
Plant Responses to Exogenous Salicylic
and Jasmonic Acids Under Drought
Stress

Kazem Ghassemi-Golezani and Salar Farhangi-Abriz

Abstract In a vast area of the farming lands in the world, drought stress is an impor-
tant factor for limiting plant growth and productivity. Adjusting hormonal signaling
of plants under drought stress is one of themain goals of plant physiologist to increase
drought stress tolerance and productivity of plants. Salicylic (SA) and jasmonic acids
(JA) are involved in plant defense mechanism against abiotic stress tolerance such as
drought. These growth regulators considerably enhance antioxidative capacity (enzy-
matic and non-enzymatic) of plant cells, which largely reduce lipid peroxidation and
maintain membrane integrity. Exogenous salicylic and jasmonic acids increase plant
osmolytes such as proline and soluble carbohydrates in response to drought stress.
The critical roles of these growth regulators in enhancing photosynthetic activities
under drought stress have been confirmed. Moreover, salicylic and jasmonic acids
can change the biosynthesis of secondary metabolites in drought subjected plants.
In this chapter, the SA and JA mechanisms of actions in changing physiological and
biochemical properties of plants favoring drought tolerance were discussed.

1 Introduction

Global plant production is affected by periodical drought stress. Drought is a long
dry period, which happens in an area when it receives a below average precipitation
(Ali et al. 2017; Farhangi-Abriz and Ghassemi-Golezani 2019). This stress has an
extensive impact on physiological and biochemical aspects of plants. Various aspects
of plant physiology such as photo-synthetical activities, source and sink relationships,
hormonal signaling and plant growth are affected by drought stress (Li and Liu 2016;
Anjum et al. 2017). Changes in hormonal signaling is one of the important responses
in plant cells, which controls various aspects of plant growth and physiology under
drought stress (Pandey et al. 2017). Plant hormones such as Salicylic acid (SA) and
jasmonic acid (JA) are the natural groups of molecules, which have important roles
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in adjusting plant growth and reacting to environmental stresses such as drought and
salinity (Ilyas et al. 2017; Ghassemi-Golezani and Farhangi-Abriz 2018).

SA is generally present in plants in the form of methylated, glycosylated, glucose-
ester, and amino acid conjugates or in a free state (Zhang and Li 2019). This hormone
can be detected in large amounts in plant leaves after pathogenic infection (Qi et al.
2018). SA controls different parameters of plant growth such as root and shoot growth
and leaf expansion (Mimouni et al. 2016). Exogenous application of SA noticeably
improves plant growth under drought (Sharma et al. 2017), salt (Farhangi-Abriz
and Ghassemi-Golezani 2018), heat (Wassie et al. 2020) and heavy metal (Kohli
et al. 2017) stresses. This growth regulator also increases antioxidative activities and
osmolytes production of plants under adverse conditions such as drought (Rao et al.
2012). Endogenous SA is strongly correlated with enzymatic and non-enzymatic
antioxidants and osmolytes under normal and stressful conditions (Farhangi-Abriz
et al. 2020). The organic osmolytes in plant tissues, such as proline and soluble
carbohydrates are increased in response to foliar application of SA (Moustafa-Farag
et al. 2020). This treatment also enhances root development of plants under drought
and consequently improves water uptake by plants (Hayat et al. 2010).

Jasmonates family include jasmonic acid, methyl jasmonate, and jasmonyl-
isoleucine are involved in control of plant responses to different kinds of environ-
mental stresses and play an important role in several aspects of growth and devel-
opment (Farhangi-Abriz and Ghassemi-Golezani 2019; Ruan et al. 2019). Jasmonic
acid adjusts growth and development of plants through diverse interconnections
between various signaling molecules such as SA and abscisic acid (ABA) (Sasaki
et al. 2001). Exogenous application of JA under drought stress improves drought
tolerance in brassica species (Alam et al. 2014). Many reports show that exogenous
JA increases antioxidative defensemechanisms in drought stressed plants (Alamet al.
2014). JA increases production of ABA which in turn controls stomata behavior and
water status of plants under drought stress (Farhangi-Abriz and Ghassemi-Golezani
2019). de Ollas et al. (2013) found that accumulation of JA in root cells is required
for ABA biosynthesis in rice plants. In this chapter, the responses of plants to SA and
JA under drought stress are evaluated, in order to identify the possible mechanisms
of SA and JA involvement in drought subjected plants. Some possible effects of SA
and JA on changing plant response to drought stress are summarized in Fig. 1.

2 The Roles of Salicylic and Jasmonic Acids in Drought
Sressed Plants

2.1 Oxidative Stress Tolerance

Reactive oxygen species (ROS), such as hydrogen peroxide, superoxide anion,
hydroxyl radicals and singlet oxygen are generated at low levels in plant organelles,
especially in peroxisomes, mitochondria, chloroplasts, plasma membrane and
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Fig. 1 Some important impacts of salicylic and jasmonic acids on plant response to drought stress

apoplast under normal water availability. However, generation of ROS is stimu-
lated by drought condition (Kar 2011; Choudhury et al. 2017). Higher levels of
ROSs act as noxious substances which can damage different molecules such as
proteins, lipids and nucleotides (Banerjee and Roychoudhury 2018). Once the plant
confront drought, the initial physiological response will be stomatal closure to evade
water losses due to transpiration, but this response will have some harmful effects
on photosynthesis and electron transportation system with limited CO2 fixation,
altered photosynthetic activities and higher rate of photorespiration (Chaves et al.
2002; Osakabe et al. 2014). Plants have different antioxidative defense systems to
control or detoxify ROSs in their cells. Different enzymatic (such as superoxide
dismutase, catalase, peroxidases) and non-enzymatic antioxidant systems (such as
proline, flavonoids, carotenoids, ascorbate, glutathione and α-tocopherol) have the
capacity to scavenge ROSs in plant cells (Osakabe et al. 2014). Antioxidants and
stress hormones are produced in a high amount under drought stress. According to
available reports, there was a strong correlation between endogenous concentrations
of stress hormones such as SA and JA with antioxidative activities in plant cells
(Farhangi-Abriz et al. 2020).

The interaction of SA with ROSs was initially reported by Chen et al. (1993).
Subsequent investigations revealed that SA activates different stress tolerance genes
and transcription factors such as TGA factors from bZip family, bind to cis-elements
containing TGA box and WRKY transcription factors, which control most of the
antioxidative activities in plant cells (Singh et al. 2002; Johnson et al. 2003). It
is confirmed that plants increase SA accumulation after being exposed to drought
stress (Okuma et al. 2014). ICS1 and ICS2 are the two Arabidopsis genes coding for
isochorismate, which is the key enzyme in adjusting SA biosynthesis. Environmental
stresses such as drought upregulate ICS1 and ICS2 genes and consequently enhance
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SAconcentration in plant cells (Herrera-Vásquez et al. 2015). SA-deficient transgenic
rice has lower antioxidant capacity and higher ROS levels (Yang et al. 2004). Durner
and Klessig (1996) showed that SA detoxifies hydroxyl radicals and thus protects
plants against catalase inactivation by hydrogen peroxide.

Exogenous application of SA is a practical way to increase SA concentration in
plant cells (Farhangi-Abriz et al. 2020).Many reports showed that SAcould be absorb
by plant leaves, even in normal or stressful conditions (Nassef 2017; Ghassemi-
Golezani et al. 2018a). Foliar application of SA increases antioxidative activities
of plants under drought stress. Singh and Usha (2003) stated that irrespective of
intensity of drought stress and SA concentration (1–3 mM), SA treated plants had
the highest level of superoxide dismutase activity compared to untreated plants. In
a pot experiment, Saruhan et al. (2012) investigated the role of SA in increasing
antioxidative activities of different maize cultivars (Zea mays L.). The results of this
study showed that SA treatment noticeably increased superoxide dismutase, catalase,
ascorbate peroxidase, glutathione reductase and monodehydroascorbate reductase
activities. Similar reports are available in tomato (Hayat et al. 2008), wheat (Sedaghat
et al. 2017), barley (Torun 2019) and cotton (Hussain et al. 2020).

Kadioglu et al. (2011) reported that foliar application of SA significantly improved
endogenous content of SA in Ctenanthe setosa plants and consequently improved
the non-enzymatic antioxidants such as ascorbate, glutathione, α-tocopherol, and
carotenoid contents under drought stress. In a field experiment, Ghassemi-Golezani
et al. (2019) evaluated the possible effects of SA on promoting water stress toler-
ance of rapeseed and found that foliar spray of SA (1 mM) significantly enhanced
peroxidase, catalase, superoxide dismutase, and ascorbate peroxidase activities, but
reduced hydrogen peroxide generation under drought stress. These increments in
antioxidative activities noticeably improved membrane integrity of plant cells under
water deficit. In another field experiment, the drought-subjected ajowan (carum
copticum L.) plants produced more non-enzymatic compounds such as carotenoids
and anthocyanins in response to foliar application of SA (Ghassemi et al. 2019).

JA is another stress hormone that has some important roles on decreasing oxidative
stress of plants under different environmental conditions such as drought (Alam et al.
2014) and salt stress (Farhangi-Abriz and Ghassemi-Golezani 2018). Compared to
research works showing a positive impact of jasmonic acid in response to pathogen
attacks, less has been known about its’ role on plants under abiotic stresses such
as drought. Previous researches confirmed that water stress increases jasmonic acid
production in leaves and roots of plants (Kiribuchi et al. 2005). Overexpression
of some key genes in jasmonic acid biosynthesis pathway such as jasmonic acid
carboxyl methyl transferase gene (AtJMT ) in rice showed an increased level of
jasmonic acid under drought condition (Kim et al. 2009a). Increasing endogenous
content of JA has a positive effect on rising antioxidative activities in plant cells
(Farhangi-Abriz et al. 2020). The JA may affect enzyme activities through changes
in gene transcription and translation. The organ-specific nature of JA shows that the
effects of this hormone are responsible for directing specific cellular and sub-cellular
modifications in metabolism (Comparot et al. 2002).
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Many reports showed positive effects of JA application on rising antioxida-
tive activities in different plant species under water deficit (Farhangi-Abriz and
Ghassemi-Golezani 2019). According to Alam et al. (2014) jasmonic acid stimu-
lates the glyoxalase systems in plant cells and enhances antioxidative activities under
drought stress. These researchers also found that foliar application of JA increases
the activities of some important antioxidant enzymes such as ascorbate peroxidase,
glutathione peroxidase, and catalase in Brassica species, leading to ROS detoxi-
fication under drought stress. Anjum et al. (2011) reported that foliar application
of methyl-jasmonate enhances the superoxide dismutase, peroxidase, and catalase
activities in soybean leaves and consequently reduces membrane lipid peroxidation
under water stress. Priming with JA was also helpful in rising antioxidative activities
of seedlings under water limitation. Abdelgawad et al. (2014) found that pretreat-
ment of maize seeds with methyl-jasmonate increases the antioxidative activities of
seedlings under drought condition. Foliar application of JA not only improves activi-
ties of antioxidants, but also increases the production of non-enzymatic antioxidants
such as ascorbate and glutathione molecules (Shan and Liang 2010). The positive
impacts of JA on increasing ascorbate–glutathione cycle have been confirmed by
Shan et al. (2015) in wheat plants. Foliar spray of jasmonic acid alleviated oxida-
tive stress in Thymus vulgaris by increasing antioxidative activities (Alavi-Samani
et al. 2015). Ghaffari et al. (2020) showed that foliar applications of jasmonic acid
increases the catalase, and peroxidase activities and reduces lipid peroxidation in
sugar beet. The antioxidant activities of SA and JA treated plants are summarized in
Table 1.

2.2 Osmotic Stress Tolerance

Water stress causes cell dehydration and changes cell metabolism. Production and
accumulation of osmolytes such as proline, soluble carbohydrates, proteins and
glycine betaine are the main changes in cell metabolism under drought (Kaur and
Asthir 2017; Hussain et al. 2019). Drought-induced production and accumulation
of osmolytes have been reported in various plant species. previous findings proved
that production and accumulation of osmoprotectants can enhance drought tolerance
of plants (Li et al. 2017; Shinde et al. 2018). Drought-induced limitation of water
availability hinders cell expansion, cell division and growth of plants (Riboldi et al.
2016; Feng et al. 2016). Salehi-Lisar and Bakhshayeshan-Agdam (2016) reported
that reduction of plant growth under drought stress is related to a decrement in cell
water potential. Drought stress reduces some important plant-water related parame-
ters such as relative water content, osmotic potential, leaf water potential, transpira-
tion rate and pressure potential (Kirkham 2014). The other well-known mechanisms
of osmolytes are detoxification of toxic compounds such as ROS, and protection
of membrane and mitochondrial structures and photosynthetic system (Hayat et al.
2012). Furthermore, most of the osmolytes have signaling roles under drought stress.
The concentrationof natural osmoprotectants in cytoplasmic area can exceed200mM
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Table 1 Salicylic acid and jasmonic acid impacts on antioxidative activities of different plant
species under drought stress

Hormones Plant
species

Application method
and dosage

Effects on plants References

Salicylic
acid

Brassica
napus L

Foliar
application—1 mM

Foliar sprays of
salicylic acid
increased the
antioxidant enzymes
activities such as
peroxidase, catalase,
superoxide dismutase,
and ascorbate
peroxidase and
consequently reduced
lipid peroxidation
under drought stress

Ghassemi-Golezani
et al. (2019)

Salicylic
acid

Oryza
sativa

Seed priming (0.5 and
1 mM)

Seed priming with
salicylic acid
noticeably improved
seedling growth by
increasing catalase,
ascorbate peroxidase
and guaiacol
peroxidase activities
under drought stress

Sohag et al. (2020)

Salicylic
acid

Brassica
napus

Foliar
application—1.5 mM

Salicylic acid
improves
drought-stress
tolerance by
increasing the redox
status and decreasing
reactive oxygen
species generation in
Brassica rapa

Hien La et al. (2020)

Salicylic
acid

Phaseolus
vulgaris

Foliar
application—1 mM

Foliar application of
salicylic acid
increased superoxide
dismutase, catalase
and ascorbate
peroxidase activities,
and reduced lipid
peroxidation of plants
under drought stress

Lopes et al. (2019)

Jasmonic
acid

Agropyron
cristatum

Protirement of
plant—1 μM

Jasmonic acid
enhanced the
ascorbate and
glutathione
metabolisms in plant
tissues and induced
the water stress
tolerance

Shan and Liang
(2010)

(continued)
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Table 1 (continued)

Hormones Plant
species

Application method
and dosage

Effects on plants References

Jasmonic
acid

Triticum
aestivum

Protirement of
plant—10 μM

Exogenous jasmonic
acid enhanced the
nitric oxide production
and antioxidative
systems such as
ascorbate–glutathione
cycle under water
stress

Shan et al. (2015)

Jasmonic
acid

Triticum
aestivum

Foliar
application—100 μM

Jasmonic acid
significantly enhanced
antioxidative activities
in wheat seedlings and
improved drought
stress tolerance

Abeed et al. (2020)

Jasmonic
acid

Thymus
vulgaris

Foliar
application—200 μM

Foliar application of
JA decreased the
harmful effects of
water stress on thymus
plants by enhancing
antioxidative activates
and root growth

Alavi-Samani et al.
(2015)

which is osmotically important in preserving cell turgor for water uptake under water
stress condition (Sharma et al. 2019). Foliar application of SA and JA can enhance
the drought stress tolerance of plants by increasing osmolytes production.

SA is an important signal molecule participating in defensive responses to abiotic
stress (Khan et al. 2015). This hormone can enhance biosynthesis of osmolytes such
as proline, glycine betaine and sugars under osmotic stress. Previous works have
demonstrated that SA is involved in stimulating synthesis of proline under drought
stress (Lee et al. 2019; deAndrade et al. 2020).Misra and Saxena (2009) reported that
the activity of proline biosynthetic enzymes viz. γ-glutamyl kinase and pyrroline-5-
carboxylate were enhanced in 0.5 mMSA-treated Lens esculenta plants. Three years
later, Misra and Misra (2012) stated that SA reduces the activity of proline oxidase
and consequently prevents proline degradation, which was later supported by Khan
and Khan (2013) in wheat plants. Enhancing proline biosynthesis by SA is related to
better nitrogen assimilation and photosynthetic activities (Sharma et al. 2019). SA
stimulates glycine betaine synthesis in the range of 0.5–2.5 mM in plants exposed to
various kinds of abiotic stresses such as drought and salinity (Sharma et al. 2019).
Aldesuquy et al. (2012) reported that foliar applicationSA (0.05M) in two cultivars of
wheat (resistant Sakha 93 and sensitive Sakha 94) had a meaningful impact on rising
growth andmetabolism of drought stressed wheat cultivars by enhancing glycine and
proline biosynthesis. Kareem et al. (2017) showed that foliar application of SA (1.44
and 2.88 mM) stimulates proline and glycine betaine biosynthesis. and enhances
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drought tolerance of wheat plants. Similar report is available for Helianthus annuus
plants under drought stress (Hussain et al. 2009).

Soluble carbohydrates as important osmolytes in plant cells could be increased by
SA treatment under drought stress (Fayez and Bazaid 2014). SA enhances soluble
sugars in plant leaves by diminishing polysaccharide hydrolyzing enzymes (Khodary
2004). According to Sharma et al. (2019), soluble carbohydrates act as membrane
stabilizers, ROS scavengers and Osmoprotectants under abiotic stresses. Beside the
proline, glycine betaine and carbohydrates, free amino acids have imperative partici-
pation in regulating osmotic homeostasis in plant cells.Yadav et al. (2005) andSankar
et al. (2007) reported that SA enhances amino acids production in Sorghum bicolor
and Abelmoschus esculentus and improves plant growth under water deficit condi-
tion. In another report, Abdallah et al. (2016) showed similar increment of amino
acid content in quinoa plants in response to different concentrations of SA applica-
tion (i.e., 200 and 400 mg L−1) under drought stress. These researchers suggested
that the elevation of amino acid biosynthesis in response to SA might be related to
enhanced protein degradation.

The JA has a significant role in osmotic adjustment of plant cells. Foliar applica-
tion of JA improves osmotic adjustment of plants via increasing the production of
osmolytes such as proline and soluble carbohydrates (Farhangi-Abriz andGhassemi-
Golezani 2019). Shan et al. (2015) and Anjum et al. (2011) identified the helpful
impacts of JA in reducing drought stress through the production of osmolytes such
as proline. Endogenous JA up-regulates various important genes playing critical roles
inwater stress adaptation by stimulating different encoding stress responsive proteins
and osmolytes such as proline (Per et al. 2018).

JA-induced increment of proline contents in drought stressed plants has been
reported in wheat (Ilyas et al. 2017), barley (Bandurska et al. 2003) and rapeseed
(Alam et al. 2014) plants. Increasing proline content is a good sign of drought
tolerance in plants due to its role in the activation of Kreb’s cycle and renewal
of chlorophylls (Ashraf and Foolad 2007). Foliar application of JA also increases
the production and accumulation of organic acids of Kreb’s cycle such as citrate
and malate, that enhance resistance to environmental stresses such as drought. In a
study, foliar application of JA increased the GB content in pear leaves and conse-
quently improved overall plant growth under water stress (Gao et al. 2004). Ilyas
et al. (2017) found that exogenously applied jasmonic acid under water stress modu-
lated the drought induced harmful effects through increasing the level of soluble
carbohydrates in wheat plants. Soluble carbohydrates act as osmolytes and osmopro-
tectants and improve relative water content of plants under abiotic stress. Similarly,
Farhangi-Abriz and Ghassemi-Golezani (2018) reported that foliar application of
JA modulates the salt induced osmotic stress in soybean plants through increased
contents of glycine betaine, soluble sugars as well as proline. The impacts of SA and
JA on rising osmolytes of plants are summarized in Table 2.
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Table 2 Salicylic acid and jasmonic acid impacts on osmolytes production in different plant species
under drought stress

Hormones Plant species Application method
and dosage

Effects on plants References

Salicylic
acid

Brassica rapa Foliar
application—1.5 mM

Salicylic acid increased
proline and drought
stress tolerance of plants
by up-regulating the
expression of genes
encoding
pyrroline-5-carboxylate
synthase (P5CSA and
P5CSB) and
down-regulating the
expression of the gene
encoding proline
dehydrogenase (PDH)
compared to non-SA
pretreated plants

Hien La et al.
(2020)

Salicylic
acid

Zea mays Root
pretreatment—10 μM

Salicylic acid increased
the biosynthesis of
proline, soluble sugar
and soluble protein
contents under drought
stress

Shan and
Wang (2017)

Salicylic
acid

Triticum
aestivum

Seed priming—10 Mm Seed priming with
salicylic acid noticeably
reduced drought stress
effects on wheat plants
by rising proline and
soluble sugar contents in
plant tissues

Ilyas et al.
(2017)

Salicylic
acid

Zea mays Seed priming—2 mM Salicylic acid increased
the biosynthesis of
proline, soluble sugar
and total carbohydrate
in maize seedlings and
consequently improved
water content of plants
under drought stress

Tayyab et al.
(2020)

Jasmonic
acid

Triticum
aestivum

Seed
priming—100 μM

Seed priming with
jasmonic acid increased
the germination
percentage, proline, and
soluble carbohydrate
accumulation and shoot
growth of wheat plants
under water stress

Ilyas et al.
(2017)

(continued)
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Table 2 (continued)

Hormones Plant species Application method
and dosage

Effects on plants References

Jasmonic
acid

Triticum
aestivum

Foliar
application—100 μM

Jasmonic acid improved
total osmotic potential
of plant cells by rising
the contents of
osmoregulatory
component such as
soluble carbohydrates,
soluble proteins and
proline under drought
stress

Abeed et al.
(2020)

Jasmonic
acid

Fragaria ×
ananassaDuch

Root
treatment—0.05 mM

Jasmonic acid improved
water stress tolerance of
strawberry plants by
increasing proline and
protein contents

Yosefi et al.
(2020)

Jasmonic
acid

Pyrus
communis L.

Foliar
application—50 mM

Jasmonic acid increased
betaine accumulation in
pear leaves and
enhanced drought stress
tolerance of plants

Gao et al.
(2004)

2.3 Photosynthetic Activities

Crops are exposed to water stress when there is not adequate water accessible, or the
water present cannot be taken up by the plants. Water stress diminishes photosyn-
thetic activities for some reasons: (1) stomatal closure decreases the carbon fixation
in leaves, and (2) water shortage damages the cell membrane and inhibits electron
transportation systems (Lavergne et al. 2020). Some stress tolerance hormones such
as SA and JA can have positive impacts on improving photosynthetic activities of
plants under water deficit. Singh and Usha (2003) reported that foliar application
of SA (1–3 mM) enhances total chlorophyll content of wheat seedlings under water
stress. These researchers, also showed that SA improves carboxylase activity of
Rubisco enzyme in stressed plants. High values of leaf chlorophyll in response to
SA could be related to preserving chlorophyll structure from degradation by antiox-
idative enzymes. Moreover, SA enhances chlorophyll stability index by elevating
nitrogen metabolism in plant cells (Farhangi-Abriz and Ghassemi-Golezani 2016).
Hayat et al. (2008) stated that SA increases net photosynthetic rate of tomato plants
under water stress by enhancing internal CO2 concentration, stomatal conductance,
transpiration and photosynthetic rates. According to these researchers, the benefi-
cial effect of SA on increasing photosynthetic activities of tomato leaves could be
related to high activities of some important enzymes such as carbonic anhydrase. The
increment of carbonic anhydrase activity by SA treatment has been also reported in
lemongrass (Idrees et al. 2010). Tang et al. (2017) exanimated the possible effects of
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SA on gas exchange, pigment contents and chlorophyll fluorescence inwater stressed
soybean plants. The results showed that SA significantly improves gas exchange
rate, chlorophyll content and chlorophyll fluorescence parameters of soybean leaves
under water stress. This report revealed that SA-induced increment of PSII efficiency
(FPSII) under water stress is related to strengthening photochemical quenching. SA
not only improves photosynthetic activities in C3 plants, but also enhances photo-
synthetic performance in C4 plants. Idrees et al. (2010) reported a positive effect
of SA on promoting the phosphoenolpyruvate carboxylase activities in lemongrass
under drought stress. Similar impacts of SA application are shown in maize plants
under cadmium toxicity (Krantev et al. 2008).

Foliar treatments of jasmonic acid and methyl-jasmonates are useful strate-
gies for alleviating the harmful effects of drought on plant photosynthesis. Some
researchers indicated that exogenous treatment of jasmonic acid could be useful
for increasing photosynthetic activities in different plant species. Wu et al. (2012)
reported that application of methyl-jasmonate improved drought tolerance of Bras-
sica oleracea through enhancing the synthesis of chlorophyll and net photosyn-
thetic rate. Sheteiwy et al. (2018) stated that Priming with methyl jasmonate reduces
the negative effects of water stress in rice seedlings by improving photosynthetic
activities and photochemical efficiency of PSII (Fv/Fm). Ma et al. (2014) investi-
gated the photosynthetic responses of wheat to combined effects of water stress and
exogenous methyl jasmonate and found that 0.25 μMMeJA increases the photosyn-
thesis under water stress mainly through improving the water status and antioxidant
capacity ofwheat plants.Moreover, they showed that exogenousMeJA induces stom-
atal closure, that maintains water status and delays plant senescence under drought
stress. Mahabub Alam et al. (2014) showed that application of 0.5 mM JA on Bras-
sica species seedlings increases the biosynthesis of chlorophyll under water stress.
A similar report is available for soybean (Mohamed and Latif 2017). In another
study, Abbaspour and Rezaei (2014) found that foliar application of JA enhances hill
reaction in Dracocephalum moldavica plants under water limitation.

2.4 Biosynthesis of Secondary Metabolites

SA as an endogenous signaling molecule plays an important role in plant defense
mechanisms (Ahmad et al. 2019). This phytohormone has been used as a potential
enhancer of some secondarymetabolites such as alkaloids (Pitta-Alvarez et al. 2000),
glucosinolates (Kiddle et al. 1994) and anthraquinones (Bulgakov et al. 2002). SA
has also some positive roles in biosynthesis of terpenoids such as sesquiterpenoids
(Aftab et al. 2010), diterpenoids (Wang et al. 2007) and triterpenoids (Shabani et al.
2009). Production and accumulation of secondary metabolites has an important role
on rising water stress tolerance of plants. Foliar application of SA stimulated the
biosynthesis of secondary metabolites such as phenolic compounds in plant leaves
(Ali et al. 2007). Latif et al. (2016) showed that the accumulation of total soluble
and cell wall-bound compounds and total soluble proteins in Zea mays plants were



76 K. Ghassemi-Golezani and S. Farhangi-Abriz

increased in response to foliar application of SA under water stress. Since SA is a
plant produced phenolic compound, it can enhance phenolic compounds and also can
produce new polyphenols (Yao and Tian 2005). Ghassemi-Golezani et al. (2018b)
reported that foliar application of SA noticeably enhanced phenolic compounds such
as thymol and carvacrol in ajowan (Carum copticum L.) plants under drought stress.
These researchers also showed that foliar application of SA increased essential oil
production of ajowan under drought stress.

JA is a signal molecule with great ability in changing biosynthesis of secondary
metabolites in plant cells. JA by enhancing ORCA gene expression in plant cells
enhances alkaloidmetabolism in plant cells (Memelink et al. 2001). Exogenous appli-
cation of JA on drought stressed Agropyron cristatum plants considerably enhanced
ascorbate and glutathione metabolism and consequently improved water stress toler-
ance of plants (Shan and Liang 2010). Alavi-Samani et al. (2015) found that foliar
treatment of JA under drought stress significantly increased carvacrol and thymol
contents in the oils of two thyme species (Thymus vulgaris and T. daenensis), but
reduced the essential oil yield and amount of γ-terpinene in the oil. These researchers
indicated that foliar application of JA reduces the negative effects of water stress on
thymol amount in T. daenensis, and γ-terpinene content in T. vuglaris. Farhangi-
Abriz and Ghassemi-Golezani (2019) reported that exogenous JA enhances phenolic
components of plants under water stress and consequently increases antioxidative
activities and water stress tolerance of plants.

2.5 Plant Growth and Productivity

Improving crop production under unfavorable conditions is one of the main goals of
agricultural scientists (Farooq et al. 2012). Changing hormonal signaling of plants
is a practical strategy for enhancing plant growth and productivity under normal
and stressful conditions (Bari and Jones 2009). SA changes various aspects of plant
growth and development such as root and shoot growth, flowering time and grain
production. This natural regulator increases root growth of plants by stimulating
cell growth and division (Hayat and Ahmad 2007). In a study carried out in 2018,
foliar application of SA in chickpea plants significantly increased the size of the
root and improved water status of plants under drought stress (Khan et al. 2018).
Quiroga et al. (2018) reported that exogenous SA noticeably improved aquaporins
and root hydraulic properties in drought stressed maize plants. Foliar application of
SA also manipulated the root proteome of plants and consequently increased plant
adaptation to drought (Sharma et al. 2017). In a recent study, Pasternak et al. (2019)
showed that salicylic acid affects root meristem patterning via auxin distribution in
a concentration-dependent manner. These researchers stated that a wide range of
SA concentrations activated auxin synthesis, but the effect of SA on auxin transport
was rate dependent. SA-induced auxin production and accumulation were led to the
formation of more layers of columella initials and extra layers of epidermis, cortex,
and endodermis cells.
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Flowering process is so important for successful grain production under normal
or drought conditions. The effect of SA on the flowering process of plants was
assessed since it is a parameter closely related to the productivity (Martínez et al.
2004). The SA treatment enhanced number of flowers in various kind of plant species
(Martínez et al. 2004; Wada et al. 2010). Yildirim and Dursun (2008) showed that
foliar application of SA increased the tomato yield. Sharafizad et al. (2012) reported
that the highest grain yield of wheat was obtained with application of 0.07 mM
SA. It is believed that increasing crop yield might be due to delayed senescence of
plant leaves and flowers in response to exogenous SA (Imran et al. 2007) that will
automatically help the plant in extending the duration of photosynthetically active
sites and also prevent the premature loss of bulbs and flowers. Plants treated with
salicylic acid in the field or greenhouse conditions had higher shoot growth and
grain yield under drought. These responses could be related to the physiological and
biochemical modifications in SA treated plants. For example, SA inhibited ABA and
ethylene biosynthesis in plants and improved shoot growth (Meguro and Sato 2014;
Li et al. 2019). Ullah et al. (2018) found that foliar application of SA significantly
improved rapeseed growth and productivity under drought stress. Similar reports are
available in maize (Rao et al. 2012), rice (Sohag et al. 2020), tomato (Hayat et al.
2008), ajowan (Ghassemi-Golezani et al. 2018b) and rapeseed (Ghassemi-Golezani
et al. 2019) plants.

JA is an important natural plant growth regulator, which regulates a wide variety
of physiological and developmental responses. This hormone has been shown to
enhance stomatal closure, abscisic acid and ethylene synthesis, respiration, and
carotenoid and anthocyanin formation in plants. JA is in charge for the activation of a
number of defensive mechanisms against different biotic and abiotic stresses (Wang
et al. 2020). This phytohormone significantly changes plant growth and productivity
under normal and stressful conditions such as salt and drought stresses (Raza et al.
2020). Although there are various reports that show positive effects of JA on rising
plant growth and productivity under various conditions (Anjum et al. 2011, 2016;
Javadipour et al. 2019), some of the JA impacts on plant growth and productivity
are negative. The JA treatment reduces growth of explants in tissue culture, and seed
germination, chlorophyll synthesis and photosynthesis rate in plants (Creelman and
Mullet 1997). Staswick (2009) showed that JA decreases plant growth by decreasing
auxin production in plant cells. Investigations by Adams and Turner (2010) showed
that inhibition of root growth of plants in response to JA treatment is related to
increasing ethylene production in this organ. These researchers reported that COI1
as a jasmonate receptor in plant roots is responsible for ethylene production in plant
cells. Ghassemi-Golezani and Farhangi-Abriz (2018) reported that foliar application
of JA under osmotic stress caused by salinity decreases root growth of soybean plants.
However, the inhibition of root growth in JA treated plants did not significantly affect
the grain yield, compared to untreated plants. The JA treatment may also reduce the
expansion of leaves and cotyledons (Ananieva et al. 2007). This hormone inhibits leaf
expansion by reducing cell division and the activity of the mitotic cyclin CycB1;2,
but the cell size is not changed by this hormone (Swiątek et al. 2004). Foliar applica-
tion of JA reduces cotyledon expansion in plants by increasing ABA concentration
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in shoot tissues (Aleman et al. 2016). In a study by Kim et al. (2009b), jasmonates
reduced grain yield by mediating stress signals to alter spikelet development in rice.
Similarly, Kraus and Stout (2019) reported that seed pretreatment with jasmonates
induces resistance to biotic stress, but reduces plant growth in rice.

3 Conclusions and Future Perspectives

The SA and JA as natural regulators can stimulate various defense mechanisms of
plants under drought stress. These growth regulators considerably enhance antiox-
idants activities and osmolytes production in plant cells and consequently improve
drought tolerance in plants. SA in comparison with JA has reliable results on
improving crop growth and productivity under drought stress. However, JA shows
various impacts on growth and productivity of drought subjected plants, depending
on species. Future investigations could be focused on the impacts of different natural
regulators on plant growth and productivity under normal and stressful conditions.
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