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Abstract. In Artificial Intelligence, Multi-Agent Systems are able to model
many kinds of collective behavior and have a wide range of application. Logic
is often used to model aspects of agents’ reasoning process. In this paper, we
discuss social aspects of such systems. We propose a logical framework (Logic
of “Inferable”) which reasons about whether a group of agents can perform an
action, highlighting the concepts of action cost and budget that the group must
have available in order to perform actions. The focus is on modeling the group
dynamics of cooperative agents: if an agent of a group performs an action, that
action to be considered as performed by the whole group, and the group can sup-
port a component agent in performing actions not affordable by that agent alone.

Keywords: Multi agents systems · Epistemic logic · Mental actions

1 Introduction

Multi-agent systems are widely employed to model societies whose members are to
some extent cooperative towards each other. To achieve better results via cooperation,
agents must be able to reason about their own belief states, and those of others. They
must also be able to reason about what a group of agents can do, because it is often the
case that a group can fulfill objectives that are out of reach for the single agent.

Many kinds of logical frameworks can be found in the literature which try to emu-
late cognitive aspects of human beings, also from the cooperative point of view. We pro-
pose a new logical framework (a new Logic of “Inferable”, called L-DINF), that draws
inspiration from the concepts of Theory of Mind [20] and of Social Intelligence [21].
We consider the notion of executability of inferential actions, that may require resource
consumption (and hence involve a cost). So, in order to execute an action the agent
must possess the necessary budget. In our approach however, when an agent belongs to
a group, if that agent does not have enough budget to perform an intended action, it may
be supported by its group. So, ‘our’ agents are aware of themselves, of the group they
belong to, and possibly of other groups. We assume that agents belonging to a group are
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cooperative. Hence, an action can be executed by the group if at least one agent therein
is able to execute it, and the group can bear (in some way) the cost.

Since the seminal work of Fagin and Halpern [19], logics concerning some aspects
of awareness, implicit and explicit belief have been proposed. To the best of our knowl-
edge however, such logics make no use of concepts as ‘reasoning’ or ‘inference’.
Instead, L-DINF provides a constructive theory of explicit beliefs, so it accounts for
the perceptive and inferential steps leading from agent’s knowledge and beliefs to new
beliefs, and possibly to perform physical actions. The main point however is that we
consider both “executability” of actions and costs related to their execution.

Epistemic attitudes are modeled similarly to other approaches, among which we
mention the dynamic theory of evidence-based beliefs [4] —that uses, as we also do, a
neighborhood semantics for the notion of evidence— the sentential approach to explicit
beliefs and their dynamics [22], the dynamic theory of explicit and implicit beliefs [26],
and the dynamic logic of explicit beliefs and knowledge [3].

Concerning logics of inference, the seminal proposals were Velázquez-Quesada
[25] and the logical system DES4n proposed by Duc [16]. We are indebted to
Velázquez-Quesada concerning the idea of modeling inference steps by means of
dynamic operators in the style of dynamic epistemic logic (DEL). We however empha-
size the concepts of explicit belief and of background knowledge, and we introduce
issues related to executability and costs. L-DINF is also indebted to [16], concerning
the point of view that an agent reaches a certain belief state by performing inferences,
and that making inferences takes time (we tackled the issue of time in previous work,
discussed in [13,14,24]). Differently from this work however, in L-DINF inferential
actions are represented both at the syntactic level, via dynamic operators in the DEL
style, and at a semantic level as neighborhood-update operations. Moreover, L-DINF
enables an agent to reason on executability of inferential actions.

The notion of explicit beliefs constitutes a difference between L-DINF and active
logics [17,18], besides other important differences. First, while active logics provide
models of reasoning based on long-term memory and short-term memory (or working
memory) like in our approach, they do not distinguish –as we do– between the notion
of explicit belief and the notion of background knowledge, conceived in our case as a
radically different kind of epistemic attitude. Second, L-DINF accounts for a variety
of inferential actions that have not been explored in the active logic literature, whereas
they are in our opinion very useful for inferring new beliefs. Note that these actions
are mental operation, not physical ones. They correspond to basic operations of “mind-
reading” in the sense of Theory of Mind [20]. However, the consequence of a mental
operation can entail the execution of physical actions, among which “active sensing”
actions, where the agent performs to check (aspects of) the state of its environment.

Section 2 introduces syntax and semantics of L-DINF and an example of application
of our logic. In Sect. 3 we provide an axiomatization of the proposed logical system
and state its soundness. The proof of strong completeness of the logic is also shown. In
Sect. 4 we briefly discuss complexity and future work, and then conclude.
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2 Logical Framework

L-DINF is a logic which consists of a static component and a dynamic one. The static
component, called L-INF, is a logic of explicit beliefs and background knowledge. The
dynamic component, called L-DINF, extends the static one with dynamic operators
capturing the consequences of the agents’ inferential actions on their explicit beliefs as
well as a dynamic operator capturing what an agent can conclude by performing some
inferential action in its repertoire.

2.1 Syntax

In this section we provide and illustrate the syntax of the proposed logic. Let Atm =
{p, q, . . .} be a countable set of atomic propositions. By Prop we denote the set of all
propositional formulas, i.e. the set of all Boolean formulas built out of the set of atomic
propositions Atm . A subset AtmA of the atomic propositions represent the physical
actions that an agent can perform, including “active sensing” actions (e.g., “let’s check
whether it rains”, “let’s measure the temperature”). Moreover, letAgt be a set of agents.
The language of L-DINF, denoted by LL-DINF, is defined by the following grammar:

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | Bi ϕ | Ki ϕ | do(φA) | doP (φA) | execG(α) | [G : α]ϕ

α ::= �(ϕ,ψ) | ∩(ϕ,ψ) | ↓(ϕ,ψ)

where p ranges over Atm and i ∈ Agt . (Other Boolean operators are defined from ¬
and ∧ in the standard manner.) The language of inferential actions of type α is denoted
by LACT. Plainly, the static part L-INF of L-DINF, includes only those formulas not
having sub-formulas of type α, namely, no inferential operation is admitted.

Notice the expression do(φA), where it is required that φA ∈ AtmA. This expres-
sion indicates actual execution of action φA, automatically recorded by the new belief
doP (φA) (postfix “P ” standing for “past” action). In fact, do and doP are not axioma-
tized, as they are realized by what has been called in [27] a semantic attachment, i.e.,
a procedure which connects an agent with its external environment in a way that is
unknown at the logical level. As seen below, in general the execution of actions may
have a cost. We impose the meta-constraint that a “physical” action is necessarily deter-
mined as a consequence of a mental action, thus it is the latter which bears the cost.

Before introducing a formal semantics, let us provide an intuition about the intended
meaning of formulas predicating on beliefs and background knowledge. The formula
Bi ϕ is read “the agent i explicitly believes that ϕ is true” or, more shortly, “agent i
believes ϕ”. Explicit beliefs are accessible in the working memory and are the basic
elements of the agents’ reasoning process, according the logic of local reasoning by
Fagin and Halpern [19]. In such approach agents cannot distinguish between logically
equivalent formulas, i.e., if two facts ϕ and ψ are logically equivalent and an agent
explicitly believes that ϕ is true, then it believes that ψ is true as well. Unlike explicit
beliefs, background knowledge is assumed to satisfy omniscience principles, such as
closure under conjunction and known implication, closure under logical consequence,
and introspection. More specifically, Ki is nothing but the well-known S5 modal oper-
ator often used to model/represent knowledge. The fact that background knowledge is
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closed under logical consequence is justified by the fact that we conceive it as a kind of
deductively closed belief base. We assume the background knowledge to include: facts
(formulas) known by the agent from the beginning: plus facts the agent has decided to
store in its long-term memory (by means of some decision mechanism not treated here)
after having processed them in its working memory, as well their logical consequences.
We therefore assume that background knowledge is irrevocable in the sense of being
stable over time. A formula of the form [G : α]ϕ, with G ∈ 2Agt , states that “ϕ holds
after the inferential action α has been performed by at least one of the agents in G, and
all agents in G have common knowledge about this fact”.

Remark 1. If an action is performed by an agent i ∈ G, the others agents belonging to
the same group G have full visibility of this action and, therefore, as we suppose agents
to be cooperative, it is as if they had performed the action themselves.

Borrowing from and extending [2], we distinguish three types of inferential
actions α which allow us to capture some of the dynamic properties of explicit beliefs
and background knowledge: �(ϕ,ψ), ∩(ϕ,ψ) and ↓(ϕ,ψ). These actions characterize
the basic operations of forming explicit beliefs via inference:

• ↓(ϕ,ψ) is the inferential action which consists in inferring ψ from ϕ in case ϕ is
believed and, according to agent’s background knowledge, ψ is a logical conse-
quence of ϕ. In other words, by performing this inferential action, an agent tries to
retrieve from its background knowledge in long-term memory the information that
ϕ implies ψ and, if it succeeds, it starts believing ψ;

• ∩(ϕ,ψ) is the inferential action which closes the explicit belief ϕ and the explicit
belief ψ under conjunction. In other words, ∩(ϕ,ψ) characterizes the inferential
action of deducing ϕ ∧ ψ from the explicit belief ϕ and the explicit belief ψ;

• �(ϕ,ψ) is the inferential action which infers ψ from ϕ in case ϕ is believed and,
according to agent’s working memory, ψ is logical consequence of ϕ. This last
action operates directly on the working memory without retrieving anything from
the background knowledge.

Remark 2. In the mental actions �(ϕ,ψ) and ↓(ϕ,ψ), the formula ψ which is inferred
and asserted as a new belief can be do(φA), which denotes the actual execution of
physical action φA, where doP (φA) is the belief to have done such action in the past.
In fact, we assume that when inferring do(φA) the action is actually executed, and the
corresponding belief doP (φA) asserted, possibly augmented with a time-stamp. Actions
are supposed to succeed by default, in case of failure a corresponding failure event will
be perceived by the agent. The doP beliefs constitute a history of the agent’s operation,
so they might be useful for the agent to reason about its own past behavior, and/or,
importantly, they may be useful to provide explanations to human users.

Finally, a formula of the form execG(α) expresses executability of inferential
actions. It has to be read as: “α is an inferential action that an agent in G can perform”.

As said in the Introduction, we intend to model agents which, to execute an action,
may have to pay a cost, so they must have a consistent budget available. In our app-
roach, agents belong to groups (where the smallest possible group is the single agent),
and agents belonging to a group are by definition cooperative. With respect to action
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execution, an action can be executed by the group if at least one agent in the group is
able to execute it, and the group has the necessary budget available, sharing the cost
according to some policy. In order to keep the complexity of the logic reasonable, we
have not introduced costs and budget in the language.1 In fact, by making the assump-
tion that agents are cooperative, we also assume that they are aware of and agree with the
cost-sharing policy. So, as seen below, costs and budget are coped with at the semantic
level. Variants of the logic can be easily worked out, where the modalities of cost shar-
ing are different from the one shown here, where the group members share an action’s
cost in equal parts. Below we indicate which are the points that should be modified
to change the cost-sharing policy. Moreover, for brevity we introduce a single budget
function, and thus, implicitly, a single resource to be spent. Several budget functions,
each one concerning a different resource, might be plainly defined.

2.2 Semantics

Definition1 introduces the notion of L-INF model, which is then used to introduce
semantics of the static fragment of the logic. As before let Agt be the set of agents.

Definition 1. A model is a tuple M = (W,N,R, E,B,C, V ) where:

– W is a set of objects, called worlds (or situations);2

– R = {Ri}i∈Agt is a collection of equivalence relations on W : Ri ⊆ W × W for
each i ∈ Agt;

– N : Agt ×W −→ 22
W

is a neighborhood function such that for each i ∈ Agt , each
w, v ∈ W , and each X ⊆ W these conditions hold:

(C1) if X ∈ N(i, w) then X ⊆ {v ∈ W | wRiv},
(C2) if wRiv then N(i, w) = N(i, v);

– E : Agt × W −→ 2LACT is an executability function such that for each i ∈ Agt and
w, v ∈ W , it holds that:

(D1) if wRiv then E(i, w) = E(i, v);
– B : Agt × W −→ N is a budget function such that for each i ∈ Agt and w, v ∈ W ,
the following holds

(E1) if wRiv then B(i, w) = B(i, v);
– C : Agt×LACT×W −→ N is a cost function such that for each i ∈ Agt , α ∈ LACT,

and w, v ∈ W , it holds that:
(F1) if wRiv then C(i, α, w) = C(i, α, v);

– V : W −→ 2Atm is a valuation function.

1 We intend to use this logic in practice, to formalize memory in DALI agents, where DALI is a
logic-based agent-oriented programming language [5,6,15]. So, computational effectiveness
was crucial. Assuming that agents share the cost is reasonable when agents share resources, or
cooperate to a common goal, as discussed, e.g., in [7,8].

2 Concerning Definition 1, a world is just an arbitrary object. No “internal structure” is required.
In Sect. 3 we will take advantage of this and define worlds as set of formulas.
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To simplify the notation, let Ri(w) denote the set {v ∈ W | wRiv}, for w ∈ W .
The set Ri(w) identifies the situations that agent i considers possible at world w. It is
the epistemic state of agent i at w. In cognitive terms, Ri(w) can be conceived as the set
of all situations that agent i can retrieve from its long-term memory and reason about.

While Ri(w) concerns background knowledge, N(i, w) is the set of all facts that
agent i explicitly believes at worldw, a fact being identified with a set of worlds. Hence,
if X ∈ N(i, w) then, the agent i has the fact X under the focus of its attention and
believes it. We say that N(i, w) is the explicit belief set of agent i at world w.

The executability of actions is determined by the functionE. For an agent i, E(i, w)
is the set of inferential actions that agent i can execute at world w. The value B(i, w) is
the budget the agent has available to perform actions. Similarly, the value C(i, α, w) is
the cost to be paid by agent i to execute the action α in the world w.

Constraint (C1) imposes that agent i can have explicit in its mind only facts which
are compatible with its current epistemic state. Moreover, according to constraint (C2),
if a world v is compatible with the epistemic state of agent i at world w, then agent
i should have the same explicit beliefs at w and v. In other words, if two situations
are equivalent as concerns background knowledge, then they cannot be distinguished
through the explicit belief set. Analogous properties are imposed by constraints (D1),
(E1), and (F1). Namely, (D1) imposes that agent i always knows which actions it can
perform and those it cannot. (E1) states that agent i always knows the available budget
in a world (potentially needed to perform actions). Finally, (F1) determines that agent i
always knows how much it costs to perform an inferential action.

Truth values for formulas of L-DINF are inductively defined. Given a model M =
(W,N,R, E,B,C, V ), i ∈ Agt , G ⊆ Agt , w ∈ W , and a formula ϕ ∈ LL-INF, we
introduce a shorthand notation for the set of all words Ri-related to w that satisfy ϕ:

‖ϕ‖M
i,w = {v ∈ W : wRiv and M,v |= ϕ}

whenever M,v |= ϕ is well-defined (see below). Then, we set:

– M,w |= p iff p ∈ V (w)
– M,w |= execG(α) iff there exists i ∈ G with α ∈ E(i, w)
– M,w |= ¬ϕ iff M,w 
 |= ϕ
– M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
– M,w |= Bi ϕ iff ||ϕ||Mi,w ∈ N(i, w)
– M,w |= Ki ϕ iff M,v |= ϕ for all v ∈ Ri(w)

For any inferential action α performed by any agent i, we set:

– M,w |= [G : α]ϕ iff M [G:α], w |= ϕ

where we put M [G:α] = 〈W ;N [G:α],R, E,B[G:α], C, V 〉, representing the fact that the
execution of an inferential action α affects the sets of beliefs of agent i and modifies the
available budget. Such operation can add new beliefs by direct perception, by means
of one inference step, or as a conjunction of previous beliefs. Hence, when introduc-
ing new beliefs (i.e., performing mental actions), the neighborhood must be extended
accordingly.
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A key aspect in the definition of the logic is the following, which states under which
conditions, and by which agent(s), an action may be performed:

enabledw(G,α) ≡Def ∃j ∈ G (α ∈ E(j, w) ∧ C(j,α,w)
|G| ≤ minh∈G B(h,w)).

This condition as defined above expresses the fact that an action is enabled when: at
least an agent can perform it; and the “payment” due by each agent, obtained by dividing
the action’s cost equally among all agents of the group, is within each agent’s available
budget. In case more than one agent in G can execute an action, we implicitly assume
the agent j performing the action is the one corresponding to the lowest possible cost.
Namely, j is such that C(j, α, w) = minh∈G C(h, α,w). This definition reflects a par-
simony criterion reasonably adoptable by cooperative agents sharing a crucial resource
such as, e.g., energy or money.

Remark 3. Notice that the policy we have specified to enable the action, share the
costs, and select the executor of the action is just one among many possible options.
Other choices might be viable, for example, depending on the specific implementation
choices of an agent system or on the characteristics of the concrete real-world applica-
tion at hand. So variations of this logic can be easily defined by devising some other
enabling condition and policy for cost sharing, or even by introducing differences in
neighborhood update. The semantics is, in a sense, parametric w.r.t. such choice. Notice,
moreover, that the definition of the enabling function basically specifies the “role” that
agents take while concurring with their own resources to actions’ execution. Also, in
case of specification of different resources, different corresponding enabling functions
should be defined.

The updated neighborhood N [G:α] is as follows.

N [G:↓(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

N(i, w) ∪ {||χ||Mi,w} if i ∈ G and enabledw(G, ↓(ψ, χ)) and

M, w |= Biψ ∧ Ki(ψ → χ)

N(i, w) otherwise

N [G:∩(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

N(i, w) ∪ {||ψ ∧ χ||Mi,w} if i ∈ G and enabledw(G, ∩(ψ,χ)) and

M, w |= Biψ ∧ Biχ

N(i, w) otherwise

N [G:�(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

N(i, w) ∪ {||χ||Mi,w} if i ∈ G and enabledw(G, � (ψ,χ)) and

M, w |= Biψ ∧ Bi(ψ → χ)

N(i, w) otherwise

Notice that after an action α has been performed by an agent j ∈ G, all agents i ∈ G
see the same update in the neighborhood. Conversely, for any agent h 
∈ G the neigh-
borhood remains unchanged (i.e., N [G:α](h,w) = N(h,w)). However, even for agents
in G, the neighborhood remains unchanged if the required preconditions, on explicit
beliefs, knowledge, and budget, do not hold (and hence the action is not executed).
Notice also that we might devise variations of the logic by making different decisions
about neighborhood update to implement, for instance, partial visibility within a group.
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Since each agent inG has to contribute to cover the costs of execution by consuming
part of its available budget, an update of the budget function is needed. As before, for
an action α, we require enabledw(G,α) to hold and assume that j ∈ G executes α.
Then, depending on α, we have:

B[G:↓(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

B(i, w) − C(j,↓(ψ,χ),w)
|G| if i ∈ G and enabledw(G, ↓(ψ, χ)) and

M, w |= Biψ ∧ Ki(ψ → χ)

B(i, w) otherwise

B[G:∩(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

B(i, w) − C(j,∩(ψ,χ),w)
|G| if i ∈ G and enabledw(G, ∩(ψ,χ)) and

M, w |= Biψ ∧ Biχ

B(i, w) otherwise

B[G:�(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

B(i, w) − C(j,�(ψ,χ),w)
|G| if i ∈ G and enabledw(G, � (ψ,χ)) and

M, w |= Biψ ∧ Bi(ψ → χ)

B(i, w) otherwise

We write |=L-DINF ϕ to denote that M,w |= ϕ holds for all worlds w of every
model M .

Property 1. As consequence of previous definitions, for any set of agents G and each
i ∈ G, we have the following:

– |=L-INF (Ki(ϕ → ψ)) ∧ Bi ϕ) → [G : ↓(ϕ,ψ)]Bi ψ.
Namely, if an agent has ϕ among beliefs and Ki(ϕ → ψ) in its background knowl-
edge, then as a consequence of the action ↓(ϕ,ψ) the agent starts believing ψ.

– |=L-INF (Biϕ ∧ Biψ) → [G : ∩(ϕ,ψ)]Bi(ϕ ∧ ψ).
Namely, if an agent has ϕ and ψ as beliefs, then as a consequence of the action
∩(ϕ,ψ) the agent starts believing ϕ ∧ ψ.

– |=L-INF (Bi(ϕ → ψ)) ∧ Bi ϕ) → [G : �(ϕ,ψ)]Bi, ψ.
Namely, if an agent has ϕ among its beliefs andBi(ϕ → ψ) in its working memory,
then as a consequence of the action �(ϕ,ψ) the agent starts believing ψ.

Proof. Let i ∈ G, M=〈W,N,R, E,B,C, V 〉, and w ∈ W .

– Let M,w |= Ki(ϕ → ψ)∧Bi ϕ. We have to show that M,w |= [G:↓(ϕ,ψ)]Bi ψ
holds. This holds iff M [G:↓(ϕ,ψ)], w |= Bi ψ, with M [G:↓(ϕ,ψ)] = 〈W,N [G:↓(ϕ,ψ)],
R, E,B[G:↓(ϕ,ψ)], C, V 〉, where N [G:↓(ϕ,ψ)](i, w) = N(i, w) ∪ { ‖ ψ ‖M

i,w

}
,

because M,w |= (Ki(ϕ → ψ) ∧ Bi ϕ) and i ∈ G, by hypothe-
sis. M [G:↓(ϕ,ψ)], w |= Bi ψ holds because ‖ ψ ‖M [G:↓(ϕ,ψ)]

i,w is member of
N [G:↓(ϕ,ψ)](i, w).

– Let M,w |= Bi ϕ∧Bi ψ. We have to show that M,w |= [G : ∩(ϕ,ψ)]Bi(ϕ∧ψ).
This holds iff M [G:∩(ϕ,ψ)], w |= Bi(ϕ ∧ ψ), with M [G:∩(ϕ,ψ)] = 〈W,N [G:∩(ϕ,ψ)],
R, E,B[G:∩(ϕ,ψ)], C, V 〉 and N [G:∩(ϕ,ψ)] = N(i, w) ∪ {‖ ϕ ∧ ψ ‖M

i,w

}
, because

M,w |= Bi ϕ ∧ Bi ψ, by hypothesis. Then, M [G:∩(ϕ,ψ)], w |= Bi(ϕ ∧ ψ) holds.
– Let M,w |= (Bi(ϕ → ψ) ∧ Bi ϕ). The proof that M,w |= [G : �(ϕ,ψ)]Bi ψ
follows the same line of the proof developed for the case of action ↓(ϕ,ψ).
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2.3 Problem Specification and Inference: An Example

In this section we propose an example of problem specification and inference in L-
DINF. Note that an agent performs physical actions to interact with other agents or with
the surrounding environment in consequence to some internal inference. Therefore, we
consider inferential actions as a prerequisite for physical ones, and so it is inferential
actions which bear costs.

Consider a group of n agents, where each agent manages a smart home, which
is a prosumer (producer+consumer) of energy. The electricity is produced by solar
panels during the day. The budget available for the night is the difference between
energy produced and energy consumed. More energy can be bought at high cost from
the outside, so agents try to avoid this extra cost. Assume that the agents are avail-
able to lend energy to others. Now, assume that an agent i would like to use some
appliance (e.g., air conditioning system, washing machine, etc.) during the night, but
its own budget is insufficient. Nevertheless, agent i could use the needed appliance if
the group as a whole has sufficient budget. To consider a more concrete situation, let
n = 4 and assume that in world w1 these four agents have the following budgets to
perform actions: B(1, w1) = 10, B(2, w1) = 7, B(3, w1) = 8, and B(4, w1) = 20.
The physical actions any agent can perform are, e.g.,: switch-on−airconditioningA,
switch-on−washing-machineA, close−electric-shutterA.

Among the various possible inferential actions that agents might be able to do, let
us, for simplicity, consider only the following ones:

α1 : ↓(temperature−high, do(switch-on−airconditioningA))
α2 : ↓(dirty−clothes, do(switch-on−washing-machineA))
α3 : ↓(night ∧ thieves−fear, do(close−electric-shutterA))
α4 : ∩ (night, thieves−fear)

Assume that their costs are C(i, α1, w) = 20, C(i, α2, w) = 12, C(i, α3, w) = 8,
C(i, α4, w) = 1; that αj ∈ E(i, w) holds for each world w, each agent i, and each
action αj ; and that the knowledge base of each agent i contains the following rules:

1. Ki(temperature−high → do(switch-on−airconditioningA))
This rule indicates that an agent knows that if the temperature inside the house is
high, it can switch on the air conditioner;

2. Ki(doP (switch-on−airconditioningA) → do(close−electric-shutterA))
This rule indicates that if an agent knows that someone has switched on the air
conditioning (past action, postfix “P ”), it can close the electric shutter so as not to
let the heat in from the outside;

3. Ki(dirty−clothes → do(switch-on−washing-machineA))
This rule indicates that if an agent knows that there are dirty clothes inside the wash-
ing machine, it can switch it on;

4. Ki(night ∧ thieves−fear → do(close−electric-shutterA))
This rule indicates that if an agent knows that it is night and someone has the fear of
thieves, it can close the electric shutter.

Assume also that the agents have the following beliefs:

B1(temperature−high) B2(dirty−clothes) B3(thieves−fear) B3(night)
B4(temperature−high → do(switch-on−airconditioningA))
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The latter formula —which states that if the temperature in the house is high, then
agent 4 can switch on the air conditioner—, represents an inference that agent 4 may
perform by exploiting its working memory (i.e., its own present beliefs). This implica-
tion allows agent 4 to infer B4(do(switch-on−airconditioningA)) depending on the
contents of its own working memory. In particular such inference requires the pres-
ence of the belief B4(temperature−high). Compare this formula with rule (1) shown
earlier, as part of the knowledge base of the agent. There, the implication concerns the
agent’s long-termmemory and the inference would thus exploit background knowledge.

Suppose agent 1 wants to perform α1. It alone cannot perform α1, because it does
not have enough budget. But, using the inferential action

[G : ↓(temperature−high, do(switch-on−airconditioningA))],

with G = {1, 2, 3, 4}, the other agents can lend its part of their budgets to share the
cost, so the group can perform α1, because

C(1,α1,w1)
|G| ≤ minh∈G B(h,w1). Hence,

B1(do(switch-on−airconditioningA)) can be inferred by agent 1 and this determines
the execution of the concrete physical action. Note that each agent i ∈ G adds
Bi(do(switch-on−airconditioningA)) to its beliefs. Indeed, the inferential action is
considered as performed by the whole group and each agent of G updates its neigh-
borhood. After the execution of the action the budget of each agent is updated (cf.,
Sect. 2.2) as follows: B(1, w2) = 5, B(2, w2) = 2, B(3, w2) = 3, and B(4, w2) = 15,
where, for simplicity, we name w2 the situation reached after executing the action.

Let us now consider the case in which, in such situation, agent 2 wants to perform
do(switch-on−washing-machineA), enabled by the inferential action

↓(dirty−clothes, do(switch-on−washing-machineA)).

In this case, the right precondition B2(dirty−clothes) holds, but, even considering the
entire group G, the available budgets do not satisfy the constraint C(2,α2,w2)

|G| = 3 ≤
minh∈G B(h,w2) (in particular, because the available budget of agent 2 is 2).

Let us, instead, assume that agent 3wants to perform α3 (in w2), to enable the phys-
ical action close−electric-shutterA This cannot be done directly, because before exe-
cuting the inferential action ↓(night ∧ thieves−fear, do(close−electric-shutterA)),
it has to perform the inferential action ∩(night, thieves−fear) in order to infer the
belief B3(night ∧ thieves−fear). Considering its current budget, the execution of
[{3} : ∩(night, thieves−fear)] can be completed (and, after that, the budget for
agent 3 becomes 2). So, agent 3 obtains the belief needed as precondition to the exe-
cution of ↓(night ∧ thieves−fear, do(close−electric-shutterA)). Nonetheless, in
order to execute such action it needs the help of other agents (because its budget does not
suffice), and the new belief B3(do(close−electric-shutterA)) will be inferred through
[G : ↓(night ∧ thieves−fear, do(close−electric-shutterA))]. Again, all agents in G
acquire the belief inferred by agent 3 and extend their belief sets, The condition on
cost sharing is also satisfied for action α3, and the budgets after the execution become
3, 0, 0, 13, for the agents 1, 2, 3, 4, respectively. At this point, since agents 2 and 3 have
exhausted their budgets, they cannot perform any other action.
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The non-executability depends on the policy adopted to share action cost among
agents. For instance, a policy requiring proportional sharing of costs with respect to
agents’ budgets, could be adopted. By applying this criterion, the execution of action α1

in world w1, by agent 1 as part of G, would have generated the following budgets
6, 4, 4, 11 for the agents 1, 2, 3, 4, respectively, because agents would have contributed
paying 4, 3, 4, 9, respectively (where we rounded values to the closest integer). Simi-
larly, with a proportional sharing of costs even in the the last situation of the example,
agents of G would collectively have the budget to perform more actions.

3 Axiomatization and Strong Completeness

In this section we present an axiomatization of our logic and discuss the proof of its
strong completeness w.r.t. the proposed class of models.

The L-INF and L-DINF axioms and inference rules are the following:

1. (Ki ϕ ∧ Ki(ϕ → ψ)) → Ki ψ;
2. Ki ϕ → ϕ;
3. ¬Ki(ϕ ∧ ¬ϕ);
4. Ki ϕ → Ki Ki ϕ;
5. ¬Ki ϕ → Ki ¬Ki ϕ;
6. Bi ϕ ∧ Ki (ϕ ↔ ψ) → Bi ψ;
7. Bi ϕ → Ki Bi ϕ;
8.

ϕ
Ki ϕ

;

9. [G : α]p ↔ p;
10. [G : α]¬ϕ ↔ ¬[G : α]ϕ;
11. execG(α) → Ki (execG(α));
12. [G : α](ϕ ∧ ψ) ↔ [G : α]ϕ ∧ [G : α]ψ;
13. [G : α]Ki ϕ ↔ Ki ([G : α]ϕ);
14. [G : ↓(ϕ, ψ)]Bi χ ↔ Bi ([G : ↓(ϕ, ψ)]χ) ∨ (

(Bi ϕ ∧ Ki (ϕ → ψ))
∧Ki ([G : ↓(ϕ, ψ)]χ ↔ ψ)

)
;

15. [G : ∩(ϕ, ψ)]Bi χ ↔ Bi ([G : ∩(ϕ, ψ)]χ) ∨ (
(Bi ϕ ∧ Bi ψ)

∧Ki [G : ∩(ϕ, ψ)]χ ↔ (ϕ ∧ ψ)
)
;

16. [G : �(ϕ, ψ)]Bi χ ↔ Bi ([G : �(ϕ, ψ)]χ) ∨ (
(Bi ϕ ∧ Bi (ϕ → ψ))

∧Bi ([G : �(ϕ, ψ)]χ ↔ ψ)
)
;

17.
ψ↔χ

ϕ↔ϕ[ψ/χ]
;

We write L-DINF� ϕ to denote that ϕ is a theorem of L-DINF. It is easy to verify that
the above axiomatization is sound for the class of L-INF models, namely, all axioms are
valid and inference rules preserve validity. In particular, soundness of axioms (14)–(16)
immediately follows from the semantics of [G : α]ϕ, for each inferential action α, as
defined in Sect. 2.2. As before let Agt be a set of agents. For the proof that L-INF is
strongly complete we use a standard canonical-model argument.

Definition 2. The canonical L-INF model is a tuple Mc = 〈Wc, Nc,Rc, Ec, Bc,
Cc, Vc〉 where:
• Wc is the set of all maximal consistent subsets of LL-INF;
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• Rc = {Rc,i}i∈Agt is a collection of equivalence relations on Wc such that, for every
i ∈ Agt and w, v ∈ Wc, wRc,iv if and only if (for all ϕ, Ki ϕ ∈ w implies ϕ ∈ v)

• For w ∈ Wc, ϕ ∈ LL-INF let Aϕ(i, w) = {v ∈ Rc,i(w) | ϕ ∈ v}. Then, we put
Nc(i, w) = {Aϕ(i, w) | Bi ϕ ∈ w}.

• Ec : Agt × Wc −→ 2LACT is such that for each i∈Agt and w, v∈Wc, if wRc,iv then
Ec(i, w) = Ec(i, v);

• Bc : Agt × Wc −→ N is such that for each i ∈ Agt and w, v ∈ Wc, if wRc,iv then
Bc(i, w) = Bc(i, v);

• Cc : Agt × LACT × Wc −→ N is such that for each i ∈ Agt , α ∈ LACT, and
w, v ∈ Wc, if wRc,iv then Cc(i, α, w) = Cc(i, α, v);

• Vc : Wc −→ 2Atm is such that Vc(w) = Atm ∩ w.

Note that, analogously to what done before, Rc,i(w) denotes the set {v ∈ Wc |
wRc,iv}, for each i ∈ Agt .

It is easy to verify that Mc is an L-INF model as defined in Definition 1, since,
it satisfies conditions (C1),(C2),(D1),(E1),(F1). Hence, it models the axioms and the
inference rules (1)–(17) introduced before. Consequently, the following properties hold
too. Let w ∈ Wc, then

– given ϕ ∈ LL-INF, it holds that Ki ϕ ∈ w if and only if ∀v ∈ Wc such that wRc,iv
we have ϕ ∈ v;

– for ϕ ∈ LL-INF, if Bi ϕ ∈ w and wRc,iv then Bi ϕ ∈ v;

Thus, Rc,i-related worlds have the same knowledge and Nc-related worlds have the
same beliefs. By proceeding similarly to what is done in [2] we obtain the proof of
strong completeness. Let us start with some preliminary results:

Lemma 1. For all w ∈ Wc and Bi ϕ,Bi ψ ∈ LL-INF, if Bi ϕ ∈ w but Bi ψ 
∈ w, it
follows that there exists v ∈ Rc,i(w) such that ϕ ∈ v ↔ ψ 
∈ v.

Proof. Let w ∈ Wc and ϕ,ψ be such that Bi ϕ ∈ w and Bi ψ /∈ w. Assume now that
for every v ∈ Rc,i(w) we have ϕ ∈ v ∧ ψ ∈ v or ϕ /∈ v ∧ ψ /∈ v; then, from previous
statements it follows that Ki(ϕ ↔ ψ) ∈ w so that by axiom (6), Bi ψ ∈ w which is a
contradiction.

Lemma 2. For all ϕ ∈ LL-INF and w ∈ Wc it holds that ϕ ∈ w iff Mc, w |= ϕ.

Proof. We have to prove the statement for all ϕ ∈ LL-INF. The proof is by induction on
the structure of formulas. For instance, if ϕ = p and w ∈ Wc, then p ∈ w iff p ∈ Vc(w)
and this means that Mc, w |= p by the semantics defined in Sect. 2.2. The case of
formulas of the form Bi ϕ is the most involved: assume Bi ϕ ∈ w for w ∈ Wc. We
have that Aϕ(i, w) = {v ∈ Rc,i(w) | ϕ ∈ v}. By the definition of Wc and of ‖ · ‖M

i,w in

Sect. 2.2, we have Aϕ(i, w) =‖ ϕ ‖Mc
i,w ∩Rc,i(w). Hence, by the definition of Nc(i, w)

it follows that Bi ϕ ∈ w and then, Mc, w |= Bi ϕ.
Suppose Bi ϕ /∈ w, so ¬Bi ϕ ∈ w and we have to prove ‖ ϕ ‖Mc

w ∩Rc,i(w) /∈
Nc(i, w). Choose A ∈ Nc(i, w): by definition we know that A = Aψ(i, w) for some ψ
with Bi ψ ∈ w. By Lemma 1 there is some v ∈ Rc,i(w) such that ϕ ∈ v ↔ ψ /∈ v.
By induction hypothesis, we obtain that either v ∈ (‖ ϕ ‖Mc

w ∩Rc,i(w)) \ Aψ(i, w)
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or vI ∈ Aψ(i, w) \ (‖ ϕ ‖Mc
i,w ∩Rc,i(w)) holds. Consequently, in both cases,

Aψ(i, w) 
=‖ ϕ ‖Mc
i,w ∩Rc,i(w). Thanks to the arbitrariness in the choice of A in

Nc(i, w) we conclude that ‖ ϕ ‖Mc
i,w ∩Rc,i(w) /∈ Nc(i, w). Hence Mc, w 
 |= Bi ϕ.

A crucial result states that each L-DINF formula has an equivalent L-INF formula:

Lemma 3. For all ϕ ∈ LL-DINF there exists ϕ̃ ∈ LL-INF such that L-DINF � ϕ ↔ ϕ̃.

Proof. We have to prove the statement for all ϕ ∈ LL-DINF but we show the proof
only for ϕ = p, because the others are proved analogously. By the axiom (9) we have
[G : α]p ↔ p, and by rule (3) we have [G:α]p↔p

ϕ↔ϕ[[G:α]p/p] which means that we can obtain
ϕ̃ by replacing [G : α]p with p in ϕ.

The previous lemmas allow us to prove the following theorems.

Theorem 1. L-INF is strongly complete for the class of L-INF models.

Proof. Any consistent set ϕ may be extended to a maximal consistent set of formulas
w� ∈ Wc and Mc, w

� |= ϕ by Lemma 2. Then, L-INF is strongly complete for the
class of L-INF models.

Theorem 2. L-DINF is strongly complete for the class of L-INF models.

Proof. If K is a consistent set of LL-DINF formulas then, by Lemma 3, we can obtain
the set K̃ = {ϕ̃ | ϕ ∈ K}, which is a consistent set of LL-INF formulas. By Theorem 1
Mc, w |= K̃. Since L-DINF is sound and for each ϕ ∈ K, L-DINF � ϕ ↔ ϕ̃, and it
follows Mc, w |= K then L-DINF is strongly complete for the class of L-INF models.

4 Discussion and Future Work

In this paper we discussed some cognitive aspects of autonomous systems, concerning
executability of actions in a group of agents, depending upon the available budget. To
model these aspects we have proposed the new epistemic logic L-DINF, that we have
shown “at work” via an example, and of which we have proved some useful properties
among which strong completeness. The logic is easily extensible to accommodate kinds
of resources, and kinds of agents’ “roles”, meaning capabilities of executing actions,
and amounts they are required to spend according to their role.

The complexity of other logics which are based on the same principles as ours
(Kripke semantics, canonical models, update of the neighborhood upon performing
mental actions, proof of strong completeness via a standard canonical-model argument)
has been thoroughly studied, thus, ‘mutatis mutandis’, we can borrow from there. After
re-perusing those proofs we can in fact safely claim that, like in the analogous cases,
the satisfiability problem is NP-complete in the single-agent case and it is, instead,
PSPACE-complete in the multi-agent case.

Concerning related work, in alternating time temporal logics [23] costs appears
explicitly in the language, and it is even possible to ask, e.g., what is the minimal
amount of a resource that makes a given goal achievable; but, decision problems are
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strictly more complex. However, in the present work we did not intend to design a logic
to reason about coalitions and strategies like done, e.g., in [23], rather we meant to
model the internal mental processes of an agent which is a member of a group, with a
certain “role”. In this sense the two approaches are orthogonal rather than in competi-
tion. There has been a considerable amount of work on logics concerning coalitions’
strategic abilities where agents’ actions consume resources, or both produce and con-
sume resources. For a review of this work and a discussion of the complexity of this kind
of logics, the reader may refer to [1]. We have done ourselves some work on resource
consumption/production, with preferences concerning which resources to spend or to
save [9–12], for the single-agent case; the add-on is that we have devised a prototypi-
cal (freely available) implementation (see http://users.dimi.uniud.it/∼andrea.formisano/
raspberry/).

In future work, we mean to extend our logic so as to integrate temporal aspects, i.e.,
in which instant or time interval an action has been or should be performed, and how
this may affect resource usage, and agent’s and group’s functioning.
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