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Abstract. In this paper, we present a novel multi-modal deep neural network
architecture that uses speech and text entanglement for learning phonetically
sound spoken-word representations. STEPs-RL is trained in a supervised man-
ner to predict the phonetic sequence of a target spoken-word using its contex-
tual spoken word’s speech and text, such that the model encodes its meaning-
ful latent representations. Unlike existing work, we have used text along with
speech for auditory representation learning to capture semantical and syntacti-
cal information along with the acoustic and temporal information. The latent
representations produced by our model were not only able to predict the target
phonetic sequences with an accuracy of 89.47% but were also able to achieve
competitive results to textual word representation models, Word2Vec & FastText
(trained on textual transcripts), when evaluated on four widely used word simi-
larity benchmark datasets. In addition, investigation of the generated vector space
also demonstrated the capability of the proposed model to capture the phonetic
structure of the spoken-words. To the best of our knowledge, none of the existing
works use speech and text entanglement for learning spoken-word representation,
which makes this work the first of its kind.

Keywords: Speech recognition · Spoken language processing · Representation
learning

1 Introduction

Speaking and listening are the most common ways in which humans convey and under-
stand each other in daily conversations. Nowadays, the speech interface has also been
widely integrated into many applications/devices like Siri, Google Assistant, and Alexa
[13]. These applications use speech recognition-based approaches [3,11] to understand
the spoken user queries. Like speech, the text is also a widely used medium in which
people converse. Recent advances in language modeling and representation learning
using deep learning approaches [2,7,24] have proven to be very promising in under-
standing the actual meanings of the textual data, by capturing semantical, syntactical,
and contextual relationships between the textual words in their corresponding learned
fixed-size vector representations.

Such computational language modeling is difficult in the case of speech for spoken
language understanding because unlike textual words, (1) spoken words can have dif-
ferent meanings of the same word when spoken in different tones/expressions [9], (2)
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it is difficult to identify sub-word units in speech because of the variable-length spac-
ing and overlapping between the spoke-words [34], and (3) use of stress/emphasis on
few syllables of a multi-syllabic word can increase the variability of speech production
[27]. Although the textual word representations capture the semantical, syntactical, and
contextual properties, they fail to capture the tone/expression. Using only speech/audio
data for training spoken-word representations results in semantically and syntactically
poor representations.

So in this paper, we propose a novel spoken-word representation learning app-
roach called STEPs-RL that uses speech and text entanglement for learning phonetically
sound spoken-word representations, which not only captures the acoustic and contex-
tual features but also are semantically, syntactically, and phonetically sound. STEPs-RL
is trained in a supervised manner such that the learned representations can capture the
phonetic structure of the spoken-words along with their inter-word semantic, syntactic,
and contextual relationships. We validated the proposed model by (1) evaluating seman-
tical and syntactical relationships between the learned spoken-word representations on
four widely used word similarity benchmark datasets, and comparing its performance
with the textual word representations learned byWord2Vec & FastTexT (obtained using
transcriptions), and (2) investigating the phonetical soundness of the generated vector
space.

The rest of the paper is organized as follows: Sect. 2 describes the related work;
Sect. 3 explains the proposed model architecture; Sect. 4 will describe the datasets
used, pre-processing pipeline, and training details for reproducibility. Then experimen-
tal results are explained in Sect. 5 and finally we conclude in Sect. 6.

2 Related Work

Earlier, speech processing was done using feature learning-based models like deep neu-
ral networks (DNN) [28]. The DNN models were able to capture contextual and tem-
poral information from the speech-based data after the introduction of sequential neural
networks like RNNs [16], LSTMs [25], Bi-LSTMs [10,36], and GRUs [29,33]. Recent
research by [23] has presented the use of a transformer-based self-supervised speech
representation learning approach called TERA that uses multi-target auxiliary tasks.
TERA is trained by generating acoustic frame reconstructions; [30] introduced wav2vec
which is a CNN based model pre-trained in a unsupervised manner using contrastive
loss to learn raw audio representations; [20] explored the use of black-box variational
inference for linguistic representation learning of speech using an unsupervised genera-
tive model; [26] proposed Contrastive Predictive Coding (CPC) for extracting represen-
tations from high dimension data by predicting future in latent space, using autoregres-
sive models; [18] proposed a novel variational autoencoder based model that learns dis-
entangled and interpretable latent representations of sequential data in an unsupervised
manner; [22] used BERT encoder for learning phonetically aware contextual speech
representation vectors; [4] proposed a Word2Vec type sequence-to-sequence autoen-
coder model for embedding variable-length audio segments. Other works on learning
fixed-length spoken-word vector representations that use multi-task learning include
[5,6,19,21,32].
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3 Model

Fig. 1. Illustration of the STEPs-RL model
architecture.

In this paper, we propose STEPs-RL: Speech-
Text Entanglement for Phonetically Sound
Representation Learning. STEPs-RL is a
novel spoken-word representation learning
approach which entangles speech and text
based contextual information for learning
phonetically sound spoken-word represen-
tations. The model architecture is shown
in Fig. 1. Given a target spoken-word rep-
resented by St, its left and right contex-
tual spoken-words represented by Sl

ctx =
{Si}t−1

t−1−m & Sr
ctx = {Si}t+1+m

t+1 respec-
tively (m represents the context window
size), along with the textual word embed-
dings of the corresponding spoken-words
represented by W l

ctx = {W i}t−1
t−1−m, W t

& W r
ctx = {W i}t+1+m

t+1 , the proposed
model tries to learn a vector representation
of the target spoken-word that not only cap-
tures the semantic-based, syntax-based and
acoustic-based information but also captures
the phonetic-based information.

Here, a single spoken-word Si ∈
R

n×dmfcc consists of a sequence of acous-
tic features represented by dmfcc-dimen-
sional Mel-frequency Cepstral Coefficients
(MFCCs); W i ∈ R

dw represents the dw-
dimensional pre-trained textual word embed-
ding of the corresponding spoken-word. Each
of the spoken-word is padded with silence, so
that they all consists of a sequence of n acous-
tic features.

Our approach uses Bidirectional-LSTM [31] for capturing the contextual informa-
tion. Bidirectional-LSTM (also known as Bi-LSTM), uses two LSTM [15] networks
(
−−−−→
LSTM,

←−−−−
LSTM ) to capture contextual information in opposite directions (forward

and backward) of a sequence (t1, ...tT ). The final hidden representations corresponding
to the sequence tokens is generated by concatenating (⊕) the hidden representations
(
−→
hi ,

←−
hi) generated by both the LSTM networks. So the final hidden representation of

the ith token can be represented as shown in Eq. 1.

−→
hi =

−−−−→
LSTM(ti,

−−→
hi−1),

←−
hi =

←−−−−
LSTM(ti,

←−−
hi+1), hi =

−→
hi ⊕ ←−

hi (1)
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Fig. 2. (a) STEPs-RL Phase 1: Each of the individual Bi-LSTM captures contextual information.
(b) STEPs-RL Phase 2: Speech & Text entanglement with target spoken word.

STEPs-RL consist of three independent Bi-LSTM networks represented by
BiLSTMC , BiLSTMT and BiLSTMW to capture contextual information respec-
tively from (1) The acoustic features of the left and right contextual spoken-words
represented by Sl

ctx & Sr
ctx, (2) The acoustic features of the target spoken-word rep-

resented by St, and (3) The pre-trained textual word embeddings of the corresponding
target spoken-word, left contextual spoken-words and right contextual spoken-words
represented by W t, W l

ctx & W r
ctx respectively.

hC ,
−→
oC ,

←−
oC = BiLSTMC([Sl

ctx, Sr
ctx]) (2)

hT ,
−→
oT ,

←−
oT = BiLSTMT ([St]) (3)

hW ,
−→
oW ,

←−
oW = BiLSTMW ([W l

ctx,W t,W r
ctx]) (4)

As shown in Eqs. 2, 3, and 4, all the three Bi-LSTM networks generate a final hid-
den state representation corresponding to each timestamp (hC , hT , hW ), a final output
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Fig. 3. STEPs-RL Phase 3: Latent representation learning

of the corresponding forward LSTM network (
−→
oC ,

−→
oT ,

−→
oW ), and a final output of the

corresponding backward LSTM network (
←−
oC ,

←−
oT ,

←−
oW ). The final forward and back-

ward outputs of BiLSTMC & BiLSTMW are concatenated to generate fC & fW

respectively, which will later act as context vectors during the entanglement of speech
and text.

fC =
−→
oC ⊕

←−
oC , fW =

−→
oW ⊕

←−
oW (5)

For intuition (as shown in Fig. 2a), fC represents the final contextual representation
of the spoken-words present in context of the target spoken-word, and fW represents
the final semantical and syntactical contextual representation of all the corresponding
textual words. In other words, fC captures the acoustic/speech-based contextual infor-
mation whereas fW captures the text-based contextual information. Both fC & fW ,
are then used to entangle speech and text-based contextual information with the target
spoken-word by generating new speech and text entangled bidirectional hidden state
representations (hT,C & hT,W ) of the target spoken-word using the hidden representa-
tions generated by BiLSTMT , as shown in Eqs. 6 and 7.

hT,C = [hT,C
1 , hT,C

2 , ..., hT,C
n ] = hT ⊗ fC ; hT,C

i = αT,C
i × hT

i (6)

hT,W = [hT,W
1 , hT,W

2 , ..., hT,W
n ] = hT ⊗ fW ; hT,W

i = αT,W
i × hT

i (7)

In the above equations, (⊗) represents an element wise attention function; hT,C

& hT,W represents the newly generated speech-entangled and text-entangled hidden
representations respectively; αT,C

i & αT,W
i represents the speech-entangled and text-

entangled attention scores respectively, corresponding to the ith timestamp of the hid-
den representations generated by BiLSTMT . The attention scores αT,C

i & αT,W
i are

generated by taking the dot product (•) of each of the timestamps of hT with the context
vectors fC & fW respectively, as shown in Eq. 8. Same is illustrated in Fig. 2b.

αT,C
i = hT

i • fC , αT,W
i = hT

i • fW (8)
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Next, the proposed model uses the newly generated speech-entangled and text-
entangled hidden representations hT,C & hT,W , along with the original bidirec-
tional hidden state representations hT of the target spoken-word (generated from
BiLSTMT ), to generate a latent vector representation z of the target spoken-word
by stacking (illustrated in Fig. 3) all these three hidden representations on top of each
other and passing it through a simple encoder LSTM network

−−−−−−−−−→
LSTMencode.

z =
−−−−−−−−−→
LSTMencode([hT,C ⊕ hT,W ⊕ hT ]), znew = zW1 + zauxW2 + B (9)

In Eq. 9, z represents a fixed size latent vector which is the output of the encoder
LSTM network. To add more information about the speaker, the proposed model lin-
early combines the latent vector with an auxiliary vector zaux to generate a new
latent representation znew of the target spoken-word. This new latent representation
znew ∈ R

de is a de-dimensional vector representation that the proposed model tries to
learn. In Eq. 9, W1 ∈ R

d×de and W2 ∈ R
da×de represents the combination weights and

B represents the bias. These weights and biases are learnable in nature. The auxiliary
vector zaux ∈ R

da is a one-hot vector of size da that consists of information related to
the speaker’s gender/dialect or both. Such an auxiliary vector was introduced because
usually, the pronunciation of different words usually depends on the speaker’s gender
and dialect and hence can help learn phonetically sound spoken-word representations.

Next, the proposed model uses a decoder LSTM network
−−−−−−−−→
LSTMdecode to predict

the sequence of phonetic symbols Y = ([y1, ..., yk]) of the corresponding target spoken-
word using the above generated latent representation of the target spoken-word znew,
as shown in Eq. 10 and 11.

Pθ(yi|Y<i, znew) = Υ (hd
i , yi−1) (10)

hd
i = Ψ(hd

i−1, yi−1) (11)

Here, Ψ represents a function that generates the hidden vectors hd
i (hidden state

representations of the decoder network), and Υ represents a function that computes the
generative probability of the one-hot vector yi (target phonemic symbol). The hidden
vector hd

i is znew, and yi is the one-hot vector of “[SOP]” when i= 0. Here “[SOP]”
represent the start of phoneme token. The proposed model uses cross-entropy as its
training loss function as shown in Eq. 12, where cross-entropy loss L is computed using
the actual target spoken-word phonetic sequence (Y = ([y1, ..., yk])) and the predicted
target spoken-word phonetic sequence (Ŷ = ([ŷ1, ..., ŷk])).

L(Y, Ŷ ) =
k∑

i

yi log
1
ŷi

(12)

4 Dataset and Experimental Setup

For our experiments, we used the DARPA TIMIT acoustic-phonetic Continuous Speech
Corpus [8]. This corpus contains 16 kHz audio recordings of 630 speakers of 8 major
American English dialects of which approximately 70% were male and 30% were
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Table 1. Gender and dialect distribution of the speakers in TIMIT speech corpus.

Dialect

Gender 1 2 3 4 5 6 7 8

Male 63% 70% 67% 69% 63% 65% 74% 67%

Female 27% 30% 27% 31% 37% 35% 26% 33%

Total 8% 16% 16% 16% 16% 7% 16% 5%

female, as shown in Table 1. The corpus consists of 6300 (5.4 h) phonetically rich utter-
ances by different speakers (10 by each speaker) along with their corresponding time-
aligned orthographic, phonetic, and word transcriptions.

All the recordings were segmented according to the spoken-word boundaries using
the transcriptions and were paired with their left and right context spoken-words and
their corresponding textual words along with the phonetic sequence of the target
spoken-word. All the spoken-word utterances were represented by their MFCC rep-
resentations and the textual words were represented by their pre-trained textual word
embeddings, where the MFCC representations and the textual word embeddings were
of the same size (dmfcc = dw). One-hot encoded dialect (8-dimensional) and gender
(2-dimensional) vectors were used as auxiliary information vectors. We used the stan-
dard train (462 speakers and 4956 utterances) and test (168 speakers and 1344 utter-
ances) set of the TIMIT speech corpus for training and testing the proposed model.
Due to computational resource limitations, a context window size of 3 was used. In all
the experiments the MFCC representations and the textual word embeddings were of
the same size (dmfcc = dw ∈ {50, 100, 300}). For the textual word embeddings, the
proposed model used two different widely used pre-trained word embeddings i.e., (1)
Word2Vec [24], which are word-based embeddings, and (2) FastText [2], which are
character-based embeddings. For all the experiments, the proposed model was trained
for 20 epochs using a mini-batch size of 100. The initial learning rate was set to 0.01 and
Adam optimizer was used for optimization. The Bi-LSTM and LSTM nodes were regu-
larised using an L2 regularizer with a penalty of 0.01. Early stopping was used to avoid
over-fitting. The size of the target spoken-word latent representation znew was set to
50-, 100- & 300 for comparison. All the spoken-words were represented by a sequence
of 50 phonetic symbols using the original unique 27 phonetic symbols present in the
corpus along with our four newly introduced symbols (“[SOPS]” for the start of each
phonetic sequence, “[SEP]” for separation/space between phonetic symbols, “[PAD]”
for padding and “[EOPS]” for the end of each phonetic sequence).

5 Results

For evaluation, we first tested the proposed model on the phonetic sequence predic-
tion task with different spoken-word latent representation & textual word embedding
sizes, and also tested the performance of the model using different types of textual
word embeddings (Word2Vec & FastText). We compared the phonetic sequence pre-
diction accuracy (%) of the base STEPs-RL model (w/o any auxiliary information)
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Table 2. Phonetic sequence prediction results on the TIMIT speech corpus. We present here the
comparison of testing set accuracy (%) of the STEPs-RL model using different sets of auxiliary
information (gender (G), dialect (D)) with the base STEPs-RL model using no auxiliary infor-
mation. The comparison is done for different textual word embedding sizes dw = {50, 100, 300},
different spoken-word latent representation sizes de = {50, 100, 300} and different word embed-
dings like Word2Vec (w) and FastText (f ). The best performance in each configuration is marked
in bold, row of the best performing model is highlighted in grey , the overall best performance
is further marked in red and its configuration is marked in blue.

Spoken-Word Latent Rep. Size (de ) → de = 50 de = 100 de = 300

Textual Word Embedding Size (dw ) → dw = 50 dw = 100 dw = 300 dw = 50 dw = 100 dw = 300 dw = 50 dw = 100 dw = 300

Textual Word Embeddings Used → w f w f w f w f w f w f w f w f w f

STEPs-RL + No auxiliary information 71.67 73.24 75.22 78.41 84.76 84.98 73.44 76.72 78.36 81.23 86.90 86.92 75.22 79.75 80.59 83.73 87.31 86.90

STEPs-RL + D 83.87 84.01 86.11 86.36 85.89 87.89 86.83 86.85 86.75 87.54 87.23 88.00 81.50 82.05 85.90 86.36 87.40 87.99

STEPs-RL + G 87.93 86.97 87.44 85.60 87.16 88.28 87.15 87.12 87.98 88.20 88.92 88.54 87.16 87.30 88.91 88.45 88.10 88.59

STEPs-RL + D + G 88.91 88.04 88.10 88.28 88.94 88.78 88.27 88.90 89.14 88.08 88.59 89.18 89.47 89.21 89.35 89.38 88.63 89.41

with its variants that use different sets of auxiliary information like gender/dialect or
both. The results are shown in Table 2. It was observed that increasing the spoken-word
representation size resulted in better performance but was not so evident in the case
of textual word embedding size. It was also observed that in general using Word2Vec
textual word embeddings achieved better results compared to using FastText textual
word embeddings. The addition of auxiliary information like dialect and gender showed
clear improvements in accuracy when compared to the base STEPs-RL model, val-
idating the use of this type of auxiliary information for spoken-word representation
learning. It was also found that STEPs-RL was able to perform best when it used
both dialect (D) and gender (G) together in its auxiliary vector (STEPs-RL+D+G).
So for further evaluations, we will only consider the target spoken-word represen-
tations generated from the STEPs-RL+D+G model using the configurations marked
blue in Table 2. Table 3a illustrates examples of four different spoke-words along with
their actual corresponding phonetic sequences and the phonetic sequences predicted
by the STEPs-RL+D+G model. These examples demonstrate the ability of the STEPs-
RL+D+G model to encode phonetic-based information in their corresponding latent
representations.

To further evaluate the latent representations generated from STEPs-RL+D+G, we
use intrinsic methods to test the semantic or syntactic relationships between these gen-
erated latent representations of the spoken-words present in the corpus. To do so, we use
4 benchmark word similarity datasets and compare the performance of the spoken-word
representations generated from STEPs-RL+D+G with the representations generated by
text-based language models (Word2Vec & FastText) trained on the textual transcripts.
The word similarity datasets include SimeLex-999 [14], MTurk-771 [12], WS-353 [35]
and Verb-143 [1]. These datasets contain pairs of English words and their corresponding
human-annotated word similarity ratings. The word similarities between the spoken-
words (in case of STEPs-RL+D+G) and the textual-words (in case of Word2Vec and
FastText) were obtained by measuring the cosine similarities between their correspond-
ing representation vectors.
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Table 3. (a) Examples of the phonetic sequences generated by STEPs-RL+D+G model. (b) Per-
formance of STEPs-RL+D+G compared to Word2Vec & FastText on four benchmark word sim-
ilarity datasets.

Fig. 4. Difference vectors corresponding to (a) Set 1: Word pairs differ in last few phonemes (b)
Set 2: Word pairs differ in first few phonemes.

Table 3b reports Spearman’s rank correlation coefficient ρ between the human rank-
ings and the ones generated by STEPs-RL+D+G, Word2Vec, and FastText. Since there
were many words present in these datasets which were not present in the TIMIT speech
corpus, only those word pairs were considered in which both the word were present
in the TIMIT speech corpus. Table 3b shows that the performance of the spoken-word
representations generated from STEPs-RL+D+G was comparable to the performance
of textual word representations generated from Word2Vec and FastText. This demon-
strates that our proposed model was also able to capture semantic-based and syntax-
based information, although the scores were slightly less compared to Word2Vec and
FastText. We believe that the primary reason for this difference is the disparity in the
way different speakers speak. The same word can be spoken in different ways and can
have different meanings based on the tone and expression which may in return lead to
an entirely different representation for the same word. In addition to that, these word
similarity datasets are for the textual words, which do not take into account the tone and
the expression aspect. Also, to the best of our knowledge, no other such word similarity
dataset exists for the spoken-words. So keeping in mind these issues, the performance
of the proposed model validates its ability to capture semantical and syntactical infor-
mation in the representations it generates.

Next, we try to investigate the phonetical soundness of the vector space generated by
the proposed model. A vector space can be said to be phonetically sound if the spoken-
word representations of the words having similar pronunciations are present close to
each other in the vector space. For this investigation we use 2 sets of randomly chosen
word pairs:
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– Set 1: (street, streets), (come, comes), (it, its), (project, projects), (investigation,
investigations)

– Set 2: (few, new), (bright, night), (bedroom, room)

Here, in Set 1 the word pairs differ in the last few phonemes and in Set 2 the word pairs
differ in the first few phonemes. To illustrate the relationship between these word pairs,
first, the difference vectors were computed between the average spoken-word vector
representation of the words present in the above-mentioned word pairs, and then these
high dimensional difference vectors were reduced to 2-dimensional vectors using PCA
[17], to interpret these vectors. The difference vectors corresponding to Set 1 & Set 2 are
shown in Fig. 4. It can be observed in the figures that the difference vectors are similar
in directions and magnitude. In both the figures, phonetic replacements lead to similar
transformations, for example (come→ comes) is similar to (it→ its) in Fig. 4a, and (few
→ new) is similar to (bright → night) in Fig. 4b. These transformations are not perfectly
similar because we are taking an average of the same word spoken by different speakers
having different accents and pronunciations, but despite this, the transformations are
still very close to each other. All these experiments demonstrate the quality of spoken-
word vector representations generated by the proposed model using speech and text
entanglement which not only are semantically and syntactically adequate but are also
phonetically sound.

6 Conclusion

In this paper, we introduced STEPs-RL for learning phonetically sound spoken-word
representations using speech and text entanglement. Our approach achieved an accuracy
of 89.47% in predicting phonetic sequences when both gender and dialect of the speaker
are used in the auxiliary information. We also compared its performance using differ-
ent configurations and observed that the performance of the proposed model improved
by (1) increasing the spoken word latent representation size, and (2) the addition of
auxiliary information like gender and dialect. We were not only able to validate the
capability of the learned representations to capture the semantical and syntactical rela-
tionships between the spoken-words but were also able to illustrate soundness in the
phonetic structure of the generated vector space.

References

1. Baker, S., Reichart, R., Korhonen, A.: An unsupervised model for instance level subcate-
gorization acquisition. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 278–289 (2014)

2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword
information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

3. Bourlard, H.A., Morgan, N.: Connectionist Speech Recognition: A Hybrid Approach, vol.
247. Springer, New York (2012). https://doi.org/10.1007/978-1-4615-3210-1

4. Chen, Y., Huang, S., Lee, H., Wang, Y., Shen, C.: Audio Word2Vec: sequence-to-
sequence autoencoding for unsupervised learning of audio segmentation and representation.
IEEE/ACM Trans. Audio Speech Lang. Process. 27(9), 1481–1493 (2019)

https://doi.org/10.1007/978-1-4615-3210-1


STEPs-RL 65

5. Chorowski, J., Weiss, R.J., Bengio, S., van den Oord, A.: Unsupervised speech representation
learning using WaveNet autoencoders. IEEE/ACM Trans. Audio Speech Lang. Proc. 27(12),
2041–2053 (2019). https://doi.org/10.1109/TASLP.2019.2938863

6. Cui, J., et al.: Multilingual representations for low resource speech recognition and key-
word search. In: 2015 IEEEWorkshop on Automatic Speech Recognition and Understanding
(ASRU), pp. 259–266 (2015)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, vol. 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 4171–
4186. Association for Computational Linguistics, June 2019. https://doi.org/10.18653/v1/
N19-1423, https://www.aclweb.org/anthology/N19-1423

8. Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pallett, D.S., Dahlgren, N.L.: DARPA
TIMIT acoustic-phonetic continuous speech corpus CD-ROM {TIMIT} (1993)

9. Glass, J.: Challenges for spoken dialogue systems. In: Proceedings of the 1999 IEEE ASRU
Workshop, vol. 696 (1999)

10. Graves, A., Jaitly, N., Mohamed, A.r.: Hybrid speech recognition with deep bidirectional
LSTM. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, pp.
273–278. IEEE (2013)

11. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural net-
works. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 6645–6649. IEEE (2013)

12. Halawi, G., Dror, G., Gabrilovich, E., Koren, Y.: Large-scale learning of word relatedness
with constraints. In: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1406–1414 (2012)

13. Herff, C., Schultz, T.: Automatic speech recognition from neural signals: a focused review.
Front. Neurosci. 10, 429 (2016)

14. Hill, F., Reichart, R., Korhonen, A.: SimLex-999: evaluating semantic models with (genuine)
similarity estimation. Comput. Linguist. 41(4), 665–695 (2015)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997). https://doi.org/10.1162/neco.1997.9.8.1735

16. Hori, T., Cho, J., Watanabe, S.: End-to-end speech recognition with word-based RNN lan-
guage models. In: 2018 IEEE Spoken Language Technology Workshop (SLT), pp. 389–396.
IEEE (2018)

17. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J.
Educ. Psychol. 24(6), 417 (1933)

18. Hsu, W.N., Zhang, Y., Glass, J.: Unsupervised learning of disentangled and interpretable rep-
resentations from sequential data. In: Advances in Neural Information Processing Systems
(2017)

19. Kamper, H.: Truly unsupervised acoustic word embeddings using weak top-down con-
straints in encoder-decoder models. In: ICASSP 2019–2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 6535–3539 (2019)

20. Khurana, S., et al.: A convolutional deep Markov model for unsupervised speech represen-
tation learning (2020)

21. Li, X., Wu, X.: Modeling speaker variability using long short-term memory networks for
speech recognition. In: INTERSPEECH (2015)

22. Ling, S., Salazar, J., Liu, Y., Kirchhoff, K.: BERTphone: phonetically-aware encoder repre-
sentations for utterance-level speaker and language recognition. In: Proceedings of Odyssey
2020 The Speaker and Language Recognition Workshop, pp. 9–16 (2020). https://doi.org/
10.21437/Odyssey.2020-2

https://doi.org/10.1109/TASLP.2019.2938863
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.21437/Odyssey.2020-2
https://doi.org/10.21437/Odyssey.2020-2


66 P. Mishra

23. Liu, A.T., Li, S.W., Yi Lee, H.: TERA: self-supervised learning of transformer encoder rep-
resentation for speech (2020)

24. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Advances in Neural Information Process-
ing Systems, pp. 3111–3119 (2013)

25. Moriya, Y., Jones, G.J.: LSTM language model adaptation with images and titles for mul-
timedia automatic speech recognition. In: 2018 IEEE Spoken Language Technology Work-
shop (SLT), pp. 219–226. IEEE (2018)

26. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive
coding. CoRR abs/1807.03748 (2018). http://arxiv.org/abs/1807.03748

27. Polka, L., Orena, A.J., Sundara, M., Worrall, J.: Segmenting words from fluent speech during
infancy–challenges and opportunities in a bilingual context. Dev. Sci. 20(1), e12419 (2017)
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