or loss of the internal model in the 
cerebrocerebellum, just as in the stage of unskilled movements before motor learning.

Note that in Ito’s model (Fig. 19.1a(2)), the cerebrocerebellum (NC) receives the 
efference copy from MX and returns its output to the same MX. Therefore, it may 
play a role that is equivalent to a forward model. A forward model provides the 
controller (i.e., the motor cortex) with a state prediction (Todorov, 2004) to 
compensate for sensory feedback delays and stabilize movements. To the best of our 
knowledge, it was the first proposal of a forward model in neuroscience.

Few years after Ito’s pioneering paper, Allen and Tsukahara (1974) proposed a 
different type of cerebrocerebellar organization (Fig. 19.1b) to explain skilled volun-
tary movements. They envisaged a two-stage planning-execution system between the 
cerebral cortex and the cerebellum to control voluntary movements (Fig. 19.1b). The 
schema features the idea that the association cortices (ASSN CX) translate the inten-
tion to move into a proper spatiotemporal activation of the motor cortex (MOTOR 
CX), resulting in the intended movement. ASSN CX that project to the cerebrocere-
bellum (LATERAL CBM) are among those in the premotor circuit. Because 
LATERAL CBM appears to lack direct sensory inputs, it is more suited for planning 
the movement than in actual execution and correction of the movement, which was 
more suitable for the intermediate zone (INTERMED CBM) function. Once the 
movement has been prepared in ASSN CX, with the help of LATERAL CBM (i.e., 
the cerebrocerebellum) (Fig. 19.1b), MOTOR CX generates the motor command as 
the common node. At this point, INTERMED CBM updates the movement based on 
the difference (i.e., error) between the actual movement and intended movement.

The two schemes (Fig. 19.1a(2), Ito and b, Allen, and Tsukahara) may look simi-
lar. But they are exclusive to each other from a functional point of view. In the for-
mer scheme (Fig. 19.1a(2)), the cerebrocerebellum provides a long feedback loop 
model and virtually replaces it, and the cerebrocerebellum resides outside of the 
controller. In contrast, in the latter scheme (Fig. 19.1b), the cerebrocerebellum is a 
part of the controller that translates the intention to move into the motor command. 
Thus, the cerebrocerebellum in Fig. 19.1b is suitable to play a role that is equivalent 
to an inverse model or a part of it.

Fig. 19.1  (continued) Dashed line represents a pathway of unknown importance. It is proposed 
that basal ganglia and cerebellar hemisphere are involved with association cortex in programming 
of volitional movements. At the time that the motor command descends to motoneurons, engaging 
the movement, the pars intermedia updates the intended movement, based on the motor command 
and somatosensory description of limb position and velocity on which the movement is to be 
superimposed. Follow-up correction can be performed by motor cortex when cerebellar hemi-
sphere and pars intermedia do not effectively perform their functions
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The two schemes are also exclusive in terms of the neuroanatomical organization 
between the cerebellum and the cerebral cortex. In the former scheme (Fig. 19.1a(2)), 
the cerebrocerebellum is connected reciprocally with the motor cortex. In contrast, the 
connectivity in the latter scheme is non-reciprocal, collecting its input from the asso-
ciation cortices and returning its output to the motor cortex rather than to the associa-
tion cortices, the source of the cortical input. Therefore, it is possible to select one from 
the other by identifying the neuroanatomical organization in theory. Unfortunately, the 
neuroanatomical techniques available in the 1970s and 1980s, such as the Nauta 
method or simple neuronal tracers, were not effective enough for this purpose.

19.2  �Parallel Organization of the Cerebrocerebellar 
Communication System Revealed with Transneuronal 
Tracing Technique

In the 1990s, Peter L. Strick and his colleagues established a revolutionary tech-
nique to trace neuron circuitry: a transneuronal tracing technique with neurotropic 
viruses. It was revolutionary because they enabled the use of transneuronal transport 
of rabies viruses to reveal the connections of three or more synaptically linked neu-
rons (Kelly & Strick, 2003), which was impossible with conventional neuron trac-
ers. With the new method, analysis of the cerebrocerebellar communication system 
was within their reach. Their experiments demonstrated that the regions of the cer-
ebellar cortex that receive input from the motor cortex are the same as those that 
project to the motor cortex. Similarly, the regions of the cerebellar cortex that 
receive input from area 46 (a part of the prefrontal cortex) are the same as those that 
project to area 46. Thus, their observations demonstrated that parallel closed-loop 
circuits represent a fundamental feature of cerebrocerebellar interactions (Fig. 19.2). 
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The closed-loop architecture of the cerebrocerebellar communication system is 
compatible with Ito’s closed-loop scheme (Fig. 19.1a(2)), a forward model. But it is 
not consistent with Allen and Tsukahara’s scheme that assumes an open-loop archi-
tecture. The cerebellum integrates its various cortical inputs and returns the output 
to the heteronymous motor cortex. Looking back, Ito’s pioneering forward model 
hypothesis was almost 30 years ahead of his time, but unfortunately, it somehow 
remained almost unnoticed until very recently.

19.3  �Contests Among Control Laws to Explain 
Movement Trajectories

In the 1980s and 1990s, there was a vigorous debate about putative control laws that 
govern movement trajectories in reaching movements. The discussion focused on 
how the central nervous system selects one specific movement trajectory among an 
infinite number of possible trajectories that lead to the goal. In other words, the 
competition was over control laws to reduce excess degrees of freedom. Several 
candidate theories included minimum jerk theory (Flash & Hogan, 1985), minimum 
energy theory, minimum mean squared velocity theory, minimum mean squared 
force theory (Stein et  al., 1994), or minimum torque change theory (Uno et  al., 
1989). Each theory predicts an ideal movement trajectory that maximizes or 
minimizes (optimizes) some criterion from the start point to the endpoint. For each 
ideal trajectory, the causal motor command was determined for the entire path in a 
feedforward manner. It was also assumed that no noise disturbs the movement’s 
execution because these optimization methods did not make noises into consideration.

19.4  �Awareness of Noise in Motor Control

Unfortunately, there certainly is noise in the real world. Indeed, Harris and Wolpert 
(1998) pointed out the critical role of inherent noises to determine the final control 
signal, i.e., muscle activities. We cannot achieve the ideal trajectory however hard 
we may practice because the control signal is always corrupted with the intrinsic 
noise. Moreover, there are also various noises or disturbances from the environment. 
Awareness of these intrinsic and extrinsic noises in motor control dramatically 
changed our approach to feedforward control. For instance, feedforward control for 
the entire path makes sense only when everything goes as planned during the 
movement. In reality, the unpredictable noises force trajectories to deviate from the 
desired path, increasing uncertainty toward the goal. Therefore, there is no guarantee 
to optimize the criterion as planned. The best we can hope to do is to maximize or 
minimize the expected value of the criterion.

19  The Input-Output Organization of the Cerebrocerebellum as Kalman Filter
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19.5  �Introduction of Stochastic Optimal Control

Intrinsic and extrinsic noises are a typical condition where “stochastic optimal con-
trol” or “optimal control” comes into play. Optimal control was developed initially in 
engineering to control complex multiple-input, multiple-output systems, which were 
not amenable to classical control theories (Kirk, 1970). It evaluates the system’s ran-
dom behavior and attempts to optimize responses or stability on the average rather 
than with assured precision (Stengel, 1994). A stochastic control system performs two 
functions: first, it controls the system (controller, in Fig. 19.3) and, second, it predicts 
the current state of the system (estimator, in Fig. 19.3) to provide the best feedback 
information for the controller (Stengel, 1994). Such an estimator takes efference copy 
and sensory inputs into account, and it weighs these pieces of information depending 
on their reliability (i.e., optimally). In modeling practice, one may use a Kalman filter 
(Kalman & Bucy, 1961), an optimal estimator when the dynamics and sensory mea-
surements are linear and the noise is Gaussian (Todorov, 2004). In Fig. 19.3, the esti-
mator and the controller are in a loop; thus, they can continue to generate time-varying 
commands recursively without preparing a whole set of motor commands in a feed-
forward manner. Then where is the estimator in the central nervous system?

19.6  �Difficulty in the Identification of the Cerebellar 
Forward Model

Previous reviews repeatedly suggested the cerebellum as a potential site of the esti-
mator or forward model mainly based on neuroanatomical data and clinical obser-
vations (for instance, Miall et al., 1993; Haggard & Wing, 1995; Wolpert & Miall, 
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Fig. 19.3  Schematic of closed-loop optimization. (Modified from Todorov (2004)) 
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1996; Bastian, 2006; Ebner & Pasalar, 2008). As mentioned above, a forward model 
requires two major inputs: (1) a set of sensory feedback signals, which are necessary 
to update the forward model, and (2) the copy of descending motor commands. 
These two inputs are integrated in the forward model to generate the state estimate. 
Indeed, the cerebellum receives both of these inputs. It receives substantial inputs 
from cortical motor areas via the pontine nuclei (PN) (Brodal and Bijaalie, 2003; 
Schmahmann et  al., 2004), and these inputs represent the efference copy of the 
descending motor commands (Ishikawa et al., 2014, 2016; Tomatsu et al., 2016). 
The cerebellum also receives substantial somatosensory inputs directly from the 
ascending spinocerebellar tracts and indirectly via brain stem nuclei, such as the 
cuneate nucleus or lateral reticular nucleus. These sensory inputs could provide an 
update on the state of the motor apparatus. The above argument may appear to sup-
port the cerebellar forward model hypothesis. But in reality, it is on insufficient 
grounds because the two lines of inputs are primarily separated in the cerebellar 
cortex. The mossy fiber (MF) inputs from the cortical motor areas (via PN) distrib-
ute mainly in the hemispheric (i.e., lateral) part (Na et al., 2019), while the sensory 
MF inputs from the spinal cord or the brain stem nuclei distribute in more rostral 
and medial part (the anterior lobe and the intermediate zone) (e.g., Wu et al., 1999) 
of the cerebellar cortex. Therefore, we may expect a convergence of the two MF 
inputs only in a minor part of the intermediate zone. More importantly, even if the 
nominal convergence has some role to play, the simple summation of the two MF 
inputs is not consistent with their asymmetric roles in the forward model. The effer-
ence copy plays an essential role in a state prediction, while the sensory input plays 
a critical role in an update of the prediction, as will be discussed later.

As for the output from a forward model, we expect it to correlate with the future 
state of the motor apparatus (Wolpert and Miall, 1996). In principle, we should 
examine the output from the cerebrocerebellum in the dentate nucleus (DN) because 
it is the sole output node from the cerebrocerebellum. Nevertheless, previous studies 
tried to address this issue by analyzing the Purkinje cell (PC) activities. Note that 
PCs’ activity represents an intermediate representation of the cerebellar circuitry 
and is not ideal for characterizing the output of a forward model. In this regard, few 
studies are eligible to discuss the output of the cerebellar forward models (Thach, 
1975, 1978; Thier & Markanday, 2019).

19.7  �Movement Representation in the Cerebrocerebellum

To identify movement representations of a forward model, we need to satisfy two 
requirements: (1) identification of cerebellar neural elements and (2) identification 
of movement or sensory coordinate frames for activities of each component. 
Fortunately, the cerebellum provides an ideal place to achieve the first goal (Ishikawa 
et al., 2014; Tomatsu et al., 2016). Indeed, it is possible in the cerebellum to isolate 
single-unit activities of MFs (primary cerebellar inputs), PCs (the sole output from 
the cerebellar cortex), and DN cells (DNCs) (the sole output from the 
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cerebrocerebellum) (Ishikawa et al., 2014; Tomatsu et al., 2016). Furthermore, it is 
also possible to achieve the second goal by employing our previous experimental 
design (Kakei et al., 1999, 2001). With this setup, we recorded activities of MFs, 
PCs, and DNCs, while monkeys perform wrist movements for eight different 
directions in two different forearm postures (Ishikawa et al., 2014; Tomatsu et al., 
2016). This task design enabled us to dissociate intrinsic coordinate frames from an 
extrinsic coordinate frame for the wrist movement, depending on the posture-
dependent changes in neuron activities. The results revealed distinct steps of 
movement representation from the input to the output of the cerebrocerebellum.

First, MFs demonstrated temporal and directional properties that were surpris-
ingly similar to those of neurons in the primary motor cortex (M1)/the premotor 
cortex (PM) (Kakei et al., 1999, 2001). Namely, these MFs relay copies of the M1/
PM motor commands to the cerebellum. Besides, their posture-dependent change of 
directional tuning demonstrated a bimodal distribution of shifts in the preferred 
direction (PD) for the 180° rotation in the forearm posture (Fig. 10a in Tomatsu 
et al., 2016), much like M1/PM neurons (Tomatsu et al., 2016) – one group with 
smaller shifts in PD (i.e., extrinsic-like neurons) and the other group with larger 
shifts in PD (muscle-like or joint-like neurons).

Second, PCs demonstrated much more complex spatiotemporal patterns of activ-
ity than MFs. The complexity of PC activities appeared to reflect rapidly changing 
properties of the peripheral motor apparatus during movement. Also, intricate spa-
tiotemporal patterns of PC activities changed significantly for a change in forearm 
posture regarding the directional tuning and the gain modulation (Tomatsu et al., 
2016). In particular, PCs showed a unimodal distribution of shift in PD that differed 
from the bimodal distribution of that of MFs (Fig. 10b in Tomatsu et al., 2016). The 
posture-dependent changes of PC activities indicate that the activities of these PCs 
encode intrinsic parameters and provide another support that the cerebrocerebellum 
works as a forward model to predict the state of the motor apparatus (Tomatsu 
et al., 2016).

Lastly, activities of DNCs, to our great surprise, appeared to recover those proper-
ties that were typical for MFs (Ishikawa et al., 2014). Namely, DNCs recovered sim-
pler spatiotemporal activity patterns, much like MFs, despite substantial direct inputs 
from PCs. Also, the posture-dependent shift in PD for DNCs recovered a bimodal 
distribution for the change in the forearm posture (Fig. 19.4a), much like MFs – one 
group with smaller (i.e., extrinsic-like) shifts in PD and the other group with more 
extensive (i.e., muscle-like or joint-like) shifts in PD.

Fig. 19.4 (continued) range per 1 ms of the cursor on the monitor controlled by wrist joint move-
ment. See Ishikawa et al. (2014) for the details of the experimental procedures. (2): Optimal delay 
between the movement speed and |ΣSSdec| and |∑SSinc| for the data shown in A. We calculated 
the R2 value for the correlation between them for each 1 ms shift of movement speed from −150 
to 50 ms relative to movement onset. Upper panel: R2 values between the movement speed and 
|ΣSSdec| for each delay. The value was the h‑ighest (= 0.847) when the movement speed profile 
was shifted by −61 ms (i.e., optimal delay). Lower panel: R2 values between the movement speed 
and |ΣSSinc| for each delay. The value was the highest (= 0.732) when the movement speed profile 
was shifted by −7 ms. (Modified from Ishikawa et al. (2016))
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Fig. 19.4  Some spatiotemporal features of dentate nucleus cells (DNCs) and PCs. (a) Distribution 
of shifts in PD from PRO to SUP for DNCs in a time window of −25 to 0 ms relative to movement 
onset. Bin width = 10°. Note the bimodal distribution (Ishikawa and Kakei, unpublished data). (b) 
Correlation between the population modulation of Purkinje cells (PCs) and movement kinematics. 
(1) Temporal patterns of the sum of the decrease (|ΣSSdec|, solid line) and increase (|∑SSinc|, 
dashed line) of the simple spike (SS) activity of all movement-related PCs and the average speed of the 
wrist movement (gray line) in a monkey. To obtain |ΣSSdec| and |∑SSinc|, we summed all 
decreases and increases of SS activity relative to a reference period (200–260 ms before move-
ment onset) separately in each 20 ms bin. The speed profile was calculated from a displacement 
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In summary, the cerebrocerebellum appears to transform copies of cortical motor 
commands (i.e., MF inputs) into similar movement representations (i.e., DNC 
output) through fundamentally distinct representations of PCs in a posture-
dependent manner.

19.8  �Timing of Movement-Related PC Activities 
in the Cerebrocerebellum

The timing of the task-related activities of PCs was also compatible with the cere-
bellar forward model hypothesis. Fig.  19.4b depicts a comparison between the 
speed profile and PCs’ population activity recorded in the cerebrocerebellum of 
three monkeys during a rapid wrist movement in our recent study (Ishikawa et al., 
2014). In this analysis, we summated the increase (|ΣSSinc|) and decrease (|ΣSSdec|) 
of simple spike activity of all movement-related PCs separately. As shown in 
Fig. 19.4b(2), |ΣSSdec| demonstrated the highest correlation with the speed profile 
of the movement when the speed profile was shifted by −60  ms. Namely, the 
population activity of PCs precedes the actual movement by about 60 ms. Indeed, 
the lead times of PC activities were comparable to the average onset of muscle 
activities in the same animals (Tomatsu et al., 2016).

On the other hand, the onset latencies of the PCs lagged behind those of M1 and 
PMv neurons reported in our previous studies (−97.0 ± 15.3 ms for 44 extrinsic-like 
M1 neurons, −93.6 ± 20.8 ms for 28 muscle-like M1 neurons, and − 124.3 ± 30.6 ms 
for 55 extrinsic-like PMv neurons, Kakei et al., 1999, 2001). Therefore, the PCs’ 
population activity follows that of the cortical motor command (p < 0.001, Mann-
Whitney U-test). Thus, PC activities appear to represent the future states of the 
motor apparatus rather than motor commands or external sensory feedback. Overall, 
our observations suggest that the cerebrocerebellum could work as a forward model 
in terms of timing, representation, and transformation of activities.

19.9  �System Identification of the Transformation 
in the Cerebrocerebellum: Its Similarity 
to Kalman Filter

If the cerebrocerebellum functions as a forward model, it is expected that the current 
output from DN should contain predictive information about the future MF input. 
Therefore, in our previous study (Tanaka et al., 2019), we examined the relationship 
between activities of MFs (cerebellar inputs), PCs (intermediate representation), 
and DNCs (cerebellar outputs). Briefly, we found that the activities of individual 
PCs were reconstructed precisely as a weighted sum of those of MFs. Similarly, the 
activities of individual DNCs were reconstructed strictly as a weighted sum of those 
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of PCs and MFs. We further proved that the activities of DNCs contained predictive 
information about future MF inputs (Tanaka et al., 2019). Namely, the output from 
the cerebrocerebellum is capable of predicting 200 ms into the future to compensate 
for the delay of sensory feedback. We finally note that the linear relationship 
between MF, PC, and DNC activities resembles an optimal linear estimator known 
as the Kalman filter (Kalman & Bucy, 1961; Tanaka et al., 2019).

The functional similarity of the cerebellum to the Kalman filter has already been 
suggested in some previous reviews. Most notably, Paulin (1989, 1997) indicated that 
the cerebellum could be a neural analog of a Kalman filter. Droulez and Cornílleau-
Pérèz (1993) drew attention to the relevance of multisensory integration in the moving 
organism to the Kalman filter. Nevertheless, the suggested analogy was only at the 
functional level and lacked correspondence to the cerebellar network. In our study, we 
demonstrated the three computational steps in the cerebellar circuit that are compati-
ble with the Kalman filter (Tanaka et al., 2019): (1) the PCs compute a predictive state 
from a current estimate conveyed by the MFs (prediction step); (2) the DNCs combine 
the predicted state from the PCs and sensory feedback from the MFs (filtering step); 
and (3) the DNCs represent future activities of MFs (cerebellar prediction).

Note that even a pair of an excitatory granule cell and an inhibitory Golgi cell 
that receive the same MF input can function as a neural oscillator (Hoppensteadt & 
Izhikevich, 1997; Wilson & Cowan, 1973). It can show nonlinear input-output 
organizations and various types of bifurcations of activities depending on system 
parameters (Izhikevich, 2007). Therefore, these linear steps of the cerebellar 
information processing were unexpected and surprising, considering the complexity 
of the whole neuron network of the cerebellum.

Overall, the cerebellum appears to perform not only an internal forward model 
prediction but also an optimal integration of a predicted state and sensory feedback 
signals, in a way that is equivalent to Kalman filter as summarized below (a) (Tanaka 
et al., 2019):

	
ˆ ˆ ˆ ˆ

\ \ \ \X X K z CX I KC X Kzt t t t t t t t t t= + −( ) = −( ) +− − −1 1 1 � (19.a)

where a filtered state ˆ \Xt t  (DNC output) is generated by combining a predicted state 
ˆ

\Xt t−1 (=PC input) and an observed state zt (=MF collateral input). We speculate that 
the weights from PC to DNC and the weights from MF to DNC correspond to the 
matrices I − KC and K in Eq. (19.a), respectively (Tanaka et al., 2019).

19.10  �Morphologic Substrata of the Cerebrocerebellum 
for Kalman Filter

Nevertheless, we realized that the conventional circuit diagram of the cerebellum 
(Fig. 19.5a) is not compatible with the Kalman filter (a). In this diagram (Fig. 19.5a), 
a MF projects both to PC (via granule cell (GC)) and DNC as collaterals, implying 
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that PC and DNC of the same corticonuclear microcomplex (Ito, 1984) share the 
same MF input. In contrast, a Kalman filter (a) requires two distinct MF inputs. One 
MF input originates from cortical motor areas. It contributes to the prediction step 
in the cerebellar cortex to generate the current estimate ( ˆ \Xt t−1) (i.e., PC activity). 
The other MF input conveys sensory feedback input to DNC through the collateral 
and contributes to the filtering step in DN. Most importantly, the contributions of the 
two MF inputs in (a) are asymmetrical and uninterchangeable. Therefore, the neu-
ron circuit (Fig. 19.5a), in which the current estimate and current measurement are 
indistinguishable (i.e., interchangeable), cannot function as a Kalman filter.

Incongruent with the conventional diagram, extant anatomical studies suggest 
that the cerebrocerebellum receives respective MF inputs to PC and DNC 
(Fig. 19.5b). The first requirement of the Kalman filter is the cortical MFs project to 
the cerebrocerebellum without collaterals to DNC. Na et al. (2019) recently demon-
strated that MFs from PN virtually lack collaterals to DNC on their way to the 
cerebrocerebellum. Namely, the first requirement is satisfied with the input from 
cortical motor areas to the cerebrocerebellum. The second requirement for the 
Kalman filter is that MFs conveying sensory input give off collaterals to DN. Indeed, 
Wu et al. (1999) demonstrated that MFs originated from the lateral reticular nucleus 
(LRN), which receives strong somatosensory inputs from the spinal cord, have an 
abundant collateral projection to DN and other cerebellar nuclei on their way to the 
vermis and the intermediate zone (see Figs. 8, 9, and 10 in Wu et al., 1999). Note 
that the two MF inputs from PN and LRN have only minor overlap in the cerebellar 
cortex (Na et al., 2019; Wu et al., 1999). Figure 19.5b summarizes these observa-
tions and demonstrates the asymmetrical relationship of the two lines of MF inputs, 
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PC PC
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CBX CBXa CBXb

DN

Fig. 19.5  Two schematics of corticonuclear organization. (a) Conventional scheme in which the 
same MF projects to the cerebellar cortex (CBX) and DN, both of which belong to the same corti-
conuclear complex (Ito, 1984). (b) Proposed scheme that one MF (MFa) from pontine nuclei (PN) 
projects to the cerebellar cortex (i.e., cerebrocerebellum) (CBXa) without collateral projection to 
DN, whereas another separate MF (MFb) projects to DN with a collateral. Note that MFa and MFb 
have distinct projection areas in the cerebellar cortex, CBXa and CBXb, respectively. Only Scheme 
B is consistent with the requirements of the Kalman filter model and the latest neuroanatomical 
data for the cerebrocerebellum. (Adapted from Tanaka et al. (2020) under CC BY license)
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which is consistent with the Kalman filter. We have already pointed out the defect 
of the symmetrical MF inputs in the previous cerebellar forward model hypothesis 
(see Section “Difficulty in Identifying the Cerebellar Forward Model” in this 
article). In this way, the defect has been removed.

Under these anatomical data, we found two functionally distinct populations of 
MFs in our data (Tanaka et al., 2019). One population of MFs contributed selectively 
to the reconstruction of PC activities and dominated the prediction step, while the 
other population of MFs contributed selectively to the reconstruction of DNC 
activities and dominated the filtering step (Tanaka et  al., 2019). The average 
correlation coefficient between weights of MF–PC and MF–DNC projections was 
no more than 0.060. A statistical test based on resampling verified that the correlation 
between the two MF populations was statistically significant (p < 10−5). Therefore, 
we concluded that PCs and DNCs received inputs from distinct populations of MFs, 
thereby satisfying the Kalman filter model’s requirements.

19.11  �Inference About the Primordial Operation 
of the Cerebellum

The “corticonuclear microcomplex” depicted in Fig. 19.5b is most likely specific 
for the dentate nucleus and corresponding cerebrocerebellum (i.e., the newer part of 
the cerebellum). In contrast, the other older parts of the cerebellar nuclei receive MF 
inputs in different ways (Ito, 1984). For example, in the vestibular nucleus, neurons 
are driven primarily by direct (i.e., primary afferent) MF inputs, whereas PCs 
activated by the same MF inputs exert modulatory action on the nuclear neurons 
(Fig. 19.5a; see also Fig. 92a in Ito, 1984). In the fastigial nucleus, however, the PC 
input plays the primary role. At the same time, collaterals of MFs provide a 
background excitation on which PCs can impose efficient bidirectional modulation 
(Fig. 19.5a; see also Fig. 92b in Ito, 1984). In these phylogenetically older cerebel-
lar regions, the corticonuclear microcomplex (Ito, 1984) is not consistent with the 
Kalman filter, where PC and cerebellar nuclear cells share the same MF input. 
Overall, even if the local neuron circuitry is common for the entire cerebellar cortex, 
different regions may perform computationally different operations depending on 
the organization of microcomplex (Ito, 1984: pp. 195–199 and Fig. 92).

Nevertheless, because of the superb “crystal-like” homogeneity of the neuron 
circuitry, all these regions of the cerebellar cortex most likely hold the prediction 
step in common. Even if the presumed prediction step alone remains suboptimal 
due to lack of the filtering step, it could still play an invaluable role in improving its 
owner’s survival. Indeed, the cerebellum-like structure of fishes with electroreception 
systems has been suggested as a neural analog of a dynamical state estimator 
(Bastian & Zakon, 2005; Paulin, 1989; 1997). According to Paulin, the cerebellum 
is a sensory processing structure with a specific role in the state estimation of 
dynamical systems. He further suggested that the cerebellum has a common 
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underlying role in sensorimotor, perceptual, and cognitive processes consistent with 
the state estimator hypothesis (1997). The cerebellar contribution to sensory 
processing is not surprising if we remember the fact that the cerebellum emerges in 
the alar plate (i.e., sensory domain of the embryonic neural tube) of the 
rhombencephalon of old jawless fishes (Sugahara et al., 2016). It collects multimodal 
inputs, including exteroceptive (lateral line, vestibular, acoustic, visual) and 
somatosensory inputs (Larsell, 1967). The cerebellum has further gained access, in 
mammals, to cortical information from association areas and motor and sensory 
areas. Overall, throughout its long history of evolution, the cerebellum has been a 
unique hub to collect afferent, efferent, and finally internal (i.e., association) 
information from the entire brain.

19.12  �Extension of Cerebellar Kalman Filter Hypothesis 
to the Non-motor Cerebrocerebellum

The critical question arises whether the Kalman filter mechanism for the motor part 
of the cerebrocerebellum (Tanaka et al., 2019) generalizes to its cognitive/affective 
part. Our dataset recorded during the motor task may not generalize directly to the 
cerebellum’s contribution to prediction in cognitive/affective domains. Nevertheless, 
it is possible to search for the Kalman filter-specific corticonuclear microcomplex 
(Fig. 19.5b) in the non-motor part of the cerebrocerebellum. There are two require-
ments: (1) the primary MFa input to the cerebrocerebellum is originated from a 
non-motor cortical area and relayed by PN cells (PNCs) and (2) the filtering MFb 
input is derived from a distinct cortical or subcortical source and relayed by a non-
PN nucleus with a significant collateral projection to DN (Fig. 19.5b). Requirement 
(2) is the key because requirement (1) is common for most, if not all, non-motor 
cortical areas, including prefrontal areas (Schmahmann & Pandya, 1997), parietal 
association areas (Schmahmann & Pandya, 1989), superior temporal areas 
(Schmahmann & Pandya, 1991), and occipitotemporal and parahippocampal areas 
(Schmahmann & Pandya, 1993). There are a few known sources of collateral MF 
inputs to DN, most notably the lateral reticular nucleus (LRN) (Wu et al., 1999) and 
the nucleus reticularis tegmenti pontis (NRTP) (Gerrits and Voogd, 1987) in the 
reticular formation. The LRN receives the main inputs from the spinal cord 
(Alstermark and Ekerot, 2013) and additional inputs from the sensorimotor areas 
and the red nucleus (Bruckmoser et al., 1969; Matsuyama and Drew, 1997). The 
NRTP receives inputs mainly from the sensorimotor areas, the prefrontal areas, and 
the parietal association areas (Schmahmann et al., 2004). In summary, the Kalman 
filter model (Fig. 19.5b) is also applicable to the non-motor part of the cerebrocer-
ebellum if the MF collateral to non-motor parts of DN (MFb) and MF inputs to the 
PCs (MFa) have distinct sources and causal relationship from MFa to MFb. In that 
sense, NRTP is a major candidate for the filtering inputs to the non-motor parts of 
DN (Fig. 19.6, left).
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It should be pointed out that the Kalman filter model that predicts M1 activity 
(Fig.  19.6, center) is capable to form a cascade with another Kalman filter that 
predicts activity of association cortex (ASC) (Fig. 19.6, left), if M1 sends a filtering 
input (coll) to distinct region of DN (ASC) via NRTP (Fig. 19.6, left). In this way, 
the filtering input may play a critical role to make two Kalman filters work together. 
This model also explains how parallel domains in the cerebrocerebellar 
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Fig. 19.6  A hypothetical cascade of Kalman filters in the cerebrocerebellar communication loop. 
The Kalman filter model that predicts M1 activity (center) is capable to form a cascade with 
another Kalman filter that predicts ASC activity (left), if M1 sends a filtering input (coll) to distinct 
region of DN (ASC) via NRTP (center). Note the collateral input to DN (ASC) from M1 does not 
project to M1 region of DN (DN (M1)) (see Tanaka et al., 2019). In this way, the filtering input may 
play a critical role to make two Kalman filters to work together. This model may also explain how 
parallel forward models in the cerebrocerebellar communication loops function together in a 
coordinated manner and may provide a partial explanation for unity of mind. ASC association 
cortex, CBX cerebellar cortex, coll collateral of MFs, LRN lateral reticular nucleus, M1 the 
primary motor cortex, NRTP nucleus reticularis tegmenti pontis, PN pontine nuclei, Thal thalamus
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communication loops (Kelly & Strick, 2003) are coordinated in a cascadic manner, 
providing a partial explanation for unity of mind.

19.13  �Compressed Prediction of the Cerebellar 
Internal Model

Few paid attention to the asymmetry of the cerebrocerebellar loop in terms of the 
number of output neurons. The number of axons in the cerebral peduncle (CP) 
conveying cortical outputs to PN and other precerebellar nuclei is estimated as 21 
million in humans (Tomasch, 1969). In contrast, the number of axons in the return 
path (i.e., the superior cerebellar peduncle) relaying the cerebellar output to the 
thalamus is no more than 0.8 million in humans (Heidary & Tomasch, 1969). 
Namely, the cerebrocerebellum returns its output to the cerebral cortex after 
significant compression (1:20) (Tanaka et  al., 2020). Therefore, the cerebellar 
output appears to represent a predicted state of cortical activities in a compressed 
format. The mapping between the cortical output and the cerebellar output may be 
compatible with a homomorphism (https://en.wikipedia.org/wiki/Homomorphism). 
A homomorphism has a distinguished advantage for an internal model because it 
enables the model to perform an operation equivalent to the original while using a 
more simplified representation.

Although there is no consensus on the compressed representation so far (Sanger 
et al., 2019), the compact (i.e., low-resolution) prediction of the cortical state may 
help assign more attention to the task currently in focus by minimizing the 
computational load for the other peripheral tasks. It also reminds us that the 
cerebellum contributes most to trained and automated repertoires of both motor and 
cognitive functions with reduced attention.

We cannot spare another important consequence of the relative paucity of DNCs. 
The MF collateral input to DN (Fig. 19.5b, coll) appears far from massive compared 
(e.g., Wu et al., 1999) to the massive MF input to the cerebrocerebellum (Fig. 19.5b, 
MFa). Therefore, one may argue that the modest projection of the MF collaterals to 
DN cannot be effective enough to play such an important function as filtering of the 
Kalman filter. Nevertheless, the limited number of the target DNCs appears to help 
in amplifying efficacy of the collateral input.

19.14  �Clinical Evidence for the Internal Model Hypothesis 
of the Cerebellum

Finally, we searched for clinical evidence that supported the cerebellar forward 
model hypothesis (e.g., Bastian, 2006; Miall et al., 2007). A series of studies from 
our group confirmed the impaired predictive control in movements of patients with 
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cerebellar ataxia (CA). We first decomposed the muscle activities for the wrist 
movement into a low-frequency (≤ 0.5 Hz) component (F1) and a high-frequency 
(>0.5 Hz) component (F2), each of which represented the predictive control and the 
feedback correction, respectively (Kakei et al., 2019). Then for each component, we 
identified a recipe of muscle activities by analyzing a relationship between the 
muscle tension and movement kinematics (the wrist angle θ(t) and the wrist angular 
velocity θ t( )) weighted by the coefficients of Kr (the elastic term) and Br (the vis-
cous term) (Kakei et al., 2019; Lee et al., 2012; Mitoma et al., 2016). Importantly, 
we found that the ratio of Br/Kr characterized the recipe of muscle activities for each 
component. In control subjects, the Br/Kr ratio for the predictive (F1) component 
demonstrated a higher value (Fig. 19.5 in Kakei et al., 2019) (Fig. 7a), suggesting 
the velocity control dominance. On the other hand, the Br/Kr ratio for the corrective 
(F2) component demonstrated a much smaller value (Fig. 19.5 in Kakei et al., 2019) 
(Fig. 19.7a), suggesting the role of F2 component in correction of positional errors 
(Kakei et al., 2019). In contrast, CAs showed a selective decrease of the Br/Kr ratio 
for the predictive (F1) component (Fig. 5 in Kakei et al., 2019) (Fig. 19.7a), sug-
gesting poor recruitment of the predictive velocity control and compensatory depen-
dence on the position-dependent pursuit (Kakei et  al., 2019). The loss of 
component-specific differences in the Br/Kr ratio suggests impairment of predictive 
control in CA. Indeed, the Br/Kr ratio decrease correlated with the increase of error 
in the predictive (F1) movement (Fig. 19.7b) (Kakei et al., 2019). Another critical 
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difference between the control and CA was the increased delay of the predictive 
(F1) component in CA (Fig.  19.7c). In the control subjects, the predictive (F1) 
movement lagged the target motion only by 66 ms, which was too small to be a 
visual feedback delay (i.e., a proof of prediction) (Kakei et al., 2019). In contrast, in 
patients with CA, the delay increased by more than 100 ms, as much as 172 ms. The 
increased delay (i.e., 172 ms) is comparable to a visual feedback delay, demonstrating 
lack of compensation of feedback delay in CA patients. In summary, ataxic 
movements are consistent with an impairment of a forward model in terms of 
accuracy and delay of state prediction.

19.14.1  �Postscript

The most primitive cerebellum emerged in the alar plate of the rhombencephalon of 
old jawless fishes as a sensory hub to which multimodal sensory inputs converge. 
The cerebellum later acquired efference copy inputs, which is essential for active 
sensing. Indeed, we can see its example in the cerebellum-like structure of some 
fishes that process information from electroreception systems. We speculate that the 
active sensing evolved to detect causality and finally led to a more sophisticated 
state prediction in a primitive forward model. Next, in mammals, the cerebellum 
acquired a strong loop with the cerebral cortex: the cerebrocerebellar communication 
loop. In this way, the cerebellum developed into the primary hub in the entire 
CNS.  In particular, the acquisition of the DN filtering step evolved the existing 
dynamic prediction in the cerebellar cortex to a Kalman filter. This revolutionary 
event gave each region of the cerebrocerebellum a privilege to predict the state of its 
counterpart in the cerebral cortex, which includes motor areas, parietal association 
areas, prefrontal association areas, and limbic areas (Ito, 2008). This Kalman filter 
model also explains how parallel domains in the cerebrocerebellum operate in a 
cascadic manner and may provide a partial explanation for unity of mind. Finally, 
we should not forget the morphological asymmetry of the cerebrocerebellar 
communication loop. Namely, the cerebrocerebellum returns its output from DN 
back to the cerebral cortex after significant compression (1:20) (Tanaka et al., 2020). 
The low-resolution prediction of the cortical state may help assign more attention to 
the task currently in focus by reducing computational load for peripheral tasks. 
Given the fact that the cerebellum contributes most to trained and automated 
repertoires with less effort and attention, this asymmetry appears to make 
perfect sense.
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