
Wolfgang Faber
Gerhard Friedrich
Martin Gebser
Michael Morak (Eds.)

 123

LN
AI

 1
26

78

17th European Conference, JELIA 2021
Virtual Event, May 17–20, 2021
Proceedings

Logics in
Artificial Intelligence

Lecture Notes in Artificial Intelligence 12678

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this subseries at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Wolfgang Faber • Gerhard Friedrich •

Martin Gebser • Michael Morak (Eds.)

Logics in
Artificial Intelligence
17th European Conference, JELIA 2021
Virtual Event, May 17–20, 2021
Proceedings

123

Editors
Wolfgang Faber
University of Klagenfurt
Klagenfurt, Austria

Gerhard Friedrich
University of Klagenfurt
Klagenfurt, Austria

Martin Gebser
University of Klagenfurt
Klagenfurt, Austria

Michael Morak
University of Klagenfurt
Klagenfurt, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-75774-8 ISBN 978-3-030-75775-5 (eBook)
https://doi.org/10.1007/978-3-030-75775-5

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0330-5868
https://orcid.org/0000-0002-1992-4049
https://orcid.org/0000-0002-8010-4752
https://orcid.org/0000-0002-2077-7672
https://doi.org/10.1007/978-3-030-75775-5

Preface

This volume contains the proceedings of the 17th European Conference on Logics in
Artificial Intelligence, which was to take place at the University of Klagenfurt, Austria,
but due to the COVID-19 pandemic was held as an online event during May 17–20,
2021.

The European Conference on Logics in Artificial Intelligence (or Journées
Européennes sur la Logique en Intelligence Artificielle—JELIA) began back in 1988,
as a workshop, in response to the need for a European forum for the discussion of
emerging work in this field. Since then, JELIA has been organized biennially, with
proceedings published in the Springer series Lecture Notes in Artificial Intelligence.
Previous meetings took place in Roscoff, France (1988), Amsterdam, The Netherlands
(1990), Berlin, Germany (1992), York, UK (1994), Évora, Portugal (1996), Dagstuhl,
Germany (1998), Málaga, Spain (2000), Cosenza, Italy (2002), Lisbon, Portugal
(2004), Liverpool, UK (2006), Dresden, Germany (2008), Helsinki, Finland (2010),
Toulouse, France (2012), Madeira, Portugal (2014), Larnaca, Cyprus (2016), and
Rende, Italy (2019).

The aim of JELIA is to bring together active researchers interested in all aspects
concerning the use of logics in artificial intelligence to discuss current research, results,
problems, and applications of both theoretical and practical nature. JELIA strives to
foster links and facilitate cross-fertilization of ideas among researchers from various
disciplines, among researchers from academia and industry, and between theoreticians
and practitioners. The scientific community has been increasingly showing interest in
JELIA, which during the years featured the growing participation of researchers from
outside Europe and a very high overall technical quality of contributions; hence, the
conference turned into a major biennial forum and a reference for the discussion of
approaches, especially logic-based, to artificial intelligence.

JELIA 2021 received 68 submissions in two different formats (long and short
papers). Throughout the reviewing process, at least three Program Committee members
took care of each work. Out of the 68 submissions, 27 long and 3 short papers were
accepted, amounting to an acceptance rate of 44%, which is comparable to previous
JELIA conferences. Of the accepted papers, 13 were declared to be student papers (21
submitted), 5 to be system papers (6 submitted), and 1 to be an application paper (4
submitted) by the authors upon submission.

We would like to thank the members of the Program Committee and the additional
reviewers for their efforts to produce fair and thorough evaluations of the submitted
papers, the local organization committee, and of course the authors of the scientific
papers, including those not accepted for publication. The quality of the contributions
was very high, which is the essential ingredient for a successful scientific conference.

The conference program included invited talks by Thomas Eiter, Esra Erdem, and
Alessandra Russo, and had prizes for the Best Paper and Best Student Paper, each
received a prize money of EUR 500, kindly offered by Springer. We are grateful to all

sponsors for their generous support: Förderverein Technische Fakultät, Springer, and of
course the University of Klagenfurt. Last, but not least, we thank the people of
EasyChair for providing resources and a marvellous conference management system.

March 2021 Wolfgang Faber
Gerhard Friedrich

Martin Gebser
Michael Morak

vi Preface

Organization

Program Chairs

Wolfgang Faber University of Klagenfurt, Austria
Gerhard Friedrich University of Klagenfurt, Austria
Martin Gebser University of Klagenfurt, Austria and TU Graz, Austria

Program Committee

Jose Julio Alferes Universidade NOVA de Lisboa, Portugal
Mario Alviano University of Calabria, Italy
Grigoris Antoniou University of Huddersfield, UK
Carlos Areces Universidad Nacional de Córdoba, Spain
Franz Baader TU Dresden, Germany
Peter Baumgartner CSIRO, Australia
Leopoldo Bertossi Universidad Adolfo Ibáñez, Chile
Armin Biere Johannes Kepler University Linz, Austria
Alexander Bochman Holon Institute of Technology, Israel
Bart Bogaerts Vrije Universiteit Brussel, Belgium
Gerhard Brewka Leipzig University, Germany
Pedro Cabalar University of A Coruña, Spain
Marco Calautti University of Trento, Italy
Francesco Calimeri University of Calabria, Italy
Giovanni Casini ISTI-CNR, Italy
Lukas Chrpa Czech Technical University in Prague, Czech Republic
Mehdi Dastani Utrecht University, The Netherlands
Thomas Eiter Vienna University of Technology, Austria
Esra Erdem Sabanci University, Turkey
Eduardo Fermé Universidade da Madeira, Portugal
Michael Fisher University of Manchester, UK
Sarah Alice Gaggl TU Dresden, Germany
Michael Gelfond Texas Tech University, USA
Laura Giordano Università del Piemonte Orientale, Italy
Lluis Godo IIIA-CSIC, Spain
Markus Hecher Vienna University of Technology, Austria
Tomi Janhunen Tampere University, Finland
Gabriele Kern-Isberner Technische Universität Dortmund, Germany
Sébastien Konieczny CRIL-CNRS, France
Roman Kontchakov Birkbeck, University of London, UK
Jérôme Lang Université Paris-Dauphine, France
Joao Leite Universidade NOVA de Lisboa, Portugal
Vladimir Lifschitz University of Texas at Austin, USA

Emiliano Lorini IRIT, France
Thomas Lukasiewicz University of Oxford, UK
Ines Lynce Universidade de Lisboa, Portugal
Marco Maratea University of Genoa, Italy
Pierre Marquis Institut Universitaire de France, France
Loizos Michael Open University of Cyprus, Cyprus
Angelo Montanari University of Udine, Italy
Michael Morak University of Klagenfurt, Austria
Manuel Ojeda-Aciego University of Malaga, Spain
Magdalena Ortiz Vienna University of Technology, Austria
David Pearce Universidad Politécnica de Madrid, Spain
Luís Moniz Pereira Universidade NOVA de Lisboa, Portugal
Rafael Peñaloza University of Milano-Bicocca, Italy
Andreas Pieris University of Edinburgh, UK
Henri Prade IRIT-CNRS, France
Francesco Ricca University of Calabria, Italy
Chiaki Sakama Wakayama University, Japan
Torsten Schaub University of Potsdam, Germany
Michael Thielscher University of New South Wales, Australia
Mirek Truszczynski University of Kentucky, USA
Mauro Vallati University of Huddersfield, UK
Ivan Varzinczak Artois University and CNRS, France
Carlos Viegas Damásio Universidade NOVA de Lisboa, Portugal
Joost Vennekens Katholieke Universiteit Leuven, Belgium
Toby Walsh University of New South Wales, Australia
Antonius Weinzierl Vienna University of Technology, Austria
Frank Wolter University of Liverpool, UK
Stefan Woltran Vienna University of Technology, Austria
Leon van der Torre University of Luxembourg, Luxembourg

Additional Reviewers

Stefan Borgwardt
Johannes K. Fichte
Pietro Galliani
John Goulermas
Xiaowei Huang
Rafael Kiesel
Patrick Koopmann
Jan Maly

Elena Mastria
Seemran Mishra
Anna Rapberger
Javier Romero
Amanda Vidal Wandelmer
Philipp Wanko
Prudence Wong
Jessica Zangari

viii Organization

Organizing Committee

Markus Blauensteiner
Mohammed El-Kholany
Michael Morak
Anna Otti
Philipp Pobaschnig
Haya Majid Qureshi

Konstantin Schekotihin
Christine Seger
Alice Tarzariol
Pierre Tassel
Erich Teppan
Petra Wiesner

Organization ix

Contents

Argumentation

Graph-Classes of Argumentation Frameworks with Collective Attacks 3
Wolfgang Dvořák, Matthias König, and Stefan Woltran

Introducing a Tool for Concurrent Argumentation . 18
Stefano Bistarelli and Carlo Taticchi

Probabilistic Argumentation: An Approach Based on Conditional
Probability –A Preliminary Report– . 25

Pilar Dellunde, Lluís Godo, and Amanda Vidal

Belief Revision

Conditional Descriptor Revision and Its Modelling by a CSP 35
Jonas Haldimann, Kai Sauerwald, Martin von Berg,
Gabriele Kern-Isberner, and Christoph Beierle

Trust Is All You Need: From Belief Revision to Information Revision 50
Ammar Yasser and Haythem O. Ismail

Reasoning about Actions, Causality, and Change

Computing Defeasible Meta-logic . 69
Francesco Olivieri, Guido Governatori, Matteo Cristani,
and Abdul Sattar

Syntax Splitting for Iterated Contractions, Ignorations, and Revisions
on Ranking Functions Using Selection Strategies . 85

Jonas Haldimann, Christoph Beierle, and Gabriele Kern-Isberner

An Epistemic Logic for Multi-agent Systems with Budget and Costs 101
Stefania Costantini, Andrea Formisano, and Valentina Pitoni

Epistemic Reasoning About Rationality and Bids in Auctions. 116
Munyque Mittelmann, Andreas Herzig, and Laurent Perrussel

Constraint Satisfaction

Tractable Combinations of Theories via Sampling . 133
Manuel Bodirsky and Johannes Greiner

Analyzing Unit Read-Once Refutations in Difference Constraint Systems. . . . 147
K. Subramani and Piotr Wojciechowski

Residuation for Soft Constraints: Lexicographic Orders
and Approximation Techniques. 162

Fabio Gadducci and Francesco Santini

Description Logics and Ontological Reasoning

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward
Guarded Fragment. 179

Bartosz Bednarczyk

An Algebraic View on p-Admissible Concrete Domains for Lightweight
Description Logics . 194

Franz Baader and Jakub Rydval

ReAD: AD-Based Modular Ontology Classification. 210
Haoruo Zhao, Bijan Parsia, and Uli Sattler

Weighted Defeasible Knowledge Bases and a Multipreference Semantics
for a Deep Neural Network Model . 225

Laura Giordano and Daniele Theseider Dupré

Non-classical Logics

A Computationally Grounded Logic of Graded Belief 245
Emiliano Lorini and François Schwarzentruber

Tractability Frontiers in Probabilistic Team Semantics and Existential
Second-Order Logic over the Reals . 262

Miika Hannula and Jonni Virtema

An Epistemic Probabilistic Logic with Conditional Probabilities 279
Šejla Dautović, Dragan Doder, and Zoran Ognjanović

Logic Programming and Answer Set Programming

On Syntactic Forgetting Under Uniform Equivalence 297
Ricardo Gonçalves, Tomi Janhunen, Matthias Knorr, and João Leite

Solving a Multi-resource Partial-Ordering Flexible Variant of the Job-Shop
Scheduling Problem with Hybrid ASP . 313

Giulia Francescutto, Konstantin Schekotihin,
and Mohammed M. S. El-Kholany

xii Contents

Tractable Reasoning Using Logic Programs with Intensional Concepts 329
Jesse Heyninck, Ricardo Gonçalves, Matthias Knorr, and João Leite

Estimating Grounding Sizes of Logic Programs Under Answer
Set Semantics . 346

Nicholas Hippen and Yuliya Lierler

Testing in ASP: Revisited Language and Programming Environment. 362
Giovanni Amendola, Tobias Berei, and Francesco Ricca

An Abstract View on Optimizations in SAT and ASP 377
Yuliya Lierler

Model Reconciliation in Logic Programs . 393
Tran Cao Son, Van Nguyen, Stylianos Loukas Vasileiou,
and William Yeoh

Lazy Stream Manipulation in Prolog via Backtracking:
The Case of 2P-KT . 407

Giovanni Ciatto, Roberta Calegari, and Andrea Omicini

Transforming Gringo Rules into Formulas in a Natural Way 421
Vladimir Lifschitz

DualGrounder: Lazy Instantiation via Clingo Multi-shot Framework 435
Yuliya Lierler and Justin Robbins

A Multi-shot ASP Encoding for the Aircraft Routing and Maintenance
Planning Problem . 442

Pierre Tassel and Mohamed Rbaia

Author Index . 459

Contents xiii

Argumentation

Graph-Classes of Argumentation
Frameworks with Collective Attacks

Wolfgang Dvořák , Matthias König(B) , and Stefan Woltran

Institute of Logic and Computation, TU Wien, Vienna, Austria
{dvorak,mkoenig,woltran}@dbai.tuwien.ac.at

Abstract. Argumentation frameworks with collective attacks (SETAFs)
have gained increasing attention in recent years as they provide a natural
extension of the well-known abstract argumentation frameworks (AFs)
due to Dung. Concerning complexity, it is known that for the standard
reasoning tasks in abstract argumentation, SETAFs show the same behav-
ior as AFs, i.e. they are mainly located on the first or second level of the
polynomial hierarchy. However, while for AFs there is a rich literature on
easier fragments, complexity analyses in this direction are still missing
for SETAFs. In particular, the well-known graph-classes of acyclic AFs,
even-cycle-free AFs, symmetric AFs, and bipartite AFs have been shown
tractable. In this paper, we aim to extend these results to the more general
notion of SETAFs. In particular, we provide various syntactic notions on
SETAFs that naturally generalize the graph properties for directed hyper-
graphs, and perform a complexity analysis of the prominent credulous and
skeptical acceptance problems for several different widely used semantics.

Keywords: Abstract argumentation · Complexity · SETAF ·
Collective attacks

1 Introduction

Formal argumentation provides formalisms to resolve conflicts in potentially
inconsistent or incomplete knowledge, which is essential to draw conclusions
of any kind in such a setting. In this context, argumentation frameworks (AFs),
introduced in the influential paper by Dung [5], turned out to be a versatile
system for reasoning tasks in an intuitive setting. In AFs we view arguments
just as abstract entities, represented by nodes in a directed graph, independent
from their internal structure. Conflicts are modeled in form of attacks between
these arguments, constituting the edges of said graph representation. Different
semantics have been defined for AFs and deliver sets of arguments that are
jointly acceptable given the topology of attacks in the AF at hand. However,
by their limited syntax it is hard to formalize certain naturally occurring state-
ments in AFs, which is why various generalizations of the standard formalism
have been proposed, see, e.g. [1]. One such generalization extends the syntax
by collective attacks, i.e. a construction where a set T of arguments attacks an
c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-75775-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_1&domain=pdf
http://orcid.org/0000-0002-2269-8193
http://orcid.org/0000-0003-0205-0039
http://orcid.org/0000-0003-1594-8972
https://doi.org/10.1007/978-3-030-75775-5_1

4 W. Dvořák et al.

argument h, but no proper subset of T does; the resulting class of frameworks
is often referred to as SETAFs. The underlying structure of SETAFs then is a
directed hypergraph. When they introduced SETAFs [23], Nielsen and Parsons
argued that collective attacks naturally appear in various contexts, e.g. when
languages are not closed under conjunction. In fact, in certain settings standard
AFs require artificial additional arguments and attacks, while the same setting
can be natively represented in SETAFs. These observations have been backed
up by recent practically driven investigations [25]. Moreover, SETAFs have been
proven to be strictly more expressive than AFs, as shown in [11] by means of
signatures. In spite of these advantages, there has not yet been much work on
computational aspects of SETAFs. The general complexity of the most common
reasoning tasks has been investigated in [12], where also an implementation of a
solver for SETAFs with answer-set programming has been introduced. Moreover,
algorithmic approaches for SETAFs have been studied in [16,22].

The main aim of this paper is to deepen the complexity analysis of [12] which
has shown that the complexity of SETAFs coincides with the results for classical
AFs in general. In particular, this means that reasoning in many popular seman-
tics is on the first or second level of the polynomial hierarchy. To still achieve
manageable runtimes with large instances, the approach we shall take in this
paper is to restrict the syntax of SETAFs. We propose certain constraints on
the hypergraph structure such that the induced class of frameworks is easy to
reason on (i.e. the problems in question are computable in polynomial time). On
AFs this approach turned out to be fruitful: we say an AF is acyclic, symmetric,
or bipartite, if its attack relation is, respectively. The thereby obtained graph
classes are tractable fragments of AFs [2,6,7,10]. Even though there exist trans-
lations from SETAFs to AFs [20,24], it is not at all clear whether tractability
results for AFs carry over to SETAFs. This is due to the fact that these transla-
tions can lead to an exponential blowup in the number of arguments; moreover
certain structural properties are lost in the translation.

In what follows, we thus focus on defining graph properties for SETAFs “from
scratch” - these can then be checked and exploited without a detour via AFs.
Our main contributions can be summarized as follows:

– Novel definitions for graph classes of directed hypergraphs: these notions are
conservative generalizations (i.e. in the special case of AFs they coincide with
the respective classical notions) of well known properties of directed graphs
such as acyclicity, symmetry, bipartiteness and 2-colorability. As a byproduct
of the detailed analysis we state certain syntactical and semantical properties
of SETAFs within these classes.

– We pinpoint the complexity of credulous and skeptical reasoning in the
respective graph classes w.r.t. seven widely used argumentation semantics,
that is admissible, grounded, complete, preferred, stable, stage, and semi-
stable [12,20,23]. We provide (efficient) algorithms to reason on these com-
putationally easy frameworks, and give negative results by providing hardness
results for classes that yield no computational speedup.

Graph-Classes of Argumentation Frameworks with Collective Attacks 5

a b

c d

(a) SETAF SF

a b

c d

(b) primal(SF)

Fig. 1. An example SETAF and its primal graph.

– We establish the status of tractable fragments for the classes acyclicity,
even-cycle-freeness, primal-bipartiteness, and self-attack-free full-symmetry.
In fact, we not only show that these classes are easy to reason in, but the
respective properties can also be recognized efficiently. This result allows one
to perform such a check as a subroutine of a general-purpose SETAF-solver
such that the overall asymptotic runtime is polynomial in case the input
framework belongs to such a class.

Note that some proofs are not given in full length, they are available in a technical
report [13].

2 Preliminaries

2.1 Argumentation Frameworks

Throughout the paper, we assume a countably infinite domain A of possible
arguments.

Definition 1. A SETAF is a pair SF = (A,R) where A ⊆ A is finite, and
R ⊆ (2A \ {∅}) × A is the attack relation. For an attack (T, h) ∈ R we call T
the tail and h the head of the attack. SETAFs (A,R), where for all (T, h) ∈ R
it holds that |T | = 1, amount to (standard Dung) AFs. In that case, we usually
write (t, h) to denote the set-attack ({t}, h).

Given a SETAF (A,R), we write S �→R a if there is a set T ⊆ S with
(T, a) ∈ R. Moreover, we write S′ �→R S if S′ �→R a for some a ∈ S. We drop
subscript R in �→R if there is no ambiguity. For S ⊆ A, we use S+

R to denote
the set {a | S �→R a} and define the range of S (w.r.t. R), denoted S⊕

R , as the
set S ∪ S+

R .

Example 1. Consider the SETAF SF = (A,R) with A = {a, b, c, d} and
R = {({a, b}, c), ({a, c}, b), ({c}, d)}. For an illustration see Fig. 1a - the dashed
attacks are collective attacks.

6 W. Dvořák et al.

Table 1. Extensions of the example SETAF SF from Example 1.

σ σ(SF)

cf {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, d}}
adm {∅, {a}, {a, b}, {a, c}, {a, b, d}}
com {{a}, {a, c}, {a, b, d}}
grd {{a}}
pref/stb/stage/sem {{a, c}, {a, b, d}}

We will now define special ‘kinds’ of attacks and fix the notions of
redundancy-free and self-attack-free SETAFs.

Definition 2. Given a SETAF SF = (A,R), an attack (T, h) ∈ R is redundant
if there is an attack (T ′, h) ∈ R with T ′ ⊂ T . A SETAF without redundant
attacks is redundancy-free. An attack (T, h) ∈ R is a self-attack if h ∈ T . A
SETAF without self-attacks attacks is self-attack-free.

Redundant attacks can be efficiently detected and then be omitted without
changing the standard semantics [17,24]. In the following we always assume
redundancy-freeness for all SETAFs, unless stated otherwise. The well-known
notions of conflict and defense from classical Dung-style-AFs naturally general-
ize to SETAFs.

Definition 3. Given a SETAF SF = (A,R), a set S ⊆ A is conflicting in SF
if S �→R a for some a ∈ S. A set S ⊆ A is conflict-free in SF , if S is not
conflicting in SF , i.e. if T ∪ {h} 	⊆ S for each (T, h) ∈ R. cf(SF) denotes the
set of all conflict-free sets in SF .

Definition 4. Given a SETAF SF = (A,R), an argument a ∈ A is defended
(in SF) by a set S ⊆ A if for each B ⊆ A, such that B �→R a, also S �→R B. A
set T ⊆ A is defended (in SF) by S if each a ∈ T is defended by S (in SF).

The semantics we study in this work are the grounded, admissible, complete,
preferred, stable, stage and semi-stable semantics, which we will abbreviate by
grd, adm, com, pref, stb, stage and sem respectively [12,20,23].

Definition 5. Given a SETAF SF = (A,R) and a conflict-free set S ∈ cf(SF).
Then,
– S ∈ adm(SF), if S defends itself in SF ,
– S ∈ com(SF), if S ∈ adm(SF) and a ∈ S for all a ∈ A defended by S,
– S ∈ grd(SF), if S =

⋂
T∈com(SF) T ,

– S ∈ pref(SF), if S ∈ adm(SF) and there is no T ∈ adm(SF) s.t. T ⊃ S,
– S ∈ stb(SF), if S �→ a for all a ∈ A \ S,
– S ∈ stage(SF), if �T ∈ cf(SF) with T⊕

R ⊃ S⊕
R , and

– S ∈ sem(SF), if S ∈ adm(SF) and �T ∈ adm(SF) s.t. T⊕
R ⊃ S⊕

R .

Graph-Classes of Argumentation Frameworks with Collective Attacks 7

Table 2. Complexity for AFs and SETAFs (C-c denotes completeness for C).

grd adm com pref stb stage sem

Credσ P-c NP-c NP-c NP-c NP-c ΣP
2-c ΣP

2-c

Skeptσ P-c trivial P-c ΠP
2-c coNP-c ΠP

2-c ΠP
2-c

For an example of the extensions of a SETAF see Table 1. The relationship
between the semantics has been clarified in [12,20,23] and matches with the
relations between the semantics for Dung AFs, i.e. for any SETAF SF :

stb(SF) ⊆ sem(SF) ⊆ pref(SF) ⊆ com(SF) ⊆ adm(SF) ⊆ cf(SF) (1)
stb(SF) ⊆ stage(SF) ⊆ cf(SF). (2)

The following property also carries over from Dung AFs: For any SETAF SF , if
stb(SF) 	= ∅ then stb(SF) = sem(SF) = stage(SF).

2.2 Complexity

We assume the reader to have basic knowledge in computational complexity the-
ory1, in particular we make use of the complexity classes L (logarithmic space),
P (polynomial time), NP (non-deterministic polynomial time), coNP, ΣP

2 and
ΠP

2 . For a given SETAF SF = (A,R) and an argument a ∈ A, we consider the
standard reasoning problems (under semantics σ) in formal argumentation:

– Credulous acceptance Credσ: Is the argument a contained in at least one σ
extension of SF?, and

– Skeptical acceptance Skeptσ: Is the argument a contained in all σ extensions
of SF?

The complexity landscape of SETAFs coincides with that of Dung AFs and is
depicted in Table 2. As SETAFs generalize Dung AFs the hardness results for
Dung AFs [2,4,8,9,18,19] (for a survey see [10]) carry over to SETAFs. Also the
same upper bounds hold for SETAFs [12]. However, while the complexity results
for AFs can be interpreted as complexity w.r.t. the number of arguments |A|,
the complexity results for SETAFs should be understood as complexity w.r.t.
|A| + |R| (as |R| might be exponentially larger than |A|).

3 Graph Classes

The directed hypergraph-structure of SETAFs is rather specific and to the best
of the authors’ knowledge the hypergraph literature does not provide generaliza-
tions of common graph classes to this kind of directed hypergraphs. Thus we first
1 For a gentle introduction to complexity theory in the context of formal argumenta-

tion, see [10].

8 W. Dvořák et al.

identify such generalizations for SETAFs for the graph classes of interest. Then, we
show the tractability of acyclicity and even-cycle-freeness (the latter does not hold
for stage semantics) in SETAFs, and that odd-cycle-freeness lowers the complexity
to the first level of the polynomial hierarchy as for AFs. Then, we adapt the notion
of symmetry in different natural ways, only one of which will turn out to lower the
complexity of reasoning as with symmetric AFs. Finally, we will adapt and analyze
the notions of bipartiteness and 2-colorability. Again we will see a drop in com-
plexity only for a particular definition of this property on hypergraphs. All of the
classes generalize classical properties of directed graphs in a way for SETAFs such
that in the special case of AFs (i.e. for SETAFs where for each attack (T, h) the
tail T consists of exactly one argument) they coincide with said classical notions,
respectively. Finally, we will argue that these classes are not only efficient to rea-
son on, but are also efficiently recognizable. Hence, we can call them tractable frag-
ments of argumentation frameworks with collective attacks.

When defining these classes we will use the notion of the primal graph, an
implementation of the hypergraph structure of a SETAF into a directed graph.
An illustration is given in Fig. 1.

Definition 6. Given a SETAF SF = (A,R). Then its primal graph is defined
as primal(SF) = (A′, R′), where A′ = A, and R′ = {(t, h) | (T, h) ∈ R, t ∈ T}.

3.1 Acyclicity

Akin to cycles in AFs, we define cycles on SETAFs as a sequence of arguments
such that there is an attack between each consecutive argument.

Definition 7. A cycle C of length |C| = n is a sequence of pairwise distinct argu-
ments C = (a1, a2, . . . , an, a1) such that for each ai there is an attack (Ai, ai+1)
with ai ∈ Ai, and there is an attack (An, a1) with an ∈ An. A SETAF is cyclic if
it contains a cycle (otherwise it is acyclic), even-cycle-free if it contains no cycles
of even length, and odd-cycle-free if it contains no cycles of odd length.

Note that a SETAF SF is acyclic if and only if its primal graph primal(SF)
is acyclic. It can easily be seen that acyclic SETAFs are well founded [23], i.e.
there is no infinite sequence of sets B1, B2, . . . , such that for all i, Bi is the tail of
an attack towards an argument in Bi−1. As shown in [23], this means grounded,
complete, preferred, and stable semantics coincide. Moreover, as therefore there
always is at least one stable extension, stable, semi-stable and stage semantics
coincide as well, and the lower complexity of Credgrd and Skeptgrd carries over
to the other semantics. Together with the hardness from AFs, we immediately
obtain our first result.

Theorem 1. For acyclic SETAFs the problems Credσ and Skeptσ for σ ∈
{grd, com, pref, stb, stage, sem} are P-complete. Moreover Credadm is P-complete.

For AFs we have that the absence of even-length cycles forms a tractable frag-
ment for all semantics under our consideration but stage. The key lemma is that
every AF with more than one complete extension has to have a cycle of even

Graph-Classes of Argumentation Frameworks with Collective Attacks 9

length [9]. This property also holds for SETAFs, which in turn means even-
cycle-free SETAFs have exactly one complete extension, namely the grounded
extension, which is then also the only preferred and semi-stable extension. Our
proof of this property follows along the lines of the respective known proof for
AFs. Moreover, the grounded extension is the only candidate for a stable exten-
sion, and thus for reasoning with stable semantics it suffices to check whether
the grounded extension is stable. Finally, note that the hardness of Credstage
and Skeptstage carries over from AFs (cf. [10]) to SETAFs.

Theorem 2. For even-cycle-free SETAFs the problems Credσ and Skeptσ for
σ ∈ {com, pref, stb, sem} are P-complete. Moreover the problem Credadm is P-
complete, the problem Credstage is ΣP

2 -complete, and the problem Skeptstage is
ΠP

2 -complete.

For odd-cycle free SETAFs the situation is just like with odd-cycle-free AFs [8].
If there is a sequence of arguments (a1, a2, . . .), we say a1 indirectly attacks the
arguments a2∗i−1 and indirectly defends the arguments a2∗i for i ≥ 1 (cf. [23]).
As odd-cycle-free SETAFs are limited controversial [23], i.e. there is no infinite
sequence of arguments such that each argument indirectly attacks and defends
the next, they are coherent, i.e. stable and preferred semantics coincide, and
therefore we experience a drop of the complexity to the first level of the polyno-
mial hierarchy.

Theorem 3. For odd-cycle-free SETAFs the problems Credσ for σ ∈ {adm, stb,
pref, com, stage, sem} are NP-complete, problems Skeptσ for σ ∈ {stb, pref, stage,
sem} are coNP-complete, and the problems Credgrd, Skeptgrd, and Skeptcom are
P-complete.

3.2 Symmetry

In the following we provide two generalizations of symmetry2 for SETAFs. The
first definition via the primal graph is inspired by the notion of counter-attacks:
an AF F = (A,R) is symmetric if for every attack (a, b) ∈ R there is a counter-
attack (b, a) ∈ R. As we will show, the corresponding definition for SETAFs is
not sufficiently restrictive to lower the complexity of the reasoning problems in
questions, except for a fast way to decide whether an argument is in the grounded
extension or not. For an illustration of the following definitions see Fig. 2.

Definition 8. A SETAF SF = (A,R) is primal-symmetric iff for every attack
(T, h) ∈ R and t ∈ T there is an attack (H, t) ∈ R with h ∈ H.

As expected, a SETAF is primal-symmetric iff its primal graph is symmetric.
Notice that the notion of primal-symmetry coincides with the definition of sym-
metry of Abstract Dialectical Frameworks in [3]. The next notion intuitively cap-
tures the “omnidirectionality” of symmetric attacks: for every attack all involved
arguments have to attack each other. In the definition of fully-symmetry we dis-
tinguish between self-attacks and attacks which are not self-attacks.
2 Further symmetry-notions for SETAFs have been investigated in [21].

10 W. Dvořák et al.

a b

c d

(a) Primal-symmetry

a

cb

(b) Full-symmetry

Fig. 2. Different notions of symmetry.

Definition 9. A SETAF SF = (A,R) is fully-symmetric iff for every attack
(T, h) ∈ R we either have

– if h ∈ T , then ∀x ∈ T it holds (T, x) ∈ R, or
– if h 	∈ T , then ∀x ∈ S it holds (S \ {x}, x) ∈ R with S = T ∪ {h}.

We have that every fully-symmetric SETAF is primal-symmetric, the con-
verse does not hold. In symmetric AFs every argument defends itself against
all incoming attacks, hence, admissible sets coincide with conflict-free sets, and
it becomes computationally easy to reason on admissible, complete, and pre-
ferred extensions. However, this is not the case with our notions of symmetry for
SETAFs. Consider the fully-symmetric (and thus also primal-symmetric) SETAF
from Fig. 2b: we have that for example the singleton set {a} is conflict-free, but
{a} cannot defend itself against the attacks towards a. That is, the argument
for tractability from AFs does not transfer to SETAFs. This corresponds to the
the fact that we will obtain full hardness for the admissibility-based semantics
in question, when making no further restrictions on the graph structure.

For both notions of symmetry we have that an argument is in the grounded
extension iff it is not in the head of any attack, which can easily be checked in
logarithmic space. This is by the characterization of the grounded extension as
least fixed point of the characteristic function [23], i.e. the grounded extension can
be computed by starting from the empty set and iteratively adding all defended
arguments. For primal-symmetric SETAFs with and without self-attacks, as well
as fully-symmetric SETAFs (allowing self-attacks) this is the only computational
speedup we can get, the remaining semantics maintain their full complexity.

In order to show the hardness for primal-symmetric SETAFs we provide a
translation that transforms each SETAF SF = (A,R) in a primal-symmetric
SETAF SF ′: we construct SF ′ from SF by adding, for each attack r = (T, h)
and t ∈ T , mutually attacking arguments a1

r,t, a
2
r,t, the (ineffective) counter-

attack ({a1
r,t, a

2
r,t, h}, t), and attacks (t, a1

r,t), (t, a
2
r,t). It can be verified that the

resulting SETAF SF ′ is primal-symmetric, does not introduce self-attacks and
preserves the acceptance status of the original arguments.

Theorem 4. For primal-symmetric SETAFs (with or without self-attacks) the
problems Credgrd, Skeptgrd and Skeptcom are in L, the complexity of the other
problems under our consideration coincides with the complexity for the general
problems (see Table 2).

Graph-Classes of Argumentation Frameworks with Collective Attacks 11

ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

Fig. 3. Illustration of SF 1
ϕ for a formula ϕ with atoms Y = {y1, y2, y3, y4}, and clauses

C = {{y1, y2, y3}, {ȳ1, ȳ2, ȳ4)}, {ȳ2, ȳ3, y4}}.

We will see the same hardness results for fully-symmetric SETAFs, but
here the hardness relies on the use of self-attacks. Stable, stage, and semi-
stable semantics have already their full complexity in symmetric AFs allowing
self-attacks [10]. For the admissible, complete and preferred semantics, hard-
ness can be shown with adjustments to the standard reductions. That is, we
substitute some of the occurring directed attacks (a, b) by classical symmetric
attacks (a, b), (b, a), and others by symmetric self-attacks ({a, b}, a), ({a, b}, b).
For instance, for admissible semantics, given a CNF-formula ϕ with clauses C
over atoms Y we define SF 1

ϕ = (A′, R′) (cf. Fig. 3), with A′ = {ϕ}∪C∪Y ∪Ȳ and
R′ given by (a) the usual attacks {(y, ȳ), (ȳ, y) | y ∈ Y }, (b) symmetric attacks
from literals to clauses {(y, c), (c, y) | y ∈ c, c ∈ C}∪{(ȳ, c), (c, ȳ) | ȳ ∈ c, c ∈ C},
and (c) the symmetric self-attacks {({c, ϕ}, ϕ), ({c, ϕ}, c) | c ∈ C}. The attacks
(c) ensure that all c have to be attacked in order to accept ϕ and that all c are
unacceptable.

Theorem 5. For fully-symmetric SETAFs (allowing self-attacks) the problems
Credgrd, Skeptgrd and Skeptcom are in L, the complexity of credulous and skep-
tical acceptance for the other semantics under our consideration coincides with
the complexity for the general problems (see Table 2).

Investigations on symmetric AFs often distinguish between AFs with
and without self-attacks [10]. Indeed, also for self-attack-free fully-symmetric
SETAFs we have that all naive extensions (i.e. ⊆-maximal conflict-free sets)
are stable, hence, one can construct a stable extension containing an arbitrary
argument a by starting with the conflict-free set {a} and expanding it to a max-
imal conflict-free set. As stable extensions are admissible, complete, preferred,
stage, and semi-stable, an argument is trivially credulously accepted w.r.t. these
semantics. Similarly, it is easy to decide whether an argument is in all extensions.

Theorem 6. For self-attack-free fully-symmetric SETAFs the problems Credσ

are trivially true for σ ∈ {adm, com, pref, stb, stage, sem}. The problems Skeptσ
are in L for σ ∈ {grd, com, pref, stb, stage, sem}. Moreover, Credgrd is in L.

12 W. Dvořák et al.

y1 y2

z1 z2

(a) Primal-bipartiteness

y

z

(b) 2-colorability

Fig. 4. Different notions of bipartiteness.

3.3 Bipartiteness

In the following we will provide two generalizations of bipartiteness; the first -
primal-bipartiteness - extends the idea of partitioning for directed hypergraphs,
the second is a generalization of the notion of 2-colorability. In directed graphs
bipartiteness and 2-colorability coincide. However, this is not the case in SETAFs
with their directed hypergraph-structure. As it will turn out, 2-colorability is not
a sufficient condition for tractable reasoning, whereas primal-bipartiteness makes
credulous and skeptical reasoning P-easy. For an illustration of the respective
definitions see Fig. 4.

Definition 10. Let SF = (A,R) be a SETAF. Then SF is primal-bipartite iff
its primal graph primal(SF) is bipartite, i.e. iff there is a partitioning of A into
two sets (Y,Z), such that

– Y ∪ Z = A, Y ∩ Z = ∅, and
– for every (T, h) ∈ R either h ∈ Y and T ⊆ Z, or h ∈ Z and T ⊆ Y .

For bipartite AFs, Dunne provided an algorithm to enumerate the arguments
that appear in admissible sets [6]; this algorithm can be adapted for SETAFs (see
Algorithm 1). Intuitively, the algorithm considers the two sets of the partition
separately. For each partition it iteratively removes arguments that cannot be
defended, and eventually ends up with an admissible set. The union of the two
admissible sets then forms a superset of every admissible set in the SETAF. As
primal-bipartite SETAFs are odd-cycle-free, they are coherent [23], which means
preferred and stable extensions coincide. This necessarily implies the existence
of stable extensions, which means they also coincide with stage and semi-stable
extensions. These results suffice to pin down the complexity of credulous and
skeptical reasoning for the semantics under our consideration.

Theorem 7. For primal-bipartite SETAFs the problems Credσ and Skeptσ for
σ ∈ {com, pref, stb, stage, sem} are P-complete. Moreover the problem Credadm
is P-complete.

It is noteworthy that the complexity of deciding whether a set S of arguments
is jointly credulously accepted w.r.t. preferred semantics in primal-bipartite
SETAFs was already shown to be NP-complete for bipartite AFs (and, hence,

Graph-Classes of Argumentation Frameworks with Collective Attacks 13

Algorithm 1: Compute the set of credulously accepted arguments w.r.t.
pref semantics
Input : A primal-bipartite SETAF SF = (A, R) with a partitioning (Y, Z)
Output: The admissible set Yi of credulously accepted arguments in Y

1 i := 0
2 Y0 := Y
3 R0 := R
4 repeat
5 i := i + 1
6 Yi := Yi−1 \ {y | y ∈ Yi−1, there is some (Z′, y) ∈ Ri−1 with Z′ ⊆

Z such that ∀z ∈ Z′ |{(Y ′, z) | (Y ′, z) ∈ Ri−1}| = 0}
7 Ri := Ri−1 \ {(Y ′, z) | Y ′ ⊆ Y, z ∈ Z, Y ′ �⊆ Yi}
8 until Yi = Yi−1;

for SETAFs) in [6]; however, this only holds if the arguments in question dis-
tribute over both partitions - for arguments that are all within one partition this
problem is in P, which directly follows from the fact that Algorithm 1 returns
the set Yi of credulously accepted arguments - which is itself an admissible set.

It is natural to ask whether the more general notion of 2-colorability also
yields a computational speedup. We capture this property for SETAFs by the
following definition:

Definition 11. Let SF = (A,R) be a SETAF. Then SF is 2-colorable iff there
is a partitioning of A into two sets (Y,Z), such that

– Y ∪ Z = A, Y ∩ Z = ∅, and
– for every attack (T, h) ∈ R we have (T ∪{h})∩Y 	= ∅ and (T ∪{h})∩Z 	= ∅.
Note that both primal-bipartiteness and 2-colorability do not allow self-loops
(a, a) with a single argument in the tail, but 2-colorable SETAFs may contain
self-attacks (T, h) with |T | ≥ 2.

For admissibility-based semantics that preserve the grounded extension (such
as grd, com, pref, stb, sem) it is easy to see that the problems remain hard in 2-
colorable SETAFs: intuitively, one can add two fresh arguments to any SETAF
and add them to the tail T of every attack (T, h) - they will be in each extension
of the semantics in question, and other than that the extensions will coincide with
the original SETAF (this translation is faithful, cf. [19]). To establish hardness for
stage semantics we can adapt the existing reductions by replacing self-attacking
arguments by a construction with additional arguments such that 2-colorability
is ensured, and replace certain classical AF-attacks by collective attacks.

Theorem 8. For 2-colorable SETAFs the complexity of Credσ and Skeptσ for
all semantics under our consideration coincides with the complexity of the general
problem (see Table 2).

14 W. Dvořák et al.

Table 3. Tractable fragments in SETAFs.

grd adm com pref stb stage sem

General Credσ P-c NP-c NP-c NP-c NP-c ΣP
2-c ΣP

2-c

Skeptσ P-c trivial P-c ΠP
2-c coNP-c ΠP

2-c ΠP
2-c

Acyclicty Credσ P-c P-c P-c P-c P-c P-c P-c

Skeptσ P-c trivial P-c P-c P-c P-c P-c

Even-cycle-freeness Credσ P-c P-c P-c P-c P-c ΣP
2-c P-c

Skeptσ P-c trivial P-c P-c P-c ΠP
2-c P-c

self-attack-free
full-symmetry

Credσ in L trivial trivial trivial trivial trivial trivial

Skeptσ in L trivial in L in L in L in L in L

Primal-bipartiteness Credσ P-c P-c P-c P-c P-c P-c P-c

Skeptσ P-c trivial P-c P-c P-c P-c P-c

3.4 Tractable Fragments

The (relatively speaking) low complexity of reasoning in SETAFs with the above
described features on its own is convenient, but to be able to fully exploit this
fact we also show that these classes are easily recognizable. As mentioned in [14],
the respective AF-classes can be efficiently decided by graph algorithms. As
for acyclicity, even-cycle-freeness, and primal-bipartiteness it suffices to analyze
the primal graph, these results carry over to SETAFs. Moreover, for primal-
bipartite SETAFs we can efficiently compute a partitioning, which is needed as
input for Algorithm 1. Finally, we can test for full-symmetry efficiently as well:
one (naive) approach is to just loop over all attacks and check whether there
are corresponding attacks towards each involved argument. Likewise, a test for
self-attack-freeness can be performed efficiently. Summarizing the results of this
work, we get the following theorem.

Theorem 9. Acyclicity, even-cycle-freeness, self-attack-free full-symmetry, and
primal-bipartiteness are tractable fragments for SETAFs.

In particular, for credulous and skeptical reasoning in the semantics under our
consideration the complexity landscape including tractable fragments in SETAFs
is depicted in Table 3.

4 Conclusion

In this work, we introduced and analyzed various different syntactic classes
for SETAFs. These new notions are conservative generalizations of properties
of directed graphs, namely acyclicity, even/odd-cycle-freeness, symmetry, and
bipartiteness, which have been shown to lower the complexity for acceptance
problems of AFs. The starting point for our definitions is the primal graph of
the SETAF, a structural embedding of directed hypergraph into a directed graph.

Graph-Classes of Argumentation Frameworks with Collective Attacks 15

Other than establishing basic properties, we performed a complete complexity
analysis for credulous and skeptical reasoning in classes of SETAFs with these
generalized properties.

For the notions regarding cycles, we established the same properties for
acyclicity, even-cycle-freeness, and odd-cycle-freeness for SETAFs that also hold
for AFs. This includes the fact that the same upper and lower bounds on the
complexity holds as in AFs, namely reasoning in acyclicity becomes tractable for
all semantics under our consideration, even-cycle-freeness becomes tractable for
all semantics but stage, and in odd-cycle-free SETAFs the complexity drops to
the first level of the polynomial hierarchy. The symmetry notions we introduced
generalize the concept of counter-attacks. We have established that a symmetric
primal graph is not a sufficient condition for a SETAF to lower the complexity.
The more restricting notion of full-symmetry yields a drop in complexity, but
only if one also requires the SETAFs to be self-attack-free. Allowing self-attacks,
even this notion does not yield a drop in the complexity for the semantics in ques-
tion, which is the case for admissible, preferred, and complete semantics in AFs.
We also investigated notions of bipartiteness. While in directed graphs bipartite-
ness and 2-colorability coincide, this in not the case in directed hypergraphs. We
provided an algorithm that allows one to reason efficiently on primal-bipartite
SETAFs, a result that does not apply for the more general notion of 2-colorable
SETAFs. Finally, we argued that these classes can also be efficiently recognized,
which is a crucial condition if one wants to implement the more efficient algo-
rithms as a sub-routine of a general SETAF-solver.

In the future, tractability for SETAFs could be established by performing
parametrized complexity analysis, as it has been done for AFs [10,15]. In partic-
ular, we understand these results as a starting point for investigations in terms of
backdoors (i.e. measuring and exploiting a bounded distance of a given SETAF
to a certain tractable class), along the lines of similar investigations for AFs [14].
Moreover, it is important to analyze whether SETAFs that occur in applications
belong to any of the graph-classes introduced in this work. For example, it can
be checked that the frameworks generated for a particular application in [25]—
even though they do not belong to one of our tractable fragments—enjoy a
(weak) symmetry-property, which allows one to reason in L on the grounded
extension. This can be shown using the same proof as for our primal-symmetry
result. Finally, as the purpose of the algorithms featured in this work was solely
to illustrate the membership to the respective complexity classes, undoubtedly
they yield a potential for improvement and optimization.

Acknowledgments. This research has been supported by the Vienna Science and
Technology Fund (WWTF) through project ICT19-065, and by the Austrian Science
Fund (FWF) through projects P30168 and P32830.

16 W. Dvořák et al.

References

1. Brewka, G., Polberg, S., Woltran, S.: Generalizations of Dung frameworks and their
role in formal argumentation. IEEE Intell. Syst. 29(1), 30–38 (2014). https://doi.
org/10.1109/MIS.2013.122

2. Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frame-
works. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 317–328.
Springer, Heidelberg (2005). https://doi.org/10.1007/11518655 28

3. Diller, M., Keshavarzi Zafarghandi, A., Linsbichler, T., Woltran, S.: Investigat-
ing subclasses of abstract dialectical frameworks. Argument Comput. 11, 191–219
(2020). https://doi.org/10.3233/AAC-190481

4. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and
default theories. Theor. Comput. Sci. 170(1–2), 209–244 (1996). https://doi.org/
10.1016/S0304-3975(96)80707-9

5. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995). https://doi.org/10.1016/0004-3702(94)00041-X

6. Dunne, P.E.: Computational properties of argument systems satisfying graph-
theoretic constraints. Artif. Intell. 171(10–15), 701–729 (2007). https://doi.org/
10.1016/j.artint.2007.03.006

7. Dunne, P.E., Bench-Capon, T.J.M.: Complexity and combinatorial properties of
argument systems. Department of Computer Science, University of Liverpool,
Technical Report (2001)

8. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artif.
Intell. 141(1/2), 187–203 (2002). https://doi.org/10.1016/S0004-3702(02)00261-8

9. Dvořák, W.: Computational Aspects of Abstract Argumentation. Ph.D. thesis,
Vienna University of Technology, Institute of Information Systems (2012). http://
permalink.obvsg.at/AC07812708

10. Dvořák, W., Dunne, P.E.: Computational problems in formal argumentation
and their complexity. FLAP 4(8) (2017). http://www.collegepublications.co.uk/
downloads/ifcolog00017.pdf

11. Dvořák, W., Fandinno, J., Woltran, S.: On the expressive power of collective
attacks. Argument Comput. 10(2), 191–230 (2019). https://doi.org/10.3233/AAC-
190457

12. Dvořák, W., Greßler, A., Woltran, S.: Evaluating SETAFs via answer-set pro-
gramming. In: Thimm, M., Cerutti, F., Vallati, M. (eds.) Proceedings of the Sec-
ond International Workshop on Systems and Algorithms for Formal Argumenta-
tion (SAFA 2018) co-located with the 7th International Conference on Compu-
tational Models of Argument (COMMA 2018), Warsaw, Poland, vol. 2171, pp.
10–21. CEUR Workshop Proceedings CEUR-WS.org (2018). http://ceur-ws.org/
Vol-2171/paper 2.pdf

13. Dvořák, W., König, M., Woltran, S.: Graph-classes of argumentation frameworks
with collective attacks. Technical Report DBAI-TR-2021-120, Technische Univer-
sität Wien (2021). http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2021-
120.pdf

14. Dvořák, W., Ordyniak, S., Szeider, S.: Augmenting tractable fragments of abstract
argumentation. Artif. Intell. 186, 157–173 (2012). https://doi.org/10.1016/j.artint.
2012.03.002

15. Dvořák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms
for abstract argumentation. Artif. Intell. 186, 1–37 (2012). https://doi.org/10.
1016/j.artint.2012.03.005

https://doi.org/10.1109/MIS.2013.122
https://doi.org/10.1109/MIS.2013.122
https://doi.org/10.1007/11518655_28
https://doi.org/10.3233/AAC-190481
https://doi.org/10.1016/S0304-3975(96)80707-9
https://doi.org/10.1016/S0304-3975(96)80707-9
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/j.artint.2007.03.006
https://doi.org/10.1016/j.artint.2007.03.006
https://doi.org/10.1016/S0004-3702(02)00261-8
http://permalink.obvsg.at/AC07812708
http://permalink.obvsg.at/AC07812708
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
https://doi.org/10.3233/AAC-190457
https://doi.org/10.3233/AAC-190457
http://ceur-ws.org/Vol-2171/paper_2.pdf
http://ceur-ws.org/Vol-2171/paper_2.pdf
http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2021-120.pdf
http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2021-120.pdf
https://doi.org/10.1016/j.artint.2012.03.002
https://doi.org/10.1016/j.artint.2012.03.002
https://doi.org/10.1016/j.artint.2012.03.005
https://doi.org/10.1016/j.artint.2012.03.005

Graph-Classes of Argumentation Frameworks with Collective Attacks 17

16. Dvořák, W., Rapberger, A., Wallner, J.P.: Labelling-based algorithms for SETAFs.
In: Gaggl, S.A., Thimm, M., Vallati, M. (eds.) Proceedings of the Third Interna-
tional Workshop on Systems and Algorithms for Formal Argumentation co-located
with the 8th International Conference on Computational Models of Argument
(COMMA 2020), vol. 2672, pp. 34–46. CEUR Workshop Proceedings. CEUR-
WS.org (2020). http://ceur-ws.org/Vol-2672/paper 4.pdf

17. Dvořák, W., Rapberger, A., Woltran, S.: On the different types of collective attacks
in abstract argumentation: equivalence results for SETAFs. J. Logic Comput.
30(5), 1063–1107 (2020). https://doi.org/10.1093/logcom/exaa033

18. Dvořák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argu-
mentation frameworks. Inf. Process. Lett. 110(11), 425–430 (2010). https://doi.
org/10.1016/j.ipl.2010.04.005

19. Dvořák, W., Woltran, S.: On the intertranslatability of argumentation semantics.
J. Artif. Intell. Res. (JAIR) 41, 445–475 (2011)

20. Flouris, G., Bikakis, A.: A comprehensive study of argumentation frameworks with
sets of attacking arguments. Int. J. Approx. Reason. 109, 55–86 (2019). https://
doi.org/10.1016/j.ijar.2019.03.006

21. König, M.: Graph-Classes of Argumentation Frameworks with Collective Attacks.
Master’s thesis, TU Wien (2020). http://permalink.obvsg.at/AC15750327

22. Nielsen, S.H., Parsons, S.: Computing preferred extensions for argumentation sys-
tems with sets of attacking arguments. In: Dunne, P.E., Bench-Capon, T.J.M.
(eds.) Computational Models of Argument: Proceedings of COMMA 2006, 11–12
September 2006, Liverpool, UK. Frontiers in Artificial Intelligence and Applica-
tions, vol. 144, pp. 97–108. IOS Press (2006). http://www.booksonline.iospress.nl/
Content/View.aspx?piid=1930

23. Nielsen, S.H., Parsons, S.: A generalization of dung’s abstract framework for argu-
mentation: arguing with sets of attacking arguments. In: Maudet, N., Parsons, S.,
Rahwan, I. (eds.) ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 54–73. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75526-5 4

24. Polberg, S.: Developing the Abstract Dialectical Framework. Ph.D. thesis, Vienna
University of Technology, Institute of Information Systems (2017). https://
permalink.obvsg.at/AC13773888

25. Yun, B., Vesic, S., Croitoru, M.: Toward a more efficient generation of structured
argumentation graphs. In: Modgil, S., Budzynska, K., Lawrence, J. (eds.) Com-
putational Models of Argument - Proceedings of COMMA 2018, Warsaw, Poland.
Frontiers in Artificial Intelligence and Applications, vol. 305, pp. 205–212. IOS
Press (2018). https://doi.org/10.3233/978-1-61499-906-5-205

http://ceur-ws.org/Vol-2672/paper_4.pdf
https://doi.org/10.1093/logcom/exaa033
https://doi.org/10.1016/j.ipl.2010.04.005
https://doi.org/10.1016/j.ipl.2010.04.005
https://doi.org/10.1016/j.ijar.2019.03.006
https://doi.org/10.1016/j.ijar.2019.03.006
http://permalink.obvsg.at/AC15750327
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1930
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1930
https://doi.org/10.1007/978-3-540-75526-5_4
https://permalink.obvsg.at/AC13773888
https://permalink.obvsg.at/AC13773888
https://doi.org/10.3233/978-1-61499-906-5-205

Introducing a Tool for Concurrent
Argumentation

Stefano Bistarelli1 and Carlo Taticchi2(B)

1 University of Perugia, Perugia, Italy
stefano.bistarelli@unipg.it

2 Gran Sasso Science Institute, L’Aquila, Italy
carlo.taticchi@gssi.it

Abstract. Agent-based modelling languages naturally implement con-
currency for handling complex interactions between communicating
agents. On the other hand, the field of Argumentation Theory lacks
of instruments to explicitly model concurrent behaviours. In this paper
we introduce a tool for dealing with concurrent argumentation processes
and that can be used, for instance, to model agents debating, negotiating
and persuading. The tool implements operations as expansion, contrac-
tion and revision. We also provide a web interface exposing the function-
alities of the tool and allowing for a more careful study of concurrent
processes.

Keywords: Argumentation Theory · Concurrency · Programming
languages

1 Preliminaries

Many applications in the field of artificial intelligence aim to reproduce the
human behaviour and reasoning in order to allow machines to think and act
accordingly. One of the main challenges in this sense is to provide tools for
expressing a certain kind of knowledge in a formal way so that the machines
can use it for reasoning and infer new information. Argumentation Theory pro-
vides formal models for representing and evaluating arguments that interact with
each other. In his seminal work [7], Dung introduces a representation for Argu-
mentation Frameworks in which arguments are abstract, that is their internal
structure, as well as their origin, is left unspecified. An Abstract Argumentation
Framework (AF) consists of a couple 〈Arg,R〉 where Arg is a set of arguments
and R a binary attack relation between them. Given an AF, it is possible to
examine the question on which set(s) of arguments can be accepted by, using
criteria called argumentation semantics. Several authors have investigated the
dynamics of AFs [2,5,11]. The works in this direction take into account differ-
ent kinds of modification (addition or removal of arguments and attacks [6])
and borrow concepts from belief revision with different purposes, for example
updating an AF [13] or enforcing arguments [2].
c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 18–24, 2021.
https://doi.org/10.1007/978-3-030-75775-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_2&domain=pdf
http://orcid.org/0000-0001-7411-9678
http://orcid.org/0000-0003-1260-4672
https://doi.org/10.1007/978-3-030-75775-5_2

Introducing a Tool for Concurrent Argumentation 19

Although some of these approaches could be exploited to implement appli-
cations based on argumentation, for instance to model debates among political
opponents, none of them considers the possibility of having concurrent interac-
tions. This lack represents a significant gap between the reasoning capacities of
AFs and their possible use in real life tools. Consider, for example, the situation
in which two debating agents share a knowledge base, represented by an AF, and
both of them want to update it with new information in such a way that the new
beliefs are consistent with the previous ones. The agents can act independently
and simultaneously. Similarly to what happens in concurrent programming, if
no synchronization mechanism is taken into account, the result of the revision
can be unpredictable and can also lead to the introduction of inconsistencies.

Motivated by the above considerations, we defined a concurrent argumenta-
tion language [4] for modelling negotiations and debates. Such language allows
for modelling concurrent processes, inspired by notions such as the Ask-and-Tell
constraint system [14]. Besides specifying a logic for argument interaction, our
language can model debating agents (e.g., chatbots) that take part in a con-
versation and provide arguments. AGM [1] and KM [9] theories give operations
(like expansion, contraction, revision, extraction, consolidation and merging)
for updating and revising beliefs on a knowledge base. Looking at such opera-
tions, the language is endowed with primitives for the specification of interaction
between agents through the fundamental operations of adding (or removing)
arguments and attacks. The aim is to define a core calculus with a small collec-
tion of constructs that allow for the simple modelling of more complex operations
that can be used for representing debating agents in a natural way.

Starting from the CC syntax, we enrich the ask and tell operators in order
to handle the interaction with an AF used as knowledge base for the agents. We
replace the aks with three decisional operations: a syntactic check that verifies if
a given set of arguments and attacks is contained in the knowledge base, and two
semantic test operations that we use to retrieve information about the accept-
ability of arguments in an AF. The tell operation (that we call add) augments the
store with additional arguments and attack relations. We can also remove parts
of the knowledge base through a specifically designed removal operation. Finally,
a guarded parallel composition ‖G allows for executing all the operations that
satisfy some given conditions, and a prioritised operator +P is used to imple-
ment if-then-else constructs. The remaining operators are classical concurrency
compositions: an agent in a parallel composition obtained through ‖ succeeds if
all the agents succeeds; any agent composed through + is chosen if its guards
succeeds; the existential quantifier ∃xA behaves like agent A where variables in
x are local to A. The parallel composition operator enables the specification of
complex concurrent processes. For example, a debate involving many agents that
asynchronously provide arguments can be modelled as a parallel composition of
add operations performed on the knowledge base.

With this work, we take a further step towards an argumentation-based sys-
tem able to handle concurrent interactions between intelligent agents: we present
ConArg lang, a tool implementing the concurrent language of [4] and exposing

20 S. Bistarelli and C. Taticchi

its functionalities through a web interface. In the following section, we provide
a detailed description of the tool, focusing on implementation choices and def-
inition of the core functions. We also show how the interface works giving two
examples of program executions.

2 Implementation

We develop a working implementation for ConArg lang. We use python and
ANTLR1 (ANother Tool for Language Recognition), a parser generator for read-
ing, processing, executing, and translating structured text. ANTLR provides two
ways of traversing the parse tree: either trough a listener (the default option)
or a visitor. The biggest difference between the listener and visitor mechanisms
is that listener methods are called independently, whereas visitor methods must
walk their children with explicit visit calls. Not invoking visitor methods on the
children of a node means those subtrees are not visited. Since we want to imple-
ment guards in our language, we need the possibility to decide which part of the
tree will be visited, making our choice fall on the visitor approach.

Our project consists of a grammar file and seven python classes, the most
interesting being the CustomVisitor, in which we define the behaviour of the
parser, and the class ArgFun containing all the auxiliary argumentation-related
functions used to process the knowledge base of the agents (that is, indeed,
an AF). The visit of the parse tree always starts with the execution of the
function visitPrg, which recursively visits all its children. The parser recognises
twenty types of node (the non terminal elements in the grammar) for which the
desired behaviour is specified. Below, we provide details on the implementation
of visiting functions.

– visitPrg : calls the visit on its children, collects the results and, in case of
termination, returns the output of the whole program.

– visitPar : starts two separated threads to execute (visit) two actions in parallel,
returning true if both succeeds, false if at least one action fails, and suspends
if an action is waiting for its guard to become true.

– visitAdd and visitRmv : modify the AF by either adding or removing part of
the AF, respectively. Always succeeds and continues on the children. Note
that visitRmv succeeds also if the specified arguments and/or attacks are not
in the AF. In that case, the AF is left unchanged.

– visitSuc and visitFlr : correspond to visits to terminal nodes and return true
(success) and false (failure), respectively.

– visitNdt : implements a concatenation of + operators, inspecting the guards
of all its children and randomly selecting a branch to execute among the
possible ones. A guard can be a waiting check or either of the waiting tests.
If no guards are found with satisfiable conditions, visitNdt waits for changes
in the AF until some child can be executed.

1 ANTLR website: https://www.antlr.org/.

https://www.antlr.org/

Introducing a Tool for Concurrent Argumentation 21

– visitGpa: implements a concatenation of ‖G operators. Execute all its chil-
dren in separated threads. Contrary to visitNdt, visitGpa only works with
expressions that can fail (and do not suspend), thus allowing for two possible
outcomes, that is success if at least one expression succeeds, and failure if all
expressions fail.

– visitIte: behaves like an if-then-else construct. The first child must be an
expression with guaranteed termination (either success or failure). The chil-
dren are executed in the same order in which they are specified and as soon
as a satisfiable guard is found, the corresponding branch is executed. Since
some of the children can be waiting expression, visitIte is not guaranteed to
terminate.

– visitCkw and visitCkf : check if a given set of arguments and/or attacks is
present in the knowledge base. In case of success, both nodes proceed visiting
the consequent action. On the other hand, when the knowledge base does not
contain the specified parts of AF, visitCkw waits for the condition to become
true, while visitCkf immediately returns false and leads to branch failure.

– visitTcw, visitTcf, visitTsw and visitTsf : call the ConArg [3] solver to execute
credulous and sceptical tests on the acceptability of a given set of arguments.
As with the checks, the test functions are also available in two versions, one
that always terminates (with either a success or a failure) and the other that
possibly suspends and waits for the condition to become true.

In addition to the visiting functions, we have a set of core functions respon-
sible for managing auxiliary tasks, like starting new threads when a parallel
composition is detected, making changes to the shared AF and computing the
semantics for the test operations. All the components are put together in the
Main class, which takes in input and runs the user-defined program.

2.1 Web Interface

To facilitate the use of the tool we develop a web interface exposing the func-
tionalities of our language. The interface consists of a web page2 divided into
three main areas: an input form, one text box for the program output and one
for the shared AF (shown in Fig. 1). The output of our tool shows, for each step,
the executed operation and the remaining part of the program, together with
the results of check and test operations.

The user can either manually input a program in the designated area or select
a sample program from those available a the drop down menu. Two buttons
below the input area run the program and display the result in different ways.
Clicking the button “Run all”, the result of the whole program is immediately
displayed in the area below and the AF shown on the right represent the final
state of the shared store. On the other hand, the button “Run 1 step” shows,
as the name suggests, one step at time: each click on the button makes another
step of the execution appear in the output area. The AF on the right side is

2 Web interface available at http://dmi.unipg.it/conarg/lang/.

http://dmi.unipg.it/conarg/lang/

22 S. Bistarelli and C. Taticchi

Fig. 1. Execution of the program in Example 1.

updated after each add or rmv operation, showing the evolution of the underlying
knowledge base. Note that the difference between the two usable modes is only
in the visualisation, since both compute the whole result beforehand. Regardless
of the chosen method, the executed operation is highlighted in yellow in each
line of the output.

Example 1 (Parallel actions). Consider the program below.

checkw({c},{}) -> add({a,b},{(a,c)}) -> success ||
add({c},{}) -> success;

Running the program produces the results in Fig. 1. Note that the AF rep-
resenting the knowledge base is always empty at the beginning. In line 1 of the
output, the parser recognises a valid program. Two threads (one for each action)
are started. In this example, the action that occurred first in the program is also
executed first, but in general it can happen in any order. In line 3, the program
executes a waiting checkw: if the AF contains an argument c then the visit on
that branch can continue (and the add operation is executed). Otherwise, the
checkw is repeated until it (possibly) becomes true. Since the AF is empty by
default and no other action has modified it yet, the check on the AF return a neg-
ative answer (line 4). In the meanwhile, the add operation of the second thread
is executed in line 6. The AF is modified accordingly, introducing an argument c.
AF = 〈{c}, {}〉. This branch of the execution terminates in line 7 with a success.
At this point, the check of the first thread (which had previously given nega-
tive results) is repeated, this time giving an affirmative answer (lines 8 and 9).
The execution then continues in line 10 with the add operation which produces
further modifications on the AF. At this point, AF = 〈{c, a, b}, {(a, c)}〉. This
branch successfully terminates in line 11 and since both the parallel actions of
our program succeed, the whole program terminates with a success (line 12).

Example 2 (If-then-else). We run the following program, whose result is shown
in Fig. 2.

Introducing a Tool for Concurrent Argumentation 23

Fig. 2. Execution of the program in Example 2.

add({a,b},{(a,b)}) ->
checkf({c},{}) -> add({d},{}) -> success +P
testcf({b},in,complete) -> add({e},{}) -> success;

After initialising the AF with two arguments and an attack between them in
line 3 (AF = 〈{a, b}, {(a, b)}〉.), the program executes an if-then-else construct
(line 4). The first condition consists of a checkf operation, which immediately
fails (lines 5 and 6). The program proceed with the second condition, this time a
testcf, that also fails (lines 7 and 8). Since both conditions fail, also the program
terminates with a failure in line 9. We remark that more than two conditions can
be declared by the use of +P and only the last one can be a waiting expression.

3 Conclusion and Future Work

We present ConArg lang, a tool for modelling concurrent argumentation pro-
cesses. We give insights on the implementation choices and we describe the main
components of the tool, i.e., the parser and the web interface. The parser recog-
nises up to twenty syntactic elements from an input program and produces a
parse tree that is visited to obtain the execution result. The web interface, then,
allows the user to enter a program (written with ConArg lang syntax) and to
execute it either all at once or one step at a time, showing the evolution of the
shared AF as well.

For the future, we plan to extend this work in many directions. First of
all, given the known issues of abstract argumentation [12], we want to consider
structured AFs and provide an implementation for our expansion, contraction
and revision operators, for which a different store (structured and not abstract,
indeed) need to be considered. The concurrent primitives are already general
enough and do not require substantial changes. To obtain a spendable imple-
mentation, we will consider operations that can be done in polynomial time [8].
As a final consideration, whereas in real-life cases it is always clear which part
involved in a debate is stating a particular argument, AFs do not hold any notion
of “ownership” for arguments or attacks, that is, any bond with the one mak-
ing the assertion is lost. To overcome this problem, we want to implement the

24 S. Bistarelli and C. Taticchi

possibility of attaching labels on (groups of) arguments and attacks of AFs, in
order to preserve the information related to whom added a certain argument or
attack, extending and taking into account the work in [10]. Consequently, we can
also obtain a notion of locality (or scope) of the belief in the knowledge base:
arguments owned by a given agent can be placed into a local store and used in
the implementation of specific operators through hidden variables.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530
(1985)

2. Baumann, R.: What does it take to enforce an argument? Minimal change in
abstract argumentation. In: ECAI. Frontiers in Artificial Intelligence and Applica-
tions, vol. 242, pp. 127–132. IOS Press (2012)

3. Bistarelli, S., Santini, F.: Conarg: a constraint-based computational framework for
argumentation systems. In: ICTAI, pp. 605–612. IEEE Computer Society (2011)

4. Bistarelli, S., Taticchi, C.: A concurrent language for argumentation. In:
AI3@AI*IA. CEUR Workshop Proceedings, vol. 2777, pp. 75–89. CEUR-WS.org
(2020)

5. Boella, G., Kaci, S., van der Torre, L.: Dynamics in argumentation with single
extensions: attack refinement and the grounded extension (extended version). In:
McBurney, P., Rahwan, I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009. LNCS
(LNAI), vol. 6057, pp. 150–159. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12805-9 9

6. Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.: Revision of an argumentation
system. In: KR, pp. 124–134. AAAI Press (2008)

7. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

8. Dvorák, W., Dunne, P.E.: Computational problems in formal argumentation and
their complexity. FLAP 4(8) (2017)

9. Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge
base and revising it. In: KR, pp. 387–394. Morgan Kaufmann (1991)

10. Maudet, N., Parsons, S., Rahwan, I.: Argumentation in multi-agent systems: con-
text and recent developments. In: Maudet, N., Parsons, S., Rahwan, I. (eds.)
ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 1–16. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75526-5 1

11. Moguillansky, M.O., Rotstein, N.D., Falappa, M.A., Garćıa, A.J., Simari, G.R.:
Dynamics of knowledge in DeLP through argument theory change. Theory Pract.
Log. Program. 13(6), 893–957 (2013)

12. Prakken, H., Winter, M.D.: Abstraction in argumentation: necessary but danger-
ous. In: COMMA. Frontiers in Artificial Intelligence and Applications, vol. 305,
pp. 85–96. IOS Press (2018)

13. de Saint-Cyr, F.D., Bisquert, P., Cayrol, C., Lagasquie-Schiex, M.: Argumentation
update in YALLA (yet another logic language for argumentation). Int. J. Approx.
Reason. 75, 57–92 (2016)

14. Saraswat, V.A., Rinard, M.C.: Concurrent constraint programming. In: POPL, pp.
232–245. ACM Press (1990)

https://doi.org/10.1007/978-3-642-12805-9_9
https://doi.org/10.1007/978-3-642-12805-9_9
https://doi.org/10.1007/978-3-540-75526-5_1

Probabilistic Argumentation: An Approach
Based on Conditional Probability

–A Preliminary Report–

Pilar Dellunde1,2(B), Lluı́s Godo2, and Amanda Vidal2

1 Universitat Autònoma de Barcelona and Barcelona Graduate School of Mathematics,
Bellaterra, Spain

Pilar.Dellunde@uab.cat
2 Artificial Intelligence Research Institute (IIIA-CSIC), Campus de la UAB, 08193 Bellaterra,

Barcelona, Spain
{godo,amanda}@iiia.csic.es

Abstract. A basic form of an instantiated argument is as a pair (support, con-
clusion) standing for a conditional relation ‘if support then conclusion’. When
this relation is not fully conclusive, a natural choice is to model the argument
strength with the conditional probability of the conclusion given the support. In
this paper, using a very simple language with conditionals, we explore a frame-
work for probabilistic logic-based argumentation based on an extensive use of
conditional probability, where uncertain and possibly inconsistent domain knowl-
edge about a given scenario is represented as a set of defeasible rules quantified
with conditional probabilities. We then discuss corresponding notions of attack
and defeat relations between arguments, providing a basis for appropriate accept-
ability semantics, e.g. based on extensions or on DeLP-style dialogical trees.

1 Introduction

In the literature, there have been a number of approaches [3,5,10–13,15,19,21,25] to
combine different theories of argumentation with probability theory, and other uncer-
tainty models, in order to allow for a more fine-grained reasoning when arguments
involve uncertain information. Since the earliest works of Pollock [17,18], where he
introduced the notion of strength of an argument in terms of numerical degrees of belief,
one main open problem has been to determine how the strength of arguments can be
related to probability theory, see e.g. [19].

In [23], arguments are generated in ASPIC+ and their rebutting attacks are resolved
with probabilistic strengths of arguments. However, some difficulties are encountered
when assigning probabilities to arguments in an abstract framework. In a natural way,
probabilities can be assigned to the truth of statements or to outcomes of events, but
an argument is neither a statement nor an event. Thus, there is a need for a meaning-
ful definition of what the probability of an argument is, and this has to be done at the
level of structured argumentation, for instance along the line of the epistemic approach
to probabilistic argumentation [10,19,20]. In particular, in the setting of classical-logic
based argumentation, Hunter considers in [10] the probability of an argument to be the
c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 25–32, 2021.
https://doi.org/10.1007/978-3-030-75775-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_3

26 P. Dellunde et al.

probability of its premises according to a fixed, and a priori given, probability distribu-
tion on the set of interpretations of the language. Similarly, in [19], Prakken discusses
the application of the ASPIC+ framework to default reasoning with probabilistic gener-
alisations, taking the probability of an argument to be the probability of the conjunction
of all its premises and conclusions.

In contrast to [10] but similarly to [19], in this paper we consider logic-based argu-
ments A = (support; conclusion) pervaded with uncertainty due a non-conclusive con-
ditional link between their supports and their conclusions. In such a case, it is very
reasonable to supplement the argument representation with a quantification α of how
certain conclusion can be claimed to hold whenever support is known to hold, leading to
represent arguments as triples A = (support; conclusion : α). A very natural choice is to
interpret α as a conditional probability, namely the probability P(conclusion | support).
As we frame our proposal in logic-based argumentation, where arguments rely on the
notion of proof in some underlying logic, we internalise the conditional link specified
by an argument in the logic as a conditional formula or a set of conditional formulas in
the general case, so that our basic probabilistic arguments will be of the form

A = ({ψ}, {ψ� ϕ : α};ϕ : α),
where ψ and ϕ are classical propositions, ψ � ϕ is a conditional formula and α is
interpreted as a lower bound for the conditional probability P(ϕ | ψ). When arguments
get more complex and need several uncertain conditionals to link the support with the
conclusion, conditional probabilities are attached to each of the involved conditionals,
so arguments become of the form

A = (Π, Δ = {(ψ1 � ϕ1 : p1), . . . , (ψn � ϕn : pn)};ϕ : α),
where Π is a finite set of factual (i.e. non conditional) premises and α the probability
with which ϕ can be logically entailed from Π and Δ. In fact, this type of arguments
can be seen as a probabilistic generalization of those at work in the Defeasible Logic
Programming argumentation framework (DeLP) [7]. This is a formalism combining
logic programming and defeasible argumentation, that provides the possibility of repre-
senting information in the form of weak rules and a defeasible argumentation inference
mechanism for warranting the entailed conclusions, see [8] for more details.

Our proposal can be cast in the above mentioned epistemic approach that assigns
probabilities to arguments. However, in contrast to many works in the literature, we
do not assign probabilities to the arguments a priori, but rather use smaller pieces of
probabilistic information that govern the universe of study, and use these to compute
the probability of a complex argument built from the more basic information items it
contains. Moreover, our approach also notably differs from previous schemes in that, to
compute the probability for an argument, we consider the whole family of probability
distributions compatible with the support, and not fixing only one distribution.

This paper is structured as follows. Section 2 is devoted to introduce notions about
logic and probability necessary for the rest of the paper; in Sect. 3 we introduce and
explore the framework of probabilistic argumentation based on conditional probabili-
ties. We conclude the paper commenting on promising future work and open questions.

Probabilistic Argumentation 27

2 Logic and Probability

When aiming towards the definition of a formal argumentation framework, a first step
is the selection of a underlying purely propositional language and the logical system
that will govern the derivation of new knowledge from a given set of information. In
this paper, our logical formalism will be inspired in DeLP [7].

Let V be the set of propositional variables, simply a countable set of symbols. A
literal is any propositional variable x ∈ V or a negated variable ¬x for x ∈ V. If �
is a literal, we will use the notation ¬� to refer to x if � = ¬x and to ¬x if � = x. A
conjunction of literals is a formula of the form �1 ∧ . . . ∧ �n with n ≥ 1, where each �i
is a literal. A conditional is a formula of the form �1 ∧ . . . ∧ �n � �. Finally, we call
formula any conjunction or conditional, and denote the set of formulas by Fm. Given a
set of formulas Ψ ⊆ Fm, we will denote by lit(Ψ) the set of literals appearing in Ψ .

Definition 1 (c.f. Def. 2.5 from [7]). Let Σ be a finite set of conditionals, Φ a finite set
of literals and � a literal. A DeLP derivation of � from Σ and Φ, denoted Σ,Φ � �, is a
finite sequence �1, . . . , �n = � of literals, such that, for each 1 ≤ i ≤ n:

a) either �i ∈ Φ, or
b) there is a conditional p1∧ . . .∧ pk � p ∈ Σ such that p = �i and for each 1 ≤ j ≤ k,

p j ∈ {l1, . . . �i−1}.
A pair {Σ,Φ} is consistent if it is not the case that there exists a literal � such that both
Σ,Φ � � and Σ,Φ � ¬�. LetΩ stand for the set of truth-evaluations of variables e : V →
{0, 1}, that extend to literals and conjunctions of literals following the rules of classical
logic. Probabilities on the set of formulas Fm are defined in the standard way, as it is
done in probability logics: defining a probability distribution on Ω and extending it to
all formulas by adding up the probabilities of their models. More precisely, let P : Ω→
[0, 1] be a probability distribution on Ω. Then P induces a probability1 P : Fm→ [0, 1]
by letting:

– P(C) = Σe∈Ω,e(C)=1P(e), if C is a conjunction of literals,
– P(�1∧. . .∧�n � �) = P(�∧�1∧. . .∧�n)/P(�1∧. . .∧�n), whenever P(�1∧. . .∧�n) > 0
and undefined otherwise. Namely, the probability of � conditioned to �1 ∧ . . . ∧ �n.

Notice that the probability of a conditional C � � is interpreted as the conditional
probability P(� | C), not as a probability of the material implication ¬C ∨ �, understood
as the implication in classical logic. Nevertheless, these two notions do coincide when
the probability equals to 1. Namely, for P(C) > 0 for a conjunction of literals C, then

P(C � �) = 1 if and only if P(¬C ∨ �) = 1.

We will call probabilistic-valued formulas (and denote this set of formulas by FmPr)
to all pairs of the form ϕ : α, where ϕ ∈ Fm and α ∈ [0, 1]. A probability P : Ω→ [0, 1]
satisfies ϕ : α, written P |= ϕ : α, whenever P(ϕ) ≥ α. Similarly, P satisfies a finite set

1 Since there is no place to confusion, we will use the same symbol P to denote the probability
distribution over Ω and its associated probability over Fm.

28 P. Dellunde et al.

of valued formulas Σ = {ϕi : αi}i∈I if it satisfies each pair in Σ. We will denote the set of
probabilities that satisfy Σ by PMod(Σ).

Given a set of literals Π representing observations on the domain, one can define
two probabilistic consequence relations, depending on how the set of observations Π
is interpreted: either as facts holding with probability 1, or as assumptions over which
to condition the consequence. These two definitions are intrinsically related to the two
types of arguments we will introduce in the next section.

Definition 2 (Factual probabilistic entailment). Let Π be a set of literals, Σ a set of
valued formulas, � a literal and α ∈ [0, 1]. We write Π, Σ |= f

Pr � : α whenever for each
probability P ∈ PMod(Σ), if P(c) = 1 for each c ∈ Π then P(�) ≥ α.
Definition 3 (Conditioned probabilistic entailment). Let Π be a set of literals, Σ a
set of valued formulas, � a literal and α ∈ [0, 1]. We write Π, Σ |=cPr � : α whenever for
each probability P ∈ PMod(Σ), it holds that P(

∧
c∈Π c� �) ≥ α.

These two notions of entailment do not coincide. First observe that the conditioned
probabilistic entailment is stronger than the unconditioned one, namely Π, Σ |=cPr � : α
implies Π, Σ |= f

Pr � : α. However, the converse does not hold, i.e. the conditioned prob-
abilistic entailment is strictly stronger than the factual one. For instance, if we take the
observation Π = {a} and the valued formulas Σ = {a� b : 0.7, b� c : 0.5}, it t is easy
to check that Π, Σ |= f

Pr c : 7/20, but Π, Σ �|=cPr c : 7/20.

3 Using Conditional Probability in Arguments

Our approach is inspired by DeLP, ASPIC+ and other systems that differentiates knowl-
edge that is certain and consistent (strict) from other that is tentative and possibly uncer-
tain and inconsistent (defeasible). Probabilities offer a finer classification of the uncer-
tain knowledge and so increase the trustworthiness and accurateness of arguments. In
this paper, we assume the strict domain knowledge to come attached with probability 1,
but other values could be used (e.g. if precise statistical data is possessed).

Definition 4. K = 〈Π, Δ〉 is a probabilistic conditional knowledge base (KB) whenever
– Π = ΠF ∪ ΠD ⊆ Fm is a consistent2 set of formulas encompassing the strict knowl-
edge inK , divided in factual knowledge (ΠF) under the form of literals, and domain
knowledge (ΠD) under the form of strict rules.

– Δ ⊆ FmPr encompasses uncertain probabilistic knowledge.

Example 1. The following KB is a probabilistic refinement of Example 2.1 in [7], a
variant of the famous Tweety example. Chickens usually do not fly (even if they are
birds), but they may if they are scared, for instance if a fox is near. However, if a chicken
has nestling babies, most likely it will not abandon them in any case.

2 According to �.

Probabilistic Argumentation 29

ΠF =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

chicken

f ox

nestlings

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

ΠD =
{
chicken� bird

}

Δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bird � f lies : 0.85

chicken� ¬ f lies : 0.9
chicken ∧ nestlings� ¬ f lies : 0.95
chicken ∧ f ox� scared : 0.8

chicken ∧ scared � f lies : 0.6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

To specify an argument, we needed to specify which observations and which (con-
sistent) part of the uncertain probabilistic knowledge it is based upon. We propose two
main definitions for a probabilistic argument, each one following relying in one of the
definitions of probabilistic entailment from the previous section. In what follows, for a
set of formulas Γ ⊆ Fm we let Γ+ = {γ : 1}γ∈Γ ⊆ FmPr. Conversely, for a set of valued
formulas Σ ⊆ FmPr, we let Σ− = {σ | σ : α ∈ Σ for some α ∈ [0, 1]} ⊆ Fm.

Definition 5 (Argument). Let � ∈ { f , c}3, and a KB = 〈Π, Δ〉. A �-probabilistic
argument A for a literal � in KB is a structure A = 〈Φ,Γ; � : α〉, where Φ ⊆ ΠF,
Γ = {(ϕ1 � l1 : α1), . . . , (ϕn � ln : αn)} ⊆ Δ and α > 0 such that:

(1) PMod(Γ ∪ Π+) � ∅ (3) α = max{ β ∈ [0, 1] : Φ,Π+D ∪ Γ |=�Pr � : β }
(2) Π, Γ− � � (4) Φ and Γ are minimal satisfying (1), (2) and (3).

Thus, an argument for a literal provides for both a logical and an optimal probabilistic
derivation of its conclusion (in any of the two variants) from its premises.

Some simple examples of probabilistic arguments over the KB from Example 1 are:

A1 = ({chicken}, {bird � f lies : 0.85}; f lies : 0.85)
A2 = ({chicken}, {chicken� ¬ f lies : 0.9};¬ f lies : 0.9)
A3 = ({chicken, f ox}, {chicken ∧ f ox� scared : 0.8, chicken ∧ scared � f lies : 0.6};

f lies : 0.54)

A4 = ({chicken, nestlings}, {chicken ∧ nestlings� ¬ f lies : 0.95};¬ f lies : 0.95)

A1, A2 and A4 are both f - and c-arguments, while A3 is a f -argument but not a
c-argument. This occurs because |=cPr becomes non-informative (its degree equals 0)
when its logical derivation involves the chaining of more than one conditional, due
to the well-known failure of transitivity on conditional probabilities [9], unless some
additional assumptions are made. For instance, in [19] arguments implicitly make prob-
abilistic independence assumptions and it is shown that the independence assumptions,
that justify the use a version of the chain rule for probabilities, is useful in certain cases,
but it is clearly invalid in general.

In order to define an attack relation between probabilistic arguments, we need the
notions of subargument and of disagreement between probabilistic-valued literals.

Definition 6 (Subargument, Disagreement and Attack).
1) LetA = (Φ,Γ; � : α) be an �-argument for �. A subargument ofA is an �-argument
B = (Φ′, Γ′; �′ : β) where Φ′ ⊆ Φ and Γ′ ⊆ Γ.
3 Standing for factual or conditioned arguments.

30 P. Dellunde et al.

2) Let KB = (Π, Δ) be a knowledge base. We say that the valued-literals � : α and h : β
disagree whenever they are probabilistically inconsistent with the strict knowledge, i.e.
when PMod(Π+ ∪ {l:α, h:β}) = ∅.
3) A �-argument A = (Φ1, Γ1; �, α) attacks another �-argument B = (Φ2, Γ2; p : β) at
a literal h if there is a �-subargument B′ = (Φ′2, Γ

′
2; h : γ) of B such that � : α and h : γ

disagree.

Using only the probabilities to determine when an attack can be deemed as effective
may be counterintuitive in some cases (see e.g. argumentsA2 andA3), thus we combine
them with the use of specificity criterion (gaining inspiration in [1,2,7]).

Definition 7 (Activation sets and Specificity). Given a knowledge base KB, an acti-
vation set of an argument A = (Φ,Γ; �, α) is a set of literals H ⊆ lit(KB) such that
H ∪ ΠD ∪ Γ− � �.We denote by Act(A) the set of activation sets for the argumentA.

An argument A is more specific than another argument B when Act(A) � Act(B).
A and B are equi-specific if Act(A) = Act(B), and incomparable whenever Act(A) �
Act(B) and Act(A) � Act(B).
In our running example, we can easily check that A3 and A4 are incomparable, and
both are more specific thanA2, which is itself more specific thanA1.

Definition 8 (Strength and Defeat). An argumentA = (Φ1, Γ1; � : α) is stronger than
another argument B = (Φ2, Γ2; p : β) when A is more specific than B, or when A and
B are equi-specific or incomparable and α > β.

An argumentA = (Φ1, Γ1; � : α) defeats another argument B = (Φ2, Γ2; p : β) when
A attacks B on a subargument B′ = (Φ′2, Γ

′
2; h : γ) andA is stronger than B′.

Following with the running example, we have that A2 defeats A1, and A3 defeats A2

based on the specificity criterion. On the other hand A4 defeats A3 on the basis of
probability degree criterion, while it defeatsA2 due to specificity.

The proposed setting serves to define an argumentation semantics by considering an
argumentation theory and substituting the notions of argument, attack and defeat from
the original theory by the ones we propose here. In this fashion, it is natural how to pro-
duce argumentation systems with different high-level semantics: from Dung’s abstract
argumentation systems [4], or other relevant weighted argumentation systems based on
it (e.g. [10]), to the rule-based DeLP argumentation framework and its dialectical-tree
based semantics [7], or other systems like ASPIC+ [16] or ABA [24]. The definition of
the systems is rather immediate and we do not detail them here due to a lack of space.
However, the exploration of the resulting systems and the differences with the original
ones will involve more work, and we leave it for future work.

4 Future Work

Plenty of issues could be worked out and studied in future works. First, it seems likely
that in certain situations, a richer language of conditionals would be useful, e.g. consid-
ering conditional logics in the style of Kern-Isberner’s three-valued conditionals [14]
or the logic of Boolean conditionals [6]. Secondly, other interpretations of the proba-
bility entailment can be explored: for instance, to allow for interpreting the weights in

Probabilistic Argumentation 31

valued formulas not only as a lower bound but with other constraints like an equality or
a strict lower bound, or to compute the probability of the conclusion of an argument by
means of the Maximum Entropy distribution underlying the premises [22,26]. Lastly, a
finer gradual notion of attack could be introduced so to allow an attacker argument to
debilitate the attacked argument, instead of an all-or-nothing attack.

Acknowledgments. The authors acknowledge partial support by the Spanish projects TIN2015-
71799-C2-1-P and PID2019-111544GB-C21.

References

1. Bamber, D., Goodman, I.R., Nguyen, H.T.: Robust reasoning with rules that have excep-
tions: from second-order probability to argumentation via upper envelopes of probability
and possibility plus directed graphs. Ann. Math. Artif. Intell. 45, 83–171 (2005)

2. Bodanza, G.A., Alessio, C.A.: Rethinking specificity in defeasible reasoning and its effect in
argument reinstatement. Inf. Comput. 255, 287–310 (2017)

3. Cerutti, F., Thimm, M.: A general approach to reasoning with probabilities. Int. J. Approxi-
mate Reasoning 111, 35–50 (2019)

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming, and n-person games. Artif. Intell. 77(2), 321–357 (1995)

5. P. M. Dung and P. M. Thang. Towards probabilistic argumentation for jury-based dispute
resolution. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Proceedings of
COMMA 2010, volume 216 of Frontiers in Artificial Intelligence and Applications, pp. 171–
182. IOS Press Inc. (2010)

6. Flaminio, T., Godo, L., Hosni, H.: Boolean algebras of conditionals, probability and logic.
Artif. Intell. 286, 103347 (2020)

7. Garcia, A., Simari, G.: Defeasible logic programming: an argumentative approach. Theory
Pract. Logic Program. 4(1–2), 95–138 (2004)

8. Garcia, A., Simari, G.: Argumentation based on logic programming. In: Baroni, P., Gabbay,
D.M., Giacomin, M., van der Torre, L. (eds.) Handbook of Formal Argumentation, pp. 409–
437. College Publications (2018)

9. Gilio, A., Pfeifer, N., Sanfilippo, G.: Transitivity in coherence-based probability logic. J.
Appl. Logic 14, 46–64 (2016)

10. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int. J.
Approximate Reasoning 54(1), 47–81 (2013)

11. Hunter, A.: Probabilistic qualification of attack in abstract argumentation. IJAR 55(2), 607–
638 (2014)

12. Hunter, A., Thimm, M.: On partial information and contradictions in probabilistic abstract
argumentation. In: Baral, C., et al. (eds.) Proceedings of KR 2016, pp. 53–62. AAAI Press
(2016)

13. Hunter, A., Thimm, M.: Probabilistic reasoning with abstract argumentation frameworks. J.
Artif. Intell. Res. 59, 565–611 (2017)

14. Kern-Isberner, G. (ed.): Conditionals in Nonmonotonic Reasoning and Belief Revision.
LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44600-1

15. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Modgil, S., Oren,
N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 1–16. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29184-5 1

https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/978-3-642-29184-5_1

32 P. Dellunde et al.

16. Modgil, S., Prakken, H.: Abstract rule-based argumentation. In: Baroni, P., Gabbay, D.M.,
Giacomin, M., van der Torre, L. (eds.) Handbook of Formal Argumentation, pp. 409–437.
College Publications (2018)

17. Pollock, J.L.: Justification and defeat. Artif. Intell. 67, 377–408 (1994)
18. Pollock, J.L.: Cognitive Carpentry. A Blueprint for How to Build a Person. MIT Press, Cam-

bridge (1995)
19. Prakken, H.: Historical overview of formal argumentation. In: Baroni, P., Gabbay, D., Gia-

comin, M., van der Torre, L. (eds.) Handbook of Formal Argumentation, vol. 1, pp. 73–141.
College Publications (2018)

20. Prakken, H.: Probabilistic strength of arguments with structure. In: Thielscher, M., Toni, F.,
Wolter, F. et al. (eds.) Proceedings of KR 2018, pp. 158–167. AAAI Press (2018)

21. Talbott, W.: Bayesian epistemology. In: Zalta, E.N. (eds.) The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University (2016)

22. Thimm, M., Kern-Isberner, G., Fisseler, J.: Relational probabilistic conditional reasoning at
maximum entropy. In: Liu, W. (ed.) ECSQARU 2011. LNCS (LNAI), vol. 6717, pp. 447–
458. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22152-1 38

23. Timmer, S., Meyer, J.J.C., Prakken, H., Renooij, S., Verheij, B.: A two-phase method for
extracting explanatory arguments from Bayesian networks. Int. J. Approximate Reasoning
80, 475–494 (2017)

24. Toni, F.: A tutorial on assumption-based argumentation. Argument Comput. 5(1), 89–117
(2014)

25. Verheij, B.: Jumping to conclusions: a logico-probabilistic foundation for defeasible rule-
based arguments. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS
(LNAI), vol. 7519, pp. 411–423. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33353-8 32

26. Wilhelm, M., Kern-Isberner, G., Ecke, A.: Propositional probabilistic reasoning at maximum
entropy modulo theories. In: Markov, Z., Russell, I. (eds.) Proceedings of the 29th Interna-
tional Florida Artificial Intelligence Research Society Conference, FLAIRS 2016, pp. 690–
694. AAAI Press (2016)

https://doi.org/10.1007/978-3-642-22152-1_38
https://doi.org/10.1007/978-3-642-33353-8_32
https://doi.org/10.1007/978-3-642-33353-8_32

Belief Revision

Conditional Descriptor Revision
and Its Modelling by a CSP

Jonas Haldimann1(B) , Kai Sauerwald1 , Martin von Berg1,
Gabriele Kern-Isberner2 , and Christoph Beierle1

1 FernUniversität in Hagen, 58084 Hagen, Germany
{jonas.haldimann,kai.sauerwald,christoph.beierle}@fernuni-hagen.de

2 TU Dortmund University, 44227 Dortmund, Germany
gabriele.kern-isberner@cs.tu-dortmund.de

Abstract. Descriptor revision is a belief change framework that was
introduced by Hansson as an alternative to the currently prevailing
AGM paradigm. One central idea of descriptor revision is to describe
the desired outcome of a belief change. Thus, descriptor revision allows
expressing different kinds of belief change operations like revision or con-
traction in a structured and combined way. In this paper, we investigate
the framework of conditional descriptor revision. Conditional descrip-
tor revision is a variation of descriptor revision aimed at the revision of
ranking functions in the context of conditional logic. It is obtained by
applying descriptor revision to conditional logic and additionally requir-
ing the belief changes to fulfil the principle of conditional preservation.
We show how conditional descriptor revision can be characterized by a
constraint satisfaction problem (CSP). In contrast to previous work, we
cover the full descriptor language over conditionals closed under con-
junction, disjunction, and negation. We also line out an implementation
of conditional descriptor revision based on its CSP representation. Since
propositional logic can be embedded into conditional logic, our approach
also provides descriptor revision for propositional logic.

1 Introduction

In knowledge representation and reasoning, conditionals play a central role, in
particular in belief change [8,10,20,25,27]. Having a simple and intuitive struc-
ture, a large part of human knowledge is typically given in the form of ‘If A
then usually B ’ rules, often formally written as (B|A). Let us give a small (arti-
ficial and simplified) example from the medical domain dealing with bacterial
infections.

Example 1. Let s indicate that a person is sick, b that she has a serious bacterial
infection, w that she is in a weakened condition, and h that she should be
hospitalized. We can model “A person with a bacterial infection and a weakened
condition is usually sick” by (s|bw). Likewise, “A sick and weakened person
usually should be hospitalized” can be modelled by (h|sw) and “a person who
is not sick usually should not be hospitalized” can be modelled by (h|s).
c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 35–49, 2021.
https://doi.org/10.1007/978-3-030-75775-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_4&domain=pdf
http://orcid.org/0000-0002-2618-8721
http://orcid.org/0000-0002-1551-7016
http://orcid.org/0000-0001-8689-5391
https://doi.org/10.1007/978-3-030-75775-5_4

36 J. Haldimann et al.

Conditionals are three-valued entities [11] and can be evaluated in epistemic
states. Usually, a given set of conditionals can be accepted by various epistemic
states. If an agent lives in a dynamic world, she must change her epistemic
state in order to account for incoming information. The work by Alchourrón,
Gärdenfors, and Makinson [1] (AGM) and its successors have shaped the cur-
rently dominating paradigm for such belief changes. By AGM, mainly three kinds
of belief changes are subject of interest: revision, contraction and expansion. The
core difference between these kinds of changes is their success condition: The aim
of revision is to incorporate new beliefs into an agent’s belief state while main-
taining consistency, contraction is the process of removing some belief from the
agent’s belief state, and expansion is the process of adding a new belief to an
agent’s belief state, possibly without maintaining consistency.

Descriptor revision is another framework for belief change proposed by Hans-
son [13]. Motivation for the design of descriptor revision was the requirement
of epistemic states for iterative belief change [10] and problems like the non-
finite representability of the result of a contraction [17] or concerns about the
‘select-and-intersect’ approach of AGM [19]. In contrast to the AGM paradigm,
in descriptor revision, different kinds of changes are expressible in one joint
framework. This is achieved by employing a full language for success conditions,
called belief descriptors, allowing to express and analyse change processes that
go beyond the classical AGM operations; a related approach is presented in [2].
While properties of descriptor revision have been investigated intensively [14–
19,29], a first approach to the realization and implementation of descriptor revi-
sion has been developed only recently, albeit just for basic literal descriptors [26];
a rudimentary suggestion how it could be extended to disjunctive descriptors has
been made in the short paper [12]. In this paper, we largely extend the work pre-
sented in [12,26], specifically, by providing, realizing, and implementing the full
descriptor language, including in particular descriptors containing disjunctions,
over a conditional logic. Note that disjunctions allow us to express descriptors
requiring to make up one’s mind on a specific topic, e.g., in Example 1, whether
a person should be hospitalized or not. As semantic models of conditionals, we
use ordinal conditional functions [28], also called ranking functions, as represen-
tations for epistemic states. We adapt the sophisticated principle of conditional
preservation by Kern-Isberner [20,21] for employment in our descriptor revision
approach. Its realization and implementation extend the characterization of c-
representations and c-revisions via solutions of a constraint satisfaction problem
(CSP) [5]. In summary, the main contributions of this article are:

– Instantiation of the descriptor revision framework by conditional logic, yield-
ing conditional descriptor revision (CDR).

– Employment of the principle of conditional preservation (PCP) for the com-
plete descriptor language over conditionals, including descriptors with dis-
junctions.

– Generalization of descriptor revision and of PCP with respect to a set of
conditionals as contextual information.

– A sound and complete characterization of CDR by a CSP.
– Implementation of CDR using constraint logic programming.

Conditional Descriptor Revision and Its Modelling by a CSP 37

2 Logical Preliminaries

Let Σ be a propositional signature (non-empty finite set of propositional vari-
ables) and Lprop the propositional language over Σ. We denote the propositional
variables in Σ with lower case letters a, b, c, . . . and formulas in Lprop with upper
case letters A,B,C, We may write A → B for ¬A ∨ B as well as AB for
A ∧ B and A for ¬A. With �, we denote a propositional tautology and with ⊥
a propositional falsum. The set of propositional interpretations Ω = P(Σ), also
called set of worlds, is identified with the set of corresponding complete conjunc-
tions over Σ, where P(·) is the powerset operator. Propositional entailment is
denoted by |=, the set of models of A with Mod(A), and Cn(A) = {B | A |= B}
is the deductive closure of A. For a set X, we define Cn(X) = {B | X |= B}
and say X is a belief set if it is deductively closed, i.e. if X = Cn(X).

A function κ : Ω → N such that κ−1(0) �= ∅ is a called an ordinal conditional
function (OCF) or ranking function [28]. It expresses degrees of implausibility
of interpretations. This is lifted to propositional formulas A by defining κ(A) :=
min{κ(ω) | ω |= A}, where min ∅ = ∞, yielding a function κ : Lprop → N ∪ {∞}
which specifies a degree of implausibility for every formula. With Mod(κ) = {ω |
κ(ω) = 0} we denote the minimal interpretations with respect to κ, and Bel(κ)
denotes the set of propositional formulas that hold in every ω ∈ Mod(κ).

Over Σ and Lprop, we define the set of conditionals Lcond = {(B|A) | A,B ∈
Lprop}. A conditional (B|A) formalizes “if A then usually B” and establishes
a plausible connection between the antecedent A and the consequent B. Con-
ditionals (A|�) with tautological antecedents are taken as plausible statements
about the world. Because conditionals go well beyond classical logic, they require
a richer setting for their semantics than classical logic. Following De Finetti [11],
a conditional (B|A) can be verified (falsified) by a possible world ω iff ω |= AB
(ω |= AB). If ω �|= A, then we say the conditional is not applicable to ω.

Here, ranking functions serve as interpretations in a model theory for the
conditional logic Lcond. We say a conditional (B|A) is accepted by an OCF
κ, written as κ |= (B|A), iff κ(AB) < κ(AB), i.e., iff the verification AB of
the conditional is more plausible than its falsification AB. For a propositional
formula A, we define κ |= A iff κ |= (A|�), i.e., iff κ(A) < κ(A) or equivalently
iff κ(A) > 0, since at least one of κ(A), κ(A) must be 0 due to κ−1(0) �= ∅. The
models of a conditional (B|A) are the set of all ranking functions accepting
(B|A), i.e. Mod((B|A)) = {κ | κ |= (B|A)}. A conditional (B1|A1) entails
(B2|A2), written (B1|A1) |= (B2|A2), if Mod((B1|A1)) ⊆ Mod((B2|A2)) holds.
Furthermore, we define the set of consequences for X ⊆ Lcond by Cn(X) =
{(B|A) | X |= (B|A)}. Again, X ⊆ Lcond is called deductively closed if X =
Cn(X). This ranking function based semantics can be mapped to, and can also
be obtained from, other semantics of conditionals [4].

Example 2 (continued). Let Σ = {s, b, w, h, v} be the signature containing the
propositional variables from Example 1 and additionally v denoting that a person
is vaccinated. The ranking function κ for worlds over Σ from Table 1 satisfies
the conditionals (s|bw), (h|sw), and (h|s) from Example 1.

38 J. Haldimann et al.

Table 1. κ is a ranking function accepting the conditionals {(s|bw), (h|sw), (h|s)}.
The ranking function κ′ is a descriptor revision of κ by Ψprop = {B(v),B(s) ∨ B(s)},
and κ◦

1, κ
◦
2 are possible results of a conditional descriptor revision of κ by Ψ =

{B((s|v)),B((s|b)) ∨ B((s|b))}. All four ranking functions are c-representations of the
corresponding conditionals.

ω κ κ′ κ◦
1 κ◦

2 ω κ κ′ κ◦
1 κ◦

2 ω κ κ′ κ◦
1 κ◦

2 ω κ κ′ κ◦
1 κ◦

2

sbwhv 0 0 3 3 sbwhv 0 0 5 1 sbwhv 2 3 3 4 sbwhv 1 2 1 1

sbwhv 0 1 0 3 sbwhv 0 1 2 1 sbwhv 2 4 5 5 sbwhv 1 3 3 2

sbwhv 2 2 5 5 sbwhv 2 2 7 3 sbwhv 1 2 2 3 sbwhv 0 1 0 0

sbwhv 2 3 2 5 sbwhv 2 3 4 3 sbwhv 1 3 4 4 sbwhv 0 2 2 1

sbwhv 0 0 3 3 sbwhv 0 0 5 1 sbwhv 1 2 2 3 sbwhv 1 2 1 1

sbwhv 0 1 0 3 sbwhv 0 1 2 1 sbwhv 1 3 4 4 sbwhv 1 3 3 2

sbwhv 0 0 3 3 sbwhv 0 0 5 1 sbwhv 0 1 1 2 sbwhv 0 1 0 0

sbwhv 0 1 0 3 sbwhv 0 1 2 1 sbwhv 0 2 3 3 sbwhv 0 2 2 1

3 Descriptors and Descriptor Revision

The main building blocks of descriptor revision are belief descriptors, which
provide a language for expressing membership constraints for a belief set.

Definition 1 (atomic/molecular/composite descriptor [18]). Let L be a
logical language. For any sentence ϕ ∈ L the expression Bϕ is an atomic descrip-
tor (over L). Any connection of atomic descriptors with disjunction, conjunction
and negation is called a molecular descriptor (over L). A composite descriptor
(over L) is a set of molecular descriptors (over L).

Differing from Hansson [18], we use descriptor as umbrella term for atomic,
molecular and composite descriptors. A molecular descriptor of the form Bϕ or
¬Bϕ is called a literal descriptor. An elementary descriptor is a set of literal
descriptors (and therefore a composite descriptor).

Definition 2 (Descriptor semantics [18]). An atomic descriptor Bϕ holds in
a belief set X, written X � Bϕ, if ϕ ∈ X. This is lifted to molecular descriptors
truth-functionally. A composite descriptor Ψ holds in X, likewise written X � Ψ ,
if X � α holds for every molecular descriptor α ∈ Ψ .

Example 3. Assume that Lab is the propositional language over Σ = {a, b} and
X = Cn(a∨b). Then, ¬Ba expresses that a is not part of the belief set, whereas
B¬a states that the formula ¬a is part of the belief set, e.g. X � ¬Ba and
X �� B¬a. Likewise, Ba∨Bb expresses that a or b is believed, whereas B(a∨ b)
states that the formula a ∨ b is believed, e.g. X � B(a ∨ b) in the former case
and X �� Ba ∨ Bb in the latter.

For the setting of belief change, we assume that every agent is equipped with a
belief state, also called epistemic state, which contains all information necessary

Conditional Descriptor Revision and Its Modelling by a CSP 39

for performing belief change operations. We denote belief states by K,K1,K2, . . .
following the notion of Hansson [18]. General descriptor revision does not specify
what a belief state is, but assumes that a belief set Bel(K) is immanent for
every epistemic state K. To make descriptors compatible with belief states, we
naturally lift the semantics to belief states, i.e. K � Ψ if Bel(K) � Ψ .

Example 4 (continued). Assume ranking functions as representations of belief
states. Let κ be the belief state as given in Table 1 and let Ψ = {B(h → s)} be a
descriptor. Ψ expresses the belief that everyone who is hospitalized is sick. Then
Ψ holds in κ, as h → s ∈ Bel(κ), i.e., every world with rank 0 fulfils h → s.

AGM theory [1] focuses on properties of revision (or contraction) operations
by examining the interconnections between prior belief state, new information
and posterior belief state of a change. In contrast, descriptor revision examines
the interconnection between prior belief state and posterior belief states that sat-
isfy a particular descriptor. Let KK denote the set of all reasonably conceivable
successor belief states for a belief state K. A descriptor revision by a descriptor
Ψ is the process of choosing a state K ′ from KK such that K ′ � Ψ . We abstract
from how KK is obtained and define descriptor revision1 as follows.

Definition 3 (Descriptor Revision, adapted from [18]). Let K be a belief
state, KK a set of belief states and C : P(KK) → KK be a choice function. Then
the change from K to K◦ = K ◦ Ψ is called a descriptor revision by Ψ realised
by C over KK if the following holds:

K ◦ Ψ = C({K ′ ∈ KK | K ′ � Ψ}) (1)

We say that the change from K to K◦ is a descriptor revision (by Ψ), if
C and KK (and Ψ) exist such that the change from K to K◦ is realised by
C over KK . We also say K◦ is the result of the descriptor revision of K (by
Ψ under KK). Note that descriptors allow us to express a variety of different
success conditions, e.g., {Bϕ} – revision by ϕ, {¬Bϕ} – contraction by ϕ (also
called revocation [19]), {¬Bϕ,¬B¬ϕ} – giving up the judgement on ϕ (also
called ignoration [6]). Additionally, Hansson provides the following examples [19]:
{Bϕ1, . . . ,Bϕn} – package revision by {ϕ1, . . . , ϕn}, {¬Bϕ,Bψ} – replacement
of ϕ by ψ, {Bϕ1 ∨ . . . ∨ Bϕn} – choice revision by {ϕ1, . . . , ϕn}, {Bϕ ∨ B¬ϕ}
– making up one’s mind about ϕ.

Example 5 (cont.). Let κ and κ′ be as given in Table 1, let Kκ be the set of all
ranking functions, let C be a choice function such that if κ′ ∈ X then C(X) =
κ′, and let Ψprop = {B(v),B(s) ∨ B(s)} be a descriptor. The descriptor Ψprop

expresses posterior belief in v and either belief or disbelief in s. In particular,
B(s) ∨ B(s) forces the agent to make up his mind on whether she believes s or

1 In the original framework by Hansson this is much more elaborated. Following the
terminology of Hansson, here we present a form of local deterministic monoselective
descriptor revision [18]. Moreover, we primarily focus on one change, while Hansson
designs the framework for change operators.

40 J. Haldimann et al.

not. For this, there is no direct counterpart in the AGM framework. Note that
we have s, v ∈ Bel(κ′), and therefore, the descriptor Ψprop holds in κ′. Thus, the
change from κ to κ′ is a descriptor revision by Ψprop realised by C over Kκ.

4 Conditional Descriptor Revision

We instantiate descriptor revision for the case in which the underlying logic is
the conditional logic Lcond and ranking functions serve as a representation for
epistemic states. Furthermore, we adapt the principle of conditional preservation
by Kern-Isberner [21] to the requirements of descriptor revision.

Instantiation for Conditional Logic. In the formal framework of descriptor
revision by Hansson, as recalled in Sect. 3, semantics of a descriptor refer to a
belief set, containing formulas of the underlying logic. Thus, when using the logic
Lcond, we need to refer to the set of conditionals accepted by a ranking func-
tion κ when choosing ranking functions as representations for epistemic states.
Note that the belief set Bel(κ) of a ranking function κ is a set of propositional
beliefs, i.e. Bel(κ) ⊆ Lprop, and thus, we define the set of conditional beliefs for
a ranking function κ as Belcond (κ) = { (B|A) | κ |= (B|A) }. Clearly, the set
Belcond (κ) is deductively closed for every ranking function κ and therefore a
belief set. Descriptors and descriptor revision for Lcond then refer to the set of
conditional beliefs Belcond (κ), and their formal definition can be easily obtained
by correspondingly modifying Definitions 1 to 3.

Example 6. Consider the signature Σ = {s, b, w, h, v} from our running example.
Ψ = {B((s|v)),B((s|b)) ∨ B((s|b))} is an example for a descriptor over Lcond.
Note that the logical junctors for disjunction, conjunction, and negation are not
used on the level of conditionals, but only on the level of atomic descriptors over
the conditionals (cf. Definition 1).

The conditional logic Lcond embeds the propositional logic Lprop, because
every proposition A ∈ Lprop can be represented by (A|�). Moreover, the defini-
tion of Belcond (κ) ensures compatibility of propositional beliefs with the condi-
tional beliefs, i.e. {(A|�) | A ∈ Bel(K)} ⊆ Belcond (K). Thus, our approach to
descriptor revision by conditionals, presented in the following, subsumes descrip-
tor revision for propositions.

For a fixed signature, there are only finitely many conditionals in Lcond up to
equivalence, where (B|A) and (B′|A′) are equivalent according to de Finettis’s
semantics [11] if AB ≡ A′B′ and AB ≡ A′B′. Thus, for every descriptor over
Lcond it is possible to find a finite descriptor that is equivalent, i.e. that describes
the same ranking functions. For this reason, we will only consider finite descrip-
tors from now on.

Conditional Descriptor Revision and Its Modelling by a CSP 41

Conditional Preservation. When an agent performs a belief change, the
change might not only affect explicit beliefs, but also implicit beliefs. Boutilier
proposed that belief change should also minimize the effect on conditional beliefs
[8]. However, Darwiche and Pearl [10] showed that a strict minimization may lead
to counterintuitive results. Instead, they proposed axioms specifying a principle
of conditional preservation (PCP) for specific cases in more detail. Kern-Isberner
[21] proposed a general and thorough axiomatization of such a principle in her
(PCP) principles that deal with different change operators in a uniform way.
Moreover, these principles strictly separate conditional preservation from the
respective success condition. Implicitly, these (PCP) axioms not even make use
of the input to the change process but allow for considering general sets of
conditionals with respect to which the change process should obey (PCP). We
make this explicit for conditional descriptor revision in the following. For this,
we extract from the descriptor Ψ the involved set of conditionals cond(Ψ) and
we use cond(α) as shorthand for cond({α}):

– for Ψ = ∅ let cond(Ψ) = ∅,
– for Ψ = {B(B|A)} let cond(Ψ) = {(B|A)},
– for Ψ = {α, β, . . .} let cond(Ψ) = cond({α}) ∪ cond({β, . . .}),
– for Ψ = {α ∨ β} let cond(Ψ) = cond({α}) ∪ cond({β}),
– for Ψ = {α ∧ β} let cond(Ψ) = cond({α}) ∪ cond({β}), and
– for Ψ = {¬α} let cond(Ψ) = cond({α}).

Definition 4 (PCP for OCF changes, adapted from [22]). A change of an
OCF κ to an OCF κ◦ fulfils the principle of conditional preservation with respect
to the conditionals R = {(B1|A1), . . . , (Bn|An)}, if for every two multisets of
propositional interpretations Ω1 = {ω1, . . . , ωm} and Ω2 = {ω′

1, . . . , ω
′
m} with the

same cardinality m such that the multisets Ω1 and Ω2 contain the same number
of interpretations which verify, respectively falsify, each conditional (Bi|Ai) in
R, the OCFs κ and κ◦ are balanced in the following way:

m∑

i=1

κ(ωi) −
m∑

i=1

κ(ω′
i) =

m∑

i=1

κ◦(ωi) −
m∑

i=1

κ◦(ω′
i) (2)

In the following, we use a central characterisation [20,22] of the principle of
conditional preservation to obtain a characterisation of the principle of condi-
tional preservation for descriptor revisions.

Definition 5 (κ�γ). Let κ be an OCF over Σ and R = { (B1|A1), . . . , (Bn|An) }
be a set of conditionals. For �γ = (γ−

1 , γ+
1 , . . . , γ−

n , γ+
n) ∈ Z

2n we define κ�γ by

κ�γ(ω) = κ0 + κ(ω) +
∑

1�i�n
ω|=AiBi

γ+
i +

∑

1�i�n
ω|=Ai∧¬Bi

γ−
i (3)

where κ0 is chosen such that κ�γ is a ranking function, i.e., κ�γ(ω) � 0 for all
ω ∈ Ω and κ�γ(ω′) = 0 for at least one ω′ ∈ Ω.

42 J. Haldimann et al.

The idea underlying Definition 5 is that interpretations that are verifying and
falsifying the same conditionals are treated in the same way. Thus, for every
conditional (Bi|Ai) ∈ cond(Ψ), the two constants γ+

i and γ−
i handle how inter-

pretations that verify or falsify (Bi|Ai) are shifted over the change process. The
constant κ0 is used to ensure that κ◦ is indeed a ranking function, i.e. κ◦ is
non-negative and there is at least one world ω such that κ◦(ω) = 0.

Proposition 1 (PCP characterization, adapted from [22]). Let R =
{ (B1|A1), . . . , (Bn|An) } be a set of conditionals and let κ◦ be the result of a
belief change of κ. Then this change satisfies the principle of conditional preser-
vation with respect to the conditionals in R if and only if there is a vector of
numbers2 #»γ ∈ Q

2n such that κ◦ = κ�γ .

The proof of Proposition 1 is directly obtainable from a proof given by Kern-
Isberner [20, Theorem 4.6.1], since no specific information on the success condi-
tion for the conditionals in the descriptor was used in Proposition 1.

Example 7 (cont.). Consider the change from κ to κ◦
1, both as given in Table 1.

This change satisfies the principle of conditional preservation with respect to the
conditionals in R = {(s|v), (s|b), (s|b)}. We can obtain κ◦

1 from κ via Equation
(3) by choosing κ0 = 1, γ+

1 = −1, γ−
1 = 0, γ+

2 = 2, γ−
2 = 2, γ+

3 = 0, and γ−
3 = 0.

Descriptor Revision with Conditional Preservation. The principle of con-
ditional preservation is a powerful basic principle of belief change and it is nat-
ural to demand satisfaction of this principle. The principle demands a specific
relation between the conditionals in the prior belief state K, the conditionals in
the posterior state K◦ and the conditionals in the descriptor Ψ . Remember that
by Definition 3, a descriptor revision from K to K◦ is determined by a choice
function C, the descriptor Ψ and the set KK such that Equation (1) holds, but
none of these components allow us to express a direct relation between K, K◦

and Ψ . Thus, there is no possibility to express conditional preservation by the
means of descriptor revision. The principle of conditional preservation is some-
what orthogonal to descriptor revision, which gives rationale to the following
definition of conditional descriptor revision.

Definition 6 (Conditional Descriptor Revision). Let κ be a ranking func-
tion. A descriptor revision of κ to κ◦ by a descriptor Ψ over Lcond (realised by
C over Kκ) is called a conditional descriptor revision of κ to κ◦ by Ψ (realised
by C over Kκ) if the change from κ to κ◦ satisfies the principle of conditional
preservation with respect to cond(Ψ).

In Definition 6, we choose ranking functions as representations for belief
states, but note that the principle of conditional preservation also applies to

2 All κ0, γ
+
i , γ−

i can be rational [22], but κ◦ has to satisfy the requirements for an
OCF, in particular, all κ◦(ω) must be non-negative integers. In this paper, it suffices
to assume κ0, γ

+
i , γ−

i to be integers and we will thus focus on the case �γ ∈ Z
2n.

Conditional Descriptor Revision and Its Modelling by a CSP 43

other representations [20]. Thus, for other kinds of representations of belief states
one might give a definition of conditional descriptor revision similar to the one
given here. However, for the rest of the article, we focus on ranking functions.
Moreover, we assume Kκ to be the set of all ranking functions, i.e. when revising
by a descriptor over Ψ , we choose from the set of all ranking functions.

Example 8 (cont.). Consider κ and κ◦
1 as given in Table 1 and the descriptor

Ψ = {B((s|v)),B((s|b)) ∨ B((s|b))}. This descriptor requires the revision with
(s|v) and making up one’s mind about (s|b). The change from κ to κ◦

1 ful-
fils the principle of conditional preservation with respect to the conditionals in
cond(Ψ) = {(s|v), (s|b), (s|b)} (see Example 7). Ψ holds in κ◦

1. Hence, this change
is a conditional descriptor revision by Ψ .

5 Modelling Conditional Descriptor Revision by a CSP

C-changes can be characterized as solutions of a constraint satisfaction problem.
Similarly, this holds for conditional descriptor revision as it fulfils the PCP.

Definition 7 (CRD(κ, Ψ,R), constraints for a descriptor with respect to
R). Let κ be an OCF, R = {(B1|A1), . . . , (Bn|An)} a set of conditionals, and
Ψ a descriptor with cond(Ψ) ⊆ R. The CSP for Ψ in κ under R, denoted by
CRD(κ, Ψ,R), on the constraint variables γ−

1 , γ+
1 , . . . , γ−

n , γ+
n is given by:

1. If Ψ = B(Bi|Ai) is atomic, CRD(κ, Ψ,R) is given by, for i = 1, . . . , n:

γ−
i − γ+

i > min
ω�AiBi

(
κ(ω) +

∑

j �=i
ω�AjBj

γ+
j +

∑

j �=i
ω�AjB̄j

γ−
j

)

− min
ω�AiB̄i

(
κ(ω) +

∑

j �=i
ω�AjBj

γ+
j +

∑

j �=i
ω�AjB̄j

γ−
j

) (4)

2. If Ψ = ¬α1, then CRD(κ, Ψ,R) is ¬(
CRD(κ, α1,R)

)
.

3. If Ψ = α1 ∨ α2, then CRD(κ, Ψ,R) is
(
CRD(κ, α1,R)

) ∨ (
CRD(κ, α2,R)

)
.

4. If Ψ = α1 ∧ α2, then CRD(κ, Ψ,R) is
(
CRD(κ, α1,R)

) ∧ (
CRD(κ, α2,R)

)
.

5. If Ψ = {α1, . . . , αm}, then CRD(κ, Ψ,R) is CRD(κ, α1 ∧ · · · ∧ αm,R) =(
CRD(κ, α1,R)

) ∧ · · · ∧ (
CRD(κ, αm,R)

)
.

The logic combinators of the constraint systems are interpreted truth-
functionally. A vector �γ fulfils a constraint A ∨ B if �γ fulfils either A or B
or both. Analogously, �γ fulfils A ∧ B if it fulfils both A and B. �γ fulfils ¬A
if it does not fulfil A. This is equivalent to Sol(A ∨ B) = Sol(A) ∪ Sol(B),
Sol(A ∧ B) = Sol(A) ∩ Sol(B) and Sol(¬A) = Z

2n \ Sol(A).

Definition 8 (CRD(κ, Ψ)). Let κ be a OCF and Ψ a descriptor. The constraint
system for Ψ in κ, denoted by CRD(κ, Ψ), is given by CRD(κ, Ψ, cond(Ψ)).

44 J. Haldimann et al.

Proposition 2 (Soundness and Completeness of CRD(κ, Ψ,R)). Let κ be
a ranking function, R = {(B1|A1), . . . , (Bn|An)} a set of conditionals, and Ψ a
descriptor with cond(Ψ) ⊆ R. Then κ�γ |= Ψ iff �γ ∈ Sol(CRD(κ, Ψ,R)).

Proof. We show this proposition by structural induction.

1. If Ψ = B(Bi|Ai) is atomic, CRD(κ, Ψ,R) is given by (4). It can be shown
[5,20,26] that �γ ∈ Sol(CRD(κ, Ψ,R)) iff κ�γ |= (Bi|Ai) which is equivalent to
κ |= Ψ .

2. If Ψ = ¬α1, then CRD(κ, Ψ,R) is ¬(
CRD(κ, α1,R)

)
. We have �γ ∈

Sol(¬(CRD(κ, Ψ,R))) iff �γ /∈ Sol(CRD(κ, α1,R)) which is equivalent to
κ |= Ψ ⇔ κ �|= α1 due to the induction hypothesis.

3. If Ψ = α1 ∨α2, then CRD(κ, Ψ,R) is
(
CRD(κ, α1,R)

)∨ (
CRD(κ, α2,R)

)
. We

have �γ ∈ Sol(CRD(κ, α1,R) ∨ CRD(κ, α2,R)) iff �γ ∈ Sol(CRD(κ, α1,R)) or
�γ ∈ Sol(CRD(κ, α2,R)). This is equivalent to κ |= α1 or κ |= α2 due to the
induction hypothesis. This is in turn equivalent to κ |= α1 ∨ α2.

4. If Ψ = α1 ∧α2, then CRD(κ, Ψ,R) is
(
CRD(κ, α1,R)

)∧ (
CRD(κ, α2,R)

)
. We

have �γ ∈ Sol(CRD(κ, α1,R)∧CRD(κ, α2,R)) iff �γ ∈ Sol(CRD(κ, α1,R)) and
�γ ∈ Sol(CRD(κ, α2,R)). This is equivalent to κ |= α1 and κ |= α2 due to the
induction hypothesis. This is in turn equivalent to κ |= α1 ∧ α2.

5. If Ψ = {α1, . . . , αm}, then CRD(κ, Ψ,R) is CRD(κ, α1 ∧ · · · ∧ αm,R) =(
CRD(κ, α1,R)

) ∧ · · · ∧ (
CRD(κ, αm,R)

)
. As Ψ = {α1, . . . , αm} is equiva-

lent to α1 ∧ · · · ∧ αm, (4) implies that �γ ∈ Sol(Ψ) iff κ�γ |= Ψ . ��
Definition 9 (OCF (CRD(κ, Ψ,R))). Let κ be a ranking function, Ψ be a
descriptor, and R be a set of conditionals such that cond(Ψ) ⊆ R. We define
OCF (CRD(κ, Ψ,R)) := {κ�γ | �γ ∈ Sol(CRD(κ, Ψ,R))}.
Proposition 3 (Soundness and Completeness of CRD(κ, Ψ)). Let κ be a
ranking function and Ψ a descriptor. κ�γ is a conditional descriptor revision of
κ by Ψ iff κ�γ ∈ OCF (CRD(κ, Ψ)).

Proof. The proposition is equivalent to the conjunction of:

1. For �γ ∈ Sol(CRD(κ, Ψ)), κ�γ is a conditional descriptor revision of κ by Ψ .
2. If κ◦ is a conditional descriptor revision of κ by Ψ , then there is a solution

�γ ∈ Sol(CRD(κ, Ψ)) such that κ◦ = κ�γ .

We show both parts of the conjunction.
(1) Let �γ ∈ Sol(CRD(κ, Ψ)). By construction, the change from κ to κ�γ fulfils
the principle of conditional preservation with respect to cond(Ψ) (Proposition 1).
Proposition 2 shows, that κ�γ |= Ψ . Let Kκ = {κ′ : Ω → N0} and C : P(Kκ) →
Kκ such that C({κ�γ′ | �γ′ ∈ Sol(CRD(κ, Ψ))}) = κ�γ . The change from κ to κ�γ is
a conditional descriptor revision of κ by Ψ (realised by C over Kκ).
(2) Let κ◦ be a conditional descriptor revision of κ by Ψ (realised by C over
KK). Because the change fulfils the principle of conditional preservation with
respect to cond(Ψ), there is a vector �γ such that κ◦ = κ�γ (see Proposition 1).
Because κ�γ |= Ψ , we have that �γ ∈ Sol(CRD(κ, Ψ)) (see Proposition 2). ��

Conditional Descriptor Revision and Its Modelling by a CSP 45

Example 9 (cont.). Consider the conditional descriptor revision of κ (as given in
Table 1) with Ψ = {B((s|v)),B((s|b)) ∨ B((s|b))} described in Example 8. Let
R = cond(Ψ). The constraint system corresponding to this descriptor is

CRD(κ,B(s|v),R) ∧ (
CRD(κ,B(s|b),R) ∨ CRD(κ,B(s|b),R)

)
.

The result of the revision is selected from the set

S =OCF (CRD(κ,B(s|v),R)) ∩
(
OCF (CRD(κ,B(s|b),R)) ∪ OCF (CRD(κ,B(s|b),R))

)

The set OCF (CRD(κ,B(s|v),R)) contains both ranking functions κ◦
1 and κ◦

2

as given in Table 1. κ◦
1 is also an element of OCF (CRD(κ,B(s|b),R)) while κ◦

2

is an element of OCF (CRD(κ,B(s|b),R)). Hence, κ◦
1 and κ◦

2 are two possible
outcomes of the conditional descriptor revision of κ by Ψ .

The set R in CRD(κ, Ψ,R) governs the possible solutions of the constraint
satisfaction problem. The next two propositions state that adding conditionals
to R will not remove possible revisions and that expanding R can indeed lead
to more possible outcomes of the revision.

Proposition 4. Let κ be an OCF, R ⊆ R′ sets of conditionals, and Ψ a descrip-
tor with cond(Ψ) ⊆ R. Then OCF (CRD(κ, Ψ,R)) ⊆ OCF (CRD(κ, Ψ,R′)).

Proof. Let κ�γ ∈ OCF (CRD(κ, Ψ,R)). Proposition 2 implies that κ�γ |= Ψ . Let
�γ′ ∈ Z

2·|R′| be a vector that assigns the same impacts to the conditionals in R
as �γ and impacts γ−

i = γ+
i = 0 to all other conditionals. Then we have κ�γ′ = κ�γ

and hence κ�γ′ |= Ψ . Proposition 2 implies that γ′ ∈ Sol(CRD(κ, Ψ,R′)). ��
Proposition 5. There is an OCF κ, sets of conditionals R,R′ with R ⊆ R′,
and a descriptor Ψ with cond(Ψ) ⊆ R such that OCF (CRD(κ, Ψ,R)) �

OCF (CRD(κ, Ψ,R′)).

Proof. Consider the ranking function κ : {ab �→ 0, āb �→ 1, ab̄ �→ 1, āb̄ �→ 2} over
the signature Σ = {a, b}. Let R = {(ā|�)} and R′ = {(ā|�), (b̄|�)}. Further-
more, let Ψ = {B(ā|�)}. Then we have �γ′ = (0, 2, 0, 1) ∈ Sol(CRD(κ, Ψ,R′))
with κ�γ′ : {ab �→ 1, āb �→ 0, ab̄ �→ 1, āb̄ �→ 0} ∈ OCF (CRD(κ, Ψ,R′)). However,
since the change from κ to κ�γ′ violates the principle of conditional preservation
with respect to R, there is no �γ ∈ Sol(CRD(κ, Ψ,R)) such that κ�γ = κ�γ′ . ��

Interestingly, the revision with the conjunction (or disjunction) of two
descriptors can have additional outcomes compared with the intersection (or
union) of the possible outcomes of each of the revisions. This is because only
the revision with the conjunction (or disjunction) allows to assign non-negative
impacts to conditionals from both descriptors.

Proposition 6. Let κ be a ranking function and α1, α2 molecular descriptors.

OCF (CRD(κ, α1)) ∩ OCF (CRD(κ, α2)) ⊆ OCF (CRD(κ, α1 ∧ α2)) (5)
OCF (CRD(κ, α1)) ∪ OCF (CRD(κ, α2)) ⊆ OCF (CRD(κ, α1 ∨ α2)) (6)

46 J. Haldimann et al.

Proof. We show the subset relation (6) first. Let R = cond({α1 ∨ α2}). We
have Sol(CRD(κ, α1,R)) ∪ Sol(CRD(κ, α2,R)) = Sol(CRD(κ, α1 ∨ α2,R)) =
Sol(CRD(κ, α1 ∨ α2)) and thus OCF (CRD(κ, α1,R)) ∪ OCF (CRD(κ, α2,R)) =
OCF (CRD(κ, α1 ∨ α2)). Because cond(α1), cond(α2) ⊆ R we have
OCF (CRD(κ, α1)) ⊆ OCF (CRD(κ, α1,R)) and OCF (CRD(κ, α2)) ⊆
OCF (CRD(κ, α2,R)) (Proposition 4). Therefore, (6) holds. This analogously
applies to descriptors with conjunction, yielding (5). ��

In general, the inverse of the inclusions in Proposition 6 does not hold.

Proposition 7. There is an OCF κ and molecular descriptors α1, α2, such that

OCF (CRD(κ, α1)) ∩ OCF (CRD(κ, α2)) � OCF (CRD(κ, α1 ∧ α2)) (7)
OCF (CRD(κ, α1)) ∪ OCF (CRD(κ, α2)) � OCF (CRD(κ, α1 ∨ α2)) (8)

Proof. We can show both not-subset-relations with one example. Consider the
OCF κ : {ab �→ 0, āb �→ 1, ab̄ �→ 1, āb̄ �→ 2} over the signature Σ = {a, b}.
Let α1 = {B(ā|�)} and α2 = {B(b̄|�)}. Every ranking function κ′

1 ∈ S1 =
OCF (CRD(κ, α1)) has the form κ′

1 : {ab �→ γ−
1 , āb �→ 1 + γ+

1 , ab̄ �→ 1 + γ−
1 , āb̄ �→

2 + γ+
1 } and every ranking function κ′

2 ∈ S2 = OCF (CRD(κ, α2)) has the form
κ′
2 : {ab �→ γ−

2 , āb �→ 1 + γ−
2 , ab̄ �→ 1 + γ+

2 , āb̄ �→ 2 + γ+
2 }. Now �γ′ = (0, 2, 0, 1) ∈

Sol(CRD(κ, α1 ∧ α2)) and �γ′ ∈ Sol(CRD(κ, α1 ∧ α2)) with κ�γ′ : {ab �→ 1, āb �→
0, ab̄ �→ 1, āb̄ �→ 0} = {ab �→ 1, āb �→ 1 + (−1), ab̄ �→ 1 + 0, āb̄ �→ 2 + (−2)}. κ�γ′ is
neither in S1 or S2. Hence, relations (7) and (8) hold. ��

6 Implementation

We implemented conditional descriptor revision for all finite descriptors. Given
a ranking function κ and an descriptor Ψ , our system, called ChangeOCF, calcu-
lates a list of possible outcomes of a conditional descriptor revision of κ with Ψ .
To calculate the possible outcomes of the revision, ChangeOCF uses a constraint
system based on CRD(κ, Ψ) introduced in Sect. 5. Following Proposition 2, the
solutions of this constraint system correspond to the outcomes of a conditional
descriptor revision. I.e., the set OCF (CRD(κ, Ψ)) is the desired output of our
implementation. In general, Sol(CRD(κ, Ψ)) and OCF (CRD(κ, Ψ)) may contain
infinitely many elements, but there is only a finite number of equivalence classes
with respect to the acceptance of conditionals. Therefore, it is possible to restrict
the set of solutions to finitely many without losing interesting results. To do this,
we used an approach inspired by maximal impacts for c-representations [5,7]
that addresses a similar problem for the enumeration of c-representations. The
idea of maximal impacts is to add explicit bounds for the value of each γ+

i , γ−
i .

This reduces the set of possible solutions to a finite set. If the bounds are cho-
sen appropriately, no solutions that are not equivalent to a solution within the
bounds are lost. ChangeOCF limits the value of γ+

1 , γ−
1 , . . . , γ+

n , γ−
n to an indi-

vidual finite domain by extending the constraint system CRD(κ, Ψ) with con-
straints umin−

i � γ−
i � umax−

i and umin+
i � γ+

i � umax+
i for 1 � i � n. We

Conditional Descriptor Revision and Its Modelling by a CSP 47

denote this extended CSP by CR�u
D(κ, Ψ) with �u = 〈umin−

1 , umax−
1 , umin+

1 , umax+
1 ,

. . . , umax+
n 〉. Like for c-representations [23], it is an open problem which values

for �u guarantee that a representative for each equivalence class of solutions with
respect to the acceptance of conditionals is found for a given κ and Ψ .

To simplify the construction of CR�u
D(κ, Ψ), we require the descriptor to

be converted to a disjunction of elementary descriptors. This form resembles
the disjunctive normal form for propositional formulae. As the atomic descrip-
tors are combined like atoms in a formula and descriptors are evaluated truth-
functionally, every descriptor has an equivalent descriptor in this normal form.
Here, equivalency means that two descriptors accept the same ranking functions.

The implementation of ChangeOCF employs InfOCF-Lib [24], a Java library
for reasoning with conditionals and ranking functions. InfOCF-Lib calculates the
c-representations of a conditional knowledge base by solving a constraint system
similar to CR�u

D(κ, Ψ). The interface of ChangeOCF is implemented in Java. To
solve CR�u

D(κ, Ψ), we use SICStus Prolog and its constraint logic programming
library for finite domains [9]. The Prolog implementation is an adaption of the
implementation of InfOCF [3] to the more general case of belief change.

7 Summary and Future Work

In this work, we investigated conditional descriptor revision and its realisation.
Conditional descriptor revision is an extension of descriptor revision for condi-
tionals, obeying the principle of conditional preservation. We developed a charac-
terization of conditional descriptor revision by a constraint satisfaction problem
that allows us to express arbitrary descriptors, covering the complete descriptor
language over conditionals closed under conjunction, disjunction, and negation.
Additionally, we presented an implementation of conditional descriptor revision
using its CSP characterization and employing constraint logic programming.

So far, we focussed on calculating the complete set of admissible outcomes of
conditional descriptor revision. In our current work, we are developing criteria
which of the possible solutions should be selected. We will also address the open
problem of determining maximal impacts for the CSP such that all solutions
up to equivalence with respect to acceptance of conditionals are captured.

Acknowledgements. We thank the anonymous reviewers for their valuable hints and
comments that helped us to improve the paper. This work was supported by DFG Grant
BE 1700/9-1 awarded to Christoph Beierle and DFG Grant KE 1413/10-1 awarded
to Gabriele Kern-Isberner as part of the priority program “Intentional Forgetting in
Organizations” (SPP 1921). Kai Sauerwald is supported by the grant BE 1700/9-1.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530
(1985)

48 J. Haldimann et al.

2. Banerjee, M., Dubois, D.: A simple logic for reasoning about incomplete knowledge.
Int. J. Approx. Reason. 55(2), 639–653 (2014). https://doi.org/10.1016/j.ijar.2013.
11.003

3. Beierle, C., Eichhorn, C., Kutsch, S.: A practical comparison of qualitative infer-
ences with preferred ranking models. KI - Künstliche Intelligenz 31(1), 41–52
(2017)

4. Beierle, C., Kern-Isberner, G.: Semantical investigations into nonmonotonic and
probabilistic logics. Ann. Math. Artif. Intell. 65(2–3), 123–158 (2012)

5. Beierle, C., Eichhorn, C., Kern-Isberner, G., Kutsch, S.: Properties of skeptical
c-inference for conditional knowledge bases and its realization as a constraint sat-
isfaction problem. Ann. Math. Artif. Intell. 83(3-4), 247–275 (2018)

6. Beierle, C., Kern-Isberner, G., Sauerwald, K., Bock, T., Ragni, M.: Towards a
general framework for kinds of forgetting in common-sense belief management. KI
33(1), 57–68 (2019)

7. Beierle, C., Kutsch, S.: Computation and comparison of nonmonotonic skeptical
inference relations induced by sets of ranking models for the realization of intel-
ligent agents. Appl. Intell. 49(1), 28–43 (2018). https://doi.org/10.1007/s10489-
018-1203-5

8. Boutilier, C.: Iterated revision and minimal change of conditional beliefs. J. Philos.
Logic 25(3), 263–305 (1996)

9. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

10. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artif. Intell. 89,
1–29 (1997)

11. de Finetti, B.: La prévision, ses lois logiques et ses sources subjectives. Ann. Inst. H.
Poincaré 7(1), 1–68 (1937). English translation in Studies in Subjective Probability,
Kyburg, H., Smokler, H.E. (eds.) pp. 93–158. Wiley, New York (1974)

12. Haldimann, J., Sauerwald, K., von Berg, M., Kern-Isberner, G., Beierle, C.:
Towards a framework of Hansson’s descriptor revision for conditionals. In: The
36th ACM/SIGAPP Symposium on Applied Computing (SAC 2021), 22–26 March
2021, Virtual Event, Republic of Korea, pp. 889–891. ACM, New York (2021)

13. Hansson, S.O.: Descriptor revision. Studia Logica 102(5), 955–980 (2014)
14. Hansson, S.O.: A monoselective presentation of AGM revision. Studia Logica

103(5), 1019–1033 (2015). https://doi.org/10.1007/s11225-015-9604-5
15. Hansson, S.O.: Blockage revision. J. Logic Lang. Inf. 25(1), 37–50 (2015). https://

doi.org/10.1007/s10849-015-9223-6
16. Hansson, S.O.: Iterated descriptor revision and the logic of ramsey test condition-

als. J. Philos. Logic 45(4), 429–450 (2015). https://doi.org/10.1007/s10992-015-
9381-7

17. Hansson, S.O.: AGM contraction is not reconstructible as a descriptor operation.
J. Log. Comput. 27(4), 1133–1141 (2017). https://doi.org/10.1093/logcom/exv076

18. Hansson, S.O.: Descriptor Revision. TL, vol. 46. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-53061-1

19. Hansson, S.O.: Back to basics: belief revision through direct selection. Studia Log-
ica 107(5), 887–915 (2018). https://doi.org/10.1007/s11225-018-9807-7

20. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision.
LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44600-1

21. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preser-
vation in belief revision. Ann. Math. Artif. Intell. 40(1–2), 127–164 (2004)

https://doi.org/10.1016/j.ijar.2013.11.003
https://doi.org/10.1016/j.ijar.2013.11.003
https://doi.org/10.1007/s10489-018-1203-5
https://doi.org/10.1007/s10489-018-1203-5
https://doi.org/10.1007/BFb0033845
https://doi.org/10.1007/s11225-015-9604-5
https://doi.org/10.1007/s10849-015-9223-6
https://doi.org/10.1007/s10849-015-9223-6
https://doi.org/10.1007/s10992-015-9381-7
https://doi.org/10.1007/s10992-015-9381-7
https://doi.org/10.1093/logcom/exv076
https://doi.org/10.1007/978-3-319-53061-1
https://doi.org/10.1007/978-3-319-53061-1
https://doi.org/10.1007/s11225-018-9807-7
https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/3-540-44600-1

Conditional Descriptor Revision and Its Modelling by a CSP 49

22. Kern-Isberner, G., Bock, T., Sauerwald, K., Beierle, C.: Iterated contraction of
propositions and conditionals under the principle of conditional preservation. In:
Benzmüller, C., Lisetti, C., Theobald, M. (eds.) GCAI 2017. 3nd Global Confer-
ence on Artificial Intelligence, Miami, USA, 20–22 October 2017. EPiC Series in
Computing, vol. 50. EasyChair, October 2017. https://easychair.org/publications/
volume/GCAI 2017

23. Komo, C., Beierle, C.: Upper and lower bounds for finite domain constraints to
realize skeptical c-inference over conditional knowledge bases. In: International
Symposium on Artificial Intelligence and Mathematics (ISAIM 2020), Fort Laud-
erdale, FL, USA, 6–8 January (2020)

24. Kutsch, S.: InfOCF-Lib: A Java library for OCF-based conditional inference. In:
Beierle, C., Ragni, M., Stolzenburg, F., Thimm, M. (eds.) Proceedings of the
8th Workshop on Dynamics of Knowledge and Belief (DKB-2019) and the 7th
Workshop KI & Kognition (KIK-2019) Co-Located with 44nd German Conference
on Artificial Intelligence (KI 2019), Kassel, Germany, 23 September 2019. CEUR
Workshop Proceedings, vol. 2445, pp. 47–58. (2019)

25. Makinson, D., Gärdenfors, P.: Relations between the logic of theory change and
nonmonotonic logic. In: Fuhrmann, A., Morreau, M. (eds.) The Logic of Theory
Change. LNCS, vol. 465, pp. 183–205. Springer, Heidelberg (1991). https://doi.
org/10.1007/BFb0018421

26. Sauerwald, K., Haldimann, J., von Berg, M., Beierle, C.: Descriptor revision for
conditionals: literal descriptors and conditional preservation. In: Schmid, U., Klügl,
F., Wolter, D. (eds.) KI 2020. LNCS (LNAI), vol. 12325, pp. 204–218. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58285-2 15

27. Sauerwald, K., Kern-Isberner, G., Beierle, C.: A conditional perspective for iterated
belief contraction. In: Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro,
S., Bugaŕın, A., Lang, J. (eds.) ECAI 2020–24th European Conference on Artificial
Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 889–
896. IOS Press (2020). https://doi.org/10.3233/FAIA200180

28. Spohn, W.: Ordinal Conditional Functions: A Dynamic Theory of Epistemic
States, pp. 105–134. Springer, Dordrecht (1988). https://doi.org/10.1007/978-94-
009-2865-7 6

29. Zhang, L.: Believability relations for select-direct sentential revision. Studia Logica
105(1), 37–63 (2017)

https://easychair.org/publications/volume/GCAI_2017
https://easychair.org/publications/volume/GCAI_2017
https://doi.org/10.1007/BFb0018421
https://doi.org/10.1007/BFb0018421
https://doi.org/10.1007/978-3-030-58285-2_15
https://doi.org/10.3233/FAIA200180
https://doi.org/10.1007/978-94-009-2865-7_6
https://doi.org/10.1007/978-94-009-2865-7_6

Trust Is All You Need: From Belief
Revision to Information Revision

Ammar Yasser1(B) and Haythem O. Ismail1,2

1 German University in Cairo, New Cairo, Egypt
{ammar.abbas,haythem.ismail}@guc.edu.eg

2 Cairo University, Giza, Egypt

Abstract. Belief revision is a hallmark of knowledge representation,
logic, and philosophy. However, despite the extensive research in the
area, we believe a fresh take on belief revision is needed. To that end, it
is our conviction that believing a piece of information depends on trust in
information sources that conveyed said piece and that trust in informa-
tion sources is affected by changes in beliefs. Trust is also an impress of
philosophy and all time favorite of psychology and multi-agent systems.
Hence, many approaches were developed for trust representation, yet,
in isolation from belief revision. While admittedly crucial to a realistic
treatment of belief revision, trust revision, to our dismay, did not receive
the same level of attention. In this paper, we argue that a formal treat-
ment for the joint interdependent revision of belief and trust is called for.
Moreover, we propose a new framework called information revision that
captures the joint revision of belief and trust. Further, we provide pos-
tulates that govern such process of revision. Finally, we provide a class
of operators called relevant change propagation operators and provide
their representation theorem.

Keywords: Information revision · Belief revision · Trust · Trust
revision

1 Introduction

Belief revision is a hallmark of knowledge representation, databases, logic and
philosophy. Theory change and belief revision have been thoroughly investigated
during the last two decades of the previous century [7,12,20, for example]. That
was, to a large degree, due the seminal work of Alchourrón, Gärdenfors, and
Makinson [1,2,9] which sparked discussion and discourse in the field for four
decades despite the extensive criticism [10,13,23,25, for instance]. However, we
believe that a fresh and more realistic take on belief revision is needed. To that
end, we propose the incorporation, and revision, of trust.1

There is no shortage of research on trust within multi-agent systems
[5,6,8,16,24], and philosophy [14,15,22]. Nevertheless, research on the relation
1 This work builds on foundations proposed in [29,30].

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 50–65, 2021.
https://doi.org/10.1007/978-3-030-75775-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_5

Trust Is All You Need: From Belief Revision to Information Revision 51

between trust in information sources and belief revision is relatively slim despite
recent contributions [3,4,21,27]. Trust revision did not receive the same level of
attention as belief revision. Yet, there are notable contributions [17,26] specially
in the field of information fusion [18,19]. In this paper, we argue that a system-
atic study of the joint revision of belief and trust, which is (to the best of our
knowledge) currently missing, is called for. We propose a new framework called
information revision that captures the joint revision of the two attitudes, pro-
vide postulates that govern this process, and present a representation theorem
characterizing rational information revision operators.

This paper is structured as follows. In Sect. 2 we motivate why belief and
trust revision should not be separated. Section 3 presents formal preliminaries
that will be needed throughout the paper. In Sect. 4 we provide AGM-style
postulates for the joint belief-trust revision, highlighting the intuitions behind
formulating them, and prove a representation theorem in Sect. 5. Finally, in
Sect. 6 we conclude our work and point towards future directions.

2 Motivation

In this paper, we take trust to be a measure of the credibility of an information
source, which need not be a cognitive agent. To show how belief and trust are
intertwined in nature, affect each other, and why it is important to incorporate
both when considering a more realistic approach to belief revision, consider the
following examples.

Example 1. The army of the dead is marching towards Winterfell, the largest
castle on their way to total domination. Jon, the lord of Winterfell who is very
trusted by his people, is preparing his army for battle. Before the battle, the
children and the elderly were sent to a secret location for safety. Jon has two
advisors. Peter who is his oldest advisor and Sam the most recent one. After
some time, Peter hurries to the safe place and says “Jon won” (JWon). People
rushed out of the safe place to celebrate. Then, to their surprise, they found Jon
who said, in dismay, “we lost” (¬JWon).

This is a classic example of belief revision where the people of Winterfell
already believing JWon are confronted with a conflicting pieces of information
¬JWon. Which piece of information should the people of Winterfell believe?
Clearly, Jon is more trusted than Peter specially when it comes to whether
or not Jon won the battle. Hence, the people of Winterfell will stop believing
JWon and start believing ¬JWon. This example shows the effect of trust in
information sources on belief revision.

Example 2. The living decided to flee Winterfell and escape to Casterly Rock.
Peter said “Casterly Rock is to the east” (CEast), Sam said that “the way to
Casterly rock is to the west” (CWest). The people are confused because they
used to trust Peter but after he just lied to them they are cautious to accept
information from him. Also, they do not fully trust Sam yet because he is just a

52 A. Yasser and H. O. Ismail

new advisor of Jon. Shortly after, they found a map in an old text book clearly
showing that “Casterly Rock is to the west”.

Sam conveyed a piece of information and the people of Winterfell did not
believe it strongly. However, finding the map in the text book supported Sam’s
claim which in turn could (should) make him more trusted.

Example 3. On their way to Casterly Rock, one of the survivors, Tyrion, found
a strange looking plant called Frya. The survivors are hungry and hence Tyrion
decides to harvest some of the plant to feast because he believes that “Frya is
edible” (FEdible). However, on his way, he remembers that the person who told
him that “Frya is edible” was Peter.

In the previous example, new information acquisition led to strengthening a
belief which in turn affected trust making Sam more trusted. In this example,
after Peter’s misleading of the people of Wintefell twice, it is safe to assume
that Tyrion does not trust Peter. Thus, despite Frya being edible or not is
not something logically related to both Jon losing or winning the battle or to
Casterly Rock being to the west not to the east, Tyrion would give up (or at
the very least doubt) his belief that Frya is edible.

These examples show that:

1. Trust acts as an information filter. In Example 1, the people of Winterfell
believed what Jon conveyed over what Peter conveyed because Jon is more
trusted.

2. We trust someone more if what they conveyed turns out to be true. In
Example 2 the book’s support of Sam’s claim proves Sam’s credibility.

3. We trust someone less if what they conveyed is false or if they were mislead-
ing us. After the first two examples, trust in Peter did (or at least should)
decrease.

4. Logically unrelated beliefs may be retracted or weakened in the course of
belief revision due to changes in trust. Tyrion disbelieving or doubting that
Frya is edible in Example 3.

5. Believing a piece of information depends on trust in whoever/whatever is the
source.

6. Trusting someone (or something) depends on how much we believe the infor-
mation they previously conveyed to us.

Hence, it is our conviction that belief revision and trust revision are inter-
twined and interdependent processes that should be carried out together.

3 Formal Preliminaries

To perform information revision, an agent needs to be able to represent more
than just its beliefs which are traditionally represented in a belief set or base.
An agent needs to be able to represent its beliefs, trust attribution in sources as

Trust Is All You Need: From Belief Revision to Information Revision 53

well as a record of which information source conveyed which piece of informa-
tion. Hence, we propose information states. Let L be a logical language with a
Tarskian consequence operator Cn [28], S be a finite non-empty set of informa-
tion sources, Db and Dt be non-empty, countable sets; with ≺b and ≺t, respec-
tively, being total orders over Db and Dt. Db and Dt represent the “degrees” of
belief and trust. In other words, Db and Dt, with their total orders, represent
the preferences of an agent among beliefs and sources. Db and Dt are not neces-
sarily finite, disjoint, different or identical.2 Thus, an agent’s information state
K is a triple 〈B, T ,H〉 where B : L ↪→ Db is a partial function referred to as the
belief base, T : S ↪→ Dt is a partial function referred to as the trust base, and
H ⊆ L×S, the history, is a finite set of pairs (φ, σ) that denotes a conveyance of
formula φ by information source σ.3 An example to show how the information
state of Tyrion could look like after Example 3 is as follows.

Example 4. Let LV be a propositional language with the set V =
{JWon, FEdible, CEast, CWest} of propositional variables. Let Db and Dt be
the set of natural numbers with their natural order. Let K = (B, T ,H) where

– B = {(¬JWon, 10), (CWest, 9)}
– T = {(Peter, 1), (Sam, 5), (Book, 8), (Jon, 10)}
– H = {(FEdible, Peter), (JWon, Peter), (¬JWon, Jon), (CEast, Peter),

(CWest, Sam), (CWest,Book)}

The following useful abbreviations which we will later use.

– σ(H(K)) = {φ | (φ, σ) ∈ H(K)}. Intuitively, the set of formulas conveyed by
a particular source σ.

– SK = {σ | (φ, σ) ∈ H(K)}. The set of information sources that previously
conveyed formulas.

– For(B(K)) = {φ | (φ, b) ∈ B(K)}. The set of believed formulas regardless
grades.

– ΦK = {φ | (φ, σ) ∈ H(K) for any σ}. The set of all formulas whether believed
or not.

We use the following notations to talk about changes in beliefs and trust.

Definition 1. Let φ ∈ L and σ ∈ S.

1. φ is more entrenched in state K2 over state K1, denoted K1 ≺φ K2, if
(i) φ /∈ Cn(For(B(K1))) and φ ∈ Cn(For(B(K2))); or (ii) (φ, b1) ∈ B(K1),
(φ, b2) ∈ B(K2), and b1 ≺b b2. If K1 ⊀φ K2 and K2 ⊀φ K1, we write K1 ≡φ

K2.

2 Db and Dt are usually the same; however, a qualitative account of trust and belief
might have different sets for grading the two attitudes.

3 Information states contain trust bases and histories to model languages where trust
and conveyance are part of the object language as well as those which do not have
trust and conveyance as part of the object language.

54 A. Yasser and H. O. Ismail

2. σ is more trusted in state K2 over state K1, denoted K1 ≺σ K2, if (σ, t1) ∈
T (K1), (σ, t2) ∈ T (K2), and t1 ≺t t2. If K1 ⊀σ K2 and K2 ⊀σ K1, we write
K1 ≡σ K2.

As proposed earlier, the degrees of trust in sources depend on the degrees of
belief in formulas conveyed by these sources and vice versa. Hence, by changing
the degree of belief in some formula φ, the degree of trust in a source σ, that
previously conveyed φ, is likely to change. Moreover, when the degree of trust in
σ changes, the degrees of belief in formulas conveyed by σ might change as well.
To model such dependence, we need to keep track of which formulas and which
sources are “relevant” to each other. First, we recall a piece of terminology due
to [11]: Γ ⊂ L is a φ-kernel if Γ |= φ and, for every Δ ⊂ Γ , Δ
|= φ.

Definition 2. Let K be an information state. The support graph G(K) =
(SK ∪ ΦK, E) is such that (u, v) ∈ E if and only if

1. u ∈ SK, v ∈ ΦK, and v ∈ u(H(K));
2. u ∈ ΦK, v ∈ ΦK, u
= v, and u ∈ Γ ⊆ ΦK where Γ is a v-kernel; or
3. u ∈ ΦK, v ∈ SK, and (v, u) ∈ E.

A node u supports a node v, given information state K, denoted u �K v, if
there is a simple path from u to v that does not contain tautologies. A node u is
relevant to a node v denoted u �	K v if u = v, u �K v, or v �K u.4

Fig. 1. The support graph capturing the state in Example 4. Sources are depicted with
circles and formulas are represented with rectangles.

The support graph allows us to trace back and propagate changes in trust
and belief to relevant beliefs and information sources along support paths. The
support graph provides the basis for constructing an operator of rational infor-
mation revision. Figure 1 shows an example of the support graph of the infor-
mation state shown in Example 4. Every source supports and is supported by
4 Thus, relevance is the reflexive, symmetric, transitive closure of E.

Trust Is All You Need: From Belief Revision to Information Revision 55

every formula that the source conveyed. Also, we can find that source Book
supports source Sam by virtue of having a tautology free path between them,
namely, 〈Book,CWest, Sam〉. Thus, we can expect that the degree of trust in
one of them could affect trust in the other. The strength of the support graph
does not stop here though. Traditionally, belief revision is concerned with min-
imal change. In this paper, we model minimality using relevance. However, our
notion of relevance is not restricted to logical relevance as with classical belief
revision; it also accounts for source relevance. This is captured in this example
by how FEdible is relevant to JWon through the common source Peter despite
them being logically unrelated. Hence, our goal using the support graph is to
confine changes in belief and trust when an information state K is revised with
formula φ conveyed by source σ to only formulas and sources relevant to φ, ¬φ,
and σ.

4 Information Revision

We now present the postulates we believe any rational operator of information
revision, denoted (�), should observe. In the rest of this paper5, K is an infor-
mation state; φ, ψ, ξ ∈ L; and σ, σ′ ∈ S.

(�1: Belief Consistency). Cn(For(B(K�(φ, σ))))
= L.

At the core of belief revision, achieving consistency is paramount. Hence, a ratio-
nal operation of information revision should retain the consistency of the belief
base even if the formula of revision is itself a contradiction.

(�2: Supported Entrenchment). K�(φ, σ) ≺φ K only if
Cn(For(B(K))) = L.

Starting with a consistent belief base B(K), it could be that (i) φ,¬φ /∈
Cn(For(B(K))), (ii) ¬φ ∈ Cn(For(B(K))), or (iii) φ ∈ Cn(For(B(K))). On
revising the first two cases, φ could either succeed or not. In both cases, φ could
either become more entrenched (because it is now added to the belief base)
or not get less entrenched (because it was not already believed). In the last
case, because φ is already believed, revision with φ should either make it more
entrenched or leave it as is. Thus, in all cases, starting with a consistent belief
base, there is no scenario where φ should become less entrenched.

(�3: Opposed Entrenchment). K ⊀¬φ K�(φ, σ).

Revising a belief base with φ (even if the belief base is inconsistent) does not
provide any new support for ¬φ and hence it should not become more entrenched.

5 Due to space limitations, we were not able to provide most of our results and all
proofs in this paper. However, the main proofs could be found in this online appendix:
proofs.

https://met.guc.edu.eg/Repository/Faculty/Publications/959/Appendix.pdf

56 A. Yasser and H. O. Ismail

The following are examples showcasing supported and opposed entrenchment.

Example 5. Jon conveys “the battle is tomorrow” (φ). Since we trust Jon, we
believe that “the battle is tomorrow” (K ≺φ K�(φ, Jon)).

Example 6. Jon conveys “the battle is tomorrow” (φ) and since we trust Jon
we believe φ. Then, any of the following scenarios could occur:

– Jon himself repeats φ. As this is not a new evidence for φ, we decide not to
increase φ’s degree of belief (K ≡φ K�(φ, Jon)).

– Peter conveys that “there is no battle tomorrow” (¬φ). Since we trust Jon
the most, we decide to discard ¬φ (¬φ is rejected and K ≡φ K�(φ, Jon)).

Example 7. V arys, who is not in the military, conveys that “the battle is tomor-
row” (φ). Since we do not trust V arys on military topics, we have no reason to
believe him (φ is rejected yet it does not become less entrenched because it was
not already believed).

Example 8. Sam conveys “the battle is tomorrow” (φ). We trust Sam a bit so we
believe φ with a degree d1. Later, Jon conveys φ. Since there is new support for
φ, we increase our degree of belief in φ to d2 where d2 �b d1 (K ≺φ K�(φ, Jon)).

Example 9. Peter conveys “there is no battle tomorrow” (¬φ) so we believe ¬φ.
Then, any of the following could occur:

– Jon conveys φ. Because we trust Jon more than Peter, we revise our beliefs
and accept φ (K�(φ, Jon) ≺¬φ K and K ≺φ K�(φ, Jon)).

– Tyrion, who used to be in the military, conveys φ. Since Peter is an advisor of
Jon, we trust Peter more than Tyrion. However, we do not fully trust Peter
and hence Tyrion’s conveyance makes us doubt our beliefs (φ is rejected yet
K�(φ, Tyrion) ≺¬φ K).

– Sam conveys φ. Since both Peter and Sam are advisors of Jon, we trust them
to a similar extent. Hence, as we do not have enough evidence to exclusively
believe either formula, we believe neither (φ and ¬φ are rejected).

(�4: Belief Confirmation). If K ≺ψ K�(φ, σ) then K ≺φ K�(φ, σ) and
φ �K�(φ,σ) ψ.

For an agent to strengthen any of its beliefs (ψ) after revision, it must be provided
with a new support where a new formula or source supports ψ or a stronger
support where one of the existing supports of ψ becomes more entrenched (or
trusted). Thus, if a conveyance of φ by σ makes φ more entrenched, this could
be a reason for an agent to strengthen its degree of belief in ψ given that ψ is
supported by φ.

Example 10. Sam conveys “the battle is tomorrow” (ψ) so we believe ψ. We
also know that “if the army is preparing then the battle is tomorrow” (φ → ψ).
After some time, Jon conveys that “the army is preparing” (φ) and we believe
φ. Now, “the army is preparing” supports “the battle is tomorrow” which makes
us strengthen our degree of belief in ψ (K ≺φ K�(φ, Jon), φ �K�(φ,σ) ψ, and
K ≺ψ K�(φ, Jon)).

Trust Is All You Need: From Belief Revision to Information Revision 57

(�5: Belief Refutation). If K�(φ, σ) ≺ψ K, then
1. ψ �	K ξ ∈ Γ ⊆ For(B(K)), with Γ a ¬φ-kernel, and K�(φ, σ) ≺¬φ K;
2. ψ �	K�(φ,σ) φ and K�(φ, σ) ≺φ K or K�(φ, σ) ≺σ K.

On revising with φ, to achieve consistency, it should be compared to ¬φ (if it
exists). The revision could reject φ, ¬φ, or in fact both. Rejecting a formula
(or making it less entrenched) could negatively affect other relevant formulas.
Hence, if ¬φ becomes less entrenched, formulas that are relevant to ¬φ could
become less entrenched. However, the postulate was stated in a way to consider
formulas relevant to formulas in kernels of ¬φ and not just formulas relevant to
¬φ directly. The reason is that in the case where ¬φ belongs to the consequence
of the believed formulas but is not an explicit belief, there will be no formulas
relevant to ¬φ (as it does not belong to the graph). Hence, formulas that could
get affected are those relevant to kernels of ¬φ.6 On the other hand, formulas
relevant to φ could get affected if φ got less entrenched, or if σ (the source of φ)
got less trusted. Since, relevance is an equivalence relation, any formula ψ such
that ψ �	K σ is also ψ �	K φ. Unlike the treatment of ¬φ, the postulate states
the relevance relation directly to φ because φ will always be in the graph.

Example 11. Peter conveys “it is not cold outside” (ψ), then he conveys “the
army is not preparing” (ξ). We believe both formulas. We also know that “if the
army is not preparing then the battle is not tomorrow” (ξ → ¬φ). Later, Jon
conveys that “the battle is tomorrow” (φ). Since we trust Jon, we believe φ. To
achieve consistency, we reject ¬φ and ξ (because it is in a kernel of ¬φ). Thus,
K�(φ, Jon) ≺¬φ K, K�(φ, Jon) ≺ξ K, and because we now doubt what Peter
says, also K�(φ, Jon) ≺ψ K (Case 1 where ψ �	K ξ ∈ Γ ⊆ For(B(K)), with Γ a
¬φ-kernel, and K�(φ, σ) ≺¬φ K).

Example 12. Peter conveys “it is not cold outside” (ψ) so we believe ψ. Later,
Jon conveys “the battle is tomorrow” (¬φ) and we strongly believe it. After-
wards, Peter conveys “there is no battle tomorrow” (φ). φ is discarded and we
realize that Peter is not credible so we trust him less and start doubting other
pieces of information acquired through him (Case 2 where ψ �	K�(φ,σ) φ and
K�(φ, σ) ≺σ K).

(�6: Trust Confirmation). If K ≺σ′ K�(φ, σ) then, K ≺φ K�(φ, σ) and
1. φ �K�(φ,σ) σ′
= σ; or
2. σ′ = σ and there is Γ ⊆ For(B(K)) where Γ is a σ-independent φ-kernel.

Similar to how formulas could become more entrenched, for a source to become
more trusted, it must be that the formula of revision provides new support for
said source. Further, a σ-independent φ-kernel is, intuitively, a φ-kernel that
would still exist if σ did not exit. More precisely, for every ψ ∈ Γ , where Γ is a
φ-kernel, ψ is supported by some σ′′
= σ. Thus, if a source σ conveys a formula

6 If a formula is relevant to ¬φ directly and not just to a formula in a kernel of ¬φ,
the postulate still holds because {¬φ} is trivially a ¬φ-kernel.

58 A. Yasser and H. O. Ismail

φ and it is accepted, we should expect that trust might increase in σ. However,
what if σ keeps conveying formulas that are only supported by σ itself, should
we keep trusting σ more? We believe that the answer is no. Hence, for trust
to increase in σ because of the new conveyance of φ, there must be evidence
(independent of σ) that was already believed before the revision.

Recall what happens to Sam’s trust after Example 2 where revision with
(CWest,Book) succeeds where CWest�K�(CWest,Book)Sam
= Book. To demon-
strate the second case, consider the following example.

Example 13. Jon conveys “the battle is tomorrow” (φ) so we believe φ. Later,
Sam conveys φ. Since there is a φ-kernel, namely {φ}, such that φ has a source
Jon
= Sam, the existing Sam-independent evidence makes him more trusted
(K ≺Sam K�(φ, Sam)).

(�7: Trust Refutation). If K�(φ, σ) ≺σ′ K, then
1. σ′ �	K ψ with K�(φ, σ) ≺ψ K; or
2. σ′ = σ and φ /∈ Cn(For(B(K�(φ, σ)))).

A source could become less trusted if it is relevant to some formula which got
negatively affected by the revision. That is, trust in a source can change only if
belief in a formula relevant to this source changes. Intuitively that is the case
because reducing trust in a source depends not on the source themselves but on
how much we believe/disbelieve the things a source previously conveyed. Also, if
source σ conveys φ and it is rejected, that could be a sign of σ’s lack of credibility
and hence trust in σ could decrease.

For Case 1, recall Example 11 and consider K�(φ, Jon) ≺Peter K. For Case
2, recall the second scenario in Example 6 where K�(φ, Peter) ≺Peter K.

(�8: History Expansion). H(K�(φ, σ)) = H(K) ∪ {(φ, σ)}.

Information revision should keep track of which information source conveyed
which piece of information.

(�9: Evidential Success). If φ ∈ Cn(For(B(K�(φ, σ)))), then φ ∈
For(B(K�(φ, σ))).

If after revision with φ, φ follows from the beliefs, it must be a belief.
Note that, in none of the postulates, do we require that trust should change

in certain ways, only that it should not. We believe it be unwise to postulate
sufficient conditions for trust change in a generic information revision operation.
For example, one might be tempted to say that, if after revision with φ, ¬φ is no
longer believed, then trust in any source supporting ¬φ should decrease. Things
are not that straightforward, though.

Example 14. Tyrion believes that “If we attack we will win” (Attack → Win)
and that “If we retreat we will not attack” (Retreat → ¬Attack). Peter conveys
Win, then conveys Retreat. Since Tyrion has no evidence against either, he

Trust Is All You Need: From Belief Revision to Information Revision 59

believes both. Now, Jon, who is more trusted than Peter, conveys Attack. Con-
sequently, Tyrion starts believing Attack despite having evidence against it. To
maintain consistency, Tyrion also stops believing Retreat (because it supports
¬Attack).

What should happen to Tyrion’s trust in Peter? We might, at first glance,
think that trust in Peter should decrease as he conveyed Retreat which is no
longer believed. However, one could also argue that trust in Peter should increase
because he conveyed win, which is now being confirmed by Jon. This example
shows that setting general rules for how trust must change is almost impossi-
ble, as it depends on several factors. Whether Tyrion ends up trusting Peter
less, more, or without change appears to depend on how the particular revi-
sion operators manipulates grades. The situation becomes more complex if the
new conveyance by Jon supports several formulas supporting Peter and refutes
several formulas supported by him. In this case, how trust in Peter changes
(or not) would also depend on how the effects of all these support relations are
aggregated. We contend that such issues should not, and cannot, be settled by
general constraints on information revision.

5 Relevant Change Propagation

We now consider a class of operators called relevant change propagation oper-
ators. The operation of a relevant change propagation operator, applied on an
information state K and a formula-source pair (φ, σ), is broken down into three
steps, called waves as follows: 1) revision, 2) refutation, and 3) confirmation.

5.1 Joint Revision Wave

The first wave is a process of belief revision based on kernel contraction [11]
and conditional trust revision. By conditional we mean that trust is not always
revised in this wave, only given a certain condition. On the other hand, belief
revision is always carried on in this wave. To that end, let B |= φ denote the
set of φ-kernels in For(B). Further, let I be an incision function which, given
a set of φ-kernels, selects from their union some elements to be removed such
that For(B) \ I(B |= φ)
|= φ. For enhanced readability, we will use the notation
B \ I(B |= φ) to denote the removal of formula-degree pairs from B such that
For(B)\ I(B |= φ)
|= φ. Finally, let K is the set of all information states induced
by L, S, Db, Dt, ≺b and ≺t.

Definition 3. A joint revision wave is a function WJR : K × L × S −→
K × 2L∪S × 2L∪S such that WJR(K, φ, σ) = 〈K∗,R, C〉 where K = 〈B, T ,H〉
and K∗ = 〈B∗, T ∗,H ∪ {(φ, σ)}〉. Moreover, B∗, T ∗, R, and C are restricted as
follows.

1. B∗, where d, d1, d2 ∈ Db and I an incision function, is one of the following if
Cn({φ})
= L

60 A. Yasser and H. O. Ismail

(a) B \ I(B |= ¬φ) ∪ {(φ, d)}, only if φ /∈ For(B);
(b) B \ (I(B |= ¬φ) ∪ {(φ, d1)}) ∪ {(φ, d2)}, where (φ, d1) ∈ B and d2 ≺b d1

only if ¬φ ∈ Cn(For(B));
(c) B\(I(B |= φ)∪{(¬φ, d1)})∪{(¬φ, d2)}, only if (¬φ, d1) ∈ B and d1 ⊀b d2;
(d) B\(I(B |= ¬φ)∪I(B |= φ)), only if φ /∈ Cn(For(B)) or ¬φ ∈ Cn(For(B)).
and is B \ I(B |= φ) if Cn({φ}) = L.

2. T ∗ = T \ {(σ, d1)} ∪ {(σ, d2)} where d2 = d1 or d2 ≺ d1 only if φ /∈
Cn(For(B∗)).

3. R =
⋃

r∈Δ∪δ

[r]�	K where Δ = {ψ | K∗ ≺ψ K} and δ = {σ′ | K∗ ≺σ′ K}.
4.

C =
{

{φ} ∪ {σ′|φ � σ′
= σ} ∪ {ψ|φ � ψ} ∪ Υ K ≺φ K∗,
∅ otherwise

with Γ σ
φ being the set of σ-independent φ-kernels, if Γ σ

φ
= ∅ then Υ = {σ}
else Υ = ∅.

We illustrate each point in order as follows. Starting with B∗, the goal is to
retain consistency. Hence, if φ is a contradiction, then it is contracted from the
belief base without being added. On the other hand, if φ is not a contradiction
there are four cases which we will, from now on, refer to as WJR’s choices 1-(a),
1-(b), 1-(c), and 1-(d). In choice 1-(a), φ which is not in the formulas is accepted.
Choice 1-(b) captures scenarios where φ was already believed with degree d1 and
then it becomes believed with degree d2. It could be that d1 ≺b d2 making φ
more entrenched, d1 is the same as d2, or d1 �b d2 in which case φ becomes
less entrenched. This last case is only allowed to occur if ¬φ was also already
believed. In choice 1-(c), ¬φ succeeds over φ but that could only occur if ¬φ
was already believed. Moreover, given the restrictions on the grades, ¬φ can
not become more entrenched. Finally, in choice 1-(d), both φ and ¬φ could get
contracted (rejected) only if φ is not already believed or ¬φ is already believed.

Moving on to T ∗. If φ /∈ Cn(For(B∗)), that means φ was rejected. In this
case and in this case only, WJR could decrease trust in σ. Otherwise, WJR does
not change the degree of trust in any source.

To achieve consistency (the main concern of belief revision) some formulas
could become less entrenched. Those formulas are recorded in set Δ. Then, the
refuted set R is constructed to contain all formulas and sources relevant to
formulas in Δ alongside σ, potentially through δ, in the limiting case where φ is
rejected without becoming less entrenched. R is crucial for the operation of the
second wave.

Finally, the confirmed set C records all formulas and sources that potentially
received new (or stronger) evidence only if φ gets more entrenched. These formu-
las include φ and any formula supported by φ. On the other hand, the sources
in C are those supported by φ and σ is only added if there is pre-existing σ-
independent kernels of φ. However, if φ does not get more entrenched, C will be
empty. As we will shortly see, C is needed in the last wave.

The following lemmas hold where WJR(K, φ, σ) = 〈K∗,R, C〉.

Trust Is All You Need: From Belief Revision to Information Revision 61

Lemma 1. Cn(For(B(K∗)))
= L.
Lemma 2. K ≺ψ K∗ only if ψ = φ.

Lemma 3. There is no σ′ such that K ≺σ′ K∗

Lemma 4. K∗ ≺σ′ K only if σ′ = σ.

Lemma 5. K∗ ≺φ K only if ¬φ ∈ Cn(For(B)).

Lemma 6. K ⊀¬φ K∗.

Lemma 7. (ψ, b1) ∈ B(K) and (ψ, b2) ∈ B(K∗) where b2 ≺b b1 only if ψ = φ or
ψ = ¬φ.

Lemma 8. For every ψ ∈ Δ, ψ ∈ Γ ⊆ For(B) where Γ is a ¬φ-kernel or a
φ-kernel.

Lemma 9. For every r ∈ R, r �	K ψ ∈ Γ ⊆ For(B) where Γ is a ¬φ-kernel or
r �	K∗ φ.

5.2 Refutation Propagation Wave

In this wave, a relevant change propagation operator propagates the negative
effects of the revision.

Definition 4. A refutation propagation wave is a function WRP : K×2L∪S×
2L∪S −→ K × 2L∪S such that WRP (K,R, C) = 〈K∗, C〉 with K = 〈B, T ,H〉 and
K∗ = 〈B∗, T ∗,H〉 where

– B∗ = {(ψ, d)|(ψ, d) ∈ B, ψ /∈ R} ∪ {(ψ, d)|(ψ, d′) ∈ B, d �b d′, and ψ ∈
FR(R)}

– T ∗ = {(σ′, d)|(σ′, d) ∈ T , σ′ /∈ R}∪{(σ′, d)|(σ′, d′) ∈ T , d �t d′, and σ′ ∈ R}.
with FR being a refutation selection function where FR(R) ⊆ R and for every
ψ ∈ R \ FR(R), ψ /∈ Cn(For(B∗)).

WRP operates on the belief and trust base of the incoming information state
guided by the refuted set. Any formula that is not in the R is unchanged in B∗.
However, where B∗ differs from B is that the formulas in the refuted set are sub-
ject to a change. The refutation selection function FR(R) ⊆ R selects formulas
that will remain. Hence, any formula in R\FR(R) is contracted. Moreover, any
formula in FR(R) will be added to B∗ without becoming more entrenched. In
other words, it will have a belief degree equal to or smaller than its degree of
belief in B. Similarly, any source not in R is unchanged while any source in R
will not get more trusted in T ∗ over T .

The following holds where WRP (K,R, C) = 〈K∗, C〉.
Lemma 10. There is no ψ ∈ For(B(K∗)) (or σ′ ∈ SK∗) such that K ≺ψ K∗

(or K ≺σ′ K∗).

Lemma 11. If K∗ ≺ψ K (or K∗ ≺σ′ K) then ψ ∈ R (or σ′ ∈ R).

Lemma 12. For(B∗) ⊆ For(B).

62 A. Yasser and H. O. Ismail

5.3 Confirmation Propagation Wave

In this wave, a relevant change propagation operator propagates the positive
effects of the revision.

Definition 5. A confirmation propagation wave is a function WC : K ×
2L∪S −→ K such that WCP (K, C) = K∗ with K = 〈B, T ,H〉 and K∗ =
〈B∗, T ∗,H〉 where

– B∗ = {(ψ, d)|(ψ, d) ∈ B, ψ /∈ C} ∪ {(ψ, d)|(ψ, d′) ∈ B, d ⊀b d′ and ψ ∈ C}
– T ∗ = {(σ′, d)|(σ′, d) ∈ T , σ′ /∈ C} ∪ {(σ′, d)|(σ′, d′) ∈ T , d ⊀t d′ and σ′ ∈ C}

Similar to the description of the operation of WRP , WCP operates on the
belief and trust base of the incoming information state. However, WCP is guided
by the confirmed set. Hence, any formula that is not in the C is unchanged in
B∗ and any source that is not in C is unchanged in T ∗. Further, any formula in
C will be added to B∗ without becoming less entrenched. In other words, it will
have a belief degree equal to or larger than its degree of belief in B. The same
goes for sources in C where any source in R will not get less trusted in T ∗ over
T .

The following holds where WCP (K, C) = K∗.

Lemma 13. There is no ψ ∈ For(B(K∗)) (or σ′ ∈ SK∗) such that K∗ ≺ψ K
(or K∗ ≺σ′ K).

Lemma 14. If C = ∅ then there is no ψ ∈ For(B(K∗)) (or σ′ ∈ SK∗) such that
K ≺ψ K∗ (or K ≺σ′ K∗).

Lemma 15. If K ≺ψ K∗ (or K ≺σ′ K∗) then ψ ∈ C (or σ′ ∈ C).

Lemma 16. For(B∗) = For(B).

Thus, the revision of information state K with formula φ conveyed by source
σ, given a relevant change propagation operator, is the composition of the three
functions in order as follows: WCP (WRP (WJR(K, φ, σ))). We believe that the
decision made by the joint revision function WJR should be based on a com-
parison between φ and its negation if the negation exists in the consequence.
Then, given the weight of evidence and trust in information sources supporting
both, one of the choices (1-(a) through 1-(d)) is made. As shown in Example 14,
a full explanation of what must happen to the degrees of trust in information
sources can not be captured by high-level postulates and hence, to avoid loss of
generality when describing the operator, we stay silent on how WJR’s choices
are made.

In the sequel, let WJR(K, φ, σ) = 〈KJR,R, C〉, WRP (KJR,R, C) = 〈KRP , C〉,
and WCP (KRP , C) = K�.

Observation 1. If ¬φ ∈ For(B(K�)), then ¬φ ∈ For(B(KJR)).

Observation 2. If KJR ≺ψ K, then K� ≺ψ K.

Trust Is All You Need: From Belief Revision to Information Revision 63

Given the previous results, we can now provide a representation theorem
for relevance change propagation operators to fully characterize the process of
information revision in terms of postulates and operators.

Theorem 1. A � operator is an information revision operator if and only if it
is a relevant change propagation operator.

6 Conclusion and Future Work

In this work, we argued that a new, and more realistic, take on belief revision
is needed. Moreover, we provided an argument for why belief and trust revision,
as we denote information revision, are intertwined processes that should not be
separated. A model for representing information, be it beliefs or trust, with min-
imal assumptions on the modeling language was outlined. Then, we introduced
the support graph which is a formal structure that allows for the identifica-
tion of the relevance relations between not only formulas, but also, information
sources. Further, we illustrated the postulates, we believe, any rational informa-
tion revision operator should observe. Finally, we proposed the relevant change
propagation operator showing that any information revision operator could be
modeled as a relevant change propagation operator. In doing so, we hope to have
opened a new direction of research and discourse that further investigates the
relationship between belief and trust in the credibility of information sources
allowing for building more astute agents similar to the spark first induced by the
original AGM-approach.

Future work could go in one or more of the following directions

1. We intend on incorporating trust and conveyance in the object language.
2. We plan on incorporating mistrust as opposed to simply not trusting an agent

to a general framework capturing misleading, trust, mistrust, beliefs and their
revision.

3. Finally, we would like to add desires, intentions and possibly other mental
attitudes and attempt to create a unified revision theory for all mental atti-
tudes. The reason is that there is a direct relationship between trust and other
mental attitudes. For example, trusting your friend who told you “Gym X is
the best gym” will affect your intention formulation to achieve the goal “get
in shape” by choosing to go to gym X in particular. Similarly, by trusting
a review online that “Restaurant Y has the best pizza”, your desires could
get affected by now desiring to go to restaurant Y of all restaurants. Lastly,
since the credibility of the source of any piece of information is always subject
to revision, what constitutes any mental attitude is also subject to revision
given trust change.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symbol. Logic 50(2), 510–530
(1985)

64 A. Yasser and H. O. Ismail

2. Alchourrón, C.E., Makinson, D.: On the logic of theory change: contraction func-
tions and their associated revision functions. Theoria 48(1), 14–37 (1982)

3. Barber, K.S., Kim, J.: Belief revision process based on trust: agents evaluating
reputation of information sources. In: Falcone, R., Singh, M., Tan, Y.H. (eds.)
Trust Cyber-Soc., pp. 73–82. Springer, Heidelberg (2001)

4. Booth, R., Hunter, A.: Trust as a precursor to belief revision. J. Artif. Intell. Res
61, 699–722 (2018)

5. Castelfranchi, C., Falcone, R.: Principles of trust for MAS: cognitive anatomy,
social importance, and quantification. In: Proceedings International Conference on
Multi Agent Systems (Cat. No. 98EX160), pp. 72–79. IEEE (1998)

6. Castelfranchi, C., Falcone, R.: Trust is much more than subjective probability:
mental components and sources of trust. In: Proceedings of the 33rd Annual Hawaii
International Conference on System Sciences, p. 10. IEEE (2000)

7. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artif. Intell. 89(1–
2), 1–29 (1997)

8. Falcone, R., Castelfranchi, C.: Social trust: A cognitive approach. In: Trust and
deception in virtual societies, pp. 55–90. Springer (2001)

9. Gärdenfors, P., Makinson, D.: Revisions of knowledge systems using epistemic
entrenchment. In: Proceedings of the 2nd Conference on Theoretical Aspects of
Reasoning about Knowledge, TARK 1988, pp. 83–95. Morgan Kaufmann Publish-
ers Inc. (1988)

10. Hansson, S.O.: Belief contraction without recovery. Studia logica 50(2), 251–260
(1991)

11. Hansson, S.O.: Kernel contraction. J. Symb. Logic 59(3), 845–859 (1994). http://
www.jstor.org/stable/2275912

12. Hansson, S.O.: A survey of non-prioritized belief revision. Erkenntnis 50(2–3),
413–427 (1999)

13. Hansson, S.O.: Ten philosophical problems in belief revision. J. Logic Comput.
13(1), 37–49 (2003)

14. Hardwig, J.: The role of trust in knowledge. J. Philos. 88(12), 693–708 (1991)
15. Holton, R.: Deciding to trust, coming to believe. Aust. J. Philos. 72(1), 63–76

(1994)
16. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation

model for open multi-agent systems. Auton. Agents Multi-Agent Syst. 13(2), 119–
154 (2006)

17. Jonker, C.M., Treur, J.: Formal analysis of models for the dynamics of trust based
on experiences. In: Garijo, F.J., Boman, M. (eds.) MAAMAW 1999. LNCS (LNAI),
vol. 1647, pp. 221–231. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48437-X 18

18. Jøsang, A., Hayward, R., Pope, S.: Trust network analysis with subjective logic.
In: Proceedings of the 29th Australasian Computer Science Conference, vol. 48,
pp. 85–94. Australian Computer Society, Inc. (2006)

19. Jøsang, A., Ivanovska, M., Muller, T.: Trust revision for conflicting sources. In:
2015 18th International Conference on Information Fusion (Fusion), pp. 550–557.
IEEE (2015)

20. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artif. Intell. 52(3), 263–294 (1991)

21. Lorini, E., Jiang, G., Perrussel, L.: Trust-based belief change. In: Schaub, T.,
Friedrich, G., O’Sullivan, B. (eds.) Proceedings of the 21st European Conference on
Artificial Intelligence (ECAI 2014). Frontiers in Artificial Intelligence and Appli-
cations, vol. 263, pp. 549–554. IOS Press, Amsterdam (2014)

http://www.jstor.org/stable/2275912
http://www.jstor.org/stable/2275912
https://doi.org/10.1007/3-540-48437-X_18
https://doi.org/10.1007/3-540-48437-X_18

Trust Is All You Need: From Belief Revision to Information Revision 65

22. McLeod, C.: Trust. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, fall 2015 edn. (2015)

23. Niederée, R.: Multiple contraction a further case against gärdenfors’ principle of
recovery. In: Fuhrmann, A., Morreau, M. (eds.) The Logic of Theory Change.
LNCS, vol. 465, pp. 322–334. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0018427

24. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. Knowle.
Eng. Rev. 19(1), 1–25 (2004)

25. Rott, H.: Preferential belief change using generalized epistemic entrenchment. J.
Logic Lang. Inf. 1(1), 45–78 (1992)

26. Tamargo, L.H., Garćıa, A.J., Falappa, M.A., Simari, G.R.: On the revision of
informant credibility orders. Artif. Intell. 212, 36–58 (2014)

27. Tamargo, L.H., Gottifredi, S., Garćıa, A.J., Simari, G.R.: Sharing beliefs among
agents with different degrees of credibility. Knowl. Inf. Syst. 50(3), 999–1031
(2016). https://doi.org/10.1007/s10115-016-0964-6

28. Tarski, A.: Logic semantics, metamathematics papers from 1923 to 1938. Trans-
lated by JH Woodger (1956)

29. Yasser, A., Ismail, H.O.: On the joint revision of belief and trust. In: Proceedings of
the 6th Workshop on Formal and Cognitive Reasoning (FCR) Co-Located with the
43rd German Conference on Artificial Intelligence (KI 2020), Bamberg, Germany,
21–25 September 2020, pp. 55–68. CEUR Workshop Proceedings. http://ceur-ws.
org/Vol-2680/paper5.pdf

30. Yasser, A., Ismail, H.O.: Information revision: the joint revision of belief and trust.
In: Proceedings of the 18th International Workshop on Non-Monotonic Reasoning
(NMR2020), pp. 150–160 (2020). https://nmr2020.dc.uba.ar/WorkshopNotes.pdf

https://doi.org/10.1007/BFb0018427
https://doi.org/10.1007/BFb0018427
https://doi.org/10.1007/s10115-016-0964-6
http://ceur-ws.org/Vol-2680/paper5.pdf
http://ceur-ws.org/Vol-2680/paper5.pdf
https://nmr2020.dc.uba.ar/WorkshopNotes.pdf

Reasoning about Actions, Causality,
and Change

Computing Defeasible Meta-logic

Francesco Olivieri1, Guido Governatori2, Matteo Cristani3(B),
and Abdul Sattar1

1 Institute for Integrated and Intelligent Systems, Griffith University,
Nathan, QLD 4111, Australia

{f.oliveri,a.sattar}@griffith.edu.au
2 Data61, CSIRO, Dutton Park, QLD 4102, Australia

guido.governatori@data61.csiro.au
3 University of Verona, 37136 Verona, Italy

matteo.cristani@univr.it

Abstract. The use of meta-rules, i.e., rules whose content includes other
rules, has been advocated to model policies and the notion of power
in legal reasoning, where an agent has the power to create new norms
affecting other agents. The use of Defeasible Logic (DL) to model meta-
rules in the application area we just alluded to has been investigated,
but not from a computational viewpoint. Our aim is to fill this gap by
introducing a variant of DL, Defeasible Meta-Logic, to represent defea-
sible meta-theories, by proposing efficient algorithms to compute the
(meta-)extensions of such theories, and by proving their computational
complexity.

1 Introduction

We investigate the issue of efficient computation of meta-rules: rules having rules
as their elements. The key idea is that a rule is a (binary) relationship between
a set of conditions, and a conclusion. The meaning of such a relationship is to
determine under which conditions a conclusion can be generated. Meta-rules
generalise such an idea by establishing that, in addition to standard conclusions,
rules themselves can be the “conclusion” (and part of the set of conditions), and
new rules can hence be generated from other rules. Meta-rules (or rules with
nested rules) occur frequently in real life scenarios, such as normative reasoning,
policies for security systems. Very often when a set of policies is represented by a
set of rules, we have to consider the policy that contains conditions (rules) about
itself (or about another set of rules/policies). Consider the example in [27], where
a company has a security policy specifying that: (i) a piece of information is
deemed confidential when its disclosure would harm the interests of the company,
and that (ii) confidential information must be protected (and hence cannot be
disclosed). Such a policy can be naturally represented by the meta-rule

(
Disclose(x) → HarmInterests

) → Confidential(x).

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 69–84, 2021.
https://doi.org/10.1007/978-3-030-75775-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_6

70 F. Olivieri et al.

Now, in this policy, the condition about harming the interests should be repre-
sented by an hypothetical expression: an ‘If (. . .)Then (. . .)’ rule is the most
natural way to represent such a construct. Furthermore, the hypothetical is part
of the conditions to define when a piece of information is confidential (actually,
in this case, is the condition itself). Unfortunately, we cannot use classical mate-
rial implication (⊃), given the well-known paradoxes of material implication.
Consequently, if we model the policy as

(Disclose(x) ⊃ HarmInterests) → Confidential(x),

given the equivalence between Disclose(x) ⊃ HarmInterests and ¬Disclose(x) ∨
HarmInterests, we have the counter-intuitive scenarios where (1) if x is not
disclosed then x is confidential (information that is not confidential, no matter
if disclosed or not, it does not need to be protected), and (2) if, for any reason,
company interests are harmed, then x is confidential, for any piece of information.
The policy can neither be defined as

(
Disclose(x) ∧ HarmInterests

) → Confidential(x)

given that a disclosed information (with consequent harm of interest) can no
longer be considered confidential. Another situation where meta-rules are useful
is when the inclusion of a rule in a set of rules depends upon whether other rules
are already in the system. For instance, we can have

r1 → r2,

indicating that the existence of rule r2 in the system depends on the existence
in the system of rule r1. However, typically, such dependencies among rules are
stored externally, but if we model them directly into the system using meta-rules,
then we can include (or remove) r2 automatically, depending on the other rules it
depends upon (and thus automating the system’s maintenance functionalities).
In addition, this feature is beneficial to system integration as it supports context
dependant rules. The definition of context dependant policies is valuable in many
situations; for instance, the defence forces of a country can have different rules
of engagement, depending on the environment in which they are situated. One
might think that a simple (and somehow naive) way to achieve this would be to
partition the rules into independent rule sets, one for each context, and then to
use simpler rules (without nested rules). However, as discussed, there could be
dependencies among the rules, and the environments themselves can be defined
in terms of rules. Thus, a clear partition of the simple rules might not be feasible.

Meta-rules are useful when a set of rules can provide conditions about other
conditions in the same policy. This is the case in legal documents, where often
there are provisions conferring power, or delegation, to some agents; in the legal
domain, the notion of power is when the legal system allows an agent to create,
issue, or revoke, norms affecting other agents. Several works (see [10,18]) tried
to model such notions using conditional logics since, similarly to hypothetical
conditionals, such notions can be faithfully and efficiently represented as rules.

Computing Defeasible Meta-logic 71

Another area of legal reasoning, where meta-rules proved to be essential to
represent the legal processes at hand, is related to the of field of norm change. As
we argued, many legislative instruments contain provisions (norms) about who
has the power to create, modify, revoke, or abrogate other norms. If norms can
be represented as rules [26], and there are norms ‘speaking about’ other norms,
then it would be natural to have rules whose content consists of other rules.

Different variants of defeasible logic have been proposed [4,16] to incorporate
meta-rules in order to describe the logical behaviour of norm changes. An impor-
tant aspect of norm changes is that some legal systems can specify that specific
norms cannot exist (or cannot be in force) in that particular legal system. For
example, in the Italian Constitution, Article 27 prescribes that there cannot be
norms in the Italian legal system prescribing Capital Punishment. This means
that a meta-norm can speak about the positive existence of a rule, as well as
preventing a rule to be generated.

To this end, we will distinguish between the content of a rule (which is a
binary relationship between a set of premises and a conclusion, both represented
as propositions in an underlying, given language), and the name, or identifier, of
the rule itself. In this set up, a rule can be understood as a function associating a
label to the content of the rule. Similarly, a meta-rule is a function that associates
the name, or label, to the content, but in this case the elements of the binary
relation corresponding to the content of the meta-rule can contain other rules.

In addition, we will admit negation of rules. If we are able to conclude that
a (positive) rule holds, then it means that we can insert the rule (the content
of the rule, with a specific name) in the system, and we can use the resulting
rule to derive new conclusions. For a negated rule, the meaning is that it is not
possible to obtain a rule with that specific content (irrespective of the name).

The paper is structured as follows. In Sect. 2 we introduce a variant of Defea-
sible Logic able to handle rules and meta-rules and we propose the proof theory
of the logic. Then in Sect. 3 we introduce a computationally efficient algorithm to
compute the extension of a Defeasible Theory with rules and meta rules and we
show that the extension is computable in polynomial time. Finally, we provide
some conclusion and a quick discussion on some related work in Sect. 4.

2 Logic

Defeasible Logic [1] is a simple and efficient rule-based non-monotonic formal-
ism that proved to be suitable for the logical modelling of different application
areas, specifically agents [5,14,19], legal reasoning [4,16], and workflows from
a business process compliance perspective [13,24,25]. Some of these application
fields requires the modelling of contexts and the use of rules in the scope of other
rules. Accordingly, extensions of the logic have been developed to capture such
features by adopting meta-rules. However, the work on meta-rules in Defeasi-
ble Logic focused on defining the extensions of the logic, specifically the proof
theoretic features, neglecting to investigate the computational aspects. A major
strength of the Defeasible Logic approach, that makes it appealing from the

72 F. Olivieri et al.

application point of view, is its feasible computational complexity. This paper
fills the gap. We start by providing the presentation of the logic from the proof
theoretic point of view, and then we will see how to create an efficient algorithm
to compute the extension of a defeasible meta-theory.

Let PROP be a set of propositional atoms, and Lab be a set of arbitrary
labels (the names of the rules). Accordingly, Lit = PROP ∪ {¬l | l ∈ PROP} is
the set of literals. The complement of a literal l is denoted by ∼l: if l is a positive
literal p then ∼l is ¬p, and if l is a negative literal ¬p then ∼l is p. If α ∈ Lab is
a rule label, then ¬α is a rule expression as well, and we use the same convention
defined for literals for ∼α. We use lower-case Latin letters to denote literals, and
lower-case Greek letters to denote rule labels and negated rule labels.

The set of rules is made of two sets: standard rules RS , and meta-rules RM .
A standard rule β ∈ RS is an expression of the type ‘β : A(β) ↪→ C(β)’, and
consists of: (i) the unique name β ∈ Lab, (ii) the antecedent A(β) ⊆ Lit, (iii) an
arrow ↪→∈ {→,⇒,�} denoting, respectively, a strict rule, a defeasible rule and
a defeater, (iv) its consequent C(β) ∈ Lit, a single literal. Hence, the statement
“All computing scientists are humans” is formulated through a strict rule (as
there is no exception to it), whilst “Computing scientists travel to the city of the
conference” is instead formalised through a defeasible rule as “During pandemic
travels might be prohibited” is a defeater representing an exception to it.

A meta rule is a slightly different concept than a standard rule: (i) standard
rules can appear in its antecedent, and (ii) the conclusion itself can be a standard
rule. Accordingly, a meta rule β ∈ RM is an expression of the type ‘β : A(β) ↪→
C(β)’, and consists of: (i) a unique name β ∈ Lab, (ii) the antecedent A(β) is
now a finite subset of Lit ∪ RS , (iii) the arrow ↪→ with the same meaning as for
standard rules, and (iv) its consequent C(β) ∈ Lit ∪ RS , that is either a single
literal or a standard rule (meta-rules can be used to derive standard rules).

A defeasible meta-theory (or simply theory) D is a tuple (F, R,>), where
R = Rstand ∪ Rmeta such that Rstand ⊆ RS and Rmeta ⊆ RM . F is the set of
facts, indisputable statements that are considered to be always true, and which
can be seen as the inputs for a case. Rules in R can be of three types: strict
rules, defeasible rules, or defeaters. Strict rules are rules in classical sense: every
time the premises are the case, so is the conclusion. Defeasible rules represent
the non-monotonic part of a defeasible meta-theory as they describe pieces of
information that are true under some circumstances, while false or undetermined
under others. Accordingly, when the premises of a defeasible rules are the case,
so typically is the conclusion but it can be prevented to be the case by contrary
evidence. Defeaters are a special type of rules whose only purpose is to defeat
contrary statements, but cannot be used to directly draw a certain conclusion.
Finally, we have the superiority or preference relation > among rules, which is
binary and irreflexive, and is used to solve conflicts. The notation β > γ means
(β, γ) ∈>.

Some abbreviations. The set of strict rules in R is Rs, and the set of strict
and defeasible rules is Rsd. R[X] is the rule set with head X ∈ {Lit ∪ RS}. A
conclusion of D is either a tagged literal or a tagged label (for a standard rule),
and can have one of the following forms with the standard meanings in DL:

Computing Defeasible Meta-logic 73

– ±Δl means that l ∈ Lit is definitely provable (resp. refuted, or non provable)
in D, i.e. there is a definite proof for l (resp. a definite proof does not exist);

– ±Δmetaα, α ∈ Rstand, with same meaning as above;
– ±∂l means that l is defeasibly provable (resp. refuted) in D;
– ±∂metaα, α ∈ Rstand, with the same meaning as above.

The definition of proof is also the standard in DL. Given a defeasible meta-theory
D, a proof P of length n in D is a finite sequence P (1), P (2), . . . , P (n) of tagged
formulas of the type +ΔX, −ΔX, +∂X, −∂X, where the proof conditions
defined in the rest of this section hold. P (1..n) denotes the first n steps of P .

Derivations are based on the notions of a rule being applicable or discarded.
Briefly, in Standard DL when antecedents are made only by literals, a rule is
applicable when every antecedent’s literal has been proved at a previous deriva-
tion step. Symmetrically, a rule is discarded when one of such literals has been
previously refuted. We need to adapt such concepts to deal so that standard
rules may appear both in the antecedent, and as conclusions of meta-rules: we
thus say that a meta-rule is applicable when each of the standard rules in its
antecedent either is in the initial set of standard rules, or has been proved.

Definition 1 (Applicability). Given a defeasible meta-theory D = (F, R,>),
R = Rstand ∪ Rmeta, a rule β ∈ R is #-applicable, # ∈ {Δ, ∂}, at P (n + 1) iff

1. ∀l ∈ Lit ∩ A(β). + #l ∈ P (1..n),
2. ∀α ∈ RS ∩ A(β) either (a) α ∈ Rstand, or (b) +#metaα ∈ P (1..n).

Notion of discardability is derived by applying the principle of strong negation1.

Definition 2 (Discardability). Given a defeasible meta-theory D = (F, R,>),
R = Rstand ∪ Rmeta, a rule β ∈ R is #-discarded, # ∈ {Δ, ∂}, at P (n + 1) iff

1. ∃l ∈ Lit ∩ A(β). − #l ∈ P (1..n), or
2. ∃α ∈ RS ∩ A(β) such that (a) α /∈ Rstand and (b) −#metaα ∈ P (1..n)

When β is a meta-rule and α is not in Rstand (hence α is the conclusion of a meta-
rule), then β will stay dormant until a decision on α (of being proved/refuted) is
made. The following example is to get acquainted with the concepts introduced.

Example 1. Let D = (F = {a, b}, R, ∅) be a theory such that

R = {α : a ⇒ β; β : b, β ⇒ ζ; γ : c ⇒ d; ϕ : ψ ⇒ d}.

Here, both α and β are applicable (we will see right below how to prove
+∂metaβ), whilst γ and ϕ are discarded as we cannot prove +∂c nor ∂metaψ.

1 The strong negation principle applies the function that simplifies a formula by mov-
ing all negations to an inner most position in the resulting formula, and replaces the
positive tags with the respective negative tags, and the other way around see [15].

74 F. Olivieri et al.

All proof tags for literals are the standard in DL literature [1], and reported
here to make the paper self-contained. For this reason, we will omit the negative
counterparts as they are straightforwardly obtained from the positive ones by
applying the strong negation principle. The definition of Δ for literals describes
forward chaining of strict rules.

+Δl: If P (n + 1) = +Δl then
(1) l ∈ F, or (2) ∃β ∈ Rs[l] s.t. β is Δ-applicable.

We now introduce the proof tag for defeasible provability of a literal.

+∂l: If P (n + 1) = +∂l then
(1) +Δl ∈ P (1..n), or
(2) (1) −Δ∼l ∈ P (1..n), and

(2) ∃β ∈ Rsd[l] s.t. β is ∂-applicable, and
(3) ∀γ ∈ R[∼l] then either

(1) γ is discarded, or (2) ∃ε ∈ R[l] s.t ε is ∂-applicable and ε > γ.

We are finally ready to propose the proof tags to prove (standard) rules.

+Δmetaα: If P (n + 1) = +Δmetaα then
(1) α ∈ Rstand, or (2) ∃β ∈ Rmeta

s [α] s.t. β is Δ-applicable.

A standard rule is strictly proven if either (1) such a rule is in the initial set of
standard rules, or (2) there exists an applicale, strict meta-rule for it.

+∂metaα: If P (n + 1) = +∂metaα then
(1) +Δmetaα ∈ P (1..n), or
(2) (1) −Δmeta∼α ∈ P (1..n), and

(2) ∃β ∈ Rmeta
sd [(α : a1, . . . , an ↪→ c)] s.t.

(3) β is ∂-meta-applicable, and
(4) ∀γ ∈ Rmeta[∼(ζ : a1, . . . , an ↪→ c)], then either

(1) γ is ∂-meta-discarded, or
(2) ∃ε ∈ Rmeta[(χ : a1, . . . , an ↪→ c)] s.t.

(1) χ ∈ {α, ζ}, (2) ε is ∂-meta-applicable, and (3) ε > γ.

A standard rule α is defeasibly proven if it has previously strictly proven (1), or
(2.1) the opposite is not strictly proven and (2.2-2.3) there exists an applicable
(defeasible or strict) meta-rule β such that every meta-rule γ for ∼ζ (A(α) =
A(ζ) and C(α) = C(ζ)) either (2.4.1) γ is discarded, or defeated (2.4.2.3) by
(2.4.2.1–2.4.2.2) an applicable meta-rule for the same conclusion c. Note that in
Condition 2.3 we do not impose that α ≡ ζ, whilst for γ-rules we do impose that
the label of the rule in C(γ) is either α or ζ.

−∂metaα: If P (n + 1) = −∂metaα then
(1) −Δmetaα ∈ P (1..n), and either
(2) (1) +Δmeta∼α ∈ P (1..n), or

(2) ∀β ∈ Rmeta
sd [(α : a1, . . . , an ↪→ c)] then

Computing Defeasible Meta-logic 75

(3) β is ∂-meta-discarded, or
(4) ∃γ ∈ Rmeta[∼(ζ : a1, . . . , an ↪→ c)] s.t.

(1) γ is ∂-meta-applicable, and
(2) ∀ε ∈ Rmeta[(χ : a1, . . . , an ↪→ c)] then

(1) χ /∈ {α, ζ}, or (2) ε is ∂-meta-discarded, or (3) ε �> γ.

Given a defeasible meta-theory D, we define the set of positive and negative
conclusions of D as its meta-extension:

E(D) = (+Δ,−Δ,+Δmeta,−Δmeta,+∂,−∂,+∂meta,−∂meta),

where ±# = {l | l appears in D and D � ±#l} and ±#meta = {α ∈ RS |α
appears as consequent of a meta-rule β and D � ±#metaα}, # ∈ {Δ, ∂}.

Let us propose two theories to explain how the derivation mechanism works.

Example 2. Let D = (F = {a}, R,>= {(ζ, χ)}) be a theory such that

Rstand = {α : a ⇒ b, β : b ⇒ ∼c, ζ : ∼c ⇒ ∼d, χ : a ⇒ d},

Rmeta = {γ : (α : a ⇒ b) ⇒ c}.

As a ∈ F, we prove D � +Δa, which in cascade give us D � +∂a (β is hence
∂-applicable). Since α ∈ Rstand, α is ∂-applicable and D � +∂b. Moreover,
D � +Δmetaα and D � +∂metaα, which makes in turn γ being ∂-applicable. We
conclude with both D � −∂c and D � −∂∼c, as the superiority does not solve
the conflict between β and γ. The dormant χ and ζ can now be considered: χ is
∂-applicable whereas ζ is ∂-discarded. Thus, D � +∂d.

Example 3. Let D = (F = {a, c, d, g}, R,>= {(β, γ)(ζ, η)}) be a theory where

Rstand = {α : a ⇒ b, ζ : g ⇒ ∼b},

Rmeta = {β : c, (α : a ⇒ b) ⇒ (η : d ⇒ b), γ : d ⇒ ∼(χ : d ⇒ b)}.

As a, c, d and g are facts, we strictly and defeasibly prove all of them. Hence,
α, ζ, β and γ are all ∂-applicable. As before, α ∈ Rstand, thus D � +Δmetaα
and D � +∂c make β being ∂-applicable as well. As β > γ, we conclude that
D � +∂metaη, but we prove also D � −∂metaχ (by Conditions 2.4 and 2.4.1 of
−∂meta). Again, d being a fact makes η to be ∂-applicable. ζ has been dormant
so far, but it can now be confronted with η: since η is weaker than ζ, then
D � +∂∼b (and naturally D � −∂b).

The logic presented above is coherent and consistent. This means that given a
defeasible meta-theory D: (a) it is not possible to establish that a conclusion
is, at the same time, proved and refuted, and (b) if we have positive defeasi-
ble proofs for a conclusion and its complement, then the inconsistency depends
on the strict (monotonic) part of the theory. This is formally stated in next
Proposition 1, which follows from the adoption of the strong principle to formu-
late the definitions of the proof conditions for positive/negative pairs of proof
tags [15].

76 F. Olivieri et al.

Proposition 1. Let D be a theory. There is not literal p, or label α, such that

(a) D � +#p and D � −#p, for # ∈ {Δ,Δmeta, ∂, ∂meta}.
(b) If D � +∂p and D � +∂∼p, then D � +Δp and D � +Δp; if D � +∂metaα

and D � +∂meta∼α, then D � +Δmetaα and D � +Δmetaα.

3 Algorithms

The algorithms presented in this section compute the meta-extension of a defea-
sible meta-theory. The main idea being to compute, at each iteration step, a
simpler theory than the one at the previous step. By simpler, we mean that,
by proving and disproving literals and standard rules, we can progressively sim-
plify the rules of the theory itself. We remind the reader that, roughly said, a
rule is applicable when everything in its antecedent has been proved. Note that,
trivially, a rule with empty antecedent is always applicable, as there is nothing
to prove. Symmetrically, a rule is discarded if (at least) one of the antecedent’s
element has been previously rejected. When a rule is discarded, it can no longer
play part in neither supporting its conclusion, nor rejecting the opposite.

Let us consider the theory proposed in Example 2, and let us assume that,
at iteration j, the algorithm proves +∂b. At the next iteration j + 1, β will
be modified according to what discussed above, and will be β : ∅ ⇒ ∼c (β is
thus applicable). Later on, at iteration k, the algorithms prove −∂∼c, and then
proceed in removing χ from the set of the potentially applicable rules (as χ is
∂-discarded according to Definition 2) and the tuple (ζ, χ) from the superiority,
as χ can no longer play any part in supporting ∼d.

According to these observations, during the run of the algorithms, every
time that a literal or a standard rule is proven, we can remove it from all the
antecedents where it appears in. A rule thus becomes applicable when we have
removed all the elements from its antecedent. On the contrary, whenever a literal
or a standard rule is rejected, we can remove all the rules where such an element
appears in the antecedent, as those rules are now discarded. We can also remove
all the tuples of the superiority relation containing such discarded rules. The
idea of these simplifications is taken from [12,14].

As discussed in Sect. 2, a meta-rule is applicable when each standard rule in
its antecedent is either in the initial set of rules (i.e., in Rstand), or has been
proved later on during the computation and then added to the set of standard
rules. This it the reason for the support sets at Lines 1 and 2: Rappl is the rule
set of the initial standard rules, RαC is the set of standard rules which are not
in the initial set but are instead conclusions of meta-rules. As rules in RαC are
proved/disproved during the algorithms’ execution, both these sets are updated.

At Line 3, we populate the Herbrand Base (HB), which consists of all literals
that appear in the antecedent, or as a conclusion of a rule. As literals not in the
Herbrand base do not have any standard rule supporting them, such literals are
already disproved (Line 4). For every literal in HB, we create the support set
of the rules supporting that particular conclusion (Line 6), and we initialise the
relative set used later on to manage conflicts and team defeater (Line 7).

Computing Defeasible Meta-logic 77

Algorithm 1: Existence
Input: Defeasible meta-theory D = (F, R, >), R = Rstand ∪ Rmeta

Output: The defeasible meta-extension E(D) of D
1 ±∂ ← ∅; ±∂meta ← ∅; Rappl ← Rstand;

2 RαC ← {α ∈ RS | ∃β ∈ Rmeta. C(β) = α};

3 HB = {l ∈ Lit | ∃β ∈ Rstand. l ∈ A(β) ∪ C(β)} ∪ {l ∈ Lit | ∃β ∈ Rmeta.∃α ∈
RS (α ∈ A(β) ∪ C(β)) ∧ (l ∈ A(α) ∪ C(α))};

4 for l ∈ Lit ∧ l /∈ HB do −∂ ← −∂ ∪ {l};
5 for l ∈ HB do

6 R[l] = {β ∈ RS | C(β) = l ∧ (β ∈ Rstand ∨ ∃γ ∈ Rmeta. β ∈ C(γ))};
7 R[l]infd ← ∅;

8 for α /∈ Rstand ∪ RαC do −∂meta ← −∂meta ∪ {α};

9 for
(
α : A(α) ↪→ C(α)

) ∈ RαC do
10 R[α] ← {β ∈ Rmeta | α = C(β)};
11 R[α]opp ← {γ ∈ Rmeta | C(γ) = ∼(

ζ : A(α) ↪→ C(α)
)};

12 R[α]supp ← {
ε ∈ Rmeta | (C(ε) = (χ : A(α) ↪→ C(α))

) ∧ (∃γ ∈ R[α]opp. ε >
γ
) ∧ (

χ = α ∨ (∃γ ∈ R[α]opp.C(γ) = ∼(ζ : A(α) ↪→ C(α)) ∧ χ = ζ)
)}

;

13 for l ∈ F do
14 +∂ ← +∂ ∪ {l};
15 R ← {A(β) \ {l} ↪→ C(β) | β ∈ R} \ {β ∈ R | ∼l ∈ A(β)};
16 > ← > \ {(β, γ), (γ, β) ∈> | ∼l ∈ A(β)};

17 for α ∈ Rstand do
18 +∂meta ← +∂meta ∪ {α};
19 Rmeta ← {A(β) \ {α} ↪→ C(β) | β ∈ Rmeta} \ {γ ∈ Rmeta | {∼α} ∈ A(γ)};
20 > ← > \{(β, γ), (γ, β) ∈> | {∼α} ∈ A(β)};

21 repeat
22 ∂± ← ∅
23 for l ∈ HB do
24 if R[l] = ∅ then Refute(l);
25 if ∃β ∈ R[l]. A(β) = ∅ then
26 R[∼l]infd ← R[∼l]infd ∪ {γ ∈ R[∼l] | β > γ};
27 if {γ ∈ R[∼l] | γ > β} = ∅ then Refute(∼l);
28 if R[∼l] \ R[∼l]infd = ∅ then
29 Prove(l); Refute(∼l);

30 ±∂ ← ±∂ ∪ ∂±;
31 ±∂meta ← ∅;

32 for
(
α : A(α) ↪→ C(α)

) ∈ RαC do
33 if R[α] = ∅ then Refute(α);
34 if ∃β ∈ R[α]. A(β) = ∅ then
35 R[α]opp ← R[α]opp \ {γ ∈ Rmeta | β > γ};
36 if

(
R[α]opp \ {γ ∈ R[α]opp | ε ∈ R[α]supp ∧ A(ε) = ∅ ∧ ε > γ})

= ∅
then

37 Prove(α);
38 for γ ∈ R[α]opp. C(γ) = ∼(ζ) do Refute(∼ζ);

39 ±∂meta ← ±∂meta ∪ ∂±
meta

40 until ∂+ = ∅ and ∂− = ∅ and ∂+
meta = ∅ and ∂−

meta = ∅;
41 return E(D) = (+∂, −∂, +∂meta, −∂meta)

78 F. Olivieri et al.

We need to do the same for those labels for standard rules that are conclu-
sions of a meta-rule. First, if a label for standard rule is neither in the initial set
of standard rules, nor a conclusion of a meta-rules, then such a rule is disproved
(Line 8). We assume such sets to have empty intersection, as previously moti-
vated. Second, the following loop at Lines 17–20 initialises three support sets:
R[α] contains the meta-rules whose conclusion is α, R[α]opp contains the meta-
rules attacking α (γ-like rules in ±∂meta), while R[α]supp contains the meta-rules
supporting α (ε-like rules in ±∂meta).

The following for loop takes care of the factual literals, as they are proved
without any further computation. We assume the set of facts to be consistent.
Analogously, loop at Lines 17–20 does the same for rules in the initial set of
standard rules that may appear in the antecedent of meta-rules.

The algorithm now enters the main cycle (Repeat-Until, Lines 21–40). For
every literal l in HB (Lines 23–29), we first verify whether there is a rule support-
ing it, and, if not, we refute l (Line 24). Otherwise, if there exists an applicable
rule β supporting it (if at Line 25), we update the set of defeated rules sup-
porting the opposite conclusion R[∼l]infd (Line 26). Given that R[∼l] contains
the γ rules supporting ∼l, and given that we have just verified that β for l is
applicable, we store in R[∼l]infd all those γs defeated by β. The next step is to
check whether there actually exists any rule supporting ∼l stronger than β: if
not, ∼l can be refuted (Line 27).

The idea behind the if at Lines 28–29 is the following: if D � +∂l, eventually
the repeat-until cycle will have added to R[∼l]infd enough rules to defeat all
(applicable) supports for ∼l. We thus invoke Prove on l, and Refute on ∼l.

Similarly, when we prove a rule instead of a literal, but we now use R[α]opp

and R[α]supp in a slightly different way than R[l]infd, to reflect the differences
between +∂ and +∂meta. Every time, a meta-rule β for α is applicable (if at
Lines 34–38), we remove from R[α]opp all the γs defeated by β itself (Line 35). If
now there are enough applicable ε rules supporting α (if check at Line 36), then:
(i) we prove α, and (ii) we refute all ζ rules conclusion of γ rules in R[α]opp.

Procedure Prove
Input: X, which is either l ∈ Lit, or a rule α : A(α) ↪→ C(α)

1 if X is l then
2 ∂+ ← ∂+ ∪ {l}; HB ← HB \ {l};
3 Rappl ← {A(β) \ {l} ↪→ C(β) | β ∈ Rappl};
4 Rmeta ← {A(β) \ {l} ↪→ C(β) | β ∈ Rmeta};

5 else
6 ∂+

meta ← ∂+
meta ∪ {α};

7 RαC ← RαC \ {α};
8 Rmeta ← {A(β) \ {α} ↪→ C(β)| β ∈ Rmeta};
9 if ∃l ∈ −∂ ∩ A(α) then A(α) ← A(α) \ +∂; Rappl ← Rappl ∪ {α};

Procedure Prove is invoked when a literal or a standard rule is proved. In
case of a literal, we simplify the rules of the theory following what said at the

Computing Defeasible Meta-logic 79

beginning of this section. In case of a rule, we also need to verify whether any
of the literal in its antecedent has been already refuted (if check at Line 9). If
this is the not case, we can proceed in simplifying α’s antecedent, and then in
adding α to the set of standard rules to be evaluated to be applicable.

Procedure Refute
Input: X, which is either l ∈ Lit, or a rule α : A(α) ↪→ C(α)

1 if X is l then
2 ∂− ← ∂− ∪ {l}; HB ← HB \ {l};
3 Rappl ← Rappl \ {β ∈ Rappl | l ∈ A(β)};
4 Rmeta ← Rmeta \ {β ∈ Rmeta | l ∈ A(β)};
5 >←> \{(β, γ), (γ, β) ∈> | l ∈ A(β)};

6 else
7 ∂−

meta ← ∂−
meta ∪ {α};

8 RαC ← RαC \ {α} ;
9 Rmeta ← Rmeta \ {β ∈ Rmeta | α ∈ A(β)};

10 >←> \{(β, γ), (γ, β) ∈> | α ∈ A(β)};

11 for ζ ∈ RαC . ∼(
ζ : A(α) ↪→ C(α)

)
do

12 R[ζ]opp ← R[ζ]opp \ {β ∈ R[ζ]opp | C(β) = α};

13 for χ ∈ RαC .
(
χ : A(α) ↪→ C(α)

)
do

14 R[χ]supp ← R[χ]supp \ {ε ∈ R[χ]supp | C(ε) = α};

Procedure Refute is invoked when a literal or a standard rule is refuted.
Again, in case of literals, the simplification operations are the ones detailed in
the beginning of this section. In case of rules, the differences are in the two loops
at Lines 11–12 and 13–14. The former loop updates R[ζ]opp, as βs for α no longer
support the counter-argument; symmetrically, the latter loop updates R[χ]supp.

3.1 Computational Properties

We discuss the computational properties of Algorithm 1 Existence. Due to
space reasons, we only sketch the proofs by providing the motivations of why our
algorithms are sound, complete, terminate, and leave out the technical details.

In order to discuss termination and computational complexity, we start by
defining the size of a meta-theory D as Σ(D) to be the number of the occurrences
of literals plus the number of occurrences of rules plus 1 for every tuple in the
superiority relation. Thus, the theory D = (F, R,>) such that F = {a, b, c},
Rstand = {(α : a ⇒ d), (β : b ⇒ ∼d)}, Rmeta = {(

γ : c ⇒ (ζ : a ⇒ d)
)},

>= {(ζ, β)}, has size 3 + 6 + 5 + 1 = 15.
Note that, by implementing hash tables with pointers to rules where a given

literal occurs, each rule can be accessed in constant time. We also implement
hash tables for the tuples of the superiority relation where a given rule appears
as either of the two element, and even those can be accessed in constant time.

Theorem 1. Algorithm 1 Existence terminates and its complexity is O(Σ2).

80 F. Olivieri et al.

Proof. Termination of Procedures Prove and Refute is straightforward, as the
size of the input theory is finite, and we modify finite sets. The complexity of
Prove is O(Σ), whereas of Refute is O(Σ2) (two inner for loops of is O(Σ)).

Termination of Algorithm 1 Existence is bound to termination of the
repeat-until cycle at Lines 21–40, as all other cycles loop over finite sets of
elements of the order of O(Σ). Given that both HB and RαC are finite, and
since every time a literal or a rule is proved/refuted, they are removed from
the corresponding set, the algorithm eventually empties such sets, and, at the
next iteration, no modification to the extension can be made. This proves the
termination of Algorithm 1 Existence.

Regarding its complexity: (1) all set modifications are in linear time, and
(ii) the aforementioned repeat-until cycle is iterated at most O(Σ) times, and
so are the two for loops at lines 23–29 and 32–38. This would suggest that the
repeat-until cycle runs in O(Σ2). A more discerning analysis shows that the
complexity is actually O(Σ): the complexity of each for cannot be considered
separately from the complexity of the external loop (they are strictly dependent).
Indeed, the overall number of operations made by the sum of all loop iterations
cannot outrun the number of occurrences of the literals or rules (O(Σ)+O(Σ)),
because the operations in the inner cycles directly decrease, iteration after itera-
tion, the number of the remaining repetitions of the outmost loop, and the other
way around. This sets the complexity of Algorithm 1 Existence to O(Σ2).

Theorem 2. Algorithm 1 Existence is sound and complete, that is

1. D � +∂p iff p ∈ +∂p of E(D), p ∈ Lit
2. D � +∂metaα iff p ∈ +∂α of E(D), α ∈ Lab
3. D � −∂p iff p ∈ −∂p of E(D), p ∈ Lit
4. D � −∂metaα iff p ∈ −∂metaα of E(D), α ∈ Lab.

Proof. The aim of Algorithm 1 Existence is to compute a defeasible meta-
extension of the input theory through successive transformations on the set of
facts, rules and the superiority relation. These transformations act in a way to
obtain a simpler theory while retaining the same extension. By simpler theory
we mean a theory with less symbol in it. Note that if D � +∂l then D � −∂∼l,
and that if D � +∂metaα then D � −∂metaγ, with C(γ) = ∼C(α). Suppose
that the algorithm proves +∂l or +∂α (meaning that l ∈ +∂ or α ∈ +∂meta).
Accordingly, we remove l or α from every antecedent where it appears in, as by
Definition 1, the applicability of such rules will not depend any longer on l or
α, but only on the remaining elements in their antecedents. Moreover, we can
eliminate from the set of rules all those rules with ∼l or γ in their antecedent
(with C(γ) = ∼C(α)), as such rules are discarded by Definition 2 (and adjust the
superiority relation accordingly). Finally, when we prove +∂α, then α becomes
active in supporting its conclusion and rebutting the opposite.

The proof follows the schemata of the ones in [12,14], and consists in proving
that the meta-extension of the original theory D and the meta-extension of the
simpler theory D′ are the same. Formally, suppose that D � +∂l (symmetrically
D � +∂metaα) at P (n). Thus, if R′ of D′ is obtained from R of D as follows

Computing Defeasible Meta-logic 81

R′ = Rappl ← {A(β) \ {l/α} ↪→ C(β) |β ∈ R} \ {β ∈ R | ∼l/∼γ ∈ R},

and if >′ of D′ is obtained from > of D as follows

>′=> \{(β, ζ), (ζ, β) | ∼l ∈ A(ζ) or ∼γ ∈ A(ζ)}
with A(γ) = A(α) and C(γ) = C(α), then for every ∈ Lit and every χ ∈ Lab

– D � ±∂p iff D′ � ±∂p, and
– D � ±∂metaχ iff D′ � ±∂metaχ.

The proof that the transformation above produces theories equivalent to the
original one is by induction on the length of derivations and contrapositive.

4 Conclusions and Related Work

The topic of this paper is the efficient computation of rules from meta-rules. In
general, the topic of how to use (meta-)rules to generate other rules has received
little attention. Some exceptions are [4,16] on the use of meta-rules for norm
modifications, and [27] which is specifically dedicated to a logic for deriving rules
from meta-rules. However, none these works investigate the computationally
complexity, nor address the issue of defining algorithms for their logics.

The large majority of the studies that have made use of meta-rules have
focused upon the usage of these as a means to determine the scope of rule
application, or the result of the application of the rules. In particular, we can
identify two research lines: Logic Programming, and Meta-logic.

Logic programming studies investigated the issue of enhancing the expres-
sivity by allowing nested expressions [20,21]. Nevertheless, these approaches
are based on the so called Lloyd-Toper transformation, that transforms nested
expressions in (equivalent) logical expressions. Similarly, in [17] disjunctive DAT-
ALOG is enriched with nested rules; however, such nested rules, potentially, can
be eliminated by using (stratified) negation, but these are kept because they
allow for a more natural correspondence with the natural language description
of the underlying problem. We have seen in Sect. 1 that this approach suffers
from some problems, and it is not appropriate for many uses of meta-rules, in
particular when the aim is to represent meta-rules as means to derive rules. Some
papers (e.g., [9]) extended logic programming with negation with nested hypo-
thetical implications plus constraints or negation as failure. Specifically, they
consider rules with conditional goals in the body, but not implications in the
head, and study some goal directed proof procedures.

The notion of meta-rules and close concepts, including meta-logic [3] and
meta-reasoning [7], have been employed widely in Logic Programming [2] but
also outside it, specifically in context theory [11]. In general, we can look at
these studies as methodologically coherent with the notion of hierarchical rea-
soning, where it is devised a method to choose which reasoning process is more
appropriate for the specific scenario in which the process is employed. A spe-
cific line of research (strictly connected with the studies in the semantics of

82 F. Olivieri et al.

Logic Programming) is the Answer Set Programming (ASP) and preferences [8].
Further on, many studies on ASP where meta-rules took place. However, these
investigations have not focusing upon nested rules.

A line of work considering the generation of rules from other rules is the
work on Input/Output logic (IOL) [22]. The idea of IOL is to define a set of
operations on input/output rules (where an input/output rule is a pair (x, y),
where x and y are formulas in a logical language) to derive new input/output
pairs. Differently to what we do (1): IOL does not consider nested rules, and (2)
the derivation mechanism depends on the properties of the operations on which
the variant of IOL is defined, and not on the rules on which the logic operates.

A field of investigation that has strongly employed meta-rules, but in a sense
that is indeed similar to the one of the theory of contexts, is argumentation.
The basic concept derived by the combination of meta-logical structures and
argumentation is the metalevel argumentation [23]. Applied metalevel has been
investigated in the view of developing a framework where, for instance, admissi-
bility of arguments, and other issues in this field, are dealt with [6].

The problem of nested rules in non-monotonic frameworks from a computa-
tional complexity viewpoint deserves a deeper study, and this paper fills this gap.
Currently, the focus was on Defeasible Logic without modal operators and tem-
poral expressions (most of the work on meta-rules considers combinations of such
features). The basic version of modal and temporal variants of the logic compu-
tationally feasible. We plan to extend and combine the algorithm presented in
this paper with the algorithms for modal and temporal Defeasible Logic and we
expect that the complexity results to carry over to the combination.

References

1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results
for defeasible logic. ACM Trans. Comput. Log. 2(2), 255–287 (2001). https://doi.
org/10.1145/371316.371517

2. Azab, K., Habel, A.: High-level programs and program conditions. In: Ehrig, H.,
Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp.
211–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87405-
8 15

3. Basin, D., Clavel, M., Meseguer, J.: Reflective metalogical frameworks. ACM Trans.
Comput. Logic 5(3), 528–576 (2004). https://doi.org/10.1145/1013560.1013566

4. Cristani, M., Olivieri, F., Rotolo, A.: Changes to temporary norms. In: Keppens,
J., Governatori, G. (eds.) ICAIL 2017 pp. 39–48. ACM. https://doi.org/10.1145/
3086512.3086517

5. Dastani, M., Governatori, G., Rotolo, A., Song, I., van der Torre, L.: Contextual
agent deliberation in defeasible logic. In: Ghose, A., Governatori, G., Sadananda,
R. (eds.) PRIMA 2007. LNCS (LNAI), vol. 5044, pp. 98–109. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01639-4 9

6. Dupin De Saint-Cyr, F., Bisquert, P., Cayrol, C., Lagasquie-Schiex, M.C.: Argu-
mentation update in YALLA (yet another logic language for argumentation). Int.
J. Approx. Reason. 75, 57–92 (2016). https://doi.org/10.1016/j.ijar.2016.04.003

https://doi.org/10.1145/371316.371517
https://doi.org/10.1145/371316.371517
https://doi.org/10.1007/978-3-540-87405-8_15
https://doi.org/10.1007/978-3-540-87405-8_15
https://doi.org/10.1145/1013560.1013566
https://doi.org/10.1145/3086512.3086517
https://doi.org/10.1145/3086512.3086517
https://doi.org/10.1007/978-3-642-01639-4_9
https://doi.org/10.1016/j.ijar.2016.04.003

Computing Defeasible Meta-logic 83

7. Dyoub, A., Costantini, S., De Gasperis, G.: Answer set programming and agents.
Knowl. Eng. Rev. 33(1) (2018). https://doi.org/10.1017/S0269888918000164

8. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Computing preferred answer sets by
meta-interpretation in answer set programming. Theory Pract. Logic Program.
3(4–5), 463–498 (2003). https://doi.org/10.1017/S1471068403001753

9. Gabbay, D.M., Giordano, L., Martelli, A., Olivetti, N.: A language for han-
dling hypothetical updates and inconsistency. Log. J. IGPL 4(3), 385–416 (1996).
https://doi.org/10.1093/jigpal/4.3.385

10. Gelati, J., Governatori, G., Rotolo, A., Sartor, G.: Normative autonomy and nor-
mative co-ordination: declarative power, representation, and mandate. Artif. Intell.
Law 12(1–2), 53–81 (2004)

11. Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning =
locality + compatibility. Artif. Intell. 127(2), 221–259 (2001). https://doi.org/10.
1016/S0004-3702(01)00064-9

12. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and
weak permissions in defeasible logic. J. Philos. Logic 42(6), 799–829 (2013).
https://doi.org/10.1007/s10992-013-9295-1

13. Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Designing for compli-
ance: norms and goals. In: Olken, F., Palmirani, M., Sottara, D. (eds.) RuleML
2011. LNCS, vol. 7018, pp. 282–297. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24908-2 29

14. Governatori, G., Olivieri, F., Scannapieco, S., Rotolo, A., Cristani, M.: The ratio-
nale behind the concept of goal. Theory Pract. Log. Program. 16(3), 296–324
(2016). https://doi.org/10.1017/S1471068416000053

15. Governatori, G., Padmanabhan, V., Rotolo, A., Sattar, A.: A defeasible logic for
modelling policy-based intentions and motivational attitudes. Log. J. IGPL 17(3),
227–265 (2009). https://doi.org/10.1093/jigpal/jzp006

16. Governatori, G., Rotolo, A.: Changing legal systems: legal abrogations and annul-
ments in defeasible logic. Log. J. IGPL 18(1), 157–194 (2010)

17. Greco, S., Leone, N., Scarcello, F.: Datalog with nested rules. In: Dix, J., Pereira,
L.M., Przymusinski, T.C. (eds.) LPKR 1997. LNCS, vol. 1471, pp. 52–65. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054789

18. Jones, A.J.I., Sergot, M.J.: A formal characterisation of institutionalised power.
Log. J. IGPL 4(3), 427–443 (1996). https://doi.org/10.1093/jigpal/4.3.427

19. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul.
18(1), 11 (2015). https://doi.org/10.18564/jasss.2661

20. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs.
Ann. Math. Artif. Intell. 25(3), 369–389 (1999). https://doi.org/10.1023/A:
1018978005636

21. Lloyd, J.W., Topor, R.W.: Making prolog more expressive. J. Logic Program. 1(3),
225–240 (1984). https://doi.org/10.1016/0743-1066(84)90011-6

22. Makinson, D., Van Der Torre, L.: Input/output logics. J. Philos. Logic 29(4), 383–
408 (2000)

23. Modgil, S., Bench-Capon, T.: Metalevel argumentation. J. Logic Comput. 21(6),
959–1003 (2011). https://doi.org/10.1093/logcom/exq054

24. Olivieri, F., Cristani, M., Governatori, G.: Compliant business processes with
exclusive choices from agent specification. In: Chen, Q., Torroni, P., Villata, S.,
Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 603–612.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25524-8 43

https://doi.org/10.1017/S0269888918000164
https://doi.org/10.1017/S1471068403001753
https://doi.org/10.1093/jigpal/4.3.385
https://doi.org/10.1016/S0004-3702(01)00064-9
https://doi.org/10.1016/S0004-3702(01)00064-9
https://doi.org/10.1007/s10992-013-9295-1
https://doi.org/10.1007/978-3-642-24908-2_29
https://doi.org/10.1007/978-3-642-24908-2_29
https://doi.org/10.1017/S1471068416000053
https://doi.org/10.1093/jigpal/jzp006
https://doi.org/10.1007/BFb0054789
https://doi.org/10.1093/jigpal/4.3.427
https://doi.org/10.18564/jasss.2661
https://doi.org/10.1023/A:1018978005636
https://doi.org/10.1023/A:1018978005636
https://doi.org/10.1016/0743-1066(84)90011-6
https://doi.org/10.1093/logcom/exq054
https://doi.org/10.1007/978-3-319-25524-8_43

84 F. Olivieri et al.

25. Olivieri, F., Governatori, G., Scannapieco, S., Cristani, M.: Compliant business pro-
cess design by declarative specifications. In: Boella, G., Elkind, E., Savarimuthu,
B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS (LNAI), vol.
8291, pp. 213–228. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-44927-7 15

26. Sartor, G.: Legal Reasoning: A Cognitive Approach to the Law. Springer (2005)
27. Song, I., Governatori, G.: Nested rules in defeasible logic. In: Adi, A., Stouten-

burg, S., Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791, pp. 204–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/11580072 18

https://doi.org/10.1007/978-3-642-44927-7_15
https://doi.org/10.1007/978-3-642-44927-7_15
https://doi.org/10.1007/11580072_18

Syntax Splitting for Iterated
Contractions, Ignorations, and Revisions
on Ranking Functions Using Selection

Strategies

Jonas Haldimann1(B) , Christoph Beierle1, and Gabriele Kern-Isberner2

1 FernUniversität in Hagen, 58084 Hagen, Germany
jonas.haldimann@fernuni-hagen.de

2 TU Dortmund University, 44227 Dortmund, Germany

Abstract. For characterizing belief sets consisting of independent parts,
Parikh introduced the notion of syntax splitting. Corresponding postu-
lates have been developed for the reasoning from and for the revision of
belief bases with respect to syntax splitting. Kern-Isberner and Brewka
introduced syntax splitting for epistemic states and iterated belief revi-
sion. Only recently, syntax splitting has also been studied for contractions
and iterated contractions of epistemic states; however, all of the evalu-
ated contractions proposed in the literature failed to fulfil the full syntax
splitting postulates. In this paper, we study syntax splitting for itera-
tively contracting and revising epistemic states, represented by ranking
functions, not only with respect to a set of formulas, but with respect to
a set of conditionals. Using a framework of belief change governed by the
principle of conditional preservation, we employ the concept of selection
strategies. We develop axioms for selection strategies ensuring that the
induced contractions and revisions fully obey the desired syntax splitting
properties. Furthermore, we transfer our approach to ignorations and
prove a theorem showing how selection strategies satisfying the axioms
can effectively be constructed.

1 Introduction

As intelligent agents live in a dynamic environment they must be able to adapt
their state of mind if they receive new information. This process is called belief
change and has been investigated intensively in the literature, researchers studied
e.g. the revision of belief sets (i.e. sets of formulas, e.g. [1]), preorders (e.g. [8]),
and ranking functions (e.g. [14]).

In 1999, Parikh introduced the notion of syntax splitting for belief sets [20].
In the same paper, he developed a postulate (P) for belief revision, the basic
idea being that if a belief base splits into separate sub-bases over disjoint sub-
signatures, revisions of one of the sub-bases should be independent from the other
sub-bases. The concept of syntax splitting has been investigated further, e.g., by
Peppas et al. [22]. More recently, the notion of syntax splitting was extended
c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 85–100, 2021.
https://doi.org/10.1007/978-3-030-75775-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_7&domain=pdf
http://orcid.org/0000-0002-2618-8721
http://orcid.org/0000-0001-8689-5391
https://doi.org/10.1007/978-3-030-75775-5_7

86 J. Haldimann et al.

to other representations of epistemic states, total preorders and ranking func-
tions, by Kern-Isberner and Brewka [17]. Again, postulates for belief revision
of total preorders and ranking functions in the presence of a syntax splitting
were introduced in the same paper [17]. Another major belief change opera-
tion besides revision is belief contraction. While already introduced by AGM,
contraction of beliefs gained more interest only recently (e.g. [7,18,19,23,25]).
In [11], we developed syntax splitting postulates for belief contraction on belief
sets, epistemic states with total preorders, and ranking functions, and evaluated
different contraction operations with respect to syntax splitting, namely moder-
ate contraction [23], natural contraction [23], lexicographic contraction [23], and
c-contractions which are special kinds of operations on ranking functions [6,16]
that are based on the principle of conditional preservation [13,14]. It was shown
that none of the evaluated contraction operators is fully compatible with syntax
splitting; even the (with respect to syntax splitting) well-behaved c-contractions
do not fulfil all the syntax splitting postulates in general [11].

In this paper, we refine the notion of c-contraction as used in [11] in such a
way that all required syntax splitting properties are ensured. For this, we employ
the concept of selection strategies that has been proposed for reasoning with c-
representations and c-revisions recently [5,15]. We extend selection strategies
to general belief change operations in the c-change framework based on the
principle of conditional preservation [6,16]. In this way, our approach covers not
only iterated contractions but also iterated revisions both of which are fully
compatible with syntax splitting. Furthermore, we will show that this transfers
also to iterated ignorations where an ignoration is a specific contraction where
the agent gives up the judgement on a belief, see e.g. [6]. Thus, here we will
focus on the syntax splitting for the revision, contraction, and ignoration of
ranking functions. Since the corresponding postulates with respect to syntax
splitting considered here are structurally very similar, we generalize them to
postulates for belief changes. We also extend the syntax splitting postulates to
cover belief change with sets of conditionals instead of sets of formulas. Note that
this extension goes far beyond the classic AGM framework [1]. The most general
postulate (Pocf

◦) developed in this paper entails all syntax splitting postulates
for revision and contraction in [11,17]. In our general framework, each selection
strategy for belief change induces a belief change operator. We develop a very
natural postulate (IPcc) for selection strategies for c-changes and show that
each change operator fulfils (Pocf

◦) and therefore all considered syntax splitting
postulates if it is induced by a selection strategy that fulfils (IPcc). We also
prove a theorem yielding an effective method for constructing selection strategies
satisfying (IPcc).

In summary, the main contributions of this paper are:

– Introduction of syntax splitting postulates (Pocf
◦), (MRocf

◦), and (Pit−ocf
◦) for

belief change on ranking functions that generalize syntax splitting postulates
introduced in [17] and [11] and cover changes with sets of conditionals

– Introduction of selection strategies for c-contractions and c-ignorations

Syntax Splitting for Iterated Contractions Using Selection Strategies 87

– Introduction of a new postulate (IPcc) for selection strategies for contractions,
revisions, and ignorations

– Proof that if a selection strategy fulfils (IPcc) then the induced c-change fulfils
(Pocf

◦) and therefore (MRocf
◦) and (Pit−ocf

◦)
– Effective construction of selection strategies satisfying (IPcc)
– Iterative contraction, revision, and ignoration of ranking functions by sets of

conditionals fully compatible with syntax splitting.

2 Background

Let Σ be a (propositional) signature. The set of all propositional formulae over Σ
is denoted by Form(Σ). We will use Ā as shorthand for ¬A and AB as shorthand
for A∧B with A,B ∈ Form(Σ). The set of all interpretations, also called worlds,
of Σ will be denoted as Int(Σ) or Ω. An interpretation ω ∈ Int(Σ) is a model for
A ∈ Form(Σ), denoted as ω |= A, if A holds in ω. The set of models for a formula
is Mod Σ(A) = {ω ∈ Int(Σ) | ω |= A}. A formula with at least one model is called
consistent, otherwise inconsistent. For A,B ∈ Form(Σ) we say A entails B if
Mod Σ(A) ⊆ Mod Σ(B). The concepts of models, consistency and entailment are
analogously used for sets of formulae. For M ⊆ Form(Σ), the deductive closure
of M is CnΣ(M) = {A ∈ Form(Σ) | M |= A}. If M = CnΣ(M) then M is called
deductively closed. Based on propositional logic, we define the set of conditionals
Cond(Σ) = {(B|A) | A,B ∈ Form(Σ)}. A conditional (B|A) formalizes that
the antecedent A plausibly entails the consequent B. Propositional logic can
be embedded in conditional logic by using conditionals (A|�) with tautological
antecedents. A conditional (B|A) is verified by a world ω ∈ Int(Σ) if ω |=
AB and is falsified by ω if ω |= AB. If ω �|= A, then the conditional is not
applicable to ω (see [9]). A conditional (B|A) is called self-fulfilling if Mod (A) ⊆
Mod (B) and contradictory if Mod (A) ∩ Mod (B) = ∅. The counter-conditional
of a conditional (B|A) is the conditional (B|A). The counter-conditional of a
self-fulfilling conditional is contradictory and vice versa.

There are many approaches to model the epistemic state of a reasoning agent.
In this paper, we consider agents whose epistemic state is completely represented
by a ranking function over a fixed signature. A ranking function or ordinal condi-
tional function (OCF), introduced (in a more general form) in [26], is a function
κ : Ω → N0 with κ−1(0) �= ∅. The rank of ω ∈ Ω is κ(ω). The lower the rank
of a world, the more plausible it is. The most plausible worlds are those with
rank 0. The rank of a formula A is κ(A) = minω∈Mod (A) κ(ω) and A is accepted
by κ, denoted as κ |= A, if κ(A) = 0. An OCF κ accepts a conditional (B|A),
denoted as κ |= (B|A), if κ(AB) < κ(AB), i.e., if the verification of the condi-
tional is more plausible than its falsification. If κ models the epistemic state of
an agent, she considers the formulas and conditionals accepted by κ to be (plau-
sibly) true. A set R of conditionals is called consistent if there is at least one
OCF that accepts every conditional in R. Otherwise, R is called inconsistent.

A reasoning agent is usually not in a static environment and needs to adapt
her beliefs in order to account for incoming information. An operation that maps

88 J. Haldimann et al.

an epistemic state and some given input to an epistemic state is called a belief
change. While in the AGM framework, the new input is only a formula, we will
use c-changes that are a special kind of change operations on ranking functions
taking a set of conditionals as new input.

Definition 1 (c-change, κ�γ [16]). Let κ be a ranking function and Δ =
{(B1|A1), . . . , (Bn|An)} be a set of conditionals. For �γ = (γ+

1 , γ−
1 , . . . , γ+

n , γ−
n) ∈

Q
2n we define κ�γ by κ�γ(ω) = κ0 + κ(ω) +

∑n
i=1

ω|=AiBi

γ+
i +

∑n
i=1

ω|=ABi

γ−
i where

κ0 ∈ Q is a normalization factor ensuring that the minimal worlds have rank 0.
A change from κ with Δ to κ◦ is a c-change if there is �γ ∈ Q

2n, called impact
vector, such that κ◦ = κ�γ .

The impacts γ+
i , γ−

i are values that are added to the rank of a world ω if ω
verifies or falsifies (Bi|Ai), respectively. The idea of c-changes is based on the
principle of conditional preservation; a detailed motivation and explanation is
given in [13,14].

3 Contractions, Revisions, and Ignorations

In this section, we will define the belief change operations contraction, revision,
and ignoration on ranking functions for sets of conditionals. Furthermore, we
will discuss the realization of these belief change operations with c-changes.

Definition 2 (Revision κ∗Δ). A belief change operator ∗ is a revision operator
if for any ranking function κ and consistent set of conditionals Δ we have κ∗Δ |=
(B|A) for all (B|A) ∈ Δ.

A belief revision introduces new information to the epistemic state and
changes the existing knowledge to resolve conflicts. A contraction operator on
the other hand removes beliefs from the epistemic state.

Definition 3 (Contraction κ − Δ). A belief change operator − is a contrac-
tion operator if for any ranking function κ and set of conditionals Δ that does
not contain self-fulfilling conditionals we have κ−Δ �|= (B|A) for all (B|A) ∈ Δ.

Note that there are several approaches to contraction of multiple statements.
Definition 3 represents a “package contraction” approach. While c-contractions
for single conditionals and c-change for sets of conditionals in general have been
investigated before [16], c-contractions for sets of conditionals have not been
considered so far. A third kind of belief change is ignoration. While ignoration
was introduced for single conditionals in [6,16], it can be defined in a more
general way for sets of conditionals.

Definition 4 (Ignoration κ÷Δ). A belief change operator ÷ is an ignoration
operator if for any ranking function κ and set of conditionals Δ that does not
contain self-fulfilling or contradictory conditionals, we have (κ ÷ Δ) �|= (B|A)
and (κ ÷ Δ) �|= (B|A) for all (B|A) ∈ Δ.

Syntax Splitting for Iterated Contractions Using Selection Strategies 89

Thus, an ignoration “forgets” both the conditionals and their counter-
conditionals. The three operations defined above are called c-revision, c-
contraction, and c-ignoration, respectively, if they are c-changes (Definition 1).
Similar to c-representations and c-inference they can each be characterized by a
constraint satisfaction problem (CSP), cf. [4].

Definition 5 (CR∗(κ,Δ),CR−(κ,Δ),CR÷(κ,Δ)). Let κ be a ranking func-
tion and Δ = {(B1|A1), . . . , (Bn|An)} be a set of conditionals. The constraint
satisfaction problem CR◦(κ,Δ) with ◦ ∈ {∗,−,÷} for constraint variables
γ+
1 , γ−

1 , . . . , γ+
n , γ−

n taking values in Q is given by the set of constraints

γ−
i − γ+

i ∼◦ min
ω|=AiBi

{
κ(ω) +

∑

j �=i
ω|=AjBj

γ+
i +

∑

j �=i

ω|=AjBj

γ−
i

}

− min
ω|=AiBi

{
κ(ω) +

∑

j �=i
ω|=AjBj

γ+
i +

∑

j �=i

ω|=AjBj

γ−
i

}

for i = 1, . . . , n where ∼◦ is > for ◦ = ∗, or � for ◦ = −, or = for ◦ = ÷.
The CSP for c-revisions is given by CR∗(κ,Δ), the CSP for c-contractions

is given by CR−(κ,Δ), and the CSP for c-ignorations is given by CR÷(κ,Δ).

The set of solutions of a CSP CR is denoted by Sol(CR).

Proposition 1 (Soundness and completeness of CR∗(κ,Δ), CR−(κ,Δ)
and CR÷(κ,Δ)). Let κ be a ranking function and Δ = {(B1|A1), . . . , (Bn|An)}
be a set of conditionals.

1. If �γ ∈ Sol(CR∗(κ,Δ), then the change from κ with Δ to κ�γ is a c-revision.
Conversely, if Δ is consistent and the change from κ with Δ to κ∗ is a c-
revision, then there is a �γ ∈ Sol(CR∗(κ,Δ)) such that κ∗ = κ�γ .

2. If �γ ∈ Sol(CR−(κ,Δ)), then the change from κ with Δ to κ�γ is a c-
contraction. If Δ does not contain self-fulfilling conditionals and the change
from κ with Δ to κ− is a c-contraction, there is a �γ ∈ Sol(CR−(κ,Δ)) such
that κ− = κ�γ .

3. If �γ ∈ Sol(CR÷(κ,Δ)), the change from κ with Δ to κ�γ is a c-ignoration. If
Δ does not contain self-fulfilling or contradictory conditionals and the change
from κ with Δ to κ÷ is a c-ignoration, there is a �γ ∈ Sol(CR÷(κ,Δ)) such
that κ÷ = κ�γ .

Proof. A proof for (1.) is given in [4,14], and (2) and (3.) can be shown by
analogous derivations. �

All three mentioned types of c-change exist if not prohibited by Δ.

Proposition 2. Let κ be a finite ranking function and Δ be a set of conditionals.

90 J. Haldimann et al.

1. Sol(CR∗(κ,Δ)) �= ∅ iff Δ is consistent.
2. Sol(CR−(κ,Δ)) �= ∅ iff Δ does not contain self-fulfilling conditionals.
3. Sol(CR÷(κ,Δ)) �= ∅ iff Δ does not contain self-fulfilling or contradictory

conditionals.

Proof. We first consider the ⇐-direction in the three statements. The theorems
given in [14] imply (1.). For proving (2.) and (3.) let κ be a ranking function
and Δ = {(B1|A1), . . . , (Bn|An)} a set of non-self-fulfilling conditionals. The
impacts of a c-contraction can be constructed by the following algorithm.
1: γ−

1 , γ+
1 , . . . , γ−

n , γ+
n ← 0

2: κ′ ← κ; Δ′ ← Δ
3: while Δ′ �= ∅ do
4: (Ak|Bk) ← arg min(Bi|Ai)∈Δ κ′(Ai) 	 Select a conditional. . .
5: if κ′(AkBk) < κ′(AkB̄k) then 	 . . . and assign impacts for it.
6: γ−

k ← κ′(AkBk) − κ′(AkB̄k)
7: if κ′(AkBk) > κ′(AkB̄k) then
8: γ+

k ← κ′(AkB̄k) − κ′(AkBk)
9: Δ′ ← Δ′ \ {(Bk|Ak)} 	 Update Δ′, κ′

10: κ′(ω) ← κ(ω) +
∑

ω�AiB̄i
γ−

i +
∑

ω�AjBj
γ+

j for all ω ∈ Ω

11: return (γ+
1 , γ−

1 , . . . , γ+
n , γ−

n)

If all conditionals in Δ are neither self-fulfilling nor contradictory, then the
algorithm yields a c-ignoration. This approach shows that c-contraction and c-
ignoration operators exist.

For the ⇒-direction, if Δ is not consistent, there is no ranking function
accepting all conditionals in Δ. Therefore, (1.) holds. If Δ contains self-fulfilling
conditionals, there is no ranking function that contracts all conditionals in Δ.
Therefore, (2.) holds. Analogously, (3.) holds because there is no ranking function
that can ignore a self-fulfilling or a contradictory conditional. �

All change operations in this section can be applied to a set of formulas
{A1, . . . , An} by representing the formulas with conditionals (A1|�), . . . , (An|�).

4 Syntax Splitting on Ranking Functions

The concept of syntax splitting and corresponding postulates for belief change
were originally developed by Parikh [20] for belief revision on belief sets. The
basic idea is that for a belief set that contains independent information over
different parts of the signature, the revision with a formula that contains only
variables from one of such parts should only affect the information about this
part of the signature. The notion of syntax splitting was later extended to other
representations of epistemic states such as ranking functions [17]. Consider-
ing that Parikh’s (P) is incompatible with the Darwiche-Pearl-Postulates [8]
as stated in [2,21], it might seem problematic to investigate the combination of
syntax splitting and frameworks for iterated belief revision. But while (P) only
focusses on the belief set, the syntax splitting postulates for ranking functions

Syntax Splitting for Iterated Contractions Using Selection Strategies 91

considered here require syntax splittings on the whole ranking function. There-
fore, the mentioned incompatibility results do not apply here.

Definition 6 (syntax splitting for ranking functions [17]). Let Σ be a
signature and κ a ranking function over Ω = Int(Σ). Let ωj be the variable
assignment of the variables in Σj ⊆ Σ as in ω. A partitioning Σ = Σ1 ∪̇ . . . ∪̇Σn

is a syntax splitting for κ if there are ranking functions κi : Σi �→ N0 for
i = 1, . . . , n such that κ(ω) = κ1(ω1)+· · ·+κn(ωn), denoted as κ = κ1⊕· · ·⊕κn.

The following proposition shows that syntax splitting for ranking functions
respects conditional knowledge.

Proposition 3. Let κ = κ1⊕· · ·⊕κn be a ranking function with syntax splitting
Σ = Σ1 ∪̇ . . . ∪̇ Σn and r = (B|A) a conditional with A,B ∈ Σj for any j ∈
{1, . . . , n}. Then κ |= (B|A) iff κj |= (B|A).

Proof. Let κ and (B|A) be as in the proposition. Because of κ(ω) =
∑

1�i�n κi(ωi)
we have that κ(C) = κi(C) if C ∈ Σi for i = 1, . . . , n. Therefore, it holds that
κ |= (B|A) iff κ(AB) < κ(AB) iff κj(AB) < κj(AB) iff κj |= (B|A). �

For the definition of some syntax splitting postulates for ranking functions,
the concept of the marginalisation of a ranking function is important. Marginal-
isation formalizes the restriction of a ranking function to a sub-signature.

Definition 7 (marginalisation on ranking functions [3,17]). Let Σ be a
signature and κ be an OCF over Ω = Int(Σ). Let Θ ⊆ Σ. The marginalisation
of κ to Θ is the function κ|Θ : Θ �→ N0 with κ|Θ(ω) = κ(ω) for ω ∈ ΩΘ.

For an OCF κ = κ1 ⊕ · · · ⊕ κn with syntax splitting Σ1 ∪̇ . . . ∪̇ Σn it holds
that κ|Σi

= κi for i = 1, . . . , n. Note that the marginalization of OCFs presented
above is a special case of a general forgetful functor Mod(�) from Σ-models to
Σ′-models given in [3] where Σ′ ⊆ Σ and � is the inclusion from Σ′ to Σ.
Informally, a forgetful functor forgets everything about the interpretation of the
symbols in Σ\Σ′ when mapping a Σ-model to a Σ′-model.

All syntax splitting postulates for ranking functions proposed so far can only
deal with revision or contraction of a ranking function with a set of formulas.
The postulate (MRocf) describes that a revision of an OCF with syntax splitting
should only depend on the relevant part of the OCF and the relevant formula.

Postulate (MRocf) ([17]). Let ∗ be a revision operator on ranking functions.
For every ranking function κ = κ1⊕· · ·⊕κn with syntax splitting Σ = Σ1∪̇. . .∪̇Σn

and C = {C1, . . . , Cn} such that Ci ∈ Form(Σi) for i = 1, . . . , n it holds that
(κ ∗ C)|Σi

= κ|Σi
∗ Ci = κi ∗ Ci for i = 1, . . . , n.

Another postulate (Pit−ocf) states that a syntax splitting of a ranking function
should survive a revision under certain circumstances.

Postulate (Pit−ocf) ([11]). Let ∗ be a revision operator on ranking functions.
For every ranking function κ = κ1⊕· · ·⊕κn with syntax splitting Σ = Σ1∪̇. . .∪̇Σn

and C = {C1, . . . , Cn} such that Ci ∈ Form(Σi) for i = 1, . . . , n the partitioning
Σ1 ∪̇ . . . ∪̇ Σn is a syntax splitting for κ ∗ C.

92 J. Haldimann et al.

Both postulates can be combined into one postulate. It can be shown that
(MRocf) and (Pit−ocf) together are equivalent to (Pocf).

Postulate (Pocf) ([17]). Let ∗ be a revision operator on ranking functions. For
every ranking function κ = κ1 ⊕· · ·⊕κn with syntax splitting Σ = Σ1 ∪̇ . . . ∪̇Σn

and C = {C1, . . . , Cn} such that Ci ∈ Form(Σi) for i = 1, . . . , n it holds that
κ ∗ C = (κ1 ∗ C1) ⊕ · · · ⊕ (κn ∗ Cn).

These postulates have been transferred to contractions of OCFs [11].

Postulate (Pocf
−) ([11]). Let − be a contraction operator on ranking functions.

For every ranking function κ = κ1⊕· · ·⊕κn with syntax splitting Σ = Σ1∪̇. . .∪̇Σn

and C = {C1, . . . , Cn} such that Ci ∈ Form(Σi) for i = 1, . . . , n it holds that
κ − C = (κ1 − C1) ⊕ · · · ⊕ (κn − Cn).

Postulate (Pit−ocf
−) ([11]). Let − be a contraction operator on ranking func-

tions. For every ranking function κ = κ1 ⊕ · · · ⊕ κn with syntax splitting
Σ = Σ1∪̇. . .∪̇Σn and C = {C1, . . . , Cn} such that Ci ∈ Form(Σi) for i = 1, . . . , n
the partition Σ1 ∪̇ . . . ∪̇ Σn is a syntax splitting for κ − C.

Postulate (MKocf) ([11]). Let − be a contraction operator on ranking func-
tions. For every ranking function κ = κ1 ⊕ · · · ⊕ κn with syntax splitting
Σ = Σ1∪̇. . .∪̇Σn and C = {C1, . . . , Cn} such that Ci ∈ Form(Σi) for i = 1, . . . , n
it holds that (κ − C)|Σi

= κi − Ci = κ|Σi
− Ci for i = 1, . . . , n.

A contraction operator − fulfils (Pocf
−) iff it fulfils (MKocf) and (Pit−ocf

−).
As the postulates for revision and contraction are structurally similar, we can
generalize these postulates to cover both revisions and contractions with sets of
conditionals. Furthermore, the following generalized postulate (Pocf

◦) also fully
covers ignorations by set of conditionals.

Postulate (Pocf
◦). Let ◦ be a revision, contraction, or ignoration operator on

ranking functions with sets of conditionals. For every ranking function κ = κ1 ⊕
· · · ⊕ κn with syntax splitting Σ = Σ1 ∪̇ . . . ∪̇ Σn and Δ = Δ1 ∪ · · · ∪ Δn with
Δi = {(Bi,1|Ai,1), . . . , (Bi,ki

|Ai,ki
)} with Ai,j , Bi,j ∈ Form(Σi) for j = 1, . . . , ki

for every i = 1, . . . , n it holds that κ ◦ Δ = (κ1 ◦ Δ1) ⊕ · · · ⊕ (κn ◦ Δn).

The postulate (Pocf
◦) is a generalisation of (Pocf) and (Pocf

−) in several ways:
First, as mentioned, (Pocf

◦) covers both revision and contraction, and further-
more, also ignorations. Second, (Pocf

◦) allows for revision, contraction, and igno-
rations with respect to conditionals instead of formulas. This is a generalization,
as a change with a formula A can be realized by a change with the condi-
tional (A|�). Third, (Pocf

◦) covers changes where the number of partitions in
the knowledge base does not equal the number of conditionals in the set that
the knowledge base is changed with. Similarly, we can generalize (MRocf) and
(MKocf) to (MRocf

◦) as well as (Pit−ocf) and (Pit−ocf
−) to (Pit−ocf

◦).

Syntax Splitting for Iterated Contractions Using Selection Strategies 93

(MKocf) (Pit−ocf)

∧

(Pocf
−)

(MRocf) (Pit−ocf)

∧

(Pocf)

(MRocf
◦) (Pit−ocf

◦)

∧

(Pocf
◦)

Fig. 1. Overview of the syntax splitting postulates for ranking functions mentioned in
this paper. The arrows indicate that a postulate or a combination of postulates implies
another postulate.

Postulate (MRocf
◦). Let ◦ be a revision, contraction, or ignoration opera-

tor on ranking functions. For every ranking function κ = κ1 ⊕ · · · ⊕ κn with
syntax splitting Σ = Σ1 ∪̇ . . . ∪̇ Σn and Δ = Δ1 ∪ · · · ∪ Δn with Δi =
{(Bi,1|Ai,1), . . . , (Bi,ki

|Ai,ki
)} with Ai,j , Bi,j ∈ Form(Σi) for j = 1, . . . , ki for

every i = 1, . . . , n it holds that (κ ◦Δ)|Σi
= κ|Σi

◦Δi = κi ◦Δi for i = 1, . . . , n.

Postulate (Pit−ocf
◦). Let ◦ be a revision, contraction, or ignoration opera-

tor on ranking functions. For every ranking function κ = κ1 ⊕ · · · ⊕ κn with
syntax splitting Σ = Σ1 ∪̇ . . . ∪̇ Σn and Δ = Δ1 ∪ · · · ∪ Δn with Δi =
{(Bi,1|Ai,1), . . . , (Bi,ki

|Ai,ki
)} with Ai,j , Bi,j ∈ Form(Σi) for j = 1, . . . , ki for

every i = 1, . . . , n the partitioning Σ1 ∪̇ . . . ∪̇ Σn is a syntax splitting for κ ◦ C.

Proposition 4. A revision, contraction, or ignoration operator fulfils (Pocf
◦) iff

it fulfils both (MRocf
◦) and (Pit−ocf

◦).

Proof. The direction ⇒ is clear.
Direction ⇐: Let ◦ be a change operator that fulfils (MRocf

◦) and (Pit−ocf
◦).

Let κ = κ1 ⊕ · · · ⊕ κn be a ranking function with syntax splitting Σ = Σ1 ∪̇
. . . ∪̇ Σn and Δ = Δ1 ∪ · · · ∪ Δn with Δi = {(Bi,1|Ai,1), . . . , (Bi,ki

|Ai,ki
)} with

Ai,j , Bi,j ∈ Form(Σi) for j = 1, . . . , ki for every i = 1, . . . , n. (Pit−ocf
◦) implies

that Σ = Σ1 ∪̇ . . . ∪̇ Σn is a syntax splitting for κ◦ = κ ◦ Δ, i.e., there are
ranking functions κ◦

1, . . . , κ
◦
n such that κ◦ = κ◦

1 ⊕ · · · ⊕ κ◦
n. (MRocf

◦) implies that
κ◦

i =κ◦|Σi
= κi ◦ Δi for ı = 1, . . . , n. Therefore, ◦ fulfils (Pocf

◦). �
An overview of the different conditionals is given in Fig. 1.

5 Selection Strategies for c-Changes

For a given ranking function κ and a set of conditionals Δ, the definition of
c-changes does not determine the output of the change. In fact, the constraint
systems CR∗(κ,Δ), CR−(κ,Δ), and CR÷(κ,Δ) may have multiple solutions

94 J. Haldimann et al.

that lead to different outcomes of the belief change. A c-revision, c-contraction,
or c-ignoration operator has to select one of the possible solutions. A similar
situation occurs when a c-representation is determined [4]. In [15], the selection
of an impact vector for c-representations is formalized by introducing selection
strategies that select one of the possible solutions of a constraint system as an
impact vector. Selection strategies for c-revisions are introduced in [5].

We adapt this idea to the case of c-changes here.

Definition 8 (selection strategy). A selection strategy for c-revisions (c-
contractions, or c-ignorations, respectively) is a function σ : (κ,Δ) �→ �γ map-
ping an OCF κ and a set of conditionals Δ to an impact vector �γ such that
�γ ∈ Sol(CR∗(κ,Δ)) (�γ ∈ Sol(CR−(κ,Δ)), or �γ ∈ Sol(CR÷(κ,Δ)), resp.).

The selection of a solution takes both Δ and κ into account, as the sets
Sol(CR∗(κ,Δ)), Sol(CR−(κ,Δ)), and Sol(CR÷(κ,Δ)) of possible solutions
depend on Δ and κ. Each selection strategy induces a change operator.

Definition 9 (∗σ, −σ, ÷σ). The c-revision (c-contraction, or c-ignoration,
respectively) of a ranking function κ with a set of conditionals Δ induced by
a selection strategy σ, denoted by κ ∗σ Δ (or κ −σ Δ or κ ÷σ Δ, respectively) is
given by κ�γ with �γ = σ(κ,Δ).

Now we can formalize desirable properties of selection strategies. A natural
property is that the impacts chosen for two independent subproblems should be
preserved when choosing impacts for the combination of the two subproblems.

Definition 10 (impact preserving, (IPcc)). A selection strategy σ for c-
revisions, c-contractions, or c-ignorations fulfils (IPcc) and is called impact
preserving if for any ranking function κ = κ1 ⊕ κ2 with syntax splitting Σ1∪̇Σ2

and set of conditionals Δ = Δ1 ∪ Δ2 such that A,B ∈ Form(Σi) for every
(B|A) ∈ Δi, i = 1, 2 it holds that σ(κ,Δ) = (σ(κ1,Δ1), σ(κ2,Δ2)).

While (IPcc) is defined only for syntax splittings with two partitions, it
implies the described property also for syntax splittings with more partitions.

Proposition 5. If a selection strategy σ for c-revisions, c-contractions, or c-
ignorations fulfils (IPcc), then for any ranking function κ = κ1 ⊕ · · · ⊕ κn with
syntax splitting Σ1 ∪̇ . . . ∪̇ Σn and set of conditionals Δ = Δ1 ∪ · · · ∪ Δn such
that A,B ∈ Form(Σi) for every (B|A) ∈ Δi, i = 1, . . . , n it holds that:

σ(κ,Δ) = (σ(κ1,Δ1), . . . , σ(κn,Δn)). (1)

Proof. Let σ be a selection strategy for c-revisions, c-contractions, or c-
ignorations that fulfils (IPcc). Let κ = κ1 ⊕ · · · ⊕ κn be a ranking func-
tion with a syntax splitting Σ = Σ1∪̇ . . . ∪̇Σn. Let Δ = Δ1 ∪ · · · ∪ Δn with
Δi = {(Bi,1|Ai,1), . . . , (Bi,ki

|Ai,ki
)} with Ai,j , Bi,j ∈ Form(Σi) for j = 1, . . . , ki

for every i = 1, . . . , n. The proof is by induction over n � 2.

Syntax Splitting for Iterated Contractions Using Selection Strategies 95

Base case: For n = 2 this is (IPcc).
Induction step: For n > 2 we have that Σ = Σ1∪̇(

⋃
2�l�n Σl) is a syn-

tax splitting for κ = κ1 ⊕ (
⊕

2�l�n κl). The induction hypothesis implies that
σ(

⊕
2�l�n κl,

⋃
2�l�n Δl) = (σ(κ2,Δ2), . . . , σ(κn,Δn)) because

⋃
2�l�n Σl is a

syntax splitting for
⊕

2�l�n κl. Because of (IPcc), we know that

σ(κ,Δ) =
(
σ(κ1,Δ1), σ(

⊕

1�l�n

κl,
⋃

1�l�n

Σl)
)

induction
hypothesis

= (σ(κ1,Δ1), σ(κ2,Δ2), . . . , σ(κn,Δn)). �
In the next section, we show how (IPcc) relates to syntax splitting.

6 Selection Strategies and Syntax Splitting

In this section, we will connect property (IPcc) on selection strategies with (Pocf
◦)

for belief change.

Proposition 6 ((IPcc) ensures (Pocf
◦)). If a selection strategy σ for revi-

sion, contractions, or ignorations, respectively, fulfils (IPcc), then the induced
c-revision ∗σ, c-contraction ∗σ, or c-ignoration ∗σ, respectively, fulfils (Pocf

◦).

Proof. Let σ be a selection strategy for c-revisions that fulfils (IPcc). Let
κ = κ1 ⊕ · · · ⊕ κn be a ranking function with a syntax splitting Σ =
Σ1∪̇ . . . ∪̇Σn. Let Δ = Δ1 ∪ · · · ∪ Δn with Δi = {(Bi,1|Ai,1), . . . , (Bi,ki

|Ai,ki
)}

with Ai,j , Bi,j ∈ Form(Σi) for j = 1, . . . , ki for every i = 1, . . . , n. Let
γ = (γ+

1,1, γ
−
1,1, . . . , γ

+
n,kn

, γ−
n,kn

) = σ(κ,Δ). Let κ∗ = κ ∗σ Δ. We have:

κ∗(ω) = κ0 + κ(ω) +
∑

1�i�n
1�j�ki

ω|=Ai,jBi,j

γ+
i,j +

∑

1�i�n
1�j�ki

ω|=Ai,jBi,j

γ−
i,j

= κ0 +
∑

1�i�n

κi(ω) +
∑

1�i�n
1�j�ki

ω|=Ai,jBi,j

γ+
i,j +

∑

1�i�n
1�j�ki

ω|=Ai,jBi,j

γ−
i,j

= κ0 +
∑

1�i�n

(
κi(ω) +

∑

1�j�ki

ω|=Ai,jBi,j

γ+
i,j +

∑

1�j�ki

ω|=Ai,jBi,j

γ−
i,j

)
(2)

Now, consider a revision of κi with Δi. This is revision is properly defined,
as κi is defined for the signature Σi and Δi only contains variables from Σi.
Because of Proposition 5, we know that σ(κi,Δi) = (γ+

i,1, γ
−
i,1, . . . , γ

+
i,ki

, γ−
i,ki

). Let
κ∗

i = κi∗σ Δi. We have κ∗
i (ω) = κi,0+κi(ω)+

∑
1�j�ki

ω|=Ai,jBi,j

γ+
i,j +

∑
1�j�ki

ω|=Ai,jBi,j

γ−
i,j .

The combination of all κ∗
i is

96 J. Haldimann et al.

(
⊕

1�i�n

κ∗
i)(ω) =

∑

1�i�n

κ∗
i (ωi)

=
∑

1�i�n

(
κi,0 + κi(ωi) +

∑

1�j�ki

ωi|=Ai,jBi,j

γ+
i,j +

∑

1�j�ki

ωi|=Ai,jBi,j

γ−
i,j

)

∗=
∑

1�i�n

κi,0

︸ ︷︷ ︸
κ0

+
∑

1�i�n

(
κi(ωi) +

∑

1�j�ki

ω|=Ai,jBi,j

γ+
i,j +

∑

1�j�ki

ω|=Ai,jBi,j

γ−
i,j

)
(3)

with ω = ω1 . . . ωn. Equation ∗ holds because Ai,j , Bi,j ∈ Form(Σi) and therefore
ωi |= Ai,jBi,j iff ω |= Ai,jBi,j for any i = 1, . . . , n, j = 1, . . . , kn.

Now, let us compare term (3) with (2). They are identical except for the
term κ0 or

∑
1�i�n κi,0. We know that (3) is a ranking function, because it is

the combination of the ranking functions κ∗
1, . . . , κ

∗
n. As κ0 is chosen such that

(2) is a ranking function, we know that κ0 =
∑

1�i�n κi,0 and that (2) and (3)
are equal. This implies that ∗σ fulfils (Pocf

◦). Taking the variations in CR−(κ,Δ)
and CR÷(κ,Δ) into account, the proofs for −σ and ÷σ are similar. �

We illustrate the connection between (IPcc) and (Pocf
◦).

Example 1. Let κ be the ranking function over Σ = {a, b} illustrated in Fig. 2.
κ = κ1 ⊕ κ2 has a syntax splitting {a} ∪̇ {b}. Let r1 = (a|�), r2 = (b|�) and
Δ = {r1, r2}. Let σ1, σ2 be two selection strategies for contraction with

σ1(κ,Δ) = (0,−2, 0,−2) σ1(κ1, {r1}) = (0,−2) σ1(κ2, {r2}) = (0,−1)
σ2(κ,Δ) = (0,−2, 0,−1) σ2(κ1, {r1}) = (0,−2) σ2(κ2, {r2}) = (0,−1).

Thus, γ+
1 = γ+

2 = 0 in these six impact vectors. The selection strategy σ2 fulfils
(IPcc), the selection strategy σ1 does not fulfil (IPcc). The contractions induced
by σ1 and σ2 are displayed in Fig. 2. We can see that −σ1 does not fulfil (MRocf

◦)
while −σ2 fulfils (Pocf

◦).

Finally, it is left to show that selection strategies exists that fulfil (IPcc).

Proposition 7. There are selection strategies for contraction, ignoration, and
revision that fulfil (IPcc).

Proof. We first prove the statement about revisions by constructing a selection
strategy for belief revision. Let κ be a ranking function over Σ and Δ be a set
of conditionals in Cond(Σ). We can distinguish two cases.

Case 1: κ and Δ have no common syntax splitting. In this case we choose
σ(κ,Δ) arbitrarily from Sol(CR∗(κ,Δ)). This is allowed as (IPcc) does not state
anything about such situations. Proposition 2 ensures that there is at least one
impact vector to choose.

Syntax Splitting for Iterated Contractions Using Selection Strategies 97

0

1

2

3

ab

ab̄

āb

āb̄

(a) κ

a

ā

(b) κ1

b

b̄

(c) κ2

0

1

ab̄ āb̄

ab āb

(d) κ −σ1 {(a|�), (b|�)}
�γ = (0, −2, 0, −2), κ0 = 1

a ā

(e) κ1 −σ1 {(a|�)}
�γ = (0, −2)

b b̄

(f) κ2 −σ1 {(b|�)}
�γ = (0, −1)

0

1

ab̄ āb̄ab āb

(g) κ −σ2 {(a|�), (b|�)}
�γ = (0, 2, 0, 1)

a ā

(h) κ1 −σ2 {(a|�)}
�γ = (0, 2)

b b̄

(i) κ2 −σ2 {(b|�)}
�γ = (0, 1)

Fig. 2. Comparison of the selection strategies σ1 and σ2 from Example 1. The OCFs
κ, κ1, and κ2 from Example 1 are displayed in the first row (Figs. 2a to 2c). The boxes
represent worlds; their vertical alignment corresponds to their rank. The further up
a box is placed, the higher its rank is. The second row (Figs. 2d to 2f) illustrates the
results of contractions of these OCFs using selection strategy σ1. All impacts �γ are
given in the caption of the Figs. 2d to 2i. Note that for the normalization constant κ0,
in Fig. 2d we have κ0 = 1, and κ0 = 0 in all other cases. The third row (Figs. 2g to 2i)
illustrates contractions of these OCFs using selection strategy σ2.

Case 2: κ and Δ have a common syntax splitting. Let Σ = Σ1 ∪̇ . . . ∪̇ Σn

be the finest common splitting of κ and Δ, i.e., κ = κ1 ⊕ · · · ⊕ κn and Δ =
Δ1∪· · ·∪Δn with Δi = {(Bi,1|Ai,1), . . . , (Bi,ki

|Ai,ki
)} with Ai,j , Bi,j ∈ Form(Σ′

i)
for j = 1, . . . , ki for every i = 1, . . . , n. Choose impacts σ(κi,Δi) for each of the
revisions κi∗Δi as in Case 1. Let σ(κ,Δ) = (σ(κ1,Δ1), . . . , σ(κn,Δn)) according
to (IPcc) and Eq. (1). We have κ −σ Δ = (κ1 −σ Δ1) ⊕ · · · ⊕ (κn −σ Δn). The
revised ranking function κ −σ Δ accepts Δ because of Proposition 3.

The proofs for contractions and ignorations can be done analogously. �
An implication of Proposition 7 is that there are revisions, contractions, and

ignorations that fulfil (Pocf
◦), and therefore also the specific postulates (Pocf)

and (Pocf
−) in the case of revisions and contractions, respectively. Thus, all three

belief change operations are fully compatible with syntax splitting, while no such
operators having this property have been known before.

98 J. Haldimann et al.

7 Conclusion

We generalized syntax splitting postulates from [17] and [11]. Our new general-
ized postulates cover not only the iterated contraction, ignoration, and revision
of ranking functions, representing the epistemic state of an agent, with sets of
formulas, but also with sets of conditionals. Using selection strategies for c-
changes, we showed that all contractions, ignorations, and revisions fulfil the
generalized postulates (and therefore the original postulates) if they are induced
by a selection strategy that fulfils the newly developed property (IPcc).

Our current work includes generalizing the concept of selection strategies to
further belief changes like, for instance, complex belief change operations based
on descriptor revision [12] over a conditional logic [10,24].

Acknowledgements. We thank the anonymous reviewers for their valuable hints.
This work was supported by DFG Grant BE 1700/9-1 awarded to Christoph Beierle
and DFG Grant KE 1413/10-1 awarded to Gabriele Kern-Isberner as part of the priority
program “Intentional Forgetting in Organizations” (SPP 1921).

References

1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial
meet contraction and revision functions. J. Symbolic Logic 50(2), 510–530 (1985)

2. Aravanis, T.I., Peppas, P., Williams, M.: Incompatibilities between iterated and
relevance-sensitive belief revision. J. Artif. Intell. Res. 69, 85–108 (2020). https://
doi.org/10.1613/jair.1.11871

3. Beierle, C., Kern-Isberner, G.: Semantical investigations into nonmonotonic and
probabilistic logics. Ann. Math. Artif. Intell. 65(2–3), 123–158 (2012)

4. Beierle, C., Eichhorn, C., Kern-Isberner, G., Kutsch, S.: Properties of skeptical
c-inference for conditional knowledge bases and its realization as a constraint sat-
isfaction problem. Ann. Math. Artif. Intell. 83(3-4), 247–275 (2018)

5. Beierle, C., Kern-Isberner, G.: Selection strategies for inductive reasoning from
conditional belief bases and for belief change respecting the principle of condi-
tional preservation. In: Proceedings of the 34th International Florida Artificial
Intelligence Research Society Conference, FLAIRS 2021 (2021)

6. Beierle, C., Kern-Isberner, G., Sauerwald, K., Bock, T., Ragni, M.: Towards a
general framework for kinds of forgetting in common-sense belief management. KI
33(1), 57–68 (2019)

7. Caridroit, T., Konieczny, S., Marquis, P.: Contraction in propositional logic. Int.
J. Approx. Reason. 80, 428–442 (2017). https://doi.org/10.1016/j.ijar.2016.06.010

8. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artif. Intell. 89(1–
2), 1–29 (1997)

9. de Finetti, B.: La prévision, ses lois logiques et ses sources subjectives. Ann. Inst.
H. Poincaré 7(1), 1–68 (1937). engl. transl. Theory of Probability, Wiley (1974)

10. Haldimann, J., Sauerwald, K., von Berg, M., Kern-Isberner, G., Beierle: Towards
a framework of Hansson’s descriptor revision for conditionals. In: The 36th
ACM/SIGAPP Symposium on Applied Computing (SAC 2021), 22–26 March 2021,
Virtual Event, Republic of Korea, pp. 889–891. ACM, New York (2021)

https://doi.org/10.1613/jair.1.11871
https://doi.org/10.1613/jair.1.11871
https://doi.org/10.1016/j.ijar.2016.06.010

Syntax Splitting for Iterated Contractions Using Selection Strategies 99

11. Haldimann, J.P., Kern-Isberner, G., Beierle, C.: Syntax splitting for iterated con-
tractions. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of the
17th International Conference on Principles of Knowledge Representation and Rea-
soning, KR 2020, Rhodes, Greece, 12–18 September 2020, pp. 465–475 (2020).
https://doi.org/10.24963/kr.2020/47

12. Hansson, S.O.: Descriptor revision. Studia Logica 102(5), 955–980 (2014)
13. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision.

LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44600-1

14. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preser-
vation in belief revision. Ann. Mathe. Artif. Intell. 40(1–2), 127–164 (2004)

15. Kern-Isberner, G., Beierle, C., Brewka, G.: Syntax splitting = relevance + indepen-
dence: New postulates for nonmonotonic reasoning from conditional belief bases.
In: KR-2020, pp. 560–571 (2020)

16. Kern-Isberner, G., Bock, T., Sauerwald, K., Beierle, C.: Iterated contraction of
propositions and conditionals under the principle of conditional preservation. In:
GCAI 2017, 3rd Global Conference on Artificial Intelligence, Miami, FL, USA,
18–22 October 2017, pp. 78–92 (2017)

17. Kern-Isberner, G., Brewka, G.: Strong syntax splitting for iterated belief revision.
In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 1131–1137
(2017)

18. Konieczny, S., Pino Pérez, R.: On iterated contraction: syntactic characterization,
representation theorem and limitations of the Levi identity. In: Moral, S., Pivert,
O., Sánchez, D., Maŕın, N. (eds.) SUM 2017. LNCS (LNAI), vol. 10564, pp. 348–
362. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67582-4 25

19. Nayak, A., Goebel, R., Orgun, M., Pham, T.: Taking Levi identity seriously: a
plea for iterated belief contraction. In: Lang, J., Lin, F., Wang, J. (eds.) KSEM
2006. LNCS (LNAI), vol. 4092, pp. 305–317. Springer, Heidelberg (2006). https://
doi.org/10.1007/11811220 26

20. Parikh, R.: Beliefs, belief revision, and splitting languages. Logic Lang. Comput.
2, 266–278 (1999)

21. Peppas, P., Fotinopoulos, A.M., Seremetaki, S.: Conflicts between relevance-
sensitive and iterated belief revision. In: Ghallab, M., Spyropoulos, C.D., Fako-
takis, N., Avouris, N.M. (eds.) ECAI 2008–18th European Conference on Artificial
Intelligence, Patras, Greece, 21–25 July 2008, Proceedings. Frontiers in Artificial
Intelligence and Applications, vol. 178, pp. 85–88. IOS Press (2008). https://doi.
org/10.3233/978-1-58603-891-5-85

22. Peppas, P., Williams, M., Chopra, S., Foo, N.Y.: Relevance in belief revision. Artif.
Intell. 229, 126–138 (2015)

23. Ramachandran, R., Nayak, A.C., Orgun, M.A.: Three approaches to iterated belief
contraction. J. Philos. Logic 41(1), 115–142 (2012)

24. Sauerwald, K., Haldimann, J., von Berg, M., Beierle, C.: Descriptor revision for
conditionals: literal descriptors and conditional preservation. In: Schmid, U., Klügl,
F., Wolter, D. (eds.) KI 2020. LNCS (LNAI), vol. 12325, pp. 204–218. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58285-2 15

https://doi.org/10.24963/kr.2020/47
https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/978-3-319-67582-4_25
https://doi.org/10.1007/11811220_26
https://doi.org/10.1007/11811220_26
https://doi.org/10.3233/978-1-58603-891-5-85
https://doi.org/10.3233/978-1-58603-891-5-85
https://doi.org/10.1007/978-3-030-58285-2_15

100 J. Haldimann et al.

25. Sauerwald, K., Kern-Isberner, G., Beierle, C.: A conditional perspective for iterated
belief contraction. In: Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro,
S., Bugaŕın, A., Lang, J. (eds.) ECAI 2020–24th European Conference on Artifi-
cial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain, 29
August - 8 September 2020 - Including 10th Conference on Prestigious Applica-
tions of Artificial Intelligence (PAIS 2020). Frontiers in Artificial Intelligence and
Applications, vol. 325, pp. 889–896. IOS Press (2020). https://doi.org/10.3233/
FAIA200180

26. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In:
Harper, W., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics,
II, pp. 105–134. Kluwer Academic Publishers (1988)

https://doi.org/10.3233/FAIA200180
https://doi.org/10.3233/FAIA200180

An Epistemic Logic for Multi-agent Systems
with Budget and Costs

Stefania Costantini1 , Andrea Formisano2(B) , and Valentina Pitoni1

1 DISIM, Università di L’Aquila, L’Aquila, Italy
stefania.costantini@univaq.it,

valentina.pitoni@graduate.univaq.it
2 DMIF, Università di Udine, Udine, Italy

andrea.formisano@uniud.it

Abstract. In Artificial Intelligence, Multi-Agent Systems are able to model
many kinds of collective behavior and have a wide range of application. Logic
is often used to model aspects of agents’ reasoning process. In this paper, we
discuss social aspects of such systems. We propose a logical framework (Logic
of “Inferable”) which reasons about whether a group of agents can perform an
action, highlighting the concepts of action cost and budget that the group must
have available in order to perform actions. The focus is on modeling the group
dynamics of cooperative agents: if an agent of a group performs an action, that
action to be considered as performed by the whole group, and the group can sup-
port a component agent in performing actions not affordable by that agent alone.

Keywords: Multi agents systems · Epistemic logic · Mental actions

1 Introduction

Multi-agent systems are widely employed to model societies whose members are to
some extent cooperative towards each other. To achieve better results via cooperation,
agents must be able to reason about their own belief states, and those of others. They
must also be able to reason about what a group of agents can do, because it is often the
case that a group can fulfill objectives that are out of reach for the single agent.

Many kinds of logical frameworks can be found in the literature which try to emu-
late cognitive aspects of human beings, also from the cooperative point of view. We pro-
pose a new logical framework (a new Logic of “Inferable”, called L-DINF), that draws
inspiration from the concepts of Theory of Mind [20] and of Social Intelligence [21].
We consider the notion of executability of inferential actions, that may require resource
consumption (and hence involve a cost). So, in order to execute an action the agent
must possess the necessary budget. In our approach however, when an agent belongs to
a group, if that agent does not have enough budget to perform an intended action, it may
be supported by its group. So, ‘our’ agents are aware of themselves, of the group they
belong to, and possibly of other groups. We assume that agents belonging to a group are

Supported by Action COST CA17124 “DigForASP” and by INdAM-GNCS.

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 101–115, 2021.
https://doi.org/10.1007/978-3-030-75775-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_8&domain=pdf
http://orcid.org/0000-0002-5686-6124
http://orcid.org/0000-0002-6755-9314
http://orcid.org/0000-0002-4245-4073
https://doi.org/10.1007/978-3-030-75775-5_8

102 S. Costantini et al.

cooperative. Hence, an action can be executed by the group if at least one agent therein
is able to execute it, and the group can bear (in some way) the cost.

Since the seminal work of Fagin and Halpern [19], logics concerning some aspects
of awareness, implicit and explicit belief have been proposed. To the best of our knowl-
edge however, such logics make no use of concepts as ‘reasoning’ or ‘inference’.
Instead, L-DINF provides a constructive theory of explicit beliefs, so it accounts for
the perceptive and inferential steps leading from agent’s knowledge and beliefs to new
beliefs, and possibly to perform physical actions. The main point however is that we
consider both “executability” of actions and costs related to their execution.

Epistemic attitudes are modeled similarly to other approaches, among which we
mention the dynamic theory of evidence-based beliefs [4] —that uses, as we also do, a
neighborhood semantics for the notion of evidence— the sentential approach to explicit
beliefs and their dynamics [22], the dynamic theory of explicit and implicit beliefs [26],
and the dynamic logic of explicit beliefs and knowledge [3].

Concerning logics of inference, the seminal proposals were Velázquez-Quesada
[25] and the logical system DES4n proposed by Duc [16]. We are indebted to
Velázquez-Quesada concerning the idea of modeling inference steps by means of
dynamic operators in the style of dynamic epistemic logic (DEL). We however empha-
size the concepts of explicit belief and of background knowledge, and we introduce
issues related to executability and costs. L-DINF is also indebted to [16], concerning
the point of view that an agent reaches a certain belief state by performing inferences,
and that making inferences takes time (we tackled the issue of time in previous work,
discussed in [13,14,24]). Differently from this work however, in L-DINF inferential
actions are represented both at the syntactic level, via dynamic operators in the DEL
style, and at a semantic level as neighborhood-update operations. Moreover, L-DINF
enables an agent to reason on executability of inferential actions.

The notion of explicit beliefs constitutes a difference between L-DINF and active
logics [17,18], besides other important differences. First, while active logics provide
models of reasoning based on long-term memory and short-term memory (or working
memory) like in our approach, they do not distinguish –as we do– between the notion
of explicit belief and the notion of background knowledge, conceived in our case as a
radically different kind of epistemic attitude. Second, L-DINF accounts for a variety
of inferential actions that have not been explored in the active logic literature, whereas
they are in our opinion very useful for inferring new beliefs. Note that these actions
are mental operation, not physical ones. They correspond to basic operations of “mind-
reading” in the sense of Theory of Mind [20]. However, the consequence of a mental
operation can entail the execution of physical actions, among which “active sensing”
actions, where the agent performs to check (aspects of) the state of its environment.

Section 2 introduces syntax and semantics of L-DINF and an example of application
of our logic. In Sect. 3 we provide an axiomatization of the proposed logical system
and state its soundness. The proof of strong completeness of the logic is also shown. In
Sect. 4 we briefly discuss complexity and future work, and then conclude.

An Epistemic Logic for Multi-agent Systems with Budget and Costs 103

2 Logical Framework

L-DINF is a logic which consists of a static component and a dynamic one. The static
component, called L-INF, is a logic of explicit beliefs and background knowledge. The
dynamic component, called L-DINF, extends the static one with dynamic operators
capturing the consequences of the agents’ inferential actions on their explicit beliefs as
well as a dynamic operator capturing what an agent can conclude by performing some
inferential action in its repertoire.

2.1 Syntax

In this section we provide and illustrate the syntax of the proposed logic. Let Atm =
{p, q, . . .} be a countable set of atomic propositions. By Prop we denote the set of all
propositional formulas, i.e. the set of all Boolean formulas built out of the set of atomic
propositions Atm . A subset AtmA of the atomic propositions represent the physical
actions that an agent can perform, including “active sensing” actions (e.g., “let’s check
whether it rains”, “let’s measure the temperature”). Moreover, letAgt be a set of agents.
The language of L-DINF, denoted by LL-DINF, is defined by the following grammar:

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | Bi ϕ | Ki ϕ | do(φA) | doP (φA) | execG(α) | [G : α]ϕ

α ::= �(ϕ,ψ) | ∩(ϕ,ψ) | ↓(ϕ,ψ)

where p ranges over Atm and i ∈ Agt . (Other Boolean operators are defined from ¬
and ∧ in the standard manner.) The language of inferential actions of type α is denoted
by LACT. Plainly, the static part L-INF of L-DINF, includes only those formulas not
having sub-formulas of type α, namely, no inferential operation is admitted.

Notice the expression do(φA), where it is required that φA ∈ AtmA. This expres-
sion indicates actual execution of action φA, automatically recorded by the new belief
doP (φA) (postfix “P ” standing for “past” action). In fact, do and doP are not axioma-
tized, as they are realized by what has been called in [27] a semantic attachment, i.e.,
a procedure which connects an agent with its external environment in a way that is
unknown at the logical level. As seen below, in general the execution of actions may
have a cost. We impose the meta-constraint that a “physical” action is necessarily deter-
mined as a consequence of a mental action, thus it is the latter which bears the cost.

Before introducing a formal semantics, let us provide an intuition about the intended
meaning of formulas predicating on beliefs and background knowledge. The formula
Bi ϕ is read “the agent i explicitly believes that ϕ is true” or, more shortly, “agent i
believes ϕ”. Explicit beliefs are accessible in the working memory and are the basic
elements of the agents’ reasoning process, according the logic of local reasoning by
Fagin and Halpern [19]. In such approach agents cannot distinguish between logically
equivalent formulas, i.e., if two facts ϕ and ψ are logically equivalent and an agent
explicitly believes that ϕ is true, then it believes that ψ is true as well. Unlike explicit
beliefs, background knowledge is assumed to satisfy omniscience principles, such as
closure under conjunction and known implication, closure under logical consequence,
and introspection. More specifically, Ki is nothing but the well-known S5 modal oper-
ator often used to model/represent knowledge. The fact that background knowledge is

104 S. Costantini et al.

closed under logical consequence is justified by the fact that we conceive it as a kind of
deductively closed belief base. We assume the background knowledge to include: facts
(formulas) known by the agent from the beginning: plus facts the agent has decided to
store in its long-term memory (by means of some decision mechanism not treated here)
after having processed them in its working memory, as well their logical consequences.
We therefore assume that background knowledge is irrevocable in the sense of being
stable over time. A formula of the form [G : α]ϕ, with G ∈ 2Agt , states that “ϕ holds
after the inferential action α has been performed by at least one of the agents in G, and
all agents in G have common knowledge about this fact”.

Remark 1. If an action is performed by an agent i ∈ G, the others agents belonging to
the same group G have full visibility of this action and, therefore, as we suppose agents
to be cooperative, it is as if they had performed the action themselves.

Borrowing from and extending [2], we distinguish three types of inferential
actions α which allow us to capture some of the dynamic properties of explicit beliefs
and background knowledge: �(ϕ,ψ), ∩(ϕ,ψ) and ↓(ϕ,ψ). These actions characterize
the basic operations of forming explicit beliefs via inference:

• ↓(ϕ,ψ) is the inferential action which consists in inferring ψ from ϕ in case ϕ is
believed and, according to agent’s background knowledge, ψ is a logical conse-
quence of ϕ. In other words, by performing this inferential action, an agent tries to
retrieve from its background knowledge in long-term memory the information that
ϕ implies ψ and, if it succeeds, it starts believing ψ;

• ∩(ϕ,ψ) is the inferential action which closes the explicit belief ϕ and the explicit
belief ψ under conjunction. In other words, ∩(ϕ,ψ) characterizes the inferential
action of deducing ϕ ∧ ψ from the explicit belief ϕ and the explicit belief ψ;

• �(ϕ,ψ) is the inferential action which infers ψ from ϕ in case ϕ is believed and,
according to agent’s working memory, ψ is logical consequence of ϕ. This last
action operates directly on the working memory without retrieving anything from
the background knowledge.

Remark 2. In the mental actions �(ϕ,ψ) and ↓(ϕ,ψ), the formula ψ which is inferred
and asserted as a new belief can be do(φA), which denotes the actual execution of
physical action φA, where doP (φA) is the belief to have done such action in the past.
In fact, we assume that when inferring do(φA) the action is actually executed, and the
corresponding belief doP (φA) asserted, possibly augmented with a time-stamp. Actions
are supposed to succeed by default, in case of failure a corresponding failure event will
be perceived by the agent. The doP beliefs constitute a history of the agent’s operation,
so they might be useful for the agent to reason about its own past behavior, and/or,
importantly, they may be useful to provide explanations to human users.

Finally, a formula of the form execG(α) expresses executability of inferential
actions. It has to be read as: “α is an inferential action that an agent in G can perform”.

As said in the Introduction, we intend to model agents which, to execute an action,
may have to pay a cost, so they must have a consistent budget available. In our app-
roach, agents belong to groups (where the smallest possible group is the single agent),
and agents belonging to a group are by definition cooperative. With respect to action

An Epistemic Logic for Multi-agent Systems with Budget and Costs 105

execution, an action can be executed by the group if at least one agent in the group is
able to execute it, and the group has the necessary budget available, sharing the cost
according to some policy. In order to keep the complexity of the logic reasonable, we
have not introduced costs and budget in the language.1 In fact, by making the assump-
tion that agents are cooperative, we also assume that they are aware of and agree with the
cost-sharing policy. So, as seen below, costs and budget are coped with at the semantic
level. Variants of the logic can be easily worked out, where the modalities of cost shar-
ing are different from the one shown here, where the group members share an action’s
cost in equal parts. Below we indicate which are the points that should be modified
to change the cost-sharing policy. Moreover, for brevity we introduce a single budget
function, and thus, implicitly, a single resource to be spent. Several budget functions,
each one concerning a different resource, might be plainly defined.

2.2 Semantics

Definition1 introduces the notion of L-INF model, which is then used to introduce
semantics of the static fragment of the logic. As before let Agt be the set of agents.

Definition 1. A model is a tuple M = (W,N,R, E,B,C, V) where:

– W is a set of objects, called worlds (or situations);2

– R = {Ri}i∈Agt is a collection of equivalence relations on W : Ri ⊆ W × W for
each i ∈ Agt;

– N : Agt ×W −→ 22
W

is a neighborhood function such that for each i ∈ Agt , each
w, v ∈ W , and each X ⊆ W these conditions hold:

(C1) if X ∈ N(i, w) then X ⊆ {v ∈ W | wRiv},
(C2) if wRiv then N(i, w) = N(i, v);

– E : Agt × W −→ 2LACT is an executability function such that for each i ∈ Agt and
w, v ∈ W , it holds that:

(D1) if wRiv then E(i, w) = E(i, v);
– B : Agt × W −→ N is a budget function such that for each i ∈ Agt and w, v ∈ W ,
the following holds

(E1) if wRiv then B(i, w) = B(i, v);
– C : Agt×LACT×W −→ N is a cost function such that for each i ∈ Agt , α ∈ LACT,

and w, v ∈ W , it holds that:
(F1) if wRiv then C(i, α, w) = C(i, α, v);

– V : W −→ 2Atm is a valuation function.

1 We intend to use this logic in practice, to formalize memory in DALI agents, where DALI is a
logic-based agent-oriented programming language [5,6,15]. So, computational effectiveness
was crucial. Assuming that agents share the cost is reasonable when agents share resources, or
cooperate to a common goal, as discussed, e.g., in [7,8].

2 Concerning Definition 1, a world is just an arbitrary object. No “internal structure” is required.
In Sect. 3 we will take advantage of this and define worlds as set of formulas.

106 S. Costantini et al.

To simplify the notation, let Ri(w) denote the set {v ∈ W | wRiv}, for w ∈ W .
The set Ri(w) identifies the situations that agent i considers possible at world w. It is
the epistemic state of agent i at w. In cognitive terms, Ri(w) can be conceived as the set
of all situations that agent i can retrieve from its long-term memory and reason about.

While Ri(w) concerns background knowledge, N(i, w) is the set of all facts that
agent i explicitly believes at worldw, a fact being identified with a set of worlds. Hence,
if X ∈ N(i, w) then, the agent i has the fact X under the focus of its attention and
believes it. We say that N(i, w) is the explicit belief set of agent i at world w.

The executability of actions is determined by the functionE. For an agent i, E(i, w)
is the set of inferential actions that agent i can execute at world w. The value B(i, w) is
the budget the agent has available to perform actions. Similarly, the value C(i, α, w) is
the cost to be paid by agent i to execute the action α in the world w.

Constraint (C1) imposes that agent i can have explicit in its mind only facts which
are compatible with its current epistemic state. Moreover, according to constraint (C2),
if a world v is compatible with the epistemic state of agent i at world w, then agent
i should have the same explicit beliefs at w and v. In other words, if two situations
are equivalent as concerns background knowledge, then they cannot be distinguished
through the explicit belief set. Analogous properties are imposed by constraints (D1),
(E1), and (F1). Namely, (D1) imposes that agent i always knows which actions it can
perform and those it cannot. (E1) states that agent i always knows the available budget
in a world (potentially needed to perform actions). Finally, (F1) determines that agent i
always knows how much it costs to perform an inferential action.

Truth values for formulas of L-DINF are inductively defined. Given a model M =
(W,N,R, E,B,C, V), i ∈ Agt , G ⊆ Agt , w ∈ W , and a formula ϕ ∈ LL-INF, we
introduce a shorthand notation for the set of all words Ri-related to w that satisfy ϕ:

‖ϕ‖M
i,w = {v ∈ W : wRiv and M,v |= ϕ}

whenever M,v |= ϕ is well-defined (see below). Then, we set:

– M,w |= p iff p ∈ V (w)
– M,w |= execG(α) iff there exists i ∈ G with α ∈ E(i, w)
– M,w |= ¬ϕ iff M,w
 |= ϕ
– M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
– M,w |= Bi ϕ iff ||ϕ||Mi,w ∈ N(i, w)
– M,w |= Ki ϕ iff M,v |= ϕ for all v ∈ Ri(w)

For any inferential action α performed by any agent i, we set:

– M,w |= [G : α]ϕ iff M [G:α], w |= ϕ

where we put M [G:α] = 〈W ;N [G:α],R, E,B[G:α], C, V 〉, representing the fact that the
execution of an inferential action α affects the sets of beliefs of agent i and modifies the
available budget. Such operation can add new beliefs by direct perception, by means
of one inference step, or as a conjunction of previous beliefs. Hence, when introduc-
ing new beliefs (i.e., performing mental actions), the neighborhood must be extended
accordingly.

An Epistemic Logic for Multi-agent Systems with Budget and Costs 107

A key aspect in the definition of the logic is the following, which states under which
conditions, and by which agent(s), an action may be performed:

enabledw(G,α) ≡Def ∃j ∈ G (α ∈ E(j, w) ∧ C(j,α,w)
|G| ≤ minh∈G B(h,w)).

This condition as defined above expresses the fact that an action is enabled when: at
least an agent can perform it; and the “payment” due by each agent, obtained by dividing
the action’s cost equally among all agents of the group, is within each agent’s available
budget. In case more than one agent in G can execute an action, we implicitly assume
the agent j performing the action is the one corresponding to the lowest possible cost.
Namely, j is such that C(j, α, w) = minh∈G C(h, α,w). This definition reflects a par-
simony criterion reasonably adoptable by cooperative agents sharing a crucial resource
such as, e.g., energy or money.

Remark 3. Notice that the policy we have specified to enable the action, share the
costs, and select the executor of the action is just one among many possible options.
Other choices might be viable, for example, depending on the specific implementation
choices of an agent system or on the characteristics of the concrete real-world applica-
tion at hand. So variations of this logic can be easily defined by devising some other
enabling condition and policy for cost sharing, or even by introducing differences in
neighborhood update. The semantics is, in a sense, parametric w.r.t. such choice. Notice,
moreover, that the definition of the enabling function basically specifies the “role” that
agents take while concurring with their own resources to actions’ execution. Also, in
case of specification of different resources, different corresponding enabling functions
should be defined.

The updated neighborhood N [G:α] is as follows.

N [G:↓(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

N(i, w) ∪ {||χ||Mi,w} if i ∈ G and enabledw(G, ↓(ψ, χ)) and

M, w |= Biψ ∧ Ki(ψ → χ)

N(i, w) otherwise

N [G:∩(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

N(i, w) ∪ {||ψ ∧ χ||Mi,w} if i ∈ G and enabledw(G, ∩(ψ,χ)) and

M, w |= Biψ ∧ Biχ

N(i, w) otherwise

N [G:�(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

N(i, w) ∪ {||χ||Mi,w} if i ∈ G and enabledw(G, � (ψ,χ)) and

M, w |= Biψ ∧ Bi(ψ → χ)

N(i, w) otherwise

Notice that after an action α has been performed by an agent j ∈ G, all agents i ∈ G
see the same update in the neighborhood. Conversely, for any agent h
∈ G the neigh-
borhood remains unchanged (i.e., N [G:α](h,w) = N(h,w)). However, even for agents
in G, the neighborhood remains unchanged if the required preconditions, on explicit
beliefs, knowledge, and budget, do not hold (and hence the action is not executed).
Notice also that we might devise variations of the logic by making different decisions
about neighborhood update to implement, for instance, partial visibility within a group.

108 S. Costantini et al.

Since each agent inG has to contribute to cover the costs of execution by consuming
part of its available budget, an update of the budget function is needed. As before, for
an action α, we require enabledw(G,α) to hold and assume that j ∈ G executes α.
Then, depending on α, we have:

B[G:↓(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

B(i, w) − C(j,↓(ψ,χ),w)
|G| if i ∈ G and enabledw(G, ↓(ψ, χ)) and

M, w |= Biψ ∧ Ki(ψ → χ)

B(i, w) otherwise

B[G:∩(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

B(i, w) − C(j,∩(ψ,χ),w)
|G| if i ∈ G and enabledw(G, ∩(ψ,χ)) and

M, w |= Biψ ∧ Biχ

B(i, w) otherwise

B[G:�(ψ,χ)](i, w) =

⎧
⎪⎨

⎪⎩

B(i, w) − C(j,�(ψ,χ),w)
|G| if i ∈ G and enabledw(G, � (ψ,χ)) and

M, w |= Biψ ∧ Bi(ψ → χ)

B(i, w) otherwise

We write |=L-DINF ϕ to denote that M,w |= ϕ holds for all worlds w of every
model M .

Property 1. As consequence of previous definitions, for any set of agents G and each
i ∈ G, we have the following:

– |=L-INF (Ki(ϕ → ψ)) ∧ Bi ϕ) → [G : ↓(ϕ,ψ)]Bi ψ.
Namely, if an agent has ϕ among beliefs and Ki(ϕ → ψ) in its background knowl-
edge, then as a consequence of the action ↓(ϕ,ψ) the agent starts believing ψ.

– |=L-INF (Biϕ ∧ Biψ) → [G : ∩(ϕ,ψ)]Bi(ϕ ∧ ψ).
Namely, if an agent has ϕ and ψ as beliefs, then as a consequence of the action
∩(ϕ,ψ) the agent starts believing ϕ ∧ ψ.

– |=L-INF (Bi(ϕ → ψ)) ∧ Bi ϕ) → [G : �(ϕ,ψ)]Bi, ψ.
Namely, if an agent has ϕ among its beliefs andBi(ϕ → ψ) in its working memory,
then as a consequence of the action �(ϕ,ψ) the agent starts believing ψ.

Proof. Let i ∈ G, M=〈W,N,R, E,B,C, V 〉, and w ∈ W .

– Let M,w |= Ki(ϕ → ψ)∧Bi ϕ. We have to show that M,w |= [G:↓(ϕ,ψ)]Bi ψ
holds. This holds iff M [G:↓(ϕ,ψ)], w |= Bi ψ, with M [G:↓(ϕ,ψ)] = 〈W,N [G:↓(ϕ,ψ)],
R, E,B[G:↓(ϕ,ψ)], C, V 〉, where N [G:↓(ϕ,ψ)](i, w) = N(i, w) ∪ { ‖ ψ ‖M

i,w

}
,

because M,w |= (Ki(ϕ → ψ) ∧ Bi ϕ) and i ∈ G, by hypothe-
sis. M [G:↓(ϕ,ψ)], w |= Bi ψ holds because ‖ ψ ‖M [G:↓(ϕ,ψ)]

i,w is member of
N [G:↓(ϕ,ψ)](i, w).

– Let M,w |= Bi ϕ∧Bi ψ. We have to show that M,w |= [G : ∩(ϕ,ψ)]Bi(ϕ∧ψ).
This holds iff M [G:∩(ϕ,ψ)], w |= Bi(ϕ ∧ ψ), with M [G:∩(ϕ,ψ)] = 〈W,N [G:∩(ϕ,ψ)],
R, E,B[G:∩(ϕ,ψ)], C, V 〉 and N [G:∩(ϕ,ψ)] = N(i, w) ∪ {‖ ϕ ∧ ψ ‖M

i,w

}
, because

M,w |= Bi ϕ ∧ Bi ψ, by hypothesis. Then, M [G:∩(ϕ,ψ)], w |= Bi(ϕ ∧ ψ) holds.
– Let M,w |= (Bi(ϕ → ψ) ∧ Bi ϕ). The proof that M,w |= [G : �(ϕ,ψ)]Bi ψ
follows the same line of the proof developed for the case of action ↓(ϕ,ψ).

An Epistemic Logic for Multi-agent Systems with Budget and Costs 109

2.3 Problem Specification and Inference: An Example

In this section we propose an example of problem specification and inference in L-
DINF. Note that an agent performs physical actions to interact with other agents or with
the surrounding environment in consequence to some internal inference. Therefore, we
consider inferential actions as a prerequisite for physical ones, and so it is inferential
actions which bear costs.

Consider a group of n agents, where each agent manages a smart home, which
is a prosumer (producer+consumer) of energy. The electricity is produced by solar
panels during the day. The budget available for the night is the difference between
energy produced and energy consumed. More energy can be bought at high cost from
the outside, so agents try to avoid this extra cost. Assume that the agents are avail-
able to lend energy to others. Now, assume that an agent i would like to use some
appliance (e.g., air conditioning system, washing machine, etc.) during the night, but
its own budget is insufficient. Nevertheless, agent i could use the needed appliance if
the group as a whole has sufficient budget. To consider a more concrete situation, let
n = 4 and assume that in world w1 these four agents have the following budgets to
perform actions: B(1, w1) = 10, B(2, w1) = 7, B(3, w1) = 8, and B(4, w1) = 20.
The physical actions any agent can perform are, e.g.,: switch-on−airconditioningA,
switch-on−washing-machineA, close−electric-shutterA.

Among the various possible inferential actions that agents might be able to do, let
us, for simplicity, consider only the following ones:

α1 : ↓(temperature−high, do(switch-on−airconditioningA))
α2 : ↓(dirty−clothes, do(switch-on−washing-machineA))
α3 : ↓(night ∧ thieves−fear, do(close−electric-shutterA))
α4 : ∩ (night, thieves−fear)

Assume that their costs are C(i, α1, w) = 20, C(i, α2, w) = 12, C(i, α3, w) = 8,
C(i, α4, w) = 1; that αj ∈ E(i, w) holds for each world w, each agent i, and each
action αj ; and that the knowledge base of each agent i contains the following rules:

1. Ki(temperature−high → do(switch-on−airconditioningA))
This rule indicates that an agent knows that if the temperature inside the house is
high, it can switch on the air conditioner;

2. Ki(doP (switch-on−airconditioningA) → do(close−electric-shutterA))
This rule indicates that if an agent knows that someone has switched on the air
conditioning (past action, postfix “P ”), it can close the electric shutter so as not to
let the heat in from the outside;

3. Ki(dirty−clothes → do(switch-on−washing-machineA))
This rule indicates that if an agent knows that there are dirty clothes inside the wash-
ing machine, it can switch it on;

4. Ki(night ∧ thieves−fear → do(close−electric-shutterA))
This rule indicates that if an agent knows that it is night and someone has the fear of
thieves, it can close the electric shutter.

Assume also that the agents have the following beliefs:

B1(temperature−high) B2(dirty−clothes) B3(thieves−fear) B3(night)
B4(temperature−high → do(switch-on−airconditioningA))

110 S. Costantini et al.

The latter formula —which states that if the temperature in the house is high, then
agent 4 can switch on the air conditioner—, represents an inference that agent 4 may
perform by exploiting its working memory (i.e., its own present beliefs). This implica-
tion allows agent 4 to infer B4(do(switch-on−airconditioningA)) depending on the
contents of its own working memory. In particular such inference requires the pres-
ence of the belief B4(temperature−high). Compare this formula with rule (1) shown
earlier, as part of the knowledge base of the agent. There, the implication concerns the
agent’s long-termmemory and the inference would thus exploit background knowledge.

Suppose agent 1 wants to perform α1. It alone cannot perform α1, because it does
not have enough budget. But, using the inferential action

[G : ↓(temperature−high, do(switch-on−airconditioningA))],

with G = {1, 2, 3, 4}, the other agents can lend its part of their budgets to share the
cost, so the group can perform α1, because

C(1,α1,w1)
|G| ≤ minh∈G B(h,w1). Hence,

B1(do(switch-on−airconditioningA)) can be inferred by agent 1 and this determines
the execution of the concrete physical action. Note that each agent i ∈ G adds
Bi(do(switch-on−airconditioningA)) to its beliefs. Indeed, the inferential action is
considered as performed by the whole group and each agent of G updates its neigh-
borhood. After the execution of the action the budget of each agent is updated (cf.,
Sect. 2.2) as follows: B(1, w2) = 5, B(2, w2) = 2, B(3, w2) = 3, and B(4, w2) = 15,
where, for simplicity, we name w2 the situation reached after executing the action.

Let us now consider the case in which, in such situation, agent 2 wants to perform
do(switch-on−washing-machineA), enabled by the inferential action

↓(dirty−clothes, do(switch-on−washing-machineA)).

In this case, the right precondition B2(dirty−clothes) holds, but, even considering the
entire group G, the available budgets do not satisfy the constraint C(2,α2,w2)

|G| = 3 ≤
minh∈G B(h,w2) (in particular, because the available budget of agent 2 is 2).

Let us, instead, assume that agent 3wants to perform α3 (in w2), to enable the phys-
ical action close−electric-shutterA This cannot be done directly, because before exe-
cuting the inferential action ↓(night ∧ thieves−fear, do(close−electric-shutterA)),
it has to perform the inferential action ∩(night, thieves−fear) in order to infer the
belief B3(night ∧ thieves−fear). Considering its current budget, the execution of
[{3} : ∩(night, thieves−fear)] can be completed (and, after that, the budget for
agent 3 becomes 2). So, agent 3 obtains the belief needed as precondition to the exe-
cution of ↓(night ∧ thieves−fear, do(close−electric-shutterA)). Nonetheless, in
order to execute such action it needs the help of other agents (because its budget does not
suffice), and the new belief B3(do(close−electric-shutterA)) will be inferred through
[G : ↓(night ∧ thieves−fear, do(close−electric-shutterA))]. Again, all agents in G
acquire the belief inferred by agent 3 and extend their belief sets, The condition on
cost sharing is also satisfied for action α3, and the budgets after the execution become
3, 0, 0, 13, for the agents 1, 2, 3, 4, respectively. At this point, since agents 2 and 3 have
exhausted their budgets, they cannot perform any other action.

An Epistemic Logic for Multi-agent Systems with Budget and Costs 111

The non-executability depends on the policy adopted to share action cost among
agents. For instance, a policy requiring proportional sharing of costs with respect to
agents’ budgets, could be adopted. By applying this criterion, the execution of action α1

in world w1, by agent 1 as part of G, would have generated the following budgets
6, 4, 4, 11 for the agents 1, 2, 3, 4, respectively, because agents would have contributed
paying 4, 3, 4, 9, respectively (where we rounded values to the closest integer). Simi-
larly, with a proportional sharing of costs even in the the last situation of the example,
agents of G would collectively have the budget to perform more actions.

3 Axiomatization and Strong Completeness

In this section we present an axiomatization of our logic and discuss the proof of its
strong completeness w.r.t. the proposed class of models.

The L-INF and L-DINF axioms and inference rules are the following:

1. (Ki ϕ ∧ Ki(ϕ → ψ)) → Ki ψ;
2. Ki ϕ → ϕ;
3. ¬Ki(ϕ ∧ ¬ϕ);
4. Ki ϕ → Ki Ki ϕ;
5. ¬Ki ϕ → Ki ¬Ki ϕ;
6. Bi ϕ ∧ Ki (ϕ ↔ ψ) → Bi ψ;
7. Bi ϕ → Ki Bi ϕ;
8.

ϕ
Ki ϕ

;

9. [G : α]p ↔ p;
10. [G : α]¬ϕ ↔ ¬[G : α]ϕ;
11. execG(α) → Ki (execG(α));
12. [G : α](ϕ ∧ ψ) ↔ [G : α]ϕ ∧ [G : α]ψ;
13. [G : α]Ki ϕ ↔ Ki ([G : α]ϕ);
14. [G : ↓(ϕ, ψ)]Bi χ ↔ Bi ([G : ↓(ϕ, ψ)]χ) ∨ (

(Bi ϕ ∧ Ki (ϕ → ψ))
∧Ki ([G : ↓(ϕ, ψ)]χ ↔ ψ)

)
;

15. [G : ∩(ϕ, ψ)]Bi χ ↔ Bi ([G : ∩(ϕ, ψ)]χ) ∨ (
(Bi ϕ ∧ Bi ψ)

∧Ki [G : ∩(ϕ, ψ)]χ ↔ (ϕ ∧ ψ)
)
;

16. [G : �(ϕ, ψ)]Bi χ ↔ Bi ([G : �(ϕ, ψ)]χ) ∨ (
(Bi ϕ ∧ Bi (ϕ → ψ))

∧Bi ([G : �(ϕ, ψ)]χ ↔ ψ)
)
;

17.
ψ↔χ

ϕ↔ϕ[ψ/χ]
;

We write L-DINF� ϕ to denote that ϕ is a theorem of L-DINF. It is easy to verify that
the above axiomatization is sound for the class of L-INF models, namely, all axioms are
valid and inference rules preserve validity. In particular, soundness of axioms (14)–(16)
immediately follows from the semantics of [G : α]ϕ, for each inferential action α, as
defined in Sect. 2.2. As before let Agt be a set of agents. For the proof that L-INF is
strongly complete we use a standard canonical-model argument.

Definition 2. The canonical L-INF model is a tuple Mc = 〈Wc, Nc,Rc, Ec, Bc,
Cc, Vc〉 where:
• Wc is the set of all maximal consistent subsets of LL-INF;

112 S. Costantini et al.

• Rc = {Rc,i}i∈Agt is a collection of equivalence relations on Wc such that, for every
i ∈ Agt and w, v ∈ Wc, wRc,iv if and only if (for all ϕ, Ki ϕ ∈ w implies ϕ ∈ v)

• For w ∈ Wc, ϕ ∈ LL-INF let Aϕ(i, w) = {v ∈ Rc,i(w) | ϕ ∈ v}. Then, we put
Nc(i, w) = {Aϕ(i, w) | Bi ϕ ∈ w}.

• Ec : Agt × Wc −→ 2LACT is such that for each i∈Agt and w, v∈Wc, if wRc,iv then
Ec(i, w) = Ec(i, v);

• Bc : Agt × Wc −→ N is such that for each i ∈ Agt and w, v ∈ Wc, if wRc,iv then
Bc(i, w) = Bc(i, v);

• Cc : Agt × LACT × Wc −→ N is such that for each i ∈ Agt , α ∈ LACT, and
w, v ∈ Wc, if wRc,iv then Cc(i, α, w) = Cc(i, α, v);

• Vc : Wc −→ 2Atm is such that Vc(w) = Atm ∩ w.

Note that, analogously to what done before, Rc,i(w) denotes the set {v ∈ Wc |
wRc,iv}, for each i ∈ Agt .

It is easy to verify that Mc is an L-INF model as defined in Definition 1, since,
it satisfies conditions (C1),(C2),(D1),(E1),(F1). Hence, it models the axioms and the
inference rules (1)–(17) introduced before. Consequently, the following properties hold
too. Let w ∈ Wc, then

– given ϕ ∈ LL-INF, it holds that Ki ϕ ∈ w if and only if ∀v ∈ Wc such that wRc,iv
we have ϕ ∈ v;

– for ϕ ∈ LL-INF, if Bi ϕ ∈ w and wRc,iv then Bi ϕ ∈ v;

Thus, Rc,i-related worlds have the same knowledge and Nc-related worlds have the
same beliefs. By proceeding similarly to what is done in [2] we obtain the proof of
strong completeness. Let us start with some preliminary results:

Lemma 1. For all w ∈ Wc and Bi ϕ,Bi ψ ∈ LL-INF, if Bi ϕ ∈ w but Bi ψ
∈ w, it
follows that there exists v ∈ Rc,i(w) such that ϕ ∈ v ↔ ψ
∈ v.

Proof. Let w ∈ Wc and ϕ,ψ be such that Bi ϕ ∈ w and Bi ψ /∈ w. Assume now that
for every v ∈ Rc,i(w) we have ϕ ∈ v ∧ ψ ∈ v or ϕ /∈ v ∧ ψ /∈ v; then, from previous
statements it follows that Ki(ϕ ↔ ψ) ∈ w so that by axiom (6), Bi ψ ∈ w which is a
contradiction.

Lemma 2. For all ϕ ∈ LL-INF and w ∈ Wc it holds that ϕ ∈ w iff Mc, w |= ϕ.

Proof. We have to prove the statement for all ϕ ∈ LL-INF. The proof is by induction on
the structure of formulas. For instance, if ϕ = p and w ∈ Wc, then p ∈ w iff p ∈ Vc(w)
and this means that Mc, w |= p by the semantics defined in Sect. 2.2. The case of
formulas of the form Bi ϕ is the most involved: assume Bi ϕ ∈ w for w ∈ Wc. We
have that Aϕ(i, w) = {v ∈ Rc,i(w) | ϕ ∈ v}. By the definition of Wc and of ‖ · ‖M

i,w in

Sect. 2.2, we have Aϕ(i, w) =‖ ϕ ‖Mc
i,w ∩Rc,i(w). Hence, by the definition of Nc(i, w)

it follows that Bi ϕ ∈ w and then, Mc, w |= Bi ϕ.
Suppose Bi ϕ /∈ w, so ¬Bi ϕ ∈ w and we have to prove ‖ ϕ ‖Mc

w ∩Rc,i(w) /∈
Nc(i, w). Choose A ∈ Nc(i, w): by definition we know that A = Aψ(i, w) for some ψ
with Bi ψ ∈ w. By Lemma 1 there is some v ∈ Rc,i(w) such that ϕ ∈ v ↔ ψ /∈ v.
By induction hypothesis, we obtain that either v ∈ (‖ ϕ ‖Mc

w ∩Rc,i(w)) \ Aψ(i, w)

An Epistemic Logic for Multi-agent Systems with Budget and Costs 113

or vI ∈ Aψ(i, w) \ (‖ ϕ ‖Mc
i,w ∩Rc,i(w)) holds. Consequently, in both cases,

Aψ(i, w)
=‖ ϕ ‖Mc
i,w ∩Rc,i(w). Thanks to the arbitrariness in the choice of A in

Nc(i, w) we conclude that ‖ ϕ ‖Mc
i,w ∩Rc,i(w) /∈ Nc(i, w). Hence Mc, w
 |= Bi ϕ.

A crucial result states that each L-DINF formula has an equivalent L-INF formula:

Lemma 3. For all ϕ ∈ LL-DINF there exists ϕ̃ ∈ LL-INF such that L-DINF � ϕ ↔ ϕ̃.

Proof. We have to prove the statement for all ϕ ∈ LL-DINF but we show the proof
only for ϕ = p, because the others are proved analogously. By the axiom (9) we have
[G : α]p ↔ p, and by rule (3) we have [G:α]p↔p

ϕ↔ϕ[[G:α]p/p] which means that we can obtain
ϕ̃ by replacing [G : α]p with p in ϕ.

The previous lemmas allow us to prove the following theorems.

Theorem 1. L-INF is strongly complete for the class of L-INF models.

Proof. Any consistent set ϕ may be extended to a maximal consistent set of formulas
w� ∈ Wc and Mc, w

� |= ϕ by Lemma 2. Then, L-INF is strongly complete for the
class of L-INF models.

Theorem 2. L-DINF is strongly complete for the class of L-INF models.

Proof. If K is a consistent set of LL-DINF formulas then, by Lemma 3, we can obtain
the set K̃ = {ϕ̃ | ϕ ∈ K}, which is a consistent set of LL-INF formulas. By Theorem 1
Mc, w |= K̃. Since L-DINF is sound and for each ϕ ∈ K, L-DINF � ϕ ↔ ϕ̃, and it
follows Mc, w |= K then L-DINF is strongly complete for the class of L-INF models.

4 Discussion and Future Work

In this paper we discussed some cognitive aspects of autonomous systems, concerning
executability of actions in a group of agents, depending upon the available budget. To
model these aspects we have proposed the new epistemic logic L-DINF, that we have
shown “at work” via an example, and of which we have proved some useful properties
among which strong completeness. The logic is easily extensible to accommodate kinds
of resources, and kinds of agents’ “roles”, meaning capabilities of executing actions,
and amounts they are required to spend according to their role.

The complexity of other logics which are based on the same principles as ours
(Kripke semantics, canonical models, update of the neighborhood upon performing
mental actions, proof of strong completeness via a standard canonical-model argument)
has been thoroughly studied, thus, ‘mutatis mutandis’, we can borrow from there. After
re-perusing those proofs we can in fact safely claim that, like in the analogous cases,
the satisfiability problem is NP-complete in the single-agent case and it is, instead,
PSPACE-complete in the multi-agent case.

Concerning related work, in alternating time temporal logics [23] costs appears
explicitly in the language, and it is even possible to ask, e.g., what is the minimal
amount of a resource that makes a given goal achievable; but, decision problems are

114 S. Costantini et al.

strictly more complex. However, in the present work we did not intend to design a logic
to reason about coalitions and strategies like done, e.g., in [23], rather we meant to
model the internal mental processes of an agent which is a member of a group, with a
certain “role”. In this sense the two approaches are orthogonal rather than in competi-
tion. There has been a considerable amount of work on logics concerning coalitions’
strategic abilities where agents’ actions consume resources, or both produce and con-
sume resources. For a review of this work and a discussion of the complexity of this kind
of logics, the reader may refer to [1]. We have done ourselves some work on resource
consumption/production, with preferences concerning which resources to spend or to
save [9–12], for the single-agent case; the add-on is that we have devised a prototypi-
cal (freely available) implementation (see http://users.dimi.uniud.it/∼andrea.formisano/
raspberry/).

In future work, we mean to extend our logic so as to integrate temporal aspects, i.e.,
in which instant or time interval an action has been or should be performed, and how
this may affect resource usage, and agent’s and group’s functioning.

References

1. Alechina, N., Demri, S., Logan, B.: Parameterised resource-bounded ATL. In: The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
7–12 February 2020, pp. 7040–7046. AAAI Press (2020)

2. Balbiani, P., Duque, D.F., Lorini, E.: A logical theory of belief dynamics for resource-
bounded agents. In: Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, AAMAS 2016, pp. 644–652. ACM (2016)

3. Balbiani, P., Fernández-Duque, D., Lorini, E.: The dynamics of epistemic attitudes in
resource-bounded agents. Studia Logica 107(3), 457–488 (2019)

4. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Studia Logica 99(1–
3), 61–92 (2011)

5. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems. In:
Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424,
pp. 1–13. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45757-7 1

6. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 685–688. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8 57

7. Costantini, S., De Gasperis, G.: Flexible goal-directed agents’ behavior via DALI mass and
ASP modules. In: 2018 AAAI Spring Symposia, Stanford University, Palo Alto, California,
USA, 26–28 March 2018. AAAI Press (2018)

8. Costantini, S., De Gasperis, G., Nazzicone, G.: DALI for cognitive robotics: principles and
prototype implementation. In: Lierler, Y., Taha, W. (eds.) PADL 2017. LNCS, vol. 10137,
pp. 152–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51676-9 10

9. Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on resource
consumption and production in ASP. J. Algorithms 64(1), 3–15 (2009). https://doi.org/10.
1016/j.jalgor.2009.02.002

10. Costantini, S., Formisano, A.: Answer set programming with resources. J. Log. Comput.
20(2), 533–571 (2010). https://doi.org/10.1093/logcom/exp071

http://users.dimi.uniud.it/~andrea.formisano/raspberry/
http://users.dimi.uniud.it/~andrea.formisano/raspberry/
https://doi.org/10.1007/3-540-45757-7_1
https://doi.org/10.1007/978-3-540-30227-8_57
https://doi.org/10.1007/978-3-319-51676-9_10
https://doi.org/10.1016/j.jalgor.2009.02.002
https://doi.org/10.1016/j.jalgor.2009.02.002
https://doi.org/10.1093/logcom/exp071

An Epistemic Logic for Multi-agent Systems with Budget and Costs 115

11. Costantini, S., Formisano, A.: Weight constraints with preferences in ASP. In: Delgrande,
J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 229–235. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-20895-9 24

12. Costantini, S., Formisano, A., Petturiti, D.: Extending and implementing RASP. Fundam.
Inform. 105(1–2), 1–33 (2010)

13. Costantini, S., Formisano, A., Pitoni, V.: Timed memory in resource-bounded agents. In:
Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds.) AI*IA 2018. LNCS (LNAI), vol.
11298, pp. 15–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03840-3 2

14. Costantini, S., Pitoni, V.: Memory management in resource-bounded agents. In: Alviano, M.,
Greco, G., Scarcello, F. (eds.) AI*IA 2019. LNCS (LNAI), vol. 11946, pp. 46–58. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-35166-3 4

15. De Gasperis, G., Costantini, S., Nazzicone, G.: Dali multi agent systems framework. DALI
GitHub Software Repository, July 2014, DALI. http://github.com/AAAI-DISIM-UnivAQ/
DALI. https://doi.org/10.5281/zenodo.11042

16. Duc, H.N.: Reasoning about rational, but not logically omniscient, agents. J. Log. Comput.
7(5), 633–648 (1997)

17. Elgot-Drapkin, J., Kraus, S., Miller, M., Nirkhe, M., Perlis, D.: Active logics: a unified formal
approach to episodic reasoning. Technical report, UMIACS–University of Maryland (1999).
cS-TR-4072

18. Elgot-Drapkin, J.J., Miller, M.I., Perlis, D.: Life on a desert island: ongoing work on real-
time reasoning. In: Brown, F.M. (ed.) The Frame Problem in Artificial Intelligence, pp. 349–
357. Morgan Kaufmann (1987)

19. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artif. Intell. 34(1), 39–76
(1987)

20. Goldman, A., et al.: Theory of mind. In: The Oxford Handbook of Philosophy of Cognitive
Science, vol. 1. Oxford University Press (2018)

21. Herzig, A., Lorini, E., Pearce, D.: Social intelligence. AI Soc. 34(4), 689 (2019)
22. Jago, M.: Epistemic logic for rule-based agents. Journal Logic Lang. Inf. 18(1), 131–158

(2009)
23. Nguyen, H.N., Alechina, N., Logan, B., Rakib, A.: Alternating-time temporal logic with

resource bounds. J. Log. Comput. 28(4), 631–663 (2018)
24. Pitoni, V., Costantini, S.: A temporal module for logical frameworks. In: Bogaerts, B., et al.

(eds.) Proceedings of ICLP 2019 (Technical communications). EPTCS, vol. 306, pp. 340–
346 (2019)

25. Velázquez-Quesada, F.R.: Explicit and implicit knowledge in neighbourhood models. In:
Grossi, D., Roy, O., Huang, H. (eds.) LORI 2013. LNCS, vol. 8196, pp. 239–252. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40948-6 19

26. Velázquez-Quesada, F.R.: Dynamic epistemic logic for implicit and explicit beliefs. Journal
Logic Lang. Inf. 23(2), 107–140 (2014)

27. Weyhrauch, R.W.: Prolegomena to a theory of mechanized formal reasoning. Artif. Intell.
13(1–2), 133–170 (1980)

https://doi.org/10.1007/978-3-642-20895-9_24
https://doi.org/10.1007/978-3-030-03840-3_2
https://doi.org/10.1007/978-3-030-35166-3_4
http://github.com/AAAI-DISIM-UnivAQ/DALI
http://github.com/AAAI-DISIM-UnivAQ/DALI
https://doi.org/10.5281/zenodo.11042
https://doi.org/10.1007/978-3-642-40948-6_19

Epistemic Reasoning About Rationality
and Bids in Auctions

Munyque Mittelmann1(B), Andreas Herzig2, and Laurent Perrussel1

1 Université de Toulouse - IRIT, Toulouse, France
{munyque.mittelmann,andreas.herzig,laurent.perrussel}@irit.fr

2 Université de Toulouse - IRIT-CNRS, Toulouse, France

Abstract. In this paper, we investigate strategic reasoning in the con-
text of auctions. More precisely, we establish an explicit link between
bidding actions and bounded rationality. To do so, we extend the Auc-
tion Description Language with an epistemic operator and an action
choice operator and use it to represent a classical auction where agents
have imperfect information about other agents’ valuations. We formalize
bounded rationality concepts in iterative protocols and show how to use
them to reason about the players’ actions. Finally, we provide a model
checking algorithm.

Keywords: Logics for multi-agent systems · Game description
language · Bounded rationality · Auction-based markets

1 Introduction

Building a General Auction Player is similar to the General Game Playing (GGP)
challenge [9], it aims at designing an agent that can participate in an auction
while discovering the rules governing it. As for games, there is a wide variety
of auction-based markets. Auctions may differ in the participants’ type (e.g.,
only buyers, both buyers and sellers, ...), the kind and amount of goods being
auctioned, the bidding protocol, and the allocation and payment rules [13].

Inspired by the Game Description Language (GDL), which is a logic program-
ming language for representing and reasoning about game rules [9], we defined a
general language to describe auction-based markets from the auctioneer perspec-
tive [15]: Auction Description Language (ADL). In this paper, we consider the
player’s perspective and our goal is to show how an agent may reason about the
rules governing an auction and also about their knowledge of other agents’ val-
uations for eliciting her bid. More precisely, we show that computing a rational
bid requires to assume that other agents are also bidding rationally. Following
[2], we understand ‘rational’ as ‘not playing dominated actions’.

This research is supported by the ANR project AGAPE ANR-18-CE23-0013 and by
the EU project TAILOR (EU Horizon 2020 program, GA No 952215).

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 116–130, 2021.
https://doi.org/10.1007/978-3-030-75775-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_9

Epistemic Reasoning About Rationality and Bids in Auctions 117

Our contribution is twofold. We first extend ADL with knowledge operators
from Epistemic GDL [12] and the action modality from the GDL variant pro-
posed in [21]. This extension aims at providing the ground for the design of
General Auction Players. Second, we characterize rationality along two dimen-
sions: (i) the impact of the level of higher-order knowledge about other agents
and (ii) the impact of looking-ahead beyond the next action to be executed. We
also explore the complexity of model-checking for evaluating rationality.

Related Work. To the best of our knowledge, there is no contribution that focuses
on the strategic dimension of auctions through a logical perspective. However,
numerous contributions define logical systems for representing games and repre-
senting strategic reasoning. GGP uses the Game Description Language (GDL) [9]
for representing games. The Auction Description Language (ADL) [15] extends
GDL by handling numerical variables, a key feature for representing an auction
mechanism with its allocation and payment rules.

Alternating-time Temporal Logic (ATL) [1] provides a logic-based analy-
sis of strategic decisions. Strategy Logic (SL) generalizes ATL with first-order
quantifications over strategies [4]. These approaches cannot model the internal
structures of strategies, which makes it difficult to easily design strategies aim-
ing to achieve a goal state. A logic for reasoning about composite strategies in
turn-based games is introduced in [17], where strategies are treated as programs
that are combined by PDL-like connectives. Zhang and Thielscher [22] present a
variant of GDL to describe game strategies, where strategies can be understood
as moves for a player. However, their work can only model turn-based games.

To incorporate imperfect information games, GDL has been extended to
GDL-II [18] and GDL-III [19]. GDL-II and GDL-III aim at describing the rules
of an imperfect information game, but do not provide tools for reasoning about
how a player infers information based on these rules. All these logics face decid-
ability and tractability issues: their expressive power prevents them from being
implemented realistically in an artificial agent. Jiang et al. [12] propose an epis-
temic extension of GDL (EGDL) to represent and reason about imperfect infor-
mation games. Their language allows us to represent the rules in the imperfect
information setting. A key characteristic of EGDL is that it manages the balance
between expressiveness and computational complexity of model checking (ΔP

2).
Epistemic Game Theory (EGT) considers strategic reasoning with uncertain

information and is about the interplay between knowledge, belief and rationality
[3,14]. More precisely, EGT shows how dominated strategies may be eliminated
in an iterative manner [2]. These contributions however require perfect reason-
ers, who can reason about higher-order knowledge at arbitrary depth, which is
unrealistic. In [5], the authors abandon this hypothesis but do not propose a full
logic detailing the impact of bounded rationality.

Structure of the Paper. The remainder of the paper proceeds as follows. In
Sect. 2, we define the models of E-ADL in terms of State-Transition structures.
In Sect. 3 we present the language and its semantics and illustrate our approach

118 M. Mittelmann et al.

by describing a Dutch auction. In Sect. 4 we show how to express bounded ratio-
nality with higher-order knowledge. In Sect. 5 we present the model-checking
algorithm. Section 6 concludes the paper.

2 Auctions as State-Transition Models

In this section, we introduce a logical framework for reasoning about auction
protocols while considering imperfect information. The framework is based on
ADL [15] and Epistemic GDL [11]. We call the framework Epistemic Auction
Description Language, denoted by E-ADL.

Definition 1. An auction signature S is a tuple (N,V,A, Φ,Y), where: (i)
N = {1, 2, · · · , n} is a nonempty finite set of agents; (ii) V ⊂ Z is a finite subset
of integer numbers representing the range of valuations, bids and payments; (iii)
A =

⋃
r∈N Ar, where each Ar consists of a nonempty finite set of actions per-

formed by agent r ∈ N and Ar ∩As = ∅ if r �= s. For convenience, we may write
ar for denoting an action in Ar; (iv) Φ = {p, q, · · · } is a finite set of atomic
propositions for specifying individual features of a state; (v) Y = {y1, y2, · · · } is
a finite set of numerical variables for specifying numerical features of a state.

We assume a total order among the agents in N, denoted by ≺, where r ≺ i
means that agent r precedes agent i in ≺; it will be used to break ties in winner
determination. Throughout the rest of the paper, we fix an auction signature
S and all concepts will be based on this signature, except if stated otherwise.
We adopt a semantics based on state-transition models. This is more suitable
for describing the dynamics than stable models that were initially considered for
GDL and GGP [9].

Definition 2. A state transition ST-model M is a tuple (W, I,T, {Rr}r∈N,
U, πΦ, πY), where: (i) W is a finite nonempty set of states; (ii) I ⊆ W is a
set of initial states; (iii) T ⊆ W \ I is a set of terminal states; (iv) Rr ⊆ W × W
is an equivalence relation for agent r, indicating the states that are indistin-
guishable for r; (v) U : W × (

∏
r∈N Ar) → W is an update function, specifying

the transitions for each combination of joint actions; (vi) πΦ : W → 2Φ is the
valuation function for the state propositions; and (vii) πY : W × Y → V is the
valuation function for the numerical variables.

For a group of agents G ∈ 2N \{∅}, we write dG ∈ ∏
r∈G Ar to denote a joint

action of the agents in G. We denote by dr the individual action for agent r ∈ G
in the joint action dG. When G = N then we omit N and simply write d instead
of dN. Let Rr(w) denote the set of all states that agent r cannot distinguish from
w, i.e., Rr(w) = {u ∈ W : wRru}.

For every w ∈ W and d ∈ ∏
r∈N Ar, we call (w, d) a move. Given a group of

agents G ∈ 2N \ {∅}, we write (w, 〈dG, d-G〉) instead of (w, d) when we want to
talk about G’s part in (w, d), where d-G ∈ ∏

s∈N\G As denotes the actions of all
the agents except those in G in the joint action d. Our notion of move resembles
the turn-based definition proposed in [21] and [22].

Epistemic Reasoning About Rationality and Bids in Auctions 119

Definition 3. Two moves (w, d) and (u, e) are equivalent for agent r, written
(w, d) ≈r (u, e), iff wRru and dr = er.

Clearly relation ≈r is reflexive, transitive and symmetric. Differently from
standard GDL, our semantics is based on moves instead of paths. This allows
the agent to reason about the effects of actions without exploring all ways the
game could proceed (i.e., all the reachable states in each complete path where
she takes this action). In E-ADL, we define the action execution modality in
games with synchronous moves. The idea of move-based semantics and action
modalities stems from [21]. Their approach is restricted to turn-based games,
where only one action can be performed at a given state.

3 Epistemic Auction Description Language

The Epistemic Auction Description Language (E-ADL) is a framework to allow
epistemic reasoning for auction players. First, we introduce the syntax.

3.1 Syntax

Let z ∈ Lz be a numerical term defined as follows: z ::= t | add(z, z) | sub(z, z) |
min(z, z) | max(z, z) | times(z, z) | y, where t ∈ V, y ∈ Y . The meaning of
numerical terms is the natural one; for instance, the term min(z1, z2) specifies
the minimum value between z1 and z2. Finally, y denotes the value of the variable
y ∈ Y in the current state.

A formula in E-ADL, denoted ϕ ∈ LE-ADL, is defined by the following BNF:

ϕ ::= p | z ⊗ z | r ≺ r | initial | terminal | does(ar) | ¬ϕ | ϕ ∧ ϕ | Krϕ | [dG]ϕ

where p ∈ Φ, r ∈ N, ⊗ ∈ {>,<,=}, ar ∈ A, G ∈ 2N \ {∅}, dG ∈ ∏
r∈G Ar

and z ∈ Lz. Other connectives ∨,→,↔,� and ⊥ are defined by ¬ and ∧ in
the standard way. The comparison operators ≤, ≥ and �= are defined by ∨, >,
< and =. The extension of the operators >,< and = and numerical terms
max(z1, z2),min(z1, z2), add(z1, z2) to multiple arguments is straightforward.
The formula r1 ≺ r2 denotes the tie-breaking priority of r1 over r2.

Intuitively, initial and terminal specify the initial and the terminal states,
respectively; does(ar) asserts that agent r takes action ar at the current move.
The epistemic operator Kr is taken from the Epistemic Logic [7]. The formula
Krϕ is read as “agent r knows that ϕ”. The action execution operator comes from
the GDL variant with action modalities [21] and the formula [dG]ϕ means that
if joint action dG is executed, ϕ will be true next. The abbreviation does(dG)
specifies that each agent in G performs her respective action in dG, that is,
does(dG) def=

∧
r∈G does(dr). As in [21], we use the action modality to define the

temporal operator ©:

©ϕ =def

∨

d∈∏
r∈N Ar

(does(d) ∧ [d]ϕ)

120 M. Mittelmann et al.

The formula ©ϕ reads “ϕ will be true next”. We also use the following
abbreviation from Epistemic Logic: K̂rϕ =def ¬Kr¬ϕ where K̂rϕ represents
that “ϕ is compatible with agent r’s knowledge”. Given j > 0 and G ∈ 2N \ {∅},
we write σG = (

∏
r∈G Ar)j for a sequence of joint actions for G. The i-th joint

action in σG is noted σG
i . Finally, define [σG]j ϕ, for |σG| = j by induction of j:

[σG]1 ϕ
def= [σG]ϕ

[σG]j+1 ϕ
def= [σG][σG

j]ϕ

The formula [σG]j ϕ means that if the group G followed the sequence of joint
actions described by σG for the next j stages, then ϕ would hold.

3.2 Semantics

The semantics for E-ADL is given in two steps. First, function f interprets the
meaning of numerical terms z ∈ Lz. Next, a formula ϕ ∈ LE-ADL is interpreted
with respect to a move. In Definition 4, we specify function f to evaluate the
meaning of any z ∈ Lz in a move.

Definition 4. Let M be an ST-Model. Define Function f : W × (
∏

r∈N Ar) ×
Lz → Z, assigning any w ∈ W, d ∈ ∏

r∈N Ar, and z ∈ Lz to a number in Z:
If z is on the form add(z′, z′′), sub(z′, z′′), min(z′, z′′), max(z′, z′′) or

times(z′, z′′), then f(w, d, z) is defined through the application of the corre-
sponding mathematical operators and functions over f(w, d, z′) and f(w, d, z′′).
Otherwise, f(w, d, z) = z if z ∈ V and f(w, d, z) = πY (w, z) if z ∈ Y .

Definition 5. Let M be an ST-Model. Given a move (w, d), where w ∈ W and
d ∈ ∏

r∈N Ar, and a formula ϕ ∈ LADL, we say that ϕ is true in the move (w, d)
under M , denoted by M |=(w,d) ϕ, according to the following rules:

M |=(w,d) p iff p ∈ πΦ(w)
M |=(w,d) ¬ϕ iff M �|=(w,d) ϕ
M |=(w,d) ϕ1 ∧ ϕ2 iff M |=(w,d) ϕ1 and M |=(w,d) ϕ2

M |=(w,d) initial iff w ∈ I
M |=(w,d) terminal iff w ∈ T
M |=(w,d) r1 ≺ r2 iff r1 ≺ r2
M |=(w,d) does(ar) iff dr = ar

M |=(w,d) z1 ⊗ z2 iff f(w, d, z1) ⊗ f(w, d, z2),where ⊗ ∈ {>,<,=}
M |=(w,d) Krϕ iff for every u ∈ W and e ∈ ∏

s∈N As, if (w, d) ≈r (u, e),
then M |=(u,e) ϕ

M |=(w,d) [bG]ϕ iff M |=(U(w,e),c) ϕ, where e = 〈bG, d−G〉, for every
c ∈ ∏

r∈N Ar

A formula ϕ is globally true in an ST-Model M, written M |= ϕ, if M |=(w,d) ϕ
for all w ∈ W and d ∈ ∏

r∈N Ar. Finally, let Σ be a set of formulas in LE-ADL,
then M is a model of Σ if M |= ϕ for all ϕ ∈ Σ.

Each Kr is a normal modal operator. It satisfies that if all r-accessible worlds
agree on ϕ then r knows either ϕ or ¬ϕ. If ϕ is true then r knows that ϕ.

Epistemic Reasoning About Rationality and Bids in Auctions 121

Proposition 1. Let M be an ST-Model, r ∈ N be an agent and ϕ ∈ LE-ADL

be a formula, then M |= ϕ → Krϕ if and only if for all w, u ∈ W and all
d, e ∈ ∏

r∈N Ar such that (w, d) ≈r (u, e), M |=(w,d) ϕ iff M |=(u,e) ϕ.

It follows from the equivalence relation ≈r that agent r knows the actions she
performs. This is similar to the uniform strategies in Alternating-time Temporal
Epistemic Logic [10] and Dynamic Epistemic Logic [20].

Proposition 2. For any agent r ∈ N, action ar ∈ Ar, formula ϕ ∈ LE-ADL,
number of steps j > 0, group of agents G ∈ 2N \ {∅} and σr ∈ (

∏
r∈G Ar)j:

1. M |= does(ar) → Krdoes(ar)
2. If M |= [σG]j ϕ then M |= Kr[σG]j ϕ
3. If M |= [σG]jKrϕ then M |= Kr[σG]jϕ

Let us now illustrate how to represent an auction-based protocol in E-ADL,
namely, a Dutch auction. First, we show the syntactical representation through
E-ADL-formulas. Later, we address the semantical representation.

3.3 Running Example: Dutch Auction

In a Dutch auction, the auctioneer starts by proposing a high asking price. The
price is decreased until it reaches a predefined reserve price or some bidder shows
interest at purchasing the good. The auction then ends and the object is sold at
the given price to the bidder who signaled her interest [13].

Let Sdut be an auction signature and starting, reserve ∈ N, dec, n ∈ N \
{0} be constant values. The constants starting, reserve, dec, n represent the
starting and reserve prices, the decrement in each round and the number
of agents, respectively. The auction signature is defined as follows: Sdut =
(Ndut,Vdut,Adut, Φdut,Ydut), where Ndut = {1, . . . , n}, Vdut = {0, . . . , starting},
Adut = {bidr,waitr : r ∈ Ndut}, Φdut = {winnerr : r ∈ N} and Ydut =
{paymentr, ϑr : r ∈ N}. The numerical variables paymentr and ϑr specify the
payment and the private valuation for an agent r.

Syntactical Representation. The rules of the Dutch auction are formulated
by E-ADL-formulas as shown in Fig. 1.

In an initial state, the price starts at starting and there is no winner (Rule
1). If an agent is a winner, she pays the current price. Otherwise, she does not
pay anything (Rules 2 and 3). The terminal state is reached when it is not
possible to decrease the price anymore or there is a winner (Rule 4). While not
in the terminal state, the price either decreases if no agent bids or the price is
settled if some agent accepted to purchase the good (Rules 5 and 6). If only one
agent accepts, she is marked as the winner. In case two or more agents bid, the
winner is assigned according to the tie-breaking rule. Rules 7 and 8 ensure no
proposition or numerical variable change its value after a terminal state. Finally,
Rule 9 specifies that each agent is aware of how much she valuates the good. Let
Σdut be the set of Rules 1–9.

122 M. Mittelmann et al.

1. initial price = starting ∧ r∈Ndut
¬winnerr

2. winnerr paymentr = price, for each r ∈ Ndut

3. ¬winnerr paymentr = 0, for each r ∈ Ndut

4. terminal sub(price, dec) < reserve ∨ ∨
r∈Ndut

winnerr
5. ¬terminal ∧ price = x ∧ ∧

r∈Ndut
does(waitr) ©(price = sub(price, dec) ∧∧

r∈Ndut
¬winnerr), for each x ∈ Vdut

6. ¬terminal ∧ price = x ∧ does(bidr) ∧ ∧
s =r,s∈Ndut

(¬does(bids) ∨ r ≺ s)
©(winnerr ∧ ∧

s =r,s∈Ndut
¬winners), for each x ∈ Vdut and each r ∈ Ndut

7. terminal ∧ y = x y = x, for each y ∈ Ydut and each x ∈ Vdut

8. terminal ∧ win
©

©win, for each win ∈ {winnerr, ¬winnerr : r ∈ Ndut}
9. Kr(ϑr = x) Kr (ϑr = x), for each x Vdut and r Ndut

Fig. 1. Dutch auction represented by Σdut

Model Representation. Let us address the model representation of the
Dutch auction. Let us define Mdut as the class of models Mdut defined for
a signature Sdut and the constants starting, reserve, dec and n. Each Mdut =
(Wdut, Idut,Tdut, {Rr,dut}r∈N,Udut, πΦ,dut, πY,dut) is defined as follows:

– Wdut = {〈pr,buyer, val1, . . . , valn〉 : 0 ≤ pr ≤ starting & buyer ∈ Ndut ∪
{none} & 0 ≤ valr ≤ starting for each r ∈ Ndut};

– Idut = {〈starting, none, val1, . . . , valn〉 : 0 ≤ valr ≤ starting for each r ∈ Ndut};
– Tdut = {〈pr,buyer, val1, . . . , valn〉 : 0 ≤ pr ≤ starting & buyer ∈ Ndut &

0 ≤ valr ≤ starting for each r ∈ Ndut}∪{〈pr,buyer, val1, . . . , valn〉 : pr−dec <
reserve & buyer ∈ Ndut ∪ {none} & 0 ≤ valr ≤ starting for each r ∈ Ndut};

– For each agent r ∈ Ndut and for any two states w = 〈pr,buyer, val1, . . . , valn〉
and u = 〈pr′,buyer′, val′1, . . . , val′n〉 in Wdut, the relation Rr,dut is defined as
follows: wRr,dutu iff (i) pr = pr′; (ii) buyer = buyer′; and (iii) valr = val′r.

– For all states w = 〈pr,buyer, val1, . . . , valn〉 and all joint actions d =
(ar)r∈Ndut , such that w ∈ Wdut and ar ∈ {bidr,waitr}, we define Udut as
follows:

• If w �∈ Tdut, then Udut(w, d) = 〈pr′,buyer′, val1, . . . , valn〉, such that the
components pr′ and buyer′ are defined as follows: (i) pr′ = pr − dec
if ar = waitr, for all r ∈ Ndut; otherwise pr′ = pr; (ii) buyer′ = r if
ar = bidr for some r ∈ N and for all s ∈ Ndut such that s �= r, either
as = waits or r ≺ s; otherwise, buyer′ = none;

• Otherwise, Udut(w, d) = w.
– Finally, for each state w = 〈pr,buyer, val1, . . . , valn〉, such that w ∈ Wdut, let

πΦ,dut(w) = {winnerr : buyer = r & r ∈ Ndut}; πY,dut(w,price) = pr. For
each agent r ∈ Ndut, let πY,dut(w, ϑr) = valr and πY,dut(w,paymentr) = pr
if buyer = r. Otherwise, πY,dut(w,paymentr) = 0.

Let us assume a model Mdut ∈ Mdut and Σdut for some Sdut and the con-
stants starting, reserve ∈ N, dec, n ∈ N \ {0}.

Proposition 3. Mdut is an ST-Model and Mdut |= Σdut, i.e., Mdut is a model
of Σdut.

Epistemic Reasoning About Rationality and Bids in Auctions 123

That is, Mdut is a sound representation of Σdut. Notice that as Mdut is not
the unique model for Σdut, thereby, the completeness does not hold. It follows
from Proposition 1 and 3 that each agent knows the auction rules denoted by
Σdut, that is, Mdut |= ∧

r∈N(KrΣdut). In the next section, we define rationality
in E-ADL.

4 Rationality in Auctions

To characterize rationality of auction players, we assume {ϑr, paymentr : r ∈
N} ⊆ Y and {winnerr : r ∈ N} ⊆ Φ, where ϑr, paymentr and winnerr specify
the agents valuation, payment and whether she won the auction, resp. Let ut ∈
V, we denote whether the utility of agent r ∈ N is equal to ut in a single good
and unit auction according to the truth value of the following formula:

utilityr = ut
def= (ut = sub(ϑr, paymentr)∧ winnerr) ∨

(ut = −paymentr ∧ ¬winnerr)

Note that we can extend the notion of utility to multiple units and goods by
including numerical variables representing the agents’ allocations and their val-
uations for such allocations. In this work, we focus on epistemic reasoning about
action choice and rationality of auction players. For a discussion on expressivity
and hierarchy of valuations functions, the reader may refer to Feige et al. [8].

Similar to the strong strategy dominance (see [14]), we say an action ar of
an agent r is a strongly dominated action if and only if, there exists another
action br of r such that, for all actions a−r of the other agents, playing br while
others play a−r leads to a better utility than playing ar while others play a−r.
In E-ADL, the agents’ utility is captured in a move of a model and the action
choice operator allows us to compare what would have happened if a group of
agents took a given joint action.

4.1 Rationality

We adapt the weak rationality formalization from [14] to E-ADL formulas. Dif-
ferent from his approach, we consider levels of rationality instead of common
knowledge. Our notion of k-order rationality is based on [6]: an agent is k-order
rational if she is weakly rational and knows all agents are (k − 1)-order rational.

GDL-based languages explicit the stages of a game execution through paths
(or runs). The game starts from an initial state and the succeeding states are
defined according to the agents’ joint actions. Since GDL agents choose “on-
the-fly strategies” during the game, the players should be able to evaluate the
current state of the game and to decide which action they will execute.

Adopting these features from GDL in E-ADL allows us to explicitly model
information feedback, which is a key feature in the design of iterative auctions
[16]. For instance, in E-ADL, we can describe auctions where the agents are
assigned to allocations and payments at any stage, which may be different from

124 M. Mittelmann et al.

their final assignments in the terminal state. For this reason, instead of defining
utilities as a function to strategy profiles as in ATL [1], we model the agents’
utility as being dependent on the current state of the auction.

We refrase the rationality notions from [6,14] by, at first, considering k-
order of knowledge and, second, by taking into account state-based utilities and
exploring bounded sequences of actions. A rational agent plays according to
her utility after performing an action. When reasoning about iterative auctions,
the agent considers her utility after playing according to a sequence of j actions.
Since most auction-based markets are finite (in the sense that the auction finishes
eventually), it is reasonable to assume the agents only need to include in their
reasoning which actions may occur in the next j steps. Given a fixed number of
steps j > 0, we inductively define that an agent is k-order rational, for k ≤ j.
The base case is that any agent is 0-order rational, that is, Rat(r, 0, j) def= �. For
all k > 0, we define:

Rat(r, k + 1, j) def= WR(r, j) ∧ Kr

(∧

s∈N

Rat(s, k, j)
)

That is, an agent is (k + 1)-order rational if she is weakly rational when looking
j stages ahead and knows every other agent is k rational. Weak rationality is
defined by:

WR(r, j) def=
∧

ar∈Ar

(
does(ar) →

∨

ρr∈(Ar)j−1

WRAction(r, (ar, ρr), j)
)

where

WRAction(r, σr, j) =def

∧

χr∈(Ar)j

(∨

σ-r∈(
∏

s �=r As)j

(
K̂rdoes(σ-r

1)∧

∨

ut,ut′∈V

([χr, σ-r]j utilityr = ut′ ∧ [σr, σ-r]j utilityr = ut ∧ ut′ ≤ ut)
))

An agent ar is weakly rational when reasoning j stages ahead if when she per-
forms an action ar, there exists a sequence of j actions starting by ar that is
weakly rational for her to follow over j stages. Finally, it is weakly rational for
agent r to follow a sequence of actions σr for j steps, noted WRAction(r, σr, j),
if for every other sequence of actions χr there exists a sequence of joint actions
σ-r that r considers possible to be executed such that her utility after following
σr for j steps is at least as good as her utility after following χr.

Notice that if j is large enough to reach terminal states, the state-based
utilities represent strategy-based utility functions. Our definition of rationality
requires to assume that all agents are rational: as soon as one is known to be
non-rational, it is no longer possible to be k-order rational, for k > 1. This
requirement entails that looking ahead without considering knowledge leads to
consider all actions as rational:

Proposition 4. For every ST-Model M, state w ∈ W, joint action d ∈∏
r∈N Ar, agent r ∈ N and j > 0, it holds that M |=(w,d) does(dr) ∧ Rat(r, 0, j).

Epistemic Reasoning About Rationality and Bids in Auctions 125

Next, considering higher-order knowledge enables us to eliminate strongly
dominated actions.

Theorem 1. For any ST-Model M, state w ∈ W, joint action d ∈ ∏
r∈N Ar,

k > 0, j > 0, agent r ∈ N and action ar ∈ Ar, if M |=(w,d) does(ar)∧Rat(r, k, j)
then M |=(w,d) does(ar) ∧ Rat(r, k − 1, j).

Proof. Assume M |=(w,d) does(ar) ∧ Rat(r, k, j). Thus, M |=(w,d) does(ar) ∧
WR(r, j)∧Kr(

∧
s∈N Rat(s, k−1, j)). Since Rr is reflexive, it follows that M |=(w,d)

does(ar) ∧ Rat(r, k − 1, j).

Note that increasing j may not enable the elimination of actions. The larger
j, the more stages will be considered. Ideally, j should be large enough to reach
terminal states. However, termination may not be ensured in auction protocols
and real world players usually have time restrictions to decide their actions.

4.2 Example: Rationality on the Dutch Auction

Let us consider the Dutch auction from Sect. 3.3. Consider a specific instance
Mdut in Mdut, such that there are only two players r and s whose valuation
for the good being auctioned is 7 and 4, respectively. The auctioneer starts
by proposing the price 10 and in each round the price is decreased by 1. For-
mally, Ndut = {r, s},Vdut = {0, . . . , 10},Adut = {bidr,waitr,bids,waits}, Φdut =
{winnerr, winners} and Ydut = {paymentr, ϑr, payments, ϑs}. Let Mdut be the
model defined by the signature Sdut = (Ndut,Vdut,Adut, Φdut,Ydut) and the con-
stants starting = 10, dec = 1, reserve = 0 and n = 2. We consider the initial state
w0 ∈ I, such that πY(w0, ϑr) = 7 and πY(w0, ϑs) = 4.

Fig. 2. The utilities agents r and s consider possible to obtain when they are 1st-order
rational

Due to the starting price and the decrement, the auction is ensured to end
after 10 stages. We therefore focus on the case j = 10. If the auction reaches

126 M. Mittelmann et al.

a terminal state before 10 stages, the update function ensures a loop in the
terminal state. Since the auction ends at the first bid, we write bidAfter(r,m)
as the sequence of actions σr, such that σr

i = waitr for i < m ≤ j and σr
i = bidr

for m ≤ i ≤ j. The sequence is read “r bids after m steps”. Let onlywait(r) be
the sequence of j actions waitr. We use a similar notation for expressing agent
s’s sequence of actions. Let d be a joint action, we will examine which sequences
of actions are rational for each agent to follow. We assume the Dutch auction
protocol Σdut and the tie-breaking ordering are common knowledge among the
agents in Ndut.

If the agents are 0-order rational, that is, if Mdut |=(w0,d) Rat(r, 0, j) ∧
Rat(s, 0, j), then both agents consider possible that any sequence of joint
actions will be taken. If we now consider 1st-order rationality for r, that is
Mdut |=(w0,d) Rat(r, 1, j), then r is not going to follow any sequence of actions
that are strongly dominated in j steps. The weakly rational sequences of actions
for r are those where she waits until the price is below her private valua-
tion (e.g., bidAfter(r, 4),bidAfter(r, 5), and so on). The sequence of actions
onlywait(r) is not rational for r. The weakly rational actions for agent s when
Mdut |=(w0,d) Rat(s, 1, j) are defined similarly. Figure 2 illustrates the utilities
each agent considers possible to achieve when playing a weakly rational sequence
of actions.

Fig. 3. The utilities agents r and s consider possible to obtain when they are 7th-order
rational and Mdut |= (2 ≤ ϑs ≤ starting) ∧ (2 ≤ ϑr ≤ starting)

For k > 1, which actions a k-order rational agent considers possible her oppo-
nents will take depends on her knowledge about their valuations. For instance, let
us consider the case where it is common knowledge that (2 ≤ ϑs ≤ starting)∧(2 ≤
ϑr ≤ starting), i.e., we have Mdut |= (2 ≤ ϑs ≤ starting)∧ (2 ≤ ϑr ≤ starting). By
Proposition 1, both agents then know their opponent has a valuation between
2 and the starting price. If the agent s is 2nd-order rational, she will know the
sequence of actions onlywait(r) is not weakly rational for r. Due to the tie-
breaking rule, if both agents bid at the same stage, agent r wins. Thus, agent s

Epistemic Reasoning About Rationality and Bids in Auctions 127

cannot win by waiting for the price to reach zero and it is not weakly rational
to perform bidAfter(s, 10). If r is 3rd-order rational, she knows that s knows
onlywait(r) is not rational for her and consequently, that it cannot be the case
that s will bidAfter(s, 10). If the agents are 4th-order rational, they will not con-
sider possible that the good is not sold before the price be zero. Thus, a similar
reasoning will happen due tie-breaking when the price is 1. Finally, Fig. 3 illus-
trates the utilities each agent considers possible when she is 7th-order rational.
Since agents are uncertain about which value between 2 and starting represents
the valuation of their opponents, raising the order of rationality beyond 7 would
not modify the actions they consider possible to be taken by their opponent.

5 Model Checking

Now we examine the upper bound of the complexity of deciding whether an E-
ADL formula is true with respect to a model and a move. To prove this bound, we
provide a model-checking algorithm and analyze its complexity. Let ϕ ∈ LE-ADL

be a formula and M = (W, I,T, {Rr}r∈N,U, πΦ, πY) be an ST-Model over S. We
say that ψ is a subformula of ϕ if either (i) ψ = ϕ; (ii) ϕ is of the form ¬φ, Krφ
or [dG]φ and ψ is a subformula of φ; or (iii) ϕ is of the form φ ∧ φ′ and ψ is a
subformula of either φ or φ′. Denote Sub(ϕ) as the set of all subformulas of ϕ.

Algorithm 1. modelCheck(M, w, d, ϕ)
Input: an ST-model M = (W, I,T, {Rr}r∈N,U, πΦ, πY), a state w of W, a joint

action d ∈ ∏
r∈N Ar and a formula ϕ ∈ LE-ADL.

Output: true if M |=(w,d) ϕ, and false otherwise

1: S ← Sub(ϕ) ordered by ascending length
2: Let isTrue[1, · · · , |ϕ|] be a boolean array initiated with true values
3: for i ← 1 to |ϕ| do
4: φ ← S[i]
5: switch the formula type of φ do
6: case φ is of the form φ′ ∧ φ′′

7: isTrue[i] ← isTrue[getIndex(S, φ′)] ∧ isTrue[getIndex(S, φ′′)]

8: case φ is of the form ¬φ′

9: isTrue[i] ← ¬isTrue[getIndex(S, φ′)]

10: case φ is atomic
11: isTrue[i] ← M |=(w,d) φ

12: case φ is of the form [bG]φ′

13: eG ← 〈bG, d-G〉
14: for each c ∈ ∏

r∈N Ar do
15: isTrue[i] ← isTrue[i] ∧ modelCheck(M,U(w, e), c, φ′)

16: case φ is of the form Krφ
′

17: for each u ∈ Rr(w) and each e ∈ ∏
r∈N Ar with er = dr do

18: isTrue[i] ← isTrue[i] ∧ modelCheck(M, u, e, φ′)

19: return isTrue[|ϕ|]

128 M. Mittelmann et al.

Theorem 2. The following problem is in O(|W| × |A|m), where m = |N| × |ϕ|:
Given an ST-Model M, a state w ∈ W, a joint action d ∈ ∏

r∈N Ar and a
formula ϕ ∈ LE-ADL, determine whether M |=(w,d) ϕ or not.

Proof. Algorithm 1, named modelCheck, works in the following way: first it gets
all subformulas of ϕ and orders them in a vector S by ascending length. Thus,
S(|ϕ|) = ϕ, i.e., the position |ϕ| in S corresponds to the formula ϕ itself, and if
φi is a subformula of φj then i < j. An induction on S labels each subformula
φi depending on whether or not φi is true in M at the move (w, d). If φi does
not have any subformula, its truth value is obtained directly from the model.
Since S is ordered by formulas length, if φi is either of the form φ′ ∧ φ′′ or ¬φ′

the algorithm labels φi according to the label assigned to φ′ and/or φ′′. If φi

is of the form [bG]φ′ then its label is recursively defined according to φ′ truth
value in the updated state given the joint action 〈bG, d-G〉, for any joint action
to be taken in the next move. Since we compare with every joint action, this is
done in an exponential number of steps, based on the size of the set of agents
(i.e., according to |A|n, where n = |N|). Finally, the case where φi is in the form
Krφ

′ is recursively defined according to the truth value of φ′ in all moves that
are equivalent to (w, d). Similar to the previous case, since we compare with all
possible moves and all states in Rr(w) ⊆ W, this step is done in an exponential
number of steps (i.e., according to |W| × |A|n, where n = |N|). As Algorithm
modelCheck visits each subformula at most once, and the number of subformulas
is not greater than the size of ϕ, the algorithm can clearly be implemented in
O(|W| × |A|m), where m = |N| × |ϕ|.

It follows that checking agent rationality is exponential in the quantity of
agents, the order of rationality and how many rounds are considered.

Corollary 1. Given an ST-model M, a state w ∈ W, a joint action d ∈∏
r∈N Ar, an agent r, j > 0 and k > 0, the problem of checking whether

M |=(w,d) Rat(r, k + 1, j) is in O(|W| × |A|nkj), where n = |N|.

6 Conclusion

In this paper, we present Epistemic Auction Description Language (E-ADL),
a language to allow reasoning about knowledge and action choice in auctions.
E-ADL extends ADL with epistemic operators and action modalities. Our goal
is to provide the ground for the design of General Auction Players and the char-
acterization of their rational behavior. As in the GGP competition, real world
players may have time restrictions to decide their actions. For those scenarios,
we explore bounded rationality in relation to the level of higher-order knowledge
about other agents and bounded looking-ahead beyond the next state. For future
work, we intend to investigate the interplay between agents’ bounded rationality
and the auctioneer revenue and to generalize the definitions to combinatorial
auctions.

Epistemic Reasoning About Rationality and Bids in Auctions 129

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM (JACM) 49(5), 672–713 (2002)

2. Aumann, R.: Backward induction and common knowledge of rationality. Games
Econ. Behav. 8, 6–19 (1995)

3. Bonanno, G.: Epistemic foundations of game theory. In: van Ditmarsch, H.,
Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.) Handbook of Logics for Knowledge
and Belief, chap. 9, pp. 411–450. College Publications (2015)

4. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208(6),
677–693 (2010)

5. Chen, J., Micali, S.: Leveraging possibilistic beliefs in unrestricted combinatorial
auctions. Games 7(32), 83–101 (2016)

6. Chen, J., Micali, S., Pass, R.: Tight revenue bounds with possibilistic beliefs and
level-k rationality. Econometrica 83(4), 1619–1639 (2015)

7. Fagin, R., Moses, Y., Halpern, J.Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (2003)

8. Feige, U., Feldman, M., Immorlica, N., Izsak, R., Lucier, B., Syrgkanis, V.: A
unifying hierarchy of valuations with complements and substitutes. In: Proceedings
of AAAI 2015, pp. 872–878. AAAI Press (2015)

9. Genesereth, M., Thielscher, M.: General Game Playing. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, San
Rafael (2014)

10. Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundamenta
Informaticae 63(2–3), 185–219 (2004)

11. Jiang, G., Perrussel, L., Zhang, D.: On axiomatization of epistemic GDL. In: Bal-
tag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp. 598–613.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55665-8 41

12. Jiang, G., Zhang, D., Perrussel, L., Zhang, H.: Epistemic GDL: a logic for repre-
senting and reasoning about imperfect information games. In: Procedings of IJCAI-
2016 (2016)

13. Krishna, V.: Auction Theory. Academic Press, San Diego (2009)
14. Lorini, E.: A minimal logic for interactive epistemology. Synthese 193(3), 725–755

(2015). https://doi.org/10.1007/s11229-015-0960-5
15. Mittelmann, M., Perrussel, L.: Auction description language (ADL): a general

framework for representing auction-based markets. In: ECAI 2020. IOS Press, San-
tiago de Compostela (2020)

16. Parkes, D.C.: Iterative Combinatorial Auctions. Combinatorial Auctions. MIT
Press, Cambridge (2006). https://doi.org/10.7551/mitpress/9780262033428.003.
0003

17. Ramanujam, R., Simon, S.: Dynamic logic on games with structured strategies. In:
Proceedings of KR-2008, pp. 49–58. AAAI Press (2008)

18. Thielscher, M.: A general game description language for incomplete information
games. In: Proceedings of AAAI 2010, pp. 994–999 (2010)

19. Thielscher, M.: GDL-III: a description language for epistemic general game playing.
In: Proceedings of IJCAI-2017, pp. 1276–1282 (2017)

https://doi.org/10.1007/978-3-662-55665-8_41
https://doi.org/10.1007/s11229-015-0960-5
https://doi.org/10.7551/mitpress/9780262033428.003.0003
https://doi.org/10.7551/mitpress/9780262033428.003.0003

130 M. Mittelmann et al.

20. Van Benthem, J.: Games in dynamic-epistemic logic. Bull. Econ. Res. 53(4), 219–
248 (2001). https://doi.org/10.1111/1467-8586.00133

21. Zhang, D., Thielscher, M.: A logic for reasoning about game strategies. In: Pro-
ceedings of AAAI 2015, pp. 1671–1677. AAAI Press (2015)

22. Zhang, D., Thielscher, M.: Representing and reasoning about game strategies. J.
Philos. Logic 44(2), 203–236 (2014). https://doi.org/10.1007/s10992-014-9334-6

https://doi.org/10.1111/1467-8586.00133
https://doi.org/10.1007/s10992-014-9334-6

Constraint Satisfaction

Tractable Combinations of Theories
via Sampling

Manuel Bodirsky and Johannes Greiner(B)

Institut für Algebra, Technische Universität Dresden, Dresden, Germany
{manuel.bodirsky,johannes.greiner}@tu-dresden.de

Abstract. For a first-order theory T , the Constraint Satisfaction Prob-
lem of T is the computational problem of deciding whether a given con-
junction of atomic formulas is satisfiable in some model of T . In this
article we develop sufficient conditions for polynomial-time tractability
of the constraint satisfaction problem for the union of two theories with
disjoint relational signatures. To this end, we introduce the concept of
sampling for theories and show that samplings can be applied to exam-
ples which are not covered by the seminal result of Nelson and Oppen.

1 Introduction

Reasoning tasks for intelligent agents often require to check whether certain
configurations or situations are legitimate or possible. Such decision problems
can often be modelled as Constraint Satisfaction Problems (CSPs). The CSP of a
first-order theory T with finite relational signature is the computational problem
of deciding whether a set of atomic formulas is satisfiable in some model of T .
We are interested in theories T where this computational problem can be solved
efficiently and would like to understand for which theories T this problem is
computationally hard. Many problems of the form CSP(T) that are relevant in
practice are either in the complexity class P, i.e., can be solved in polynomial
time, or NP-hard (and thus not expected to be solvable in polynomial time).
However, it is also known that every decision problem is polynomial-time Turing
equivalent to a CSP [5], and in particular that there are theories T such that
CSP(T) is in NP but neither in P nor NP-hard (unless P = NP).

In reasoning scenarios in artificial intelligence the theory T under consider-
ation is often of the form T1 ∪ T2 where T1 and T2 are first-order theories with
disjoint relational signatures such that CSP(T1) and CSP(T2) are both known to
be in P. This problem has already been studied by Nelson and Oppen [17] and
many others have continued this line of research (see for example Baader and
Schulz [1]). CSPs of unions of theories are at the heart of SMT-Solvers (SAT
Modulo Theories) and occur frequently in software verification [10]. The results

Both authors have received funding from the European Research Council (ERC
Grant Agreement no. 681988, CSP-Infinity), and the DFG Graduiertenkolleg 1763
(QuantLA).

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 133–146, 2021.
https://doi.org/10.1007/978-3-030-75775-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_10

134 M. Bodirsky and J. Greiner

of Nelson and Oppen [17,18] provide sufficient conditions for the polynomial-time
tractability of CSP(T1 ∪ T2), covering a great variety of theories. Schulz [19] as
well as Bodirsky and Greiner [3] have shown that in many situations, the con-
ditions of Nelson and Oppen are also necessary for polynomial-time tractability
(unless P = NP).

In this article we will present new sufficient conditions for polynomial-time
tractability of CSP(T1∪T2). To illustrate that our conditions are incomparable to
the conditions provided by Nelson and Oppen we consider the following example.

Example 1. Given parts of a huge machine, each of which can be mounted by
exactly one of two robots, and precedence constraints on the order in which
parts can be mounted, calculate a possible order in which the machine can be
assembled. Some parts must be mounted by one robot, some by the other robot,
and some parts can be mounted by both robots. The two robots are not allowed
to work simultaneously but one robot may mount multiple parts at the same
time. This reasoning task can be modelled as CSP(T1 ∪T2) where T1 := Th(A1)
for a first-order expansion A1 of (Q;<) that allows to model the precedence
constraints, and T2 := Th(A2) where A2 has two disjoint countably infinite
unary relations and their union as domain. We choose A1 := (Q;<,R) where R
is the ternary relation defined by R(x, y, z) ⇔ x = min(y, z) and we will see at
the end of the article that CSP(T1 ∪ T2) is polynomial-time tractable using our
results but T1 does not satisfy the conditions of Nelson and Oppen.

For many computational reasoning tasks in artificial intelligence the only
known algorithms have an at least exponential worst-case time-complexity, which
is why one typically uses heuristic approaches and hopes that in reasoning
instances that appear in practise the exponential worst-case behaviour does not
show up. However, this is no longer an option in safety-critical systems where
one needs a correct result within a reasonably short amount of time for all con-
ceivable inputs.

The central idea how to prove polynomial-time tractability of CSP(T1 ∪ T2)
in this article is to introduce the notion of sampling for theories. Intuitively,
a sampling for T maps a given instance φ of CSP(T) to a finite set L of finite
structures such that φ is satisfiable in some model of T if and only it is satisfiable
in one of the structures in L. We construct a sampling for T1 ∪ T2 from given
samplings for T1 and T2 and provide conditions when polynomial-time tractabil-
ity of CSP(T1) and CSP(T2) carries over to CSP(T1 ∪ T2). Some of the proofs
have been omitted due to space restrictions. They can be found in [4].

2 Sampling for a Theory

Let τ be a finite relational signature, i.e., a finite set of relation symbols, each
of which endowed with a natural number denoting its arity. A τ -structure A
is a tuple starting with a set A, followed by an n-ary relation RA ⊆ An for
each symbol R ∈ τ of arity n. We will always denote structures with uppercase

Tractable Combinations of Theories via Sampling 135

fraktur letters and their domain with the corresponding uppercase Latin letter.
A theory is a set of first-order sentences. A τ -theory is a theory where all non-
logical symbols are in τ . By Th(A) we denote the theory of A, i.e., the set of
all first-order sentences which are satisfied in A. A τ -structure A is a model of a
τ -theory T , if all sentences of T are satisfied in A. An atomic τ -formula is either
of the form R(x1, . . . , xn) with R ∈ τ of arity n and variables x1, . . . , xn, of the
form x1 = x2, or of the form ⊥, indicating the logical “false”. We now present
the central definitions of this article.

Definition 1. Let τ be a finite relational signature and T a τ -theory. A sam-
pling for T is a sequence (Ln)n∈N of finite sets of finite τ -structures such that for
all n ∈ N and all conjunctions of atomic τ -formulas φ with at most n variables,
there exists a model for T in which φ is satisfiable if and only if there exists
B ∈ Ln such that φ is satisfiable in B. An element of Ln is called n-sample, or
simply sample, for T .

In order to talk about efficient computations of samplings we will need a
few auxiliary definitions. A sampling (Ln)n∈N is computable if there exists an
algorithm that, given n, computes Ln. If this algorithm runs in time polynomial
in n, then (Ln) is computable in polynomial time. For a sampling (Ln)n∈N for
T we define |Ln| :=

∑
B∈Ln

|B|. A sampling (Ln) is polynomial if there exists a
polynomial p ∈ Z[x] such that |Ln| ≤ p(n) for all n ∈ N. We will also sample
structures. A sampling for a structure A is a sampling for Th(A).

Remark 1. While we are not aware that samplings have been defined for theories
before, there is a definition for structures by Bodirsky, Macpherson, and Thap-
per [6] and we will now compare the two notions. We need the classical notion
of a CSP which is defined for structures instead of theories. Let τ be a finite
relational signature and A a τ -structure. CSP(A) is the computational problem
of deciding whether a conjunction of atomic τ -formulas is satisfiable in A. Notice
that CSP(Th(A)) = CSP(A) holds for all relational structures A, because Th(A)
explicitly states which instances are satisfiable. Therefore, the definition of ‘sam-
pling for A’ in [6] can be attained from our definition by imposing the additional
conditions on (Ln) that for all n ∈ N the set Ln may only contain one structure
Bn and that Bn needs to have a homomorphism to A. Hence, any structure
which has “efficient sampling” in the definition of Bodirsky, Macpherson, and
Thapper has a sample which is computable in polynomial time in our definition,
and is thus polynomial.

We will now prove that samplings for structures only require one element in each
Ln, just like in the definition of Bodirsky, Macpherson, and Thapper. However,
we will see in Example 3 that dropping the requirement that Bn is homomorphic
to A allows smaller samples in some cases and can therefore reduce the runtime
of algorithms that run on the samples.

Definition 2. Let T be a theory with finite relational signature. T has the Joint
Homomorphism Property (JHP) if for any two models A, B of T there exists a
model C of T such that both A and B homomorphically map to C.

136 M. Bodirsky and J. Greiner

Proposition 1 (Proposition 2.1 in [3]). Let T be a theory with finite rela-
tional signature. Then there exists a model A of T such that CSP(A) = CSP(T)
if and only if T has the Joint Homomorphism Property (JHP).

Definition 3. For a set L of τ -structures we define the disjoint union
⋃· B∈L B

as the structure with domain
⋃· B∈L B and a k-ary relation R ∈ τ holds on a

tuple t if and only if there exists B ∈ L such that t ∈ Bk and R(t) holds in B.

Proposition 2. Let T be a theory with JHP and let (Ln)n∈N be a sampling for
T . Then (L′

n)n∈N with L′
n := {⋃· B∈Ln

B} is also a sampling for T . Moreover,
|L′

n| = |Ln| for all n ∈ N.

Due to Proposition 2, and the fact that
⋃· B∈Ln

B has size |Ln|, we will now
often assume that samplings for structures contain only one element Bn in Ln

(for all n ∈ N). We will write (Bn)n∈N instead of ({Bn})n∈N. Motivated by
these cases we define, for n ≥ 1 and any τ -theory T , the set Sn(T) as the class of
all finite τ -structures Bn such that a conjunction of atomic τ -formulas with at
most n variables is satisfiable in Bn if and only if it is satisfiable in some model
of T . To justify why our definition of ‘sampling’ allows Ln to contain multiple
structures in general, we would like to give an example of a theory T which has a
sampling but no sampling (Ln) of T has only one element in Ln for some n ≥ 2.

Example 2 (Similar to Example 2.2 in [3]). Let τ be a signature consisting of
the unary symbols O,P,Q and the binary symbol I. Let T be the set of the
following sentences

∀x, y.((O(x) ∧ O(y)) ⇒ x = y),
∀x.¬(P (x) ∧ Q(x)), and
∀x, y.(I(x, y) ⇔ ¬(x = y)).

The following is a sampling for T which is computable in polynomial time: For
n ∈ N let Ln consist of B1 and B2 defined on {1, . . . , 2n} where PB1 = PB2 :=
{1, . . . , n}, QB1 = QB2 := {n + 1, . . . , 2n}, OB1 := {1} and OB2 := {n + 1}.
In both structures, the I-relation denotes the inequality relation. While it is
easy to check that (Ln)n∈N is a sampling for T , there is no sampling with only
one element in Ln for some n ≥ 2. To prove this, consider the formulas φ1 :≡
O(x)∧P (x), which is satisfiable in B1, and φ2 := O(y)∧Q(y), which is satisfiable
in B2. Assume that both are satisfiable in some τ -structure B. Then there exists
a ∈ OB ∩ PB and b ∈ OB ∩ QB. If a = b, then ψ1 := P (x) ∧ Q(x) is satisfiable
in B. If a �= b, then ψ2 := O(x) ∧ O(y) ∧ I(x, y) is satisfiable in B or ψ3 :=
I(x, y)∧x = y is satisfiable in B (in case IB is not the complement of equality).
However, none of ψ1, ψ2, ψ3 is satisfiable in some model of T , contradiction.

Proposition 3. Let T be a theory with finite relational signature. Then, T has
a computable sampling if and only if CSP(T) is decidable.

To prove Proposition 3, we need the following definition.

Tractable Combinations of Theories via Sampling 137

Definition 4. Let τ be a relational signature and let φ be a conjunction of
atomic τ -formulas with variables x1, . . . , xn. The canonical database D(φ) is
defined as the structure with domain x1, . . . , xn such that a tuple t is in a relation
RD(φ) for R ∈ τ if and only if R(t) is a conjunct of φ.

Clearly, there is a homomorphism from D(φ) to A iff φ is satisfiable in A.

Proof (Proof of Proposition 3). Let τ be the signature of T . Suppose there exists
a computable sampling (Ln)n∈N for T . Let φ be a conjunction of atomic τ -
formulas with at most n variables. Then there are only finitely many maps from
D(φ) to structures in Ln and for each of them we can determine whether it is a
homomorphism or not. Therefore CSP(T) is decidable.

Conversely, suppose that CSP(T) is decidable. There are only finitely many
atomic formulas on n variables because τ is finite and the arity of each relation
is finite. Hence, there are only finitely many conjunctions of atomic formulas
with at most n variables such that no conjunct is repeated. Using the decision
procedure for CSP(T), we may determine which of the conjunctions are satisfi-
able in some model of T and define Ln as the set of all canonical databases of
the satisfiable conjunctions. Then, by construction, (Ln) is a sampling for T .

To determine whether a theory has a polynomial sampling the following
general observation is helpful.

Remark 2. Let A be a structure with finite relational signature τ . By Proposi-
tion 2, A has a polynomial sampling iff for all n ∈ N there exists Bn ∈ Sn(Th(A))
such that (Bn)n∈N is a polynomial sampling. If Bn ∈ Sn(Th(A)) and there exists
a homomorphism h : Bn → A, then h(Bn) ∈ Sn(Th(A)) and |h(Bn)| ≤ |Bn|.
If we can prove that each element of Sn homomorphically maps to A we can
therefore assume that Ln consists of a single substructure of A. An element of
Sn(Th(A)) which is a substructure of A is called an n-universal substructure
of A. Minimal sizes of n-universal substructures are easier to determine than
minimal sizes of Ln in general and have been explored in the past [12,15,16].

In general, Sn(Th(A)) may contain structures which are smaller than the small-
est n-universal substructure of A and Example 3 will provide an example for
this case. Remark 2 can be used to prove Lemma 1. The theory T in Lemma 1
is contained in the theory of every undirected, loopless graphs with a binary
relation symbol E for the edge relation and a binary relation symbol N for the
set of all pairs of distinct elements that are not related by an edge.

Lemma 1. Let τ consist of the binary relation symbols E and N and let T
contain only the sentence

∀x, y.
(¬E(x, x) ∧ ¬(E(x, y) ∧ ¬E(y, x))∧¬N(x, x) ∧ ¬(E(x, y) ∧ N(x, y))

)
.

Then there is a sampling for T but not a polynomial sampling.

Theories with polynomial samplings include all theories of finite structures,
the theory of successor on the natural numbers, and the theories of the structures
in Lemma 2 and Lemma 3 below.

138 M. Bodirsky and J. Greiner

3 Sampling for Unions of Theories

Let T1, T2 be two theories with disjoint relational signatures and with polynomial
samplings. In this section we will present sufficient conditions on T1 and T2 such
that T1 ∪ T2 has polynomial sampling. To this end, we will need to construct
models for T1 ∪ T2. Let τ1, τ be relational signatures with τ1 ⊆ τ and A a τ -
structure. The τ1-reduct of A, written Aτ1 , is the structure we get when all
relations with symbols not contained in τ1 are removed from A. The following
definition goes back to Tinelly and Ringeisen [20].

Definition 5. Let A1 and A2 be τ1 and τ2 structures respectively. A τ1 ∪ τ2-
structure A is a fusion of A1 and A2 if and only if Aτi is isomorphic to Ai for
i = 1 and i = 2.

Proposition 4 (Proposition 1 and Lemma 1 in [1]). For i = 1, 2, let Ti

be a τi theory. A τ1 ∪ τ2-structure A is a model of T1 ∪ T2 if and only if A is a
fusion of a model for T1 and a model for T2. Furthermore, two structures have
a fusion if and only if their domains have the same cardinality.

The proof of Lemma 1 in [1] essentially argues that any bijection between
the domains of two structures with disjoint signatures defines a fusion of the
two structures, which is a fact we will use later on. As a first consequence, we
can observe that an instance φ1 ∧ φ2 of CSP(T1 ∪ T2) is satisfiable if and only
if for i = 1 and i = 2 there exist models Ai of Ti with |A1| = |A2| such that φi

is satisfiable in Ai and the satisfying assignments of φ1 and φ2 identify exactly
the same variables. The following notion describes a property of a sampling that
allows us to transfer identifications of variables between models and samples.

Definition 6. We call a sampling (Ln)n∈N for T equality-matching if for all
n ∈ N and all conjunctions of atomic τ -formulas φ with variables in {x1, . . . , xn}
and for any conjunction ψ of equalities and negated equalities on {x1, . . . , xn},
there exists a model of T in which φ ∧ ψ is satisfiable if and only if there exists
B ∈ Ln such that φ ∧ ψ is satisfiable in B. A sampling is equality-matching for
a structure A if it is equality-matching for Th(A).

To be equality-matching will be the property that samplings for T1 and T2

must satisfy in order to construct a sampling for T1 ∪ T2 in Theorem 1. An
example for an equality-matching sampling is the one constructed in Example 2
because I is the negation of equality in all models of T and the constructed
samples and therefore, the instances of CSP(T) themselves can specify how to
identify variables. Also, the sampling constructed in the proof of Proposition 3
is equality-matching if there exists I ∈ τ such that in all models of T we have
I(x, y) ⇔ ¬(x = y).

Another class of theories where an equality-matching sampling always exists
are ω-categorical theories. A theory is ω-categorical if it has only one count-
able model (up to isomorphism). For a structure A, the orbit of t ∈ Ak is
{α(t) | α ∈ Aut(A)} where Aut(A) is the set of automorphisms of A and α is
applied componentwise.

Tractable Combinations of Theories via Sampling 139

Proposition 5. Let T be an ω-categorical theory with finite relational signature.
Then there exists an equality-matching sampling for T .

It follows from Proposition 3 that there are ω-categorical structures without
computable sampling, because some of those structures have an undecidable
CSP [7]. There are also theories with a sampling computable in polynomial
time, but without polynomial equality-matching sampling. Indeed, let τ contain
the binary relations E and N and let T contain only

∀x, y
(¬(

E(x, y) ∧ ¬E(y, x)
) ∧ ¬(

E(x, y) ∧ N(x, y) ∧ x �= y
))

and sentences of the form ∃x1, . . . , xn

(∧
i<j xi �= xj

)
for all n ∈ N. Then Ln :=

{({0};E,N)} with E = N := {(0, 0)} for all n ∈ N yields a sampling for T . If
there exists a polynomial equality-matching sampling for T , then there exists a
polynomial sampling for T ′ := T ∪ Th(Z; �=) by Proposition 6. However, with �=
in the signature, instances of CSP(T ′) can include E′(x, y) := E(x, y) ∧ x �= y
and N ′(x, y) := N(x, y)∧x �= y. But E′ and N ′ satisfy the theory from Lemma 1.
Therefore, a polynomial equality-matching sampling for T ′ cannot exist.

It is in general not true that if (Ln)n∈N is equality-matching then (L′
n)n∈N :=

(
⋃· B∈Ln

B)n∈N is equality-matching as well. An example is A = ({0, 1};<) with
L4 consisting of two copies of A. Then x1 < x2 ∧ x3 < x4 ∧ ∧

i<j xi �= xj is
not satisfiable in A or L4, but is satisfiable in (L′

4). Even homomorphic images
of equality-matching samplings, such as in Remark 2, need not be equality-
matching.

For later use, we now present two classes of structures with equality-matching
sampling computable in polynomial time. If B is a reduct of A and all relations
in A have a first-order definition in B, then A is called a first-order expansion
of B.

Lemma 2. All reducts of first-order expansions of (Q;<) have an equality-
matching sampling computable in polynomial time.

Lemma 3. Let P1, . . . , Pm be a partition of Q where all parts are infinite and co-
infinite. All reducts of first-order expansions of (Q;P1, . . . , Pm) have an equality-
matching sampling computable in polynomial time.

Another condition we need in order to construct a sampling for the union
of two theories is a primitive positive version of the classical concept of no
algebraicity in model theory (see [13]). A formula is called primitive positive
(pp) if it is a conjunction of atomic formulas where some variables may be
existentially quantified.

Definition 7. A τ -structure A has no pp-algebraicity if for any primitive pos-
itive τ -formula φ(x) with parameters a1, . . . , an the set {b ∈ A | A |= φ(b)} is
either contained in {a1, . . . , an} or infinite.

It is easy to check that first-order expansions of (Q;<) or (Q;P1, . . . , Pm)
do not have pp-algebraicity because a < x < b has either no or infinitely many

140 M. Bodirsky and J. Greiner

satisfying assignments in (Q;<) (for all a, b ∈ Q), and in (Q;P1, . . . , Pm) any two
distinct elements in Pi are indistinguishable for first-order definable relations.
When it is clear from context that we mean a set, we will use [n] as a shorthand
for {1, 2, . . . , n}. We are now ready to present the first main result.

Theorem 1. Let T1 and T2 be theories with finite relational and disjoint signa-
tures τ1, τ2 respectively. If all models of T1 and T2 do not have pp-algebraicity and
T1 and T2 have equality-matching samplings (On), (Pn) respectively, then there
exists an equality-matching sampling (Ln) for T := T1∪T2 with |Ln| = |On| · |Pn|
for all n ∈ N. If (On) and (Pn) are computable in polynomial time, then (Ln) is
also computable in polynomial time.

Proof. Let (On) and (Pn) be equality-matching samplings of T1, T2, respectively.
Fix n ∈ N and let {Bi,1, . . . ,Bi,pi

} be On for i = 1 and Pn for i = 2. For all
i ∈ [p1], j ∈ [p2] we now define a τ1 ∪ τ2-structure Mi,j with domain Mi,j :=
B1,i × B2,j as follows.

For R ∈ τ1 of arity k we define

((a1, b1), . . . , (ak, bk)) ∈ RMi,j ⇔
(∀i, j.(ai = aj ⇔ bi = bj)) ∧ (a1, . . . , ak) ∈ RB1,i .

Analogously, we define for R ∈ τ2 of arity k

((a1, b1), . . . , (ak, bk)) ∈ RMi,j ⇔
(∀i, j.(ai = aj ⇔ bi = bj)) ∧ (b1, . . . , bk) ∈ RB2,j .

Let φi(x1, . . . , xn) be a conjunction of atomic τi-formulas for i = 1 and i = 2.
Notice that forcing φ1 and φ2 to have the same variables can be done without
loss of generality by introduction of dummy constraints like x = x. Suppose
there exists a homomorphism g : D(φ1(x1, . . . , xn) ∧ φ2(x1, . . . , xn)) → A where
A is a model of T . Then g : D(φi(x1, . . . , xn)) → Aτi is also a homomorphism
for i = 1 and i = 2. As the chosen samplings are equality-matching, there exists
ui ∈ [pi] and homomorphisms hi : D(φi(x1, . . . , xn)) → Bi,ui

for i = 1 and i = 2
such that h1 and h2 both identify variables in the same way that g does. Then,
by construction, xi �→ (h1(xi), h2(xi)) defines a homomorphism from D(φ1 ∧φ2)
to Mu1,u2 identifying the same variables as g.

For the reverse direction suppose that h is a homomorphism from D(φ1 ∧φ2)
to Mu1,u2 . We want to show the existence of a homomorphism g from D(φ1∧φ2)
to A, where A is a model of T and g and h identify the same variables. To simplify
presentation, we would like to assume that h is injective. Suppose there exists
xi, xj such that h(xi) = h(xj). Then we replace all occurrences of xj in φ1 and
φ2 by xi and iterate until h is injective on the remaining variables. Call the
resulting formulas φ′

1 and φ′
2. If there exists an injective homomorphism g from

D(φ′
1∧φ′

2) to a model of T , we can extend g to the formerly substituted variables
via g(xj) := g(xi) to get a homomorphism from D(φ1 ∧ φ2) to some model of
T which has the same identifications as h. Hence, it is sufficient to prove the
existence of g under the assumption that h is injective.

Tractable Combinations of Theories via Sampling 141

Let hi := π2
i ◦ h for i ∈ [2], where π2

i is the projection to the i-th coordi-
nate out of two coordinates. Now suppose there exists a set S ⊆ h(D(φ)) of
size at least two such that any two elements in S are equal in the first coor-
dinate (the case with the second coordinate can be proven analogously). With-
out loss of generality we will assume S = {h(x1), . . . , h(xk)}. Furthermore, we
may assume that S is maximal, i.e., for all i > k we have h1(xi) �= h1(x1).
For i ∈ [k] let ψi(xi, xk+1, . . . , xn) be the conjunction of all conjuncts in
φ1(x1, . . . , xn) which do not contain xj for all j ∈ [k]\{i}. Then φ1 is equiv-
alent to

∧k
i=1 ψi(xi, xk+1, . . . , xn) because no conjunct of φ1 can contain more

than one variable from x1, . . . , xk, as this conjunct would not be satisfied in the
image of h1 in Mu1,u2 . As T1 has an equality-matching sampling, there exists a
homomorphism g1 : D(φ1) → A1 for some model A1 of T1, such that g1 has the
same identifications as h1. By the definition of no pp-algebraicity, the set

{a ∈ A | A1 |= ψi(a, g1(xk+1), . . . , g1(xn))}

is infinite for all i ∈ [k]. Hence, there exists a homomorphism g′
1 : D(φ1) → A1

such that g′
1(xi) �= g′

1(xj) �= g′
1(xl) = g1(xl) for all i, j ∈ [k] and l ∈ [n]\[k].

As the sampling for T1 is equality-matching, there exists u′
1 ∈ [p1] and a homo-

morphism h′
1 : D(φ1) → B1,u′

1
with the same identifications as g′

1. This yields a
homomorphism xi �→ (h′

1(xi), h2(xi)) to Mu′
1,u2 where strictly less variables are

mapped to the same row or column than by h.
Iterated application of this argument to h1 and, in an analogous way, to h2

proves that there exist injective homomorphisms h∗
1 and h∗

2 such that the map
h∗ : D(φ1(x1, . . . , xn)∧φ2(x1, . . . , x2))→ Mu∗

1 ,u∗
2

defined by xi �→ (h∗
1(xi), h∗

2(xi))
is a homomorphism. As (On) and (Pn) are equality-matching samplings there
exist injective homomorphisms g∗

i : D(φi(x1, . . . , xn)) → A∗
i where A∗

i is a model
of Ti for i = 1 and i = 2. Now observe that A∗

1 and A∗
2 are both either empty (in

which case the theorem becomes trivial) or infinite because no pp-algebraicity
implies that {x | A∗

i |= x = x} is infinite or empty. If A∗
i is uncountable, then

there exists a A′
i with countable domain such that Th(A′

i) = Th(A∗
i) due to

the Downward Löwenheim-Skolem Theorem (see [13], page 90) and we may
substitute A∗

i by A′
i. Hence, we may assume that |A∗

1| = |A∗
2| and therefore,

there exists a bijection f : A∗
1 → A∗

2 such that f(g∗
1(xi)) = g∗

2(xi) for all i ∈ [n].
However, any bijection from A∗

1 to A∗
2 induces a fusion A of A∗

1 and A∗
2 with

domain A∗
1 and therefore a model of T by Proposition 4. Clearly, g : D(φ) → A∗

defined by g(xi) := g∗
1(xi) for all i ∈ [n] is an injective homomorphism. Hence,

(Ln) with Ln := {M1,1, . . . ,Mp1,p2} is an equality-matching sampling for T .
We have |Ln| =

∑
i∈[p1],j∈[p2]

|B1,i| · |B2,j | = |On| · |Pn| for all n ∈ N and to
determine whether a relation RMi,j holds on an tuple t requires at most n2 checks
for equality and a check if t ∈ RB1,i or t ∈ RB2,j . Therefore, if both samplings
are computable in polynomial time, (Ln) is computable in polynomial time as
well.

Remark 3. Notice that with almost the same construction, an equality-matching
sampling for any finite number of theories can be constructed as long as all

142 M. Bodirsky and J. Greiner

theories have an equality-matching sampling and only models without pp-
algebraicity. For that we use a higher-dimensional version of the matrix defined
in the proof, where a relation R ∈ τi holds on a tuple t if only if any two entries
of t either differ in all their coordinates or are equal in all their coordinates and
the projection to the i-th dimension of each element of t is in R as defined in
the respective sample for Ti.

Note that if A has a finite signature and is without pp-algebraicity, then
all models of Th(A) are without pp-algebraicity. This holds because for each
primitive positive formula φ(x1, . . . , xk) and n ∈ N, the theory Th(A) contains
a sentence expressing that for any choice of parameters x2, . . . , xk any satisfying
assignment for x1 is either equal to one of the parameters or there are at least
n different satisfying assignments for x1. If one of the theories, say T1, does not
satisfy the conditions of Theorem 1 because it has models with pp-algebraicity,
we can prove the following.

Proposition 6. Let T1 be a theory with finite relational signature and let A2 be
an infinite structure with signature τ2 whose relations are first-order definable
over the empty signature. If T1 has an equality-matching sampling (Ln) and only
infinite models, then the expansion of the samples in (Ln) with relations in τ2
by their first-order definitions is an equality-matching sampling for T1 ∪Th(A2).

Proof. Fix n ∈ N and let τ1 be the signature of T1. Call the expanded sampling
(L′

n). Let φi be a conjunction of atomic τi formulas. Then φ2(x1, . . . , xn) is
equivalent to

∨
i∈[k] ψi(x1, . . . , xn), where each ψi specifies by a conjunction of

equalities and disequalities which variables must be equal and which must differ.
However, for every i ∈ [k] the formula φ1 ∧ ψi is satisfiable in some element of
Ln if and only if it is satisfiable in some model of T1 because (Ln) is equality-
matching. Therefore, φ1 ∧ φ2 is satisfiable in some model of T1 if and only if it
is satisfiable in some structure in L′

n.

There are also theories with a sampling but without an equality-matching
sampling: for example, A := (Z;Ra, Rm) where Ra := {(x, y, z) | x + y = z} and
Rm := {(x, y, z) | x · y = z} has a trivial CSP and therefore a sampling. If there
exists an equality-matching sampling for Th(A) we can construct a sampling
for T := Th(A) ∪ Th(Z; �=) by Proposition 6. Then we can define z = 1 by the
primitive positive formula ∃x, y (x · z = x ∧ y · z = y ∧ x �= y). It is now easy to
see that Hilbert’s tenth problem, which is undecidable, is many-to-one reducible
to CSP(T), contradicting Proposition 3. The following example shows that we
cannot drop the assumption of no pp-algebraicity in Theorem 1.

Example 3. Let succ be the successor relation on N. Let P0, P1 be two disjoint,
infinite sets (two colors). Then T1 := Th(N; succ) and T2 := Th(P0 ∪· P1;P0, P1)
both have an equality-matching sampling which can be computed in polynomial
time. However, any sampling (Ln)n∈N of T1 ∪ T2 has |Ln| ≥ 2n for all n ∈ N,
and therefore no polynomial sampling exists.

To prove this, first notice that we can construct a model A for T := T1 ∪ T2

such that CSP(A) = CSP(T). This can be done by giving each natural number

Tractable Combinations of Theories via Sampling 143

the color P0 or P1 in such a way that the resulting sequence over {0, 1} includes
any binary number as consecutive subsequence. Therefore, when examining lower
bounds for |Ln|, we may assume by Proposition 2 that for each n there is only
one element Bn ∈ Sn(T) in Ln. Now observe the following:

1. In any n-sample Bn, no element x can satisfy P0(x) ∧ P1(x) and there is no
pp-formula which can force a node to have no color Hence, if some node in
Bn has no color, we can color this node arbitrarily and the result is again in
Sn(T). Therefore, without loss of generality, each node in the sampling has
exactly one color

2. When we fix a node c in Bn such that φc := succ(c, x2)∧ . . .∧ succ(xn−1, xn)
is satisfiable in Bn, then there exists exactly one map s : [n] → {0, 1} such
that ψc,s := φc ∧∧

i∈[n] Ps(i)(xi) is satisfiable in Bn. If there were two distinct
maps s and s′, then ψx1,s ∧ ψx1,s′ would be satisfiable in Bn, but not in A.

Now observe that atomic τ1 ∪ τ2-formulas with n variables can encode a binary
number b of length n via succ(x1, x2) ∧ . . . ∧ succ(xn−1, xn) ∧ ∧

i∈[n] Pbi(xi). By
item (2) each element of Bn is the start of at most one binary number and
therefore, Bn must have at least 2n elements.

We would like to remark that for all n there exists Bn ∈ Sn(T) of size 2n

such that (Bn) is an equality-matching sampling of T . It can be constructed via
a de-Brujin sequence. However, the smallest n-universal substructure of a model
of T has size 2n + n − 1, which is larger.

Even though we cannot drop no-pp-algebraicity in general, there are struc-
tures with pp-algebraicity where the sets definable by primitive positive formulas
are somewhat tame and an equality-matching sampling of the union of their the-
ories exists and is computable in polynomial time. We will demonstrate this with
the following example, which will also occur in the next section.

Example 4. Let E1 be the relation {(2a, 2a + 1), (2a + 1, 2a) | a ∈ N}. Let E2 be
a copy of E1. Then we consider T := Th(N;E1) ∪ Th(N;E2). For n ∈ N we will
now construct Bn ∈ Sn(T) such that (Bn)n∈N is an equality-matching sampling
for T computable in polynomial time. Consider formulas γk and δk describing
an alternating sequence and an alternating cycle, both of length 2k, respectively.
Formally, we define γk(x1, . . . , x2k+1) as

∧
i∈[k](E1(x2i−1, x2i) ∧ E2(x2i, x2i+1))

and δk(x1, . . . , x2k) as the formula γk(x1, . . . , x2k, x1). Let Bn be the structure
containing � n

2k � many copies of D(δk(x1, x2, . . . , x2k)), for each k ∈ {1, . . . , �n
2 �}.

Then, Bn has size O(n2) and (Bn)n∈N is a sampling for T (see [4] for a proof).

4 Exemplary Application to CSPs

We finally show how to use the sampling (Ln) constructed in Theorem 1 in
order to prove the polynomial-time tractability of CSP(T1 ∪ T2). To do this, we
use algorithms for the CSPs of the structures Bn ∈ Ln which run in uniform
polynomial time, i.e., the runtime is polynomial in the size of the instance and
in |Bn|. The following generalizes a result for CSPs of structures by Bodirsky,
Macpherson, and Thapper [6] to CSPs of theories.

144 M. Bodirsky and J. Greiner

Proposition 7. Let T be a theory with finite relational signature and let (Ln)
be a sampling of T computable in polynomial time. If there is an algorithm that
solves CSP(Bn) for every Bn ∈ Ln in uniform polynomial time, then CSP(T)
is polynomial-time tractable.

To describe classes of finite structures whose CSP can be be solved by a uni-
form polynomial-time algorithm, the following concepts from universal algebra
are important.

Definition 8. Let A be a relational structure with signature τ and let f be an
operation of arity k on A. We call f a polymorphism of A if it is a homo-
morphism from Ak to A, i.e., whenever t1, . . . , tk ∈ RA, for some R ∈ τ , then
f(t1, . . . , tk) ∈ RA, where f is applied componentwise. An operation f : Ak → A
is totally symmetric if for all x1, . . . , xk, y1, . . . , yk ∈ A we have f(x1, . . . , xk) =
f(y1, . . . , yk) whenever {x1, . . . , xk} = {y1, . . . , yk}. If k ≥ 3 and for all a, b ∈ A
we have f(a, b, b, . . . , b) = f(b, a, b, b, . . . , b) = · · · = f(b, b, . . . , b, a) = b, then f
is called a near-unanimity operation.

Proposition 8 (Corollary 3.6 in [14]). There is an algorithm that solves
CSP(B) in uniform polynomial time for all finite relational structures B with a
near-unanimity polymorphism.

Results about the applicability of fast uniform algorithms for CSPs of finite
relational structures with a near-unanimity polymorphism can be found in the
work of Kozik (2016). Proposition 8 and Proposition 7 can be applied to Exam-
ple 4 with the following near-unanimity operation f defined on Bn:

f(x, y, z) :=
{

y if y = z,
x otherwise.

Note that f is a polymorphism of Bn, for all n, because if (t1,1, t1,2), (t2,1, t2,2)
and (t3,1, t3,2) are in Ek and ti,1 = tj,1, then ti,2 = tj,2 and therefore f(t1, t2, t3) =
(ti,1, ti,2) ∈ Ek for all k ∈ [2], i, j ∈ [3], i �= j. In particular, CSP(T) with T
from Example 4 can be solved in polynomial time. An example for a totally
symmetric polymorphism is the minimum operation over (Q;<). Also, we can
define minimum as an operation of any arity. The following result builds on
results of Feder and Vardi [11].

Theorem 2 (Section 3 in [9]). Let B be a finite structure with finite relational
signature. Then the arc-consistency procedure solves CSP(B) iff B has totally
symmetric polymorphisms of all arities.

The Arc-consistency algorithm can be implemented so that its worst-case
running time is in O(n2m2) where n is the number of variables in the instance
and m is the size of the domain [8]. Theorem 2 and Proposition 7 immediately
yield the following.

Corollary 1. Let (Ln) be a sampling for T which is computable in polynomial
time. If all samples in (Ln) have totally symmetric polymorphism of all arities,
then CSP(T) is polynomial-time tractable.

Tractable Combinations of Theories via Sampling 145

We can slightly relax the requirement that all the structures in Ln have
totally symmetric polymorphisms.

Proposition 9. Let T be a theory with finite relational signature and let (Ln)
be a sampling of T computable in polynomial time. If for all n ∈ N and all
B ∈ Ln there exists a model AB of T and a homomorphism h : B → AB such
that h(B) has totally symmetric polymorphisms of all arities, then CSP(T) is
polynomial-time tractable.

We conclude this section with an application of the developed methods to
Example 1. By Lemma 2 and Lemma 3, the theories T1 and T2 in Example 1
have polynomial-time computable samplings, and both structures have no pp-
algebraicity. Hence, by Theorem 1 there exists a polynomial-time computable
sampling (Ln) for T1 ∪ T2. Let τi be the signature of Ai, for i ∈ {1, 2}. For
every n ∈ N and every B ∈ Ln there exists an injective homomorphism h1 from
Bτ1 to A1 and an injective homomorphism h2 from Bτ2 to A2; this follows by
inspection of the construction of the sampling in the proof of Theorem 1 and
the proofs of Lemma 2 and Lemma 3. As A1 and A2 are both countably infinite
and h1 and h2 are injective, there exists a bijection f between A1 and A2 such
that f(h1(a)) = h2(a) for all a ∈ B, inducing a fusion A of A1 and A2. By
construction of A, the map h1 is a homomorphism from B to A.

Finally notice that we have chosen A1 such that the minimum operation is a
polymorphism of A1. Furthermore, min is also a polymorphism of unary relations
and therefore of A. Hence, Proposition 9 implies that CSP(T1∪T2) is polynomial-
time tractable. Example 1 is not covered by the conditions of Nelson and Oppen,
since Th(A1) is not convex : the formula R(x, y, z) ∧ x �= y is satisfiable, the
formula R(x, y, z)∧y �= z is satisfiable, but the formula R(x, y, z)∧x �= y∧y �= z
is not satisfiable in A1.

We mention that the polynomial-time tractability of CSP(A1) in our example
was already known in the SMT community [2]. It is straightforward to generalize
the example to any finite number m of robots, by replacing the structure A2 by
the structure (Q;P1, . . . , Pm) that we have already encountered in Lemma 3.

References

1. Baader, F., Schulz, K.U.: Combining constraint solving. In: Goos, G., Hartmanis,
J., van Leeuwen, J., Comon, H., Marché, C., Treinen, R. (eds.) CCL 1999. LNCS,
vol. 2002, pp. 104–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45406-3 3

2. Bezem, M., Nieuwenhuis, R., Rodŕıguez-Carbonell, E.: The max-atom problem
and its relevance. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008.
LNCS (LNAI), vol. 5330, pp. 47–61. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-89439-1 4

3. Bodirsky, M., Greiner, J.: The complexity of combinations of qualitative con-
straint satisfaction problems. Log. Methods Comput. Sci. 16(1) (2020). https://
lmcs.episciences.org/6129

https://doi.org/10.1007/3-540-45406-3_3
https://doi.org/10.1007/3-540-45406-3_3
https://doi.org/10.1007/978-3-540-89439-1_4
https://doi.org/10.1007/978-3-540-89439-1_4
https://lmcs.episciences.org/6129
https://lmcs.episciences.org/6129

146 M. Bodirsky and J. Greiner

4. Bodirsky, M., Greiner, J.: Tractable combinations of theories via sampling (2020).
https://arxiv.org/abs/2012.01199

5. Bodirsky, M., Grohe, M.: Non-dichotomies in constraint satisfaction complexity.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 184–196. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-70583-3 16

6. Bodirsky, M., Macpherson, D., Thapper, J.: Constraint satisfaction tractability
from semi-lattice operations on infinite sets. Trans. Comput. Log. (ACM-TOCL)
14(4), 1–30 (2013)

7. Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous
templates. J. Log. Comput. 16(3), 359–373 (2006)

8. Cooper, M.C.: An optimal k-consistency algorithm. Artif. Intell. 41(1), 89–95
(1989). https://doi.org/10.1016/0004-3702(89)90080-5

9. Dalmau, V., Pearson, J.: Closure functions and width 1 problems. In: Jaffar, J. (ed.)
CP 1999. LNCS, vol. 1713, pp. 159–173. Springer, Heidelberg (1999). https://doi.
org/10.1007/978-3-540-48085-3 12

10. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011). https://doi.org/10.1145/1995376.
1995394

11. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM J.
Comput. 28, 57–104 (1999)

12. Gol’dberg, M.K., Livshits, E.M.: On minimal universal trees. Math. Notes Acad.
Sci. USSR 4, 713–717 (1968). https://doi.org/10.1007/BF01116454

13. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
14. Jeavons, P., Cohen, D., Cooper, M.: Constraints, consistency and closure. Artif.

Intell. 101(1–2), 251–265 (1998)
15. Lozin, V., Rudolf, G.: Minimal universal bipartite graphs. Ars Comb. 84, 345–356

(2007)
16. Moon, J.W.: On minimal n-universal graphs. Proc. Glasgow Math. Assoc. 7(1),

32–33 (1965). https://doi.org/10.1017/S2040618500035139
17. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures.

ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979). https://doi.org/10.1145/
357073.357079

18. Oppen, D.C.: Complexity, convexity and combinations of theories. Theor. Comput.
Sci. 12(3), 291–302 (1980). https://doi.org/10.1016/0304-3975(80)90059-6

19. Schulz, K.U.: Why combined decision problems are often intractable. In: Kirchner,
H., Ringeissen, C. (eds.) FroCoS 2000. LNCS (LNAI), vol. 1794, pp. 217–244.
Springer, Heidelberg (2000). https://doi.org/10.1007/10720084 15

20. Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of
satisfiability procedures. Theor. Comput. Sci. 290(1), 291–353 (2003). https://
doi.org/10.1016/S0304-3975(01)00332-2

https://arxiv.org/abs/2012.01199
https://doi.org/10.1007/978-3-540-70583-3_16
https://doi.org/10.1016/0004-3702(89)90080-5
https://doi.org/10.1007/978-3-540-48085-3_12
https://doi.org/10.1007/978-3-540-48085-3_12
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1007/BF01116454
https://doi.org/10.1017/S2040618500035139
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/357073.357079
https://doi.org/10.1016/0304-3975(80)90059-6
https://doi.org/10.1007/10720084_15
https://doi.org/10.1016/S0304-3975(01)00332-2
https://doi.org/10.1016/S0304-3975(01)00332-2

Analyzing Unit Read-Once Refutations
in Difference Constraint Systems

K. Subramani(B) and Piotr Wojciechowski

LDCSEE, West Virginia University, Morgantown, WV, USA
{k.subramani,pwojciec}@mail.wvu.edu

Abstract. In this paper, we investigate the refutability of Difference
Constraint Systems (DCSs) in the Unit Read-once Refutation (UROR)
system. Recall that a difference constraint is a linear relationship of the
form: xi −xj ≤ bij and a DCS is a conjunction of such constraints. DCSs
arise in a number of application domains such as program verification
and scheduling. It follows that efficient refutation methodologies for these
systems are of paramount interest. The UROR system is incomplete, in
that unsatisfiable difference constraint systems may not have a refutation
in this system. However, this refutation system provides a useful tool
for proving if a DCS is infeasible because of a restriction on the values
the variables can take. Note that without any absolute constraints, the
values of the variable in a solution to a DCS can be uniformly increased or
decreased without changing the validity of the solution. Thus, the UROR
refutations of a DCS depend upon the restrictions placed on the values
variables can take. This is in contrast to unrestricted refutations, which
need not depend on these restrictions. Investigating weak (incomplete)
refutation systems leads to a better understanding of the inference rules
required for establishing the infeasibility of the given constraint system.

1 Introduction

This paper is concerned with refutations of difference constraint systems. Recall
that a difference constraint is a linear relationship of the form: xi − xj ≤ bij . A
conjunction of such constraints is called a Difference Constraint System (DCS)
and can be written in matrix form as: A · x ≤ b. DCSs occur in a number of
application domains such as abstract interpretation [4,5] and image segmenta-
tion [6]. Thus, efficient refutation procedures are of paramount interest. In this
paper, we analyze a restricted refutation system, viz., Unit Read-once Refutation
(UROR) for DCSs.

Refutations can be thought of as negative certificates. Certificates (and certi-
fying algorithms) enhance the reliability of software. Our goal in this paper is to
investigate the algorithmic complexity of finding negative certificates for DCSs

This research was supported in part by the Air-Force Research Laboratory, Rome
through Contract FA8750-17-S-7007 and in part by the Air-Force Office of Scientific
Research through Grant FA9550-19-1-0177.

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 147–161, 2021.
https://doi.org/10.1007/978-3-030-75775-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_11

148 K. Subramani and P. Wojciechowski

within the UROR refutation system. It is worth noting that if a UROR of a DCS
exists, then it must be “short”. This means that the length of the refutation is
polynomial in the size of the input system.

Note that the problem of finding UROR refutations is interesting since it
provides domain specific refutations, i.e., these refutations prove that a DCS is
infeasible on account of its current set of absolute (one variable) constraints.
However, such a refutation does not establish the infeasibility of the underlying
relative (two-variable) constraints (see Sect. 2). This is a marked difference from
unrestricted linear refutations, which do not necessarily find domain-specific
refutations.

It is important to note that UROR is an incomplete refutation system. How-
ever, incomplete systems have been studied extensively in propositional proof
complexity. For instance, [14] details the computational complexity of read-once
refutations in CNF formulas. Likewise, [16] discusses read-once refutations in
Horn formulas. Read-once refutation systems have also been studied for linear
constraint systems [24].

The principal contributions of this paper are as follows: 1. Establishing that
the problem of checking if a DCS has a UROR is NP-complete. 2. The design
of a fixed parameter tractable (FPT) algorithm for checking if a DCS has a
UROR. 3. The design of an exact exponential algorithm for checking if a DCS
has a UROR. 4. Establishing that the problem of finding the shortest UROR of
a DCS is NPO PB-complete.

2 Statement of Problems

In this section, we define the problems under consideration.

Definition 1. A system of constraints A · x ≤ b is said to be a Difference Con-
straint System (DCS) if: 1. The entries in A belong to the set {0, 1,−1}. 2. Each
row of A contains at most one positive entry. 3. Each row of A contains at most
one negative entry. 4. x is a real valued vector. 5. b is an integral vector.

In a constraint a · x ≤ b1, b1 is called the defining constant and in the con-
straint system A · x ≤ b, b is referred to as the defining constant vector. Addi-
tionally, the terms xi and −xi in a difference constraint are referred to as literals.

If a difference constraint has only one non-zero coefficient, then it is called
an absolute constraint. Otherwise, it is called a relative constraint.

We are interested in certificates of infeasibility. In linear programs (systems
of linear inequalities), refutations use the following rule:

ADD :
∑n

i=1 ai · xi ≤ b1
∑n

i=1 a′
i · xi ≤ b2∑n

i=1(ai + a′
i) · xi ≤ b1 + b2

(1)

We refer to Rule (1) as the ADD rule. This rule is analogous to resolution
in clausal formulas. It is easy to see that Rule (1) is sound since any assignment

Unit Read-Once Refutability of DCSs 149

that satisfies the hypotheses also satisfies the consequent. Additionally, the rule
is complete. This means that repeated application of Rule (1) will result in a
contradiction of the form: 0 ≤ b, b < 0 for every linearly infeasible system. The
completeness of the ADD rule was established by Farkas [9], in a lemma that is
famously known as Farkas’ Lemma for systems of linear inequalities [20].

Farkas’ lemma provides a compact proof of infeasibility for linear systems.
Additionally, basic feasible solutions provide a compact proof of linear feasibility
for linear programs. Together, these two properties establish that the linear
programming problem is in the complexity class NP ∩ coNP. Farkas’ lemma
is one of several lemmata that consider pairs of linear systems in which exactly
one element of the pair is feasible. These lemmata are collectively referred to as
“Theorems of the Alternative” [17].

Definition 2. A linear refutation is a sequence of applications of the ADD rule
that results in a contradiction of the form 0 ≤ b, b ≤ −1.

In general, applying the ADD rule to an infeasible system A · x ≤ b, could
result in a contradiction of the form 0 ≤ b, b < 0. However, in case of DCSs
(with integral defining constants), we must have b ≤ −1.

Our principal focus is on the number of inferences used in a refutation.

Definition 3. The length of a refutation is the number of inferences (applica-
tions of the ADD rule) in the refutation.

The length of a refutation R is denoted as |R|. Note that in general, the
problem of finding a shortest refutation of a DCS can be solved in polynomial
time [22,23].

In this paper, we study a restricted version of the ADD rule, known as the
unit-ADD rule. In the unit-ADD rule, at least one of the constraints must be an
absolute constraint. In DCSs, this rule has the following form:

unit-ADD :
ai · xi ≤ b1 aj · xj − ai · xi ≤ b2

aj · xj ≤ b1 + b2

A linear refutation using only the unit-ADD rule is called a unit refutation.
In this paper, we utilize the network construction associated with difference

constraints [2]. From a DCS D, this construction creates a directed graph G =
〈V,E, c〉 as follows:

1. For each variable xi in the DCS, create the vertex vi.
2. Create the vertex v0.
3. For each constraint lk in the DCS:

(a) If lk is of the form xi − xj ≤ bij , then create the edge (i, j) of weight
c(i, j) = bij from vj to vi.

(b) If lk is of the form xi ≤ bi, then create the edge (0, i) of weight c(0, i) = bi
from v0 to vi.

(c) If lk is of the form −xi ≤ bi, then create the edge (i, 0) of weight c(i, 0) =
bi from vi to v0.

150 K. Subramani and P. Wojciechowski

Example 1. Figure 1 shows a DCS D and its corresponding directed graph G.

x1 ≤ 1

x1 − x2 ≤ −1

x2 x1 1

v0 v1 v2
1

−1

−1

Fig. 1. Example DCS and its corresponding directed graph.

DCS D has the following refutation:

1. ADD x1 − x2 ≤ −1 and x2 − x1 ≤ −1 to get 0 ≤ −2.

However, DCS D does not have a unit refutation. Observe that x1 ≤ 1 is the only
absolute constraint in D, thus it must be used in a unit refutation of D. It is easy
to see that a unit refutation of D, if one existed, would have the following form:

1. ADD x1 ≤ 1 and x2 − x1 ≤ −1 to get x2 ≤ 0.
2. ADD x2 ≤ 0 and x1 − x2 ≤ −1 to get x1 ≤ −1.

3.
...

D does not have any unit constraints that cancel either x1 from the constraint
x1 ≤ −1 or that cancel x2 from the constraint x2 ≤ 0. Thus, there is no way to
complete this unit refutation.

Since unit refutation is a restriction of linear refutation, it is clearly a sound
refutation system. However, it is not length preserving (proof omitted due to
space requirements).

We now introduce the notion of read-once refutations.

Definition 4. A read-once refutation is a refutation in which each constraint
can be used at most once.

Note that the restriction of being used at most once applies to constraints present
in the original system and those derived as a result of previous applications of
the ADD rule.

We now formally define the type of refutation discussed in this paper.

Definition 5. A Unit Read-once Refutation (UROR) is a refutation in
which each inference is an application of the unit-ADD rule and each constraint
can be used at most once.

Note that a UROR is both a unit refutation and a read-once refutation.
However, a DCS can have both a unit refutation and a read-once refutation, but
not have a UROR.

Example 2. Figure 2 shows a DCS D and its corresponding directed graph G.

Unit Read-Once Refutability of DCSs 151

x1 ≤ 1000

−x1 ≤ −1

x1 − x2 ≤ −1

x2 x1 1

v0 v1 v2

1000

−1

−1

−1

Fig. 2. Example DCS and its corresponding directed graph.

DCS D has the following unit refutation:

1. ADD x1 ≤ 1000 and x2 − x1 ≤ −1 to get x2 ≤ 999.
2. ADD x2 ≤ 999 and x1 − x2 ≤ −1 to get x1 ≤ 998.

3.
...

4. ADD x2 ≤ 1 and x1 − x2 ≤ −1 to get x1 ≤ 0.
5. ADD x1 ≤ 0 and −x1 ≤ −1 to get 0 ≤ −1.

Additionally, D has the following read-once refutation: ADD x2 − x1 ≤ −1 and
x1 − x2 ≤ −1 to get 0 ≤ −2.

Note that any unit refutation of D must use the constraint x1 ≤ 1000. Thus,
D does not have a UROR.

3 Motivation and Related Work

In this paper, we examine the problem of finding specific forms of refutations for
systems of difference constraints. These refutations serve as negative certificates
for the DCS feasibility problem. In other words, they are used to prove that a
given DCS has no linear or integer solutions.

The focus on unit (read-once) refutations in this paper stems from a funda-
mental difference between absolute constraints and relative constraints in DCSs.
Since absolute constraints only place bounds on a single variable, they can be
used to define the domain over which feasibility is considered. Meanwhile, rela-
tive constraints define the relationship between variables and can be considered
domain agnostic. This difference in the two types of difference constraints carries
over to create a difference between unit and non-unit refutations.

A unit refutation relies on the absolute constraints in the underlying DCS.
Thus, a unit refutation serves as a domain-specific refutation. This is in contrast
to an unrestricted refutation that may be domain agnostic. Thus, a study of unit
refutations is important since it reveals the structure of such domain-specific
refutations.

Note that unit refutations may be required to use specific constraints within
a DCS. As a result, a unit refutation may be exponentially longer than an unre-
stricted refutation of the same system (proof in full paper). Because of this
inflated length, this paper studies unit read-once refutations. These refutations
combine the restrictions of unit refutations and read-once refutations to generate
domain specific refutations that are guaranteed to be short.

152 K. Subramani and P. Wojciechowski

For the feasibility problem in various constraint systems, certificates can be
divided into two main categories, positive certificates and negative certificates.
For a given constraint system P : A · x ≤ b, any satisfying assignment to the
system serves as a positive certificate. However, the form negative certificates
take depends on the form of the constraint system.

The infeasibility of linear systems is commonly established using Farkas’
lemma [9]. As a result of Farkas’ lemma, a proof of linear infeasibility can simply
be a non-negative vector y, such that y · A = 0, y · b < 0. This vector y is called
the Farkas witness of the infeasibility of P. Similarly, the elements of y are called
Farkas variables.

Note that the Farkas vector y corresponds to a summation of the constraints
in P. Such a refutation can be broken up into individual summations, each
between a pair of constraints. These summations correspond to applications
of the ADD inference rule. This provides an additional form for refutations of
linear programs that corresponds to a step by step refutation procedure. In
the summation version of the refutation, we can examine different structural
properties (tree-like refutations vs. Dag-like refutations) and restrictions (read-
once refutations and unit refutations).

In a UROR, the ADD rule plays a role, similar to that of resolution in refuta-
tions of clausal systems. Resolution was introduced in [19] as a refutation system
used to establish the unsatisfiability of clausal Boolean formulas. Resolution is
only one of many refutation systems used for clausal formulas [25]. Resolution
is both sound and complete. However, it is not considered to be an efficient
refutation system [12].

This paper focuses specifically on systems of difference constraints. In partic-
ular, we focus on the problem of finding short refutations of DCSs. The problem
of finding the shortest refutation (not necessarily unit) of a DCS is motivated
by a number of applications, as discussed in [22], including program verifica-
tion [3,18,21], real-time scheduling [11,13], and incremental shortest paths in
weighted networks [8]. The first polynomial-time algorithm for this problem was
proposed in [22] and runs in O(n3 · log K) time, where n is the number of vertices
in the corresponding network G [2], and K is the length of the refutation. The
current fastest deterministic algorithm runs in O(m · n · K) time [23], where m
is the number of edges in G.

In this paper, we focus on a restricted version of linear refutations, viz.,
unit read-once refutations. In particular, we focus on refutations in which each
inference must use an absolute constraint and each constraint can be used at
most once. Note that placing these restrictions on a refutation system can cause
the refutation system to become incomplete. Additionally, we study how this
restriction affects refutation length.

There are several reasons to consider restricted refutation systems, viz.

1. Restricted refutations tend to be compact (polynomial in the size of the
input). For instance, URORs are at most linear in the size of the input.

2. For specific constraint systems, the existence of these restricted refutations
can be checked efficiently. For example, [22] showed every infeasible DCS has

Unit Read-Once Refutability of DCSs 153

a read-once refutation and that such a refutation can be found in polynomial
time. While systems of Unit Two Variable Per Inequality (UTVPI) constraints
do not always have read-once refutations, these refutations can still be found
in polynomial time [24]. Note that UTVPI constraints are a more general
form of difference constraints in which constraints of the form xi + xj ≤ bij
and −xi − xj ≤ bij are permitted.

4 The UROR Refutation System

In this section, we examine the problem of checking if a DCS has a UROR. We
also examine the problem of finding the shortest UROR of a DCS.

4.1 The Feasibility Problem

We first show that the problem of checking if a DCS D has a UROR is NP-
complete. This is done by a reduction from the Hamiltonian Cycle problem:

From a directed graph G with n vertices and m edges we construct a DCS D
as follows: 1. For each vertex vi in G, create the variables x+

i and x−
i . Addition-

ally, create the constraint x+
i − x−

i ≤ 0 for each i > 1. 2. For each edge (vi, vj)
in G, create the constraint x−

j − x+
i ≤ −1. 3. Create the constraints x+

1 ≤ n − 1
and −x−

1 ≤ 0.

Example 3. Figure 3 shows a directed graph G and its corresponding DCS D.

v1

v2

v3

v4

x+
1 ≤ 3 −x−

1 ≤ 0
x+
2 − x−

2 ≤ 0 x+
3 − x−

3 ≤ 0
x+
4 − x−

4 ≤ 0 x−
1 − x+

2 ≤ −1
x−
3 − x+

1 ≤ −1 x−
2 − x+

3 ≤ −1
x−
2 x+

4 1 x−
4 x+

3 1

Fig. 3. Example directed graph and its corresponding DCS

We now show that D has a UROR if and only if G has a Hamiltonian Cycle.

Lemma 1. Let G be a directed graph. G has a Hamiltonian Cycle, if and only
if the corresponding DCS D has a UROR.

Proof. First, suppose that G has a Hamiltonian Cycle C. Let vC(k) be the kth

vertex in the cycle. Assume without loss of generality that vC(1) = v1. We
construct a UROR R of D as follows:

1. Start with the constraint x+
1 ≤ n − 1.

2. The edge (v1, vC(2)) is in C. Thus, the constraint x−
C(2) − x+

1 ≤ −1 is in D.
Apply the ADD rule to this constraint and x+

1 ≤ n − 1 to get x−
C(2) ≤ n − 2.

154 K. Subramani and P. Wojciechowski

3. The constraint x+
C(2) − x−

C(2) ≤ 0 is in D. Apply the ADD rule to this con-
straint and x−

C(2) ≤ n − 2 to get x+
C(2) ≤ n − 2.

4. The edge (vC(2), vC(3)) is in C. Thus, the constraint x−
C(3) − x+

C(2) ≤ −1
is in D. Apply the ADD rule to this constraint and x+

C(2) ≤ n − 2 to get
x−
C(3) ≤ n − 3.

5. Continue this process until the constraint x+
C(n) ≤ 0 is derived.

6. The edge (vC(n), v1) is in C. Thus, the constraint x−
1 − x+

C(n) ≤ −1 is in D.
Apply the ADD rule to this constraint and x+

C(n) ≤ 0 to get x−
1 ≤ −1.

7. Apply the ADD rule to the constraints x−
1 ≤ −1 and −x−

1 ≤ 0 to get the
contradiction 0 ≤ −1.

Since C is a Hamiltonian Cycle, no edge or vertex in C is repeated. Thus, R
uses each constraint at most once. This means that R is a UROR as desired.

Now suppose that D has a UROR R. From R we construct a Hamiltonian
Cycle C as follows: For each constraint of the form x−

j − x+
i ≤ −1 in R add the

edge (xi, xj) to C. We make the following observations about the structures of
R and C:

1. Recall that R must use a constraint of the form xi ≤ b. By construction, the
only constraint in D of this form is x+

1 ≤ n − 1. Thus, this constraint must
be in R.

2. Since R is a refutation, the constant in the derived constraint must be nega-
tive. Thus R must use at least n constraints of the form x−

j − x+
i ≤ −1. This

means that C contains at least n edges.
3. The constraint x+

i − x−
i ≤ 0 is used at most once by R. By construction,

this is the only constraint with the terms x+
i and −x−

i . Thus, at most one
constraint in R has the term −x+

i and at most once constraint in R has the
term x−

i . This means that C has at most one edge entering the vertex vi and
at most one edge leaving the vertex vi.

4. Thus, C must be a Hamiltonian Cycle as desired. ��
Theorem 1. The problem of checking if a DCS D has a UROR is NP-
complete.

Proof. Since each constraint in a UROR is used at most once, we know that the
length of any UROR of D is polynomial in the size of D. Thus, the problem of
checking if D has a UROR is in NP.

From Lemma 1, we can reduce the problem of checking if a graph G has a
Hamiltonian Cycle to the problem of checking if the corresponding DCS D has
a UROR. Since the problem of checking if G has a Hamiltonian Cycle is NP-
complete, the problem of checking if D has a UROR is NP-hard. Thus, this
problem is NP-complete. ��

4.2 An FPT Algorithm

We now present an FPT algorithm for finding a UROR R of a DCS D param-
eterized by k, the length of R. Let G be the corresponding directed graph.

Unit Read-Once Refutability of DCSs 155

This algorithm proceeds by first partitioning the constraints of D into the sets
S1, . . . , Sk. Let S(i, j) be the set containing edge (i, j). Then the algorithm finds
the shortest path from v0 to itself using at most one edge from each partition.
We refer to such a walk as a partitioned walk.

Let H ⊆ {S1, . . . , Sk}, and let L(i,H) be the length of the shortest path from
v0 to vi using exactly one edge from the set Sl for each Sl ∈ H and no edges
from any other set. Note that L(i, {S(0, i)}) = c(0, i) for each vertex vi adjacent
to v0 (see Sect. 2). We now show that L(i,H) = min{vj :S(i,j)∈H} c(i, j)+L(j,H \
{S(i, j)}).

Theorem 2. L(i,H) is governed by the recurrence relation
L(i,H) = min{vj :S(i,j)∈H} c(i, j) + L(j,H \ {S(i, j)}).

Proof. Consider the shortest path p from v0 to vi using exactly one edge from
the set Sl for each Sl ∈ H and no edges from any other set. Assume that L(j,H ′)
correctly computes the length of the shortest paths for each H ′ ⊂ H.

Note that the last edge of p must be an edge from some vj to vi. Let this edge
belong to the set S(i, j) ∈ H. Thus, the remaining path must be the shortest
path from v0 to vj using exactly one edge from each set in H \ {S(i, j)} and no
edges from any other set. The length of this path is precisely L(j,H \ {S(i, j)}).
Thus, L(i,H) = min{vj :S(i,j)∈H} c(i, j) + L(j,H \ {S(i, j)}). ��

First, we provide a randomized algorithm for finding a UROR of a DCS D
with m constraints over n variables. This is represented by Algorithm 4.1.

DCS-UROR Rand (system D of difference constraints)

1: Create the sets S1 through Sk.

2: Create the directed graph G corresponding to D.
3: Create the function L(i,H) and define L(i, {(0, i)}) = c(0, i) for each vertex vi.
4: for (each edge (i, j) in G) do

5: Randomly assign (i, j) to a set Sl. {Let S(i, j) denote this set.}
6: for (each vertex vi and each H ⊆ {S1, . . . , Sk}) do
7: L(i,H) = min{vj :S(i,j)∈H} c(i, j) + L(j,H \ {S(i, j)}).

8: if (L(0, H) < 0 for any H ⊆ {S1, . . . , Sk}) then
9: return D has a UROR.

10: return D has no UROR.

Algorithm 4.1. Randomized UROR algorithm for DCS

Note that once L(j,H ′) is known for each j and H ′ ⊂ H, L(i,H) can be
found in O(n) time. Thus, Algorithm 4.1 runs in O(2k · n2) time.

We now show that D has a UROR if Algorithm 4.1 returns true. We also
show that if D has a UROR that uses k constraints, then Algorithm4.1 returns
true with a probability of at least 1

ek
.

Theorem 3. If Algorithm4.1 returns true, then D has a UROR.

156 K. Subramani and P. Wojciechowski

Proof. Assume Algorithm 4.1 returns true. Thus, there exist sets S1 through
Sk such that there exists a negative weight partitioned walk through v0. Since
this is a negative weight closed walk in G that uses each edge at most once, it
corresponds to a UROR of D. ��
Theorem 4. If D has a UROR that uses at most k constraints, then
Algorithm4.1 will return true with probability at least 1

ek
.

Proof. Let R be a UROR of D that uses at most k constraints. We want to find
the probability that each edge in R is assigned to a different set Sl. Note that
there are km different ways to assign the edges of G to sets and in k! · km−k

of there the edges corresponding to R are assigned to different sets. This has
probability k!

kk > 1
ek

. ��
To obtain an FPT algorithm for finding a UROR, we derandomize this algo-

rithm as described in [7]. This derandomization utilizes (m, k)-perfect hash fam-
ilies that are defined as follows:

Definition 6. Let S be a set of size m. An (m, k)-perfect hash family is a family
U of functions F that partition S into S1 through Sk such that for any set R ⊆ S
of size k, there exists a function that assigns each element of R to a different
partition.

Let R be a UROR of D of that uses at most k constraints. Let U be an
(m, k)-perfect hash family for D. Then, for some F ∈ U , we have that every
edge corresponding to R is assigned to different Si. Note that we can construct
an (m, k)-perfect hash family for D of size ek · kO(log k) · log m in O(ek · kO(log k) ·
m · log m) time [7].

Thus, given k, checking if D has a UROR using at most k constraints can
be done as follows: 1. Construct an (m, k)-perfect hash family set U for D. Note
that U contains ek · kO(log k) · log m partitions of D. This can be done in time
O(ek · kO(log k) · m · log m). 2. For each partition, check if D has a negative cycle
through v0 using at most one edge from each set Si. Using the method described
previously, this takes O(2k ·n2) time for each of the ek ·kO(log k) · log m partitions.
This algorithm runs in time O((2 ·e)k ·kO(log k) ·n2 · log m). Thus, this is an FPT
algorithm for finding a UROR of a DCS.

4.3 An Exact Exponential Algorithm

We now present an exact exponential algorithm DCS-UROR Exp(D) for find-
ing a UROR R of a DCS D. Since this procedure involves a polynomial-time
check for each subset of constraints in D, it runs in time O∗(2m). We now estab-
lish that this algorithm correctly determines if D has a UROR.

Theorem 5. Let D be a DCS, Algorithm4.2 correctly determines if D has a
UROR.

Unit Read-Once Refutability of DCSs 157

DCS-UROR Exp (system D of difference constraints)

1: for (each subset S of D) do
2: Construct the graph GS corresponding to S.
3: if (GS is strongly connected, S contains an absolute constraint, and summing

the constraints in S results in 0 ≤ b, b < 0.) then

4: return D has a UROR.
5: return D has no UROR.

Algorithm 4.2. Exact Exponential UROR algorithm for DCS

Proof. If Algorithm 4.2 declares that D has a read-once refutation, then there
exists a subset S of D such that S has the following properties: 1. The directed
graph GS corresponding to S is strongly connected. 2. S contains an absolute
constraint. 3. Summing the constraints in S results in a constraint of the form
0 ≤ b where b < 0.

Since summing the constraints in S results in a contradiction, each variable
appears the same number of times with coefficient 1 as it does with coefficient −1.
Thus, each vertex in GS has the same number of inbound edges as outbound
edges. Consequently, since GS is strongly connected it contains an Eulerian
Tour [10]. Since S contains an absolute constraint, GS contains the vertex v0. If
we start with the absolute constraint corresponding to the edge leaving x0, we
can sum the constraints in the order corresponding to the order of the edges in
the Eulerian Tour. Each summation in this process involves a unit constraint,
thus this summation is a unit refutation of D. Since each constraint is used at
most once in this summation, this is a UROR of D. ��

Note that a naive approach needs to test all possible orders of constraints.
This results in a running time of O∗(m!). The O∗(2m) algorithm presented here
represents an improvement over this naive approach.

5 Approximability

We now show that the problem of approximating the length of the shortest
UROR of a DCS D is NPO PB-complete. This is done by a strict reduction
from the shortest path with forbidden pairs problem [1].

This problem is defined as follows: Given a graph G, l forbidden pairs of
vertices r1 through rl, source s, and target t find the shortest path from s to
t using at most one vertex from each pair. This problem is known to be NPO
PB-complete [15].

From a directed graph G with n vertices and m edges we construct a DCS
D as follows:

1. For each vertex vi in G, create the variables xi,0 thorough xi,l. Additionally,
create the constraints xi,0 − xi,1 ≤ 0 through xi,l−1 − xi,l ≤ 0 for each i > 1.

2. For each forbidden pair rw = {vi, vj}, create the vertex yw and the constraints
xi,w − yl ≤ 0, xj,w − yl ≤ 0, yl+1 − xi,w ≤ 0, and yl+1 − xj,w ≤ 0

158 K. Subramani and P. Wojciechowski

3. For each edge (vi, vj) in G, create the constraint xj,l − xi,0 ≤ 0.
4. For each edge (s, vi) in G, create the constraint xi,l ≤ 0.
5. For each edge (vi, t) in G, create the constraint t − xi,0 ≤ 0.
6. Create the constraints y1 − t ≤ −1 and −yk+1 ≤ 0.

Observe that the above reduction can be performed in polynomial time.
We now show that D has a UROR of length (l + 1) · (k + 1) if and only if G

has a path with forbidden pairs of length k from s to t.

Lemma 2. Let G be a directed graph. G has a path with forbidden pairs of
length k from s to t, if and only if the corresponding DCS D has a UROR of
length (l + 1) · (k + 1).

Proof. First, suppose that G has a valid path P (no forbidden pairs) of length
k, from s to t. Let vP (r) be the rth vertex in the path. We construct a UROR R
of D as follows:

1. Start with the constraint xP (1),l ≤ 0.
2. Apply the ADD rule to this constraint an the constraints xP (1),l−1−xP (1),l ≤

0 through xP (1),0 − xP (1),1 ≤ 0.
3. The edge (vP (1), vP (2)) is in P . Thus, the constraint xP (2),l −xP (1),0 ≤ 0 is in

D. Apply the ADD rule to this constraint and xP (1),0 ≤ 0 to get xP (2),l ≤ 0.
4. The the constraints xP (2),l−1−xP (2),l ≤ 0 through xP (2),0−xP (2),1 ≤ 0 are in

D. Apply the ADD rule to these constraints and xP (2),l ≤ 0 to get xP (2),0 ≤ 0.
5. The edge (vP (2), vP (3)) is in P . Thus, the constraint xP (3),l −xP (2),0 ≤ 0 is in

D. Apply the ADD rule to this constraint and xP (2),0 ≤ 0 to get xP (3),l ≤ 0.
6. Continue this process until the constraint t ≤ 0 is derived.

Since P does not use both vertices of any forbidden pair we can derive the
constraint −t ≤ 1 without reusing a constraint. Thus, R uses each constraint at
most once. This means that R is a UROR as desired. Note that R has (k + 1) ·
(l + 1) uses of the ADD rule.

Now suppose that D has a UROR R. From R we construct a valid path P as
follows: For each constraint of the form xj,l −xi,0 ≤ 0 in R add the edge (xi, xj)
to P . We make the following observations about the structures of R and P :

1. Recall that R must use a constraint of the form xi,l ≤ b. By construction, the
only constraints in D of this form correspond to edges leaving s.

2. Since R is a refutation, the constant in the derived constraint must be neg-
ative. Thus R must use the constraint of the form y1 − t ≤ −1. This means
that P contains a path from s to t.

3. The constraint xi,r − xi,r+1 ≤ 0 is used at most once by R. By construction,
this is the only constraint with the terms xi,r and −xi,r+1. Thus, at most one
constraint in R has the term −xi,r and at most once constraint in R has the
term xi,r+1. This means that P has at most one edge entering the vertex vi
and at most one edge leaving the vertex vi.

Unit Read-Once Refutability of DCSs 159

4. R must derive a contradiction from the constraint y1 ≤ −1. To cancel each
yj , R must use a constraint of the form xi,r − yj ≤ 0 for some xi in the
rth forbidden pair. Thus, the original path cannot use both vertices from the
pair.

Note that an edge is added to P for each (l + 1) inferences in R. This is
followed by an additional (l+1) inferences. Thus, if R has length (l+1) · (k+1),
then P has length k. ��
Example 4. Figure 4 shows a directed graph G with forbidden pair (v1, v2) and
its corresponding DCS D.

s

v1

v2

t

x1,1 − x1,0 ≤ 0 x2,1 − x2,0 ≤ 0
x1,1 ≤ 0 x2,1 ≤ 0

t − x1,0 ≤ 0 t − x2,0 ≤ 0
x1,1 − y1 ≤ 0 x2,1 − y1 ≤ 0
y2 − x1,1 ≤ 0 y2 − x2,1 ≤ 0

y1 t 1 y2 0

Fig. 4. Example directed graph and its corresponding DCS

Theorem 6. The problem of finding the shortest UROR of a DCS D is NPO
PB-complete.

Proof. Since the refutation is read-once, the length of the shortest UROR of a
DCS with m constraints is at most m. Thus, this problem is in NPO PB. From
Lemma 2, if we can approximate the shortest UROR of a DCS to within a factor
of α, then we can approximate the length of a shortest path with forbidden pairs
to within a factor of α. Thus, this reduction is a strict reduction. Recall that the
shortest path with forbidden pairs problem is NPO PB-complete. Thus, the
problem of finding a shortest UROR of a DCS is NPO PB-complete. ��

6 Conclusion

In this paper, we studied an incomplete refutation system, viz., UROR, for dif-
ference constraint systems. For the UROR system in DCSs, we established NP-
hardness for the feasibility problem and discussed a fixed-parameter tractable
algorithm and an exact exponential algorithm for the same. We also considered
the problem of finding the shortest refutation of a DCS in the UROR system
and showed that it is NPO PB-complete. As discussed before, the study of
unit read-once refutations is well-motivated.

160 K. Subramani and P. Wojciechowski

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization and Their
Approximability Properties, 1st edn. Springer, Heidelberg (1999). https://doi.org/
10.1007/978-3-642-58412-1

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

3. Cotton, S., Asarin, E., Maler, O., Niebert, P.: Some progress in satisfiability check-
ing for difference logic. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT
-2004. LNCS, vol. 3253, pp. 263–276. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30206-3 19

4. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for
DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–
183. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 19

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

6. Cox, I.J., Rao, S.B., Zhong, Y.: Ratio regions: a technique for image segmentation.
In: Proceedings of the International Conference on Pattern Recognition, pp. 557–
564. IEEE, August 1996

7. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

8. Demtrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths.
J. ACM 51(6), 968–992 (2004)

9. Farkas, G.: Über die Theorie der Einfachen Ungleichungen. J. für die Reine und
Angewandte Mathematik 124(124), 1–27 (1902)

10. Fleury, P.-H.: Deux problèmes de géométrie de situation. J. de mathématiques
élémentaires, 2nd ser. 2, 257–261 (1883). (in French)

11. Gerber, R., Pugh, W., Saksena, M.: Parametric dispatching of hard real-time tasks.
IEEE Trans. Comput. 44(3), 471–479 (1995)

12. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39(2–3), 297–308
(1985)

13. Han, C.C., Lin, K.J.: Job scheduling with temporal distance constraints. Technical
report UIUCDCS-R-89-1560, University of Illinois at Urbana-Champaign, Depart-
ment of Computer Science (1989)

14. Iwama, K., Miyano, E.: Intractability of read-once resolution. In: Proceedings of
the 10th Annual Conference on Structure in Complexity Theory (SCTC 1995), Los
Alamitos, CA, USA, pp. 29–36. IEEE Computer Society Press, June 1995

15. Kann, V.: Polynomially bounded minimization problems that are hard to approx-
imate. Nord. J. Comput. 1(3), 317–331 (1994)

16. Kleine Büning, H., Wojciechowski, P., Subramani, K.: Read-once resolutions in
horn formulas. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS, vol. 11458,
pp. 100–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18126-0 9

17. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley,
New York (1999)

18. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and
its application to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988 33

https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1007/978-3-540-30206-3_19
https://doi.org/10.1007/978-3-540-30206-3_19
https://doi.org/10.1007/11814948_19
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-030-18126-0_9
https://doi.org/10.1007/11513988_33
https://doi.org/10.1007/11513988_33

Unit Read-Once Refutability of DCSs 161

19. John Alan Robinson: A machine-oriented logic based on the resolution principle.
J. ACM 12(1), 23–41 (1965)

20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1987)
21. Seshia, S.A., Lahiri, S.K., Bryant, R.E.: A hybrid sat-based decision procedure for

separation logic with uninterpreted functions. In: DAC, pp. 425–430 (2003)
22. Subramani, K.: Optimal length resolution refutations of difference constraint sys-

tems. J. Autom. Reason. (JAR) 43(2), 121–137 (2009). https://doi.org/10.1007/
s10817-009-9139-4

23. Subramani, K., Williamson, M., Gu, X.: Improved algorithms for optimal length
resolution refutation in difference constraint systems. Formal Aspects Comput.
25(2), 319–341 (2013). https://doi.org/10.1007/s00165-011-0186-3

24. Subramani, K., Wojciechowki, P.: A polynomial time algorithm for read-once certi-
fication of linear infeasibility in UTVPI constraints. Algorithmica 81(7), 2765–2794
(2019). https://doi.org/10.1007/s00453-019-00554-z

25. Urquhart, A.: The complexity of propositional proofs. Bull. Symb. Log. 1(4), 425–
467 (1995)

https://doi.org/10.1007/s10817-009-9139-4
https://doi.org/10.1007/s10817-009-9139-4
https://doi.org/10.1007/s00165-011-0186-3
https://doi.org/10.1007/s00453-019-00554-z

Residuation for Soft Constraints:
Lexicographic Orders and Approximation

Techniques

Fabio Gadducci1(B) and Francesco Santini2

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
fabio.gadducci@unipi.it

2 Dipartimento di Matematica e Informatica, Università di Perugia, Perugia, Italy
francesco.santini@unipg.it

Abstract. Residuation theory concerns the study of partially ordered
algebraic structures, most often monoids, equipped with a weak inverse
for the monoidal operator. One of its area of application has been con-
straint programming, whose key requirement is the presence of an aggre-
gator operator for combining preferences. Given a residuated monoid of
preferences, the paper first shows how to build a new residuated monoid
of (possibly infinite) tuples, which is based on the lexicographic order.
Second, it introduces a variant of an approximation technique (known as
Mini-bucket) that exploits the presence of the weak inverse.

1 Introduction

Residuation theory [5] concerns the study of partially ordered algebraic struc-
tures, most often just monoids, equipped with an operator that behaves as a
weak inverse to the monoidal one, without the structure being necessarily a
group. Such structures have since long been investigated in mathematics and
computer science. Concerning e.g. logics, residuated monoids form the basis for
the semantics of substructural logics [18]. As for e.g. discrete event systems such
as weighted automata, the use of tropical semirings put forward the adoption of
residuals for the approximated solution of inequalities [1].

One of the recent area of application of residuation theory has been constraint
programming. Roughly, a Soft Constraint Satisfaction Problem is given by a
relation on a set of variables, plus a preference score to each assignment of such
variables [3,23]. They key requirement is the presence of an aggregator operator
for combining preferences, making such a set a monoid, and a large body of
work has been devoted to enrich such a structure, guaranteeing that resolution
techniques can be generalised by a parametric formalism for designing metrics
and algorithms. An example are local-consistency algorithms [2], devised for
safely moving costs towards constraints involving a smaller number of variables,

Research partially supported by the MIUR PRIN 2017FTXR7S “IT-MaTTerS” and
by GNCS-INdAM (“Gruppo Nazionale per il Calcolo Scientifico”).

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 162–176, 2021.
https://doi.org/10.1007/978-3-030-75775-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_12

Residuation for Soft Constraints 163

without changing the set of solutions and their preference. In order to “move”
quantities, we need to “subtract” costs somewhere and “add” them elsewhere.

The paper focuses on residuated monoids for constraint programming. Their
relevance for local-consistency, as mentioned above, has been spotted early
on [4,7], and various extensions has been proposed [15], as well as applications
to languages based on the Linda paradigm, such as Soft Concurrent Constraint
Programming, where a process may be telling and asking constraints to a cen-
tralised store [17]. More precisely, we tackle here two aspects. On the one side,
we consider lexicographic orders, as used in contexts with multi-objective prob-
lems. That is, the preference values are obtained by the combination of sep-
arate concerns, and the order of the combination matters. On the other side,
we introduce a soft version of Bucket and Mini-bucket elimination algorithms,
well-known exact and approximated techniques for inference, which exploits the
presence of a residuated monoid: in order to have an estimation of the approx-
imation on the preference level of a solution, it is necessary to use a removal
operator. Finally we present a Depth-First Branch-and-Bound algorithm, which
exploits upper and lower bounds to prune search. Our proposals generalise the
original soft versions of these approximation techniques presented in [21].

Lexicographic orders are potentially useful in applications that involve mul-
tiple objectives and attributes, and as such have been extensively investigated
in the literature on soft constraints. However, usually the connection has been
established by encoding a lexicographic hard constraint problem, where the pref-
erence structure is a Boolean algebra, into a soft constraint formalism. For exam-
ple, in [13] the authors show how to encode a lexicographic order and how the
resulting structure can support specialised algorithms such as Branch-and-bound.
Hierarchical Constraint Logic Programming [24] frameworks allow to handle both
hard constraints and several preference levels of soft constraints, whose viola-
tions need to be minimised, and such levels are usually managed following a
lexicographic order [22]. However, even if lifting the algebraic structure of a
preference set to the associated set of (possibly infinite) tuples with a point-wise
order is straightforward, doing the same for the lexicographic order is not, and
this result cannot be directly achieved for the formalisms in [3,23]. The solution
advanced in [14,22] is to drop some preference values from the domain carrier
of the set of tuples. The present work builds on this proposal by dealing with
sets of preferences that form residuated monoids, systematising and extending
the case of infinite tuples tackled in [11] to tuples of any length.

The paper has the following structure: in Sect. 2 we present the background
on partially ordered residuated monoids, which is the structure we adopt to
model preferences. In Sect. 3 we consider the collapsing elements of a monoid,
which will be used to define an ad-hoc algebraic structure representing (possi-
bly infinite) lexicographically ordered tuples of elements of the chosen monoid,
which is given in Sect. 4. The latter section also presents our main construction,
introducing residuation for these lexicographically ordered monoids. Section 5
shows how residuation helps to find a measure of goodness between an

164 F. Gadducci and F. Santini

algorithm and its tractable approximation. Finally, in Sect. 6 we wrap up the
paper with concluding remarks and ideas about future works.

The proof for the results presented in the paper are available in [16].

2 Preliminaries

This section recalls some of the basic algebraic structures needed for defining the
set of preference values. In particular, we propose elements of partially ordered
monoids as preferences, which allows to compare and compose preference values.

2.1 Ordered Monoids

The first step is to define an algebraic structure for modelling preferences. We
refer to [15] for the missing proofs as well as for an introduction and a comparison
with other proposals.

Definition 1 (Orders). A partial order (PO) is a pair 〈A,≤〉 such that A is
a set and ≤ ⊆ A × A is a reflexive, transitive, and anti-symmetric relation. A
join semi-lattice (simply semi-lattice, SL) is a POs such that any finite subset
of A has a least upper bound (LUB); a complete lattice (CL) is a PO such that
any subset of A has a LUB.

The LUB of a subset X ⊆ A is denoted
∨

X, and it is unique. Note that we
require the existence of

∨ ∅, which is the bottom of the order, denoted as ⊥, and
sometimes we will talk about a PO with bottom element (POB). The existence
of LUBs for any subset of A (thus including ∅) guarantees that CLs also have
greatest lower bounds (GLBs) for any subset X of A: it will be denoted by

∧
X.

Whenever it exists,
∨

A corresponds to the top of the order, denoted as �.

Definition 2 (Ordered monoids). A (commutative) monoid is a triple
〈A,⊗,1〉 such that ⊗ : A × A → A is a commutative and associative function
and 1 ∈ A is its identity element, i.e., ∀a ∈ A.a ⊗ 1 = a.

A partially ordered monoid (POM) is a 4-tuple 〈A,≤,⊗,1〉 such that 〈A,≤〉
is a PO and 〈A,⊗,1〉 a monoid. A semi-lattice monoid (SLM) and a complete
lattice monoid (CLM) are POMs such that their underlying PO is a SL, a CL
respectively.

For ease of notation, we use the infix notation: a ⊗ b stands for ⊗(a, b).

Example 1 (Power set). Given a (possibly infinite) set V of variables, we con-
sider the monoid 〈2V ,∪, ∅〉 of (possibly empty) subsets of V , with union as the
monoidal operator. Since the operator is idempotent (i.e., ∀a ∈ A. a⊗a = a), the
natural order (∀a, b ∈ A. a ≤ b iff a ⊗ b = b) is a partial order, and it coincides
with subset inclusion: in fact, 〈2V ,⊆,∪, ∅〉 is a CLM.

In general, the partial order ≤ and the multiplication ⊗ can be unrelated.
This is not the case for distributive CLMs.

Residuation for Soft Constraints 165

Definition 3 (Distributivity). A SLM 〈A,≤,⊗,1〉 is finitely distributive if

∀X ⊆f A.∀a ∈ A. a ⊗
∨

X =
∨

{a ⊗ x | x ∈ X}.

A CLM is distributive is the equality holds also for any subset.

In the following, we will sometimes write a ⊗ X for the set {a ⊗ x | x ∈ X}.

Remark 1. Note that a ≤ b is equivalent to
∨{a, b} = b for all a, b ∈ A. Hence,

finite distributivity implies that ⊗ is monotone with respect to ≤ (i.e., ∀a, b, c ∈
A. a ≤ b ⇒ a ⊗ c ≤ b ⊗ c) and that ⊥ is the zero element of the monoid (i.e.,
∀a ∈ A. a ⊗ ⊥ = ⊥). The power-set CLM in Example 1 is distributive.

Example 2 (Extended integers). The extended integers 〈Z ∪ {±∞},≤,+, 0〉,
where ≤ is the natural order, such that for k ∈ Z

−∞ ≤ k ≤ +∞,

+ is the natural addition, such that for k ∈ Z ∪ {+∞}
±∞ + k = ±∞, +∞ + (−∞) = −∞,

and 0 is the identity element constitutes a distributive CLM, and +∞ and −∞
are respectively the top and the bottom element of the CL.

Remark 2. Finitely distributive SLMs precisely corresponds to tropical semirings
by defining the (idempotent) sum operator as a ⊕ b =

∨{a, b} for all a, b ∈ A.
If, moreover, 1 is the top of the SLM we end up with absorptive semirings [19],
which are known as c-semirings in the soft constraint jargon [3]. Together with
monotonicity, imposing 1 to coincide with � means that preferences are negative
(i.e., a ≤ 1 for all a ∈ A).

Distributive CLMs are known in the literature as quantales [20].

Remark 3. Given two distributive CLMs, it is easy to show that their Cartesian
product, whose elements are pairs and where the partial order and the monoidal
operator are defined point-wise, is a distributive CLM. In particular, in the
following we consider the Cartesian product of 〈Z ∪ {±∞},≤,+, 0〉 with itself:
its set of elements is (Z∪{±∞})2, the identity element is (0, 0), and the top and
bottom elements are (+∞,+∞) and (−∞,−∞), respectively.

2.2 Residuated Monoids

We first introduce residuation, which allows us to define a “weak” inverse opera-
tor �: with respect to the monoidal operator ⊗. In this way, besides aggregating
values together, it is also possible to remove one from another. Residuation the-
ory [19] is concerned with the study of sub-solutions of the equation b ⊗ x = a,
where x is a “divisor” of a with respect to b. The set of sub-solutions of an
equation contains also the possible solutions, whenever they exist, and in that
case the maximal element is also a solution.

166 F. Gadducci and F. Santini

Definition 4 (residuation). A residuated POM is a 5-tuple 〈A, ≤,⊗,�: ,1〉
such that 〈A,≤〉 is a PO, 〈A,⊗,1〉 is a monoid, and �: : A × A → A is a
function such that

– ∀a, b, c ∈ A. b ⊗ c ≤ a ⇐⇒ c ≤ a�: b.

In the following, we will sometimes write a�: X and X�: a for the set {a�: x |
x ∈ X} and {x�: a | x ∈ X}, respectively.

Remark 4. It is easy to show that residuation is monotone on the first argument
and anti-monotone on the second. In fact, in a SML

∨
(X�: a) ≤ ∨

X�: a, and the
same in a CLM with respect to infinite sub-sets. However, the equality does not
hold, e.g. in the Cartesian product of the CLM 〈N ∪ {∞},≥,+, 0〉 with itself.

Also, a�: ∨
X ≤ ∧

(a�: X) whenever the latter exists, as it does in CLMs.

Remark 5. As for distributivity, given two residuated POMs, it is easy to show
that their Cartesian product is a residuated POM.

Residuation implies distributivity (see e.g. [15, Lemma 2.2]).

Lemma 1. Let 〈A,≤,⊗,1〉 be a residuated POM. Then it is monotone. If addi-
tionally it is a SLM (CLM), then it is finitely distributive (distributive).

Conversely, it is noteworthy that CLMs are always residuated, and the fol-
lowing folklore fact holds.

Lemma 2. Let 〈A,≤,⊗,1〉 be a distributive CLM. It is residuated and ∀a, b ∈
A. a�: b =

∨{c | b ⊗ c ≤ a}.
We close with a simple lemma relating residuation with the top and bottom

elements of a POM.

Lemma 3. Let 〈A,≤,⊗,�: ,1〉 be a residuated POM. If it has the bottom element
⊥, then it also has the top element � and ∀a ∈ A. a�: ⊥ = �. Viceversa, if it
has the top element �, then ∀b ∈ A. ��: b = �.

Remark 6. Nothing can be stated for ⊥�: a, since there could be elements that
are ⊥-divisors: see again the Cartesian product of the CLM 〈N ∪ {∞},≥,+, 0〉
with itself, where 〈∞, 3〉 ⊗ 〈4,∞〉 = 〈∞,∞〉.

Similarly, nothing can be stated for a�: �: see the Cartesian product of the
CLM 〈N ∪ {∞},≥,+, 0〉 with its dual CLM 〈N ∪ {∞},≤,+, 0〉.

3 The Ideal of Collapsing Elements

As shown in [14], the first step for obtaining SLMs based on a lexicographic
order is to restrict the carrier of the monoid.

Definition 5. Let 〈A,⊗,1〉 be a monoid. Its sub-set I(A) of cancellative ele-
ments is defined as {c | ∀a, b ∈ A. a ⊗ c = b ⊗ c =⇒ a = b}.

Residuation for Soft Constraints 167

We recall a well-known fact.

Lemma 4. Let 〈A,⊗,1〉 be a monoid. Then I(A) is a sub-monoid of A and
C(A) = A\I(A) is a prime ideal of A.

Explicitly, C(A) = {c | ∃a, b ∈ A. a �= b ∧ a ⊗ c = b ⊗ c}. Being an ideal
means that ∀a ∈ A, c ∈ C(A). a ⊗ c ∈ C(A), and being prime further states
that ∀a, b ∈ A. a ⊗ b ∈ C(A) =⇒ a ∈ C(A) ∨ b ∈ C(A). All the proofs are
straightforward, and we denote C(A) as the set of collapsing elements of A.

Note that an analogous closure property does not hold for LUBs.

Example 3. Consider the monoid of natural numbers 〈N,+, 0〉 and the (non dis-
tributive) CLM with elements N∪ {⊥,�} obtained by lifting the flat order (i.e.,
a �≤ b for any a, b ∈ N as well as a + ⊥ = ⊥ = � + ⊥ and a + � = � for any
a ∈ N). Then, I(N ∪ {⊥,�}) = N is not closed under finite LUBs.

Now, let us consider the distributive CLM with elements N ∪ {∞} obtained
by lifting the natural order induced by addition. We have that I(N ∪ {∞}) = N

is a (finitely distributive) SLM, yet it is not closed with respect to infinite LUBs.

We now present a simple fact that is needed later on.

Lemma 5. Let A1, A2 be POMs and A1 ×A2 their Cartesian product. Then we
have C(A1 × A2) = C(A1) × A2 ∪ A1 × C(A2).

Example 4. Let us consider the tropical SLM 〈N∪ {∞},≥,+, 0〉 and the Carte-
sian product with itself. Clearly, C(N × N) is not closed under finite LUBs:
it suffices to consider X = {〈∞, 3〉, 〈4,∞〉} ⊆ C(N × N), since

∨
X = 〈3, 4〉 �∈

C(N×N). Neither is C(N×N) closed under residuation, as suggested by Lemma 3,
since the top element is not necessarily collapsing. Indeed, in C(N×N) we have
〈∞, 4〉�: 〈∞, 3〉 = 〈0, 1〉.
Remark 7. Note that in an absorptive CLM A we have that a�: b = 1 whenever
b ≤ a. Hence C(A) is usually not closed under residuation, since 1 is cancellative.

3.1 A Different View on Collapsing Elements

When the first presentation of lexicographic SLMs was provided [14], a different
set of collapsing elements was considered.

Definition 6 ([14]). Let 〈A,≤,⊗,1〉 be a POM. Its sub-set C ′(A) is defined as
{c | ∃a, b ∈ A. a < b ∧ a ⊗ c = b ⊗ c}.

Clearly, C ′(A) ⊆ C(A). However, we can replicate Lemma 4.

Lemma 6. Let 〈A,⊗,1〉 be a monoid. Then C ′(A) is an ideal of A. If ⊗ is
monotone, then I ′(A) = A\C ′(A) is a sub-monoid of A and C ′(A) a prime ideal
of A.

168 F. Gadducci and F. Santini

Explicitly, I ′(A) = {c | ∀a, b ∈ A. a⊗c = b⊗c =⇒ a �< b}. The definitions we
encounter in the next section could then be rephrased with minimal adjustments
using I ′(A) and C ′(A) istead of I(A) and C(A), confirming the proposal in [14].1

However, what is in fact noteworthy is that the two approaches are coincident
whenever distributivity holds, as shown by the lemma below.

Lemma 7. Let 〈A,≤,⊗,1〉 be a finitely distributive SLM. Then C ′(A) = C(A).

Remark 8. Consider the (non distributive) CLM 〈[0 . . . n] ∪ {⊥,�},+, 0〉
obtained by lifting the initial segment [0 . . . n] of the natural numbers with the
flat order (as done for the CLM of all natural numbers in Example 3). Here addi-
tion is capped, so that e.g. n + m = n for all m. Hence, C([0 . . . n] ∪ {⊥,�}) =
[1 . . . n] ∪ {⊥,�} that is, all elements except 0. Instead, C ′([0 . . . n] ∪ {⊥,�})) =
{⊥,�}.

4 On Lexicographic Orders

We now move to lexicographic orders, taking into account the results in Sect. 3.

Proposition 1. Let 〈A,≤,⊗,1〉 be a POM with bottom element ⊥. Then we can
define a family 〈Lexk(A),≤k,⊗k,1k〉 of POMs with bottom element ⊥k such that
⊗k is defined point-wise, Lex1(A) = A and ≤1 =≤, and

– Lexk+1(A) = I(A)Lexk(A) ∪ C(A){⊥}k,
– a1 . . . ak ≤k b1 . . . bk if a1 < b1 or a1 = b1 and a2 . . . ak ≤k−1 b2 . . . bk.

Note that Lexk(A) is contained in the k-times Cartesian product Ak, and
the definitions of ⊗k, 1k, and ⊥k coincide. Also, the bottom element is needed
for padding the tuples, in order to make simpler the definition of the order.

We can provide an alternative definition for such POMs.

Lemma 8. Let 〈A,≤,⊗,1〉 be a POM with bottom element ⊥. Then
Lexk+1(A) =

⋃
i≤k I(A)iA{⊥}k−i for all k.

Now, given a tuple a of elements in Ak, for i ≤ k we denote with ai its i-th
component and with a|i its prefix a1 . . . ai, with the obvious generalisation for a
set X ⊆ Ak, noting that a1 = a|1.

Theorem 1. Let 〈A,≤,⊗,1〉 be a finitely distributive SLM (distributive CLM).
Then so is 〈Lexk(A),≤k,⊗k,1k〉 for all k.

1 And in fact, the lemma holds also for a property that is weaker than monotonicity:
it suffices that ∀a, b, c. a ≤ b =⇒ (a ⊗ c ≤ b ⊗ c) ∨ (b ⊗ c ≤ a ⊗ c).

Residuation for Soft Constraints 169

4.1 On Lexicographic Residuation

The fact that Lexk(A) is a CLM if so is A tells us that Lexk(A) is also residuated.

Example 5. Let us consider the usual tropical CLM of natural numbers with
inverse order, and the CLM Lex2(N). Clearly C(N) = +∞. We then have for
example that

(3, 6)�: 2(4, 2) =
∨

{(x, y) | (4 + x, 2 + y) ≤2 (3, 6)} = (0, 0)

Indeed, (4 + x, 2 + y) ≤2 (3, 6) holds for any possible choice of (x, y), since
4 + x < 3 for all x, hence (0, 0) as the result.

Note that for the CLM obtained via the Cartesian product N×N, the result
would have been (0, 4).

Indeed, this can be proved in general for POMs. First, we need some addi-
tional definitions and technical lemmas.

Definition 7. Let 〈A,≤,⊗,�: ,1〉 be a residuated POM with bottom and a, b ∈
Lexk(A). Then

– γ(a, b) = min{i | (ai�: bi) ∈ C(A)}
– δ(a, b) = min{i | (ai�: bi) ⊗ bi < ai}
with the convention that the result is k + 1 whenever the set is empty.

Lemma 9. Let 〈A,≤,⊗,�: ,1〉 be a residuated POM with bottom and a, b ∈
Lexk(A). Then either δ(a, b) = k + 1 or δ(a, b) ≤ γ(a, b).

We can then present the definition of residuation for lexicographic POMs
only for the cases identified by the proposition above.

Proposition 2. Let 〈A,≤,⊗,�: ,1〉 be a residuated POM with bottom and a, b ∈
Lexk(A). If δ(a, b) = γ(a, b) = k + 1 then their residuation a�: kb in Lexk(A)
exists and it is given by

(a1�: b1) . . . (ak�: bk)

Note that a�: kb here coincides with the residuation a�: kb on the Cartesian
product. Furthermore, we have that (a�: kb) ⊗k b = a.

Proposition 3. Let 〈A,≤,⊗,�: ,1〉 be a residuated POM with bottom and a, b ∈
Lexk(A). If δ(a, b) < γ(a, b) then their residuation a�: kb in Lexk(A) exists and
it is given by

(a1�: b1) . . . (aδ(a,b)�: bδ(a,b))(
∨

Lexk−δ(a,b)(A))

Additionally, please note that
∨

Lexn(A) can be easily characterised: it coin-
cides with �n if � ∈ I(A), and with �⊥n−1 otherwise.

170 F. Gadducci and F. Santini

Proposition 4. Let 〈A,≤,⊗,�: ,1〉 be a residuated POM with bottom element
⊥ and a, b ∈ Lexk(A). If either δ(a, b) = γ(a, b) ≤ k or γ(a, b) < δ(a, b) = k + 1
then their residuation a�: kb in Lexk(A) exists and it is given by

(a1�: b1) . . . (aγ(a,b)�: bγ(a,b))⊥k−γ(a,b)

From the propositions above it is straightforward to derive Theorem2, which
states that, given a residuated POM, it is possible to define a lexicographic order
on its tuples, which is a residuated POM as well.

Theorem 2. Let 〈A,≤,⊗,�: ,1〉 be a residuated POM with bottom element ⊥.
Then so is 〈Lexk(A),≤k,⊗k,�: k,1k〉 for all k, with �: k defined as

a�: kb =

⎧
⎨

⎩

(a1�: b1) . . . (ak�: bk) if k + 1 = γ(a, b) = δ(a, b)

(a1�: b1) . . . (aγ(a,b)�: bγ(a,b))⊥k−γ(a,b) if k + 1 �= γ(a, b) ≤ δ(a, b)

(a1�: b1) . . . (aδ(a,b)�: bδ(a,b))(
∨

Lexk−δ(a,b)(A)) otherwise

4.2 Infinite Tuples

We can now move to POMs whose elements are tuples of infinite length.

Proposition 5. Let 〈A,≤,⊗,1〉 be a POM with bottom element ⊥. Then we
can define a POM 〈Lexω(A),≤ω,⊗ω,1ω〉 with bottom element ⊥ω such that ⊗ω

is defined point-wise and

– Lexω(A) = I(A)ω ∪ I(A)∗A{⊥}ω

– a ≤ω b if a≤k ≤k b≤k for all k

A straightforward adaptation of Proposition 1. Thus, we can define a POM
of infinite tuples simply by lifting the family of POMs of finite tuples.

Remark 9. Note that the seemingly obvious POM structure cannot be added to⋃
k Lexk(A) = I(A)∗A{⊥}∗: it would be missing the identity of the monoid.

Proposition 6. Let 〈A,≤,⊗,1〉 be a finitely distributive SLM (distributive
CLM). Then so is 〈Lexω(A),≤ω,⊗ω,1ω〉.

Also a straightforward adaptation, this time of Theorem1.

Proposition 7. Let 〈A,≤,⊗,�: ,1〉 be a residuated POM with bottom. Then so
is 〈Lexω(A),≤ω,⊗ω,�: ω,1ω〉, with �: w defined as

a�: ωb =

⎧
⎪⎨

⎪⎩

(a1�: b1) . . . (ak�: bk) . . . if ∞ = γ(a, b) = δ(a, b)
(a1�: b1) . . . (aγ(a,b)�: bγ(a,b))⊥ω if ∞ �= γ(a, b) ≤ δ(a, b)
(a1�: b1) . . . (aδ(a,b)�: bδ(a,b))(

∨
Lexω(A)) otherwise

It follows from Theorem 2, via the obvious extension of Lemma 9. Note that∨
Lexω(A) is �ω if � ∈ I(A), and �⊥ω otherwise.

Residuation for Soft Constraints 171

5 Mini-bucket Elimination for Residuated POMs

This section shows an application of residuation to a general approximation
algorithms for soft CSPs, Mini-Bucket Elimination (MBE) [9], a relaxation of a
well-known complete inference algorithm, Bucket Elimination (BE) [10].

BE first partitions the constraints into buckets, where the bucket of a variable
stores those constraints whose support2 contains that variable and none that is
higher in the ordering: variables are previously sorted according to some crite-
ria (e.g., just lexicographically on their names: v1, v2, . . .). The next step is to
process the buckets from top to bottom. When the bucket of variable v is pro-
cessed, an elimination procedure is performed over the constraints in its bucket,
yielding a new constraint defined over all the variables mentioned in the bucket,
excluding v. This constraint summarises the “effect” of v on the remainder of
the problem. The new constraint ends up in a lower bucket.

BE finds the preference of the optimal solution and not an approximation of
it; however, BE is exponential in the induced width, which measures the acyclic-
ity of a problem. MBE takes advantage of a control parameter z: it partitions the
buckets into smaller subsets called mini-buckets, such that their arity is bounded
by z. Therefore, the cost of computing this approximation is now exponential in
z, which allows trading off time and space for accuracy. MBE is often used for
providing bounds in branch-and-bound algorithms (see Sect. 5.1).

Algorithm 1 extends MBE to work on residuated monoids, hence including
also the framework of preferences presented in Sect. 3 and Sect. 4. The algo-
rithm takes as input a problem P defined as P = 〈V,D,C〉POM , where V is
the set of variables {v1, . . . , vn}, D is a set of domains {D1, . . . , Dn} (where
v1 ∈ D1, . . . , vn ∈ Dn), C is a set of constraints where

⋃
c∈C supp(c) = V ,3 and

finally, the problem is given on a residuated SLM.
We define a projection operator ⇓ for a constraint c and variable v as (c ⇓v) =∨

d∈Dv
c[v := d]. Projection decreases the support: supp(c ⇓v) ⊆ supp(c)\{v}.

In Algorithm 1 we use this operator to eliminate variables from constraints.
At line 4 Algorithm 1 finds bucket Bi, which contains all the constraints

having vi in their support. Then at line 5 we find a partition of Bi into p
mini-buckets Q limited by z. All the mini-buckets are projected over vi, thus
eliminating it from the support and obtaining a new constraint gi,j as result
(line 7). Finally, the bucket Bi is discarded from the problem while adding
p new constraints g (line 8). The elimination of the last variable produces an
empty-support constraints, whose composition provides the desired upper bound
(that is, a solution of P cannot have a better preference than this bound).

Bucket elimination is defined in Algorithm2. The second part (from line 7
to 14) has been modified with respect to the one in e.g. [10] in order to manage
partially ordered preferences (as POMs can do). Note that the · operator extends
an assignment tuple t with a new element. The set I stores all the domain values

2 The support of a constraint is the set of variables on which assignment it depends.
3 For instance, a binary constraint c with supp(c) = {v1, v2} is a function c : (V −→
D) −→ A that depends only on the assignment of variables {v1, v2} ⊆ V .

172 F. Gadducci and F. Santini

Algorithm 1. Mini-Bucket for Residuated POMs.
Input: P = 〈V, D, C〉POM and control parameter z
Output: An upper bound of (

⊗
c∈C) ⇓V

1: function MBE
2: {v1, v2, . . . , vn} := compute order(P)
3: for i = n to 1 do
4: Bi := {c ∈ C | vi ∈ supp(c)}
5: {Q1,Q2, . . . ,Qp} := partition(Bi , z)
6: for j = 1 to p do
7: gi,j := (

⊗
c∈Qj

c) ⇓vi

8: C := (C ∪ {gi,1, . . . , gi,j}) − Bi

9: return (
⊗

c∈C c)

Algorithm 2. Bucket for Residuated POMs.
Input: P = 〈V, D, C〉POM

Output: The set of best solutions of P

1: function BE
2: {v1, v2, . . . , vn} := compute order(P)
3: for i = n to 1 do
4: Bi := {c ∈ C | vi ∈ supp(c)}
5: gi := (

⊗
c∈Bj

c) ⇓vi

6: C := (C ∪ {gi}) − Bi

7: BSols := {〈〉} � The empty tuple
8: for i = 1 to |V | do
9: T = ∅
10: for all t ∈ BSols do
11: I := {d | �d′.(

⊗
Bi)(t · (xi = d)) < (

⊗
Bi)(t · (xi = d′))}

12: T := T ∪ {t · (xi = d) | ∃d ∈ I}
13: BSols := T\{t ∈ T | ∃t′ ∈ T.(

⊗
Bi)(t) < (

⊗
Bi)(t

′)}
14: return (g1,BSols)

that produce new undominated tuples, which are saved in T . This is repeated
for all the assignments in the set of partial solutions, which is finally updated
in BSols with undominated solutions only (line 13); g1 is the empty-support
constraint which represents the (best) preference of such solutions.

By having available residuation, it is now possible to use it in order to have
an estimation about how far a partitioning is from buckets: we can use �: to
compute good bucket partitions, similarly to the method adopted in [21]. Let us
consider a partition Q = {Q1,Q2, . . . ,Qp} of a bucket Bi, which contains all
the constraints with variable vi in the support. We say that Q is a z partition if
the support size of its mini-buckets is smaller than z, i.e., if ∀i.|supp(Qi)| ≤ z.
The approximation μQ of the bucket is computed as

μQ =
p⊗

j=1

((⊗
Qj

)
⇓vi

)

It is noteworthy that residuation may help in quantifying the distance
between a bucket and its partitioning

Residuation for Soft Constraints 173

((⊗
B

)
⇓vi

)

�:
⎛

⎝
p⊗

j=1

((⊗
Qj

)
⇓vi

)
⎞

⎠

We can compute a refined approximation for a mini-bucket appQj
with

respect to the partitioned bucket as
(((⊗

B
)

�:
(⊗

(B\Qj)
))

⇓vi

)

�:
((⊗

Qj

)
⇓vi

)

If we compose this approximation for each mini-bucket we get an approxi-
mation between a bucket and its partitioning

approxμQ =
⊗

j

approxQj

Algorithm 3. Soft Depth-First Branch-and-Bound.
1: function SoftDFBB(t,LB)
2: if (supp(t) = V) then
3: return

⊗
C(t)

4: else
5: let vi ∈ U � U is the set of unassigned variables
6: for all d ∈ Dvi

do

7: H := UB(t · (vi = d))
8: if (∃u ∈ H, ∃l ∈ LB. l ≤POM u) then
9: LB := LB ∪ SoftDFBB(t · (vi = d),LB)
10: LB := LB\{e ∈ LB | ∃e′ ∈ LB.e <POM e′}
11: return LB

5.1 Soft Branch-and-Bound

Algorithms like MBE can be used to obtain a lower bound that underestimates
the best solution of a given problem P = 〈V,D,C〉POM . This bound can be
then passed as input to a search algorithm in order to increase its pruning
efficiency [12]. In the following of this section, we describe an example of search
that can be used to find all the solutions of a (possibly lexicographic) soft CSP.
Note that this algorithm is designed to deal with partially ordered solutions. On
the contrary, in [23] the solution of Lex-VCSP (and in general Valued CSPs, i.e.,
VCSPs) is associated with a set of totally ordered preferences.

The family of Soft Branch-and-Bound algorithms explores the state space of a
soft CSP as a tree. A Depth-First Branch-and-Bound (DFBB) (see Algorithm 3)
performs a depth-first traversal of the search tree. Given a partial assignment
t of V , an upper bound ub(t) is an overestimation of the acceptance degree of
any possible complete assignment involving t. A lower bound lb(t) is instead a
minimum acceptance degree that we are willing to accept during the search.

With each node in the search tree is associated a set of variables X ⊆ V
that have been already assigned (and the set of unassigned ones is given by

174 F. Gadducci and F. Santini

U = V \X), along with the associated (partial) assignment t to those variables
(supp(t) = X). A leaf node is associated with a complete assignment (supp(t) =
V). Each time a new internal node is created, a variable vi ∈ U to assign next
is chosen, as well as an element d ∈ Dvi

of its domain. Note that the procedure
in Algorithm 3 prunes the search space at line 8, since it only explores those
assignments vi = d such that there exists an upper bound u ∈ UB that is better
than a lower bound l ∈ LB .

The efficiency of Soft DFBB depends largely on its pruning capacity, which
relies on the quality of its bounds: the higher lb and the lower ub (still ensuring
they are actual bounds of optimal solutions), the better Soft DFBB performs.
Note that, in order to deal with partial orderings of preferences, Algorithm3 has
to manage sets of undominated upper UB and lower LB bounds of (partial) solu-
tions, differently from classical Branch-and-Bound. In Algorithm3, LB returns
a set of lower bounds for a given partial assignment. When all the variables are
assigned (line 2), the procedure stops with a solution.

6 Conclusions and Future Works

In this paper we considered a formal framework for soft CSP based on a residu-
ated monoid of partially ordered preferences. This allows for using the classical
solving algorithms that need preference removal, as for instance arc consistency
where values need to be moved from binary to unary constraints, or for prov-
ing a cost estimation to be used during the search for solutions, as for instance
branch-and-bound algorithms. The contribution of this paper is twofold. On the
one side, we proved the adequacy of the formalism for modelling lexicographic
orders. On the other side, we showed how it can enable heuristics for efficiently
solving soft CSPs, such as the Bucket and Mini-bucket elimination.

Our focus on soft CSP includes its computational counterparts based on con-
straints, such as soft CCP [17], and in fact, considering infinite tuples enables to
model temporal reasoning, as shown for soft constraint automata [11]. However,
the framework is reminiscent, and is in fact an extension, of previous formalisms
such as monotonic logic programming [8], whose semantics is given in terms of
residuated lattices of truth-values. And it fits in the current interests on the
development of sequent systems for substructural logics, as witnessed by current
research projects [6]: well-known examples are Lukasiewicz’s many-valued logics,
relevance logics and linear logics.

All the connections sketched above deserve further investigations. For the
time being, we leave to future work some related extensions. Mini-bucket is often
used for providing an upper bound in branch-and-bound algorithms: for this
reason we will investigate this technique, as well as other solving methods used
in the solution of lexicographic problems [13]. We will also study ad-hoc heuristics
for selecting the order in Algorithm 1, directly depending on lexicographic orders.

Acknowledgements. We are grateful to the reviewers for their comments. In par-
ticular, we are indebted to the referee pointing out the connection of our work to
monotonic logic programming, which we plan to further explore.

Residuation for Soft Constraints 175

References

1. Baccelli, F., Cohen, G., Olsder, G., Quadrat, J.P.: Synchronization and Linearity:
An Algebra for Discrete Event Systems. Wiley, Hoboken (1992)

2. Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming, pp. 29–83. Elsevier (2006)

3. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

4. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based
formalisms. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI
2006. FAIA, vol. 141, pp. 63–67. IOS Press (2006)

5. Blyth, T.S., Janowitz, M.F.: Residuation Theory. Elsevier, Amsterdam (2014)
6. Ciabattoni, A., Genco, F.A., Ramanayake, R.: Substructural logics: semantics,

proof theory, and applications. Report on the second SYSMICS workshop. ACM
SIGLOG News 5(2), 58–60 (2018)

7. Cooper, M., Schiex, T.: Arc consistency for soft constraints. Artif. Intell. 154(1–2),
199–227 (2007)

8. Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Ben-
ferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 748–
759. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44652-4 66

9. Dechter, R.: Mini-buckets: a general scheme for generating approximations in auto-
mated reasoning. In: IJCAI 1997, pp. 1297–1302. Morgan Kaufmann (1997)

10. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artif. Intell.
113(1–2), 41–85 (1999)

11. Dokter, K., Gadducci, F., Lion, B., Santini, F.: Soft constraint automata with
memory. Log. Algebraic Methods Program. 118, 100615 (2021)

12. Domshlak, C., Prestwich, S.D., Rossi, F., Venable, K.B., Walsh, T.: Hard and
soft constraints for reasoning about qualitative conditional preferences. Heuristics
12(4–5), 263–285 (2006). https://doi.org/10.1007/s10732-006-7071-x

13. Freuder, E.C., Heffernan, R., Wallace, R.J., Wilson, N.: Lexicographically-ordered
constraint satisfaction problems. Constraints 15(1), 1–28 (2010). https://doi.org/
10.1007/s10601-009-9069-0

14. Gadducci, F., Hölzl, M., Monreale, G.V., Wirsing, M.: Soft constraints for lexi-
cographic orders. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013.
LNCS (LNAI), vol. 8265, pp. 68–79. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-45114-0 6

15. Gadducci, F., Santini, F.: Residuation for bipolar preferences in soft constraints.
Inf. Process. Lett. 118, 69–74 (2017)

16. Gadducci, F., Santini, F.: Residuation for soft constraints: lexicographic orders and
approximation techniques. CoRR abs/2103.06741 (2021)

17. Gadducci, F., Santini, F., Pino, L.F., Valencia, F.D.: Observational and
behavioural equivalences for soft concurrent constraint programming. Log. Alge-
braic Methods Program. 92, 45–63 (2017)

18. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Springer, Heidelberg (2007)

19. Golan, J.S.: Semirings and Their Applications. Springer, Heidelberg (2013)
20. Kruml, D., Paseka, J.: Algebraic and categorical aspects of quantales. In:

Hazewinkel, M. (ed.) Handbook of Algebra, vol. 5, pp. 323–362. North-Holland
(2008)

https://doi.org/10.1007/3-540-44652-4_66
https://doi.org/10.1007/s10732-006-7071-x
https://doi.org/10.1007/s10601-009-9069-0
https://doi.org/10.1007/s10601-009-9069-0
https://doi.org/10.1007/978-3-642-45114-0_6
https://doi.org/10.1007/978-3-642-45114-0_6

176 F. Gadducci and F. Santini

21. Rollon, E., Larrosa, J., Dechter, R.: Semiring-based mini-bucket partitioning
schemes. In: Rossi, F. (ed.) IJCAI 2013, pp. 644–650. IJCAI/AAAI (2013)

22. Schiendorfer, A., Knapp, A., Steghöfer, J.-P., Anders, G., Siefert, F., Reif, W.:
Partial valuation structures for qualitative soft constraints. In: De Nicola, R., Hen-
nicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 115–133.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15545-6 10

23. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard
and easy problems. In: IJCAI 1995, pp. 631–639. Morgan Kaufmann (1995)

24. Wilson, M., Borning, A.: Hierarchical constraint logic programming. Log. Program.
16(3), 277–318 (1993)

https://doi.org/10.1007/978-3-319-15545-6_10

Description Logics and Ontological
Reasoning

Exploiting Forwardness: Satisfiability
and Query-Entailment in Forward

Guarded Fragment

Bartosz Bednarczyk1,2(B)

1 Computational Logic Group, Technische Universität Dresden, Dresden, Germany
2 Institute of Computer Science, University of Wroc�law, Wroc�law, Poland

bartosz.bednarczyk@cs.uni.wroc.pl

Abstract. We study the complexity of two standard reasoning prob-
lems for Forward Guarded Logic (FGF), obtained as a restriction of the
Guarded Fragment in which variables appear in atoms only in the order
of their quantification. We show that FGF enjoys the higher-arity-forest-
model property, which results in ExpTime-completeness of its (finite and
unrestricted) knowledge-base satisfiability problem. Moreover, we show
that FGF is well-suited for knowledge representation. By employing a
generalisation of Lutz’s spoiler technique, we prove that the conjunctive
query entailment problem for FGF remains in ExpTime.

We find that our results are quite unusual as FGF is, up to our knowl-
edge, the first decidable fragment of First-Order Logic, extending stan-
dard description logics like ALC, that offers unboundedly many variables
and higher-arity relations while keeping its complexity surprisingly low.

1 Introduction

The guarded fragment of first-order logic (GF) is a prominent fragment of
first-order logic (FO) that finds application in ontology-based reasoning and
in database theory [4,6,24]. In particular, GF embeds standard modal logics
(like K) as well as description logics (DLs) e.g. ALC [8]. The guarded fragment
is obtained from FO by requiring that first-order quantification is appropriately
relativised by atoms. It was introduced by Andréka, Németi and van Benthem [1]
who proved that its satisfiability problem is decidable. A year later, Grädel [9]
proved that GF has the finite model property and is 2ExpTime-complete. In
this work we study the complexity of a certain fragment of GF .

1.1 Our Motivation and Related Work

Our motivation is two-fold. The first comes from applications of GF to databases
and description logics, where query entailment under ontologies plays a vital role.
In this scenario a relational database D and a set of constraints T (a.k.a. ontol-
ogy) are given as an input. The input database may not satisfy the given con-
straints and hence, we look at possible ways of expanding it in a way so that
c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 179–193, 2021.
https://doi.org/10.1007/978-3-030-75775-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_13&domain=pdf
http://orcid.org/0000-0002-8267-7554
https://doi.org/10.1007/978-3-030-75775-5_13

180 B. Bednarczyk

the axioms of T are finally fulfilled. We are interested in the question whether
a query q has a certain answer in the (expanded) database. It boils down to the
problem of checking if all models of (D, T) entail q . Such a question is obviously
undecidable in general [3] and the ongoing works concentrate on identifying rele-
vant fragments of FO for which the problem is decidable [4] and has manageable
complexity.

The second motivation is complexity-theoretic. Since the complexity of the
Guarded Fragment is relatively high, it is natural to ask whether there exists a
fragment of GF having reasonable complexity while still being expressive enough
to capture description logics like ALC. A few such restrictions have already
been proposed. Grädel [9] has shown that the complexity of GF can be lowered
to ExpTime either by bounding the number of variables, or the arity of rela-
tional symbols. This however, does not seem to be well-suited for applications
in database theory, as databases may have arbitrarily large schemas. We would
prefer a solution leading to lower complexity that does not restrict the num-
ber of variables or the arity of relations. Moreover, Grädel’s restriction does not
help to lower the complexity of the query entailment problem: his logic captures
the DL ALCI, known to have 2ExpTime-hard query entailment problem [18].
Another idea was recently suggested by Kieroński [15]. In [15] the author pro-
posed a family of one-dimensional guarded logics that restrict quantification
patterns in GF by leaving each maximal block of quantifiers in it with at most
one free variable. Their satisfiability problem is NExpTime-complete (so proba-
bly lower than 2ExpTime) but the complexity of the query entailment problem
is still 2ExpTime-hard. The culprit is again the ability to speak about inverses
of relations, giving us a way to capture ALCI.

1.2 Our Results

In this work we present a sublogic of GF that overcomes the problems mentioned
in the previous section, which is inspired by Fluted Logic [22,23]. We call our
logic the Forward Guarded Fragment (FGF) of First-Order Logic. FGF restricts
quantification patterns of GF in such a way that tuples of variables appearing in
atoms are infixes of the sequence of the already quantified-variables (in the order
of their quantification). This “forwardness” prohibits the logic from capturing
the inverse relations from ALCI but it still is expressive enough to capture ALC.
Moreover, the logic offers a non-trivial use of higher-arity relations, so it can be
employed to reason about real-life relational databases.

In the paper we exploit “forwardness” to show that FGF-knowledge-bases
enjoy the higher-arity-forest-model property, a tailored version of the forest-
model property from GF in which the higher-arity relations link elements from
different levels of a tree only in a contiguous ascending order. This property is
then employed to establish ExpTime-completeness for the knowledge-base sat-
isfiability problem, which also relies on the fact that there are only exponentially
many different relevant types of tuples of the domain elements. The culmination
point of the paper is the ExpTime-completeness proof of the CQ entailment

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 181

problem, achieved by a generalisation of Lutz’s spoiler technique from [19], care-
fully tailored towards higher-arity relations.

Our proof techniques are similar to those introduced in [9,19]. However, the
devil is in the details and higher-arity relations made the problem significantly
more difficult. Missing proofs were delegated to the technical report.

2 Preliminaries

In this paper, we employ the standard terminology from finite model theory [17].
Usually, we refer to structures with fraktur letters, and to their universes with
the corresponding Roman letters. When working with structures, we always
assume that they have non-empty domains. We employ countable signatures of
individual constants NI and predicates (of various positive arities) Σ. The arity
of R ∈ Σ is denoted with ar(R). We refer to domain elements with c,d, e, . . . and
usually employ �c,�d,�e, . . . to denote tuples of domain elements. We frequently
use variables x , y , . . . from a countably-infinite set NV and individual names
a, b, . . . from NI. We write ϕ(�x) to indicate that all free variables of ϕ are
in �x . A sentence is a formula without free variables. For a unary function f we
write f(�x) to denote the tuple resulting from applying f to each element of �x .
Given a structure A and a set B ⊆ A we define the restriction of A to B as the
structure A�B .

Let L be a fragment of FO with its standard syntax and semantics. Given ϕ
with free variables in �x we say that a tuple of domain elements �d from A satisfies
ϕ(�x) iff A |= ϕ[�x/�d] holds. An L-theory T is a finite set of L-formulae over Σ.
An L-database is a finite set of facts, i.e. expressions of the form R(�a), where �a
is a tuple of individual names. We denote the set of individual names appearing
in D with ind(D). An L-knowledge-base (a kb for short) is a pair K = (D, T)
composed of L-database D and L-theory T . We say that a structure A satisfies
a theory T (written: A |= T) if it satisfies all of its formulae. Similarly, A
satisfies a database D if it satisfies all its facts (with individual names treated as
constants). We say that A satisfies a kb K (written: A |= K) if it satisfies both
its components.

In the satisfiability (resp. knowledge base satisfiability) problem for a logic L
we ask whether an input formula (resp. knowledge-base) from L has a model.

2.1 Queries

Conjunctive queries (CQs) are conjunctions of positive atoms with variables
from NV. The set of variables appearing in q is denoted with Var(q) and the
number of atoms of q (i.e. the size of q) is denoted with |q |. The fact that R(�x)
appears in q is indicated with R(�x) ∈ q . Whenever some subset V ⊆ Var(q) is
given, with q�V we denote a sub-query of q where all the atoms containing any
variable outside V are removed.

Let π : Var(q) → A be a variable assignment. We write A |=π R(�x) if π(�x) ∈
RA. Similarly, we write A |=π q1 ∧ q2 iff A |=π q1 and A |=π q2, for some CQs

182 B. Bednarczyk

q1, q2. We say that π is a match for A and q if A |=π q holds and that A satisfies q
(denoted with: A |= q) whenever A |=π q for some match π. The definitions are
lifted to kbs: q is entailed by a kb K (written: K |= q) if all models A of K
satisfy q . When A |= K but A �|= q , we call A a countermodel for K and q . Note
that q is entailed by K iff there are no countermodels for K and q . In the CQ
entailment problem for a logic L we ask if an input L-kb K entails an input
CQ q .

Observe that a conjunctive query q can be seen as a structure Hq , with
the domain Var(q), having the interpretation of relations fixed as RHq =
{�x | R(�x) ∈ q }. We will call it a query hypergraph of q . Hence, any match π
for A and q can be seen as a homomorphism from Hq to A.

3 Forward Guarded Fragment

We introduce the Forward Guarded Fragment (denoted with FGF) of First-
Order Logic defined as the intersection of the Guarded Fragment [1] and the
Forward Fragment, sharing the spirit of the Fluted Fragment [23]. We define
their syntax first. We stress that the considered logics do not allow for constants
and equality.

3.1 Logics

Recall that the guarded fragment (GF) is obtained from FO by requiring that
first-order quantification is appropriately relativised by atoms. Formally GF is
the smallest set containing all atomic formulae, closed under boolean connectives
and whenever ϕ(�x , �y) is in GF and α(�x , �y) is an atom containing all free variables
of ϕ then both ∀�y (α(�x , �y) → ϕ(�x , �y)) and ∃�y (α(�x , �y)∧ϕ(�x , �y)) are in GF . The
atom α is called a guard.

Next we define the forward fragment (FF) of FO. It is inspired by the Fluted
Fragment FL [23] and the Ordered Fragment of FO [11]: the main difference is
that we allow the variable sequences appearing in formulae to be infixes of the
already quantified variables, not only suffixes (as in FL) or prefixes (as in the
ordered fragment). Turing our attention to the formal definition of FF , let us
fix a sequence �xω = x1, x2, . . . of variables from NV. For simplicity, we write �xi...j

to denote the (gap-free!) sequence xi, xi+1, . . . , xj . We start by defining the set
of FF [n] formulae over Σ for all natural n:

– an atom α(�x) belongs to FF [n] if �x = �xk...� for some infix [k, �] of [1, n]
– FF [n] is closed under boolean connectives ∧,∨,¬,→;
– If ϕ(�x1...n+1) is in FF [n+1] then both ∃xn+1 ϕ(�x1...n+1) and ∀xn+1 ϕ(�x1...n+1)

belong to FF [n].

We define FF as the set FF [0], which is composed exclusively of sentences. We
stress that FF was not studied in the literature before but it can be polynomially
reduced to the Fluted Fragment FL.

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 183

Finally, we define the forward guarded fragment (FGF) as GF ∩ FF , thus
combining both mentioned restrictions. To gain more intuitions on FGF , we
encourage the reader to consult the following correct FGF formula ϕok

1 as well
as three incorrect formulae ϕbad

1–3:

ϕok
1 = ∀x1 A(x1) → ∃x2

[
S(x1, x2) ∧ ¬U(x1, x2) ∧ ¬A(x2)∧

∀x3∀x4 (T(x1, x2, x3, x4) → P(x2, x3, x4) ∧ A(x4))
]

ϕbad
1 = ∀x1 R(x1, x1), ϕbad

2 = ∀x1∀x2 S(x1, x2) → R(x2, x1),

ϕbad
3 = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3) → R(x1, x3)

Note that all of the aforementioned incorrect formulae are not in FGF due
to the fact that sequences of variables appearing in atoms are not infixes of
x1, . . . , xk, with k being the number of the last quantified variable. One can
also observe that there is another reason for the third formula to be incorrect:
the quantifiers in ϕbad

3 are not guarded, i.e. the atom α(x1, x2, x3) after the last
quantifier is missing. The atom S(x1, x2) in ϕbad

2 is an example of a correct guard.
The formula ϕbad

1 demonstrates why the equality predicate is disallowed in FGF .

3.2 Simplified Forms and Forward Types

While working with FGF formulae it is convenient to convert them into an
appropriate normal form. The proof goes via a routine renaming.

Lemma 1. For any FGF-kb K = (D, T) we can compute (in polynomial time)
an equi-satisfiable kb Ksimpl = (D+, {ϕ∀, ϕ∀∃}) (over an extended signature) with

ϕ∀ =
m∀∧

i=0

∀�x1...ki
R∀i

(�x1...ki
) → ψ∀i

(�x1...ki
)

ϕ∀∃ =
m∀∃∧

i=0

∀�x1...ki
R∀∃i

(�x1...ki
) → ∃�xki+1...ki+�i

S∀∃i
(�x1...ki+�i

)∧ψ∀∃i
(�x1...ki+�i

),

where (possibly decorated) R,S and ψ denote, respectively, predicates and
quantifier-free FGF formulae. We refer to such a Ksimpl as a simplified K.

We next introduce a notion of a forward type useful to reason about FGF-
definable properties. Fix finite signature Σ and positive n. A (Σ,n)-forward type
is an FO formula with n free-variables �x1...n s.t. for all symbols R ∈ Σ of arity �
not bigger than n and for all 1 ≤ i ≤ n+1−� a type contains as a conjunct either
R(�xi...i+�−1) or its negation. We write tpΣ

A (�d) to denote the unique forward type
satisfying A |= tpΣ

A (�d). We also say that �d realises the forward type tpΣ
A (�x).

By elementary counting we can see that the number of (Σ,n)-forward types is
exponential in |Σ|+n while their sizes are only polynomial.

Lemma 2. Up to isomorphism, there are at most 2|Σ|·n2
(Σ,n)-forward types.

Moreover, each (Σ,n)-forward type has at most |Σ| · n conjuncts.

Finally, by unfolding definitions, one can show that whenever two tuples have
equal forward types then they satisfy the same formulae from simplified kbs.

184 B. Bednarczyk

3.3 Higher-Arity-Forest-(Counter)Model Property

Here we introduce the notion of higher-arity forests, which are forest reflecting
the essence of forwardness. We say that a structure F is a higher-arity for-
est (HAF) if its domain is a prefix-closed subset of sequences from N

+ and for
all relational symbols R of arity k we have that �d ∈ RF implies:

– either all the elements from �d are natural numbers (= one-element sequences)
– or �d = (c1, . . . , c�, e1, e2, . . . e�′), where each member of�c is a number and there

exist numbers n1, n2, . . . , n�′ such that ei = c� · n1 · . . . · ni for all �′ ≥ i ≥ 0
– or �d = (d1, . . . ,dk), with d1 �∈ N, such that for each index i there exist a

number ni such that di+1 = di · ni.

The elements from F ∩ N are simply the roots of F. A forest with a single root
is called a tree. We also use the prefix ordering ≺pref to speak about children,
parents, siblings in the usual (graph-theoretic) way. Observe that, intuitively,
higher-arity forests are just forests in which relations either arbitrarily traverse
roots or connect other elements but only in a level-by-level ascending order.

00 T

000 001

0000 0010

R R

S S

0F

S

01

010

0100 0101

R

S R

R

2 F

20

200

2000 2001

S

R R

1

F

S

R

R

R

R

S

Fig. 1. An example higher-arity forest. The coloured areas in the picture indicates
higher-arity relations, e.g. the red area means T(1, 0, 00, 000). (Color figure online)

A model A of a kb K = (D, T) is a HAF model iff A is a HAF with the set of
roots being equal to the set of interpretations of individuals from ind(D) in A.

We show FGF enjoys the HAF-model property, useful to design an ExpTime
decision procedure for deciding FGF . In the proof we take any model A of K
and construct an infinite sequence of forest of growing sizes. The first of them is
simply A restricted to the interpretation of database constants. The others are
obtained as follows: whenever some forest F contains a tuple �d of elements does
not have a witness to satisfy a conjunct of ϕ∀∃ we expand the domain of F with a
fresh copy of its original witnesses taken from A and connect it to �d, mimicking
the connections in A. The limit of this process will be a HAF-model of K.

Lemma 3. Any satisfiable simplified FGF kb K has a HAF model. Moreover, if
there is a countermodel for K and a CQ q then there is also a HAF countermodel.

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 185

3.4 ExpTime-Completeness of the kb Satisfiability Problem

The notion of forward types and higher-arity forests will now be employed to
design an alternating PSpace procedure for deciding the satisfiability for FGF
knowledge bases. Since APSpace = ExpTime [5] we derive an ExpTime upper
bound for FGF . The matching lower bound is inherited from ALC [2]. The
forthcoming algorithm is a variant of Grädel’s algorithm for GF [9].

We sketch the main ideas. As a preliminary step, we first transform the input
K into Ksmpl = (D+, {ϕ∀, ϕ∀∃}). Then the rest of the procedure is responsible
for constructing a higher-arity forest-model F of Ksmpl. We start from guessing
the “roots” R of F. Note that we cannot simply guess R: once Σ contains an
n-ary predicate, such a predicate might be composed of |R|n different tuples and
thus we cannot fully store it in polynomial space. Fortunately we do not need to
do it. It turns out that for the feasibility of our procedure it suffices to keep only
the forward types of tuples appearing in D+ (the number of which is bounded
polynomially, see: Lemma 2). Since the guessed structure is of polynomial size,
we can perform the standard FO model-checking algorithm [25] to ensure that
R satisfies both D+ and ϕ∀. It could be, however, that ϕ∀∃ is not satisfied (yet).
We then iterate over all conjuncts λ from ϕ∀∃, universally choosing a tuple �d
of elements for whose the antecedent of λ is satisfied but the consequent of λ is
not. For such a tuple we introduce fresh elements �e and guess the forward type
of �d ·�e. Next, we check that �d ·�e indeed satisfies λ and whether its type does not
violate ϕ∀ (we reject otherwise). Finally, we recursively repeat the procedure for
the substructure containing only �d·�e. The procedure accepts when the number of
steps exceeds the total number of (Σ,n)-forward-types – by pigeonhole principle
it follows that one of the (Σ,n)-forward-types necessarily occurs twice, so if the
procedure has not rejected the input yet it means that we can safely repeat the
process over and over, making exactly the same choices as it did before.

Our pseudo-code and its correctness proof are available in the full paper.
From it we conclude the first main theorem of the paper. Since GF has the finite
model property [9] (even in the presence of constants that can simulate DBs)
our algorithm for FGF can also be applied to the finite-model reasoning.

Theorem 4. Kb (finite) satisfiability problem for FGF is ExpTime-complete.

4 Query Answering

This section provides a worst-case complexity-optimal algorithm for deciding
query entailment over FGF knowledge-bases. The main technique employed here
is a generalisation of the so-called spoiler technique by Lutz [19, Sec. 3], carefully
tailored to work over structures having relations of arity greater than 2.

We first give a rather informal explanation of the technique. We recall that
to decide K |= q it suffices to check the existence of a HAF countermodel for K
and q (see: Lemma 3). In the ideal situation, we would know how to prepare a
knowledge-base K¬q that characterises the class of all HAF countermodels for
q . Note that the existence of K¬q would immediately imply that any model of

186 B. Bednarczyk

K ∪ K¬q is, by definition, also a countermodel for K and q . The problematic
part is, of course, the construction of K¬q . To decide satisfiability of K∪K¬q we
would like axioms of K¬q to be written in FGF , which seems to be challenging
since the matches of q may have arbitrary complex shapes. On the positive side,
there is a simple way of detecting matches of tree-shaped queries, based on the
well-known rolling-up technique [13, Sec. 4]: we basically describe tree-shaped
matches as unary predicates by defining their trees in a bottom-up manner and
then we enforce their emptiness in all models of K¬q . Here we exploit the fact
that countermodels can be made HAFs and combine the rolling-up technique
with so-called splittings, that detects query matches of arbitrary shape over
forests. In order to block such matches, we parallelise the construction of K¬q .
Rather than construing one huge kb we divide it into smaller chunks Ks called
spoilers with an intuitive meaning that the consistency of any of K ∪ Ks spoils
the entailment K |= q . Once we show that each spoiler is of polynomial size
and there are only exponentially many of them, we can reduce the entailment
question to exponentially many satisfiability checks for kbs of polynomial size
(hence in ExpTime by Theorem 4), deducing the ExpTime-completeness of CQ
entailment problem for FGF .

4.1 Rolling-Up: Detecting Matches of Tree-Shaped Queries

We consider a modification of the rolling-up technique that transforms tree-
shaped queries into FGF . In our scenario, the name “tree-shaped” indicates that
the underlying hypergraph Hq of a query q is a (connected) higher-arity tree.
Henceforth we always assume that whenever R(�x1...k) ∈ q then also Ri(�x1...i) ∈ q
for fresh relation names Ri. We call such CQs closed and by the closure of q ,
denoted with cl(q), we mean the query obtained from q by extending q in a
minimal way to make it closed. Note that the entailment problem of CQs and
closed CQs over FGF kbs coincides, since we can always extend the input kb
with fresh relations Ri and the rules ∀�x1...ar(R) R(�x1...ar(R)) ↔

∧ar(R)
i=1 Ri(�x1...i)

for all non-unary predicates R appearing in q . Abusing slightly the notation, we
call the kbs extended in the above way their q-closures.

In what follows we are going to construct, for every variable v ∈ Var(q), a
unary predicate Subtvq (x) with the indented meaning that d ∈ (Subtvq)A holds
whenever the subtree of Hq rooted at the variable v can be mapped below d
in A. In order to adjust the rolling-up technique to non-binary relations that may
appear in trees, we employ additional non-binary predicates Subt�v ,u

q (�x , y) that
do the same job as Subtuq (y) but in contrast they memorise the path �v leading
to u, so the higher-arity relations can be retrieved from the construction.

An inductive definition is given next. The main idea behind it is to traverse
the input tree in a bottom-up manner, describing its shape in FGF , and grad-
ually “rolling-up” the input tree into smaller chunks until its root is reached.

Definition 5. For a given closed tree-shaped CQ q and any sequence of vari-
ables �vu from Var(q) (that follows the level-by-level order in Hq) we define an

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 187

(|�v |+1)-ary predicate Subt�v ,u
q (�x1...|�v |+1) as follows. The empty conjunction is

treated as �.

1. We initially set Subt�v ,u
q (�x1...|�v |+1) to be equal:

∧

R(�vk...|�v|u)∈q

R(�xk...|�v |+1) ∧
∧

A(u)∈q

A(x|�v |+1)

2. Additionally, when u is not a leaf of Hq , we supplement the above formula
with some extra conjuncts for each children variable w ∈ Var(q) of u in Hq .
Take a longest suffix �vsuff of �v for which R(�vsuff, u,w) ∈ q (if there is no such
suffix then keep �vsuff empty) and append the formula:

∃x|�v |+2 Subt�vsuff,u,w
q (�x|�v |−|�vsuff|+1...|�v |+2)

We use Matchq(x) as a shorthand for Subtxr
q (x) with xr being the root of Hq .

We stress that due to the closedness of q and the fact that we keep the variables
appropriately ordered, the definition of Matchq(x) is in FGF .

From the presented construction we can easily see that the size (i.e. the
number of atoms) of Matchq is polynomial in |q |. The next lemma, claiming
correctness of the presented definition, can be shown by induction.

Lemma 6. For any higher-arity forest A and a closed tree-shaped conjunctive
query q we have (Matchq)A �= ∅ iff there exists a homomorphism h : Hq → A.

u A,B

uB

T

u A,C

U

vC v B

wA

wA,C

S
R

R

R

S

R

Subtuq (x1) := A(x1) B(x1) x2Subtuuq (x1,x2) x2Subtuuq (x1,x2)

Subtuuq (x1,x2) := R(x1,x2) S(x1,x2) B(x2)

Subtuuq (x1,x2) := R(x1,x2) T2(x1,x2) A(x2) C(x2)

x3 Subtuu v
q (x1,x2,x3) x3 Subtu v

q (x2,x3)

Subtuu v
q (x1,x2,x3) := T(x1,x2,x3) B(x3) R(x2,x3)

Subtu v
q (x1,x2) := U2(x1,x2) x3 Subtu vw

q (x1,x2,x3)

Subtu vw
q (x1,x2,x3) := U3(x1,x2,x3) S(x2,x3) x4 Subtu vww

q (x1,x2,x3,x4)

Subtu vww
q (x1,x2,x3,x4) := U(x1,x2,x3,x4) A(x4) B(x4) R(x3,x4)

Matchq(x1) := Subtuq (x1)

Fig. 2. An example CQ q together with the resulting rolling-up predicates. In the
picture we omitted additional relations appearing in q due to its closedness. Moreover,
in the definitions of predicates Subtq we omitted S1, R1, T1, U1.

188 B. Bednarczyk

The presented rolling-up technique shows us how to detect matches of tree-
shaped queries. Its direct consequence is the forthcoming theorem telling us
that such query matches can be effectively blocked and giving us a robust reduc-
tion from query entailment problem for tree-shaped queries to kb satisfiability
problem.

Theorem 7. Let K = (D, T) be a closed satisfiable kb and let q be a closed
tree-shaped CQ. Then K �|= q iff the kb K ∪ {∀x1¬Matchq(x1)} is satisfiable.

Unfortunately, the above theorem does not transfer beyond tree-shaped CQs
since our match-detecting mechanism is too weak. To detect matches of arbitrary
CQs, we introduce the notions of forks and splittings.

4.2 Fork Rewritings: Describing Different Collapsings of a Query

Observe that a connected conjunctive query can induce several different query
matches, depending on how its variables “glue” together. We formalise this con-
cept with the forthcoming notion of fork rewritings [19, p. 4]. Moreover, as it will
turn out soon, the only relevant trees for detecting query matches are exactly
those trees being subtrees of the maximal fork rewritings.

Definition 8. Let q , q ′ be conjunctive queries. We say that q ′ is obtained from
q by fork elimination, and denote this fact with q �fe q ′, if q ′ can be obtained
from q by selecting two atoms R(�z , �y1, x), S(�y2, x) of q (where �z might be empty,
R and S are not necessarily different and |�y1| = |�y2| holds) and componentwise
identifying the tuples �y1, �y2. We also say that q ′ is a fork rewriting of q if q ′ is
obtained from q by applying fork elimination on q possibly multiple times. When
the fork elimination process is applied exhaustively on q we say that the resulting
query, denoted with maxfr(q), is a maximal fork rewriting of q.

Example 9. Consider a CQ q = R(x , y)∧S(v , y)∧R(x , z)∧R(v , z)∧T(y , x , z)∧
T(y , v , z) with atoms α1–6. Note that q has three forks: (α1, α2), (α3, α4) and
(α5, α6). By eliminating any of them we obtain the maximal fork rewriting of q ,
namely maxfr(q) = R(xv , y) ∧ R(xv , z) ∧ S(xv , y) ∧ T(y , xv , z) with fresh xv .

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 189

By employing a special naming schemes for variables and by induction over the
number of fork eliminations we can show the following lemma:

Lemma 10. Every CQ q has the unique (up to renaming) maxfr(q).

A rather immediate application of Definition 8 is that entailment of a fork
rewriting of a query implies entailment of the input query itself. The proof goes
via an induction over the number of fork eliminations.

Lemma 11. Let q , q ′ be conjunctive queries, such that q ′ is obtained from q by
fork elimination, and let A be a structure. Then A |= q ′ implies A |= q.

4.3 Splittings: Describing Query Matches in an Abstract Way

The next notion, namely splittings [19, p. 4], are partitions of query variables
that provide an abstract way to reason on how (a fork rewriting of) a conjunctive
query matches a forest structure, without referring to either to a concrete forest
or to a concrete match. Intuitively, when a query q matches a forest, its match
induces a partition of variables x ∈ Var(q), according to the following scenarios:

– either x is mapped to one of the roots of the intended forest,
– or x , together with some other variables, constitute to a subtree dangling

from one of the forests’ roots,
– or otherwise x is mapped somewhere far inside the forest, not being directly

connected to the forests’ roots.

Splittings capture the above intuitions. Their definition is provided below.

Definition 12. A splitting Πq w.r.t. K = (T ,D) of q is a tuple

Πq = (Roots,name,SubTree1,SubTree2, . . . ,SubTreen, root-of ,Trees) ,

where the sets Roots,SubTree1, . . . ,SubTreen,Trees induce a partition of Var(q),
name : Roots → ind(D) is a function naming the roots and root-of :
{1, 2, . . . , n} → Roots assigns to each SubTreei an element from Roots. More-
over, Πq satisfies:

(a) the query q�Trees is a variable-disjoint union of tree-shaped queries,
(b) the queries q�SubTreei

are tree-shaped for all indices i ∈ {1, 2, . . . , n},
(c) for any atom R(�x) ∈ q the variables from �x either belong to the same set or

�x = (�y , u, v ,�z) [with possibly empty �y ,�z], where:
– all variables from �y , u belong to Roots,
– there is an index i ∈ {1, 2, . . . , n} witnessing root-of (i) = u,
– v ∈ SubTreei is the root of q�SubTreei

and variables from �z are
in SubTreei.

(d) For any index i ∈ {1, 2, . . . , n} there is an atom R(�y , root-of (i), xi) ∈ q
[where �y is possibly empty] with xi being the root of q�SubTreei

.

It helps to think that a splitting consists of named roots, corresponding to
the database part of the model, together with some of their subtrees and of some
auxiliary trees lying somewhere far from the roots.

190 B. Bednarczyk

Example 13. Consider a HAF A with roots a, b, c and a (non-tree-shaped) CQ:

q = (A(x0) ∧ R(x0, x1) ∧ R(x1, x0) ∧ B(x1)) ∧ (S(x0, x00) ∧ R(x00, x000)) ∧
(R(x0, x01) ∧ S(x01, x010) ∧ R(x010, x0100)) ∧ (A(x200) ∧ R(x200, x2001) ∧ B(x2001)) .

00

000 001

0000 0010

R R

S S

0a

S

01

010

0100 0101

R

S

R R

2 c

20

200

2000 2001

R

S

R R

1

b

S

R

R

R

R

S

Roots = x0,x1

SubTree1 = x00,x000

SubTree2 = x01,x010,x0100

Trees = x200,x2001

name(x0) = a,name(x1) = b

root-of(1) = x0, root-of(2) = x0

Fig. 3. Splitting Πq of q , compatible with A. Coloured areas partition variables.

We conclude the section by showing that splittings indeed correspond to query
matches over forests. In order to do it, we first introduce an auxiliary definition of
compatibility of a splitting with a HAF. Intuitively, the first item detects distant
trees with the rolling-up technique, the second one describes the connections
between roots and the last one detects subtrees dangling from some root.

Definition 14. Let K be a closed FGF knowledge-base, q be a closed CQ and
A a HAF model of K. A splitting Πq w.r.t K of q is compatible with A if it
satisfies all the conditions below:

(A) for all connected components q̂ of Trees there is a d ∈ A s.t. d ∈ (Matchq̂)A,
(B) for all R(�x)∈ q with all xi ∈ Roots we have

(
name(x1)A, . . . ,name

(x|�x |)A
)
∈RA,

(C) Take all indices i ∈ {1, 2, . . . , n} and let vi be the root variable of q�SubTreei
.

Take any �u composed only of Roots with the last element root-of (i), s.t.
R(�u, vi) ∈ q. Then the tuple

(
name(u1)A, . . . ,name(u|�u|)A

)
satisfies

∃x|�u|+1 Subt�u,vi

q�{�u,vi}∪SubTreei

(�x1...|�u|+1)

We stress that the difficulties in Item (C) comes from a possible presence of
higher-arity relations that link other roots before reaching root-of (i).

The lemma below gathers the notions presented so far.

Lemma 15. Let K be a closed FGF-kb, q a closed CQ and a HAF model A
of K. Then A |= q iff there is a fork rewriting q ′ of q and a splitting Πq′ w.r.t.
K of q ′ compatible with A.

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 191

4.4 Spoilers: Blocking Query Matches

Spoilers are knowledge bases dedicated to blocking compatibility of a given split-
ting. We define them similarly to Definition 14, in a way that there will be a
tight correspondence between the cases below and those from Definition 14.

Definition 16. Let q be a closed CQ, K be a closed FGF-kb and let Πq =
(Roots,name,SubTree1, . . . ,SubTreen, root-of ,Trees) be a splitting w.r.t K of
q. A spoiler K¬Πq

= (D¬Πq
, T¬Πq

) for Πq is an FGF-kb satisfying one of:

(A) ∀x ¬Matchq̂(x) ∈ T¬Πq
for some tree-shaped query q̂ from Trees,

(B) ¬R(name(x1), . . . ,name(xk))∈ D¬Πq
for some atom R(�x)∈ q with all xi

in Roots,
(C) there is an index i ∈ {1, 2, . . . , n}, a tuple of variables �u composed only of

Roots with the last element root-of (i), s.t. R(�u, vi) ∈ q, where vi is the root
variable of q�SubTreei

, but
(
¬∃x|�u|+1 Subt�u,vi

q��u∪{vi}∪SubTreei

(�x1...|�u|+1)
) (

name(u1), . . . , name(u|�u|)
) ∈ D¬Πq

.

The definition of spoilers is now lifted to the case for the whole closed CQs.

Definition 17. A super-spoiler for a closed CQ q and a closed FGF kb K is
a minimal (in the sense the of number of axioms) FGF kb K¬q s.t. for all fork
rewritings q ′ of q and all splittings Πq′ w.r.t K of q ′, K¬q is a spoiler for Πq′ .

The following crucial property of super-spoilers is shown next.

Lemma 18. Let K be a closed FGF kb and let q be a closed CQ. Then K �|= q
iff there is a super-spoiler K¬q for q and K such that K ∪ K¬q is satisfiable.

We now bound the total number and the sizes of super-spoilers. It is easy
to see that there are only exponentially many super-spoilers, since the facts
that appear in super-spoilers are also present in the input knowledge base. The
challenging part is to show that super-spoilers are of polynomial size in |K|+ |q |.
In order to do it, we observe that all trees that appear in spoilers are actually
subtrees of the maximal fork rewriting of q . Trivially, there are only polynomially
many subtrees of maxfr(q), so we are done. Finally, we will see that candidates
for super-spoilers can be enumerated in exponential time.

Lemma 19. Let K be closed FGF kb and q be a closed CQ. The following
properties hold true: (a) super-spoilers have sizes polynomial in |K|+|q |; (b) there
are only exponentially many (in |K|+|q |) candidates for super-spoilers; (c) super-
spoilers can be enumerated in time exponential in |K| + |q |.

From the presented lemma we can deduce an algorithm for solving CQ entail-
ment over FGF kbs. As a preliminary step we “close” both input CQ q and input
kb K. Second, we exhaustively enumerate all possible candidates K¬q for being
a super-spoiler for K and q . Note that the enumeration process can be done in
exponential time due to Lemma 19. After ensuring that K¬q is indeed a super-
spoiler, we test whether K ∪ K¬q is satisfiable. The satisfiability test can be

192 B. Bednarczyk

performed in ExpTime due to the polynomial size of K¬q and Theorem 4. If
some K ∪ K¬q is satisfiable, by Lemma 18, we conclude K �|= q . Otherwise we
have that K |= q . The overall process can be implemented in ExpTime, thus we
conclude the second main theorem of the paper.
Theorem 20. CQ entailment problem for FGF is ExpTime-complete.
Note that the lower bounds are inherited from kb satisfiability problem. For read-
ers interested in CQ entailment over finite models we can also infer ExpTime-
completness of the finitary version of the problem. A (non-trivial) argument is
that GF is finite controllable [7] (a CQ is entailed over all models iff it is entailed
over finite models), which obviously applies also to FGF . Hence, we obtain:
Corollary 21. CQ finite entailment problem for FGF is ExpTime-complete.
In the real-life applications, we usually measure the data complexity of both
satisfiability and entailment problems, i.e. the case when the size of the input
theory and query is treated as a constant and only |D| matters. The upper bound
follows from GF [7] and the lower bound holds already for ALC.
Corollary 22. (Finite) satisfiability and CQ (finite) entailment problems for
FGF are, respectively, NP-complete and coNP-complete in data-complexity.

5 Conclusions and Future Work

In the paper we introduced a novel logic FGF that combines ideas of guarded
quantification and forwardness. By exploiting the HAF-model property of the
logic we have shown that both kb satisfiability problems and CQ entailment
problems are ExpTime-complete, also in the finite.

Our results are quite encouraging and there is a lot of space for future
research. We conclude by discussing some interesting open problems.
– Understanding model theory of FGF . One can develop an appropriate notion

of bisimulation for FGF and show an analogous of Van Benthem & Rosen
characterisation theorem in the spirit of [10,20]. In the light of [12] it would be
interesting to investigate Craig Interpolation and Beth Definability for FGF .

– Understanding extensions of FGF with counting, constants or transitivity.
We conjuncture that the extensions of FGF with counting quantifiers à la [21]
or constants are decidable and can be shown with techniques from Sect. 3.4.
Another idea is to FGF with transitive guards, denoted with FGF+TG, that
captures the DL SH. Its two-variable fragment is known to be ExpSpace-
complete (without database though) [14]. We believe that the combination of
our techniques and those from [14,16] can be applied to infer an ExpSpace
upper bound for kb sat problem for the full logic. Finally, CQ entailment for
GF+TG is undecidable [7], but we hope that it is not the case for FGF+TG.

Acknowledgements. The author apologises for all mistakes and grammar issues that
appear in the paper. He thanks A. Karykowska and P. Witkowski for proofreading, E.
Kieroński for his help with the introduction, W. Faber for deadline extension and
anonymous JELIA’s reviewers for many useful comments.

This work was supported by the ERC Consolidator Grant No. 771779 (DeciGUT).

https://iccl.inf.tu-dresden.de/web/DeciGUT/en

Exploiting Forwardness: Satisfiability and Query-Entailment in Forward GF 193

References

1. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments
of predicate logic. J. Philos. Logic (1998)

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

3. Beeri, C., Vardi, M.Y.: The Implication Problem for Data Dependencies. In: ICALP
(1981)

4. Caĺı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. (2013)

5. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM (1981)
6. Figueira, D., Figueira, S., Baque, E.P.: Finite Controllability for Ontology-

Mediated Query Answering of CRPQ. KR (2020)
7. Gottlob, G., Pieris, A., Tendera, L.: Querying the Guarded Fragment with Tran-

sitivity. In: ICALP (2013)
8. Grädel, E.: Description Logics and Guarded Fragments of First Order Logic. DL

(1998)
9. Grädel, E.: On the restraining power of guards. J. Symb. Log. (1999)

10. Grädel, E., Otto, M.: The Freedoms of (Guarded) Bisimulation (2013)
11. Herzig, A.: A new decidable fragment of first order logic. In: Third Logical Biennial,

Summer School and Conference in Honour of S. C. Kleene (1990)
12. Hoogland, E., Marx, M., Otto, M.: Beth Definability for the Guarded Fragment.

LPAR (1999)
13. Horrocks, I., Tessaris, S.: Answering Conjunctive Queries over DL ABoxes: A Pre-

liminary Report. DL (2000)
14. Kieronski, E.: On the complexity of the two-variable guarded fragment with tran-

sitive guards. Inf. Comput. (2006)
15. Kieronski, E.: One-Dimensional Guarded Fragments. MFCS (2019)
16. Kieronski, E., Malinowski, A.: The triguarded fragment with transitivity. LPAR

(2020)
17. Libkin, L.: Elements of finite model theory. In: Libkin, L. (ed.) Texts in Theoret-

ical Computer Science. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-662-07003-1

18. Lutz, C.: Inverse Roles Make Conjunctive Queries Hard. DL (2007)
19. Lutz, C.: Two Upper Bounds for Conjunctive Query Answering in SHIQ. DL (2008)
20. Otto, M.: Elementary Proof of the van Benthem-Rosen Characterisation Theorem.

Technical Report (2004)
21. Pratt-Hartmann, I.: Complexity of the guarded two-variable fragment with count-

ing quantifiers. J. Log. Comput. (2007)
22. Pratt-Hartmann, I., Szwast, W., Tendera, L.: The fluted fragment revisited. J.

Symb. Log. (2019)
23. Quine, W.: The Ways of Paradox and Other Essays, Revised edn. Harvard Uni-

versity Press, Cambridge (1976)
24. Rosati, R.: On the decidability and finite controllability of query processing in

databases with incomplete information. PODS (2006)
25. Stockmeyer, L.: The Complexity of Decision Problems in Automata Theory and

Logic (1974)

https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1

An Algebraic View on p-Admissible
Concrete Domains for Lightweight

Description Logics

Franz Baader(B) and Jakub Rydval

Institute of Theoretical Computer Science, TU Dresden, Dresden, Germany
{franz.baader,jakub.rydval}@tu-dresden.de

Abstract. Concrete domains have been introduced in Description Log-
ics (DLs) to enable reference to concrete objects (such as numbers) and
predefined predicates on these objects (such as numerical comparisons)
when defining concepts. To retain decidability when integrating a con-
crete domain into a decidable DL, the domain must satisfy quite strong
restrictions. In previous work, we have analyzed the most prominent such
condition, called ω-admissibility, from an algebraic point of view. This
provided us with useful algebraic tools for proving ω-admissibility, which
allowed us to find new examples for concrete domains whose integration
leaves the prototypical expressive DL ALC decidable.

When integrating concrete domains into lightweight DLs of the EL
family, achieving decidability is not enough. One wants reasoning in the
resulting DL to be tractable. This can be achieved by using so-called
p-admissible concrete domains and restricting the interaction between
the DL and the concrete domain. In the present paper, we investigate
p-admissibility from an algebraic point of view. Again, this yields strong
algebraic tools for demonstrating p-admissibility. In particular, we obtain
an expressive numerical p-admissible concrete domain based on the ratio-
nal numbers. Although ω-admissibility and p-admissibility are orthogo-
nal conditions that are almost exclusive, our algebraic characterizations
of these two properties allow us to locate an infinite class of p-admissible
concrete domains whose integration into ALC yields decidable DLs.

Keywords: Description logic · Concrete domains · p-admissibility ·
Convexity · ω-admissibility · Finite boundedness · Tractability ·
Decidability · Constraint satisfaction

1 Introduction

Description Logics (DLs) [3,5] are a well-investigated family of logic-based
knowledge representation languages, which are frequently used to formalize
ontologies for application domains such as the Semantic Web [25] or biology

Supported by DFG GRK 1763 (QuantLA) and TRR 248 (cpec, grant 389792660).

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 194–209, 2021.
https://doi.org/10.1007/978-3-030-75775-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_14&domain=pdf
http://orcid.org/0000-0002-4049-221X
http://orcid.org/0000-0002-7961-9492
https://doi.org/10.1007/978-3-030-75775-5_14

An Algebraic View on p-Admissible Concrete Domains 195

and medicine [24]. A DL-based ontology consists of inclusion statements (so-
called GCIs) between concepts defined using the DL at hand. For example,
the GCI Human � ∃parent.Human, which says that every human being has
a human parent, uses concepts expressible in EL. This GCI clearly implies
the inclusion Human � ∃parent.∃parent.Human, i.e., Human is subsumed by
∃parent.∃parent.Human w.r.t. any ontology containing the above GCI. Keeping
the subsumption problem decidable, and preferably of a low complexity, is an
important design goal for DLs. While subsumption in the lightweight DL EL is
tractable (i.e., decidable in polynomial time), it is ExpTime-complete in ALC,
which is obtain from EL by adding negation [5].

If information about the age of human beings is relevant in the application
at hand, then one would like to associate humans with their ages and formu-
late constraints on these numbers. This becomes possible by integrating concrete
domains into DLs [4]. Using the concrete domain (Q, >), we can express that
children cannot be older than their parents with the GCI >(age, parent age) � ⊥,
where ⊥ is the bottom concept (always interpreted as the empty set) and age
is a concrete feature that maps from the abstract domain populating concepts
into the concrete domain (Q, >). While integrating (Q, >) leaves ALC decid-
able [30], this is no longer the case if we integrate (Q,+1), where +1 is a binary
predicate that is interpreted as incrementation [5,7]. In [31], ω-admissibility was
introduced as a condition on concrete domains that ensures decidability. It was
shown in that paper that Allen’s interval logic [1] as well as the region connec-
tion calculus RCC8 [33] can be represented as ω-admissible concrete domains.
Since ω-admissibility is a collection of rather complex technical conditions, it
is not easy to show that a given concrete domain satisfies this property. In [7],
we relate ω-admissibility to well-known notions from model theory, which allows
us to prove ω-admissibility of certain concrete domains (among them Allen and
RCC8) using known results from model theory. A different algebraic condition
(called EHD) that ensures decidability was introduced in [18], and used in [29]
to show decidability and complexity results for a concrete domains based on the
integers.

When integrating a concrete domain into a lightweight DL like EL, one wants
to preserve tractability rather than just decidability. To achieve this, the notion
of p-admissible concrete domains was introduced in [2] and paths of length > 1
were disallowed in concrete domain constraints. Regarding the latter restriction,
note that, in the above example, we have used the path parent age, which has
length 2. The restriction to paths of length 1 means (in our example) that we can
no longer compare the ages of different humans, but we can still define concepts
like teenager, using the GCI

Teenager � Human � ≥10(age) � ≤19(age),

where ≥10 and ≤19 are unary predicates respectively interpreted as the ratio-
nal numbers greater equal 10 and smaller equal 19. In a p-admissible concrete
domain, satisfiability of conjunctions of atomic formulae and validity of impli-
cations between such conjunctions must be tractable. In addition, the concrete

196 F. Baader and J. Rydval

domain must be convex, which roughly speaking means that a conjunction cannot
imply a true disjunction. For example, the concrete domain (Q, >,=, <) is ω-
admissible [7], but it is not convex since x < y∧x < z implies y < z∨y = z∨y > z,
but none of the disjuncts. In [2], two p-admissible concrete domains were exhib-
ited, where one of them is based on Q with unary predicates =p, >p and binary
predicates +p,=. To the best of our knowledge, since then no other p-admissible
concrete domains have been described in the literature.

One of the main contributions of the present paper is to devise algebraic
characterizations of convexity in different settings. We start by noting that the
definition of convexity given in [2] is ambiguous, and that what was really meant
is what we call guarded convexity. However, in the presence of the equality pred-
icate (which is available in the two p-admissible concrete domains introduced
in [2]), the two notions of convexity coincide. Then we devise a general char-
acterization of convexity based on the notion of square embeddings, which are
embeddings of the product B2 of a relational structure B into B. We investi-
gate the implications of this characterization further for so-called ω-categorical
structures, finitely bounded structures, and numerical concrete domains. For
ω-categorical structures, the square embedding criterion for convexity can be
simplified, and we use this result to obtain new p-admissible concrete domains:
countably infinite vector spaces over finite fields. Finitely bounded structures can
be defined by specifying finitely many forbidden patterns, and are of great inter-
est in the constraint satisfaction (CSP) community [15]. We show that, for such
structures, convexity is a necessary and sufficient condition for p-admissibility.
This result provides use with many examples of p-admissible concrete domains,
but their usefulness in practice still needs to be investigated. Regarding numer-
ical concrete domains, we exhibit a new and quite expressive p-admissible con-
crete domain based on the rational numbers, whose predicates are defined by
linear equations over Q.

Next, the paper investigates the connection between p-admissibility and ω-
admissibility. We show that only trivial concrete domains can satisfy both prop-
erties. However, by combining the results on finitely bounded structures of the
present paper with results in [7], we can show that convex finitely bounded
homogeneous structures, which are p-admissible, can be integrated into ALC
(even without the length 1 restriction on role paths) without losing decidability.
Whereas these structures are not ω-admissible, they can be expressed in an ω-
admissible concrete domain [7]. Finally, we show that, in general, the restriction
to paths of length 1 is needed when integrating a p-admissible concrete domain
into EL, not only to stay tractable, but even to retain decidability.

2 Preliminaries

In this section, we introduce the algebraic and logical notions that will be used in
the rest of the paper. The set {1, . . . , n} is denoted by [n]. We use the bar notation
for tuples; for a tuple t̄ indexed by a set I, the value of t̄ at the position i ∈ I is
denoted by t̄[i]. For a function f : Ak → B and n-tuples t̄1, . . . , t̄k ∈ An, we use
f(t̄1, . . . , t̄k) as a shortcut for the tuple

(
f(t̄1[1], . . . t̄k[1]), . . . , f(t̄1[n], . . . , t̄k[n])

)
.

An Algebraic View on p-Admissible Concrete Domains 197

From a mathematical point of view, concrete domains are relational struc-
tures. A relational signature τ is a set of relation symbols, each with an associated
natural number called arity. For a relational signature τ , a relational τ -structure
A (or simply τ -structure or structure) consists of a set A (the domain) together
with the relations RA ⊆ Ak for each relation symbol R ∈ τ of arity k. Such a
structure A is finite if its domain A is finite. We often describe structures by
listing their domain and relations, i.e., we write (A,RA

1 , RA
2 , . . .).

An expansion of a τ -structure A is a σ-structure B with A = B such that
τ ⊆ σ and RB = RA for each relation symbol R ∈ τ . Conversely, we call A a
reduct of B. The product of a family (Ai)i∈I of τ -structures is the τ -structure∏

i∈I Ai over
∏

i∈I Ai such that, for each R ∈ τ of arity k, we have (ā1, . . . , āk) ∈
RΠi∈IAi iff (ā1[i], . . . , āk[i]) ∈ RAi for every i ∈ I. We denote the binary product
of a structure A with itself as A2.

A homomorphism h : A → B for τ -structures A and B is a mapping h : A →
B that preserves each relation of A, i.e., if t̄ ∈ RA for some k-ary relation
symbol R ∈ τ , then h(t̄) ∈ RB. A homomorphism h : A → B is strong if it
additionally satisfies the inverse condition: for every k-ary relation symbol R ∈ τ
and t̄ ∈ Ak we have h(t̄) ∈ RB only if t̄ ∈ RA. An embedding is an injective
strong homomorphism. We write A ↪→ B if A embeds into B. The class of all
finite τ -structures that embed into B is denoted by Age (B). A substructure of B
is a structure A over the domain A ⊆ B such that the inclusion map i : A → B
is an embedding. Conversely, we call B an extension of A. An isomorphism
is a surjective embedding. Two structures A and B are isomorphic (written
A ∼= B) if there exists an isomorphism from A to B. An automorphism of A is
an isomorphism from A to A.

Given a relational signature τ , we can build first-order formulae using the
relation symbols of τ in the usual way. Relational τ -structures then coincide with
first-order interpretations. In the context of p-admissibility, we are interested in
quite simple formulae. A τ -atom is of the form R(x1, . . . , xn), where R ∈ τ is
an n-ary relation symbol and x1, . . . , xn are variables. For a fixed τ -structure A,
the constraint satisfaction problem (CSP) for A [11] asks whether a given finite
conjunction of atoms is satisfiable in A. An implication is of the form ∀x̄. (φ ⇒ ψ)
where φ is a conjunction of atoms, ψ is a disjunction of atoms, and the tuple
x̄ consists of the variables occurring in φ or ψ. Such an implication is a Horn-
implication if ψ is the empty disjunction (corresponding to falsity ⊥) or a single
atom. The CSP for A can be reduced in polynomial time to the validity problem
for Horn-implications since φ is satisfiable in A iff ∀x̄. (φ ⇒ ⊥) is not valid in
A. Conversely, validity of Horn implications in a structure A can be reduced in
polynomial time to the CSP in the expansion A¬ of A by the complements of
all relations. In fact, the Horn implication ∀x̄. (φ ⇒ ψ) is valid in A iff φ ∧ ¬ψ
is not satisfiable in A¬. In the signature of A¬, ¬ψ can then be expressed by an
atom.

198 F. Baader and J. Rydval

3 Integrating p-Admissible Concrete Domains into EL
Given countably infinite sets NC and NR of concept and role names, EL concepts
are built using the concept constructors top concept (�), conjunction (C � D),
and existential restriction (∃r.C). The semantics of the constructors is defined in
the usual way (see, e.g., [3,5]). It assigns to every EL concept C a set CI ⊆ ΔI ,
where ΔI is the interpretation domain of the given interpretation I.

As mentioned before, a concrete domain is a τ -structure D with a relational
signature τ . To integrate such a structure into EL, we complement concept and
role names with a set of feature names NF, which provide the connection between
the abstract domain ΔI and the concrete domain D. A path is of the form r f
or f where r ∈ NR and f ∈ NF. In our example in the introduction, age is both
a feature name and a path of length 1, and parent age is a path of length 2. The
DL EL(D) extends EL with the new concept constructor

R(p1, . . . , pk) (concrete domain restriction),

where p1, . . . , pk are paths, and R ∈ τ is a k-ary relation symbol. We use EL[D]
to denote the sublanguage of EL(D) where paths in concrete domain restrictions
are required to have length 1. Note that EL(D) is the restriction to EL of the
way concrete domains were integrated into ALC in [31], whereas our definition
of EL[D] describes how concrete domains were integrated into EL in [2].

To define the semantics of concrete domain restrictions, we assume that an
interpretation I assigns functional binary relations fI ⊆ ΔI×D to feature names
f ∈ NF, where functional means that (a, d) ∈ fI and (a, d′) ∈ fI imply d = d′.
We extend the interpretation function to paths of the form p = r f by setting
(r f)I = {(a, d) ∈ ΔI×D | there is b ∈ ΔI such that (a, b) ∈ rI and (b, d) ∈ fI}.
The semantics of concrete domain restrictions is now defined as follows:

R(p1, . . . , pk)I = {a ∈ ΔI | there are d1, . . . , dk ∈ D such that
(a, di) ∈ pI

i for all i ∈ [k] and (d1, . . . , dk) ∈ RD}.

As usual, an EL(D) TBox is defined to be a finite set of GCIs C � D,
where C,D are EL(D) concepts. The interpretation I is a model of such a TBox
if CI ⊆ DI holds for all GCIs C � D occurring in it. Given EL(D) concept
descriptions C,D and an EL(D) TBox T , we say that C is subsumed by D w.r.t.
T (written C �T D) if CI ⊆ DI holds for all models of T . For the subsumption
problem in EL[D], to which we restrict our attention for the moment, only EL[D]
concepts may occur in T , and C,D must also be EL[D] concepts.

Subsumption in EL is known to be decidable in polynomial time [16]. For
EL[D], this is the case if the concrete domain is p-admissible [2]. According
to [2], a concrete domain D is p-admissible if it satisfies the following conditions:
(i) satisfiability of conjunctions of atoms and validity of Horn implications in
D are tractable; and (ii) D is convex. Unfortunately, the definition of convexity
in [2] (below formulated using our notation) is ambiguous:

(∗) If a conjunction of atoms of the form R(x1, . . . , xk) implies a
disjunction of such atoms, then it also implies one of its disjuncts.

An Algebraic View on p-Admissible Concrete Domains 199

The problem is that this definition does not say anything about which variables
may occur in the left- and right-hand sides of such implications. To illustrate
this, let us consider the structure N = (N, E,O) in which the unary predicates
E and O are respectively interpreted as the even and odd natural numbers. If
the right-hand side of an implication considered in the definition of convexity
may contain variables not occurring on the left-hand side, then N is not convex:
∀x, y. (E(x) ⇒ E(y) ∨ O(y)) holds in N, but neither ∀x, y. (E(x) ⇒ E(y)) nor
∀x, y. (E(x) ⇒ O(y)) does. However, for guarded implications, where all vari-
ables occurring on the right-hand side must also occur on the left-hand side,
the structure N satisfies the convexity condition (∗). We say that a structure is
convex if (∗) is satisfied without any restrictions on the occurrence of variables,
and guarded convex if (∗) is satisfied for guarded implications. Clearly, any con-
vex structure is guarded convex, but the converse implication does not hold, as
exemplified by N.

We claim that, what was actually meant in [2], was guarded convexity rather
than convexity. In fact, it is argued in that paper that non-convexity of D
allows one to express disjunctions in EL[D], which makes subsumption in EL[D]
ExpTime-hard. However, this argument works only if the counterexample to
convexity is given by a guarded implication. Let us illustrate this again on our
example N. Whereas ∀x, y. (E(x) ⇒ E(y) ∨ O(y)) holds in N, the subsumption
E(f) �∅ E(g) � O(g) does not hold in the extension of EL[D] with disjunction
since the feature g need not have a value. For this reason, we use guarded con-
vexity rather than convexity in our definition of p-admissibility. For the same
reason, we also restrict the tractability requirement in this definition to validity
of guarded Horn implications.

Definition 1. A relational structure D is p-admissible if it is guarded convex
and validity of guarded Horn implications in D is tractable

Using this notion, the main results of [2] concerning concrete domains can
now be summarized as follows.

Theorem 1 (Baader, Brandt, and Lutz [2]). Let D be a relational struc-
ture. Then subsumption in EL[D] is

1. decidable in polynomial time if D is p-admissible;
2. ExpTime-hard if D is not guarded convex.

The two p-admissible concrete domains introduced in [2] have equality as
one of their relations. For such structures, convexity and guarded convexity
obviously coincide since one can use x = x as a trivially true guard. For example,
the extension N= of N with equality is no longer guarded convex since the
implication ∀x. (x = x ⇒ E(x) ∨ O(x)) holds in N=, but neither ∀x. (x = x ⇒
E(x)) nor ∀x. (x = x ⇒ O(x)).

In the next section, we will show algebraic characterizations of (guarded) con-
vexity. Regarding the tractability condition in the definition of p-admissibility,
we have seen that it is closely related to the constraint satisfaction problem

200 F. Baader and J. Rydval

for D and D¬. Characterizing tractability of the CSP in a given structure is a
very hard problem. Whereas the Feder-Vardi conjecture [20] has recently been
confirmed after 25 years of intensive research in the field by giving an algebraic
criterion that can distinguish between finite structures with tractable and with
NP-complete CSPs [17,34], finding comprehensive criteria that ensure tractabil-
ity for the case of infinite structures is a wide open problem, though first results
for special cases have been found (see, e.g., [13,14]).

4 Algebraic Characterizations of Convexity

Before we can formulate our characterization of (guarded) convexity, we need
to introduce a semantic notion of guardedness. We say that the relational τ -
structure A is guarded if for every a ∈ A there is a relation R ∈ τ such that a
appears in a tuple in RA.

Theorem 2. For a relational τ structure B, the following are equivalent:

1. B is guarded convex.
2. For every finite σ ⊆ τ and every A ∈ Age (B2) whose σ-reduct is guarded,

there exists a strong homomorphism from the σ-reduct of A to the σ-reduct
of B.

We concentrate here on proving “2 ⇒ 1” since this is the direction that will
be used later on. Alternatively, we could obtain “2 ⇒ 1” by adapting the proof
of McKinsey’s lemma [22]. A proof of the other direction can be found in [6].

Proof of “2 ⇒ 1” of Theorem 2. Suppose to the contrary that the implication
∀x1, . . . , xn. (φ ⇒ ψ) is valid in B, where φ is a conjunction of atoms such
that each variable xi is present in some atom of φ, and ψ is a disjunction of
atoms ψ1, . . . , ψk, but we also have B �|= ∀x1, . . . , xn. (φ ⇒ ψi) for every i ∈ [k].
Without loss of generality, we assume that φ, ψ1, . . . , ψk all have the same free
variables x1, . . . , xn, some of which might not influence their truth value. For
every i ∈ [k], there exists a tuple t̄i ∈ Bn such that

B |= φ(t̄i) ∧ ¬ψi(t̄i). (∗)

We show by induction on i that, for every i ∈ [k], there exists a tuple s̄i ∈ Bn

that satisfies the induction hypothesis

B |= φ(s̄i) ∧ ¬
∨

�∈[i]

ψ�(s̄i). (†)

In the base case (i = 1), it follows from (∗) that s̄1 := t̄1 satisfies (†).
In the induction step (i → i + 1), let s̄i ∈ Bn be any tuple that satisfies

(†). Let σ ⊆ τ be the finite set of relation symbols occurring in the implica-
tion ∀x1, . . . , xn. (φ ⇒ ψ), and let Ai be the substructure of B2 on the set
{(s̄i[1], t̄i+1[1]), . . . , (s̄i[n], t̄i+1[n])}. Since B |= φ(s̄i) by (†), B |= φ(t̄i+1) by (∗),

An Algebraic View on p-Admissible Concrete Domains 201

and φ contains an atom for each variable xi, we conclude that the σ-reduct of Ai

is guarded. By 2., there exists a strong homomorphism fi from the σ-reduct of
Ai to the σ-reduct of B. Since φ is a conjunction of atoms and fi is a homomor-
phism, we have that B |= φ

(
fi(s̄i, t̄i+1)

)
. Suppose that B |= ψi+1

(
fi(s̄i, t̄i+1)

)
.

Since fi is a strong homomorphism, we get B |= ψi+1(t̄i+1), a contradiction to
(∗). Now suppose that B |= ψj

(
fi(s̄i, t̄i+1)

)
for some j ≤ i. Since fi is a strong

homomorphism, we get B |= ψj(s̄i), a contradiction to (†). We conclude that
s̄i+1 := fi(s̄i, t̄i+1) satisfies (†).

Since B |= ∀x1, . . . , xn. (φ ⇒ ψ), the existence of a tuple s̄i ∈ Bn that
satisfies (†) for i = k leads to a contradiction. ��

As an easy consequence of Theorem 2, we also obtain a characterization of
(unguarded) convexity. This is due to the fact that the structure B is convex iff
its expansion with the full unary predicate (interpreted as B) is guarded convex.
In addition, in the presence of this predicate, any structure is guarded.

Corollary 1. For a relational τ -structure B, the following are equivalent:

1. B is convex.
2. For every finite σ ⊆ τ and every A ∈ Age (B2), there exists a strong homo-

morphism from the σ-reduct of A to the σ-reduct of B.

As an example, the structure N = (N, E,O) introduced in the previous
section is guarded convex, but not convex. According to the corollary, the lat-
ter should imply that there is a finite substructure A of N2 that has no strong
homomorphism to N. In fact, if we take as A the substructure of N2 induced by
the tuple (1, 2), then this tuple belongs neither to E nor to O in the product.
However, a strong homomorphism to N would need to map this tuple either to
an odd or an even number. But then the tuple would need to belong to either
E or O since the homomorphism is strong. This example does not work for the
case of guarded convexity, because the considered substructure is not guarded.
In fact, a guarded substructure of N2 can only contain tuples where both com-
ponents are even or both components are odd. In the former case, the tuple can
be mapped to an even number, and in the latter to an odd number.

In the presence of the equality predicate, strong homomorphisms are embed-
dings and guarded convexity is the same as convexity.

Corollary 2. For a structure B with a relational signature τ with equality, the
following are equivalent:

1. B is convex.
2. For every finite σ ⊆ τ and every A ∈ Age (B2), the σ-reduct of A embeds into

the σ-reduct of B.

5 Examples of Convex and p-Admissible Structures

We consider three different kinds of structures (ω-categorical, finitely bounded,
numerical) and show under which conditions such structures are convex. This
provides us with new examples for p-admissible concrete domains.

202 F. Baader and J. Rydval

5.1 Convex ω-Categorical Structures

A structure is called ω-categorical if its first-order theory has a unique countable
model up to isomorphism. A well-known example of such a structure is (Q, <),
whose first-order theory is the theory of linear orders without first and last ele-
ment. Such structures have drawn considerable attention in the CSP community
since their CSPs can, to some extent, be investigated using the algebraic tools
originally developed for finite structures. Countably infinite ω-categorical struc-
tures can be characterized using automorphisms and orbits. For every structure
A, the set of all automorphisms of A, denoted by Aut(A), forms a permutation
group with composition as group operation [23]. The orbit of a tuple t̄ ∈ Ak

under Aut(A) is the set {(g(t̄[1]), ..., g(t̄[k])) | g ∈ Aut(A)}. The following result
is due to Engeler, Ryll-Nardzewski, and Svenonius (see Theorem 6.3.1 in [23]).

Theorem 3. For a countably infinite structure D with a countable signature,
the following are equivalent:

1. D is ω-categorical.
2. Every relation preserved by Aut(D) has a first-order definition in D.
3. For every k ≥ 1, there are only finitely many orbits of k-tuples under Aut(D).

For countably infinite ω-categorical structures the characterization of con-
vexity of Corollary 2 can be improved to the following simpler statement.

Theorem 4. For a countably infinite ω-categorical relational structure B with
a countable signature τ with equality, the following are equivalent:

1. B is convex.
2. B2 embeds into B.

The proof of this theorem combines the proof of Corollary 2 with the following
two facts, which are implied by ω-categoricity of B. First, there exists a strong
homomorphism from B2 to B iff there exists a strong homomorphism from A
to B for every A ∈ Age (B2) (see, e.g., Lemma 3.1.5 in [11]). Second, to deal
with the fact that τ may be infinite (which is problematic for the proof of “1 ⇒
2”), we can use Theorem 3, which ensures that, for every k ≥ 1, there are only
finitely many inequivalent k-ary formulae over B consisting of a single τ -atom.

In the CSP literature, one can find two examples of countably infinite ω-
categorical structure that satisfy the square embedding condition of the above
theorem: atomless Boolean algebras and countably infinite vector spaces over
finite fields. Since the CSP for atomless Boolean algebras is NP-complete [9],
this example does not provide us with a p-admissible concrete domain. Things
are more rosy for the vector space example. As shown in [12], the relational
representation Vq = (Vq, R

+, Rs0 , . . . , Rsq−1) of the countably infinite vector
space over a finite field GF(q) is ω-categorical, satisfies V2

q
∼= Vq, and its CSP

is decidable in polynomial time, even if the complements of all predicates are
added. Here R+ is a ternary predicate corresponding to addition of vectors, and
the Rsi are binary predicates corresponding to scalar multiplication of a vector

An Algebraic View on p-Admissible Concrete Domains 203

with the element si of GF(q). We can show that these properties are preserved
if we add finitely many unary predicates Rei that correspond to unit vectors
e1, . . . , ek [6].

Corollary 3. The structure Vq expanded with predicates Re1 , . . . , Rek for unit
vectors e1, . . . , ek is p-admissible.

For the case q = 2, the vectors in Vq are one-sided infinite tuples of zeros and
ones containing only finitely many ones, which can be viewed as representing
finite subsets of N. For example, (0, 1, 1, 0, 1, 0, 0, . . .) represents the set {1, 2, 4}.
Thus, if we use V2 as concrete domain, the features assign finite sets of natural
numbers to individuals. For example, assume that the feature daughters-ages
assigns the set of ages of female children to a person, and sons-ages the set of
ages of male children. Then R+(daughters-ages, sons-ages, zero) describes per-
sons that, for every age, have either both a son and a daughter of this age, or no
child at all of this age. The feature zero is supposed to point to the zero vector,
which can, e.g., be enforced using the GCI � � R+(zero, zero, zero).

5.2 Convex Structures with Forbidden Patterns

For a class F of τ -structures, Forbe(F) stands for the class of all finite τ -
structures that do not embed any member of F . A structure B is finitely bounded
if its signature is finite and Age (B) = Forbe(F) for some finite set F of bounds.
Alternatively, one can say that B is finitely bounded if its signature is finite
and there is a universal first-order sentence Φ with equality such that Age (B)
consists precisely of the finite models of Φ [8]. A well-known example of a finitely
bounded structure is (Q, >,=), for which the self loop, the 2-cycle, the 3-cycle,
and two isolated vertices can be used as bounds (see Fig. 1 in [7]). As universal
sentence defining Age (Q, >,=) we can take the conjunction of the usual axioms
defining linear orders. For finitely bounded structures, p-admissibility turns out
to be equivalent to convexity.

Theorem 5. Let B be a finitely bounded τ -structure with equality. Then the
following statements are equivalent:

1. B is convex,
2. Age (B) is defined by a conjunction of Horn implications,
3. B is p-admissible.

The structure (Q, >,=) is not convex. In fact, since it is also ω-categorical, con-
vexity would imply that its square (Q, >,=) × (Q, >,=) embeds into (Q, >,=),
by Theorem 4. This cannot be the case since the product contains incompa-
rable elements, whereas (Q, >,=) does not. In the universal sentence defining
Age (Q, >,=), the totality axiom ∀x, y. (x < y ∨ x = y ∨ x > y) is the culprit
since it is not Horn. If we remove this axiom, we obtain the theory of strict
partial orders.

204 F. Baader and J. Rydval

Example 1. It is well-known that there exists a unique countable homogeneous1

strict partial order O [32], whose age is defined by the universal sentence
∀x, y, z. (x < y ∧ y < z ⇒ x < z) ∧ ∀x. (x < x ⇒ ⊥), which is a Horn implica-
tion. Thus, O extended with equality is finitely bounded and convex. Using O
as a concrete domain means that the feature values satisfy the theory of strict
partial orders, but not more. One can, for instance, use this concrete domain
to model preferences of people; e.g., the concept Italian� >(pizzapref, pastapref)
describes Italians that like pizza more than pasta. Using O here means that
preferences may be incomparable. As we have seen above, adding totality would
break convexity and thus p-admissibility.

Beside finitely bounded structures, the literature also considers structures
whose age can be described by a finite set of forbidden homomorphic images [19,
26]. For a class F of τ -structures, Forbh(F) stands for the class of all finite τ -
structures that do not contain a homomorphic image of any member of F . A
structure is connected if its so-called Gaifman graph is connected.

Theorem 6 (Cherlin, Shelah, and Shi [19]). Let F be a finite family of
connected relational structures with a finite signature τ . Then there exists an ω-
categorical τ -structure CSS(F) that is a reduct of a finitely bounded homogeneous
structure and such that Age (CSS(F)) = Forbh(F).

We can show [6] that the structures of the form CSS(F) provided by this
theorem are always p-admissible.

Proposition 1. Let F be a finite family of connected relational structures with
a finite signature τ . Then the expansion of CSS(F) by the equality predicate is
p-admissible.

This proposition actually provides us with infinitely many examples of count-
able p-admissible concrete domains, which all yield a different extension of EL:
the so-called Henson digraphs [21] (see [6] for details). The usefulness of these
concrete domains for defining interesting concepts is, however, unclear.

5.3 Convex Numerical Structures

We exhibit two new p-admissible concrete domain that are respectively based
on the real and the rational numbers, and whose predicates are defined by linear
equations. Let DR,lin be the relational structure over R that has, for every linear
equation system Ax̄ = b̄ over Q, a relation consisting of all its solutions in R.
We define DQ,lin as the substructure of DR,lin on Q. For example, using the
matrix A = (2 1−1) and the vector b̄ = (0) one obtains the ternary relation
{(p, q, r) ∈ Q

3 | 2p + q = r} in DQ,lin.

Theorem 7. The relational structures DR,lin and DQ,lin are p-admissible.

1 A structure is homogeneous if every isomorphism between its finite substructures
extends to an automorphism of the whole structure.

An Algebraic View on p-Admissible Concrete Domains 205

To prove this theorem for R, we start with the well-known fact that (R,+, 0)2

and (R,+, 0) are isomorphic [28], and show that it can be extended to DR,lin.
This yields convexity of DR,lin. For Q, we cannot employ the same argument since
(Q,+, 0)2 is not isomorphic to (Q,+, 0). Instead, we use the well-known fact that
the structures (Q,+, 0) and (R,+, 0) satisfy the same first-order-sentences [28]
to show that convexity of DR,lin implies convexity of DQ,lin. Tractability can be
shown for both structures using a variant of the Gaussian elimination procedure.
A detailed proof can be found in [6].

It is tempting to claim that DQ,lin is considerably more expressive than the
p-admissible concrete domain DQ,dist with domain Q, unary predicates =p, >p,
and binary predicates +p,= exhibited in [2]. However, formally speaking, this
is not true since the relations >p cannot be expressed in DQ,lin. In fact, adding
such a relation to DQ,lin would destroy convexity. Conversely, adding the ternary
addition predicate, which is available in DQ,lin, to DQ,dist also destroys convexity.
Using these observations, we can actually show that the expressive powers of
DQ,dist and DQ,lin are incomparable [6]. We expect, however, that DQ,lin will
turn out to be more useful in practice than DQ,dist.

6 ω-Admissibility versus p-Admissibility

The notion of ω-admissibility was introduced in [31] as a condition on concrete
domains D that ensures that the subsumption problem in ALC(D) w.r.t. TBoxes
remains decidable. This is a rather complicated condition, but for our purposes
it is sufficient to know that, according to [31], an ω-admissible concrete domain
D has finitely many binary relations, which are jointly exhaustive (i.e., their
union yields D×D) and pairwise disjoint (i.e., for two different relation symbols
Ri, Rj we have RD

i ∩ RD
j = ∅). In the presence of equality, these two conditions

do not go well together with convexity.

Proposition 2. Let D be a structure with a finite binary relational signature
that includes equality. If D is convex, jointly exhaustive, and pairwise disjoint,
then its domain D satisfies |D| ≤ 1.

This proposition shows that there are no non-trivial concrete domains with
equality that are at the same time p-admissible and ω-admissible. Without equal-
ity, there are some, but they are still not very interesting [6]. Nevertheless, by
combining the results of Sect. 5.2 with Corollary 2 in [7], we obtain non-trivial
p-admissible concrete domains with equality for which subsumption in ALC(D)
is decidable.

Corollary 4. Let D be a finitely bounded convex structure with equality that is
a reduct of a finitely bounded homogeneous structure. Then subsumption w.r.t.
TBoxes is tractable in EL[D] and decidable in ALC(D).

The Henson digraphs already mentioned in Sect. 5.2 provide us with infinitely
many examples of structures that satisfy the conditions of this corollary.

206 F. Baader and J. Rydval

In general, however, p-admissibility of D does not guarantee decidability of sub-
sumption in ALC(D). For example, subsumption w.r.t. TBoxes is undecidable
in ALC(DQ,dist) and ALC(DQ,lin) since this is already true for their common
reduct (Q,+1) [7].

Even for EL, integrating a p-admissible concrete domain may cause unde-
cidability if we allow for role paths of length 2. To show this, we consider the
relational structure DQ2,aff over Q

2, which has, for every affine transformation
Q

2 → Q
2 : x̄ �→ Ax̄+ b̄, the binary relation RA,b̄ := {(x̄, ȳ) ∈ (Q2)2 | ȳ = Ax̄+ b̄}.

Theorem 8. The relational structure DQ2,aff is p-admissible, which implies that
subsumption w.r.t. TBoxes is tractable in EL[DQ2,aff]. However, subsumption
w.r.t. TBoxes is undecidable in EL(DQ2,aff).

In [6], we show p-admissibility of DQ2,aff using the fact that DQ,lin is p-
admissible. Tractability of subsumption in EL[DQ2,aff] is then an immediate
consequence of Theorem 1. Undecidability of subsumption w.r.t. TBoxes in
EL(DQ2,aff) can be shown by a reduction from 2-Dimensional Affine Reacha-
bility, which is undecidable by Corollary 4 in [10]. For this problem, one is given
vectors v̄, w̄ ∈ Q

2 and a finite set S of affine transformations from Q
2 to Q

2. The
question is then whether w̄ can be obtained from v̄ by repeated application of
transformations from S. It is not hard to show that 2-Dimensional Affine Reach-
ability can effectively be reduced to subsumption w.r.t. TBoxes in EL(DQ2,aff).

7 Conclusion

The notion of p-admissible concrete domains was introduced in [2], where it was
shown that integrating such concrete domains into the lightweight DL EL (and
even the more expressive DL EL++) leaves the subsumption problem tractable.
The paper [2] contains two examples of p-admissible concrete domains, and since
then no new examples have been exhibited in the literature. This appears to
be mainly due to the fact that it is not easy to show the convexity condition
required by p-admissibility “by hand”. The main contribution of the present
paper is that it provides us with a useful algebraic tool for showing convexity:
the square embedding condition. We have shown that this tool can indeed be used
to exhibit new p-admissible concrete domains, such as countably infinite vector
spaces over finite field, the countable homogeneous partial order, and numerical
concrete domains over R and Q whose relations are defined by linear equations.
The usefulness of these numerical concrete domains for defining concepts should
be evident. For the other two we have indicated their potential usefulness by
small examples.

We have also shown that, for finitely bounded structures, convexity is equiva-
lent to p-admissibility, and that this corresponds to the finite substructures being
definable by a conjunction of Horn implications. Interestingly, this provides us
with infinitely many examples of countable p-admissible concrete domains, which
all yield a different extension of EL: the Henson digraphs. From a theoretical

An Algebraic View on p-Admissible Concrete Domains 207

point of view, this is quite a feat, given that before only two p-admissible concrete
domains were known.

Finitely bounded structures also provide us with examples of structures D
that can be used both in the context of EL and ALC, in the sense that subsump-
tion is tractable in EL[D] and decidable in ALC(D). Finally, we have shown that,
when embedding p-admissible concrete domains into EL, the restriction to paths
of length 1 in concrete domain restrictions (indicated by the square brackets) is
needed since there is a p-admissible concrete domains D such that subsumption
in EL(D) is undecidable.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2005), Los Altos, Edinburgh (UK), pp. 364–369. Morgan
Kaufmann (2005)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

4. Baader, F., Hanschke, P.: A schema for integrating concrete domains into concept
languages. In: Proceedings of the 12th International Joint Conference on Artificial
Intelligence (IJCAI 1991), pp. 452–457 (1991)

5. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

6. Baader, F., Rydval, J.: An algebraic view on p-admissible concrete domains for
lightweight description logics (extended version). LTCS-Report 20-10, Chair of
Automata Theory, Institute of Theoretical Computer Science, Technische Univer-
sität Dresden, Dresden, Germany (2020). https://tu-dresden.de/inf/lat/reports#
BaRy-LTCS-20-10

7. Baader, F., Rydval, J.: Description logics with concrete domains and general con-
cept inclusions revisited. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR
2020. LNCS (LNAI), vol. 12166, pp. 413–431. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-51074-9 24

8. Baader, F., Rydval, J.: Using model-theory to find ω-admissible concrete domains.
LTCS-Report 20-01, Chair of Automata Theory, Institute of Theoretical Computer
Science, Technische Universität Dresden, Dresden, Germany (2020). https://tu-
dresden.de/inf/lat/reports#BaRy-LTCS-20-01

9. Barto, L., Kompatscher, M., Oľsák, M., Van Pham, T., Pinsker, M.: Equations
in oligomorphic clones and the Constraint Satisfaction Problem for ω-categorical
structures. J. Math. Logic 19(2), 1950010 (2019)

10. Bell, P., Potapov, I.: On undecidability bounds for matrix decision problems. The-
oret. Comput. Sci. 391(1–2), 3–13 (2008)

11. Bodirsky, M.: Complexity classification in infinite-domain constraint satisfaction.
Mémoire d’Habilitation à Diriger des Recherches, Université Diderot - Paris 7
(2012). https://arxiv.org/abs/1201.0856

12. Bodirsky, M., Chen, H., Kára, J., von Oertzen, T.: Maximal infinite-valued con-
straint languages. Theoret. Comput. Sci. 410(18), 1684–1693 (2009)

https://tu-dresden.de/inf/lat/reports#BaRy-LTCS-20-10
https://tu-dresden.de/inf/lat/reports#BaRy-LTCS-20-10
https://doi.org/10.1007/978-3-030-51074-9_24
https://doi.org/10.1007/978-3-030-51074-9_24
https://tu-dresden.de/inf/lat/reports#BaRy-LTCS-20-01
https://tu-dresden.de/inf/lat/reports#BaRy-LTCS-20-01
https://arxiv.org/abs/1201.0856

208 F. Baader and J. Rydval

13. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction prob-
lems. J. ACM (JACM) 57(2), 1–41 (2010)

14. Bodirsky, M., Madelaine, F., Mottet, A.: A universal-algebraic proof of the com-
plexity dichotomy for monotone monadic SNP. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2018), pp. 105–114
(2018)

15. Bodirsky, M., Pinsker, M., Pongrácz, A.: Projective clone homomorphisms. J. Sym-
bolic Logic, 1–13 (2019). https://doi.org/10.1017/jsl.2019.23

16. Brandt, S.: Polynomial time reasoning in a description logic with existential restric-
tions, GCI axioms, and–what else? In: de Mántaras, R.L., Saitta, L. (eds.) Pro-
ceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004),
pp. 298–302 (2004)

17. Bulatov, A.A.: A dichotomy theorem for nonuniform CSPs. In: Proceedings of the
58th Annual Symposium on Foundations of Computer Science (FOCS 2017), pp.
319–330. IEEE (2017)

18. Carapelle, C., Turhan, A.: Description logics reasoning w.r.t. general TBoxes is
decidable for concrete domains with the EHD-property. In: Kaminka, G.A., et al.
(eds.) Proceedings of the 22nd European Conference on Artificial Intelligence
(ECAI 2016). Frontiers in Artificial Intelligence and Applications, vol. 285, pp.
1440–1448. IOS Press (2016)

19. Cherlin, G., Shelah, S., Shi, N.: Universal graphs with forbidden subgraphs and
algebraic closure. Adv. Appl. Math. 22(4), 454–491 (1999)

20. Feder, T., Vardi, M.Y.: Homomorphism closed vs. existential positive. In: Proceed-
ings of the 18th Annual IEEE Symposium of Logic in Computer Science (LICS
2003), pp. 311–320. IEEE (2003)

21. Henson, C.W.: A family of countable homogeneous graphs. Pac. J. Math. 38(1),
69–83 (1971)

22. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
23. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge

(1997)
24. Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: The role of ontologies in biological

and biomedical research: a functional perspective. Brief. Bioinform. 16(6), 1069–
1080 (2015)

25. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: the making of a web ontology language. J. Web Semant. 1(1), 7–26 (2003)

26. Hubička, J., Nešetřil, J.: Homomorphism and embedding universal structures for
restricted classes. J. Mult.-Valued Log. Soft Comput. 27, 229–253 (2016). https://
arxiv.org/abs/0909.4939

27. Jaax, S., Kiefer, S.: On affine reachability problems. In: Esparza, J., Král’, D.
(eds.) Proceedings of the 45th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2020). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 170, pp. 48:1–48:14. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2020)

28. Kegel, O.H., Wehrfritz, B.A.: Locally Finite Groups. Elsevier, Amsterdam (2000)
29. Labai, N., Ortiz, M., Simkus, M.: An ExpTime upper bound for ALC with integers.

In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of the 17th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR
2020), pp. 614–623 (2020)

30. Lutz, C.: Combining interval-based temporal reasoning with general TBoxes. Artif.
Intell. 152(2), 235–274 (2004)

https://doi.org/10.1017/jsl.2019.23
https://arxiv.org/abs/0909.4939
https://arxiv.org/abs/0909.4939

An Algebraic View on p-Admissible Concrete Domains 209

31. Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete
domains and general Tboxes. J. Autom. Reason. 38(1–3), 227–259 (2007)

32. Pach, P.P., Pinsker, M., Pluhár, G., Pongrácz, A., Szabó, C.: Reducts of the random
partial order. Adv. Math. 267, 94–120 (2014)

33. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.
In: Proceedings of the 3rd International Conference on the Principles of Knowl-
edge Representation and Reasoning (KR 1992), Los Altos. pp. 165–176. Morgan
Kaufmann (1992)

34. Zhuk, D.: A proof of CSP dichotomy conjecture. In: Proceedings of the 58th Annual
Symposium on Foundations of Computer Science (FOCS 2017), pp. 331–342. IEEE
(2017)

ReAD: AD-Based Modular Ontology
Classification

Haoruo Zhao(B), Bijan Parsia , and Uli Sattler

University of Manchester, Oxford Rd M13 9PL, UK
{haoruo.zhao,bijan.parsia,uli.sattler}@manchester.ac.uk

Abstract. For OWL ontologies, classification is the central reasoning
task, and several highly-optimised reasoners have been designed for dif-
ferent fragments of OWL. Some of these exploit different notions of mod-
ularity, including the atomic decomposition (AD), to further optimise
their performance, but this is a complex task due to ontology modules
overlapping, thereby possibly causing duplication of subsumption tests.

In this paper, we use the AD to avoid both this duplication as well as
other subsumption tests that can be avoided by inspecting the AD. We
have designed and implemented a new AD-informed and MORe-inspired
algorithm that uses Hermit and ELK as delegate reasoners, but avoids
any duplicate subsumption tests between these two reasoners and fur-
ther minimises these tests. We have thoroughly evaluated the effects of
these two kinds of avoidance on the overall classification time on a corpus
of complex ontologies.

Keywords: OWL · Description logic · Classification · Reasoning

1 Introduction

Reasoning in decidable, expressive ontology languages, such as the Web Ontology
Language OWL 2 DL [4,12,26], has a high worst case complexity (entailment
testing is N2EXPTIME-complete) [12,27]. Given this fact and the large sizes
OWL ontologies can reach (with several examples having hundreds of thousands
of terms and correspondingly large numbers of axioms), there has been interest
in exploiting recent work in logically sound modularity analysis [7,11,13,36] of
ontologies to support a robust divide and conquer strategy to ontology reason-
ing, in particular classification. Suitable modules, as approximations of uniform
interpolants [1,11,17,29,30,38,42,43], allow classification of each module inde-
pendently and combining the results to achieve sound and complete classification
of the original ontology. These strong properties support a black box approach
to modular reasoning where each delegate reasoner treats each module as if it
were a stand alone ontology. The only information shared between delegates is
the results for each module.

While implementing a coalition modular reasoner is, in principle, easy—no
modification of the delegate reasoners needed—the performance gains have not
c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 210–224, 2021.
https://doi.org/10.1007/978-3-030-75775-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_15&domain=pdf
http://orcid.org/0000-0002-3222-7571
https://doi.org/10.1007/978-3-030-75775-5_15

ReAD: AD-Based Modular Ontology Classification 211

been as dramatic as one might expect [33]. One issue is that locality-based mod-
ules often do not partition an ontology which means that considerable amounts
of redundant work might be performed. One mitigation is to look for larger,
mostly distinct modules which approximately partition the ontology. Unfor-
tunately, extensive experimentation in [31] suggest that partition-like sets of
locality-based modules are not common and, when they do exist, only yield a
few large modules. This induces the opposite problem, to wit, that modular
reasoner is forced to do work that they could have avoided with more granular
exploitation of the modular structure of the ontology.

In this paper, we explore the effect of redundant and wholly unnecessary
work on modular reasoner performance. We build the theoretical foundation of
the distribution of subsumption tests in locality-based modules using the atomic
decomposition. We extend the MORe algorithm, a prominent approach to mod-
ular ontology classification, and modify it and one of the component reasoners
so as to fully avoid unnecessary subsumption tests using our theoretical results.
We test 3 variants of the modified MORe (called ReAD): the original, duplication
avoiding, and combined avoiding algorithms against the 2017 BioPortal corpus
[32] used in the last ORE competition [34].

2 Background and Related Work

We assume the reader to be familiar with Description Logics (DLs), a family of
knowledge representation languages underlying OWL 2 [12] that are basically
decidable fragments of First Order Logic [6], and only fix the notation used. In
this paper, we use O for an ontology and Σ for a signature, i.e., a set of concept
and role names. For an axiom, a module, or an ontology X, we use ˜X to denote
its signature. We consider SROIQ [12] ontologies that are TBoxes, i.e., without
concept or role assertions, or their OWL DL counterparts.

Ontology Classification. In this paper, we use NC to represent atomic concept
names (e.g. Person, Animal). To classify an ontology O, we first check whether
O is consistent. If it is, we check for all A,B ∈ ˜O ∩ NC, A �= B, whether O |=?

A � B,O |=? A � ⊥ and O |=? � � B; these checks are called subsumption tests
(STs) and have a high worst-case complexity (2NExpTime-complete for OWL 2
[27]). Naively, this results in a quadratic number of entailment tests. To avoid
these, DL reasoners employ a form of traversal algorithm to reduce the number
of STs [5,18]. In practice, these are highly effective, almost always reducing the
number of STs to at most n∗log n [33]. To classify (lightweight) EL++ ontologies,
one-pass algorithms have been developed and implemented that avoid traversal
and classify an ontology in polynomial time in one go [2,3,28]. In this paper, we
concentrate on ST avoidance.

Modularity and Atomic Decomposition. In the following, we focus on ⊥-locality
based modules [10] (called modules for short). These are subsets of an ontology
that have certain properties which are important for their use in classification
optimization. Let M = M(Σ,O) be such a ⊥-locality based module of O for
the signature Σ. Then M

212 H. Zhao et al.

1. preserves all entailments of O over Σ,
2. preserves all entailments of O over ˜M,
3. is unique, i.e., there is no other ⊥-locality based module of O for Σ,
4. is subsumer-preserving, i.e., for A ∈ ˜M and B ∈ ˜O concept names, O |= A �

B implies M |= A � B, and
5. is monotonic, i.e., if Σ1 ⊆ Σ2, then M(Σ1,O) ⊆ M(Σ2,O).

The atomic decomposition (AD) [16] partitions an ontology into logically
inseparable sets of axioms, so-called atoms a, and relates these atoms via a
dependency relation
.

Definition 1 [16]. Given two axioms α, β ∈ O, we say α ∼O β if, for all
modules M of O, we have α ∈ M iff β ∈ M. The atoms of an ontology O are
the equivalence classes ∼O. Given two atoms a, b, we say that a is dependent
on b, written a
 b if, for any module M, a ⊆ M implies that b ⊆ M. The AD
of O, A(O), consists of the set of O’s atoms and the partial order
.

For an atom a ∈ A(O), its principal ideal ↓a = {α ∈ b | b ∈ A(O), a
 b} is
the union of all atoms it depends on and has been shown to be a module [16].
The following lemma is an immediate consequence of the fact that the signature
of � � ⊥ is empty and that modules are monotonic [11].

Lemma 1. If O is inconsistent, then there is an atom a in A(O) with ↓a = a |=
� � ⊥ and b
 a for all b in A(O).

Modular Reasoning. Modules and the AD have been explored for improving
the performance of reasoning in general [8,23,24,33,35,39], and it is helpful to
distinguish between two potential benefits for classification. First, modules can
be used to make STs easier by reducing the number of axioms considered for each
ST (easification) and by enabling us to use specialised reasoners for inexpressive
modules, so-called delegate reasoners. In [33], it is shown that easification is
unlikely to lead to a significant performance gain. Secondly, given properties
like the above mentioned preservation of subsumptions, we can avoid STs by
exploiting the modular structure, e.g., the AD [40].

Several reasoners use modules and AD for incremental reasoning [9] or clas-
sification optimisation; e.g., MORe [35] uses modules and Chainsaw [39] uses the
AD to identify suitable modules. These techniques, however, fail to provide dra-
matic performance improvement [21], possibly due to the overhead involved and,
more importantly, due to duplication of STs caused by modules overlapping. In
this paper, we are focusing on solving this problem.

Duplication of STs. MORe splits the ontology into two modules of different
expressivity, and then uses a fast, delegate reasoner on the inexpressive module,
thereby further easifying tests in the inexpressive module. In its empirical evalu-
ation, MORe uses ELK [28] to classify the module in EL++ [2,3] and HermiT [19]
for the remaining OWL 2 module. In case these two modules overlap, HermiT
duplicates STs already checked by ELK.

ReAD: AD-Based Modular Ontology Classification 213

Example 1. Consider the ontology O = {α1 : A � ∃r.B, α2 : C � D � A,α3 :
E � F � A}. Now module M1 = {α1, α2} is classified by ELK and module
M2 = {α1, α3} is classified by HermiT. The subsumption relation between A
and B is potentially checked by two reasoners.

In this paper, we design a MORe-like framework that exploits delegate reasoners
for inexpressive modules but avoids ST duplication by using the AD. Moreover,
in our framework, the inexpressive subset classified by the delegate reasoner does
not need to be a module and can thus be larger.

3 Theoretical Foundations

In this section, we explain the foundations of using the AD for avoiding STs
during classification. Using the AD, we identify a (hopefully small) set of sub-
sumption tests Subs(O) that are sufficient for classification. Provided that the
AD has a “good” structure, i.e., no large atoms, this results in a low number of
STs for a reasoner to carry out, plus the opportunity to use delegate reasoners
on inexpressive modules as well as to classify modules in parallel.

First, we fix some notation. Let A be a concept name, a an atom, and O an
ontology. We define the following sets:

Ats(A) := {a ∈ A(O) | A ∈ ã} the atoms of A
MinAts(A) := {a ∈ Ats(A) |� ∃b ∈ Ats(A) with a � b} the lowest atoms of A

CanS(a) := {A | a ∈ MinAts(A) and #MinAts(A) = 1} an atom’s candidate set

BTop(O) := {A | A ∈ ˜O ∩ NC and #MinAts(A) > 1} concept names below �

As we will discuss below, the candidate set CanS(a) of an atom a are those
concept names for which STs need to be run for a, and concepts in BTop(O)
have only trivial subsumers. In Fig. 1, we illustrate these new definitions using
our example ontology.

Fig. 1. The AD of O from Example 1 and applications of the new definitions.

Lemma 2. 1. ˜O ∩ NC =
⋃

a∈A(O) CanS(a) ∪ BTop(O),
2. for each a ∈ A(O), CanS(a) ∩ BTop(O) = ∅, and
3. for each a, b ∈ A(O) with a �= b, CanS(a) ∩ CanS(b) = ∅.

214 H. Zhao et al.

Proof. (1). Since A(O) partitions O, we have that ˜O∩NC =
⋃

a∈A(O) ã∩NC, and

thus for each concept name A ∈ ˜O∩NC, #MinAts(A) > 0. If #MinAts(A) = 1,
we thus have some a ∈ A(O) with a ∈ MinAts(A) and hence A ∈ CanS(a).
Otherwise, #MinAts(A) > 1 and A ∈ BTop(O). The “⊇” direction holds by
definition of CanS(a) and BTop(O).

(2). This follows immediately from the facts that A ∈ BTop(O) implies that
#MinAts(A) > 1 and A ∈ CanS(a) implies that #MinAts(A) = 1.

(3). Let A ∈ CanS(a). By definition, a ∈ MinAts(A). Assume there was some
b �= a with A ∈ CanS(b); this would mean b ∈ MinAts(A), contradicting
#MinAts(A) = 1.

��

Theorem 1. Given a concept name A ∈ BTop(O), we have

1. M({A},O) = ∅,
2. O �|= A � ⊥, and
3. there is no concept name B �= A, B ∈ ˜O with O |= A � B.

Proof. (1). Let A ∈ BTop(O). Hence #MinAts(A) > 1, and thus there are two
distinct atoms a, b ∈ MinAts(A). By definition of MinAts(A), a �� b and b �� a.
Now assume M({A},O) �= ∅; due to monotonicity and {A} being a singleton
signature, there is some c with M({A},O) = ↓c. Since ⊥-locality based mod-
ules are monotonic, M({A},O) ⊆ ↓a and M({A},O) ⊆ ↓b which, together
with a, b ∈ MinAts(A) and A ∈ c̃, contradicts the minimality condition in the
definition of MinAts(A).

(2). This is a direct consequence of (1) M({A},O) = ∅: ⊥-locality based mod-
ules capture deductive (and model) conservativity, hence M({A},O) = ∅
implies that O cannot entail A � ⊥.

(3). This is also a direct consequence of (1) and the fact that ⊥-locality based
modules are closed under subsumers [11].

��

Based on Theorem 1, for a concept name A ∈ BTop(O), we can avoid checking
O |=? A � ⊥ and subsumptions of the form O |=? A � B. Next, we use the
AD to identify a (hopefully small) set of STs Subs(O) that are sufficient for
classification.

Definition 2. The set of STs Subs(a) of an atom a is defined as follows:

Subs(a) := {(A,B) | A ∈ CanS(a), B ∈ ˜↓a, and A �= B} ∪
{(A,⊥) | A ∈ CanS(a)} ∪
{(�, B) | B ∈ CanS(a)}.

Given a module M = a1 ∪ a2... ∪ an, the set of STs Subs(M) of M is defined as
follows:

Subs(M) := Subs(a1) ∪ . . . ∪ Subs(an).

Finally, Subs(O) :=
⋃

a∈A(O) Subs(a) ∪ {(�, A) | A ∈ BTop(O)} ∪ {(�,⊥)}.

ReAD: AD-Based Modular Ontology Classification 215

As a consequence of the following theorem, a reasoner that tests only STs in
Subs(O) during classification will (a) test all required, non-trivial1 STs and (b)
never duplicate a test.2

Theorem 2. For A,B ∈ ˜O∩NC∪{�,⊥} with ⊥ �= A �= B �= �. If O |= A � B
then (A,B) ∈ Subs(O), and (A,B) is either in exactly one Subs(a) or of the form
(�, A) or (�,⊥).

Proof. Let A,B be as described in Theorem 2 and let O |= A � B. If A �= �,
then A �∈ BTop(O) by Theorem 1.3. By Lemma 2.1, there is an atom a with
A ∈ CanS(a), and by Lemma 2.3, this atom a is unique. By definition of candidate
sets, CanS(a) ⊆ ã ⊆ ˜↓a, and thus A ∈ ˜↓a and, by definition of AD, ↓a is a
module. If B �= ⊥, by definition of modules, we have B ∈ ˜↓a. By definition of
Subs(·), (A,B) ∈ Subs(a). If B = ⊥, we find (A,⊥) ∈ Subs(a) by Definition 2.

If A = � and B = ⊥, by definition of Subs(O), we have (�,⊥) ∈ Subs(O).
If A = � and B �= ⊥, by Lemma 2.1, B ∈

⋃

a∈A(O) CanS(a) ∪ BTop(O). If
B ∈ BTop(O), by definition of Subs(O), we have (�, B) ∈ Subs(O). If B ∈
⋃

a∈A(O) CanS(a), Lemma 2.3, there is exactly one atom with B ∈ CanS(a), and
thus by definition of Subs(O), (�, B) ∈ Subs(a). ��

In [15], it is shown that the decomposition of many ontologies results in an AD
with many small atoms with a rather shallow and wide dependency relation. As
a consequence, we should be able to exploit the AD and the insights captured
in Theorem 2 to avoid almost all subsumption tests in a novel, AD-informed
alternative to well-known enhanced traversal algorithms [5,18].

4 AD-Based Classification with Delegate Reasoners

In this section, we first explain how the results from Sect. 3 can be exploited to
make use of delegate reasoners that are optimized for tractable (or less complex)
fragments, and then describe an AD-based classification algorithm.

Assume we have, for 1 ≤ i ≤ n modules Mi ⊆ O that are in a specific
description logic L for which we have a specialised, optimised reasoner.3 Based
on our observations in Sect. 3, we can partition our subsumption tests as follows:

Subs(O) =
⋃

a∈A(O),
a�⊆M1∪...∪Mn

Subs(a) ∪ ⋃

a∈A(O),
a⊆M1∪...∪Mn

Subs(a) ∪ {(�, A) | A ∈ BTop(O)} ∪ {(�,⊥)}. (1)

Of course, the “global” subsumption test (�,⊥) should be carried out first.
Next, we will discuss briefly how the choice of “lightweight” modules Mi

affect the overall ST load. Consider the ontology whose AD is shown in Fig. 2

1 Of course we avoid testing tautologies.
2 It may, though, include a test (A, C) in addition to (A, B) and (B, C).
3 It is straightforward to extend this to more than one DL and more than one spe-

cialised, optimised reasoner.

216 H. Zhao et al.

with 7 atoms, and with atoms a1, a2, a5, a6, a7 being in (the lightweight DL) L.
This means there are four modules M1, M2, M6, M7 in L.

Now we can use a delegate reasoner for L to classify the set of axioms M1 ∪
M2∪M6. The leaves us with the subsumption tests Subs(a3), Subs(a4), Subs(a5).
For these we have the choice to carry them out w.r.t. the whole of O or we can
test Subs(ai) w.r.t. Mi.

Fig. 2. Modules with different expressivity and their Subs(a)

Please recall that, in general, a union of modules is not necessarily a module,
and thus in our example M1∪M2∪M6∪M7 is not guaranteed to be a module.
Nevertheless, Theorem 2 guarantees that our split of O and usage of delegate
reasoners is correct for classification.

4.1 An AD-Based Classification Algorithm

In this section, we introduce a specific classification algorithm based on the
observations above and its implementation in our DL meta reasoner ReAD, as
sketched in Algorithm 1. For ReAD, we have chosen to set L = EL++ and use
ELK as delegate EL++ reasoner. We use HermiT as the OWL DL reasoner for
the remaining STs.

Firstly, we compute the AD and get the union of EL++ modules TEL. Then
we use ELK to classify TEL and store the resulting subsumption relations in the
hierarchy H, provided that TEL is consistent (otherwise, we stop and return the
inconsistency). For the union of modules outside EL++, called TRAs, we have
modified HermiT to ensure that it tests exactly the STs in last three terms of
Eq. 1.

HermiT works in three phases [18]: 1) it checks consistency of the input ontol-
ogy, 2) it tests all concept names for satisfiability, 3) it traverses a graph whose
nodes correspond to satisfiable concepts while recording, as labelled edges, the
results of STs (both positive and negative results, as well as disjointness rela-
tions). The graph traversal algorithm is highly optimised and exploits transitiv-
ity of the subsumption relation as well as its interaction with the disjointness
relation (the latter becomes available as “free” knowledge from STs).

The modification for HermiT is described in lines 14 to 26 in Algorithm 1. In
lines 14–19, we test consistency of O only if O has no ELAtoms as per Lemma 1.
In case O is consistent, we run HermiT’s second and third phase on (hopefully
small) TRAs, and test only the STs as per Eq. 1. For the second phase, this is done

ReAD: AD-Based Modular Ontology Classification 217

Algorithm 1. AD-aware Classification
Require: an ontology O
1: Initialize a hierarchy H := {(⊥, �)}
2: Compute the ⊥-A(O)
3: ELAtoms := {a ∈ ⊥-A(O) | ↓a is in EL++} {Find all EL++ modules}
4: TEL := ∪a∈ELAtomsa {Compute union of EL++ modules}
5: Classify(TEL) {use ELK for this}
6: if TEL is consistent then
7: add resulting hierarchy to H
8: else
9: return “O is inconsistent”

10: end if
11: RemainingAtoms := ⊥-A(O) \ ELAtoms
12: AllCanS := {A | there is some a ∈ RemainingAtoms with A ∈ CanS(a)}
13: TRAs := {α ∈ ↓a | a ∈ RemainingAtoms}
14: if ELAtoms = ∅ then
15: Check whether O |= � � ⊥ {use HermiT for this}
16: if O is inconsistent then
17: return “O is inconsistent”
18: end if
19: end if
20: for each concept name A ∈ AllCanS do
21: if TRAs |= (A, ⊥) {use HermiT for this} then
22: add (A, ⊥) to H
23: else
24: Initialize HermiT with neg. subsumptions (A, B) �∈ Subs(a) for a ∈

RemainingAtoms
25: end if
26: end for
27: Classify TRAs and add resulting hierarchy to H {use HermiT for this}
28: return H

in line 20–22. For the third phase, we initialise HermiT’s traversal graph with
negative subsumptions for all non-subsumption captured in (the complement of)
Subs(a). In this way, we preserve HermiT’s sophisticated traversal algorithm but

– exploit both ELK as a delegate reasoner for the set of all EL++ modules,
– ensure that HermiT avoids STs for

• all non-subsumptions we can infer from the AD, and
• all STs concerning concept names of the EL++ part,

i.e., we use HermiT only for STs in Subs(a) for non-EL++ atoms a, and
– possibly easify STs by focusing HermiT on TRAs.

As a consequence, we combine the AD-informed avoidance described in [41]
with HermiT’s traversal algorithm and with a MORe-inspired usage of a delegate
reasoner—but avoid any overlap in testing STs between both reasonsers.

218 H. Zhao et al.

5 Implementation and Evaluation

In this section, we report on the empirical evaluation of our algorithm. In par-
ticular, we answer the following research questions:

1. Compared to the size of the whole ontology, what is the size of the union
of EL++ modules? This will help us to understand the potential benefits of
using ELK.

2. How many maximal modules are in the union of EL++ modules? This will
help us to understand the potential benefit of our approach compared to
MORe’s usage of a single maximal EL++ module.

3. What is ReAD’s performance in terms of classification time and the number
of STs carried out, and how do these compare to those of Hermit?

5.1 Experimental Setting

Corpus In our experiment, we used the snapshot of the NCBO BioPortal ontol-
ogy repository4 from [31], which contains 438 ontologies. Firstly, we removed
ABox axioms for these 438 ontologies since we want to know how the classifica-
tion algorithm behaves on the TBox axioms. Then we removed those ontologies
that are empty after removing ABox axioms (18) or are not in OWL 2 DL (69).
We also removed those ontologies for which we cannot compute an AD (6) or
which HermiT cannot handle (37);5 this leaves us with 308 ontologies.

We further discarded the 164 ontologies that are either purely EL++ (122
ontologies) or have no EL++ modules (42 ontologies). This leaves us with a
corpus of 144 ontologies, which we split into two parts: 63 ontologies with
non-deterministic tableaux graphs and 81 ontologies with deterministic tableaux
graphs; for the latter, HermiT does not enter phase 3 (see Sect. 4.1) as the concept
name satisfiability tests produce, as a side-effect, all subsumers of each concept
name. This corpus is described in Table 1 in terms of the number of (TBox)
axioms and the length of its ontologies.6

Table 1. A summary of 144 ontologies. The 50th (median), 90th, 95th, 99th, 100th
(maximum) percentiles are shown for the size (i.e. number of axioms) and the length
(i.e., sum of length of axioms) of ontologies.

Mean StdDev P50 P90 P95 P99 P100

Size 9,296 31,071 474 13,356 32,917 145,425 233,439

Length 23,618 81,506 1,125 30,705 85,058 461,319 538,100

4 https://bioportal.bioontology.org.
5 HermiT threw OutOfMemory exceptions or timed-out after 10 h for 11 ontologies; it

failed to handle 26 ontologies due to unsupported syntax or syntax errors.
6 The length used here is standard and defined in [14] Page 24.

https://bioportal.bioontology.org

ReAD: AD-Based Modular Ontology Classification 219

Implementation. The implementation of ReAD is based on the OWL API [25]
Version 3.4.3, especially on the implementation of the AD7 that is part of the
OWL API, namely the one available via Maven Central (maven.org) with an
artifactId of owlapi-tools. We use the reasoner HermiT version 1.3.88 both
as is and modified in ReAD, and we use the reasoner ELK version 0.4.2 as a
delegate reasoner. We also use code from MORe9 for testing whether axioms
are in EL++. All experiments have been performed on Intel(R) Core(TM) i7-
6700HQ CPU 2.60 GHz RAM 8 GB, allocating Java heap memory of between
1 GB and 8 GB. Time is measured in CPU time.

5.2 EL++-Part and Modules

To answer Research Question 1, we computed the union of EL++ modules for
these ontologies (see line 3 of Algorithm 1); in the following, we call this union
the EL++-part of an ontology. Figure 3 is a scatter plot with both axes on a
logarithmic scale where each ontology is represented as a blue dot: the x-axis
indicates their size (number of axioms) and the y-axis that of their EL++-part.
We find that the size of the EL++-part varies widely across the ontologies in
our corpus, independently of the size of the ontologies but with many ontologies
having EL++-parts of substantial to large size.

Fig. 3. The size of the 144 ontologies and their EL++-part in our corpus.

To answer our Research Question 2, we consider how the number of (subset-)
maximal EL++ modules in the EL++-parts varies across the ontologies in our

7 AD implementation is only supported in OWL API version 5. We transformed this
one to OWL API version 3 so that it can be used with HermiT.

8 The code of this version can be found in http://www.hermit-reasoner.com.
9 https://github.com/anaphylactic/MORe.

http://www.hermit-reasoner.com
https://github.com/anaphylactic/MORe

220 H. Zhao et al.

corpus. In our corpus, only one ontology has only one such maximal EL++ mod-
ule, the mean number of such modules is 1,938, more than half of our ontologies
have at least 110 such modules, and 10% have over 2,500. As mentioned before,
a union of modules is not necessarily a module. Among our corpus, however,
we find that only 13% of ontologies (19/144) are such that the union of their
(numerous) EL++ modules is not a module.

5.3 Classification Time and Number of STs Carried Out

Next, we compare ReAD’s performance with that of (unmodified) HermiT on our
corpus of 144 ontologies, and we do this separately for the 63 non-deterministic
and the 81 deterministic ontologies since, as mentioned above, HermiT avoids all
STs on the latter. For ReAD, the computation time excludes the time used for
computing the AD. We classified each ontology five times: the runtime was so
stable that we decided to measure single runs.

Following [20,22], we split our corpus into three bins: into those ontologies O
that HermiT can classify in (1) less than 1 s; (2) more than 1 s and less than 10 s;
(3) more than 10 s. For 121/144 ontologies, (fastest) classification requires less
than 1 s, 13/144 ontologies require 1 s–10 s, and 10/144 ontologies require more
than 10 s. As described in [41] and rather unsurprisingly, ReAD classification
time improves over that of HermiT with the relative size of the EL++ part.

In the following analysis, we use EL-ModPer as the size of the EL++ part
relative to the size of the ontology (as percentage). Similarly, we use DupliPer
as the size of the intersection of the EL++ part and the ontology considered
by HermiT, i.e., T , relative to the size of the ontology (as percentage). We use
CTH(O) to represent the time HermiT takes to classify O and CTR(O) for ReAD’s
classification time on O. To compare classification times better, we consider the
(relative) improvement, i.e., the percentage of (CTH(O) − CTR(O))/CTH(O).

Deterministic ontologies are classified by HermiT without a single ST, hence
any performance improvement we see in ReAD comes from the usage of ELK
and from avoiding duplication of satisfiability tests in lines 21 of Algorithm 1.
To understand the contribution of these factors, we have implemented a variant
ReADwiDupli of ReAD by removing lines 14–26 in Algorithm 1, i.e., that only
exploits ELK. In Fig. 4, we see that the major relative improvement is due to the
usage of ELK for the 7 (non-trivial, deterministic) ontologies in bins (2) and (3),
and that avoiding duplication adds a smaller but still considerable improvement.

For non-deterministic ontologies, the performance improvement can stem
from three factors: the usage of ELK, the avoidance of duplicate STs between
HermiT and ELK, and the avoidance of STs via the AD in line 24 in Algorithm 1.
Again, to understand the contribution of these factors, we have implemented a
variant

– ReADwiDupli&noAvoid that avoids no duplication of STs between HermiT and
ELK and does not use the AD to avoid STs; this variant is again obtained by
removing lines 14–26 in Algorithm 1.

ReAD: AD-Based Modular Ontology Classification 221

Fig. 4. The classification time improvements of the 7 deterministic ontologies in bins
(2) and (3) with their EL-ModPer and DupliPer.

– ReADnoAvoid that does avoid duplication of STs between HermiT and ELK but
does not use the AD to avoid STs; this variant is again obtained by modifying
line 24 in Algorithm 1.

In Fig. 5, we see that, on the 16 (non-trivial, non-deterministic) ontologies, all
three factors play a notable role.

Fig. 5. The classification time improvement of 16 non-deterministic ontologies with
their EL++ ModPer and DupliPer in bins (2) and (3).

Our corpus is too small to consider correlations between EL-ModPer, DupliPer,
and the improvements we get from ReAD or its “restricted” variants, so we will
discuss some interesting examples. In general, we see that ReAD can improve clas-
sification time substantially despite the EL++ part being small, but only for non-
deterministic ontologies. Consider the deterministic ontology GO: it has a large

222 H. Zhao et al.

EL++ part (36% EL-ModPer) that overlaps modestly with T (33% DupliPer);
ReAD gets a good improvement of 26% (835 s to 619 s), but ReADwiDupli improve-
ment is close with 17% (835 s to 695 s). Contrast this with the deterministic
ontology FTC: it has an even larger EL++ part (48% EL-ModPer) that over-
laps largely with T (63% DupliPer); hence it is no surprise that its ReADwiDupli

“improvement” is −14% 1446 s to1646 s) whereas its ReAD improvement is 9%
1446 s to1322 s). The non-deterministic ontology CAO also has a tiny EL++ part
(0.67% EL-ModPer) but we get a strong ReAD improvement 38% 1071 s to 667 s)
due to avoiding STs in HermiT classification.

Finally, we compare the number of STs carried out by HermiT with those
carried out by HermiT during ReAD classification, see Table 2: overall, ReAD
halves the number of STs.

Table 2. A summary of the number of STs carried out for the 63 non-deterministic
ontologies in our corpus. The 50th (median), 90th,..., 100th (maximum) percentiles are
shown for the STs number in HermiT and HermiT-in-ReAD.

Mean StdDev P50 P90 P95 P99 P100

#STs in HermiT 387 834 64 849 2,359 4,094 4,130

#STs in HermiT-in-ReAD 178 528 11 481 660 2,730 3,465

6 Conclusion

In this paper, we have described the theoretical foundations of an AD-based clas-
sification algorithm, as well as its implementation as a modification of HermiT
with ELK as a delegate reasoner. We have evaluated our approach and took care
to investigate the effect of three factors (usage of ELK, avoiding re-testing STs
in HermiT that were already tested in ELK, avoiding STs in HermiT using infor-
mation from the AD), and learned that all three factors are clearly beneficial.

In the future, we also want to explore how our algorithm interacts with the
Enhanced Traversal algorithm as described in [5], and we can further refine our
algorithm to understand whether/which kinds of easification are beneficial; these
refinements are easily realised by adapting lines 21 and/or 26 in Algorithm 1 to
consider suitable modules.

Finally, we are currently exploring whether ReAD can deal with really hard
ontologies such as non-EL++ versions of SNOMED CT.

References

1. Armas Romero, A., Kaminski, M., Cuenca Grau, B., Horrocks, I.: Module extrac-
tion in expressive ontology languages via Datalog reasoning. J. Artif. Intell. Res.
55, 499–564 (2016)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of
IJCAI 2005 (2005)

ReAD: AD-Based Modular Ontology Classification 223

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Proceedings
of OWLED 2008 (2008)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications, 2nd
edn. Cambridge University Press, Cambridge (2007)

5. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.J., Franconi, E.: An empiri-
cal analysis of optimization techniques for terminological representation systems.
Appl. Intell. 4(2), 109–132 (1994). https://doi.org/10.1007/BF00872105

6. Baader, F., Horrocks, I., Lutz, C., Sattler, U. (eds.): An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

7. Bao, J., Voutsadakis, G., Slutzki, G., Honavar, V.: Package-based Description Log-
ics. In: Stuckenschmidt, H., et al. (ed.) [37], pp. 349–371 (2009)

8. Chen, J., Alghamdi, G., Schmidt, R.A., Walther, D., Gao, Y.: Ontology extraction
for large ontologies via modularity and forgetting. In: Proceedings of K-CAP 2019,
pp. 45–52. ACM (2019)

9. Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y., Suntisrivaraporn, B.: Incre-
mental classification of description logics ontologies. J. Autom. Reasoning 44(4),
337–369 (2010). https://doi.org/10.1007/s10817-009-9159-0

10. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
extracting modules from ontologies. In: WWW 2007, pp. 717–726. ACM (2007)

11. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: theory and practice. J. Artif. Intell. Res. 31(1), 273–318 (2008)

12. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler,
U.: OWL 2: the next step for OWL. J. Web Semant. 6(4), 309–322 (2008)

13. Cuenca Grau, B., Parsia, B., Sirin, E.: Ontology integration using E-connections.
In: Stuckenschmidt, H., et al. (eds.) [37], pp. 293–320 (2009)

14. Del Vescovo, C.: The modular structure of an ontology: atomic decomposition and
its applications. Ph.D. thesis, University of Manchester (2013). http://www.cs.
man.ac.uk/∼delvescc/thesis.pdf

15. Del Vescovo, C., Horridge, M., Parsia, B., Sattler, U., Schneider, T., Zhao, H.:
Modular structures and atomic decomposition in ontologies. J. Artif. Intell. Res.
69, 963–1021 (2020)

16. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of
an ontology: atomic decomposition. In: IJCAI, pp. 2232–2237 (2011)

17. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conser-
vative extensions in description logics. In: KR, pp. 187–197. AAAI Press (2006)

18. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to
ontology classification. J. Web Semant. 14, 84–101 (2012)

19. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2
reasoner. J. Autom. Reasoning 53(3), 245–269 (2014). https://doi.org/10.1007/
s10817-014-9305-1

20. Goncalves, J.R.: Impact analysis in description logic ontologies. Ph.D. thesis, The
University of Manchester (2014)

21. Gonçalves, R.S., et al.: OWL reasoner evaluation (ORE) workshop 2013 results.
In: ORE, pp. 1–18 (2013)

22. Gonçalves, R.S., Parsia, B., Sattler, U.: Performance heterogeneity and approxi-
mate reasoning in description logic ontologies. In: Cudré-Mauroux, P., et al. (eds.)
ISWC 2012. LNCS, vol. 7649, pp. 82–98. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-35176-1 6

23. Guimaraes, R., Sattler, U., Wassermann, R.: Ontology stratification methods:
acomparative study. In: MedRACER+ WOMoCoE@ KR, pp. 51–62 (2018)

https://doi.org/10.1007/BF00872105
https://doi.org/10.1007/s10817-009-9159-0
http://www.cs.man.ac.uk/~delvescc/thesis.pdf
http://www.cs.man.ac.uk/~delvescc/thesis.pdf
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/978-3-642-35176-1_6
https://doi.org/10.1007/978-3-642-35176-1_6

224 H. Zhao et al.

24. Horridge, M., Bail, S., Parsia, B., Sattler, U.: Toward cognitive support for OWL
justifications. Knowl.-Based Syst. 53, 66–79 (2013)

25. Horridge, M., Bechhofer, S.: The OWL API: a java API for OWL ontologies.
Semant. web 2(1), 11–21 (2011)

26. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: the making of a web ontology language. J. Web Semant. 1(1), 7–26 (2003)

27. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Proceedings of KR
2008, pp. 274–284. AAAI Press (2008)

28. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: The incredible ELK. J. Autom. Reasoning
53(1), 1–61 (2014). https://doi.org/10.1007/s10817-013-9296-3

29. Konev, B., Lutz, C., Ponomaryov, D., Wolter, F.: Decomposing description logic
ontologies. In: KR 2010, pp. 236–246. AAAI Press (2010)

30. Koopmann, P., Schmidt, R.A.: Count and forget: uniform interpolation of SHQ-
ontologies. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS
(LNAI), vol. 8562, pp. 434–448. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08587-6 34

31. Matentzoglu, N., Parsia, B.: BioPortal Snapshot 30 March 2017 (data set) (2017).
http://doi.org/10.5281/zenodo.439510

32. Matentzoglu, N., Bail, S., Parsia, B.: A snapshot of the OWL web. In: Alani, H.,
et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 331–346. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41335-3 21

33. Matentzoglu, N., Parsia, B., Sattler, U.: Owl reasoning: subsumption test hardness
and modularity. J. Autom. Reasoning 60(4), 385–419 (2018). https://doi.org/10.
1007/s10817-017-9414-8

34. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL
reasoner evaluation (ORE) 2015 competition report. J. Autom. Reasoning 59(4),
455–482 (2017). https://doi.org/10.1007/s10817-017-9406-8

35. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: modular combination
of OWL reasoners for ontology classification. In: Cudré-Mauroux, P., et al. (eds.)
ISWC 2012. LNCS, vol. 7649, pp. 1–16. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-35176-1 1

36. Serafini, L., Tamilin, A.: Composing modular ontologies with distributed descrip-
tion logics. In: Stuckenschmidt, H., et al. (eds.) [37], pp. 321–347 (2009)

37. Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.): Modular Ontologies: Con-
cepts, Theories and Techniques for Knowledge Modularization. LNCS, vol. 5445.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01907-4

38. Suntisrivaraporn, B.: Module extraction and incremental classification: a prag-
matic approach for EL+ ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 230–244. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-68234-9 19

39. Tsarkov, D., Palmisano, I.: Chainsaw: a metareasoner for large ontologies. In: Pro-
ceedings of ORE 2012 (2012)

40. Zhao, H., Parsia, B., Sattler, U.: Avoiding subsumption tests during classification
using the atomic decomposition. In: DL 2019, vol. 573 (2019)

41. Zhao, H., Parsia, B., Sattler, U.: ReAD: delegate OWL reasoners for ontology clas-
sification with atomic decomposition. In: Proceedings of WOMoCoE 2020 (2020)

42. Zhao, Y., Schmidt, R.A.: Role forgetting for ALCOQH(∇)-ontologies using an
Ackermann-based approach. In: IJCAI 2017, pp. 1354–1361 (2017). ijcai.org

43. Zhao, Y., Schmidt, R.A.: On concept forgetting in description logics with qualified
number restrictions. In: IJCAI 2018, pp. 1984–1990 (2018). ijcai.org

https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1007/978-3-319-08587-6_34
https://doi.org/10.1007/978-3-319-08587-6_34
http://doi.org/10.5281/zenodo.439510
https://doi.org/10.1007/978-3-642-41335-3_21
https://doi.org/10.1007/s10817-017-9414-8
https://doi.org/10.1007/s10817-017-9414-8
https://doi.org/10.1007/s10817-017-9406-8
https://doi.org/10.1007/978-3-642-35176-1_1
https://doi.org/10.1007/978-3-642-35176-1_1
https://doi.org/10.1007/978-3-642-01907-4
https://doi.org/10.1007/978-3-540-68234-9_19
https://www.ijcai.org
https://www.ijcai.org

Weighted Defeasible Knowledge Bases
and a Multipreference Semantics
for a Deep Neural Network Model

Laura Giordano(B) and Daniele Theseider Dupré

DISIT - Università del Piemonte Orientale, Alessandria, Italy
{laura.giordano,dtd}@uniupo.it

Abstract. In this paper we investigate the relationships between a mul-
tipreferential semantics for defeasible reasoning in knowledge represen-
tation and a deep neural network model. Weighted knowledge bases for
description logics are considered under a “concept-wise” multipreference
semantics. The semantics is further extended to fuzzy interpretations
and exploited to provide a preferential interpretation of Multilayer Per-
ceptrons, under some condition.

1 Introduction

Preferential approaches have been used to provide axiomatic foundations of non-
mono-tonic and common sense reasoning [5,18,37,38,42,45,46]. They have been
extended to description logics (DLs), to deal with inheritance with exceptions
in ontologies, by allowing for non-strict forms of inclusions, called typicality or
defeasible inclusions, with different preferential semantics [10,26,27], and closure
constructions [11–13,23,28,47].

In this paper, we exploit a concept-wise multipreference semantics as a
semantics for weighted knowledge bases, i.e. knowledge bases in which defea-
sible or typicality inclusions of the form T(C) � D (meaning “the typical C’s
are D’s” or “normally C’s are D’s”) are given a positive or negative weight. This
multipreference semantics, which takes into account preferences with respect to
different concepts, has been first introduced as a semantics for ranked DL knowl-
edge bases [20]. For weighted knowledge bases, we develop a different semantic
closure construction, although in the spirit of other semantic constructions in the
literature. We further extend the multipreference semantics to the fuzzy case.

The concept-wise multipreference semantics has been shown to have some
desired properties from the knowledge representation point of view [20,21], and
a related semantics with multiple preferences has also been proposed in the
first-order logic setting by Delgrande and Rantsaudis [19]. In previous work [24],
the concept-wise multipreference semantics has been used to provide a preferen-
tial interpretation of Self-Organising Maps [35], psychologically and biologically
plausible neural network models. In this paper, we aim at investigating its rela-
tionships with another neural network model, Multilayer Perceptrons.
c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 225–242, 2021.
https://doi.org/10.1007/978-3-030-75775-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_16

226 L. Giordano and D. Theseider Dupré

We consider a multilayer neural network after the training phase, when the
synaptic weights have been learned, to show that the neural network can be given
a preferential DL semantics with multiple preferences, as well as a semantics
based on fuzzy DL interpretations and another one combining fuzzy interpre-
tations with multiple preferences. The three semantics allow the input-output
behavior of the network to be captured by interpretations built over a set of
input stimuli through a simple construction, which exploits the activity level of
neurons for the stimuli. Logical properties can be verified over such models by
model checking.

To prove that the fuzzy multipreference interpretations, built from the net-
work for a given set of input stimuli, are models of the neural network in a logical
sense, we map the multilayer network to a conditional knowledge base, i.e., a
set of weighted defeasible inclusions. A logical interpretation of a neural network
can be useful from the point of view of explainability, in view of a trustworthy,
reliable and explainable AI [1,2,29], and can potentially be exploited as the basis
for an integrated use of symbolic reasoning and neural models.

2 The Description Logics ALC and EL
In this section we recall the syntax and semantics of the description logic ALC
[4] and of its lightweight fragment EL [3] at the basis of OWL2 EL Profile.

Let NC be a set of concept names, NR a set of role names and NI a set of
individual names. The set of ALC concepts (or, simply, concepts) can be defined
inductively as follows: (1) A ∈ NC , � and ⊥ are concepts; (2) if C and D are
concepts, and r ∈ NR, then C � D, C � D, ¬C, ∀r.C, ∃r.C are concepts.

A knowledge base (KB) K is a pair (T ,A), where T is a TBox and A is an
ABox. The TBox T is a set of concept inclusions (or subsumptions) C � D,
where C,D are concepts. The ABox A is a set of assertions of the form C(a)
and r(a, b) where C is a concept, a an individual name in NI and r a role name
in NR.

An ALC interpretation is defined as a pair I = 〈Δ, ·I〉 where: Δ is a domain—
a set whose elements are denoted by x, y, z, . . . —and ·I is an extension function
that maps each concept name C ∈ NC to a set CI ⊆ Δ, each role name r ∈ NR

to a binary relation rI ⊆ Δ×Δ, and each individual name a ∈ NI to an element
aI ∈ Δ. It is extended to complex concepts as follows:

�I = Δ, ⊥I = ∅, (¬C)I = Δ\CI ,
(∃r.C)I = {x ∈ Δ | ∃y.(x, y) ∈ rI and y ∈ CI}, (C � D)I = CI ∩ DI ,
(∀r.C)I = {x ∈ Δ | ∀y.(x, y) ∈ rI ⇒ y ∈ CI}, (C � D)I = CI ∪ DI .

The notion of satisfiability of a KB in an interpretation and the notion of entail-
ment are defined as follows:

Definition 1 (Satisfiability and entailment). Given an LC interpretation
I = 〈Δ, ·I〉:

– I satisfies an inclusion C � D if CI ⊆ DI ;
– I satisfies an assertion C(a) (resp., r(a, b)) if aI ∈ CI (resp., (aI , bI) ∈ rI).

A Multipreference Semantics for a Deep Neural Network Model 227

Given a KB K = (T ,A), an interpretation I satisfies T (resp. A) if I satisfies
all inclusions in T (resp. all assertions in A); I is a model of K if I satisfies
T and A.

A subsumption F = C � D (resp., an assertion C(a), r(a, b)), is entailed by
K, written K |= F , if for all models I =〈Δ, ·I〉 of K, I satisfies F .

Given a knowledge base K, the subsumption problem is the problem of deciding
whether an inclusion C � D is entailed by K.

In the logic EL [3], concepts are restricted to C := A | � | C � C | ∃r.C,
i.e., union, complement and universal restriction are not EL constructs. In the
following, we will also consider the boolean fragment of ALC only including
constructs �, �, ¬.

3 Fuzzy Description Logics

Fuzzy description logics have been widely studied in the literature for represent-
ing vagueness in DLs [7,8,41,50,51], based on the idea that concepts and roles
can be interpreted as fuzzy sets and fuzzy binary relations.

As in Mathematical Fuzzy Logic [14] a formula has a degree of truth in an
interpretation, rather than being either true or false, in a fuzzy DL axioms are
associated with a degree of truth (usually in the interval [0, 1]). In the following
we shortly recall the semantics of a fuzzy extension of ALC referring to the
survey by Lukasiewicz and Straccia [41]. We limit our consideration to a few
features of a fuzzy DL and, in particular, we omit considering datatypes.

A fuzzy interpretation for ALC is a pair I = 〈Δ, ·I〉 where: Δ is a non-empty
domain and ·I is fuzzy interpretation function that assigns to each concept name
A ∈ NC a function AI : Δ → [0, 1], to each role name r ∈ NR a function
rI : Δ × Δ → [0, 1], and to each individual name a ∈ NI an element aI ∈ Δ.
A domain element x ∈ Δ belongs to the extension of A to some degree in [0, 1],
i.e., AI is a fuzzy set.

The interpretation function ·I is extended to complex concepts as follows:

�I(x) = 1, ⊥I(x) = 0, (¬C)I(x) = �CI(x),
(∃r.C)I(x) = supy∈Δ rI(x, y) ⊗ CI(y), (C � D)I(x) = CI(x) ⊕ DI(x)
(∀r.C)I(x) = infy∈Δ rI(x, y) � CI(y), (C � D)I(x) = CI(x) ⊗ DI(x)

where x ∈ Δ and ⊗, ⊕, � and � are arbitrary but fixed t-norm, s-norm, impli-
cation function, and negation function, chosen among the combination functions
of various fuzzy logics (we refer to [41] for details).

The interpretation function ·I is also extended to non-fuzzy axioms (i.e., to
strict inclusions and assertions of an ALC knowledge base) as follows:

(C � D)I = infx∈ΔCI(x) � DI(x), (C(a))I = CI(aI), (R(a, b))I = RI(aI , bI).

A fuzzy ALC knowledge base K is a pair (T ,A) where T is a fuzzy TBox
and A a fuzzy ABox. A fuzzy TBox is a set of fuzzy concept inclusions of the

228 L. Giordano and D. Theseider Dupré

form C � D θ n, where C � D is an ALC concept inclusion axiom, θ ∈ {≥
,≤, >,<} and n ∈ [0, 1]. A fuzzy ABox A is a set of fuzzy assertions of the
form C(a)θn or r(a, b)θn, where C is an ALC concept, r ∈ NR, a, b ∈ NI ,
θ ∈ {≥, ≤, >,<} and n ∈ [0, 1]. Following Bobillo and Straccia [7], we assume
that fuzzy interpretations are witnessed, i.e., the sup and inf are attained at some
point of the involved domain. The notions of satisfiability of a KB in a fuzzy
interpretation and of entailment are defined in the natural way.

Definition 2 (Satisfiability and entailment for fuzzy KBs). A fuzzy
interpretation I satisfies a fuzzy ALC axiom E (denoted I |= E), as follows,
for θ ∈ {≥,≤, >,<}:

- I satisfies a fuzzy ALC inclusion axiom C � D θ n if (C � D)Iθ n;
- I satisfies a fuzzy ALC assertion C(a) θ n if CI(aI)θ n;
- I satisfies a fuzzy ALC assertion r(a, b) θ n if rI(aI , bI)θ n.

Given a fuzzy KB K = (T ,A), a fuzzy interpretation I satisfies T (resp. A)
if I satisfies all fuzzy inclusions in T (resp. all fuzzy assertions in A). A fuzzy
interpretation I is a model of K if I satisfies T and A. A fuzzy axiom E is
entailed by a fuzzy knowledge base K, written K |= E, if for all models I =〈Δ, ·I〉
of K, I satisfies E.

4 A Concept-Wise Multipreference Semantics for
Weighted KBs

In this section we develop an extension of EL with defeasible inclusions having
positive and negative weights, based on a concept-wise multipreference semantics
first introduced for ranked EL+

⊥ knowledge bases [20], where defeasible inclusions
have positive integer ranks. In addition to standard EL inclusions C � D (called
strict inclusions in the following), the TBox T will also contain typicality inclu-
sions of the form T(C) � D, where C and D are EL concepts. A typicality
inclusion T(C) � D means that “typical C’s are D’s” or “normally C’s are D’s”
and corresponds to a conditional implication C |∼ D in Kraus, Lehmann and
Magidor’s (KLM) preferential approach [37,38]. Such inclusions are defeasible,
i.e., admit exceptions, while strict inclusions must be satisfied by all domain ele-
ments. We assume that with each typicality inclusion is associated a weight w, a
real number. A positive weight supports the plausibility of a defeasible inclusion;
a negative weight supports its implausibility.

4.1 Weighted EL Knowledge Bases

Let C = {C1, . . . , Ck} be a set of distinguished EL concepts, the concepts for
which defeasible inclusions are defined. A weighted TBox TCi

is defined for each
distinguished concept Ci ∈ C as a set of defeasible inclusions of the form T(Ci) �
D with a weight.

A weighted EL knowledge base Kover C is a tuple 〈Tstrict, TC1 , . . . , TCk
,A〉,

where Tstrict is a set of strict concept inclusions, A is an ABox and, for each

A Multipreference Semantics for a Deep Neural Network Model 229

Cj ∈ C, TCj
is a weighted TBox of defeasible inclusions, {(di

h, wi
h)}, where each

di
h is a typicality inclusion of the form T(Ci) � Di,h, having weight wi

h, a real
number.

Consider, for instance, the ranked knowledge base K = 〈Tstrict,
TEmployee, TStudent, A〉, over the set of distinguished concepts C =
{Employee,Student}, with empty ABox, and with Tstrict containing the set of
strict inclusions:

Employee � Adult Adult � ∃has SSN .� PhdStudent � Student
The weighted TBox TEmployee contains the following weighted defeasible inclu-
sions:

(d1) T(Employee) � Young , - 50
(d2) T(Employee) � ∃has boss.Employee, 100
(d3) T(Employee) � ∃has classes.�, -70;

the weighted TBox TStudent contains the defeasible inclusions:
(d4) T(Student) � Young , 90
(d5) T(Student) � ∃has classes.�, 80
(d6) T(Student) � ∃hasScholarship.�, -30

The meaning is that, while an employee normally has a boss, he is not likely
to be young or have classes. Furthermore, between the two defeasible inclusions
(d1) and (d3), the second one is considered less plausible than the first one.
Given two employees Tom and Bob such that Tom is not young, has no boss
and has classes, while Bob is not young, has no classes and has a boss who is an
employee, in the following, considering the weights above, we will regard Bob as
being more typical than Tom as an employee.

4.2 The Concept-Wise Preferences from Weighted Knowledge
Bases

The concept-wise multipreference semantics has been recently introduced as a
semantics for ranked EL+

⊥ knowledge bases [20], which are inspired by Brewka’s
framework of basic preference descriptions [9]. For each concept Ci ∈ C, a prefer-
ence relation <Ci

describes the preference among domain elements with respect
to concept Ci. Each <Ci

has the properties of preference relations in KLM-style
ranked interpretations [38], that is, <Ci

is a modular and well-founded strict
partial order. In particular, <Ci

is well-founded if, for all S ⊆ Δ, if S �= ∅, then
min<Ci

(S) �= ∅; <Ci
is modular if, for all x, y, z ∈ Δ, x <Cj

y implies (x <Cj
z

or z <Cj
y).

In the following we will recall the concept-wise semantics for ALC, which
extends to its fragments considered in the following. An ALC interpretation, is
extended with a collection of preference relations, one for each concept in C.

Definition 3 (Multipreference interpretation). A multipreference inter-
pretation is a tuple M = 〈Δ,<C1 , . . . , <Ck

, ·I〉, where:
(a) Δ is a domain, and ·I an interpretation function, as in ALC interpreta-

tions;
(b) the <Ci

are irreflexive, transitive, well-founded and modular relations
over Δ.

230 L. Giordano and D. Theseider Dupré

The preference relation <Ci
determines the relative typicality of domain indi-

viduals with respect to concept Ci. For instance, Tom may be more typical than
Bob as a student (tom <Student bob), but more exceptional as an employee (
bob <Employee tom). The minimal Ci-elements with respect to <Ci

are regarded
as the most typical Ci-elements.

While preferences do not need to agree, arbitrary conditional formulas cannot
be evaluated with respect to a single preference relation. For instance, evaluating
the inclusion “Are typical employed students young?” would require both the
preferences <Student and <Employee to be considered. The approach proposed in
[20] is that of combining the preference relations <Ci

into a single global pref-
erence relation <, and than exploit the global preference for interpreting the
typicality operator T, which may be applied to arbitrary concepts. A natural
way to define the notion of global preference < is by Pareto combination of the
relations <C1 , . . . , <Ck

, as follows:

x < y iff (i) x <Ci
y, for some Ci ∈ C, and

(ii) for all Cj ∈ C, x ≤Cj
y.

A slightly more sophisticated notion of preference combination, which exploits
a modified Pareto condition taking into account the specificity relation among
concepts (such as, for instance, the fact that concept PhdStudent is more specific
than concept Student), has been considered for ranked knowledge bases [20].

The addition of the global preference relation, leads to the definition of a
notion of concept-wise multipreference interpretation, where concept T(C) is
interpreted as the set of all <-minimal C elements.

Definition 4. A concept-wise multipreference interpretation (or cwm-
interpretation) is a multipreference interpretation M = 〈Δ,<C1 , . . . , <Ck

, <, ·I〉,
according to Definition 3, such that the global preference relation < is defined as
above and (T(C))I = min<(CI), where Min<(S) = {u : u ∈ S and �z ∈ S s.t.
z < u}.
In the following, we define a notion of cwm-model of a weighted EL knowledge
base K as a cwm-interpretation in which the preference relations <Ci

are con-
structed from the typicality inclusions in the TCi

’s.

4.3 A Semantics Closure Construction for Weighted Knowledge
Bases

Given a weighted knowledge base K = 〈Tstrict, TC1 , . . . , TCk
,A〉, where TCi

=
{(di

h, wi
h)} for i = 1, . . . , k, and an EL interpretation I = 〈Δ, ·I〉 satisfying all

the strict inclusions in Tstrict and assertions in A, we define a preference relation
<Cj

on Δ for each distinguished concepts Ci ∈ C through a semantic closure
construction, a construction similar in spirit to the one considered by Lehmann
for the lexicographic closure [39], but based on a different seriousness ordering.
In order to define <Ci

we consider the sum of the weights of the defeasible
inclusions for Ci satisfied by each domain element x ∈ Δ; higher preference wrt
<Ci

is given to the domain elements whose associated sum (wrt Ci) is higher.

A Multipreference Semantics for a Deep Neural Network Model 231

First, let us define when a domain element x ∈ Δ satisfies/violates a typicality
inclusion for Ci wrt an EL interpretation I. As EL has the finite model property
[3], we will restrict to EL interpretations with a finite domain. We say that
x ∈ Δ satisfies T(Ci) � Din I, if x �∈ CI

i or x ∈ DI (otherwise x violates
T(Ci) � D in I). Note that, in an interpretation I, any domain element which
is not an instance of Ci trivially satisfies all defeasible inclusions T(Ci) � D.
Such domain elements will be given the lowest preference with respect to <Ci

.
Given an EL interpretation I = 〈Δ, ·I〉 and a domain element x ∈ Δ, we

define the weight of x wrt Ciin I, Wi(x), considering the inclusions (T(Ci) �
Di,h , wi

h) ∈ TCi
:

Wi(x) =

{∑
h:x∈DI

i,h
wi

h if x ∈ CI
i

−∞ otherwise
(1)

where −∞ is added at the bottom of all real values.
Informally, given an interpretation I, for x ∈ CI

i , the weight Wi(x) of x
wrt Ci is the sum of the weights of all the defeasible inclusions for Ci satisfied
by x in I. The more plausible are the satisfied inclusions, the higher is the
weight of x. For instance, in the example (Sect. 4.1), assuming that elements
tom, bob ∈ EmployeeI , and that the typicality inclusion (d3) is satisfied by tom,
while (d1), (d2) are satisfied by bob, for Ci = Employee, we would get Wi(tom) =
−70 and Wi(bob) = 100 − 70 = 30.

Based on this notion of weight of a domain element with respect to a concept,
one can construct a preference relation <Ci

from a given EL interpretation I. A
domain element x is preferred to element y wrt Ci if the weight of the defaults
in TCi

satisfied by x is higher than weight of defaults in TCi
satisfied by y.

Definition 5 (Preference relation <Ci
constructed from TCi

). Given
a ranked knowledge base K where, for all j, TCj

= {(di
h, ri

h)}, and an EL inter-
pretation I = 〈Δ, ·I〉, a preference relation ≤Ci

can be defined as follows: For
x, y ∈ Δ,

x ≤Ci
y iff Wi(x) ≥ Wi(y) (2)

≤Cj
is a total preorder relation on Δ. A strict preference relation (a strict mod-

ular partial order) <Cj
and an equivalence relation ∼Cj

can be defined on Δ
by letting: x <Cj

y iff (x ≤Cj
y and not y ≤Cj

x), and x ∼Cj
y iff (x ≤Cj

y
and y ≤Cj

x). Note that the domain elements which are instances of Ci are
all preferred (wrt <Ci

) to the domain elements which are not instances of Ci.
Furthermore, for all domain elements x, y �∈ CI

j , x ∼Cj
y holds. The higher

is the weight of an element wrt Ci the more preferred is the element. In the
example, Wi(bob) = 30 > Wi(tom) = −70 (for Ci = Employee) and, hence,
bob <Employee tom, i.e., Bob is more typical than Tom as an employee.

Following the same approach as for ranked EL knowledge bases [20], we define
a notion of cwm-model for a weighted knowledge base K, where each preference
relation <Cj

in the model is constructed from the weighted TBox TCj
according

to Definition 5 above, and the global preference is defined by combining the <i’s.

232 L. Giordano and D. Theseider Dupré

Definition 6 (cwm-model of K). Let K = 〈Tstrict, TC1 , . . . , TCk
,A〉 be a

weighted EL knowledge base over C, and I = 〈Δ, ·I〉 an EL interpretation for K.
A concept-wise multipreference model (cwm-model) of K is a cwm-interpretation
M = 〈Δ,<C1 , . . . , <Ck

, <, ·I〉 such that: M satisfies all strict inclusions in
Tstrict and assertions in A, and for all j = 1, . . . , k, <Cj

is defined from TCj

and I, according to Definition 5.

As preference relations <Cj
, defined according to Definition 5, are irreflexive,

transitive, modular, and well-founded relations over Δ (for well-foundedness,
remember that we are considering finite models), the notion of cwm-model M
introduced above is well-defined. By definition of cwm-model, M must satisfy
all strict inclusions and assertions in K, but it is not required to satisfy all
typicality inclusions T(Cj) � D in K, unlike other preferential typicality logics
[26]. This happens in a similar way in the multipreferential semantics for EL+

⊥
ranked knowledge bases, and we refer to [20] for an example showing that the
cwm-semantics is more liberal (in this respect) than standard KLM preferential
semantics.

Observe that the notion of weight Wi(x) of x wrt Ci, defined above as the
sum of the weights of the satisfied defaults, is just a possible choice for the
definition of the preference relations <i with respect to a concept Ci. A different
notion of preference <Ci

has been defined from a ranked TBox TCj
[20], by

exploiting the (positive) integer ranks of the defeasible inclusions in TCj
and the

(lexicographic) # strategy in the framework of basic preference descriptions [9].
The sum of weights/ranks has been first used in Penalty Logic [48], where weigths
are positive real numbers, and in Kern-Isberner’s c-interpretations [33,34], which
also consider the sum of the weights κ−

i ∈ N, representing penalty points for
falsified conditionals. Here, we sum the (positive or negative) weights of the
satisfied defaults, and we do it in a concept-wise manner.

A notion of concept-wise entailment (or cwm-entailment) can be defined in
a natural way to establish when a defeasible concept inclusion follows from a
weighted knowledge base K. We can restrict our consideration to (finite) canon-
ical models, i.e., models which are large enough to contain all the relevant
domain elements1.

Definition 7 (cwm-entailment). An inclusion T(C) � D is cwm-entailed
from a weighted knowledge base K if T(C) � D is satisfied in all canonical
cwm-models M of K.

As for ranked EL knowledge bases [20], it can be proved that this notion of
cwm-entailment for weigthed KBs satisfies the KLM postulates of a preferential
consequence relation [20]. This is an easy consequence of the fact that the global
preference relation <, which is used to evaluate typicality, is a strict partial
order. As < is not necessarily modular, cwm-entailment does not necessarily
satisfy rational monotonicity [38].
1 This is a standard assumption in the semantic characterizations of rational closure

for DLs, and in other semantic constructions. See [20] for the definition of canonical
models for EL.

A Multipreference Semantics for a Deep Neural Network Model 233

The problem of deciding cwm-entailment is Πp
2-complete for ranked EL+

⊥
knowledge bases [20]; cwm-entailment can be proven as well to be in Πp

2 for
weighted knowledge bases, based on a similar reformulation of cwm-entailment
as a problem of computing preferred answer sets. The proof of the result is
similar to the proof of Proposition 7 in the online Appendix of [20], apart from
minor differences due to the different notion of preference <Ci

used here with
respect to the one for ranked knowledge bases.

5 Weighted Tboxes and Multipreference Fuzzy
Interpretations

In this section, we move to consider fuzzy interpretations, and investigate the
possibility of extending the previous multipreference semantic construction to
the fuzzy case.

Definition 8 (Fuzzy multipreference interpretation). A fuzzy multipref-
erence interpretation (or fm-interpretation) is a tuple M = 〈Δ,<C1 , . . . ,
<Ck

, ·I〉, where:
(a) (Δ, ·I) is a fuzzy interpretation;
(b) the <Ci

are irreflexive, transitive, well-founded and modular relations
over Δ.

Let K be a weighted knowledge base 〈Tstrict, TC1 , . . . , TCk
,A〉, where each

axiom in Tstrict has the form 〈α ≥ 1〉, and TCi
= {(di

h, wi
h)} is a set of typicality

inclusions di
h = T(Ci) � Di,h with weight wi

h.
Given a fuzzy interpretation I = 〈Δ, ·I〉, satisfying all the strict inclusions in

Tstrict and all assertions in A, we aim at constructing a concept-wise multipref-
erence interpretation from I, by defining a preference relation <Cj

on Δ for each
Ci ∈ C, based on a closure construction similar to the one developed in Sect. 4.3.
The definition of Wi(x) in (1) can be reformulated as follows:

Wi(x) =
{∑

h wi
h DI

i,h(x) if CI
i (x) > 0

−∞ otherwise
(3)

by regarding the interpretation DI
i,h of concept Di,h as a two valued function

from Δ to {0, 1} (rather than a subset of Δ). And similarly for CI
i (x). Definition

(3) can be taken as the definition of the weight function Wi(x) when I is a fuzzy
interpretation. Simply, in the fuzzy case, for each default di

h = T(Ci) � Di,h,
DI

i,h(x) is a value in [0, 1]. In the sum, the value DI
i,h(x) of the membership of

x in Di,h is weighted by wi
h.

From this notion of weight of a domain element x wrt a concept Ci ∈ C,
the preference relation ≤Ci

associated with TCj
in a fuzzy interpretation I can be

defined as in Sect. 4.3:

x ≤Ci
y iff Wi(x) ≥ Wi(y) (4)

A notion of fuzzy multipreference model of a weighted KB can then be defined.

234 L. Giordano and D. Theseider Dupré

Definition 9 (fuzzy multipreference model of K). Let K = 〈Tstrict,
TC1 , . . . , TCk

,A〉 be a weighted EL knowledge base over C. A fuzzy multiprefer-
ence model (or fm-model) of K is an fm-interpretation M = 〈Δ,<C1 , . . . , <Ck

, ·I〉 such that: the fuzzy interpretation I = (Δ, ·I) satisfies all strict inclusions
in Tstrict and assertions in A and, for all j = 1, . . . , k, <Cj

is defined from TCj

and I, according to condition (4).

Note that, as we restrict to witnessed fuzzy interpretations I, for S �= ∅, infx∈SC I
i

is attained at some point in Δ. Hence, min<Ci
(S) �= ∅, i.e., <Ci

is well-founded.
The preference relation <Ci

establishes how typical a domain element x is
wrt Ci. We can then require that the degree of membership in Ci (given by the
fuzzy interpretation I) and the relative typicality wrt Ci (given by the preference
relations <Ci

) are related, and agree with each other.

Definition 10 (Coherent fm-models). The preference relation <Ci
agrees

with the fuzzy interpretation I = 〈Δ, ·I〉 if, for all x, y ∈ Δ: x <Ci
y iff CI

i (x) >
CI

i (y).
An fm-model M = 〈Δ,<C1 , . . . , <Ck

, ·I〉 of K is a coherent fm-model (or cfm-
model) of K if, for all Ci ∈ C, preference relation <Ci

agrees with the fuzzy
interpretation I.

In a cfm-model, the preference relation <Ci
over Δ constructed from TCi

coin-
cides with the preference relation induced by CI

i . As the interpretation function
·I extends to any concept C, for cfm-models we do not need to introduce a global
preference relation <, defined by combining the <Ci

. To define the interpretation
of typicality concepts T(C) in a cfm-model, we follow a different route and we
let, for all concepts C,

(T(C))I = min<C
(CI),

where <C is the preference relation over Δ induced by CI , i.e., for all x, y ∈ Δ:
x <C y iff CI(x) > CI(y). Note that satisfiability in a cfm-model is now extended
to fuzzy inclusion axioms involving typicality concepts, such as 〈T(C) � D ≥ α〉.

A notion of cfm-entailment from a weighted knowledge base K can be defined
in the obvious way: a fuzzy axiom E is cfm-entailed by a fuzzy knowledge base
K if, for all cfm-models M of K, M satisfies E.

6 Preferential and Fuzzy Interpretations of Multilayer
Perceptrons

In this section, we first shortly introduce multilayer perceptrons. Then we
develop a preferential interpretation of a neural network after training, as well
as a fuzzy-preferential semantics.

Let us first recall from [30] the model of a neuron as an information-processing
unit in an (artificial) neural network. The basic elements are the following:

– a set of synapses or connecting links, each one characterized by a weight. We
let xj be the signal at the input of synapse j connected to neuron k, and wkj

the related synaptic weight;

A Multipreference Semantics for a Deep Neural Network Model 235

– the adder for summing the input signals to the neuron, weighted by the
respective synapses weights:

∑n
j=1 wkjxj ;

– an activation function for limiting the amplitude of the output of the neuron
(typically, to the interval [0, 1] or [−1,+1]).

The sigmoid, threshold and hyperbolic-tangent functions are examples of activa-
tion functions. A neuron k can be described by the following pair of equations:
uk =

∑n
j=1 wkjxj , and yk = ϕ(uk + bk), where x1, . . . , xn are the input signals

and wk1, . . . , wkn are the weights of neuron k; bk is the bias, ϕ the activation
function, and yk is the output signal of neuron k. By adding a new synapse with
input x0 = +1 and synaptic weight wk0 = bk, one can write: uk =

∑n
j=0 wkjxj ,

and yk = ϕ(uk), where uk is called the induced local field of the neuron. The
neuron can be represented as a directed graph, where the input signals x1, . . . , xn

and the output signal yk of neuron k are nodes of the graph. An edge from xj

to yk, labelled wkj , means that xj is an input signal of neuron k with synaptic
weight wkj .

A neural network can then be seen as “a directed graph consisting of nodes
with interconnecting synaptic and activation links” [30]: nodes in the graph are
the neurons (the processing units) and the weight wij on the edge from node j to
node i represents “the strength of the connection [..] by which unit j transmits
information to unit i” [44]. Source nodes (i.e., nodes without incoming edges)
produce the input signals to the graph. Neural network models are classified by
their synaptic connection topology. In a feedforward network the architectural
graph is acyclic, while in a recurrent network it contains cycles. In a feedfor-
ward network neurons are organized in layers. In a single-layer network there is
an input-layer of source nodes and an output-layer of computation nodes. In a
multilayer feedforward network there is one or more hidden layer, whose compu-
tation nodes are called hidden neurons (or hidden units). The source nodes in
the input-layer supply the activation pattern (input vector) providing the input
signals for the first layer computation units. In turn, the output signals of first
layer computation units provide the input signals for the second layer computa-
tion units, and so on, up to the final output layer of the network, which provides
the overall response of the network to the activation pattern. In a recurrent
network at least one feedback exists, so that “the output of a node in the sys-
tem influences in part the input applied to that particular element” [30]. In the
following, we do not put restrictions on the topology the network.

“A major task for a neural network is to learn a model of the world” [30].
In supervised learning, a set of input/output pairs, input signals and corre-
sponding desired response, referred as training data, or training sample, is used
to train the network to learn. In particular, the network learns by changing
the synaptic weights, through the exposition to the training samples. After the
training phase, in the generalization phase, the network is tested with data not
seen before. “Thus the neural network not only provides the implicit model of
the environment in which it is embedded, but also performs the information-
processing function of interest” [30]. In the next section, we try to make this
model explicit as a multipreference model.

236 L. Giordano and D. Theseider Dupré

6.1 A Multipreference Interpretation of Multilayer Perceptrons

Assume that the network N has been trained and the synaptic weights wkj have
been learned. We associate a concept name Ci ∈ NC to any unit i in N (including
input units and hidden units) and construct a multi-preference interpretation
over a (finite) domain Δ of input stimuli, the input vectors considered so far, for
training and generalization. In case the network is not feedforward, we assume
that, for each input vector v in Δ, the network reaches a stationary state [30],
in which yk(v) is the activity level of unit k.

Let C = {C1, . . . , Cn} be a subset of NC , the set of concepts Ci for a distin-
guished subset of units i, the units we are focusing on (for instance, C might be
associated to the set of output units, or to all units). We can associate to N and
Δ a (two-valued) concept-wise multipreference interpretation over the boolean
fragment of ALC (with no roles and no individual names), based on Definition
4, as follows:

Definition 11. The cwm interpretation MΔ
N = 〈Δ,<C1 , . . . , <Cn

, <, ·I〉over Δ
for network N wrt C is a cwm-interpretation where:
− the interpretation function ·I is defined for named concepts Ck ∈ NC as:
x ∈ CI

k if yk(x) �= 0, and x �∈ CI
k if yk(x) = 0.

− for Ck ∈ C, relation <Ck
is defined for x, x′ ∈ Δ as: x <Ck

x′ iff yk(x) >
yk(x′)2.

The relation <Ck
is a strict partial order, and ≤Ck

and ∼Ck
are defined as usual.

In particular, x ∼Ck
x′ for x, x′ �∈ CI

k . Clearly, the boundary between the domain
elements which are in CI

k and those which are not could be defined differently,
e.g., by letting x ∈ CI

k if yk(x) > 0.5, and x �∈ CI
k if yk(x) ≤ 0.5. This would

require only a minor change in the definition of the <Ck
.

This model provides a multipreference interpretation of the network N , based
on the input stimuli considered in Δ. For instance, when the neural network is
used for categorization and a single output neuron is associated to each cate-
gory, each concept Ch associated to an output unit h corresponds to a learned
category. If Ch ∈ C, the preference relation <Ch

determines the relative typical-
ity of input stimuli wrt category Ch. This allows to verify typicality properties
concerning categories, such as T(Ch) � D (where D is a boolean concept built
from the named concepts in NC), by model checking on the model MΔ

N . Accord-
ing to the semantics of typicality concepts, this would require to identify typical
Ch-elements and checking whether they are instances of concept D. General typ-
icality inclusion of the form T(C) � D, with C and D boolean concepts, can
as well be verified on the model MΔ

N . However, the identification of <-minimal
C-elements requires computing, for all pairs of elements x, y ∈ Δ, the relation
< and the relations <Ci

for Ci ∈ C. This may be challenging as Δ can be large.
Evaluating properties involving hidden units might be of interest, although

their meaning is usually unknown. In the well known Hinton’s family example
2 yk(x) is the output signal of unit k for input vectors x. Differently from Sect. 6, here

(and below) the dependency of the output yk of neuron k on the input vector x is
made explicit.

A Multipreference Semantics for a Deep Neural Network Model 237

[31], one may want to verify whether, normally, given an old Person 1 and rela-
tionship Husband, Person 2 would also be old, i.e., T(Old1 � Husband) � Old2
is satisfied. Here, concept Old1 (resp., Old2) is associated to a (known, in this
case) hidden unit for Person 1 (and Person 2), while Husband is associated to
an input unit.

6.2 A Fuzzy Interpretation of Multilayer Perceptrons

The definition of a fuzzy model of a neural network N , under the same assump-
tions as in Sect. 6.1, is straightforward. Let NC be the set containing a concept
name Ci for each unit i in N , including hidden units. Let us restrict to the
boolean fragment of ALC with no individual names. We define a fuzzy inter-
pretation IN = 〈Δ, ·I〉 for N as follows: (i) Δ is a (finite) set of input stimuli;
(ii) the interpretation function ·I is defined for named concepts Ck ∈ NC as:
CI

k(x) = yk(x), ∀x ∈ Δ; where yk(x) is the output signal of neuron k, for input
vector x.

The verification that a fuzzy axiom 〈C � D ≥ α〉 is satisfied in the model
IN , can be done based on satisfiability in fuzzy DLs, according to the choice of
the t-norm and implication function. It requires CI

k(x) to be recorded for all k =
1, . . . , n and x ∈ Δ. Of course, one could restrict NC to the concepts associated
to input and output units in N , so to capture the input/output behavior of the
network.

In the next section, starting from this fuzzy interpretation of a neural network
N , we define a fuzzy multipreference interpretation Mf,Δ

N , and prove that it is
a coherent fm-model of the conditional knowledge base KN associated to N ,
under some condition.

6.3 Multilayer Perceptrons as Conditional Knowledge Bases

Let NC be as in Sect. 6.2, and let C = {C1, . . . , Cn} be a subset of NC . Given the
fuzzy interpretation IN = 〈Δ, ·I〉 as defined in Sect. 6.2, a fuzzy multipreference
interpretation Mf,Δ

N = 〈Δ,<C1 , . . . , <Cn
, ·I〉 over C can be defined by letting

<Ck
to be the preference relation induced by the interpretation IN , as follows:

for x, x′ ∈ Δ,
x <Ck

x′ iff yk(x) > yk(x′). (5)

Interpretation Mf,Δ
N makes the preference relations induced by IN explicit. We

aim at proving that Mf,Δ
N is indeed a coherent fm-model of the neural net-

work N . A weighted conditional knowledge base KN is associated to the neural
network N as follows.

For each unit k, we consider all the units j1, . . . , jm whose output signals
are the input signals of unit k, with synaptic weights wk,j1 , . . . , wk,jm . Let Ck

be the concept name associated to unit k and Cj1 , . . . , Cjm the concept names
associated to units j1, . . . , jm, respectively. We define for each unit k the follow-
ing set TCk

of typicality inclusions, with their associated weights: T(Ck) � Cj1

with wk,j1 , . . ., T(Ck) � Cjm with wk,jm . Given C, the knowledge base extracted

238 L. Giordano and D. Theseider Dupré

from network N is defined as the tuple: KN = 〈Tstrict, TC1 , . . . , TCn
,A〉, where

Tstrict = A = ∅ and KN contains the set TCk
of weighted typicality inclusions

associated to neuron k (defined as above), for each Ck ∈ C. KN is a weighted
knowledge base over the set of distinguished concepts C = {C1, . . . , Cn}. For mul-
tilayer feedforward networks, KN corresponds to an acyclic conditional knowl-
edge base, and defines a (defeasible) subsumption hierarchy among concepts.
Given a network N , it can be proved that (see [22] for the proof):

Proposition 1. Mf,Δ
N is a cfm-model of the knowledge base KN , provided the

activation functions ϕ of all units are monotonically increasing and have value
in (0, 1].

Under the given conditions, that hold, for instance, for the sigmoid activation
function, for any choice of C ⊆ NC and for any choice of the domain Δ of input
stimuli (all leading to a stationary state of N), the fm-interpretation Mf,Δ

N is a
coherent fuzzy multipreference model of the defeasible knowledge base KN . The
knowledge base KN does not provide a logical characterization of the neural
network N , as the requirement of coherence does not determine the activa-
tion functions of neurons. For this reason, the knowledge base KN captures the
behavior of all the networks N ′, obtained from N by replacing the activation
function of the units in N with other monotonically increasing activation func-
tions with values in (0, 1] (but retaining the synaptic weights as in N). That is,
an interpretation Mf,Δ

N ′ , constructed from a network N ′ and any Δ as above, is
as well a cfm-model of KN . This means that the logical formulas cfm-entailed
from KN hold in all the models Mf,Δ

N ′ built from N ′. They are properties of N ′,
as well as of network N . cfm-entailment from KN is sound for N and for each
N ′ as above.

7 Conclusions

In this paper, we have investigated the relationships between defeasible knowl-
edge bases, under a fuzzy multipreference semantics, and multilayer neural net-
works. Given a network after training, we have seen that one can construct a
(fuzzy) multipreference interpretation starting from a domain containing a set
of input stimuli, and using the activity level of neurons for the stimuli. We have
proven that such interpretations are models of the conditional knowledge base
associated to the network, corresponding to a set of weighted defeasible inclu-
sions in a simple DL.

The correspondence between neural network models and fuzzy systems has
been first investigated by Bart Kosko in his seminal work [36]. In his view, “at
each instant the n-vector of neuronal outputs defines a fuzzy unit or a fit vector.
Each fit value indicates the degree to which the neuron or element belongs to
the n-dimentional fuzzy set.” Our fuzzy interpretation of a multilayer perceptron
regards, instead, each concept (representing a single neuron) as a fuzzy set. This
is the usual way of viewing concepts in fuzzy DLs [6,40,51], and we have used
fuzzy concepts within a multipreference semantics based on a semantic closure

A Multipreference Semantics for a Deep Neural Network Model 239

construction, in the line of Lehmann’s semantics for lexicographic closure [39]
and of Kern-Isberner’s c-interpretations [33,34].

Much work has been devoted, in recent years, to the combination of neural
networks and symbolic reasoning, leading to the definition of new computa-
tional models [15,16,32,49], and to extensions of logic programming languages
with neural predicates [43,53]. Among the earliest systems combining logical rea-
soning and neural learning are the KBANN [52] and the CLIP [17] systems and
Penalty Logic [48], a non-monotonic reasoning formalism used to establish a cor-
respondence with symmetric connectionist networks . None on these approaches
provides a semantics of neural networks in terms of concept-wise multipreference
interpretations with typicality. This conditional interpretation may be of interest
from the standpoint of explainable AI [1,2,29].

Several issues may deserve investigation as future work. An open problem is
whether the notion of cfm-entailment is decidable (even for the small fragment
of EL without roles), under which choice of fuzzy logic combination functions,
and whether decidable approximations can be defined. Another issue is whether
the multipreference semantics can provide a semantic interpretation of other
neural network models, besides self-organising maps [35], whose multipreference
semantics is investigated in [24,25].

Acknowledgement. This research is partially supported by INDAM-GNCS Project
2020.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

2. Barredo Arrieta, A., et al.: Explainable artificial intelligence (XAI): concepts, tax-
onomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–
115 (2020)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P., Saf-
fiotti, A. (eds.), Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI 2005), Edinburgh, Scotland, UK, August 2005, pp. 364–369.
Professional Book Center (2005)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook - Theory, Implementation, and Applications, 2nd edn.
Cambridge University Press, Cambridge (2007)

5. Benferhat, S., Dubois, D., Prade, H.: Possibilistic logic: from nonmonotonicity to
logic programming. In: Clarke, M., Kruse, R., Moral, S. (eds.) ECSQARU 1993.
LNCS, vol. 747, pp. 17–24. Springer, Heidelberg (1993). https://doi.org/10.1007/
BFb0028177

6. Bobillo, F., Straccia, U.: The fuzzy ontology reasoner fuzzyDL. Knowl. Based Syst.
95, 12–34 (2016)

7. Bobillo, F., Straccia, U.: Reasoning within fuzzy OWL 2 EL revisited. Fuzzy Sets
Syst. 351, 1–40 (2018)

8. Borgwardt, S., Distel, F., Peñaloza, R.: The limits of decidability in fuzzy descrip-
tion logics with general concept inclusions. Artif. Intell. 218, 23–55 (2015)

https://doi.org/10.1007/BFb0028177
https://doi.org/10.1007/BFb0028177

240 L. Giordano and D. Theseider Dupré

9. Brewka, G.: A rank based description language for qualitative preferences. In:
Proceedings of the 16th European Conference on Artificial Intelligence, ECAI 2004,
Valencia, Spain, 22–27 August 2004, pp. 303–307 (2004)

10. Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: Brewka,
G., Lang, J. (eds.) Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the 11th International Conference (KR 2008), Sidney, Australia,
September 2008, pp. 476–484. AAAI Press (2008)

11. Casini, G., Meyer, T., Varzinczak, I.J., Moodley, K.: Nonmonotonic reasoning in
description logics: rational closure for the ABox. In: 26th International Workshop
on Description Logics (DL 2013), CEUR Workshop Proceedings, vol. 1014, pp.
600–615 (2013)

12. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Jan-
hunen, T., Niemelä, I. (eds.) Proceedings 12th European Conference on Logics in
Artificial Intelligence (JELIA 2010). LNCS, Helsinki, Finland, September 2010,
vol. 6341, pp. 77–90. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15675-5 9

13. Casini, G., Straccia, U., Meyer, T.: A polynomial time subsumption algorithm for
nominal safe elo⊥ under rational closure. Inf. Sci. 501, 588–620 (2019)

14. Cintula, P., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic,
vol. 37–38. College Publications, Norcross (2011)

15. d’Avila Garcez, A.S., Gori, M., Lamb, L.C., Serafini, L., Spranger, M., Tran., S.N.:
Neural-symbolic computing: an effective methodology for principled integration of
machine learning and reasoning. FLAP 6(4), 611–632 (2019)

16. d’Avila Garcez, A.S., Lamb, L.C., Gabbay, D.M.: Neural-symbolic cognitive rea-
soning. In: Cognitive Technologies. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-540-73246-4

17. d’Avila Garcez, A.S., Zaverucha, G.: The connectionist inductive learning and logic
programming system. Appl. Intell. 11(1), 59–77 (1999). https://doi.org/10.1023/
A:1008328630915

18. Delgrande, J.: A first-order conditional logic for prototypical properties. Artif.
Intell. 33(1), 105–130 (1987)

19. Delgrande, J., Rantsoudis, C.: A preference-based approach for representing
defaults in first-order logic. In: Proceedings of the 18th International Workshop
on Non-Monotonic Reasoning, NMR 2020, 12th–14th September 2020 (2020)

20. Giordano, L., Theseider Dupré, D.: An ASP approach for reasoning in a concept-
aware multipreferential lightweight DL. Theory Pract. Log. Program. 20(5), 751–
766 (2020). Online Appendix in CoRR, abs/2006.04387

21. Giordano, L., Theseider Dupré, D.: A framework for a modular multi-concept lex-
icographic closure semantics. In: Proceedings of the 18th International Workshop
on Non-Monotonic Reasoning, NMR 2020, 12th–14th September 2020 (2020)

22. Giordano, L., Theseider Dupré, D.: Weighted defeasible knowledge bases and a
multipreference semantics for a deep neural network model. CoRR, abs/2012.13421
(2020)

23. Giordano, L., Gliozzi, V.: A reconstruction of multipreference closure. Artif. Intell.
290, 103398 (2021)

24. Giordano, L., Gliozzi, V., Theseider Dupré, D.:On a plausible concept-wise multi-
preference semantics and its relations with self-organising maps. In: Calimeri, F.,
Perri, S., Zumpano, E. (eds.) Proceedings of the 35th Italian Conference on Com-
putational Logic - CILC 2020, Rende, Italy, 13–15 October 2020, CEUR Workshop
Proceedings, vol. 2710, pp. 127–140 (2020). CEUR-WS.org

https://doi.org/10.1007/978-3-642-15675-5_9
https://doi.org/10.1007/978-3-642-15675-5_9
https://doi.org/10.1007/978-3-540-73246-4
https://doi.org/10.1007/978-3-540-73246-4
https://doi.org/10.1023/A:1008328630915
https://doi.org/10.1023/A:1008328630915
https://www.CEUR-WS.org

A Multipreference Semantics for a Deep Neural Network Model 241

25. Giordano, L., Gliozzi, V., Theseider Dupré, D.: A conditional, a fuzzy and a prob-
abilistic interpretation of self-organising maps (2021)

26. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential description
logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol.
4790, pp. 257–272. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75560-9 20

27. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: ALC+T: a preferential exten-
sion of Description Logics. Fundamenta Informaticae 96, 1–32 (2009)

28. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Semantic characterization of
rational closure: from propositional logic to description logics. Artif. Intell. 226,
1–33 (2015)

29. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),
93:1–93:42 (2019)

30. Haykin, S.: Neural Networks - A Comprehensive Foundation. Pearson, London
(1999)

31. Hinton, G.: Learning distributed representation of concepts. In: Proceedings 8th
Annual Conference of the Cognitive Science Society. Erlbaum, Hillsdale (1986)

32. Hohenecker, P., Lukasiewicz, T.: Ontology reasoning with deep neural networks.
J. Artif. Intell. Res. 68, 503–540 (2020)

33. Kern-Isberner, G. (ed.): Conditionals in Nonmonotonic Reasoning and Belief Revi-
sion. LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44600-1

34. Kern-Isberner, G., Eichhorn, C.: Structural inference from conditional knowledge
bases. Stud. Logica 102(4), 751–769 (2014). https://doi.org/10.1007/s11225-013-
9503-6

35. Kohonen, T., Schroeder, M.R., Huang, T.S. (eds.) Self-Organizing Maps, 3rd edn.
Springer Series in Information Sciences. Springer, Heidelberg (2001). https://doi.
org/10.1007/978-3-642-56927-2

36. Kosko, B.: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach
to Machine Intelligence. Prentice Hall, Upper Saddle River (1992)

37. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

38. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif.
Intell. 55(1), 1–60 (1992)

39. Lehmann, D.J.: Another perspective on default reasoning. Ann. Math. Artif. Intell.
15(1), 61–82 (1995). https://doi.org/10.1007/BF01535841

40. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. J. Web Semant. 6(4), 291–308 (2008)

41. Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncer-
tainty and fuzzy vagueness. Int. J. Approx. Reason. 50(6), 837–853 (2009)

42. Makinson, D.: General theory of cumulative inference. In: Reinfrank, M., de Kleer,
J., Ginsberg, M.L., Sandewall, E. (eds.) NMR 1988. LNCS, vol. 346, pp. 1–18.
Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-50701-9 16

43. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: Deep-
ProbLog: neural probabilistic logic programming. In: Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing
Systems, NeurIPS 2018, 3–8 December 2018, Montréal, Canada, pp. 3753–3763
(2018)

44. McLeod, P., Plunkett, K., Rolls, E.T. (eds.): Introduction to Connectionist Mod-
elling of Cognitive Processes. Oxford university Press, Oxford (1998)

https://doi.org/10.1007/978-3-540-75560-9_20
https://doi.org/10.1007/978-3-540-75560-9_20
https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/s11225-013-9503-6
https://doi.org/10.1007/s11225-013-9503-6
https://doi.org/10.1007/978-3-642-56927-2
https://doi.org/10.1007/978-3-642-56927-2
https://doi.org/10.1007/BF01535841
https://doi.org/10.1007/3-540-50701-9_16

242 L. Giordano and D. Theseider Dupré

45. Pearl, J.: Probabilistic Reasoning in Intelligent Systems Networks of Plausible
Inference. Morgan Kaufmann, Burlington (1988)

46. Pearl, J.: System Z: a natural ordering of defaults with tractable applications to
nonmonotonic reasoning. In: Proceedings of the 3rd Conference on Theoretical
Aspects of Reasoning about Knowledge (TARK 1990), Pacific Grove, CA, USA,
March 1990, pp. 121–135. Morgan Kaufmann, Burlington (1990)

47. Pensel, M., Turhan, A.: Reasoning in the defeasible description logic EL⊥ - com-
puting standard inferences under rational and relevant semantics. Int. J. Approx.
Reasoning 103, 28–70 (2018)

48. Pinkas, G.: Reasoning, nonmonotonicity and learning in connectionist networks
that capture propositional knowledge. Artif. Intell. 77(2), 203–247 (1995)

49. Serafini, L., d’Avila Garcez, A.S.: Learning and reasoning with logic tensor net-
works. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS
(LNAI), vol. 10037, pp. 334–348. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49130-1 25

50. Stoilos, G., Stamou, G.B., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Fuzzy OWL:
uncertainty and the semantic web. In: Proceedings of the OWLED 2005 Workshop
on OWL: Experiences and Directions, Galway, Ireland, 11–12 November 2005,
CEUR Workshop Proceedings, vol. 188. (2005). CEUR-WS.org

51. Straccia, U.: Towards a fuzzy description logic for the semantic web (preliminary
report). In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp.
167–181. Springer, Heidelberg (2005). https://doi.org/10.1007/11431053 12

52. Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artif.
Intell. 70(1–2), 119–165 (1994)

53. Yang, Z., Ishay, A., Lee, J.: NeurASP: embracing neural networks into answer
set programming. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 1755–1762
(2020). ijcai.org

https://doi.org/10.1007/978-3-319-49130-1_25
https://doi.org/10.1007/978-3-319-49130-1_25
http://www.CEUR-WS.org
https://doi.org/10.1007/11431053_12
http://www.ijcai.org

Non-classical Logics

A Computationally Grounded Logic
of Graded Belief

Emiliano Lorini1 and François Schwarzentruber2(B)

1 IRIT-CNRS, Toulouse University, Toulouse, France
2 Univ Rennes, IRISA, CNRS, Rennes, France

schwarzentruber@ens-rennes.fr

Abstract. We present a logic of graded beliefs with a formal semantics
grounded on the notion of belief base. It has modal operators which rep-
resent what an agent would believe if she removed k pieces of information
from her belief base. We provide a sound and complete axiomatics for
our logic as well as an optimal model checking algorithm. To illustrate its
expressive power, we apply it to modeling social influence and epistemic
explanation.

1 Introduction

Epistemic logic (in the broad sense) captures epistemic attitudes including
knowledge and belief. It has been extensively studied by philosophers [27], com-
puter scientists [18,39] and economists [33] and applied to a variety of fields
of AI including security protocols [9,22], blockchain protocol [22,38] and epis-
temic planning [6]. Its language extends that of propositional logic by a modal
operator for expressing an agent’s knowledge or belief. Multi-agent extensions of
epistemic logic have been studied in which modal operators are parameterized
by agent names identifying the knower (or the believer) in the system.

Several extensions and variants of epistemic logic dealing with the notion of
graded belief have been proposed. This includes logics of probabilistic beliefs
[17,31,50] as well as logics of graded belief based on a qualitative or semi-
qualitative notion of plausibility [1,3,32,49]. As pointed out by [40,51], while
in quantitative approaches belief states are represented by classical probabilistic
measures or by alternative numerical accounts, such as lexicographic probabili-
ties or conditional probabilities, in a semi-qualitative setting, such as rank-based
systems [44] and possibility theory [16], belief states are represented by quali-
tative measures assigning orders of magnitude. Finally, qualitative approaches
employ a plausibility ordering (also called epistemic entrenchment ordering) on
possible worlds. Other approaches use graded modalities whereby the degree of
a belief is a function of the number of worlds in which the believed formula
is true [8,47,48], or of the number of evidences which support it [2]. All these
approaches to graded belief use Kripke semantics in which agents’ epistemic
states are modeled via accessibility relations over possible worlds.

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 245–261, 2021.
https://doi.org/10.1007/978-3-030-75775-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_17

246 E. Lorini and F. Schwarzentruber

Kripke semantics have severe limitations in modeling knowledge. First, the
number of possible worlds is huge in real applications: for instance, in a classical
card game with four players having each 8 cards among a set of 32 cards, the
number of possibilities is

(
32
8

) × (
24
8

) × (
16
8

)
= 9.95 × 1016 possible worlds. For

this reason, although the model checking problem of epistemic logic based on
Kripke semantics is in polynomial time, in many applications, the model cannot
be explicitly constructed. Thus, it is hard to implement graded beliefs through
Kripke semantics.

Kripke models and their corresponding accessibility relations can be com-
pactly represented by means of BDDs [46], by Boolean formulas and programs
[10–13] or by the notion of visibility [25]. In these approaches, the size of the mod-
els scales up, although the corresponding symbolic model checking is PSPACE-
complete. However, they capture restricted notions of belief and knowledge and
the formal languages they use to succinctly represent the Kripke model are of
different nature than the standard epistemic language. This makes it difficult to
define the notion of graded belief.

In this paper, we present a novel account of graded belief exploiting the
notion of belief base. The belief base approach to knowledge representation is
well-established since at least 30 years in a single-agent setting [5,23,30,42]. In
this approach, an agent has non-deductively closed explicit beliefs in her belief
base and we call implicit belief a statement that can be inferred from her explicit
beliefs.

As we aim at a multi-agent setting, we rely on the idea of using belief bases
as a semantics for multi-agent epistemic logic which was put forth in [34] and
developed in a series of papers with the aim of capturing multi-agent belief
dynamics [36,37] and higher-order epistemic reasoning [35], and of elucidating
the connection between distributed belief and belief merging [26]. We enrich
the logic presented in [34] with a notion of graded belief. It is expressed by
modal operators of the form �k

i , where i is an agent and k is a positive integer
capturing the agent’s strength of belief. At the semantic level, such operators
are interpreted via graded epistemic accessibility relations of type Rk

i , one per
k ∈ N. Such a relation specifies the set of states that agent i considers possible
after having removed at most k pieces of information from her belief base. This
means that the higher the value of k of a given state for agent i, the higher
the degree of plausibility of that state for agent i.1 Indeed, states with a high
degree of plausibility are states which satisfy a large number of information in the
agent’s belief base. In the extreme case, maximally plausible states for the agent
are states to which value 0 is assigned, since they satisfy all information in the
agent’s belief base. This is a crucial aspect of our approach which distinguishes it
from the standard extensional Kripke-style semantics for epistemic logic. While
in the standard semantics an agent’s plausibility ordering or the corresponding
plausibility measure over states is given as a primitive (see, e.g., [1,3,32]), in our
approach they are computed from and grounded on the agents’ belief base. The
latter provides an advantages for formal verification since the model checking

1 This is in line with the theory of qualitative uncertainty by [44].

A Computationally Grounded Logic of Graded Belief 247

problem is formulated in our logic in a more compact way than in existing
logics of graded belief. Also, from the conceptual point view, our logic offers a
minimalistic approach to graded belief in which the only primitive concept is
belief base, while the concept of graded implicit belief is derived from it.

Our approach provides a succinct semantics of epistemic states exploiting
belief bases as well as a conservative extension of standard epistemic logic by
the notions of explicit belief and graded belief.

The paper is organized as follows. In Sect. 2, we introduce the language of our
multi-agent epistemic logic of explicit belief and graded implicit belief. Section 3
presents its formal semantics exploiting belief bases. Section 4 presents the first
application of our logical framework to modeling the concept of social influence.
Section 5 is the core part of the paper and provides an axiomatics proven to be
sound and complete relative to the belief base semantics. In Sect. 6, we extend
the base logic by conditional belief operators and generalize the completeness
result to it. Section 7 presents a model checking algorithm for the base logic and
its extension. Section 8 presents the second application of our logic: we illustrate
its expressive power to account for a variety of notions of epistemic explanation.
Finally, in Sect. 9, we conclude.

2 Graded Doxastic Language

Assume a countably infinite set of atomic propositions Atm and a finite set of
agents Agt = {1, . . . , n}. We define the language for representing agents’ explicit
beliefs and agents’ graded implicit beliefs in two steps. First, we define the lan-
guage L0(Atm,Agt) for representing agents’ explicit beliefs by the grammar:

α ::= p | ¬α | α1 ∧ α2 | �iα,

where p ranges over Atm and i ranges over Agt . The formula �iα is read “agent
i explicitly believes that α”. Second, the language L(Atm,Agt) extends the lan-
guage L0(Atm,Agt) by graded implicit belief operators. It is is defined by:

ϕ ::= α | ¬ϕ | ϕ1 ∧ ϕ2 | �k
i ϕ,

where α ranges over L0(Atm,Agt), i ranges over Agt and k ranges over N. For
notational convenience we write L0 instead of L0(Atm,Agt) and L instead of
L(Atm,Agt), when the context is unambiguous. The other Boolean constructions
�, ⊥, → and ↔ are defined in the standard way. For every formula ϕ ∈ L, we
write Atm(ϕ) to denote the set of atomic propositions of type p occurring in ϕ.
Moreover, for every set of formulas X ⊆ L, we define Atm(X) =

⋃
ϕ∈X Atm(ϕ).

The formula �k
i ϕ is read “agent i would implicitly believe ϕ, for every removal

of at most k pieces of information from her belief base”. The value k can also be
conceived as the extent to which agent i believes that ϕ. Indeed, the higher the
number of information in the belief base that can be removed without affecting
the belief, the stronger the belief. Thus, �k

i ϕ can also be read “agent i believes
that ϕ with degree (or strength) at least k”. The abbreviation ♦k

i ϕ
def= ¬�k

i ¬ϕ

248 E. Lorini and F. Schwarzentruber

defines the concept of belief compatibility. The formula ♦k
i ϕ has to be read “ϕ

would be compatible with agent i’s explicit beliefs, for some removal of at most
k pieces of information from her belief base”.

Example 1. Let us discuss the informal meaning of some formulas by means of
an example of a single robot i exploring an area. Formula �ifire says that she
explicitly believes there is fire. We could also have �i(fire → danger). Thus,
we would have �0

i danger. If now we also have �iradiation and �i(radiation →
danger), we would have �1

i danger. In words, the agent would believe that there
is a danger at strength 1, because she would still infer danger even if at most
one explicit belief is removed.

We denote by L− the fragment of language L obtained by the rule: [4]
ϕ ::= α | ¬ϕ | ϕ1 ∧ ϕ2 | �0

i ϕ. The abbreviations �iϕ
def= �0

i ϕ and ♦iϕ
def=

♦0
i ϕ define the concepts of ungraded implicit belief and belief compatibility. More-

over, the abbreviation �=k
i ϕ

def= �k
i ϕ ∧ ¬�k+1

i ϕ has to be read “agent i believes
that ϕ with degree (or strength) equal to k”.

3 Belief Base Semantics

Following [34,36], we now present a formal semantics for the language L exploit-
ing belief bases. Unlike the standard Kripke semantics for epistemic logic in
which the notions of epistemic alternative and plausibility of a world (or state)
are given as primitive, in this semantics they are defined from the primitive
concept of belief base.

Definition 1 (State). A state is a tuple B = (B1, . . . , Bn, S) where for every
i ∈ Agt, Bi ⊆ L0 is agent i’s finite belief base, and S ⊆ Atm is the actual
environment. The set of all states is denoted by S.

The sublanguage L0(Atm,Agt) is interpreted with respect to states, as fol-
lows.

Definition 2 (Satisfaction relation). Let B = (B1, . . . , Bn, S) ∈ S be a state.
Then:

B |= p ⇐⇒ p ∈ S,

B |= ¬α ⇐⇒ B �|= α,

B |= α1 ∧ α2, ⇐⇒ B |= α1 and B |= α2,

B |= �iα ⇐⇒ α ∈ Bi.

Observe in particular the set-theoretic interpretation of the explicit belief
operator: agent i explicitly believes that α if and only if α is included in her
belief base.

It is also worth considering belief correct states, according to which every
fact explicitly believed by an agent is true.

A Computationally Grounded Logic of Graded Belief 249

Definition 3 (Belief correct state). A state B = (B1, . . . , Bn, S) is belief
correct if and only if, for every agent i ∈ Agt and for every α ∈ Bi, we have
then B |= α. The set of all belief correct states is denoted by SBC .

A multi-agent belief model (MAB) is defined to be a state supplemented with
a set of states, called context. The latter includes all states compatible with the
common ground [45], i.e., the body of information that the agents commonly
believe to be the case.

Definition 4 (Multi-agent belief model). A multi-agent belief model (MAB)
is a pair (B,Cxt), where B ∈ S and Cxt ⊆ S. The class of MABs is denoted by
M.

Note that in Definition 4 we do not require B ∈ Cxt . The following definition
introduces the notion of graded doxastic alternative.

Definition 5 (Graded doxastic alternatives). Let i ∈ Agt and let k ∈
N. Then, Rk

i is the binary relation on the set S such that, for all B =
(B1, . . . , Bn, S), B′ = (B′

1, . . . , B
′
n, S′) ∈ S:

BRk
i B′ if and only if |{α ∈ Bi : B′ |= α}| ≥ (|Bi| − k

)
,

BRk
i B′ means that B′ is a k-level doxastic alternative for agent i at B, that is

to say, B′ is a state that at B agent i considers possible after having removed at
most k pieces of information from her belief base. Graded doxastic accessibility
relations induce a plausibility ordering over states, as in [32,44].2 For notational
convenience, we write Ri instead of R0

i . Clearly, BRiB
′ if and only if B′ |= α,

for every α ∈ Bi.
The following definition extends Definition 2 to the full language L. Its for-

mulas are interpreted with respect to MABs. (We omit Boolean cases, as they
are defined in the usual way.)

Definition 6 (Satisfaction relation (cont.)). Let (B,Cxt) ∈ M. Then:

(B,Cxt) |= α ⇐⇒ B |= α,

(B,Cxt) |= �k
i ϕ ⇐⇒ ∀B′ ∈ Cxt : if BRk

i B′ then (B′,Cxt) |= ϕ.

We consider the subclass of MABs that guarantee correctness of the agents’
beliefs.

Definition 7 (Belief correct MAB). The MAB (B,Cxt) is belief correct
(BC) if and only if B ∈ Cxt and, for every i ∈ Agt and for every B′ ∈ Cxt,
B′RiB

′. The class of MABs satisfying BC is denoted by MBC .

2 Note that a belief base Bi may contain non-independent formulas p and p∧p which
count twice when computing relations Rk

i . We could consider non-redundant belief
bases in which redundant formulas such as p∧p are not allowed. We leave the analysis
of the notion of redundancy for future work.

250 E. Lorini and F. Schwarzentruber

Saying that (B,Cxt) satisfies BC is the same thing as saying that B ∈ Cxt
and, for every i ∈ Agt , the relation Ri ∩ (Cxt × Cxt) is reflexive. The condition
B ∈ Cxt in Definition 7 is necessary to make the agents’ implicit beliefs correct,
i.e., to make the formula �iϕ → ϕ valid.

As the following proposition highlights, belief correctness for MABs is com-
pletely characterized by the fact that the actual world is included in the agents’
common ground and that the agents’ explicit beliefs are correct in the sense of
Definition 3.

Proposition 1. A MAB (B,Cxt) satisfies BC if and only if B ∈ Cxt and
Cxt ⊆ SBC .

Let ϕ ∈ L. We say that ϕ is valid relative to the class M (resp. MBC),
denoted by |=M ϕ (resp. |=MBC

ϕ), if and only if, for every (B,Cxt) ∈ M (resp.
(B,Cxt) ∈ MBC) we have (B,Cxt) |= ϕ. We say that ϕ is satisfiable for the
class M (resp. MBC) if and only if ¬ϕ is not valid for the class M (resp. MBC).

As the following theorem indicates, graded belief operators add expressivity
to the non-graded language L−.

Theorem 1. The language L is strictly more expressive than the language L−.

Proof (sketch). By contradiction, suppose there is a formula ϕ from the single-
agent version of L− that is equivalent to �1

1p. Let us consider a formula ψ =
p ∧ · · · ∧ p such that �1ψ does not appear in ϕ. We have:

–
(
({p, ψ}, ∅),S

) |= �1
1p;

–
(
({p, ψ}, ∅),S

) |= ϕ;
–

(
({p}, ∅),S

) �|= �1
1p;

–
(
({p}, ∅),S

) �|= ϕ

By
(
({p, ψ}, ∅),S

) |= ϕ, we also have
(
({p}, ∅),S

) |= ϕ because ϕ does not
talk about ψ being in the base of 1. ��

4 Social Influence

In this section, we apply the language L and its belief base semantics to the
analysis of the concept of social influence. In social sciences [41], social influence
is conceived as the causal connection between an agent’s belief (or opinion) and
other agents’ beliefs: an agent (the influencee) believes that α because and as
long as she believes that other credible agents (the influencers) believe that α.
It has been shown to play a crucial role in information dynamics in multi-agent
systems (see, e.g., [14,21,43]).

The belief in the information source’s credibility is an essential component of
the influence process. Indeed, for a rational agent i to be influenced by another
agent j’s opinion, i must believe that j’s opinion is correct and well-founded,
that is to say, j must not have wrong beliefs about the subject at matter.

In line with [15], we assume that an agent i’s belief that another agent j’s
is credible about α is identified with i’s belief that ‘if agent j believes that α,

A Computationally Grounded Logic of Graded Belief 251

then α is true’. This captures a form of i’s trust in j, namely, i’s trust in j’s
credibility about α. We note the latter by Trust(i, j, α) and define it as follows:

Trust(i, j, α) def= �i(�jα → α).

Let 2Agt∗ = 2Agt \ {∅} and its elements be denoted by G,G′, . . . As the
following proposition indicates if an agent i has trusts in the credibility of each
information source in group G and explictly believes that each of them explictly
believes that α, then she should conclude that α is true with strength at least
|G|− 1. This means that an agent cumulates information received from different
credible information sources to determine her degree of belief: the higher the
number of credible sources in support of α, the stronger the influence, the higher
the degree of the belief that α. We recall that �i is defined by �0

i . This is the
reason why the resulting degree of belief is |G| − 1 instead of |G|. For example,
if G is a singleton, the resulting degree is 0 which means that agent i believes
that α.

Proposition 2. Let i ∈ Agt and G ∈ 2Agt∗. Then,

|=M

∧

j∈G

(
Trust(i, j, α) ∧ �i�jα

) → �|G|−1
i α. (1)

The following example concretely illustrates the social influence process with
the help of the belief base semantics.

Example 2. Suppose agent cb is a chatbot connected to the Internet who has
to provide information to a human user about the quality of a certain movie.
The chatbot has access to four recommender systems about movies: Netflix (nf),
Rotten Tomatoes (rt), IMDb (im) and Amazon (am). Each recommender system
provides an evaluation whether the movie is good or not which is used by the
chabot to form an opinion about the movie. Consider an arbitrary MAB (B,Cxt)
such that agent cb’s belief base in B is:

Bcb =
⋃

j∈{nf,rt,im,am}
{�jgood → good ,�j¬good → ¬good}∪

{�nfgood ,�rtgood ,�amgood ,�im¬good}.

We have the following:

(B,Cxt) |=
∧

j∈{nf,rt,im,am}

(
Trust(cb, j, good) ∧ Trust(cb, j,¬good)

) ∧

�cb�nfgood ∧ �cb�rtgood ∧ �cb�amgood ∧
�cb�im¬good ∧ �=2

cb good ∧ �=0
cb ¬good .

This means that in the situation described by the MAB (B,Cxt), (i) cb trusts
the credibility of each of the four recommender systems both about the fact
that the movie is good and about the fact that the movie is not good, and (ii)

252 E. Lorini and F. Schwarzentruber

cb believes that Netflix, Rotten Tomatoes and Amazon evaluates it as a good
movie, while IMDb evaluates it as a not good movie. Furthermore, thanks to
(i) and (ii), we have that (iii) cb believes that the movie is good with strength
equal to 2 and believes that the movie is not good with strength equal to 0. This
means that cb’s degree of belief that the movie is good, is strictly higher than
the degree of belief that the movie is not good, since there are more credible
sources in support of the former than credible sources in support of the latter.

It is worth noting that in Proposition 2, information sources are supposed
to be independent. Indeed, formula Trust(i, j, α) relies on the assumption that
i believes that j is credible about α, regardless of what the other agents believe.
This explains why j’s opinion contributes to increase i’s strength of belief. The
situation is different when agent i merely trusts the credibility of a group of
information sources including agent j as a whole. In this case, i will not be
influenced by j’s beliefs unless the other sources have the same belief. This covers
the case in which information sources in the group are dependent so that their
opinions jointly contribute to increase i’s strength of belief, but not individually.
To see this formally, let us generalize the previous definition to trust in a group’s
credibility, as follows:

Trust(i, G, α) def= �i

((∧

j∈G

�jα
) → α

)
with G ∈ 2Agt∗.

As the following proposition indicates, trusting a group’s credibility about α and
believing that each source in the group believes that α is sufficient for forming
the belief that α. Nonetheless, it is not sufficient for forming a belief with a
stricly higher degree, since the group counts as a single unit of influence.

Proposition 3. Let i ∈ Agt, G ∈ 2Agt∗. Then,

|=M

(
Trust(i, G, α) ∧

∧

j∈G

�i�jα
) → �iα, (2)

�|=M

(
Trust(i, G, p) ∧

∧

j∈G

�i�jp
) → �1

i p. (3)

5 Axiomatics and Decidability

This section is devoted to define two logical systems of explicit belief and graded
implicit belief. They are called LGDA and LGDAT�

i
, where LGDA stands for

“Logic of Graded Doxastic Attitudes”.
Let us start with the definition of the two logics.

A Computationally Grounded Logic of Graded Belief 253

Definition 8 (LGDA). We define LGDA to be the extension of classical propo-
sitional logic by the following axioms and rule of inference:

(
�k

i ϕ ∧ �k
i (ϕ → ψ)

) → �k
i ψ (K�k

i
)

�k
i ϕ → �k′

i ϕ if k′ ≤ k (Mon�k
i
)

(∧

α∈X

�iα
) → �k

i

∨

X′⊆X:
|X′|≥|X|−k

∧

β∈X′
β if |X|>k (Int�i,�i

)

ϕ

�k
i ϕ

(Nec�k
i
)

We define LGDAT�
i

to be the extension of the logic LGDA by the following
axiom:

�iϕ → ϕ (T�i
)

Axiom K�k
i

and the rule of inference Nec�k
i

are the basic principles of the nor-
mal modal operator �k

i for graded implicit belief. Axiom Mon�k
i

is a monotonic-
ity principle for graded implicit belief: implicitly believing that ϕ with degree
at least k implies implicitly believing that ϕ with degree at least k′ if k′ ≤ k.
Finally, Axiom Int�i,�i

is the interaction principle between explicit and graded
implicit belief: if an agent explicitly believes every fact in X, then she should
implicitly believe with degree at least k that there exists a subset X ′ of X such
that |X ′| ≥ |X| − k and every fact in X ′ is true. The reason why we do not con-
sider the case |X| ≤ k is that if |X| ≤ k then �k

i

(∨
X′⊆X:|X′|≥|X|−k

∧
β∈X′ β

)
is

equivalent to �k
i � which in turn is equivalent to �. It is also worth noting that

if |X| = 1 then Axiom Int�i,�i
acquires the simpler form �iα → �iα.

As the following theorem highlights, the two logics are sound and complete
relative to the belief base semantics defined in the previous section.

Theorem 2. The logic LGDA is sound and complete for the class of MABs,
whereas the logic LGDAT�

i
is sound and complete for the class of belief correct

MABs.

Proof (sketch). The theorem relies on the fact that the belief base semantics for
the language L given in Sect. 2 is equivalent to a “weaker” semantics exploiting
enriched Kripke structures of the form M = (W,D,N ,V) where W is a non-
empty set of worlds, D : Agt × W −→ 2L0 with D(i, w) finite for every i ∈ Agt
and w ∈ W , N : Agt × W × N −→ 2W and V : Atm −→ 2W such that for all
i ∈ Agt , for all w ∈ W and for all k, k′ ∈ N:

N (i, w, k) ⊆ {
v ∈ W : |SatM (i, w, v)| ≥ (|D(i, w)| − k

)}
,

N (i, w, k′) ⊆ N (i, w, k) if k′ ≤ k,

and with respect to which L-formulas are interpreted as follows (boolean cases
are omitted for simplicity): (i) (M,w) |= p iff w ∈ V(p), (ii) (M,w) |= �iα

254 E. Lorini and F. Schwarzentruber

iff α ∈ D(i, w), (iii) (M,w) |= �k
i ϕ iff ∀v ∈ N (i, w, k) : (M,v) |= ϕ, with

SatM (i, w, v) = {α ∈ D(i, w) : (M,v) |= α}. ��
The following decidability result is a consequence of the finite model property

for logics LGDA and LGDAT�
i
.

Theorem 3. The satisfiability problem of LGDA (resp. LGDAT�
i
) relative to

the class of MABs (resp. belief correct MABs) is decidable.

6 Conditional Belief Operators

In this section, we extend the language L by conditional belief operators of type
�+X

i and �−X
i . They capture, respectively, what agent i would implicitly believe

if she added all information in X to her belief base, and what she would believe
if she removed all information in X from her belief base. The new language is
denoted by Lcond. The semantic interpretation of these new operators is given
in the following definition.

Definition 9. Let (B,Cxt) ∈ M with B = (B1, . . . , Bn, S). Then,

(B,Cxt) |= �+X
i ϕ iff (Bi+X ,Cxt) |= �iϕ,

(B,Cxt) |= �−X
i ϕ iff (Bi−X ,Cxt) |= �iϕ,

where Bi+X = (Bi+X
1 , . . . , Bi+X

n , Si+X) and Bi−X = (Bi−X
1 , . . . , Bi−X

n , Si−X)
with:

Bi+X
i = Bi ∪ X, Bi−X

i = Bi \ X,

Bi+X
j = Bi−X

j = Bj if i �= j, Si+X = Si−X = S.

Interestingly, the following axioms show that the new operators �+X
i

and �−X
i do not add expressivity to the language.

�+X
i ϕ ↔�i

(
(

∧

α∈X

α) → ϕ
)

(+X)

�−X
i ϕ ↔

∧

X′⊆X

((
(

∧

α∈X′
�iα) ∧ (

∧

α∈X\X′
¬�iα)

) →
∧

X′′⊆X′
�|X′′|

i

(
(

∧

α∈X′′
¬α) → ϕ

))
(-X)

In axiom +X, we simply evaluate ϕ-states, possible for agent i, that satisfy
the guard

∧
α∈X α. Axiom -X mimics the removing of X. To do that, we first

identify the subset X ′ of formulas in X that actually appear in the base of
agent i. Formulas in X ′ are the formulas that are indeed removed while formulas
in X \ X ′ are not present in the base of agent i. Then we should impose that ϕ

A Computationally Grounded Logic of Graded Belief 255

holds in all possible worlds when formulas in X ′ are not enforced anymore. In
particular, the clause for X ′′ = X ′ says that if we remove |X ′| formulas, and if
these |X ′| removed formulas are those in X ′ and are false (the guard

∧
α∈X′ ¬α)

then ϕ holds. The definition of axiom -X is more subtle. As some formulas in
α ∈ X ′ cannot be made false (because they are tautologies), we consider all
guards

∧
α∈X′′ ¬α for all subsets X ′′ of X ′.

Theorem 4. Axioms +X and -X are valid.

We call LGCDA (Logic of Graded and Conditional Doxastic Attitudes) the
extension of logic LGDA by the previous Axioms -X and -X, and LGCDAT�

i
the

corresponding extension of the logic LGDAT�
i
. It is routine exercise to check

that these axioms are valid relative to the class of MABs. Thus, by Corollary 2,
we have the following completeness result for the logics LGCDA and LGCDAT�

i
.

Theorem 5. The logic LGCDA is sound and complete for the class of MABs,
whereas the logic LGCDAT�

i
is sound and complete for the class of belief correct

MABs.

The following theorem is a direct consequence of Theorem 3.

Theorem 6. The satisfiability problem of LGCDA (resp. LGCDAT�
i
) relative to

the class of MABs (resp. belief correct MABs) is decidable.

7 Model Checking

Consider these compact formulations of the model checking problems for the
language Lcond.

Model checking
Given: ϕ ∈ Lcond, α ∈ L0 and a finite B ∈ S.
Question: Do we have

(
B,S(α)

) |= ϕ?
with S(α) = {B ∈ S : B |= α}.

Belief correct model checking
Given: ϕ ∈ Lcond, α ∈ L0 and a finite B ∈ SBC with
B |= α.
Question: Do we have

(
B,SBC (α)

) |= ϕ?
with SBC (α) = {B ∈ SBC : B |= α}.

where the state B = (B1, . . . , Bn, S) is said to be finite if S and every Bi are
finite. Note that, thanks to Proposition 1 and the fact that B |= α, the MAB(
B,SBC (α)

)
in the belief correct variant of model checking belongs to the model

class MBC , as expected.
In [35], it is proved that the previous two problems are PSPACE-hard, already

for the fragment of L with only implicit belief operators of type �i.

256 E. Lorini and F. Schwarzentruber

We are going to focus on the complexity upper bound. To this aim, we follow
the approach given in [26]. The algorithm given in Fig. 1 checks that a formula ϕ
is true in a given finite state B. Checking B′ |= α (see Definition 5) can be done
in polynomial time because α does not contain any implicit belief operator;
thus it is reducible to the propositional problem by stating any explicit belief
as a fresh proposition. Once |{α ∈ Bi : B′ |= α}| is computed, the comparison
|{α ∈ Bi : B′ |= α}| ≥ (|Bi| − k

)
, can be done in polynomial time. Furthermore

checking that B′ is in S(α) (or SBC (α)) can be done in polynomial time. So
checking BRk

i B′ can be done in polynomial time and space. We are now ready
to establish the PSPACE upper bound for the two model checking problems.

Theorem 7. Both the model checking problem and the belief correct model
checking problem are in PSPACE.

Proof (sketch). The number of nested calls in mc(B,ϕ) is bounded by the size
of ϕ. The local memory used by the recursive call is polynomial in the size of the
initial B and the size of ϕ. Loops “for all B′. . . ” are performed by enumerating
the B′ containing correct subformulas of formulas in the initial B and in the
initial formula ϕ. Despite there is an exponential number of such B′, storing the
current B′ only requires a polynomial amount of space.

The algorithm for the belief correct model checking is similar: we just check
each time that the states B′ under consideration are correct (Definition 3). ��

procedure mc(B, ϕ)
match ϕ do

case p: return B |= p
case ¬ψ: return not mc(B, ψ)
case ψ1 ∧ ψ2: return mc(B, ψ1) and mc(B, ψ2)
case iα: return α ∈ Bi

case k
i ψ:

for all B such that BRk
i B do

if not mc(B , ψ) return false
case +X

i ψ:
for all B such that B+XR0

i B do
if not mc(B , ψ) return false

case −X
i ψ:

for all B such that B−XR0
i B do

if not mc(B , ψ) return false
return true // when all tests in for loops failed

Fig. 1. Generic algorithm for model checking.

8 Epistemic Explanation

In this section, we leverage the language Lcond to model a variety of notions of
epistemic explanation. The standard notion of explanation [24,29] is relative to
some background theory which together with the explanans is used to explain
the explanandum. As emphasized by [7], epistemic explanation is relative to an

A Computationally Grounded Logic of Graded Belief 257

agent’s epistemic state: the agent explains a given fact or observation in the light
of her background knowledge. Existing formal models of epistemic explanation
including [7,19,20] focus on the single agent case. We generalize the analysis of
epistemic explanation to the multi-agent case in which (i) different agents may
have diverging explanations of the same fact, and (ii) an agent may include other
agents’ beliefs in the explanation of a given fact.

Following [7], we distinguish factual explanation from hypothetical expla-
nation. In factual explanation both the explanans and the explanandum are
believed by the explaining agent, while they are not in hypothetical explana-
tion. Specifically, a factual explanation is a body of information in the agent’s
belief base which supports an actual belief of the agent. A hypothetical explana-
tion is relative to a fact that is not actually believed by the agent but that the
agent would have believed, if she had believed that the explanans is true. Let us
first define factual explanation:

FactExpl i(X,ϕ) def=
(∧

α∈X

�iα
) ∧ �iϕ ∧ ¬�−X

i ϕ.

Formula FactExpl i(X,ϕ) has to be read “according to agent i, X is a factual
explanation of ϕ”, where X is the explanans and ϕ is the explanandum. This
means that (i) i explicitly believes all facts in X, (ii) i implicitly believes ϕ,
and (iii) if i removed all information in X from her belief base, she would not
believe ϕ anymore. In other words, a factual explanation is a subset of the agent’s
belief base which is necessary for the agent to derive ϕ. Note that this notion of
factual explanation can be used by the agent to detect and explain inconsistency
of her belief base. In particular, FactExpl i(X,⊥) means that, according to agent
i, inconsistency of her belief base depends on the body of information X.

Most formal theories of explanation [4,28] agree on a minimality requirement.
In order to account for minimality of factual explanation, we need to assume that,
for every strict subset X ′ of X, removing all information in X ′ from the belief
base does not affect i’s belief that ϕ. That is, we define:

MinFactExpl i(X,ϕ) def= FactExpl i(X,ϕ) ∧
∧

α∈X

�−(X\{α})
i ϕ,

where MinFactExpl i(X,ϕ) has to be read “according to agent i, X is a minimal
factual explanation of ϕ”. Like FactExpl i(X,ϕ) the size of MinFactExpl i(X,ϕ) is
polynomial in the size of X. Note that since �−X

i ϕ implies �−X′
i ϕ for X ′ ⊂ X,

the second conjunct in the definition of MinFactExpl i(X,ϕ) is equivalent to
∧

X′⊂X �−X′
i ϕ.

The following example illustrates the notion of minimal factual explanation.

Example 3. Let us go back to the example of Sect. 4. By the model checking
algorithm of Fig. 1, we can verify that:

(B,Cxt) |=MinFactExplcb({�nfgood ,�rtgood ,�amgood}, good).

258 E. Lorini and F. Schwarzentruber

This means that the fact that every agent in {nf, rt, am} explicitly believes the
movie is good is for agent cb a minimal factual explanation that the movie is
good. Thus, the body of information {�nfgood ,�rtgood ,�amgood} is necessary
for cb to conclude good .

We end this section with a definition of hypothetical explanation:

HypExpl i(X,ϕ) def=
(∧

α∈X

¬�iα
) ∧ �+X

i ϕ ∧ ¬�+X
i ⊥.

HypExpl i(X,ϕ) has to be read “according to agent i, X is a hypothetical expla-
nation of ϕ”, in the sense that: (i) no piece of information in X is included in
i’s belief base, (ii) i does not believe that ϕ, (iii) the body of information X
would be sufficient for agent i to consistently conclude ϕ. Similarly to factual
explanation, minimality is captured by assuming that there is no strict subset
X ′ of X that is sufficient for agent i to conclude ϕ:

MinHypExpl i(X,ϕ) def= HypExpl i(X,ϕ) ∧
∧

α∈X

¬�+(X\{α})
i ϕ.

MinHypExpl i(X,ϕ) has to be read “according to agent i, X is a minimal hypo-
thetical explanation of ϕ”. Note that since �+X′

i ϕ implies �+X
i ϕ for X ′ ⊂ X,

the second conjunct in the definition of MinHypExpl i(X,ϕ) is equivalent to
∧

X′⊂X ¬�+X′
i ϕ.

9 Conclusion

We defined a graded doxastic language L to reason about an agent’s implicit
beliefs, when a given number of explicit beliefs are removed from her belief base.

Our approach could be relevant in many applications: the agents receive
beliefs (including higher-order beliefs, e.g., agent 1 knows that agent 2 knows
that p) from different sources, or different reasoners. Moreover, the model check-
ing procedure presented in the paper helps to understand what an agents still
believes if some beliefs are removed from her belief base. Also, non-AI experts
do not need to learn several languages: in our approach, we emphasize that
the query language (e.g., does drone 1 believes that drone 2 believes the area
is safe?), the inner state description (formulas in bases), and the language for
explanation are the same.

Concerning the contributions, we showed that the language L is strictly more
expressive that the ungraded doxastic language L−. We also introduced the lan-
guage Lcond to reason about an agent’s implicit beliefs when a given set of
explicit beliefs are added/removed to/from her belief base. The languages L and
Lcond are equally expressive and we provided a sound and complete axiomatiza-
tion for both of them.

Directions of future work are manifold. On the theoretical side, we plan to
study complexity of the satisfiability checking problem for L and Lcond. On the

A Computationally Grounded Logic of Graded Belief 259

practical side, we plan to implement the model checking algorithm for L and
Lcond. We also plan to propose a tool for automatic verification and generation
of epistemic explanations in multi-agent scenarios involving autonomous agents
endowed with epistemic states.

Acknowledgements. Support from the ANR-3IA Artificial and Natural Intelligence
Toulouse Institute and from the ANR project CoPains (grant number ANR-18-CE33-
0012) is gratefully acknowledged.

References

1. Aucher, G.: A combined system for update logic and belief revision. In: Bar-
ley, M.W., Kasabov, N. (eds.) PRIMA 2004. LNCS (LNAI), vol. 3371, pp. 1–17.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32128-6 1

2. Balbiani, P., Fernández-Duque, D., Herzig, A., Lorini, E.: Stratified evidence logics.
In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence (IJCAI 2019), pp. 1523–1529 (2019)

3. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. In:
Bonanno, G., van der Hoek, W., Wooldridge, M. (eds.) Logic and the Foundations
of Game and Decision Theory, volume 3 of Texts in Logic and Games, pp. 13–60.
Amsterdam University Press (2008)

4. Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling
of inconsistent knowledge bases: a comparative study part 1: the flat case. Stud.
Logica. 58, 17–45 (1997)

5. Benferhat, S., Dubois, D., Prade, H., Williams, M.-A.: A practical approach to
revising prioritized knowledge bases. Stud. Logica. 70(1), 105–130 (2002)

6. Bolander, T., Andersen, M.B.: Epistemic planning for single- and multi-agent sys-
tems. J. Appl. Non-Classical Logics 21(1), 656–680 (2011)

7. Boutilier, C., Beche, V.: Abduction as belief revision. Artif. Intell. 77(1), 43–94
(1995)

8. Budzynska, K., Kacprzak, M.: A logic for reasoning about persuasion. Fund.
Inform. 85, 51–65 (2008)

9. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

10. Charrier, T., Pinchinat, S., Schwarzentruber, F.: Symbolic model checking of public
announcement protocols. J. Logic Comput. 29(8), 1211–1249 (2019)

11. Charrier, T., Schwarzentruber, F.: Arbitrary public announcement logic with men-
tal programs. In: Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2015), pp. 1471–1479. ACM (2015)

12. Charrier, T., Schwarzentruber, F.: A succinct language for dynamic epistemic logic.
In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2017), pp. 123–131. ACM (2017)

13. Charrier, T., Schwarzentruber, F.: Complexity of dynamic epistemic logic with
common knowledge. In: Proceedings of the 12th conference on Advances in Modal
Logic 12, pp. 103–122. College Publications (2018)

14. Christoff, Z.: A logic for social influence through communication. In: Proceedings of
the Eleventh European Workshop on Multi-Agent Systems (EUMAS 2013), volume
1113 of CEUR Workshop Proceedings, pp. 31–39. CEUR-WS.org (2013)

https://doi.org/10.1007/978-3-540-32128-6_1

260 E. Lorini and F. Schwarzentruber

15. Demolombe, R.: Reasoning about trust: a formal logical framework. In: Jensen,
C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 291–303.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24747-0 22

16. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Process-
ing of Uncertainty. Plenum Press (1988)

17. Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. Assoc. Com-
put. Mach. 41(2), 340–367 (1994)

18. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge (1995)

19. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Explanations, belief revision and
defeasible reasoning. Artif. Intell. 141, 1–28 (2002)

20. Gärdenfors, P.: A pragmatic approach to explanations. Philos. Sci. 47(3), 404–423
(1980)

21. Grandi, U., Lorini, E., Perrussel, L.: Propositional opinion diffusion. In: Proceed-
ings of the 2015 International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), pp. 989–997. ACM (2015)

22. Halpern, J.Y., Pass, R.: A knowledge-based analysis of the blockchain protocol.
In: Proceedings of the Sixteenth Conference on Theoretical Aspects of Rationality
and Knowledge (TARK 2017), pp. 324–335. EPTCS (2017)

23. Hansson, S.O.: Theory contraction and base contraction unified. J. Symbolic Logic
58(2), 602–625 (1993)

24. Hempel, C., Oppenheim, P.: Studies in the logic of explanation. Philos. Sci. 15,
135–175 (1948)

25. Herzig, A., Lorini, E., Maffre, F.: A poor man’s epistemic logic based on propo-
sitional assignment and higher-order observation. In: van der Hoek, W., Holliday,
W.H., Wang, W. (eds.) LORI 2015. LNCS, vol. 9394, pp. 156–168. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48561-3 13

26. Herzig, A., Lorini, E., Perrotin, E., Romero, F., Schwarzentruber, F.: A logic of
explicit and implicit distributed belief. In: Proceedings of the 24th European Con-
ference on Artificial Intelligence (ECAI 2020), vol. 325, pp. 753–760. IOS Press
(2020)

27. Hintikka, J.: Knowledge and Belief. Cornell University Press, New York (1962)
28. De Kleer, J.: An assumption-based TMS. Artif. Intell. 28, 127–162 (1986)
29. Kment, B.: Counterfactuals and explanation. Mind 115(458), 261–310 (2006)
30. Konolige, K.: What awareness isn’t: a sentential view of implicit and explicit belief.

In: Proceedings of the 1st Conference on Theoretical Aspects of Reasoning about
Knowledge, Monterey, CA, USA, March 1986, pp. 241–250. Morgan Kaufmann
(1986)

31. Kooi, B.P.: Probabilistic dynamic epistemic logic. J. Logic Lang. Inf. 12, 381–408
(2003)

32. Laverny, N., Lang., J.: From knowledge-based programs to graded belief-based pro-
grams part I: on-line reasoning. In: Proceedings of the 16th European Conference
on Artificial Intelligence, (ECAI’2004), pp. 368–372. IOS Press (2004)

33. Lismont, L., Mongin, P.: On the logic of common belief and common knowledge.
Theory Decis. 37, 75–106 (1994)

34. Lorini, E.: In praise of belief bases: Doing epistemic logic without possible worlds.
In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI-18), pp. 1915–1922. AAAI Press (2018)

https://doi.org/10.1007/978-3-540-24747-0_22
https://doi.org/10.1007/978-3-662-48561-3_13

A Computationally Grounded Logic of Graded Belief 261

35. Lorini, E.: Exploiting belief bases for building rich epistemic structures. In: Moss,
L.S. (ed.) Proceedings of the Seventeenth Conference on Theoretical Aspects of
Rationality and Knowledge (TARK 2019), volume 297 of EPTCS, pp. 332–353
(2019)

36. Lorini, E.: Rethinking epistemic logic with belief bases. Artif. Intell. 282, 103233
(2020)

37. Lorini, E., Romero, F.: Decision procedures for epistemic logic exploiting belief
bases. In: Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS 2019), pp. 944–952. IFAAMAS (2019)

38. Marinkovic, B., Glavan, P., Ognjanovic, Z., Studer, T.: A temporal epistemic logic
with a non-rigid set of agents for analyzing the blockchain protocol. J. Logic Com-
put. 29(5), 803–830 (2019)

39. Meyer, J.J., van der Hoek, W.: Epistemic Logic for AI and Computer Science.
Cambridge University Press, Cambridge (1995)

40. Pearl, J.: From conditional oughts to qualitative decision theory. In: Heckerman,
D., Mamdani, E.H., (eds.) Proceedings of UAI 1993, pp. 12–22. Morgan Kaufmann
(1993)

41. Rashotte, L.: Social influence. In: Ritzer, G., Ryan, J.M. (eds.) Concise Blackwell
Encyclopedia of Sociology. Blackwell (2009)

42. Rott, H.: Just because: Taking belief bases seriously. In: Logic Colloquium, vol. 98,
pp. 387–408 (1998)

43. Schwind, N., Inoue, K., Bourgne, G., Konieczny, S., Marquis, P.: Belief revision
games. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intel-
ligence, pp. 1590–1596. AAAI Press (2015)

44. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In:
Harper, W.L., Skyrms, B. (eds.) Causation in decision, belief change and statistics,
pp. 105–134. Kluwer (1988)

45. Stalnaker, R.: Common ground. Linguist. Philos. 25(5–6), 701–721 (2002)
46. van Benthem, J., van Eijck, J., Gattinger, M., Su, K.: Symbolic model checking for

dynamic epistemic logic - S5 and beyond. J. Logic Comput. 28(2), 367–402 (2018)
47. van der Hoek, W.: Modalities for Reasoning about Knowledge and Quantities. PhD

thesis, Free University of Amsterdam (1992)
48. van der Hoek, W., Meyer, J.-J.C.: Graded modalities in epistemic logic. Logique

Anal. 133–134, 251–270 (1991)
49. van Ditmarsch, H.: Prolegomena to dynamic logic for belief revision. Synthese

147(2), 229–275 (2005)
50. van Eijck, J., Schwarzentruber, F.: Epistemic probability logic simplified. In:

Advances in Modal Logic 10, pp. 158–177. College Publications (2014)
51. Weydert, E.: General belief measures. In: de Mántaras, R.L., Poole, D., (eds.)

Proceedings of UAI 1994, pp. 575–582. Morgan Kaufmann (1994)

Tractability Frontiers in Probabilistic
Team Semantics and Existential

Second-Order Logic over the Reals

Miika Hannula1 and Jonni Virtema2(B)

1 University of Helsinki, Helsinki, Finland
miika.hannula@helsinki.fi

2 Leibniz Universität Hannover, Hannover, Germany
virtema@thi.uni-hannover.de

Abstract. Probabilistic team semantics is a framework for logical anal-
ysis of probabilistic dependencies. Our focus is on the complexity and
expressivity of probabilistic inclusion logic and its extensions. We iden-
tify a natural fragment of existential second-order logic with additive
real arithmetic that captures exactly the expressivity of probabilistic
inclusion logic. We furthermore relate these formalisms to linear pro-
gramming, and doing so obtain PTIME data complexity for the logics.
Moreover, on finite structures, we show that the full existential second-
order logic with additive real arithmetic can only express NP properties.

1 Introduction

Metafinite model theory, introduced by Grädel and Gurevich [12], generalizes the
approach of finite model theory by shifting to two-sorted structures that extend
finite structures with another (often infinite) domain with some arithmetic (such
as the reals with multiplication and addition), and weight functions bridging the
two sorts. Finite structures enriched with real arithmetic are called R-structures.
Blum-Shub-Smale machines [3] (BSS machine for short) are essentially random
access machines with registers that can store arbitrary real numbers and which
can compute rational functions over reals in a single time step, and are thus
perfectly suited to compute properties of R-structures. Descriptive complex-
ity theory for BSS machines and logics on metafinite structures was initiated
by Grädel and Meer who showed that NPR (i.e., non-deterministic polynomial
time on BSS machines) is captured by a variant of existential second-order logic
(ESOR) over R-structures [14]. Since the work by Grädel and Meer, others (see,
e.g., [6,17,19,29]) have shed more light upon the descriptive complexity over the
reals mirroring the development of classical descriptive complexity.

In addition to metafinite structures, the connection between logical defin-
ability encompassing numerical structures and computational complexity has

The first author is supported by the Academy of Finland grant 308712. The second
author is supported by the DFG grant VI 1045/1-1.

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 262–278, 2021.
https://doi.org/10.1007/978-3-030-75775-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_18&domain=pdf
http://orcid.org/0000-0002-9637-6664
http://orcid.org/0000-0002-1582-3718
https://doi.org/10.1007/978-3-030-75775-5_18

Probabilistic Team Semantics and Existential Second-Order Logic 263

received attention in constraint databases [1,13,28]. A constraint database mod-
els, e.g., geometric data by combining a numerical context structure, such as
the real arithmetic, with a finite set of quantifier-free formulae defining infinite
database relations [23].

Renewed interest to logics on frameworks analogous to metafinite structures,
and related descriptive complexity theory, is motivated by the need to model
inferences utilizing numerical data values in the fields of machine learning and
artificial intelligence. See e.g. [15,33] for declarative frameworks for machine
learning utilizing logic, [5,31] for very recent works on logical query languages
with arithmetic, and [22] for applications of descriptive complexity in machine
learning.

Team semantics is the semantical framework of modern logics of dependence
and independence. Introduced by Hodges [20] and adapted to dependence logic
by Väänänen [32], team semantics defines truth in reference to collections of
assignments, called teams. Team semantics is particularly suitable for a for-
mal analysis of properties, such as the functional dependence between variables,
which only arise in the presence of multiple assignments. In the past decade
numerous research articles have, via re-adaptations of team semantics, shed more
light into the interplay between logic and dependence. A common feature, and
limitation, in all these endeavors has been their preoccupation with notions of
dependence that are qualitative in nature. That is, notions of dependence and
independence that make use of quantities, such as conditional independence in
statistics, have usually fallen outside the scope of these studies.

The shift to quantitative dependencies in team semantics setting is relatively
recent. While the ideas of probabilistic teams trace back to the works of Gal-
liani [9] and Hyttinen et al. [21], a systematic study on the topic can be traced
to [7,8]. In probabilistic team semantics the basic semantic units are probabil-
ity distributions (i.e., probabilistic teams). This shift from set based semantics
to distribution based semantics enables probabilistic notions of dependence to
be embedded to the framework. In [8] probabilistic team semantics was studied
in relation to the dependence concept that is most central in statistics: con-
ditional independence. Mirroring [10,14,27] the expressiveness of probabilistic
independence logic (FO(⊥⊥c)), obtained by extending first-order logic with con-
ditional independence, was in [8,17] characterised in terms of arithmetic variants
of existential second-order logic. In [17] the data complexity of FO(⊥⊥c) was also
identified in the context of BSS machines and the existential theory of the reals.
In [16] the focus was shifted to the expressivity hierarchies between probabilistic
logics defined in terms of different quantitative dependencies.

Of all the dependence concepts thus far investigated in team semantics, that
of inclusion has arguably turned out to be the most intriguing and fruitful. One
reason is that inclusion logic, which arises from this concept, can only define
properties of teams that are decidable in polynomial time [11]. In contrast, other
natural team-based logics, such as dependence and independence logic, capture
non-deterministic polynomial time [10,27,32], and many variants, such as team
logic, have an even higher complexity [26]. Thus it should come as no surprise
if quantitative variants of many team-based logics turn out be intractable; in

264 M. Hannula and J. Virtema

principle, adding arithmetical operations and/or counting cannot be a mitigating
factor when it comes to complexity.

In this paper we focus on the complexity and expressivity of probabilistic
inclusion logic, which is the extension of first-order logic with so-called marginal
identity atoms defined on probabilistic teams. The marginal identity atom x ≈ y
states that the probability of x being a is the same as the probability of y being
a, for all values a.

Our Contribution. We use strong results from linear programming to obtain the
following complexity results restricted to finite structures. We identify a natural
fragment of additive ESOR (that is, almost conjunctive (∃̈∗∀∗)R[≤,+,SUM, 0, 1])
which captures P on ordered structures (see page 4 for a definition). In contrast,
we show that the full additive ESOR captures NP. Moreover, we establish that
the so-called loose fragments, almost conjunctive L-(∃̈∗∀∗)d[0,1][=,SUM, 0, 1] and
L-ESOd[0,1][=,SUM, 0, 1], of the aforementioned logics have the same expressivity
as probabilistic inclusion logic and its extension with dependence atoms, respec-
tively. The characterizations of P and NP hold also for these fragments. Finally,
we show that inclusion logic can be conservatively embedded into its probabilis-
tic variant, when restricted to probabilistic teams that are uniformly distributed.
From this we obtain an alternative proof through linear systems (that is entirely
different from the original proof of Galliani and Hella [11]) for the fact that inclu-
sion logic can express only polynomial time properties.

2 Existential Second-Order Logics on R-Structures

In addition to finite relational structures, we consider their numerical extensions
by adding real numbers (R) as a second domain sort and functions that map
tuples over the finite domain to R. Throughout the paper structures are assumed
to have at least two elements. In the sequel, τ and σ will always denote a finite
relational and a finite functional vocabulary, respectively. The arities of function
variables f and relation variables R are denoted by ar(f) and ar(R), resp. If f is
a function with domain Dom(f) and A a set, we define f � A to be the function
with domain Dom(f) ∩ A that agrees with f for each element in its domain.
Given a finite set S, a function f : S → [0, 1] that maps elements of S to elements
of the closed interval [0, 1] of real numbers such that

∑
s∈S f(s) = 1 is called a

(probability) distribution, and the support of f is defined as Supp(f) := {s ∈ S |
f(s) > 0}. Also, f is called uniform if f(s) = f(s′) for all s, s′ ∈ Supp(f).

Definition 1 (R-structures). A tuple A = (A,R, (RA)R∈τ , (gA)g∈σ), where
the reduct of A to τ is a finite relational structure, and each gA is a function
from Aar(g) to R, is called an R-structure of vocabulary τ ∪ σ. Additionally, A
is also called (i) an S-structure, for S ⊆ R, if each gA is a function from Aar(g)

to S, and (ii) a d[0, 1]-structure if each gA is a distribution. We call A a finite
structure, if σ = ∅.

Probabilistic Team Semantics and Existential Second-Order Logic 265

Our focus is on a variant of functional existential second-order logic with
numerical terms (ESOR) that is designed to describe properties of R structures.
As first-order terms we have only first-order variables. For a set σ of function
symbols, the set of numerical σ-terms i is generated by the following grammar:
i ::= c | f(x) | i + i | i × i | SUMy i, where the interpretations of +,×,SUM are
the standard addition, multiplication, and summation of real numbers, respec-
tively, and c ∈ R is a real constant denoting itself.

Definition 2 (Syntax of ESOR). Let O ⊆ {+,×,SUM}, E ⊆ {=, <,≤}, and
C ⊆ R. The set of τ ∪ σ-formulae of ESOR[O,E,C] is defined via the grammar:

φ ::= x = y | ¬x = y | i e j | ¬i e j |R(x) | ¬R(x) |φ ∧ φ |φ ∨ φ | ∃xφ | ∀xφ | ∃fψ,

where i and j are numerical σ-terms constructed using operations from O and
constants from C; e ∈ E; R ∈ τ is a relation symbol; f is a function variable; x,
y, and x are (tuples of) first-order variables; and ψ is a τ ∪ (σ ∪ {f})-formula
of ESOR[O,E,C].

The semantics of ESOR[O,E,C] is defined via R-structures and assignments
analogous to first-order logic, however the interpretations of function variables
f range over functions Aar(f) → R. Furthermore, given S ⊆ R, we define
ESOS [O,E,C] as the variant of ESOR[O,E,C] in which quantification of func-
tions range over h : Aar(f) → S.

Loose Fragment. For S ⊆ R, define L-ESOS [O,E,C] as the loose fragment of
ESOS [O,E,C] in which negated numerical atoms ¬i e j are disallowed.

Almost Conjunctive. A formula φ ∈ ESOS [O,E,C] is almost conjunctive, if
for every subformula (ψ1 ∨ ψ2) of φ, no numerical term occurs in ψi, for some
i ∈ {1, 2}.

Prefix Classes. For a regular expression L over the alphabet {∃̈,∃,∀}, we
denote by LS [O,E,C] the formulae of ESOS [O,E,C] in prefix form whose quan-
tifier prefix is in the language defined by L, where ∃̈ denotes existential function
quantification, and ∃ and ∀ first-order quantification.

Expressivity Comparisons. Let L and L′ be some logics defined above, and
let X ⊆ R. For φ ∈ L, define StrucX(φ) (Strucfin(φ), resp.) to be the class of pairs
(A, s) where A is an X-structure (finite structure, resp.) and s an assignment
such that A |=s φ. Additionally, Strucd[0,1](φ) is the class of (A, s) ∈ Struc[0,1](φ)
such that each fA is a distribution. If X is a set of reals or from {“d[0, 1]”,“fin”},
we write L ≤X L′ if for all formulae φ ∈ L there is a formula ψ ∈ L′ such that
StrucX(φ) = StrucX(ψ). For formulae without free first-order variables, we omit
s from the pairs (A, s) above. As usual, the shorthand ≡X stands for ≤X in both
directions. For X = R, we write simply ≤ and ≡.

3 Data Complexity of Additive ESOR

On finite structures ESOR[≤,+,×, 0, 1] is known to capture the complexity class
∃R [4,14,30], which lies somewhere between NP and PSPACE. Here we focus on

266 M. Hannula and J. Virtema

the additive fragment of the logic. It turns out that the data complexity of the
additive fragment is NP and thus no harder than that of ESO. Furthermore,
we obtain a tractable fragment of the logic, which captures P on finite ordered
structures.

3.1 A Tractable Fragment

Next we show P data complexity for almost conjunctive
(∃̈∗∃∗∀∗)R[≤,+,SUM, 0, 1].

Proposition 3. Let φ be an almost conjunctive ESOR[≤,+,SUM, 0, 1]-formula
in which no existential first-order quantifier is in a scope of a universal first-
order quantifier. There is a polynomial-time reduction from R-structures A and
assignments s to families of systems of linear inequations S such that A |=s φ if
and only if there is a system S ∈ S that has a solution. If φ has no free function
variables, the systems of linear inequations in S have integer coefficients.

Proof. Fix φ. We assume, w.l.o.g., that variables quantified in φ are quantified
exactly once, the sets of free and bound variables of φ are disjoint, and that the
domain of s is the set of free variables of φ. Moreover, we assume that φ is of the
form ∃y∃f∀xθ, where f is a tuple of function variables and θ is quantifier-free.
We use X and Y to denote the sets of variables in x and y, respectively, and g
to denote the free function variables of φ.

We describe a polynomial-time process of constructing a family of systems
of linear inequations SA,s from a given τ ∪ σ-structure A and an assignment s.
We introduce

– a fresh variable za,f , for each k-ary function symbol f in f and k-tuple
a ∈ Ak.

In the sequel, the variables za,f will range over real numbers.
Let A be a τ ∪ σ-structure and s an assignment for the free variables in φ.

In the sequel, each interpretation for the variables in y yields a system of linear
equations. Given an interpretation v : Y → A, we will denote by Sv the related
system of linear equations to be defined below. We then set SA,s := {Sv | v :
Y → A}. The system of linear equations Sv is defined as Sv :=

⋃
u : X→A Su

v ,
where Su

v is defined as follows. Let su
v denote the extension of s that agrees

with u and v. We let θu
v denote the formula obtained from θ by the following

simultaneous substitution: If (ψ1∨ψ2) is a subformula of θ such that no function
variable occurs in ψi, then (ψ1 ∨ ψ2) is substituted with �, if

A |=su
v

ψi, (1)

and with ψ3−i otherwise. The set Su
v is now generated from θu

v together with u
and v. Note that θu

v is a conjunction of first-order or numerical atoms θi, i ∈ I,
for some index set I. For each conjunct θi in which some f ∈ f occurs, add
(θi)su

v
to Su

v , where (ψ)su
v

is defined recursively as follows:

Probabilistic Team Semantics and Existential Second-Order Logic 267

(¬ψ)su
v

:= ¬(ψ)su
v
, (i.e.j)su

v
:= (i)su

v
e (j)su

v
, for each e ∈ {=, <,≤,+},

(f(z))su
v

:= zsu
v (z),f

, (SUMz i)su
v

:=
∑

a∈A|z |

(i)su
v (a/z),

(g(z))su
v

:= gA(su
v (z)), (x)su

v
:= su

v (x), for every variable x.

Let θ∗ be the conjunction of those conjuncts of θu
v in which no f ∈ f occurs. If

A �|=su
v

θ∗, remove Sv from SA,s.
Since φ is fixed, it is clear that SA,s can be constructed in polynomial time

with respect to |A|. Moreover, it is straightforward to show that there exists a
solution for some S ∈ SA,s exactly when A |=s φ.

Assume first that there exists an S ∈ SA,s that has a solution. Let w : Z → R,
where Z := {za,f | f ∈ f and a ∈ Aar(f)}, be the function given by a solution
for S. By construction, S = Sv, for some v : Y → A. Let A′ be the expansion
of A that interprets each f ∈ f as the function a �→ w(za,f). By construction,
A′ |=su

v
θu

v for every u : X → A. Now, from (1) and the related substitutions, we
obtain that A′ |=su

v
θ for every u : X → A, and hence A′ |=sv

∀x1 . . . ∀xnθ. From
this A |=s φ follows.

For the converse, assume that A |=s φ. Hence there exists an extension sv of s
and an expansion A′ of A such that A′ |=sv

∀x1 . . . ∀xnθ. Now, by construction,
it follows that Sv ∈ SA,s and A′ |=su

v
θu

v , for every u : X → A. Moreover, it
follows that the function defined by za,f �→ fA′

(a), for f ∈ f and a ∈ Aar(f), is
a solution for Sv. ��
The above proposition could be strengthened by relaxing the almost conjunctive
requirement in any way such that (1) can be still decided (i.e., it suffices that the
satisfaction of ψis do not depend on the interpretations of the functions in f).

Theorem 4. The data complexity of almost conjuctive ESOR[≤,+,SUM, 0, 1]-
formulae without free function variables and where no existential first-order
quantifiers are in a scope of a universal first-order quantifier is in P.

Proof. Fix an almost conjuctive ESOR[≤,+,SUM, 0, 1]-formula φ of relational
vocabulary τ of the required form. Given a τ ∪ ∅ structure A and an assignment
s for the free variables of φ, let S be the related polynomial size family of
polynomial size systems of linear inequations with integer coefficients given by
Proposition 3. Deciding whether a system of linear inequalities with integer
coefficients has solutions can be done in polynomial time [24]. Thus checking
whether there exists a system of linear inequalities S ∈ S that has a solution
can be done in P as well, from which the claim follows. ��

We later show that probabilistic inclusion logic captures P on finite
ordered structures (Corollary 22) and can be translated to almost conjunc-
tive L-(∃̈∗∀∗)[0,1][≤,SUM, 0, 1] (Lemma 16). Hence already almost conjuctive
L-(∃̈∗∀∗)R[≤,SUM, 0, 1] captures P.

Corollary 5. Almost conjunctive L-(∃̈∗∀∗)R[≤,SUM, 0, 1] captures P on finite
ordered structures.

268 M. Hannula and J. Virtema

3.2 Full Additive ESOR

The goal of this subsection is to prove the following theorem:

Theorem 6. ESOR[≤,+,SUM, 0, 1] captures NP on finite structures.

First observe that SUM is definable in ESOR[≤,+, 0, 1]: Already ESOR[=]
subsumes ESO, and thus we may assume a built-in successor function S and its
associated minimal and maximal elements min and max on k-tuples over the
finite part of the R-structure. Then, for a k-ary tuple of variables x, SUMx i
agrees with f(max), for any function variable f satisfying f(min) = i(x �→ min)
and f(S(x)) = f(x) + i(S(x)).

As ESOR[≤,+, 0, 1] subsumes ESO, by Fagin’s theorem, it can express all NP
properties. Thus we only need to prove that any ESOR[≤,+, 0, 1]-definable prop-
erty of finite structures is recognizable in NP. The proof relies on (descriptive)
complexity theory over the reals. The fundamental result in this area is that
existential second-order logic over the reals (ESOR[≤,+,×, (r)r∈R]) corresponds
to non-deterministic polynomial time over the reals (NPR) for BSS machines [14,
Theorem 4.2]. To continue from this, some additional terminology is needed. We
refer the reader to [2] for more information about BSS machines. Let CR be a
complexity class over the reals.

– Cadd is CR restricted to additive BSS machines (i.e., without multiplication).
– C0

R
is CR restricted to BSS machines with machine constants 0 and 1 only.

– BP(CR) is CR restricted to languages of strings that contain only 0 and 1.

A straightforward adaptation of [14, Theorem 4.2] yields the following theorem.

Theorem 7 [14]. ESOR[≤,+, 0, 1] captures NP0
add on R-structures.

If we can establish that BP(NP0
add), the so-called Boolean part of NP0

add, col-
lapses to NP, we have completed the proof of Theorem 6. Observe that another
variant of this theorem readily holds; ESOR[=,+, (r)r∈R]-definable properties of
R-structures are recognizable in NPadd branching on equality, which in turn, over
Boolean inputs, collapses to NP [25, Theorem 3]. Here, restricting branching to
equality is crucial. With no restrictions in place (the BSS machine by default
branches on inequality and can use arbitrary reals as machine constants) NPadd

equals NP/poly over Boolean inputs [25, Theorem 11]. What we show next is
that disallowing machine constants other than 0 and 1, but allowing branching
on inequality, is a mixture that leads to a collapse to NP. The proof adapts
arguments from [25] and can be found in the full version [18].

Theorem 8. BP(NP0
add) = NP.

Proof. Clearly NP ≤ BP(NP0
add); a Boolean guess for an input x can be

constructed by comparing to zero each component of a real guess y, and a
polynomial-time Turing computation can be simulated by a polynomial-time
BSS computation.

Probabilistic Team Semantics and Existential Second-Order Logic 269

For the converse, let L ⊆ {0, 1}∗ be a Boolean language that belongs to
BP(NP0

add); we need to show that L belongs also to NP. Let M be a BSS machine
such that its running time is bounded by some polynomial p, and for all Boolean
inputs x ∈ {0, 1}∗, x ∈ L if and only if there is y ∈ R

p(|x|) such that M accepts
(x, y).

The non-deterministic computation of M on x can be described by guessing
the whole non-deterministic polynomial time computation including the out-
comes of the comparisons in the BSS computation. During the computation the
value of each register is a linear function of the values of the registers in the pre-
vious time step, and ultimately from the constants 0 and 1, the input x, and the
real guess y of polynomial length. Thus it is possible to construct in polynomial
time a system S of linear inequations on y that has a solution if and only if M
accepts x. For a complete proof see the ArXiv version [18]. ��

4 Probabilistic Team Semantics and Additive ESOR

4.1 Probabilistic Team Semantics

Let D be a finite set of first-order variables and A a finite set. A team X is a set
of assignments from D to A. A probabilistic team is a distribution X : X → [0, 1],
where X is a finite team. Also the empty function is considered a probabilistic
team. We call D the variable domain of both X and X, written Dom(X) and
Dom(X). A is called the value domain of X and X.

Let X : X → [0, 1] be a probabilistic team, x a variable, V ⊆ Dom(X) a
set of variables, and A a set. The projection of X on V is defined as PrV (X) :
X � V → [0, 1] such that s �→ ∑

t�V =s X(t), where X � V := {t � V | t ∈ X}.
Define Sx,A(X) as the set of all probabilistic teams Y with variable domain
Dom(X) ∪ {x} such that PrDom(X)\{x}(Y) = PrDom(X)\{x}(X) and A is a value
domain of Y � {x}. We denote by X[A/x] the unique Y ∈ Sx,A(X) such that

Y(s) =
PrDom(X)\{x}(X)(s � Dom(X) \ {x})

|A| .

If x is a fresh variable, then this equation becomes Y(s(a/x)) = X(s)
|A| . We also

define X[A/x] := {s(a/x) | s ∈ X, a ∈ A}, and write X[a/x] and X[a/x] instead
of X[{a}/x] and X[{a}/x], for singletons {a}.

Let us also define some function arithmetic. Let α be a real number, and f and
g be functions from a shared domain into real numbers. The scalar multiplication
αf is a function defined by (αf)(x) := αf(x). The addition f + g is defined as
(f + g)(x) = f(x) + g(x), and the multiplication fg is defined as (fg)(x) :=
f(x)g(x). In particular, if f and g are probabilistic teams and α + β = 1, then
αf + βg is a probabilistic team.

We define first probabilistic team semantics for first-order formulae. As is
customary in the team semantics context, we restrict attention to formulae in
negation normal form.

270 M. Hannula and J. Virtema

Definition 9 (Probabilistic team semantics). Let A be a τ -structure over a
finite domain A, and X : X → [0, 1] a probabilistic team. The satisfaction relation
|=X for first-order logic is defined as follows:

A |=X l ⇔ ∀s ∈ Supp(X) : A |=s l, where l is a literal
A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ
A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y,Z,

α ∈ [0, 1] such that αY + (1 − α)Z = X

A |=X ∀xψ ⇔ A |=X[A/x] ψ
A |=X ∃xψ ⇔ A |=Y ψ for some Y ∈ Sx,A(X)

The satisfaction relation |=s denotes the Tarski semantics of first-order logic. If
φ is a sentence (i.e., without free variables), then A satisfies φ, written A |= φ,
if A |=X∅ φ, where X∅ is the distribution that maps the empty assignment to 1.

We make use of a generalization of probabilistic team semantics where the
requirement of being a distribution is dropped. A weighted team is any non-
negative weight function X : X → R≥0. Given a first-order formula α, we write
Xα for the restriction of the weighted team X to the assignments of X satisfying
α (with respect to the underlying structure). Moreover, the total weight of a
weighted team X is |X| :=

∑
s∈X X(s).

Definition 10 (Weighted semantics). Let A be a τ -structure over a finite
domain A, and X : X → R≥0 a weighted team. The satisfaction relation |=w

X
for

first-order logic is defined exactly as in Definition 9, except that for ∨ we define
instead:

A |=w
X

(ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y,Z s.t. Y + Z = X.

We consider logics with the following atomic dependencies:

Definition 11 (Dependencies). Let A be a finite structure with universe A,
X a weighted team, and X a team.

– Marginal identity and inclusion atoms. If x,y are variable sequences of
length k, then x ≈ y is a marginal identity atom and x ⊆ y is an inclusion
atom with satisfactions defined as:

A |=w
X
x ≈ y ⇔ |Xx=a | = |Xy=a | for each a ∈ Ak,

A |=X x ⊆ y ⇔ for all s ∈ X there is s′ ∈ X such that s(x) = s′(y).

– Dependence atom. For a sequence of variables x and a variable y, =(x, y)
is a dependence atom with satisfaction defined as:

A |=X=(x, y) ⇔ for all s, s′ ∈ X : if s(x) = s′(x), then s(y) = s′(y).

For probabilistic teams X, the satisfaction relation is written without the super-
script w.

Probabilistic Team Semantics and Existential Second-Order Logic 271

Observe that any dependency α over team semantics can also be interpreted in
probabilistic team semantics: A |=X α iff A |=Supp(X) α. For a list C of dependen-
cies, we write FO(C) for the extension of first-order logic with the dependencies in
C. The logics FO(≈) and FO(⊆), in particular, are called probabilistic inclusion
logic and inclusion logic, respectively. We write Fr(φ) for the set free variables of
φ ∈ FO(C), defined as usual. We conclude this section with a list of useful equiv-
alences. We omit the proofs, which are straightforward structural inductions ((ii)
was also proven in [16] and (v) follows from (i) and the flatness property of team
semantics).

Proposition 12. Let φ ∈ FO(C), ψ ∈ FO(≈, C), and θ ∈ FO, where C is a list
of dependencies over team semantics. Let A be a structure, X a weighted team,
and r any positive real. The following equivalences hold:

(i) A |=w
X

φ ⇔ A |=Supp(X) φ.

(ii) A |=w
X

ψ ⇔ A |= 1
|X|X

ψ.

(iii) A |=w
X

ψ ⇔ A |=w
rX ψ.

(iv) A |=w
X

ψ ⇔ A |=w
X�V ψ, where

Fr(ψ) ⊆ V .
(v) A |=w

X
θ ⇔ A |=s θ, for all

s ∈ Supp(X).

4.2 Expressivity of Probabilistic Inclusion Logic

We turn to the expressivity of probabilistic inclusion logic and its extension with
dependence atoms. In particular, we relate these logics to existential second-
order logic over the reals. We show that probabilistic inclusion logic extended
with dependence atoms captures a fragment in which arithmetic is restricted to
summing. Furthermore, we show that leaving out dependence atoms is tanta-
mount to restricting to sentences in almost conjunctive form with ∃̈∗∀∗ quantifier
prefix.

Expressivity Comparisons. Fix a list of atoms C over probabilistic team seman-
tics. For a probabilistic team X with variable domain {x1, . . . , xn} and value
domain A, the function fX : An → [0, 1] is defined as the probability distribution
such that fX(s(x)) = X(s) for all s ∈ X. For a formula φ ∈ FO(C) of vocabulary
τ and with free variables {x1, . . . , xn}, the class Strucd[0,1](φ) is defined as the
class of d[0, 1]-structures A over τ ∪ {f} such that (A � τ) |=X φ, where fX = fA

and A � τ is the finite τ -structure underlying A. Let L and L′ be two logics of
which one is defined over (probabilistic) team semantics. We write L ≤ L′ if for
every formula φ ∈ L there is φ′ ∈ L′ such that Strucd[0,1](φ) = Strucd[0,1](φ′);
again, ≡ is a shorthand for ≤ both ways.

Theorem 13. The following equivalences hold:

(i) FO(≈,=(· · ·)) ≡ L-ESO[0,1][=,+, 0, 1].
(ii) FO(≈) ≡ almost conjunctive L-(∃̈∗∀∗)[0,1][=,SUM, 0, 1].

272 M. Hannula and J. Virtema

We divide the proof of Theorem 13 into two parts. In Sect. 4.3 we consider the
direction from probabilistic team semantics to existential second-order logic over
the reals, and in Sect. 4.4 we shift attention to the converse direction. In order
to simplify the presentation in the forthcoming subsections, we start by showing
how to replace existential function quantification by distribution quantification.
The following lemma in its original form includes multiplication (see [17, Lemma
6.4]) but works also without it. Its proof does not preserve the almost conjunctive
form, and thereby we need to deal with that case separately in Proposition 15 (for
a proof see the full version [18] in ArXiv). This proposition also uses the fact that
real constants 0 and 1 are definable in almost conjunctive L-(∃̈∗∀∗)d[0,1][=,SUM]
by the following construction that eliminates 0 and 1 in θ:

∃n∃f∃h∀x∀y∀z
(
f(x) = h(x, x) ∧ (

y = z ∨ θ(h(y, z)/0, n/1)
))

Lemma 14 [17]. L-ESO[0,1][=,+, 0, 1] ≡d[0,1] L-ESOd[0,1][=,SUM].

Proposition 15. L-ESO[0,1][=,SUM, 0, 1] ≡[0,1] L-ESOd[0,1][=,SUM]. The
same holds when both logics are restricted to almost conjunctive formulae of
the prefix class ∃̈∗∀∗.

4.3 From Probabilistic Team Semantics to Existential Second-Order
Logic

Let c and d be two distinct constants. Let φ(x) ∈ FO(≈,=(· · ·)) be a formula
whose free variables are from the sequence x = (x1, . . . , xn). We now construct
recursively an L-ESO[0,1][=,SUM, 0, 1]-formula φ∗(f) that contains one free n-
ary function variable f . In this formula, a probabilistic team X is represented as
a function fX such that X(s) = fX(s(x1), . . . , s(xn)).

(1) If φ(x) is a first-order literal, then φ∗(f) := ∀x(
f(x) = 0 ∨ φ(x)

)
.

(2) If φ(x) is a dependence atom of the form =(x0, x1) , then
φ∗(f) := ∀xx′(f(x) = 0 ∨ f(x′) = 0 ∨ x0 �= x′

0 ∨ x1 = x′
1

)
.

(3) If φ(x) is x0 ≈ x1, where x = x0x1x2 , then
φ∗(f) := ∀y SUMx1,x2f(y,x1,x2) = SUMx0,x2f(x0,y,x2).

(4) If φ(x) is of the form ψ0(x) ∧ ψ1(x), then φ∗(f) := ψ∗
0(f) ∧ ψ∗

1(f).
(5) If φ(x) is of the form ψ0(x) ∨ ψ1(x), then define φ∗(f) as

∃g∀x(SUMyg(x, y) = f(x)∧∀y(y = c∨y = d∨g(x, y) = 0)∧ψ∗
0(g

c)∧ψ∗
1(g

d)),
where gi is of the same arity as f and defined as gi(x) = g(x, i).

(6) If φ(x) is ∃yψ(x, y), then φ∗(f) := ∃g
(
(∀xSUMyg(x, y) = f(x)) ∧ ψ∗(g)

)
.

(7) If φ(x) is of the form ∀yψ(x, y), then
φ∗(f) := ∃g

(∀x(∀y∀zg(x, y) = g(x, z) ∧ SUMyg(x, y) = f(x)) ∧ ψ∗(g)
)
.

This translation leads to the following lemma, the proof of which can be found
in the full version [18]. The claim (ii) follows when the translation for depen-
dence atoms =(x0, x1) and x = x0x1x2 is modified to ∀x0∃x1SUMx2f(x) =
SUMx1x2f(x). Finally (iii) follows when the case for dependence atoms
is omitted.

Probabilistic Team Semantics and Existential Second-Order Logic 273

Lemma 16. The following hold:

(i) FO(≈,=(· · ·)) ≤ L-(∃̈∗∀∗)[0,1][=,SUM, 0, 1].
(ii) FO(≈,=(· · ·)) ≤ almost conjunctive L-(∃̈∗∀∗∃∗)[0,1][=,SUM, 0, 1].
(iii) FO(≈) ≤ almost conjunctive L-(∃̈∗∀∗)[0,1][=,SUM, 0, 1].

This completes the “≤” direction of Theorem 13. For (i), this follows from
(i) of Lemma 16, Proposition 15, and Lemma 14. For (ii), only (iii) of Lemma
16 is needed.

Recall from Proposition 3 that almost conjunctive (∃̈∗∃∗∀∗)R[≤,+,SUM, 0, 1]
is in PTIME in terms of data complexity. Since dependence logic captures NP
[32], the previous lemma indicates that we have found, in some regard, a maximal
tractable fragment of additive existential second-order logic. That is, dropping
either the requirement of being almost conjunctive, or that of having the prefix
form ∃̈∗∃∗∀∗, leads to a fragment that captures NP; that NP is also an upper
bound for these fragments follows by Theorem 6.

Corollary 17. FO(≈,=(· · ·)) captures NP on finite structures.

4.4 From Existential Second-Order Logic to Probabilistic Team
Semantics

Due to Lemma 14 and Proposition 15, our aim is to translate L-ESOd[0,1][=,SUM]
and almost conjunctive L-ESOd[0,1][=,SUM] to FO(≈,=(· · ·)) and FO(≈), resp.
The following lemma states that we may restrict attention to formulae in Skolem
normal form.1

Lemma 18 [8]. For every formula φ ∈ L-ESOd[0,1][=,SUM] there is a formula
φ∗ ∈ L-(∃̈∗∀∗)d[0,1][=,SUM] such that Strucd[0,1](φ) = Strucd[0,1](φ∗), and any
second sort identity atom in φ∗ is of the form fi(w) = SUMvfj(u,v) for dis-
tinct fi and fj of which at least one is quantified. Furthermore, φ∗ is almost
conjunctive if φ is almost conjunctive and in L-(∃̈∗∀∗)d[0,1][=,SUM].

The translation presented next is similar to one found in [8], with the excep-
tion that probabilistic independence atoms cannot be used here. Without loss of
generality each structure is enriched with two distinct constants c and d; such
constants are definable in FO(≈,=(· · ·)) by ∃cd(=(c)∧ =(d) ∧ c �= d), and for
almost conjunctive formulae they are not needed. Let φ(f) = ∃f∀x θ(f,x) ∈
L-(∃̈∗∀∗)d[0,1][=,SUM] be of the form described in the previous lemma, with one
free variable f . We define

Φ := ∃y1 . . . ∃yn∀xΘ(x,y1, . . . ,yn),
1 The corresponding Lemma 3 in [8] includes multiplication but the proof works also

without it. We would like to thank Richard Wilke for noting that the construction
used in [8] to prove Lemma 18 had an element that yields circularity. It is, fortunately,
straightforward to mend the proof such that the issue is avoided. See the full version
[18] for the fixed proof.

274 M. Hannula and J. Virtema

where yi are sequences of variables of length ar(fi), and Θ is built inductively
from θ:

(1) If θ is a literal of the first sort, let Θ := θ.
(2) If θ is of the form fi(xi) = SUMxj0fj(xj0xj1), let Θ := ∃αβψ for ψ given

as
(α = x ↔ xi = yi) ∧ (β = x ↔ xj1 = yj1) ∧ xα ≈ xβ, (2)

where x is any variable from x, and the first-order variable sequence yj that
corresponds to function variable fj is thought of as a concatenation of two
sequences yj0 and yj1 whose respective lenghts are |xj0| and |xj1|.

(3) If θ is θ0 ∧ θ1, let Θ := Θ0 ∧ Θ1

(4) If θ is θ0 ∨ θ1, let Θ := ∃z
(

=(x, z) ∧ (
(Θ0 ∧ z = c) ∨ (Θ1 ∧ z = d)

))
.

Alternatively, if θ0 contains no numerical terms, let Θ := θ0 ∨ (θ¬
0 ∧ Θ1),

where θ¬
0 is obtained from ¬θ0 by pushing ¬ in front of atomic formulae.

The full proof of the next lemma can be found in the full version [18].

Lemma 19. Let φ(f) ∈ L-(∃̈∗∀∗)d[0,1][=,SUM] be of the form described in
Lemma 18, with one free variable f . Then there is a formula Φ(x) ∈ FO(≈
,= (· · ·)) such that for all structures A and probabilistic teams X := fA,
A |=X Φ ⇐⇒ (A, f) |= φ. Furthermore, if φ(f) is almost conjunctive, then
Φ(x) ∈ FO(≈).

The “≥” direction of item (i) in Theorem 13 follows by Lemmata 14, 18, and
19; that of item (ii) follows similarly, except that Proposition 15 is used instead
of Lemma 14. This concludes the proof of Theorem 13.

5 Interpreting Inclusion Logic in Probabilistic Team
Semantics

Next we turn to the relationship between inclusion and probabilistic inclusion
logics. The logics are comparable for, as shown in Propositions 12, team seman-
tics embeds into probabilistic team semantics conservatively. The seminal result
by Galliani and Hella shows that inclusion logic captures PTIME over ordered
structures [11]. We show that restricting to finite structures, or uniformly dis-
tributed probabilistic teams, inclusion logic is in turn subsumed by probabilistic
inclusion logic. There are two immediate consequences for this. First, the result
by Galliani and Hella readily extends to probabilistic inclusion logic. Second,
their result obtains an alternative, entirely different proof through linear sys-
tems.

We utilize another result of Galliani stating that inclusion logic is equiex-
pressive with equiextension logic [10], defined as the extension of first-order logic
with equiextension atoms x1 �� x2 := x1 ⊆ x2 ∧ x2 ⊆ x1. In the sequel, we
relate equiextension atoms to probabilistic inclusion atoms.

Probabilistic Team Semantics and Existential Second-Order Logic 275

For a natural number k ∈ N and an equiextension atom x1 �� x2, where x1

and x2 are variable tuples of length m, define ψk(x1,x2) as

∀u∃v1v2∀z′∃z((x1 = u ↔ v1 = y) ∧ (x2 = u ↔ v2 = y)∧ (3)
(z′ = y → z = y) ∧ (¬z = y ∨ uv1 ≈ uv2)),

where z and z′ are variable tuples of length k, and y is obtained by concatenating
k times some variable y in u. Intuitively (3) expresses that a probabilistic team
X, extended with universally quantified u, decomposes to Y + Z, where Y(s) =
fsX(s) for some variable coefficient fs ∈ [1

nk , 1], and |Yx1=u | = |Yx2=u |, for any
u. Thus (3) readily implies that x1 �� x2. On the other hand, x1 �� x2 implies
(3) if each assignment weight X(s) equals gs|X| for some gs ∈ [1

nk , 1]. In this case,
one finds the decomposition Y + Z by balancing the weight differences between
values of x1 and x2. A more formal proof for the following lemma can be found
in the full version [18].

Lemma 20. Let k be a positive integer, A a finite structure with universe A of
size n, and X : X → R≥0 a weighted team.

(i) If A |=w
X
x1 �� x2 and ∀s ∈ X : X(s) = 0 or X(s) ≥ |X|

nk , then A |=w
X

φk(x,y).
(ii) If A |=w

X
φk(x,y), then A |=w

X
x1 �� x2.

We next establish that inclusion logic is subsumed by probabilistic inclusion
logic at the level of sentences.

Theorem 21. FO(⊆) ≤ FO(≈) with respect to sentences.

Proof. As FO(⊆) ≡ FO(��) [10], it suffices to show FO(��) ≤ FO(≈) over sen-
tences. Let φ ∈ FO(��) be a sentence, and let k be the number of disjunctions and
quantifiers in φ. Let φ∗ be obtained from φ by replacing all equiextension atoms
of the form x1 �� x2 with ψk(x1,x2). We can make three simplifying assumption
without loss of generality. First, we may restrict attention to weighted seman-
tics by item (ii) of Proposition 12. Thus, we assume that A |=w

X
φ for some

weighted team X and a finite structure A with universe of size n. Second, we
may assume that the support of X consists of the empty assignment by item (iv)
of Proposition 12. Third, since FO(��) is insensitive to assignment weights, we
may assume that the satisfaction of φ by X is witnessed by uniform semantic
operations. That is, existential and universal quantification split an assignment
to at most n equally weighted extensions, and disjunction can only split an
assignment to two equally weighted parts. It follows from these assumptions
that in any weighted team Y, obtained from X for some subformula of φ, all
the assignment weights are greater than or equal to |Y|

nk . We then obtain by the
previous lemma and a simple inductive argument that A |=w

X
φ∗. The converse

direction follows similarly by the previous lemma. ��
Consequently, probabilistic inclusion logic captures P, for this holds already for
inclusion logic [11]. Another consequence is an alternative proof, through prob-
abilistic inclusion logic (Theorem 21) and linear programs (Theorems 13 and 4),

276 M. Hannula and J. Virtema

for the PTIME upper bound of the data complexity of inclusion logic. For this,
note also that quantification of functions, whose range is the unit interval, is
clearly expressible in ESOR[≤,SUM, 0, 1].

Corollary 22. Sentences of FO(≈) capture P on finite ordered structures.

Theorem 21 also extends to formulae over uniform teams. Recall that a func-
tion f is uniform if f(s) = f(s′) for all s, s′ ∈ Supp(f).

Theorem 23. FO(⊆) ≤ FO(≈) over uniform probabilistic teams.

Proof. Recall that FO(⊆) ≡ FO(��). Let φ be an FO(��) formula, A a finite
structure, and X a uniform probabilistic team. Let ∗ denote the translation of
Theorem 21. Now

A |=X φ ⇔ (A, R := X) |= ∀x1 . . . xn

(¬R(x1 . . . xn) ∨ (
R(x1 . . . xn) ∧ φ

))

⇔ (A, R := X) |= ∀x1 . . . xn

(¬R(x1 . . . xn) ∨ (
R(x1 . . . xn) ∧ φ

))∗

⇔ (A, R := X) |= ∀x1 . . . xn

(¬R(x1 . . . xn) ∨ (
R(x1 . . . xn) ∧ φ∗))

⇔ A |=X φ∗,

where X is the support of X and Dom(X) = {x1, . . . , xn}. ��

6 Conclusion

Our investigations gave rise to the following expressiveness and complexity pic-
ture:

P ≡fin-ord FO(≈) ≡ almost conjunctive L-(∃̈∗∀∗)[0,1][=,SUM, 0, 1]
< L-ESO[0,1][=,+, 0, 1] ≡ FO(≈,=(· · ·)) ≡fin NP,

where the strict inclusion was shown in [16]. Its worth to note that almost con-
junctive (∃̈∗∃∗∀∗)R[≤,+,SUM, 0, 1] is in some regard a maximal tractable frag-
ment of additive existential second-order logic as dropping either the requirement
of being almost conjunctive, or that of having the prefix form ∃̈∗∃∗∀∗, leads to
a fragment that captures NP. We also showed that the full additive existential
second-order logic (with inequality and constants 0 and 1) collapses to NP, a
result which as far as we know has not been stated previously.

References

1. Benedikt, M., Grohe, M., Libkin, L., Segoufin, L.: Reachability and connectivity
queries in constraint databases. J. Comput. Syst. Sci. 66(1), 169–206 (2003)

2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer-Verlag, Berlin, Heidelberg (1997)

3. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the
real numbers: np-completeness, recursive functions and universal machines. Bull.
Amer. Math. Soc. (N.S.) 21(1), 1–46 (1989)

Probabilistic Team Semantics and Existential Second-Order Logic 277

4. Bürgisser, P., Cucker, F.: Counting complexity classes for numeric computations
II: algebraic and semialgebraic sets. J. Complexity 22(2), 147–191 (2006)

5. Console, M., Hofer, M., Libkin, L.: Queries with arithmetic on incomplete
databases. In: Suciu, D., Tao, Y., Wei, Z. (eds.) Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2020, Portland, OR, USA, 14–19 June 2020, pp. 179–189. ACM (2020)

6. Cucker, F., Meer, K.: Logics which capture complexity classes over the reals. J.
Symb. Log. 64(1), 363–390 (1999)

7. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and
dependence via multiteam semantics. Ann. Math. Artif. Intell. 83(3–4), 297–320
(2018)

8. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team
semantics. In: Foundations of Information and Knowledge Systems - 10th Interna-
tional Symposium, FoIKS 2018, Budapest, Hungary, 14–18 May 2018, Proceedings,
pp. 186–206 (2018)

9. Galliani, P.: Game Values and Equilibria for Undetermined Sentences of Depen-
dence Logic. MSc Thesis. ILLC Publications, MoL-2008-08 (2008)

10. Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some
logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)

11. Galliani, P., Hella, L.: Inclusion logic and fixed point logic. In: Ronchi, S., Rocca,
D., (eds.) Computer Science Logic 2013 (CSL 2013), volume 23 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, pp. 281–295
(2013)

12. Grädel, E., Gurevich, Y.: Metafinite model theory. Inf. Comput. 140(1), 26–81
(1998)

13. Grädel, E., Kreutzer, S.: Descriptive complexity theory for constraint databases.
In: Computer Science Logic, 13th International Workshop, CSL 1999, 8th Annual
Conference of the EACSL, Madrid, Spain, 20–25 September 1999, Proceedings, pp.
67–81 (1999)

14. Grädel, E., Meer, K.: Descriptive complexity theory over the real numbers. In:
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Com-
puting, 29 May-1 June 1995, Las Vegas, Nevada, USA, pp. 315–324 (1995)

15. Grohe, M., Ritzert, M.: Learning first-order definable concepts over structures of
small degree. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2017, Reykjavik, Iceland, 20–23 June 2017, pp. 1–12. IEEE Computer
Society (2017)

16. Hannula, M., Hirvonen, Å., Kontinen, J., Kulikov, V., Virtema, J.: Facets of distri-
bution identities in probabilistic team semantics. In: Logics in Artificial Intelligence
- 16th European Conference, JELIA 2019, Rende, Italy, 7–1 May 2019, Proceed-
ings, pp. 304–320 (2019)

17. Hannula, M., Kontinen, J., Van den Bussche, J., Virtema, J.: Descriptive complex-
ity of real computation and probabilistic independence logic. In: Hermanns, H.,
Zhang, L., Kobayashi, N., Miller, D., (eds.) LICS 2020: 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, Saarbrücken, Germany, 8–1 July 2020,
pp. 550–563. ACM (2020)

18. Hannula, M., Virtema, J.: Tractability frontiers in probabilistic team semantics
and existential second-order logic over the reals. CoRR, abs/2012.12830 (2020)

19. Uffe Flarup Hansen and Klaus Meer: Two logical hierarchies of optimization prob-
lems over the real numbers. Math. Log. Q. 52(1), 37–50 (2006)

20. Hodges, W.: Compositional semantics for a language of imperfect information. J.
Interest Group Pure Appl. Logics 5(4), 539–563 (1997)

278 M. Hannula and J. Virtema

21. Hyttinen, T., Paolini, G., Väänänen, J.: A logic for arguing about probabilities in
measure teams. Arch. Math. Logic 56(5–6), 475–489 (2017)

22. Jordan, C., Kaiser, L.: Machine learning with guarantees using descriptive com-
plexity and SMT solvers. CoRR, abs/1609.02664 (2016)

23. Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint query languages. J. Com-
put. Syst. Sci. 51(1), 26–52 (1995)

24. Khachiyan, L.G.: A polynomial algorithm in linear programming. Dokl. Akad.
Nauk SSSR 244, 1093–1096 (1979)

25. Koiran, P.: Computing over the reals with addition and order. Theor. Comput.
Sci. 133(1), 35–47 (1994)

26. Kontinen, J., Nurmi, V.: Team logic and second-order logic. In: Ono, H., Kanazawa,
M., de Queiroz, R. (eds.) Logic. Language, Information and Computation, volume
5514 of Lecture Notes in Computer Science, pp. 230–241. Springer, Berlin / Hei-
delberg (2009)

27. Kontinen, J., Väänänen, J.: On definability in dependence logic. J. Logic, Lang.
Inf. 3(18), 317–332 (2009)

28. Kreutzer, S.: Fixed-point query languages for linear constraint databases. In: Pro-
ceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, 15–17 May 2000, Dallas, Texas, USA, pp. 116–125
(2000)

29. Meer, K.: Counting problems over the reals. Theor. Comput. Sci. 242(1–2), 41–58
(2000)

30. Schaefer, M., Stefankovic, D.: Fixed points, nash equilibria, and the existential
theory of the reals. Theory Comput. Syst. 60(2), 172–193 (2017)

31. Torunczyk, S.: Aggregate queries on sparse databases. In: Suciu, D., Tao, Y., Wei,
Z., (eds.) Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2020, Portland, OR, USA, 14–19 June
2020, pp. 427–443. ACM (2020)

32. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)
33. van Bergerem, S., Schweikardt, N.: Learning concepts described by weight aggre-

gation logic. In: Baier, C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual Con-
ference on Computer Science Logic, CSL 2021, January 25-28, 2021, Ljubljana,
Slovenia (Virtual Conference), LIPIcs, vol. 183, pp. 10:1–10:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.CSL.2021.10.
https://dblp.org/rec/conf/csl/BergeremS21.bib

https://doi.org/10.4230/LIPIcs.CSL.2021.10
https://dblp.org/rec/conf/csl/BergeremS21.bib

An Epistemic Probabilistic Logic
with Conditional Probabilities

Šejla Dautović1(B), Dragan Doder2, and Zoran Ognjanović1

1 Mathematical Institute of Serbian Academy of Sciences and Arts, Belgrade, Serbia
{shdautovic,zorano}@mi.sanu.ac.rs

2 Utrecht University, Utrecht, The Netherlands
d.doder@uu.nl

Abstract. We present a proof-theoretical and model-theoretical app-
roach to reasoning about knowledge and conditional probability. We
extend both the language of epistemic logic and the language of lin-
ear weight formulas, allowing statements like “Agent Ag knows that the
probability of A given B is at least a half”. We axiomatize this logic,
provide corresponding semantics and prove that the axiomatization is
sound and strongly complete. We also show that the logic is decidable.

Keywords: Probabilistic logic · Epistemic logic · Completeness

1 Introduction

Epistemic logics are formal models designed in order to reason about the knowl-
edge of agents and their knowledge of each other’s knowledge. During the last
couple of decades, they have found applications in various fields such as game
theory, the analysis of multi-agent systems in computer science and artificial
intelligence, and for analyzing the behavior and interaction of agents in a dis-
tributed system [7,8,24]. In parallel, uncertain reasoning has emerged as one
of the main fields in artificial intelligence, with many different tools developed
for representing and reasoning with uncertain knowledge. A particular line of
research concerns the formalization in terms of logic, and the questions of pro-
viding an axiomatization and decision procedure for probabilistic logic attracted
the attention of researchers and triggered investigation about formal systems for
probabilistic reasoning [1,6,9–11,19,20].

Fagin and Halpern [5] emphasised the need for combining those two fields
for many application areas, and in particular in distributed systems applica-
tions, when one wants to analyze randomized or probabilistic programs. They
developed a joint framework for reasoning about knowledge and probability, pro-
posed a complete axiomatization and investigated decidability of the framework.
Based on the seminal paper by Fagin, Halpern and Meggido [6], they extended
the propositional epistemic language with formulas which express linear combi-
nations of probabilities, called linear weight formulas, i.e., the formulas of the

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 279–293, 2021.
https://doi.org/10.1007/978-3-030-75775-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_19

280 Š. Dautović et al.

form a1w(α1) + ... + akw(αk) ≥ r, where aj ’s and r are rational numbers. They
proposed a finitary axiomatization and proved weak completeness, using a small
model theorem.

In this paper, we extend the logic from [5] by also allowing formulas that can
represent conditional probability. Thus, our language contains both knowledge
operators Ki (one for each agent i) and conditional probability formulas of the
form a1wi(α1, β1) + ... + akwi(αk, βk) ≥ r. The expressions of the form wi(α, β)
represent conditional probabilities that agent i places on events according to
Kolmogorov definition: P (A|B) = P (A∩B)

P (B) if P (B) > 0, while P (A|B) is unde-
fined when P (B) = 0. The corresponding semantics consists of enriched Kripke
models, with a probability measure assigned to every agent in each world.

Our main results are a sound and complete axiomatization for the logic and
decidability result. We prove strong completeness (every consistent set of formu-
las is satisfiable) using an adaptation of Henkin’s construction, modifying some
of our earlier methods [2–4,16,18,19,21]. Our axiom system contains infinitary
rules of inference, whose premises and conclusions are in the form of k-nested
implications (Definition 6). This form of infinitary rules is a technical solution
already used in probabilistic, epistemic and temporal logics for obtaining vari-
ous strong necessitation results [13,15,17,22,23]. An obvious alternative to an
infinitary axiomatization would be to develop a finitary system which would
be weakly complete (strong completeness of a finitary system is impossible due
to the noncompactness phenomena for probability logics, see [11]). We do not
know a finitary axiomatization for this rich language. Moreover, even for log-
ics which need to express conditional probabilities only (i.e., without knowledge
operators), the task of developing a finitary system turned out to be very hard
to accomplish. Fagin, Halpern and Meggido [6] faced problems when they tried
to represent conditional probabilities by adding multiplication to the syntax of
linear weight formulas, and they needed to introduce a first-order extension of
the language in order to obtain completeness. The only finitary axiomatization
we are aware of is the fuzzy approach of Marchioni and Godo [14], who consider
the probability of a conditional event of the form “α given β” as the truth-value
of the fuzzy proposition P (α|β) which is read as “P (α|β) is probable.”

In the last part of this paper, we prove that satisfiability problem for our
logic is decidable. From the technical point of view, we combine the method of
filtration [12] and a reduction to a system of inequalities.

2 Syntax and Semantics

Let P = {p, q, r, . . . } be a set of propositional letters and let A be a finite set of
agents. Let Q denote the set of all rational numbers and let [0, 1]Q = [0, 1] ∩ Q.

Definition 1 (Formula). The set For of all formulas of the logic is the smallest
set such that:

– P ⊂ For;
– If α ∈ For then Kiα ∈ For.

An Epistemic Probabilistic Logic with Conditional Probabilities 281

– For any i ∈ A and k ≥ 1, if α1, α
′
1, . . . , αk, α′

k ∈ For and a1, . . . , ak, r ∈ Q,
then a1wi(α1, α

′
1) + · · · + akwi(αk, α′

k) ≥ r ∈ For,
– If α and β are formulas then ¬α, α ∧ β ∈ For.

The meaning of formula Kiα is “agent i knows α”, while the expression
wi(α, β) denotes conditional probability of α given β, according to the agent i.

An expression of the form a1wi(α1, α
′
1) + · · · + akwi(αk, α′

k) is called term.
Following [5], we do not allow appearance of multiple agents inside of a term.
We denote terms with fi, gi and hi.

The propositional connectives, ∨, → and ↔, are introduced as abbreviations,
in the usual way. We define
 to be an abbreviation for the formula p∨¬p where
p is a propositional letter, while ⊥ is ¬
. We also use abbreviations to define
other types of inequalities; for example: wi(α, β) ≥ wi(α′, β′) as an abbreviation
for wi(α, β) − wi(α′, β′) ≥ 0, wi(α, β) ≤ wi(α′, β′) for wi(α′, β′) ≥ wi(α, β),
wi(α, β) = wi(α′, β′) for (wi(α, β) ≥ wi(α′, β′)) ∧ (wi(α, β) ≤ wi(α′, β′)), and
wi(α, β) > wi(α′, β′) for (wi(α, β) ≥ wi(α′, β′)) ∧ ¬(wi(α, β) = wi(α′, β′)).

Now we introduce the semantics of our logic CKL.

Definition 2 (CKL-structure). A CKL-structure is a tuple (W,K, P rob, v)
where:

1. W is a non-empty set of objects called worlds.
2. v : W × P → {true, false} assigns to each world u ∈ W a two-valued evalu-

ation v(u, ·) of propositional letters,
3. K = {Ki | i ∈ A} is a set of binary equivalence relations on W . We denote

Ki(u) = {u′ | (u′, u) ∈ Ki}, and write uKiu
′ if u′ ∈ Ki(u),

4. Prob assigns to every i ∈ A and u ∈ W a probability space Prob(i, u) =
(Wi(u),Hi(u), μi(u)), where
– Wi(u) is a non-empty subset of W ,
– Hi(u) is an algebra of subsets of Wi(u), i.e. a set such that

(a) Wi(u) ∈ Hi(u),
(b) if A ∈ Hi(u), then Wi(u) \ A ∈ Hi(u), and
(c) if A,B ∈ Hi(u), then A ∪ B ∈ Hi(u).

– μi(u) : Hi(u) −→ [0, 1] is a finitely additive measure, i.e.,
(a) μi(u)(Wi(u)) = 1,
(b) μi(u)(A ∪ B) = μi(u)(A) + μi(u)(B), whenever A ∩ B = ∅.

The elements of Hi(u) are called measurable sets.

Definition 3 (Satisfiability). Let M be a CKL-structure and let u be some
world from M . The satisfiability relation |= is defined recursively as follows:

1. If α ∈ P then M,u |= α iff v(u, α) = true,
2. M,u |= Kiα iff M,u′ |= α for all u′ ∈ Ki(u),
3. M,u |= ∑n

k=1 akwi(αk, βk) ≥ r if μi(u)({u′ ∈ Wi(u) | M,u′ |= βk}) > 0
for every k ∈ {1, . . . , n} and

∑n
k=1 akμi(u)({u′ ∈ Wi(u) | M,u′ |= αk}|{u′ ∈

Wi(u) | M,u′ |= βk}) ≥ r,
4. M,u |= ¬α iff M,u �|= α,
5. M,u |= α ∧ β iff M,u |= α and M,u |= β.

282 Š. Dautović et al.

We denote by [α]i,M,u the set of all worlds from Wi(u) in which α holds, i.e.,

[α]i,M,u = {u′ ∈ Wi(u) | M,u′ |= α}.

We write [α] instead of [α]i,M,u when i, M and u are clear from the context.
Note that the satisfiability relation defined in Definition 3 is a partial relation,
i.e., it is not in general defined for all formulas. The reason is that a formula∑n

k=1 akwi(αk, βk) ≥ r can be evaluated in u only if all the sets [αk]i,M,u and
[βk]i,M,u are measurable. In order to keep the relation |= total (i.e., well-defined
for all the formulas), in this paper we consider only the models in which all those
sets are indeed measurable.

Definition 4 (CKL-measurable structure). A CKL-structure M is CKL-
measurable iff [α]i,u ∈ H(u) for every world u from M , every α ∈ For and every
i ∈ A. We denote the set of all measurable structures with CKLMeas.

Note that, according to Definition 3, the formula wi(α, β) ≥ r ∨ wi(α, β) ≤ r
is not necessary satisfied in a model; the reason is that unconditional probability
is simply undefined if probability of the condition is zero.

Definition 5 (Model, entailment). For an M = (W,Prob,K, v) ∈ CKLMeas,
u ∈ W and a set of formulas T , we say that M,u is a model of T , and write
M,u |= T , iff M,u |= α for every α ∈ T . The set T is satisfiable, if there is
M ∈ CKLMeas and a world u from M such that M,u |= T . Formula α is valid
if ¬α is not satisfiable. We say that T entails α and write T |= α, if for every
M = (W,Prob,K, v) ∈ CKLMeas and every u ∈ W if M,u |= T then M,u |= α.

3 Axiomatization

In this section we present an axiomatization of our logic, which we denote
Ax(CKL). First we need to introduce a useful notion which we use for the proof
of Theorem 2.

Definition 6 (k-nested implication). Let α ∈ For be a formula and let
k ∈ N. Let θ = (θ0, . . . , θk) be a sequence of k formulas, and X = (X1, . . . , Xk)
a sequence of knowledge operators from {Ki | i ∈ A}. The k-nested implication
formula Φk,θ,X(α) is defined recursively as follows:

Φ0,θ,X(α) = θ0 → α

Φk,θ,X(α) = θk → XkΦk−1,θk−1
j=0 ,Xk−1

j=0
(α)

For example, if X = (Ka,Kb,Kc), a, b, c ∈ A, then Φ3,θ,X(α) = θ3 →
Kc(θ2 → Kb(θ1 → Ka(θ0 →
))).

An Epistemic Probabilistic Logic with Conditional Probabilities 283

Ax(CKL) contains the following axiom schemas and inference rules. It is
straightforward to check that Ax(CKL) is sound with respect to CKLMeas.

Axiom and rule for propositional reasoning

(A1) All instances of classical propositional tautologies.
(R1) From {α, α → β} infer β

Axioms and rules for reasoning about knowledge

(A2) (Kiα ∧ Ki(α → β)) → Kiβ, for every i ∈ G
(A3) Kiα → α,
(A4) Kiα → KiKiα,
(A5) ¬Kiα → Ki¬Kiα,
(R2) From α infer Kiα.

Axioms for reasoning about linear inequalities

(A6) ((a1wi(α1, α
′
1) + · · · + akwi(αk, α′

k) ≤ r) ∧ (wi(α′
k+1,
) > 0)) ↔

(a1wi(α1, α
′
1) + · · · + akwi(αk, α′

k) + 0wi(αk+1, α
′
k+1) ≤ r)

(A7) (a1wi(α1, α
′
1) + · · · + akwi(αk, α′

k) ≤ r) → (aj1wi(αj1 , α
′
j1

) + · · · +
ajkwi(αjk , α′

jk
) ≤ r) where j1, . . . jk is a permutation of 1, . . . k.

(A8) (a1wi(α1, α
′
1)+· · ·+akwi(αk, α′

k) ≤ r)∧(a′
1wi(α1, α

′
1)+· · ·+a′

kwi(αk, α′
k) ≤

r′) → ((a1 + a′
1)wi(α1, α

′
1) + · · · + (ak + a′

k)wi(αk, α′
k) ≤ r + r′)

(A9) (a1wi(α1, α
′
1) + · · · + akwi(αk, α′

k) ≤ r) ↔ (da1wi(α1, α
′
1) + · · · +

dakwi(αk, α′
k) ≤ dr) where d > 0.

(A10)
∧n

i=0 wi(α′
i,
) > 0 → ((a1wi(α1, α

′
1) + · · · + akwi(αk, α′

k) ≤ r) ∨
(a1wi(α1, α

′
1) + · · · + akwi(αk, α′

k) ≥ r)
(A11) (fi ≥ r) → (fi > r′) for r > r′

Axioms and rule for reasoning about probabilities

(A12) wi(α,
) ≥ 0
(A13) wi(α ∧ β,
) + wi(α ∧ ¬β,
) = wi(α,
)
(A14) wi(α,
) = wi(β,
) if α ↔ β is an instance of propositional tautology
(A15)

∑n
j=1 ajwi(αj , βj) ≥ r → wi(βj ,
) > 0 for every j ∈ {1, . . . , n}

(A16) (wi(β,
) ≥ s ∧ wi(α, β) ≥ r) → wi(α ∧ β,
) ≥ sr
(R3) From α infer wi(α,
) ≥ 1
(R4) From the set of premises {Φk,θ,X(fi ≥ r − 1

k) | k ∈ N} infer Φk,θ,X(fi ≥ r)
(R5) From the set of premises {Φk,θ,X(wi(β,
) > 0)}∪{Φk,θ,X((wi(β,
) ≥ s →

wi(α ∧ β,
) ≥ rs) | s ∈ [0, 1]Q} infer Φk,θ,X(wi(α, β) ≥ r)

The given axioms and rules are divided into four groups, according to the
type of reasoning. The axioms A6–A14 are adapted from axiom system from [5]
to our approach to conditional probabilities. The axioms A15 and A16, together
with the rule R5 properly capture the third condition of Definition 3. The rules
R4 and R5 are infinitary inference rules. R4 is a variant of so called Archimedean
rule, whose role is to prevent nonstandard values. Intuitively, it says that is the
value of a term is infinitely close to r, then it must be equal to r.

Let us now define some basic notions of proof theory.

284 Š. Dautović et al.

Definition 7 (Theorem, proof). A formula α is a theorem, denoted by � α, if
there is a sequence of formulas α0, α1, . . . , αλ+1 (λ is finite or countable ordinal),
such that αλ+1 = α and every αi, i ≤ λ + 1, is an axiom, or it is derived from
the preceding formulas by an inference rule.

A formula α is deducible from a set T ⊆ For (T �Ax(CKL) α) if there is a
sequence of formulas α0, α1, . . . , αλ+1 (λ is finite or countable ordinal), such that
αλ+1 = α and every αi is an axiom or a formula from T , or it is derived from
the preceding formulas by an inference rule, with the exception that e R2 and R3
can be applied to the theorems only. The sequence α0, α1, . . . , α is a proof of α
from T . We write � instead of �AxCKL when it is clear from context.

Note that the length of a proof is any countable successor ordinal.

Definition 8 (Consistency). A set of formulas T is inconsistent if T � ⊥,
otherwise it is consistent. T is a maximal consistent set (mcs) of formulas if it
is consistent and every proper superset of T is inconsistent.

4 Completeness

In this section we show that the axiomatization Ax(CKL) is strongly complete
for the logic CKL, i.e., we prove that every consistent set of formulas has a
model. First we prove several auxiliary statements.

Theorem 1 (Deduction theorem). Let T be a set of formula and α and β a
formulas. Then

T ∪ {α} � β iff T � α → β.

Deduction theorem can be proven using transfinite induction on the length
of the inference. For the cases when we apply infinitary inference rules, we refer
the reader to [23], when a similar proof is presented, using the form of k-nested
implications in the infinitary rules.

Theorem 2 (Strong necessitation). If T is a set of formulas and T � α,
then KiT � Kiα, for all i ∈ A, where KiT = {Kiα | α ∈ T}.
Proof. Let T � α. We will prove the theorem by using the transfinite induction
on the length of the proof of T � α. Here we will only consider the application
of the rule R5. Let α be the formula Φk,θ,X(wi(γ, β) ≥ r) which was obtained
by the rule R5. Then we have

T � Φk,θ,X(wi(β,
) > 0)
T � Φk,θ,X(wi(β,
) ≥ s → wi(γ ∧ β,
) ≥ rs) for all s ∈ [0, 1]Q
KiT � KiΦk,θ,X(wi(β,
) > 0) by IH
KiT � KiΦk,θ,X(wi(β,
) ≥ s → wi(γ ∧ β,
) ≥ rs) for all s ∈ [0, 1]Q, by IH
KiT �
 → KiΦk,θ,X(wi(β,
) > 0)
KiT �
 → KiΦk,θ,X(wi(β,
) ≥ s → wi(γ ∧ β,
) ≥ rs) for all s ∈ [0, 1]Q
KiT � Φk+1,θ,X(wi(β,
) > 0), θ = (θ,
),X = (X,Ki)

An Epistemic Probabilistic Logic with Conditional Probabilities 285

KiT � Φk+1,θ,X(wi(β,
) ≥ s → wi(γ ∧ β,
) ≥ rs) for all s ∈ [0, 1]Q,
KiT � Φk+1,θ,X(wi(γ, β) ≥ r), by R5
KiT �
 → KiΦk,θ,X(wi(γ, β) ≥ r)
KiT � Kiα. ��
Next we prove some crucial statements which we need for the proof of the

completeness theorem.

Theorem 3 (Lindenbaum’s Theorem). Every consistent set of formulas can
be extended to a maximal consistent set.

Proof. Let T be an arbitrary consistent set of formulas. Assume that {γi | i =
0, 1, 2, . . . } is an enumeration of all formulas from For. We construct the set T ∗

recursively, in the following way:

1. T0 = T .
2. If the formula γi is consistent with Ti, then Ti+1 = Ti ∪ {γi}.
3. If the formula γi is not consistent with Ti, then:

(a) If γi = Φk,θ,X(fi ≥ r) and fi = wi(α, β), then we define Ti+1 = Ti ∪
{¬γi,¬Φk,θ,X(fi ≥ r − 1

m), γ”i} where
γ”i = ¬Φk,θ,X(wi(β,
) > 0), if Ti ∪ {¬Φk,θ,X(wi(β,
) > 0} �� ⊥
γ”i = ¬Φk,θ,X(wi(β,
) ≥ s → wi(α ∧ β,
) ≥ sr), otherwise,
for some m ∈ N and s ∈ [0, 1]Q such that Ti+1 is consistent.

(b) If γi = Φk,θ,X(fi ≥ r) and fi �= wi(α, β) then we define Ti+1 = Ti ∪
{¬γi,¬Φk,θ,X(fi ≥ r − 1

m)} for some m ∈ N, such that Ti+1 is consistent.
(c) Otherwise, Ti+1 = Ti ∪ {¬γi}.

4. T ∗ =
⋃∞

n=0 Tn.

First we will show that the set T ∗ is correctly defined, i.e., there exist m ∈ N

from (3a) and (3b) and rational number s from the step (3a) of the construction.
Let us prove correctness in step (3a) exists.

Let us assume that T ′
i = Ti ∪ {Φk,θ,X(wi(α, β) ≥ r)} is inconsistent.

From Theorem 1 we obtain Ti � ¬Φk,θ,X(wi(α, β) ≥ r). Suppose that the
set Ti ∪ {¬Φk,θ,X(wi(α, β) ≥ r − 1

m)} inconsistent for every m ∈ N. By
Theorem 1, we have Ti � Φk,θ,X(wi(α, β) ≥ r − 1

m) for every m ∈ N. Then
by the rule R3 we have Ti � Φk,θ,X(wi(α, β) ≥ r). Contradiction. Now sup-
pose that the set T ′

i ∪ {¬Φk,θ,X(wi(β,
) > 0)} is inconsistent, and that
the set T ′

i ∪ {¬Φk,θ,X(wi(β,
) ≥ s → wi(α ∧ β,
) ≥ sr)} is inconsistent
for every s. By Theorem 1, we obtain that T ′

i � Φk,θ,X(wi(β,
) > 0) and
T ′

i � Φk,θ,X(wi(β,
) ≥ s → wi(α ∧ β,
) ≥ sr), for every s. By the rule R4 we
have T ′

i � Φk,θ,X(wi(α, β) ≥ r). Contradiction.
Next we prove that T ∗ is a maximal consistent set. Note that every Ti is

consistent by the construction. This still doesn’t imply consistency of T ∗ =⋃∞
n=0 Tn, since we have infinitary rules. First we show that for every γ′ ∈ For

either γ′ ∈ T ∗ or ¬γ′ ∈ T ∗ holds. Let i and j be the nonnegative integers such
that γi = γ′ and γj = ¬γ′. Then, either γ′ or ¬γ′ is consistent with Tmax{i,j}. If
Tmax{i,j} is not consistent with γ′ and ¬γ′ then by Theorem 1, Tmax{i,j} will be
inconsistent. Then either γ′ ∈ Ti+1 or ¬γ′ ∈ Tj+1, so either γ′ ∈ T ∗ or ¬γ′ ∈ T ∗.

286 Š. Dautović et al.

In order to prove the consistency of T ∗, we will show that T ∗ is deduc-
tively closed. If the formula γ is an instance of some axiom, then γ ∈ T ∗ by
the construction of T ∗. Here we show that T ∗ is closed under the rule R5; the
other cases are similar. Suppose T ∗ � Φk,θ,X(wi(α, β) ≥ r) was obtained by R5,
where Φk,θ,X(wi(β,
) > 0) ∈ T ∗ and Φk,θ,X(wi(β,
) ≥ s → wi(α ∧ β,
) ≥
sr) ∈ T ∗ for all s ∈ [0, 1]Q. Assume that Φk,θ,X(wi(α, β) ≥ r) �∈ T ∗.
Let j be the positive integer such that γj = Φk,θ,X(wi(α, β) ≥ r). Then,
Tj ∪ {γj} is inconsistent, since otherwise Φk,θ,X(wi(α, β) ≥ r) ∈ Tj+1 ⊂ T ∗.
By the step (3a) ¬Φk,θ,X(wi(β,
) > 0) ∈ Tj+1 or there is s′ ∈ [0, 1]Q
such that ¬Φk,θ,X(wi(β,
) ≥ s′ → wi(α ∧ β,
) ≥ s′r) ∈ Tj+1. Suppose
¬Φk,θ,X(wi(β,
) > 0) ∈ Tj+1 and from Φk,θ,X(wi(β,
) > 0) ∈ T ∗ there is
nonegative integer k such that Φk,θ,X(wi(β,
) > 0) ∈ Tk. Then Tmax{k,j+1} � ⊥,
a contradiction.

Now suppose that ¬Φk,θ,X(wi(β,
) ≥ s′ → wi(α∧β,
) ≥ s′r) ∈ Tj+1, where
s′ ∈ [0, 1]Q. We have that Φk,θ,X(wi(β,
) ≥ s → wi(α∧β,
) ≥ sr) ∈ T ∗ for all
s ∈ [0, 1]Q, so we have Φk,θ,X(wi(β,
) ≥ s′ → wi(α ∧ β,
) ≥ s′r) ∈ T ∗. Then,
there is nonegative integer k′ such that Φk,θ,X(wi(wi(β,
) ≥ s′ → wi(α∧β,
) ≥
s′r) ∈ T ′

k . Then Tmax{k′,j+1} � ⊥, a contradiction. Consequently, the set T ∗ is
deductively closed.

From the fact that T ∗ is deductively closed we can prove that T ∗ is consistent.
Indeed, if T ∗ is inconsistent, there is γ′ ∈ For such that T ∗ � γ′ ∧¬γ′. But then
there is a nonnegative integer i such that γ′ ∧ ¬γ′ ∈ Ti, a contradiction. ��

Next we introduce some notation, that we use in definition of the canonical
model. For a given T ⊆ For and i ∈ A, we define the set T/Ki as follows:

T/Ki = {α | Kiα ∈ T}.

Definition 9 (Canonical model). The canonical model MC = (W,K, P rob, v)
is defined as follows:

– W = {u | u is maximal consistent set},
– for every world u and every propositional letter p ∈ P, v(u, p) = true iff

p ∈ u,
– K = {Ki | i ∈ A} where Ki = {(u′, u) | u′/Ki ⊂ u}
– Prob(i, u) = (Wi(u),Hi(u), μi(u)) such that:

• Wi(u) = W ,
• Hi(u) = {{u′ ∈ W | α ∈ u′} | α ∈ For},
• μi(u) : Hi(u) → [0, 1] such that μi(u)({u′ ∈ W | α ∈ u′}) = sup{r ∈

[0, 1]Q |wi(α,
) ≥ r ∈ u}.
We use the following notation to refer to the elements of Hi(u) from the

canonical model:
[[α]] = {u′ ∈ W | α ∈ u′}.

Lemma 1. Let u be a world of MC . If fi = a1wi(α1, α
′
1) + · · · + akwi(αk, α′

k)
then a1μi(u)([[α1]]|[[α′

1]]) + · · · + akμi(u)([[αk]]|[[α′
k]]) = sup{s | u � fi ≥ s}.

An Epistemic Probabilistic Logic with Conditional Probabilities 287

Proof. First we will show that μi(u)([[α]]|[[β]]) = sup{r ∈ [0, 1]Q | wi(α, β) ≥
r ∈ u}. Note that if μi(u)([[β]]) = 0 then both μi(u)([[α]]|[[β]]) and sup{r ∈
[0, 1]Q | wi(α, β) ≥ r ∈ u} are undefined.

Suppose that wi(α, β) ≥ r ∈ u and let {sn | n ∈ N} be strictly increas-
ing sequence of numbers from [0, 1]Q, such that limn→∞ sn = μi(u)([[β]]). Let
n be any number from N. Then u � wi(β,
) ≥ sn. Using the assumption
wi(α, β) ≥ r ∈ u, the axioms A15 and A16 and propositional reasoning, we
obtain u � wi(β,
) > 0 and u � wi(α ∧ β,
) ≥ rsn. Finally, by Definition 9
we have μi(u)([[β]]) > 0 and μi(u)([[α ∧ β]]) ≥ limn→∞ rsn = rμi(u)([[β]]), i.e.,
μi(u)([[β]]) > 0 and μi(u)([[α]]|[[β]]) ≥ r. We can conclude that μi(u)([[α]]|[[β]]) ≥
sup{r ∈ [0, 1]Q | wi(α, β) ≥ r ∈ u}.

Let now μi(u)([[α]]|[[β]]) ≥ t and μi(u)([[β]]) > 0. We want to show that
u � wi(β,
) > 0 and u � wi(β,
) ≥ s → wi(α ∧ β,
) ≥ ts for all s ∈ [0, 1]Q.

If u �� wi(β,
) > 0 then u � wi(β,
) = 0, i.e., μi(u)([[β]]) = 0, contradiction.
If s > μi(u)([[β]]), than u � ¬(wi(β,
) ≥ s), so u � wi(β,
) ≥ s → wi(α ∧

β,
) ≥ ts. Let now s ≤ μi(u)([[β]]), then st ≤ μi(u)([[α ∧ β]]), so u � wi(α ∧
β,
) ≥ ts. Now, we have that for every s ∈ [0, 1]Q, u � wi(β,
) ≥ s →
wi(α ∧ β,
) ≥ ts, by the rule R5 we get u � wi(α, β) ≥ t. So μi(u)([[α]]|[[β]]) ≤
sup{r ∈ [0, 1]Q | wi(α, β) ≥ r ∈ u}.

Let fi = a1wi(α1, α
′
1)+· · ·+akwi(αk, α′

k). By the properties of supremum and
A8, a1μi(u)([[α1]]|[[α′

1]])+ · · ·+akμi(u)([[αk]]|[[α′
k]]) = a1 sup{s1 | u � wi(α1, α

′
1) ≥

s1} + · · · + ak sup{sk | u � wi(αk, α′
k) ≥ sk} = sup{s | u � fi ≥ s}. ��

Lemma 2. The canonical model MC is a CKL-structure.

Proof. The proof that every Hi(u) from MC is an algebra of sets is trivial. The
fact that every μi(u) is a finitely additive probability measure follows from the
axioms for reasoning about probabilities and Lemma 1. ��

On the other hand, in order to show that MC ∈ CKLMeas, we need to prove
that [α]i,MC ,u = [[α]], for every i and u. This follows form the following lemma.

Lemma 3 (Truth lemma). Let MC be the canonical model and γ ∈ For.
Then for every world u from MC

γ ∈ u iff MC , u |= γ.

Proof. We use induction on the complexity of the formula γ. If γ is a proposi-
tional letter, the statement follows from the construction of MC . The cases when
γ is a conjunction or a negation are straightforward.

Suppose γ = Kiβ. Let Kiβ ∈ u. Since β ∈ u/Ki, then β ∈ u′ for every
u′ such that (u, u′) ∈ Ki (by the definition of Ki). Therefore, MC , u′ |= β by
induction hypothesis (β is subformula of Kiβ), and then MC , u |= Kiβ.

Let now MC , u |= Kiβ. Assume the opposite, that Kiβ �∈ u. Then, u/Ki ∪
{¬β} must be consistent. If it would not be consistent, then u/Ki � β by the
Deduction theorem and u ⊃ Ki(u/Ki) � Kiβ by Theorem 2, i.e., Kiβ ∈ u,
which is a contradiction. Therefore, u/Ki ∪ {¬β} can be extended to a maximal

288 Š. Dautović et al.

consistent U , so uKiU . Since ¬β ∈ U , then MC , U |= ¬β by induction hypothesis,
so we get the contradiction MC , u �|= Kiβ.

Let fi = a1wi(α1, α
′
1)+ · · ·+akwi(αk, α′

k). We suppose that fi ≥ r ∈ u, then
r ≤ sup{s | u � fi ≥ s} and wi(α′

j ,
) > 0 ∈ u for every j ∈ {1, . . . , k}. Then by
Lemma 1, MC , u |= fi ≥ r.

For the other direction, assume that MC , u |= fi ≥ r. Suppose that fi ≥ r �∈
u. Then we have wi(α′

j ,
) = 0 ∈ u for some j ∈ {1, . . . , k} or fi < r ∈ u. If
wi(α′

j ,
) = 0 for some j then MC , u �|= fi ≥ r, a contradiction. Let fi < r ∈ u,
then, reasoning as above we conclude MC , u |= fi < r, a contradiction. ��

Consequently, we have shown that for every α ∈ For, every i ∈ A and every
world u from MC the equality [α]i,MC ,u = [[α]] holds, so MC is a CKL-measurable
structure.

Theorem 4 (Strong completeness of CKL). A set of formulas T is consis-
tent iff T is CKLMeas-satisfiable.

Proof. The direction form right to left is straightforward. For the other direction,
suppose that T is a consistent set of formulas. By Theorem 3, there is a maximal
consistent superset T ∗ of T . Since MC ∈ CKLMeas, we only need to show that
MC is a model of T ∗. By Lemma 3, if T is consistent set we know that T ∗ is a
world in MC , so we obtain MC , T ∗ |= T . ��

5 Decidability of CKL

In this section, we prove that the logic CKL is decidable. Recall the satisfiability
problem: given a CKL-formula α, we want to determine if there exists a world u
in a CKLMeas-model M such that M,u |= α. First, we show that a CKL-formula
is satisfiable iff it is satisfiable in a measurable structure with a finite number of
worlds.

For a formula α we denote Subf(α) the set of all subformulas of α.

Theorem 5. If a CKL-formula α is satisfiable in a model M ∈ CKLMeas, then
it is satisfied in a model M∗ ∈ CKLMeas with at most 2|Subf(α)| number of worlds.

Proof. Let s be a world from M such that M, s |= α. Let Subf(α) be the set
of all subformulas of α and k = |Subf(α)|. By ∼ we denote the equivalence
relation over W × W , where s ∼ s′ iff for every β ∈ Subf(α), M, s |= β iff
M, s′ |= β. The quotient set W/∼ is finite and |W/∼| ≤ 2|Subf(α)|. Now, for
every class Ci we choose an element and denote it s∗

i . We consider the model
M∗ = (W ∗,K∗, P rob∗, v∗), where:

– W ∗ = {s∗
i | Ci ∈ W/∼},

– K∗ = {K∗
a | a ∈ A} is a set of binary relations on W ∗ where (s∗

i , s
∗
j) ∈ K∗

a iff
for every Kaφ ∈ Subf(α), M, s∗

i |= Kaφ iff M, s∗
j |= Kaφ

– For every agent a and s∗
i ∈ W ∗, Prob∗(a, s∗

i) = (W ∗
a (s∗

i),H
∗
a(s∗

i), μ
∗
a(s∗

i)) is
defined as follows:

An Epistemic Probabilistic Logic with Conditional Probabilities 289

• W ∗
a (s∗

i) = {s∗
j ∈ W ∗ | (∃u ∈ Cj)u ∈ Wa(si)},

• H∗
a(s∗

i) is the power set of W ∗
a (s∗

i),
• μ∗

a(s∗
i)({s∗

j}) = μa(s∗
i)(Cj(s∗

i)), where Cj(s∗
i) = Cj ∩ W ∗

a (s∗
i) and for any

D ∈ H∗
a(s∗

i), μ∗
a(s∗

i)(D) =
∑

s∗
j ∈D μ∗

a(s∗
i)({s∗

j}),
– v∗(si, p) = v(si, p).

It can be shown that M∗ ∈ CKLMeas.
Finally, using induction on the complexity of the formulas, one can show that

for any β ∈ Subf(α), M, s |= β iff M∗, s∗
i |= β where s∗

i represents Cs in M∗. ��
Note that there are infinitely many finite models from CKLMeas with at most

2|Subf(α)| worlds, because there are infinitely many possibilities for real-valued
probabilities. Thus, the previous theorem does not directly imply decidability,
and the further complementary steps are needed. In order to show decidability
we will translate the problem of satisfiability of a formula to the problem of
satisfiability of finite sets of equations and inequalities.

Theorem 6. Satisfiability problem for CKL is decidable.

Proof. Let α be a CKL-formula. We want to check whether there is a CKLMeas-
structure M and a world s form M such that M, s |= α. Using the previous
theorem, we will consider only the structures with l worlds, where l ≤ 2|Subf(α)|.

The idea is to see is there any structure with at least l worlds whom we
can join a valuation, a set of binary equivalence relations and finitely additive
probabilities such that the formula α is satisfied in some world of the structure.
For this we will use potential structures which we call pre-structures. In pre-
structures we do not specify probability measures (in order to avoid infinitely
many cases), but we want to specify enough information about measures from
which we can determine satisfiability of all subformulas of α.

Let Subf(α) be the set of subformulas of α, let Pα = P ∩ Subf(α) and let
SubP (α) be the set of all subformulas of α of the form

∑n
k=1 akwi(αk, βk) ≥ r.

For every l ≤ 2|Subf(α)| we consider pre-structures M = (W,K, S, v) such that:

– W is a set of worlds such that |W | = l
– v : W × Pα → {true, false}.
– K = {Ka | a ∈ A} on W .
– S : W × SubP (α) → {true, false}.

Note that for every number l we have finitely many possibilities for the
choice of pre-structures, i.e., we have finite number of choices of valuation, binary
equivalence relations and function S. This pre-structure is not a CKL-structure,
but we can check if a subformula of α holds in a world of a pre-structure M
using the relation �, defined as follows:

1. If γ ∈ Pα then M, s � γ iff v(s, γ) = true,
2. M, s � Kaγ iff M, s′ � γ for all s′ ∈ Ka(s),
3. M, s �

∑n
k=1 akwa(γk, βk) ≥ r iff S(s,

∑n
k=1 akwa(γk, βk) ≥ r) = true

4. M, s � ¬γ iff M, s �� γ,
5. M, s � γ ∧ β iff M, s � γ and M, s � γ.

290 Š. Dautović et al.

We will consider only those M = (W,K, S, v) such that M, s � α for some
world s ∈ W . For each such M we want to check whether M can be extended to
a structure, i.e., whether there is a measurable structure M = (W,K, P rob, v)
such that v is a restriction of v and for every agent a and every s ∈ W and∑n

k=1 akwa(γk, βk) ≥ r ∈ SubP (α) we have M, s |= ∑n
k=1 akwa(γk, βk) ≥ r iff

S(s,
∑n

k=1 akwa(γk, βk) ≥ r) = true. It is straightforward to check that for such
M we have M, s |= β iff M, s � β holds for every β ∈ Subf(α). Since the way v
extends v is irrelevant, it suffices to check whether S can be replaced with Prob
in some M = (W,K, S, v) such that M, s � α for some world s ∈ W . For that
purpose, for each such M we consider specific equations and inequalities, that
we describe below. We chose the variables of the form ya,si,sj

which represent
the values μa(si)({sj}). Now we state the equations and inequalities:

(1) ya,si,sj
≥ 0, for every world sj

(2)
∑

sj∈M

ya,si,sj
= 1

(3)
∑

wj :M l,wj�βk

ya,si,sj
> 0 for every k ∈ {1, . . . , n}, and

n∑

k=1

(
ak

∑

sj :M,sj�βk∧γk

ya,si,sj

n∏

t�=k,t=1

∑

sj :M,sj�βt

ya,si,sj

)
≥

r

n∏

k=1

∑

sj :M,sj�βk

ya,si,sj
, for every formula

n∑

k=1

akwa(γk, βk) ≥ r

such that S(si,
n∑

k=1

akwa(γk, βk) ≥ r) = true

(4)
n∨

k=1

(∑

sj :M,sj�βk

ya,si,sj
= 0

)
or

n∑

k=1

(
ak

∑

sj :M,sj�βk∧γk

ya,si,sj

n∏

t�=k,t=1

∑

sj :M,sj�βt

ya,si,sj

)
<

r

n∏

k=1

∑

sj :M,sj�βk

ya,si,sj
, for every formula

n∑

k=1

akwa(γk, βk) ≥ r

such that S(si,

n∑

k=1

akwa(γk, βk) ≥ r) = false

The inequality (1) above assures that all the probability measures are non-
negative, and the equality (2) states that the probability of the set of all possible
worlds has to be equal to 1. The equality (3) states that the probabilities of the
sets of all evidences in a formula are greater than 0 and the linear combination

An Epistemic Probabilistic Logic with Conditional Probabilities 291

of probabilities is greater than r, from the corresponding formula. It is easy to
see that (3) corresponds to the third condition of the satisfiability relation from
Definition 3, after we clean the denominators. Similarly, (4), corresponds to the
combination of the fourth and the third condition from Definition 3.

The equations and inequalities (1)–(4) form not one, but a number of finite
systems of equations and inequalities. Note that adding (4) to any system Sys
of equations and inequalities results with a disjunction of at least two different
extensions of Sys. For the purpose of this proof, the fact that we always have
finitely many systems is sufficient, and it is enough if one of the systems is
solvable. Those systems are represented in the language of real closed fields,
and it is well known that the theory of real closed fields is decidable. Since we
have finitely many possibilities for the choice of l, and for every l finitely many
possibilities for the choice of pre-structure, our logic is decidable as well. ��

6 Conclusion

We have investigated a propositional logic of knowledge and conditional prob-
ability that allows explicit reasoning about probabilities. We have been able to
obtain strongly complete axiomatization and decision procedure for our logic.
Following [5], we proposed the most general case, where no semantic relation-
ship is posed between the modalities for knowledge and probability. Fagin and
Halpern [5] also consider some modification of the semantics, by posing rela-
tions between the sample spaces Wi(u) and possible worlds Ki(u), which model
some typical situations in the multi-agent systems. For example, they consider
a natural assumption Wi(u) ⊆ Ki(u), which forbids an agent to place positive
probabilities to the events she knows to be false. The paper [5] provides charac-
terization of all those semantic assumptions in terms of corresponding axioms.
(for example, Wi(u) ⊆ Ki(u) corresponds to Kiα → wi(α) = 1). Adding those
axioms to our system would also make it complete for the considered semantics.

Acknowledgments. This work has been partially funded by the Science Fund of the
Republic of Serbia through the project Advanced artificial intelligence techniques for
analysis and design of system components based on trustworthy BlockChain technology
- AI4TrustBC (the first and the third author).

References

1. Alechina, N.: Logic with probabilistic operators. In: Proceedings of the ACCO-
LADE 1994, pp. 121–138 (1995)

2. Doder, D., Marinković, B., Maksimović, P., Perović, A.: A logic with conditional
probability operators. Publications de L’Institut Mathematique Ns 87(101), 85–96
(2010)

3. Doder, D., Ognjanović, Z.: Probabilistic logics with independence and confirma-
tion. Studia Logica 105(5), 943–969 (2017)

292 Š. Dautović et al.

4. Doder, D., Ognjanovic, Z.: A probabilistic logic for reasoning about uncertain
temporal information. In: Meila, M., Heskes, T. (eds.) Proceedings of the Thirty-
First Conference on Uncertainty in Artificial Intelligence, UAI 2015, Amsterdam,
The Netherlands, pp. 248–257. AUAI Press (2015)

5. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. J. ACM
41(2), 340–367 (1994)

6. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities.
Inf. Comput. 87, 78–128 (1990)

7. Fagin, R., Geanakoplos, J., Halpern, J.Y., Vardi, M.Y.: The hierarchical approach
to modeling knowledge and common knowledge. Int. J. Game Theory 28(3), 331–
365 (1999)

8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge, MA (2003)

9. Frisch, A., Haddawy, P.: Anytime deduction for probabilistic logic. Artif. Intell.
69, 93–122 (1994)

10. Halpern, J.Y., Pucella, R.: A logic for reasoning about evidence. J. Artif. Intell.
Res. 26, 1–34 (2006)

11. van der Hoek, W.: Some considerations on the logic pfd. J. Appl. Non-Classical
Logics 7(3) (1997)

12. Hughes, G.E., Cresswell, M.J.: A Companion to Modal Logic. Methuen London,
New York (1984)

13. de Lavalette, G.R.R., Kooi, B., Verbrugge, R.: A strongly complete proof system for
propositional dynamic logic. In: AiML2002–Advances in Modal Logic (Conference
Proceedings), pp. 377–393 (2002)

14. Marchioni, E., Godo, L.: A logic for reasoning about coherent conditional proba-
bility: a modal fuzzy logic approach. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 213–225. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30227-8 20

15. Marinkovic, B., Glavan, P., Ognjanovic, Z., Studer, T.: A temporal epistemic logic
with a non-rigid set of agents for analyzing the blockchain protocol. J. Logic Com-
put. (2019)

16. Marinkovic, B., Ognjanovic, Z., Doder, D., Perovic, A.: A propositional linear time
logic with time flow isomorphic to ω2. J. Appl. Log. 12(2), 208–229 (2014)

17. Milošević, M., Ognjanović, Z.: A first-order conditional probability logic. Logic J.
IGPL 20(1), 235–253 (2012)

18. Ognjanovic, Z., Markovic, Z., Raskovic, M., Doder, D., Perovic, A.: A propositional
probabilistic logic with discrete linear time for reasoning about evidence. Ann.
Math. Artif. Intell. 65(2–3), 217–243 (2012)

19. Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics: Probability-based
Formalization of Uncertain Reasoning. Springer, New York (2016). https://doi.
org/10.1007/978-3-319-47012-2

20. Rašković, M., Ognjanović, Z., Marković, Z.: A logic with conditional probabilities.
In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 226–238.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8 21

21. Savic, N., Doder, D., Ognjanovic, Z.: Logics with lower and upper probability
operators. Int. J. Approx. Reason. 88, 148–168 (2017)

22. Tomović, S., Ognjanović, Z., Doder, D.: Probabilistic common knowledge among
infinite number of agents. In: Destercke, S., Denoeux, T. (eds.) ECSQARU 2015.
LNCS (LNAI), vol. 9161, pp. 496–505. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-20807-7 45

https://doi.org/10.1007/978-3-540-30227-8_20
https://doi.org/10.1007/978-3-540-30227-8_20
https://doi.org/10.1007/978-3-319-47012-2
https://doi.org/10.1007/978-3-319-47012-2
https://doi.org/10.1007/978-3-540-30227-8_21
https://doi.org/10.1007/978-3-319-20807-7_45
https://doi.org/10.1007/978-3-319-20807-7_45

An Epistemic Probabilistic Logic with Conditional Probabilities 293

23. Tomovic, S., Ognjanovic, Z., Doder, D.: A first-order logic for reasoning about
knowledge and probability. ACM Trans. Comput. Log. 21(2), 16:1–16:30 (2020)

24. Wolter, F.: First order common knowledge logics. Studia Logica 65(2), 249–271
(2000)

Logic Programming and Answer Set
Programming

On Syntactic Forgetting Under Uniform
Equivalence

Ricardo Gonçalves1 , Tomi Janhunen2 , Matthias Knorr1(B) ,
and João Leite1

1 Universidade Nova de Lisboa, Caparica, Portugal
{rjrg,mkn,jleite}@fct.unl.pt

2 Tampere University, Tampere, Finland
tomi.janhunen@tuni.fi

Abstract. Forgetting in Answer Set Programming (ASP) aims at reduc-
ing the language of a logic program without affecting the consequences
over the remaining language. It has recently gained interest in the con-
text of modular ASP where it allows simplifying a program of a module,
making it more declarative, by omitting auxiliary atoms or hiding cer-
tain atoms/parts of the program not to be disclosed. Unlike for arbitrary
programs, it has been shown that forgetting for modular ASP can always
be applied, for input, output and hidden atoms, and preserve all depen-
dencies over the remaining language (in line with uniform equivalence).
However, the definition of the result is based solely on a semantic char-
acterization in terms of HT-models. Thus, computing an actual result
is a complicated process and the result commonly bears no resemblance
to the original program, i.e., we are lacking a corresponding syntactic
operator. In this paper, we show that there is no forgetting operator that
preserves uniform equivalence (modulo the forgotten atoms) between the
given program and its forgetting result by only manipulating the rules
of the original program that contain the atoms to be forgotten. We then
present a forgetting operator that preserves uniform equivalence and is
syntactic whenever this is suitable. We also introduce a special class of
programs, where syntactic forgetting is always possible, and as a comple-
mentary result, establish it as the largest known class where forgetting
while preserving all dependencies is always possible.

Keywords: Answer Set Programming · Forgetting · Uniform
equivalence

1 Introduction

Forgetting, also known as variable elimination, aims at reducing the language of
a knowledge base while preserving all direct and indirect relationships over the
remaining language. First studied in the context of classical logic [5,14,27,32,
33,39], it gained considerable interest in a wide variety of formalisms (cf. the
recent survey [12]) and found applications in, e.g., cognitive robotics [30,31,35],
c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 297–312, 2021.
https://doi.org/10.1007/978-3-030-75775-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_20&domain=pdf
http://orcid.org/0000-0003-4289-7197
http://orcid.org/0000-0002-2029-7708
http://orcid.org/0000-0003-1826-1498
http://orcid.org/0000-0001-6786-7360
https://doi.org/10.1007/978-3-030-75775-5_20

298 R. Gonçalves et al.

conflict resolution [13,27,28,41], and ontology abstraction and comparison
[24–26,38]. In more general terms, its usefulness stems from the fact that auxil-
iary variables can be eliminated, resulting in a more declarative representation of
(certain parts of) a knowledge base, as well as that certain pieces of information
can be omitted/hidden for reasons of privacy or legal requirements.

In Answer Set Programming (ASP), forgetting has also been extensively stud-
ied, where its non-monotonic nature has created unique challenges resulting in
a wide variety of different appproaches [4,10,13,15,18,23,36,37,40,41]. Among
the many proposals of operators and desirable properties (cf. the survey on for-
getting in ASP [16]), arguably, forgetting in ASP is best captured by strong
persistence [23], a property which requires that the answer sets of a program
and its forgetting result be in correspondence, even in the presence of additional
rules over the remaining language. However, it is not always possible to forget
and satisfy strong persistence [17,19].

Recently, forgetting has also gained interest in the context of modular ASP
[2,9,20,22,34]. In general, modular programming is fundamental to facilitate the
creation and reuse of large programs, and modular ASP allows the creation of
answer set programs equipped with well-defined input-output interfaces whose
semantics is compositional on the individual modules. For modules with input-
output interfaces, strong persistence can be relaxed to uniform persistence that
only varies additional sets of facts (the inputs), and it has been shown that
forgetting for modular ASP can always be applied and preserves all dependencies
over the remaining language [15].

Uniform persistence is closely related to uniform equivalence, which in turn is
closely connected to one of the central ideas of ASP: a problem is specified as an
abstract program, and varying instances, represented by sets of facts, are com-
bined with it to obtain concrete solutions. Thus, arguably, uniform persistence
seems the better alternative when considering forgetting in ASP in general, but
its usage is hindered by the lack of practically usable forgetting operators: the
definition of a result in [15] is based solely on an advanced semantic character-
ization in terms of HT-models, so computing an actual result is a complicated
process and the result, though semantically correct w.r.t. uniform persistence,
commonly bears no resemblance to the original program. What is missing is a
syntactic operator that computes results of forgetting, ideally only by manipu-
lating the rules of the original program that contain the atoms to be forgotten.

Concrete syntactic forgetting operators have been considered infrequently in
the literature. Zhang and Foo [41] define two such operators in the form of strong
and weak forgetting, but neither of them does even preserve the answer sets of
the original program (modulo the forgotten atoms) [13]. Eiter and Wang [13]
present a syntactic operator for their semantic forgetting, but it only preserves
the answer sets themselves and does not satisfy uniform nor strong persistence.
Knorr and Alferes [23] provide an operator that aims at aligning with strong
persistence which is not possible in general. Thus, it is only defined for a non-
standard class of programs, and cannot be iterated in general, as the operator
is not closed for this non-standard class, nor does it satisfy uniform persistence.

On Syntactic Forgetting Under Uniform Equivalence 299

Berthold et al. [4] introduce an operator that satisfies strong persistence when-
ever possible, but it does not satisfy uniform persistence, nor is it closed for the
non-standard class defined in [23]. Finally, based on the idea of forks [1], a forget-
ting operator is provided [3] that introduces so-called anonymous cycles when
forgetting in the sense of strong persistence is not possible. However, rather
than reducing the language this operator does introduce new auxiliary atoms
to remove existing ones, though only in a restricted way. Thus, no syntactic
forgetting operator exists in the literature that satisfies uniform persistence.

In this paper, we research whether there exists such a syntactic forgetting
operator that satisfies uniform persistence. Somewhat surprisingly, we answer
this question negatively in the general case. This raises several questions:

– When is it possible/suitable to forget syntactically while preserving uniform
persistence?

– Are there meaningful classes of programs where syntactic forgetting is always
possible while preserving uniform persistence?

– Can such an operator be iterated, i.e., is it closed for the class of programs
for which it is defined?

– Are there correspondences to existing operators in restricted settings (to clar-
ify relations to related work)?

Our contributions can be summarized as follows:
– We show that there is no forgetting operator that preserves uniform equiva-

lence (modulo the forgotten atoms) between the given program and its for-
getting result, by only manipulating the rules of the original program that
contain the atoms to be forgotten (as formalized in the property (SIu)).

– We argue that forgetting an atom for which there are rules of the form p ←
not not p is indeed not suitable in a syntactic manner, even for cases where
such result could still be constructed based alone on the rules of the original
program that contain the atoms to be forgotten.

– We present a forgetting operator that preserves uniform equivalence while for-
getting, and is syntactic whenever this is suitable. We show that this operator
can indeed be iterated in the general case.

– In addition, we present a special case of our operator for stratified programs,
without disjunction and loops over (double) negation, and show that syntactic
forgetting is always possible while preserving uniform equivalence.

– We also show that, for stratified programs, this operator corresponds to an
existing forgetting operator that aims at preserving all dependencies whenever
possible, and we establish this class of programs as the largest known class
where forgetting while preserving all dependencies is always possible.

The remainder of our paper is structured as follows. We recall relevant notions
and notations in Sect. 2. In Sect. 3, we first introduce our operator for stratified
programs, before we establish our main impossibility result in the general case
and present our general operator in Sect. 4. We conclude in Sect. 5.

300 R. Gonçalves et al.

2 Preliminaries

Let us first recall relevant notions on logic programs under answer set semantics
and forgetting in Answer Set Programming (ASP).

An (extended) rule r is an expression of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bl, not c1, . . . , not cm, not not d1, . . . , not not dn, (1)

where a1, . . . , ak, b1, . . . , bl, c1, . . . , cm, and d1, . . . , dn are atoms of a given propo-
sitional alphabet A.1 We also write such rules as

H (r) ← B+(r), notB−(r), not notB−−(r), (2)

where H (r) = {a1, . . . , ak}, B+(r) = {b1, . . . , bl}, B−(r) = {c1, . . . , cm}, and
B−−(r) = {d1, . . . , dn}, and we will use both forms interchangeably.2 Given
a rule r, H (r) is called the head of r, and B(r) = B+(r) ∪ notB−(r) ∪
not notB−−(r) the body of r, where, for a set L of literals (elements of the form
a, not a, or not not a, for a ∈ A), not L = {not � | � ∈ L}, where not not not �
systematically simplifies as not �. An (extended) logic program is a finite set of
rules. By A(P) we denote the set of atoms appearing in P and by Ce the class of
extended programs. We call r disjunctive if B−−(r) = ∅; normal if, additionally,
H (r) has at most one element; Horn if on top of that B−(r) = ∅; and fact if
also B+(r) = ∅. The classes of disjunctive, normal and Horn programs, Cd, Cn,
and CH , are defined as usual. Given a program P and an interpretation I, i.e.,
a set I ⊆ A, the reduct P I is defined as:

P I = {H (r) ← B+(r) | r of the form (2) in P,B−(r) ∩ I = ∅,B−−(r) ⊆ I}.

An HT-interpretation is a pair 〈X,Y 〉 s.t. X ⊆ Y ⊆ A. Given a program P ,
an HT-interpretation 〈X,Y 〉 is an HT -model of P if Y |= P and X |= PY, where
|= stands for the standard satisfaction relation of classical logic. The set of all
HT-models of P is denoted by HT (P), and we admit that the set of HT-models
of a program P can be restricted to A(P) even if A(P) ⊂ A. Given a program
P , a set of atoms Y ⊆ A(P) is an answer set of P if 〈Y, Y 〉 ∈ HT (P) and there
is no X ⊂ Y s.t. 〈X,Y 〉 ∈ HT (P). The set of all answer sets of P is denoted
by AS(P). Given a set V ⊆ A, the V -exclusion of a set of answer sets (a set
of HT-interpretations) M, denoted M‖V , is {X\V | X ∈ M} ({〈X\V, Y \V 〉 |
〈X,Y 〉 ∈ M}). Two programs P1 and P2 are equivalent, denoted by P1 ≡n P2,
if AS(P1) = AS(P2), strongly equivalent, denoted by P1 ≡ P2, if AS(P1 ∪ R) =
AS(P2 ∪ R) for any R ∈ Ce (alternatively, if HT (P1) = HT (P2) by [29]), and
uniformly equivalent, denoted by P1 ≡u P2, if AS(P1 ∪ R) = AS(P2 ∪ R), for
any set of facts R.

Strongly or uniformly equivalent programs can be syntactically different, e.g.,
due to the occurrence of non-minimal or tautological rules, i.e., rules that if
removed would not affect its HT-models in any way. To facilitate the presentation
1 Note that double negation is standard in the context of forgetting in ASP.
2 Thus, there cannot be any duplicates in any of the rule components.

On Syntactic Forgetting Under Uniform Equivalence 301

in this paper, and in line with related work, we restrict our considerations to
programs in normal form following the definition introduced in [4]. Formally, a
rule r in P is minimal if there is no rule r′ ∈ P such that H (r′) ⊆ H (r)∧B(r′) ⊂
B(r) or H (r′) ⊂ H (r) ∧B(r′) ⊆ B(r). We also recall that a rule r is tautological
if H (r) ∩ B+(r) �= ∅, or B+(r) ∩ B−(r) �= ∅, or B−(r) ∩ B−−(r) �= ∅.

Definition 1. A program P is in normal form if the following conditions hold:

1. for every a ∈ A(P) and r ∈ P , at most one of a, (not a) or (not not a) is in
B(r);

2. if a ∈ H(r), then neither a, nor (not a) are in B(r);
3. all rules in P are minimal.

It is shown in [4], that, for a given program P , a strongly equivalent normal form
NF (P) can be obtained in polynomial time.

A forgetting operator over a class C of programs3 over A is a partial function
f : C × 2A → C s.t. the result of forgetting about V from P , f(P, V), is a program
over A(P)\V , for each P ∈ C and V ⊆ A. We denote the domain of f by C(f).
The operator f is called closed for C′ ⊆ C(f) if f(P, V) ∈ C′, for every P ∈ C′ and
V ⊆ A. A class F of forgetting operators (over C) is a set of forgetting operators
f s.t. C(f) ⊆ C.

Among the many properties introduced for different classes of forgetting oper-
ators in ASP [16], strong persistence (SP) [23] is arguably the one that should
intuitively hold, since it imposes the preservation of all original direct and indi-
rect dependencies between atoms not to be forgotten. I.e., closely related to
strong equivalence, the answer sets of f(P, V) correspond to those of P , no mat-
ter what programs R over A\V we add to both. However, as shown in [17,19],
there is no forgetting operator that satisfies (SP) and that is defined for all pairs
〈P, V 〉, called forgetting instances, where P is a program and V is a set of atoms
to be forgotten from P . Thus, a relaxation of property (SP) was introduced in
[15], called uniform persistence (UP), that only considers R consisting of facts.
We recall both properties, where F is a class of forgetting operators.

(SP) F satisfies Strong Persistence if, for each f ∈ F, P ∈ C(f) and V ⊆ A,
we have AS(f(P, V) ∪ R) = AS(P ∪ R)‖V , for all programs R ∈ C(f) with
A(R) ⊆ A\V .

(UP) F satisfies Uniform Persistence if, for each f ∈ F, P ∈ C(f) and V ⊆ A,
we have AS(f(P, V) ∪ R) = AS(P ∪ R)‖V , for all sets of facts R with
A(R) ⊆ A\V .

A class of forgetting operators FUP is defined in [15] based on semantic def-
inition over HT-models, that is shown to satisfy this property (UP), and it is
shown that an operator exists for that class relying on the countermodels of
the semantic characterization in terms of HT-models [7] – a construction previ-
ously used for computing concrete results of forgetting for classes of forgetting
operators based on HT-models [19,36,37].
3 In this paper, we only consider the very general class of programs introduced before,

but, often, subclasses of it appear in the literature of ASP and forgetting in ASP.

302 R. Gonçalves et al.

In light of the general impossibility result for (SP) for arbitrary context
programs R, and the fact that (UP) is satisfiable for sets of facts R, one may
wonder whether it is possible to find a property that uses programs R in a class
in between these two extremes such that it is possible to forget and preserve all
dependencies. As it turns out, this is not possible.

Proposition 1. (UP) is the strongest relaxation of (SP) w.r.t. the class of
programs R such that there is a forgetting operator over C ⊇ Cn that satisfies it.

This novel result stresses the importance of (UP) and of finding syntactic oper-
ators that satisfy this property.

3 Uniform Forgetting from Stratified Programs

In this section, we introduce a syntactic operator for forgetting from a restricted
class of programs that aligns with the ideas of uniform persistence by only manip-
ulating the rules of the original program that contain the atoms to be forgotten.
We focus first on this restricted class of programs with the intuition to ease the
reading and to facilitate comparisons to the few existing syntactic forgetting
operators in the literature. As usual, this operator will be defined for forgetting
a single atom first. Several atoms can then be forgotten iteratively, after showing
that the operator can indeed be iterated.

We start by formalizing our restricted forms of programs, called stratified
programs that do not allow cycles over (double) negation nor disjunctions. For
that purpose, we introduce notation to refer to all rules in P that include some
specific atom in one of its components. Namely, PH

p refers to the rules r in P
with p ∈ H (r), P+

p refers to the rules r in P with p ∈ B+(r), P−
p refers to the

rules r in P with p ∈ B−(r), and P−−
p refers to the rules r in P with p ∈ B−−(r).

Definition 2. Let P be a logic program. We call P stratified if:

1. all of its rules of the form (1) are s.t. k ≤ 1;
2. P can be partitioned into disjoint Pi s.t., for each p ∈ A,

(a) all rules r ∈ PH
p occur in one Pi;

(b) if p ∈ B+(r) with r ∈ Pi, then PH
p ⊆ Pj with j ≤ i;

(c) if p ∈ (B−(r) ∪ B−−(r)) with r ∈ Pi, then PH
p ⊆ Pj with j < i.

This not only avoids cycles over negation between atoms, it also prohibits in the
case of normal forms that any atom occurs in more than one part of a rule.

We now proceed towards introducing the new stratified uniform forgetting
operator fsu. For that purpose, we require some further notation and we intro-
duce it along with motivating examples that provide intuitions on how to obtain
desired results. To ease the notation, we usually consider forgetting p from P .

Example 1. Consider P containing the following rules:

p ← s p ← not q, r t ← p v ← not p

On Syntactic Forgetting Under Uniform Equivalence 303

If we add s ← to P , then p becomes derivable, thus also t. So, when forgetting
about p, we want to preserve that adding s makes t derivable, which can be
achieved by introducing a rule t ← s, i.e. by replacing the body atom p with
the body whose rule head is p, in a way quite similar to wGPPE [6]. For the
same reason, a rule t ← not q, r should appear in the result of forgetting, passing
along that, if q is false and r is true, then t is true. This kind of replacement of
p in some body does not directly transfer to the replacement of not p in another
body. In fact, v will be derivable if none of the bodies of rules with head p is
true. For example, we want a rule v ← not s, not not q in the result of forgetting
to capture one such case. It can be verified in that case that not p is true if
one of the two conjuncts, not s and not not q, is true, and false otherwise, and
that adding further rules to capture the remaining combinations allows one to
preserve the dependency between v and the cases in which not p is true. ��

To be able to capture these dependencies in the case of negated atoms, [4]
extends the ideas of the as-dual from [23] inspired by [13]. The as-dual is a set
of conjunctions of literals, each of which can be used to replace some negated
atom, but preserves its truth value. Here, and in the following, we identify by
B\p(r) = B(r)\{p, not p, not not p} the set of body literals of r after removing
every occurrence of p.

Definition 3. Let P be a logic program, p ∈ A(P), and PH
p = {r1, . . . , rn}. We

define the as-dual of P for p as follows:

Dp
as(P) = {not {l1, . . . , ln} | li ∈ B\p(ri), 1 ≤ i ≤ n}.

Note that for a stratified program in normal form, B(ri) cannot contain any
form of p, but we prefer to keep this definition general, so that it be applicable
in the general case.

Example 2. Recall program P from Example 1. Among these rules, only two
contain p in the head, and we obtain Dp

as(P) = {{not s, not r}, {not s, not not q}}.
We can verify that whenever all elements in one of these sets are true, p cannot
be true in any answer set of P . ��

Based on that, we can formalize our first operator.

Definition 4. Let P be a stratified program over A, N = NF (P) the normal
form of P , and p ∈ A. The result of forgetting about p from P , fsu(P, p), is
NF (S) where S is obtained from N as follows:

1. replace r ∈ N+
p with rules H (r) ← B\p(r) ∪ B(r1) for each r1 ∈ NH

p ;
2. replace r ∈ N−−

p with rules H (r) ← B\p(r)∪not notB(r1) for each r1 ∈ NH
p ;

3. replace r ∈ N−
p with rules H (r) ← B\p(r) ∪ D s.t. D ∈ Dp

as(N
H
p);

4. omit NH
p .

304 R. Gonçalves et al.

Example 3. Consider P , a slight variation of the program in Example 1.

p ← s p ← not q, r t ← p v ← not p w ← not not p

We have Dp
as(P) = {{not s, not r}, {not s, not not q}} from Example 2 and the

following result of forgetting:

t ← s w ← not not s v ← not s, not not q

t ← not q, r w ← not q, not not r v ← not s, not r

We can verify that no matter which set of facts over the remaining A is added to
the forgetting result, the induced answer sets coincide with those of the original
program modulo the forgotten atoms. ��

Note that the normal form of a stratified program is also a stratified program.

Lemma 1. Given a stratified program P , NF (P) is a stratified program.

This allows us to show that forgetting an atom p from P using fsu, results
in a stratified program not mentioning the atom to be forgotten.

Proposition 2. Let P be a stratified program over signature A and p ∈ A. Then
fsu(P, p) is a stratified program over A \ {p}.

This result is important as it allows us to iterate the operator, which can be
used to iteratively forget a set of atoms. For that purpose, we define how such
iteration can be achieved for any operator defined for forgetting a single atom.

Definition 5. Let P be a logic program over Σ, V = {v1, v2, . . . , vn} ⊆ A an
ordered sequence of atoms, and f an operator defined for forgetting a single atom.
Then, we define f(P, V) inductively as follows:

– f(P, {v1}) = f(P, v1);

– f(P, {v1, v2, . . . , vn}) = f(f(P, {v1}), {v2, . . . , vn}}).

We need to fix an order on the set of atoms to be forgotten (lexicographic for
example) to ensure that the result of forgetting is indeed a unique program. This
raises the question as to whether the order in which we forget the elements of
such a set matters. To answer this question for fsu, we first relate to existing
work in the literature. In fact, due to the restriction to stratified programs, for
many of the syntactic operators presented in the literature, we can show that
our operator does coincide with them, though on different levels.

On Syntactic Forgetting Under Uniform Equivalence 305

Theorem 1. Let P be a stratified program and p ∈ A. We have:

1. fsu(P, p) = fSP (P, p) for fSP defined in [4];
2. fsu(P, p) ≡ fSas(P, p) for fSas defined in [23];
3. fsu(P, p) ≡n forget3(P, p) for forget3 defined in [13] if P does not contain

double negation.

Thus, for stratified programs, the syntactic operator that aims at satisfying
(SP) whenever possible, fSP , coincides with our operator; the one that aims
at satisfying (SP) in a rather restricted non-standard setting, fSas, provides
strongly equivalent forgetting results, and the one defined for preserving answer
sets, forget3, only provides equivalent results, and is only defined for disjunctive
programs originally, though it is shown in [13] that for N-acyclic programs, i.e.,
programs that satisfy conditions (a) and (c) for r ∈ P−−

p of Definition 1, double
negation can simply be omitted.4 In the latter two cases, the reason why the
correspondence is not stronger lies mainly in the preprocessing applied: the nor-
mal form in [23] does not eliminate non-minimal rules, and the transformations
applied in [13] to simplify the program based on its answer sets before forgetting
do not preserve strong equivalence (e.g. Positive Reduction). There are further
syntactic forgetting operators [41], but these do not even preserve equivalence
[13], thus no correspondence result exists.

Among the results of Theorem 1, the first one is of particular interest, as it
relates to an operator that aims at preserving (SP) whenever possible. In the
case of stratified programs, we can improve on that premise and show that it is
always possible to forget while preserving (SP).

Theorem 2. The operator fsu satisfies (SP).

Since (SP) is stronger than (UP), the following corollary is straightforward.

Corollary 1. The operator fsu satisfies (UP).

As shown in [17,19] no class of forgetting operators can satisfy (SP) on any
class of programs including normal programs. Thus, Theorem 2 is an interesting
result in its own right as it presents the first operator for which it has been
shown that it can be iterated and satisfies (SP) on a class of programs beyond
Horn programs, unlike previous work in [4,13,23].

The relevance of this class of programs is further witnessed by the following
complementary result, that shows that three classes of forgetting operators [18,
19] do coincide on stratified programs.

Proposition 3. For stratified programs, the classes FSP, FR and FM do coincide.

This is interesting, as these classes have been shown to satisfy different min-
imal relaxations of (SP) and were assumed to be different in a more general
setting, as such coincidence was only known for Horn programs.

Finally, Theorem 2 also helps determine that the order of iteration does not
affect the final result w.r.t. strong equivalence.
4 The semantics in [13] then only considers the minimal models of the resulting pro-

gram, but for the sake of the comparison of the operators as such, this is irrelevant.

306 R. Gonçalves et al.

Proposition 4. Let P be a stratified program over A and V1, V2 ⊆ A. Then,

fsu(fsu(P, V1), V2) ≡ fsu(fsu(P, V2), V1).

Hence, for fsu, indeed any order for atoms can be chosen in the sense of
Definition 5.

4 Uniform Forgetting in General

In this section, we present the general impossibility result of a syntactic operator
that satisfies (UP), and then define an operator that does satisfy (UP) and is
syntactic whenever suitable. To lift our ideas presented for stratified programs,
according to Definition 2, we need to consider in addition how to deal with dis-
junction and with cycles involving negation. In the following, we first discuss the
actual challenges resulting from admitting these and we start with disjunction.

Example 4. Consider forgetting about p from program P just consisting of a
single rule p ∨ q ←. We have AS(P) = {{p}, {q}}, and thus, according to (UP)
the answer sets of the forgetting result must be {} and {q}. A program over q with
these answer sets is the program containing a single rule q ← not not q. Though
it is not immediately clear how to obtain this program in a syntactic manner,
it helps to consider the following program P ′ consisting of two rules, p ← not q
and q ← not p. Both programs have the same answer sets, and though it is
well-known that they are not strongly equivalent, they are uniformly equivalent.
Moreover, the result of forgetting p is exactly the same, and in the case of P ′,
Definition 4 could be applied to obtain precisely that result. ��

Building on the notion of semi-shifting [13], we formalize the ideas presented
in the previous example to remove rules containing disjunctions including a
particular atom, replacing them with rules without disjunction.

Definition 6. Let P be a logic program and p an atom in A(P). The result of
semi-shifting P w.r.t. p, SH(P, p), is defined as replacing any rule r ∈ P s.t.
H (r) = p ∨ a1 ∨ · · · ∨ ak and k ≥ 1, by the two rules p ← not a1, . . . , not ak,B(r)
and a1 ∨ · · · ∨ ak ← not p,B(r).

Inspecting Definition 4, we note that if the normal form of P , N = NF (P),
is such that NH

p ∩ N−−
p = ∅, then we can apply fsu to SH(P, p) for forgetting

p. To make this precise, and to make this operator applicable to non-stratified
programs, we define a new operator as follows.

Definition 7. Let P be a program over A, N = NF (P) the normal form of P
and p ∈ A s.t. NH

p ∩ N−−
p = ∅. We extend fsu to this class of programs by:

fdu(P, p) = fsu(SH(P, p), p).

We can prove that fdu defined over this broader class of programs still satisfies
(UP) when forgetting a single atom.

On Syntactic Forgetting Under Uniform Equivalence 307

Proposition 5. Let P be a program over A, N = NF (P) its normal form, and
p ∈ A s.t. NH

p ∩ N−−
p = ∅. Then, for all sets of facts R with A(R) ⊆ A\{p}:

AS(fdu(P, p) ∪ R) = AS(P ∪ R)‖{p}.

This result shows that we can forget an atom p from a program P in normal
form by syntactically manipulating its rules, even if P is not stratified, as long
as PH

p ∩ P−−
p = ∅. In that regard, note that restricting to normal or disjunctive

programs does not help as fdu may introduce double negation.
This brings us to the question of what happens if we want to forget p from

a program that contains such rules. The difficulty resides in the fact that a rule
p ← not not p admits two models, {p} and {}, and so forgetting about p has to
correctly propagate this choice to all occurrences of p in rule bodies.

Example 5. Consider forgetting about p from program P containing the rules

p ← not not p,B(r1) r ← p,B(r2) s ← p,B(r3) q ← not p,B(r4)

where the B(ri) represent the remaining rule bodies. If all these B(ri) are empty,
then, by (UP), the answer sets of P , i.e., {p, r, s} and {q}, should be preserved
(modulo p). Moreover, adding, e.g., {r ←} should still admit two answer sets,
while adding, e.g., {r ←; s ←; q ←} should admit precisely one answer set, which
means that no simple syntactic transformation as used so far can achieve this.
Instead, we have to look at which rule heads depend on p (r and s) and which
on not p (q). This information can first be used to create rules to represent the
models of the resulting program of forgetting, by combining these opposing rule
heads in all possible ways, i.e., either the elements supported by p are true, or
those supported by not p, but not both.

r ← not q s ← not q q ← not r q ← not s (3)

However, this does not suffice, since we still need to guarantee that the answer
sets are preserved in the presence of an additional set R of facts not containing p.

This can be remedied by adding the following rules:

r ← not not r, not not s,q s ← not not s, not not r, q q ← not not q, r, s (4)

Now, whenever q is derivable (independently), r and s may both either
be simultaneously true or false. This can be generalized to rules with non-
empty B(ri) by adding

⋃
i B(ri) for the involved i to each rule mentioned

in (3) and (4), i.e., such model generators only apply if the remaining bodies
are true. E.g., we obtain r ← not not r, not not s, q,B(r1),B(r2) in the case of
r ← not not r, not not s, q. However, if, e.g., B(r3) is false, then so is s, and there-
fore r and s will no longer be simultaneously true, namely, we need to add a rule
r ← not not r, q,B(r1),B(r2), notB(r3), and similarly for the other cases. I.e., in
general we have to create rules matching the different possible combinations of
true and false rule bodies over the rules containing p in the body. ��

308 R. Gonçalves et al.

This example indicates that we cannot forget p from P in a syntactic manner
if PH

p ∩P−−
p is not empty: rather than replacing (possibly negated) occurrences

of p in the body with (parts of) the bodies of the rules with head p, a set of rules is
created that rebuilds the semantic relations based on that choice between p and
not p. This hardly resembles the original program in general and the possibly
resulting combinatorial representation is not desirable. One could argue that,
presumably, at least this problem is restricted to the rules mentioning the atom
to be forgotten. I.e., implicitly we have used so far the following property that
characterizes the fact that, when forgetting, we can focus just on the rules that
contain the atom to be forgotten.

(SIu). A class F of forgetting operators satisfies Strong Invariance with respect
to uniform equivalence if, for each f ∈ F, P ∈ C(f) and V ⊆ A, we have
f(P, V) ∪ R ≡u f(P ∪ R, V), for all programs R ∈ C(f) with A(R) ⊆ A\V .

This property is a relaxation of the property strong invariance (SI) (see, e.g.,
[16]), referring to uniform equivalence rather than strong equivalence.

Unfortunately, it turns out that (UP) and (SIu) are in general incompatible.

Theorem 3. There is no forgetting operator over Ce that satisfies both (UP)
and (SIu).

This shows that the problems observed in Example 5 are in fact a consequence
of a more general incompatibility between the two properties: it is in general not
possible to have a completely syntactic operator that satisfies (UP).

In light of this result, the rather convoluted hinted construction of a possible
result in Example 5, and the fact that forgetting p can be obtained nicely if
PH
p ∩ P−−

p is empty, we argue that it is not suitable to forget syntactically if
PH
p ∩ P−−

p is not empty, even in corner cases where such result exists, despite
Theorem 3. We thus propose an operator that combines our syntactic approach
whenever this is suitable, and use a semantic operator only for the remaining
cases.

For this purpose, let fUP be the semantic operator sketched in [15] (based on
the countermodel construction [7]), which satisfies (UP).

Definition 8. Let P be a program over A, N = NF (P) the normal form of P ,
and p ∈ A. The result of forgetting about p from P , fu(P, p), is NF (S) where:

S =

{
fdu(P, p) if NH

p ∩ N−−
p = ∅

fUP (P, p) otherwise

Example 6. As an example for fUP , consider P from Example 5 with all B(ri)
empty. The HT-models of the forgetting result coincide with the HT-models
obtained for fUP [15]. The countermodel construction provides 15 rules, includ-
ing one of those in (4) and the other two with one double negation omitted.
Also, variants of the rules in (3) appear together with constraints to obtain the

On Syntactic Forgetting Under Uniform Equivalence 309

desired HT-models. This result can be further simplified following work on min-
imal programs [8], and that, in all, the resulting program is rather similar to
ours supporting our stance that in such a case the forgetting result is not truly
syntactic. ��

The resulting operator is defined for every program P and any atom p to be
forgotten, and forgetting p from P according to fu provides program without p.

Proposition 6. Let P be a program over signature A and p ∈ A. Then fu(P, p)
is a program over A \ {p}.

This result naturally allows the extension of fu to sets of atoms using Defi-
nition 5. We are able to prove that fu indeed satisfies (UP).

Theorem 4. The operator fu satisfies (UP).

We have thus defined the first general operator that can be iterated and
that satisfies (UP) and that, whenever this is possible and suitable, produces a
result of forgetting that corresponds to a syntactic manipulation of the rules of
the original program that contain the atoms to be forgotten.

In addition, we can show that the order of iteration does not affect the final
result w.r.t. uniform equivalence.

Proposition 7. Let P be a program over A and V1, V2 ⊆ A. Then,

fu(fu(P, V1), V2) ≡u fu(fu(P, V2), V1).

Thus, we can forget a set of atoms in any order, which may allow us to prioritize
atoms where syntactic forgetting is possible and suitable, resulting in a uniformly
equivalent program, but possibly syntactically closer to the original program.

Finally, it is not surprising that computing such forgetting results is worst-
case exponential in the size of the input program, due to the as-dual in the case
of fdu and the computation of the countermodels in the case of fUP (for fdu alone
exponential in the size of rules mentioning the atom to be forgotten).

5 Conclusions

In this paper, we have investigated syntactic forgetting under uniform equiva-
lence in modular ASP. We have studied this problem first for stratified programs
and shown that even strong equivalence is preserved while forgetting, establish-
ing interesting results to existing operators of forgetting and novel results as to
when these coincide. We then considered the general case and showed that it
is not always possible to syntactically forget using only the rules that mention
the atom(s) to be forgotten while preserving uniform persistence. This can be
traced back to rules of the form p ← not not p which are known to break the
antichain property of answer sets. We argue that syntactic forgetting in such
cases is not suitable, as it would result in a semantic reconstruction of possible

310 R. Gonçalves et al.

ways of assigning truth to the involved atoms. We thus establish an operator
that is syntactic whenever this is possible and suitable, and we show that this
operator can be iterated and preserves strong persistence.

To add to the discussion of related work in the introduction, we note that
[4], which is closest in spirit to our work, provides an operator that is syntactic,
as the class for which it is defined satisfies strong invariance, i.e., it is amenable
to restrict forgetting only to the rules that mention the atom(s) to be forgot-
ten. Still, it has been observed that the construction is particularly complicated
whenever there are rules of the form p ← not not p, often with rules in the for-
getting result that are not easily associated to the rules in the original program.

Possible future work includes investigating the precise relationship of (UP)
to the notion of relativized uniform equivalence [11], to gain further insights into
semantic operators, study in more detail minimization of logic programs [8] for
simplifying the results of semantic operators, and investigate other impossibil-
ity results in the context of ASP for similarities, such as embedding ASP into
propositional logic [21], where knowing individual rules does not suffice and a
more holistic view is required.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
Authors R. Gonçalves, M. Knorr, and J. Leite were partially supported by FCT
project FORGET (PTDC/CCI-INF/32219/2017) and by FCT project NOVA LINCS
(UIDB/04516/2020). T. Janhunen was partially supported by the Academy of Finland
projects ETAIROS (251170) and AI-ROT (335718).

References

1. Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G., Vidal, C.: Forgetting
auxiliary atoms in forks. Artif. Intell. 275, 575–601 (2019)

2. Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of ensembles
in modular answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP
2006. LNCS, vol. 4079, pp. 376–390. Springer, Heidelberg (2006). https://doi.org/
10.1007/11799573 28

3. Berthold, M., Gonçalves, R., Knorr, M., Leite, J.: Forgetting in answer set pro-
gramming with anonymous cycles. In: Moura Oliveira, P., Novais, P., Reis, L.P.
(eds.) EPIA 2019. LNCS (LNAI), vol. 11805, pp. 552–565. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-30244-3 46

4. Berthold, M., Gonçalves, R., Knorr, M., Leite, J.: A syntactic operator for for-
getting that satisfies strong persistence. Theory Pract. Log. Program. 19(5–6),
1038–1055 (2019)

5. Bledsoe, W.W., Hines, L.M.: Variable elimination and chaining in a resolution-
based prover for inequalities. In: Bibel, W., Kowalski, R. (eds.) CADE 1980. LNCS,
vol. 87, pp. 70–87. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-
10009-1 7

6. Brass, S., Dix, J.: Semantics of (disjunctive) logic programs based on partial eval-
uation. J. Log. Program. 40(1), 1–46 (1999)

7. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic
programs. TPLP 7(6), 745–759 (2007)

https://doi.org/10.1007/11799573_28
https://doi.org/10.1007/11799573_28
https://doi.org/10.1007/978-3-030-30244-3_46
https://doi.org/10.1007/3-540-10009-1_7
https://doi.org/10.1007/3-540-10009-1_7

On Syntactic Forgetting Under Uniform Equivalence 311

8. Cabalar, P., Pearce, D., Valverde, A.: Minimal logic programs. In: Dahl, V.,
Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 104–118. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74610-2 8

9. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic
programming revisited. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol.
5649, pp. 145–159. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02846-5 16

10. Delgrande, J.P., Wang, K.: A syntax-independent approach to forgetting in dis-
junctive logic programs. In: Bonet, B., Koenig, S. (eds.) Proceedings of AAAI, pp.
1482–1488. AAAI Press (2015)

11. Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of
equivalences in answer set programming. ACM Trans. Comput. Log. 8(3) (2007)

12. Eiter, T., Kern-Isberner, G.: A brief survey on forgetting from a knowledge repre-
sentation and reasoning perspective. Künstliche Intell. 33(1), 9–33 (2019)

13. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif. Intell.
172(14), 1644–1672 (2008)

14. Gabbay, D.M., Schmidt, R.A., Szalas, A.: Second Order Quantifier Elimina-
tion: Foundations, Computational Aspects and Applications. College Publications
(2008)

15. Gonçalves, R., Janhunen, T., Knorr, M., Leite, J., Woltran, S.: Forgetting in mod-
ular answer set programming. In: AAAI, pp. 2843–2850. AAAI Press (2019)

16. Goncalves, R., Knorr, M., Leite, J.: The ultimate guide to forgetting in answer set
programming. In: Baral, C., Delgrande, J., Wolter, F. (eds.) Proceedings of KR,
pp. 135–144. AAAI Press (2016)

17. Gonçalves, R., Knorr, M., Leite, J.: You can’t always forget what you want: on
the limits of forgetting in answer set programming. In: Fox, M.S., Kaminka, G.A.
(eds.) Proceedings of ECAI, pp. 957–965. IOS Press (2016)

18. Gonçalves, R., Knorr, M., Leite, J., Woltran, S.: When you must forget: beyond
strong persistence when forgetting in answer set programming. TPLP 17(5–6),
837–854 (2017)

19. Gonçalves, R., Knorr, M., Leite, J., Woltran, S.: On the limits of forgetting in
answer set programming. Artif. Intell. 286, 103307 (2020)

20. Harrison, A., Lierler, Y.: First-order modular logic programs and their conservative
extensions. TPLP 16(5–6), 755–770 (2016)

21. Janhunen, T.: Some (in)translatability results for normal logic programs and
propositional theories. J. Appl. Non Class. Logics 16(1–2), 35–86 (2006)

22. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J. Artif. Intell. Res. (JAIR) 35, 813–857 (2009)

23. Knorr, M., Alferes, J.J.: Preserving strong equivalence while forgetting. In: Fermé,
E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 412–425. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 29

24. Konev, B., Ludwig, M., Walther, D., Wolter, F.: The logical difference for the
lightweight description logic EL. J. Artif. Intell. Res. (JAIR) 44, 633–708 (2012)

25. Konev, B., Lutz, C., Walther, D., Wolter, F.: Model-theoretic inseparability and
modularity of description logic ontologies. Artif. Intell. 203, 66–103 (2013)

26. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison
and module extraction, with an application to DL-Lite. Artif. Intell. 174(15), 1093–
1141 (2010)

27. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: formula-variable
independence and forgetting. J. Artif. Intell. Res. (JAIR) 18, 391–443 (2003)

https://doi.org/10.1007/978-3-540-74610-2_8
https://doi.org/10.1007/978-3-642-02846-5_16
https://doi.org/10.1007/978-3-642-02846-5_16
https://doi.org/10.1007/978-3-319-11558-0_29

312 R. Gonçalves et al.

28. Lang, J., Marquis, P.: Reasoning under inconsistency: a forgetting-based approach.
Artif. Intell. 174(12–13), 799–823 (2010)

29. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2(4), 526–541 (2001)

30. Lin, F., Reiter, R.: How to progress a database. Artif. Intell. 92(1–2), 131–167
(1997)

31. Liu, Y., Wen, X.: On the progression of knowledge in the situation calculus. In:
Walsh, T. (ed.) Proceedings of IJCAI, pp. 976–982. IJCAI/AAAI (2011)

32. Middeldorp, A., Okui, S., Ida, T.: Lazy narrowing: strong completeness and eager
variable elimination. Theoret. Comput. Sci. 167(1&2), 95–130 (1996)

33. Moinard, Y.: Forgetting literals with varying propositional symbols. J. Log. Com-
put. 17(5), 955–982 (2007)

34. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model
semantics for Smodels programs. TPLP 8(5–6), 717–761 (2008)

35. Rajaratnam, D., Levesque, H.J., Pagnucco, M., Thielscher, M.: Forgetting in
action. In: Baral, C., Giacomo, G.D., Eiter, T. (eds.) Proceedings of KR. AAAI
Press (2014)

36. Wang, Y., Wang, K., Zhang, M.: Forgetting for answer set programs revisited. In:
Rossi, F. (ed.) Proceedings of IJCAI, pp. 1162–1168. IJCAI/AAAI (2013)

37. Wang, Y., Zhang, Y., Zhou, Y., Zhang, M.: Knowledge forgetting in answer set
programming. J. Artif. Intell. Res. (JAIR) 50, 31–70 (2014)

38. Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting for knowledge bases in
DL-Lite. Ann. Math. Artif. Intell. 58(1–2), 117–151 (2010)

39. Weber, A.: Updating propositional formulas. In: Expert Database Conference, pp.
487–500 (1986)

40. Wong, K.S.: Forgetting in logic programs. Ph.D. thesis, The University of New
South Wales (2009)

41. Zhang, Y., Foo, N.Y.: Solving logic program conflict through strong and weak
forgettings. Artif. Intell. 170(8–9), 739–778 (2006)

Solving a Multi-resource Partial-Ordering
Flexible Variant of the Job-Shop

Scheduling Problem with Hybrid ASP

Giulia Francescutto1(B) , Konstantin Schekotihin2 ,
and Mohammed M. S. El-Kholany2

1 Infineon Technologies Austria AG, Siemensstrasse 2, 9500 Villach, Austria
giulia.francescutto@infineon.com

2 University of Klagenfurt, Universitaetsstrasse 65-67, Klagenfurt, Austria
{konstantin.schekotihin,mohammed.el-kholany}@aau.at

Abstract. Many complex activities in production cycles, such as qual-
ity control or fault analysis, require highly experienced specialists to per-
form various operations on (semi)finished products using different tools.
In practical scenarios, the next operation selection is complicated since
each expert has only a local view on the entire set of operations to be
performed. As a result, decisions made by the specialists are suboptimal
and might cause high costs. In this paper, we consider a Multi-resource
Partial-ordering Flexible Job-shop Scheduling (MPF-JSS) problem where
partially-ordered sequences of operations must be scheduled on multiple
required resources, such as tools and specialists. The resources are flexible
and can perform one or more operations depending on their properties.
We model the problem using Answer Set Programming (ASP), which
can efficiently handle time assignments using Difference Logic. Moreover,
we suggest two multi-shot solving strategies aiming to identify the time
bounds allowing for a solution to the schedule optimization problem.
Experiments conducted on a set of instances extracted from a medium-
sized semiconductor fault analysis lab indicate that our approach can
find schedules for 87 out of 91 considered real-world instances.

Keywords: Scheduling · ASP · Difference logic · Multi-shot solving

1 Introduction

Digitalization of manufacturing brings many advantages to the modern industry.
Nevertheless, the work of highly experienced specialists cannot be substituted
by machines in many fields like quality control, fault analysis, or research and
development. In such scenarios, the experts use their knowledge of the appli-
cation domain and apply sophisticated tools to perform various operations on

This work was partially funded by KWF project 28472, cms electronics GmbH, Funder-
Max GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, Infineon Technologies Aus-
tria AG, Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse.

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 313–328, 2021.
https://doi.org/10.1007/978-3-030-75775-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_21&domain=pdf
http://orcid.org/0000-0002-4925-3346
http://orcid.org/0000-0002-0286-0958
http://orcid.org/0000-0002-1088-2081
https://doi.org/10.1007/978-3-030-75775-5_21

314 G. Francescutto et al.

queued jobs. In the absence of automated support, the specialists select jobs and
perform operations that appear to be best according to their awareness of the
situation. That is, they are making locally best decisions according to numer-
ous heuristics such as deadlines of the jobs, availability of tools and colleagues
experienced in specific operations, or given preferences of jobs. However, missed
deadlines as well as idle time of machines and experts can be quite costly.

In manufacturing settings, the reduction of operational costs is often achieved
by applying automated schedulers. Job-Shop Scheduling (JSS) [22] is one of the
most well-known problems in which, given a set of machines and a set of jobs rep-
resented as a sequence of operations, the goal is to assign operations to machines
such that: (i) each operation can be processed by one machine at a time; (ii)
all jobs are processed independently of other jobs; and (iii) the execution of
operations cannot be interrupted (no preemption). Practical scheduling appli-
cations resulted in various extensions of JSS, such as flexible JSS [8] in which
an operation can be performed by various resources, e.g., machines or engi-
neers; multi-resource JSS with non-linear routing [10], where an operation may
need multiple resources for its execution, e.g., an engineer and a machine, and
may have different preceding and succeeding operations. Another well-known
extension is the Resource-Constrained Project Scheduling Problem (RCPSP)
[20], where each operation might consume some amount of available resources.
Similarly, as for JSS, there are various RCPSP extensions, such as a multi-skill
variant [7], where human resources might require skills to perform operations,
or multi-mode operations [28], which can be performed in different ways, e.g.,
using different tools and procedures.

In this paper, we consider a Multi-resource Partial-ordering Flexible JSS
(MPF-JSS) problem, which can informally be described as: Given a set of jobs,
represented as partially-ordered sets of operations, and two sets of resources that
can perform multiple operations, i.e., tools and engineers trained to operate them,
find a schedule of operations for all resources that is optimal wrt. predefined
criteria such as tardiness. The latter is defined as the difference between the
completion time of a job and its deadline, or 0 otherwise. The partial order of
operations indicates that the sequence of some operations of a job is not essential.
For instance, engineers can do various non-invasive inspection operations using
different tools in an arbitrary order. Selection of a specific order can, however,
improve the schedule since the availability of resources, like tools or engineers,
might be limited.

To solve the problem, we propose an encoding using Answer Set Program-
ming (ASP) [24] with Difference Logic [21]. The introduction of difference con-
straints allows one to express timing requirements compactly and thus to avoid
grounding issues that might occur if the number of possible time points required
to find a schedule is too large. Nevertheless, as our evaluation shows, conven-
tional reasoning and optimization methods of ASP solvers cannot find solutions
to real-world instances in a predefined time. Therefore, we suggest two search
strategies based on multi-shot solving techniques [18], allowing for the identi-
fication of tighter upper time bounds on the schedule. The evaluation of our

Solving MPF-JSS with Hybrid ASP 315

approach was conducted on instances extracted from the historical data repre-
senting ten operational days of an Infineon Fault Analysis lab. Each complete
instance representing a whole day was then split into smaller instances enabling
a detailed assessment of the solving performance. The results show that the basic
ASP encoding was unable to solve any of the complete instances, while the sug-
gested multi-shot approaches could find optimal schedules for eight or nine days,
respectively. In total, these approaches solved 87 out of 91 instances considered
in our full evaluation.

2 Preliminaries

Answer Set Programming. A normal ASP program Π is a finite set of rules of
the form

h ← b1, . . . , bm, ∼bm+1, . . . , ∼bn (1)

where h and b1, . . . bn, for n ≥ 0, are atoms and ∼ is negation as failure. An
atom is either ⊥, representing the constant false, or an expression of the form
p(t1, . . . , tl), where p is a predicate symbol and t1, . . . , tl are terms. Each term
is either a variable or a constant. A literal l is either an atom (positive) or
its negation (negative). Given a rule r of the form (1), H(r) = h denotes the
head atom and the body B(r) = B+(r) ∪ B−(r) comprises the positive B+(r) =
{b1, . . . , bm} and negative B−(r) = {bm+1, . . . , bn} atoms. A rule r is a fact if
B(r) = ∅ and a constraint if H(r) = ⊥.

The semantics of an ASP program Π is given in terms of its ground instan-
tiation ΠG, obtained from Π by substituting the variables in each rule r ∈ Π
with constants appearing in Π. An interpretation I is a set of (true) ground
atoms occurring in ΠG that does not contain ⊥. A rule r ∈ ΠG is satis-
fied by I if B+(r) ⊆ I and B−(r) ∩ I = ∅ imply H(r) ∈ I, and I is a
model of Π if it satisfies each r ∈ ΠG. As originally defined in [19], a model
I of Π is stable (an answer set) if it is a ⊆-minimal model of the reduct
{H(r) ← B+(r) | r ∈ ΠG, B−(r) ∩ I = ∅}.

Multi-shot Solving. ASP allows for a flexible reasoning process suitable for con-
trolled solving of continuously changing logic programs, i.e., multi-shot solving
[18]. Thus, clingo enhances the ASP declarative language [9] with control capac-
ities. This is accomplished by introducing a new #program directive in the ASP
program that allows to structure it into subprograms, making the solving pro-
cess fully modular. Flexibility is provided by an imperative programming inter-
face (API) that allows a continuous assembly of the program and gives control
over the grounding and solving functions. Each subprogram has a name and
an optional list of parameters. It gathers all the rules up to the next #program

directive. Subprogram base is a dedicated subprogram where all the rules not
preceded by any #program directive are collected. #external directives are used
within subprograms to set external atoms to some truth value via the clingo
API.

316 G. Francescutto et al.

ASP Modulo Difference Logic. clingo[DL] extends the input language of clingo
by theory atoms representing difference constraints [16,17,21]. Difference con-
straints are represented by specific constraint atoms of the form &diff{x−y} ≤ k
where x and y are ASP terms, which are internally interpreted as integer vari-
ables’ names, and k is a constant. clingo[DL] therefore provides the following
extension of the rule (1):

&diff{x − y} ≤ k ← b1, . . . , bm, ∼bm+1, . . . , ∼bn.

Such rules express that, whenever the body holds, the linear inequality repre-
sented by the head has to be satisfied as well.

3 Problem Formalization

In this paper, we consider a novel variant of the JSS problem, which occurs
in scenarios when multiple resources have to be combined in order to process
incoming jobs. In particular, MPF-JSS extends the standard problem in three
ways: (i) Multi-resource – there is more than one resource type needed to execute
an operation; (ii) Partially-ordered – some operations of a job can be executed in
an arbitrary order; and (iii) Flexible – an operation can be executed by various
resources.

3.1 MPF-JSS Definition

Let O = {(o1, p1), . . . , (om, pm)} be a set of operations, where oi denotes the
operation identifier and pi ∈ N its duration, and C be a set of available classes
of resources, which represent groups of equivalent instances of a resource. Then,
R = {(i, c, Or) | i ∈ N, c ∈ C,Or ⊆ O} is a set of available resources, where each
resource r = (i, c, Or) is a triple defining an instance i of the resource, its class,
and a set of operations Or it can execute. In addition, the set D = {(o, Cd) |
o ∈ O,Cd ⊆ C} provides demands of operations in O for instances of resource
classes Cd. Finally, a set of jobs is defined as J = {(Oj , Pj , d) | Oj ⊆ O,Pj ⊆
Oj × Oj , d ∈ N}, where Oj ⊆ O is a set of operations that must be executed for
the job, Pj defines their (partial) order, and d indicates the deadline.

Given an MPF-JSS instance (J,D,R), a schedule S is a set of assignments
{(Rs, oj , t) | Rs ⊆ R, oj ∈ O, t ∈ N}. Each triple (Rs, oj , t) indicates that an
operation oj of a given job and a required set of resources Rs is assigned to a
time point t. In addition, the following constraints must hold:

– the set Rs must comprise all resources demanded by an operation oj ;
– the schedule is non-preemptive, i.e., operations cannot be interrupted once

started;
– any two operations of a job cannot be executed simultaneously;
– each resource instance is assigned to only one operation at a time; and
– operations of a job j must be scheduled wrt. to the given partial order, i.e.,

for any pair (oi, ok) ∈ Pj the corresponding schedule assignments (Ri, oi, ti)
and (Rk, ok, tk) must satisfy the inequality ti ≤ tk.

Solving MPF-JSS with Hybrid ASP 317

A schedule is optimal if it has the minimal total tardiness T =
∑

j∈J max(0, Cj−
dj), where Cj and dj denote the completion time and the deadline of a job j,
respectively.

Example. Let us exemplify the MPF-JSS problem definition on a small instance.
Suppose we have five operations (o1, 1), . . . , (o5, 1) and two classes of resources –
a worker and a machine – denoted by w and m, respectively. The set of resources
is defined as

R = {(1, w, {o1, o2}), (2, w, {o4, o5}), (3, w, {o2, o3, o4})}∪
{(1,m, {o3}), (2,m, {o4}), (3,m, {o4}), (4,m, {o5})}

For instance, in this set (1, w, {o1, o2}) indicates that the first worker is trained
to execute operations o1 and o2, and (1,m, {o3}) denotes that the first machine
can be used to process o3. Moreover, the definition of the operation demand D
states that the operations o1 and o2 are processed only by workers, whereas the
operations o3, o4 and o5 require both a worker and a machine:

D = {(o1, {w}), (o2, {w}), (o3, {w,m}), (o4, {w,m}), (o5, {w,m})}

Assume that the shop got three new jobs with a deadline 3 each. The first
job has to undergo three operations, where o1 must be completed before both o2
and o4. Operations of the second job can be done in an arbitrary order. Finally,
the third job comprises four operations such that o3 must be done before o2 and
o1 before o2 and o5.

J = {({o1, o2, o4}, {(o1, o2), (o1, o4)}, 3),
({o3, o4}, ∅, 3),
({o1, o2, o3, o5}, {(o3, o2), (o1, o2), (o1, o5)}, 3)}

One of the possible solutions of the given instance is shown in Figs. 1 and 2.
The found schedule assigns operations to the provided resources and time points
in a way that minimizes the tardiness optimization criterion. As a result, two jobs
are finished in time, i.e., completion times of the first and second jobs are C1 = 3
and C2 = 2. The third job has tardiness C3 − d3 = 1 since it is impossible to
complete the four operations with a duration of 1 each in time without executing
operations of a job in parallel.

3.2 Modeling MPF-JSS with Hybrid ASP

Answer Set Programming (ASP) has been widely used in the literature to solve
scheduling problems. For instance, [25] applies ASP to develop a system for com-
puting suitable allocations of personnel on the international seaport of Gioia
Tauro, and [2] addresses a similar problem of workforce scheduling. ASP has
also been used for approaching scheduling problems in healthcare, like assigning
patients to operating rooms [12] and scheduling chemotherapy treatments [11].

318 G. Francescutto et al.

O4

O1

O4

O1

O5

O3

O2

O3

O2

0 1 2 3 4

W1

W2

W3

J1 J2 J3

Fig. 1. Workers allocations

O3

O5

O3

O4 O4

0 1 2 3

M1

M2

M4

J3 J2 J1

Fig. 2. Machines allocations

Listing 1. Problem instance

1 op(o1 ,1). op(o2 ,1). op(o3 ,1). op(o4 ,1). op(o5 ,1).

2 needs(o1 ,w). needs(o2 ,w). needs(o3 ,m). needs(o3 ,w).

3 needs(o4 ,m). needs(o4 ,w). needs(o5 ,m). needs(o5 ,w).

5 res(w1 ,w,o1). res(w1 ,w,o2). res(w2 ,w,o4). res(w2 ,w,o5).

6 res(w3 ,w,o2). res(w3 ,w,o3). res(w3 ,w,o4).

7 res(m1 ,m,o3). res(m2 ,m,o4). res(m3 ,m,o4). res(m4 ,m,o5).

9 job(j1 ,3). job(j2 ,3). job(j3 ,3).

10 recipe(j1 ,o1). recipe(j1 ,o2). recipe(j1 ,o4).

11 recipe(j2 ,o3). recipe(j2 ,o4).

12 recipe(j3 ,o1). recipe(j3 ,o2). recipe(j3 ,o3). recipe(j3 ,o5).

13 prec(j1 ,o1 ,o2). prec(j1 ,o1 ,o4).

14 prec(j3 ,o3 ,o2). prec(j3 ,o1 ,o2). prec(j3 ,o1 ,o5).

In addition, ASP was applied to solve the course timetabling problem [6,23].
These approaches, however, indicated one of the major problems of ASP in
scheduling applications – grounding issues occurring while dealing with a large
number of possible time points. Therefore, in the literature, a number of exten-
sions have been proposed to integrate ASP with Constraint Programming (CP)
constraints, such as the hybrid solvers clingcon [5], ascass [29], and ezcsp [3,4].
The ezcsp system has been used to solve the problem of allocating jobs to devices
in the context of industrial printing [4], and clingcon was successfully applied
to production scheduling in [15]. In this paper, we use ASP modulo Difference
Logic, which is also applied in [1] to schedule railroad traffic, for modeling the
MPF-JSS problem.

Problem Instances. In order to encode the MPF-JSS problem in ASP, we first
define a number of predicates representing the input instances. The set of oper-
ations is encoded using the predicate op/2 where the first term is indicating the
operation identifier, and the second the expected processing times. The demands
of operations for resources are described with the needs/2 predicate, see lines 1-3
in Listing 1 encoding the example presented in the previous section.

The set of resources is represented with atoms over the res/3 predicate. An
atom res(r,c,o) provides an identifier r of a resource instance, a class c of the

Solving MPF-JSS with Hybrid ASP 319

Listing 2. Encoding of the resource allocation

1 {alloc(R,J,O,M) : res(M,R,O)}=1 :- recipe(J,O), needs(O,R).

3 allocated(R,M) :- alloc(R,J,O,M).

4 :- alloc(R,J,O,N), res(M,R,O), M < N, not allocated(R,M).

required resource, and an operation o it can execute. Thus, the set of required
resources can be encoded as shown in lines 5–7.

Finally, the jobs are encoded using three predicates job/2, recipe/2, and
prec/3. Atoms over the first predicate provide identifiers of the jobs and their
deadlines. Recipes are used to define the set of operations that must be executed
for a job, and the partial order of the operations is specified by the atoms over
the prec/3 predicate. Respective facts encoding the jobs of our example are given
in lines 9–14.

MPF-JSS Encoding. The problem encoding is split into three parts:

1. base: encodes all the definitions and constraints for the scheduling require-
ments (Listings 2, 3, and 4);

2. incremental : implements an incremental search strategy as well as weak con-
straints for the tardiness optimization (Listing 5); and

3. exponential : uses multi-shot solving to find the upper bound on the tardiness
for a given instance using exponential search (Listing 6).

The first section of the base subprogram, presented in Listing 2, addresses the
allocation of resources, expressed by atoms alloc(R,J,O,M), required to execute
an operation of a job. Each operation O of a job J requiring a resource of type R

should be executed by exactly one instance M of this resource. Since the instances
of a resource are equivalent, we introduce a symmetry-breaking constraint in
lines 3–4. This constraint avoids unnecessary allocation variants by requiring
the solver to select resources starting from the ones with the lexicographically
smallest identifier.

Listing 3 shows the second part of the base subprogram. The rule in lines
6–7 specifies that the order in which two operations of a job are executed can be
arbitrary when these operations are not subject to the job’s precedence relation.
Similarly, an arbitrary order is possible if two operations of different jobs require
the same resource (lines 8–9). For the operations that need an ordering, expressed
by atoms over the ord/4 predicate, we generate an execution sequence – denoted
by the seq/4 predicate – using the rules in lines 10 and 11. The sequence of
operations whose precedence is given in the input instance is forced by the rule
in line 12.

Finally, in Listing 4 we introduce the difference constraints encoding the
starting times of operations. We represent the starting time of an operation O

of job J by an integer variable (J,O). The first constraint in line 13 requires the
starting time of each operation to be greater or equal to 0. The second constraint
enforces the starting times to be compatible with the order provided by atoms

320 G. Francescutto et al.

Listing 3. Encoding of operation sequences

6 ord(J,O1 ,J,O2) :- recipe(J,O1), recipe(J,O2), O1 < O2 ,

7 not prec(J,O1 ,O2), not prec(J,O2 ,O1).

8 ord(J1 ,O1 ,J2 ,O2) :- alloc(R,J1 ,O1 ,M), alloc(R,J2 ,O2 ,M),

9 J1 < J2.

10 {seq(J1 ,O1 ,J2 ,O2)}:- ord(J1 ,O1 ,J2 ,O2).

11 seq(J2 ,O2 ,J1 ,O1) :- ord(J1 ,O1 ,J2 ,O2), not seq(J1 ,O1 ,J2 ,O2).

12 seq(J,O1 ,J,O2) :- prec(J,O1 ,O2).

Listing 4. Difference constraints on operations’ starting times

13 &diff{0 - (J,O)}<=0 :- recipe(J,O).

14 &diff{(J1 ,O1) - (J2 ,O2)}<=-P1 :- seq(J1 ,O1 ,J2 ,O2), op(O1 ,P1).

over the seq/4 predicate. That is, an operation (J2,O2) coming after (J1,O1)

must not start before (J1,O1) is finished.

Multi-shot Solving. Finding solutions of minimal tardiness for MPF-JSS
instances can be hard since, without the knowledge of any reasonable bounds
on the scheduling time interval, a solver may have to enumerate a large num-
ber of possible solutions. Finding such bounds can be complicated and simple
heuristics, like determining a maximal sum of operation durations for a particu-
lar resource, often provide very imprecise approximations. Therefore, we exploit
the power of multi-shot solving to find an upper bound on the tardiness and thus
provide a good starting point for the optimization methods of an ASP solver.

In the following, we present two approaches to search for feasible solutions to
a given problem instance incrementally. Such techniques were already introduced
and used for similar purposes in SAT solving. For instance, Eén and Sörensson
[13] apply an incremental SAT solver to model and solve the temporal induc-
tion problem for finite state machines, where a given property is incrementally
proven over reachable states of the machine. In further work [14], the authors
also use an incremental SAT solver to solve pseudo-boolean constraints, where
an optimum is found by incrementally solving constraints with different bounds.
Similarly, Rintanen et al. [26] suggest geometric and exponential search schemes
automatically identifying a suitable planning horizon. To this end, multiple SAT
solvers are run concurrently, providing each solver with a computation time
budget determined by the applied scheme. For instance, the exponential scheme
grants solvers exponentially less time to find a plan as the horizon increases.

The idea of the first approach is to incrementally increase the upper bound
on the tardiness of each job in order to identify an interval for which a schedule
exists. That is, the algorithm starts by considering the 0 tardiness bound, and if
this yields unsatisfiability (UNSAT), it starts to increment the tardiness bounds
by a constant. As a result, the algorithm implements a tumbling window search
strategy. The corresponding subprogram step(m,n), shown in Listing 5, takes
the parameters m and n to indicate the lower and upper bounds of the interval

Solving MPF-JSS with Hybrid ASP 321

Fig. 3. Incremental approach

Fig. 4. Exponential approach

considered in the current iteration. The parameter values are set via a Python
control script, which shifts them by the considered window size in each iteration.
The control is implemented using the #external directive, providing a mechanism
to activate or deactivate constraints by assigning a corresponding tardiness(n)

atom to true or false, respectively. Figure 3 illustrates a sample execution of the
incremental search algorithm, where a tumbling window of size 2 is moved in
each iteration until the target interval for which a schedule exists is found.

Once the admissible upper bound n (and a corresponding lower bound m)
is identified, ASP optimization methods search for an optimal solution within
this interval, where the truth of an end(J,N) atom for N in-between 1 and n

expresses that the tardiness of job J is less than N. Such atoms can be guessed
to be true via the choice rule in line 21. The constraint in line 22 propagates
smaller tardiness up to the upper bound n, and line 23 forces the tardiness of
each job to be less than n. Finally, we minimize the number of pairs J,N for which
end(J,N) is false, i.e., the tardiness of job J is at least N, by means of the weak
constraint in line 24. Such an optimization strategy is required since clingo[DL]
does not directly allow for minimizing a sum of integer variables occurring in
its difference constraints. Therefore, in lines 26–27, we force each operation of a
job to finish within the corresponding tardiness bound. In an obtained answer
set, the end(J,N) atom with the smallest value for N signals the tardiness N-1 for
job J.

In the second approach, shown in Listing 6, the additional subprogram
iterate(n) is used first to find an upper tardiness bound n for each job such
that some schedule exists. This is accomplished by a binary search that expo-
nentially increments n until the first schedule is found, and then converges to
the smallest n for which the scheduling problem is still satisfiable (SAT).

Figure 4 illustrates the process converging to the upper bound 7, relative to
which the tardiness optimization is performed in the second step. In fact, with
the iteration(n) atom from the #external directive in line 30 set to true, the
constraint in lines 32–33 forces the tardiness of each job to be less than n, and

322 G. Francescutto et al.

Listing 5. Step subprogram for incremental approach

16 #program step(m,n).

17 #external tardiness(n).

19 current(m..n,n).

21 {end(J,N)} :- job(J,_), current(N,n).

22 :- end(J,N-1), not end(J,N), current(N,n).

23 :- job(J,_), not end(J,n), tardiness(n).

24 :~ job(J,_), not end(J,N), current(N,n). [1,J,N]

26 &diff{(J,O) - 0}<=K :- job(J,D), end(J,N), current(N,n),

27 recipe(J,O), op(O,P), K=D+N-P.

Listing 6. Iterate subprogram for exponential approach

29 #program iterate(n).

30 #external iteration(n).

32 &diff{(J,O) - 0}<=K :- job(J,D), iteration(n),

33 recipe(J,O), op(O,P), K=D+n-P.

it remains to add the step(1,n-1) subprogram as above for optimization, yet
letting the external atom tardiness(n-1) be false to avoid unsatisfiability due
to the constraint in line 23.

Discussion. The two presented approaches aim at finding tardiness bounds per
job, which can then be used as a starting point for the tardiness optimization.
However, the bounds found by both approaches might have a different impact
on the total tardiness of the optimal solution. This difference is essential for the
quality of the obtained solutions, and both bounds merely approximate the max-
imal tardiness of some jobs needed for the optimal schedule. Theoretically, there
can be situations in which the minimal total tardiness can only be reached when
one of the jobs has comparably high tardiness, whereas others can be completed
with low or zero tardiness. The upper bounds identified by our search algorithms
might result in suboptimal schedules in which jobs, nevertheless, do not have
extreme differences in their tardiness. In particular, the exponential approach
is geared to find solutions that avoid large tardiness differences between jobs.
Such schedules might be advantageous in scenarios where customers can tolerate
short waiting times without serious drawbacks. The incremental strategy may
admit schedules with smaller total tardiness, given a sufficiently large window
size to come to a greater bound than identified by the exponential search. How-
ever, the incremental approach can be computationally more expensive since it
might result in a larger number of candidate solutions to be considered by the
underlying ASP optimization method.

Solving MPF-JSS with Hybrid ASP 323

4 Experimental Evaluation

We conduct our experiments on a set of real-world instances of the MPF-JSS
problem retrieved from the daily operations history of a semiconductor Fault
Analysis (FA) Lab.

Application Domain: FA Lab. In the context of semiconductor industries, the
goal of the FA process is to identify the failure that results in an observed
incorrect behavior of a semiconductor device [27]. In order to determine the
nature and the cause of the failure, a sequence of investigation activities must be
performed. Thus, different FA methods are applied to correctly identify different
aspects of the failure. Obtained results are then put together to infer the failure
mechanism and to understand its causes.

Some FA techniques alter the device permanently, e.g., the chemical alter-
ation of the surface, while others do not affect the device in any way. Conse-
quently, some analyses need to be executed before any alteration of a sample
semiconductor device, while others can only be executed after some specific
alteration. For example, an initial external visual inspection can only be done
on a non-altered device, whereas the internal inspection of the sample is possible
only after its decapsulation. This results in some precedence requirements for the
sequences of executed investigation methods.1

In general, a sequence of FA techniques, required to identify the root cause
of a fault, is unknown. Often the next method is selected upon results obtained
during the previous steps of the FA process. However, in the specific context
we consider in this paper, the FA process is executed to assess the quality of
produced devices that have been put under some stress test. Therefore, in this
case the set of methods to be executed is known in advance.

Each FA technique is executed by a trained employee possibly using a ded-
icated machine. For most of the operations, there is more than one employee
trained to conduct them using one of the available machines. FA diagnostics of
all incoming devices, called jobs, must be finished within a certain predefined
deadline. The latter might not be met due to unavoidable reasons, like personnel
shortages, unavailability of tools, or large numbers of incoming jobs. However,
in practice, most of the missed deadlines are due to ad-hoc scheduling that leads
to “forgotten” jobs, bottlenecks by rare and expensive equipment, or personnel
allocation. One of the possible solutions is, therefore, to represent the FA prob-
lem as MPF-JSS and use modern ASP solvers to find the optimal allocation of
jobs’ analyses to machines and employees.

Instance Generation. The experimental evaluation is performed on real-world
instances provided by our partner Infineon Technologies Austria. The provided
data comprises a list of jobs processed in a selected period of time including:
(i) the list of operations/techniques executed on each job, (ii) the processing
time of the operations, (iii) the job deadlines, (iv) job identifiers, (v) the list

1 www.eesemi.com.

www.eesemi.com

324 G. Francescutto et al.

of machines available, and (vi) information about the employees who executed
these operations.

Out of this data, we extracted instances for ten random days represent-
ing a snapshot of the situation in the lab. However, the information regarding
precedence requirements between failure analysis techniques was missing in the
provided data. At the moment of data collection, it was impossible to com-
municate to the experts and to retrieve the missing dependencies between the
techniques. Therefore, we decided to take the order of operations given in the
data and convert it into an ordering relation, thus providing a strict order in
our test instances.2 The processing time of each operation was set to its average
processing time measured in minutes during the selected period. Given the job
deadlines in a date format, we computed the difference in minutes between the
deadline date and the beginning of the day shift chosen for the computation.
For simplicity, we assumed that each day has only one shift, which is eight hours
long.

The resulting instances have the following approximate number of fixed com-
ponents defined by the properties of the studied lab: (i) 50 operations, (ii) 75
machines, and (iii) 45 workers. For each of the days chosen the number of open
jobs ranges between 30 and 50. We split each day-instance into sub-instances,
with the aim of having instances of increasing size in multiples of 5, which
resulted into a total of 91 instances.

Evaluation Results. For each obtained instance, we ran the three ASP programs
introduced in Sect. 3.2: (i) single-shot – the base program with a tardiness bound
precomputed using a heuristic, (ii) inc – the incremental variant, and (iii) exp
– the exponential search approach. We compared the multi-shot approaches to
a single-shot version where the bound is computed in advance and given as
constant input to the program. In particular, we compute the sum of durations
of all operations in an instance, which defines the tardiness bound large enough to
allow for finding an optimal solution. Then, we introduce this bound as constant
in the ASP single-shot program, and solve the optimization problem using the
same idea as for the optimization steps of the multi-shot approaches.

The experiments were conducted on a workstation with Ubuntu 18.05, Intel
3930 K and 64 GB RAM. In our experiments, we use clingo[DL] 1.1.0 and clingo
5.4.0 with multi-shot solving controlled by the main routine in Python 3.8.5.
For each instance, we let the solver run up to a timeout of 2 hours. For the
incremental approach, we chose to use a constant tumbling window of 20 min.

Figure 5 shows a comparison of the solving performance of the two multi-
shot approaches and the single-shot version. The single-shot program manages
to solve only a small subset of the test instances. Thus, it always reached the
timeout for instances with more than 20 jobs and only managed to find a sched-
ule for instances with 15 jobs for two days – Day 2 and Day 9. Interestingly,
the total tardiness of all schedules found by the single-shot and by multi-shot
approaches was equal. The two multi-shot approaches significantly outperformed

2 See the paper website for the encodings and instances.

https://git-ainf.aau.at/Giulia.Francescutto/papers/-/wikis/Solving-a-Multi-resource-Partial-ordering-Flexible-Variant-of-the-Job-shop-Scheduling-Problem-with-Hybrid-ASP

Solving MPF-JSS with Hybrid ASP 325

0 20 40 60 80 100
instances

0

2000

4000

6000

C
PU

tim
e
(s
)

exp
inc
single-shot

Fig. 5. Cactus plot of solving times

Fig. 6. Box plot of solving times for the instances from ten days and the two multi-shot
approaches. The incremental approach reached the timeout for five instances in Day
1 and one instance in Day 10, and the exponential approach reached the timeout for
four instances in Day 1.

the single-shot version. The exponential version solved 87 instances and reached
the timeout only for four instances, all of which belong to Day 1. The incre-
mental version managed to solve 85 instances and reached the timeout for six
instances: five instances in Day 1, and the largest instance in Day 10 comprising
all recorded jobs for this day. The exponential approach performs slightly better
since it was always finding a tighter upper bound for tardiness, thus, leaving
fewer choices for the optimization strategy of the ASP solver. Nevertheless, the
differences between the approaches discussed in Sect. 3.2 were also confirmed in
the evaluation. That is, in our experiments, the incremental variant was able
to obtain better solutions for three instances with an average total tardiness
improvement of 80 min.

326 G. Francescutto et al.

Table 1. Search and optimization times in seconds for multi-shot approaches on largest
instances

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Day10

inc search 362 285 174 131 140 150 165 251 281 173

inc opt TO 4311 2145 1156 1920 3869 3360 987 1074 TO

exp search 151 77 49 39 75 47 52 41 15 208

exp opt TO 3020 1640 1256 1442 2476 2528 1384 1233 6154

The box plot in Fig. 6 summarizes the solving times measured over instances
from each day. We observe that the exponential approach generally needs less
time. The outliers in the plot of the exponential search correspond to instances
that the incremental version did not manage to solve within the timeout. Never-
theless, if we consider only the solved instances, then the solving times required
by both multi-shot approaches are quite close with a slight advantage of the
exponential search. The reason is that clingo[DL] could rather quickly decide
whether an instance is satisfiable for a given tardiness bound or not. For the
largest instances, the exponential and incremental strategies required 75 and
211, respectively, seconds on average for finding a bound, while substantially
more time was spent on the optimization performed wrt. this bound.

Table 1 shows the times needed by the two multi-shot approaches for their
search and optimization steps on the largest instance per day. In general, the
exponential approach is faster to find a tardiness bound than the incremental
strategy. In Day 1, both approaches reached the timeout of 7200 seconds in the
optimization step, and in Day 10 only the exponential approach managed to find
an optimal solution within the timeout.

5 Conclusions

In this paper, we introduce a Multi-resource Partial-ordering Flexible Job-Shop
Scheduling (MPF-JSS) problem and provide an encoding using hybrid ASP mod-
ulo Difference Logic. We present two multi-shot solving strategies to find rea-
sonable approximations of tardiness bounds. These approaches were tested on
a set of real-world instances provided by Infineon Technologies Austria, where
they showed to enable the optimization of daily schedules for a Fault Analysis
lab, while single-shot solving could not accomplish the optimization within the
same time limit. In the future, we plan to test the proposed encodings on dif-
ferent problem types to reinforce the assessment. In addition, we are going to
extend the suggested approach in two ways. First, we intend to develop novel
optimization techniques for Difference Logic allowing for the minimization of
sums of integer variables, which must in the current approach be simulated by
means of underlying ASP optimization methods. Second, we aim to devise multi-
shot solving strategies that can take advantage of historical data, which is often
available in industrial application scenarios. In particular, we are going to study

Solving MPF-JSS with Hybrid ASP 327

combinations of ASP with (supervised) machine learning models trained to guide
the search procedure of a solver by giving preference to operations to schedule
in successive solving steps.

References

1. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train
scheduling with hybrid ASP. In: LPNMR, pp. 3–17 (2019)

2. Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift design with
answer set programming. FI 147(1), 1–25 (2016)

3. Balduccini, M.: Representing constraint satisfaction problems in answer set pro-
gramming. In: ASPOCP, pp. 16–30 (2009)

4. Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Delgrande, J.P.,
Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 284–296. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9 33

5. Banbara, M., Kaufmann, B., Ostrowski, M., Schaub, T.: Clingcon: the next gen-
eration. TPLP 17(4), 408–461 (2017)

6. Banbara, M., Soh, T., Tamura, N., Inoue, K., Schaub, T.: Answer set programming
as a modeling language for course timetabling. TPLP 13(4–5), 783–798 (2013)

7. Bellenguez-Morineau, O.: Methods to solve multi-skill project scheduling problem.
4OR 6(1), 85–88 (2008). https://doi.org/10.1007/s10288-007-0038-4

8. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Com-
puting 45(4), 369–375 (1990). https://doi.org/10.1007/BF02238804

9. Calimeri, F., et al.: ASP-Core-2 input language format. TPLP 20(2), 294–309
(2020)

10. Dauzère-Pérès, S., Roux, W., Lasserre, J.: Multi-resource shop scheduling with
resource flexibility. EJOR 107(2), 289–305 (1998)

11. Dodaro, C., Galatà, G., Maratea, M., Mochi, M., Porro, I.: Chemotherapy treat-
ment scheduling via answer set programming. In: CILC, pp. 342–356 (2020)

12. Dodaro, C., Galatà, G., Khan, M.K., Maratea, M., Porro, I.: An ASP-based solu-
tion for operating room scheduling with beds management. In: Fodor, P., Montali,
M., Calvanese, D., Roman, D. (eds.) RuleML+RR 2019. LNCS, vol. 11784, pp.
67–81. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31095-0 5

13. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. ENTCS
89(4), 543–560 (2003)

14. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT 2,
1–26 (2006)

15. Friedrich, G., et al.: Representing production scheduling with constraint answer
set programming. In: OR, pp. 159–165 (2014)

16. Gebser, M., et al.: Potassco user guide (2019). http://potassco.org
17. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:

Theory solving made easy with clingo 5. In: ICLP (Technical Communications),
pp. 2:1–2:15 (2016)

18. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. TPLP 19(1), 27–82 (2019)

19. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080 (1988)

20. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-
constrained project scheduling problem. EJOR 207(1), 1–14 (2010)

https://doi.org/10.1007/978-3-642-20895-9_33
https://doi.org/10.1007/s10288-007-0038-4
https://doi.org/10.1007/BF02238804
https://doi.org/10.1007/978-3-030-31095-0_5
http://potassco.org

328 G. Francescutto et al.

21. Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P., Schaub,
T.: Clingo goes linear constraints over reals and integers. TPLP 17(5–6), 872–888
(2017)

22. Johnson, S.: Optimal two-and three-stage production schedules with setup times
included. NRLQ 1(1), 61–68 (1954)

23. Kahraman, M.K., Erdem, E.: Personalized course schedule planning using answer
set programming. In: Alferes, J.J., Johansson, M. (eds.) PADL 2019. LNCS,
vol. 11372, pp. 37–45. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
05998-9 3

24. Lifschitz, V.: Answer Set Programming. Springer, Heidelberg (2019). https://doi.
org/10.1007/978-3-030-24658-7

25. Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro
seaport. TPLP 12(3), 361–381 (2012)

26. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans
and algorithms for plan search. AIJ 170(12–13), 1031–1080 (2006)

27. Ross, R. (ed.): Microelectronics Failure Analysis: Desk Reference. ASM Interna-
tional, Russell (2011)

28. Sprecher, A., Hartmann, S., Drexl, A.: An exact algorithm for project scheduling
with multiple modes. OR Spectrum 19(3), 195–203 (1997). https://doi.org/10.
1007/BF01545587

29. Teppan, E., Friedrich, G.: Heuristic constraint answer set programming for man-
ufacturing problems. In: Advances in Hybridization of Intelligent Methods, pp.
119–147 (2018)

https://doi.org/10.1007/978-3-030-05998-9_3
https://doi.org/10.1007/978-3-030-05998-9_3
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/BF01545587
https://doi.org/10.1007/BF01545587

Tractable Reasoning Using Logic
Programs with Intensional Concepts

Jesse Heyninck1(B) , Ricardo Gonçalves2 , Matthias Knorr2 ,
and João Leite2

1 Technische Universität Dortmund, Dortmund, Germany
jesse.heyninck@tu-dortmund.de

2 NOVA LINCS, Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Caparica, Portugal

{rjrg,mkn,jleite}@fct.unl.pt

Abstract. Recent developments triggered by initiatives such as the
Semantic Web, Linked Open Data, the Web of Things, and geographic
information systems resulted in the wide and increasing availability of
machine-processable data and knowledge in the form of data streams
and knowledge bases. Applications building on such knowledge require
reasoning with modal and intensional concepts, such as time, space, and
obligations, that are defeasible. E.g., in the presence of data streams,
conclusions may have to be revised due to newly arriving information.
The current literature features a variety of domain-specific formalisms
that allow for defeasible reasoning using specific intensional concepts.
However, many of these formalisms are computationally intractable and
limited to one of the mentioned application domains. In this paper, we
define a general method for obtaining defeasible inferences over inten-
sional concepts, and we study conditions under which these inferences
are computable in polynomial time.

1 Introduction

In this paper, we develop a solution that allows us to tractably reason with inten-
sional concepts, such as time, space and obligations, providing defeasible/non-
monotonic inferences in the presence of large quantities of data.

Initiatives such as the Semantic Web, Linked Open Data, and the Web of
Things, as well as modern Geographic Information Systems, resulted in the wide
and increasing availability of machine-processable data and knowledge in the
form of data streams and knowledge bases. To truly take advantage of this kind
of knowledge, it is paramount to be able to reason in the presence of intensional
or modal concepts, which has resulted in an increased interest in formalisms,
often based on rules with defeasible inferences, that allow for reasoning with
time [5,10,12,14,26,41], space [13,28,39,42], and possibility or obligations [11,
25,27,36]. Examples of such concepts may be found in applications with data
referring for example to time (e.g., operators such as “next”, “at time”, “during

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 329–345, 2021.
https://doi.org/10.1007/978-3-030-75775-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_22&domain=pdf
http://orcid.org/0000-0002-3825-4052
http://orcid.org/0000-0003-4289-7197
http://orcid.org/0000-0003-1826-1498
http://orcid.org/0000-0001-6786-7360
https://doi.org/10.1007/978-3-030-75775-5_22

330 J. Heyninck et al.

interval T”) or space (e.g., “at place P”, “within a given radius”, “connected
to”), but also legal reasoning (e.g., “is obliged to”, “is permitted”).

Example 1. In a COVID-19-inspired setting, we consider an app for contact-
tracing. It tracks where people move and stores their networks of persons, i.e.,
their colleagues and family whom they meet regularly. Once a person tests posi-
tive, the app informs anyone at risk (e.g. someone who was in the proximity of an
infected person for a longer amount of time or because someone in their network
is at risk) that they have to stay in quarantine for 10 days. If a negative test
result can be given, this quarantine is not obligatory anymore. It is important
that the app can explain to persons being orderd in quarantine the reason for
their being at risk (e.g. since they were in contact with an infected person for a
longer amount of time) while preserving anonymity to abide with laws of data
protection (e.g. someone being ordered into quarantine should not be able to see
who is the reason for this).

In this context, efficient reasoning with non-monotonic rules over intensional
concepts is indeed mandatory, since a) rules allow us to encode monitoring and
intervention guidelines and policies in a user-friendly and declarative manner; b)
conclusions may have to be revised in the presence of newly arriving information;
c) different intensional concepts need to be incorporated in the reasoning process;
d) timely decisions are required, even in the presence of large amounts of data, as
in streams; e) intensional concepts can preserve anonymity, e.g. in user-friendly
explanations without having to change the rules. However, relevant existing work
usually deals with only one kind of intensional concepts (as detailed before),
and, in general, the computational complexity of the proposed formalisms is too
high, usually due to both the adopted underlying formalism and the unrestricted
reasoning with expressive intensional concepts.

In this paper, we introduce a formalism that allows us to seamlessly repre-
sent and reason with defeasible knowledge over different intensional concepts. We
build on so-called intensional logic programs [34], extended with non-monotonic
default negation, and equip them with a novel three-valued semantics with favor-
able properties. In particular, we define a well-founded model in the line of the
well-founded semantics for logic programs [22]. Provided the adopted intensional
operators satisfy certain properties, which turn out to be aligned with practi-
cal applications such as the one outlined in Example 1, the well-founded model
is unique, minimal among the three-valued models, in the sense of only pro-
viding derivable consequences, and, crucially, its computation is tractable. Our
approach allows us to add to relevant related work in the sense of providing a
well-founded semantics to formalisms that did not have one so far, which we
illustrate on a relevant fragment of LARS programs [10].

We introduce intensional logic programs in Sect. 2, define our three-valued
semantics in Sect. 3, show how to compute the well-founded model in Sect. 4,
discuss the complexity and related work in Sects. 5 and 6, respectively, before
we conclude.

Tractable Reasoning Using Logic Programs with Intensional Concepts 331

2 Intensional Logic Programs

In this section, building on previous work by Orgun and Wadge [34], we introduce
intensional logic programs, a very expressive framework that allows us to reason
with intensional concepts, such as time, space, and obligations, in the presence
of large quantities of data, including streams of data. Intensional logic programs
are based on rules, as used in normal logic programs, enriched with atoms that
introduce the desired intensional concepts. The usage of default negation in the
rules is a distinctive feature compared to the original work [34] and particularly
well-suited to model non-monotonic and defeasible reasoning [23] and allows us
to capture many other forms of non-monotonic reasoning, see, e.g., [16,19]. To
assign meaning to intensional programs, we rely on the framework of neighbor-
hood semantics [35], a generalization of the Kripke semantics, that easily allows
us to capture a wide variety of intensional operators.

We start by defining the basic elements of our language. We consider a
function-free first-order signature Σ = 〈P,C〉, a set X of variables, and a set
of operation symbols O, such that the sets P (of predicates), C (of constants),
X and O are mutually disjoint. The set of atoms over Σ and X is defined in
the usual way. We say that an atom is ground if it does not contain variables,
and we denote by AΣ the set of all ground atoms over Σ. In what follows, and
without loss of generality, we leave the signature Σ implicit and consider only
the set of ground atoms over Σ, denoted by A.

The set O contains the symbols representing the various intensional operators
∇. Based on these, we introduce the set of intensional atoms IA

O .

Definition 1. Given a set of atoms A and a set of operation symbols O, the set
IA

O of intensional atoms over A and O is defined as IA
O = {∇p | p ∈ A and ∇ ∈

O}1, and the set of program atoms LA
O is defined as LA

O = A ∪ IA
O .

We can define intensional logic programs as sets of rules with default nega-
tion, denoted by ∼, over program atoms.

Definition 2. Given a set of atoms A and a set of operation symbols O, an
intensional logic program P over A and O is a finite set of rules r of the form:

A ← A1, . . . , An,∼ B1, . . . ,∼ Bm (1)

where A,A1, . . . , An, B1, . . . , Bm ∈ LA
O. We distinguish between the head of r,

A, and its body, A1, . . . , An,∼ B1, . . . ,∼ Bm.

We also call P simply a program when this does not cause confusion and positive
if it does not contain default negation. Intensional logic programs are highly
expressive as intensional operators can appear arbitrarily anywhere in the rules,
in particular in rule heads and in scope of default negation.
1 For simplicity, we restrict ourselves to non-nested (or equivalently in view of Defini-
tion 2, composed) intensional atoms. This does not result in any loss of generality,
since nested operators can straightforwardly be modelled as non-nested operators,
see Remark 1.

332 J. Heyninck et al.

Example 2. Let a set of agents A = {a, b, r} (for Anita, Bonnie and Ruth)
be given, a set of locations L = {α, β, γ, . . .} and a set of time points T =
{1, 2, . . . , }. We also assume that every agent has a network Ni ⊆ A which
represents the people the agent has regular close contact with (e.g. family, col-
leagues or partner). In our example, Na = {b}, Nb = {a} and Nr = ∅. We
furthermore assume a function ν : L → ℘(L) which assigns to each place �
the places in its vicinity ν(�). In our example, for simplicity’s sake, we just
assume that ν(α) = {β}. We define the following operators for our use-case as
O1 = {[i]�, [i], [i]t, [t, t′], 	i

t, �̂
i, 〈A〉�, 〈Ni〉 | i ∈ A, � ∈ L, t ∈ T} with the following

informal interpretations: [i]�φ says that φ is true for agent i at location �; [i]φ
says that φ is true for agent i; [i]tφ says that φ is true for agent i at time t;
[t, t′]φ means that φ is the case in the interval between t and t′; 	i

tφ means φ is
the case at or after time t for agent i; �̂iφ says that φ is true for an agent i in
the vicinity of �; 〈A〉t

�φ says that φ is true for some agent i ∈ A at location �;
and 〈Ni〉φ says that φ is true for some agent in i’s network.

We use the atoms risk, reside, inf, neg.test, quar, and spread, which
represent that someone is at risk of infection, is residing, is infected, has a nega-
tive test result, is imposed quarantine, and is a potential spreader, respectively.
We can now, for example, succinctly write the following program (for any i ∈ A,
� ∈ L and t ∈ T):

[i]�spread ← [i]inf, [i]�reside

[i]trisk ← [t, t + x]�̂ireside, [t, t + x]〈A〉�spread

[i]risk ← 〈Ni〉risk
[t, t + 10][i]quar ← [i]trisk,∼ 	i

tneg.test

These rules express that someone who is infected and resides at � is a potential
spreader at place �; if agent i is in the vicinity of a potential spreader for at least
x time units, i is at risk: if someone in agent i’s network is at risk, so is i; if
i is at risk at time t and does not have a negative test result after time t, i is
imposed quarantine for the time between t and t + 10.

In order to give semantics to intensional operators, we follow the ideas employed
by Orgun and Wadge [34] and consider the neighborhood semantics, a strict
generalization of Kripke-style semantics that allows capturing intensional oper-
ators [35] such as temporal, spatial, or deontic operators, even those that do
not satisfy the normality property imposed by Kripke frames [18]. We start by
recalling neighborhood frames.

Definition 3. Given a set of operation symbols O, a neighborhood frame (over
O) is a pair F = 〈W,N〉 where W is a non-empty set (of worlds) and N = {θ∇ |
∇ ∈ O} is a set of neighborhood functions θ∇ : W → ℘(℘(W)).2

2 Note that we often leave O implicit as N allows to uniquely determine all elements
from O. Also, to ease the presentation, we only consider unary intensional operators.
Others can then often be represented using rules (see also [34]).

Tractable Reasoning Using Logic Programs with Intensional Concepts 333

Thus, in comparison to Kripke frames, instead of a relation over W , neighbor-
hood frames have functions for each operator that map worlds to a set of sets
of worlds. These sets intuitively represent the atoms necessary (according to the
corresponding intensional operator) at that world.

Example 3. The operators from Example 2 are given semantics using a neigh-
borhood frame. We define worlds w ∈ W as triples (i, �, t) where i ∈ A, � ∈ L
and t ∈ T . These represent the space-time locations for an agent i.

The neighborhoods of O1 are defined, for t, t′, t� ∈ T , �, �′ ∈ L and i, i′ ∈ A:

– θ[i]�((i
′, �′, t)) = {W ′ ⊆ W | (i, �, t) ∈ W ′}.

– θ[i]t((i′, �, t′)) = {W ′ ⊆ W | (i, �, t) ∈ W ′}.
– θ[i]((i′, �, t)) = {W ′ ⊆ W | (i, �, t) ∈ W ′}.
– θ[t,t′]((i, �, t†)) = {W ′ ⊆ W | {(i, �, t�) | t� ∈ [t, t′]} ⊆ W ′}.
– θ�i

t
((i, �, t′)) = {W ′ ⊆ W | {(i, �, t�) | � ∈ L} ⊆ W ′ for some t� ≤ t}.

– θ�̂i((i′, �′, t)) = {W ′ ⊆ W | (i, ��, t) ∈ W ′ for some �� ∈ ν(�)}.
– θ〈A〉�

((i′, �′, t′)) = {W ′ ⊆ W | (i�, �, t) ∈ W ′ for some i� ∈ A}.
– θ〈Ni〉t

�
((i′, �′, t′)) = {W ′ ⊆ W | (i�, �, t) ∈ W ′ for some i� ∈ Ni}.

Intuitively, e.g., θ[i]�((i
′, �′, t)) consists of all the sets of worlds that include

the world (i, �, t) that shares a time component with the world (i′, �′, t), but has
� and i as spatial and agent components; θ[t,t′]i consists of all the sets of worlds
that include all worlds (i, �, t�) with some time component t� between or equal
to t and t′ (for every place � ∈ L); and a set of worlds is contained in θ〈A〉t

�
if it

contains at least one world with time component t and space component � and
some agent component i.

As the example above shows, neighborhood functions θ can be both invariant
under the input w or variate depending on w (e.g., θ〈A〉t,� and θ[t,t′]i are invariant,
while θ[i]� and θ[i]t variate depending on w). This is why the above definitions
of neighborhood functions that depend on w need to explicit the components of
the world w, i.e., (i, �, t).

3 Three-Valued Semantics

In this section, we define a three-valued semantics for intensional logic programs
as an extension of the well-founded semantics for logic programs [22] that incor-
porates reasoning over intensional concepts. The benefit of this approach over
the more commonly used two-valued models is that, although there are usu-
ally several such three-valued models, we can determine a unique minimal one
– intuitively the one which contains all the minimally necessary consequences
of a program – which can be efficiently computed. Recall that even for pro-
grams without intensional concepts, a unique two-valued minimal model does
not usually exist [24].

We consider three truth values, “true”, “false”, and “undefined”, where the
latter corresponds to neither true nor false. Given a neighborhood frame, we start
by defining interpretations that contain a valuation function which indicates in

334 J. Heyninck et al.

which worlds (of the frame) an atom from A is true (W�), and in which ones it
is true or undefined (Wu), i.e., not false3.

Definition 4. Given a set of atoms A and a frame F = 〈W,N〉, an inter-
pretation I over A and F is a tuple 〈W,N, V 〉 with a valuation function
V : A → ℘(W)×℘(W) s.t., for every p ∈ A, V (p) = (W�,Wu) with W� ⊆ Wu.
If, for every p ∈ A, W� = Wu, then we call I total.

The subset inclusion on the worlds ensures that no p ∈ A can be true and false
in some world simultaneously. This intuition of the meaning is made precise with
the denotation of program atoms for which we use the three truth values. We
denote the truth values true, undefined and false with , u, and ⊥, respectively,
and we assume that the language LA

O contains a special atom u (associated to
u).

Definition 5. Given a set of atoms A, a frame F, and an interpretation I =
〈W,N, V 〉, we define the denotation of A ∈ LA

O in I:

– ‖p‖†
I = W † if A = p ∈ A, with V (p) = (W�,Wu) and † ∈ {, u};

– ‖u‖u = W and ‖u‖� = ∅, if A = u;
– ‖∇p‖†

I = {w ∈ W | ‖p‖†
I ∈ θ∇(w)} if A = ∇p ∈ IA

O and † ∈ {, u};
– ‖A‖⊥

I = W \ ‖A‖u
I for A ∈ LA

O.

For a formula A ∈ LA
O and an interpretation I, ‖A‖�

I is the set of worlds in
which A is true, ‖A‖u

I is the set of worlds in which A is not false, i.e., undefined
or true, and ‖A‖⊥

I is the set of worlds in which A is false. For atoms p ∈ A,
the denotation is straightforwardly derived from the interpretation I, i.e., from
the valuation function V , and for the special atom u it is defined as expected
(undefined in all worlds). For an intensional atom ∇p, w is in the denotation
‖∇p‖†

I of ∇p if the denotation of p (according to I) is a neighborhood of ∇ for
w, i.e. ‖p‖†

I ∈ θ∇(w).
We often leave the subscript I from ‖A‖†

I as well as the reference to A and
F for interpretations and programs implicit.

Example 4. Consider I1 = 〈W1,O1, V 〉 with the set of worlds W1 and the neigh-
borhoods as in Example 3 where:

V (reside) = ({(a, α, 1)}, {(a, α, 1)})
Then the following are examples of denotations of intensional atoms:

‖[a]αreside‖�
I1

= {(i, �, 1) | i ∈ A, � ∈ L}
‖β̂areside‖�

I1
= {(i, �, 1), (i, �, 2) | i ∈ A, � ∈ L}

We explain the first denotation ‖[a]αreside‖�
I1

as follows: since reside is true
for agent a at α and time 1, [a]αreside is true at every world with time stamp
1. More formally, this can be seen since the set of worlds in which reside is true
is a neighborhood θ[a]α .

3 We follow the usual notation in modal logic and interpretations explicitly include
the corresponding frame.

Tractable Reasoning Using Logic Programs with Intensional Concepts 335

Based on the denotation, we can now define our model notion, which is
inspired by partial stable models [38], which come with two favorable properties,
minimality and support. The former captures the idea of minimal assumption,
the latter provides traceable inferences from rules. We adapt this notion here by
defining a reduct that, given an interpretation, transforms programs into positive
ones, for which a satisfaction relation and a minimal model notion are defined.

Remark 1. Operators can be straightforwardly combined within our framework.
Indeed, given two operators ∇1 and ∇2, the nesting of them, ∇1∇2, can be
seen as an operator ∇1 ⊕ ∇2, where the neighborhood θ∇2⊕∇1(w) is defined as
follows. First we define θ−1

∇ : W → W as θ−1
∇ (W ′) = {w′ ∈ W | W ′ ∈ θ∇(w′)}.

Intuitively, this is the set of worlds w′ for which W ′ is a ∇-neighborhood of
w′, i.e. w′ ∈ θ−1

∇ (W ′) iff W ′ ∈ θ∇(w′). We then define the neighborhood of the
composition of ∇1 and ∇2 as:

θ∇2⊕∇1(w) = {W ′ ⊆ W | θ−1
∇1

(W ′) ∈ θ∇2(w)}

It is not hard to see that for any φ ∈ A, w ∈ ‖∇2 ⊕ ∇1φ‖† iff ‖∇1φ‖† ∈ θ∇2(w)
(for any † ∈ , u}). In other words, ∇2 ⊕ ∇1φ is true at w iff the worlds at
which ∇1φ is true is a neighborhood of ∇2, as expected from a sound definition
of nested operators.

Example 5. As an example of the neighborhood of a nesting of operators, con-
sider [t, t + x]�̂i as it occurs in the second rule of Example 2. Since θ−1

�̂i
(W ′) =

{(i′, �′, t) | t ∈ T for which (i, l�, t) ∈ W ′ for some l� ∈ ν(l), �′ ∈ L, i′ ∈ A}, one
can observe:

θ[t,t+x]�̂i(w) = {W ′ ⊆ W1 | ∀t� ∈ [t, t + x] ∃l� ∈ ν(l) s.t. (i, l�, t�) ∈ W ′}

In other words, a formula [t, t + x]�̂iφ is true at (at world w) iff φ is true for
agent i at some place l� in the vicinity of l for every time point t� within the
inteval [t, t + x].

We first adapt two orders for interpretations, the truth ordering, �, and
the knowledge ordering, �k. The former prefers higher truth values in the order
⊥ < u < , the latter more knowledge (i.e., less undefined knowledge). Formally,
for interpretations I and I ′, and every p ∈ A: I � I ′ iff ‖p‖†

I ⊆ ‖p‖†
I′ for every

† ∈ {, u}; I �k I ′ iff ‖p‖�
I ⊆ ‖p‖�

I′ and ‖p‖⊥
I ⊆ ‖p‖⊥

I′ . We write I ≺ I ′ if I � I ′

and I ′ �� I for �∈ {�,�k}.
We now generalize the notion of reduct to programs with intensional atoms.

Definition 6. Let A be set of atoms, and F = 〈W,N〉 a frame. P/Iw, the reduct
of a program P at w ∈ W w.r.t. an interpretation I, contains for each r ∈ P of
the form (1):

– A ← A1, . . . , An if w �∈ ⋃
i≤m ‖Bi‖u

– A ← A1, . . . , An, u if w ∈ ⋃
i≤m ‖Bi‖u \ ⋃

i≤m ‖Bi‖�

336 J. Heyninck et al.

Intuitively, for each rule r of P, the reduct P/Iw contains either (a) a rule of the
first form, if all negated program atoms in the body of r are false at w (or the
body does not have negated atoms), or (b) a rule of the second form, if none of
the negated program atoms in the body of r are true at w, but some of these
are undefined at w, or (c) none, otherwise. This also explains why the reduct
is defined at w: truth and undefinedness vary for different worlds. The special
atom u is applied to ensure that rules for the second case cannot impose the
truth of the head in the notion of satisfaction for positive programs.

As reducts are positive programs, we can define a notion of satisfaction as
follows.

Definition 7. Let A be a set of atoms, and F = 〈W,N〉 a frame. An interpre-
tation I satisfies a positive program P at w ∈ W iff for each r ∈ P of the form
(1), we have that w ∈ ⋂

i≤n ‖Ai‖† implies w ∈ ‖A‖† (for any † ∈ {, u})4.
Stable models can now be defined by imposing minimality w.r.t. the truth

ordering on the corresponding reduct.

Definition 8. Let A be set of atoms, and F = 〈W,N〉 a frame. An interpretation
I is a stable model of a program P if:

– for every w ∈ W , I satisfies P/Iw at w, and
– there is no interpretation I ′ s.t. I ′ � I and, for each w ∈ W , I ′ satisfies

P/Iw at w.

Example 6. We consider the following program on the basis of P from Exam-
ple 2, zooming in on the part restricted to considerations pertaining to the
network of an agent (rules 3 and 4 of that example) and adding the information
that Anita was at risk at place α on time 1. This results in the following program
P ′:

[i]risk ← 〈Ni〉risk [t, t + 10]iquar ← [i]trisk,∼ 	i
tneg.test [a]1arisk ←

Consider F = 〈W1,O1〉 as in Example 3 and the total interpretation I1
defined by:

‖risk‖�
I1 = {(a, α, 1), (b, α, 1)} ‖quar‖�

I1 = {(i, α, t), | t ≤ 10, i ∈ {a, b}}
‖neg.test‖�

I1 = ∅

We see that, for any w ∈ W1, P ′/(I1)w consists of the following rules:

[i]risk ← 〈Ni〉risk [t, t + 10]iquar ← [i]trisk [a]t�risk ←

It can be checked that I1 satisfies minimality and is therefore a stable model of
P.
4 Since the intersection of an empty sequence of subsets of a set is the entire set, then,
for n=0, i.e., when the body of the rule is empty, the satisfaction condition is just
w ∈ ‖A‖† for any † ∈ {�, u}.

Tractable Reasoning Using Logic Programs with Intensional Concepts 337

Consider now the following total interpretation I2 defined by:

‖risk‖�
I2 = {(a, α, 1)} ‖quar‖�

I2 = ∅ ‖neg.test‖�
I2 = ∅

We see that for any w ∈ W1, P ′/(I2)w = P ′/(I1)w. Notice that I1 is not a
stable model of P, since for (a, α, 1) ∈ ‖〈Nb〉risk‖�

I1
yet (a, α, 1) �∈ ‖[b]risk‖�

I1
,

since (b, α, 1) �∈ ‖risk‖�
I1

.

We can show that our model notion is faithful w.r.t. partial stable models
of normal logic programs [38], i.e., if we consider a program without intensional
atoms, then its semantics corresponds to that of partial stable models.

Proposition 1. Let A be set of atoms, F a frame, and P a program with no
intensional atoms. Then, there is a one-to-one correspondence between the stable
models of P and the partial stable models of the normal logic program P.

While partial stable models are indeed truth-minimal, this turns out not to
be the case for intensional programs due to non-monotonic intensional operators.

Example 7. Consider the operator |j, k|a representing that an atom is true dur-
ing all time points in [j, k] for agent a, and not in any interval properly con-
taining [j, k]. This operator has the following neighborhood (given W1 from
Example 3): θ|j,k|a((i, �, t)) = {W ′ ⊆ W1 | {(a, �, j), (a, �, j + 1), . . . , (a, �, k)} ⊆
W ′ and (a, �, j − 1), (a, �, k + 1) �∈ W ′}. Consider the following program P:

[a]1resides ← [a]2resides ← [a]3resides ←∼ |1, 2|aresides

For simplicity we restrict ourselves to Wα
1 = {(i, α, t) | i ∈ A, t ∈

T}. Then this program has two stable models, and one of them is not
minimal. Namely, these interpretations are stable: I1 with ‖resides‖�

I1
=

‖resides‖uI1 = {(a, α, 1), (a, α, 2)} and I2 with ‖resides‖�
I2

= ‖resides‖uI2 =
{(a, α, 1), (a, α, 2), (a, α, 3)}. To see that I2 is stable, observe first that since
{(a, α, 1), (a, α, 2), (a, α, 3)} �∈ θ|1,2|a(w) for any w ∈ W1, ‖|1, 2|aresides‖�

I2
= ∅,

which means that P/I2 = {[a]1resides ←; [a]2resides ←; [a]3resides ←}.
Clearly, I2 is the �-minimal interpretation that satisfies P/I2. However, I1 � I2
and thus, I2 is not a truth-minimal stable model.

To counter that, we consider monotonic operators. Formally, given a set of
atoms A and a frame F, an intensional operator ∇ is said to be monotonic
in F if, for any two interpretations I and I ′ such that I � I ′, we have that
‖∇p‖†

I ⊆ ‖∇p‖†
I′ for every p ∈ A and † ∈ {, u}.

If all intensional operators in a frame are monotonic, then truth-minimality
of stable models is guaranteed.

Proposition 2. Let A be set of atoms, and F a frame in which all intensional
operators are monotonic. If I is a stable model of P, then there is no stable
model I ′ of P such that I ′ � I.

338 J. Heyninck et al.

Regarding support, recall that the stable models semantics of normal logic
programs satisfies the support property, in the sense that for every atom of a
stable model there is a rule that justifies it. In other words, if we remove an atom
p from a stable model some rule becomes false in the resulting model. Such rule
can be seen as a justification for p being true at the stable model. In the case
of intensional logic programs we say that an interpretation I = 〈W,N, V 〉 is
supported for a program P if, for every p ∈ A and w ∈ W , if w ∈ ‖p‖�, then
there is a rule r ∈ P/Iw that is not satisfied by I ′ at w, where I ′ = 〈W,N, V ′〉
is such that V ′(q) = V (q) for q �= p, and V ′(p) = 〈W� \ {w},Wu〉 where
V (p) = 〈W�,Wu〉.

This notion of supportedness is desirable for intensional logic programs since
we also want a justification why each atom is true at each world in a stable
model. The following results show that this is indeed the case.

Proposition 3. Let A be set of atoms, and F a frame. Then, every stable model
of a program P is supported.

Yet, existence and uniqueness of stable models of a program are not guaran-
teed, not even for positive programs under the restriction of all operators being
monotonic.

Example 8. Let O = {⊕}, A = {p} and F = 〈{1, 2}, {θ⊕}〉 where θ⊕(1) =
θ⊕(2) = {{1}, {2}}. Let P = {⊕p ←}. This program has two stable models: I1
with V1(p) = ({1}, {1}) and I2 with V2(p) = ({2}, {2}).

The existence of two stable models of the above positive program is caused
by the non-determinism introduced by the intensional operator in the head of
the rule. Formally, an operator θ of a frame F = 〈W,N〉 is deterministic if⋂

θ(w) ∈ θ(w) for every w ∈ W . A program P is deterministic in the head if,
for every rule r ∈ P of the form (1), if A = ∇p, then θ∇ is deterministic.

We can show that every positive program that is deterministic in the head
and only considers monotonic operators has a single minimal model.

Proposition 4. Given a set of atoms A and a frame F, if P is a positive pro-
gram that is deterministic in the head and every ∇ ∈ O is monotonic in F, then
it has a unique stable model.

Due to this result, in what follows, we focus on monotonic operators and
programs that are deterministic in the head, as this is important for several of
the results we obtain subsequently.

Remark 2. This does not mean that non-montonic intensional operators cannot
be used in our framework. In fact, we can take advantage of the default negation
operator ∼ to define non-monotonic formulas on the basis of monotonic operators
and default negation. E.g., consider again the operator |j, k| from Example 7.
We can use the following rule to define |j, k|p for some atom p ∈ A: |j, k|αap ←
[j, k]�[i]p,∼ [a]αj−1p,∼ [a]αk+1p.

Among the stable models of a program, we can distinguish the well-founded
models as those that are minimal in terms of the knowledge order.

Tractable Reasoning Using Logic Programs with Intensional Concepts 339

Definition 9. Given a set of atoms A and a frame F, an interpretation I =
〈W,N, V 〉 is a well-founded model of a program P if it is a stable model of P,
and, for every stable model I ′ of P, it holds that I �k I ′.

Example 9 (Example 6 continued). Since I2 is in fact the unique stable model,
it is therefore the well-founded model.

Given our assumptions about monotonicity and determinism in the head, we
can show that the well-founded model of an intensional program exists and is
unique.

Theorem 1. Given a set of atoms A, and a frame F, every program P has a
unique well-founded model.

This is an important result as a unique model can be computed rather than
guessed and checked.

4 Alternating Fixpoint

In this section, we show how the well-founded model can be efficiently com-
puted. Essentially, we extend the idea of the alternating fixpoint developed for
logic programs [21], that builds on computing, in an alternating manner, under-
estimates of what is necessarily true, and overestimates of what is not false, with
the mechanisms to handle intensional inferences.5

First, since different pieces of knowledge are inferable in different worlds, we
need a way to distinguish between these. Therefore, we introduce labels referring
to worlds and apply them to formulas of a given language as well as programs,
resulting in formulas w : A and program rules w : r constituting a labelled
language LW and a labelled program PW , respectively.

Secondly, three operators are defined to ensure that information is extracted
correctly from rules and intensional atoms:

– the immediate consequence operator TPW
: ℘(LW) → ℘(LW) which allows to

derive labelled programs atoms occuring in the head of rules in the labelled
program PW if the atoms in the body of the rule are in the set we apply the
operator to.

– the intensional extraction operator IEPW
(Δ) which allows, for a labelled

intensional atom w : ∇A, to derive the labelled atoms w′ : A for w′ ∈⋂
θ∇(w′) that are required to guarantee the truth of w : ∇A.

– the intensional consequence operator IC∇(Δ) which maps labelled atoms to
intensional atoms that are implied by the former, i.e. it maps w1 : A, . . . , wn :
A to w : ∇A if {w1, . . . , wn} ∈ θ∇(w).

5 Due to space restrictions, we are not able to provide full details and examples of this
procedure.

340 J. Heyninck et al.

These three operators allow us to define a closure operator for a a labelled
positive program PW as the least fixpoint of:

⋃

∇∈O
IC∇

(
⋃

∇∈OP
IE∇(TPW

)

)

.

Based on this closure operator, the alternating fixpoint procedure can now be
defined in the usual way as: Given a frame F = 〈W,N〉 and a program P, we
define:

P 0 = ∅ P i+1 = Cn(PW /N i) Pω =
⋃

i P i

N0 = LW N i+1 = Cn(PW /P i) Nω =
⋂

i N i

Given a frame F, for which any ∇ ∈ O is monotonic in F, the alternating
fixpoint construction defined above offers a characterization of the well-founded
model for programs that are deterministic in the head. In more detail, given a
pair 〈Δ,Θ〉 of sets of LW -formulas, we define a partial interpretation I(〈Δ,Θ〉) =
(W,N, V) on the basis of Δ as follows: for every A ∈ A, V (A) = ({w ∈ W | w :
A ∈ Δ}, {w ∈ W | w : A ∈ Θ}). We can then show this correspondence.

Theorem 2. Given a frame F = 〈W,N〉, and a program P s.t. every ∇ ∈ O
is monotonic in F and P is deterministic in the head, then I(〈Pω, Nω〉) is the
well-founded model of P.

Note that this procedure can be explored for providing explanations for infer-
ences. It is possible to determine the least i such that a labelled program atom
is true in P i. This then allows us to determine justifications building on the
construction of the involved operators. We leave exploring this line of research
as future work.

5 Computational Complexity

In this section, we study the computational complexity of several of the prob-
lems considered. We recall that the problem of satisfiability under neighborhood
semantics has been studied for a variety of epistemic structures [40]. Here, we
consider the problem of determining models for the two notions we established,
stable models and the well-founded model, focussing on the propositional case,6

and we assume familiarity with standard complexity concepts, including oracles
and the polynomial hierarchy.

We first provide a result in the spirit of model-checking for programs P. As we
do not impose any semantic properties on the neighborhood frames, determining

6 Corresponding results for the data complexity of this problem for programs with
variables can then be achieved in the usual way [20].

Tractable Reasoning Using Logic Programs with Intensional Concepts 341

a model for a frame that can be arbitrarily chosen is not meaningful. Thus, we
assume a fixed frame F, fixing the worlds and the semantics of the intensional
operators.7

Proposition 5. Given a program P and an interpretation I, deciding whether
I is a stable model of P is in coNP, and in P if all operators occurring in P are
monotonic.

This result is due to the minimization of stable models, i.e., we need to check
for satisfaction and verify that there is no other interpretation which is smaller
(see Definition 8). This also impacts on the complexity of finding a stable model
given a fixed frame.

Theorem 3. Given a program P, deciding whether there is a stable model of P
is in ΣP

2 , and in NP if all operators occurring in P are monotonic.

Thus, if all operators are monotonic the complexity results do coincide with
that of normal logic programs (without intensional atoms) [20], which indicates
that monotonic operators do not add an additional burden in terms of compu-
tational complexity.

Now, if we in addition consider programs that are deterministic in the head,
then we know that there exists the unique well-founded model (see Theorem 1).
As we have shown, this model can be computed efficiently (see Theorem 2), and
we obtain the following result in terms of computational complexity.

Theorem 4. Given a program P that is deterministic in the head and all oper-
ators occurring in P are monotonic, computing the well-founded model of P is
P-complete.

Note that this result is indeed crucial in contexts were reasoning with a variety
of intensional concepts needs to be highly efficient.

6 Related Work

In this section, we discuss related work establishing relations to relevant for-
malisms in the literature.

Intensional logic programs were first defined by Orgun and Wadge [34]
focussing on the existence of models in function of the properties of the inten-
sional operators. Only positive programs are considered, and thus our approach
covers the previous work. Since [34] covers classical approaches for intensional
reasoning, such as TempLog [1] and MoLog [17], our work applies to these as
well.

It also relates to more recent work with intensional operators, and we first
discuss two prominent approaches in the area of stream reasoning.
7 This also aligns well with related work, e.g., for reasoning with time, such as stream
reasoning where a finite timeline is often assumed, and avoids the exponential explo-
sion on the number of worlds for satisfiability for some epistemic structures [40].

342 J. Heyninck et al.

LARS [10] assumes a set of atoms A and a stream S = (T, v), where T is
a closed interval of the natural numbers and v is an evaluation function that
defines which atoms are true at each time point of T . Several temporal oper-
ators are defined, including expressive window operators, and answer streams,
a generalization of FLP-semantics, are employed for reasoning. A number of
related approaches are covered including CQL [6], C-SPARQL [8], and CQELS
[37]. Among the implementations exists LASER [9], which focuses on a consider-
able fragment, called plain LARS. We can represent a plain LARS program and
have shown (in the appendix) that there is a one-to-one correspondence between
answer streams of the program and the total stable models of the corresponding
intensional logic program. In addition, we can apply our well-founded seman-
tics, since the operators applied in plain LARS are monotonic and determinis-
tic. Hence, our work also provides a well-founded semantics for plain LARS, i.e.,
we allow the usage of unrestricted default negation while preserving polynomial
reasoning.

ETALIS [5] aims at complex event processing. It assumes as input atomic
events with a time stamp and uses complex events, based on Allen’s interval
algebra [4], that are associated with a time interval, and is therefore considerably
different from LARS (which considers time points). It contains no negation in the
traditional sense, but allows for a negated pattern among the events. Many of the
complex event patterns from ETALIS can be captured as neighborhood functions
in our framework. However, ETALIS also makes use of some event patterns
that would result in a non-monotonic operator, such as the negated pattern
not(p)[q, r] which expresses that p is not the case in the interval between the
end time of q and the starting time of r. We conjecture that such a negation can
be modelled with help of the non-monotonic default negation ∼ and monotonic
operators (see also Remark 2).

Other formalisms that extend logic programming with intensional operators
include Deontic Logic Programs [25], Answer Set Programming Modulo Theories
extended to the Qualitative Spatial Domain [42] and Metric Temporal Answer
Set Programming [15]. In future work, we plan to study instantiations of our
general framework that represent (fragments) of these languages.

7 Conclusions

We have presented intensional logic programs that allow defeasible reasoning
with intensional concepts and streams of data, and introduced a novel three-
valued semantics based on the neighborhood semantics [35] and partial stable
models [38]. We have studied the characteristics of our semantics for monotonic
intensional operators and programs that only admit deterministic operators in
the heads of the rules, and shown that a unique minimal model, the well-founded
model, exists and can be computed in polynomial time. Still, several relevant
approaches in the literature can be covered, and for one of them our work also
provides a well-founded semantics for the first time.

Tractable Reasoning Using Logic Programs with Intensional Concepts 343

In terms of future work, several generalizations are possible, for example,
allowing for first-order formulas in the programs and non-deterministic inten-
sional operators. We can possibly resort to techniques from well-founded seman-
tics for disjunctive logic programs [32] to resolve the non-determinism that occurs
when studying the latter. Finally, the integration with taxonomic knowledge in
the form of description logic ontologies [7] may also be worth pursuing as applica-
tions sometimes require both (see e.g. [2,3,29]). Hybrid MKNF knowledge bases
[33] are a more prominent approach among the existing approaches for combin-
ing non-monotonic rules and such ontologies, and the well-founded semantics for
these [31] together with its efficient implementation [30] may prove fruitful for
such an endeavour.

Acknowledgements. The authors are indebted to the anonymous reviewers of
this paper for helpful feedback. The authors were partially supported by FCT
project RIVER (PTDC/CCI-COM/30952/2017) and by FCT project NOVA LINCS
(UIDB/04516/2020). J. Heyninck was also supported by the German National Science
Foundation under the DFG-project CAR (Conditional Argumentative Reasoning) KE-
1413/11-1.

References

1. Abadi, M., Manna, Z.: Temporal logic programming. J. Symb. Comput. 8(3), 277–
295 (1989)

2. Alberti, M., Gomes, A.S., Gonçalves, R., Leite, J., Slota, M.: Normative systems
represented as hybrid knowledge bases. In: Leite, J., Torroni, P., Ågotnes, T.,
Boella, G., van der Torre, L. (eds.) CLIMA 2011. LNCS (LNAI), vol. 6814, pp.
330–346. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22359-
4 23

3. Alberti, M., Knorr, M., Gomes, A.S., Leite, J., Gonçalves, R., Slota, M.: Normative
systems require hybrid knowledge bases. In: AAMAS. IFAAMAS, pp. 1425–1426
(2012)

4. Allen, J.F.: Maintaining knowledge about temporal intervals. In: Readings in Qual-
itative Reasoning About Physical Systems, pp. 361–372. Elsevier, Amsterdam
(1990)

5. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex
event processing in ETALIS. Semant. Web 3(4), 397–407 (2012)

6. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121–142 (2006)

7. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

8. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: a
continuous query language for RDF data streams. Int. J. Semant. Comput. 4(1),
3–25 (2010)

9. Bazoobandi, H.R., Beck, H., Urbani, J.: Expressive stream reasoning with laser.
In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 87–103. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68288-4 6

https://doi.org/10.1007/978-3-642-22359-4_23
https://doi.org/10.1007/978-3-642-22359-4_23
https://doi.org/10.1007/978-3-319-68288-4_6

344 J. Heyninck et al.

10. Beck, H., Dao-Tran, M., Eiter, T.: LARS: a logic-based framework for analytic
reasoning over streams. Artif. Intell. 261, 16–70 (2018)

11. Beirlaen, M., Heyninck, J., Straßer, C.: Structured argumentation with prioritized
conditional obligations and permissions. J. Logic Comput. 29(2), 187–214 (2019)

12. Brandt, S., Kalayci, E.G., Ryzhikov, V., Xiao, G., Zakharyaschev, M.: Querying
log data with metric temporal logic. J. Artif. Intell. Res. 62, 829–877 (2018)

13. Brenton, C., Faber, W., Batsakis, S.: Answer set programming for qualitative
spatio-temporal reasoning: Methods and experiments. In: Technical Communica-
tions of ICLP. OASICS, vol. 52, pp. 4:1–4:15. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2016)

14. Brewka, G., Ellmauthaler, S., Gonçalves, R., Knorr, M., Leite, J., Pührer, J.: Reac-
tive multi-context systems: Heterogeneous reasoning in dynamic environments.
Artif. Intell. 256, 68–104 (2018)

15. Cabalar, P., Dieguez, M., Schaub, T., Schuhmann, A.: Towards metric temporal
answer set programming. Theory Pract. Logic Program. 20(5), 783–798 (2020)

16. Caminada, M., Sá, S., Alcântara, J., Dvořák, W.: On the equivalence between logic
programming semantics and argumentation semantics. Int. J. Approx. Reasoning
58, 87–111 (2015)

17. del Cerro, L.F.: MOLOG: a system that extends PROLOG with modal logic. New
Gener. Comput. 4(1), 35–50 (1986). https://doi.org/10.1007/BF03037381

18. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

19. Chen, Y., Wan, H., Zhang, Y., Zhou, Y.: dl2asp: implementing default logic via
answer set programming. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS
(LNAI), vol. 6341, pp. 104–116. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15675-5 11

20. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

21. Gelder, A.V.: The alternating fixpoint of logic programs with negation. In: Pro-
ceedings of SIGACT-SIGMOD-SIGART, pp. 1–10. ACM Press (1989)

22. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

23. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation, Founda-
tions of Artificial Intelligence, vol. 3, pp. 285–316. Elsevier, Amsterdam (2008)

24. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3–4), 365–385 (1991). https://doi.org/10.1007/
BF03037169

25. Gonçalves, R., Alferes, J.J.: Specifying and reasoning about normative systems in
deontic logic programming. In: Proceedings of AAMAS. IFAAMAS, pp. 1423–1424
(2012)

26. Gonçalves, R., Knorr, M., Leite, J.: Evolving multi-context systems. In: ECAI.
Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 375–380. IOS
Press, Amsterdam (2014)

27. Governatori, G., Rotolo, A., Riveret, R.: A deontic argumentation framework
based on deontic defeasible logic. In: Miller, T., Oren, N., Sakurai, Y., Noda,
I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS (LNAI), vol.
11224, pp. 484–492. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03098-8 33

28. Izmirlioglu, Y., Erdem, E.: Qualitative reasoning about cardinal directions using
answer set programming. In: Proceedings of AAAI, pp. 1880–1887. AAAI Press
(2018)

https://doi.org/10.1007/BF03037381
https://doi.org/10.1007/978-3-642-15675-5_11
https://doi.org/10.1007/978-3-642-15675-5_11
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/978-3-030-03098-8_33
https://doi.org/10.1007/978-3-030-03098-8_33

Tractable Reasoning Using Logic Programs with Intensional Concepts 345

29. Kasalica, V., Gerochristos, I., Alferes, J.J., Gomes, A.S., Knorr, M., Leite, J.: Telco
network inventory validation with NoHR. In: Balduccini, M., Lierler, Y., Woltran,
S. (eds.) Logic Programming and Nonmonotonic Reasoning. LPNMR 2019. Lecture
Notes in Computer Science, vol. 11481, pp. 18–31. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-20528-7 2

30. Kasalica, V., Knorr, M., Leite, J., Lopes, C.: NoHR: An Overview. Künstl Intell,
Heidelberg (2020)

31. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description
logics under the well-founded semantics. Artif. Intell. 175(9–10), 1528–1554 (2011)

32. Knorr, M., Hitzler, P.: A comparison of disjunctive well-founded semantics. In:
FAInt. CEUR Workshop Proceedings, vol. 277 (2007). CEUR-WS.org

33. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5),
30:1–30:62 (2010)

34. Orgun, M.A., Wadge, W.W.: Towards a unified theory of intensional logic pro-
gramming. J. Logic Program. 13(4), 413–440 (1992)

35. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-67149-9

36. Panagiotidi, S., Nieves, J.C., Vázquez-Salceda, J.: A framework to model norm
dynamics in answer set programming. In: MALLOW (2009)

37. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. In:
Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25073-6 24

38. Przymusinski, T.C.: Stable semantics for disjunctive programs. New Gener. Com-
put. 9(3/4), 401–424 (1991). https://doi.org/10.1007/BF03037171

39. Suchan, J., Bhatt, M., Walega, P.A., Schultz, C.P.L.: Visual explanation by
high-level abduction: on answer-set programming driven reasoning about moving
objects. In: Proceedings of AAAI, pp. 1965–1972. AAAI Press (2018)

40. Vardi, M.Y.: On the complexity of epistemic reasoning. In: Proceedings of LICS.
pp. 243–252. IEEE Computer Society (1989)

41. Walega, P.A., Kaminski, M., Grau, B.C.: Reasoning over streaming data in metric
temporal datalog. In: Proceedings of AAAI, pp. 3092–3099. AAAI Press (2019)

42. Walega, P.A., Schultz, C.P.L., Bhatt, M.: Non-monotonic spatial reasoning with
answer set programming modulo theories. TPLP 17(2), 205–225 (2017)

https://doi.org/10.1007/978-3-030-20528-7_2
https://doi.org/10.1007/978-3-030-20528-7_2
http://www.CEUR-WS.org
https://doi.org/10.1007/978-3-319-67149-9
https://doi.org/10.1007/978-3-642-25073-6_24
https://doi.org/10.1007/BF03037171

Estimating Grounding Sizes of Logic
Programs Under Answer Set Semantics

Nicholas Hippen(B) and Yuliya Lierler

University of Nebraska at Omaha, Omaha, NE 68182, USA
{nhippen,ylierler}@unomaha.edu

Abstract. Answer set programming (ASP) is a declarative logic pro-
gramming paradigm geared towards solving difficult combinatorial search
problems. While different logic programs can encode the same problem,
their performance may vary significantly. It is not always easy to identify
which version of the program performs the best. We present a system
predictor (and its algorithmic backend) for estimating the grounding
size of programs, a metric that can influence a program’s performance.
We evaluate an impact of predictor when used as a guide for rewritings
produced by the ASP rewriting tool projector. The results demon-
strate potential to this approach.

Keywords: Answer set programming · Language optimization

1 Introduction

Answer set programming (ASP) [3] is a declarative (constraint) programming
paradigm geared towards solving difficult combinatorial search problems. ASP
programs model problem specifications/constraints as a set of logic rules. These
logic rules define a problem instance to be solved. An ASP system is then used
to compute solutions (answer sets) to the program. ASP has been successfully
used in scientific and industrial applications.

Intuitive ASP encodings are not always the most optimal/performant mak-
ing this programming paradigm less attractive to novice users as their first
attempts to problem solving may not scale. ASP programs often require careful
design and expert knowledge in order to achieve performant results [13]. Figure 1
depicts a typical ASP system architecture. The first step performed by systems
called grounders transforms a non-ground logic program (with variables) into
a ground/propositional program (without variables). Expert ASP programmers
often modify their ASP solution targeting the reduction of grounding size of a
resulting program. Size of a ground program has been shown to be a predictive
factor of a program’s performance, enabling it to be used as an “optimization
metric” [13]. Intelligent grounding techniques [10] utilized by grounders such as
gringo [14] or idlv [5] also keep such a reduction in mind. Intelligent grounding
procedures analyze a given program to produce a smaller propositional program

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 346–361, 2021.
https://doi.org/10.1007/978-3-030-75775-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_23&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_23

Estimating Grounding Sizes of Logic Programs Under Answer Set Semantics 347

Grounded
Program

Logic
Program Grounder Answer

SetsASP Solver

Fig. 1. Typical ASP system architecture

Grounded
Program

Rewritten
Logic

Program
GrounderLogic

Program PROJECTOR Answer
SetsASP Solver

PREDICTOR

Rule
Rewriting
Predictions

Fig. 2. An ASP system with projector and predictor

without altering the solutions. In addition, researchers looked into automatic
program rewriting procedures. Systems such as simplify [8,9], lpopt [1,2],
projector [15] rewrite non-ground programs targeting the reduction of the
grounding size. These systems are meant to be prepossessing tools agnostic to
the later choice of ASP solving technology.

Tools such as simplify, lpopt, and projector, despite illustrating promis-
ing results, often hinder their objective. Sometimes, the original set of rules is
better than the rewritten set, when their size of grounding is taken as a metric.
Research has been performed to mitigate the negative impact of these rewrit-
ings. Mastria et al. [18] demonstrated a novel approach to guiding automatic
rewriting techniques performed in idlv using machine learning with a set of fea-
tures built from structural properties and domain information. Calimeri et al. [7]
illustrated truly successful application of a program rewriting technique stem-
ming from lpopt by incorporating its procedure inside the intelligent grounding
algorithm of grounder idlv. It was achieved by making a decision on whether
to apply an lpopt rewriting based on the current state of grounding. idlv
accurately estimated the impact of rewriting on grounding and based on this
information decided whether to perform a rewriting. This synergy of intelligent
grounding and a rewriting technique demonstrates the best performant results.
Yet, it makes the transfer of rewriting techniques laborious assuming the need of
tight integration of any rewriting within a grounder of choice. Here we propose an
algorithm for estimating the size of grounding a program based on (i) mimicking
an intelligent grounding procedure documented in [10] and (ii) techniques used in
query optimization in relational databases (see, for instance, Chapter 13 in [19]).
We then implement this algorithm in a system called predictor. This tool is
meant to be used as a decision support mechanism for ASP program rewriting
systems so that they perform a possible rewriting based on estimates produced
by predictor. This work culminates in the integration of tools predictor and

348 N. Hippen and Y. Lierler

projector depicted in Fig. 2. We illustrate the true success of this synergy by
extensive experimental analysis. It is important to note that predictor is a
stand alone tool and can be used as part of any ASP inspired technology where
its functionality is of interest.

We start by introducing the subject matter terminology. The key contribution
of the work lays in the development of formulas for estimating the grounding size of
a logic program based on its structural analysis and insights on intelligent ground-
ing procedures. First, we present the simplified version of these formulas for the
case of tight programs. We trust that this helps the reader to build intuitions for
the work. Second, the formulas for arbitrary programs are given. We then describe
the implementation details of system predictor. We conclude by experimental
evaluation that includes incorporation of predictor within system projector.

2 Preliminaries

An atom is an expression p(t1, ..., tk), where p is a predicate symbol of arity k ≥ 0
and t1, ..., tk are terms – either object constants or variables. As customary in
logic programming, variables are marked by an identifier starting with a capital
letter. We assume object constants to be numbers. This is an inessential restric-
tion as we can map strings to numbers using, for instance, the lexicographic
order. For an atom p(t1, ..., tk) and position i (1 ≤ i ≤ k), we define an argument
denoted by p[i]. By p(t1, ..., tk)0 and p(t1, ..., tk)i we refer to predicate symbol p
and the term ti, respectively. A rule is an expression of the form

a0 ← a1, ..., am, not am+1, ..., not an. (1)

where n ≥ m ≥ 0, a0 is either an atom or symbol ⊥, and a1, ..., an are atoms. We
refer to a0 as the head of the rule and an expression to the right hand side of an
arrow symbol in (1) as the body. An atom a and its negation not a is a literal. To
literals a1, ..., am in the body of rule (1) we refer as positive, whereas to literals
not am+1, ..., not an we refer as negative. For a rule r, by H(r) we denote the head
atom of r. By B

+(r) we denote the set of positive literals in the body of r. We
obtain the set of variables present in an atom a and a rule r by vars(a) and vars(r),
respectively. For a variable X occurring in rule r, by args(r,X) we denote set

{p[i] | a ∈ B
+(r), a0 = p, and ai = X}.

A rule r is safe if each variable in r appears in B
+(r). Let r be a safe rule

p(A) ← q(A,B), r(1, A), not s(B). (2)

Then vars(r) = {A,B}, args(r,A) = {q[1], r[2]}, and args(r,B) = {q[2]}. A
(logic) program is a finite set of safe rules. We call programs containing variables
non-ground.

For a program Π, oc(p[i]) denotes the set of all object constants occurring
within {H(r)i | r ∈ Π and H(r)0 = p}; whereas oc(Π) denotes the set of all
object constants occurring in the head atoms of the rules in Π. For instance,
consider a program, named Π1:

Estimating Grounding Sizes of Logic Programs Under Answer Set Semantics 349

p

q

r

s

p

q

r

s

{p} {r}

{q,s}

Fig. 3. Left: Graph GΠ2 ; Center: Graph GΠ3 ; Right: Graph Gsc
Π3

p(1). p(2). r(3). (3)
q(X, 1) ← p(X). (4)

Then, oc(p[1]) = {1, 2}, oc(q[1]) = ∅, oc(q[2]) = {1} and oc(Π1) = {1, 2, 3}.
The grounding of a program Π, denoted gr(Π), is a ground program obtained
by instantiating variables in Π with all object constants of the program. For
example, gr(Π1) consists of rules in (3) and rules

q(1, 1) ← p(1). q(2, 1) ← p(2). (5)
q(3, 1) ← p(3). (6)

Given a program Π, ASP grounders utilizing intelligent grounding are often
able to produce a program smaller than its grounding gr(Π), but that has the
same answer sets as gr(Π). For instance, a program obtained from gr(Π1) by
dropping rule (6) may be a result of intelligent grounding. The ground extensions
of a predicate within a grounded program Π are the set of terms associated with
the predicate in the program. For instance, in gr(Π1), the ground extensions of
predicate q is the set {〈1, 1〉, 〈2, 1〉, 〈3, 1〉} of tuples. For an argument p[i] and a
ground program Π, we call the number of distinct object constants occurring
in the ground extensions of p in Π at position i the argument size of p[i]. For
instance, for program gr(Π1) argument sizes of p[1], q[1], and q[2] are 3, 3, and
1, respectively.

The dependency graph of a program Π is a directed graph GΠ = 〈N,E〉 such
that N is the set of predicates appearing in Π and E contains the edge (p, q) if
there is a rule r in Π in which p occurs in B

+(r) and q occurs in the head of r. A
program Π is tight if GΠ is acyclic, otherwise the program is non-tight [11]. For
instance, consider program Π2 constructed from Π1 by extending it with rules:

r(2). r(4). (7)
s(X,Y,Z) ← r(X), p(X), p(Y), q(Y,Z). (8)

Program Π3 is the program Π2 extended with the rule:

q(Y,X) ← s(X,Y,Z). (9)

Figure 3 shows the dependency graphs GΠ2 (left) and GΠ3 (center). Program
Π2 is tight, while program Π3 is not.

350 N. Hippen and Y. Lierler

3 System predictor

The key contribution of this work is the development of system predictor (its
algorithmic and software base), whose goal is to provide estimates for the size
of an “intelligently” grounded program. predictor is based on the intelligent
grounding procedures implemented by grounder dlv[10]. The key difference is
that, instead of building the ground instances of each rule in the program, pre-
dictor constructs statistics about the predicates, their arguments, and rules of
the program. This section provides formulas we developed in order to produce
the estimates backing up the computed statistics. We conclude with details on
the implementation.

Argument Size Estimation. Tight program case: The estimation formulas are
based on predicting argument sizes. To understand these it is essential to talk
about an order in which we produce estimates for predicate symbols/arguments.
Given a program Π, we obtain such an ordering by performing a topological
sorting on its dependency graph. We associate each node in this ordering with
its position and call it a level rank of a predicate. For example, p, q, r, s is one
possible ordering for program Π2. This ordering associates level ranks 1, 2, 3, 4
with predicates p, q, r, s, respectively.

We now introduce some intermediate formulas for constraining our esti-
mates. These intermediate formulas are inspired by query optimization tech-
niques within relational databases, e.g. see Chapter 13 in [19]. These formulas
keep track of information that helps us to guess what the actual values may occur
in the grounded program without storing these values themselves. Let p[i] be an
argument. We track the range of values that may occur at this argument. To
provide intuitions for a process we introduce, consider an intelligent grounding
of Π2 consisting of rules (3), (5), (7), and rules

s(2, 1, 1) ← r(2), p(2), p(1), q(1, 1). (10)
s(2, 1, 1) ← r(2), p(2), p(2), q(2, 1). (11)

This intelligent grounding produces rules (10), (11) in place of rule (8). Vari-
able X from rule (8) is only ever replaced with object constant 2. Intuitively,
this is due to the intersection oc(p[1]) ∩ oc(r[1]) = {2}. We model such a restric-
tion by considering what minimum and maximum values are possible for each
argument in an intelligently grounded program (compliant with described prin-
ciple; all modern intelligent grounders respect such a restriction). We then use
these values to define an “upper restriction” of the argument size for each argu-
ment.

For a tight program Π, let p[i] be an argument in Π; R be set {r | r ∈
Π, H(r)0 = p, and H(r)i is a variable}. By ↓t-t

est (p[i]) we denote an estimate of
a minimum value that may appear in argument p[i] in Π:

↓t-t
est (p[i]) = min

(
oc(p[i])

∪ {max
(
{↓t-t

est (p′[i′]) | p′[i′] ∈ args(r,H(r)i)}
)

| r ∈ R})

Estimating Grounding Sizes of Logic Programs Under Answer Set Semantics 351

The function ↓t-t
est is total because the rank of the predicate occurring on the left

hand side of the definition above is strictly greater than the ranks of all of the
predicate symbols p′ on the right hand side, where rank is understood as a level
rank defined before (multiple level rankings are possible; any can be considered
here). By ↑t-t

est (p[i]) we denote an estimate of a maximum value that may appear
in argument p[i] in tight program Π. It is computed using formula for ↓t-t

est (p[i])
with min, max, and ↓t-t

est replaced by max, min, and ↑t-t
est, respectively.

Now that we have estimates for minimum and maximum values, we estimate
the size of the range of values. We understand the range of an argument to be
the number of values we anticipate to see in the argument within an intelli-
gently grounded program if the values were all integers between the minimum
and maximum estimates. It is possible that our minimum estimate for a given
argument is greater than its maximum estimate. Intuitively, this indicates that
no ground rule will contain this argument in its head. The number of values
between the minimum and maximum estimates may also be greater than the
number of object constants in a considered program. In this case, we restrict the
range to the number of object constants occurring in the program. We compute
the range, ranget-t

est(p[i]), as follows:

min
({max(

{
0, ↑t-t

est (p[i])− ↓t-t
est (p[i]) + 1

}
), |oc(Π)|})

Recall, program Π2. The operations required to compute the minimum esti-
mate for argument s[1] in Π2 follow:

↓t-t
est (r[1]) = min

(
oc(r[1])

)
= 2

↓t-t
est (p[1]) = min

(
oc(p[1])

)
= 1

↓t-t
est (s[1]) = min(oc(s[1])

∪ {max
({ ↓t-t

est (r[1]), ↓t-t
est (p[1])

})}) = min(∅ ∪ {2}) = 2

We compute ↑t-t
est (s[1]) to be 2. Then, ranget-t

est(s[1]) is

min({max
({

0, ↑t-t
est (s[1])− ↓t-t

est (s[1]) + 1
})

, |oc(Π2)|})

= min({max
({

0, 2 − 2 + 1
})

, 4}) = 1

We presented formulas for estimating the range of values in program’s arguments.
We now show how these estimates are used to assess the size of an argument
understood as the number of distinct values occurring in this argument upon an
intelligent grounding. We now outline intuitions behind a recursive process that
we capture in formulas. Let p[i] be an argument. If p[i] is such that predicate p
has no incoming edges in the program’s dependency graph, then we estimate the
size of p[i] as |oc(p[i])|. Otherwise, consider rule r such that H(r)0 = p and H(r)i

is a variable. Our goal is to estimate the number of values variable H(r)i may be
replaced with during intelligent grounding. To do so, we consider the argument
size estimates for arguments in the positive body of the rule that contain variable
H(r)i. Based on a typical intelligent grounding procedures, variable H(r)i may

352 N. Hippen and Y. Lierler

not take more values than the minimum of those argument size estimations.
This gives us a possible estimate of the argument size relative to a single rule r.
The argument size estimate of p[i] with respect to the entire program may be
then computed as the sum of such estimates for all rules such as r (recall that
rule r satisfies the requirements H(r)0 = p and H(r)i is a variable). Yet, the
sum over all rules may heavily overestimate the argument size. To milder the
effect of overestimation we incorporate range estimates discussed before into the
described computations.

For a tight program Π, let p[i] be an argument in Π; R be the set

{r | r ∈ Π, H(r)0 = p, and H(r)i is a variable}.

By St-t
est(p[i]) we denote an estimate of the argument size p[i] in tight program

Π. This estimate is computed as follows:

St-t
est(p[i]) = min

({
ranget-t

est(p[i]), |oc(p[i])|

+
∑

r∈R

min
({St-t

est(p
′[i′]) | p′[i′] ∈ args(r,H(r)i)})})

We can argue that the function St-t
est is total in the same way as we argued that

the function ↓t-t
est is total.

The following illustrates the computation of the argument size estimates for
argument s[2] in program Π2, given that ranget-t

est(s[2]) = 2 and oc(s[2]) = ∅:

St-t
est(p[1]) = |oc(p[1])| = 2

St-t
est(q[1]) = min(ranget-t

est(q[1]), {|oc(q[1])|
+ min

({St-t
est(p[1])})}) = min({2, 0 + min({2})}) = 2

St-t
est(s[2]) = min

(
ranget-t

est(s[2]),
{|oc(s[2])| + min

({St-t
est(p[1]), St-t

est(q[1])})})
= 2

Arbitrary (nontight) program case: To process arbitrary programs (tight and
non-tight), we must manage to resolve the circular dependencies such as present
in sample program Π3 defined in the section on preliminaries. We borrow and
simplify a concept of the component graph from [10]. The component graph of
a program Π is an acyclic directed graph Gsc

Π = 〈N,E〉 such that N is the
set of strongly connected components in the dependency graph GΠ of Π and
E contains the edge (P,Q) if there is an edge (p, q) in GΠ where p ∈ P and
q ∈ Q. For tight programs, we identify its component graph with the dependency
graph itself by associating a singleton set annotating a node with its member.
Figure 3 (right) shows the component graph for program Π3. For a program Π,
we obtain an ordering on its predicates by performing a topological sorting on its
component graph. We associate each node in this ordering with its position and
call it a strong level rank of each predicate that belongs to a node. For example,
{p}, {r}, {q, s} is one possible topological sorting of Gsc

Π3
. This ordering associates

the following strong level ranks 1, 2, 3, 3 with predicates p, r, q, s, respectively.

Estimating Grounding Sizes of Logic Programs Under Answer Set Semantics 353

Let C be a node/component in graph Gsc
Π . By PC we denote the set

{r | p ∈ C, r ∈ Π, and H(r)0 = p}.

We call this set a module. A rule r in module PC is a recursive rule if there exists
an atom a in the positive body of r so that a0 = p and predicate p occurs in
C. Otherwise, rule r is an exit rule. For tight programs, all rules are exit rules.
It is also possible to have modules with only recursive rules. For instance, the
modules in program Π3 contain

P{p} = {p(1). p(2).}; P{r} = {r(2). r(3). r(4).};

and P{q,s} composed of rules (4), (8), and (9). The rules (8) and (9) are recursive.
In the sequel we consider components whose module contains an exit rule. For

a component C and its module PC , we construct a partition M1, ...,Mn (n ≥ 1)
in the following way: Every exit rule of PC is a member of M1. A recursive rule
r in PC is a member of Mk (k > 1) if

– for every predicate p ∈ C occurring in B
+(r), there is a rule r′ in M1 ∪ ... ∪

Mk−1, where H(r′)0 = p and
– there is a predicate q occurring in B

+(r) such that there is a rule r′′ in Mk−1,
where H(r′′)0 = q.

We refer to the unique partition created in this manner as the component par-
tition of C; integer n is called its cardinality. We call elements of a component
partition groups (the component partition is undefined for components whose
module does not contain an exit rule). The component partition of node {q, s}
in Gsc

Π3
follows:

M1 = {q(X, 1) ← p(X).}
M2 = {s(X,Y,Z) ← r(X), p(X), p(Y), q(Y,Z).}
M3 = {q(Y,X) ← s(X,Y,Z).}.

For a component partition M1, . . . ,Mk, . . . ,Mn, by M
p[i]
k we denote the set

{r | r ∈ Mk, H(r)0 = p, and H(r)i is a variable};

and by M
p[i]
1...k we denote the union

⋃k
j=1 M

p[i]
j . For instance, for program Π3 and

its argument q[1]:

M
q[1]
1...3 = {q(X, 1) ← p(X). q(Y,X) ← s(X,Y,Z).}

We now generalize range and argument size estimation formulas for tight
programs to the case of arbitrary programs. These formulas are more complex
than their “tight versions”, yet they perform similar operations at their core.
Intuitively, formulas for tight programs relied on argument ordering provided
by the program’s dependency graph. Now, in addition to an order provided by

354 N. Hippen and Y. Lierler

the component dependency graph, we rely on the orders given to us by the
components partitions of the program.

In the remainder of this section, let Π be a program; p[i] be an argument in Π;
C be the node in the component graph of Π so that p ∈ C; n be the cardinality
of the component partition of C; and j be an integer such that 1 ≤ j ≤ n.

If the module of C does not contain an exit rule, then the estimate of the
range of an argument p[i], denoted rangeest(p[i]), is assumed 0 and the estimate
of the size of an argument p[i], denoted Sest(p[i]), is assumed 0.

We now consider the case when the module of C contains an exit rule.
By ↓est (p[i]) we denote an estimate of a minimum value that may appear in

argument p[i] in program Π:

↓est (p[i]) =↓gr
est (p[i], n)

↓gr
est (p[i], j) = min(oc(p[i]) ∪ {↓rule

est (p[i], j, r) | r ∈ M
p[i]
1...j})

↓rule
est (p[i], j, r) = max

({ ↓split
est (p[i], p′[i′], j) | p′[i′] ∈ args(r,H(r)i)

})

↓split
est (p[i], p′[i′], j) =

{
↓gr

est (p′[i′], j − 1), if p′ in the same component as p

↓est (p′[i′]), otherwise

We note the strong similarity between the combined definitions of ↓gr
est (p[i], j)

and ↓rule
est (p[i], j, r) compared to the corresponding “tight” formula ↓t-t

est (p[i]).
Formula for ↓split

est (p[i], p′[i′], j) serves two purposes. If the predicate p′ is in the
same component as predicate p, we decrement the counter j (intuitively bringing
us to preceding groups in component partition). Otherwise, we simply use the
minimum estimate for p′[i′] that is due to the computation relevant to another
component.

We now show that defined functions ↓est , ↓gr
est , ↓rule

est and ↓split
est are total.

Consider any strong level ranking of program’s predicates. Then, by rank(p) we
refer to the corresponding strong level rank of a predicate p. The following table
provides ranks associated with expressions used to define functions in question:

Expression Rank
↓est (p[i]) ω · (rank(p) + 1)
↓gr

est (p[i], j) ω · rank(p) + j
↓rule

est (p[i], j, r) ω · rank(p) + j

↓split
est (p[i], p′[i′], j) ω · rank(p) + j

where ω is the smallest infinite ordinal number. It is easy to see that in definitions
of functions ↓est , ↓gr

est , and ↓rule
est the ranks associated with their expressions do

not increase. In definition of ↓split
est in terms of ↓est, the rank decreases. Thus, the

defined functions are total.
By ↑est (p[i]) we denote an estimate of a maximum value that may appear

in argument p[i] in program Π. It is computed using formula for ↓est (p[i]) with
min, max, ↓est, ↓gr

est, ↓rule
est , and ↓split

est replaced with max, min, ↑est, ↑gr
est, ↑rule

est ,
and ↑split

est , respectively. The range of an argument p[i], denoted rangeest(p[i]), is

Estimating Grounding Sizes of Logic Programs Under Answer Set Semantics 355

computed by the formula of ranget-t
est(p[i]), where we replace ↓t-t

est and ↑t-t
est with

↓est and ↑est, respectively.
We define the formula for finding the argument size estimates, Sest(p[i]), as

follows:

Sest(p[i]) = Sgr
est(p[i], n)

Sgr
est(p[i], j) = min

({
rangeest(p[i]), |oc(p[i])| +

∑

r∈M
p[i]
1...j

Srule
est (p[i], j, r)

})

Srule
est (p[i], j, r) = min

({
Ssplit

est (p[i], p′[i′], j) | p′[i′] ∈ args(r,H(r)i)
})

Ssplit
est (p[i], p′[i′], j) =

{
Sgr

est(p′[i′], j − 1), if p′ is in the same component as p

Sest(p′[i′]), otherwise

We can argue that the function Sest is total in the same way as we argued that
the function ↓est is total.

Program Size Estimation. Keys. We borrow the concept of a key from rela-
tional databases. For some predicate p, we refer to any set of arguments of p that
can uniquely identify all ground extensions of p as a superkey of p. We call a
minimal superkey a candidate key. For instance, let the following be the ground
extensions of some predicate q:

{〈1, 1, a〉, 〈1, 2, b〉, 〈1, 3, b〉, 〈2, 1, c〉, 〈2, 2, c〉, 〈2, 3, a〉}

It is easy to see that both {q[1], q[2]} and {q[1], q[2], q[3]} are superkeys of q,
while {q[1]} is not a superkey. Only superkey {q[1], q[2]} is a candidate key. A
primary key of a predicate p is a single chosen candidate key. A predicate may
have at most one primary key. (For the purposes of this work, the primary key is
manually determined.) It is possible that some predicates do not have primary
keys specified. To handle such predicates, we define key(p) to mean the following:

key(p) =

{
the primary key of p, if p has a primary key
{p[1], ..., p[n]}, otherwise

where n is the arity of p. We call an argument p[i] a key argument if it is in
key(p). For a rule r, by kvars(r) we denote the set of its variables that occur in
its key arguments.

Rule size estimation. We now have all the ingredients to provide an estimate for
grounding size of each rule in a program. We understand a grounding size of a
rule as the number of rules produced as a result of intelligently grounding this
rule. For a rule r in a program Π, the estimated grounding size, denoted Sest(r),
is computed as follows:

Sest(r) =
∏

X∈kvars(r)

min
({Sest(p[i]) | p[i] ∈ args(r,X)})

356 N. Hippen and Y. Lierler

Implementation Details. System predictor1 is developed using the Python
3 programming language. predictor utilizes pyclingo version 5, a Python API
sub-system of answer set solving toolkit clingo [12]. The pyclingo API enables
users to easily access and enhance ASP processing steps within Python code,
including access to some data in the processing chain. In particular, predictor
uses pyclingo to parse a logic program into an abstract syntax tree (AST)
representation. After obtaining the AST, predictor has an immediate access
to internal rule structure of the program and computes estimates for the program
using the presented formulas. System predictor is designed for integration with
other systems processing ASP programs. It is distributed as a package that can
be imported into other systems developed in Python 3, or it can be accessed
through a command line interface. In order to ensure that system predictor
is applicable to real world problems, it supports ASP-Core-2 logic programs.
For instance, the estimation formulas presented here generalize well to programs
with choice rules and disjunction. Rules with aggregates are also supported. Yet,
for such rules more sophisticated approaches are required to be more precise at
estimations.

4 Experimental Analysis

To evaluate the usefulness of predictor, two sets of experiments are performed.
First, an intrinsic evaluation over accuracy of the predicted grounding size com-
pared to the actual grounding size is examined. Second, an extrinsic evaluation
of system prd-projector– a tool resulting from system projector enhanced
by predictor– is conducted. In particular, we investigate the utility of sys-
tem predictor by integrating it as a decision support mechanism into the
ASP rewriting tool projector. This integration is illustrated in Fig. 2. Each
time system projector accounts a rule to which its rewriting is applicable,
it performs the rewriting. System prd-projector performs the rewriting of
projector only if predictor predicts the reduction in grounding size upon
the rewriting. We measure the quality of predictor by analyzing the impact
it has on rewritings by projector. We note that the extrinsic evaluation is of
a special value illustrating the usefulness and the potential of system predic-
tor. It assesses predictor’s impact when it is used in practice for its intended
purpose as a decision making assistant. The intrinsic evaluation has its value in
identifying potential future work directions and pitfalls in estimations. Overall,
we will observe intrinsically that our estimates differ frequently in order of mag-
nitude from the reality. Yet, extrinsic evaluation clearly states that predictor
performs as an excellent decision making assistant for the purpose of improving
rewriting tools when their performance depends on a decision when rewriting
should take place versus not.

1 https://www.unomaha.edu/college-of-information-science-and-technology/natural-
language-processing-and-knowledge-representation-lab/software/predictor.php.

https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/predictor.php
https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/predictor.php

Estimating Grounding Sizes of Logic Programs Under Answer Set Semantics 357

Benchmarks were gathered from two different sources. First, programs from
the Fifth Answer Set Programming Competition [6] were used. Of the 26 pro-
grams in the competition, 13 were selected (these that system projector has
preformed rewritings on). For each program, the 20 instances (originally selected
for the competition) were used. One interesting thing to note about these encod-
ings is that they are generally already well optimized. As such, performing pro-
jections often leads to an increase in grounding size. Second, benchmarks were
gathered from an application called aspccg implementing a natural language
parser [17]. This domain has been extensively studied in [4] and was used to
evaluate system projector in [15]. In that evaluation, the authors considered
3 encodings from aspccg: enc1, enc7, enc19. We utilize the same encodings
and instances as in the evaluation of projector. All tests were conducted on
Ubuntu 18.04.3 with an Intel R© Xeon R© CPU E5-1620 v3 @ 3.50 GHz and 32 GB
of RAM. Furthermore, Python version 3.7.3 and pyclingo version 5.4.0 are
used to run predictor. Grounding and solving was done by clingo version
5.4.0. For all benchmarks execution was limited to 5 min.
Intrinsic Evaluation. Let S be the true grounding size of an instance in a
program computed by gringo. Let S′ be the grounding size predicted by pre-
dictor of the same instance. We define a notion of an error factor on a program
instance as S′/S. The average error factor of a program/benchmark is the aver-
age of all error factors across the instances of a program. Table 1 shows the
average error factor for all programs. We note that in our tests, keys were manu-
ally identified only for root predicate arguments. The average error factor shown
was rounded to make comparisons easier. An asterisk (∗) next to a benchmark
name indicates that not all 20 instances of this benchmark were grounded within
the allotted time limit. For instance, 19 instances of the Incremental Schedul-
ing benchmark were successfully grounded, while the remaining instances timed
out. For the ∗ benchmarks we only report the average error factor assuming the
instances grounded successfully.

We partition the results into three groups using the average error factor.
The partition is indicated by the horizontal lines on Table 1. First, there are five
programs where the estimates computed by predictor are, on average, less
than one order of magnitude over. Second, there are eight programs that are,
on average, greater than one order of magnitude over. Finally, three programs
are predicted to have lower grounding sizes than in reality. It is obvious that the
accuracy of system predictor could still use improvements. In many cases the
accuracy is drastically erroneous. These results are not necessarily surprising.
We identify five main reasons for observed data on predictor: (1) Insufficient
data modeling is one weak point of predictor. Since we do not keep track what
actual constants could be present in the ground extensions of a predicate, it is
often the case that we overestimate argument size due to our inability to identify
repetitive values. (2) Since we only identified keys for root predicate arguments,
many keys were likely missed. (3) System predictor has limited support for
such common language extensions as aggregates. (4) System predictor is vul-
nerable to what is known as error propagation [16]. (5) While one might typically

358 N. Hippen and Y. Lierler

Table 1. Average error factor for benchmark programs

Program Avg. error factor

Hanoi Tower 1.5

Nomystery 1.5

Perm. Pattern Match.∗ 3.8

Solitaire 4.3

Stable Marriage 3.7

Bottle Filling 4.9 × 109

Inc. Scheduling∗ 1.1 × 105

Labyrinth∗ 1.3 × 101

Minimal Diagnosis 8.2 × 103

Valves Location 1.3 × 101

aspccgenc1 2.9 × 101

aspccgenc7 1.3 × 101

aspccgenc19 2.2 × 101

Knight Tour with Holes 1.9 × 10−4

Ricochet Robots 2.0 × 10−1

Weighted Sequence 6.0 × 10−3

expect predictor to overestimate due to its limited capabilities in detecting
repeated data, the underestimation on Knight Tour with Holes, Ricochet Robots,
and Weighted Sequence programs is not surprising due to the fact that these
programs are non-tight.

Extrinsic Evaluation. Here, we examine the relative accuracy of system pre-
dictor alongside projector. In other words, we measure the quality of pre-
dictor by analyzing the impact it has on projector performance.

Let S be the grounding size of an instance of a program, where grounding
is produced by gringo. Let S′ be the grounding size of the same instance in a
modified (rewritten) version of the program. In this context, the modified version
will either be the logic program outputted after using projector or the logic
program outputted after using prd-projector. The grounding size factor of a
program’s instance is defined as S′/S. As such, a grounding size factor greater
than 1 indicates that the modification increased the grounding size, whereas a
value less than 1 indicates that the modification improved/decreased the ground-
ing size. The average grounding size factor of a benchmark is the average of all
grounding size factors across the instances of a benchmark. Table 2 (left) dis-
plays the average grounding size factor for projector and prd-projector on
all benchmark programs. An asterisk (∗) following a program name indicates
that not all 20 instances were grounded. In these cases, the average grounding
size factor was only computed from instances where all 3 versions of the pro-
gram (original, projector, prd-projector) completed grounding. A dagger

Estimating Grounding Sizes of Logic Programs Under Answer Set Semantics 359

Table 2. Left: Average grounding size factors; Right: Average execution time factors

Program proj prd-proj

Hanoi Tower 1.41 1.00

Inc. Scheduling∗ 1.14 1.12

Minimal Diagnosis 1.06 1.00

Solitaire 1.41 1.00

Stable Marriage 0.13 0.12

aspccg enc1 0.63 0.49

aspccg enc7 1.40 1.24

aspccg enc19 1.58 1.04

Bottle Filling 1.36 1.36

Labyrinth∗ 1.11 1.11

Perm. Pattern Match.∗ † 0.13 0.13

Valves Location† 1.00 1.00

Weighted Sequence† 1.00 1.00

Knight Tour with Holes 0.80 0.90

Nomystery 0.62 1.00

Ricochet Robots 0.91 1.00

Program Svd. proj prd-proj

Hanoi Tower 20 1.67 1.00

Inc. Scheduling 13 1.06 1.10

Minimal Diagnosis 20 1.04 1.00

Solitaire 19 1.32 0.99

Stable Marriage 19 0.18 0.17

aspccg enc1 54 0.57 0.52

aspccg enc7 57 1.37 1.28

aspccg enc19 59 1.93 1.16

Bottle Filling 20 1.44 1.43

Labyrinth 16 5.26 5.27

Perm. Pattern Match. 16 0.14 0.14

Valves Location 3 1.03 0.93

Weighted Sequence 16 3.05 1.59

Knight Tour with Holes 1 0.50 2.45

Nomystery 7 1.23 1.00

Ricochet Robots 20 0.85 1.00

(†) following a program name indicates that there was a slight improvement for
prd-projector, however this information was lost for the precision shown.

We partition the results into three sets, indicated by the horizontal lines on
Table 2 (left). We note that there are eight programs in which prd-projector
reduces the grounding size noticeably when compared to projector, five pro-
grams in which prd-projector does not impact the grounding size notice-
ably, and three programs in which prd-projector increases the grounding size
noticeably.

While we target improving the grounding size of a program, it is useful to
also compare the execution time of the programs, as that is ultimately what we
want to reduce. Let S be the execution time of an answer set solver clingo on
an instance of a benchmark. Let S′ be the execution time of clingo on the same
instance in a modified version of the benchmark. The execution time factor of
a program’s instance is defined as S′/S. The average execution time factor of a
benchmark is the average of all execution time factors across the instances of a
benchmark. Table 2 (right) shows the average execution time factor of programs
rewritten with projector and prd-projector. Overall, the results illustrate
the validity of predictor approach.

5 Conclusions

We introduced a method for predicting grounding size of answer set programs.
To the best of our knowledge this is the only approach for the stated purpose. We
implement the described method in stand-alone system predictor that runs
agnostic to any answer set grounder/solver pair. We expect this tool to become
a foundation to decision support systems for rewriting/preprocessing tools in

360 N. Hippen and Y. Lierler

ASP. Indeed, using predictor as a decision support guide to rewriting system
projector improves the projector’s outcome overall. This proves the validity
of the proposed approach, especially as further methods for improving estimation
accuracy are explored in the future. As such system predictor is a unique tool
unparalleled in earlier research ready for use within preprocessing frameworks
in ASP such as simplify or lpopt in a similar manner as we illustrate its use
here within the system prd-projector.

Acknowledgments. We would like to thank Mirek Truszczynski, Daniel Houston,
Liu Liu, Michael Dingess, Roland Kaminski, Abhishek Parakh, Victor Winter, Parvathi
Chundi, and Jorge Fandinno for valuable discussions on the subject of this paper. The
work was partially supported by NSF grant 1707371.

References

1. Bichler, M.: Optimizing non-ground answer set programs via rule decomposition.
Bachelor Thesis, TU Wien (2015)

2. Bichler, M., Morak, M., Woltran, S.: lpopt: a rule optimization tool for answer set
programming. Fund. Inform. 177(3–4), 275–296 (2020)

3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

4. Buddenhagen, M., Lierler, Y.: Performance tuning in answer set programming.
In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI),
vol. 9345, pp. 186–198. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23264-5 17

5. Calimeri, F., Fusca, D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder
of DLV. Intelligenza Artificiale 11(1), 5–20 (2017)

6. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth
answer set programming competition. Artif. Intell. 231, 151–181 (2016)

7. Calimeri, F., Perri, S., Zangari, J.: Optimizing answer set computation via
heuristic-based decomposition. Theory Pract. Log. Program. 19(4), 603–628 (2019)

8. Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-
ground answer-set programming. In: Proceedings of International Conference on
Principles of Knowledge Representation and Reasoning (KR) (2006)

9. Eiter, T., Traxler, P., Woltran, S.: An implementation for recognizing rule replace-
ments in non-ground answer-set programs. In: Fisher, M., van der Hoek, W.,
Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 477–480.
Springer, Heidelberg (2006). https://doi.org/10.1007/11853886 41

10. Faber, W., Leone, N., Perri, S.: The intelligent grounder of DLV. In: Erdem, E.,
Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 247–
264. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30743-0 17

11. Fages, F.: Consistency of Clark’s completion and existence of stable models. J.
Methods Log. Comput. Sci. 1, 51–60 (1994)

12. Gebser, M., et al.: Potassco User Guide, 2nd edn. Institute for Informatics, Uni-
versity of Potsdam (2015)

13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Challenges in answer set
solving. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Rep-
resentation, and Nonmonotonic Reasoning. LNCS (LNAI), vol. 6565, pp. 74–90.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20832-4 6

https://doi.org/10.1007/978-3-319-23264-5_17
https://doi.org/10.1007/978-3-319-23264-5_17
https://doi.org/10.1007/11853886_41
https://doi.org/10.1007/978-3-642-30743-0_17
https://doi.org/10.1007/978-3-642-20832-4_6

Estimating Grounding Sizes of Logic Programs Under Answer Set Semantics 361

14. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3.
In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
345–351. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-
9 39

15. Hippen, N., Lierler, Y.: Automatic program rewriting in non-ground answer set
programs. In: Alferes, J.J., Johansson, M. (eds.) PADL 2019. LNCS, vol. 11372,
pp. 19–36. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05998-9 2

16. Ioannidis, Y.E., Christodoulakis, S.: On the propagation of errors in the size of
join results. Technical report, University of Wisconsin-Madison, Department of
Computer Sciences (1991)

17. Lierler, Y., Schueller, P.: Parsing combinatory categorial grammar with answer set
programming: preliminary report (2011). http://www.cs.utexas.edu/users/ai-lab/
pub-view.php?PubID=127116

18. Mastria, E., Zangari, J., Perri, S., Calimeri, F.: A machine learning guided rewrit-
ing approach for asp logic programs. In: 36th International Conference on Logic
Programming (ICLP) (2020)

19. Silberschatz, A., Korth, H.F., Sudarshan, S., et al.: Database System Concepts,
vol. 4. McGraw-Hill, New York (1997)

https://doi.org/10.1007/978-3-642-20895-9_39
https://doi.org/10.1007/978-3-642-20895-9_39
https://doi.org/10.1007/978-3-030-05998-9_2
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127116
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127116

Testing in ASP: Revisited Language
and Programming Environment

Giovanni Amendola1 , Tobias Berei2, and Francesco Ricca1(B)

1 University of Calabria, Rende, Italy
{amendola,ricca}@mat.unical.it

2 University of Applied Sciences Upper Austria, Campus Hagenberg,
Hagenberg, Austria

tobias.berei@students.fh-hagenberg.at

Abstract. Unit testing frameworks are nowadays considered a best
practice, foregone in almost all modern software development processes,
to achieve rapid development of correct specifications. The first unit test-
ing specification language for Answer Set Programming (ASP) was pro-
posed in 2011 as a feature of the ASPIDE development environment.
Later, a more portable unit testing language was included in the LANA
annotation language. In this paper we propose a revisited unit testing
specification language that allows one to inline tests within ASP program
and an ASP-based test execution mechanism. Moreover, we present a
programming environment supporting test driven development (TDD)
of ASP programs with our language.

Keywords: Answer Set Programming · Unit testing · Test-driven
development

1 Introduction

Answer Set Programming (ASP) [8] is a well-known Logic-based formalism
developed in the area of knowledge representation and reasoning. ASP com-
bines a purely declarative language based on the stable models semantics [24]
with efficient implementations [32]. ASP is known to be suited for rapid pro-
totyping of complex reasoning tasks, and has been effectively used to solve a
number of both academic and real-world applications of AI [15]. ASP allows to
encode complex computational problems often in an easier and more compact
way than mainstream (imperative) programming languages. For instance, the
classical NP-complete problem of 3-Colorability is encoded in ASP using only
two rules. Nonetheless, it is also easy to write incorrect ASP programs, which
seem correct (often due to a misdirecting intuitive reading of rules) but do not
work as expected.

To speed-up the development of correct and robust programs, many modern
software development processes support some Test-Driven Development (TDD)
best practices [21] such as unit testing [6]. In TDD the following sequence of
c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 362–376, 2021.
https://doi.org/10.1007/978-3-030-75775-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_24&domain=pdf
http://orcid.org/0000-0002-2111-9671
http://orcid.org/0000-0001-8218-3178
https://doi.org/10.1007/978-3-030-75775-5_24

Testing in ASP: Revisited Language and Programming Environment 363

actions is repeated while developing a new program [6]: (i) add a test that
defines a function or improvements of a function, which should be very succinct,
so that the developer focuses on the requirements before writing the code; (ii)
run all tests and see if the new test fails. This rules out the possibility that the
newly introduced test specifies an improvement; (iii) write the code (may be not
perfect); (iv) run all tests, to become confident that the new code meets the test
requirements, and does not introduce bugs; (v) refactor code to improve it while
accommodating the new features.

Tests drive the development because the program is considered improved
only if it passes new tests, while the repeated execution of tests allows to find
problems early in the development cycle and to isolate the incorrect behavior
more easily. This intuition has been subject to further empirical studies which
proved that programmers who wrote more tests tended to be more produc-
tive [16] and evidenced the superiority of the TDD practice over the traditional
test-last approach or testing for correctness approach [34]. Two important best
practices of TDD are the following: (i) concentrate on testing possibly small
modules/functions/blocks of code; and (ii) adopt frameworks and tools to make
the process of testing the program automatic. In the resulting software testing
method, complex programs are split in units, which are tested in isolation pro-
viding (usually) small inputs and checking whether the expected outputs are
computed. Tests for program units (i.e., unit tests) are directly derived from
software requirements and often created before (or while) implementing the cor-
responding feature. The software is improved to pass the new tests, only.

TDD development practices are nowadays a standard technique used by
expert programmers and development teams all over the world, no matter the
programming language used. TDD development practices have been already
applied also to many AI formalisms, as it is witnessed by the proposals in the
literature, such as testing for Description Logics [7], and Constraint Program-
ming [31]. In particular, TDD development practices have been applied to ASP
program development. Indeed the first unit testing language for ASP has been
introduced in 2011 [18], and was implemented in ASPIDE [19]. Nonetheless, this
solution presents some limitations from the perspectives of both the language
for specifying unit tests and its implementation. Concerning the language, one
drawback is the need for specifying unit tests in separate files with respect to the
program to test, which is not very comfortable given that ASP programs might
contain (comparatively) few lines of code. Having the possibility to write tests
together with the source code, without interfering with the actual evaluation
of the program itself, would provide clear advantages for the developer. Subse-
quently [39], a more versatile approach of specifying unit test together with ASP
programs was included in the LANA annotation language. However, the proto-
typical implementation of LANA, called ASPUnit, has never been included in
a graphical development environment for ASP. A testing framework integrated
in a development environment is comfortable for the developer, who can control
the results in the same graphical environment she is using.

364 G. Amendola et al.

In this paper we propose a new unit testing language for ASP, which com-
prises the key features of both the above-mentioned proposals. The new language
is annotation-based as LANA, so to allow the development of test cases inline
with ASP code, and keep the assertion-based style for expressing test case con-
ditions from the language of ASPIDE. The resulting annotation style is more
similar to the JUnit framework for Java (from which both ASPIDE and LANA
proposals were inspired), and should look more familiar to developers that are
accustomed to XUnit style languages [6]. Importantly, we present a novel web-
based development environment for ASP supporting test driven development of
ASP programs that features an integrated implementation of unit testing.

Table 1. Base constructs of the annotation language.

Annotation Description

@rule(name="rName ",block="bName ") The name rName is assigned to the following
rule. Assigning a rule to a block is optional

@block(name="bName ",rules={rList }) Defines a block with name bName. Optionally a
block may specify the list of rules that it covers

@test(

name = "testName ",

scope = { referenceList },
programFiles = { programFileList },
input = "aspCode ",

inputFiles = { inputFileList },
assert = { assertionList }

)

Defines a test case with name testName and
scope referenceList which is a list of strings ref-
erencing the rules and/or blocks under test. The
target file is the current file, if programFiles is
not defined. An input for the test can be speci-
fied in aspCode or several files (property input-
Files) can be set optionally. Furthermore asser-
tionList is a list of assertions (defined in Table 2)
that have to be fulfilled for this test case

2 Preliminaries on Answer Set Programming

Let P be a set of predicates, C of constants, and V of variables. A term is a
constant or a variable. An atom a of arity k is of the form p(t1, ..., tk), where
p ∈ P and t1, ..., tn are terms. A disjunctive rule r is of the form

a1 ∨ . . . ∨ al ← b1, . . . , bm, not c1, . . . , not cn, (1)

where all ai, bj , and ck are atoms; l,m, n ≥ 0 and l + m + n > 0; not
represents negation-as-failure. The set H(r) = {a1, ..., al} is the head of r;
B+(r) = {b1, ..., bm} and B−(r) = {c1, . . . , cn} are the positive body and the
negative body of r, respectively; and B(r) = B+(r) ∪ B−(r) is the body of r.
A rule r is safe if each of its variables occurs in some positive body atom. A
rule r is a fact, if B(r) = ∅ (we then omit ← from the notation); a constraint if
H(r) = ∅; normal if |H(r)| ≤ 1; and positive if B−(r) = ∅. A (disjunctive logic)
program P is a finite set of disjunctive rules. P is called normal [resp. positive]

Testing in ASP: Revisited Language and Programming Environment 365

Table 2. Assertions for @test(...) annotation.

Assertion Description

@noAnswerSet The test must have no answer set.

@trueInAll(atoms="atoms ") The atoms specified in atoms must be true
in all answer sets

@trueInAtLeast(number=n,atoms="atoms ") The atoms specified in atoms must be true
in at least n answer sets

@trueInAtMost(number=n,atoms="atoms ") The atoms specified in atoms must be true
in at most n answer sets

@trueInExactly(number=n,atoms="atoms ") The atoms specified in atoms must be true
in exactly n answer sets

@constraintForAll(constraint="c ") The constraint specified in c must be ful-
filled in all answer sets

@constraintInAtLeast(

number=n,constraint="c ")

The constraint specified in c must be ful-
filled in at least n answer sets

@constraintInAtMost(

number=n,constraint="c ")

The constraint specified in c must be ful-
filled in at most n answer sets

@constraintInExactly(

number=n,constraint="c ")

The constraint specified in c must be ful-
filled in exactly n answer sets

@bestModelCost(cost=cv,level=lv) The best model has to meet the cost of cv
at level lv (for weak constraints)

if each r ∈ P is normal [resp. positive]. Moreover, a program P is head-cycle free
if there is a level mapping ‖.‖h of P such that for every rule r of P : (i) For any
l in B+(r), and for any l′ in H(r), ‖l‖h ≤ ‖l′‖h; and (ii) For any pair l, l′ of
atoms in H(r), ‖l‖h
= ‖l′‖h. We denote by At(P) =

⋃
r∈P At(r) the set of all

atoms in P . We restrict attention to programs built on safe rules only.
The Herbrand universe of P , denoted by UP , is the set of all constants appear-

ing in P . If there are no constants in P , we take UP = {a}, where a is an arbitrary
constant. The Herbrand base of P , denoted by BP , is the set of all ground atoms
that can be obtained from the predicate symbols appearing in P and the con-
stants in UP . Given a rule r of P , a ground instance of r is a rule obtained from
r by replacing every variable X in r by σ(X), where σ is a substitution map-
ping the variables occurring in r to constants in UP . The ground instantiation
of P , denoted by ground(P), is the set of all the ground instances of the rules
occurring in P .

Any set I ⊆ BP is an interpretation; it is a model of a program P (denoted
I |= P) if for each rule r ∈ ground(P), we have I∩H(r)
= ∅ whenever B+(r) ⊆ I
and B−(r) ∩ I = ∅ (in such case, I is a model of r, denoted I |= r). A model M
of P is minimal if no model M ′ ⊂ M of P exists. We denote by MM(P) the set
of all minimal models of P . We write P I for the well-known Gelfond-Lifschitz
reduct [24] of P w.r.t. I, that is, the set of rules H(r) ← B+(r), obtained from
rules r ∈ ground(P) such that B−(r) ∩ I = ∅. We denote by AS(P) the set of
all answer sets (or stable models) of P , that is, the set of all interpretations I

366 G. Amendola et al.

such that I ∈ MM(P I). We say that a program P is coherent, if AS(P)
= ∅,
otherwise, P is incoherent.

Finally, we recall a useful extension of the answer set semantics by the notion
of weak constraint [9]. A weak constraint ω is of the form:

:∼ b1, . . . , bm, not c1, . . . , not cn. [c@l], (2)

where c and l are nonnegative integers, representing a cost and a level, respec-
tively. Let Π = P ∪ W , where P is a set of rules and W is a set of weak
constraints. We call M an answer set of Π if it is an answer set of P . We denote
by W (l) the set of all weak constraints at level l. For every answer set M of Π
and any l, the penalty of M at level l, denoted by PenaltyΠ(M, l), is defined
as

∑
w∈W (l), M |=B(ω) c. For any two answer sets M and M ′ of Π, we say M is

dominated by M ′ if there is l s.t. (i) PenaltyΠ(M ′, l) < PenaltyΠ(M, l) and
(ii) for all integers k > l, PenaltyΠ(M ′, k) = PenaltyΠ(M,k). An answer set
of Π is optimal if it is not dominated by another one of Π. We also mention
aggregates, an extension of ASP that we do not recall here for keeping simple
the description. We refer the reader to [11] for more details.

Example 1. Consider the following set of facts F = {node(1); node(2); node(3);
edge(1, 2); edge(1, 3); edge(2, 3)}, and the ASP program P :

col(X, red) ∨ col(X, blue) ∨ col(X, green) ← node(X);
← edge(X,Y), col(X,C), col(Y,C)

The set of facts F models a cycle of length 3, while the two rules of the program
P model the 3-colorability problem. It can be checked, that F ∪ {col(1, red),
col(2, blue), col(3, green)} is an answer set of P ∪ F .

3 Unit Testing of Answer Set Programs

We now describe a new annotation-based test specification language that fol-
lows the Java annotation style of JUnit, and can be fully embedded in programs
compliant with the ASP-Core-2 input language format of ASP competitions [23],
which is nowadays a common syntactic fragment supported by the main ASP
implementations. An annotation starts with ‘@’ and is enclosed between %** and
**% to distinguish multi-line comments, thus avoiding interference with program
execution and to not require a separate test definition file (although in prin-
ciple one could also collect testcases in separate files). The test specification
language consists of base annotations and assertion condition annotations (or
simply assertion annotations). The base annotations, described in Table 1, allow
one to compose test cases, group subprograms in blocks, label rules and sub pro-
grams, and refer to the content of files containing programs. These annotations
can be written anywhere in the ASP program, except @rule(...), which has to be
followed by an ASP rule in order to be assigned correctly. With regards to the
@test(...) annotation the property scope includes a list of strings as a parameter

Testing in ASP: Revisited Language and Programming Environment 367

that reference both rules and blocks under test (by their name). Furthermore
the property assert holds a list of assertion annotations that are described in
Table 2. Basically, the programmer is free to identify the (sub)programs to test,
specify the input of a program in a test case, and assert a number of conditions
on the expected output, i.e., the basic operations supported by a XUnit testing
language [6]. Note that, we have considered in our proposal all the assertions that
are both present in the main unit testing languages proposed in the literature
and that are more frequent in our experience.

An usage example of the test annotations language can be found in Fig. 1,
which contains an instance of the graph coloring problem (3-colorability). This
instance produces six answer sets according to the color assignments of the colors
to the specified nodes. In order to test whether the rules behave as expected,
we have to be able to reference the rules under test. As we do not want to test
facts, we assign the names r1 and r2 to the rules in Lines 7 and 9. Additionally
we assign these rules to a block, which has been defined in Line 4. Afterwards
we are able to reference the rules under test inside the @test(...) annotation
starting in Line 11. First we specify the name of the test case and the rules under
test, which is the block rulesToTest in this case. While referencing the block is
more convenient, we could also reference the rules directly by writing scope =
{"r1", "r2" }. Input rules can be defined with the property input, which are
joined with the rules under test during test execution. They are equivalent to
the facts of the program in this case, but can be different for more complex
test specifications. With the property assert we can now define assertions that
have to be fulfilled in order to execute the test with positive result. For this
simple instance of the graph coloring problem, we can test whether the atom
col(1, red) is true in exactly two answer sets while the atoms col(1, red) in
combination with col(2, blue) should be true in exactly one answer set (Lines
15 and 16). Note that, the @test(...) annotation is very flexible, and allows inputs
to be selected freely by picking any sub-program, which plays the role of a unit
to be tested (and run) in isolation. The scope attribute can be filled with any
list of references (cfr. Table 1), including single rules, lists of rules (mentioned
by name), and rules conveniently collected in a block (as in the example). Thus,
it is possible to fine tune tests selecting any subprogram the programmer wants
to test. The programmer can also flexibly control the input, inserting specific
facts, subprograms, or reading the additional inputs from a file. In spite of being
a simple ASP program, Fig. 1 shows how our lightweight annotation language
can be used to define test cases without the need for a separate test definition
file. The annotations do not interfere with program executability as being part
of comments according to ASP-Core-2.

To further highlight the helpfulness of the TDD process for an ASP user, con-
sider the example reported in Fig. 2. The program is a (wrong) ASP encoding
for the Hamiltonian Cycle (HC) problem, a classical problem in graph theory.
Given a finite directed graph G = (N,A), and a node a ∈ N , the HC prob-
lem asks whether a cycle in G exists starting from a and passing through each
node in G. In our encoding, the first rule represents a guess for the set of arcs

368 G. Amendola et al.

1 %** Test graph **%

2 node(1). node(2). node(3). edge(1,2).

3 edge(1,3). edge(2,3).

4 %** @block(name="ToTest") **%

5 %** @rule(name="r1", block="ToTest") **%

6 col(X,red) | col(X,blue) | col(X,green) :- node(X).

7 %** @rule(name="r2", block="ToTest") **%

8 :- edge(X, Y), col(X,C), col(Y,C).

9 %**@test(name = "checkRules",

10 scope = { "ToTest" },

11 input = "node(1). node(2). node(3). edge(1,2). edge(1,3).

edge(2,3).",

12 assert = {

13 @trueInExactly(number = 2, atoms = "col(1, red)."),

14 @trueInExactly(number = 1, atoms = "col(1, red). col(2, blue)") }

15)

16 **%

Fig. 1. Testing graph colouring.

of the graph. The second and the third rule model the reachability in a graph.
Indeed, the starting node X is reached (rule r2, line 5), and if X is reached and
(X,Y) is in the cycle, then Y is also reached (rule r3). Finally, the last three
rules are constraints to be satisfied so that the arcs chosen in the cycle form an
hamiltonian cycle. Indeed, the first two rules state that there is no more than
one outgoing arc (rule r4) and there is no more than one ingoing arc (rule r5);
and the last rule state that there is no node X which is not reached (rule r6).
Now, if we have found an hamiltonian cycle, we expect to see in each answer
set an outgoing arc for each node appearing in the cycle. We can express this
condition through a constraint, stating that it is not possible that we have a
node X, and there is no arc from X to some other node in the cycle. This
condition is modeled by the assertion @constraintForAll in line 19, by meaning
that each solution (answer set) must satisfy that condition. If we consider the
input A = {node(1), node(2), node(3), node(4), arc(1, 2), arc(1, 4), arc(2, 4),
arc(3, 1), arc(4, 3), start(1)} reported in lines 17–18, we expect that an hamilto-
nian cycle exists. Note that, any programmer would run such kind of “live” test,
and maybe more than one, as in any programming language. However, the test-
ing process fails. Indeed, our program on the given input admits the answer set:
A ∪ {inCycle(1, 2), inCycle(2, 4), inCycle(4, 3), outCycle(1, 4), outCycle(3, 1)},
which does not satisfy the assertion. Note that, if you are the author of a piece
of code, you are less likely to see a mistake without “trying” the program (you
are “expecting” your statements to be correct), and common practice is to run a
small instance to see if the result are as we expect. Thus, without an automated
testing procedure one should check manually all the answer sets or resort to a
script. Automatic testing makes this phase of the development easier and declar-
ative. Note that, since unit tests remain in the source code, once the program is
updated, they are not lost (as it happens to manually-handled result-checking

Testing in ASP: Revisited Language and Programming Environment 369

1 %** @block(name="hamCycle") **%

2 %** @rule(name="r1", block="hamCycle") **%

3 inCycle(X,Y) | outCycle(X,Y) :- arc(X,Y).

4 %** @rule(name="r2", block="hamCycle") **%

5 reached(X) :- start(X).

6 %** @rule(name="r3", block="hamCycle") **%

7 reached(Y) :- reached(X), inCycle(X,Y).

8 %** @rule(name="r4", block="hamCycle") **%

9 :- inCycle(X,Y), inCycle(X,Z), Y<>Z.

10 %** @rule(name="r5", block="hamCycle") **%

11 :- inCycle(X,Y), inCycle(Z,Y), X<>Z.

12 %** @rule(name="r6", block="hamCycle") **%

13 :- node(X), not reached(X).

14 %** @test(name = "checkProperty",

15 scope = { "hamCycle" },

16 input = "node(1). node(2). node(3). node(4). arc(1,2). arc(1,4).

arc(2,4). arc(3,1). arc(4,3). start(1)."

17 assert = { @constraintForAll(":-node(X),

#count{Y:inCycle(X,Y)}=0.") }

18)

19 **%

Fig. 2. Testing hamilonian path.

sessions). Tests can be run again gaining all the advantages of regression test-
ing [6]. If a test fails, bugs can be identified with a debugger [10].

4 The ASP-WIDE Environment

The ASP-WIDE environment implements this paper’s unit-testing mechanism
and the annotation language. While command line tools are efficient to use, the
focus was to build an environment containing a code editor with syntax checking,
syntax highlighting and execution/testing capabilities. This development tool
offers a convenient environment for writing, executing and testing answer set
programs. Since web-based environments, not only for logic programming, but
also for conventional languages, are widely used, ASP-WIDE is based mostly on
web technologies.

Implementation. As many modern web-based applications, ASP-WIDE con-
sists of a front-end, which is built using the Angular framework, and a back-
end implemented in Java utilizing the Spring framework. The communication
between front-end and back-end is realized with HTTP-Requests transmitting
JSON data. The overall architecture is depicted in Fig. 3. ASP-WIDE is meant
to support any ASP solver supporting the ASP-Core-2 input language, such
as Clingo and DLV2. The Execution module does not directly interact with an
ASP system. Instead it uses the library DLVWrapper [37]. We extended the DLV
Wrapper library to handle any ASP systems supporting the output format of
the last ASP Competition [23], such as e.g., Clingo [22].

370 G. Amendola et al.

Table 3. Implementation of the assertions. P denotes the scope (i.e., the sub program
to test), TP the program built to implement the assertion, C a constraint, A a set of
atoms, k, c, l are integers.

Assertions Tester program Test output

@noAnswerSet P Return fail if TP admits answer sets,

pass otherwise

@trueInAll(A) P ∪ ⋃
a∈A{← a} Return fail if TP admits answer sets,

pass otherwise

@trueInAtLeast(A,k) P ∪ ⋃
a∈A{← nota} Return pass as soon as the solver on TP

outputs k answer sets, fail otherwise

@trueInAtMost(A,k) P ∪ ⋃
a∈A{← nota} Return pass if the solver terminates on

TP outputting at most k answer sets,

fail otherwise

@trueInExactly(A,k) P ∪ ⋃
a∈A{← nota} Return pass if the solver on TP outputs

k answer sets, fail otherwise

@constraintForAll(C) P ∪ {f ← C; ← notf} Return pass if TP admits no answer set,

fail otherwise

@constraintInAtLeast(C,k) P ∪ {C} Return pass as soon as the solver on TP

outputs k answer sets, fail otherwise

@constraintInAtMost(C,k) P ∪ {C} Return pass if the solver terminates on

TP outputting at most k answer sets,

fail otherwise

@constraintInExactly(C,k) P ∪ {C} Return pass if the solver on TP outputs

k answer sets, fail otherwise

@bestModelCost(c,l) P Return pass if the optimal answer set of

TP has a cost of c at level l, fail

otherwise

User Interface. The user interface of ASP-WIDE (see Fig. 4) was inspired
by ASPIDE and features four main areas of interaction with the user: (i) The
toolbar on the top of the environment; (ii) The workspace or file explorer on
the left side; (iii) The code editor in the middle/right area (with open tabs on
the top); and (iv) The output area on the bottom, which shows answer sets and
test results. The toolbar features usual menus for handling files, run programs
and adjust settings. Programs can be organized in projects, and the code editor
features syntax-highlights and code-completion, i.e., it suggests how to complete
predicate names and variables, to assist program and test-case development.
Errors and warnings are also immediately displayed, and the modifications are
automatically saved, as it is customary in modern web-based interfaces. The
output is shown at the bottom.

Performance. The performance of our implementation depends on the under-
lying solver selected by the user. Our tools inherits for free all improvements
to current solving technology, which is already very efficient also when manag-
ing problems of industrial size [12,15]. Nonetheless, a rule of thumb for devis-
ing good unit tests –that is independent of the language used for implement-
ing the application– is to devise small meaningful testcases that are able to
quickly isolate and understand the issue. Indeed, for the small-scope hypothesis,

Testing in ASP: Revisited Language and Programming Environment 371

Fig. 3. Architecture of ASP-WIDE.

to detect a bug is sufficient to “analyze programs after grounding them over a
small domain” [36]. Thus, despite the high worst case complexity of ASP pro-
grams, performance is never an issue in practice, provided that the test cases
are properly devised. Our experience in developing applications confirms this is
the case.

Availability. The ASP-WIDE environment can be installed as a standalone
application in any computer with a modern (java-script enabled) web browser
and Java 8 installed. ASP-WIDE can be downloaded (the url will be disclosed
after acceptance) and the sources are distributed under GPL licence.

5 Related Work

The first paper approaching the problem of systematic testing of ASP programs
is [28], where a general framework for structure-based testing of answer set
programs, encompassing the definition of test coverage notions for ASP pro-
grams, has been proposed. In [28] the complexity issues related to coverage
problems and the inherent complexity of relevant decision problems were also
studied. An experimental comparison of basic strategies for random testing and
structure-based testing of ASP programs has been presented [29]. The results
of [29] indicate that random testing is quite effective in catching errors provided
that sufficiently many admissible test inputs are considered. It has been empir-
ically demonstrated [36] that the small-scope hypothesis of traditional testing
holds also in the case of ASP programs. That is, many errors can be found by
testing a program w.r.t. test inputs considering a small number of objects (i.e.,
from a small scope). More recently, a new tool for random based testing of ASP
programs, called Harvey, has been described [27]. In Harvey random testing for
ASP has been implemented using ASP itself (i.e., both test-input generation and
determining test verdicts is done employing ASP). Harvey achieves uniformity
of the test-input selection by using XOR streamlining [25] a technique used also

372 G. Amendola et al.

Fig. 4. The ASP-WIDE interface.

in the area of SAT solving [26]. The methods mentioned up to now focus on the
problem of generating automatically test suites for ASP programs that are suf-
ficient to identify defects, after correct programs have been written. These tools
are thus particularly useful in cases in which one wants to improve an encoding,
and use a natural (but less efficient) encoding, to check whether a more com-
plicated (but efficient) one is being developed. On the other hand, as outlined
in the introduction, the goal of unit testing in software development is to drive
the implementation towards working software also when no previous solution
exists. Indeed, in TDD, test cases are derived from the requirements even before
writing the source code [6,21]. Nonetheless, automatic test generation can be
combined with unit testing, e.g., in case one is evolving a solution to meet some
non functional requirement such as efficient computation.

Focusing on unit testing, the first implementation of an ASP-specific solution
was presented and included in the comprehensive development tool ASPIDE [18].
This implementation utilizes rule naming inside of ASP comments in combina-
tion with a test definition language for specifying test cases. While rule naming
can be accomplished in an annotation-like manner, which does not interfere
with program executability, the specification of test cases required a separate
test file and a dedicated syntax [18]. Since adding meta-information to programs
in form of annotations is known from conventional programming languages as
C# and Java, a purely annotation-based test case specification for answer set
programs is desirable. With [39] a language for annotating answer set programs
(called LANA) is presented. Although LANA is not solely devoted to testing,

Testing in ASP: Revisited Language and Programming Environment 373

it does address test case definition inside of ASP comments. Despite fully rely-
ing on annotations, its implementation (called ASPUnit) requires each unit test
to be defined in a separate file, and was never been integrated in a develop-
ment environment (to the best of our knowledge). Consequently the desire for a
lightweight test definition mechanism that is purely annotation-based and does
not necessarily require additional files or external tools that are not included in
an environment dedicated to assisted programming remained unfulfilled.

The annotation language presented in this paper, albeit inspired by existing
proposals, presents a new syntax that differs from both ASPIDE and LANA
proposals, and recalls the well-known annotation style of Java. Since one of our
design goals was to keep it simple while considering all the most important fea-
tures, our language does not support (by design) some of the ASPIDE-specific
options (such as automatic extraction of program modules, and run configura-
tion management), and some of the LANA-specific options (such as pre/post
conditions, and signatures). We discarded those that are: not strictly-related
to program testing (e.g., signatures); can be simulated (e.g. pre/post condi-
tions); are implementation specific (run configuration management); have a not
so obvious semantics (automatic expansion of program modules). Indeed, auto-
matic expansion of program modules in ASPIDE allows to automatically extend
a block under test with the rules from the original program up to the point
that a modularity condition is satisfied, such as the splitting condition [33] or
the more precise conditions of [30]. In our experience this feature augments the
program under test in a way that is not obvious to the programmer, thus we
decided to discard this feature. Alternative ways of verifying the correctness of
programs with input and output have been recently proposed [17], that could
be considered for integration in our framework.

Finally, we observe that our unit testing language has been conceived for
ASP-Core-2, nonetheless, it can be applied -almost as it is- to any extension of
ASP, such as the richer languages supported by Clingo [22] and DLV 2.0 [1],
DLVHEX [14], ASPMT [5,38], CASP [3,4,35], and SPARC [2]. Indeed, annota-
tions (in comments) do not interfere with the specifications.

6 Conclusion

The development of AI applications can be accelerated by resorting to unit test-
ing frameworks. In this paper we revisit unit testing in ASP by proposing a new
unit test language that unifies the strengths of previous approaches. The new
language allows the development of test cases inline with ASP code, keeps the
style of expressing test case conditions from ASPIDE, and is annotation-based
as LANA. Moreover it features a refreshed syntax that is nearer to the JUnit
framework, and should look more familiar to developers that are accustomed
to XUnit style languages. Importantly, the new unit testing language is imple-
mented in a novel web-based development environment for ASP, which supports
test driven development of ASP programs.

374 G. Amendola et al.

As future work, we are improving ASP-WIDE with additional editing features
and a debugger [10,13,18]; moreover we are evaluating the possibility of using
an answer set counting system [20] for test case conditions that require counting
answer sets.

References

1. Alviano, M., et al.: The ASP system DLV2. In: Balduccini, M., Janhunen, T. (eds.)
LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 215–221. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61660-5 19

2. Balai, E., Gelfond, M., Zhang, Y.: Towards answer set programming with sorts. In:
Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 135–147.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-8 14

3. Balduccini, M., Lierler, Y.: Constraint answer set solver EZCSP and why integra-
tion schemas matter. Theory Pract. Log. Program. 17(4), 462–515 (2017)

4. Banbara, M., Kaufmann, B., Ostrowski, M., Schaub, T.: Clingcon: the next gen-
eration. TPLP 17(4), 408–461 (2017)

5. Bartholomew, M., Lee, J.: First-order stable model semantics with intensional
functions. Artif. Intell. 273, 56–93 (2019)

6. Beck: Test Driven Development: By Example. Addison-Wesley Longman Publish-
ing Co., Inc., Boston (2002)

7. Bezerra, C., Freitas, F.: Verifying description logic ontologies based on competency
questions and unit testing. In: ONTOBRAS, CEUR 1908, pp. 159–164 (2017)

8. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Com. ACM 54(12), 92–103 (2011)

9. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints.
TKDE 12(5), 845–860 (2000)

10. Busoniu, P., Oetsch, J., Pührer, J., Skocovsky, P., Tompits, H.: SeaLion: an eclipse-
based IDE for answer-set programming with advanced debugging support. TPLP
13(4–5), 657–673 (2013)

11. Calimeri, F., et al.: Asp-core-2 input language format. Theory Pract. Logic Pro-
gram. 20(2), 294–309 (2020). https://doi.org/10.1017/S1471068419000450

12. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth
answer set programming competition. Artif. Intell. 231, 151–181 (2016)

13. Dodaro, C., Gasteiger, P., Reale, K., Ricca, F., Schekotihin, K.: Debugging non-
ground ASP programs: technique and graphical tools. Theory Pract. Log. Program.
19(2), 290–316 (2019). https://doi.org/10.1017/S1471068418000492

14. Eiter, T., et al.: The DLVHEX system. KI 32(2–3), 187–189 (2018)
15. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI

Mag. 37(3), 53–68 (2016)
16. Erdogmus, H., Morisio, M., Torchiano, M.: On the effectiveness of the test-first

approach to programming. IEEE Trans. Software Eng. 31(3), 226–237 (2005)
17. Fandinno, J., Lifschitz, V., Lühne, P., Schaub, T.: Verifying tight logic programs

with anthem and vampire. Theory Pract. Log. Program. 20(5), 735–750 (2020).
https://doi.org/10.1017/S1471068420000344

18. Febbraro, O., Leone, N., Reale, K., Ricca, F.: Unit testing in ASPIDE. In: Tompits,
H., et al. (eds.) INAP/WLP -2011. LNCS (LNAI), vol. 7773, pp. 345–364. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41524-1 21

https://doi.org/10.1007/978-3-319-61660-5_19
https://doi.org/10.1007/978-3-642-40564-8_14
https://doi.org/10.1017/S1471068419000450
https://doi.org/10.1017/S1471068418000492
https://doi.org/10.1017/S1471068420000344
https://doi.org/10.1007/978-3-642-41524-1_21

Testing in ASP: Revisited Language and Programming Environment 375

19. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: integrated development environment
for answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011.
LNCS (LNAI), vol. 6645, pp. 317–330. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-20895-9 37

20. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Counting answer sets via dynamic
programming. CoRR abs/1612.07601 (2016)

21. Fraser, S., Beck, K., Caputo, B., Mackinnon, T., Newkirk, J., Poole, C.: Test driven
development (TDD). In: Marchesi, M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675,
pp. 459–462. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44870-
5 84

22. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. TPLP 19(1), 27–82 (2019)

23. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competi-
tion. JAIR 60, 41–95 (2017)

24. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

25. Gomes, C.P., Hoffmann, J., Sabharwal, A., Selman, B.: Short XORs for model
counting: from theory to practice. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT
2007. LNCS, vol. 4501, pp. 100–106. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72788-0 13

26. Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using XOR constraints. In: NIPS, pp. 481–488. MIT Press (2006)

27. Greßler, A., Oetsch, J., Tompits, H.: Harvey: a system for random testing in ASP.
In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377,
pp. 229–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-
5 21

28. Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J., Tompits, H.: On testing answer-
set programs. In: ECAI, pp. 951–956 (2010)

29. Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J., Tompits, H.: Random
vs. structure-based testing of answer-set programs: an experimental comparison.
In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
242–247. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-
9 26

30. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J. Artif. Intell. Res. 35, 813–857 (2009)

31. Lazaar, N., Gotlieb, A., Lebbah, Y.: On testing constraint programs. In: Cohen, D.
(ed.) CP 2010. LNCS, vol. 6308, pp. 330–344. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15396-9 28

32. Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and com-
petitions. AI Mag. 37(3), 45–52 (2016)

33. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP, pp. 23–37. MIT Press
(1994)

34. Madeyski, L.: Test-driven development - an empirical evaluation of agile practice
(2010). https://doi.org/10.1007/978-3-642-04288-1

35. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and
constraint logic programming. Ann. Math. Artif. Intell. 53(1–4), 251–287 (2008)

36. Oetsch, J., Prischink, M., Pührer, J., Schwengerer, M., Tompits, H.: On the small-
scope hypothesis for testing answer-set programs. In: KR. AAAI Press (2012)

https://doi.org/10.1007/978-3-642-20895-9_37
https://doi.org/10.1007/978-3-642-20895-9_37
https://doi.org/10.1007/3-540-44870-5_84
https://doi.org/10.1007/3-540-44870-5_84
https://doi.org/10.1007/978-3-540-72788-0_13
https://doi.org/10.1007/978-3-540-72788-0_13
https://doi.org/10.1007/978-3-319-61660-5_21
https://doi.org/10.1007/978-3-319-61660-5_21
https://doi.org/10.1007/978-3-642-20895-9_26
https://doi.org/10.1007/978-3-642-20895-9_26
https://doi.org/10.1007/978-3-642-15396-9_28
https://doi.org/10.1007/978-3-642-15396-9_28
https://doi.org/10.1007/978-3-642-04288-1

376 G. Amendola et al.

37. Ricca, F.: A Java wrapper for DLV. In: Answer Set Programming. CEUR, vol. 78
(2003)

38. Shen, D., Lierler, Y.: SMT-based constraint answer set solver EZSMT+ for non-
tight programs. In: KR, pp. 67–71 (2018)

39. Vos, M.D., Kisa, D.G., Oetsch, J., Pührer, J., Tompits, H.: Annotating answer-set
programs in LANA. TPLP 12(4–5), 619–637 (2012)

An Abstract View on Optimizations
in SAT and ASP

Yuliya Lierler(B)

University of Nebraska Omaha, Omaha, USA
ylierler@unomaha.edu

Abstract. Search-optimization problems are plentiful in scientific and
engineering domains. MaxSAT and answer set programming with weak
constraints (ASP-WC) are popular frameworks for modeling and solving
search problems with optimization criteria. There is a solid understand-
ing on how SAT relates to ASP. Yet, the question on how MaxSAT relates
to ASP-WC is not trivial. The answer to this question provides us with
the means for cross fertilization between distinct subareas of automated
reasoning. In this paper, we propose a weighted abstract modular frame-
work that allows us to (i) capture MaxSAT and ASP-WC and (ii) state
the exact link between these distinct paradigms. These findings translate,
for instance, into the immediate possibility of utilizing MaxSAT solvers
for finding solutions to ASP-WC programs.

1 Introduction

We target the advancement of automated reasoning that concerns itself with
finding solutions to difficult search-optimization problems occurring in scien-
tific and engineering domains. Specifically, we utilize the realms of propositional
satisfiability with optimizations (MaxSAT family) [22] and answer set program-
ming with weak constraints (ASP-WC) [1] to showcase our findings. We propose
a “weighted abstract modular system” framework that can capture these logics
and their relatives. MaxSAT and ASP-WC are instances exemplifying the util-
ity of this framework. This work is a continuation of a tradition advocated, for
example, in [6,16,17,24], where the authors abstract away the syntactic details
of studied logics and focus on their semantic properties.

In practice, when search problems are formulated there is often an interest
not only in identifying a solution, but also in pointing at the one that is optimal
with respect to some criteria. Another way to perceive this setting is by having
interplay of “hard” and “soft” modules (drawing a parallel to terminology used
in formulating partial weighted MaxSAT). Hard modules formulate immutable
constraints of a problem, i.e., requirements that solutions to a problem must
satisfy in order to deserve being called a solution. Soft modules express conditions
that are closer to preferences.

The work was partially supported by NSF grant 1707371.

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 377–392, 2021.
https://doi.org/10.1007/978-3-030-75775-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_25&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_25

378 Y. Lierler

Supporting various kinds of optimizations on an encoding and solving level
is a holy grail of ASP-WC. Yet, some approaches to answer set solving that
rely on translations to related automated reasoning (AR) paradigms – “trans-
lational” solvers such as cmodels [12] and lp2sat [13], which translate logic
programs into propositional satisfiability (SAT) problem [20] – do not provide
any support for weak constraints. One reason is that SAT itself has no sup-
port for formulating soft requirements. MaxSAT and its variants are extensions
to SAT supporting optimizations. The formulations of these extensions signifi-
cantly differ syntactically and semantically from those used in ASP-WC so that
the exact link, between ASP-WC and MaxSAT formalisms, required in imple-
menting translational approaches is not obvious. In general, optimizations in dif-
ferent areas of AR (see, for instance, [1,2,5,9,21]) are studied in separation with
no clear articulation of the exact links between the languages expressing opti-
mization criteria and their implementations. This paper takes modularity and
abstraction as key tools for building a thorough understanding between related
and yet disperse advances pertaining to optimizations or soft modules within
different AR communities. Lierler and Truszczynski [16] proposed an abstract
modular framework that allows us to bypass the syntactic details of a particu-
lar logic and study advances in AR from a bird’s eye view. That framework is
appropriate for capturing varieties of logics within hard modules. We extend the
framework in a way that soft modules can be formulated and studied under one
roof. We illustrate how a family of SAT based optimization formalisms such as
MaxSAT, weighted MaxSAT, and partial weighted MaxSAT (pw-MaxSAT) can
be embedded into the proposed framework. We also illustrate how ASP-WC fits
into the same framework. We study the abstract framework illustrating a num-
ber of its formal properties that then immediately translate into its instances
such as MaxSAT or ASP-WC. The paper culminates in a result illustrating how
ASP-WC programs can be processed by means of MaxSAT solvers. The opposite
link also becomes apparent, but it is left out of the paper to remain succinct.
To summarize, we propose to utilize abstract view on logics and modularity as
tools for constructing overarching view for distinct criteria used for optimization
within different AR communities.

2 Review: Abstract Logics and Modular Systems

We start with the review of an abstract logic by Brewka and Eiter [6]. We then
illustrate how it captures SAT and logic programs under answer set semantics.
We then review model-based abstract modular systems advocated by Lierler and
Truszczynski [16].

A language is a set L of formulas. A theory is a subset of L. Thus the set of
theories is closed under union and has the least and the greatest elements: ∅ and
L. We call a theory a singleton if it is an element/a formula in L (or a singleton
subset, in other words). This definition ignores any syntactic details behind the
concepts of a formula and a theory. A vocabulary is possibly an infinite count-
able set of atoms. Subsets of a vocabulary σ represent (classical propositional)

An Abstract View on Optimizations in SAT and ASP 379

interpretations of σ. We write Int(σ) for the family of all interpretations of a
vocabulary σ.

Definition 1. A logic is a triple L = (LL, σL, semL), where

1. LL is a language (language of L)
2. σL is a vocabulary (vocabulary of L)
3. semL : 2LL → 2Int(σL) is a function from theories in LL to collections of

interpretations (semantics of L)

If a logic L is clear from the context, we omit the subscript L from the notation
of the language, the vocabulary and the semantics of the logic.

Brewka and Eiter [6] showed that this abstract notion of a logic captures
default logic, propositional logic, and logic programs under the answer set seman-
tics. For example, the logic L = (L, σ, sem), where

1. L is the set of propositional formulas over σ,
2. sem(F), for a theory F ⊆ L, is the set of propositional models of theory F

(where we understand an interpretation to be a model of theory F if it is a
model of each element/propositional formula in F) over σ,

captures propositional logic. We call this logic a pl-logic. A clause is a proposi-
tional formula of the form

¬a1 ∨ . . . ∨ ¬a� ∨ a�+1 ∨ . . . ∨ am (1)

where ai is an atom. If we restrict elements of L to be clauses, then we call L a
sat-logic. Intuitively, the finite theories in sat-logic can be identified with CNF
formulas. Say, sat-logic theory {(a ∨ b), (¬a ∨ ¬b)} stands for the formula

(a ∨ b) ∧ (¬a ∨ ¬b). (2)

We now review logic programs. A logic program over σ is a finite set of rules
of the form

a0 ← a1, . . . , a�, not a�+1, . . . , not am, (3)

where a0 is an atom in σ or ⊥ (empty), and each ai (1 ≤ i ≤ m) is an atom
in σ.

It is customary for a given vocabulary σ, to identify a set X of atoms over σ
with (i) a complete and consistent set of literals over σ constructed as X ∪{¬a |
a ∈ σ \ X}, and respectively with (ii) an assignment function or interpretation
that assigns the truth value true to every atom in X and false to every atom in
σ \ X. In the sequel, we may refer to sets of atoms as interpretations and the
other way around following this convention. We say that a set X of atoms satisfies
rule (3), if X satisfies the propositional formula a1∧. . .∧a�∧ ¬a�+1∧. . .∧ ¬am →
a0. The reduct ΠX of a program Π relative to a set X of atoms is obtained by
first removing all rules (3) such that X does not satisfy the propositional formula
corresponding to the negative part of the body ¬a�+1 ∧ . . .∧¬am, and replacing

380 Y. Lierler

all remaining rules with a ← a1, . . . , a�. A set X of atoms is an answer set, if it
is the minimal set that satisfies all rules of ΠX [18]. For example, program

a ← not b
b ← not a.

(4)

has two answer sets {a} and {b}.
Abstract logics of Brewka and Eiter subsume the formalism of logic programs

under the answer set semantics. Indeed, let us consider a logic L = (L, σ, sem),
where

1. L is the set of logic program rules over σ,
2. sem(Π), for a program Π ⊆ L, is the set of answer sets of Π over σ,

We call this logic the lp-logic.
Lierler and Truszczynski [16] propose (model-based) abstract modular sys-

tems that allow us to construct heterogeneous systems based of “modules” stem-
ming from a variety of logics. We now review their framework.

Definition 2. Let L = (LL, σL, semL) be a logic. A theory of L, that is, a
subset of the language LL is called a (model-based) L-module (or a module, if
the explicit reference to its logic is not necessary). An interpretation I ∈ Int(σL)
is a model of an L-module B if I ∈ semL(B).

We use words theory and modules interchangeably at times. Furthermore,
for a theory/module in pl- or sat-logics we often refer to these as propositional
or SAT formulas (sets of clauses). For a theory/module in lp-logic we refer to it
as a logic program.

For an interpretation I, by I|σ we denote an interpretation over vocabulary σ
constructed from I by dropping all its members not in σ. For example, let σ1 be
a vocabulary such that a ∈ σ1 and b �∈ σ1, then {a, b}|σ1 = {a}. We now extend
the notion of a model to vocabularies that go beyond the one of a considered
module in a straight forward manner. For an L-module B and an interpretation
I whose vocabulary is a superset of the vocabulary σL of B, we say that I is
a model of B, denoted I |= B, if I|σL ∈ semL(B). This extension is in spirit of
a convention used in classical logic (for example, given a propositional formula
p ∧ q over vocabulary {p, q} we can speak of interpretation assigning true to
propositional variables {p, q, r} as a model to this formula).

Definition 3. A set of modules, possibly in different logics and over different
vocabularies is a (model-based) abstract modular system (AMS). For an abstract
modular system H, the union of the vocabularies of the logics of the modules in
H forms the vocabulary of H, denoted by σH. An interpretation I ∈ Int(σH) is
a model of H when for every module B ∈ H, I is a model of B. (It is easy to
see that we can extend the notion of a model to interpretations whose vocabulary
goes beyond σH in a straight forward manner.)

When an AMS consist of a single module {F} we identify it with module F
itself.

An Abstract View on Optimizations in SAT and ASP 381

3 Weighted Abstract Modular Systems

In practice, we are frequently interested not only in identifying models of a given
logical formulation of a problem (hard fragment) but identifying models that are
deemed optimal according to some criteria (soft fragment). Frequently, multi-
level optimizations are of interest. An AMS framework is geared towards cap-
turing heterogeneous solutions for formulating hard constraints. Here we extend
it to enable the formulation of soft constraints. We start by introducing a “w-
condition” – a module accommodating notions of a level and a weight. We then
introduce w-systems – a generalization of AMS that accommodates new kinds of
modules. In conclusion, we embed multiple popular AR optimization formalisms
into this framework.

Definition 4. Let L = (LL, σL, semL) be a logic. A pair (TL, w@l) – consisting
of a theory TL of logic L and an expression w@l, where w is an integer and l
is a positive integer – is called an L -w(eighted)-condition (or a w-condition, if
the explicit reference to its logic is not necessary). We refer to integers l and w
as levels and weights, respectively. An interpretation I ∈ Int(σL) is a model of
a L-w-condition B = (TL, w@l), denoted I |= B if I ∈ semL(TL). A mapping
[I |= B] is defined as follows

[I |= B] =

{
1 when I |= B,

0 otherwise.
(5)

By λ(B), Bw we denote level l and weight w associated with w-condition B,
respectively.

We identify w-conditions of the form (T,w@1) with expressions (T,w) (i.e., when
the level is missing it is considered to be one).

For a collection S of w-conditions, the union of the vocabularies of the logics
of the w-conditions in S forms the vocabulary of S, denoted by σS .

Definition 5. A pair (H,S) consisting of an AMS H and a set S of w-
conditions (possibly in different logics and over different vocabularies) so that
σS ⊆ σH is called a w(eighted)-abstract modular system (or w-system).

Let W = (H,S) be a w-system (H and S intuitively stand for hard and soft).
The vocabulary of H forms the vocabulary of W, denoted by σW . For a level l,
by Wl we denote the subset of S that includes all w-conditions whose level is l.
By λ(W) we denote the set of all levels associated with w-system W constructed
as {λ(B) | B ∈ S}.

Definition 6. Let pair W = (H,S) be a w-system. An interpretation I ∈
Int(σW) is a model of W if it is a model of AMS H. A model I∗ of W is optimal
if S is empty or there is a level l ∈ λ(W) such that the following conditions are
satisfied:

382 Y. Lierler

1. for any level l′ that is greater than l and any two models I and I ′ of W the
following equality holds

∑
B∈Wl′

Bw · [I |= B] =
∑

B∈Wl′

Bw · [I ′ |= B]

2. I∗ satisfies equation I∗ = arg max
I

∑
B∈Wl

Bw · [I |= B].

A model I∗ of W is min-optimal if it satisfies the conditions of max-optimal
model where in the equation of condition 2 we replace max by min.

This definition has two conditions. The first one identifies the greatest level of
w-conditions under which we can “distinguish” models. The second condition
is concerned with finding the models that maximize (or minimize in case of
min-optimal model) the numeric value associated with the w-conditions of this
level (note how w-conditions of any other level do not play a role within these
calculations).

MaxSAT Family as W-Systems. We now restate the definitions of MaxSAT,
weighted MaxSAT and pw-MaxSAT [22]. We then show how these formalisms are
captured in terms of w-systems. In the sections that follow we use w-systems to
model logic programs with weak constraints. The uniform language of w-systems
allows us to prove properties of theories in these different logics by eliminating
the reference to their syntactic form. In the conclusion of the paper we provide
translation from logic programs with weak constraints to pw-MaxSAT problems.

To begin we introduce a notion of so called σ-theory. For a vocabulary σ and
a logic L over this vocabulary (σL = σ), we call theory TL a σ-theory/σ-module
when it satisfies property sem(TL) = Int(σ). For example, in case of pl-logic or
sat-logic a conjunction of clauses of the form a ∨ ¬a for every atom a ∈ σ forms
a σ-theory. For a σ-theory a logic of the theory becomes immaterial so we allow
ourselves to denote an arbitrary σ-theory by Tσ disregarding the reference to its
logic.

As customary in propositional logic given an interpretation I and a proposi-
tional formula F , we write I |= F when I satisfies F (i.e., I is a model of F). A
mapping [I |= F] is defined as in (5) with B replaced by F . An interpretation
I∗ over vocabulary σ is a solution to MaxSAT problem F , where F is a CNF
formula over σ, when it satisfies the equation I∗ = arg maxI

∑
C∈F [I |= C].

The following result illustrates how w-systems can be used to capture
MaxSAT problem.

Proposition 1. Let F be a MaxSAT problem over σ. The optimal models of
w-system (Tσ, {(C, 1) | C ∈ F}) – where pairs of the form (C, 1) are sat-logic
w-conditions – form the set of solutions for MaxSAT problem F .

Proposition 1 allows us to identify w-systems of particular form with MaxSAT
problem. For example, any w-system of the form

(
Tσ, {(C1, 1), . . . (Cn, 1)})

–
where Ci (1 ≤ i ≤ n) is a singleton sat-logic theory – can be seen as a MaxSAT
problem composed of clauses {C1, . . . , Cn}.

An Abstract View on Optimizations in SAT and ASP 383

A weighted MaxSAT problem [3] is defined as a set (C,w) of pairs, where C
is a clause and w is a positive integer. An interpretation I∗ over vocabulary σ is
a solution to weighted MaxSAT problem P over σ, when it satisfies the equation

I∗ = arg max
I

∑
(C,w)∈P

w · [I |= C]. (6)

Proposition 2. Let P be a weighted MaxSAT problem over σ. The optimal
models of w-system (Tσ, P) – where each element in P is understood as a sat-
logic w-condition – form the set of solutions for weighted MaxSAT problem P .

A pw-MaxSAT problem [11] is defined as a pair (F, P) over vocabulary σ,
where F is a CNF formula over σ and P is a weighted MaxSAT problem over σ.
Formula F is referred to as hard problem fragment, whereas clauses in P form
soft problem fragment.

Let (F, P) be a pw-MaxSAT problem over vocabulary σ. An interpretation
I over σ is a model of (F, P), when I is a model of F . A model I∗ of (F, P) is
optimal when it satisfies Eq. (6), where I ranges over models of F . The following
proposition allows us to identify w-systems of particular form with pw-MaxSAT
problems.

Proposition 3. Let (F, P) be a pw-MaxSAT problem over vocabulary σ. The
models and optimal models of w-system (F, P) – where F is a sat-logic module
and each element in P is understood as a sat-logic w-condition – coincide with
the models and optimal models of pw-MaxSAT problem (F, P), respectively.

We now present sample pw-MaxSAT problem to illustrate some definitions at
work. Take F1 to denote sat-theory module (2). The pair

(F1, {(a, 1), (b, 1), (a ∨ ¬b, 2), (¬a ∨ b, 0)}) (7)

forms a pw-MaxSAT problem, whose models are {a} and {b} and {a} is an
optimal model. If we consider this pw-MaxSAT problem as a respective w-system
then the notion of min-optimal model is defined. Model {b} is a min-optimal
model for this w-system.

Embedding family of MaxSAT problems into w-systems realm provides us
with immediate means to generalize their definitions to allow (i) min-optimal
models; (ii) negative weights; (iii) distinct levels accompanying weight require-
ment on its clauses; (iv) removing restriction from its basic syntactic object being
a clause and allowing, for example, arbitrary propositional formulas, as a logic for
its module and w-conditions. Consider the definition of MaxPL Problem (meant
to be a counterpart of pw-MaxSAT defined for arbitrary propositional formulas
and incorporating enumerated items). We call a w-system (F, S) a MaxPL prob-
lem, when F is a pl-logic module and each w-condition in S is in pl-logic. It is
easy to see that any pw-MaxSAT problem is a special case instance of MaxPL
problem. The pair

(F1, {(a, 1), (b, 1@3), (a ∨ ¬b, 2), (¬a ∨ b, 0)}) (8)

384 Y. Lierler

forms a sample MaxPL problem that differs from (7) in boosting the level of one
of its w-conditions. The optimal model of this system is {b}. In the sequel we
illustrate that presence of levels and negative weights in w-systems can often be
considered as syntactic sugar. Also, the concept of min-optimal model can be
expressed in terms of optimal models of a closely related w-system. Yet, from
the perspective of knowledge representation, convenience of modeling, algorithm
design for search procedures such features are certainly of interest and deserve
an attention and thorough understanding.

Optimizations in Logic Programming. We now review a definition of a
logic program with weak constraints following the lines of [7]. A weak constraint
has the form

:∼ a1, . . . , a�, not a�+1, . . . , not am[w@l], (9)

where m > 0 and a1, . . . , am are atoms, w (weight) is an integer, and l (level) is
a positive integer. In the sequel, we abbreviate expression

:∼ a1, . . . , a�, not a�+1, . . . , not am (10)

occurring in (9) as D and identify it with the propositional formula

a1 ∧ . . . ∧ a� ∧ ¬a�+1 ∧ . . . ∧ ¬am. (11)

An optimization program (or o-program) over vocabulary σ is a pair (Π,W),
where Π is a logic program over σ and W is a finite set of weak constraints over
σ.

Let P = (Π,W) be an optimization program over vocabulary σ (intuitively,
Π and W forms hard and soft fragments, respectively). By λ(P) we denote
the set of all levels associated with optimization program P constructed as {l |
D[w@l] ∈ W}. Set X of atoms over σ is an answer set of P when it is an answer
set of Π. Let X and X ′ be answer sets of P. Answer set X ′ dominates X if there
exists a level l ∈ λ(P) such that following conditions are satisfied:

1. for any level l′ that is greater than l the following equality holds∑
D[w@l′]∈W

w · [X |= D] =
∑

D[w@l′]∈W

w · [X ′ |= D]

2. the following inequality holds for level l∑
D[w@l]∈W

w · [X ′ |= D] <
∑

D[w@l]∈W

w · [X |= D]

An answer set X∗ of P is optimal if there is no answer set X ′ of P that dominates
X∗.

Consider a logic whose language is a strict subset of that of propositional
logic: a language that allows only for formulas of the form (11), whereas its
semantics is that of propositional logic. We call this logic a wc-logic.

An Abstract View on Optimizations in SAT and ASP 385

Proposition 4. Let (Π,W) be an optimization logic program over vocabulary σ.
The models and min-optimal models of w-system

(
Π, {(D,w@l) | D[w@l] ∈ W})

– where Π is an lp-logic module and pairs of the form (D,w@l) are wc-logic w-
conditions – coincide with the answer sets and optimal answer sets of (Π,W),
respectively.

Propositions 1, 2, 3, and 4 allow us to identify MaxSAT, weighted MaxSAT, pw-
MaxSAT, and o-programs with respective w-systems. In the following, we often
use the terminology stemming from w-systems, when we talk of these distinct
frameworks. For instance, we allow ourselves to identify a weak constraint (9)
with a wc-logic w-condition

(a1 ∧ . . . ∧ a� ∧ ¬a�+1 ∧ . . . ∧ ¬am, w@l). (12)

We now exemplify the definition of an optimization program. Let Π1 be logic
program (4). An optimal answer set of optimization program

(Π1, {:∼ a, not b. − 2@1}) (13)

is {a}. We note that the answer sets and the optimal answer set of (13) coincide
with the models and the optimal model of pw-MaxSAT problem (7). The formal
results of this paper will show that this is not by chance and that these two
w-systems in different logics have more in common than meets the eye upon
immediate inspection.

4 Formal Properties of W-Systems

We now state some interesting properties and results about w-systems. Word
Property denotes the results that follow immediately from the model/optimal
model definitions.

Property 1. Any two w-systems with the same hard theory have the same mod-
els.

Due to this proposition when stating the results for w-systems that share the
same hard theory, we only focus on optimal and min-optimal models.

Property 2. Any model of w-system of the form (H, ∅) is optimal/min-optimal.

Property 3. Optimal/min-optimal models of the following w-systems coincide

– w-system W and
– w-system resulting from W by dropping all of its w-conditions whose weight

is 0.

Thus, the w-conditions, whose weight is 0 are immaterial and can be removed.
For instance, we can safely simplify sample pw-MaxSAT problem (7) and MaxPL
problem (8) by dropping their w-conditions (¬a ∨ b, 0).

We call a w-system W level-normal, when we can construct the sequence of
numbers 1, 2, . . . , |λ(W)| from the elements in λ(W). It is easy to see that we can
always adjust levels of w-conditions in W to respect such a sequence preserving
optimal models of original w-system W.

386 Y. Lierler

Proposition 5. Optimal/min-optimal models of the following w-systems coin-
cide

– w-system W and
– the level-normal w-system constructed from W by replacing each level li occur-

ring in its w-conditions with its ascending sequence order number i, where we
arrange elements in λ(W) in a sequence in ascending order l1, l2, . . . l|λ(W)|.

Sample MaxPL problem (8) is not level normal. Yet, this proposition suggests
that it is safe to consider the level-normal w-system (F1, {(a, 1), (b, 1@2), (a ∨
¬b, 2), (¬a ∨ b, 0)}) in its place. In the sequel we often assume level-normal w-
systems without loss of generality.

Proposition 6. For a w-system W = (H,S), if every level l ∈ λ(W) is such
that for any distinct models I and I ′ of W∑

B∈Wl

Bw · [I |= B] =
∑

B∈Wl

Bw · [I ′ |= B]

then optimal/min-optimal models of w-systems W and (H, ∅) coincide. Or, in
other words, any model of W is also optimal and min-optimal model.

By this proposition, for instance, it follows that optimal models of pw-MaxSAT
problem (F1, {(a, 1), (b, 1)}) coincide with its models {a} and {b} or, in other
words, the problem can be simplified to (F1, ∅).

Let W = (H,S) be a w-system. For a set S of w-conditions, by W[\S] we
denote the w-system (H,S \ S).

Proposition 7. For a w-system W = (H,S), if there is a set S ⊆ S of w-
conditions all sharing the same level such that for any distinct models I and I ′

of W ∑
B∈S

Bw · [I |= B] =
∑
B∈S

Bw · [I ′ |= B]

then W has the same optimal/min-optimal models as W[\S].

This result provides us with the semantic condition on when it is “safe” to drop
some w-conditions from the w-system. By this proposition, for instance, it follows
that the optimal models of pw-MaxSAT problem (7) coincide with the optimal
models of w-system constructed from (7) by dropping its w-conditions (a, 1) and
(b, 1). To summarize, all listed results account to the fact that the optimal models
of pw-MaxSAT problem (7) and the following pw-MaxSAT problem coincide

(F1, {(a ∨ ¬b, 2)}). (14)

Let (H, {(T1, w1@l1), . . . , (Tn, wn@ln)})−1· map a w-system into the following
w-system (H, {(T1, (−1 ·w1)@l1), . . . , (Tn, (−1 ·wn)@ln)}). The next proposition
tells us that min-optimal models and optimal models are close relatives:

Proposition 8. For a w-system W, the optimal models (min-optimal models)
of W coincide with the min-optimal models (optimal models) of W−1·.

An Abstract View on Optimizations in SAT and ASP 387

Eliminating Negative (or Positive) Weights. We call logics L and L′ com-
patible when their vocabularies coincide, i.e., σL = σ′

L. Let L and L′ be com-
patible logics, and T and T ′ be theories in these logics, respectively. We call
a theory T (and a w-condition (T,w@l)) equivalent to a theory T ′ (and a w-
condition (T ′, w@l), respectively), when sem(T) = sem(T ′). For example, sat-
logic theory (2) over vocabulary {a, b} is equivalent to lp-logic theory (4) over
{a, b}

The following proposition captures an apparent property of w-systems that
equivalent modules and w-conditions may be substituted by each other without
changing the overall semantics of the system.

Proposition 9. Models and optimal/min-optimal models of w-systems

({T1, . . . , Tn}, {B1, . . . , Bm}) and ({T ′
1, . . . , T

′
n}, {B′

1, . . . , B
′
m})

coincide when (i) Ti and T ′
i (1 ≤ i ≤ n) are equivalent theories, and (ii) Bi and

B′
i (1 ≤ i ≤ m) are equivalent w-conditions.

For a theory T of logic L, we call a theory T in logic L′, compatible to L, com-
plementary when (i) sem(T)∩sem(T) = ∅, and (ii) sem(T)∪sem(T) = Int(σL).
For example, in case of pl-logic, theories F and ¬F are complementary. Similarly,
a theory (¬a ∧ ¬b) ∨ (a ∧ b) in pl-logic over vocabulary {a, b} is complementary
to theory (4) in lp-logic over {a, b}. It is easy to see that given a theory in any
logic we can always find, for instance, a pl-logic or sat-logic theory complemen-
tary to it. Yet, given a theory in some arbitrary logic we may not always find a
theory complementary to it in the same logic. For example, consider vocabulary
{a, b} and a wc-theory a ∧ b. There is no complementary wc-theory to it over
vocabulary {a, b}.

Let (T,w@l) be an L-w-condition. By (T,w@l)+ we denote (T,w@l) itself
when w ≥ 0 and any w-condition in a compatible logic that has the form (T , −1 ·
w@l) (i.e., T is some theory complementary to T) when w < 0. By (T,w@l)−

we denote (T,w@l) itself when w ≤ 0 and any w-condition in a compatible logic
that has the form (T ,−1 · w@l) (i.e., T is some theory complementary to T)
when w > 0. It is easy to see that + and − forms a family of mappings satisfying
stated conditions. Applying a member in this family to a w-condition always
results in a w-condition with nonnegative and nonpositive weights respectively.

For a w-system W = (H, {B1, . . . , Bm}), by W+ we denote the w-system
of the form (H, {B1

+, . . . , Bm
+}), whereas by W− we denote the w-system of

the form (H, {B1
−, . . . , Bm

−}). The following proposition tells us that nega-
tive/positive weights within w-systems may be eliminated in favour of the oppo-
site sign when theories complementary to theories of w-conditions are found.

Proposition 10. Optimal/min-optimal models of w-systems W, W+, W− coin-
cide.

The result above can be seen as a consequence of the following proposition:

388 Y. Lierler

Proposition 11. Optimal/min-optimal models of w-systems (H, {(T,w@l)} ∪
S) and (H, {(T ,−1 · w@l)} ∪ S) coincide.

This proposition suggests that in case of significantly expressive logic the
presence of both negative and positive weights in w-conditions is nearly a syn-
tactic sugar. Let us illustrate the applicability of this result in the realm of
optimization programs. First, we say that a weak constraint (9) is singular if
either its weight w ≥ 0 or m = 1. Given a singular weak constraint/wc-logic
w-condition B = (T,w@l), it is easy to see that a mapping

B↑ =

⎧⎪⎨
⎪⎩

B when w ≥ 0 , otherwise
(¬a,−1 · w@l) when T has the form a

(a,−1 · w@l) when T has the form ¬a

is in the B+ family. We call optimization program singular when all of its w-
conditions are singular. Similarly, given a singular weak constraint/w-condition
B of the form (12), it is easy to see that a mapping

Bsat =

{(
(1),−1 · w@l

)
when w ≥ 0, otherwise

B when w < 0

is in the B− family. Note that the resulting w-condition of this mapping is in
sat-logic. For a singular optimization program (Π, {B1, . . . , Bn}),

(Π, {B1, . . . , Bn})↑ = (Π, {B↑
1 , . . . , B↑

n}),
(Π, {B1, . . . , Bn})sat = (Π, {Bsat

1 , . . . , Bsat
n }).

Proposition 10 tells us that optimal answer sets of singular o-program P and
positive o-program P↑ coincide. Also, it tells us that optimal answer sets of
singular o-program P coincide with min-optimal models of w-system Psat.

We note that the restriction on an optimization program to be singular is not
essential. In particular, given a non-singular program for every weak constraint
C of the form (9), whose weight is negative (i) adding to its hard fragment a
rule of the form aC ← a1, . . . , a�, not a�+1, . . . , not am, where aC is a freshly
introduced atom and (ii) replacing weak constraint C with :∼ aC [w@l] produces
a singular optimization program. The answer sets of these two programs are in
one to one correspondence. Dropping freshly introduced atoms aC from a newly
constructed program results in the answer sets of the original program. This fact
is easy to see given the theorem on explicit definitions [10]. Alviano [1] describes
a normalization procedure in this spirit.

Eliminating Levels. We call a w-system W (strictly) positive when all of its
w-conditions have (positive) nonnegative weights. Similarly, we call a w-system
W (strictly) negative when all of its w-conditions have (negative) nonpositive
weights. As we showed earlier the w-conditions with 0 weights may safely be

An Abstract View on Optimizations in SAT and ASP 389

dropped so as such the difference between, for example, strictly positive and
positive programs is inessential.

We now show that the notion of level in the definition of w-conditions is
immaterial from the expressivity point of view, i.e., they can be considered as
syntactic sugar. Yet, they are convenient mechanism for representing what is
called hierarchical optimization constraints. It was also shown in practice that it
is often of value to maintain hierarchy of optimization requirements in devising
algorithmic solutions to search problems with optimization criteria [4]. Here we
illustrate that given an arbitrary w-system we can rewrite it using w-conditions
of the form (T,w). This change simplifies the definition of an optimal model by
reducing it to a single condition. We can adjust weights w across the w-conditions
in a way that mimics their distinct levels. A procedure in style was reported by
Alviano [1] for the case of o-programs. In this work, we generalize that result to
arbitrary w-systems.

Let pair W = (H,S) be strictly positive level-normal w-system (as illustrated
earlier restricting w-systems to being positive is inessential restriction; recall
Proposition 10). Let n denote the number of distinct levels occurring in S, i.e.,
|λ(W)|. Let Ml be the number associated with each level integer l in λ(W) that
is computed as Ml = 1 +

∑
(T,w@l)∈S w. Intuitively, this number gives us the

upper bound (incremented by 1) for the sum of the weights of the w-conditions
of level l. We identify M0 with 1. We now define the number that serves the role
of the factor for adjusting each weight associated with some level. For level i

(1 ≤ i ≤ n), let fi be the number computed as fi =
∏

0≤j<i

Mj . By S1 we denote

the set of w-conditions constructed from S as follows

{(T, fi · w) | (T,w@i) ∈ S} (15)

By W1 we denote the w-system resulting from replacing S with S1.

Proposition 12. Optimal/min-optimal models of strictly positive level-normal
w-systems W = (H,S) and W1 = (H,S1) coincide.

Optimization Programs as Pw-MaxSAT Problems. It is well known that
logic programs under answer set semantic and propositional formulas are closely
related (see, for instance, [15] for an overview of translations). For example, for
so called “tight” programs a well known completion procedure [8] transforms a
logic program into a propositional formula so that the answer sets of the former
coincide with the models of the later. Once this formula is clausified the problem
becomes a SAT problem. For nontight programs extensions of completion proce-
dure are available [13,19]. Some of those extensions introduce auxiliary atoms.
Yet, the appearance of these atoms are inessential as models of resulting formulas
are in one to one correspondence with original answer sets. The later can be com-
puted from the former by dropping the auxiliary atoms. The bottom line is that
a number of known translations from logic programs to SAT exist. Numerous
answer set solvers, including but not limited to cmodels [12] and lp2sat [13],

390 Y. Lierler

rely on this fact by translating logic program in a SAT formula. For a logic pro-
gram Π over vocabulary σ (that we identify with a module in lp-logic), by FΠ

we denote a SAT formula, whose models coincide with these of Π. For example,
recall that F1 and Π1 denote sat-formula (2) and logic program (4). Formula F1

forms one of the possible formulas FΠ1 . In fact, F1 corresponds to the clausified
completion of program Π1 (which has the form (a ↔ ¬b) ∧ (b ↔ ¬a)).

In previous sections we illustrated how multiple levels and negative weights
in w-systems/singular optimization programs can be eliminated in favor of a
single level and positive weights. Thus, without loss of generality we consider
here singular optimization programs with a single level. The following result is
a consequence of several propositions stated earlier.

Proposition 13. Optimal answer sets of singular o-program (Π, {B1, . . . , Bm})
coincide with optimal models of pw-MaxSAT problem ((FΠ , {Bsat

1 , . . . , Bsat
n })−1·).

This result tells us, for example, that optimal answer sets of optimization pro-
gram (13) coincide with optimal models of pw-MaxSAT problem (14). Earlier,
we illustrated that optimal models of pw-MaxSAT problem (14) coincide with
these of pw-MaxSAT problem (7). Proposition 13 provides us with a formal result
that tells us how to utilize MaxSAT solvers for finding optimal answer sets of a
program in similar ways as SAT solvers are currently utilized for finding answer
sets of logic programs as exemplified by such answer set solvers as cmodels or
lp2sat.

5 Conclusions

We proposed the extension of abstract modular systems to weighted systems in a
way that modern approaches to optimizations stemming from a variety of differ-
ent logic based formalisms can be studied in unified terminological ways so that
their differences and similarities become clear not only on intuitive but also for-
mal level. We trust that establishing clear link between optimization statements,
criteria, and solving in distinct AR subfields is a truly fruitful endeavor allowing
a streamlined cross-fertilization between the fields. In particular, an immedi-
ate and an intuitive future work direction is extending a translational based
answer set solver cmodels with capabilities to process optimization statements
by enabling it to interface with a MaxSAT solver in place of a SAT solver. In
addition, a generalization of results presented here is of interest in the scope of
what is called constraint answer set programming [14]. The ezsmt [23] system
is a translational constraint answer set solver that translates its programs into
satisfiability modulo theories (SMT) formulas. We trust that results obtained
here lay the groundwork for obtaining a link between constraint answer set pro-
grams with weak constraints and what is called O(ptimization)MT formulas – a
formalism extending SMT with optimizations.

An Abstract View on Optimizations in SAT and ASP 391

References

1. Alviano, M.: Algorithms for solving optimization problems in answer set program-
ming. Intelligenza Artificiale 12, 1–14 (2018). https://doi.org/10.3233/IA-180119

2. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based opti-
mization in clasp. In: Dovier, A., Costa, V.S. (eds.) Technical Communications of
the 28th International Conference on Logic Programming (ICLP’12). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 17, pp. 211–
221. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2012). https://doi.org/10.
4230/LIPIcs.ICLP.2012.211, http://drops.dagstuhl.de/opus/volltexte/2012/3623

3. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The first and second max-sat evalu-
ations. J. Satisf. Boolean Model. Comput. 4, 251–278 (2008)

4. Argelich, J., Lynce, I., Marques-Silva, J.: On solving boolean multilevel optimiza-
tion problems. In: Proceedings of the 21st International Joint Conference on Arti-
ficial Intelligence, pp. 393–398. IJCAI 2009, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2009)

5. Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: Customizing answer
set preferences without a headache. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, Austin, Texas, USA. pp. 1467–1474 (2015).
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9535

6. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: Proceedings of National Conference on Artificial Intelligence, vol. 2007,
pp. 385–390. AAAI (2007)

7. Calimeri, F., et al.: Asp-core-2 input language format (2013). https://www.mat.
unical.it/aspcomp2013/files/ASP-CORE-2.03c.

8. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press, New York (1978)

9. Di Rosa, E., Giunchiglia, E.: Combining approaches for solving satisfiability prob-
lems with qualitative preferences. AI Commun. 26(4), 395–408 (2013). http://dl.
acm.org/citation.cfm?id=2594602.2594606

10. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pp.
119–131 (2005)

11. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006).
https://doi.org/10.1007/11814948 25

12. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propo-
sitional satisfiability. J. Autom. Reas. 36, 345–377 (2006)

13. Janhunen, T.: Some (in)translatability results for normal logic programs and
propositional theories. J. Appl. Non-Classical Logics 35–86 (2006)

14. Lierler, Y.: Relating constraint answer set programming languages and algorithms.
Artif. Intell. 207C, 1–22 (2014)

15. Lierler, Y.: What is answer set programming to propositional satisfiability. Con-
straints 22, 307–337 (2017)

16. Lierler, Y., Truszczyński, M.: An abstract view on modularity in knowledge repre-
sentation. In: Proceedings of the AAAI Conference on Artificial Intelligence (2015)

17. Lierler, Y., Truszczyński, M.: Abstract modular inference systems and solvers.
Artif. Intell. 236, 65–89 (2016)

18. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann.
Math. Artif. Intell. 25, 369–389 (1999)

https://doi.org/10.3233/IA-180119
https://doi.org/10.4230/LIPIcs.ICLP.2012.211
https://doi.org/10.4230/LIPIcs.ICLP.2012.211
http://drops.dagstuhl.de/opus/volltexte/2012/3623
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9535
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.
http://dl.acm.org/citation.cfm?id=2594602.2594606
http://dl.acm.org/citation.cfm?id=2594602.2594606
https://doi.org/10.1007/11814948_25

392 Y. Lierler

19. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT
solvers. In: Proceedings of National Conference on Artificial Intelligence (AAAI),
pp. 112–117. MIT Press (2002)

20. Mitchell, D.G.: A SAT solver primer. EATCS Bull. (Logic Comput. Sci. Column).
85, 112–133 (2005)

21. Nieuwenhuis, R., Oliveras, A.: On SATmodulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814948 18

22. Robinson, N., Gretton, C., Pham, D.N., Sattar, A.: Cost-optimal planning using
weighted maxsat. In: ICAPS 2010 Workshop on Constraint Satisfaction Techniques
for Planning and Scheduling (COPLAS10) (2010)

23. Shen, D., Lierler, Y.: SMT-based constraint answer set solver EZSMT+ for non-
tight programs. In: Proceedings of the 16th International Conference on Principles
of Knowledge Representation and Reasoning (KR) (2018)

24. Tasharrofi, S., Ternovska, E.: A semantic account for modularity in multi-language
modelling of search problems. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) Fro-
CoS 2011. LNCS (LNAI), vol. 6989, pp. 259–274. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24364-6 18

https://doi.org/10.1007/11814948_18
https://doi.org/10.1007/978-3-642-24364-6_18

Model Reconciliation in Logic Programs

Tran Cao Son1(B), Van Nguyen1, Stylianos Loukas Vasileiou2,
and William Yeoh2

1 New Mexico State University, Las Cruces, NM 88003, USA
{tson,vnguyen}@cs.nmsu.edu

2 Washington University in St. Louis, St. Louis, MO 63130, USA
{v.stylianos,wyeoh}@wustl.edu

Abstract. Inspired by recent research in explainable planning, we inves-
tigate the model reconciliation problem between two logic programs πa

and πh, which represent the knowledge bases of an agent and a human,
respectively. Given πa, πh, and a query q such that πa entails q and πh

does not entail q (or πa does not entail q and πh entails q), the model
reconciliation problem focuses on the question of how to modify πh, by
adding ε+ ⊆ πa to πh and removing ε− ⊆ πh from πh such that the
resulting program π̂h = (πh\ε−) ∪ ε+ has an answer set containing q
(or has no answer set containing q). The pair (ε+, ε−) is referred to as a
solution for the model reconciliation problem (πa, πh, q) (or (πa, πh, ¬q)).
We prove that, for a reasonable selected set of rules ε+ ⊆ πa there exists
a way to modify πh such that π̂h is guaranteed to credulously entail q
(or skeptically entail ¬q). Given that there are potentially several solu-
tions, we discuss different characterizations of solutions and algorithms
for computing solutions for model reconciliation problems.

Keywords: Model reconciliation · Explainable planning · Answer set
programming

1 Introduction

In several problems involving two (or more) agents1 with different knowledge
bases, the agents often discuss about the truth value of an atom. Frequently,
the question about the truth value of q—an atom appearing in the knowledge
bases of both agents—is raised by an agent, say A, to another one, say B. Facing
this question, agent B could potentially inform agent A the reason, constructed
using her knowledge, for the truth value of q. This method is reasonable if agents
A and B share a knowledge base. When they have different knowledge bases,
this method might no longer suitable. For example, in human-aware planning

This research is partially supported by NSF grants 1757207, 1812619, 1812628, and
1914635.
1 We discuss problems involving only two agents in this paper, but our approach could

be generalized to multiple agents.

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 393–406, 2021.
https://doi.org/10.1007/978-3-030-75775-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_26&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_26

394 T. C. Son et al.

problems [3,5,12,13], a planning agent may inform a human user that it has a
plan α for achieving a given goal. However, α may not be a feasible plan from
the human’s perspective. To address this issue, research in explainable planning
proposes the model reconciliation problem, where the goal is to reconcile some
of the differences in the models of the agent and the human (i.e., informs the
human what needs to be changed in her model) such that α is an optimal plan,
often the minimal length plan, in the reconciled model of the human.

In this paper, we propose a generalization of the model reconciliation prob-
lem, introduced in [1], as follows: Given a logic program πa of a robot and a
logic program πh of a human user such that πa entails2 an atom q (resp. does
not entail q), the goal is to identify a pair of sub-programs ε+ ⊆ πa and ε− ⊆ πh

such that π̂h = πh\ε− ∪ε+ will also entail q (resp. will also not entail q). We refer
to this problem as the model reconciliation in logic programs (MRLP) problem.

We note that MRLP might appear similar to strong equivalent program trans-
formation (e.g., [6]) and logic program update (e.g., [11]), both research topics
that have been extensively studied by the logic programming community. It is
worth pointing out that MRLP’s goal is not to make πa and πh equivalent. For
example, if x is an atom in the languages of both πa and πh, πa entails x, πh

does not entail x, and ε = (ε+, ε−) satisfying π̂h = πh\ε− ∪ ε+ entails q then
ε is an explanation for the problem (πa, πh, q) even when π̂h does not entail x,
i.e., π̂h is not equivalent to πa. Comparing to logic programming update, MRLP
first needs to identify ε and then modifies the human program πh by deleting
or adding rules; it does not change the remaining rules of πh. We will discuss in
more detail the differences between MRLP and logic program update later. In
summary, the main contributions of this paper are:

• a generalization of the model reconciliation problem in explainable planning
to define the MRLP and a method for solving MRLP problems;

• different characterization of solutions of a MRLP problem that can be used
to comparing solutions; and

• an algorithm for computing solutions of a MRLP problem.

The paper is organized as follows. The next section includes a short review of
logic programming under answer set semantics and the notion of a justification
for an atom with respect to an answer set that will be useful for later discussion.
We then propose a general method for solving MRLP problems and discuss
different ways to characterize a solution of a MRLP problem. Afterwards, we
present algorithms for computing solutions of a given MRLP.

2 Background: Answer Set Programming

Answer set programming (ASP) [7,9] is a declarative programming paradigm
based on logic programming under the answer set semantics. A logic program
2 In this paper, whenever we say a program entails a literal, we refer to the credu-
lous entailment relationship between a program a literal. Precise definition will be
provided in the next section.

Model Reconciliation in Logic Programs 395

Π is a set of rules of the form a0 ← a1, . . . , am, not am+1, . . . , not an where
0 ≤ m ≤ n, each ai is an atom of a propositional language and not represents
(default) negation. Intuitively, a rule states that if all positive literals ai are
believed to be true and no negative literal not ai is believed to be true, then
a0 must be true. If a0 is omitted, the rule is called a constraint. If n = 0, it is
called a fact. For a rule r, head(r) denotes a0; pos(r) and neg(r), referred to as
the positive and negative body, respectively, denotes the set {a1, . . . , am} and
{am+1, . . . , an}, respectively. Also, atoms(r) denotes the set of all atoms in r,
viz. {head(r)} ∪ pos(r) ∪ neg(r); and, atoms(Π) denotes the set of all atoms of
Π. heads(Π) (resp. negs(Π)) denotes the set of atoms occurring in the head of
rules of Π (resp. negative literals of Π).

Let Π be a program. I ⊆ atoms(Π) is called an interpretation of Π. For an
atom a, a is satisfied by I, denoted by I |= a, if a ∈ I. A set of atoms S is
satisfied by I if S ⊆ I. For a rule r, I |= body(r) if pos(r) ⊆ I and neg(r)∩I = ∅.
A rule r is satisfied by I if I 	|= body(r) or I |= head(r). I is a model of a program
if it satisfies all its rules. An atom a is supported by I in Π if there exists r ∈ P
such that head(r) = a and I |= body(r).

For an interpretation I and a program Π, the reduct of Π w.r.t. I (denoted
by ΠI) is the program obtained from Π by deleting (i) each rule r such that
neg(r) ∩ I 	= ∅, and (ii) all negative literals in the bodies of the remaining
rules. Formally, P I = {head(r) ← pos(r) | r ∈ Π, neg(r) ∩ I = ∅} . Given an
interpretation I, observe that the program ΠI is a definite program (a program
with no occurrence of negative literals). An interpretation I is an answer set [4]
of Π if I is the least model of ΠI [2], which is the least fixpoint of the operator
TΠ defined by TΠ(I) = {a | ∃r ∈ Π,head(r) = a, I |= body(r)} and is denoted
by lfp(TΠ).

Given an answer set I of Π and an atom q, a justification for q w.r.t. I is
a set of rules S ⊆ Π such that head(r) ∈ I and I |= body(r) for r ∈ S and
q ∈ lfp(TSI). A justification S for q w.r.t. I is minimal if there exists no proper
subset S′ ⊂ S such that S′ is also a justification for q w.r.t. I. It is easy to see
that if S is a minimal justification for q w.r.t. I then negs(S) ∩ heads(S) = ∅
and heads(S) is an answer set of S.

Given a logic program Π, an atom a. We write Π |∼ a to indicate that
a belongs to at least one answer set of Π or a is credulously entailed by Π.
Furthermore, we use Π |∼	 a to indicate that a does not belong to any answer set
of Π or ¬a is cautiously entailed by Π.

3 Model Reconciliation in Logic Programs

The model reconciliation problem in logic programs (MRLP) is divided into two
sub-problems, one aims at changing the human program so that it entails an
atom (e-MRLP) and another focuses on achieving that the updated program
does not entail an atom (n-MRLP). Inspired by the problem in explainable
planning, we define three different types of MLRP.

396 T. C. Son et al.

Definition 1 (MRLP). Let πa and πh be two logic programs and q be an atom
in the language of πa.

• The problem of model reconciliation for entailment in logic programs (e-
MRLP) is defined by a triple (πa, πh, q). A pair of programs (ε+, ε−) such
that ε+ ⊆ πa and ε− ⊆ πh is a solution of (πa, πh, q) if π̂h |∼ q where
π̂h = πh\ε− ∪ ε+.

• The problem of model reconciliation for non-entailment in logic programs
(n-MRLP) is defined by a triple (πa, πh,¬q). A pair of programs (ε+, ε−)
such that ε+ ⊆ πa and ε− ⊆ πh is a solution of (πa, πh,¬q) if π̂h |∼	 q where
π̂h = πh\ε− ∪ ε+.

• The general problem of model reconciliation in logic programs (MRLP) is
defined by a triple (πa, πh, ω) where ω = ω+ ∧ ¬ω− and ω+ (resp. ω−) is
a conjunction of atoms in πa. (ε+, ε−) is a solution for the MRLP problem
if it is a solution for (πa, πh, q) for each conjunct q in ω+ and solution for
(πa, πh,¬r) for each conjunct r in ω−.

We note that e-MRLP focuses on credulous entailment of atoms while n-
MRLP on skeptical entailment of negation of atoms. This is because we are
interested in applying the framework in situations utilizing answer set program-
ming for problem solving. In this context, it is often the case that the existence
(resp. non-existence) of an answer set, that contains a designated atom, indi-
cating that the problem is solvable (resp. not solvable). The combination of
e-MRLP and n-MRLP, as in the general MRLP, provides us way to express
various types of problems. For example, the shortest plan model reconciliation
problem in explainable planning can be expressed by the triple (πa, πh, G) where
πa and πh are the logic programs encoding the planning problem of the agent
and the human3, respectively, and G = goal(n) ∧ ¬goal(n − 1) ∧ . . . ∧ ¬goal(0)
representing that the goal of the planning problem must be satisfied after the
execution of n actions but it is unsatisfied after the execution of any arbitrary
k < n actions.

Observe that e-MRLP implicitly requires that π̂h is consistent. On the other
hand, this requirement is missing in n-MRLP. As we are often interested in
the general MRLP problem, we will therefore interested in solutions of MRLP
problems that guarantee the consistency of π̂h. To simplify the presentation, we
will assume that given for a MRLP problem (πa, πh, ω), πa |∼ ω+ and πa |∼	 ω−;
for a e-MRLP problem (πa, πh, q1 ∧ . . . ∧ qk), πa |∼ qi for i = 1, . . . , qk; and
for a n-MRLP problem (πa, πh,¬q1 ∧ . . . ∧ ¬qk), πa |∼ ¬qi for i = 1, . . . , qk.
Furthermore, we will discuss the solutions of e-MRLP or n-MRLP problems with
a single atom q as the solutions for more complex formulas can be computed in
the same manner.

We will first discuss how to solve n-MRLP problems. Obviously, if πh |∼	 q
then (∅, ∅) is a solution for (πa, πh,¬q). Now, assume that πh |∼ q. By definition
of answer sets, we can just remove rules from πh to achieve π̂h |∼	 q. Let πh(q) =
{r | r ∈ πh, head(r) = q}. It is easy to see that P |∼	 q for every P ⊆ πh\πh(q).
3 Strictly speaking, πa also encodes the shortest plan in explainable planning.

Model Reconciliation in Logic Programs 397

As such, a solution (∅, ε−) for the n-MRLP problem (πa, πh,¬q) that guarantees
the consistency of π̂h could be determined with πh(q) ⊆ ε− ⊆ πh. Observe that
taking πa into consideration provide alternative solutions as well. For example,
given the two programs:

πa = {a ←} πh = {q ← not c; c ← not q; a ← not a, not q}

It is easy to see that πh has a unique answer set {q} and thus πh |∼ q and
πh\πh(q) is inconsistent. On the other hand, either (πa, πh(q)) or (∅, {q ←
not c; a ← not a, not q}) is a solution for the n-MRLP problem (πa, πh,¬q). In
either case, π̂h is consistent. The former adds a rule from πa and removes πh(q)
from πh while the latter only removes rules from πh.

It should be noted that sometimes, there is no need to remove rules whose
head is q to achieve that π̂h |∼	 q. For example, for the program πh = {q ←
not c; c ← not d; d ←} we have that πh\{d ←} |∼	 q. The two examples show
that there are several explanations for a n-MRLP problem. As we will see later,
the same holds for e-MRLP problems. In our view, which explanation should be
used is application dependent.

We now discuss a method for solving e-MRLP problems (πa, πh, q). By defi-
nition of answer sets, π̂h |∼ q means that there exists an answer set of π̂h which
contains a justification for q. In all likelihood, this justification must come from
πa if πh |∼	 q. In other words, the justification for q in π̂h should be a part of ε+.
For this reason, we will focus on how to choose ε+. This can be done by identi-
fying an answer set I supporting q and selecting a justification for q w.r.t. I as
ε+. A solution can then determined by identifying ε− ⊆ πh so that (ε+, ε−) is
a solution to the problem (πa, πh, q). Assume that I and ε+ have been selected,
we motivate the selection of ε− using a series of e-MRLP problems (πa, πh, b),
i.e., the robot wants to explain to the human that b is entailed by his program.

Example 1. Let πa =
{

a ←; b ← a
}

πh = {a ←} Clearly, πa has a unique
answer set I0 = {a, b} and ε+ = πa is a justification for b. To explain b to
the human, the robot needs to inform the human that the rule b ← a exists.
Furthermore, there is no need to remove anything from πh, i.e., ε− = ∅ since the
rule a ← is satisfied by I0.

The example above discusses a situation in which one needs to add rules to the
human’s program as part of the explanation process. The next examples discuss
different situations in which one needs to also remove rules from the human’s
program.

Example 2. Let πa = {a ← not b; b ← not a} and πh = {a ←}. πa has two
answer sets I1 = {a} and I2 = {b}. Only I2 supports b and ε+ = {b ← not a} is
the justification of b w.r.t. I2. It is easy to see that simply adding ε+ to πh will
result in a program with the unique answer set {a} which does not support b.
It means that the rule a ← should be removed, i.e., ε− = {a ←}. This suggests
that ε− should contain any rule whose head does not belong to I2.

398 T. C. Son et al.

Example 3. Let πa = {b ← not a} πh = {c ← not c}.
πa has a unique answer set I3 = {b} and the unique justification for b is ε+ = πa.
The program πh ∪ πa is also inconsistent because of the rule c ← not c. So, we
need to have ε− = {c ← not c}. Observe that in this case, the rule r =
“c ← not c” satisfies head(r) 	∈ I3 but neg(r) ∩ I3 = ∅.

Example 4. Let πa = {b ← not a} πh = {← b}.
πa has a unique answer set I4 = {b} and the unique justification for b is ε+ = πa.
The program πh ∪ πa is also inconsistent because of the constraint ← b. So, we
should set ε− = πh. In this case, the constraint r =“ ← b” satisfies head(r) 	∈ I4
but pos(r) ⊆ I4.

Observe that in Example 1, the rule a ← needs not to be removed since its
body and head are both satisfied by the answer set {a, b} which happens to be
the answer set of the justification ε+. In Example 2, the rule a ← is removed
because of its body is satisfied but its head is not satisfied by the answer set
{b}. Although it appears differently, Examples 3–4 are similar to Example 2:
The head of the rule is not satisfied and the body of the rule is satisfied by
the answer set of the program ε+. So, one might wonder whether there is any
reasonable situation in which a rule, whose head is not satisfied by the answer
set I, should be kept. Indeed, consider an example similar to Example 4, except
that πh = {← c}. In this case, it would make sense not to remove the constraint
← c because it is not falsified by the answer set I4. The discussion above leads to
the following notion that is useful for the computation of solutions of e-MRLP
problems.

Definition 2 (Residual of a program w.r.t. a set of rules and a set of
atoms). Let πa and πh be two programs. Further, let I be a set of atoms of πa

and ε+ ⊆ πa. The residual of πh with respect to ε+ and I, denoted by ⊗(πh, ε+, I),
is the collection of rules from πh\ε+ such that for each rule r ∈ ⊗(πh, ε+, I):

(i) head(r) ∈ I and neg(r) ∩ I = ∅; or
(ii) neg(r) ∩ heads(ε+) 	= ∅; or
(iii) pos(r)\I 	= ∅.
We use ε−[ε+, I, πh] to denote the set of rules πh\ ⊗ (πh, ε+, I).

It is easy to verify that if we use I and ε+ as in Examples 1–4, then
(ε+, ε−[ε+, I, πh]) is a solution for the problem (πa, πh, b) in these examples.

Observe that Examples 1–4 are somewhat unique in that, for each answer
set, there exists only one possible justification for the atom b. It is easy to see
that there are situations in which multiple justifications for an atom are present.
For example, consider

πa =
{

a ←; b ← a; b ←}
πh = {a ←}

In this case, πa also has a unique answer set I = {a, b}. However, there are
two possible ways for justifying the presence of b in the answer set: (1) ε+1 =

Model Reconciliation in Logic Programs 399

{a ←; b ← a} and (2) ε+2 = {b ←}. It is easy to see that for i = {1, 2},
(ε+i , ε−

i [ε+i , I, πh]) is a solution for (πa, πh, b). A natural question is then which
solution should be used? We believe that choosing which solution to present to
the human is application dependent; for example, if b represents a fact in the
initial state of a planning problem, using ε+2 is reasonable; on the other hand, if b
is a derived fact and is dependent on a, using ε+1 would be more reasonable as it
informs the human of the dependency between a and b, which could potentially
be useful for the human.

The above discussion shows that solutions of the e-MRLP problem (πa, πh, q)
can be computed by identifying I, ε+, and then set ε− = ε−[ε+, I, πh]. An appro-
priate choice of I and ε+ is specified in the next theorem.

Theorem 1. Let (πa, πh, q) be an e-MRLP problem. Further, let I be an answer
set of πa supporting q and ε+ ⊆ πa be a minimal justification of q w.r.t. I. Then,
(ε+, ε−[ε+, I, πh]) is a solution of (πa, πh, q).

Proof. Let P = πh\ε−[ε+, I, πh] ∪ ε+. Let K = heads(P) ∩ I. Let P1 = {r ∈
P | head(r) ∈ I, neg(r) ∩ K = ∅}. Clearly, ε+ ⊆ P1. Furthermore, for each rule
r ∈ P1, neg(r)∩heads(P1) = ∅ since heads(P1) ⊆ K. Therefore, P1 is consistent
and has a unique answer set J containing heads(ε+) and J ⊆ I.

Consider r ∈ P\P1. We have that head(r) 	∈ I or neg(r) ∩ K 	= ∅. From
Definition 2, we can conclude that neg(r) ∩ heads(ε+) 	= ∅ or pos(r)\I 	= ∅.
This allows us to show that P J = P J

1 ∪ R and, for every r ∈ R, pos(r)\J 	= ∅.
This implies that J is an answer set of P J , i.e., (ε+, ε−[ε+, I, πh]) is a solution
of (πa, πh, q). �

It is easy to see that the following holds:

Corollary 1. For an e-MRLP problem (πa, πh, q), if there exists a non-trivial
justification ε+ ⊂ πa w.r.t. an answer set I of πa, then it has a non-trivial
solution.

3.1 Computing Solutions of MRLP Problems Using ASP

We will conclude the section with a discussion on how a solution for a general
MRLP problem can be constructed. Without loss of generality, assume that we
have the problem (πa, πh, q ∧ ¬r) where q and r are atoms of πa. Recall that
we assume that πa |∼ q and πa |∼	 r in this problem. A solution (ε+, ε−) for
(πa, πh, q ∧ ¬r) can be computed by the following steps: (i) compute an answer
set I of πa that supports q and identify a minimal justification ε+ of q w.r.t. I;
(ii) compute ε− = ε−[ε+, I, πh]; (iii) identify a set of rules λ from π′ = πh\ε∪ ε+

so that π′\λ |∼	 r. The final solution for (πa, πh, q ∧¬r) is then (ε+, ε− ∪λ). Note
that because ε+ is a justification for q, ε+ |∼	 r holds. Therefore, λ always exists
and Theorem 1 shows that the problem (πa, πb, q∧¬r) always has some solution.

Given a program πa and an answer set I supporting ω+ of πa, let Π(πa, I)
be the program such that:

400 T. C. Son et al.

Algorithm 1: solve(πa, πh, ω)
Input: Programs πa, πh, conjunction ω
Output: a solution (ε+, ε−) for (πa, πh, ω)

1 Let I be an answer set of πa ∪ {← not q | q ∈ ω+}
2 Compute Π(πa, I)
3 Compute an answer set J of Π(πa, I)
4 Compute ε+ = {head(r) ← pos(r), neg(r) | head(r) ← pos(r), neg(r), ok(r) ∈

Π(πa, I) and ok(r) ∈ J}.
5 Let λ0 = {r | r ∈ πh\ε−[ε+, I, πh] and head(r) ∈ ω−}
6 Identify a set λ0 ⊆ λ ⊆ πh\ε−[ε+, I, πh] such that πh\(ε−[ε+, I, πh] ∪ λ) ∪ ε+ is

consistent
7 return (ε+\πh, ε−[ε+, I, πh] ∪ λ)

• Π(πa, I) contains the constraint ← not q, for each q ∈ ω+.
• For each x ∈ πa s.t. head(x) ∈ I and I |= body(x):

• head(x)←pos(x), neg(x), ok(x) is a rule in Π(πa, I).
• {ok(x)} ← is a rule of Π(πa, I).
• #mimimize{1,X : ok(X)} is a rule of Π(πa, I).

• No other rule is in Π(πa, I).

We next present an algorithm which uses Π(πa, I) for generating solutions
of a MRLP problem (πa, πh, ω).

Recall that we assume that πa |∼ ω+ and πa |∼	 ω− in this paper. Otherwise,
the algorithm needs to check for the two conditions (i) πa |∼ ω+, i.e., whether πa

has answer set satisfying ω+; and (ii) πa |∼	 ω−, i.e., whether πa has any answer
set satisfying any atom occurring in ω− before continues with the first line. The
correctness of the algorithm is proved in Proposition 1 (below) and the fact that
all rules whose head occurring in ω− are removed (Line 4–5).

Proposition 1. Given a MRLP problem (πa, πh, ω) and I is an answer set of
πa supporting ω+. Let J be an answer set of Π(πa, I) and ε+ be the collection
of rules:

{
head(r) ← pos(r), neg(r) head(r) ← pos(r), neg(r), ok(r) ∈ Π(πa, I)∧

ok(r) ∈ J

}

Then, J\{ok(x) | x is a rule in πa} ⊆ I and (ε+, ε−[ε+, I, πh]) is a solution for
(πa, πh, ω+).

Proof (Sketch). The proof of this proposition relies on the following observation:
(i) J\{ok(x) | x is a rule in πa} ⊆ I follows immediately from the definition of
Π(πa, I); (ii) J must contain q, for q ∈ ω+, due to the constraint “← not q”;
(iii) the minimization statement ensures that J is a set with minimal number of
rules satisfying ω+; and the fact that q ∈ J for q ∈ ω+ implies that ε+ is indeed
a minimal justification for ω+ w.r.t. I and, hence, (ε+, ε−[ε+, I, πh]) is a solution
for (πa, πh, ω+). �

Model Reconciliation in Logic Programs 401

4 Characterizing Solutions

As we have discussed earlier, a MRLP might have several solutions and choosing
a suitable solution is application dependent. We now discuss some characteristics
of solutions that could influence the choice.

Definition 3. Let (πa, πh, ω) be an MRLP problem and (ε+, ε−) be a solution
of (πa, πh, ω). We say:

• (ε+, ε−) is optimal if there exists no solution (λ+, λ−) such that λ+ ∪ λ− ⊂
ε+ ∪ ε−.

• (ε+, ε−) is π-restrictive for π ⊆ πa if ε+ ⊆ π; it is minimally-restrictive if
there exists no solution (λ+, λ−) such that λ+ ⊂ ε+.

• (ε+, ε−) is π-preserving for π ⊆ πh if π ∩ ε− = ∅; it is maximally-preserving
if there exists no solution (λ+, λ−) such that λ− ⊂ ε−.

• (ε+, ε−) is assertive if every answer set of πh\ε− ∪ ε+ satisfies ω+.
• (ε+, ε−) is a solution with justification (or j-solution) if ε+ contains a justi-

fication for ω+ w.r.t. some answer set I of πa.

Each class of solutions has its own merits and could be useful in different situa-
tions. Optimal solutions could be useful when solutions are associated with some
costs. Minimally-restrictive solutions focus on minimizing the amount of informa-
tion that the robot needs to introduce to the human. They will be useful when
explaining a new rule is expensive. On the other hand, maximally-preserving
solutions is appropriate when one seeks to minimize the amount of information
that needs to be removed from the human knowledge. Solutions with justifica-
tions are those that come with their own support. Assertive solutions do not
leave the human any reason for questioning the atom in discussion. In Exam-
ples 1–4, we can see that the solution in Example 1 is not optimal but all others
are optimal, minimally-restrictive and maximally-preserving, and solutions with
justification. We make the following observations:

Observation 1. • A minimal solution always exists. Similarly, a minimally-
restrictive (resp. maximally-preserving) solution always exists.

• If a solution is minimally-restrictive and maximally-preserving, then it is opti-
mal.

• For some π, there exists no π-preserving solution. For example, in Example 2,
a π-preserving solution does not exist for π = {a ←}. Likewise, for some π
(e.g., π = ∅), there exists no π-restrictive solution.

• Not every solution of an MRLP problem is a j-solution. For example, ({b ←
a}, ∅) is not a j-solution for the problem ({a ←; b ← a; b ←}, {a ←}, b).

• Not every solution of an MRLP is assertive. For example, ({b ← not a}, ∅)
is not an assertive solution for the problem ({a ← not b; b ← not a}, {a ←
not b}, b).

While it is natural to think of optimal solutions, there exists subprogram π of
πh such that π-preserving solutions are reasonable. For example, it is reasonable

402 T. C. Son et al.

to consider solutions that is (πa ∩ πh)-preserving since πa ∩ πh represents the
common knowledge between the robot and the human. Examples 2–4 show that,
for some π, there might not exists a π-preserving solution (i.e., for π = {a ←}
in Example 2, a π-preserving solution does not exist). Theorem 1 shows that j-
solutions can be constructed from an answer set I of πa that supports q. It is easy
to see that not every solution of the problem must be a j-solution. For example,
({b ← a}, ∅) is not a j-solution for the problem ({a ←; b ← a; b ←}, {a ←}, b).

4.1 Cost-Based Characterization

An alternative for characterizing solutions is to associate a cost to a solution
(ε+, ε−) and use it as a means to compare solutions. In this paper, we are inter-
ested in the following cost functions.

Definition 4 (Cost Function and Cost-Optimal Solutions). A cost func-
tion of an MRLP problem (πa, πh, ω) is a function C that maps each rule of
πa ∪ πh to a non-negative number: C : πa ∪ πh → R≥0.

The cost of a solution (ε+, ε−) w.r.t. C, denoted by C(ε+, ε−), is then defined
as Σr∈ε+∪ε−C(r).

Given a cost function C, a solution (ε+, ε−) is cost optimal w.r.t. C if
C(ε+, ε−) is minimal among all solutions.

We define some special cost functions as follows. C of (πa, πh, q) is:

1. uniform if C(r) = c for each rule r ∈ πa ∪ πh, where c > 0 is a constant.
2. agent-biased if C(r) = c for each rule r ∈ πa, where c > 0 is a constant, and

C(r) = 0 for each rule r ∈ πh.
3. human-biased if C(r) = 0 for each rule r ∈ πa and C(r) = c, where c > 0 is a

constant, for each rule r ∈ πh.

Because minimality in cardinality of a set implies minimality with respect to
the subset relation, we can easily prove the following.

Proposition 2. Given a cost function C:
• If it is uniform, then a cost-optimal solution w.r.t. C is optimal (as in Defi-
nition 3).

• If it is agent-biased, then a cost-optimal solution w.r.t. C is minimally-
restrictive.

• If it is human-biased, then a cost-optimal solution w.r.t. C is maximally-
preserving.

Observe that more general or specific cost functions could be defined and used
to compare solutions. More specifically, a cost function discussed above is rule-
based. A more specific one could be an atom-level cost function that assigns each
atom some cost. A more general one is a solution-level cost function that assigns
each solution a cost. While all are theoretically reasonable, we believe that a
rule-based cost function is more appropriate because each rule is supposed to

Model Reconciliation in Logic Programs 403

encode a piece of knowledge from each agent (robot or human). Alternatively,
preferences among atoms that could be added or should be removed can be
defined and used in determining most preferred solutions. We will leave this for
the future work.

4.2 Assertiveness Characterization

We now propose an alternative perspective that is orthogonal to the characteri-
zation defined above. Given an MRLP problem (πa, πh, ω), the goal of the robot
in providing a solution ε is to convince the human that ω is true given its knowl-
edge base. Thus, the success of this process depends on how much the human
believes the solution presented by the robot. Following this line of thought, we
define the notion of an assertive score for solutions:

Definition 5 (Assertive Score). The assertive score of a solution (ε+, ε−) of
an MRLP problem (πa, πh, ω) is:

S(ε+, ε−) =
#answer sets of πh\ε− ∪ ε+ where ω+ is true

#answer sets of πh\ε− ∪ ε+

A solution (ε+, ε−) is assertive-score-maximal if S(πh,q)(ε) is maximal among all
solutions.

Intuitively, S(ε+, ε−) represents the probability of the human believing the
solution. As we have remarked earlier, S(ε+, ε−) is always positive (cf. Theo-
rem 1). The last bullet in Observation 1 shows that can be less than 1. We can
prove the following proposition that certain solutions are assertive.

Proposition 3. For a MRLP problem (πa, πh, ω). Assume that I is an answer
set of πa and ε+ is a minimal justification of ω+ w.r.t. I. If the residual of πh

w.r.t. ε+ and I contains only definite rules then there exists a solution (ε+, ε−)
for (πa, πh, ω) with ε−[ε+, I, πh] ⊆ ε− such that S(ε+, ε−) = 1.

Proof. Let P = πh\ε−[ε+, I, πh] ∪ ε+. Because P\ε+ is a positive program,
we have that negs(P) = negs(ε+). As such negs(P) ∩ heads(P) = ∅. Hence,
any answer set X of P would satisfy that X ∩ negs(P) = ∅. This implies that
P has a unique answer set satisfying ω+. To obtain a solution for (πa, πh, ω),
we can remove the set λ of rules whose heads occur in ω− from P . The
remaining program P\λ is a positive program and entails ω+. This shows that
S(ε+, ε−[ε+, I, πh] ∪ λ) = 1. �

5 Related Work and Discussions

The paper takes inspiration from the discussion in explainable planning (XAIP)
[1,12,13] and generalizes it to define MRLP problems. Solutions to a MRLP

404 T. C. Son et al.

problem could be viewed as explanations defined in XAIP. It is therefore closely
related to the recent paper [8]. Both [8] and this paper employ ASP as the
underlying representation language. However, [8] focuses on the development
of an ASP-based system for solving XAIP problems while the present work
emphasizes the knowledge representation aspects of a generalization of XAIP.
This difference in focus leads to the fact that the algorithms proposed in this
paper are general in that they are applicable in different classes of problems
representable by logic programs and are not as specific as the ones developed in
[8]. Furthermore, [8] does not include any characterizations of the solutions of
MRLP problems as discussed in this paper.

It is worth noticing that Definition 2 appears to define an update operator
to a program πh with a set of rules ε+ and a set of atoms I. This operator,
however, differs from all update operators defined in the vast literature on logic
programming updates (see, e.g., the survey by [11]). In earlier operators, the
inputs are two programs πh and ε+, and the resulting program πh ⊕ ε+ should
include ε+ and retain as much as possible from πh or satisfy certain postulates
related to belief revision (e.g., the AGM postulates). This is because update
models are defined for revising the beliefs of an agent πh when some new infor-
mation ε+ arrives. There is no consideration of the third parameter I and there
is no requirement that πh ⊕ ε+ |∼ ω+ even if ε+ satisfies the conditions in The-
orem 1. We note that the idea of eliminating rules in πh that are “conflicting”
with the new rules ε+, presented by [15] and later by [14], could potentially be
useful. However, the operator in this work adds rules that are not in πh ∪ ε+ to
the resulting program.

Last but not least, we observe that Algorithm 1 only computes j-solutions
for an MRLP problem. It is easy to see that an arbitrary solution (ε+, ε−) for
(πa, πh, ω) could be computed by randomly selecting ε+ ⊆ πa and ε− ⊆ πh and
testing whether (ε+, ε−) is a solution for the problem, i.e., verifying πh\ε− ∪ ε+ |
∼ ω+ and πh\ε− ∪ ε+ |∼	 ω−. This idea is similar to the proposed method of
computing explanations of abductive logic programs discussed by [10]. Although
this idea is simple and generic, we observe that it can only be applied whenever
the symmetric difference between πa and πh is small and thus is not practically
useful.

It is worth noting that different methods proposed in the literature for com-
puting a justification (sometimes referred to as explanation) for an atom (set of
atoms) given a logic program could be used to replace the steps 1–4 in Algo-
rithm 1. The present work does not intend to provide a method for computing
such a justification.

6 Conclusions and Future Work

In this paper, we investigate MRLP problems between logic programs, repre-
sented by a tuple (πa, πh, ω), that focus on identifying a solution (ε+, ε−) where
ε+ ⊆ πa and ε− ⊆ πh such that π̂h = πh\ε− ∪ ε+ satisfying π̂h |∼ ω+ and
π̂h |∼	 ω−, i.e., π̂h |∼ q for every q ∈ ω+ and π̂h |∼	 r for every r ∈ ω−.

Model Reconciliation in Logic Programs 405

We show that if πa |∼ ω+ and πa |∼	 ω− and there exists a justification ε+ ⊂ πa

for ω+ then there exists a non-trivial solution (ε+, ε−) for the problem. We dis-
cuss different types of solutions of a MRLP problem and algorithms for com-
puting a solution. We also present the notion of a cost-based and assessertive
characterization of solutions.

In this paper, we focus on the development of the theoretical foundation of
the MRLP problems. One of our immediate future work is to develop a system
for computing solutions of MRLP problems. The next goal is to experimentally
comparing this system with the system described in [8].

For future work, we note that our work assumes that the robot, who needs to
computes solutions, has the knowledge of both programs πa and πh, which is the
assumption in early work in explainable planning. In practice, this assumption
is likely invalid and the robot might also needs to change its program through
communication or dialogue with the human. For example, if the robot explains to
the human that its plan for going from location a to location c through location
b is feasible and the human informs the robot that the path from location a to
location b is currently blocked, then the robot should eliminate the action of
going from location a to location b from its action description and replan a new
path to get to location c. Therefore, we plan to take such dialogue into account
and to formalize the process of reaching a consensus between the robot and the
human in the near future.

References

1. Chakraborti, T., Sreedharan, S., Zhang, Y., Kambhampati, S.: Plan explanations
as model reconciliation: moving beyond explanation as soliloquy. In: IJCAI, pp.
156–163 (2017)

2. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming
language. J. ACM 23(4), 733–742 (1976)

3. Fox, M., Long, D., Magazzeni, D.: Explainable planning. CoRR abs/1709.10256
(2017). http://arxiv.org/abs/1709.10256

4. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: LP, pp.
579–597 (1990)

5. Kambhampati, S.: Synthesizing explainable behavior for human-AI collaboration.
In: AAMAS, pp. 1–2 (2019)

6. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2(4), 526–541 (2001)

7. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The
Logic Programming Paradigm: A 25-Year Perspective. AI, pp. 375–398. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-642-60085-2 17

8. Nguyen, V., Vasileiou, S.L., Son, T.C., Yeoh, W.: Explainable planning using
answer set programming. In: KRR, pp. 662–666 (2020)

9. Niemelä, I.: Logic programming with stable model semantics as a constraint pro-
gramming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

http://arxiv.org/abs/1709.10256
https://doi.org/10.1007/978-3-642-60085-2_17

406 T. C. Son et al.

10. Sakama, C., Inoue, K.: Updating extended logic programs through abduction. In:
Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730,
pp. 147–161. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46767-
X 11

11. Slota, M., Leite, J.: Exception-based knowledge updates. CoRR abs/1706.00585
(2017). http://arxiv.org/abs/1706.00585

12. Sreedharan, S., Chakraborti, T., Kambhampati, S.: Handling model uncertainty
and multiplicity in explanations via model reconciliation. In: ICAPS, pp. 518–526
(2018)

13. Vasileiou, S.L., Previti, A., Yeoh, W.: On exploiting hitting sets for model recon-
ciliation. In: AAAI (2021)

14. Zhang, Y.: Logic program-based updates. ACM Trans. Comput. Log. 7(3), 421–472
(2006)

15. Zhang, Y., Foo, N.Y.: Updating logic programs. In: ECAI, pp. 403–407 (1998)

https://doi.org/10.1007/3-540-46767-X_11
https://doi.org/10.1007/3-540-46767-X_11
http://arxiv.org/abs/1706.00585

Lazy Stream Manipulation in Prolog via
Backtracking: The Case of 2P-KT

Giovanni Ciatto1(B) , Roberta Calegari2 , and Andrea Omicini1

1 Department of Computer Science and Engineering (DISI), Cesena, Italy
{giovanni.ciatto,andrea.omicini}@unibo.it

2 Alma Mater Research Institute for Human-Centered Artificial Intelligence,
Alma Mater Studiorum—Univerisità di Bologna, Bologna, Italy

roberta.calegari@unibo.it

Abstract. The ability to lazily manipulate long or infinite streams of
data is an essential feature in the era of data-driven artificial intelligence.
Yet, logic programming technologies currently fall short when it comes
to handling long or infinite streams of data. In this paper, we discuss how
Prolog can be reinterpreted as a stream processing tool, and re-designed
around an abstract state-machine capable of lazily manipulating streams
of data via backtracking.

Keywords: Prolog · Stream processing · 2P-Kt · State machine

1 Introduction

Streams are a powerful abstraction in computer science as they enable the pro-
cessing of huge amounts of data, especially when keeping all data in memory
would be impractical or infeasible. In the era of the Internet of Things (IoT)
and data-driven artificial intelligence (AI), the ability to manipulate possibly
unlimited streams of data is a must-have for all programming paradigms and lan-
guages. Indeed, a growing amount of application scenarios are characterised by
the pervasive exploitation of smart devices generating/capturing huge amounts
of data, as well as of the software infrastructures aimed at processing them.

A stream is an ordered sequence of data that may or may not be limited
in length. Depending on how they are generated, streams are either cold (a.k.a.
pull) or hot (a.k.a. push). Each item of a cold stream is generated on the fly, as
soon as a consumer pulls it from the stream. In the case of hot streams, instead,
an external entity is supposed to be in charge of generating items and pushing
them to the stream, so that consumers can retrieve them in a FIFO way.

Cold streams are the simplest ones. A cold stream can be naturally attained
via functional programming and higher-order functions (e.g. map, filter,
reduce): this is why mainstream programming languages such as Java, C#,
Python, JavaScript, Scala, Kotlin, etc., are being extended to blend func-
tional features and constructs for dealing with streams. Conversely, hot streams

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 407–420, 2021.
https://doi.org/10.1007/978-3-030-75775-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_27&domain=pdf
http://orcid.org/0000-0002-1841-8996
http://orcid.org/0000-0003-3794-2942
http://orcid.org/0000-0002-6655-3869
https://doi.org/10.1007/978-3-030-75775-5_27

408 G. Ciatto et al.

are more complex, as they require data to be buffered while waiting for
consumption—making them ideal for temporally decoupling data consumers
and producers. In particular, hot streams are key enablers of advanced stream
processing techniques, such as sliding windows, or complex event processing
(CEP)—which are deeply entangled with the time-related aspects of data pro-
duction.

In this scenario, logic programming (LP), as well, has its role to play, both in
data-driven AI – in particular in relation to explainable systems [6] – or in the IoT
[5]. For instance, LP and rule-based frameworks are generally recognised as well-
suited to support CEP [1,2], as they are expressive enough to capture complex
events from hot streams. Similarly, answer-set programming (ASP) has been
extensively exploited as a means for reasoning over hot streams of data [3,4,11].

In this paper, we focus on the Prolog [10] programming language—arguably,
the most popular LP language. Currently, Prolog can hardly be considered as
a suitable stream-processing technology [15], as it provides minimal support for
consuming both cold and hot streams. However, we believe that this should be
reconsidered because Prolog already supports the lazy exploration of possibly
infinite search spaces via backtracking. Thus, the problem with Prolog is not to
discuss whether it supports stream processing or not, but rather how.

Existing solutions extend Prolog with syntactical, semantical, or library
enhancements aimed at supporting cold streams explicitly. Conversely, in this
paper, we discuss how Prolog can be reinterpreted as a stream processing tool,
capable of manipulating both cold and hot streams of data. In particular, our
solution does not affect the syntax (nor the operation) of the Prolog language.
More precisely, we show how Prolog predicates may be interpreted as generators
of streams to be lazily consumed via backtracking. Along this line, we present
an abstract design for Prolog solvers based on finite-state machines, aimed at
supporting our notion of generators. Finally, a practical demonstration based on
the 2P-Kt technology [7] is discussed showing how generators may let a Prolog
solver consume events from the external world in a transparent way.

2 Logic Solvers as Streams Prosumers

2.1 Logic Solvers as Stream Producers

Logic solvers à la Prolog are typically queried interactively by LP users in
different modes, which are naturally captured by the message passing perspec-
tive adopted in Fig. 1. The most common mode of interaction among users and
logic solvers is summarised in Fig. 1a: users submit queries (a.k.a. goals) to a
logic solver – e.g. a Prolog interpreter – via some ad-hoc operation—e.g., solve.
Assuming that one or more solutions exist, the solver computes and returns one
of them—typically in terms of a unifying substitution, assigning values to the
query variables of interest for the user. However, the user may be interested in
solutions other than the first one: so, the solver should expose one further oper-
ation – e.g., next – letting users asking for further solutions to some previously-
submitted query. Finally, when no (more) solutions are available for a query, the

Lazy Stream Manipulation in Prolog via Backtracking 409

solver can return one (last) answer carrying the failed substitution (represented
by ⊥ in Fig. 1) instead of a unifier.

This mode of interaction is very effective since it enables the lazy enumer-
ation of a possibly infinite amount of solutions. However, it comes with a few
drawbacks. First, despite logic solvers are actually capable of generating streams
of solutions, the notion of stream is somewhat implicit in the solver machinery—
therefore, not explicitly exploitable. Second, solvers are stateful, in that they are
responsible to keep track of the status of the interaction with each querying user.

To overcome these issues we suggest a shift of perspective, as depicted in
Fig. 1b. There, users and solvers interact in a stream-oriented mode, where the
stream of solutions is explicit and the interaction between solvers and users is
stateless. Thus, solvers expose just one operation – i.e., solve – accepting a user’s
query and returning a reference to the related cold stream of solutions. Users
just need solvers to create solution streams that users can then lazily consume
on demand. Of course, solutions can still be produced lazily behind the scenes:
whenever a user tries to consume a new solution, it can be computed on the fly.

Thus, even though interaction does not change from the operational view-
point, our approach overcomes the limits of traditional logic solvers: solution
streams here are explicitly represented, and can therefore be manipulated as
such.

2.2 Logic Solvers as Stream Consumers

By adopting a message passing perspective, logic solvers do not interact with
users only. Indeed, logic solvers typically act on a knowledge base (KB). In the
general case, KBs are containers of the specific knowledge required by solvers to
compute solutions to users’ queries. For instance, KB for Prolog solvers contains
both rules and facts as Horn clauses, and are either static or dynamic.

From an interaction perspective, however, a KB is just a component exploited
by solvers as part of their resolution process. More precisely, solvers may need
KB to retrieve some clauses, selected via unification, or, to retract or store some
knowledge possibly learned/acquired during the resolution.

(a) Stateful interaction
mode

(b) Stream-oriented inter-
action mode

(c) Interaction among a
logic solver and its KB

Fig. 1. Interaction modes between logic solvers and users or KB.

410 G. Ciatto et al.

In particular, clause retrieval highlights how the interaction between solver
and KB can be described in terms of streams as well. As depicted in Fig. 1c,
clause retrieval from KB can be modelled as an operation – e.g., get – accepting
a clause template C and returning the stream of clauses unifying with C currently
stored into the KB. The solver can then consume the stream as needed, e.g. either
lazily or not, depending on the search strategy adopted.

Finally, storing a clause in the KB can be modelled as an assert accepting a
clause C and adding it to the KB, whereas clause retraction can be modelled as
a retract accepting a clause template C and removing a clause C ′ unifying with
C. Both operations could be exploited either by the solver or by some external
entity willing to affect the solver’s knowledge.

2.3 Solvers vs. the World

Yet, how can logic solvers deal with event streams coming from the external
world? Once KBs are recognised as individual entities, a trivial answer could
be: via KB. External events may indeed be reified into actual knowledge to be
stored into some solver’s KB. In this scenario, external event streams should
be translated into a sequence of assertions aimed at injecting events into the
KB, as facts. The solver could then lazily consume the events by getting or
retracting the corresponding facts from the KB.

There are, however, two major drawbacks to this approach. First, the reifi-
cation of events into KB requires space. Second, solvers do not necessarily have
to process or consume reified events—thus a lot of space is wasted. Accordingly,
a different approach is required to let solvers consume event streams from the
external world without reifying them unnecessarily.

In this work, we propose generators as the basic means to let solvers interact
with the external world. A generator is a special Prolog primitive capable of
affecting and inspecting the external world via some I/O facility (Fig. 2). It is
invoked by a solver and produces a stream of facts to be consumed by the same
solver. However, from the solvers perspective, generators are ordinary built-in
predicates denoted by signatures—i.e., name/arity couples of the form p/n.

Fig. 2. Dataflow and component view of generators, i.e. solvers’ gates towards the
external world

Lazy Stream Manipulation in Prolog via Backtracking 411

More precisely, whenever the solver needs to compute the assignment of vari-
ables Ti satisfying relation p(T1, . . . , Tn), it can trigger the generator denoted by
p/n (if it exists), by sending the p/n generator a request providing a snapshot
of the current resolution context and possibly an initial assignment of some Ti.
The generator answers by providing a stream of responses – each one with some
possible complete assignment of Ti – that the solver can consume accordingly
to its resolution strategy—i.e., possibly later. To produce responses, generators
may take into account several information sources – e.g., the resolution context,
the external world – as a part of the request. They may also attempt to affect
the external world via some I/O action—e.g., triggering a sensor.

Depending on the number of responses a generator provides, it can either
be classified as either functional or relational. Functional generators produce
just one response and their execution is therefore analogous to the execution
of a function, as they consume an input and return a single result. Conversely,
relational generators produce two or more responses.

2.4 Example: TSP in Prolog

Let us consider for instance the case of a user exploiting a standard Prolog
system to solve arbitrary instances of the Traveling Salesman Problem (TSP).

Let us assume the system requires maps to be represented as facts in the form
path(+Src, +Dst, +Cst) – each one representing an undirected path between
two locations, and the estimated cost –, like e.g.:
�

path(bucarest , giorgiu , 90).
path(bucarest , pitesti , 101).
path(pitesti , ’rimnicu vilcea’, 97).
path(pitesti , craiova , 138).
path(’rimnicu vilcea’, craiova , 146).
...

�� �

Under this assumption, Prolog exposes a predicate tsp(?Cities, ?Circuit,
?Cost) aimed at computing the best Circuit for some set of Cities, and

the corresponding Cost—where, Cities is a set of cities, Circuit is a list of
cities to be visited in a row, and Cost is an integer. Following a purely-logical
interpretation, the predicate represents a ternary relation tsp ⊆ 2C × C∗ × N

grouping subsets of cities, lists of cities, and non-negative integers, where C is
the set of all cities mentioned in the KB as either the first or second argument
of a path/3 fact, and C∗ is the Kleene-closure of C. Thus, an assignment of the
Cities, Circuit, and Cost variables satisfies the predicate if

– Circuit ≡ [c0, . . . , cn−1, c0], and
– Cities ≡ ⋃n−1

i=0 {ci}, and
– ∀i ∈ {1, . . . , n} path(ci−1, ci mod n, xi) ∈ KB, and
– Cost ≡ ∑n

i=1 xi, and
– Cost is minimal.

412 G. Ciatto et al.

Accordingly, because of Prolog backtracking, a query of the form:
�

?- tsp(Cities , Circuit , Cost).

�� �

would enumerate all minimally-costly circuits of all possible subsets of cities in
C, and their costs—one for each solution. Users may partially instantiate some
variable in order to contextualise their queries: for instance, a query of the form:
�

?- tsp({pitesti , craiova , ’rimnicu vilcea’}, [pitesti | Others], Cost).

�� �

would enumerate all minimally-costly circuits starting in Pitesti, and involving
the cities Craiova, and Rimnicu Vilcea.

The predicate tsp/3 could be implemented declaratively in Prolog. In its
simplest formulation, the predicate may leverage Prolog’s depth-first strategy,
and its backtracking mechanism to lazily generate all the possible circuits and
select the less costly one: not likely the best possible strategy, yet a working
one. However, better strategies have been proposed in the literature for solving
the TSP, with efficient implementations built upon them—rarely based on pure
Prolog. Here, instead, generators make it possible to exploit external libraries
for solving the TSP in Prolog as if they were implemented via LP.

For instance, we assume that an “ACME TSP” C library exists that solves
TSP efficiently, which can be wrapped within a relational generator tsp/3 to be
exploited by a Prolog solver. Generator tsp/3 should work as follows:

1. whenever the Prolog solver encounters a tsp(Cities, Circuit, Cost) sub-
goal, it triggers the generator via a request containing a snapshot of the
current KB and the actual values of Cities, Circuit, and Cost;

2. the generator reads (i) the map graph from the KB snapshot, and (ii) the
cities from the actual value of Cities;

3. the generator generates the stream of all the possible subsets of C and selects
the ones unifying with the actual value of Cities, thus: if Cities is bound to
a particular sub-set of cities, then the stream has just one element, otherwise
it may have several ones;

4. for each sub-set of cities in the stream, the generator triggers ACME TSP
and computes the corresponding TSP solution, if any;

5. every time it is triggered, ACME TSP computes zero or more solutions for
the TSP and returns them to the generator;

6. for each TSP solution of each selected instantiation of Cities, the generator
yields a response to the solver;

7. each response may either contain a unifier – assigning Cities to the selected
list of cities, Circuit to the minimally-costly circuit for those cities, and Cost
to the cost of that circuit – or a failed substitution—informing the solver the
tsp/3 predicate should fail;

8. the solver can consume the response stream lazily via backtracking.

In other words, generators can be exploited as a means to wrap external data
producers and let the solver consume the data they produce via streams. In Pro-
log, streams of this sort are lazily consumed via ordinary backtracking: the solver

Lazy Stream Manipulation in Prolog via Backtracking 413

lazily generates a new choice point for each element in the stream and handles
them as usual. Solvers of different sorts may consume the stream differently—e.g.
buffering (some slice of) it, or, handling each datum concurrently.

3 Solvers as Streams Prosumers via State Machine

In order to design a Prolog solver supporting our notion of generator, we enhance
the Prolog state machine proposed in [13] with the capability of lazily consuming
streams of data coming from either a generator or the KB (Fig. 3). In particular,
we change how the state machine manages the resolution of (sub-)goals, by sup-
porting the selection of a generator as a means to provide one or more solutions
for (sub-)goals, other than the ordinary selection of rules from the KB.

The state machine in Fig. 3 stems from the acknowledgement that a Prolog
solver may solve a (sub-)goal by either selecting a generator or a number of logic
rules from the KB. In both cases, a stream of data must be lazily consumed by
the solver—either carrying generator responses or clauses from the KB.

Whenever a stream of data needs to be processed, there are essentially two
major phases: the opening of the stream – where a channel between the stream
producer and its consumer is created –, and the consumption of the stream—
where items from the stream are sequentially processed. To support both phases,
two more locations are included – namely Generator Selection and Generator Exe-
cution – respectively aimed at triggering a generator and consuming the response
stream it provides. Furthermore, to support a stream-oriented interaction among
the solver and its KB, we model rule management as well through two locations,
namely Generator Selection and Generator Execution, respectively aimed at query-
ing the KB, and consuming the rule stream it provides.

All the other aspects are handled in the same way as in [13]. Thus, state
machine execution is triggered whenever a user submits a query to the solver:
when this is the case, execution starts from the Goal Selection location. Then, it

Fig. 3. Handling generators with enhanced Prolog state machine

414 G. Ciatto et al.

may go through any location until it eventually reaches some final one (End or
Halt), where a new solution is yielded—which the user can eventually consume.
Once a solution is consumed, the user can either submit a new query or ask
for the next solution. In the former case, the automaton is reset to the Goal
Selection location. Conversely, the latter case is only possible if the last solution
was provided by the End location. In that case, the automaton backtracks and
looks for the next solution. This may involve stepping through Backtracking,
then moving back into the Generator (resp. Rule) Execution, in order to consume
one more element from some previously-opened response (resp. clause) stream.

Overall, our state machine affects the operation of a Prolog solver as follows:

1. [Generator Selection] whenever a new sub-goal is selected, the solver looks for
a generator whose signature matches the sub-goal one;

2. [Generator Execution] if some are found, the solver considers the first response
in the stream as a solution to the goal, and generates choice points for sub-
sequent responses;

3. [Rule Selection] otherwise, if no generator is selected for the current sub-goal,
some rule is looked for instead, whose head unifies with the sub-goal;

4. [Rule Execution] if any such rule is found, resolution can proceed by addressing
the rule’s body as the next goal to be proved;

5. [Backtracking] otherwise, if no rule is found, the sub-goal is considered failed
and resolution must backtrack.

Location Exception completes the picture by intercepting exceptions – possibly
thrown by generators as part of some response of theirs –, via the standard
catch/3 predicate.

Ordinary Prolog built-in primitives naturally fit the picture as they are re-
interpreted as generators by solvers. For instance, the is/2 predicate can be
considered a functional generator accepting a variable and an expression and
returning a single response assigning the variable to the value attained by reduc-
ing the expression – if possible –, or an exception—in case the expression cannot
be reduced. Conversely, the member/2 predicate can be considered as a relational
generator, enumerating all the possible items in a list. Accordingly, the afore-
mentioned Generator Selection location is where built-in primitives are selected
for execution in place of rules from the KB.

4 Backatrackable Predicates as Streams in 2P-KT

In order to demonstrate the feasibility of our approach, we propose a case study
based on 2P-Kt. 2P-Kt [7] is a Kotlin-based ecosystem for LP, including gen-
eral API for stream-oriented logic solvers of any sort. Regardless of the particular
logic, inference rule, or search strategy of choice, a logic solver is modelled in
2P-Kt as a prosumer of streams: it produces output streams of solutions and
consumes input streams generated by generators. A Prolog solver implementa-
tion is available as well, leveraging the state-machine-based design presented in

Lazy Stream Manipulation in Prolog via Backtracking 415

Sect. 3. Furthermore, 2P-Kt involves an API for writing generators in Kotlin,
by blending an imperative, object-oriented, and functional programming style.

In this section, we first illustrate briefly the portion of the 2P-Kt API involv-
ing solvers and generators, then we discuss an example generator implementing
the TSP example from Sect. 2.4.

4.1 2P-KT Solvers and Generators API

Figure 4 provides an overview of the 2P-Kt API. Here we focus on the
resolution-related portion of this API (cf. [9] for further details). There, logic
solvers are modelled as instances of the Solver type defined as follows:
�

interface Solver {

val staticKb: Theory

val dynamicKb: Theory

val libraries: Libraries

fun solve(goal: Struct): Sequence <Solution >

}

�� �

Essentially, a logic solver is any entity exposing a method solve which accepts
a logic Structure – i.e., a particular case of logic Term in the 2P-Kt type
system – as the input goal, and produces a Sequence – i.e., a lazy stream in
the Kotlin type system – of logic Solutions as output. Furthermore, 2P-Kt
requires each logic solver to be composed of at least three more entities, namely:
(i) a staticKb and (ii) a dynamicKb, both of type Theory – that is, an ordered
and indexed container of logic clauses, retrievable via unification –, and (iii) a
libraries container of type Libraries—which, within the scope of this section,
is essentially an implementation of the structure indexing generators.

Each Solution in 2P-Kt may be of any of three sorts, namely Yes, No,
and Halt, representing the positive, negative, and exceptional case, respec-
tively. All solutions carry the original query they are answering to, other than
the Substitution they are answering through. So for instance, objects of
type Solution.Yes always contain an object of type Substitution.Unifier,
whereas other sorts of solutions always contain an object of type Substitution
.Fail. Similarly, objects of type Solution.Halt carry the uncaught exception
which interrupted the resolution process.

Fig. 4. Overview on the public API of 2P-Kt

416 G. Ciatto et al.

Generators are modelled in 2P-Kt as functions of the type:
�

typealias Generator = (Request) -> Sequence <Response >

�� �

i.e., functions accepting a Request as input and returning a Sequence of
Responses as output. There, Request is a container of all the information needed
at runtime to produce a sequence of Responses:
�

class Request(

val context: ExecutionContext ,

val signature: Signature ,

val arguments: List <Term >

) {

fun solve(subQuery: Struct): Sequence <Solution >

fun replySuccess (): Response

fun replyFail (): Response

fun replyWith(substition: Substitution): Response

fun replyException(exception: TuPrologRuntimeException): Response

}

�� �

These include: (i) a snapshot of ExecutionContext at invocation time – in
turn including a snapshot of the solver’s staticKb and dynamicKb –, (ii) the
Signature of the invoked generator, and (iii) the List of Terms storing actual
arguments provided to the generator upon invocation.

Furthermore, each instance of Request exposes a bunch of methods – namely,
the many reply*() ones –, aimed at generating a new Response for that partic-
ular Request. As Responses are mere containers of Solutions, there are many
variants of the reply*() methods, each one aimed at generating a given sort
of responses – e.g. responses carrying positive/negative/exceptional solutions
– for the sub-goal that triggered the generator. Finally, each request supports
the spawning of an inner resolution process via its solve(...) method. This
method creates a novel sub-solver through which generator implementors can
resolve sub-queries as part of some generator execution.

Thanks to this design, any Kotlin method of the form:
�

fun method(request: Request): Sequence <Response > = sequence {

request.arguments[i] // read the i-th actual argument

request.context.staticKb[h] // read clauses in KB whose head matches h

solve(goal) // perform sub -queries

val substitution = (arg0 mguWith value0) + (arg1 mguWith value1) + ...

yield(request.replyWith(substitution))

// or

yield(request.replyFail ())

// or

yield(request.reply *(...))

}

�� �

can be considered a generator in the eyes of a logic solver. This leverages a
particular feature of Kotlin, namely the sequence { ... } blocks, which let
developers write stream generators by blending the imperative and functional
programming styles. This is possible because of the yield(value) method which
users may call inside sequence { ... } blocks in place of return value to
provide values to the stream.

So, for instance, to implement the predicate natural/1 – which holds true
for all natural numbers –, one may write the following generator:

Lazy Stream Manipulation in Prolog via Backtracking 417

�

fun natural(request: Request): Sequence <Response > = sequence {

var n = 1

while (true) {

yield(Integer.of(n))

n++

}

}.map {

request.replyWith(request.arguments [0] mguWith it)

}

�� �

A Prolog solver would then treat such a generator as a backtrackable predicate.
Thus, in Prolog, one may use the goal natural(X) to enumerate all the natural
numbers.

Summarising, 2P-Kt generators API supports the creation of backtrackable
Prolog predicates out of lazy data streams.

4.2 Travelling Salesman Problem in 2P-KT

The real potential of generators is revealed when they are exploited by solvers to
manage input data streams from the external world. There, the external world
may be any source of data, there including other solvers, possibly of different
nature. For example, generators may be exploited to let a Prolog solver call a
TSP solver to efficiently compute solutions for TSP instances, as discussed in
Sect. 2.4. Accordingly, here we demonstrate how a generator of such a sort may
be realised through 2P-Kt.

In [8] we provide a GitHub repository hosting the source code of a 2P-Kt
generator leveraging Google OR-Tools [12] to efficiently solve TSP instances.
Google OR-Tools is a C++ library proving many constraint programming and
operative research tools – there including routing-related facilities –, and some
JVM bindings which let us exploit such tools in Kotlin.

Accordingly, our repository includes some scripts aimed at automating the
compilation and execution of a simple demo involving a command-line TSP-
enabled Prolog interpreter. Following the discussion from Sect. 2.4, such a Prolog
interpreter exposes a tsp/3 predicate aimed at enumerating the minimally-costly
circuits for any given set of cities, provided that the interpreter’s KB contains
several path/3 facts describing the connections among those cities. As an ordi-
nary Prolog interpreter, such facts may be either consulted from a .pl file or
dynamically asserted via assert/1.

The actual operational behaviour of predicate tsp/3 is governed by the Tsp
generator whose source code (stub) is shown in Fig. 5 (cf. [8] for full source
code). The Tsp generator is a singleton object of type TernaryRelation – i.e.,
a particular sort of Generator, tailored on ternary predicates –, whose main
behaviour is encapsulated within the computeAll method.

The Tsp object is also endowed with a method – namely, tsp – which returns
a sequence of circuits and costs for any given list of cities provided as input. Such
method assumes each input city to be represented by a logic term – in particular,
a constant –, and outputs circuits represented as logic lists of cities represented
in the same way. Behind the scenes, the tsp interacts with both the Prolog
interpreter’s KB to read distances among cities, and a Google OR-Tool solver
for computing all possible solutions to a particular TSP instance.

418 G. Ciatto et al.

The computeAll handles the situation where the Prolog interpreter meets
a (sub-)goal of the form tsp(Cities, Circuit, Cost)—where all variables
may be partially or totally uninstantiated. The method operation can then be
described as a pipeline of lazy operations applied to the actual arguments of
tsp/3, which we refer as fst, snd, and trd within the method. Accordingly, the
method firstly performs a sub-query aimed at computing the set of all cities cur-
rently contained into the KB (cf. variable allCities in Fig. 5). The sub-query
is a Prolog goal of the form path(_, _, _), whose solutions are all eagerly
consumed and their first and second arguments – which are assumed to be city
names – are merged into a set, to remove duplicates. Then, all possible permuta-
tions of all possible subsets of allCities are lazily generated. However, only the
subsets of cities that unify with fst are actually selected (this may be just one
set of cities if fst refers to a fully instantiated set of cities) for the next steps of
the computation. Then, for all selected sets of cities, all possible solutions to the
corresponding TSP instance are computed. Finally, each possible circuit (resp.
cost) computed for each TSP instance is unified with snd (resp. trd). Failed
unifications are of course dropped, while the successful ones are converted into
responses of the tsp/3 generator.

It is worth to highlight that the whole pipeline is lazy. This implies that even
once the first TSP solution has been presented to the user, the other ones are
still to be computed.

import it.unibo.tuprolog.core.List as LogicList

object Tsp : TernaryRelation <ExecutionContext >("tsp") {

init { com.google.ortools.Loader.loadNativeLibraries () }

private fun Request <ExecutionContext >.tsp(cities: List <Term >): Sequence <Pair <LogicList , Integer >> { ... }

// other utility methods

override fun Request <ExecutionContext >. computeAll(fst: Term , snd: Term , trd: Term): Sequence <Response > {

val allCities = solve(Struct.template("path", 3))

.filterIsInstance <Solution.Yes >()

.map { it.solvedQuery }

.flatMap { sequenceOf(it[0], it[1]) }

.toSet ()

return allCities

.subsets ()

.flatMap { it.permutations () }

.map { it to (Set.of(it) mguWith fst) }

.filter { (cities , substitution) -> cities.isNotEmpty () && substitution is Unifier }

.flatMap { (cities , substitution) -> tsp(cities).map { it.addLeft(substitution) } }

.map { (substitution , circuit , cost) -> substitution + (snd mguWith circuit) + (trd mguWith cost) }

.filterIsInstance <Unifier >()

.map { replySuccess(it) }

}

}

Fig. 5. 2P-Kt generator implementing the tsp/3 predicate

5 Conclusion and Future Work

In this paper we address the issue of stream processing in logic programming.
In particular, we discuss how logic solvers can be naturally conceived as lazy

prosumers of data streams as they (i) lazily produce data streams thanks to their

Lazy Stream Manipulation in Prolog via Backtracking 419

interactive nature, (ii) lazily consume data streams as part of their resolution
process—e.g. when they access knowledge bases.

Furthermore, we show how logic solvers can support the processing of input
data stream via the notion of predicates as generators, which we introduce in
this paper. Summarising, generators are reactive computational units which logic
solvers may trigger so as to receive data streams from the external world. This
may be useful, for instance, to let a solver delegate some part of its resolution
process to some external entity—assuming that it is optimised to the purpose.

To demonstrate the feasibility of our approach in the specific (and techni-
cally most relevant) case of Prolog, we propose a generator-enabled modelling
of Prolog solvers as state machines, formalising the lazy consumption of streams
via backtracking. The proposed formalisation preserves the standard operation
of Prolog and requires no modification to the language, while enabling Prolog
solvers to process data streams.

Finally, we discuss the use case of 2P-Kt [7], a Kotlin-based technology for
LP including an implementation of Prolog solvers relying on our state-machine-
based formalisation. We then exploit 2P-Kt to show how generators can be used
to bridge different sorts of solvers together via a few lines of Kotlin code.

In our perspective, this work represents one further step towards the prac-
tical exploitation of LP – and, in particular, Prolog – as a general means for
stream processing. Notably, our contribution presents some similarities with
other works [14,15]. In particular, similarly to [15], we focus on letting Pro-
log manipulate streams of data; while, similarly to [14], we provide a mechanism
to let logic solvers delegate computations to external entities. However, differ-
ently from [15], we require no variation to the syntax, functioning, or libraries
of Prolog; while, unlike [14], we focus on Prolog rather than ASP.

A number of issues remain uncovered in this work, and will be the subject
of our future research. Among the many, the most relevant issues concern time
and side effects. In particular we plan to explore the temporal dimension in
LP-based stream processing, by providing for instance some means to support
time-dependent or time-limited data streams. Similarly, we would like to explore
the intricacies related to the processing of data streams which may affect the
internal state of a logic solver – e.g. by affecting the KB – in a predictable way.

Acknowledgment. Andrea Omicini has been supported by the H2020 Project
“AI4EU” (G.A. 825619). R. Calegari has been supported by the H2020 ERC Project
“ompuLaw” (G.A. 833647).

References

1. Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N., Studer, R.: A
rule-based language for complex event processing and reasoning. In: Hitzler, P.,
Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 42–57. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15918-3 5

2. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Real-time complex event recog-
nition and reasoning-a logic programming approach. Appl. Artifi. Intell. 26(1–2),
6–57 (2012). https://doi.org/10.1080/08839514.2012.636616

https://doi.org/10.1007/978-3-642-15918-3_5
https://doi.org/10.1080/08839514.2012.636616

420 G. Ciatto et al.

3. Beck, H., Dao-Tran, M., Eiter, T.: LARS: a logic-based framework for analytic
reasoning over streams. Artif. Intell. 261, 16–70 (2018). https://doi.org/10.1016/
j.artint.2018.04.003

4. Beck, H., Eiter, T., Folie, C.: Ticker: a system for incremental ASP-based stream
reasoning. Theory Pract. Logic Program. 17(5–6), 744–763 (2017). https://doi.
org/10.1017/S1471068417000370

5. Calegari, R., Ciatto, G., Mariani, S., Denti, E., Omicini, A.: LPaaS as micro-
intelligence: Enhancing IoT with symbolic reasoning. Big Data Cogn. Comput.
2(3), 23 (2018). https://doi.org/10.3390/bdcc2030023

6. Calegari, R., Ciatto, G., Omicini, A.: On the integration of symbolic and sub-
symbolic techniques for XAI: a survey. Intell. Artifi. 14(1), 7–32 (2020). https://
doi.org/10.3233/IA-190036

7. Ciatto, G.: 2P-Kt. https://github.com/tuProlog/2p-kt
8. Ciatto, G.: Travelling salesman problem (TSP) in 2P-Kt. https://github.com/

tuProlog/ortools-tsp-example
9. Ciatto, G., Calegari, R., Siboni, E., Denti, E., Omicini, A.: 2P-Kt: logic pro-

gramming with objects & functions in Kotlin. In: Calegari, R., Ciatto, G., Denti,
E., Omicini, A., Sartor, G. (eds.) WOA 2020–21th Workshop “From Objects to
Agents”. CEUR Workshop Proceedings, vol. 2706, pp. 219–236. Sun SITE Central
Europe, RWTH Aachen University, Aachen, Germany, October 2020. http://ceur-
ws.org/Vol-2706/paper14.pdf

10. Colmerauer, A., Roussel, P.: The birth of prolog. In: Lee, J.A.N., Sammet, J.E.
(eds.) History of Programming Languages Conference (HOPL-II). pp. 37–52. ACM,
April 1993. https://doi.org/10.1145/154766.155362

11. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: Kael-
bling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth Interna-
tional Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 30
July–5 August 2005, pp. 90–96. Professional Book Center (2005). http://ijcai.org/
Proceedings/05/Papers/1353.pdf

12. Perron, L., Furnon, V.: OR-tools. https://developers.google.com/optimization/
13. Piancastelli, G., Benini, A., Omicini, A., Ricci, A.: The architecture and design of

a malleable object-oriented Prolog engine. In: Wainwright, R.L., Haddad, H.M.,
Menezes, R., Viroli, M. (eds.) 23rd ACM Symposium on Applied Computing (SAC
2008), Fortaleza, Ceará, Brazil, 16–20 March 2008, vol. 1, pp. 191–197. ACM
(2008). https://doi.org/10.1145/1363686.1363739

14. Redl, C.: The DLVHEX system for knowledge representation: recent advances (sys-
tem description). Theory Pract. Logic Program. 16(5–6), 866–883 (2016). https://
doi.org/10.1017/S1471068416000211

15. Tarau, P., Wielemaker, J., Schrijvers, T.: Lazy stream programming in Prolog.
Electron. Proc. Theory Comput. Sci. 306, 224–237 (2019). https://doi.org/10.
4204/eptcs.306.26

https://doi.org/10.1016/j.artint.2018.04.003
https://doi.org/10.1016/j.artint.2018.04.003
https://doi.org/10.1017/S1471068417000370
https://doi.org/10.1017/S1471068417000370
https://doi.org/10.3390/bdcc2030023
https://doi.org/10.3233/IA-190036
https://doi.org/10.3233/IA-190036
https://github.com/tuProlog/2p-kt
https://github.com/tuProlog/ortools-tsp-example
https://github.com/tuProlog/ortools-tsp-example
http://ceur-ws.org/Vol-2706/paper14.pdf
http://ceur-ws.org/Vol-2706/paper14.pdf
https://doi.org/10.1145/154766.155362
http://ijcai.org/Proceedings/05/Papers/1353.pdf
http://ijcai.org/Proceedings/05/Papers/1353.pdf
https://developers.google.com/optimization/
https://doi.org/10.1145/1363686.1363739
https://doi.org/10.1017/S1471068416000211
https://doi.org/10.1017/S1471068416000211
https://doi.org/10.4204/eptcs.306.26
https://doi.org/10.4204/eptcs.306.26

Transforming Gringo Rules into Formulas
in a Natural Way

Vladimir Lifschitz(B)

University of Texas at Austin, Austin, TX, USA

Abstract. Research on the input language of the ASP grounder gringo
uses a translation that converts rules in that language into first-order
formulas. That translation often transforms short rules into formulas
that are syntactically complex. In this note we identify a class of rules
that can be transformed into formulas in a simpler, more natural way.
The new translation contributes to our understanding of the relationship
between the language of gringo and first-order languages.

1 Introduction

The semantics of some rules in the input language of the ASP grounder gringo
[1,2] can be characterized in terms of a translation into the language of first-
order logic [3, Section 6]. The transformation τ∗, defined in that paper, produces
formulas with two sorts—with “program variables” for arbitrary precomputed
terms and “integer variables” for numerals. This transformation can be used, for
instance, to characterize strong equivalence between gringo programs in terms
of a similar condition on first-order formulas [3, Proposition 4]. It is used also in
the design of the proof assistant anthem [5].

The formulas produced by τ∗ may be quite complicated, even in application
to short rules, which makes it difficult to use them for reasoning about programs.
For example, the result of applying τ∗ to the rule

q(X + 1) ← p(X) (1)

is

∀X(∃Z(Z = X∧p(Z)) → ∀Z1(∃IJ(Z1 = I+J ∧I = X∧J = 1) → q(Z1))). (2)

(In formulas, we use X, Y , Z as program variables, and I, J , K, L, M , N as
integer variables; 1 is the numeral representing the number 1.)

Fortunately, complicated formulas produced by τ∗ are often equivalent to
much simpler formulas. In this note, equivalence of formulas is understood as
equivalence in intuitionistic logic (see Sect. 3 for details). The use of intuitionis-
tically acceptable simplifications in this context is essential because such simpli-
fications do not affect the class of stable models [4]. For example, formula (2) is
equivalent to

∀X(p(X) → ∀Z1IJ(Z1 = I + J ∧ I = X ∧ J = 1 → q(Z1))).
c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 421–434, 2021.
https://doi.org/10.1007/978-3-030-75775-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_28&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_28

422 V. Lifschitz

It can be further rewritten as

∀X(p(X) → ∀IJ(I = X ∧ J = 1 → q(I + J)))

and then as
∀I(p(I) → q(I + 1)). (3)

Formula (3) is not only short but also natural as a representation of rule (1),
in the sense that its syntactic form is similar to the syntactic form of the rule.
If our intention is to study properties of a program containing rule (1) using a
representation of this rule in a first-order language, then representing it by a
simple formula, such as (3), instead of (2) will make our work easier. This is
particularly important if we plan to reason “manually,” without the assistance
of automated reasoning tools.

The goal of this paper is to identify a subset of the domain of τ∗ for which
transforming a rule into a formula can be performed “in a natural way.” The
new translation ν produces, whenever it is defined, a sentence equivalent to the
result of applying τ∗. For example, in application to rule (1) the translation ν
gives formula (3).

In the next section we describe a class of rules that can be transformed into
formulas in a natural way. After a review of the syntax of formulas in Sect. 3,
the translation ν is defined in Sects. 4 and 5, and its equivalence to τ∗ is proved
in Sects. 6 and 7. The note is concluded by a discussion of the analogy between
regular rules and first-order formulas.

2 Regular Rules

The translation ν is defined on the class of rules that we call “regular.”
Recall that in the definition of the syntax of rules, program terms, or p-terms

for short, are defined as expressions formed from numerals, symbolic constants,
program variables, and the symbols inf and sup using the binary function sym-
bols

+ − × / \ ..

[3, Section 2]. (We call them p-terms to distinguish them from “f-terms” that
are allowed in formulas; see Section 3 below.) About a p-term we say that it is a
regular term of the first kind if

– it contains no function symbols other than +, −, ×, and
– symbolic constants and the symbols inf, sup do not occur in it in the scope

of function symbols.

A regular term of the second kind is a p-term of the form t1 .. t2, where t1 and t2
are regular terms of the first kind that contain neither symbolic constants nor
the symbols inf, sup.

Rules are defined as expressions of the form

H ← B1 ∧ · · · ∧ Bn (4)

(n ≥ 0), where

Transforming Gringo Rules into Formulas in a Natural Way 423

– the head H is either an atom (then (4) is a basic rule), or an atom in braces
(then (4) is a choice rule), or empty (then (4) is a constraint), and

– each member Bi of the body is a literal or a comparison

[3, Section 2]; see that paper for a complete definition of the syntax of rules. We
say that a rule (4) is regular if it satisfies the following conditions:

1. Every p-term occurring in it is regular (of the first or second kind).
2. If Bi is a literal then it does not contain terms of the second kind.
3. If Bi is a comparison that contains a term of the second kind then Bi has the

form t1 = t2 .. t3, where t1 is a term of the first kind different from symbolic
constants and from the symbols inf, sup.

Condition 1 eliminates, for instance, rules containing any of the terms

X/Y, 5 × (X .. Y), london + 5, london .. 5.

Condition 2 eliminates, for instance, rules containing the atom p(1 .. 5) in the
body. Condition 3 eliminates, for instance, rules containing any of the compar-
isons

X < 1 .. 5, X .. Y = 1 .. 5, london = 1 ..X.

Some of these “irregular” constructs exemplify differences between the lan-
guage of gringo and conventional mathematical notation. In a mathematical
formula, for instance, the arguments of + are expected to represent objects for
which addition has been defined. But including london+5 in a gringo program
is not considered an error (although the output of gringo will include the infor-
mational message info: operation undefined). The expression X .. Y = 1 .. 5
in the body of a gringo rule expresses that the interval {X, . . . , Y } contains
at least one number between 1 and 5; a mathematician would not use the equal
sign to say that two sets have a common element.

The comparison X = 1 .. 5, which is allowed in the body a regular rule,
expresses that the value of X is one of the numbers 1, . . . , 5, and this use of the
equal sign does not look natural either. We will return to this example in Sect. 8.

3 F-Terms and Formulas

The language of f-terms and formulas is a two-sorted first-order language, with
program variables (the same that occur in rules, see Sect. 2) and integer variables
[5, Section 3]. The second sort is a subsort of the first. The signature of the
language consists of

– numerals, symbolic constants and the symbols inf, sup as object constants;
an object constant is assigned the sort integer iff it is a numeral;

– the symbols +, − and × as binary function constants; their arguments and
values have the sort integer ;

– pairs p/n, where p is a symbolic constant and n is a nonnegative integer, as
n-ary predicate constants, and the comparison symbols (the same that occur
in comparisons) as predicate binary predicate constants.

424 V. Lifschitz

An atomic formula (p/n)(t1, . . . , tn) can be abbreviated as p(t1, . . . , tn). An
atomic formula ≺ (t1, t2), where ≺ is a comparison symbol, can be written
as t1 ≺ t2. Formulas are formed from atomic formulas using the propositional
connectives

⊥ (“false”), ∧, ∨, →
and the quantifiers ∀, ∃ as usual in first-order languages.

We use � as shorthand for ⊥ → ⊥, ¬F as shorthand for F → ⊥, and F ↔ G
as shorthand for (F → G) ∧ (G → F).

By Int we denote the formal system of intuitionistic logic with equality for the
language described above. The natural deduction version of Int can be obtained
from the standard natural deduction formulation of classical first-order logic [6,
Sections 1.2.1, 1.2.2] by removing the law of the excluded middle from the list of
axioms. The ∀-elimination rule of Int sanctions eliminating a universal quantifier
that binds a program variable by substituting an f-term of either sort. When a
quantifier binding an integer variable is eliminated, the f-term substituted for it is
required to be of the sort integer. The ∃-introduction rule is similar. For instance,
the formula ∃X(I = X) can be proved in Int by applying ∃-introduction to
I = I, but the formula ∃I(I = X) is not provable. (This formula expresses that
the value of X is a numeral.)

We say that formulas F and G are equivalent to each other if the formula
F ↔ G is provable in Int .

4 Natural Translation, Part 1

According to Condition 3 in the definition of a regular rule (Sect. 2), the left-
hand side of a comparison in such a rule is a regular term of the first kind. If the
right-hand side is of the first kind as well then we say that the comparison is of
the first kind ; otherwise it has the form t1 = t2 .. t3, and we call it a comparison
of the second kind.

Applying the translation ν to a regular rule (4) involves substituting integer
variables for the variables that occur in that rule at least once in the scope of a
function symbol or in a comparison of the second kind. Make the list X1, . . . , Xm

of all such variables, and choose m distinct integer variables I1, . . . , Im. For
any tuple t of regular terms of the first kind that occur in (4), the result of
substituting I1, . . . , Im for X1, . . . , Xm in t is a tuple of f-terms. The operator
that performs this substitution will be denoted by p2f (“p-terms to f-terms”).
For instance, in the case of rule (1), p2f(X + 1) is I + 1.

Prior to defining the translation ν we will define the auxiliary transforma-
tion ν′, which will be used to translate the head H and the members B1, . . . , Bn

of the body of the rule. The definition of ν′ is particularly simple if we restrict
attention to the case when the head of the rule does not contain terms of the
second kind:

Transforming Gringo Rules into Formulas in a Natural Way 425

– If t is a tuple of regular terms of the first kind then
• ν′(p(t)) is p(p2f(t)),
• ν′(not p(t)) is ¬p(p2f(t)),
• ν′(not not p(t)) is ¬¬p(p2f(t)),
• ν′({p(t)}) is p(p2f(t)) ∨ ¬p(p2f(t)).

– The result of applying ν′ to the empty string is ⊥.
– If t1 ≺ t2 is a comparison of the first kind then ν′(t1 ≺ t2) is p2f(t1) ≺ p2f(t2).
– ν′(t1 = t2 .. t3) is p2f(t2) ≤ p2f(t1) ≤ p2f(t3).

(We use t1 ≤ t2 ≤ t3 as shorthand for t1 ≤ t2 ∧ t2 ≤ t3.) This definition is
extended to the general case in the next section.

The result of applying the translation ν to rule (4) is defined as the sentence

̂∀(ν′(B1) ∧ · · · ∧ ν′(Bn) → ν′(H)). (5)

(We write ̂∀F for the universal closure of a formula F .)
One example of applying ν is given in the introduction: ν turns rule (1) into

formula (3). If (4) is the rule

← p(X,Y,Z) ∧ X < Y ∧ Y = 1 .. Z

then the substitution p2f replaces Y , Z by I1, I2; the result of applying ν is

∀XI1I2¬(p(X, I1, I2) ∧ X < I1 ∧ 1 ≤ I1 ≤ I2).

5 Natural Translation, Part 2

Now we turn to the general case, when the head of rule (4) can contain terms
of the second kind. As in the previous section, we start by making the list
X1, . . . , Xm of variables that occur in the rule at least once in the scope of
a function symbol or in a comparison of the second kind, and choose distinct
integer variables I1, . . . , Im. The result of applying ν′ to an atom of the form

p(t1 .. t′1, t2 .. t′2, . . .)

is the formula

∀N1N2 · · · (p2f(t1) ≤ N1 ≤ p2f(t′1) ∧ p2f(t2) ≤ N2 ≤ p2f(t′2) ∧ · · · →
p(N1, N2, . . .)),

where N1, N2, . . . are distinct integer variables different from I1, . . . , Im. For
example, the translation ν turns the rule

q(1 ..X, 1 .. Y) ← p(X,Y,Z)

into the formula

∀I1I2Z(p(I1, I2, Z) → ∀N1N2(1 ≤ N1 ≤ I1 ∧ 1 ≤ N2 ≤ I2 → q(N1, N2))).

426 V. Lifschitz

To make ν′ applicable to arbitrary atoms allowed in the head of a regular rule
we should take into account the fact that such an atom can include arguments
of both kinds, in any order. If t is the tuple

t1, t1 .. t′1, t2, . . . , tk−1, tk−1 .. t′k−1, tk,

where k > 1 and t1, . . . , tk are tuples of regular terms of the first kind, then we
define:

– ν′(p(t)) is

∀N1 · · · Nk−1(
∧k−1

i=1 (p2f(ti) ≤ Ni ≤ p2f(t′i)) →
p(p2f(t1), N1,p2f(t2), . . . ,p2f(tk−1), Nk−1,p2f(tk))),

(6)

– ν′({p(t)}) is

∀N1 · · · Nk−1(
∧k−1

i=1 (p2f(ti) ≤ Ni ≤ p2f(t′i)) →
p(p2f(t1), N1,p2f(t2), . . . ,p2f(tk−1), Nk−1,p2f(tk)))∨
¬p(p2f(t1), N1,p2f(t2), . . . ,p2f(tk−1), Nk−1,p2f(tk))).

(7)

For example, if (4) is the rule

{q(1 ..X, Y)} ← p(X,Y)

then the result of applying ν is

∀IY (p(I, Y) → ∀N(1 ≤ N ≤ I → q(N,Y) ∨ ¬q(N,Y))).

It is clear that every variable occurring in sentence (5) corresponding to
rule (4) is either a program variable from (4) different from X1, . . . , Xm, or
one of the integer variables I1, . . . , Im, or one of the integer variables Ni in the
consequent ν′(H) of (5).

Theorem. For any regular rule Rthe formula ν(R) is equivalent to τ∗(R).

6 Review: Definition of τ ∗

We reproduce here the definition of τ∗ [3, Section 6] referenced in the proof of the
theorem in the next section. The definition makes use of the formulas val t(Z),
where t is a term and Z is a variable that does not occur in t. The definition of
val t(Z) is recursive and includes the following clauses:

– if t is a numeral, a symbolic constant, a program variable, inf, or sup then
val t(Z) is Z = t;

– if t is t1 + t2 then val t(Z) is

∃IJ(Z = I + J ∧ val t1(I) ∧ val t2(J)),

and similarly for t1 − t2 and t1 × t2;

Transforming Gringo Rules into Formulas in a Natural Way 427

– if t is t1 .. t2 then val t(Z) is

∃IJK(val t1(I) ∧ val t2(J) ∧ I ≤ K ≤ J ∧ Z = K).

(The other clauses are not required for calculating val t(Z) when t is regular.) A
conjunction of the form

val t1(Z1) ∧ · · · ∧ val tk(Zk)

can be written as
val t1,...,tk(Z1, . . . , Zk).

The auxiliary translation τB is defined as follows:

– τB(p(t)) is ∃Z(val t(Z)∧p(Z)), where Z is a tuple of distinct program variables
that do not occur in t;

– τB(not p(t)) is ∃Z(val t(Z) ∧ ¬p(Z));
– τB(not not p(t)) is ∃Z(val t(Z) ∧ ¬¬p(Z));
– τB(t1 ≺ t2) is ∃Z1Z2(val t1,t2(Z1, Z2) ∧ Z1 ≺ Z2).

Then the result of applying τ∗ to rule (4) is defined as the formula

̂∀(τB(B1) ∧ · · · ∧ τB(Bn) → H∗), (8)

where H∗ stands for
∀Z(val t(Z) → p(Z)), if H is p(t);

∀Z(val t(Z) → p(Z) ∨ ¬p(Z)), if H is {p(t});
⊥, if H is empty.

7 Proof of the Theorem

Consider a regular rule (4), and let C be the conjunction

I1 = X1 ∧ · · · ∧ Im = Xm,

where X1, . . . , Xm, I1, . . . , Im are as in the definition of p2f (Sect. 5). A conjunc-
tion of the form t1 = t′1 ∧ · · · ∧ tm = t′m can be also written as (t1, . . . , tm) =
(t′1, . . . , t

′
m).

Lemma 1. For any tuple t of regular terms of the first kind that occur in
rule (4), the formulas

(i) C → ∀Z(valt(Z) ↔ Z = p2f(t)),
(ii) C → (ν′(p(t)) ↔ ∀Z(valt(Z) → p(Z))),
(iii) C → (ν′(p(t)) ↔ τB(p(t))),
(iv) C → (ν′(not p(t)) ↔ τB(not p(t))),
(v) C → (ν′(not not p(t)) ↔ τB(not not p(t)))

are provable in Int.

428 V. Lifschitz

Proof. (i) It is sufficient to consider the case when t is a single term t, so that
the formula to be proved is

C → ∀Z(val t(Z) ↔ Z = p2f(t)). (9)

The proof is by induction on t. Case 1: t is one of the variables Xk (1 ≤ k ≤ m).
Then the consequent of (9) is ∀Z(Z = Xk ↔ Z = Ik), and the antecedent C
contains the conjunctive term Xk = Ik. Case 2: t is a variable different from
X1, . . . , Xm, or a numeral, or a symbolic constant, or one of the symbols inf,
sup. Then the consequent is ∀Z(Z = t ↔ Z = t). Case 3: t contains a function
symbol. Assume, for instance, that t is t1+t2. Then p2f(t) is p2f(t1)+p2f(t2); this
term and its subterms p2f(t1), p2f(t2) are of the sort integer. By the induction
hypothesis, under the assumption C,

val t1+t2(Z) = ∃IJ(Z = I + J ∧ val t1(I) ∧ val t2(J))
↔ ∃IJ(Z = I + J ∧ I = p2f(t1) ∧ J = p2f(t2))
↔ ∃IJ(Z = p2f(t1) + p2f(t2) ∧ I = p2f(t1) ∧ J = p2f(t2))
↔ Z = p2f(t) ∧ ∃I(I = p2f(t1)) ∧ ∃J(J = p2f(t2)).

Since p2f(t1) and p2f(t2) are of the sort integer, the last two conjunctive terms
are provable in Int and can be dropped.

(ii) By (i), under the assumption C,

∀Z(val t(Z) → p(Z)) ↔ ∀Z(Z = p2f(t) → p(Z)) ↔ p(p2f(t)) = ν′(p(t)).

(iii) By (i), under the assumption C,

τB(p(t)) = ∃Z(val t(Z)∧p(Z)) ↔ ∃Z(Z = p2f(t)∧p(Z)) ↔ p(p2f(t)) = ν′(p(t)).

(iv), (v): Similar to (iii).

Lemma 2. For any regular terms t1, t2, of the first kind that occur in rule (4),
the formula

C → (ν′(t1 ≺ t2) ↔ τB(t1 ≺ t2))

is provable in Int.

Proof. By Lemma 1(i), under the assumption C,

τB(t1 ≺ t2) = ∃Z1Z2(val t1,t2(Z1, Z2) ∧ Z1 ≺ Z2)
↔ ∃Z1Z2(Z1 = p2f(t1) ∧ Z2 = p2f(t2) ∧ Z1 ≺ Z2)
↔ p2f(t1) ≺ p2f(t2)
= ν′(t1 ≺ t2).

Lemma 3. For any regular term t1 .. t2 that occurs in rule (4), the formula

C → (valt1 .. t2(Z) ↔ ∃K(p2f(t1) ≤ K ≤ p2f(t2) ∧ Z = K))

is provable in Int.

Transforming Gringo Rules into Formulas in a Natural Way 429

Proof. Since t1 .. t2 is regular, t1 and t2 contain neither symbolic constants nor
the symbols inf, sup. Since t1 .. t2 occurs in rule (4), all variables occurring in t1, t2
belong to the list X1, . . . , Xm. It follows that the f-terms p2f(t1) and p2f(t2) are
of the sort integer. By Lemma 1(i), under the assumption C,

val t1 .. t2(Z) = ∃IJK(val t1(I) ∧ val t2(J) ∧ I ≤ K ≤ J ∧ Z = K)
↔ ∃IJK(I = p2f(t1) ∧ J = p2f(t2) ∧ I ≤ K ≤ J ∧ Z = K)
↔ ∃IJK(I = p2f(t1) ∧ J = p2f(t2)∧

p2f(t1) ≤ K ≤ p2f(t2) ∧ Z = K)
↔ ∃I(I = p2f(t1)) ∧ ∃J(J = p2f(t2))∧

∃K(p2f(t1) ≤ K ≤ p2f(t2) ∧ Z = K).

Since p2f(t1) and p2f(t2) are of the sort integer, the first two conjunctive terms
are provable in Int and can be dropped.

Lemma 4. If a comparison t1 = t2 .. t3 occurs in rule (4) then the formula

C → (ν′(t1 = t2 .. t3) ↔ τB(t1 = t2 .. t3))

is provable in Int.

Proof. By Lemma 1(i) and Lemma 3, under the assumption C,

τB(t1 = t2 .. t3) = ∃Z1Z2(val t1,t2 .. t3(Z1, Z2) ∧ Z1 = Z2)
↔ ∃Z1Z2(Z1 = p2f(t1) ∧ val t2 .. t3(Z2) ∧ Z1 = Z2)
↔ val t2 .. t3(p2f(t1))
↔ ∃K(p2f(t2) ≤ K ≤ p2f(t3) ∧ p2f(t1) = K)
↔ p2f(t2) ≤ p2f(t1) ≤ p2f(t3)
= ν′(t1 = t2 .. t3).

Lemma 5. For any tuple t of regular terms that occur in rule (4), the formulas

(i) C → (ν′(p(t)) ↔ ∀Z(valt(Z) → p(Z))),
(ii) C → (ν′({p(t)}) ↔ ∀Z(valt(Z) → p(Z) ∨ ¬p(Z))

are provable in Int.

Proof. (i) If all members of the tuple t are of the first kind then the assertion
holds by Lemma 1(ii). Otherwise, t can be represented in the form

t1, t1 .. t′1, t2, . . . , tk−1, tk−1 .. t′k−1, tk,

where k > 1 and t1, . . . , tk are tuples of terms of the first kind. Assume C; we
need to derive the equivalence between ν′(p(t)) and

∀Z(valt(Z) → p(Z)).

The last formula can be written as

∀Z1Z1Z2 · · ·Zk−1Zk−1Zk(val t1(Z1) ∧ val t1 .. t′
1
(Z1)∧

val t2(Z2) ∧ · · · ∧ val tk−1(Zk−1)∧
val tk−1 .. t′

k−1
(Zk−1) ∧ val tk(Zk)

→ p(Z1, Z1,Z2, . . . ,Zk−1, Zk−1,Zk)).

430 V. Lifschitz

By Lemma 1(i), under the assumption C it is equivalent to

∀Z1Z1Z2 · · ·Zk−1Zk−1Zk(Z1 = p2f(t1) ∧ val t1 .. t′
1
(Z1)∧

Z2 = p2f(t2) ∧ · · · ∧ Zk−1 = p2f(tk−1)∧
val tk−1 .. t′

k−1
(Zk−1) ∧ Zk = p2f(tk)

→ p(Z1, Z1,Z2, . . . ,Zk−1, Zk−1,Zk))

and can be further rewritten as

∀Z1 · · · Zk−1(val t1 .. t′
1
(Z1) ∧ · · · ∧ val tk−1 .. t′

k−1
(Zk−1)

→ p(p2f(t1), Z1,p2f(t2), . . . ,p2f(tk−1), Zk−1,p2f(tk))).

By Lemma 4, under the assumption C this formula is equivalent to

∀Z1 · · · Zk−1(∃K(p2f(t1) ≤ K ≤ p2f(t′1) ∧ Z1 = K) ∧ · · · ∧
∃K(p2f(tk−1) ≤ K ≤ p2f(t′k−1) ∧ Zk−1 = K)

→ p(p2f(t1), Z1,p2f(t2), . . . ,p2f(tk−1), Zk−1,p2f(tk)))

and can be further rewritten as

∀Z1 · · · Zk−1N1 · · · Nk−1(p2f(t1) ≤ N1 ≤ p2f(t′1) ∧ Z1 = N1 ∧ · · · ∧
p2f(tk−1) ≤ Nk−1 ≤ p2f(t′k−1) ∧ Zk−1 = Nk−1

→ p(p2f(t1), Z1,p2f(t2), . . . ,p2f(tk−1), Zk−1,p2f(tk))).

This formula is equivalent to (6).
The proof of part (ii) is similar.

Lemma 6. If a regular term t contains a function symbol then, for every vari-
able X occurring in t, the formula

∀X(∃Z valt(Z) → ∃I(I = X))

is provable in Int.

Proof. By induction on t. Consider, for instance, the case when t has the form
t1 + t2. Then the antecedent of the implication to be proved is

∃ZIJ(Z = I + J ∧ val t1(I) ∧ val t2(J)).

Assume, for instance, that the part of t containing X is t1. The formula above
implies ∃I val t1(I). If t1 is X then the last formula is ∃I(I = X), which is the
consequent of the formula to be proved. Otherwise t1 contains a function symbol,
and ∃I(I = X) follows by the induction hypothesis. If t is t1 − t2 t1 × t2 or t1 .. t2
then reasoning is similar.

Lemma 7. If a conjunctive term Bi of the body of rule (4) is a literal or a
comparison of the first kind then, for every variable X that occurs in Bi at least
once in the scope of a function symbol, the formula τB(Bi) → ∃I(I = X) is
provable in Int.

Transforming Gringo Rules into Formulas in a Natural Way 431

Proof. Case 1: Bi is an atom p(t). Then τB(Bi) is ∃Z(val t(Z) ∧ p(Z)), which
implies ∃Z val t(Z) and further ∃Z val t(Z), where t is the component of the
tuple t that contains X in the scope of a function symbol; ∃I(I = X) follows by
Lemma 6. Case 2: Bi is a literal of the form not p(t) or not not p(t). Similar to
Case 1. Case 3: Bi is a comparison t1 ≺ t2. Then τB(Bi) is

∃Z1Z2(val t1,t2(Z1, Z2) ∧ Z1 ≺ Z2),

which implies ∃Zj val tj (Zj), where tj is the part of the comparison that con-
tains X in the scope of a function symbol; ∃I(I = X) follows by Lemma 6.

Lemma 8. For any regular term t and any variable X occurring in t, the for-
mula

∀X(∃N valt(N) → ∃I(I = X))

is provable in Int.

Proof. By induction on t. Case 1: t is X. Then the antecedent ∃N valt(N) of the
implication to be proved is ∃N(N = X), which is equivalent to its consequent
∃I(I = X). Case 2: t has the form t1 + t2, so that the antecedent is

∃NIJ(N = I + J ∧ val t1(I) ∧ val t2(J)).

Assume, for instance, that the part of t containing X is t1. The formula above
implies ∃I val t1(I). By the induction hypothesis, ∃I(I = X) follows. Case 3: t
has the form t1 − t2, t1 × t2 or t1 .. t2. Similar to Case 2.

Lemma 9. If a conjunctive term Bi of the body of rule (4) is a comparison
of the second kind then, for every variable X that occurs in Bi, the formula
τB(Bi) → ∃I(I = X) is provable in Int.

Proof. The antecedent τB(Bi) of the formula to be proved is

∃Z1Z2(val t1,t2 .. t3(Z1, Z2) ∧ Z1 = Z2),

which is equivalent to
∃Z val t1,t2 .. t3(Z,Z). (10)

Case 1: X occurs in t1. Formula (10) can be rewritten as

∃Z(val t1(Z) ∧ ∃IJK(val t2(I) ∧ val t3(J) ∧ I ≤ K ≤ J ∧ Z = K)).

Consequently it implies ∃K val t1(K), and ∃I(I = X) follows by Lemma 8.
Case 2: X occurs in t2 .. t3. Formula (10) implies ∃Z val t2 .. t3(Z), and ∃I(I = X)
follows by Lemma 6.

Proof of the Theorem. We need to show that formulas (5) and (8) are equiv-
alent to each other. Consider all variables from the set {X1, . . . , Xm} that occur
in the head H of rule (4) in the scope of a function symbol. Let these variables
be X1, . . . , Xk; then each of the remaining variables Xk+1, . . . , Xm occurs in the

432 V. Lifschitz

body of the rule in the scope of a function symbol or in a comparison of the
second kind.

We will show first that the consequent H∗ of (8) is equivalent to

∃I(I = Xi) → H∗ (1 ≤ i ≤ k). (11)

If H is an atom p(t) then formula (11) is

∃I(I = Xi) → ∀Z(val t(Z) → p(Z)),

and it is equivalent to

∀Z(∃I(I = Xi) ∧ val t(Z) → p(Z))). (12)

Lemma 6 shows that the conjunction in the antecedent is equivalent to its second
conjunctive term val t(Z), so that formula (12) is equivalent to H∗. If H is {p(t)}
then reasoning is similar. If H is empty then k = 0, and there is nothing to prove.

It follows that H∗ is equivalent to

∃I(I = X1) → (∃I(I = X2) → . . . (∃I(I = Xk) → H∗) . . .)

and consequently to
k

∧

i=1

∃I(I = Xi) → H∗. (13)

On the other hand, Lemmas 7 and 9 show that the formulas

τB(B1) ∧ · · · ∧ τB(Bn) → ∃I(I = Xi) (k + 1 ≤ i ≤ m)

are provable in Int . It follows that the antecedent

τB(B1) ∧ · · · ∧ τB(Bn)

of (8) is equivalent to

m
∧

i=k+1

∃I(I = Xi) ∧ τB(B1) ∧ · · · ∧ τB(Bn). (14)

From these observations about formulas (13) and (14) we can conclude that
the result (8) of applying τ∗ to rule (4) is equivalent to the formula

̂∀
(

m
∧

i=1

∃I(I = Xi) ∧ τB(B1) ∧ · · · ∧ τB(Bn) → H∗
)

,

which can be further rewritten as

̂∀(C → (τB(B1) ∧ · · · ∧ τB(Bn) → H∗)). (15)

Transforming Gringo Rules into Formulas in a Natural Way 433

From Lemmas 1(iii, iv, v), 2, 4, 5 we can conclude that formula (15) is
equivalent to

̂∀(C → (ν′(B1) ∧ · · · ∧ ν′(Bn) → ν′(H))).

The only part of the last formula that contains any of the variables Xi is C.
Consequently that formula is equivalent to

̂∀
(

∧

i

∃Xi(Ii = Xi) → (ν′(B1) ∧ · · · ∧ ν′(Bn) → ν′(H))

)

.

Since the antecedent
∧

i ∃Xi(Ii = Xi) is provable in Int , it can be dropped,
which leads us to formula (5).

8 Discussion

It was observed long ago that the head and body of a rule are similar to the
consequent and antecedent of an implication, and that choice expressions are
similar to excluded middle formulas. For instance, the rule

{q(X)} ← p(X)

is similar to the formula

p(X) → q(X) ∨ ¬q(X).

The definition of the translation ν allows us to extend this analogy to regular
rules containing arithmetic operations and comparisons:

1. A variable in a regular rule is similar to a variable for integers if it occurs at
least once in the scope of a function symbol or in a comparison of the second
kind. Otherwise it is similar to a variable for arbitrary precomputed terms.

2. The equal sign in a comparison of the second kind, such as X = 1 .. 5, is
similar to the membership symbol: it expresses that the integer denoted by
the left-hand side is an element of the set denoted by the right-hand side.

3. The atom in the head of a regular rule that contains the interval symbol, such
as q(1 ..X, 1 .. Y), is similar to a universally quantified formula.

Acknowledgements. Thanks to Jorge Fandinno, Michael Gelfond, Yuliya Lierler,
Torsten Schaub, and the anonymous referees for useful comments.

References

1. Gebser, M., et al.: Potassco User Guide, Version 2.0. https://potassco.org (2015)
2. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract Gringo.

Theory Pract. Logic Program 15, 449–463 (2015)
3. Lifschitz, V., Lühne, P., Schaub, T.: Verifying strong equivalence of programs in the

input language of Gringo. In: Proceedings of the 15th International Conference on
Logic Programming and Non-monotonic Reasoning (2019)

https://potassco.org

434 V. Lifschitz

4. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Proceedings of International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR), pp. 188–200 (2007)

5. Fandinno, J., Lifschitz, V., Lühne, P., Schaub, T.: Verifying tight programs with
Anthem and Vampire. Theory Pract. Logic Program. 20, 735–750 (2020)

6. Lifschitz, V., Morgenstern, L., Plaisted, D.: Knowledge representation and classical
logic. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge
Representation, pp. 3–88. Elsevier, Amsterdam (2008)

DualGrounder: Lazy Instantiation via
Clingo Multi-shot Framework

Yuliya Lierler and Justin Robbins(B)

University of Nebraska at Omaha, Omaha, NE 68182, USA
{ylierler,justinrobbins}@unomaha.edu

Abstract. Answer set programming (ASP) is a declarative program-
ming paradigm that is geared towards difficult combinatorial search
problems. Sometimes, run times of ASP systems suffer due to so called
grounding bottleneck. Lazy grounding solvers aim to mitigate this issue.
In this paper we describe a new lazy grounding solver called Dual-
Grounder. The DualGrounder system leverages multi-shot capabil-
ities of the advanced ASP platform clingo. This paper also includes
experimental data to explore the performance of DualGrounder com-
pared to similar ASP grounding and solving systems.

Keywords: ASP · Lazy grounding · Multishot solving

1 Introduction

Answer Set Programming (ASP) [3] is a prominent declarative programming
paradigm that aims to solve difficult search problems by describing problem’s
specifications by means of a logic program and solving the resulting program.
The process of solving ASP programs – logic programs under answer set seman-
tics – typically involves two stages depicted in Fig. 1. To describe these stages
let us recall that a logic program consists of rules. When a program contains
variables we call it a non-ground program, and ground otherwise. During the
first stage of program’s processing each rule of a logic program is converted into
respective ground rules (rules without variables) in a process called grounding.
This process involves substituting variables with all possible constant values
that variables of given rules could have. The second stage is concerned with the
search of so called answer sets (sets of ground atoms representing solutions) of
the constructed ground program. The basic way of performing this process is to
(i) utilize a grounder, for instance, the gringo system [10] to ground an ASP
program, and then (ii) pipe the output to a solving system such as clasp [11]
or wasp [2]. However, grounding some programs may prove to be a bottleneck
in applying ASP technology. Converting a rule with variables into rules with
respective constants may require, in the worst case scenario, a substitution of
every possible combination of program’s constants into the rule. “Lazy ASP”
methods such as implemented in systems asperix [12], gasp [7], and omiga

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 435–441, 2021.
https://doi.org/10.1007/978-3-030-75775-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_29&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_29

436 Y. Lierler and J. Robbins

[8] combat this issue by altering the typical ground-solve architecture of ASP
systems described here. Lazy ASP architectures delay grounding of some parts
of a program until it is determined to be necessary. At times grounding these
parts is never necessary. In this work, we design a lazy ASP architecture and
implement it within system DualGrounder, or DG, for short. It’s a close rel-
ative of the wasp-based lazy ASP systems proposed and advocated in [5,6]. The
novelty of the DG tool is its reliance on the clingo multi-shot framework [9].
This way in place of implementing in house procedures for grounding and solv-
ing in various stages of lazy approach we rely on existing instances of gringo
and clasp withing the clingo multi-shot architecture. Here we describe the
exact architecture of the DG system and provide the experimental analysis of
the approach comparing it to its close relatives.

Grounded
Program

Logic
Program Grounder Answer

SetsASP Solver

Fig. 1. Typical ASP system architecture.

2 Preliminaries

A logic/ASP program is a finite set of rules of the form

h1 | · · · | hn ← a1, . . . al, not al+1, . . . , not am, (1)

where m,n ≥ 0, hi (1 ≤ i ≤ n) and a1, ...am are atoms. Expressions to the left
hand side of an arrow and the right hand side of an arrow are called head and
body of a rule, respectively. An atom, literal, or rule is ground if it has no variables
within terms occurring in it. We call a rule a fact if its body is empty (m = 0).
A rule is a constraint if its head is empty (n = 0); in this case we can identify
it with the symbol ⊥. We say that a rule is disjunctive if its head has multiple
atoms (n > 1). Intuitively, constraints are meant to capture a condition – by
means of a set of literals – that should not take place in a valid solution to the
problem. We assume that a reader is familiar with the definition of an answer
set of a (ground) logic program and refer to the paper by Lifschitz et al. [13] for
details. One crucial result that constitutes a theoretical basis for this work is the
following theorem by Lifschitz et al. [13]:

Theorem 1 (Theorem on Constraints). For a ground program P and a
set C of constraints so that C ⊆ P , a set X of atoms is an answer set of P iff X
is an answer set of program P \ C and X satisfies every constraint in C.

It tells us that when a program contains constraints we may split a task of com-
puting its answer sets into two subtasks. In the first subtask, we are concerned

DualGrounder: Lazy Instantiation via Clingo Multi-shot Framework 437

with finding answer sets of a program resulting from the original program some
of whose constraints are removed. In the second subtask, we are concerned with
checking that these constraints are satisfied. Grounding a logic program with
variables replaces each rule with all its instances obtained by substituting the
object constants occurring in the program, for all variables. For a program P ,
by ground(P) we denote the result of its grounding. Answer sets of a logic pro-
gram P with variables are the answer sets of ground program ground(P). It is
easy to see how the theorem on constraints generalizes to the case of programs
with variables.

In the introduction we presented a common architecture for processing logic
programs. Yet, modern answer set solvers are complex software systems that
are designed to accommodate a number of potential uses that go beyond their
typical utilization. For example, such answer set solvers as clasp and wasp
allow for something that we will denote incremental solving. Incremental ASP-
solving allows the user to solve several ground logic programs P1, P2, . . . , Pn

one after another (possibly in an “online” mode when an instance of a solver is
never terminated but rather is put “on-hold” while preserving its internal search
state), if Pi+1 results from Pi by adding ground constraints. In this case the
search for a solution to Pi+1 may benefit from the knowledge obtained during
solving P1, . . . , Pi sequence.

3 System DG

Lazy Instantiation by Cuteri et al. [5,6]. Here we review a lazy instantiation
method for finding answer sets of a program, studied by Cuteri et al. [5]. The
method separates a program P into a program composed of a predetermined
subset of its constraints C, and a program composed of the remaining rules
Pnc = P \ C. Program Pnc is processed using the typical ground and solve pro-
cess depicted in Fig. 1, except on the onset of solving an instance of an ASP
solver capable of incremental solving is considered. As a result an answer set M
of Pnc is computed. This answer set M is then checked against the constraints
in C. If all of the ground instances of the constraints in C are satisfied by M ,
then M is returned by the method as an answer set of P . Otherwise, ground
instances of constraints that are violated by the candidate model are provided to
an incremental ASP solver to proceed with the search. The process is repeated
up to the point when we are able to either claim that a found M is indeed an
answer set of P or establish that P has no answer sets. It is easy to see that
at any point of computation an incremental solver is dealing with some subset
of ground(P). There are two interesting peculiarities of the approach studied
by Cuteri et al. [5]. First, the process of checking current answer set M of some
subset of ground(P) against the appropriate set of constraints stemming from C
is a custom program produced automatically for each unique problem. In par-
ticular, the authors illustrated the case study on three benchmarks. The authors
implemented such a check individually for each benchmark via a specialized
propagator interface provided by such answer set solvers as clasp and wasp.

438 Y. Lierler and J. Robbins

Second, the process of computing ground instances of constraints at hand to
extend incrementally solved program was once more implemented by a custom
program designed for each problem. Cuteri et al. [5] demonstrated positive results
for their case study. Cuteri et al. [6] make the approach described above prob-
lem/benchmark independent. They developed an answer set solver based on lazy
instantiation method described here that is problem agnostic. In other words,
their method is able to utilize constraints of C to implement “a propagator”
and then “a grounder” for these constraints to communicate with an incremen-
tal solver at hand. C++ is used to implement procedures of above mentioned
propagator and grounder based on the information provided by constraints in C.

DG Specifics. The DG system mimics the efforts by Cuteri et al. [6]. The key
difference in our undertaking is the utilization of the available off the shelf tools
for the task of grounding (in particular, gringo) rather than implementing a cus-
tom solution for this purpose. Implementation of system DG relies on the clingo
multi-shot framework [9] in a way that the key computational tasks are executed
by instances of grounding and solving routines available via this framework. Thus,
the role of DG is to orchestrate these routines. First, system DG separates given
program P into two parts: a program composed of a specified subset of its con-
straints C, and a program composed of the remaining rules Pnc = P \ C. Second,
systemDG rewrites constraints inC procedurally. We use an example to illustrate
this rewriting. Assume a sample constraint :- p1(X), p2(Y), not p3(X,Y). Rule
p1’1 p2’2 not’p3’12’(X,Y):- p1(X), p2(Y), not p3(X,Y). is used in place
of this constraint. Constraints in C rewritten in this way result in program C ′.
Third, DG orchestrates the back-and-forth communication of two major subrou-
tines that we callmain-gs and aux-g (programC ′ plays a crucial role in the work-
ings of the aux-g component).

main-gs: A grounder-solver pair main-gs is responsible for incremental solving
procedure of DG. It is first applied to Pnc to compute one answer set M ; this
answer set is then used within the second subroutine aux-g to either (i) estab-
lish that this set M of atoms is indeed an answer set of P or (ii) compute
ground constraints due to C that are violated by M ; these constraints are then
added incrementally to the logic program of main-gs and a solver of main-gs
is instructed to find a new answer set to repeat the described process.

aux-g: The aux-g routine is responsible for supplying ground instances of con-
straints in C violated by the “candidate” answer set M given by main-gs. Each
time aux-g subroutine is called it uses a new instance of a grounder gringo
supplying it with a new program to ground. Component aux-g calls grounder
gringo on program C ′ ∪ M (here we identify set M of atoms with the set of
facts constructed from its elements). Due to the inner workings of gringo and
structure of program C ′ ∪M , gringo’s output consists of M together with the
facts such as p1’1 p2’2 not’p3’12’(4,5) (following our earlier example). Facts
of the form p1’1 p2’2 not’p3’12’(4,5) are translated procedurally by system
DG into constraints of the form :- p1(4), p2(5), not p3(4,5). Such con-
straints are added incrementally to the main-gs grounder-solver pair of DG.

DualGrounder: Lazy Instantiation via Clingo Multi-shot Framework 439

If given some candidate answer set M , gringo invoked on C ′ ∪ M returns M
itself, the DG system returns M to the user as it is indeed the answer set to the
given program P as no constraints in C are violated.

4 Experimental Evaluation

Our experiments were run on a Linux machine, where each instance’s runtime
was limited to 10 min and given 16 GB of memory to work with. The bench-
mark called Packing was given an extended 30 min cutoff. Table 1 summarizes
the outcomes of our experimental analysis. The dualgrounder implementation
used for the experiments can be found at https://www.unomaha.edu/college-
of-information-science-and-technology/natural-language-processing-and-knowl
edge-representation-lab/software/dualgrunder.php. We now provide the details
on considered systems and benchmarks. In parenthesis we give abbreviations
used in Table 1. We tested two variants of DG, one with default clingo set-
tings (DG-Clingo) and another with settings/flags that emulate the heuristics
of the wasp solver (DG-Wasp) This was done to enable better comparison with
other systems used in our experiments. We provide run times of systems clingo,
wasp, clingo with a lazy propagator (Clingo-Lazy) [5], wasp with a lazy prop-
agator (Wasp-Lazy) [5], and the partial compilation system (Partial-Comp) [6].
We used three benchmarks to assess performance of the DG system: Stable Mar-
riage, Natural Language Understanding, and Packing. These benchmarks come
from the experimental analysis by Cuteri et al. [5,6]. We refer the reader to these
papers for exhaustive details about these benchmarks; the constraints selected
for lazy grounding mirror those chosen in these papers. Here we only include few
remarks on these problems.
Stable Marriage (SM). Our experiments utilize the 2013 encoding of Stable Mar-
riage from the fourth ASP competition [1]. The lazily grounded constraint for
SM checks to see if a couple would rather be with someone else than each other:

:- match(M,W1), manAssignsScore(M,W,Smw), W1 != W, , Smw > Smw1,
manAssignsScore(M,W1,Smw1) match(M1,W),Swm >= Swm1,
womanAssignsScore(W,M,Swm), womanAssignsScore(W,M1,Swm1).

Natural Language Understanding (NLU). First introduced by Schüller [14], the
NLU benchmark determines the solution to first order horn clause abduction
problems under a variety of cost functions. These cost functions are the cardi-
nality minimality (card), cohesion (coh), and weight abduction (wa) functions.
The lazily grounded constraint for these problems ensures transitivity between
equation atoms: :- eq(A,B), eq(B,C), not eq(A,C).

Packing. The third benchmark in the DG experiments is the packing problem,
in which the goal of the problem is to pack a number of different squares into
a rectangular area such that none of their areas overlap. This problem is the
same as the packing problem in the third ASP competition [4]. The constraints

https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/dualgrunder.php
https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/dualgrunder.php
https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/dualgrunder.php

440 Y. Lierler and J. Robbins

that check for overlap between each defined square and those that check square
positions are difficult to ground, so they are lazily evaluated:

:- pos(I,X,Y), pos(I,X1,Y1), X1 != X.
:- pos(I,X,Y), pos(I,X1,Y1), Y1 != Y.
:- pos(I1,X1,Y1), square(I1,D1), pos(I2,X2,Y2), square(I2,D2),

I1!=I2, W1=X1+D1, H1=Y1+D1, X2>=X1, X2<W1, Y2>=Y1, Y2<H1.

Table 1. Experimental test results; the average execution time is displayed along with
the number of timed out instances for each system and benchmark.

SM(210) card(50) coh(50) wa(50) Packing(50)

Clingo 229.307 (26) 74.613 (5) 67.303 (7) 78.069 (7) 1521.853 (49)

Clingo-Lazy 142.992 (91) 5.761 (0) 6.211 (0) 6.472 (0) 556.457 (31)

DG-Clingo 93.168 (80) 2.197 (0) 2.718 (0) 3.193 (0) 415.834 (38)

DG-Wasp 94.814 (116) 2.374 (0) 2.598 (0) 2.785 (0) 417.251 (38)

Wasp 186.613 (55) 111.309 (3) 112.397 (3) 135.637 (2) 1550.349 (46)

Partial-Comp 27.613 (64) 5.049 (0) 15.311 (2) 51.757 (1) 447.513 (28)

Wasp-Lazy 11.606 (68) 3.078 (0) 23.292 (1) 37.657 (1) 306.962 (38)

Results Discussion. The goal of our experimentation was to evaluate the per-
formance of the DG system. Table 1 presents the experimental outcomes. The
number following the benchmark names is the total number of the instances
considered. The numbers in columns are average run times of the systems on
instances that did not timeout. The number in parenthesis specifies number of
timed out instances.

For the NLU tests (columns card, coh, wa), DG tends to perform slightly
better than other lazy grounding systems, while systems that did not utilize lazy
grounding fell behind by a large margin. The NLU benchmark seems to benefit
greatly from the removal of its “problem” rules. DG’s slightly higher performance
when compared to other lazy grounding systems seems to mostly stem from the
lack of overhead in DG when a solution is produced on the first cycle; if a solution
is found, no constraints are constructed and the program ends. In contrast to
the NLU benchmark, DG’s performance on the Stable Marriage and Packing
benchmarks drops significantly compared to the other tested systems, especially
on SM. We believe this is due to the string processing done by the system during
constraint construction, and by the increased overhead caused by using Python
over the C++ code used by, for example, the Part-Comp approach. For Stable
Marriage, this is compounded by the fact that the problem is not a good fit
for the lazy grounding approach, as all of the lazy grounding systems hit slower
execution times than the base clingo or wasp systems. The Packing problem
presents a problem that is very difficult for both the base systems and the lazy
grounding systems; none of the tested systems were able to solve all of the
tested instances. The performance of DG seems comparable to that of its lazy
grounding peers that overall outperform clingo and wasp.

DualGrounder: Lazy Instantiation via Clingo Multi-shot Framework 441

Conclusions and Acknowledgements. We trust that the DG system is a valuable
representative among the class of lazy grounding systems. We also see its great value in
showcasing how clingo multi-shot framework can be used in apparently “unintended”
and meaningful ways. The work was partially supported by NSF grant 1707371.

References

1. Alviano, M., et al.: The fourth answer set programming competition: preliminary
report. In: Cabalar, P., Son, T.C. (eds.) Logic Programming and Nonmonotonic
Reasoning, pp. 42–53. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40564-8 5

2. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: a native ASP
solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013.
LNCS (LNAI), vol. 8148, pp. 54–66. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40564-8 6

3. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

4. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming compe-
tition. Theory Pract. Logic Program. 14(1), 117–135 (2014). https://doi.org/10.
1017/S1471068412000105

5. Cuteri, B., Dodaro, C., Ricca, F., Schüller, P.: Constraints, lazy constraints, or
propagators in ASP solving: an empirical analysis. Theory Pract. Logic Program.
17(5–6), 780–799 (2017)

6. Cuteri, B., Dodaro, C., Ricca, F., Schüller, P.: Partial compilation of ASP pro-
grams. Theory Pract. Logic Program. 19(5–6), 857–873 (2019). https://doi.org/
10.1017/S1471068419000231

7. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: GASP: answer set programming
with lazy grounding. Fundam. Inform. (2009). https://doi.org/10.3233/FI-2009-
180

8. Dao-Tran, M., Eiter, T., Fink, M., Weidinger, G., Weinzierl, A.: OMiGA : an open
minded grounding on-the-fly answer set solver. In: del Cerro, L.F., Herzig, A.,
Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 480–483. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-8 38

9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving
with cingo. Theory Pract. Logic Program. 19(1), 27–82 (2019). https://doi.org/
10.1017/S1471068418000054

10. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3.
In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
345–351. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-
9 39

11. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

12. Lefèvre, C., Nicolas, P.: The first version of a new ASP solver: ASPeRiX (2009).
https://doi.org/10.1007/978-3-642-04238-6 52

13. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann.
Math. Artif. Intell. 25, 369–389 (1999)

14. Schüller, P.: Modeling variations of first-order horn abduction in answer set pro-
gramming. Fundam. Inform. 149(1–2), 159–207 (2016). https://doi.org/10.3233/
FI-2016-1446

https://doi.org/10.1007/978-3-642-40564-8_5
https://doi.org/10.1007/978-3-642-40564-8_5
https://doi.org/10.1007/978-3-642-40564-8_6
https://doi.org/10.1007/978-3-642-40564-8_6
https://doi.org/10.1017/S1471068412000105
https://doi.org/10.1017/S1471068412000105
https://doi.org/10.1017/S1471068419000231
https://doi.org/10.1017/S1471068419000231
https://doi.org/10.3233/FI-2009-180
https://doi.org/10.3233/FI-2009-180
https://doi.org/10.1007/978-3-642-33353-8_38
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1007/978-3-642-20895-9_39
https://doi.org/10.1007/978-3-642-20895-9_39
https://doi.org/10.1007/978-3-642-04238-6_52
https://doi.org/10.3233/FI-2016-1446
https://doi.org/10.3233/FI-2016-1446

A Multi-shot ASP Encoding for the Aircraft
Routing and Maintenance Planning Problem

Pierre Tassel1(B) and Mohamed Rbaia2

1 University of Klagenfurt, Klagenfurt, Austria
pierre.tassel@aau.at

2 Amadeus IT Group, Villeneuve-Loubet, France
mohamed.rbaia@amadeus.com

Abstract. The Aircraft Routing and Maintenance Planning problems are inte-
gral parts of the airline scheduling process. We study these relevant combina-
torial optimization problems from the perspective of Answer Set Programming
(ASP) modeling and solving. In particular, we contrast traditional single-shot
ASP solving methods to a novel multi-shot solving approach geared to discover
near-optimal solutions to sub-problems of increasing granularity rapidly. As it
turns out, our multi-shot solving techniques can heavily speed up the optimiza-
tion process without deteriorating the solution quality compared to single-shot
solving. We also provide a customizable instance generator and a solution viewer
to facilitate intensive investigation of Aircraft Routing and Maintenance Planning
as a benchmark problem. However, our multi-shot solving techniques are not lim-
ited to this benchmark alone, and the underlying ideas can be naturally applied to
a variety of scheduling problems.

1 Introduction

Combinatorial optimization problems are usually solved in a single shot. Still, we can
sometimes decompose them into sub-problems (for example, with a time-window app-
roach [17]) that are then solved with local search. In this paper, we present an app-
roach to solve the Aircraft Routing and Maintenance Planning problem in Answer Set
Programming (ASP) [4,9] by decomposing it with a time-window approach using a
paradigm called multi-shot solving [10]. Multi-shot ASP solving methods have already
been successfully applied in areas like automated planning [7], automated theorem
proving [11], human-robot interaction [6], multi-robot (co)operation [19], and stream
reasoning [15]. Presumably closest to our work, proposing multi-shot solving tech-
niques to increase the granularity of hard combinatorial optimization problems succes-
sively, is the Asprin system [3] that implements complex user preferences by sequences
of queries, yet without decomposing the underlying problem representation.

An airline operator scheduling process is divided into six major steps [13], some-
times seen as independent sub-problems, sometimes with or without communication
between the sub-problems.

This paper also appeared at the 13th Workshop on Answer Set Programming and Other Comput-
ing Paradigms (ASPOCP 2020).

c© Springer Nature Switzerland AG 2021
W. Faber et al. (Eds.): JELIA 2021, LNAI 12678, pp. 442–457, 2021.
https://doi.org/10.1007/978-3-030-75775-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75775-5_30&domain=pdf
https://doi.org/10.1007/978-3-030-75775-5_30

Multi-shot ASP for Aircraft Routing and Maintenance Planning 443

1. Flight Schedule Preparation: The airline designs a set of flights to perform, choos-
ing which airports to serve, at which frequencies to maximize the profit.

2. Fleet Assignment: Define the type of aircraft that should perform each specific
flight. Each type of aircraft has different characteristics: total number of seats, fuel
consumption, number of first-class seats, number of crew members needed to per-
form the flight, etc.

3. Aircraft Routing: Each flight gets a specific aircraft assigned to it, and a sequence of
flights assigned to the same plane forms a route. We need to respect some constraints
like airport turnaround time (called TAT): This is the minimum time on ground
between two consecutive flights required to perform operations preparing the aircraft
for the next flight. Another condition is airport continuity: The start airport of an
aircraft’s next flight is the same as the end airport of the previous flight.

4. Maintenance Planning: We assign maintenance slots to each aircraft to respect
limits defined by a certain number of cycles (i.e., flights), the number of hours from
the last maintenance, or hours of flight. Maintenance can only be performed at spe-
cific airports (with required equipment and skill-set), they have a minimum duration,
and they need to be performed before the aircraft has reached the limit. A good solu-
tion usually maximizes the usage of the aircraft.

5. Crew Scheduling: Assign a crew to cover each flight while respecting all legal
restrictions. A good solution also tries to fulfill all crew members’ preferences.

6. Disruption Recovery: Manage the disruption events happening on the day of oper-
ation due to unforeseen events such as bad weather conditions, crew strikes, aircraft
mechanical failures, airport closure, etc. minimize the impact of different actions
like cancellations, delays, diversions, etc. on passenger services.

We aim to solve the Aircraft Routing and Maintenance Planning in the third and fourth
item together, considering one type of maintenance to perform every seven days on
each aircraft. It is possible to add other types of maintenances that deal with different
due limits (e.g., cycles and hours of flight) without too much overhead, but it is out of
this paper’s scope. Our encoding can find a solution when there is no perfect route that
respects all TAT constraints. We show how to address this problem with ASP using
multi-shot solving, and we implement our approach with Clingo [8].

This paper is organized as follows. In Sect. 2, we begin with brief introductions
of solving techniques for Aircraft Routing and Maintenance Planning from the liter-
ature and of ASP. Section 3 presents our customizable instance generator along with
a solution viewer enabling comprehensive benchmarking. In Sect. 4, we develop and
experimentally evaluate a variety of multi-shot ASP solving techniques for near-optimal
Aircraft Routing and Maintenance Planning. Finally, Sect. 5 concludes the paper.

2 Background

In this section, we first introduce the works previously done in Aircraft Routing and
Maintenance Planning, and then we give a brief introduction on ASP.

444 P. Tassel and M. Rbaia

2.1 Aircraft Routing and Maintenance Planning

Aircraft Routing is usually considered as a feasibility problem, which is NP-hard and
can be reduced to a multi-commodity flow problem [18]. Its combination with Mainte-
nance Planning can be viewed as an Euler tour problem with side constraints [14].

Either kind of problem is usually solved using mixed-integer programming, formu-
lated as a multi-commodity flow problem with one commodity per aircraft and side
constraints related to maintenance allocation [12,16]. There are two principal models
(where maintenance slots can be understood as flights from and to the same airport):

(a) Flight connection network (b) Time-space network

Fig. 1. Two principal models used for aircraft routing and maintenance planning

1. Flight connection network (Fig. 1a): In abscissa the time, in ordinate the airport,
each flight is a node, and there is an arc between two flights if they are compatible,
i.e., the end airport of flight A is the same as the start airport of flight B, and flight
A ends before the departure of flight B [12].

2. Time-space network (Fig. 1b): In abscissa the time, in ordinate the airport, each
node is an airport at a given time, i.e., flight start or end. Also, there is an arc between
two nodes if there is a corresponding flight from one airport to another [20].

2.2 Answer Set Programming

Answer Set Programming (ASP) is a declarative paradigm oriented towards solving
combinatorial problems [4,9]. We represent a problem as a logic program, and the solu-
tions are given by models called answer sets. ASP systems like Clingo [8] and DLV [5]
use a grounder to replace variables with constants and a solver to search for answer sets.

A logic program consists of atoms, literals, and rules. An atom is a proposition,
literals are atoms with or without default negation in front of them, and a rule is an
implication

a1 | ... | an ← b1, ..., bm, not c1, ..., not co.

where a1 | ... | an is a disjunction of literals called head, and b1, ..., bm, notc1, ..., notco
is the body. From the body, we can derive that the head must be true. A special case of
disjunctive rules with head a1 | not a1 are choice rules written as

{a1} ← b1, ..., bm, not c1, ..., not co.

This means that a1 can but need not be derived from the body of the rule. A rule with
an empty head is called a constraint, and it forbids the body to be true:

Multi-shot ASP for Aircraft Routing and Maintenance Planning 445

← b1, ..., bm, not c1, ..., not co.

Multi-shot ASP solving is an iterative approach geared for problemswhere the logic pro-
gram is continuously changing [10]. In this paper, we use multi-shot solving to decom-
pose the optimization process into a sequence of queries of increasing complexity.

3 Instance Generator

The following subsections discuss how instances for our benchmarks are generated,
using the generator provided at [1]. We start by introducing the parameters of the
instance generator, then explain the allocation of maintenance slots to obtain a draft
solution, further, describe how a cost indicating the draft solution’s quality is calcu-
lated, and finally, we present a visual solution format.

Fig. 2. Gantt chart giving an impression of the draft solution used to generate an instance

3.1 Parametric Generation

We have developed an instance generator that can create random instances along with
draft solutions. To make the problem difficult enough to be interesting, we generate
quite big instances configured with the following parameters:

Parameter Value
Number of aircrafts 25
Number of airports 30
Maintenance due limit 7 days
Airports able to perform maintenance 5
Length of maintenance 4 h
Number of flights per aircraft 20 ≤ X ∼ N (50, 10) ≤ 80a

Length of flights 80 ≤ X ∼ N (140, 120) ≤ 600 min
Length of flights’ TAT 30 ≤ X ∼ N (45, 10) ≤ 60 min
Ground time between two flights 0 ≤ X ∼ N (240, 120) ≤ 1000 min

aN (μ, σ2) denotes a normal probability distribution of mean μ and standard deviation σ.

446 P. Tassel and M. Rbaia

We prevent the creation of flights with the same origin and destination but different
flight lengths or TAT so that the length and TAT will be the same for all flights between
the same airports. Our benchmark suite comprises 20 random instances. Such instances
are quite large in order to make optimal Aircraft Routing and Maintenance Planning
challenging. While detailed inspection of a draft solution like the one displayed in Fig. 2
would be intricate, we can still observe that the numbers of flights and resulting time
spans of aircrafts’ routes vary significantly. As a consequence, we obtain a planning
period stretching almost over one month, which necessitates the allocation of a high
number of maintenance slots.

3.2 Maintenance Allocation

Initial maintenance counters, expressing the time left before performing maintenance at
the start of a route, are generated following a truncated normal distribution with a mean
of 3.5 days, a standard deviation of 1 day, a minimum of 0, and a maximum of 6 days.
While the generator builds the flight routes of a solution, it also places maintenance slots
to ensure that the solution is feasible from a maintenance perspective. To do so, when
an aircraft has reached at least 50% usage (i.e., 3.5 days for our 7 days maintenance),
a maintenance slot is included with a probability of the usage plus a random value
uniformly sampled between 0 and 0.5, or 1 if the usage is above 90%. In case the
end airport of the previous flight is incompatible with the maintenance, we change the
destination to a compatible airport, picked randomly among the airports able to perform
the maintenance. Moreover, we add the maintenance length to the ground time between
consecutive flights (meaning that we can have more ground time than needed).

The draft solution generated along with an instance witnesses that all flights can
be routed and maintenance due limits are respected. Instead of the entire routes, the
generated instance fixes the first flight for each aircraft and dates of remaining flights
only, accompanied by information about initial maintenance counters, airports at which
maintenance can be performed, the maintenance length, and due limit. That is, allocat-
ing aircraft to all but the first flights of routes and incorporating maintenance slots is
subject to Aircraft Routing and Maintenance Planning.

3.3 Solution Cost

Along with the actual instance, our generator reports its draft solution together with a
cost indicating the solution quality. The latter is calculated as the sum of cost 500 for
each TAT violation (i.e., too short turnaround time) and 101 for each maintenance slot,
where the ratio reflects a higher priority of avoiding TAT violations and the odd cost
of 101 is taken to facilitate the reading of the number of maintenance slots contained
in the draft solution. This information can be used for analysis, considering that the
draft solution does not include TAT violations and is thus optimal from a flight routing
perspective, yet potentially sub-optimal from a maintenance perspective. However, the
quality of the draft solution can be assumed to be rather good, given that the usage of
each aircraft is at more than 50% before maintenance is performed.

Multi-shot ASP for Aircraft Routing and Maintenance Planning 447

3.4 Solution Viewer

To inspect a solution, we support exporting a graphical representation of it as a Gantt
chart (Fig. 2a and Fig. 3). Every flight is represented by a bar, using a unique color
for each pair of origin and destination airport, and maintenance slots after flights are
indicated similarly. The tail at the right of each (non-maintenance) bar represents the
TAT of a flight, and a next flight covering part of this tail would point out a TAT
violation. Each row gives the route of a separate aircraft, with the first flight on the very
left and further flights and maintenance slots to the right.

4 ASP-Based Aircraft Routing and Maintenance Planning

In this section, we present our multi-shot ASP encoding for Aircraft Routing and Main-
tenance Planning. We then introduce a variety of hyper-parameters for multi-shot ASP
solving and experimentally evaluate their impact on the solution quality and conver-
gence of the optimization process.

4.1 Problem Encoding

As customary in ASP, we model Aircraft Routing and Maintenance Planning by facts
describing a problem instance along with a general first-order encoding specifying
(optimal) solutions. Our modeling approach follows the idea of flight connection net-
works,1 where two flights can be connected if they are compatible (i.e., flight A arrives
before flight B departs from the destination airport of flight A). In the following, we
present a simplified yet logically similar version of the full encoding provided at [1].

(a) Gantt chart for a small instance

flight(1, 1, 366701, 3, 379361). tat(1, 4520).
flight(2, 3, 385901, 1, 392321). tat(2, 3300).
flight(3, 1, 401861, 3, 414521). tat(3, 4520).
flight(4, 3, 421961, 1, 428381). tat(4, 3300).
flight(5, 1, 366417, 3, 379077). tat(5, 4520).
flight(6, 3, 391617, 2, 404517). tat(6, 2640).
flight(7, 2, 409497, 1, 422517). tat(7, 3300).
first(1, 1). first(5, 2).
maintenance(seven_day).
airport_maintenance(seven_day, 3).
length_maintenance(seven_day, 9000).
start_counter(seven_day, 366701, 416288, 1).
start_counter(seven_day, 366417, 470841, 2).
limit_counter(seven_day, 604800).

(b) ASP facts for the instance shown in Fig. 3a

Fig. 3. Chart and facts for an Aircraft Routing and Maintenance Planning instance

Figure 3a sketches (the optimal solution to) the small Aircraft Routing and Main-
tenance Planning instance described by the facts in Fig. 3b. We have the flights 1 to 7,

1 We have also devised prototype encodings based on time-space networks and observed dras-
tically increased difficulty of finding feasible routings that incorporate all flights. Hence we
chose flight connection networks as basic principle of problem encodings to elaborate further.

448 P. Tassel and M. Rbaia

declared by facts of the flight/5 predicate whose first argument is the flight identi-
fier, the second stands for the start airport, the third for the start time, the fourth for the
destination airport and the fifth for the arrival time. For each of the seven flights, a fact
of the tat/2 predicate provides the TAT required before the next flight on the route of
some aircraft, e.g., 4520 time units (resembling about 75min) for flight 1. Two facts
of the first/2 predicate indicate that flight 1 is the first on the route of aircraft 1, and
similarly flight 5 for aircraft 2. The remaining facts address conditions for a mainte-
nance kind labeled seven day, declared by a fact of maintenance/1. Such mainte-
nance can be performed at airport 3 and requires at least 9000 units of ground time
(amounting to 2.5 h), as expressed by facts of the predicates airport maintenance/2
and length maintenance/2. The two facts of start counter/4 denote initial time
periods in which the seven day maintenance is (still) covered: This period stretches
from time 366701 to 416288 for aircraft 1, and from 366417 to 470841 for aircraft 2.
Finally, the fact of the limit counter/2 predicate expresses that 604800 time units
(7 days) get covered when seven day maintenance is performed for an aircraft. The
(optimal) routing, depicted in Fig. 3a, happens to be such that aircraft 1 takes the flights
1, 6 and 7 with a maintenance slot after flight 1, while aircraft 2 does the remaining
flights in the order 5, 2, 3 and 4.

Our multi-shot ASP encoding in Fig. 4 starts by defining constants for levels and
weights to penalize TAT violations and maintenance slots along the routes of air-
crafts. In addition, the constant time window is crucial for when to consider com-
patible flight connections in a routing, and the value 3600 expresses that the gap
admitted between the arrival and departure of connected flights shall be successively
increased by windows of one hour. This gap is reflected by the TIME G and WINDOW

arguments in atoms of the compatible/6 predicate (line 6–11). E.g., we derive the
atoms compatible(1,3,379361,2,6540,2) and compatible(1,3,379361,6,

12256,4), indicating a ground time of 6540 time units between the arrival of flight 1
at time 379361 and the departure of flight 2 from airport 3, while this ground time
amounts to 12256 time units for flight 6. Given the window size of 3600 time units,
the last argument in both atoms expresses that the potential connection between flight 1
and 2 shall be considered from the second step on during multi-shot solving, and the
connection continuing with flight 6 becomes admissible from the fourth step on.

The second kind of auxiliary atoms derived from the facts of an instance, those
of the maintainable/5 predicate (line 13–18), provide flights FLIGHT1 with their
arrival TIME such that performing MAINTENANCE after them covers (later) flights whose
arrival and departure times lie in the interval from TIME M to TIME N. For our instance
in Fig. 3b, we obtain maintainable(seven day,1,379361,388361,984161) and
maintainable(seven day,5,379077,388077,983877), signaling the possibility
of seven day maintenance after flight 1 and 5, both of which arrive at airport 3 and
admit connections to later flights with more than the maintenance length of 9000 time
units in-between. Unlike that, performing seven daymaintenance after flight 3, which
also arrives at airport 3, would be meaningless because its single available connection
with flight 4 does not include sufficient ground time, i.e., 7440 time units only, so that
no maintainable/5 atom is derived for flight 3.

Multi-shot ASP for Aircraft Routing and Maintenance Planning 449

1 % constants for levels and weights of costs, and time window for connections
2 #const level_tat = 2. #const weight_tat = 1.
3 #const level_maintenance = 1. #const weight_maintenance = 1.
4 #const time_window = 3600.
5 % compatible flights with number of time window
6 compatible(FLIGHT1, AIRPORT_E1, TIME_E1, FLIGHT2, TIME_G, WINDOW) :-
7 flight(FLIGHT1, AIRPORT_S1, TIME_S1, AIRPORT_E1, TIME_E1),
8 flight(FLIGHT2, AIRPORT_E1, TIME_S2, AIRPORT_E2, TIME_E2),
9 not first(FLIGHT2, _),

10 TIME_G = TIME_S2 - TIME_E1, 0 <= TIME_G,
11 WINDOW = TIME_G / time_window + 1.
12 % feasible maintenance slots after flights
13 maintainable(MAINTENANCE, FLIGHT1, TIME, TIME_M, TIME_N) :-
14 compatible(FLIGHT1, AIRPORT, TIME, FLIGHT2, TIME_G, WINDOW),
15 airport_maintenance(MAINTENANCE, AIRPORT),
16 length_maintenance(MAINTENANCE, LENGTH), LENGTH <= TIME_G,
17 limit_counter(MAINTENANCE, LIMIT),
18 TIME_M = TIME + LENGTH, TIME_N = TIME + LIMIT.

20 % declare incrementally generated routing as external
21 #external route(FLIGHT1, FLIGHT2, TIME_G, WINDOW) :
22 compatible(FLIGHT1, AIRPORT, TIME, FLIGHT2, TIME_G, WINDOW).
23 % enforce routing sequences that include all flights
24 :- flight(FLIGHT1, AIRPORT_S, TIME_S, AIRPORT_E, TIME_E),
25 #count{FLIGHT2 : route(FLIGHT1, FLIGHT2, TIME_G, WINDOW)} > 1.
26 :- flight(FLIGHT2, AIRPORT_S, TIME_S, AIRPORT_E, TIME_E),
27 not first(FLIGHT2, _),
28 #count{FLIGHT1 : route(FLIGHT1, FLIGHT2, TIME_G, WINDOW)} != 1.
29 % propagate assigned planes along routing
30 assign(FLIGHT1, PLANE) :-
31 first(FLIGHT1, PLANE).
32 assign(FLIGHT2, PLANE) :-
33 assign(FLIGHT1, PLANE), route(FLIGHT1, FLIGHT2, TIME_G, WINDOW).

35 % generate maintenance slots for planes
36 {maintain(MAINTENANCE, TIME, TIME_M, TIME_N, PLANE)} :-
37 maintainable(MAINTENANCE, FLIGHT, TIME, TIME_M, TIME_N),
38 assign(FLIGHT, PLANE).
39 % get covered flights from initial and dynamic maintenance slots
40 covered(MAINTENANCE, FLIGHT, PLANE) :-
41 start_counter(MAINTENANCE, TIME_M, TIME_N, PLANE),
42 flight(FLIGHT, AIRPORT_S, TIME_S, AIRPORT_E, TIME_E),
43 TIME_M <= TIME_S, TIME_E <= TIME_N.
44 covered(MAINTENANCE, FLIGHT, PLANE) :-
45 maintain(MAINTENANCE, TIME, TIME_M, TIME_N, PLANE),
46 flight(FLIGHT, AIRPORT_S, TIME_S, AIRPORT_E, TIME_E),
47 TIME_M <= TIME_S, TIME_E <= TIME_N.
48 % enforce coverage of all flights
49 :- maintenance(MAINTENANCE), assign(FLIGHT, PLANE),
50 not covered(MAINTENANCE, FLIGHT, PLANE).
51 % associate costs with dynamic maintenance slots
52 :˜ maintain(MAINTENANCE, TIME, TIME_M, TIME_N, PLANE).
53 [weight_maintenance@level_maintenance, TIME, PLANE]

55 #program step(t). % incremental program to generate routing
56 % generate new flight connections for current time window
57 {route(FLIGHT1, FLIGHT2, TIME_G, t)} :-
58 compatible(FLIGHT1, AIRPORT, TIME, FLIGHT2, TIME_G, t).
59 % enforce sufficient ground time for dynamic maintenance slots
60 :- compatible(FLIGHT1, AIRPORT, TIME, FLIGHT2, TIME_G, t),
61 maintainable(MAINTENANCE, FLIGHT1, TIME, TIME_M, TIME_N),
62 length_maintenance(MAINTENANCE, LENGTH), TIME_G < LENGTH,
63 maintain(MAINTENANCE, TIME, TIME_M, TIME_N, PLANE),
64 assign(FLIGHT2, PLANE).
65 % associate costs with TAT violations
66 :˜ route(FLIGHT1, FLIGHT2, TIME_G, t), tat(FLIGHT1, TAT), TIME_G < TAT.
67 [weight_tat@level_tat, FLIGHT1]

Fig. 4. Multi-shot ASP encoding for aircraft routing and maintenance planning

450 P. Tassel and M. Rbaia

While flight connections are to be made available step-wise during multi-shot solv-
ing, an #external declaration introduces respective atoms of the route/4 predicate
(line 21–22) right at the beginning. This avoids need for re-instantiating conditions
expressed by #count aggregates (line 24–28), enforcing a routing with at most one
(direct) successor per flight and exactly one predecessor for flights that are not the first
on the route of any aircraft, in case new compatible connections become admissible in
a step. The same applies to rules for the assign/2 predicate (line 30–33), which trace
connections given by atoms of route/4 and associate each flight with its correspond-
ing aircraft. Maintenance slots can then be scheduled for aircrafts assigned to flights
indicated by the maintainable/5 predicate, and the arguments TIME M and TIME N in
maintain/5 atoms provide the respective time period covered (line 36–38). The flights
included in the initial interval or by performing maintenance for an aircraft are sig-
naled by atoms of the predicate covered/3 (line 40–47), where a subsequent constraint
makes sure that each assigned flight is indeed covered (line 49–50). Reconsidering the
instance in Fig. 3b, the initial seven day maintenance period for aircraft 2 includes all
flights that can belong to its route, while the flights 4 and 7 exceed the initial interval
for aircraft 1. Hence, aircraft 1 needs to be maintained after its first flight, as indicated
by the atom maintain(seven day,379361,388361,984161,1) in an (optimal)
answer set. The allocation of maintenance slots is however penalized by a weak con-
straint (line 52–53), and the particular instance : maintain(seven day,379361,

388361,984161,1). [1@1,379361,1] associates the weight 1 at level 1 with the
maintenance of aircraft 1 at time 379361.

In contrast to the upper part of the encoding in Fig. 4, the one below the #program

directive is instantiated in steps during multi-shot solving, where t is replaced by suc-
cessive integers starting from 1. The choice rule for route/4 atoms (line 57–58), which
were declared external before, then allows for taking the connections newly admitted
at the current step or integer for t, respectively. E.g., route(1,2,6540,2) is intro-
duced as a potential connection in the second step, and route(1,6,12256,4) in the
fourth step. The subsequent constraint enforces sufficient ground time when a mainte-
nance slot is allocated in-between two connected flights (line 60–64).2 This rules out
route(1,2,6540,2) for an aircraft subject to seven day maintenance after flight 1,
as it is the case for aircraft 1 whose first flight is 1. Hence, the routing given by an
(optimal) answer set is such that the flights 1, 6 and 7 are assigned to aircraft 1,
and aircraft 2 takes 5, 2, 3 and 4. One can check that this schedule does not involve
TAT violations, which would otherwise be penalized by a weak constraint according to
the corresponding level and weight (line 66–67). As the greatest step associated with
some flight connection in the routing happens to be 4 (indicated by the last argument
in route(1,6,12256,4)), the multi-shot encoding requires four steps to lead to an
answer set, which then describes an optimal solution for the instance in Fig. 3b.

Finally, let us note that a traditional single-shot version can be easily derived from
the more sophisticated multi-shot encoding in Fig. 4 by simply omitting the WINDOW

and t arguments from atoms related to flight connections, as well as dropping the

2 Our full encoding, provided with the Python multi-shot solving script at [1], includes a more
general version of this constraint that is also able to deal with multiple maintenance kinds.

Multi-shot ASP for Aircraft Routing and Maintenance Planning 451

#external and #program declarations. A respective single-shot encoding is also pro-
vided at [1].

4.2 Basic Multi-shot Solving Approach

The main bottleneck of flight connection networks is the large number of arcs when
flights with long ground times in-between are taken as connection candidates, e.g.,
linking the first flight arriving at an airport to the last flight in the planning period
departing from it. Such connections could be dropped by imposing a hard constraint on
the maximum admissible ground time, yet to the risk of ruling out (optimal) solutions
up to making Aircraft Routing and Maintenance Planning infeasible for tricky instances
where some connection with long ground time has to be taken.

Rather than constraining ground times, our multi-shot ASP solving approach suc-
cessively increases the maximum ground time of the considered connections over iter-
ations. For guaranteeing the progress to connections with longer ground times (and
eventually all connections), we limit the runtime allotted for optimizing the routing and
maintenance allocation in each iteration by means of the following intra-iteration stop
criterion: An iteration is aborted when the empirically determined timeout of 60 s for
finding some better solution is reached, in which case we continue to the next iteration
with an increased maximum ground time of connections. This strategy’s rationale is
to avoid getting stuck on infeasible sub-problems when the admissible ground time is
yet too small in the first iterations or on (near-)optimal solutions that can neither be
improved nor verified as optimal in a reasonable runtime. Note that the timeout is reset
to 60 s whenever the optimization comes up with a better solution, as we do not want to
abort iterations in phases where the optimization makes progress. Upon proceeding to
the next iteration, either due to timeout or search space exhaustion, we check that new
connections become admissible, or increase the maximum ground time further without
relaunching the optimization otherwise. Moreover, the cost of the best solution found
so far, if any, is passed on as upper bound to admit better solutions only.

Our experiments consider the 20 random instances whose generation has been
described in the previous subsection. As time window for increasing the maximum
ground time of connections, we use the value 3600 (one hour), corresponding to the
default of our encoding in Fig. 4. Unless noted otherwise, we also stick to the level 2
for weight constraints penalizing TAT violations, and the smaller level 1 for main-
tenance slots implies strictly lower priority of minimizing their number, where each
maintenance slot or TAT violation is counted with the weight 1. Note that this scheme
is different from the weighted sum taken to calculate the cost of a draft solution in
Sect. 3.3, and we reuse the latter for comparability when plotting solution costs in the
sequel. All experiments were run with Clingo version 5.4.0, each run limited to one
hour wall clock time, on an Ubuntu 18.04 machine with two 8-Core Intel Xeon E5520
processors and 48 GB RAM.3

3 We also took Acyc2solver [21] to translate our single-shot encoding to mixed-integer program-
ming and tried IBM’s CPLEX. Unfortunately, CPLEX could not find any solution in one hour.

452 P. Tassel and M. Rbaia

Fig. 5. Solution costs for single-shot and multi-shot solving

(a) Solution costs per runtime for instance 14 (b) Solution costs per runtime for instance 15

Fig. 6. Instance-wise solution costs per runtime for single-shot and multi-shot solving

Figure 5 plots the costs of best solutions found in one hour with traditional single-
shot solving, where the full problem with all flight connections is considered, and with
our (basic) multi-shot solving approach in relation to the costs of draft solutions gen-
erated together with the instances. Although multi-shot solving with its intra-iteration
stop criterion merely probes the search space of sub-problems without guaranteeing
that a globally optimal solution will be obtained, it usually finds better solutions than
single-shot solving in the time limit, and sometimes its best solution also improves on
the draft solution that is of good quality by construction.

Figure 6a and b show the optimization progress in detail for two representative
instances, where single-shot solving leads to a better solution for one instance and
multi-shot solving for the other.4 We observe that multi-shot solving finds its solu-
tions much faster and gets then stuck on unsuccessful iterations aborted after 60 s each.
Tackling the full problem by single-shot solving makes finding the first feasible routing
and then achieving improvements much harder and time-consuming, so that granting
non-negligible runtime is a necessity to obtain solutions of good quality. Notably, all
runs exhaust the time limit of one hour due to the size and combinatorics of instances.

4 Occasionally rising solution cost over time is due to the weighted sum function used for plot-
ting the solution quality, while the optimization strictly reduces TAT violations in such cases
and also leads to lower weighted sum values in the long run.

Multi-shot ASP for Aircraft Routing and Maintenance Planning 453

(a) Solution cost per iteration for instance 7 (b) Solution cost per iteration for instance 8

Fig. 7. Instance-wise solution cost per iteration for multi-shot solving

(a) Runtimes for the early-stop criterion (b) Solution costs for the early-stop criterion

Fig. 8. Runtimes and solution costs for the early-stop criterion

4.3 Early-Stop Multi-shot Solving Approach

Picking two representative instances again, Fig. 7a and b indicate the optimization pro-
gress over the iterations of multi-shot solving, where we observe substantial improve-
ments by step-wise increases of the maximum ground time at the beginning, followed
by little and then no improvement at all for a substantial number of unsuccessful iter-
ations aborted after 60 s. This suggests the addition of an inter-iteration stop criterion
to avoid spending time on unpromising iterations, and our early-stop multi-shot solving
approach thus aborts the entire run after timing out without any improvement for three
iterations in a row. The deliberate stop of runs constitutes a trade-off between solu-
tion quality and computational efforts, and the number of three consecutive timeouts of
iterations without improvement is again problem-specific and determined empirically.

The plot in Fig. 8a shows that runtimes are indeed substantially reduced by early-
stop multi-shot solving, with the median around 20min instead of fully exhausting the
one hour per instance. Comparing the solution costs in Fig. 8b yields a rather modest
quality decline in exchange for runtime savings, which can presumably be tolerated in
application scenarios where the time taken for decision making is critical.

4.4 Weighted Sum vs Level Cost Function

The results reported so far rely on distinct priority levels for TAT violations and main-
tenance allocation, and now we compare the performance of optimization relative to

454 P. Tassel and M. Rbaia

the weighted sum function given in Sect. 3.3. Switching to the latter can be easily done
by setting the values for the constants level tat, level maintenance, weight tat

and weight maintenance used by the encoding in Fig. 4 to 1, 1, 500 and 101.

(a) Runtimes for weighted sum and level
function

(b) Solution costs for weighted sum and level
function

Fig. 9. Runtimes and solution costs for weighted sum and level function

(a) Solution costs per runtime for instance 4 (b) Solution costs per runtime for instance 12

Fig. 10. Instance-wise solution costs per runtime for weighted sum and level function

Figures 9a and b plot runtimes and solution costs for early-stop multi-shot solv-
ing with either the weighted sum function or distinct priority levels to penalize TAT
violations and maintenance slots. Switching to the weighted sum greatly reduces run-
times, yet because optimization turns out to be much harder and the three iterations in
a row without improvement are reached way more quickly. Accordingly, the solution
quality suffers heavily, even despite the previously considered optimization based on
distinct priority levels merely approximates the weighted sum function used for plot-
ting and now in the optimization process as well. The quick outage of improvements
after more or less substantial progress in the first iterations becomes also apparent on
the detailed inspections of two instances in Fig. 10a and b. We conjecture that higher
weighted sum values due to incorporating costs from several sources at the same level
complicate recognizing and discarding partial assignments that can eventually not lead
to any improvement, so that more search efforts are spent on such fruitless assignments.

Multi-shot ASP for Aircraft Routing and Maintenance Planning 455

(a) Runtimes for sequential and parallel
solving

(b) Solution costs for sequential and parallel
solving

Fig. 11. Runtimes and solution costs for sequential and parallel solving

(a) Solution costs per runtime for instance 0 (b) Solution costs per runtime for instance 11

Fig. 12. Instance-wise solution costs per runtime for sequential and parallel solving

4.5 Parallel Solving

While we merely considered single-threaded Clingo before, it also allows for running
multiple solver threads with complementary search strategies in parallel. The remark-
ably reduced runtimes and solution costs obtained with eight parallel solver threads are
summarized in Fig. 11a and b. Notably, the best solutions found by early-stop multi-shot
solving with parallel threads consistently improve on the draft solutions for instances,
thus showing that high-quality results can be achieved with reasonable computational
efforts. Figure 12a and b additionally plot the much more rapid optimization progress
for two representative instances. This robustness is certainly related to the parallel use
of complementary search strategies, also considering that the discovery of a better solu-
tion by one thread resets the timeout to another 60 s for all threads.

5 Conclusion

The Aircraft Routing and Maintenance Planning problem lends itself to multi-shot ASP
solving based on successively increasing ground times of flight connections, given that
long ground times are undesirable in practice and should thus be avoided if possible.
A direct use of the incremental mode shipped with Clingo [10] would be (too) risky
though, as it minimizes the number of iterations and can easily get stuck on hard sub-
problems.We instead aim at discovering near-optimal solutions in an affordable time, so

456 P. Tassel and M. Rbaia

that approximating solution costs by means of (easier to optimize) priority levels, also
found to be advantageous for shift design [2], and interrupting exhaustive iterations,
as likewise done in automated planning [7], can be tolerated. The hyper-parameters
we used for aborting iterations or entire runs are clearly problem-specific and need re-
tuning when switching to another application, where related scheduling problems may
benefit from similar techniques as well, so that a general tool supplying them can be
valuable. Hence, as future work we plan to generalize our approach and experiment
with additional optimization problems.

Acknowledgments. This work was partially funded by KWF project 28472, cms electronics
GmbH, FunderMax GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, Infineon Technologies
Austria AG, Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse. We
thank the anonymous reviewers for helpful comments.

References

1. https://github.com/prosysscience/Aircraft Scheduling
2. Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift design with answer set

programming. Fundam. Inform. 147(1), 1–25 (2016)
3. Brewka, G., Delgrande, J., Romero, J., Schaub, T.: asprin: customizing answer set prefer-

ences without a headache. In: Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 1467–1474. AAAI Press (2015)

4. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

5. Calimeri, F., Dodaro, C., Fuscà, D., Perri, S., Zangari, J.: Efficiently coupling the I-DLV
grounder with ASP solvers. Theory Pract. Logic Program. 20(2), 205–224 (2020)

6. Chen, K., Lu, D., Chen, Y., Tang, K., Wang, N., Chen, X.: The intelligent techniques in
robot KeJia–the champion of RoboCup@Home 2014. In: Bianchi, R.A.C., Akin, H.L.,
Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 130–
141. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18615-3 11

7. Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., Schaub, T.: Pasp 3: towards effective
ASP planning. Theory Pract. Logic Program. 19(3), 477–504 (2019)

8. Gebser, M., et al.: Potassco User Guide. University of Potsdam (2019). https://potassco.org
9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-

gan & Claypool Publishers (2012). https://www.cs.uni-potsdam.de/wv/publications/DBLP
series/synthesis/2012Gebser.html

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo.
Theory Pract. Logic Program. 19(1), 27–82 (2019)

11. Gebser, M., Sabuncu, O., Schaub, T.: An incremental answer set programming based system
for finite model computation. AI Commun. 24(2), 195–212 (2011)

12. Grönkvist, M.: The tail assignment problem. Ph.D. thesis, Chalmers University of Technol-
ogy (2005)

13. Jamili, A.: A robust mathematical model and heuristic algorithms for integrated aircraft rout-
ing and scheduling, with consideration of fleet assignment problem. J. Air Transp. Manage.
58, 21–30 (2017)

14. Liang, Z., Chaovalitwongse, W.: The aircraft maintenance routing problem. In: Chaovalit-
wongse, W., Furman, K., Pardalos, P. (eds.) Optimization and Logistics Challenges in the
Enterprise, vol. 30, pp. 327–348. Springer, Boston (2009). https://doi.org/10.1007/978-0-
387-88617-6 12

https://github.com/prosysscience/Aircraft_Scheduling
https://doi.org/10.1007/978-3-319-18615-3_11
https://potassco.org
https://www.cs.uni-potsdam.de/wv/publications/DBLP_series/synthesis/2012Gebser.html
https://www.cs.uni-potsdam.de/wv/publications/DBLP_series/synthesis/2012Gebser.html
https://doi.org/10.1007/978-0-387-88617-6_12
https://doi.org/10.1007/978-0-387-88617-6_12

Multi-shot ASP for Aircraft Routing and Maintenance Planning 457

15. Obermeier, P., Romero, J., Schaub, T.: Multi-shot stream reasoning in answer set program-
ming: a preliminary report. Open J. Databases 6(1), 33–38 (2019)

16. Orhan, İ., Kapanoğlu, M., Karakoç, T.: Concurrent aircraft routing and maintenance schedul-
ing. J. Aeronaut. Space Technol. 5(1), 73–79 (2011)

17. Ovacik, I., Uzsoy, R.: Decomposition Methods for Complex Factory Scheduling Problems.
Springer, New York (2012). https://doi.org/10.1007/978-1-4615-6329-7

18. Roy, K., Tomlin, C.: Solving the aircraft routing problem using network flow algorithms. In:
Proceedings of the American Control Conference, pp. 3330–3335. IEEE (2007)

19. Schäpers, B., Niemueller, T., Lakemeyer, G., Gebser, M., Schaub, T.: ASP-based time-
bounded planning for logistics robots. In: Proceedings of the International Conference on
Automated Planning and Scheduling, pp. 509–517. AAAI Press (2018)

20. Vaaben, B., Larsen, J.: Mitigation of airspace congestion impact on airline networks. J. Air
Transp. Manage. 47, 54–65 (2015)

21. Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as SAT modulo acyclic-
ity. In: Proceedings of the Twenty-First European Conference on Artificial Intelligence,
ECAI’14, pp. 351–356. IOS Press, Prague (2014)

https://doi.org/10.1007/978-1-4615-6329-7

Author Index

Amendola, Giovanni 362

Baader, Franz 194
Bednarczyk, Bartosz 179
Beierle, Christoph 35, 85
Berei, Tobias 362
Bistarelli, Stefano 18
Bodirsky, Manuel 133

Calegari, Roberta 407
Ciatto, Giovanni 407
Costantini, Stefania 101
Cristani, Matteo 69

Dautović, Šejla 279
Dellunde, Pilar 25
Doder, Dragan 279
Dvořák, Wolfgang 3

El-Kholany, Mohammed M. S. 313

Formisano, Andrea 101
Francescutto, Giulia 313

Gadducci, Fabio 162
Giordano, Laura 225
Godo, Lluís 25
Gonçalves, Ricardo 297, 329
Governatori, Guido 69
Greiner, Johannes 133

Haldimann, Jonas 35, 85
Hannula, Miika 262
Herzig, Andreas 116
Heyninck, Jesse 329
Hippen, Nicholas 346

Ismail, Haythem O. 50

Janhunen, Tomi 297

Kern-Isberner, Gabriele 35, 85
Knorr, Matthias 297, 329
König, Matthias 3

Leite, João 297, 329
Lierler, Yuliya 346, 377, 435
Lifschitz, Vladimir 421
Lorini, Emiliano 245

Mittelmann, Munyque 116

Nguyen, Van 393

Ognjanović, Zoran 279
Olivieri, Francesco 69
Omicini, Andrea 407

Parsia, Bijan 210
Perrussel, Laurent 116
Pitoni, Valentina 101

Rbaia, Mohamed 442
Ricca, Francesco 362
Robbins, Justin 435
Rydval, Jakub 194

Santini, Francesco 162
Sattar, Abdul 69
Sattler, Uli 210
Sauerwald, Kai 35
Schekotihin, Konstantin 313
Schwarzentruber, François 245
Son, Tran Cao 393
Subramani, K. 147

Tassel, Pierre 442
Taticchi, Carlo 18
Theseider Dupré, Daniele 225

Vasileiou, Stylianos Loukas 393
Vidal, Amanda 25
Virtema, Jonni 262
von Berg, Martin 35

Wojciechowski, Piotr 147
Woltran, Stefan 3

Yasser, Ammar 50
Yeoh, William 393

Zhao, Haoruo 210

	Preface
	Organization
	Contents
	Argumentation
	Graph-Classes of Argumentation Frameworks with Collective Attacks
	1 Introduction
	2 Preliminaries
	2.1 Argumentation Frameworks
	2.2 Complexity

	3 Graph Classes
	3.1 Acyclicity
	3.2 Symmetry
	3.3 Bipartiteness
	3.4 Tractable Fragments

	4 Conclusion
	References

	Introducing a Tool for Concurrent Argumentation
	1 Preliminaries
	2 Implementation
	2.1 Web Interface

	3 Conclusion and Future Work
	References

	Probabilistic Argumentation: An Approach Based on Conditional Probability –A Preliminary Report–
	1 Introduction
	2 Logic and Probability
	3 Using Conditional Probability in Arguments
	4 Future Work
	References

	Belief Revision
	Conditional Descriptor Revision and Its Modelling by a CSP
	1 Introduction
	2 Logical Preliminaries
	3 Descriptors and Descriptor Revision
	4 Conditional Descriptor Revision
	5 Modelling Conditional Descriptor Revision by a CSP
	6 Implementation
	7 Summary and Future Work
	References

	Trust Is All You Need: From Belief Revision to Information Revision
	1 Introduction
	2 Motivation
	3 Formal Preliminaries
	4 Information Revision
	5 Relevant Change Propagation
	5.1 Joint Revision Wave
	5.2 Refutation Propagation Wave
	5.3 Confirmation Propagation Wave

	6 Conclusion and Future Work
	References

	Reasoning about Actions, Causality, and Change
	Computing Defeasible Meta-logic
	1 Introduction
	2 Logic
	3 Algorithms
	3.1 Computational Properties

	4 Conclusions and Related Work
	References

	Syntax Splitting for Iterated Contractions, Ignorations, and Revisions on Ranking Functions Using Selection Strategies
	1 Introduction
	2 Background
	3 Contractions, Revisions, and Ignorations
	4 Syntax Splitting on Ranking Functions
	5 Selection Strategies for c-Changes
	6 Selection Strategies and Syntax Splitting
	7 Conclusion
	References

	An Epistemic Logic for Multi-agent Systems with Budget and Costs
	1 Introduction
	2 Logical Framework
	2.1 Syntax
	2.2 Semantics
	2.3 Problem Specification and Inference: An Example

	3 Axiomatization and Strong Completeness
	4 Discussion and Future Work
	References

	Epistemic Reasoning About Rationality and Bids in Auctions
	1 Introduction
	2 Auctions as State-Transition Models
	3 Epistemic Auction Description Language
	3.1 Syntax
	3.2 Semantics
	3.3 Running Example: Dutch Auction

	4 Rationality in Auctions
	4.1 Rationality
	4.2 Example: Rationality on the Dutch Auction

	5 Model Checking
	6 Conclusion
	References

	Constraint Satisfaction
	Tractable Combinations of Theories via Sampling
	1 Introduction
	2 Sampling for a Theory
	3 Sampling for Unions of Theories
	4 Exemplary Application to CSPs
	References

	Analyzing Unit Read-Once Refutations in Difference Constraint Systems
	1 Introduction
	2 Statement of Problems
	3 Motivation and Related Work
	4 The UROR Refutation System
	4.1 The Feasibility Problem
	4.2 An FPT Algorithm
	4.3 An Exact Exponential Algorithm

	5 Approximability
	6 Conclusion
	References

	Residuation for Soft Constraints: Lexicographic Orders and Approximation Techniques
	1 Introduction
	2 Preliminaries
	2.1 Ordered Monoids
	2.2 Residuated Monoids

	3 The Ideal of Collapsing Elements
	3.1 A Different View on Collapsing Elements

	4 On Lexicographic Orders
	4.1 On Lexicographic Residuation
	4.2 Infinite Tuples

	5 Mini-bucket Elimination for Residuated POMs
	5.1 Soft Branch-and-Bound

	6 Conclusions and Future Works
	References

	Description Logics and Ontological Reasoning
	Exploiting Forwardness: Satisfiability and Query-Entailment in Forward Guarded Fragment
	1 Introduction
	1.1 Our Motivation and Related Work
	1.2 Our Results

	2 Preliminaries
	2.1 Queries

	3 Forward Guarded Fragment
	3.1 Logics
	3.2 Simplified Forms and Forward Types
	3.3 Higher-Arity-Forest-(Counter)Model Property
	3.4 ExpTime-Completeness of the kb Satisfiability Problem

	4 Query Answering
	4.1 Rolling-Up: Detecting Matches of Tree-Shaped Queries
	4.2 Fork Rewritings: Describing Different Collapsings of a Query
	4.3 Splittings: Describing Query Matches in an Abstract Way
	4.4 Spoilers: Blocking Query Matches

	5 Conclusions and Future Work
	References

	An Algebraic View on p-Admissible Concrete Domains for Lightweight Description Logics
	1 Introduction
	2 Preliminaries
	3 Integrating p-Admissible Concrete Domains into EL
	4 Algebraic Characterizations of Convexity
	5 Examples of Convex and p-Admissible Structures
	5.1 Convex -Categorical Structures
	5.2 Convex Structures with Forbidden Patterns
	5.3 Convex Numerical Structures

	6 -Admissibility versus p-Admissibility
	7 Conclusion
	References

	ReAD: AD-Based Modular Ontology Classification
	1 Introduction
	2 Background and Related Work
	3 Theoretical Foundations
	4 AD-Based Classification with Delegate Reasoners
	4.1 An AD-Based Classification Algorithm

	5 Implementation and Evaluation
	5.1 Experimental Setting
	5.2 EL++-Part and Modules
	5.3 Classification Time and Number of STs Carried Out

	6 Conclusion
	References

	Weighted Defeasible Knowledge Bases and a Multipreference Semantics for a Deep Neural Network Model
	1 Introduction
	2 The Description Logics ALC and EL
	3 Fuzzy Description Logics
	4 A Concept-Wise Multipreference Semantics for Weighted KBs
	4.1 Weighted EL Knowledge Bases
	4.2 The Concept-Wise Preferences from Weighted Knowledge Bases
	4.3 A Semantics Closure Construction for Weighted Knowledge Bases

	5 Weighted Tboxes and Multipreference Fuzzy Interpretations
	6 Preferential and Fuzzy Interpretations of Multilayer Perceptrons
	6.1 A Multipreference Interpretation of Multilayer Perceptrons
	6.2 A Fuzzy Interpretation of Multilayer Perceptrons
	6.3 Multilayer Perceptrons as Conditional Knowledge Bases

	7 Conclusions
	References

	Non-classical Logics
	A Computationally Grounded Logic of Graded Belief
	1 Introduction
	2 Graded Doxastic Language
	3 Belief Base Semantics
	4 Social Influence
	5 Axiomatics and Decidability
	6 Conditional Belief Operators
	7 Model Checking
	8 Epistemic Explanation
	9 Conclusion
	References

	Tractability Frontiers in Probabilistic Team Semantics and Existential Second-Order Logic over the Reals
	1 Introduction
	2 Existential Second-Order Logics on R-Structures
	3 Data Complexity of Additive ESOR
	3.1 A Tractable Fragment
	3.2 Full Additive ESOR

	4 Probabilistic Team Semantics and Additive ESOR
	4.1 Probabilistic Team Semantics
	4.2 Expressivity of Probabilistic Inclusion Logic
	4.3 From Probabilistic Team Semantics to Existential Second-Order Logic
	4.4 From Existential Second-Order Logic to Probabilistic Team Semantics

	5 Interpreting Inclusion Logic in Probabilistic Team Semantics
	6 Conclusion
	References

	An Epistemic Probabilistic Logic with Conditional Probabilities
	1 Introduction
	2 Syntax and Semantics
	3 Axiomatization
	4 Completeness
	5 Decidability of CKL
	6 Conclusion
	References

	Logic Programming and Answer Set Programming
	On Syntactic Forgetting Under Uniform Equivalence
	1 Introduction
	2 Preliminaries
	3 Uniform Forgetting from Stratified Programs
	4 Uniform Forgetting in General
	5 Conclusions
	References

	Solving a Multi-resource Partial-Ordering Flexible Variant of the Job-Shop Scheduling Problem with Hybrid ASP
	1 Introduction
	2 Preliminaries
	3 Problem Formalization
	3.1 MPF-JSS Definition
	3.2 Modeling MPF-JSS with Hybrid ASP

	4 Experimental Evaluation
	5 Conclusions
	References

	Tractable Reasoning Using Logic Programs with Intensional Concepts
	1 Introduction
	2 Intensional Logic Programs
	3 Three-Valued Semantics
	4 Alternating Fixpoint
	5 Computational Complexity
	6 Related Work
	7 Conclusions
	References

	Estimating Grounding Sizes of Logic Programs Under Answer Set Semantics
	1 Introduction
	2 Preliminaries
	3 System predictor
	4 Experimental Analysis
	5 Conclusions
	References

	Testing in ASP: Revisited Language and Programming Environment
	1 Introduction
	2 Preliminaries on Answer Set Programming
	3 Unit Testing of Answer Set Programs
	4 The ASP-WIDE Environment
	5 Related Work
	6 Conclusion
	References

	An Abstract View on Optimizations in SAT and ASP
	1 Introduction
	2 Review: Abstract Logics and Modular Systems
	3 Weighted Abstract Modular Systems
	4 Formal Properties of W-Systems
	5 Conclusions
	References

	Model Reconciliation in Logic Programs
	1 Introduction
	2 Background: Answer Set Programming
	3 Model Reconciliation in Logic Programs
	3.1 Computing Solutions of MRLP Problems Using ASP

	4 Characterizing Solutions
	4.1 Cost-Based Characterization
	4.2 Assertiveness Characterization

	5 Related Work and Discussions
	6 Conclusions and Future Work
	References

	Lazy Stream Manipulation in Prolog via Backtracking: The Case of 2P-Kt
	1 Introduction
	2 Logic Solvers as Streams Prosumers
	2.1 Logic Solvers as Stream Producers
	2.2 Logic Solvers as Stream Consumers
	2.3 Solvers vs. the World
	2.4 Example: TSP in Prolog

	3 Solvers as Streams Prosumers via State Machine
	4 Backatrackable Predicates as Streams in 2P-Kt
	4.1 2P-Kt Solvers and Generators API
	4.2 Travelling Salesman Problem in 2P-Kt

	5 Conclusion and Future Work
	References

	Transforming Gringo Rules into Formulas in a Natural Way
	1 Introduction
	2 Regular Rules
	3 F-Terms and Formulas
	4 Natural Translation, Part 1
	5 Natural Translation, Part 2
	6 Review: Definition of *
	7 Proof of the Theorem
	8 Discussion
	References

	DualGrounder: Lazy Instantiation via Clingo Multi-shot Framework
	1 Introduction
	2 Preliminaries
	3 System DG
	4 Experimental Evaluation
	References

	A Multi-shot ASP Encoding for the Aircraft Routing and Maintenance Planning Problem
	1 Introduction
	2 Background
	2.1 Aircraft Routing and Maintenance Planning
	2.2 Answer Set Programming

	3 Instance Generator
	3.1 Parametric Generation
	3.2 Maintenance Allocation
	3.3 Solution Cost
	3.4 Solution Viewer

	4 ASP-Based Aircraft Routing and Maintenance Planning
	4.1 Problem Encoding
	4.2 Basic Multi-shot Solving Approach
	4.3 Early-Stop Multi-shot Solving Approach
	4.4 Weighted Sum vs Level Cost Function
	4.5 Parallel Solving

	5 Conclusion
	References

	Author Index

