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General Chairs’ Preface

On behalf of the Organizing Committee, it is our great pleasure to welcome you to the
25th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD
2021). Starting in 1997, PAKDD has long established itself as one of the leading
international conferences in data mining and knowledge discovery. Held during May
11–14, 2021, PAKDD returned to India for the second time, after a gap of 11 years,
moving from Hyderabad in 2010 to New Delhi in 2021. Due to the unexpected
COVID-19 epidemic, the conference was held fully online, and we made all the
conference sessions accessible online to participants around the world.

Our gratitude goes first and foremost to the researchers, who submitted their work to
the PAKDD 2021 main conference, workshops, and data mining contest. We thank
them for the efforts in research, as well as in preparing high-quality online presentations
videos. It is our distinct honor that five eminent keynote speakers graced the confer-
ence: Professor Anil Jain of the Michigan State University, USA, Professor Masaru
Kitsuregawa of the Tokyo University, and also the National Institute of Informatics,
Japan, Dr. Lada Adamic of Facebook, Prof. Fabrizio Sebastiani of ISTI-CNR, Italy,
and Professor Sunita Sarawagi of IIT-Mumbai, India. Each of them is a leader of
international renown in their respective areas, and we look forward to their
participation.

Given the importance of data science, not just to academia but also to industry, we
are pleased to have two distinguished industry speakers. The conference program was
further enriched with three high-quality tutorials, eight workshops on cutting-edge
topics, and one data mining contest on the prediction of memory failures.

We would like to express our sincere gratitude to the contributions of the Senior
Program Committee (SPC) members, Program Committee (PC) members, and
anonymous reviewers, led by the PC co-chairs, Kamal Karlapalem (IIIT, Hyderabad),
Hong Cheng (CUHK), Naren Ramakrishnan (Virginia Tech). It is through their
untiring efforts that the conference have an excellent technical program. We are also
thankful to the other Organizing Committee members: industry co-chairs, Gautam
Shroff (TCS) and Srikanta Bedathur (IIT Delhi); workshop co-chairs, Ganesh
Ramakrishnan (IIT Mumbai) and Manish Gupta (Microsoft); tutorial co-chairs,
B. Ravindran (IIT Chennai) and Naresh Manwani (IIIT Hyderabad); Publicity Co-Chairs,
Sonali Agrawal (IIIT Allahabad), R. Uday Kiran (University of Aizu), and Jerry C-W
Lin (WNU of Applied Sciences); competitions chair, Mengling Feng (NUS); Pro-
ceedings Chair, Tanmoy Chakraborthy (IIIT Delhi); and registration/local arrangement
co-chairs, Vasudha Bhatnagar (University of Delhi), Vikram Goel (IIIT Delhi), Naveen
Kumar (University of Delhi), Rajiv Ratn Shah (IIIT Delhi), Arvind Agarwal (IBM),
Aditi Sharan (JNU), Mukesh Giluka (JNU) and Dhirendra Kumar (DTU).

We appreciate the hosting organizations IIIT Hyderabad and the JNU, Delhi, and all
our sponsors for their institutional and financial support of PAKDD 2021. We also
appreciate Alibaba for sponsoring the data mining contest. We feel indebted to the



PAKDD Steering Committee for its continuing guidance and sponsorship of the paper
and student travel awards.

Finally, our sincere thanks go to all the participants and volunteers. There would be
no conference without you. We hope all of you enjoy PAKDD 2021.

May 2021 R. K. Agrawal
P. Krishna Reddy
Jaideep Srivastava
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PC Chairs’ Preface

It is our great pleasure to present the 25th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2021). PAKDD is a premier international forum
for exchanging original research results and practical developments in the space of
KDD-related areas, including data science, machine learning, and emerging
applications.

We received 768 submissions from across the world. We performed an initial
screening of all submissions, leading to the desk rejection of 89 submissions due to
violations of double-blind and page limit guidelines. Six papers were also withdrawn
by authors during the review period. For submissions entering the double-blind review
process, each paper received at least three reviews from PC members. Further, an
assigned SPC member also led a discussion of the paper and reviews with the PC
members. The PC co-chairs then considered the recommendations and meta-reviews
from SPC members in making the final decision. As a result, 157 papers were accepted,
yielding an acceptance rate of 20.4%. The COVID-19 pandemic caused several chal-
lenges to the reviewing process, and we appreciate the diligence of all reviewers, PC
members, and SPC members to ensure a quality PAKDD 2021 program.

The conference was conducted in an online environment, with accepted papers
presented via a pre-recorded video presentation with a live Q/A session. The confer-
ence program also featured five keynotes from distinguished researchers in the com-
munity, one most influential paper talk, two invited industrial talks, eight cutting-edge
workshops, three comprehensive tutorials, and one dedicated data mining competition
session.

We wish to sincerely thank all SPC members, PC members, and external reviewers
for their invaluable efforts in ensuring a timely, fair, and highly effective PAKDD 2021
program.

May 2021 Hong Cheng
Kamal Karlapalem

Naren Ramakrishnan
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Abstract. Few-shot learning aims to learn a classifier using a few labelled
instances for each class. Metric-learning approaches for few-shot learning embed
instances into a high-dimensional space and conduct classification based on dis-
tances among instance embeddings. However, such instance embeddings are usu-
ally shared across all episodes and thus lack the discriminative power to general-
ize classifiers according to episode-specific features. In this paper, we propose a
novel approach, namely Episode Adaptive Embedding Network (EAEN), to learn
episode-specific embeddings of instances. By leveraging the probability distri-
butions of all instances in an episode at each channel-pixel embedding dimen-
sion, EAEN can not only alleviate the overfitting issue encountered in few-shot
learning tasks, but also capture discriminative features specific to an episode. To
empirically verify the effectiveness and robustness of EAEN, we have conducted
extensive experiments on three widely used benchmark datasets, under various
combinations of different generic embedding backbones and different classifiers.
The results show that EAEN significantly improves classification accuracy about
10–20% in different settings over the state-of-the-art methods.

Keywords: Few-shot learning · Episode adaptive embedding

1 Introduction

Few-shot learning has attracted attention recently due to its potential to bridge the gap
between the cognition ability of humans and the generalization ability of machine learn-
ing models [1,5,13,19]. At its core, few-shot learning aims to learn a classifier using a
few labelled instances for each class. This however poses significant challenges to tra-
ditional machine learning algorithms which are designed to learn from a large amount
of labelled instances. They easily overfit when trained on a small training set, and thus
fail to generalize to new classes.

Driven by a simple learning principle: “test and train conditions must match”,
episode training was proposed to deal with the few-shot learning problem [19]. In the
episode training setting, each episode contains only a few labelled instances per class
(i.e., support set) and a number of unlabelled instances (i.e., query set) whose classes
are to be predicted. Thus, an episode mimics a classification task in few-shot learning
scenarios, and a learning model can be trained by conducting a series of classification
tasks moving from episode to episode. As reported in [6,19], compared with traditional
supervised training in which labelled instances are from one classification task, episode
training leads to a better generalization ability on small training data.
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12714, pp. 3–15, 2021.
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Inspired by [19], episode training has been adopted in many later studies for few-
shot learning [4,5,9]. One promising research stream focuses on developing metric-
learning-based approaches with episode training [1,16,18,19]. The key idea is to map
instances into a high-dimensional embedding space such that their embeddings capture
discriminative features for classification. Then, distances between instance embeddings
are measured, and unlabelled instances in an episode are classified according to their
distances with labelled instances. Although achieving reasonably good performance,
most approaches do not consider features specific to classification tasks when embed-
ding instances, i.e., episode-specific features. For example, instances of three classes
“dog” (circle), “cat” (cross) and “wolf” (triangle) can be mapped into generic embed-
dings shown in Fig. 1(a), without considering their episode-specific features. However,
it is hard to classify these instances based on their generic embeddings. By embedding
instances into an episode-specific embedding space that capture episode-specific fea-
tures, such as features distinguishing “dog” from “wolf”, or “dog” from “cat”, as shown
in Fig. 1(b) and (c), it is easier to learn classification boundaries within an episode.

Fig. 1. Instance embeddings (a) in a generic embedding
space, and (b) and (c) in an episode-specific embedding
space.

Recently, some works [7,
11,20,24] began to explore
instance embeddings specific to
classification tasks in few-shot
learning. They have generally
followed two directions: (a) tai-
loring the embeddings of sup-
port instances (i.e., instances
in a support set) by learn-
ing their inter-class discrimina-
tive features within an episode
[11,20,24]; (b) adjusting the
embeddings of query instances
(i.e., instances in a query set)
according to their characteris-
tics [7]. For example, support
instances were used to refine
their generic embeddings via a
set-to-set function in [24]. A task-aware feature embedding network was introduced
in [20] to adjust instance embeddings for specific tasks in a meta-learning framework.
Nevertheless, none of these methods have fully captured episode-specific features into
instance embeddings. They focused on extracting features specific to classes and to
instances, whereas neglecting to account for features that align query instances with
support instances in a specific episode. Instance embeddings thus lack the discrimina-
tive ability to generalize classifiers across episodes with new classes. Moreover, since
only a few instances are available in a support set in few-shot learning, the low-data
problem also hinders classification performance of these methods.

To circumvent these limitations, we propose Episode Adaptive Embedding Net-
works (EAENs), which leverage the probability distributions of all instances in an
episode, including instances from both a support set and a query set, to extract
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representative episode-specific features. Particularly, EAENs consider the probability
distributions of all instances in an episode at each channel-pixel embedding dimension.
This leads to an effective adaptation that transforms generic embeddings into episode-
specific embeddings for improved generalisation. Thus, unlike prior works, EAENs
have two distinct advantages. First, it alleviates the overfitting issue since it learns
based on embeddings of both support and query instances, in contrast to just a few sup-
port instances per class used in existing works. Second, it captures features that align
query instances with support instances in each specific episode into embeddings. This is
important for improving classification performance because metric-learning approaches
for few-shot learning mostly rely on measuring distances among instance embeddings.
In summary, our main contributions are as follows:

– We propose a novel approach (EAENs) for few-shot learning, which maps instances
into an episode-specific embedding space, capturing episode-specific features.

– We derive formulae to exhibit the probability distributions of all instances in an
episode with respect to each channel-pixel embedding dimension. This improves
the generalization ability of classifiers.

– We conduct experiments to verify the effectiveness and robustness of our approach.
Compared with the state-of-the-art models, our approach achieves about 20% accu-
racy improvement in 5-way 1-shot and about 10% improvement in 5-way 5-shot
on both miniImageNet and tieredImageNet datasets, as well as competitive perfor-
mance on CIFAR-FS dataset.

2 Related Work

Few-shot learning has been extensively studied in recent years [4,19]. Our work in this
paper is broadly related to three streams of research in few-shot learning.

Metric-Learning Approaches. The key idea behind metric-learning approaches is to
learn instance embeddings such that discriminative features of instances can be captured
by their embeddings in a high-dimensional space [1,11,12,16,18,19]. Then, a distance-
based classifier is employed to classify instances based on distances between instances
in their embedding space. To avoid the overfitting problem in few-shot learning, these
approaches often use simple non-parametric classifiers, such as nearest neighbor clas-
sifiers [1,16,19]. Distances between instance embeddings are typically measured by
simple L1 and cosine distances [19]. A recent work proposed to learn such a distance
metric for comparing instances within episodes [18].

Meta-learning Approaches. Lots of meta-learning approaches have been proposed for
few-shot learning tasks [2,14,15,22]. These approaches aim to minimize generalization
error across different tasks and expect that a classifier performs well on unseen tasks
[2,5,14,15]. However, they mostly only learn generic embeddings that are same for
all tasks. Some recent works have studied task-related embeddings [10,20]. Since only
a few labelled instances are available for each unseen class in a target task, learning
discriminative task-related embeddings is hard and these works implicitly relied on the
alignment of data distributions between seen and unseen classes. Several works also
used data hallucination methods to synthesize instances to help classification [8,21].
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Transductive Approaches. Depending on whether instances in a query set (i.e., query
instances) are taken into account when designing a learning model, approaches for
few-shot learning can be categorized as being transductive and non-transductive. Sev-
eral works used query instances and their structure in episodes to conduct a classifi-
cation task in a transductive way [6,9,13,23]. A label propagation method was pro-
posed in [13], where label information was propagated from instances in a support set
to instances in a query set. Graph neural networks were employed to diffuse information
from neighbor instances for better embeddings [6]. Assuming that all instances are fully
connected with each other, [9] proposed an iterative edge-labeling algorithm to predict
edge labels, i.e., whether two instances connected by an edge belong to the same class.

3 Episode Adaptive Embedding Networks

We formulate the few-shot classification problem using episode training [19]. Let D
be a set of classes which consists of two disjoint subsets Dtrain and Dtest. In a N -way
K-shot setting, we randomly sample N classes from Dtrain, and then randomly sample
K instances for each class to form a support set S = {(xi, yi)}N×K

i=1 and T instances
for each class to form a query set Q = {(xj , yj)}N×T

j=1 in an episode, where yi is the
class of an instance xi. A classifier is trained to predict the classes of instances in the
query set Q, which are compared with their true classes to calculate losses in training.

We propose Episode Adaptive Embedding Networks (EAENs) for few-shot classi-
fication, which consists of three components: a generic embedding module, an episode
adaptive module and a classifier, as illustrated in Fig. 2.

Fig. 2. The framework of Episode Adaptive Embedding Networks.

3.1 Generic Embedding Module

We define a generic embedding module G(x;φ) to be a convolutional block G with
learnable parameters φ. Given an instance x ∈ R

w×h×c where w and h are the width
and height of an instance, respectively, and c refers to the number of its channels, a
generic embedding module G takes x as input and embeds it to a three-dimensional
tensor g ∈ R

w′×h′×c′
, where w′, h′ and c′ represent the width, height, and number of

channels of instance embeddings in a generic embedding space, respectively.
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Let E = (S,Q) denote an episode consisting of a support set S and a query set Q.
By applying a generic embedding module G(x;φ) on E, we obtain the generic embed-
dings of all instances in S and Q. For simplicity, we use a generic embedding matrix
G ∈ R

m×n to represent the generic embeddings of all instances from the episode E,
where m = w′ × h′ × c′ and n = N × (K + T ).

An instance may appear in one or more episodes. However, given an instance x, the
generic embeddings of x are always same for all episodes. In other words, a generic
embedding module G(x;φ) embeds instances into a generic embedding space without
taking into account episodes to which instances belong.

3.2 Episode Adaptive Module

An episode adaptive module E(〈g,G〉;ϕ) is defined as a neural network E with param-
eters ϕ. It takes 〈g,G〉 as input, where g is the generic embeddings of an instance and
G is the generic embedding matrix of an episode E that the instance belongs to, and
produces an episode-specific embeddings for the instance w.r.t. the episode E.

Specifically, for each episode E, we first reshape its generic embedding matrix
G, which contains the generic embeddings of all instances from E, into a three-
dimensional tensor G′ ∈ R

m×n×1. Then, we feed G′ as input to three convolutional
layers in order to extract episode-specific features from generic embeddings based on a
channel-pixel adaptive mechanism. This process yields episode-specific adaptive vec-
tor, each of its element corresponds to a channel-pixel value, to transform instance
embeddings from a generic embedding space to an episode-specific embedding space.

Let G′(uvk, :, :) ∈ R
n×1 denote a matrix of instance embeddings at a fixed

channel-pixel uvk, i.e., generic embeddings at the location (u, v) of the k-th channel in
G′, where u ∈ [0, w′), v ∈ [0, h′) and k ∈ [0, c′). Then, we extract episode-specific fea-
tures from G′(uvk, :, :) with a convolutional block which successively applying three
convolutional layers with decreasing numbers of kernels (e.g., 64 kernels for the first
layer, 32 kernels for the second layer, and 1 kernel for the third layer):

P(uvk, :, i) = σ(Wp
i ◦ G′(uvk, :, :)) for i = 1, . . . , d; (1)

Z(uvk, :, j) = σ(Wz
j ◦ P(uvk, :, :)) for j = 1, . . . , f ; (2)

F(uvk, :, :) = σ(Wa ◦ Z(uvk, :, :)). (3)

where Wp
i ∈ R

1×n, Wz
j ∈ R

1×d and Wa ∈ R
1×f are the parameters of the i-th ker-

nel of the first convolutional layer, the j-th kernel of the second convolutional layer and
the only kernel of the third convolutional layer, respectively, ◦ denotes a matrix mul-
tiplication, and σ is a non-linear activation function. After extracting episode-specific
features from every channel-pixel uvk, we obtain three feature tensors: P ∈ R

m×1×d,
Z ∈ R

m×1×f and F ∈ R
m×1×1 as outputs of these convolutional layers respectively.

By the feature tensor F, we construct a diagonal matrix A = diag(ai) ∈ R
m×m

with ai = F(uvk, 0, 0) on the diagonal. Then, we assign an adaptive value to each
channel-pixel of a generic embedding g to obtain an episode-specific embedding e,
through the following linear mapping:

e = A ◦ g. (4)
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Intuitively, each diagonal element ai represents an adaptive value for a generic embed-
ding g ∈ R

m at the location (u, v) of the k-th channel. It is computed according to the
distribution of generic embeddings of all instances within an episode E = (S,Q) at the
channel-pixel uvk, including support instances in S and query instances in Q.

3.3 Classification

Let ES ∈ R
m×ns and EQ ∈ R

m×nq denote episode-adaptive embeddings of all
instances from the support set S and the query set Q in an episode E = (S,Q), respec-
tively, where ns = N × K and nq = N × T . A classifier predicts classes of query
instances in Q based on ES and EQ, as well as the classes of support instances in S.

We use a prototypical network [16] for classification. A prototype et is calculated
for each class t according to the episode-specific embeddings of all instances in S of
class t, where ei stands for the episode-specific embedding of the i-th instance in S for
the class t.

et =
1
K

K∑

i=1

ei (5)

Let d(·, ·) denote a distance between two instance embeddings and ei be an episode-
specific embedding of a query instance xi in Q. Then, the probability that xi belongs
to a class t is calculated as:

p(y = t|ei) = exp(−d(ei, et))∑N
j=1 exp(−d(ei, ej))

(6)

The choice of d(·, ·) depends on assumptions about data distribution in the episode-
specific embedding space. We use the Euclidean distance to define d(ei, ej) = ||ei −
ej ||2, where || ||2 is the l2 norm. We thus predict the class ŷi of xi by assigning it to the
same class as its nearest prototype:

ŷi = argmax
t

p(y = t|ei). (7)

The classifier is optimized by minimizing a cross-entropy loss which averages over the
losses of all query instances xi in Q w.r.t. their true class yi:

L = − 1
nq

nq∑

i=1

log p(y = yi|ei) (8)

4 Experiments

We evaluate our method to answer the following research questions: [Q1.] How does
our method perform against the state-of-the-art models for few-shot classification tasks?
[Q2.] How does our method perform against the state-of-the-art models for semi-
supervised classification tasks? [Q3.] Is our method robust to different generic embed-
ding networks and different classifiers? [Q4.] How effectively our method can leverage
instances from a query set for improving performance? We also conduct a case study to
visualize how instance embeddings are changed from a general embedding space to an
episode-specific embedding space.
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Table 1. Few-shot classification accuracies on miniImageNet.

Model Backbone 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot

MatchingNets [19] ConvNet-4 43.60 55.30 – –

MAML [5] ConvNet-4 48.70 63.11 31.27 46.92

Reptile [14] ConvNet-4 47.07 62.74 31.10 44.66

PROTO [16] ConvNet-4 46.14 65.77 32.88 49.29

RelationNet [18] ConvNet-4 51.38 67.07 34.86 47.94

Label propagation [13] ConvNet-4 52.31 68.18 35.23 51.24

TPN [13] ConvNet-4 53.75 69.43 36.62 52.32

GNN [6] ConvNet-4 50.33 66.41 – –

EGNN [9] ConvNet-4 59.18 76.37 – –

DPGN [23] ConvNet-4 66.01 82.83 – –

EA-PROTO (ours) ConvNet-4 92.95 96.55 67.66 77.64

MetaGAN [25] ResNet-12 52.71 68.63 – –

TADAM [15] ResNet-12 58.50 76.70 – –

MetaOptNet [10] ResNet-12 62.64 78.63 – –

FEAT [24] ResNet-12 66.79 82.05 – –

DPGN [23] ResNet-12 67.77 84.60 – –

EA-PROTO (ours) ResNet-12 93.67 96.87 70.08 77.78

4.1 Datasets

We conduct experiments on three benchmark datasets: miniImageNet, tieredImageNet
and CIFAR-FS. The first two datasets are subsets of ImageNet in different scales, con-
taining RGB images of 84 × 84 [9,19]. Besides, CIFAR-FS is a subset of CIFAR-100,
containing images of 32 × 32 [3].

4.2 Experimental Setup

Generic Embedding Networks. Experiments are conducted on two widely-used back-
bones for generic embeddings: ConvNet-4 and ResNet-12 [5,10,15–17]. The ConvNet-
4 network has four convolutional blocks. Each convolutional block begins with a 3 × 3
2D convolutional layer, followed by a batch normalization (BN) layer, a 2 × 2 max-
pooling layer and a ReLU activation layer. The ResNet-12 network has four residual
blocks with channels of 64, 128, 256, and 64. Each residual block contains three con-
volutional blocks, which uses a 3× 3 convolutional kernel, followed by a BN layer and
a LeakyReLU activation layer.

Classifiers. We consider two types of classifiers in experiments: prototypical network
[16] and transductive propagation network [13]. Thus, we have two variants of EAEN:
(1) Episode Adaptive Prototypical Networks (EA-PROTO) uses prototypical network as
the classifier, and (2) Episode Adaptive Transductive Propagation Networks (EA-TPN)
uses transductive propagation network as the classifier.

Evaluation. We follow the episode training strategy for few-shot learning [13,19]. A
N -way K-shot setting is adopted for both training and testing. Following previous
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Table 2. Few-shot classification accuracies on tieredImageNet.

Model Backbone 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot

MAML [5] ConvNet-4 51.67 70.30 34.44 53.32

Reptile [14] ConvNet-4 48.97 66.47 33.67 48.04

PROTO [16] ConvNet-4 48.58 69.57 37.35 57.839

IMP [1] ConvNet-4 49.60 48.10 – –

RelationNet [18] ConvNet-4 54.48 71.31 36.32 58.05

CovaMNET [12] ConvNet-4 51.19 67.65 – –

Label propagation [13] ConvNet-4 55.23 70.43 39.39 57.89

TPN [13] ConvNet-4 57.53 72.85 40.93 59.17

EGNN [9] ConvNet-4 63.52 80.24 – –

DPGN [23] ConvNet-4 69.43 85.92 – –

EA-PROTO (ours) ConvNet-4 92.65 96.69 70.16 82.59

MetaOptNet [10] ResNet-12 65.81 81.75 – –

FEAT [24] ResNet-12 70.80 84.79 – –

DPGN [23] ResNet-12 72.45 87.24 – –

EA-PROTO (ours) ResNet-12 91.56 97.02 74.50 83.34

settings [13,16], the query number is set to 15 and the performance is measured using
classification accuracy over 600 episodes on testing data.

Parameters. The init learning rate is 1e−3 for ConvNet-4 and 1e−4 for ResNet-12. In
addition, the learning rate of Adam-optimizer decays by half every 10, 000 iterations.

4.3 Few-Shot Learning

Table 3. Few-shot classification accuracies on
CIFAR-FS, where † indicates that the results
are from [23].
Model Backbone 5-way 5-way

1-shot 5-shot

MAML† [5] ConvNet-4 58.90 71.50

PROTO† [16] ConvNet-4 55.50 72.00

RelationNet† [18] ConvNet-4 55.00 69.30

DPGN [23] ConvNet-4 76.40 88.40

EA-PROTO (ours) ConvNet-4 74.01 80.02

To evaluate the effectiveness of our method
for few-shot learning, we compare EA-
PROTO against the state-of-the-art meth-
ods. As CIFAR-FS is a small dataset, we
follow [3,23] to consider 5-way 1-shot and
5-way 5-shot. The results are shown in
Tables 1–3.

From Tables 1 and 2, we see that EA-
PROTO significantly outperform all base-
lines on both miniImageNet and tieredIm-
ageNet, regardless of using ConvNet-4 or
ResNet-12 as the generic embedding net-
work. Specifically, 1) on miniImageNet, EA-PROTO improves upon the best results
of the baselines by a margin 25.9% in 5-way 1-shot and 12.27% in 5-way 5-shot; 2)
on tieredImageNet, EA-PROTO improves upon the best results of the baselines by a
margin 19.11% in 5-way 1-shot and 9.78% in 5-way 5-shot.
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Fig. 3. Classification accuracies with classifiers and generic embedding networks.

Table 4. Semi-supervised classification accuracies on miniImageNet. X-Semi stands for a model
X which uses unlabeled instances in a support set. While X stands for a model that only use
labeled instances in a support set.

Model Training strategy Labeled ratio (5-way 5-shot)

20% 40% 60% 80% 100%

GNN [6] Supervised 50.33 56.91 – – 66.41

GNN-Semi [6] Semi-supervised 52.45 58.76 – – 66.41

EGNN [9] Supervised 59.18 – – – 76.37

EGNN-Semi [9] Semi-supervised 63.62 64.32 66.37 – 76.37

EA-PROTO (ours) Supervised 92.95 95.03 95.89 96.24 96.55

EA-PROTO-Semi (ours) Semi-supervised 93.01 95.14 96.05 96.43 96.55

Table 3 shows that EA-PROTO performs better than all other models except DPGN.
In 5-way 1-shot, EA-PROTO improves about 16% on average than the other three mod-
els, but performs 2% slightly worse than DPGN. The reason why DPGN has a better
performance than EA-PROTO is that the low resolution images (32× 32) in CIFAR-FS
make generic embeddings of instances contain less useful information compared with
those from miniImageNet and tieredImageNet (84×84). This limits the expressiveness
of episode specific embeddings learned from CIFAR-FS and accordingly hinders the
performance of EA-PROTO. DPGN concatenates the output of the last two layers of
a generic embedding network as generic embeddings. Hence, DPGN performs better
than all the other models on CIFAR-FS.

4.4 Semi-supervised Learning

For semi-supervised learning, we conduct experiments on miniImageNet in the 5-way
5-shot setting. Following [6,9], we partially label the same number of instances for each
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Table 5. Results for an ablation study, where EA-PROTO-S and EA-TPN-S refer to a variant of
the methods EA-PROTO and EA-TPN, respectively, which use only instances in a support set to
learn their episode-specific embeddings.

Model Backbone Dataset 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot

TPN [13] ConvNet-4 53.75 69.43 36.62 52.32

EA-TPN-S ConvNet-4 miniImageNet 50.30 68.41 36.15 52.11

EA-TPN ConvNet-4 84.01 84.43 50.73 54.85

PROTO [16] ConvNet-4 46.14 65.77 32.88 49.29

EA-PROTO-S ConvNet-4 miniImageNet 49.64 67.42 34.08 48.94

EA-PROTO ConvNet-4 92.95 96.55 68.08 78.99

class in a support set, and consider two training strategies: (1) supervised – training with
only labeled instances in a support set; (2) semi-supervised – training with all instances
in a support set. These two strategies only differ in whether or not they use unlabeled
instances in a support set.

The results are shown in Table 4. We find that: 1) Semi-supervised models achieve
better performance compared with their corresponding supervised models. This is
because unlabeled instances in a support set help in classification. 2) EA-PROTO-Semi
consistently achieves the best performance under all different labeled ratios {20%, 40%,
60%, 80%, 100%}. EA-PROTO-Semi outperforms EGNN-Semi and GNN-Semi sig-
nificantly. The margin between EA-PROTO-Semi and EGNN-Semi is about 30% when
the labeled ratio is 20%, and decreases to 20% when the labeled ratio is 100%. 3) EA-
PROTO-Semi has a smaller performance gap between the labeled ratios from 20% to
100% than the other models. This is due to the fact that episode specific embeddings
in EA-PROTO are learned from all instances in an episode, regardless whether they are
labeled or not, while the other models rely only on labeled instances.

4.5 Robustness Analysis

To evaluate the robustness of our method, we conduct experiments under different com-
binations of generic embedding networks and classifiers. The results on miniImageNet
and tieredImageNet are presented in Fig. 3.

We observe that: (1) Our method is robust to different generic embedding net-
works. We compare performance of PROTO and EA-PROTO when using ConvNet-
4 and ResNet-12 as the generic embedding network separately on miniImageNet and
tieredImageNet. Figure 3(a) and (b) shows that our method consistently yields improve-
ment, no matter which generic embedding network or dataset is used. (2) Our method
is robust to different classifiers. We compare the performance of PROTO against EA-
PROTO, as well as TPN against EA-TPN, when using convNet-4 as the generic embed-
ding network. In Fig. 3(c) and (d), both EA-PROTO and EA-TPN perform better than
PROTO and TPN, respectively, on both miniImageNet and tieredImageNet datasets.
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4.6 Ablation Analysis

To study how effectively our method can use instances from a query set for improving
performance, we conduct an ablation analysis that compares EA-PROTO and EA-TPN
(using instances from both support and query sets) against EA-PROTO-S and EA-TPN-
S (using only instances in a support set). The results are shown in Table 5.

We observe that: 1) A large performance gap exists between EA-PROTO and EA-
PROTO-S, and similarly between EA-TPN and EA-TPN-S. This is due to the fact that
there are more instances in a query set than instances in a support set. In 5-way 1-shot
setting, the size of a query set is 75while the size of a support set is 5. Thus, by utilizing
80 instances from both support and query sets, EA-PROTO and EA-TPN can generate
better episode specific embeddings than EA-PROTO-S and EA-TPN-S which only use
5 instances from a support set. 2) EA-PROTO-S performs slightly better than PROTO,
whereas EA-TPN-S performs slightly worse than TPN. This is because episode adaptive
embeddings cannot be effectively computed from instances of a support set. When the
number of instances in a support set is limited, computing episode adaptive embeddings
only from instances of a support set may even harm performance.

4.7 Case Study

Fig. 4. t-SNE for image embeddings on miniImageNet under
the 5-way 1-shot setting. Circles and triangles in each subfig-
ure stand for image embeddings in the support and query sets
of an episode, respectively. Different colors indicate different
classes.

To explore how effectively
our method maps instances
into an episode-specific embed-
ding space, we conduct a
case study using images from
miniImageNet dataset. We
compare generic embeddings
learned from PROTO and
TPN with episode-specific
embeddings learned from EA-
PROTO and EA-TPN in the
5-way 1-shot setting, where
ConvNet-4 is used as the
generic embedding network.
We use t-SNE1 to visualize
embeddings.

Figure 4(a) and (b) shows
the t-SNE maps of image
embeddings in an episode being produced by TPN and EA-TPN, respectively, while
Fig. 4(c) and (d) shows the t-SNE maps of image embeddings in an episode being
produced by PROTO and EA-PROTO, respectively. Each triangle represents an image
embedding in a query set, and each circle represents an image embedding in a sup-
port set. From Fig. 4(a) and (b), we can see that the location of each circle is closer to
the center of triangles for the same class in Fig. 4(b) than in Fig. 4(a). It indicates that

1 https://lvdmaaten.github.io/tsne/.

https://lvdmaaten.github.io/tsne/
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the instance embeddings learnt by EA-TPN provide more discriminative information
for classifying these instances accurately than the instance embeddings learnt by TPN.
There is a similar trend in Fig. 4(c) and (d), indicating EA-PROTO captures more dis-
criminative features (i.e., episode-specific features) in its embeddings than PROTO for
classification. These show that episode adaptive embeddings are more discriminative
than generic embeddings, which helps improve classification.

5 Conclusion

In this work, we have proposed EAEN2, a novel approach for learning episode-specific
instance embeddings in few-shot learning, EAENmaps generic embeddings to episode-
specific embeddings using an episode adaptive module which is learnt from the proba-
bility distribution of generic embeddings at each channel-pixel of all instances within an
episode. Such episode-specific embeddings are discriminative, and can thus help clas-
sify instances in episodes, even when only a few labelled instances are available. Our
experimental results on three benchmark datasets have empirically verified the effec-
tiveness and robustness of EAEN. It is shown that EAEN significantly improves classi-
fication accuracy compared with the-state-of-the-art methods.
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Abstract. Learning from source code usually requires a large amount
of labeled data. Despite the possible scarcity of labeled data, the trained
model is highly task-specific and lacks transferability to different tasks. In
this work, we present effective pre-training strategies on top of a novel
graph-based code representation, to produce universal representations
for code. Specifically, our graph-based representation captures important
semantics between code elements (e.g., control flow and data flow). We
pre-train graph neural networks on the representation to extract univer-
sal code properties. The pre-trained model then enables the possibility of
fine-tuning to support various downstream applications. We evaluate our
model on two real-world datasets – spanning over 30M Java methods and
770K Python methods. Through visualization, we reveal discriminative
properties in our universal code representation. By comparing multi-
ple benchmarks, we demonstrate that the proposed framework achieves
state-of-the-art results on method name prediction and code graph link
prediction.

Keywords: Code representation · Graph neural network · Pre-training

1 Introduction

Analysis of software using machine learning approaches has several important
applications such as identifying code defects [1], improving code search [2], and
improving developer productivity [3]. One common aspect of any code-related
application is that they learn code representations by following a two-step pro-
cess. The first step takes code snippets and produces a symbolic code represen-
tation using program analysis techniques. The second step uses the symbolic
code representation to generate neural code representations using deep learning
techniques.

Symbolic representations need to capture both syntactic and semantic struc-
tures in code. Approaches to generating symbolic representations can be catego-
rized as sequence-, tree-, and graph-based. Sequence-based approaches represent
code as a sequence of tokens and only capture the shallow and textual structures
of the code [4]. Tree-based approaches represent the code via abstract syntax
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Fig. 1. Model pipeline. The σ0/σ1 graph is defined in Sect. 3, and the pre-training
signals are defined in Sect. 4.

trees (ASTs) [5] that highlight structural and content-related details in code.
However, some critical relations (e.g., control flow and data flow), which often
impact machine learning models’ success in abstracting code information, are not
available in trees. Graph-based approaches augment ASTs with extra edges to
partially represent the control flow and the data flow [1,4,6]. Depending on the
type of symbolic representation used, the approaches for generating the neural
code representations are either sequence-based [3,7] or graph-based [4,6] neu-
ral network models. However, these works are generally task-specific, making
it hard to transfer the learned representations to other tasks. In addition, the
scarcity of labeled data may cause insufficient training in deep learning models.
In this work, we touch upon all the three aspects of ML-based code analy-

sis: symbolic code representation, task-independent neural code representation,
and task-specific learning. Figure 1 gives an overview of our approach. For sym-
bolic code representation, we explore two alternatives and show that symbolic
code representation (called σ0/σ1 graph) which captures richer relations leads
to better performance in downstream tasks. For neural code representation, we
specialize a recently proposed universal representation for graphs, PanRep [8], to
code graphs. And, finally, we explore two tasks to demonstrate the effectiveness
of the learned representations: method name prediction (for Python and Java)
and link prediction (for Java). Our proposed method consistently improves the
prediction accuracy across all experiments.

To summarize, the contributions of this work are as follows:

– We introduce a fine-grained symbolic graph representation for source code,
and adapt to 29M Java methods collected from GitHub.

– We present a pre-training framework that leverages the graph-based code
representations to produce universal code representations, supporting various
downstream tasks via fine-tuning.

– We combine the graph-based representation and the pre-training strategies to
go beyond code pre-training with sequence- and tree-based representations.
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2 Preliminary

Notation. Let G = {V, E} denote a heterogeneous graph with |T | node types
and |R| edge types. V = {{Vt}t∈T } represents the node set, and E = {{Er}r∈R}
represents the edge set. Each node vt

i ∈ Vt is associated with a feature vector.
Throughout the paper, we often use “representation” and “embedding” inter-
changeably unless there is any ambiguity.

2.1 Graph Neural Networks

Graph neural networks (GNNs) learn representations of graphs [9]. A GNN typ-
ically consists of a sequence of L graph convolutional layers. Each layer updates
nodes’ representation from their direct neighbors. By stacking multiple layers,
each node receives messages from higher-order neighbors. In this work, we utilize
the relational graph convolutional network (RGCN) [10] to model our heteroge-
neous code graphs. RGCN’s update rule is given by

h(l+1)
i = φ

⎛
⎝∑

r∈R

∑
n∈N r

i

1
ci,r

h(l)
n W(l)

r

⎞
⎠ ,

where N r
i is the neighbor set of node i under edge type r, ci,r is a normalizer (we

use ci,r = |N r
i | as suggested in [10]), h(l)

i is the hidden representation of node
i at layer l, W(l)

r are learnable parameters, and φ(·) is any nonlinear activation
function. Usually, h(0)

i is initialized as node features, and h(L)
i (the representation

at the last layer) is used as the final representations.

2.2 Pre-training for GNNs and for Source Code

Recently, there is a rising interest in pre-training GNNs to model graph data [11,
12]. To pre-train GNNs, most works encourage GNNs to capture graph structure
information (e.g., graph motif) and graph node information (e.g., node feature).
PanRep [8] further extends GNN pre-training to heterogeneous graphs.

Pre-training on source code has been studied in [13–15]. However, these
models build upon sequence-based code representations and fail to encode
code’s structural information explicitly. We differ from these works, by pre-
training on a novel graph-based code representation to capture code’s structural
information.

3 Code Graph

Previous Machine Learning (ML) models [4,6,16] are largely based on ASTs
to reflect structural code information. Though ASTs are simple to create and
use, they have tree-based structures and do not capture control flow and data
flow relations. Here, the control flow represents the order of the execution and
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the data flow represents the flow of data along the computation. For example,
to represent a loop snippet, ASTs cannot naturally use an edge pointing from
the end of the program statement to the beginning of the loop. In addition,
the relation between the definition and uses of a variable is not captured in
ASTs. In this work, we represent code as graphs to efficiently capture both
control flow and data flow between program elements. We call our code graphs
as σ0 graphs and σ1 graphs. The σ0 graphs are related to classical Program
Dependence Graphs (PDGs) [17]. The σ1 graphs build upon the σ0 graphs and
include additional syntactic and semantic information (detailed in Sect. 3.2). Our
experiments show that ML models using the σ1 graphs achieve better prediction
accuracy than using the σ0 graphs.

3.1 The σ0 Graph

Fig. 2. An example of σ0 graph.

The σ0 graphs, which relate to PDGs, are used
for tasks such as detection of security vulnera-
bilities and identification of concurrency issues.
In σ0 graphs, nodes represent different kinds
of program elements including data and opera-
tions; edges represent different kinds of control
flow and data flow between program elements.
We showcase a σ0 graph in Fig. 2.

Both nodes and edges in the σ0 graph are
typed. Specifically, we have five node types:
entry, exit, data, action, and control nodes.
Entry and exit nodes indicate the control flow
entering and exiting the graph. Data nodes rep-
resent the data in programs such as variables,
constants and literals. Action nodes represent
the operations on the data such as method
calls, constructor calls and arithmetic/logical
operations, etc. Control nodes represent control
points in the program such as branching, loop-
ing, or some special code blocks such as catch
clauses and finally blocks. We have two edge
types: control and data edges. Control edges
represent the order of execution through the
programs and data edges represent how data
is created and used in the programs. Examples of edge types include parame-
ter edges which indicate the data flow into operations and throw edges which
represent the control flows when exceptions are thrown.

3.2 The σ1 Graph

One limitation of σ0 graph is that the downstream modules perform additional
analysis such as control dependence and aliasing is not reflected in the σ0 graph
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explicitly and requires machine learning models to infer it. We propose σ1 graph
as an augmentation of the σ0 graph, which is enhanced by additional information.
Specifically, σ1 graph attaches AST node types to nodes in the graph. AST node
types capture syntactic information (e.g., InfixOperator) provided by the parser.
Higher-order semantic relations such as variable usage (e.g., FirstUse/LastUse),
node aliasing, and control dependence are also included as graph edges.

3.3 The Heterogeneous Code Graph

The proposed σ0 and σ1 graphs are heterogeneous graphs, i.e. nodes and edges
have types and features. Nodes are categorized into five types: entry, exit,
data, action, and control. Node features are attributed by their names. Edge
types are the same as edge features, which are defined by their functionalities.
Below we first describe node features, followed by edge features.

Entry nodes have feature ENTRY and exit nodes have feature EXIT. Fea-
tures of control nodes are their corresponding keywords such as if, while, and
finally. Features of variables are types, and the variable names are ignored.
For example, int.x → int; String.fileName → String. Method names
contain the method class, method name, and parameter class. For example,
Request.setConnectionKeepAlive#boolean#. Here, Request is the method
class, setConnectionKeepAlive is the method name, and boolean is the param-
eter class.

Features of control edges and data edges are defined separately. There are
two kinds of control edges: normal control edges and exception control edges. A
normal control edge is a directed edge that connects two control or action nodes;
defined as dep. See Fig. 2. An exception control edge connects an action node to a
control node to handle an exception that could be thrown by the action; defined
as throw. Data edges have five features: receiver, parameter, definition,
condition, and qualifier. Examples include receiver.call() as a receiver
edge; call(param) as a parameter edge, and foo=bar() as a definition edge.

3.4 Corpus-Level Graphs

In a typical ML application, the corpus consists of a collection of packages or
repositories. Repositories contain multiple files or classes. Classes contain meth-
ods. The σ0 and σ1 graphs are at method-level. Corpus-level graphs are a collec-
tion of method-level σ0/σ1 graphs. Let σ refer to either σ0 or σ1 for notational
ease.

4 Method

We propose a new model, Universal Code Representation via GNNs (UniCoRN),
to produce universal code representations based on σ graphs. UniCoRN has
two components. First, a GNN encoder that takes in σ graphs and generates
node embeddings. Second, pre-training signals that train the GNN encoder in
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an unsupervised manner. By sharing the same GNN encoder across all σ graphs,
the learned embeddings reveal universal code properties. Below, we show our
design of pre-training signals to help UniCoRN efficiently distill universal code
semantics. The instantiation of the GNN encoder is given in the experiment.

4.1 Pre-training Signals

Metapath Random Walk (MRW) Signal. A MRW is a random path
that follows a sequence of edge types. We assume node pairs in the same
MRW are proximal to each other; accordingly, they should have similar embed-
dings. For example, for a MRW with nodes [Collection.iterator(), Iterator,
Iterator.hasNext()] and edges [definition, receiver], nodes Iterator and
Iterator.hasNext() are expected to have similar embeddings. Formally, the
signal is defined as

LMRW =
∑

v,v′∈V
log

(
1 + exp

(
−y × ht

vW
t,t′

ht′
v′

))
, (1)

where ht
v and ht′

v′ are embeddings for nodes v and v′ with node types t and t′.
Wt,t′

is a diagonal matrix weighing the similarity between different node types.
y equals 1 as positive pairs if v and v′ are in the same MRW, otherwise y equals
-1 as negative pairs. During training, we sample 5 negative pairs per positive
pair.

Heterogeneous Information Maximization (HIM) Signal. Nodes of the
same type should reside in some shared embedding space, encoding their sim-
ilarity. On the other hand, nodes of different types, such as control nodes and
data nodes, ought to have discriminative embedding space as they are seman-
tically different. However, standard GNNs fail to do so with only local message
propagation. Following [8], we use a HIM signal to encode these properties:

LHIM =
∑
t∈T

∑
v∈Vt

(
log

(
φ(h�

v Wst)
)

+ log
(
1 − φ(h̃�

v Wst)
))

. (2)

Here, st = 1
|Vt|

∑
v∈Vt hv is a global summary of nodes typed t, φ(·) is a sigmoid

function, and φ(h�
v Wst) quantifies the closeness between a node embedding hv

and a global summary st. Negative samples h̃v are obtained by first row-wise
shuffling input node features then propagating through the GNN encoder [8].

Motif (MT) Signal. Code graph has connectivity patterns. For example, node
ENTRY has only one outgoing edge; node IfStatement has True and False branch.

Fig. 3. Motifs sized 3 and 4.

Such structural patterns can be captured in
graph motifs, see Fig. 3. With this observation,
we pre-train GNNs with MT signal to gener-
ate structure-aware node embeddings for code
graphs. Formally, we aim to recover the ground
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truth motif around each node, mv, from the node embedding hv using an approx-
imator fMT (·) (we use a two-layer MLP),

LMT =
∑
v∈V

||mv − fMT (hv)||22. (3)

The ground truth mv is obtained using a fast motif extraction method [18].

Node Tying (NT) Signal. The corpus-level graph (Cf. Sect. 3.4) contains
many duplicate nodes that have the same feature (e.g., two ENTRY nodes will be
induced from two methods). These duplicate nodes serve as anchors to imply
underlying relations among different graphs. We divide duplicate nodes into two
categories: strict equality and weak equality. Strict equality refers to duplicate
nodes whose semantic meaning should be invariant to their context, including
keywords (if, while, do ...), operators (=, *, << ...), entry and exit nodes. Dupli-
cate nodes of strict equality will have the same embedding in all σ graphs. We
keep a global embedding matrix to maintain their embeddings. Weak equality
refers to other duplicate nodes whose semantic meaning can be affected by their
context. For example, two foo() nodes in two methods, or two tied nodes due to
the simple qualified types of one or two nodes1. We use NT signal to encourage
duplicate node of weak equality to have similar embeddings:

LNT =
∑
k∈K

ave({||hv − gk||22}, v has feature k), (4)

where K is the set of distinct node features (exclude strict equality nodes), ave(·)
is an average function, and gk = ave({hv}, v has label k) is a global summary
of nodes featured k. In Eq. (4), we first group nodes featured k, followed by
computing the group centers gk, then minimize the distance between nodes to
their group centers.

Pre-training Objective. We combine the four pre-training signals to yield a
final objective:

L = ω1LMRW + ω2LHIM + ω3LMT + ω4LNT , (5)

where ω1, . . . , ω4 balance the importance of different signals. The objective
resembles the objective in multi-task learning [19].

4.2 Data Pre-processing and Fine-Tuning

Numeric Node Features. The initial node features are strings (Cf. Sect. 3.3),
which need to be cast into numeric forms before feeding into the GNN encoder.
To this end, we first split each node’s feature into subtokens based on the delim-
iter “.”. Then, language models are used to get subtoken embeddings, in which

1 We use simple types instead of fully qualified types since we create graphs from
source files and not builds. In this case, types are not fully resolvable.
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Table 1. Dataset statistics. The σ1

graph doubled the number of edges as
the σ0 graph, providing extra informa-
tion for code graphs.

Dataset Repository Method Node Edge

Java (σ0) 28K 29M 621M 1,887M

Java (σ1) 28K 29M 529M 3,782M

Python 14K 450K 57M 156M

Table 2. Result for method name pre-
diction on Java dataset. Higher value
indicates better performance.

F1 Precision Recall

σ0 21.7 26.1 19.9

σ1 23.6 27.5 22.0

we use FastText [20]. Finally, we use average subtoken embeddings as the node’s
numeric feature.

Inverse Edges. We enrich our σ graphs with inverse edges. Recent work has
proven improved performance by adding inverse edges to ASTs [6].

Fine-Tuning. After pre-training, we can fine-tune on downstream tasks. Fine-
tuning involves adding downstream classifiers on top of the pre-trained node
embeddings, and predicting downstream labels. A graph pooling layer [9] might
be needed if the downstream tasks are defined on the graph/method level.

5 Experiment

5.1 Dataset

We tested on two real-world datasets, spanning over two programming languages
Java and Python. Summary of the datasets is listed in Table 1.

Java. The Java dataset is extracted from 27,581 GitHub packages. In total,
these packages contain 29,024,142 Java methods. We convert each Java method
into a σ0 graph and a σ1 graph. The data split is on package-level, with training
(80%), validation (10%), and testing (10%).

Python. The Python dataset is collected from Stanford Open Graph Bench-
mark (ogbg-code) [6]. The total number of Python methods is 452,741, with
each method is represented as an AST. These ASTs are further augmented with
next-token edges and inverse edges. The data split keeps in line with ogbg-code.

5.2 Experimental Setup

We tune hyperparameters on all models based on their validation performances.
For Java dataset, we consider a two-layer RGCN with 300 hidden units. For
Python dataset, we follow ogbg-code and use a five-layer RGCN with 300 hidden
units. We use Adam [21] as optimizer, with learning rate ranges from 0.01 to
0.0001. Mini-batch training is adopted to enable training on very large graphs2.
2 https://github.com/dmlc/dgl/tree/master/examples/pytorch/rgcn-hetero.

https://github.com/dmlc/dgl/tree/master/examples/pytorch/rgcn-hetero
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We apply dropout at rate 0.2, L2 regularization with parameter 0.0001. The
model is first pre-trained on a maximum of 10 epochs, then fine-tuned up to
100 epochs on downstream tasks until convergence. The model is implemented
using Deep Graph Library (DGL) [22]. Models have access to 4 T V100 GPUs,
32 CPUs, and 244 GB memory.

Fig. 4. Visualization of node-level emb-
eddings with t-SNE.

Fig. 5. Visualization of method-level
embeddings with t-SNE. Colored with K-
means.

5.3 Analysis of Embeddings

We begin by analyzing code embeddings via t-SNE [23] visualization. We study
two levels of embeddings: node-level embeddings and method-level embeddings.
Here, a method-level embedding summarizes a method, computed by averaging
node embeddings in its σ graph. For better visualization, we show results on 10
random Java packages (involving 4,107 Java methods) using σ1 graphs.

In Fig. 4, we see that data nodes and action nodes are forming separate
clusters, indicating our code embeddings preserve important node type infor-
mation. Figure 5 suggests method embeddings are forming discriminative clus-
ters. By manually annotating each cluster, we discovered that cluster 4 contains
91% (out of all) set functions, cluster 3 contains 78% find functions, and clus-
ter 1 contains 69% functions which end with Exception. This result suggests
that our model has the potential to distinguish methods in terms of method
functionalities.

5.4 Method Name Prediction

We use pre-trained UniCoRN model to initialize code embeddings. Then follow-
ing [6,16], we predict method names as downstream tasks. The method name
is treated as a sequence of subtokens (e.g. getItemId → [get, item, id]). As
in [6], we use independent linear classifiers to predict each subtoken. The task
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is defined on the method-level: predict one name for one method (code graph).
We use attention pooling [24] to generate a single embedding per method. We
follow [6,16] to report F1, precision, recall for evaluation. Below we show results
on Java and Python separately, as they are used for different testing purposes.
Java. We evaluate the performance gain achieved by switching from the σ0

graph to the σ1 graph. We truncate subtoken sequences to a maximal length of 5

Fig. 6. F1 at name length.

to cover 95% of the method names. Vocabulary size
is set to 1,000, covering 95% of tokens. Tokens not
in the vocabulary are replaced by a special unknown
token. Similar techniques have been adopted in [6].
We experiment on approximately 774,000 methods
from randomly selected 1,000 packages.

The result is summarized in Table 2. We see that
the σ1 graph outperforms the σ0 graph, indicating
that the extra information provided by the σ1 graph
is beneficial for abstracting code snippets. Figure 6
further supports this observation. The σ1 graph con-
sistently outperforms the σ0 graph w.r.t. the F1 score for different method name
lengths. Note that the F1 score at method names of length 1 is low. We suspect
that some names at this length are not semantically meaningful, such as a or
xyz. Thus, these method names are hard to predict correctly.

Python. We compare the performances of UniCoRN with various baselines on
Python. Our experiment setup closely follows ogbg-code [6]. For the baseline,
ogbg-code considers GCN and GIN. Additionally, we introduce two baselines
that run GCN and GIN with next-token edges only. We expect these two new
baselines to mimic the performance of sequence-based models. In this task, we
test three pooling methods: average, virtual node [6], and attention [24].

Results are given in Table 3. We list three observations. First, UniCoRN with
attention pooling (UniCoRN‡) performs the best, endorsing UniCoRN’s superior
modeling capacity. Second, UniCoRN with pre-training shows performance gain
over UniCoRN without pre-training, verifying the usefulness of our pre-training
strategies. Third, GCN(GIN) improves GCN(GIN)-NextTokenOnly, confirming
the importance of using structural information.

Example pairs of ground truth and prediction are shown in Fig. 7. The exam-
ples of prediction encompass exact matches, such as get_config pair, con-
text matches, such as get_aws_credentials pair, and mismatches, such as
load_bytes pair. We showcase a prediction example in Fig. 8.
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Table 3. Method name prediction for
Python. Pooling: average†, virtual node§,
and attention‡. GCN†,§ and GIN†,§: Rep-
orted in [6].

F1 Precision Recall

GCN-NextTokenOnly† 29.77 31.09 29.18

GIN-NextTokenOnly† 29.00 30.98 28.13

GCN† 31.63 – –

GIN† 31.63 – –

UniCoRN w/o pretrain† 32.81 35.25 31.71

UniCoRN† 33.28 35.28 32.36

GCN§ 32.63 – –

GIN§ 32.04 – –

UniCoRN§ 33.80 35.81 32.89

GCN‡ 32.80 34.72 31.88

GIN‡ 32.60 34.42 31.77

UniCoRN‡ 33.94 36.02 32.99

Table 4. MRR and Hit@K(%)
results for link prediction. Higher val-
ues are better. Superscripts D and M

denote DistMult and MLP link pre-
dictors. Hit@K for random is com-
puted as K/(1+200), where 200 is the
number of negative edges per testing
edge.

MRR Hit@1 Hit@3 Hit@10

Random – 0.5 1.5 5.0

FastTextD 0.01 0.4 1.0 2.3

σD
0 0.26 15.4 28.5 41.3

σD
1 0.32 18.1 38.4 61.4

FastTextM 0.05 1.9 4.0 8.0

σM
0 0.51 46.1 49.8 58.4

σM
1 0.53 46.2 55.0 65.2

Fig. 7. Examples of method name
prediction on Python in different
degree of consensus. Each pair of
results is demonstrated as ground
truth name and predicted name.

Fig. 8. Reasonable prediction based on the
code context is observed, though it is inex-
act match.

5.5 Link Prediction

In this task, we examine how UniCoRN recovers links in code graphs. We follow
the same experimental setup as in [8]. We feed two node embeddings of a link
to a predictor, a DistMult [25] or a two-layer MLP, to predict the existence of
the link. Here, node embeddings are obtained by applying UniCoRN to σ0/σ1

graphs, or simply obtained from FastText embeddings. Note that the FastText
is the initial embedding of UniCoRN. We freeze UniCoRN after pre-training.
When fine-tuning link predictors, we ensure σ0 and σ1 have the same set of
training edges. During inference, we sample 200 negative edges per testing edge
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(positive) and evaluate the rank of the testing edge. Evaluations are based on
Mean Reciprocal Rank (MRR) and Hit@K (K = 1, 3, 10).

Fig. 9. Scores for positive and
negative edges.

Table 4 shows the results. UniCoRN outper-
forms FastText. The results suggest that node
embeddings from UniCoRN capture neighborhood
correlations. We see σ1 graph again improves σ0

graph. Figure 9 demonstrates the histogram of
scores for 1,000 positive and 1,000 negative edges.
The score, which ranges from 0 to 1, indicates the
plausibility of the link existence. Positive edges
(0.58 ± 0.33) score higher than negative edges
(0.13 ± 0.15), with p-value less than 0.00001 using
t-test, suggesting that UniCoRN is capable to dis-
tinguish positive and negative links in code graphs.

6 Conclusion

This paper presents a new model, UniCoRN, to provide a universal representa-
tion for code. Building blocks of UniCoRN include a novel σ graph to represent
code as graphs, and four effective signals to pre-train GNNs. Our pre-training
framework enables fine-tuning on various downstream tasks. Empirically, we
show UniCoRN’s superior ability to offer high-quality code representations.

There are several possibilities for future works. First, we are looking to
enhance UniCoRN with additional code-specific signals. Second, the explainabil-
ity of the learned code representation deserves further study. The explainability
can in turn motivate additional signals to embed desired code properties. Third,
more downstream applications are left to be explored, such as bug detection and
duplicate code detection upon the availability of labeled data.
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Abstract. Neighborhood aggregation is a key operation in most of the
graph neural network-based embedding solutions. Each type of aggrega-
tor typically has its best application domain. The single type of aggrega-
tor for aggregation adopted by most existing embedding solutions may
inevitably result in information loss. To keep the diversity of information
during aggregation, it is mandatory to use the most appropriate different
aggregators for specific graphs or subgraphs. However, when and what
aggregators to be used remain mostly unsolved. To tackle this problem,
we introduce a general contrastive learning framework called Cooker,
which supports self-supervised adaptive aggregator learning. Specifically,
we design three pretext tasks for self-supervised learning and apply mul-
tiple aggregators in our model. By doing so, our algorithm can keep the
peculiar features of different aggregators in node embeddings and mini-
mize the information loss. Experiment results on node classification and
link prediction tasks show that Cooker outperforms the state of the art
baselines in all three compared datasets. A set of ablation experiments
also demonstrate that the integration of more types of aggregators gen-
erally improves the algorithm’s performance and stability.

Keywords: Graph representation learning · Self-supervised learning ·
Neighborhood aggregation

1 Introduction

The low-dimensional vector embeddings of nodes in large graphs have proved
extremely useful as feature inputs for various prediction and graph analysis
tasks. The basic idea behind embedding is to use the dimensionality reduction
technology to transform nodes on the graph into low-dimensional dense vec-
tors while still preserving the attribute features of nodes and structure features
of graphs [4]. In many aggregation techniques, neighborhood aggregations have
played a vital role in most of the graph neural network-based embedding algo-
rithms. Since GCN [11] represents a node by aggregating the feature vectors of
its neighbors with a weighted sum and a (weighted) element-wise mean, some
other aggregators have been proposed, e.g., mean aggregator, LSTM aggregator,
pooling aggregator discussed in GraphSage [3], and the sum aggregator used in
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12714, pp. 29–41, 2021.
https://doi.org/10.1007/978-3-030-75768-7_3
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GIN [18]. Later, LA-GCN [22] introduced a learnable aggregator and allowed
the aggregator to learn to assign different weights to different features within a
feature vector with the label information. Each of those aggregators keeps the
neighboring information from a single perspective with a simple permutation-
invariant function.

(a) Both Mean and Max fail (b) Sum fails
(c) Both Mean and Max fail

Fig. 1. (a) and (b) are two examples of graph structures that different aggregators fail

to distinguish the two different nodes v and v
′
, Colors indicate different features of

nodes. Vector v and v
′

would get the same embedding with the aggregators, although
the graph structures are different; (c) is the node classification result from GraphSAGE
with various aggregators.

However, practical networks are complex with different types of features. To
keep most of the information during aggregation, sometimes it is mandatory
to use different aggregators for different graphs or even different parts of the
graph. Figure 1a, b show two examples of graph structures that mean, max and
sum aggregators fail to distinguish. Some of them are already discussed in [18].
Figure 1a and b show two possible structures that node v and v

′
get the same

embeddings even though their corresponding graph structures differ. The node
classification results from the GraphSAGE variants with different aggregators
(Fig. 1c) further illustrate that the selection of aggregators might have signif-
icant impacts on the performance of different datasets. All of these examples
demonstrate that a single predefined heuristic aggregator might restrict model-
ing capacity and result in an inevitable loss of information [23].

Thus, it is important to have a solution that can find the most appropriate
aggregator for different network structures. Currently limited solutions, e.g.,
[22] on the learnable aggregator, still demand the labeled data for training.
In practice, labeled data are scarce and expensive, sometimes even impossible
to acquire in real scenes [24]. It is favorable to have an algorithm that can
automatically apply the most suitable aggregator to aggregate node features
according to the graph structure without labels. As different aggregators only
display peculiar features on certain graph structures, instead of learning to find
the best aggregator, we can try to learn the distinguishing feature of different
aggregators. Contrastive learning, a method to learn what makes two objects
similar or different [5], becomes a natural candidate.

Present Work. To address the above challenging problems, in this paper,
we propose a general contrastive learning framework: Cooker, to support self-
supervised adaptive aggregator learning. To learn the different distinguishing
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features of the aggregators at different nodes while still preserving major graph
information, we design three pretext tasks [9] and corresponding loss functions
for self-supervised learning. The three pretext tasks help to guide our algorithm
to capture the differences between different aggregators and keep the peculiar
features of different aggregators in node embeddings. Unlike existing embedding
approaches that are based on a single aggregation method, this design enables
flexible and intelligent aggregator learning by allowing any type of aggregator to
be added and evaluated. In this way, our algorithm can retain information from
different angles for each node and minimize the information loss.

To verify the effectiveness of the proposed method, we integrate four types
of typically used aggregators into Cooker and conduct experiments on a node
classification task, where every node is assigned one class label and a link pre-
diction task, where we predict the existence of an edge given a pair of nodes. We
contrast the performance of Cooker with state-of-the-art baselines. We exper-
iment with several real-world networks from diverse domains, such as citation
networks and protein networks. Experiments results demonstrate that (i) our
algorithm outperforms state-of-the-art methods by up to 19.20% on node clas-
sification task and up to 24.7% on link prediction task; (ii) the ablation studies
show the effect of different pretexts and demonstrate that the integration of more
types of aggregators generally indeed improve the algorithm’s performance and
stability.

2 Related Works

2.1 Aggregator

In order to aggregate information from neighboring nodes, it demands a cer-
tain mechanism to aggregate information. In the Graph convolutional network
(GCN), Kipf and Welling [11] propose the usage of a weighted sum and an
element-wise mean to aggregate the features information of neighboring nodes.
Later, GraphSage [3] summarizes the design principle of the aggregator and
uses the element-wise mean, a max-pooling neural network, and LSTMs [7] as
aggregators to aggregate the information of neighboring nodes. GIN [18] ana-
lyzes the expressive power of GNNs and proposes to use the sum aggregator to
solve graph isomorphism test. GraphAir [8] proposes a non-linear aggregation
of the neighborhood interaction. The mentioned GCN, mean, LSTM, pooling,
and sum aggregators are all predefined heuristics that can not adapt to dif-
ferent structures. Limited research has been proposed to make the aggregator
learnable. GAT [16] proposes the use of self-attention to evaluate the different
influences of neighboring nodes. LA-GCN [22] proposes a learnable aggregator
by borrowing the idea from meta-learning. However, this approach is confined in
the semi-supervised network embedding as they require information from labels.

2.2 Contrastive Methods

Unsupervised learning aims to learn representations from the data itself without
explicit manual supervision. Self-supervised learning is a form of unsupervised
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learning where the data provides the supervision to train a pretext task, which
helps to guide the learning algorithm to capture the underlying patterns of the
data. Self-supervised representation learning is highly successful in natural lan-
guage processing. Today, the self-supervised method has surpassed the super-
vised method in Pascal VOC detection [5] and also shown excellent results on
many other tasks. Behind the rise-up of self-supervised methods is that they all
follow contrastive learning. Contrastive methods are central to many popular
word-embedding methods [2,12,13], but they are found in many unsupervised
algorithms for learning representations of graph-structured input as well. For
example, DGI [17] introduces “mutual information”, designs a pretext task to
classify local-global pairs and negative-sampled counterparts, and uses Jensen-
Shannon divergence to maximize the mutual information of the local represen-
tations and global representations.

3 Formulating Cooker

Given a network G = (V, E) where V is the node set and E is the edge set,
with node feature vectors Xv for v ∈ V. The task of our algorithm is to learn a
low-dimensional representation zv, v ∈ V.

3.1 Cooker: A Contrastive Representation Learning Framework

In the network embedding, the major goal is to learn a mapping that embeds
nodes, or entire (sub)graphs, as points in a low-dimensional vector space so that
the geometric relationships in the embedding space reflect the structure of the
original graph [4]. In this process, we want the embedding to take triple respon-
sibilities: 1) keeps node’s feature information; 2) keeps the structure information
via aggregation, and 3) identifies the most suitable aggregate function for each
node. The first two tasks are already well studied but it is challenging to find
the most suitable aggregator for any specific node due to the lack of labeling
information. Here, instead of finding the most suitable aggregator, we shift the
original goal of keeping the peculiar features of different aggregators in node
embeddings.

Inspired by recent contrastive learning algorithms, we designed the Cooker:
a contrastive learning framework that integrates three pretext tasks with a
shared embedding layer. This framework can learn a joint embedding space with
data from multiple perspectives.

1) The node restoration task. This task attempts to restore the original
input of the model. By comparing the model’s input and the output of the
node restoration task, this task can learn the hidden features of the input
data and maximum retention of the nodes’ feature information.

2) Classification of node pairs. The intuition of this task is to keep the struc-
ture information in the node representations maximally. We capture the struc-
tural properties of nodes via classic random walks. By determining whether
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the starting nodes of two random walk paths are the same, this task can
capture the structural differences between different nodes and learn the most
unique representation for each node.

3) Classification of aggregators. In order to keep the peculiar features of
different aggregators in node embeddings, multiple aggregators are applied to
nodes to aggregate the context information obtained from random walks. This
task attempts to determine whether the aggregators applied to two nodes in
node pairs are the same. By learning the differences between the information
learned by different aggregators, the final node embeddings can contain the
unique characteristics of each aggregator.

Since these three tasks are intercorrelated, learning these tasks jointly can
improve performance compared to learning them separately

Definition 1. {(ui, vi)}ni=1 denotes n node pairs, where ui, vi ∈ V and (ui, vi) ∈
E.

Definition 2. {li0}ni=1 denotes the set of labels of the second pretext task, clas-
sification of node pairs. Specifically, when node ui and vi are equal, li0 = 1,
otherwise, li0 = 0.

Definition 3. {li1}ni=1 denotes the set of labels of the third pretext task, classi-
fication of aggregators. Specifically, when the aggregators applied upon ui and
vi are the same, li1 = 1, otherwise, li1 = 0.

Fig. 2. Cooker architecture. a. Date preparation. Here, P
(k)
ui denotes the k-th random

walk path of node ui and hui,k,AGG denotes the aggregated feature of P
(k)
ui and AGG

is the aggregate function. b. A conceptual diagram for Cooker.

4 Architecture

4.1 Data Preparation

As self-supervised tasks need to generate supervisory signals based on raw data,
it is necessary to prepare data for processing. Firstly, a set of node pair (ui, vi)
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are generated from the edge set E and the self-loop edges. Then as shown
in Fig. 2a, for each node ui,vi in node pair, we obtain k random walk paths
{P

(1)
ui , ..., P

(k)
ui } and {P

(1)
vi , ..., P

(k)
vi } respectively to capture the neighborhood

context of nodes. For the neighborhood information, similar to the GNN-based
solution, we leverage four most used aggregators, mean, sum, max, and min,
to aggregate them, which results in {Hu,Hv}. Thus, the inputs for Cooker is
Hu = {Hui

}ni=1,Hv = {Hvi
}ni=1.

4.2 Embedding Generation Algorithm

Figure 2b describes the principal structure of Cooker. The inputs of our model
are Hu and Hv generated from the data preparation process. Firstly, the inputs
are transformed into pair embeddings Hu,v. We define the function Encode as
follows:

Hu,v ← α(W 3 · concat(Hu,Hv, α(W 1 · Hu), α(W 2 · Hv))) (1)

where W 1, W 2, and W 3 are three layer-wised learnable weight matrices. The
aggregated attributes Hu, Hv are fed through two fully connected layer α individ-
ually. To prevent gradient disappearance and achieve more stable performance,
we adopt the “skip connection”, just like ResNet [6] which skips one or more
layers and concatenates the output from the front layer to the back layer. The
outputs of the two dense layers are concatenated with the two inputs of the
model and enter a dense layer, which is the shared embedding layer with a
pair-embedding output Hu,v.

Through the ‘Decode’ layer, pair representations Hu,v are transformed into
final four outputs which are used to get the losses of our three pretext tasks:

Hu

′
,Hv

′ ← δ(W 4 · Hu,v), δ(W 5 · Hu,v) (2)

l0
′
, l1

′ ← θ(W 6 · Hu,v), θ(W 7 · Hu,v) (3)

Hu

′
and Hv

′
are the outputs of two separated dense layers with softmax acti-

vation function δ. l0
′

and l1
′

are obtained from the sigmoid activation function
σ.

4.3 Learning the Parameter of Cooker

In order to learn useful, predictive representation in a fully unsupervised setting,
we apply four loss functions to the four output representations, Hu

′
, Hu

′
, l0

′
,

and l1
′
, and tune the weight matrices, W k,∀k ∈ {1, ..., 7} via stochastic gradient

descent.
For the first pretext task of node restoration, in order to make the learned

embedding representation to recover the original input features as comprehen-
sively and effectively as possible, the Kullback-Leibler (KL) divergence is used to
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measure the asymmetry of the difference between the two the original probabil-
ity distribution P and the reconstructed probability distribution Q. The original
probability distributions of input features Hu, Hv are denoted as Pu and Pv, and
the reconstructed probability distributions of Hu

′
, Hv

′
are denoted as Qu and

Qv. The probability distribution of node ui is calculated by Eq. (4):

Pui
(k) = exp (Hui

(k))/
F∑

j=1

exp (Hui
(j)) (4)

where, Pui
(k) indicates the kth feature’s distribution possibility of node ui and F

is the dimension of features. It is calculated by applying the standard exponential
function to each element Hui

(k) and the normalized values are divided by the
sum of all these exponents. Pv, Qu, and Qv are calculated in the same way.

Therefore, the goal of the node restoration task is to minimize the KL diver-
gence between Pu and Pv, Qu and Qv respectively.

min

n∑

i=1

F∑

j=1

Pui
(j) ln (

Pui
(j)

Qj
ui

) (5)

min

n∑

i=1

F∑

j=1

Pvi
(j) ln (

Pvi
(j)

Qj
vi

) (6)

For our two binary classification tasks, the binary cross-entropy is used to
measure the difference between the model’s prediction, l

′
0, l

′
1, and a fixed target,

l0, l1 (Eq. (7), (8)).

min{−
n∑

i=1

l0
i

′
logl0

i + (1 − l0
i

′
)log(1 − l0

i
′
)} (7)

min{−
n∑

i=1

l1
i

′
logl1

i + (1 − l1
i

′
)log(1 − l1

i
′
)} (8)

4.4 Translator

In order to support node-related downstream tasks, e.g., node classification task,
it is essential to convert the embedding of node pairs Hu,v to node embedding. As
shown in Eq. (9), the embedding of node v is obtained from the pair embedding
Hui,vi

, with ui and vi are equal to node v. And similar to the aggregate function,
the translator function can be the min, max, mean, and sum.

zv = T (Hui,vi
),∀ui = vi = v (9)
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5 Experiments

To evaluate the effectiveness of Cooker, three citation graphs and one protein
dataset widely used in graph tasks are selected. A set of experiments have been
performed with the node classification and link prediction to check the effective-
ness of Cooker. A set of ablation studies are also performed to check the impacts
of pretext tasks and the effectiveness in unifying various aggregators.

Table 1. Dataset statistics.

Dataset #Nodes #Edges #Features #Classes

Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6

Pubmed 19,717 44,338 500 3

Enzymes 19,580 74,564 18 3

5.1 Dataset Descriptions

In this paper, we use 4 benchmark datasets including three citation networks
datasets, one protein datasets and so on. We summarize the statistics of these
benchmark datasets in Table 1.

5.2 Experiment Settings

Baseline Methods. To contextualize the empirical results on our algorithm,
we compare against various unsupervised baselines, including DeepWalk [14],
ProNE [21], MUSAE [15], TADW [19], DGI [17], GraphSAGE [3] and P-
GNN [20]. Specifically, P-GNN is used in link prediction task.

For a fair comparison, we set the embedding dimension d = 128 and generate
an equal number of samples for each method. We set the window size as 10, the
walk length as 40, and the number of walks as 30 for DeepWalk. For ProNE, the
term number of the Chebyshev expansion k is set to 10, u = 0.1, and θ = 0.5.
For MUSAE, the window size t is set to 3, walk length l = 80, and the number
of walks per node p = 10. For TADW, we set the weight of regularization term
λ = .2. For DGI, we use the GCN update rule in the encoder and sample 10 and 5
neighbors respectively on each neighborhood sampling depth. For GraphSAGE,
we set the Neighborhood sampling depth K = 1 with neighborhood sample sizes
S = 5.

Next we evaluate Cooker model on both node classification and link predic-
tion task settings. For more parameter settings, the batch size is set as 1024 while
the training epoch size as 10. For the random walk in our experiments, we set
the walk length as 3, 10, and 25. The implementation is based on TensorFlow [1]
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with the Adam optimizer [10]. We designed our experiments with the goals of (i)
verifying the improvement of Cooker over the baseline approaches, (ii) providing
a rigorous comparison between the Cooker and different single pretext tasks,
and (ii) proving the effectiveness of the combination of multiple aggregators.

Table 2. Node classification results, evaluated with average Micro-F1.

Name Cora Citeseer Pubmed

Ratio 30% 50% 70% 30% 50% 70% 30% 50% 70%

DeepWalk .8177 .8146 .8248 .5602 .5809 .5907 .8042 .8016 .8056

ProNE .7809 .7917 .7979 .5431 .5550 .5730 .8029 .8002 .8012

TADW .6576 .6646 .6628 .6103 .6139 .6306 .8159 .8233 .8257

MUSAE .8226 .8132 .8169 .6594 .6404 .6409 .7516 .8025 .7936

GraphSAGE .8018 .8361 .8290 .7296 .7337 .7362 .8382 .8437 .8383

DGI-gcn .8128 .8257 .8337 .6894 .6963 .7126 .8311 .8328 .8329

Cooker .8496 .8605 .8640 .7224 .7381 .7440 .8477 .8468 .8478

5.3 Results on Node Classification Task

This task is a well-adopted node based task. The classifier used in this paper
is Logistic Regression with L2 regularization. The embedding of vertices from
different solutions are taken as the features to train classifiers with different
training ratios, from 30%, 50% to 70%, and classification accuracy is evaluated
with remaining data. To measure the classification performance, We repeat this
process 10 times.

The classification results are shown in Tables 2. The best results in each
case are marked in bold and the second ones are underlined. From these tables,
we can find that Cooker generally outperforms the other state-of-the-art meth-
ods. Moreover, Cooker achieves very stably performance within all training ratio
ranges across different datasets. Specifically, We achieve the biggest improvement
over TADW of 19.20% on Cora at 30% training data.

The experiment results affirm the effectiveness of the automatic aggregation
learning with the self-supervised learning tasks. Good performance on node clas-
sification can only be achieved if the learned representation could encode global
topological information and finely discriminate the similarity and differentiation
between nodes. We have the reasons to believe that the supervision built from
the data itself could capture the inherent characteristics of data.

5.4 Results on Link Prediction Task

The goal of this task is to predict the existence of an edge between two nodes. The
classifier is Logistic Regression with L2 regularization. Specifically, we randomly
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select 20% existing links from the original network as positive samples and an
equal number of nonexistent links as negative samples of the testing set, with
remaining 80% exiting links as positive samples and equal number of nonexistent
links as negative samples of the training set. The average ROC AUC is used for
evaluation.

The link prediction accuracy of three citation datasets is shown in Table 3.
From this table, we can observe that our proposed method significantly out-
perform all the other baseline methods in all datasets. Especially, the biggest
improvement over TADW on Citeseer is up to 24.6%, which further verifies the
effectiveness of our method.

Table 3. Link prediction task, measured in ROC AUC. Standard deviation errors are
given.

Method Cora Citeseer Pubmed

DeepWalk .811 ± .009 .819 ± .006 .799 ± .002

ProNE .838 ± .003 .838 ± .007 .832 ± .002

TADW .659 ± .000 .692 ± .005 .705 ± .000

MUSAE .814 ± .002 .844 ± .001 .817 ± .001

GraphSAGE .829 ± .011 .834 ± .037 .865 ± .000

DGI-gcn .670 ± .014 .672 ± .015 .761 ± .005

P-GNN .809 ± .007 .749 ± .016 .817 ± .000

Cooker .887± .003 .919± .004 .952± .002

5.5 Ablation Studies

In this section, a set of ablation studies are performed. Due to page limits, the
Enzymes dataset is selected due to its sensitivity towards both the types of
aggregators and the types of pretext tasks.

Cooker and Single Pretext Tasks. Cooker is a contrastive learning frame-
work that consists of three tasks. To compare Cooker with the methods of a single
pretext task, we run a set of ablation study experiments on several datasets. We
provide an apples-to-apples comparison of three different pretext tasks and all
the settings and hyperparameters are the same as reported in Sect. 5.2. Figure 3a
shows the comparison results on a protein dataset (Enzymes). From the ablation
study experiments, we have the following observations. First, Cooker is the best
combination of pretext tasks we test. Second, we can find that among all the
single pretext tasks, the node restoration task has the strongest performance
and the other two pretext classification tasks (“uv” and “agg”) have a rela-
tively small effect. Third, the results of two pretext classification tasks indicate
that they indeed can capture some information although their performance is
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not competitive enough. The experiment results suggest that representations
learned by the various pretext tasks have different strengths and weaknesses,
and combining pretext tasks can yield further improvements.

(a) Comparisons among pretext tasks on
Enzymes

(b) Comparisons among aggregator on En-
zymes

Fig. 3. Node classification results with ablation studies.

Different Aggregators. To prove that Cooker can learn more information by
adopting various aggregators, we conduct node classification tasks with different
types of aggregators and their combinations. Figure 3b summarizes the perfor-
mance with different aggregation function on Enzymes. Overall, We found that
the combination of four aggregators performed the best, especially when the
training data scare. For example, the experiment with the combination of four
aggregators outperforms the method with Max aggregator by 16% on 10% train-
ing data of Enzymes. Moreover, it is easy to find that different aggregators would
result in significant performance divergences. We also find that the Mean aggre-
gator generally achieves the best performance than other types of aggregators in
most of the datasets. It matches the findings of existing works [17]. However, for
the much more complex dataset, e.g. Enzymes, the Mean operator can not catch
certain data. It lags behind cooker with four aggregators by about 3% points
in Micro-F1. It clearly indicates the importance of the combination of different
aggregators for complex graphs.

6 Conclusion

In this paper, we propose a general contrastive learning framework so-called
Cooker, which can support self-supervised adaptive aggregator learning. To learn
the different distinguishing features of the aggregators at different nodes while
still preserving major graph information, we design three pretext tasks for self-
supervised learning. Unlike existing embedding approaches that are based on a
single aggregation method, this design enables flexible and intelligent aggregator
learning by allowing any type of aggregator to be added and evaluated. In this
way, our algorithm can retain information from different angles for each node and
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minimize the information loss. Extensive experiments on different graph tasks
have demonstrated the superior performance of our proposed method. Due to its
capabilities integration different pretext tasks, we believe Cooker can be directly
applied to other domains with different pretext tasks.
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Abstract. Simultaneous sparse approximation problems arise in sev-
eral domains, such as signal processing and machine learning. Given a
dictionary matrix X of size m×n and a target matrix Y of size m×N ,
we consider the classical problem of selecting k columns from X that
can be used to linearly approximate the entire matrix Y . The previous
fastest nontrivial algorithms for this problem have a running time of
O(mnN). We describe a significantly faster algorithm with a running
time of O(km(n + N)) with accuracy that compares favorably with the
slower algorithms. We also derive bounds on the accuracy of the selec-
tions computed by our algorithm. These bounds show that our results
are typically within a few percentage points of the optimal solution.

Keywords: Simultaneous sparse approximation · Multiple
measurement vectors · Multi-target regression · Spectral pursuit

1 Introduction

Sparse approximation, or alternatively, sparse representation, has attracted sig-
nificant attention in fields of signal processing, image processing, and machine
learning (e.g., [16,27,33]). It originally arose in the study of linear regression in
which a target vector is approximated by a linear combination of several selected
features to foster interpretability and avoid overfitting.

The problem that we discuss in this paper is an extension of the classi-
cal sparse approximation problem to multiple targets. The goal is to identify a
small number of “atoms” (columns of the dictionary matrix) that can be used
to linearly approximate all the columns of another “target” matrix. This formu-
lation is referred to as simultaneous sparse approximation (e.g., [17,25]). It has
various applications, such as supervised feature selection for multi-target regres-
sion [34], human action recognition in videos [11], multi-sensor image fusion [31],
and hyperspectral image unmixing [28].

We present an efficient selection algorithm with a running time that depends
linearly on the number of columns of the relevant matrices. This significantly
improves on previous algorithms which have a running time depending on the
product of these parameters.
c© Springer Nature Switzerland AG 2021
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The main idea is to select columns from the dictionary matrix whose span is
close to the dominant spectral components of the target matrix. The following
two-stage procedure is proposed. In the first stage, a greedy algorithm is used to
select k columns from the dictionary matrix. In each iteration, a column that is
most related to the first left eigenvector of the residual target matrix is selected.
In the second stage, an iterative “bidirectional selection” algorithm is used to
improve the results produced in the first stage.

1.1 Problem Formulation

The problem of simultaneous sparse approximation can be stated as follows.
Let Y = (y1 . . . yN ) be a “target” matrix of m rows and N columns. Let X =
(x1 . . . xn) be a “dictionary” matrix of m rows and n columns (n is typically
very large). Consider an approximation of Y in terms of X:

Y ≈ XÃ, (1)

where Ã is the coefficient matrix of size n×N . The approximation in Eq. (1)
is considered a sparse approximation if only a small number of rows of Ã are
nonzero. See, e.g., [4,19,24,25]. Let k ≤ n be the number of nonzero rows in Ã,
then the approximation in (1) can be written as:

Y ≈ SA, (2)

where S = (xs1 . . . xsk
) is the m×k selection matrix consisting of the k columns

of X corresponding to the k nonzero rows of Ã, and A is the coefficient matrix of
size k×N , created from the k nonzero rows of Ã. Thus, the goal of the problem
described in (2) is to select k columns from X such that all the columns of
Y can be simultaneously approximated by a linear combination of the selected
columns in S. The quality of the selected columns in S is measured by the
following (Frobenius norm) error:

E(S) = min
A

‖Y − SA‖2F , where S is a subset of X columns. (3)

The following cases are special sub-problems:

– When N = 1, the problem is called sparse approximation, where Y is a single
vector and X is a dictionary. It is also called supervised subset selection when
Y corresponds to labels for the data matrix X. See, e.g., [9,20].

– When X = Y , the problem is known as “unsupervised feature selection” if
each column corresponds to a data feature. It is known as “representative
selection” if each column corresponds to a data point. See, e.g., [1,13,30].

Optimal solutions for the optimization in (3), as well as approximate solutions
within a constant are known to be NP-hard even when N = 1 [8,20].
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1.2 Related Work

Extensive studies were directed at the N = 1 case (e.g., [9,18,21,24,32]). Appli-
cations include signal processing e.g., [18,24] and supervised feature selection
in linear regression e.g., [9,21,32]. An optimal algorithm proposed in [9] finds
the best solution, but it is not feasible for large k and large datasets. Previ-
ously proposed approximate solutions can be roughly divided into three groups:
forward selection, backward elimination, and convex relaxation. Forward selec-
tion sequentially adds columns that improve the quality the most. Backward
elimination starts with the full selection and sequentially removes the columns
that affect the quality the least. As shown in [32], these two techniques have
limitations due to their greedy behavior. The author of [32] introduced an adap-
tive algorithm that combines these two ideas to alleviate the flaws. The convex
relaxation approaches replace some natural constraints (sometimes defined in
terms of the l0 norm) with convex constraints. An example is the l1 norm used
in the Lasso technique [23]. In [21], the authors treated the subset selection as
a bi-objective optimization problem. Their algorithm is optimal for data drawn
from Exponential Decay distribution but not for the general case.

The case where X = Y is known as the unsupervised feature selection or
unsupervised column subset selection. See, e.g., [1,2,4,10,14,30]. Recently, a
fast algorithm [30] was proposed, which greedily selects columns that are closest
to the first left eigenvector of a residual matrix. Another recent study in [14]
proposes to iteratively improve a selection using a bi-directional stepwise refine-
ment. Both these studies address the X = Y case. Our method is motivated
by these two recent studies, generalizing them to the supervised multiple-target
case. We show that the speed advantage of this approach over other approaches
becomes bigger for large N .

In the multi-target case, the target matrix Y has N > 1 columns. We observe
that one cannot simply apply an N = 1 algorithm separately to each column
of Y . The challenge is to find columns in X that can simultaneously approxi-
mate all the columns of Y . Previously proposed algorithms for this general case
are typically greedy. See, e.g., [3–5,19,25]. Some of these algorithms are gener-
ated from the N = 1 case. For example, the Simultaneous Orthogonal Match-
ing Pursuit (SOMP) [25] is generated from the Orthogonal Matching Pursuit
(OMP) [22,24] to handle a target matrix of N columns. Similarly, the Simulta-
neous Orthogonal Least Squares (SOLS) is a direct extension of the Orthogonal
Least Squares (OLS) [22]. See [4,5] for the analysis of the SOLS algorithm. An
algorithm established in [4] improves the SOLS algorithm in terms of speed at
the cost of increased memory. In [19], the authors improved the speed of the
SOLS algorithm by a recursive formulation. The running time and the memory
requirements of some of these algorithms are summarized in Table 1.

1.3 Our Approach

Suppose the matrix S in (3) is not constrained to be a submatrix of X. Then
it is known that the k columns of the optimal solution matrix S are the left
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Table 1. Complexity of various algorithms. T is the number of iterations.

Algorithms Time complexity Memory complexity

SOMP [25] O(kmnN) O(m(N + k))

S-SBR [3] O(TkmnN) O(m(N + k))

SOLS [6] O(kmnN) O(m(n + N))

CM [4] O(nN(m + k)) O(m(n + N)) + nN

ISOLS [19] O(mnN) O(km) + 2n

SPXY (this work) O(km(n + N)) O(m(n + N))

eigenvectors of Y corresponding to the k largest singular values (see e.g., [10]).
Our algorithmic approach is based on this result.

Motivated by [30] and [14], we propose a two-stage algorithm that we call the
Spectral Pursuit for the matrices X and Y (SPXY). It runs significantly faster
than previously proposed algorithms, and its accuracy compares very favorably
with the current state of the art. We also show how to derive a bound on how
far the selection computed by SPXY is from the optimal solution. (Recall that
the computation of the optimal solution is NP-hard.)

In the first stage we use a greedy technique to select k columns from the
dictionary matrix. The algorithm runs k iterations. In each iteration the column
selected is the one most similar to the left eigenvector corresponding to the
largest singular value. The two matrices are then projected on the null space of
the columns that were already selected. The null space of the selected columns
indicates a subspace that the selected columns cannot span. This first stage
algorithm is greedy, and gets “stuck” in a local minimum. In the second stage
we use a bidirectional stepwise technique to further improve the results.

Similar to many other data analysis techniques, the performance of our SPXY
algorithm is data-dependent. Since the general problem is NP-hard, there can
be situations where one may be tempted to use other more accurate algorithms,
such as exhaustive search, in the hope of significantly improving the accuracy
of the result. To this end, we derive bounds on how far the results given by
our algorithm are from the optima. As we show, in many practical problems our
results are provably within a small percentage of the optima. Thus, in such cases,
even the exhaustive search can provide almost no improvement. In summary our
main contributions are as follows:

– We introduce the SPXY algorithm that has a linear running time in terms
of the numbers of columns of the two matrices X and Y . This running time
is significantly faster than the current state of the art that requires running
time proportional to the product of the numbers of columns of X and Y .

– The accuracy of the SPXY algorithm compares favorably with the current
state of the art.

– We derive bounds on how far the solutions produced by SPXY are from the
optimal solutions.
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2 The Proposed Algorithm

In this section, a computationally efficient algorithm is proposed for approxi-
mating the solution to the NP-hard selection problem of minimizing Eq. (3).

Algorithm 1. Spectral Pursuit XY algorithm
1: procedure SPXY(X, Y, k)
2: S ← SELECT(X, Y, k). � select k columns from X to approximate Y .
3: S ← IMPROVE(X, Y, k, S). � improve the selection of previous stage.
4: return S
5: end procedure

Algorithm 2. The selection algorithm
1: procedure SELECT(X, Y, k)
2: S = {}.
3: while |S| < k do
4: u = the first left eigenvector of Y corresponding to its largest singular value.
5: i = index of the column from X, which most correlates with u.
6: S = S ∪ {i}; qi = xi/‖xi‖.
7: Y = Y − qiq

T
i Y ; X = X − qiq

T
i X.

8: return S
9: end procedure

The top view of the proposed algorithm is shown as Algorithm 1, with two
stages involved. In the first stage, a greedy algorithm is introduced to select k
columns from the dictionary matrix. In the next stage, an efficient non-greedy
algorithm is used to improve the results.

2.1 The Selection Algorithm

We first observe that the vectors: q1 . . . qk, generated by Algorithm 2, are mutu-
ally orthogonal. Define Q = (q1 . . . qk), where Q ∈ R

m×k. The projection of Y on
Q can be written as QT Y . The reconstruction of Y from this projection can be
written as: Ŷ = QQT Y . Therefore, the optimization problem (3) can be restated
as:

Q = argminQ‖Y − QQT Y ‖2F , (4)

where Q is restricted to be the basis of k columns from X. As mentioned before,
this is an NP-hard problem. If the constraint on Q is relaxed (it can be any
matrix with size m × k with orthonormalized columns), then it is known that
the minimizer of problem (4) is the k left eigenvectors of Y corresponding to the
k largest singular values (e.g., [10]). We call the k eigenvectors corresponding to
the k largest singular values as the first k eigenvectors.
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Algorithm 3. The improvement algorithm
1: procedure IMPROVE(X, Y, k, S)
2: Sopt ← S; errormin ← the current error value.
3: iter = 0.
4: while a stopping criterion is not met do
5: i = mod(iter, k).
6: Qi = basis of columns in S except the ith column of S.
7: RY = Y − QiQ

T
i
Y, RX = X − QiQ

T
i
X.

8: u = the first left eigenvector of RY .
9: j = index of the most correlated column in RX with u.
10: qj = the normalized jth column of RX ; error =‖RY ‖2

F − ‖qTj RY ‖2
F .

11: if error < errormin then:
12: S[i] = j. � Improvement
13: Sopt ← S; errormin = error.
14: iter += 1.
15: end while
16: return Sopt

17: end procedure

In the selection algorithm, we modify (4) into two sub-problems. The first
one relaxes the constraint that Q must be the basis of k columns from X. This
relaxation makes finding the solution tractable at the expense of resulting in
a solution that may not correspond to columns in X. To fix this problem, we
introduce the second sub-problem that reimposes the underlying constraint that
selects the column that has highest correlation with the vector computed in the
first sub-problem. These two sub-problems are formulated as follows:

u = argminu‖Y − uuT Y ‖2F , s.t. ‖u‖ = 1,

i = argmini|uT qi|,
(5)

where qi = xi/‖xi‖. The resulting i is the index of the selected column. The first
sub-problem is equivalent to computing the first left eigenvector of Y (e.g., [10]).
After solving for u (which is not necessarily one of the columns in X), we find
the column that matches u the most (has the least angle with u).

After selecting the first column xi, we project all columns onto the orthogonal
space of this selected column. This forms the residual matrices: Y = Y − qiq

T
i Y ,

X = X − qiq
T
i X. In the future iterations, we solve problem (5) on the residual

matrices. This process continues until k columns are selected.
Algorithm 2 shows the selection algorithm. To simplify notation, we do not

distinguish between the selection matrix and the selection indexes. To evaluate
the algorithm complexity we observe that there are several recently proposed
efficient algorithms for computing eigenvectors. In particular, the randomized
eigendecomposition algorithm [12] can be used to compute u in O(mN) time.
With this we conclude that the time complexity of Algorithm 2 is O(km(n+N)),
and its memory complexity is O(m(n + N)).
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2.2 The Improvement Algorithm

Since Algorithm 2 is greedy we propose to improve its result by iteratively revis-
ing the selection as long as it can be locally improved. Similar to the selection
algorithm in Sect. 2.1, we modify the problem into two sub-problems. The first
one is built upon the assumption that k−1 columns from X are already selected
and the objective is to select next best column. The sub-problems are formulated
as:

ui = argminu‖Y − QiQ
T
i
Y − uuT Y ‖2F , s.t. ‖u‖ = 1,

j = argminj |uT
i qj |.

(6)

Here Qi is the basis of Si obtained by removing the ith selection in S. The
first sub-problem is equivalent to finding the first left eigenvector of the residual
matrix of Y : RY = Y −QiQ

T
i
Y . The residual matrix of X is given by: RX =

X−QiQ
T
i
X, and qj = rj

X/‖rj
X‖ is the normalized jth column of RX . The index

j found in this way is the new selection which will replace the ith selection in S.
The improvement algorithm is shown as Algorithm 3. The stopping criterion

that we use is a pre-defined maximum number of iterations. The algorithm can
be efficiently implemented by using the rank-one update for QR factorization [7]
with complexity per iteration of O(km(n + N)), and memory complexity of
O(m(n + N)). In our implementation we limit the algorithm to run no more
than 30 iterations. The algorithm terminates if there is no improvement in 5
iterations. The convergence behavior is studied in Sect. 5.

3 Fractional Bound

We proceed to show how to obtain nontrivial bound on how close the computed
result is to the optimal solution. As described in (4) the algorithms minimize
the following error:

E(S) = E(Q) = ‖Y − QQT Y ‖2F = ‖Y ‖2F − ‖QT Y ‖2F = ‖Y ‖2F − G(S),

where Q is an orthogonal basis of S, and G(S) = ‖QT Y ‖2F .

Since ‖Y ‖2F is independent of S, the minimization of E(S) is equivalent to the
maximization of G(S). Let Eopt be the smallest possible error, and let Gopt be
the largest possible value of G(S). They are related by: Eopt = ‖Y ‖2F − Gopt.
We define the fractional bound in terms of G(S) as follows:

b̃f (S) = (Gopt − G(S))/Gopt.

A smaller b̃f value indicates a better result, and in particular, b̃f = 0 implies an
optimal solution. Unfortunately both Gopt and Eopt are unknown. However, we
observe that b̃f (S) is monotonically increasing as a function of Gopt. This implies
that any nontrivial upper bound of Gopt can be used to obtain a nontrivial
estimate of b̃f (S) as follows: If Gupper ≥ Gopt then:

b̃f (S) =
Gopt − G(S)

Gopt
= 1 − G(S)

Gopt
≤ 1 − G(S)

Gupper
.
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Let Uk be the matrix computed from the first k left eigenvectors of Y . Then for
any S we have: E(Uk) ≤ E(S), so that for any S, G(Uk) = ‖Y ‖2F − E(Uk) ≥
G(S). This shows that G(Uk) ≥ Gopt, and gives the following formula for prov-
able fractional bound:

bf = 1 − G(S)/G(Uk). (7)

4 Robustness

The sparse approximation algorithms are vulnerable to outliers. The span of
outliers usually covers a bigger subspace, which may not be desirable to be
represented. In our algorithm, at each iteration, we compute the first left eigen-
vector of the residual target matrix to guide the selection. If this eigenvector is
robust, outliers in the target matrix X will be automatically rejected. We show
that this eigenvector is the most robust spectral component against perturbation
of matrix the Y . Additionally, we can use robust principal component analysis
algorithms (e.g., [15,26]) to compute this eigenvector.

Consider the second moment matrix of Y : B = Y Y T =
∑N

i=1 yiy
T
i . The first

eigenvector of this matrix is same as the first left eigenvector of Y . If an outlier
is added, it will perturb this matrix. The following lemma proven in [30] shows
the robustness of ith eigenvector of B against the perturbation.

Lemma 1. Let B be a symmetric matrix with rank r, (λ1, . . . , λr) be its eigen-
values (in decreasing order) and (u1, . . . , ur) be the corresponding eigenvectors.
Then: ‖∂ui‖2

‖∂B‖F
≤

√∑
j �=i

1
(λi−λj)2

.

Define the sensitivity of the ith eigenvector as: si =
√∑

j �=i
1

(λi−λj)2
. It is

known that s1 is smaller than other si,∀i > 1 if the gap between consecutive
eigenvalues is monotonously decreasing [30].

5 Experimental Results

We describe experiments on various datasets that are publicly available, and
compare the proposed algorithm with the following algorithms: SOMP [25]; S-
SBR [3]; SOLS [6]; CM [4]; ISOLS (the exact version is used) [19]. Besides, the
results of the random selection are shown. The error and bound are defined in (3)
and (7), respectively. In experimental results, they are shown in percentage:
error = E(S)

‖Y ‖2
F

∗ 100; bound = bf ∗ 100. The computational efficiency and the
selection accuracy of our algorithm are demonstrated.
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5.1 Quantitative Comparison

In the first experiment, we evenly split the datasets into two matrices, serving
as X and Y . The results are shown in Table 2. In the second experiment, we
randomly split the datasets with the proportion of X:Y = 3:1. The results are
shown in Table 3. We choose to split the datasets, since the learning of the dic-
tionary matrix is another big topic and task-dependent (e.g., [29]). As mentioned
in [19], the results of SOLS, CM, and ISOLS are exactly same (different in terms
of speed). We show the results of ISOLS, as it is the fastest among these three
algorithms. The parameter γ for S-SBR is 0, since k is known in our case.

Observe that our algorithm is much faster than other algorithms. The running
time of ISOLS almost does not change as the increase of k. However, its initial
step can be very expensive for big dense datasets. Taking the Duke breast cancer
dataset in Table 2 as an example, its initial step takes 8.94 s. The overall running
time for our algorithm is less than 1 s.

Table 2. Comparison when data is split with proportion to 1:1. “–” indicates that the
algorithm runs more than 30min without results.

k Random SOMP [25] S-SBR [3] ISOLS [19] SPXY (this work)

Error Error/time (s) Error/time (s) Error/time (s) Error Bound Time (s)

Duke breast cancer X:44 × 3, 565 Y:44 × 3, 565

10 40.3 30.7/0.73 29.6/3.83 29.6/9.13 29.1 4.2% 0.13

20 22.4 18.5/1.42 16.7/9.97 16.7/9.37 16.3 3.1% 0.16

30 11.3 9.4/2.15 7.9/18.04 7.9/9.41 8.0 1.8% 0.24

YearPredictionMSD X:91 × 257, 672 Y:91 × 257, 673

10 9.2 – – – 5.6 0.9% 28

20 5.3 – – – 2.7 0.6% 37

30 2.8 – – – 1.5 0.5% 45

Sift X:128 × 500, 000 Y:128 × 500, 000

10 36.3 – – – 27.2 6.1% 76

20 24.7 – – – 19.8 5.5% 97

30 21.7 – – – 15.4 5.2% 117

Sift:transpose X:500, 000 × 128 Y:500, 000 × 128

10 60.3 – – – 60.5 49% 61

20 60.4 – – – 59.7 53% 159

30 59.4 – – – 59.3 54% 150

The errors given by our algorithm are typically smaller or similar to the
errors of ISOLS. Additionally, our errors come with bounds indicating how close
the solutions are to the optima. The bounds are usually within 10%. The reason
for high bound values on Sift:transpose dataset is that X cannot explain Y well,
since the errors are very big and do not change as the increase of k. It is further
discussed in Sect. 5.2. The errors given by SOMP are much bigger. One of the
reasons is that SOMP does not update the matrix X on the null-space in each
iteration. Clearly, other algorithms are not practical for big datasets.
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Table 3. Comparison when data is split with proportion to 3:1.

k Random SOMP [25] S-SBR [3] ISOLS [19] SPXY (this work)

Error Error/time (s) Error/time (s) Error/time (s) Error Bound Time (s)

Duke breast cancer X:44 × 5, 347 Y:44 × 1, 783

10 44.9 31.4/0.84 30.3/4.85 30.3/6.89 29.8 4.5% 0.15

20 24.3 18.5/1.65 17.0/11.56 17.0/7.15 16.9 3.4% 0.22

30 12.4 9.5/2.46 8.0/20.01 8.0/7.29 7.9 1.6% 0.26

YearPredictionMSD X:91 × 386, 508 Y:91 × 128, 873

10 11.0 – – – 5.4 0.7% 23

20 5.3 – – – 2.7 0.6% 31

30 2.9 – – – 1.4 0.4% 37

Sift X:128 × 750, 000 Y:128 × 250, 000

10 38.9 – – – 26.8 5.7% 63

20 27.3 – – – 19.7 5.5% 110

30 19.9 – – – 15.1 4.9% 134

Extended Yale Face B X:32, 256 × 1, 488 Y:32, 256 × 496

10 23.6 18.6/214 18.0/176 18.0/433 17.6 7.4% 18

20 18.2 15.1/432 13.9/552 13.9/362 14.1 8.2% 39

30 15.5 12.8/649 11.7/1105 11.7/372 12.1 8.1% 53

5.2 Correlation Values of Algorithm 2

In the first stage, Algorithm 2 greedily selects the column with highest correlation
value in each iteration. Figure 1 shows the correlation values of the selected
columns as the run of Algorithm 2 for various datasets (split with proportion
to 1:1) with k = 30. Generally, as the increase of the iteration, the maximum
correlation value between the first left eigenvector of the residual matrix of Y
and the normalized residual columns of X decreases. For the transpose of Sift
dataset, the correlation value for the first iteration is 0.78, but for later iterations,
they are very small (almost 0). It shows that X cannot explain Y well.

5.3 Convergence of Algorithm 3

In this experiment, we investigate the convergence of Algorithm 3 in the second
stage. Here we set the maximum number of iterations to be 50 without early
termination. The results are shown in Fig. 2 and Fig. 3. The red lines correspond
to errors or bounds given in the first stage. As expected, the algorithm improves
errors and bounds sharply at the beginning.
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Fig. 1. Correlation values of selected columns for various datasets.
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Fig. 2. Convergence of Algorithm 3 on Duke breast cancer dataset (1:1). The left two
plots are for k = 10. The right two plots are for k = 20.
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Fig. 3. Convergence of Algorithm 3 on Sift dataset (1:1). The left two plots are for
k = 10. The right two plots are for k = 20.

6 Conclusion

The problem discussed in this paper, simultaneously approximating one entire
matrix in terms of a small number of selected columns from another matrix, is
well-known, and appears to have many practical applications.

A novel two-stage selection algorithm, referred to as Spectral Pursuit for X
and Y (SPXY), is presented, which selects columns capturing the spectral char-
acteristics of the target matrix. What we found surprising is that it is possible
to efficiently implement the algorithms with linear complexity w.r.t. the size of
the two matrices. We show experimentally that our algorithm can outperform
the state-of-the-art methods.

In addition to producing a solution, our algorithm produces a bound on how
far the solution is from the optimum. The quality of the bound is data-dependent.
In some cases (e.g., when X cannot explain Y well), it is loose, but in other cases,
it shows that the computed result is very close to the optimal solution.
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STEPs-RL: Speech-Text Entanglement for
Phonetically Sound Representation Learning

Prakamya Mishra(B)
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Abstract. In this paper, we present a novel multi-modal deep neural network
architecture that uses speech and text entanglement for learning phonetically
sound spoken-word representations. STEPs-RL is trained in a supervised man-
ner to predict the phonetic sequence of a target spoken-word using its contex-
tual spoken word’s speech and text, such that the model encodes its meaning-
ful latent representations. Unlike existing work, we have used text along with
speech for auditory representation learning to capture semantical and syntacti-
cal information along with the acoustic and temporal information. The latent
representations produced by our model were not only able to predict the target
phonetic sequences with an accuracy of 89.47% but were also able to achieve
competitive results to textual word representation models, Word2Vec & FastText
(trained on textual transcripts), when evaluated on four widely used word simi-
larity benchmark datasets. In addition, investigation of the generated vector space
also demonstrated the capability of the proposed model to capture the phonetic
structure of the spoken-words. To the best of our knowledge, none of the existing
works use speech and text entanglement for learning spoken-word representation,
which makes this work the first of its kind.

Keywords: Speech recognition · Spoken language processing · Representation
learning

1 Introduction

Speaking and listening are the most common ways in which humans convey and under-
stand each other in daily conversations. Nowadays, the speech interface has also been
widely integrated into many applications/devices like Siri, Google Assistant, and Alexa
[13]. These applications use speech recognition-based approaches [3,11] to understand
the spoken user queries. Like speech, the text is also a widely used medium in which
people converse. Recent advances in language modeling and representation learning
using deep learning approaches [2,7,24] have proven to be very promising in under-
standing the actual meanings of the textual data, by capturing semantical, syntactical,
and contextual relationships between the textual words in their corresponding learned
fixed-size vector representations.

Such computational language modeling is difficult in the case of speech for spoken
language understanding because unlike textual words, (1) spoken words can have dif-
ferent meanings of the same word when spoken in different tones/expressions [9], (2)
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it is difficult to identify sub-word units in speech because of the variable-length spac-
ing and overlapping between the spoke-words [34], and (3) use of stress/emphasis on
few syllables of a multi-syllabic word can increase the variability of speech production
[27]. Although the textual word representations capture the semantical, syntactical, and
contextual properties, they fail to capture the tone/expression. Using only speech/audio
data for training spoken-word representations results in semantically and syntactically
poor representations.

So in this paper, we propose a novel spoken-word representation learning app-
roach called STEPs-RL that uses speech and text entanglement for learning phonetically
sound spoken-word representations, which not only captures the acoustic and contex-
tual features but also are semantically, syntactically, and phonetically sound. STEPs-RL
is trained in a supervised manner such that the learned representations can capture the
phonetic structure of the spoken-words along with their inter-word semantic, syntactic,
and contextual relationships. We validated the proposed model by (1) evaluating seman-
tical and syntactical relationships between the learned spoken-word representations on
four widely used word similarity benchmark datasets, and comparing its performance
with the textual word representations learned byWord2Vec & FastTexT (obtained using
transcriptions), and (2) investigating the phonetical soundness of the generated vector
space.

The rest of the paper is organized as follows: Sect. 2 describes the related work;
Sect. 3 explains the proposed model architecture; Sect. 4 will describe the datasets
used, pre-processing pipeline, and training details for reproducibility. Then experimen-
tal results are explained in Sect. 5 and finally we conclude in Sect. 6.

2 Related Work

Earlier, speech processing was done using feature learning-based models like deep neu-
ral networks (DNN) [28]. The DNN models were able to capture contextual and tem-
poral information from the speech-based data after the introduction of sequential neural
networks like RNNs [16], LSTMs [25], Bi-LSTMs [10,36], and GRUs [29,33]. Recent
research by [23] has presented the use of a transformer-based self-supervised speech
representation learning approach called TERA that uses multi-target auxiliary tasks.
TERA is trained by generating acoustic frame reconstructions; [30] introduced wav2vec
which is a CNN based model pre-trained in a unsupervised manner using contrastive
loss to learn raw audio representations; [20] explored the use of black-box variational
inference for linguistic representation learning of speech using an unsupervised genera-
tive model; [26] proposed Contrastive Predictive Coding (CPC) for extracting represen-
tations from high dimension data by predicting future in latent space, using autoregres-
sive models; [18] proposed a novel variational autoencoder based model that learns dis-
entangled and interpretable latent representations of sequential data in an unsupervised
manner; [22] used BERT encoder for learning phonetically aware contextual speech
representation vectors; [4] proposed a Word2Vec type sequence-to-sequence autoen-
coder model for embedding variable-length audio segments. Other works on learning
fixed-length spoken-word vector representations that use multi-task learning include
[5,6,19,21,32].
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3 Model

Fig. 1. Illustration of the STEPs-RL model
architecture.

In this paper, we propose STEPs-RL: Speech-
Text Entanglement for Phonetically Sound
Representation Learning. STEPs-RL is a
novel spoken-word representation learning
approach which entangles speech and text
based contextual information for learning
phonetically sound spoken-word represen-
tations. The model architecture is shown
in Fig. 1. Given a target spoken-word rep-
resented by St, its left and right contex-
tual spoken-words represented by Sl

ctx =
{Si}t−1

t−1−m & Sr
ctx = {Si}t+1+m

t+1 respec-
tively (m represents the context window
size), along with the textual word embed-
dings of the corresponding spoken-words
represented by W l

ctx = {W i}t−1
t−1−m, W t

& W r
ctx = {W i}t+1+m

t+1 , the proposed
model tries to learn a vector representation
of the target spoken-word that not only cap-
tures the semantic-based, syntax-based and
acoustic-based information but also captures
the phonetic-based information.

Here, a single spoken-word Si ∈
R

n×dmfcc consists of a sequence of acous-
tic features represented by dmfcc-dimen-
sional Mel-frequency Cepstral Coefficients
(MFCCs); W i ∈ R

dw represents the dw-
dimensional pre-trained textual word embed-
ding of the corresponding spoken-word. Each
of the spoken-word is padded with silence, so
that they all consists of a sequence of n acous-
tic features.

Our approach uses Bidirectional-LSTM [31] for capturing the contextual informa-
tion. Bidirectional-LSTM (also known as Bi-LSTM), uses two LSTM [15] networks
(
−−−−→
LSTM,

←−−−−
LSTM ) to capture contextual information in opposite directions (forward

and backward) of a sequence (t1, ...tT ). The final hidden representations corresponding
to the sequence tokens is generated by concatenating (⊕) the hidden representations
(
−→
hi ,

←−
hi) generated by both the LSTM networks. So the final hidden representation of

the ith token can be represented as shown in Eq. 1.

−→
hi =

−−−−→
LSTM(ti,

−−→
hi−1),

←−
hi =

←−−−−
LSTM(ti,

←−−
hi+1), hi =

−→
hi ⊕ ←−

hi (1)
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Fig. 2. (a) STEPs-RL Phase 1: Each of the individual Bi-LSTM captures contextual information.
(b) STEPs-RL Phase 2: Speech & Text entanglement with target spoken word.

STEPs-RL consist of three independent Bi-LSTM networks represented by
BiLSTMC , BiLSTMT and BiLSTMW to capture contextual information respec-
tively from (1) The acoustic features of the left and right contextual spoken-words
represented by Sl

ctx & Sr
ctx, (2) The acoustic features of the target spoken-word rep-

resented by St, and (3) The pre-trained textual word embeddings of the corresponding
target spoken-word, left contextual spoken-words and right contextual spoken-words
represented by W t, W l

ctx & W r
ctx respectively.

hC ,
−→
oC ,

←−
oC = BiLSTMC([Sl

ctx, Sr
ctx]) (2)

hT ,
−→
oT ,

←−
oT = BiLSTMT ([St]) (3)

hW ,
−→
oW ,

←−
oW = BiLSTMW ([W l

ctx,W t,W r
ctx]) (4)

As shown in Eqs. 2, 3, and 4, all the three Bi-LSTM networks generate a final hid-
den state representation corresponding to each timestamp (hC , hT , hW ), a final output
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Fig. 3. STEPs-RL Phase 3: Latent representation learning

of the corresponding forward LSTM network (
−→
oC ,

−→
oT ,

−→
oW ), and a final output of the

corresponding backward LSTM network (
←−
oC ,

←−
oT ,

←−
oW ). The final forward and back-

ward outputs of BiLSTMC & BiLSTMW are concatenated to generate fC & fW

respectively, which will later act as context vectors during the entanglement of speech
and text.

fC =
−→
oC ⊕

←−
oC , fW =

−→
oW ⊕

←−
oW (5)

For intuition (as shown in Fig. 2a), fC represents the final contextual representation
of the spoken-words present in context of the target spoken-word, and fW represents
the final semantical and syntactical contextual representation of all the corresponding
textual words. In other words, fC captures the acoustic/speech-based contextual infor-
mation whereas fW captures the text-based contextual information. Both fC & fW ,
are then used to entangle speech and text-based contextual information with the target
spoken-word by generating new speech and text entangled bidirectional hidden state
representations (hT,C & hT,W ) of the target spoken-word using the hidden representa-
tions generated by BiLSTMT , as shown in Eqs. 6 and 7.

hT,C = [hT,C
1 , hT,C

2 , ..., hT,C
n ] = hT ⊗ fC ; hT,C

i = αT,C
i × hT

i (6)

hT,W = [hT,W
1 , hT,W

2 , ..., hT,W
n ] = hT ⊗ fW ; hT,W

i = αT,W
i × hT

i (7)

In the above equations, (⊗) represents an element wise attention function; hT,C

& hT,W represents the newly generated speech-entangled and text-entangled hidden
representations respectively; αT,C

i & αT,W
i represents the speech-entangled and text-

entangled attention scores respectively, corresponding to the ith timestamp of the hid-
den representations generated by BiLSTMT . The attention scores αT,C

i & αT,W
i are

generated by taking the dot product (•) of each of the timestamps of hT with the context
vectors fC & fW respectively, as shown in Eq. 8. Same is illustrated in Fig. 2b.

αT,C
i = hT

i • fC , αT,W
i = hT

i • fW (8)
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Next, the proposed model uses the newly generated speech-entangled and text-
entangled hidden representations hT,C & hT,W , along with the original bidirec-
tional hidden state representations hT of the target spoken-word (generated from
BiLSTMT ), to generate a latent vector representation z of the target spoken-word
by stacking (illustrated in Fig. 3) all these three hidden representations on top of each
other and passing it through a simple encoder LSTM network

−−−−−−−−−→
LSTMencode.

z =
−−−−−−−−−→
LSTMencode([hT,C ⊕ hT,W ⊕ hT ]), znew = zW1 + zauxW2 + B (9)

In Eq. 9, z represents a fixed size latent vector which is the output of the encoder
LSTM network. To add more information about the speaker, the proposed model lin-
early combines the latent vector with an auxiliary vector zaux to generate a new
latent representation znew of the target spoken-word. This new latent representation
znew ∈ R

de is a de-dimensional vector representation that the proposed model tries to
learn. In Eq. 9, W1 ∈ R

d×de and W2 ∈ R
da×de represents the combination weights and

B represents the bias. These weights and biases are learnable in nature. The auxiliary
vector zaux ∈ R

da is a one-hot vector of size da that consists of information related to
the speaker’s gender/dialect or both. Such an auxiliary vector was introduced because
usually, the pronunciation of different words usually depends on the speaker’s gender
and dialect and hence can help learn phonetically sound spoken-word representations.

Next, the proposed model uses a decoder LSTM network
−−−−−−−−→
LSTMdecode to predict

the sequence of phonetic symbols Y = ([y1, ..., yk]) of the corresponding target spoken-
word using the above generated latent representation of the target spoken-word znew,
as shown in Eq. 10 and 11.

Pθ(yi|Y<i, znew) = Υ (hd
i , yi−1) (10)

hd
i = Ψ(hd

i−1, yi−1) (11)

Here, Ψ represents a function that generates the hidden vectors hd
i (hidden state

representations of the decoder network), and Υ represents a function that computes the
generative probability of the one-hot vector yi (target phonemic symbol). The hidden
vector hd

i is znew, and yi is the one-hot vector of “[SOP]” when i= 0. Here “[SOP]”
represent the start of phoneme token. The proposed model uses cross-entropy as its
training loss function as shown in Eq. 12, where cross-entropy loss L is computed using
the actual target spoken-word phonetic sequence (Y = ([y1, ..., yk])) and the predicted
target spoken-word phonetic sequence (Ŷ = ([ŷ1, ..., ŷk])).

L(Y, Ŷ ) =
k∑

i

yi log
1
ŷi

(12)

4 Dataset and Experimental Setup

For our experiments, we used the DARPA TIMIT acoustic-phonetic Continuous Speech
Corpus [8]. This corpus contains 16 kHz audio recordings of 630 speakers of 8 major
American English dialects of which approximately 70% were male and 30% were
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Table 1. Gender and dialect distribution of the speakers in TIMIT speech corpus.

Dialect

Gender 1 2 3 4 5 6 7 8

Male 63% 70% 67% 69% 63% 65% 74% 67%

Female 27% 30% 27% 31% 37% 35% 26% 33%

Total 8% 16% 16% 16% 16% 7% 16% 5%

female, as shown in Table 1. The corpus consists of 6300 (5.4 h) phonetically rich utter-
ances by different speakers (10 by each speaker) along with their corresponding time-
aligned orthographic, phonetic, and word transcriptions.

All the recordings were segmented according to the spoken-word boundaries using
the transcriptions and were paired with their left and right context spoken-words and
their corresponding textual words along with the phonetic sequence of the target
spoken-word. All the spoken-word utterances were represented by their MFCC rep-
resentations and the textual words were represented by their pre-trained textual word
embeddings, where the MFCC representations and the textual word embeddings were
of the same size (dmfcc = dw). One-hot encoded dialect (8-dimensional) and gender
(2-dimensional) vectors were used as auxiliary information vectors. We used the stan-
dard train (462 speakers and 4956 utterances) and test (168 speakers and 1344 utter-
ances) set of the TIMIT speech corpus for training and testing the proposed model.
Due to computational resource limitations, a context window size of 3 was used. In all
the experiments the MFCC representations and the textual word embeddings were of
the same size (dmfcc = dw ∈ {50, 100, 300}). For the textual word embeddings, the
proposed model used two different widely used pre-trained word embeddings i.e., (1)
Word2Vec [24], which are word-based embeddings, and (2) FastText [2], which are
character-based embeddings. For all the experiments, the proposed model was trained
for 20 epochs using a mini-batch size of 100. The initial learning rate was set to 0.01 and
Adam optimizer was used for optimization. The Bi-LSTM and LSTM nodes were regu-
larised using an L2 regularizer with a penalty of 0.01. Early stopping was used to avoid
over-fitting. The size of the target spoken-word latent representation znew was set to
50-, 100- & 300 for comparison. All the spoken-words were represented by a sequence
of 50 phonetic symbols using the original unique 27 phonetic symbols present in the
corpus along with our four newly introduced symbols (“[SOPS]” for the start of each
phonetic sequence, “[SEP]” for separation/space between phonetic symbols, “[PAD]”
for padding and “[EOPS]” for the end of each phonetic sequence).

5 Results

For evaluation, we first tested the proposed model on the phonetic sequence predic-
tion task with different spoken-word latent representation & textual word embedding
sizes, and also tested the performance of the model using different types of textual
word embeddings (Word2Vec & FastText). We compared the phonetic sequence pre-
diction accuracy (%) of the base STEPs-RL model (w/o any auxiliary information)
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Table 2. Phonetic sequence prediction results on the TIMIT speech corpus. We present here the
comparison of testing set accuracy (%) of the STEPs-RL model using different sets of auxiliary
information (gender (G), dialect (D)) with the base STEPs-RL model using no auxiliary infor-
mation. The comparison is done for different textual word embedding sizes dw = {50, 100, 300},
different spoken-word latent representation sizes de = {50, 100, 300} and different word embed-
dings like Word2Vec (w) and FastText (f ). The best performance in each configuration is marked
in bold, row of the best performing model is highlighted in grey , the overall best performance
is further marked in red and its configuration is marked in blue.

Spoken-Word Latent Rep. Size (de ) → de = 50 de = 100 de = 300

Textual Word Embedding Size (dw ) → dw = 50 dw = 100 dw = 300 dw = 50 dw = 100 dw = 300 dw = 50 dw = 100 dw = 300

Textual Word Embeddings Used → w f w f w f w f w f w f w f w f w f

STEPs-RL + No auxiliary information 71.67 73.24 75.22 78.41 84.76 84.98 73.44 76.72 78.36 81.23 86.90 86.92 75.22 79.75 80.59 83.73 87.31 86.90

STEPs-RL + D 83.87 84.01 86.11 86.36 85.89 87.89 86.83 86.85 86.75 87.54 87.23 88.00 81.50 82.05 85.90 86.36 87.40 87.99

STEPs-RL + G 87.93 86.97 87.44 85.60 87.16 88.28 87.15 87.12 87.98 88.20 88.92 88.54 87.16 87.30 88.91 88.45 88.10 88.59

STEPs-RL + D + G 88.91 88.04 88.10 88.28 88.94 88.78 88.27 88.90 89.14 88.08 88.59 89.18 89.47 89.21 89.35 89.38 88.63 89.41

with its variants that use different sets of auxiliary information like gender/dialect or
both. The results are shown in Table 2. It was observed that increasing the spoken-word
representation size resulted in better performance but was not so evident in the case
of textual word embedding size. It was also observed that in general using Word2Vec
textual word embeddings achieved better results compared to using FastText textual
word embeddings. The addition of auxiliary information like dialect and gender showed
clear improvements in accuracy when compared to the base STEPs-RL model, val-
idating the use of this type of auxiliary information for spoken-word representation
learning. It was also found that STEPs-RL was able to perform best when it used
both dialect (D) and gender (G) together in its auxiliary vector (STEPs-RL+D+G).
So for further evaluations, we will only consider the target spoken-word represen-
tations generated from the STEPs-RL+D+G model using the configurations marked
blue in Table 2. Table 3a illustrates examples of four different spoke-words along with
their actual corresponding phonetic sequences and the phonetic sequences predicted
by the STEPs-RL+D+G model. These examples demonstrate the ability of the STEPs-
RL+D+G model to encode phonetic-based information in their corresponding latent
representations.

To further evaluate the latent representations generated from STEPs-RL+D+G, we
use intrinsic methods to test the semantic or syntactic relationships between these gen-
erated latent representations of the spoken-words present in the corpus. To do so, we use
4 benchmark word similarity datasets and compare the performance of the spoken-word
representations generated from STEPs-RL+D+G with the representations generated by
text-based language models (Word2Vec & FastText) trained on the textual transcripts.
The word similarity datasets include SimeLex-999 [14], MTurk-771 [12], WS-353 [35]
and Verb-143 [1]. These datasets contain pairs of English words and their corresponding
human-annotated word similarity ratings. The word similarities between the spoken-
words (in case of STEPs-RL+D+G) and the textual-words (in case of Word2Vec and
FastText) were obtained by measuring the cosine similarities between their correspond-
ing representation vectors.



STEPs-RL 63

Table 3. (a) Examples of the phonetic sequences generated by STEPs-RL+D+G model. (b) Per-
formance of STEPs-RL+D+G compared to Word2Vec & FastText on four benchmark word sim-
ilarity datasets.

Fig. 4. Difference vectors corresponding to (a) Set 1: Word pairs differ in last few phonemes (b)
Set 2: Word pairs differ in first few phonemes.

Table 3b reports Spearman’s rank correlation coefficient ρ between the human rank-
ings and the ones generated by STEPs-RL+D+G, Word2Vec, and FastText. Since there
were many words present in these datasets which were not present in the TIMIT speech
corpus, only those word pairs were considered in which both the word were present
in the TIMIT speech corpus. Table 3b shows that the performance of the spoken-word
representations generated from STEPs-RL+D+G was comparable to the performance
of textual word representations generated from Word2Vec and FastText. This demon-
strates that our proposed model was also able to capture semantic-based and syntax-
based information, although the scores were slightly less compared to Word2Vec and
FastText. We believe that the primary reason for this difference is the disparity in the
way different speakers speak. The same word can be spoken in different ways and can
have different meanings based on the tone and expression which may in return lead to
an entirely different representation for the same word. In addition to that, these word
similarity datasets are for the textual words, which do not take into account the tone and
the expression aspect. Also, to the best of our knowledge, no other such word similarity
dataset exists for the spoken-words. So keeping in mind these issues, the performance
of the proposed model validates its ability to capture semantical and syntactical infor-
mation in the representations it generates.

Next, we try to investigate the phonetical soundness of the vector space generated by
the proposed model. A vector space can be said to be phonetically sound if the spoken-
word representations of the words having similar pronunciations are present close to
each other in the vector space. For this investigation we use 2 sets of randomly chosen
word pairs:
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– Set 1: (street, streets), (come, comes), (it, its), (project, projects), (investigation,
investigations)

– Set 2: (few, new), (bright, night), (bedroom, room)

Here, in Set 1 the word pairs differ in the last few phonemes and in Set 2 the word pairs
differ in the first few phonemes. To illustrate the relationship between these word pairs,
first, the difference vectors were computed between the average spoken-word vector
representation of the words present in the above-mentioned word pairs, and then these
high dimensional difference vectors were reduced to 2-dimensional vectors using PCA
[17], to interpret these vectors. The difference vectors corresponding to Set 1 & Set 2 are
shown in Fig. 4. It can be observed in the figures that the difference vectors are similar
in directions and magnitude. In both the figures, phonetic replacements lead to similar
transformations, for example (come→ comes) is similar to (it→ its) in Fig. 4a, and (few
→ new) is similar to (bright → night) in Fig. 4b. These transformations are not perfectly
similar because we are taking an average of the same word spoken by different speakers
having different accents and pronunciations, but despite this, the transformations are
still very close to each other. All these experiments demonstrate the quality of spoken-
word vector representations generated by the proposed model using speech and text
entanglement which not only are semantically and syntactically adequate but are also
phonetically sound.

6 Conclusion

In this paper, we introduced STEPs-RL for learning phonetically sound spoken-word
representations using speech and text entanglement. Our approach achieved an accuracy
of 89.47% in predicting phonetic sequences when both gender and dialect of the speaker
are used in the auxiliary information. We also compared its performance using differ-
ent configurations and observed that the performance of the proposed model improved
by (1) increasing the spoken word latent representation size, and (2) the addition of
auxiliary information like gender and dialect. We were not only able to validate the
capability of the learned representations to capture the semantical and syntactical rela-
tionships between the spoken-words but were also able to illustrate soundness in the
phonetic structure of the generated vector space.
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Abstract. Graph convolution networks (GCN) have recently been one of themost
powerfulmethods in various tasks such as node classification and graph clustering.
In the present study, we propose RW-GCN which utilizes biased random walk
to assist in feature aggregation and GCN training process. RW-GCN employs
biased random walks to generate node pairs. These pairs can be utilized to build
a symmetric matrix to replace the adjacent matrix for GCN training. With these
pairs generated above, we train the latent representation vectors by skip-gram. Our
experiments demonstrate that compared toGCN,ourmodel generates better results
on node classification tasks performed on multiple datasets. In this way, both
homophily and structural equivalence can be considered. Results of experiments
on three datasets are presented to prove the availability of our method.

Keywords: Node classification · Representation learning · Graph learning

1 Introduction

Graph structure, as a suitable carrier of entities and relations, is extensively used in mod-
eling real-world problems. In the field, graph node classification is themain task in graph
learning, which uses the information related to the entities to make class predictions for
the entities in the network [2]. In recent years, a series of unsupervised learning methods
have been proposed. They train node representation vectors to learn abstract features
of nodes and then use them for downstream tasks. For example, DeepWalk [13], which
conducts a randomwalk in a graph, then adopts the method of training word embeddings
[10, 11] to learn the node embeddings from a random walk sequence. Subsequently, the
representation learning technique incorporating the neural network method has received
extensive attention. In this kind of method, the features of the entities are transmitted and
aggregated along the edges, the error is calculated based on a small number of training
samples, and the model training and parameter updating are carried out with the training
method of the neural network. For instance, compared with feedforward neural network,
the trainable weight matrix is also applied for feature transformation layer by layer in
GCN. However, the difference is, to utilize the relationship between entities, a relation
matrix is used for feature aggregation of adjacent nodes. In this way, the information of
network structure is merged with the learning process of node features.
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Nevertheless, we find that not all nodes in the graph can benefit from this pattern of
feature aggregation. Merging the neighborhood’s attribute features into a central node
may improve the representation ability of the features in the hidden layer. Moreover, it
may also lead to confusion, as shown in Fig. 1(b). In such case, it is possible that merely
using the structural information of the graph will achieve better classification results.
Therefore, reasonable speculation is that we need to strike a balance between the aggre-
gation of features and the appropriate representation of features in latent space, aiming
to further strengthen the comprehensive utilization of the two types of information.

Fig. 1. The confusion caused by the characteristics of average aggregate neighborhood nodes.
The nodes of each color in the figure represent a different class, and for the case shown in (a), the
average feature aggregation may be beneficial for the classification of the central nodes. For the
case shown in (b), the average aggregation feature may cause the central node’s feature to lose
focus, that is, after a round of feature aggregation, the new feature of the central node may mislead
its correct classification.

In the currentwork, we proposeRW-GCN, a newgraph convolutional neural network
model, which integrates the unsupervised graph representation learning into the graph
convolutional neural network training process in order to assist the semi-supervised node
classification task. In our model, a random walk sequence is obtained from each node
in the graph, and then node pairs are generated from the walk sequence, just like the
method used in [5] and [13]. We employed the bias random walk proposed in [5] rather
than the standard random walk to take advantage of the two properties of homophily
and structural equivalence [5]. When input features in the hidden layer are transformed
into abstract features, they are passed to the output layer to perform node classification
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task. Additionally, based on skip-gram [11], we perform context nodes prediction task
with these node pairs. Then, the two loss functions are combined, and the parameters
of the hidden layer are updated until the model converges. Our experiments indicate
that the method proposed in the present study achieves a good balance between feature
aggregation and feature representation, thus alleviating the confusion caused by simple
feature aggregation in GCN.

In summary, our contributions are as follows:

1. We propose RW-GCN, a new method of graph convolutional neural network, which
combines the unsupervised node representation learning and the training process of
graph convolutional network to assist the semi-supervised node classification task.

2. We conduct experiments and compare resultswith other semi-supervised node classi-
ficationmethods on three academic network datasets to demonstrate the effectiveness
of our method.

2 Related Work

Graph Representation Learning. Representation learning, also known as feature
learning, is a technique that concentrates on abstracting entities’ attributes. It automati-
cally learns features from input data that are conducive to machine learning applications,
consequently avoiding the complexity and redundancy ofmanual design features [7]. For
example, word embedding in natural language processing is a technology that bases on a
neural network to learn vocabulary representation vectors. Graph representation learning
is the application of data representing learning in the graph learning field, which aims
to learn the feature representations of nodes, edges, communities, and subgraphs in the
graph, so as to provide input data carriers with better properties for downstream tasks.
In this field, the main methods are as follows: methods based on matrix decomposition,
Which use matrix decomposition technology to learn the node representation vector
[13, 14] with the aim to approximatethe similarity between nodes. [5, 13] introduce a
shallow unsupervised graph representation learning method, which adopts neural net-
work to predict neighborhood nodes and updates the hidden layer weight of the neural
network to obtain the representation vector of nodes. VGAE [8] uses Encoder-Decoder
architecture to learn low-dimensional latent representation vectors of nodes by reducing
reconstruction losses. Compared with the manual design features, the entity represen-
tation features obtained based on representation learning can generate better effects in
various downstream tasks.

Node Classification. When the relationship between nodes is not considered, the task
of node classification is the same as other classification tasks. That is, the classifier is
trained according to features and labels of samples and then applied to other samples.
In the real world, various types of sample individuals are not completely independent of
each other, such as social networks, where two users who follow each other are obviously
more likely to have similar attributes or types than two users who are not related to each
other [3]. In the citation network, papers that have a citation relationship with each
other are more likely to belong to the same research field. Consequently, the ability to
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comprehensively utilize the attributes of samples and the relationships between samples
will be of great significance to the classification task.

Graph Neural Networks. The study of graph neural networks is closely related to
graph embedding [3, 4]. Traditional deep learning methods are not well suited for pro-
cessing non-Euclidean data, prompting researchers to extend deep learning methods on
the graph. Based on the ideas of convolutional neural network, recurrent neural net-
work, and depth automatic encoder, the researchers defined and designed GNN, a neural
network structure specially used for processing graph data. In the field of GNN, other
successful neural network architectures are widely used for reference [6, 9, 16]. These
techniques have enabled the graph neural network to obtain remarkable development in
recent years.

3 Problem Definition

Firstly, we introduce notations that are used in this paper. Formally, let G = (V ,E)
represent a graph, where V signifies the vertices of the graph, and E denotes the edges
between vertices. In the present study, we discuss undirected graphs; that is, the edge
from Vi to Vj is equivalent to the edge from Vj to Vi. For some types of graphs, attribute
features are attached to nodes. We denote the attribute features by X ∈ R

|V |×n, where n
is the size of the feature space for attribute vectors. In addition, we also denote the labels
of nodes by Y ∈ R

|V |×|y|, where y is the set of labels.
In this paper, we focus on semi-supervised classification. In this task, a large amount

of unlabeled data is added to a small amount of labeled data to train together for parameter
learning. For labeled data, both the structure of graph and the features of nodes can be
exploited, while for unlabeled data, only the structure of graph is available. The goal of
RW-GCN is to train the model and thus it can classify the nodes that are not used in the
training set.

4 Method

4.1 Overview

Figure 2 illustrates the proposed model RW-GCN. At the beginning of the model, we
have a graph G = (V ,E) and an attributes matrix X . In graph convolution network
these two components are used to train hidden layers’ parameters, while in RW-GCN
we begin from doing random walks with the nodes in graph G to generate sequences.
Specifically, given two parameters N and L, for each node in graph G, N paths of length
L are generated. According to the given size of sliding window, we extract the node pairs
used for context prediction from the sequences. These node pairs will be used after GCN
encodes the input features to abstract features. However, before that, a sparse matrixM
is created and initialized with zeros. For each node pair

(
vi, vj

)
, where i, j ≤ |V |, it

increases the value ofM
[
i, j

]
andM

[
j, i

]
by 1. When all the node pairs are counted the

matrix M is going to be normalized to replace the Laplacian matrix which is used to
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guide feature aggregation. In hidden layers, GCN encoder maps input features to low-
dimensional representations. In addition, these representations are passed into output
layer and Softmax function to perform the node classification task. Moreover, a context
nodes prediction task like DeepWalk or node2vec is performed with the extracted node
pairs. In the rest of the current section, we will introduce the details of our method.

Fig. 2. The framework of RW-GCN. The blue dashed line represents the training of the graph
convolutional neural network with the generated matrix, while the red dotted line represents the
task of extracting node pairs from the random walk sequence and then making context node
prediction. (Color figure online)

4.2 Unsupervised Node Feature Learning

Inspired by word embedding in natural language processing, [13] proposed DeepWalk,
a method for learning node embedding based on randomwalk. For each node u observed
in the sequence, DeepWalk optimizes the following objective function:

max
f

∑

u∈V logPr(NS(u)|f (u)) (1)

where f (u) represents a representation of node u, S denotes the size of the sliding
window to determine the neighborhood and NS(u) signifies neighborhood of node u.
In this way, DeepWalk embeds nodes into the abstract feature space. Therefore, node
embeddings have property like word embeddings, that is, nodes in similar contexts have
closer representations.

Compared with the simple random walk of DeepWalk, the node2vec proposed in
[5] introduces two parameters to determine whether the random walk tends to search
locally or to visit nodes deeper in the network, aiming to control the generation of the
random walk sequences. Consequently, the two properties of homophily and structural
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equivalence are used. Homophily emphasizes that nodes close to each other in the net-
work should be embedded in closer positions, while structural equivalence emphasizes
that nodes with the same structure roles in the network should be embedded in closer
positions.

In our method, we employee this biased random walk to obtain node sequences.
However, we do not aim to perform unsupervised representation learning immediately.
According to the specified window size S, for each node in the sequence, the node
pairs whose distance is not greater than S are extracted. These pairs are used to adjust
the positions of the abstract features, which are extracted by the neural network in the
feature space. Besides, similar to the method of GloVe [12] training word vectors in
natural language processing, we firstly initialized a sparse matrix with all values of 0
and filled the value of each position with node pairs to obtain a node co-occurrence
matrix. To prevent the problem of numerical explosion, the matrix will be normalized
and thus its value shrinks to between [0, 1]. This matrix records the frequency of co-
occurrence between nodes. Therefore, it can be used as an alternative to the Normalized
Laplacian Matrix in standard GCN in order to guide the aggregation of features between
central nodes and neighborhood nodes.

Another problem is that for a matrix for feature aggregation, self-connection of the
central nodes is necessary, Thus, in each iteration, each node can absorb both the features
of its context nodes and the features of its previous round. We empirically specify the
strength of this self-connection as the maximum connection strength between the central
node and other neighboring nodes multiplied by 2. That is, for a normalized matrix M

∧

,
we have:

M
∧

[i, i] = max
(
M
∧

[i]
)

∗ 2 (2)

4.3 Graph Convolution Network

Graph Convolution Network is one of the spectral approaches which works with a
spectral representation of the graphs. Given a graph G = (V ,E) and the corresponding
attribute features X , the architectures of GCN basically have the following form:

h(l+1) = σ
(
A
∧

h(l)W (l)
)

(3)

where A
∧

is a matrix that carries the structure information of the graph andW (l) is train-
able parameters matrix in the l-th hidden layer. Compared with standard feedforward
neural network, GCNs not only perform feature transformation, but also aggregate fea-
tures from the nodes’ neighborhoods specified by A

∧

. For example, if A
∧

is the adjacency
matrix of graph, every node in every layer aggregates its 1-hop adjacent nodes’ features.
Nevertheless, in this way, it loses its own features that passed from the previous layer.
GCN adopts the following equation:

h(l+1) = σ
((

IV + D− 1
2AD− 1

2

)
h(l)W (l)

)
(4)

to update nodes’ features where Symmetric Normalized Laplacian is used to replace
A
∧

. In this formula, IV is identity matrix, A is adjacency matrix and D is degree matrix
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of graph G. Obviously, repeating this operation could lead to numerical instabilities
and exploding/vanishing gradients. [2] introduces renormalization trick to alleviate this

problem: IV + D− 1
2AD− 1

2H (l)W (l) → D̃− 1
2 ÃD̃− 1

2 , Ã = A + IV and D̃ii = ∑
jÃij.

h(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 h(l)W (l)

)
(5)

The Laplacian matrix and its variants compute the local average of each node as
its new representation, and thus each neighborhood node has the same importance.
However, in RW-GCN, to fit the unsupervised context node prediction task, we replace
the Laplacian matrix with the matrixMNOR that we generated before. Therefore, a single
iteration in the model will become the following form:

h(l+1) = σ
(
MNORh

(l)W (l)
)

(6)

where each node uses weighted average to aggregate features from its S-order neigh-
borhoods. The weight of each neighbor node is proportional to the number of times it
co-occurs with the central node in a window of length S in all random walk sequences.

4.4 Global Loss Function

At this stage we combine the tasks of node classification and context nodes prediction.
For node classification task, input features are transformed with two-layers graph convo-
lution neural network and SoftMax activation function is applied to every node’s output
features. Therefore, we describe this process as:

Z = softmax
(
M
∧

ReLU
(
M
∧

XW (0)
)
W (1)

)
(7)

Accordingly, the cross-entropy loss function is used to calculate the error of each
iteration:

Lnc = −
∑

i∈|Vtrain|
∑K

k=1
yik log zik (8)

where Vtrain is the set of node indices that have labels.
In hidden layer we use abstract features for the task of context nodes prediction.

That is, for every node pair
(
vi, vj

)
in pair set P, the goal is to maximize the probability

of predicting the node vj with vi’s hidden layer representation f
(
vj

)
. As a result, the

optimization object is minimizing the following loss function:

Lcp = −
∑

(vi,vj)∈P
logPr

(
vj|f (vi)

)
(9)

Now we can obtain the global lose function:

L = Lnc + Lcp = −
∑

i∈|Vtrain|
∑K

k=1
yik log zik −

∑

(vi,vj)∈P
logPr

(
vj|f (vi)

)
(10)

To optimize this object function, the weight matrixes of hidden layers can be updated
and converged to a reasonable position.
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5 Experiments

5.1 Datasets

We conducted our document classification experiment on three citation network data
sets [15]. Each dataset was composed of two parts, including a list of links between
documents and the input feature in the form of bag-of-words. Each document has a
corresponding class label. Table 1 shows the detailed introduction of the data. The label
rate in the table denotes the proportion of labeled data used for training.

Table 1. Introduction to the data set used

Dataset Nodes Edges Classes Features Label
rate

Cora 2708 5429 7 1433 0.052

Citeseer 3327 4372 6 3703 0.036

Pubmed 19717 44338 3 500 0.003

5.2 Experimental Set-Up

In our experiments, we basically followed the same hyperparameters setting of GCN;
that is, the two-layer neural network architecture was used, with a dropout rate of 0.5
and a learning rate of 0.01. In the hidden layer, we involved 64 hidden units. We use
Adam as our optimizer, and 200 epochs of training were conducted on each data set. For
all data sets, we only adjust parameters on Cora and apply the same parameters for the
other two data sets.

In the part of the random walk, we kept node2vec’s hyperparameters setting. For the
three datasets, we set both parameters controlling the random walk to 0.25. For each
node, a random walk sequence of length ten is generated from that node. This process
is repeated for 5 rounds for each node. Then, a sliding window of length 3 is used to
generate node pairs. In the context prediction task, we extract 10% of the node pairs for
each iteration for training.

We report experiments conducted under two types of dataset split, one using the
same dataset split method as other methods, and the other setting where we maintain
the same ratio of the training set, validation set, and test set in each dataset, but with a
completely random split method.

5.3 Baselines

Wemainly comparedwithGCNand its comparisonmethods, includingmanifold regular-
ization (ManiReg) [1], semi-supervised embedding (SemiEmb) [17], label propagation
(LP) [19], Skip gram Based Graph Embeddings (DeepWalk) [13], and Planetoid [18].
In the comparison of GCN, we made a comparison between the two data sets where the
randomly divided data sets were annotated later.
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5.4 Results

As shown in Table 2, we report the comparison between our experimental results and
other methods’. The results of the other methods listed here are taken from [18] and [9].
In addition, we also compared the classification accuracy of randomly split datasets. We
kept the size of the training set and the test set unchanged, randomly split each dataset 10
times, and conducted training and evaluation of the model. Moreover, the experimental
results of random split are also compared with the results in [9].

Table 2. Accuracy comparisons in node classification tasks

Method Citeseer Cora Pubmed

ManiReg 60.1 59.5 70.7

SemiEmb 59.6 59.0 71.1

LP 45.3 68.0 63.0

DeepWalk 43.2 67.2 65.3

Planetoid 64.7 75.1 73.9

GCN 70.3 81.5 79.0

RW-GCN 71.2 83.4 80.42

GCN (rand.splits) 67.9 80.1 78.9

RW-GCN (rand.splits) 70.44 83.05 80.35

According to experimental results, it can be found that GCN trained with biased
random walk has achieved various degrees of improvement in the three datasets. RW-
GCN performs better on randomly split datasets than on public split dataset experiment.
To some extent, this reflects that RW-GCN is not easily affected by the network structure
or attribute features of partial data.

6 Conclusion

In this paper, we propose a graph convolutional neural network (RW-GCN) based on
partial randomwalk training, and use it to carry out experiments on semi-supervised node
classification tasks. By comparing our proposed method with other methods in multiple
data sets, we can find that our proposed method has achieved a relatively significant
improvement. In the future, we will further modify this method and try to reduce its
computational complexity.
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nos. 2018BS06001).



76 Y. Li and Z. Ban

References

1. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for
learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

2. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In:
Aggarwal, C. (ed.) Social Network Data Analytics, pp. 115–148. Springer, Boston (2011).
https://doi.org/10.1007/978-1-4419-8462-3_5

3. Cai, H.Y., Zheng,V.W., Chang, C.C.: A comprehensive survey of graph embedding: problems,
techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

4. Cui, P., Wang, X., Pei, J., et al.: A survey on network embedding. IEEE Trans. Knowl. Data
Eng. 31(5), 833–852 (2018)

5. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 855–864. ACM (2016)

6. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs.
Adv. Neural Inf. Process. Syst. 30, 1025–1035 (2017)

7. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and
applications. IEEE Data Eng. Bull. 40(3), 52–74 (2017)

8. Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: NIPS Workshop on Bayesian
Deep Learning (2016)

9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
In: International Conference on Learning Representations (2017)

10. Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed representations of words and phrases
and their compositionality. Adv. Neural Inf. Process. Syst. 26, 3111–3119 (2013)

11. Mikolov, T., Corrado, G., Chen, K., et al.: Efficient estimation of word representations in
vector space. In: International Conference on Learning Representations (2013)

12. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In:
Proceedings of the Empiricial Methods in Natural Language Processing, vol. 14, pp. 1532–
1543 (2014)

13. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 701–710. ACM (2016)

14. Qiu, J., Dong, Y., Ma, H., et al.: Network embedding as matrix factorization: unifying
DeepWalk, LINE, PTE, and node2vec. In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, pp. 459–467 (2018)

15. Sen, P., Namata, G., Bilgic,M., et al.: Collective classification in network data. AIMag. 29(3),
93–106 (2008)

16. Velickovic, P., Cucurull, G., Casanova, A., et al.: Graph attention networks. In: International
Conference on Learning Representations (2018)

17. Weston, J., Ratle, F.,Mobahi,H.,Collobert,R.:Deep learningvia semi-supervised embedding.
In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade.
LNCS, vol. 7700, pp. 639–655. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-35289-8_34

18. Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph
embeddings. arXiv:1603.08861 (2016)

19. Zhu, X., Ghahramani, Z., Lafferty, J., et al.: Semi-supervised learning using Gaussian fields
and harmonic functions. In: International Conference on Machine Learning, vol. 3, pp. 912–
919 (2003)

https://doi.org/10.1007/978-1-4419-8462-3_5
https://doi.org/10.1007/978-3-642-35289-8_34
http://arxiv.org/abs/1603.08861


Loss-Aware Pattern Inference:
A Correction on the Wrongly Claimed

Limitations of Embedding Models

Mojtaba Nayyeri1,2(B), Chengjin Xu1, Yadollah Yaghoobzadeh3,
Sahar Vahdati2, Mirza Mohtashim Alam1,2, Hamed Shariat Yazdi1,

and Jens Lehmann1,4

1 University of Bonn, Bonn, Germany
nayyeri@cs.uni-bonn.de

2 InfAI Lab, Dresden, Germany
{vahdati,mohtasim}@infai.org

3 Microsoft, Redmond, USA
yayaghoo@microsoft.com

4 Fraunhofer IAIS, Dresden, Germany
jens.lehmann@iais.fraunhofer.de

Abstract. Knowledge graph embedding models (KGEs) are actively
utilized in many of the AI-based tasks, especially link prediction. Despite
achieving high performances, one of the crucial aspects of KGEs is their
capability of inferring relational patterns, such as symmetry, antisymme-
try, inversion, and composition. Among the many reasons, the inference
capability of embedding models is highly affected by the used loss func-
tion. However, most of the existing models failed to consider this aspect
in their inference capabilities. In this paper, we show that disregarding
loss functions results in inaccurate or even wrong interpretation from the
capability of the models. We provide deep theoretical investigations of the
already exiting KGE models on the example of the TransE model. To the
best of our knowledge, so far, this has not been comprehensively investi-
gated. We show that by a proper selection of the loss function for train-
ing a KGE e.g., TransE, the main inference limitations are mitigated.
The provided theories together with the experimental results confirm
the importance of loss functions for training KGE models and improving
their performance.

1 Introduction

Recent years witnessed a great attention on the topic of knowledge graph embed-
ding (KGE) models such that they rapidly became one of the state-of-the-art
methods for Link Prediction. One of the primary KGE models is TransE which
gained a lot of attention due to its simplicity and high performance. Some follow
up models tried to improve TransE in terms of encoding relation types such as
1-many, or certain relation patterns such as reflexive, and symmetric [5,7,15].
While the community got into a paradigm of proposing new embedding models
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by (only) focusing on the score function and competing on decimal improvements
of the results, the actual cause that was rooted in the loss function, remained
overlooked. Although, in a separate track, several loss functions have been pro-
posed [16], its role in studying the capability of KGE models in presence of
relational patterns have been majorly ignored. This neglected fact resulted in
inaccurate or even wrong interpretations of the model capability.

Our investigations showed that, this problem originates in the initial assump-
tion used for model capability proofs. To formally show this, let (h, r, t) be a pos-
itive triple in a KG where h, t are the entities and r is the relation between them
which are to be embedded in (h, r, t) (vector representation). This fact started
from the TransE model, and continued by TransH, TransR, SimplE [6,7,15],
where the assumption of h + r ≈ t was used in evaluating the limitations of the
models in encoding of patterns. This has caused a boom of new KGE models
addressing the claimed limitations by proposing only new score functions. On
the example of symmetric relations (e.g. brotherOf), this means that by enforc-
ing a relation r to be symmetric (t + r ≈ h), the relation embedding is then
enforced to be r = 0. In this way, all of the corresponding vectors for entities
that are related to each other via r relation will be equal. This had the risk of
being interpreted as “model disability” in encoding symmetric patterns. While
this problem was interpreted as model limitation, it was caused by incompatible
equality assumption in the loss functions. We consider this as off-track argument
followed by many of the KGE proposals overlooking the root cause. Here, we
cover some of these works. In [6], additional limitations of TransE, FTransE [4],
STransE [9], TransH and TransR are addressed which are listed here: (i) if the
models encode a reflexive relation r, they automatically encode symmetric; (ii)
if the models encode a reflexive relation r, they automatically encode transitive
and; (iii) if entity h1 has relation r with every entity in Δ ∈ E and entity h2 has
relation r with one of entities in Δ, then h2 must have the relation r with every
entity in Δ. All of these limitations are justified by the initial assumption which
was never fulfilled as they were incompatible with the utilized loss functions.
Thus, these proposed approaches are only shedding the light on the underlying
score functions.

Even a recent KGE model namely RotatE followed the same problem, which
is a highly valuable work, however, it also claims that TransE is not capable
of encoding symmetric patterns (Table 2 in [11]), considering the same assump-
tion (i.e. h + r ≈ t). The equality assumption is satisfied when the loss function
enforces ‖h + r − t‖ ≈ 0. The claimed disability has been argued to be caused
by the score function of TransE. However, none of the existing loss functions
(i.e. Margin Ranking Loss [1] and Adversarial Los [11]) hold this assumption
during the optimization process, rather such losses take ‖h + r − t‖ ≤ γ1 where
γ1 is upper-bound of positive scores. Therefore, most of the identified limitations
of the existing KGEs and the proposed solutions for them have been based on
an assumption that was not fulfilled by any of the existing loss functions. We
re-studied the reported limitations of the TransE model employing the “appro-
priate” assumption compatible with the used loss function, as we shall see in the
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body of this paper, TransE is capable of encoding symmetric patterns. Although
we highlight that ignoring loss functions caused inaccurate results on studying
the limitations of TransE, it is generalziable for other existing KGE models as
well as for the models yet to come (if this paradigm continuous). The impact of
work is in blocking such a continuous misinterpretation of the inference capa-
bility of KGE models influenced by ignored loss functions with a long standing
inappropriate assumption. Moreover, our theoretical finding is consistent with
the recent experimental studies [10] which highlight that old models perform
as well as the recent state-of-the-art models if they are trained with the same
setting (using the same boosting techniques).

In summary, our main contributions are the following:

– We show that the different loss functions enforce different upper-bounds and
lower-bounds for the scores of positive and negative samples respectively.

– We illustrate that the existing theories corresponding to the limitations of
translation-based models are inaccurate since they only consider the score
functions. We prove theoretically and later experimentally that the selection
of loss functions is critical and can mitigate the main limitations.

– Using symmetric relation patterns, we obtain a proper upper-bound of posi-
tive triples score to enable encoding of symmetric patterns.

– We prove that applying translation in the complex space gives a more powerful
model while efficiency in memory and time is preserved.

2 Related Works

Most of the previous work, majorly investigate the capability of the translation-
based embedding models solely considering the formulation of the score func-
tions. Accordingly, in this section, we review the score functions of TransE and
its variants.

The score of TransE [1] is initially defined as fr(h, t) = ‖h + r − t‖. In
order to overcome the problems of TransE in encoding of relational patterns,
TransH [15] was proposed where the score function was modified as fr(h, t) =
‖h⊥ + r − t⊥‖. In this way, each entity (e) is projected to a relation space
(e⊥ = e−wrewT

r ). Using this score function, the TransH model reported itself to
be capable of encoding reflexive, one-to-many, many-to-one and many-to-many
relations. This effort was done while the identified problem of TransE being
incapable of encoding relational patterns was not valid. However, other works
[6,7] started to build up on top of TransH addressing its problems. For example,
encoding reflexive pattern leads to undesired encoding of both symmetric and
transitive relations [6].

TransR [7] was then proposed with a new score function that projects each
entity (e) to the relation space by using a matrix provided for each relation
(e⊥ = eMr, Mr ∈ Rde×dr ). The chain of new score functions has continued
with TransD [5] which provides two vectors for each individual entities and
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relations (h,hp, r, rp, t, tp). Head and tail entities are projected using the fol-
lowing matrices: Mrh = rT

p hp + Im×n,Mrt = rT
p tp + Im×n. The score function

of TransD is similar to the score of TransH.
Recently, the RotatE [11] model has been proposed to address encoding of

relational patterns with a new score function. It rotates the head to the tail
entity using relation in the Complex space. Using constraints on the norm of
entity vectors, the model is reformed to TransE. The scoring function of RotatE
is fr(h, t) = ‖h ◦ r − t‖, where h, r, t ∈ Cd, and ◦ is element-wise product.
RotatE obtains the state-of-the-art results using very big embedding dimension
(1000) and a lot of negative samples (1000). TorusE [3] fixes the problem of
regularization in TransE by applying translation on a compact Lie group. The
model has several variants including mapping from Torus to Complex space.
In this case, the model is regarded as a special case of RotatE [11] applying
rotation instead of translation in the Complex space. According to [11], TorusE
is not defined on the entire Complex space. Therefore, it has less representation
capacity. TorusE needs a very big embedding dimension (10000 as reported in
[3]) which is a limitation. All of these state-of-the-art models only focus on
proposing a new score function based on an assumption that was not valid for
the used losses.

3 Loss-Aware Pattern Inference

In this section, we first introduce the wrongly interpreted limitations of the
embedding models especially TransE and its follow ups (Sect. 3.1). Then, the
limitations are re-investigated in the light of score and loss functions where we
show that the corresponding theoretical proofs are inaccurate because the effect
of loss function is ignored (Sect. 3.2). So, we propose new theories and prove
that each of the limitations of TransE is resolvable by revising either the scoring
function which the community continued with high effort or re-investigating the
loss with regard to the limitations in the base assumption (our work).

3.1 Wrong Interpretations of KGE Models Presented as Limitations

Here we discuss the wrong interpretations of the KGE models which was
reported in several literature that ended up to be presented as their limita-
tions [6,11,14,15]. We focus on the reported limitations (L) of translation-based
embedding models and their encoding capabilities for relation patterns (e.g.
reflexive, symmetric) as following:

L1 TransE cannot encode reflexive relations when the relation vector is non-zero
[15].

L2 TransE cannot encode a relation r which is neither reflexive nor irreflexive.
To see that, if TransE encodes the relation r, we have h1 + r = h1 and
h2 + r �= h2, resulting r = 0, r �= 0 which is a contradiction [14].
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L3 TransE cannot encode symmetric relation when r �= 0. If r is symmetric,
then: h+ r = t and t+ r = h. Thus, r = 0 and all entities appeared in head
or tail of triples will have the same vector [11].

L4 If r is reflexive on Δ ∈ E , where E is the set of all entities in the KG, then
r must also be symmetric [4].

L5 If r is reflexive on Δ ∈ E , r must also be transitive [9].
L6 If entity h1 has relation r with every entity in Δ and entity h2 has relation

r with one of entities in Δ, then h2 must have relation r with every entity
in Δ [6].

Limitations 3 to 5 have been reported for TransE, however they are genelaizable
for all the follow up models. Limitations 4 to 6 have been reported for TransE,
FTransE, STransE, TransH and TransR.

Fig. 1. Top: Visualization of truth region (positive) according to Table 1. The residual
vector ε, (a) becomes 0, (b) lies on the border of a sphere with radius γ1, (c) lies inside of
a sphere with radius γ1, and (d) ε(h1,r1,t1) lies inside of a sphere with radius γ(h1,r1,t1).
Bottom: The histogram of scores when TransE is trained on WordNet using the losses
of Eq. 2 (γ1 = 0), 2 (γ1 = 4), 4 (γ1 = 4) and 6 (γ = 6) respectively. Each histogram is
the approximation of the corresponding conditions (a)–(d).

3.2 Re-investigation of the Reported Limitations

Here, we aim at analyzing the limitations of TransE (in real and complex spaces)
by considering the effect of both score and loss functions. A loss function deter-
mines the score boundary within which a triple is positive or negative. A KGE
model considers a triple (h, r, t) to be positive if its score is in a region of truth
and a triple (h′, r, t′) to be negative if its score is in a region of falsity.
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Such a boundary enforces an assumption through which the capability of
embedding models in encoding relation pattern is investigated. For instance, in
TransE with score function of fr(h, t) = ‖h+r−t‖, the already used assumption
for boundary of positive and negative samples are fr(h, t) = 0 and fr(h′, t′) > 0,
respectively. However, this can not be fulfilled (or even approximated) by the
considered loss functions of the state-of-the-art models (e.g. margin ranking loss
[1] and RotatE loss [11]).

Table 1. Region of truth and falsity.

Condition Positive Negative γ1, γ2 ∈ R

(a) fr(h, t) = γ1, fr(h
′, t′) ≥ γ2 γ1 = 0, γ2 > 0

(b) fr(h, t) = γ1 fr(h
′, t′) ≥ γ2 γ2 > γ1 > 0

(c) fr(h, t) ≤ γ1 fr(h
′, t′) ≥ γ2 γ2 > γ1 > 0

(d) fr(h, t) ≤ γ1(h,r,t) fr(h
′, t′) ≥ γ2(h,r,t) γ2(h,r,t) > γ1(h,r,t) > 0

Fig. 2. Condition for encoding symmetric relation: (a) when α < 1, the model cannot
encode it. (b) when α = 1, the intersection of two hyperspheres is a point. u = 0 means
embedding vectors of all the entities should be equal. Symmetric cannot be encoded.
(c) when α > 1, symmetric can be encoded as there are more than one point in the
intersection of two hyperspheres.

To re-investigate and address the reported limitations, we propose four new
conditions (Table 1) where a triple can be considered positive or negative by the
score function. This is done by considering the defined thresholds for upper- and
lower-bounds (decision boundary) in the scores of both positive and negative
triples. We show that these conditions can be approximated by designing appro-
priate loss functions. In this regards, we adapt four loss functions based on [8]
and propose compatible conditions for each of them (see Table 1). To better com-
prehend this, we illustrated the conditions in Fig. 1. The condition (a) indicates
that a triple is positive if h + r = t holds. It means that the length of residual
vector i.e. ε = h + r − t, is zero. It is the most strict condition that expresses
the extent to which a triple is positive. Authors in [6,11] consider this condition
to prove their theories as well as the limitation of TransE in the encoding of
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symmetric relations. However, the employed loss function fails to approximate
(a), rather it fulfills condition (c) which results a void limitation in that setting.
The condition (b) considers a triple to be positive if its residual vector lies on a
hypersphere with radius γ1. It is less restrictive than (a) which only considers a
point in the vector space to express the positiveness of a triple. The optimization
problem that approximates the conditions (a) (γ1 = 0) and (b) (γ1 > 0) is as
follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minξh,t

∑
(h,r,t)∈S+ ξh,t

2

s.t. fr(h, t) = γ1, (h, r, t) ∈ S+

fr(h′, t′) ≥ γ2 − ξh,t, (h′, r, t′) ∈ S−

ξh,t ≥ 0

(1)

where S+, S− are the sets of positive and negative samples. ξh,t are slack vari-
ables to reduce the effect of noise in negative samples. One loss function that
approximates the conditions (a) and (b) is as follows where for case (a), we set
γ1 = 0 and for case (b) we set γ1 > 0 in the formula.

La|b =
∑

(h,r,t)∈S+

(
λ1‖fr(h, t) − γ1‖ +

∑

(h′,r,t′)∈S−
(h,r,t)

λ2 max(γ2 − fr(h′, t′), 0)
)
. (2)

The condition (c) considers a triple to be positive if its residual vector is
inside a hypersphere of radius γ1. The optimization problem that approximates
the condition (c) is:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minξh,t

∑
(h,r,t)∈S+ ξh,t

2

fr(h, t) ≤ γ1, (h, r, t) ∈ S+

fr(h′, t′) ≥ γ2 − ξh,t, (h′, r, t′) ∈ S−

ξh,t ≥ 0

(3)

The loss function that approximates the condition (c) is:

Lc =
∑

(h,r,t)∈S+

(
λ1 max(fr(h, t) − γ1, 0) +

∑

(h′,r,t′)∈S−
(h,r,t)

λ2 max(γ2 − fr(h′, t′), 0)
)
.

(4)

Remark: The loss function which is defined in [16] is slightly different from the
loss in Eq. 4. The former loss slides the margin while the latter fixes the margin
by inclusion of a lower-bound for the score of negative triples. Both losses put
an upper-bound for scores of positive triples. Apart from the loss 4, the RotatE
loss [11] also approximates the condition (c). The formulation of the RotatE loss
is as follows:

LRotatE
c = −

∑

(h,r,t)∈S+

(
log σ(γ − fr(h, t))+

∑

(h′,r,t′)∈S−
(h,r,t)

log σ(fr(h′, t′) − γ)
)
. (5)
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The condition (d) is similar to (c), but it provides different γ1, γ2 for each
triple. Using (d), there is a triple-specific region of truth for each positive triple
(h, r, t) and its corresponding negative triple (h′, r, t′). Margin ranking loss [1]
approximates (d). Defining [x]+ = max(0, x), the loss is:

Ld =
∑∑

[fr(h, t) + γ − fr(h′, t′)]+ . (6)

To re-investigate the limitations, we must assume that the relation vectors
do not get zero values otherwise we will have the same embedding for head and
tail which is undesirable. Here, the conditions (a) to (d) are presented by the
following theorems.

Theorem T1. (Addressing L1): TransE (real and complex) cannot infer a reflex-
ive relation pattern with a non-zero relation vector under (a). However, under
(b–d), TransE (real and complex) can infer reflexive pattern.

Theorem T2. (Addressing L2): (i) TransE (complex) can infer a relation which
is neither reflexive nor irreflexive under (b–d). (ii) TransE (real) cannot infer a
relation which is neither reflexive nor irreflexive under (a–d).

Theorem T3. (Addressing L3): (i) TransE (complex) can infer symmetric rela-
tions under (a–d). (ii) TransE (real) cannot infer symmetric relations under (a)
with non-zero vector for relation. (iii) TransE (real) can infer a symmetric rela-
tion under (b–d). Proof: Here, due to space problems we only prove (iii) as a
representative for other proofs.

Under (b), for TransE we have ‖h + r − t‖ = γ1 and ‖t + r − h‖ = γ1. The
necessity condition for encoding symmetric relation is ‖h+ r− t‖ = ‖t+ r−h‖.
This implies ‖h‖ cos(θh,r) = ‖t‖ cos(θt,r). Let h − t = u, by definition we have
‖u + r‖ = γ1, ‖u − r‖ = γ1. Now let γ1 = α‖r‖, we have:

{
‖u‖2 + (1 − α2)‖r‖2 = −2〈u, r〉
‖u‖2 + (1 − α2)‖r‖2 = 2〈u, r〉 (7)

Therefore, there is: ‖u‖2 + (1 − α2)‖r‖2 = −(‖u‖2 + (1 − α2)‖r‖2), which can
be written as ‖u‖2 = (α2 − 1)‖r‖2. To avoid contradiction, we must have α > 1.
Once α > 1, we have cos(θu,r) = π/2. Therefore, TransE can encode symmetric
relation with condition (b), when γ1 = α‖r‖ and α > 1. Figure 2 shows dif-
ferent conditions for encoding symmetric relation. Conditions (c–d) are directly
resulted from (b), as it is subsumed by (c) and (d). That completes the proof.

Theorem T4. (Addressing L4): For TransE (real and complex) (i) Limitation
L4 holds under (a). (ii) Limitation L4 is not valid under (b–d).

Theorem T5. (Addressing L5): For TransE (real and complEx) (i) Limitation
L5 holds under (a). (ii) Limitation L5 holds is not valid under (b–d).

Theorem T6. (Addressing L6): For TransE (real and complex), (i) Limitation
L6 holds under (a). (ii) Limitation L6 is not valid under (b–d).
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4 Experiments and Evaluations

In this section, we evaluate the performance of TransE in real and complex spaces
with different loss functions used for theoretical analysis of the limitations. The
experiments are done for a link prediction task with the aim of completing the
triple (h, r, ?) or (?, r, t) by predicting the missing entities for h or t. Filtered
Mean Rank (MR), Mean Reciprocal Rank (MRR) and Hits@10 are the evalua-
tion metrics [7,13]. We used two evaluation dataset namely FB15K-237 [12] and
WN18RR [2].

4.1 Experimental Setup

We implement TransE (real and complex) with the losses 2, 4 and 6 in PyTorch.
Adagrad is used as an optimizer and 100 mini-batches have been generated
in each iteration. The hyperparameter corresponding to the score function is
embedding dimension d. We add slack variables to the losses 2 and 4 to have
soft margin as in [8]. The loss 4 is rewritten as follows:

min
ξrh,t

∑

(h,r,t)∈S+

(
λ0 ξr

h,t
2 + λ1 max(fr(h, t) − γ1, 0) + λ2

∑

(h,r,t)∈S−
h′,r,t′

max(γ2 − fr(h
′
, t

′
) − ξr

h,t, 0)
)
.

(8)

4.2 Results and Discussion

In this part, we compare TransE (real and complex) and RotatE trained by using
the losses 2 (condition (a), (b)), 4 (condition (c)) and the RotatE loss (condition
(c)). For FB15K-237, we set the embedding dimension to 300 and the number
of negative samples to 256. For WN18RR, we set the embedding dimension and
the number of negative samples to 300 and 250 respectively. We additionally use
adversarial negative sampling technique from [11] that we have applied for all
the models.

Analysis of the Results: Table 2 presents a comparison of TransE (real and
complex) and RotatE trained by different losses. TransE in Eq. 2 (γ1 = 0) is
trained by using the loss in Eq. 2 when γ1 = 0. TransE in Eq. 2 (γ1 > 0) refers
to the TransE model which is trained by using the loss Eq. 2 when γ1 is a non-
zero positive value. The TransE model which is trained by the losses in Eq. 4
and the RotatE loss (i.e., LRotatE

c ) are denoted by TransE 4 and TransELRotatE
c

respectively. Similar notations are considered for TransE (complex) and RotatE
when they are trained by using different loss functions. The loss 2 with γ1 = 0
approximates the condition (a), and the approximation is done with condition
(b) for γ1 > 0.
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Table 2. Link prediction results. Rows 1–4: TransE trained using condition (a), (b)
(with loss 2 (c) (with the loss 4) and (c) (with the RotatE loss) with no injected relation
patterns. Rows 5–8 TransE (complex) trained using condition (a), (b), (c) (with the
loss 4) and (c) (with the RotatE loss) with no injected relation patterns. Rows 9–10:
RotatE trained using condition (c) (with the loss 4) and (c) (with the RotatE loss)
with no injected relation patterns.

FB15K-237 WN18RR

MR MRR Hits@10 MR MRR Hits@10

TransE 2 (γ1 = 0) 222 27.4 45.7 3014 19.3 47.4

TransE 2 (γ1 > 0) 198 31.3 50.5 3942 21.4 50.3

TransE 4 181 32.3 52.1 3451 23.5 53.9

TransE LRotatE
c 179 32.5 51.9 3594 23.3 53.6

TransE (complex) 2 (γ1 = 0) 213 28.5 47.3 3014 31.2 49.5

TransE (complex) 2 (γ1 > 0) 194 31.9 50.8 3942 41.3 50.8

TransE (complex) 4 177 32.8 52.1 3435 44.3 55.0

TransE (complex) LRotatE
c 176 32.7 51.9 3537 44.2 54.7

RotatE 4 194 33.0 52.0 3806 47.8 56.9

RotatE LRotatE
c 196 33.0 51.8 3943 47.3 56.5

Fig. 3. Histogram of ‖h + r − t‖ for reflexive triple (h = t) per different γ1.

The condition (c) can be approximated by using the loss in Eq. 4 and the
RotatE loss (i.e., LRotatE

c ). However, the loss Eq. 4 provides a better separation
for positive and the negative samples than the RotatE loss. According to the
Table 2, the loss 4 obtains a better performance than the other losses in each
class of the studied models. It is consistent with our theories indicating that the
condition (c) is less restrictive.
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Fig. 4. Scores of symmetric triple for different gamma.

Fig. 5. Accuracy with respect
to evaluation metric.

Although we only focus on translation-based
KGEs, the theories can be generalized to differ-
ent models including the RotatE model. We see
that the loss in Eq. 4 improves the performance of
RotatE. Regarding the Table 2, the loss in Eq. 2
(γ1 = 0) gets the worst results. It confirms our
theories that with the condition (a), most of the
limitations are held. However, with the condition
(c), the limitations no longer exist. Previously,
there have not been any loss that approximates
the condition (a). However, most of the theories
presented above corresponding to the main lim-
itations of the translation-based class of embed-

ding models (L1–L6) have been proven using the condition (a) while the used
loss didn’t approximate the condition. Therefore, in all of the previous works
the theories and experimental justifications have not been accurate.

4.3 Further Analysis of Theories

In Theorem Th1-Th6, we proved that most of the claimed limitations about
TransE are inaccurate or even incorrect due to wrong assumptions not to be
fulfilled by the used losses. More concretely, the claimed limitations were not
rooted in the formulation of score function of TransE. Even worse, the claimed
limitations were not also rooted in the loss function. The claimed limitations are
analytically derived by using wrong assumption which is not fulfilled by the used
loss function. Here we visualize the histogram of distance function (‖h+r−t‖) to
encode symmetric relation using various γ1 = {0, 5, 10, 15, 20, 25}. While most of
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proofs corresponding to the limitations of TransE have been done with condition
(a) (γ1 = 0), the used loss function (margin ranking loss does not fulfill that
condition (see Fig. 1)). Figure 3 visualizes the histogram of distance when the
relation r is reflexive.

In the case of reflexive relation, distance ‖e + r − e‖ = ‖r‖ is the norm
of relation. According to this results, when γ1 = 0, the norm of relation must
be zero to consider the triple as positive. Therefore, with non-zero relation, all
triples will be recognized as negative sample. In the case of ‖r‖ = 0, for all
other triples in the form of (h, r, t) where h �= t, the embeddings of head and
tail must be equal which is undesired. However, from the Fig. 3 (the cases of
γ1 �= 0, we can see that most of reflexive relations are non-zero. Moreover, we
have ‖e + r − e‖ = ‖r‖ ≤ γ1 �= 0. Therefore, the triples (e, r, e) are learned
as positive by the model while the embeddings of relation is not zero. This
confirms that the claim about TransE not being capable of encoding reflexive
relation is no longer valid when margin ranking loss is used. Figure 4 shows that
only when γ1 = 0, the embedding of relation becomes zero, which addresses the
limitations of L3. According to the last figure of the first row, when γ1 = 0, the
embeddings of head and tail becomes equal. Therefore, with non-zero relation
vector, the TransE model cannot encode symmetric relation with condition (a).
However, from the last row of Fig. 4, with a bigger value for upper-bound of
positive triples γ1 = 25, the embedding of relation is not zero and when all
triples (h, r, t) and their symmetric (t, r, h) are learned as positive (encoding
symmetric by TransE) based on the second and third columns of the last row
in Fig. 4. Moreover, from the last sub-figure of last row, we see that embedding
of head and tail are different. This shows symmetric relation is properly learned
by the model. From Fig. 5, we observe that by increasing γ1, the accuracy of the
model increases when learning is done on symmetric patterns. As a conclusion,
the mentioned limitations of TransE do not exist because there none of the
previous loss functions fulfill the condition (a).

5 Conclusion

In this paper, we re-investigated the main limitations of Translation-based
embedding models from two aspects: score and loss. We showed that different
loss functions enforce different boundaries for triple scores, affecting the limi-
tations of embedding models in encoding relation patterns such as symmetric.
Therefore, the existing theories corresponding to the limitations of the KGE
models are inaccurate because the effect of loss functions has been ignored.
Accordingly, we presented new theories about the limitations by consideration
of the effect of score and loss functions. The TransE model (in both real and
Complex space) is trained by using various loss functions on standard datasets.
According to the experiments, TransE in complex space with appropriate loss
function significantly outperformed other existing translation-based embedding
models. It got competitive performance with the other embedding models while
it is more efficient in time and memory. Beside the performance-related improve-
ments, the main impact of our work is the correction it provides between the
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initial assumption and the used loss function by most of the already existing
embedding models. The objective is to influence the future embedding models
and shed light on the effect of loss functions.
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Abstract. To capture spatial relationships and temporal dynamics in
traffic data, spatio-temporal models for traffic forecasting have drawn
significant attention in recent years. Most of the recent works employed
graph neural networks(GNN) with multiple layers to capture the spa-
tial dependency. However, road junctions with different hop-distance
can carry distinct traffic information which should be exploited sepa-
rately but existing multi-layer GNNs are incompetent to discriminate
between their impact. Again, to capture the temporal interrelationship,
recurrent neural networks are common in state-of-the-art approaches
that often fail to capture long-range dependencies. Furthermore, traf-
fic data shows repeated patterns in a daily or weekly period which
should be addressed explicitly. To address these limitations, we have
designed a Simplified Spatio-temporal Traffic forecasting GNN(SST-
GNN) that effectively encodes the spatial dependency by separately
aggregating different neighborhood representations rather than with mul-
tiple layers and capture the temporal dependency with a simple yet
effective weighted spatio-temporal aggregation mechanism. We capture
the periodic traffic patterns by using a novel position encoding scheme
with historical and current data in two different models. With extensive
experimental analysis, we have shown that our model (Code is available
at github.com/AmitRoy7781/SST-GNN) has significantly outperformed
the state-of-the-art models on three real-world traffic datasets from the
Performance Measurement System (PeMS).

Keywords: Traffic forecasting · Spatio-temporal modeling · Graph
neural network

1 Introduction

In recent years, future traffic prediction is getting interests among researchers
from the area of Intelligent Transportation System(ITS). Generally, the traffic
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intensity of given sensors refers to the speed of people/vehicles passing through
those sensors on traffic networks at each timestamp. Accurate forecasting of
future traffic speeds has plenty of advantages such as it would help citizens not
only to bypass the crowded path but also to schedule an efficient trip in advance.
However, the task of traffic forecasting is challenging because the traffic in a busy
metropolitan city changes across different locations throughout the different time
periods every day. Also, different traffic patterns are observed on weekdays and
weekends. Hence, there lies a complex spatio-temporal relationship in traffic data
that makes the task of accurate traffic prediction challenging.

As the traffic network of a city can be modeled as a graph with traffic speed of
different nodes (road junctions) across different timestamps, most of the recent
approaches [1,4,5,7,9,10,12,12] have tried to design the problem of traffic fore-
casting as a regression task. In these models, the spatial relationship among dif-
ferent nodes are captured using graph neural networks (GNNs) [6,8] and recur-
rent neural networks are employed to consider the temporal dependency [13]. To
mention a few, STGCN [13] is the first approach to apply graph convolution to
capture spatial representation in traffic forecasting along with recurrent units for
temporal dependencies. On the other hand, DCRNN [9] employed bi-directional
random walk to preserve spatial relation and GRU for temporal dependencies.

In spite of the extensive efforts for future traffic prediction, the challenge is
not solved yet due to a couple of reasons. Firstly, state-of-the-art models have
a common practice to increase the receptive field by using multi-layer GNNs to
capture the spatial traffic information from different-hop neighborhoods. How-
ever, the immediate neighboring junctions might have different impacts on the
target node’s traffic pattern from the distant junctions. Multi-layer GNNs suffer
from over-smooth problem [2] while aggregating the information from different
hop neighboring junctions in more layers which results in less informative spatial
representations. Instead, directly employing the representation of different-hop
neighbors towards the fully connected layers will be more effective to encode the
impact of different hop neighboring junctions [14]. Secondly, traditional spatio-
temporal models apply recurrent neural networks e.g., LSTM, GRU to encode
the temporal information. However, recurrent neural networks often fail to per-
form well to forecast the traffic in long-range prediction as spatial traffic at dif-
ferent timestamps has a varying scale of impact on the target node’s pattern. To
encode the temporal dependency explicitly, we propose a novel spatio-temporal
weighted aggregation scheme that can learn the importance of the spatial rep-
resentation from previous timestamps. Also, we stack the representation of dif-
ferent timestamps to obtain the final representation that allows our model in
handling long-range dependencies effectively.

Finally, traffic data shows repetitive daily patterns across days in a week.
To learn these trends in traffic data, an ideal model should consider the current
day pattern as well as the daily pattern seen in the traffic data. Here, we define
the current day pattern as the traffic situation observed in the last hour on the
current day and the daily pattern as the traffic intensities exist in the same time
period in the last one week. Most of the researchers put their contribution to
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Fig. 1. Predicting the traffic of 10:05 AM–11:00 AM on Tuesday by observing the
traffic data of the past hour from the last seven days as well as the present day to
capture the daily pattern and current day pattern.

learning the current day pattern. For instance, to predict traffic speed at 10:05
AM–11:00 AM on Tuesday, recent researchers propose frameworks to learn the
pattern from 9:05 AM–10:00 AM on the present day (Tuesday) which is depicted
as current day pattern in Fig. 1. However, current day pattern information might
not be enough to model city traffic. In our work, we learn the traffic pattern effec-
tively with two different models named as the current-day model and historical
model where the current-day model analyze the past hour data on the current
day and the historical model deals with the past hour traffic intensity in the
last seven days (Fig. 1). Lastly, the traffic intensity in a metropolitan city varies
throughout different time periods in a day across weekdays and weekends. There-
fore, we enhance the generalization capability of our model with a novel position
encoding scheme which helps our model to distinguish between traffic data of
different periods of the day on both weekdays and weekends. In summary, the
key contribution of our work SST-GNN includes:

– We directly utilize the representation of different hop neighbors rather than
using multi-layer GNNs to explicitly focus on the spatial dependency of traffic
intensity from road junctions at different hop distance.

– We capture the temporal dependency with a simple weighted aggregation of
the spatial representations from the different timestamps and finally stacking
them to capture inter-timestamp dependency.

– We propose a simple yet effective framework to extract current day and daily
information through two different models: current-day model and historical
model. The framework uses neighborhood aggregation based graph neural
networks to learn the node embeddings.

– We propose a position encoding scheme that can encode the periodic infor-
mation of days and weeks into traffic data which can be easily extended to
months and even for years.

– From the extensive experimental analysis, we show the efficacy of our model.
Our model SST-GNN outperforms the state-of-the-art models in predicting
the traffic speed of the next 15, 30, 45, and 60 min.
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2 Background Study

Related Works: In the early years, various statistical and machine learning
techniques such as Auto-Regressive Integrated Moving Average (ARIMA), His-
torical Average (HA), Support Vector Regression (SVR), and Kalman filters
have been widely used for traffic forecasting. However, in recent years, graph
neural networks (GNN) have achieved greater success in modeling real-life traf-
fic. GNNs are able to encode the spatial dependency between neighbor nodes in
a graph into their hidden representation by employing different feature aggrega-
tion scheme. Graph Convolution Networks [3,8] apply spectral convolutions to
learn structural dependency as well as feature information. On the other hand,
GraphSAGE [6] introduced a neighborhood aggregation strategy to preserve
the inter-relationship among proximal nodes. As GNNs succeeds in learning
representations for various downstream machine learning tasks, several recent
works have employed graph convolution to learn node representations that can
extract spatial relations from the traffic network. STGCN [13] has modeled spa-
tial and temporal relations using a convolutional network. The diffusion pro-
cess is used to model the traffic networks in DCRNN [9] that captures the
spatial relations by using the bidirectional random walks and GRU for tem-
poral dependencies. Besides, several recent works [4,10,12] have achieved good
performance.To capture the spatio-temporal dependency among nodes in the
embedded space, Graph Wavenet [12] learns a self-adaptive dependency matrix
where the receptive field increases with the number of layers. Very recent work
LSGCN [7] proposes a new graph attention network called cosAtt and incorpo-
rates the cosAtt and GCN into the spatial gated block and linear gated block to
iteratively predict future traffic intensity. We observe that state-of-the-art mod-
els fail to capture the impact of different hop neighborhoods for a targer node
in traffic networks explicitly. Also, the RNN-based models are incompetent to
learn temporal dependencies in long term prediction. To address the above chal-
lenges, we explicitly capture the impact of different-hop neighborhoods on target
node’s traffic with a simple yet effective spatio-temporal aggregation scheme and
stack the embeddings of intermediate timestamps to learn temporal dependencies
across different timestamps. Capturing the traffic of different hop neighborhood
with simplified spatio-temporal aggregation improves our models performance
than the state-of-the-art traffic forecasting models.

Preliminaries and Problem Definition: A traffic network is represented as
a graph G = (V,A) where V is the set of nodes that denote road junctions and
A ∈ R

|V |×|V | is the adjacency matrix of the graph, where Ai,j = 1 if junction
i and j are connected by an road and 0 otherwise. Each node also contains
some features of a junction representing traffic flow, speed, occupancy etc. As
traffic at different nodes change over time, the traffic features of a node u at
timestamp t is denoted as X<t>

u ∈ R
d where d denotes the feature dimension

and X<t> ∈ R
|V |×d represents the traffic features of all nodes at timestamp t.

The graph at a timestamp t is denoted as timestamp graph G<t>.Note that,
all timestamp graphs are structurally identical to each other. However, a traffic
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forecasting framework takes a sequence of T timestamp graphs with their node
features (X<1>,X<2>, . . . . . . , X<T>) as input and predicts the traffic intensities
of nodes at next n timestamps that is (Y <T+1>, Y <T+2>, . . . . . . , Y <T+n>).
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Fig. 2. Inter-timestamp edges are introduced between identical nodes of consecutive
timestamps e.g. an edge between a blue node at timestamp 09:05 AM and a blue node
at timestamp 09:10 AM where the same color indicates identical nodes. Although both
historical and current-day model deals with the same spatio-temporal graph consisting
of all timestamp graphs over 5 min interval in the past hour of the prediction window,
the historical model considers traffic features from last week to capture the repeated
daily patterns while the current-day model uses only current day (e.g. Tuesday) infor-
mation to find current day patterns in traffic data. Spatial dependency is captured
through aggregating features from different neighborhoods on each timestamp graph
while temporal dependency is preserved by performing temporal aggregation among
the node representations learned from previous timestamps which are depicted in Fig. 3.
Finally, concatenation followed by weighted transformation is performed to compute
the spatio-temporal embeddings of nodes which are used for traffic prediction. (Color
figure online)

3 Proposed Model

In this section, we describe the whole architecture of our proposed framework
that can effectively capture spatio-temporal dependencies between road junc-
tions. We discuss spatio-temporal graph and positional encoding scheme for
performing spatio-temporal aggregation and capturing periodicity in traffic data
respectively. After that, we present spatio-temporal aggregation with two differ-
ent models namely historical model and current-day model and concluded with
the final embedding and training process. A high-level overview has been pre-
sented in Fig. 2 and Fig. 3.

Spatio-Temporal Graph: To capture the complex spatio-temporal depen-
dencies between nodes across different timestamp graphs, we introduce inter-
timestamp edges between identical nodes of consecutive timestamp graphs as
shown in Fig. 2 where the same color indicates identical nodes. Afterward, to
learn embeddings of nodes, we perform our proposed spatio-temporal aggrega-
tion on a spatio-temporal graph that consists of previous T timestamp graphs
from the prediction window with their inter-timestamp edges.
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Positional Encoding: To extract informative traffic features from different
periods of the day, we need to encode the relative position of the different time
periods in our model. Following the relative positioning concept widely used in
transformer based attention mechanism in Machine Translation [11], we have
used positional encoding with a sinusoidal function to provide position informa-
tion on different timestamps. We ensure that the sinusoidal function for each day
completes a full cycle within a day. Hence, any time duration can be represented
as a repetitive portion of the sine curve of each day. For example, the sinusoidal
curve will have the same pattern during the time slot (9:05 AM–10:00 AM) daily.
Hence, this positional encoding will help the model capture daily pattern indeed.
Moreover, there might be a weekly pattern in traffic such as specific days that
might have the same kind of traffic. Also, the proposed framework needs to see
whether the patterns are coming from weekdays or weekends. To capture this
kind of weekly pattern, we also propose another full cycle of a sine wave for each
week. Therefore, the final position encoding has been achieved by Eq. 1.

P<t> = sin(
2πt

24 × hr sample
) + sin(

2πt

24 × 7 × hr sample
) (1)

where t denotes a particular timestamp and hr sample represents the number of
observed data samples in an hour. The idea can be extended to capture monthly
repetition with another full cycle sine wave that completes in a month.

Spatio-Temporal Aggregation: We develop a spatio-temporal aggregation
scheme to encode spatial as well as temporal dependencies into the embeddings
of nodes that have been shown in Fig. 3. It has two components as follows:

– Spatial Aggregation: In real-life traffic networks, it can be observed that
all higher-order neighborhoods are not equally important for a target node.
Different hop neighborhood may carry distinct information that should be
captured explicitly. Therefore, we perform information aggregation over nodes
in different neighborhoods separately in each timestamp graph as follows,

X<t>
(k) = D−1

(k)A(k)X
<t>; S<t>

u =
K∑

k=1

X<t>
(k),uW<t>

(k) (2)

where, A(k) denotes kth-hop neighborhood - meaning that |A(k)|i,j = 1 only
if node i and j are exactly k hop away from each other otherwise 0, D(k) is
the degree matrix of A(k), X<t>

(k) is the degree-normalized mean of kth-hop
neighbor-embeddings at timestamp t, Further, we perform weighted aggrega-
tion among the mean representations of different-hop neighborhoods up to K
hop away from node u to compute the spatial embeddings of node u denoted
as S<t>

u where W<t>
k is learnable weight parameters to capture the impact

of kth-hop neighborhood at timestamp t. Explicit aggregation of different
hop neighborhood embeddings helps to differentiate the impacts of the traffic
intensities from different hop neighbor nodes on a target node.
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– Temporal Aggregation: To capture temporal dynamics among different
timestamp graphs, temporal embeddings of nodes, Z̃<t>

u , at timestamp t are
computed through aggregating spatio-temporal embeddings from the earlier
timestamps as follows,

Z̃<t>
u = ReLU(

t−1∑

i=1

(W<i>Z<i>
u )) (3)

where Z<i>
u is the spatio-temporal embedding of u and W<i> is the learnable

weight at timestamp i.
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Fig. 3. Spatio-Temporal Aggregation Scheme: To capture complex spatio-temporal
dependencies in traffic networks, the historical model concatenates the spatial embed-
dings from different hop neighborhoods at timestamp t with temporal embedding Z̃t

H -
the weighted aggregation of (Z1

H , . . . , Zt−1
H ), to learn spatio-temporal embeddings Zt

H .
Similarly, current-day model performs the same process.

After that we concatenate the ego(target node), spatial and temporal embed-
dings of node u to learn the spatio-temporal embedding of node u at timestamp
t, Z<t>

u as following,

Z<t>
u = ReLU(W<t>

sptemp(X
<t>
u ‖ S<t>

u ‖ Z̃<t>
u )) + P<t> (4)

where Wsptemp is a learnable parameter at timestamp t and ‖ denotes concate-
nation operation while P<t> represents the positional encoding of timestamp
t. In Eq. 4, temporal embedding of u at timestamp t, Z̃<t>

u captures the tem-
poral dependencies of traffic from previous 1 to t − 1 timestamps while spa-
tial embedding S<t>

u leverages information from different hop neighborhoods
of node u. Moreover, our model can achieve its best generalization ability by
keeping the ego(target node), spatial and temporal information separate with-
out mixing them. Furthermore, the periodic information of traffic data is also
preserved by incorporating the positional encoding value of timestamp t into
node embeddings. Therefore, Eq. 4 ensures that our model can learn complex
traffic flow information across different hop neighbor road junctions as well as
from different timestamps effectively.

Historical Model: To preserve the historical traffic information of previous
days, we propose a novel historical model that analyzes the daily patterns. In
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the historical model, we assign the feature vector of node u, X<t>
Hu

∈ R
P as

the traffic speed at timestamp t of last P days. Therefore, the historical model
captures the traffic pattern of the last P days of previous T timestamps from
the prediction window. The motivation behind using the historical model is to
capture the periodic nature of traffic data from the history of the last P = 7
days. On each timestamp t, we perform spatio-temporal aggregation to learn
historical spatio-temporal embedding Z<t>

Hu
for each node u as shown in Fig. 3.

Current-Day Model: The current-day model only considers the traffic speed
at timestamp t of current day, X<t>

Cu
∈ R as the feature vector of each node

in the network just like the traditional traffic forecasting frameworks. Hence,
the current-day model focuses on the last T timestamps of the present day
(prediction day) to capture the traffic pattern on the current day. Similar to
the historical model, in our current-day model we also perform spatio-temporal
aggregation on each timestamp network to find current day spatio-temporal
embedding Z<t>

Cu
for node u at timestamp t that has been shown in Fig. 3.

Final Embedding: After obtaining the desired embeddings for node u by apply-
ing spatio-temporal aggregation for T = 12 timestamps in the historical and
current-day model, the embeddings from both models are concatenated and
combined into final embedding ZFu

for each node u in input traffic network as
follows,

Z̃Fu
= Z<1>

Hu
‖ . . . ‖ Z<T>

Hu
‖ Z<1>

Cu
‖ . . . ‖ Z<T>

Cu
(5)

ZFu
= WF .Z̃Fu

(6)

where Z<t>
Hu

and Z<t>
Cu

represents the spatio-temporal embeddings from his-
torical and current-day models respectively for node u at timestamp t and WF

is the learnable weight parameter. Combining the embeddings from all times-
tamps in Eq. 5 enables our model to gain more expressiveness, in contrast exist-
ing models only focus on the embedding from last timestamp that limits the
expressiveness to some extent. Finally, we have used a two-layer neural network
to predict the traffic intensities at different nodes and update all the parameters
by optimizing supervised mean squared error(MSE) as the loss function.

4 Experimental Analysis

In this section, we describe datasets, dataset preprocessing, and experiment setup
followed by the elaborate analysis of observed results.

Dataset Description: To prove the effectiveness of our proposed model, we
have conducted experiments on three publicly available real-life traffic datasets
PeMSD7, PeMSD4, and PeMSD8 [7] that are widely used for performance com-
parison in previous works such as STGCN [13], ASTGCN [5], LSGCN [7].
PeMSD7 contains the traffic data of California that consists of the traffic speed
of 228 sensors with 832 road segments while the time span is from May, 2012
to June, 2012 (only weekdays). We choose the first month of traffic data as the
training set while the rest are split equally into validation and test set. PeMSD4
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consists of the traffic data of San Francisco with 307 sensors on 340 roads. The
time span of the dataset is January-February in 2018 and we choose the first
47 days as the training set while the rest are used as validation and test set.
Lastly, PeMSD8 consists of the traffic data from San Bernardino with 170 detec-
tors on 295 roads, ranging from July to August in 2016. We select the first fifty
days as the training and the rest are used as the validation and test set. All
three datasets contain traffic feature with an interval of five minutes. In all the
experiments, we consider traffic speed as the traffic feature for all three datasets.

Data Preprocessing: Adjacency matrix of the sensor network is constructed

using a thresholded Gaussian kernel, Aij = 1 only if i �= j and exp(−d2
ij

δ ) ≥ ε,
otherwise 0 where Aij determines edge between sensor i and j which is related
with dij (the distance between sensor i and j). To control the distribution and
sparsity of adjacency matrix A, we set the thresholds δ = 0.1 and ε = 0.5

Experimental Settings: The experiments are conducted on a Linux computer
(GeForce RTX2080 Ti GPU) where both historical and current-day model adopts
60 min time window i.e. previous 12 timestamps are used to predict traffic of the
next 15, 30, 45, and 60 min. In historical model, the input feature vector of each
node comprises the traffic speed of the last seven days while the current-day
model considers the traffic speed of the current day in the corresponding times-
tamp. For PeMSD7, we aggregate spatial information from the 2-hop neighbor-
hood while 4-hop neighbors are considered for the other two datasets. We train
our model by minimizing Mean Square Error (MSE) as the loss function with
ADAM optimizer for 500 epochs. For all the datasets, we set the initial learning
rate 0.001 with a decay rate of 0.5 every seven epochs. To report the performance
comparison among different models, we opt Mean Absolute Errors (MAE), Root
Mean Squared Errors (RMSE) and Mean Absolute Percentage Errors (MAPE)
as the evaluation metrics.

Table 1. Performance comparison in traffic prediction (Best, 2nd Best)

Datasets Models 15 min 30min 45min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PeMSD7 DCRNN (2018) 2.22 4.25 5.16 3.04 6.02 7.46 3.64 7.24 9.00 4.15 8.20 10.82

STGCN (2018) 2.24 4.01 5.28 3.04 5.74 7.46 3.61 6.85 9.26 4.08 7.69 10.23

ASTGCN (2019) 2.85 5.15 7.25 3.35 6.12 8.67 3.70 6.77 9.73 3.96 7.20 10.53

Graph WaveNet (2019) 2.17 3.87 4.85 2.90 5.40 6.86 3.23 6.29 8.06 3.75 7.02 9.58

LSGCN (2020) 2.22 3.98 5.14 2.96 5.47 7.18 3.43 6.39 8.51 3.81 7.09 9.60

SST-GNN(ours) 2.04 3.53 4.77 2.67 4.80 6.66 3.17 5.79 8.00 3.48 6.39 9.04

PeMSD4 DCRNN (2018) 1.35 2.94 2.68 1.77 4.06 3.71 2.04 4.77 4.78 2.26 5.28 5.10

STGCN (2018) 1.47 3.01 2.92 1.93 4.21 3.98 2.26 5.01 4.73 2.55 5.65 5.39

ASTGCN (2019) 2.12 3.96 4.16 2.42 4.59 4.80 2.60 4.97 5.20 2.73 5.21 5.46

Graph WaveNet (2019) 1.30 2.68 2.67 1.70 3.82 3.73 1.95 4.16 4.25 2.03 4.65 4.60

LSGCN (2020) 1.45 2.93 2.90 1.82 3.92 3.84 2.04 4.47 4.42 2.22 4.83 4.85

SST-GNN(ours) 1.23 2.53 2.37 1.82 3.47 3.69 1.84 3.86 3.93 2.13 4.45 4.69

PeMSD8 DCRNN (2018) 1.17 2.59 2.32 1.49 3.56 3.21 1.71 4.13 3.83 1.87 4.50 4.28

STGCN (2018) 1.19 2.62 2.34 1.59 3.61 3.24 1.92 4.21 3.91 2.25 4.68 4.54

ASTGCN (2019) 1.49 3.18 3.16 1.67 3.69 3.59 1.81 3.92 3.98 1.89 4.13 4.22

LSGCN (2020) 1.16 2.45 2.24 1.46 3.28 3.02 1.66 3.75 3.51 1.81 4.11 3.89

SST-GNN(ours) 1.03 2.08 1.86 1.39 2.80 2.67 1.62 3.28 3.20 1.74 3.57 3.50
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4.1 Experiment Results

Comparison with Baselines: In Table 1, we present the performance compar-
ison of our model named SST-GNN with the state-of-the-art models STGCN,
DCRNN, ASTGCN, Graph WaveNet and LSGCN in 15, 30, 45, and 60 min traf-
fic prediction. In Table 1, it is easy to observe that our model outperforms all
baseline models in both long and short-term predictions for all three evalua-
tion metrics on PeMSD7, PeMSD4, and PeMSD8. The second-best performance
has been observed for the recent work Graph Wavenet in dataset PeMSD7,
PeMSD4, and for LSGCN in PeMSD8. Graph Wavenet learns an adaptive adja-
cency matrix with different granularity whereas LSGCN analyzes long-term and
short-term patterns explicitly by employing attention-guided GCN and GLU. It
is obvious that our model is able to capture complex spatio-temporal relation-
ship more accurately through the proposed spatio-temporal aggregation scheme
to outperform both the Graph Wavenet and LSGCN with reasonable margins.
A number of architectural factors facilitate these improvements. Firstly, keeping
the representations from different neighboring junctions separate allows the pro-
posed model to learn the impact of different hop neighbors on the target node’s
traffic. Moreover, our model captures the important historical pattern (daily
pattern) by analyzing the data from the last seven days. The historical module
helps our proposed framework in both long-term and short-term prediction with
significantly better performance than Graph Wavenet, LSGCN, and other mod-
els. Thirdly, weighted/attention based aggregation of the representations from
the different time stamps facilitates long-term prediction. Careful observations
of Table 1 reveals that our model achieves significant performance in long-term
predictions (45, and 60 min) for all three datasets. Finally, the position encoding
helps our model to distinguish between different patterns that existed in different
parts of the day.

Table 2. Performance Comparison of Historical Model, Current-Day Model with SST-
GNN(combined model) on PeMSD8

Models 15 min 30 min 45 min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Current-day only 1.22 2.62 2.35 1.44 2.87 2.76 1.98 3.77 3.87 2.29 4.06 4.51

Historical only 1.93 3.94 3.85 2.21 4.23 4.36 2.24 4.26 4.41 2.47 4.55 4.70

SST-GNN 1.03 2.08 1.86 1.39 2.80 2.67 1.62 3.28 3.20 1.74 3.57 3.50

Ablation Study on Contributions from Current-Day and Historical
Models: We perform ablation analysis to determine which part of the model
brings the main performance gain. In Table 2, we present the performance
comparison among current-day model, the historical model, and the combined
SST-GNN model on PeMSD8. We observe that the performance of current-day
model is competitive with the state-of-the-art models showing the effectiveness
of spatio-temporal aggregation scheme with current-day traffic data. Though
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Table 3. SST-GNN’s performance on PeMSD8 while trained on PeMSD7

Models 15min 30 min 45 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

LSGCN (trained
with PeMSD8;
tested on PeMSD8)

1.16 2.45 2.24 1.46 3.28 3.02 1.66 3.75 3.51 1.81 4.11 3.89

SST-GNN(ours)
(trained with
PeMSD7; tested on
PeMSD8)

1.14 2.12 2.07 1.46 2.76 2.71 1.54 3.15 3.00 1.94 3.69 3.74

only the current-day model or historical model can not outperform the base-
lines, the combined model achieves significant performance gain, demonstrating
the significance of both historical and current day traffic data on performance
gain.

Generalization Ability: To observe the generalization ability of SST-GNN,
we train it with PeMSD7 and test it on PeMSD8. Particularly, the PeMSD7
dataset doesn’t include any weekends. However, the PeMSD8 dataset is com-
paratively large and it contains both weekdays and weekends. We compare our
performance with LSGCN where the LSGCN has been solely trained and tested
with PeMSD8. From Table 3, it is easy to notice that our proposed model’s per-
formance (trained with PeMSD7; tested on PeMSD8) outperforms LSGCN while
even the LSGCN is trained and tested with the PeMSD8. The only exceptions
are the MAEs for 30 min (equal MAEs) and 60 min. The results demonstrate
that though the PeMSD7 does not have weekends, the SST-GNN with posi-
tional encoding allows proper attentional weights towards historical weekdays
and weekends as well as the current day pattern for the test data.

Fig. 4. Different periodic daily patterns on weekdays and weekends on PeMSD8. On the
left, we can see speed decreases in morning peak and evening rush hours on weekdays
whereas different traffic patterns are present on weekends.
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Traffic Periodicity on Weekends and Weekdays: In Fig. 4, we plot the traf-
fic speed of two consecutive weekdays and weekends from the PeMSD8 dataset
to show how our model has learned the daily periodicity. The left column of
plots demonstrates ground truths and predictions for two consecutive weekdays
whereas the right column of plots depicts the ones for two consecutive weekends.
In Fig. 4, we can notice that our model can capture the daily periodicity and
generalize among different time periods of the weekdays and weekends perform-
ing better than STGCN as our models prediction curve is more close to ground
truth. In other words, the model can sufficiently distinguish the daily patterns
between weekdays and weekends while capturing the historical and current-day
patterns. Particularly, the model captures the normal weekend patterns with
slower traffic around the afternoon (previous weekend). It can also generalize
sufficiently well in morning peaks and evening rush hours for weekdays as it can
see the periodicity information from past weekdays through positional encoding.

5 Conclusion

Traffic data include repeated patterns on a daily and weekly basis. To capture the
periodicity in traffic data, we design a novel spatial-temporal traffic forecasting
framework that includes two different models namely historical and current-day
model. The historical patterns are captured by observing the traffic history of
the past seven days while the current-day model deals with the current day traf-
fic data. Both of the models capture the spatial interrelation from different hop
neighborhoods by separately aggregating different hop neighbor representations
while temporal dependency is captured via a weighted spatio-temporal aggrega-
tion scheme. Again, we added relative positioning to the node’s representation
so that our model can distinguish traffic pattern variations from the different
periods of a day as well as can discriminate different days in a week. The exper-
imental analysis of real-life datasets verifies the effectiveness of our model in
capturing the periodicity of traffic data.
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Abstract. Learning low-level node embeddings using techniques from
network representation learning is useful for solving downstream tasks
such as node classification and link prediction. An important consideration
in such applications is the robustness of the embedding algorithms against
adversarial attacks, which can be examined by performing perturbation on
the original network. An efficient perturbation technique can degrade the
performance of network embeddings on downstream tasks. In this paper,
we study network embedding algorithms from an adversarial point of view
and observe the effect of poisoning the network on downstream tasks. We
propose VIKING, a supervised network poisoning strategy that outper-
forms the state-of-the-art poisoning methods by up to 18% on the original
network structure. We also extend VIKING to a semi-supervised attack
setting and show that it is comparable to its supervised counterpart.

1 Introduction

Several network analysis problems involve prediction over nodes and edges in a
network. Traditional network science methods achieve this by analyzing networks
using graph properties (such as centrality based techniques) or network factor-
ization [4]. These methods are slow and do not scale very well. Advancements
in NLP, especially word vectors [11] have inspired several embedding algorithms
for graph data as well. This family of embedding algorithms uses random walks
to sample neighboring nodes and optimizes node embeddings to minimize a pre-
defined objective (e.g. Deepwalk [12] and Node2Vec [7]).

Even though network embeddings have recently gained considerable atten-
tion, embedding algorithms have not been studied to check their robustness to
attacks in the network. Network attacks can generally be classified into whitebox
attacks (where all information including parameters of the learned classifier and
the model used are known) and blackbox attacks (where no information about the
system is known; however, access to predictions is available). Blackbox attacks
on networks can happen in two ways, viz. poisoning and evasion attacks. Poison-
ing attacks modify the network before the algorithm/model is trained; whereas
evasion attacks focus on fooling a model after it has been trained [3].

In this work, we focus on developing a black-box attack method (blind to
the embedding algorithm used) and achieve it via network poisoning. Although
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12714, pp. 103–115, 2021.
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adversarial attacks can happen in several ways, as far as undirected, unattributed,
and unweighted networks are concerned, the only applicable poisoning attack is
either the addition of an edge or the removal of an edge. These attacks are simply
referred to as edgeflipping. A significant portion of studies pertains to developing
adversarial attacks on image data. However, several recent efforts [5,15,16] have
also shed light on adversarial attacks on semi-supervised network learning mod-
els such as Graph Convolutional Networks (GCNs) [8]. However, there has been
a lack of studies that explore the effect of perturbations on an unsupervised node
embedding method. We are particularly interested in probing how the absence of
a supervision signal during embedding affects such attacks.

We focus on homogeneous non-attributed networks, i.e., networks in which
nodes do not have any attribute; all nodes represent the same kind of entity;
and all edges are undirected and unweighted. We propose adversarial attack on
network embeddings via supervised network poisoning (VIKING), which,
unlike previous strategies, incorporates supervision during attack time (in the
form of node labels). Our investigation shows that VIKING, even in a semi-
supervised setting, is extremely effective. It is able to degrade the performance of
the unsupervised embedding methods (and supervised embedding methods like
GCN as well), leading to a decrease in the micro F1-score for node classification
(up to 19% when applied on synthetic networks and up to 18% when applied
on three real-world networks). VIKING also performs efficiently on the link pre-
diction task, decreasing average precision by up to 50%. The semi-supervised
counterpart of VIKING performs similar to the other baseline methods, demon-
strating the possibility of attacks even with partial knowledge.

In short, our contributions are summarized below:

– We develop VIKING a generic adversarial attacking framework for discrete
network features.

– We quantify the assumption of homophily behind random walk based embed-
ding methods using node labels.

– We develop a supervised attacking strategy using the above label-based
heuristic.

– We extend VIKING to a semi-supervised setting (VIKINGs) and show that
it is equally effective.

Reproducibility: The code and the datasets are public at the following link:
https://github.com/virresh/viking.

2 Related Work

We focus on scalable node embedding approaches (mostly based on random
walks) due to their flexibility for downstream tasks. For a survey on embedding
methods and the advancements, readers are referred to [6]. In the present work,
our focus is on analyzing the vulnerability to adversarial attacks of those methods
that do not have access to supervision signals for embedding (like Deepwalk [12],
Node2Vec [7], LINE [7]) or partial access (like GCN [8]).

https://github.com/virresh/viking
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Attacks on networks have often focused on exploiting some model param-
eters. In [15] GCN is linearized for attacking, [5] creates adversarial examples
using reinforcement learning approach, [16] exploits meta-gradients for attack-
ing. However, [2] develops a poisoning strategy for attacking networks, they
only leverage the information of loss function. It is possible to use supervision
to degrade the performance of embedding methods; however to the best of our
knowledge, no study has investigated such supervised attack methods for random
walk based embedding approaches.

3 Preliminaries

In order to design an adversarial attack, we take the formal problem definition
from [2], which is a bi-level optimization problem and break it down to a rel-
atively easier problem. To limit the attacker’s activities, we assume a budget
restriction. We focus on a variety of embedding approaches such as – random
walk based approaches (DeepWalk and Node2Vec), large scale embedding algo-
rithm (LINE) and a semi-supervised embedding method (GCN). We consider
networks denoted by G = (V,E) such that they are unweighted, unattributed
and undirected, with V denoting the set of vertices and E denoting the set of
edges.

Let A ∈ {0, 1}|V |×|V | be the adjacency matrix associated with network G.
The goal of learning network embeddings is to learn a representation Z = [zv] ∈
RK for each node v ∈ V such that K << |V |. Such embeddings (Z) are then
used by a downstream function ζ to perform an end task. As an attacker, our
goal is to flip some values in A so that the new adjacency matrix A′ results
in learning embeddings Z ′ = [z′

v] which in turn results in comparatively worse
performance for the downstream function ζ.

In most practical scenarios, there are constraints to the amount of perturba-
tion allowed on the network. Therefore, we fix a budget of b flips in total. Every
flip f changes A, such that ||A′ −A||0 = 2. Thus, this problem boils down to the
following bi-level optimization:

(A′)∗ = argmax
A′

Δ(A′, Z∗) (1)

Z∗ = argmin
Z

ζ(A′, Z) (2)

subject to |A′ − A|0 = 2b. Δ is the loss function that we will have to design
specific to the problem and ζ is the embedding algorithm’s loss.

Solving this optimization problem is challenging. We shall solve this bi-level
optimization problem approximately by converting it to a single optimization
problem and use a simple brute-force solution. To achieve this, we will decouple
the embeddings Z∗ from the attacking function and replace it with a proxy
(defined in Sect. 4.1).
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4 Network Poisoning Strategy

In this section, we begin by describing the general attacking framework to decide
which edges to flip, followed by our approach where we plug in a parameter in
the general attacking framework that makes use of supervision in the time of
attack, and then propose a simple semi-supervised extension.

4.1 Generic Poisoning Framework

Adding or removing an edge leads to the flipping of two symmetric entries in
an adjacency matrix. We form a candidate edge set from which some edges will
be chosen for addition or removal as required. The procedure to compute the
candidate edge set is as follows:

– Edges to be removed: We randomly mark one edge attached with each
node as safe. These edges will not be removed during the poisoning attack.
All the unsafe edges now belong to our candidate edge set. This ensures that
there are no isolated vertices introduced in the resultant network even if we
remove all the edges from the candidate edge set. However, if there were
isolated vertices present in the network, then they will remain as is.

– Edges to be added: Since all non-edges in the original network can be
potentially added, we compute the adjacency matrix of the network com-
plement and then include each edge in the upper triangular portion of the
matrix (to avoid repetitions) in our potential edge addition set. Since this
set is generally large, we randomly sample a reasonable number of candidate
edges from this set.

As mentioned before, we need to constrain our attack with a budget of b edge
flips. Accordingly, we assign an importance value impe to every edge of the candi-
date set. This importance value shall determine the top b edges to be flipped and
give us the optimized poisoned network A′ (i.e., the adjacency matrix).

In the general attack strategy, there can be several ways to determine impe;
however, we discuss here a simple method to compute the importance value
for each candidate edge with respect to a particular graph property/feature d.
Suppose there is a node feature d that we want to attack (e.g., node centrality
or degree). Let us restrict d to be a discrete variable having at most D possible
values (in case of continuous values, we can just set this to the dimensionality
of the feature). We can then represent a feature matrix as F ∈ {0, 1}|V |×D.
The key insight into developing this attack is to observe that embeddings aim
to preserve similarity in the embedding space. Thus, if all nodes have the same
feature value, then that feature becomes useless in the embedding space.

Hence, our objective is to make this feature value of each node as close to
each other as possible. For this purpose, we compute impe of each candidate
edge flip by some function (let’s say θ) of the feature/property d with respect to
the new attacked graph A′. i.e.:

impe = C − θ(F,A′) (3)

where C is a constant and θ is our defined loss.
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In order to compute θ, we can “aggregate” the neighbour features by multi-
plying the adjacency matrix with feature matrix and weight them elementwise
by the original node’s feature value ((A × F ) ◦ F ); where ◦ represents element-
wise multiplication. Since this vector is arbitrary, we will normalize this with
the unweighted equivalent (A×F ) and compare the distance (l2 norm) with the
normalized importance of the original graph, in order to call it impe. Note that
even though this impe is for determining the importance of a candidate edge, it
assigns a value to the whole graph after the edge e was flipped. These operations
can be summarized as follows

θ(F,A′) = ||(diag(
∑

(A′ × F )))−1
∑

((A′ × F ) ◦ F )||2 (4)

where
∑

represents the summation across first dimension (resulting in a vector
of |V | × 1 for G = (V,E)). A′ is the poisoned graph after flipping exactly one
edge e and F is the feature matrix as defined above. Since we are comparing the
importance across several flips with the original graph (A), we treat C as the
importance of the original graph, i.e.: C = θ(F,A).

We describe the motivation for choosing such a loss function. The multipli-
cation of two binary matrices A ∈ {0, 1}|V |×|V | and F ∈ {0, 1}|V |×D produces
a new matrix AF ∈ W

|V |×D with features accumulated from its neighbors.
Element-wise multiplication with F again weights out the aggregated values for
each node by its own feature value. A row-wise summation

∑
(AF ◦ F ) ∈ W

|V |

provides a numeric characterization with which we can approximate its close-
ness to a given value. The division by

∑
AF is done for normalization and allows

computing distance of the numeric characterization using a constant value.

Importance of Using Constant C: We aim to bring the feature values of
each node as close to each other as possible. One way of achieving this would be
to bring the numeric characterization of feature values for each node as close to
a fixed constant as possible. This will automatically imply bringing the values
for each node closer to each other. Thus C is a scalar which allows us to choose
the value at which we want our feature values in F to converge.

Now we can convert our bi-level optimisation to a single objective – mini-
mizing impe. This is the proxy that can be used instead of embeddings Z∗ in
Eq. 1. As for solving the objective Δ, we can simply use the following brute force
approach:

For every edge flip e, we can assign an importance value to the attacked graph
(A′) with impe and then sort the candidate edge set in descending order of the
importance values. Now we can pick top b edges from this sorted candidate edge
set to obtain the final attacked graph (A′)∗.

To summarize, the higher the importance of a flip, the more number of node
features will be brought closer on flipping that edge.

This method constitutes our generic attack framework. We can use a known
node importance measure instead assuming a generic feature d, such as vertex
degree or node centrality. This framework can thus be used for both unsuper-
vised, semi-supervised or supervised attacks. To use it in unsupervised fashion,
one can use a node-property that can be computed from the graph. To use
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Algorithm 1. VIKING algorithm
Input: Adjacency matrix A of network, candidate set CS for possible edge flips
Parameter: Constant C, flip budget b
Output: Adjacency matrix A′ of the poisoned network

1: for all flip f in CS do
2: Compute impf = θ(Fη, A′)
3: end for
4: sort CS on the basis of Δf in decreasing order
5: choose topf = First b flips from sorted CS
6: apply topf to A
7: return A′

it in supervised or semi-supervised fashion, we just need to use an external
information such as node-labels. We will show its utility as a supervised and
semi-supervised method in the following sections.

4.2 VIKING: Our Proposed Poisoning Strategy

In this section, we provide a logical choice for the feature matrix F . For this
purpose, we first recall why the word vector approach works. As stated in [11],
embeddings try to capture similarity i.e., – “birds of a feather flock together”.
This is an instance of homophily which is exhibited in several real-world net-
works, and this is the insight that makes network embeddings a useful tool.
Thus an ideal candidate for F would be a parameter that quantifies homophily
at every node.

For this purpose, let us define for every node an intracommunity-
intercommunity ratio η = nsame(x)

ndiff (x)
, where ndiff (x) is the number of neighbors

of x that do not belong to the same community as x, and nsame(x) is the num-
ber of neighbors of x that belong to the same community as x. As shown in
Sect. 4.1, the generic loss function makes η converge to a constant value of our
choice. Algorithm 1 summarizes VIKING. In order to estimate η, we only need
to replace F in Eq. 3 by the community label matrix Fη of the given graph (i.e.,
a one-hot representation of the community labels of every node in the graph),
where Fη ∈ W

|V |×α, α is the number of unique labels/communities, and W rep-
resents the set of whole numbers. This particular computation of η is natively
supported by our generic attack framework by simply plugging in the labels.
This will result in the following objective:

(A′)∗ = argmin
A′

C − θ(Fη, A′) (5)

Time Complexity: We choose to select k|E| edges for addition (for some con-
stant k) and at most |E| edges for removal. Assuming that the average degree in
the network is d, the time complexity of VIKING is O(|E||V |d) which is linear
in the number of edges.
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Table 1. Network statistics. The flip budget shown here is default.

Network #nodes #edges Flip budget (%) #communities

LFR 1000 11000 1000 (9.09) 3

Cora 2810 7981 1000 (12.25) 7

ForestFire 1000 2721 500 (18.37) 30

PolBlogs 1222 16717 1000 (5.98) 2

CiteSeer 2110 7388 1000 (18.74) 6

4.3 VIKINGs: Semi-supervised Extension

To extend VIKING into a semi-supervised setting, we apply a learned feature
matrix F ′

η instead of using the ground-truth Fη. This can be done using the node-
classification task. First, we generate initial unsupervised embeddings Z0 using an
embedding method (skipgram DeepWalk in this case), and use these embeddings
in conjunction with a logistic regression classifier trained with x% of ground-truth
community labels (we take x = 10). The logistic regression is then used to predict
F ′

η, the surrogate label matrix to be used in place of L in Eq. 5. The edges selected
by VIKINGs can then be flipped and the resultant poisoned graph can be used for
different downstream tasks (node classification and link prediction).

5 Datasets

We use two kinds of networks for the evaluation. Table 1 provides the statistics
of the networks.

Synthetic Networks: We use two synthetic network generators:

(i) LFR networks are commonly used as benchmark for community detection
in networks [9]. We treat every community as a class/label to train a node
classifier. We perform experiments on different networks by choosing the power
law exponent for the degree distribution to be 3, the power law exponent for
the community size distribution to be 2, the desired average degree of nodes to
be 20, the minimum size of communities to be 200, and varying the fraction of
intra-community edges incident to each node (μ).

(ii) Forest Fire is another method for generating graphs. Since it doesn’t
directly provide us community structure, we use Louvain algorithm [1] for cre-
ating community partitions. The graph is generated using the forest fire model
[10], for 1000 nodes with parameters forward burning rate of 0.4 and a backward
burning rate of 0.2.

Real-World Networks: We used three standard, publicly available datasets for
this purpose. These datasets are the same as the ones used in [2]. The first of them
is the Cora dataset which is a citation network. The second dataset is PolBlogs.
It is a network of political blogs belonging to either rightwing or leftwing, leading
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Table 2. Micro F1-scores for node classification (three edge flip strategies: A: Addition,
R: Removal, C: Combination) and average precision for link prediction (LP) on real
world and LFR networks (μ = 0.3). For link prediction, we only report results for
edge deletion which has major impact on the embedding methods (effect of other edge
flipping strategies is not shown here due to lack of space). The results of the best
method and the second ranked method are highlighted in bold and red, respectively.
Lower value implies more efficiency to attack the embedding methods.

Method
SVD DeepWalk Skipgram DeepWalk Node2Vec LINE GCN

A R C LP A R C LP A R C LP A R C LP A R C LP

(a
)

C
o
ra

Clean 0.82 0.82 0.82 0.95 0.81 0.80 0.81 0.95 0.77 0.79 0.76 0.95 0.76 0.74 0.73 0.95 0.79 0.78 0.79 0.59

Random 0.76 0.81 0.78 0.90 0.74 0.80 0.76 0.92 0.70 0.77 0.71 0.91 0.69 0.71 0.72 0.91 0.76 0.78 0.76 0.53

UNSUP 0.81 0.76 0.76 0.89 0.79 0.73 0.72 0.93 0.75 0.68 0.67 0.90 0.73 0.62 0.61 0.93 0.77 0.75 0.74 0.46

VIKINGs 0.73 0.79 0.74 0.89 0.70 0.77 0.70 0.92 0.64 0.74 0.59 0.89 0.69 0.72 0.69 0.91 0.74 0.78 0.73 0.52

VIKING 0.72 0.77 0.72 0.89 0.68 0.75 0.68 0.91 0.65 0.71 0.58 0.90 0.67 0.69 0.68 0.90 0.73 0.74 0.72 0.49

(b
)

P
o
lB

lo
g
s Clean 0.95 0.95 0.95 0.77 0.95 0.95 0.95 0.46 0.95 0.95 0.95 0.37 0.93 0.94 0.93 0.63 0.96 0.96 0.96 0.35

Random 0.94 0.95 0.95 0.76 0.93 0.95 0.95 0.46 0.94 0.95 0.94 0.41 0.93 0.94 0.93 0.64 0.94 0.95 0.95 0.39

UNSUP 0.95 0.95 0.94 0.77 0.95 0.95 0.95 0.46 0.95 0.94 0.95 0.32 0.93 0.91 0.91 0.65 0.80 0.93 0.94 0.40

VIKINGs 0.84 0.90 0.84 0.76 0.83 0.89 0.83 0.45 0.85 0.90 0.84 0.36 0.90 0.89 0.90 0.62 0.90 0.90 0.90 0.36

VIKING 0.83 0.90 0.83 0.76 0.81 0.89 0.81 0.45 0.82 0.89 0.84 0.33 0.90 0.88 0.90 0.63 0.90 0.90 0.90 0.36

(c
)

C
it

eS
ee

r Clean 0.69 0.69 0.69 0.88 0.67 0.66 0.66 0.95 0.66 0.65 0.66 0.92 0.58 0.59 0.57 0.95 0.64 0.63 0.64 0.40

Random 0.56 0.60 0.55 0.72 0.53 0.57 0.54 0.82 0.51 0.57 0.52 0.80 0.51 0.57 0.52 0.81 0.55 0.57 0.55 0.09

UNSUP 0.63 0.52 0.52 0.77 0.55 0.50 0.48 0.91 0.53 0.45 0.47 0.85 0.49 0.38 0.38 0.91 0.59 0.52 0.59 0.10

VIKINGs 0.54 0.58 0.54 0.76 0.51 0.60 0.51 0.85 0.49 0.57 0.49 0.77 0.50 0.49 0.51 0.84 0.55 0.58 0.55 0.10

VIKING 0.50 0.60 0.49 0.74 0.46 0.56 0.46 0.81 0.44 0.56 0.45 0.76 0.45 0.50 0.46 0.79 0.51 0.55 0.51 0.08

(d
)

L
F
R

Clean 0.63 0.63 0.63 0.63 0.75 0.74 0.75 0.35 0.59 0.62 0.60 0.34 0.71 0.71 0.71 0.38 0.59 0.58 0.59 0.13

Random 0.62 0.61 0.62 0.65 0.73 0.73 0.72 0.45 0.60 0.60 0.57 0.34 0.70 0.71 0.70 0.37 0.60 0.50 0.58 0.13

UNSUP 0.59 0.58 0.58 0.62 0.73 0.70 0.71 0.48 0.59 0.59 0.56 0.32 0.67 0.66 0.67 0.41 0.52 0.50 0.60 0.13

VIKINGs 0.57 0.58 0.58 0.60 0.72 0.68 0.71 0.36 0.59 0.58 0.58 0.35 0.67 0.69 0.67 0.33 0.62 0.57 0.55 0.10

VIKING 0.56 0.55 0.55 0.59 0.68 0.63 0.67 0.38 0.57 0.59 0.56 0.34 0.67 0.66 0.66 0.32 0.50 0.60 0.53 0.11

(e
)

F
F
ir

e

Clean 0.76 0.76 0.76 0.69 0.67 0.65 0.67 0.76 0.51 0.49 0.49 0.55 0.67 0.67 0.66 0.70 0.82 0.82 0.82 0.55

Random 0.57 0.73 0.60 0.64 0.53 0.65 0.55 0.69 0.33 0.42 0.40 0.46 0.54 0.65 0.58 0.61 0.58 0.65 0.60 0.22

UNSUP 0.70 0.63 0.64 0.60 0.61 0.56 0.57 0.73 0.43 0.42 0.41 0.49 0.63 0.50 0.50 0.58 0.69 0.68 0.66 0.17

VIKINGs 0.56 0.67 0.57 0.53 0.52 0.58 0.52 0.62 0.37 0.39 0.29 0.41 0.55 0.55 0.54 0.52 0.58 0.59 0.59 0.13

VIKING 0.57 0.63 0.57 0.57 0.53 0.58 0.54 0.66 0.38 0.42 0.37 0.45 0.57 0.53 0.56 0.54 0.57 0.59 0.58 0.13

to binary classification. The third dataset is the CiteSeer dataset which is also
a citation network.

6 Experimental Evaluation

The evaluation of our poisoning strategy is done using two downstream tasks –
node classification and link prediction. For node-classification, network embed-
dings of the poisoned network are generated using an unsupervised embedding
method and used as features within a simple logistic regression. The logistic
regression is trained on the network embeddings obtained after poisoning the
network. Only 10% of the available node labels are used for training logistic
regression. Micro F1-scores are reported by averaging over 10 runs. Similarly for
link-prediction, we compute cosine similarity of embeddings for node pairs and
use it as prediction score for computing average precision (AP).

For evaluation, we use two techniques of generating candidate edges discussed
in Sect. 3, viz addition and removal. Additionally, we combine both these in a
combined strategy to observe the effect of using both the candidates together in
the experiments.

Competing Methods: The following are the competing methods: (i) “Clean”
refers to the clean network before poisoning; (ii) “Random” refers to the random
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Fig. 1. Variation of performance with μ on LFR networks for (a) node classification,
and (b) link prediction. μ varies from 0.1 to 0.7. Note that on extreme μ values, the
attack methods fail to significantly reduce the accuracy.

edge flip baseline; (iii) “UNSUP” refers to the unsupervised poisoning baseline
used in [2]; (iv) “VIKING” refers to results when the network is poisoned using
our proposed method (Sect. 4.2); and (v) “VIKINGs” refers to the semi-supervised
version of VIKING (Sect. 4.3).

Embedding Methods: We run all experiments using three unsupervised
embedding algorithms – DeepWalk, Node2Vec, and LINE. For DeepWalk, we
use two variants – the Skipgram version [12] and the SVD version [13]. The
SVD version of DeepWalk approximates the objective of random walks by using
matrix factorization. For Node2Vec, we use the author’s original implementation
provided in the SNAP package1. Similarly for LINE, we use the author’s original
implementation2.

We also use a semi-supervised method – Graph Convolutional Network
(GCN, [8]). For GCN, we use a two level network with the middle layer’s size
equal to the embedding dimension and final layer’s size equal to the number of
communities. These are trained with the node labels; hence these embeddings
do not perform well on the link-prediction task relative to the node community
labels. The GCN network is implemented with the help of DGL library [14].

Performance Over Tasks: Table 2 shows that VIKING performs well over
both node classification and link prediction. However, even its semi-supervised
setting, VIKINGs performs comparable to the supervised counterpart. On real-
world datasets, VIKING performs extremely well, achieving at least 13% score
reduction on each dataset using Skipgram DeepWalk. The attack strategy is also
effective across various random walk based methods such as Node2Vec (LINE),
resulting in decrements of up to 18% (9%) in Cora, 13% (6%) in PolBlogs, and
18% (20%) in Citeseer network. In most tasks across all the networks, VIKING
and VIKINGs outperform the baseline attacking strategies.

1 http://snap.stanford.edu/node2vec/.
2 http://github.com/tangjianpku/LINE.

http://snap.stanford.edu/node2vec/
http://github.com/tangjianpku/LINE
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Fig. 2. Performance variation with budget for (a) node classification, and (b) link
prediction on PolBlogs network. For both tasks, the performance shows a sharp decrease
with VIKING outperforming others.

Since the absolute budget for all the networks is same (except Forest Fire
in which the number of edges is already quite low), i.e., 1000 (Table 1), we see
that the least performance degradation is in PolBlogs, which is expected because
the fraction of edges flipped is small. This is also confirmed by Fig. 2. Also, the
number of unique labels does not seem to affect the performance of our attack.
VIKING is successful in all three networks where the number of unique labels
ranges from 2 to 7.

Effect of Community Mixing (μ) in LFR Networks): Figure 1 shows the
performance on the LFR network by varying μ from 0.1 to 0.7. Similar pattern
is observed with VIKING outperforming others at every value of μ. We report
values on LFR graphs at a non-extreme generator parameter μ = 0.3 in Table 2.
Even for synthetic network, VIKING and VIKINGs dominate as the strategies
for attacking with a decrease in performance of 4% and 5% on Node2Vec and
LINE, respectively. VIKING is clearly a better attacking strategy across the
various embedding methods considered.

Side-by-Side Diagnostics: Interestingly, for link prediction, sometimes the
results seem counter intuitive. For example, in Skipgram DeepWalk embeddings
for LFR graphs, we observe that on all the poisoned graphs, the performance
has actually improved (across all poisoning strategies) by a score of 1 − 13%.
However, the increase is least in case of VIKING and VIKINGs. It seems to be
a result of insufficient attack budget and remains a limitation of VIKING along
with other strategies.

Effect of Varying Budget b: Since PolBlogs has the maximum number of
edges amongst all the networks, we use it to observe how the budget affects
the accuracy of the downstream task. Candidate edges have both addition and
removal involved. Figure 2 clearly shows that VIKING is better than other alter-
natives in both node classification (Fig. 2(a)) and link prediction (Fig. 2(b)).



VIKING 113

Inspecting Performance of Semi-supervised Approach: So far, we assu-
med full knowledge of the underlying network (training dataset only). Here, we
discuss the observations without using full knowledge of node labels. Table 2 also
shows the performance of various embedding methods in the semi-supervised
attack setting with VIKINGs. The attack is successful even with partial knowl-
edge. An attacker does not need to know the labels of all the nodes; information
of even 10% labels can be effective (refer Sect. 4.3 for details on strategy).

Analysing Adversarial Edges: To investigate if the edges selected by
VIKING have any distinct characteristics that may be used to eliminate usage
of labels, we analyse node degrees and edge betweenness centrality values of the
selected edges from Cora. Figures 3 (a, c) show a logarithmically binned heatmap
of fraction of adversarial edges w.r.t. total number of edges for each degree.
Nodes across all – low, medium and high – degrees are used in the adversarial
edges. Figures 3 (b, d) show the distribution of edge centrality of both adversarial
and non-adversarial edges. The distribution of both adversarial (red) and non-
adversarial (green) edges is extremely close. Both the distributions peak at the
same edge betweenness centrality value (0.0005 and 0.001 after normalisation in
Figs. 3(b) and 3(d), respectively) and have a similar spread of distribution. We
conclude that developing the attack heuristic isn’t trivial and simple measures
like degree and centrality are not sufficient to detect edges selected by VIKING.

Fig. 3. Analysis of adversarial edge properties: (a, c) degree distribution of nodes on
adversarial edges; (b, d) betweenness centrality distribution of adversarial edges. The
distribution of properties such as node degrees and edge centralities do not suggest any
intelligent heuristic. (a)–(b) correspond to Cora; (c)–(d) correspond to Citeseer. (Color
figure online)
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7 Conclusions

We studied the robustness of random-walk based embeddings and measured
the performance of our heuristic method for supervised poisoning attacks on
network data. We presented VIKING, a generic framework for adversarial poi-
soning attacks on networks. The experiments performed on multiple datasets
included comparisons with existing methods to establish the effectiveness of
VIKING. Furthermore, a semi-supervised extension of VIKING was also tested
which demonstrates the efficacy of poisoning attacks even with partial label
knowledge. Based on the current study, we conclude that in network science an
important need is to develop robust embedding methods for large-scale networks.

Acknowledgments. The work was partially supported by ECR/2017/00169 (SERB)
and the Ramanujan Fellowship.
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Abstract. Graph representation learning aims to convert the graph-
structured data into a low dimensional space in which the graph struc-
tural information and graph properties are maximumly preserved. Graph
Neural Networks (GNN)-based methods have shown to be effective in
dealing with the graph representation learning task. However, most
GNN-based methods belong to supervised learning, which depends heav-
ily on the data labels that are difficult to access in real-world scenarios.
In addition, the inherent incompleteness in data will further degrade the
performance of GNN-based models. In this paper, we propose a novel self-
supervised graph representation learning model with variational infer-
ence. First, we strengthen the semantic relation between node and graph
level in a self-supervised manner to alleviate the issue of over-dependence
on data labels. Second, we utilize the variational inference technique
to capture the general pattern underlying the data, thus guaranteeing
the model robustness under some data missing circumstances. Extensive
experiments on three widely used citation network datasets show that
our proposed method has achieved or matched state-of-the-art results on
link prediction and node classification tasks.

Keywords: Graph representation learning · Self-supervised learning ·
Variational inference

1 Introduction

In recent years, graph representation learning has raised a surge of interest
[8,19,22]. It aims to model the graph-structured data with an efficient repre-
sentation that can generalize well to a wide range of downstream graph mining
tasks, such as node classification, link prediction, community detection, etc. Gen-
erally, the graph-structured data in real life contains the graph topology and a
large amount of high-dimensional attribute information. For example, in the
Twitter network, there exists both friend relationships (topology) and user por-
traits (attribute information). Furthermore, each node in the graph belongs to a
specific category, which is difficult to achieve in reality. In the field of computer
vision, many works try to use data augmentation strategy [23,24] to get more
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12714, pp. 116–127, 2021.
https://doi.org/10.1007/978-3-030-75768-7_10
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Fig. 1. The overall framework of SGRLVI. The topology and properties of graph G are
first fed into the GCN encoder to obtain the nodes’ distribution, which is constrained
to approximate the standard Gaussian distribution. We sample the Gaussian represen-
tation of each node through the reparameterization trick [11] and then calculate the
graphical semantics accordingly. We regard the original graph G as the positive graph.
In addition, we construct two negative graphs and obtain the corresponding Gaussian
representations of the negative nodes. All the positive and negative representations are
utilized to conduct the contrastive self-supervised learning. Finally, the representations
of positive graph nodes are exploited for topology generation.

labeled data to improve the supervision of model training, such as image flip-
ping and image rotating. However, such data augmentation strategies are not
suitable for graph-structured data because flipping and rotating operations can
neither change the adjacent structure nor the attribute information of the graph.
Therefore, an unsupervised graph representation learning method that does not
require label information during training shows its flexibility and becomes a
challenging problem to be solved urgently.

Thanks to the recent emergence of self-supervised learning methods [14],
many works seek to obtain valuable information based on the data itself to
strengthen the model training process to achieve better performance. In natural
language processing and computer vision, high-quality continuous representa-
tions can be trained in a self-supervised manner by predicting context informa-
tion or solving various pretext tasks [2,20]. However, most graph representation
learning algorithms adopt labels as external guidance, which are hard and expen-
sive to access. Many researchers have proposed unsupervised countermeasures
[4] in response to such a situation while requiring sophisticated design and rich
professional knowledge. Accordingly, in the graph mining domain, whether it is
possible to train a representation learning model by relying solely on the abun-
dant unlabeled data itself in a self-supervised way has become a problem that
researchers are committed to solving. One important work, namely DGI [26],
sets the goal to maximize mutual information to train graph representation.

In this paper, we propose a novel self-supervised graph representation learn-
ing model with variational inference (SGRLVI) that gets rid of the dependence
on labels. The model does not require manually sophisticated design or rich
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professional knowledge but supervises the training process by extracting critical
information from the abundant unlabeled data itself. As illustrated in Fig. 1,
through the graph convolutional network (GCN) encoder, we obtain the Gaus-
sian representations of each node and calculate the graphical semantic represen-
tation accordingly. By jointly optimizing the contrastive learning module and
topology generation as the training objective, high-quality node representation
can be learned. Moreover, the generative model of variational autoencoder (VAE)
is introduced into our model to tackle the problem of incompleteness in data.

Extensive experiments are conducted on three widely used datasets. The
results confirm the rationality of our proposed model, which can achieve or
match state-of-the-art results on link prediction and node classification tasks.

2 Related Work

2.1 Self-supervised Learning

Self-supervised learning has attracted significant research interests due to its
ability to use custom pseudo-labels as supervision and avoid over-dependence on
data labels [9]. It has successfully exhibited strong performance in many fields,
such as computer vision [2], natural language processing [20], and robotics [10].
Currently, mainstream self-supervised learning models can be mainly divided
into generative learning and contrastive learning [14]. The former one is mainly to
reconstruct the original data through auto-regressive models and autoencoders.
Unlike the generative model, contrastive learning is a discriminative method,
which aims to group the samples with similar representations in the embedding
space closer and vice versa. In computer vision, the commonly used method is to
adopt data augmentation techniques (e.g., image rotation) to get more positive
samples and then train the model to access the ability to distinguish positive
or negative samples. However, such kind of data augmentation techniques are
not suitable for graph-structured data. In this work, our approach is to achieve
contrastive self-supervised learning on graphs based on the perspective of natural
language without any external reliance on labels.

2.2 Graph Representation Learning

Traditional graph representation learning methods mostly utilize random walk
[3] or matrix factorization [27] tools to solve the graph representation learning
problem. With the rise of Graph Neural Networks (GNNs), many graph repre-
sentation learning methods based on GNNs have been proposed and achieve bet-
ter performance [5,13,25]. GCN [13] pioneers a graph convolutional network, in
which each graph convolutional layer can successfully merge the node attributes
and the topology of the graph. GAT [25] proposes a graph attention layer on the
basis of GCN, which can selectively integrate the attribute information of neigh-
boring nodes in each propagation process. Despite their success, the premise
for these approaches to achieve excellent performance is the need for data to
provide external labels to supervise the models’ training, which is usually hard
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to access in realistic scenarios. In contrast, by manually sophisticated design,
unsupervised methods are more flexible and have broader applications. Graph-
SAGE [5] successfully leverages node attributes to generate node embeddings
via a hierarchical sampling and aggregating framework. More recently, DGI [26]
introduced the idea of DIM [7] into graph representation learning, which max-
imizes the mutual information between patch and graph level. However, DGI
only excavates the mesoscopic community structure in the graph and ignore the
microscopic structure, such as the link information. In this work, we propose a
novel graph representation learning model, which the learned graph representa-
tion can not only capture the mesoscopic community structure but also preserve
the link information in the graph.

3 The Proposed Method

3.1 Problem Formulation

For an undirected graph G = (V, E ,X), where V is the set of n nodes, E represents
the set of edges between the nodes and X ∈ R

n×m is the graph property matrix
where xi is the m-dimensional attribute vector of vi. Besides, each graph is
associated with an adjacency matrix A. For graph G, our objective is to learn a
continuous latent representation zi ∈ R

d for each node vi ∈ V, where d (d < m) is
the final dimension of the representation. In particular, the node representations
should be generalized well to downstream graph mining tasks.

3.2 Overall Framework

The overall Framework of SGRLVI is shown in Fig. 1. The GCN encoder accepts
graph topology and attributes as input, outputs the mean and variance of the
Gaussian distribution of the nodes qφ(Z|A,X) over the latent space. Follow-
ing the idea from VAE [11], we approximate the obtained node distribution to
standard Gaussian distribution and sample a Gaussian representation z for each
node. Then we calculate the graphical semantic representation s based on the
node representation. We treat the original graph as the positive graph and con-
struct two negative graphs in the initial stage of each epoch and also get the
sampled Gaussian representation of the negative nodes z′, z′′. All the represen-
tations are adopted to conduct the contrastive self-supervised learning module,
and the positive node representations are also exploited for topology generation.

3.3 Variational Inference

Regarding the incompleteness of the data, we leverage the VAE generative frame-
work. Specifically, we treat X, A, and Z as random variables and expect the
generative model can learn the patterns underlies the data.

Given a node vi with its attribute xi, we aim to generate its topology ai from
the latent representation zi. We denote qφ(Z|A,X) as the inference model with
parameters φ to be learned to approximate the intractable posterior pθ(Z|A,X).
By minimizing the KL-divergence between them, which is formulated as:
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DKL(qφ(Z|A,X||pθ(Z|A,X)) =
∫

qφ(Z|A,X) ln
qφ(Z|A,X)
pθ(Z|A,X)

dZ

=
∫

qφ(Z|A,X)
(
ln qφ(Z|A,X) + ln pθ(A|X) − ln pθ(Z,A|X)

)
dZ

= ln pθ(A|X) + Eqφ(Z|A,X)

(
ln qφ(Z|A,X) − ln pθ(Z,A|X)

)
.

(1)

According to Eq. 1, the log-likelihood of topology given attributes ln pθ(A|X)
can be represented as:

ln pθ(A|X) = DKL + Eqφ(Z|A,X)

(
ln pθ(Z,A|X) − ln qφ(Z|A,X)

)
, (2)

for the value of the KL-divergence term is greater than 0, so maximizing the log-
likelihood of the node topology given by its attributes is equivalent to maximizing
its Evidence Lower Bound (ELBO) using an inference model [11]:

ELBO =Eqφ(Z|A,X)

(
ln pθ(Z,A|X) − ln qφ(Z|A,X)

)
=Eqφ(Z|A,X) ln pθ(A|Z,X) − DKL(qφ(Z|A,X)||pθ(Z)),

(3)

where the approximated posterior qφ(Z|A,X) is a Gaussian distribution
N (μ, σ2I) with the mean μ and variance σ2 are learned by GCN encoder which
composed of a two-layer GCN network. Note that ELBO consists of two parts. In
the first term, given the sampled latent representation Z obtained by probabilis-
tic encoder qφ and attributes X, the model seeks to generate the adjacency A.
During the decoding phase, we adopt the simple inner product decoder proposed
by VGAE [12]. We define the loss function Lrecon as:

Lrecon = −
∑

(i,j)∈E
sigmoid(zT

i zj) +
∑

(k,l)∈E′
sigmoid(zT

k zl), (4)

where E ′
represents the set of negative edges that we randomly selected with the

same number of edges in E . As for the second KL-divergence term in Eq. 3, the
posterior Gaussian distribution of the nodes’ representations in the latent space
qφ(Z|A,X) is expected to approximate the prior distribution pθ(Z). Following
the setting of VAE, we define the prior distribution of latent representation as
standard Gaussian distribution, i.e., pθ(Z) = N (0, I). The second term in Eq. 3
has an alternate form for calculation, which is employed as loss function Lposter.

DKL(qφ(Z|A,X)||pθ(Z) =
1
2n

∑
i∈V

(
(σ2

i + μ2
i ) − log(σ2

i ) − 1
)
, (5)

Lposter =
1
2n

∑
i∈V

(
(σ2

i + μ2
i ) − log(σ2

i ) − 1
)
, (6)

thus, the training objective of Eq. 6 enables the learned node distribution to
approximate the prior standard Gaussian distribution.

To sum up, given the attributes and topology of the graph, we adopt a vari-
ational autoencoder to learn a Gaussian representation z for each node through
variational inference, and z can be used to generate the node topology.
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Algorithm 1. SGRLVI
Input: Graph G = (V, E ,X); trade-off parameter λ.
Output: representation vector zi for each node vi ∈ V.

1: Generate negative graphs G′, G′′.
2: Initialize parameters of GCN encoder with Xavier Initialization.
3: while L not converge do
4: Compute μi, σi by GCN encoder.
5: Compute μ′

i, μ
′′
i , σ′

i, σ
′′
i by GCN encoder.

6: Sample (zi, z
′
i, z

′′
i ) ∼ (qφ(z), qφ(z′), qφ(z′′)) using Eq. 7.

7: Compute the graphical semantic representation s using Eq. 8.
8: Compute the overall loss L according to Eq. 10.
9: Back propagation and update parameters of SGRLVI.

10: end while
11: return representation zi for each node vi ∈ V.

3.4 Contrastive Graphical Semantics Preservation

In this subsection, we adopt a contrastive self-supervised learning approach to
preserve the graphical semantics. Specifically, we analogize a graph to a para-
graph in natural language. The paragraph has central semantics, which repre-
sents its core idea. We believe that a graph should also contain such central
semantics. We first sample the Gaussian representation of each node vi based on
the posterior distribution by employing the reparameterization trick [11].

zi = μi + σi · εi, εi ∼ U(0, 1), (7)

where · is the element-wise product and εi represents a random noise, one can
note that since the node representations are obtained through GCN, they all fuse
the local neighborhood information. As for the graphical central semantics s, we
believe that the attributes of all graph nodes represent the overall semantics.
For example, the occurrence frequency of keywords involved in all papers in the
citation network reflects the citation network’s theme. In this paper, we leverage
the sigmoid average pooling as the readout operation to obtain s.

s = sigmoid(
1
n

∑
i∈V

zi). (8)

We believe that in natural language, a phrase composed of multiple context
words must be related to the paragraph’s central semantics. Similarly, we treat
the original graph as the positive sample and assume each positive graph node
representation containing neighborhood information (i.e., z) should be similar
to the graphical semantic representation (i.e., s). We maximize the similarity
between them. As for negative samples, we also start from the perspective of
a paragraph. Suppose the order of the words in the paragraph changes, the
semantics of the paragraph will also change. To take a simple example as an
illustration, “I will study first, and then play outside” and “I will play out-
side first, and then study” exactly means different semantics. In addition, if the
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Table 1. Statistics of datasets.

Dataset # Nodes # Edges # Attributes # Labels

Cora 2,708 5,278 1,433 7

Citeseer 3,312 4,552 3,703 6

Pubmed 19,717 44,324 500 3

words involved in the paragraph change directly, the semantics alter directly.
We consider the two negative samples of the graph accordingly. The first one
corresponds to the former, we randomly shuffle each node’s topology under other
conditions unchanged. The second one, we randomly transform the column of
node attribute vectors without any other changes. These two manual graphs are
constructed as negative samples. By sharing the parameters of the GCN encoder
with graph G, we also get their node Gaussian representations z′and z′′. Finally,
we treat it as a classification problem and use cross-entropy as the loss function:

Lcl = −
∑
i∈V

(
log d(zi, s) ∗ 2 + log(1 − d(z′

i, s)) + log(1 − d(z′′
i , s))

)
, (9)

where d(·) is the inner product to measure the similarity between node rep-
resentation and graphical semantics. In general, we adopted a contrastive self-
supervised learning method to assist the model in learning more useful informa-
tion by making use of unlabeled data alone.

Overall, the objective of SGRLVI consists of three parts, namely topology
generation, posterior distribution regularization, and graphical semantics preser-
vation. The final loss function can be formulated as:

L = Lrecon + Lposter + λLcl, (10)

where λ is a trade-off parameter. We adopt Adam optimizer to minimize
the loss based on Eq. 10 until convergence. Finally, we take z as the final node
representation. The learning algorithm is summarized in Algorithm 1.

4 Experiments

4.1 Experimental Settings

Datasets. We select three widely used datasets to verify the performance of
SGRLVI. The statistics are shown in Table 1. Cora [1] contains 2,708 papers
from 7 categories and 5,278 citation links. Each paper is associated with a 1,433-
dimensional bag-of-words vector. Citeseer [21] consists of 3,312 papers from 6
categories and 4,552 links, and a 3,703-dimensional attribute vector accompanies
each paper. Pubmed [18] contains 19,717 papers of 3 classes and 44,324 citation
links. The attributed vector of each node is a 500-dimensional TF-IDF vector.
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Table 2. Link prediction results over Cora, Citeseer and Pubmed. The bold represents
the best performance among unsupervised methods. (±) denotes the standard deviation
of 10 independent trials, and (l) indicates the algorithm is a semi-supervised method.

Dataset Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

DeepWalk 0.831 ± 0.13 0.837 ± 0.11 0.795 ± 0.08 0.816 ± 0.12 0.842 ± 0.08 0.831 ± 0.07

GAE 0.913 ± 0.04 0.920 ± 0.05 0.894 ± 0.05 0.899 ± 0.02 0.944 ± 0.02 0.945 ± 0.02

VGAE 0.924 ± 0.01 0.926 ± 0.01 0.918 ± 0.02 0.921 ± 0.02 0.954 ± 0.00 0.947 ± 0.01

Gra.SAGE 0.805 ± 0.03 0.813 ± 0.04 0.832 ± 0.02 0.821 ± 0.03 0.867 ± 0.01 0.849 ± 0.04

CAN 0.923 ± 0.02 0.929 ± 0.02 0.935 ± 0.01 0.937 ± 0.01 0.980 ± 0.02 0.977 ± 0.02

SIG-VAE 0.958 ± 0.03 0.951 ± 0.05 0.953 ± 0.02 0.956 ± 0.03 0.951 ± 0.06 0.942 ± 0.06

DGI 0.946 ± 0.02 0.941 ± 0.03 0.943 ± 0.04 0.941 ± 0.04 0.959 ± 0.04 0.963 ± 0.04

SGRLVI 0.977 ± 0.02 0.972 ± 0.03 0.983 ± 0.01 0.981 ± 0.01 0.983 ± 0.02 0.980 ± 0.02

GCN(l) 0.912 ± 0.00 0.908 ± 0.01 0.915 ± 0.01 0.916 ± 0.02 0.917 ± 0.03 0.912 ± 0.02

GAT(l) 0.933 ± 0.03 0.927 ± 0.03 0.930 ± 0.02 0.933 ± 0.02 0.927 ± 0.03 0.932 ± 0.03

Baselines. We compare SGRLVI with the representative models of the following
methods: network embedding (NE)-based, VAE-based, and GNN-based models.

– NE-based: DeepWalk [19] is the pioneer of network embedding, which gen-
erates the node embeddings by random walks and the Skip-gram model pro-
posed in Word2vec [17].

– VAE-based: VGAE [12] is an unsupervised framework based on VAE [11].
CAN [16] adopts VAEs to encode both structure and attributes into the same
semantic space. SIG-VAE [6] employs a hierarchical variational framework
and a Bernoulli-Poisson link decoder to model the graphical structure.

– GNN-based: GCN [13] is a semi-supervised model to embed the nodes by
employing a first-order approximation of spectral filters. GAT [25] introduce
attention mechanism to aggregate neighbors with attention weights. GAE
[12] uses GCNs as the encoder and reconstructs the adjacency matrix in the
decoder. Gra.SAGE [5] is an inductive approach that generates embeddings
by sampling and aggregating. DGI [26] learns node representations by maxi-
mizing mutual information between the patch and graph level.

Parameter Settings and Metrics. We adopt two-layer GCNs as encoder and
set the number of neurons in the hidden layer and the final layer to 32 and 8,
respectively. The parameter λ is set as 5. We train the model via Adam optimizer
with the learning rate 0.01. For node classification, we take accuracy (ACC) as
the evaluation metric. For link prediction, the Area Under Curve (AUC) and
Average Precision (AP) are used to verify the performance. We repeat each
experiment 10 times and report the mean and standard deviation of them.1

1 Our reference code may be found at https://github.com/DLUTElvis/SGRLVI.

https://github.com/DLUTElvis/SGRLVI
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Table 3. Classification accuracy over Cora, Citeseer and Pubmed. The bold, (±) and
(l) are the same as the definition in Table 2.

Dataset Cora Citeseer Pubmed

DeepWalk 0.746 ± 0.07 0.510 ± 0.11 0.733 ± 0.07

GAE 0.761 ± 0.01 0.574 ± 0.02 0.784 ± 0.02

VGAE 0.746 ± 0.02 0.551 ± 0.02 0.759 ± 0.02

Gra.SAGE 0.783 ± 0.02 0.650 ± 0.01 0.775 ± 0.02

CAN 0.763 ± 0.03 0.652 ± 0.03 0.760 ± 0.03

SIG-VAE 0.798 ± 0.04 0.694 ± 0.04 0.776 ± 0.07

DGI 0.815 ± 0.08 0.721± 0.06 0.772 ± 0.06

SGRLVI 0.818± 0.01 0.708 ± 0.02 0.797± 0.01

GCN(l) 0.813 ± 0.01 0.703 ± 0.01 0.786 ± 0.02

GAT(l) 0.830 ± 0.01 0.725 ± 0.01 0.790 ± 0.01

4.2 Link Prediction Results

In this subsection, we conduct link prediction task to evaluate the graph struc-
ture reconstruction ability of the node representations. We process the datasets
like previous works [6,12]. Specifically, we randomly select 5% of the edges for
verification, 10% of the edges and the equal number of non-existent edges as the
test set. Given the representations of two nodes zi, zj , we calculate the probabil-
ity of the edge between these two nodes eij by p(eij) = sigmoid(zT

i zj). Table 2
reports the AUC and AP scores of all baselines over the three datasets. Overall,
GAE, VGAE, CAN, SIG-VAE, and our SGRLVI perform better than others,
which is mainly benefit from the adjacency matrix reconstruction during train-
ing. Besides, SGRLVI shows superior performance than both the unsupervised
and the supervised baselines, which further proves the effectiveness of our model.

4.3 Node Classification Results

To further demonstrate the performance of SGRLVI, we perform node classifica-
tion task. After training the model, we randomly select 20 nodes in each category
for training, all baselines are evaluated on 1000 remaining nodes, and other 500
nodes are used for verification. The results are shown in Table 3. The results show
that the supervised models generally work better than the unsupervised counter-
parts, proving the importance of external label guidance to the improvement of
model performance. Besides, SGRLVI is superior to other unsupervised methods
in most cases and achieves significant promotion over Pubmed compared with
all other baselines, which verifies the effectiveness of our assumption.

4.4 Evaluation on Missing Data

In this subsection, we randomly remove 10%, 30%, and 50% of node attributes
and replace them with zero vectors to simulate the missing-data setting. We
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(a) Results on Cora (b) Results on Citeseer (c) Results on Pubmed

Fig. 2. Classification accuracy over Cora, Citeseer and Pubmed under the missing-data
setting. The attributes of 10%, 30%, and 50% of the nodes are randomly removed.

conduct node classification experiment compared with unsupervised methods to
verify the robustness under such situation. We report the node classification per-
formance w.r.t. ACC, the experimental results are shown in Fig. 2. Easy to find
that our SGRLVI shows relative high classification performance, which mainly
benefit from the use of generative framework. Therefore, even if part of the data
is missing, our model can learn the patterns underlies the data to obtain a robust
graph representation which is useful for downstream tasks.

(a) VGAE (b) CAN (c) DGI (d) SGRLVI

Fig. 3. t-SNE [15] visualization for graph representation learned by different methods
on Cora dataset. Each point denotes a node, with the color represents its category.
(Color figure online)

4.5 Visualization

To further verify the rationality of our proposed model, we project the learned
graph representation of Cora into the two-dimensional space by t-SNE [15] visu-
alization tool. Each point indicates a node in the graph, with its color denotes
its category. We compared our model with three other unsupervised graph rep-
resentation learning methods, and the visualization results are shown in Fig. 3.
The results of VGAE and CAN exist a large number of points with different col-
ors mixed together. SGRLVI obtained a better graph representation than DGI,
for the node representations with the same color learned by SGRLVI are close
together, with clear boundaries between different clusters.

4.6 Parameter Investigation

We investigate the parameter sensitivity with different settings of parameters.
We report the results of node classification w.r.t. ACC. We tune the trade-off
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(a) hyper-parameter λ (b) hidden layer number (c) hidden neuron number

Fig. 4. Parameter analysis on hyper-parameter λ, number of hidden layer and neurons.

parameter λ = {1, 3, 5, 7} and from Fig. 4 (a), it achieves the best performance
when λ = 5. For the depth of the GCN encoder, we change the number of hidden
layers in the range of {0, 1, 2, 3}. According to Fig. 4 (b), the performance gets
the best when it equals 1, we adopt a single hidden layer GCN as the encoder. We
finally evaluate the single hidden layer with different number of neurons. Easy
to find in Fig. 4 (c) that the model performs well when the number is either 32
or 64, therefore, the model is insensitive to this parameter, we employ 32 hidden
neurons as default for all datasets.

5 Conclusion

In this paper, we propose a novel self-supervised graph representation learning
model, namely SGRLVI. By exploiting the semantic relation between node and
graph level with a contrastive self-supervised method, we avoid the issue of
over-dependence on data labels. By utilizing the variational inference technique
to capture the general pattern underlying the data, we improve the robustness
of the model under some data missing circumstances. Extensive experimental
results on three widely used graph-structured datasets show the superiority of
our method. Besides, the experiments in data missing scenarios further validate
the robustness of SGRLVI. For future work, we plan to extend our method to
solve more real applications, such as social networks and biological networks.
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Abstract. Graph representation learning is an effective method to rep-
resent graph data in a low dimensional space, which facilitates graph ana-
lytic tasks. The existing graph representation learning algorithms suffer
from certain constraints. Random walk based methods and graph con-
volutional neural networks, tend to capture graph local information and
fail to preserve global structural properties of graphs. We present MAP-
PING (Manifold APproximation and Projection by maximizINg Graph
information), an unsupervised deep efficient method for learning node
representations, which is capable of synchronously capturing both local
and global structural information of graphs. In line with applying graph
convolutional networks to construct initial representation, the proposed
approach employs an information maximization process to attain rep-
resentations to capture global graph structures. Furthermore, in order
to preserve graph local information, we extend a novel manifold learning
technique to the field of graph learning. The output of MAPPING can be
easily exploited by downstream machine learning models on graphs. We
demonstrate our competitive performance on three citation benchmarks.
Our approach outperforms the baseline methods significantly.

Keywords: Representation learning · Graph embedding · Manifold
learning · Feature extraction

1 Introduction

Graph (network) data structure is considered to be one of the most informative
but challenging data structures widely used in a variety of applications. Social
networks, recommender systems, and molecular graph structures are some of
the most well-known graph use-cases in which the interactions between indi-
vidual units are modeled in the form of graphs [16]. Representation learning
(Graph embedding) provides a framework on graph summarization by mapping
each node of the graph into a lower-dimensional space. The goal is to optimize
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this mapping in such a way that the geometric relationships in this space can
represent the principal information of the original graph. [11].

Graph embedding approaches can be categorized into three categories: (1)
Factorization based, (2) Random Walk based, and (3) Deep Learning based
methods [6,8]. Early methods on graph embedding were mostly centered around
matrix factorization approaches. Factorization based algorithms decompose the
matrix containing node adjacency information. Laplacian eigenmaps [2], Graph
Factorization algorithm [1], GraRep [3] and HOPE [17] are some of the well-
known examples in this category.

The main intuition of random walk based methods is to map the nodes to a
real geometrical space in a way that nodes have similar embeddings if they tend
to co-occur on short random walks over the graph [11]. The dominant algorithms
presented for unsupervised learning use random walk-based objectives, such as
node2vec [9], DeepWalk [18] and LINE [22] or even only reconstruction of adja-
cency information, such as [13] and [5]. The main limitation of these methods is
that they concentrate on the proximity information and neglect other structural
information [20].

Several deep learning methods for learning on graph structural data such as
graph neural networks [7] have been proposed. Particularly graph convolutional
neural networks have demonstrated their remarkable power in graph embedding
problem. Graph convolution is effective in aggregating both topological and con-
tent information of graphs. There are plenty of works focusing on the design of
such networks. GCN [12] as one of the most well-known ones is limited to only
two-layer neighborhoods. One main limitation of GCNs is that as the model’s
depth increases, its learning performance degrades greatly. From this perspec-
tive, by utilizing the strength of GCNs, Deep Graph Infomax (DGI) [24] presents
an unsupervised graph embedding algorithm that is also mindful of the global
structural properties of the entire graph rather than first-order proximities of
the nodes.

Although DGI as a deep state-of-the-art method in this category has a con-
siderable performance in practice, it has two limitations that we aim to cover in
this work. In contrast to DGI, our approach is motivated by a solution proposed
for preserving both local and global graph structures. This property results in
higher performance for both classification and clustering tasks.

In this work, we address the limitation of DGI that works independently from
the input graph. Our proposed method has the ability to establish a trade-off
between local and global information preservation based on the inherent prop-
erties of the input graph. Besides, we focus on incorporating the novel manifold
learning algorithm UMAP [14] into the field of graph embedding and introduce
an integrated method for node representation learning. We take DGI [19] as our
base model, to capture Global structural information, and then a manipulated
version of UMAP incorporates for preserving the local properties of the graph
(Fig. 1). As we will report, this combination yields an improvement to both node
classification and clustering tasks’ performance. This paper’s main contributions
are summarized as follows:
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i ii ii ii

Fig. 1. A toy example of local versus global view of node i in graph G (on the right).
The smaller circle shows a more local view. The large circle corresponds to a global
view. Our proposed method is capable of preserving both local and global structures
of a graph.

• Since graph data is unlabeled in most real-world scenarios, supervised meth-
ods seem to lose their functionality for the graph embedding problem. There-
fore on the contrary to the prior state-of-the-art methods, we propose an
unsupervised algorithm to learn node embeddings.

• We propose an approach for learning node embedding vectors, to be capable
of providing a balance between both local and global structure preservation.

• By leveraging some conventional classification methods on the node embed-
dings, we are going to affirm the quality of the extracted features in terms of
classification accuracy on test sets.

2 Related Works

Graph embedding algorithms can be categorized from a different perspective:
topological embedding approaches that only take graph structural data into
consideration and content-enhanced approaches that can also leverage available
node content information. The objective of topological approaches is to preserve
topological information of a graph. Factorization based methods fall into this
category since their main intuition is to obtain the embedding by decomposing
a form of the adjacency matrix. Laplacian eigenmaps [2] and Graph Factorization
algorithm [1] reconstruct first-order proximities, GraRep [3] reconstructs k-order
transition probabilities, HOPE [17] using different proximity measures, preserves
higher-order proximities. Random walk based models DeepWalk [18], node2vec
[9] and LINE [22] learn the embedding from graph topological properties carried
by a collection of random walks of length k.

Deep learning approaches SDNE [25] and DNGR [4] that employ deep
autoencoders to preserve the graph first and second-order proximities and posi-
tive point-wise mutual information (PPMI) also fall into this category. The main
drawback of these methods is their inability to use the valuable content infor-
mation of real-world graphs. Therefore, content enhanced embedding methods
were presented.

In content-enhanced embedding approaches, the learned embeddings get aug-
mented with node content information. Graph convolutional neural networks are
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the most recent approaches in this category. Graph convolution is an effective
approach for combining the topological and content information of graphs and
several convolution-based methods have shown promising performance. GCN [12]
employs a first-order approximation of spectral graph convolution. GrapSAGE
[10] presents a general inductive framework that exploits node feature infor-
mation and Graph convolutional neural networks. GAT [23] proposed Graph
Attention Networks for graph-based semi-supervised learning. DGI [19] uses a
one-layer GCN as its encoder and obtains the embeddings in a mutual informa-
tion maximization process.

Although the well-known graph convolution has been shown very effective in
merging both topological and content information, it still has one main draw-
back. As indicated in [26] increasing the depth of the network leads to per-
formance degradation such that a network with more than 3 layers loses its
functionality in practice. This is equivalent to the loss of a Global view during
the learning process. In order to attain good generative ability and mitigate the
aforementioned performance degradation, we adopt a content-enhanced embed-
ding approach motivated by DGI. MAPPING is capable of capturing both local
and global structures of a graph, while the majority of the prior methods at
most can preserve k-order proximities of graphs.

3 Problem Definition and Framework

In an input graph G with N nodes, we are provided with a set of node features,
X = {�x1,�x2, ... ,�xN} such that �xi ∈ R

F indicates the content features associated
with each node i . The interaction of individuals comes in form of the adjacency
matrix A ∈ R

N×N (Aij = 1 if there exists an edge between nodes i and j and
otherwise Aij = 0). A contains topological structure information of G. As we
aim to map our graph from a F -dimensional space to F ′-dimensional space,
our objective would be to learn the encoder E : RN×F × R

N×N → R
N×F ′

in a
way that E(X,A) = E = {�e1,�e2, ... ,�eN} contains high-level embeddings (�ei ∈
R

F ′
represents the latent features of node i).

3.1 Overall Framework

Our goal is to learn the node embedding of the input graph G in an unsuper-
vised manner. In detail, our hybrid approach, to capture global structure of the
graph, employs Deep Graph Infomax algorithm. For local information preserva-
tion purpose, we apply a modified version of manifold learning algorithm UMAP.
Eventually, our final hybrid embedding matrix is built using Eq. 1.

EFinal = α(ELocal ) + β(EGlobal ) (1)

By adjusting the α and β parameters, a trade off can be struck between preserv-
ing global and local information, taking into account the intrinsic properties of
the data as well as the down-stream application.
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3.2 Proposed Method

Global Structure Preservation: In Deep Graph Infomax, the node embed-
dings of the input graph are learned by maximizing the mutual information
between obtained representations (�ei ) and a graph-level summary vector ( �sum),
(i.e. we want our local representations to capture the global information of the
entire graph.)

The Eq. 2 shows the standard binary cross-entropy loss objective, where

(X,A), (X̃, Ã) are positive and negative examples respectively and D
(

�ei , �sum

)

is a discriminator which assignes probability scores to the patch-summary pairs.
We expect this score to be higher for positive examples and vice versa.

L =
1

N +M

(
N∑
i=1

E(X ,A)

[
logD

(
�ei , �sum

) ]
+

M∑
j=1

E(X̃ ,Ã)

[
log(1−D

(
�̃ej , �sum

) ])

(2)
First, negative examples are sampled using some corruption function, then

by passing positive and negative examples through the one-layer GCN encoder
it respectively obtains the patch representation matrices E and Ẽ. The sum-
mary vector is then built by passing E through some readout function ( �sum =
R(E(X,A))). By applying gradient descent to maximize Eq. 2, parameters of the
discriminator, readout function and the encoder get updated.

Construction of the negative examples is a simple shuffling procedure. The
corruption function C shuffles the rows of X. Note that the adjacency matrix
remains the same in order to preserve structural similarities. The readout func-
tion simply calculates the average of positive embedding vectors as follows in
which σ is a logistic sigmoid nonlinearity:

R(E) = σ

(
1

N

N∑
i=1

�ei

)
(3)

In order to score representation-summary pairs, a simple bi-linear scoring func-
tion is applied in which W is a learnable scoring matrix:

D(�ei , �sum) = σ

(
�ei
TW �sum

)
(4)

The propagation rule in our one-layer encoder is defined as 5:

E(X,A) = σ
(
D̂− 1

2 Â D̂− 1
2 X Θ

)
(5)

where σ is parametric ReLU, D̂ is the degree matrix, Â = A+IN is the adjacency
matrix containing self-loops and Θ ∈ R

F×F ′
is a learnable linear transformation

applied to every node (Fig. 2).
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Fig. 2. A high level overview of the proposed method

Local Information Preservation: So far the Global node embedding matrix
EGlobal is built. In this section we aim to calculate ELocal . UMAP comes within the
class of K-neighbor-based graph learning algorithms such as Laplacian Eigen-
maps, Isomap and T-SNE. As other K-neighbor graph-based algorithms, UMAP
can be defined in two steps. At first, a particular weighted k-neighbor graph is
created from the data manifold and in the second step, the low-dimensional
structure of this graph is computed. Like several other dimensionality reduction
techniques, UMAP can be extended to address the problem of graph representa-
tion learning. In graph data in particular, there is no obligation to estimate the
data manifold using K-neighbor graphs, because graph proximity information is
available in the form of adjacency matrices from the beginning. In this section,
by applying a series of changes, we reconstruct the UMAP algorithm for graph
domain applications.

Instead of estimating a k-neighbor graph that preserves the overall structure
of the data manifold, we leverage matrix Ak , (k = 1 ...N). Parameter k controls
the arbitrary degree of locality we tend to preserve.

pj|i , the node similarities in the high dimensional space which is equivalent
to the edge weights in Ak is calculated as:
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Algorithm 1. MAPPING
Input: Feature matrix X, adjacency matrix A
Output: Embedding graph EFinal

1: EGlobal = DGI (X,A)
2: ELocal = GRAPHUMAP(X,A)
3: EFinal = α(ELocal) + β(EGlobal )
4:
5: function DGI(X,A)
6: Sample negative examples (X̃, Ã) using C
7: Compute E = E(X,A) = {�e1,�e2, ... ,�eN}
8: Compute Ẽ = E(X̃, Ã) = { �̃e1, �̃e2, ... , �̃eN}
9: Compute �s = R(E)

10: apply gradient descent on 2 and return EGlobal

11: end function
12:
13: function GRAPHUMAP(X,A)
14: Compute Ak

15: Assign weights pij to the edges of Ak

16: Apply gradient descent on 10 and return ELocal

17: end function

pj|i = exp

(
−max(0, d(i , j),−ρi )

σi

)
(6)

d(i , j) indicates the distance between node i and its neighbor j , under an arbi-
trary distance metric. ρi represents the distance from data point i to its first
nearest neighbor and σi is set in a way that satisfies the following equation:

n∑
j=1

exp

(
−max(0, d(i , j),−ρi )

σi

)
= log2(k) (7)

Symmetrization of the node similarities is carried out parameters ρi and σi , make
node similarities vj|i �= vi|j . Equation 8 symmetries the node similarities.

pij = (pj|i + pi|j) − pj|ipi|j (8)

pij is set as the weight of the edge between j and i . The low dimensional similari-
ties are given by 9, where ei and ej are the locations of j and i in low dimensions:

qij =
(
1 + a||ei − ej ||22b

)−1 (9)

L =
∑
i �=j

pijLog

(
pij
qij

)
+ (1 − pij)Log

(
1 − pij
1 − qij

)
(10)

By minimizing cross entropy loss function Eq. 10, the node representation vectors
are calculated. At the end of the training process, matrix ELocal contains the local
information preserved node representation vectors. The proposed algorithm is
summarized by Algorithm 1.
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Table 1. Dataset statistics

Dataset #Nodes #Edges #Features #Classes

Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6

Pubmed 19,717 44,338 500 3

4 Experiments

4.1 Datasets

To demonstrate the efficiency of MAPPING, we conducted comprehensive exper-
iments on three real-World citation networks Cora, Citeseer, and Pubmed [21].
Since the existing evaluation strategies for GNN models have some limitations,
we used multiple data splits. The data (Table 1) is first split into a train and a
test set. For the train set, q nodes were sampled and the test set contains all
the remaining nodes. We used three different label sets in each experiment: A
training-set of t nodes per class, a validation-set of r nodes, and a test-set. We
selected t such that dataset splits to q = 40% of datasets which 20% applied for
train-set, 20% for validation-set, and the remaining (60%) for test-set.

4.2 Baseline Methods

In order to evaluate MAPPING, we choose the following variety of methods for
comparison:

• DGI: Deep Graph Infomax [19], by maximizing mutual information between
patch representations of nodes and corresponding high-level summaries of
graphs, obtains node representations in an unsupervised manner.

• GCN: GCN [12] is a semi-supervised learning variation of convolutional neu-
ral networks on graph-structured data which uses a layer-wise propagation
rule that is based on a first-order approximation of spectral convolutions on
graphs.

• DeepWalk: DeepWalk [18] as an unsupervised random walk based repre-
sentation learning method inspired by SkipGram [15], uses local information
obtained from truncated random walks to learn latent representations by
treating walks as the equivalent of sentences.

• node2vec: Similar to DeepWalk, the semi-supervised method node2vec [9]
preserves higher-order proximity between nodes by defining biased random
walks and maximizing the probability of occurrence of subsequent nodes in
fixed-length random walks.

• UMAP: Uniform Manifold Approximation and Projection (UMAP) [14] is
a manifold learning technique for dimension reduction that at its core, is
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(a) Raw Features (b) DGI (c) MAPPING

Fig. 3. The UMAP visualization of the raw feature space, DGI and MAPPING node
embedding space, for the Cora dataset and K-means clustering silhouette score.

very similar to t-SNE, but with several key theoretical footings that give the
algorithm a stronger infrastructure.

• PCA: A statistical procedure that uses an orthogonal transformation as a
dimension reduction technique.

4.3 Results

For evaluation purpose, we report the strength of embedding methods using
the generated embedding as node features to classify the nodes. Table 2 shows
the comparison of average accuracy results of ten runs over three citation net-
work benchmark datasets using well-known classifiers Logistic Regression (LR),
Gaussian Naive Bayes (GNB), K Nearest Neighbors (KNN), Decision Tree (DT),
One-Versus-One SVM (OVO-SVM), One-Versus-Rest SVM (OVR-SVM), Multi-
layer Perceptron (MLP) and Perceptron (PER).

We compare the output of MAPPING against (1) embeddings learned by
merging DGI with dimensionality reduction techniques PCA and t-SNE. (2)
embeddings learned by four graph neural network methods including DGI, GCN,
DeepWalk, node2vec in terms of classification accuracy. To make the experimen-
tal studies more complete, we also compare our results with pure UMAP which
works as a dimension reduction technique that does not involve relational infor-
mation into its calculations and only works on raw features.

We investigated the outcome of simultaneously capturing local and global
information generated by our proposed method. We expected that, given the
nature of the data set, maintaining certain levels of local as well as global neigh-
borhoods would lead to an increased classification accuracy. The best results
are marked as bold. We can note that our unsupervised method obtains better
average accuracy in comparison with other unsupervised and semi-supervised
methods on all datasets. Comparing with DGI as the base model, MAPPING’s
contribution is exceptional with an average of 6.27% of higher performance.
Particularly, on Cora dataset, it achieves 11.6% of more accuracy. We combined
DGI with t-SNE and PCA in order to enhance its embeddings but our results
demonstrate strong performance being achieved across all datasets. We further
observe that, in most cases, MAPPING competitively exceeds in performance
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Table 2. Summary of results in terms of Average classification accuracies under 10
runs for 20:60:20 (train:test:validation) data split (%).

Input LG GNB KNN DT OVO-SVM OVR-SVM MLP PER Average

Cora

MAPPING X,A 85 79 81 79 86 86 84 81 83.06

Raw Features X 31 45 60 54 55 55 65 54 52.37

UMAP X 68 45 34 57 65 65 63 65 57.75

DeepWalk A 70 71 70 48 67 67 72 66 66.37

node2vec A 76 74 73 61 74 74 75 71 72.25

DGI+t-SNE X,A 78 78 80 79 52 58 81 37 67.87

DGI+PCA X,A 67 56 38 66 62 61 40 59 56.12

DGI X,A 36 80 82 70 75 75 85 73 72

GCN X,A,Y 82 79 81 78 82 82 82 82 81

Citeseer

MAPPING X,A 70 68 70 61 69 69 71 69 68.99

Raw Features X 39 55 53 54 67 67 67 63 58.12

UMAP X 68 55 39 55 67 67 66 65 60.25

DeepWalk A 50 53 55 40 50 50 57 47 50.25

node2vec A 57 55 55 47 55 55 57 51 54

DGI+t-SNE X,A 69 69 68 65 39 29 68 48 56.87

DGI+PCA X,A 56 47 22 59 49 49 42 52 47

DGI X,A 57 71 69 58 72 72 71 31 62.62

GCN X,A,Y 65 61 64 66 65 65 66 66 64.75

Pubmed

MAPPING X,A 84 78 83 76 85 85 86 85 82.75

Raw Features X 80 74 73 79 84 84 81 84 79.87

UMAP X 83 73 73 76 84 84 82 82 79.62

DeepWalk A 78 76 79 63 79 79 78 75 75.87

node2vec A 80 77 79 67 81 81 77 75 77.12

DGI+t-SNE X,A 63 65 82 76 43 51 74 60 64.25

DGI+PCA X,A 83 64 77 73 84 84 80 82 78.37

DGI X,A 83 78 83 76 84 84 84 79 81.37

GCN X,A,Y 83 82 82 79 83 83 83 81 82

in comparison with the GCN model in the fully supervised setting. Consider-
ing the fact that GCN uses labeled data during its learning process, this is a
notable achievement. We assume that this achievement is originated from the
fact that, in MAPPING, every node has access to global structural properties
of the graph, whereas in GCN nodes can only see their two-step local neigh-
borhoods. In general, MAPPING performs better than recent graph networks
DGI, GCN, DeepWalk, node2vec, which demonstrates its benefit on data repre-
sentation and learning. Also, it generally performs better than semi-supervised
methods node2vec and GCN which further indicates its capability to be con-
ducted on real-world unlabeled graph-structured data.

We also analyzed the node clustering quality of MAPPING over Cora dataset
in 2-D space. Figure 3 displays the visualization of the learned 2-D embeddings
of raw features (Fig. 4(a)), features extracted from DGI (Fig. 4(b)), and features



138 B. Fatemi et al.

Fig. 4. The effect of (α,β) parameters on classification accuracy. (Color figure online)

extracted from our proposed method MAPPING (Fig. 3(c)) by applying UMAP
as a visualization procedure respectively. Each point corresponds to a node in the
input graph. The color of each node signifies its community. The clusters of the
learned MAPPING model’s embeddings are clearly defined and separated appro-
priately. In Cora, by running the K-means clustering algorithm on MAPPING’s
embeddings, we achieved silhouette score 68%, which remarkably exceeds DGI’s.

In the estimation of node representation vectors, the alpha and beta param-
eters respectively, indicate the importance of preserving global and local neigh-
borhoods. The effect of these two parameters on the accuracy of LR, SVM, KNN
and PRC is illustrated in Fig. 4 (only for Cora and Citeseer due to memory lim-
itations). The blue line in both plots indicates the average value of the other
lines. The pinnacle of the average line for Cora and Citeseer locates respectively
at points (α,β) = (0.8, 0.2) and (α,β) = (0.7, 0.3) which stipulates the highest
gained average accuracy. Two inferences can be deduced from this figure: (1)
It is not adequate to only preserve either of the two types of global and local
neighborhoods alone, while by preserving a combination, a better representa-
tion can be achieved. (2) According to the observations of this study, it seems
that in the application of node classification, the importance of preserving global
neighborhoods is somewhat greater than local ones.

5 Conclusions

We have presented MAPPING, a novel approach for learning unsupervised repre-
sentations on graph-structured data. MAPPING, captures graph’s global struc-
ture using a graph convolutional architecture and encodes the nodes to a low-
dimensional space by maximizing mutual information across its patch repre-
sentations. Moreover, by generalizing novel dimensionality reduction technique
UMAP to the field of graphs, MAPPING obtains a second set of node represen-
tation vectors so as to capture the graph’s local information. Along these lines,
we lessen the complicated structural information-loss which leads to an enhanced
node-classification performance. The experimental evaluations demonstrate that
our model achieves competitive performance across state-of-the-art methods.
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Abstract. Knowledge graph embedding has become a promising
method for knowledge graph completion. It aims to learn low-dimensional
embeddings in continuous vector space for each entity and relation. It
remains challenging to learn accurate embeddings for complex multi-
relational facts. In this paper, we propose a new translation-based embed-
ding method named ATransD-NL to address the following two observa-
tions. First, most existing translational methods do not consider con-
textual information that have been proved useful for improving perfor-
mance of link prediction. Our method learns attention-based embed-
dings for each triplet taking into account influence of one-hop or poten-
tially multi-hop neighbourhood entities. Second, we apply nonlinear
dynamic projection of head and tail entities to relational space, to cap-
ture nonlinear correlations among entities and relations due to complex
multi-relational facts. As an extension of TransD, our model only intro-
duces one more extra parameter, giving a good tradeoff between model
complexity and the state-of-the-art predictive accuracy. Compared with
state-of-the-art translation-based methods and the neural-network based
methods, experiment results show that our method delivers substantial
improvements over baselines on the MeanRank metric of link prediction,
e.g., an improvement of 35.6% over the attention-based graph embed-
ding method KBGAT and an improvement of 64% over the translational
method TransMS on WN18 database, with comparable performance on
the Hits@10 metric.
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1 Introduction

Knowledge graphs (KGs) such as YAGO [6], WordNet [12], DBpedia [9] and
Freebase [1] represent knowledge bases as directed graphs, and store relational
facts in the knowledge base in terms of triplets. Entities with different types and
attributes are represented as nodes, and different types of relations on entities are
represented as edges. Each triplet denoted by (h, r, t) represents the relationship
r directed from the head entity h to the tail entity t. Knowledge graphs become
useful information resources for many AI related applications such as question
answering, recommendation, information retrieval, etc. Although a real-world
knowledge graph often contains millions of relational facts, it still suffers from
the issue of incompleteness due to missing a lot of factual triplets. Knowledge
graph completion aims to predict the most probable missing entities and relations
in the knowledge base, also referred to as link prediction, e.g., a completion
query may be like (?, r, t) for head prediction, (h, r, ?) for tail prediction or
(h, ?, t) for relation prediction. Since real-world knowledge graphs are enormous
and heterogeneous containing multi-relational facts, e.g., one-to-many (or 1-N),
many-to-one (or N-1), many-to-many (or N-N) relations, it remains difficult
to accurately predict complex relations while scaling to large-scale knowledge
graphs.

Knowledge graph embedding has recently become a promising method for
knowledge graph completion. It aims to learn low-dimensional embeddings
in continuous vector space for entities and relations denoted by lower case
bold letters. The state-of-the-art embedding methods are generally classified
as translation-based methods [3,7,8,19,23] and neural-network based methods
[5,13,14,18]. Translation-based methods model relations as translation oper-
ations from the embeddings of head entities to tail entities, expecting that
h+ r ≈ t holds in the embedding space when (h, r, t) is a valid triplet. Transla-
tional models often use simple operations and less parameters in consideration of
scalability, and prove to be cost-effective approaches for knowledge graph comple-
tion. In contrast, the neural-network based methods can learn more expressive
embeddings indicating sophisticated nonlinear correlations over the relational
facts, yet are not always parameter efficient [13,18].

Some recent research work has shown that combining contextual informa-
tion into the embedding method would effectively improve the performance
of link prediction [10,13]. PTransE [10] proposes to represent relation paths
via semantic composition of relation embeddings, and to model relation paths
as translations between entities. Notably, an attention-based graph embedding
method called KBGAT [13] is proposed recently that delivers significant improve-
ments on the performance of link prediction over state-of-the-art baselines. The
model attempts to learn contextual information of local neighbourhood entities
by designing a generalized attention-based graph embedding for link prediction.
Our empirical study indicates that KBGAT generally outperforms most of the
state-of-the-art translational methods, although it often consumes up more time
and space for training. To our knowledge, most translation-based methods treat
each triplet separately and haven’t combined its contextual information in the
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Table 1. Complexity of translation-based models compared in the experiments.

Model Score function # Parameters

TransE [3] ‖h + r − t‖l1/l2 O(nNe + mNr)

h, t ∈ R
n, r ∈ R

m where m = n

TransH [19] ‖h(I − w�
r wt) + r − t(I − w�

r wt)‖�1/2 O(nNe + 2mNr)

h, t ∈ R
n ,Mr ∈ R

n×m

TransR [11] ‖hMr + r − tMr‖�1/2 O(nNe + (n + 1)mNr)

h, t ∈ R
n, r ∈ R

m,Mr ∈ R
n×m

TransD [7] ‖(rph
�
p + Ikr×ke)h + r − (rpt

�
p + Im×n)t‖�1/2 O(2nNe + 2mNr)

h, t,hp, tp ∈ R
n, r, rp ∈ R

m

TranSparse [8] (separate) ‖M1
r(θ

1
r)h + r − M2

r(θ
2
r)t‖�1/2 O(2nNe + 2(1 − θ)(n + 1)mNr)

h, t ∈ R
n, r ∈ R

m,M1
r (θ1

r),M2
r (θ2

r) ∈ R
∗m×n

TransMS [23] ‖ − tanh(t ⊗ r) ⊗ h + r − tanh(h ⊗ r) ⊗ t + α · g(h ⊗ t)‖�1/2 O(nNe + (m + 1)Nr)

h, t ∈ R
n, r ∈ R

m, α = rkr+1 ∈ R
1 where m = n

ATransD-NL (this paper) ‖(h + tanh(h�
phrp) ⊗ t̄) + r − (t + tanh(t�

p trp) ⊗ h)‖�1/2 O ((2n + 1)Ne + 2mNr)

h,hp, t, tp ∈ R
n, r, rp ∈ R

m where m = n

graph into the learning process. Motivated by the observation, we aim to fill the
gap by extending TransD that delivers promising results and a good balance of
predictive accuracy and performance [7].

Comparing the existing approaches above, we propose a translation-based
method named ATransD-NL (Attention-based Translational Knowledge Graph
Embedding via Nonlinear Dynamic Semantic Projection) that extends and gen-
eralizes TransD with two major ideas. First, to capture nonlinear semantic corre-
lations among complex relations, we further apply nonlinear functions during the
dynamic projection from entity embedding spaces to relation-specific embedding
spaces. Next, to learn contextual information for improving the performance on
link prediction, our model further integrates attention-based embedding methods
taking into account the influence of other entities when performing translation
operations in the relational space. These entities may contain local neighbour-
hood entities or potentially linked entities via multi-hop relation paths, implic-
itly. As a translation-based method, we only introduce one more extra parameter
than TransD indicating the cost-effectiveness of our method. We evaluate our
approach on challenging benchmark datasets including WN18 and FB15k. We
show that our method gives a good tradeoff between model complexity and pre-
dictive accuracy. We conduct comparison not only with translation-based meth-
ods but also with the state-of-the-art neural-network based methods. Experi-
ment results show that our method delivers substantial improvements on the
MeanRank metric of link prediction, e.g., an improvement of 35.6% over the
attention-based graph embedding method KBGAT [13] and of 64% over the
translational method TransMS on WN18, with comparable performance on the
Hits@10 metric Table 3 and 4.

2 Related Work

The state-of-the-art knowledge graph embedding methods can be broadly clas-
sified as translation-based methods, neural network based methods, and tensor
decomposition methods such as DistMult [22] and ComplEx [17]. There are some
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other methods earlier like structured embedding (SE) [2], semantic matching
energy (SME) [4], etc. Below we mainly discuss the line of work on transla-
tion methods that this work follows and some state-of-the-art neural network
based methods. We denote by Ne and Nr the number of entities and relations
in the knowledge base, respectively, and denote by n and m the dimension of
embedding vectors for entities and relations, respectively.

2.1 Translation-Based Methods

Originated from TransE [3], translational methods regard the relation r as a
translation operation from the head entity h to the tail entity t so that h+r ≈ t
when the triplet (h, r, t) is valid in the knowledge base. We denote by fr(h, t) the
score function. The higher the ranking score, the higher probability that (h, r, t)
corresponds to a true fact in the knowledge base. Here fr(h, t) = ‖h+ r− t‖l1/l2
and the training objective is to minimize the margin-based ranking loss raised
by positive and negative triplets.

TransE is effective for modelling 1-to-1 relations, but has been found less
suitable for modelling more complex reflexive and multi-relational facts. Later,
TransH [19] was proposed to model each relation r as a hyperplane to which
head and tail entities are projected with translation operations over it. Let wr

denote the normal vector of the relation-specific hyperplane with ‖wr‖2 = 1. The
head or tail entity embedding e ∈ {h, t} is thus defined as e⊥ = e−w�

r ewr, with
fr(h, t) = ‖h⊥+r−t⊥‖l1/l2 . TransR [11] models entities and relations in distinct
vector spaces whereby entities are projected to the relation-specific spaces (by
using a projection matrix Mr) with fr(h, t) = ‖Mrh+r−Mtt‖l1/l2 . Considering
each relation may exhibit diverse semantic meanings in various scenarios, TransR
was extended as CTransR by first clustering entities (h, t) according to offsets
h−t, and then the datasets are trained with fr(h, t) = ‖Mrh+rc −Mtt‖l1/l2 +
α‖rc−r‖l1/l2 , where the newly-added constraint ensures that the cluster-specific
relation rc is close to the original relation r.

The model TransD further refines the model TransR/CTransR by using
dynamic mapping matrix. For each triplet (h, r, t), two mapping matrices
Mrh,Mrt ∈ R

m×n are used to project entities from entity space to relational
space. These matrices are defined in terms of two vectors: Mrh = rph�

p + Im×n

and Mrt = rpt�
p + Im×n, where rp, hp and tp are vectors for projection, and

the original vectors represent the semantic meanings of entities and relations.
As aforementioned, TransD has less parameters and matrix multiplication oper-
ations compared with TransR, and meanwhile delivers promising experimental
results on link prediction tasks.

Afterwards, several other refined translational models are proposed such
as TransA [20], TransG [21], TranSparse [8], TransMS [23], etc. Notably,
TranSparse deals with heterogeneous and unbalanced issues of complex rela-
tions. TranSparse replaces the projection matrix by adaptive sparse matrices
Mr(θr) for sharing the sparse transfer matrix among relations (or by Me

r(θ
e
r)

where e ∈ {h, t} for different triplets separately). The sparse degree θr is deter-
mined by the quantities of entities pairs linked by the relations. Recently, a
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Fig. 1. Illustration of our model ATransD-NL

translation method called TransMS [23] aims to model complex relations by
capturing multidirectional semantics from head/tail entities and relations to
tail/head entities with nonlinear functions and from entities to relations with
linear bias vectors. The model only introduces one more extra hyper-parameter
than TransE yet gains substantial improvements against many other state-of-
the-art translation-based methods.

2.2 Neural-Network Based Methods

The Single Layer Model (SLM) [4] model defines its score function with a non-
liner neural network. Later the Neural Tensor Network (NTN) [4] model extends
SLM by encoding a 3-way tensor and other transformations into multilayer neu-
ral network, to address the second-order correlations. We are aware of several
recent work based on convolutional networks for knowledge graph embedding.
The model ConvE [5] uses 2D convolutions over embedding for link prediction.
It is formed by a single convolution layer, a projection layer and an inner product
layer for computing the scores of each tail entity t with respect to input pairs
(h, r). The model is highly parameter efficient while yielding competitive perfor-
mance. The model ConvKB [14] is another knowledge graph embedding method
based on convolutional neural network. It takes the entire triples as inputs which
are encoded as a 3-column matrix for each and fed to 1D convolution operators.
The feature maps learned by the convolution layer is concatenated into a feature
vector which is used to produce the score for triples via dot product. The model
also shows state-of-the-art performance on some benchmarks. ConvKB is later
extended as CapsE [18] by further utilizing capsule network. The model SACN
[16] is composed of an encoder WGCN and a decodor Conv-TransE and shows
enhanced performance compared with ConvE. Recently, a novel attention-based
embedding method for link prediction called KBGAT [13] delivers significant
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improvements on the performance of link prediction over state-of-the-art meth-
ods. The model uses an encode-decoder structure with generalized graph atten-
tion model and ConvKB as encoder and decoder, respectively. Its performance
gain is mainly attributed to the attention-based model that discovers richer and
more expressive feature embedding compared with other convolutional neural
network based methods.

3 The Proposed Method

3.1 Model

We denote by E the universe of entities in the knowledge graph. Following
TransD, each entity and relation is also represented by two vectors in our method.
Given a triplet (h, r, t), the two vectors used are h,hp, t, tp ∈ R

n and r, rp ∈ R
m,

where the subscript p denotes the projection vectors. These projection vectors
are used for constructing the mapping matrices from the entity space to the rela-
tional spaces dynamically. The original vectors represent the semantic meanings
of entities and relations. For ease of presentation, we set the dimensions of enti-
ties n and relations m as equal, i.e., n = m, following the treatment of some
other translational methods.

We denote by N ⊆ E the local and possibly multi-hop neighbourhood entities
of a given triplet (h, r, t). To learn the contextual information of the given triplet,
we first compute the absolute attention value of each concerned entity pair (h, ti)
for each entity ti ∈ E in Eq. (1):

βi =

{
a(h, ti) if ti ∈ N
−∞ otherwise

(1)

where a is an attention function. Considering the efficiency, we choose a to be
dot product of two embedding vectors. Then we compute the relative attention
values over all βi in Eq. (2):

αi = softmax (βi) =
exp(βi)∑

1≤j≤N exp(βj)
(2)

Then we obtain a weight vector w = [α1, . . . , αn]� ∈ R
Ne that attempts to cap-

ture the probability for each ti ∈ E that a one-hop or multi-hop path exists from
h to ti. Next we introduce an embedding vector t̄ that combines the contextual
information of possible neighbourhood entities for the head entity h with respect
to complex relations.

t̄ = t + Ew (3)

where E = [e1; . . . ; eNe
] ∈ R

n×Ne denotes the embedding matrix for all the
entities in the knowledge graph, and ei represents the original embedding vector
for each entity ei ∈ E . Then we define
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h⊥= σ(h�
p hrp) ⊗ t̄ + h (4)

t⊥= σ(t�
p trp) ⊗ h + t (5)

where σ is any nonlinear function of interest. By empirical study, tanh turns
out to be the optimal choice here among other choices like sfotmax, ReLu, etc.
Here ⊗ is the Hadamard product. We would like to remark that, the projected
vectors of entities in TransD can be rewritten as above because we set m = n in
our setting.

Similarly, one can also define

h⊥= σ(h�
p hrp) ⊗ t + h (6)

t⊥= σ(t�
p trp) ⊗ h̄ + t (7)

where h̄ is an embedding vector that combines the context information of pos-
sible neighbourhood head entities for the tail entity t with respect to complex
relations.

Figure 1 illustrates the computation process of various embeddings in Eqs. (4)
and (5). Our empirical study shows that any of the two choices above, as well as
a combination of the two embedding methods by using some hyper-parameter,
deliver similar performance, and we consider the former choice in our experi-
ments.

Finally, the score function of our model is given as

fr(h, t) = ‖h⊥ + r − t⊥‖l1/l2
As usual, the score is expected to be lower for golden triples from the knowledge
graph and higher for invalid relational facts that do not exist.

3.2 Training Objectives

Since knowledge graphs only specify golden triplets, one has to take a proper
approach to sampling the set of negative triplets for model training. We denote
by R the set of golden triplets from the knowledge graph and take R′ as the
set of negative triplets that is obtained by corrupting either the head entity
or tail entity by randomly sampling entities in E . We also use two strategies
called uniform sampling (abbreviated as “unif”) and Bernoulli sampling (abbre-
viated as “bern”), respectively [19]. Formally, given a golden triplet (h, r, t), its
corresponding negative triplets are denoted by R′

(h,r,t):

R′
(h,r,t) = {(h′, r, t) �∈ R | ∃h′ ∈ E : h′ �= h}

∪{(h, r, t′) �∈ R | ∃t′ ∈ E : t′ �= t}
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Then R′ =
⋃

(h,r,t)∈R R′
(h,r,t). We train our model by minimizing the margin-

based ranking loss L as defined below. The training objective is given as follows:

L =
∑

(h,r,t)∈R

∑
(h′,r,t′)∈R′

(h,r,t)

max (0, fr(h, t) − fr(h′, t′) + γ)

where γ is the margin separating golden triplets and negative triplets. The train-
ing objective is subject to the following constraints: ‖h⊥‖2 ≤ 1, ‖t⊥‖2 ≤ 1,
‖h‖2 ≤ 1, ‖t‖2 ≤ 1 and ‖r‖2 ≤ 1 for each embedded entity and relation. We use
the Adam optimizer for minimizing the above loss.

4 Experiments and Result Analysis

4.1 Datasets and Protocols

We evaluate our model on two popular knowledge graph datasets built with
WordNet [12] and FreeBase [1]. These two datasets are widely used in knowl-
edge graph completion and representation learning. Neural network-based meth-
ods mostly use WN18RR and FB15k-237, and translation model-based methods
mostly use WN18 and FB15k. The work of this paper compares two types of
methods on relevant datasets. Table 2 shows the details of four datasets and
the division of training set, validation set, and test set, including the number of
relation and the number of entities.

Evaluation Protocols. The task of link prediction aims to predict the most
probable missing head or tail entity in a test triplet. We construct negative sam-
ples by replacing head or tail entity of the golden triplets, and those corrupted
triplets are not in knowledge graph. Following evaluation metrics proposed in
[4], we use two popular evaluation metrics MeanRank (that is the mean rank
over all the test golden triplets) and Hits@10 (the proportion of correct entities
ranked in top 10), respectively.

The evaluation on MeanRank is computed as the average of MeanRank for
the head and tail entity prediction over all the triplets in the testing set. Take
the head prediction as an example, we first compute scores of those corrupted
triplets by replacing the head entity for each triplet in the testing set, and rank
their scores in an ascending order. Then we rank the scores of golden triplets,
and compute the mean rank of head entity prediction. The mean rank for the tail

Table 2. Details of datasets used in the experiments.

Datasets #Entity #Relation #Train #Valid #Test

FB15k 14,951 1,345 483,142 50,000 59,071

FB15k-237 14,541 237 272,115 17,535 20,466

WN18 40,943 18 141,442 5,000 5,000

WN18RR 40,943 11 86,835 3,034 3,134
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entity is similarly computed. The lower the MeanRank, the better the model’s
potential generalization ability. The evaluation on Hits@10 also contains the
metrics on both the head entity prediction and the tail entity prediction. For
each prediction, Hits@10 is calculated as the ratio of golden triplets ranked
in top 10 divided by the quantity of all the triplets in the testing set. The final
evaluation on the Hits@10 metric is the average of the Hits@10 value for the head
and tail entities among all the triplets in the testing set. Therefore, the higher
the Hits@10, the better the model’s accuracy in general. Besides, the results are
also classified into two categories “Raw” and “Filter”. Since the corrupted triplet
may also exits in the knowledge graph, the corrupted triplets are removed from
the train, valid and test sets. This evaluation setting is called “Filter”, and the
setting “Raw” means that the scores of all corrupted triplets are also considered.

Model Parameters. For all the experiments, we take the embedding dimension
size in [100, 200], the value of margin γ in [−10, 10], and the learing rate of SGD
in the range of {0,001, 0.0005, 0.0001}. We choose the batch size from {5k, 10k,
50k, 200k}. The best experimental results are obtained by using the following
parameters: the embedding dimension d = 100, the learing rate is 0.0001 and
the margin γ is different in four datasets, margin γ = −1.2 in WN18RR, γ = 0.5
in FB15k-237, γ = −1.3 in FB15k, γ = 2.0 in WN18. Here, we use the l1 norm
in the scoring function.

4.2 Experiment Results

We report results of our model ATransD-NL on WN18 and FB15k in Table 3,
for comparison with translation-based models. ATransD-NL is the originally
proposed model defined in Sect. 3 considering both nonlinear correlations among
entities and relations and contextual information. Here for a given triplet (h, r, t),
we take the neighbourhood entities N as the all the entities in the knowledge
graph, i.e., N = E , which turns out to be empirically optimal. Experiments
show that we have achieved substantial improvements of both metrics on the
two benchmarks, compared with the baselines. We would like to remark that,
TransMS delivers the best Hist@10 on FB15k for the Filter setting by fine-
turning a hyperparameter α used in the linear bias vectors, with the need of
setting different values for different relations.

We also experimented with three ablated models with details given below.

– TransD-NL: Only nonlinear mapping is applied without attention mecha-
nism:

h⊥= σ(h�
p hrp) + h (8)

t⊥= σ(t�
p trp) + t (9)

– TransDT-NL: Based upon TransD-NL, a simple attention-learning is used,
such that the semantic vector of tail entity is embedded into the semantic
representation of head entity, and vice versa:
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Table 3. Experimental results of link prediction on WN18 and FB15K, compared with
translational models. The best results from the two sampling strategies are taken for
compared models. The best results are in bold, and the second best score is underlined.
The number shown in parenthesis is the normal Hits@10 result of TransMS on FB15K
by setting the hyperparameter α uniformly rather than fine-tuning α for different types
of relations.

Datasets WN18 FB15K

Metric MeanRank Hits@10(%) Mean Rank Hits@10(%)

Raw Filter Raw Filter Raw Filter Raw Filter

TransE [3] 263 251 75.4 89.2 243 125 34.9 47.1

TransH [19] 318 303 75.4 86.7 211 84 42.5 58.5

TransD [7] 224 212 79.6 92.5 194 67 53.4 77.3

TransR [11] 232 219 78.3 91.7 226 78 43.8 65.5

PTransE [10] 200 54 51.8 84.6

TranSparse [8] 223 211 80.1 93.4 190 66 53.7 79.9

TransMS [23] 427 414 82.5 94.8 171 63 55.0 86.8

(51.8) (79.8)

TransD-NL 274 262 72.0 81.4 311 205 40.2 51.9

TransDT-NL 195 185 83.4 95.1 147 44 54.2 80.6

ATransD 166 153 80.6 93.4 145 36 54.4 75.3

ATransD-NL(unif) 162 149 82.7 95.4 145 35 54.7 76.1

ATransD-NL(bern) 165 152 82.5 95.4 172 65 54.8 76.5

h⊥= σ(h�
p hrp) ⊗ t + h (10)

t⊥= σ(t�
p trp) ⊗ h + t (11)

– ATransD: Only attention-based learning is applied:

h⊥= (h�
p hrp) ⊗ t̄ + h (12)

t⊥= (t�
p trp) ⊗ h + t (13)

Besides, we have also experimented with the choice of taking N = {t |
∃r∃t.(h, r, t) ∈ R} in the attention-based embedding method. That is, we con-
sider the set of tail entities that are linked with the head entity via 1-hop relation.
We have also experimented with the model KBGAT on this dataset and obtain
MeanRank = 231 and Hits@10 = 91.4% on WN18 the Filter setting, and Mean-
Rank = 37 and Hits@10 = 92.1% on FB15K for the Filter setting. KBGAT
delivers the best result of Hits@10 on FB15K.

In Table 4, we report results of our model ATransD-NL on WN18RR and
FB15k-237, compared with neural-network based methods. Experiments show
the good performance of our model on two datasets against the stat-of-the-art
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Table 4. Experimental results of link prediction on WN18RR and FB15K-237, com-
pared with models based on neural networks. The best results from the two sampling
strategies are taken for compared models. The best results are in bold, and the second
best score is underlined.

Datasets WN18RR FB15K-237

Metric MeanRank Hits@10(%) MeanRank Hits@10(%)

DisMult [22] 7000 50.4 512 44.6

ComplEx [17] 7882 53.0 546 45.0

ConvE [5] 4464 53.1 245 49.7

ConvKB [14] 2554 52.5 257 51.7

R-GCN [15] 6700 20.7 600 30.0

KBGAT [13] 1940 58.1 210 62.6

TransD-NL 4230 39.9 328 43.8

TransDT-NL 1464 48.8 184 56.5

ATransD 2429 53.6 182 53.7

ATransD-NL(unif) 2104 54.2 180 56.1

ATransD-NL(bern) 2050 52.0 203 59.7

Table 5. Detailed results by the categories of relations on FB15k. The best results from
the two sampling strategies are taken for compared models. The best results are in bold
and the second best scores are underlined (Note that ATransD-NL would outperform
TransMS on this metric if it sets the hyper-parameter α uniformly as reported in [23]).

Prediction type Head prediction Tail prediction

Relation type 1-1 1-N N-1 N-N 1-1 1-N N-1 N-N

TransE [3] 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

TransH [19] 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8

TransD [7] 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2

TransR [11] 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1

TranSparse [8] 83.2 85.2 51.4 80.3 82.6 60.0 85.5 82.5

TransMS [23] 89.5 94.4 78.5 85.6 90.0 84.8 91.7 87.7

ATransD-NL (unif) 85.4 97.1 61.2 82.3 87.2 84.0 95.5 82.8

ATransD-NL (bern) 87.1 96.7 40.4 73.9 86.7 48.3 95.4 77.1

neural-network based methods. We have shown advantages on both datasets,
especially that we can always obtain the best results on MeanRank without
degrading Hits@10 that much, even compared with the model KBGAT that
contain much more parameters than our model. Our training time took around
4 h on FB15k-237 and WN18RR, and double that time on FB15k and WN18.

Table 5 classifies the results of FB15k according to several classifications of
complex relations on Hits@10. In this experiments, we divide the ternary com-
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ponents into four categories according to the cardinality of the head entity and
tail entity parameters: 1-1, 1-N, N-1, N-N. If a head entity has at most one tail
entity, the given relation is 1-1. If a head entity has multiple tail entities con-
nected to it, the given relation is 1-N. If multiple head entities have only one
tail entity, The given relation is N-1. If multiple head entities have multiple tail
entities, it is N-N. By calculating the average number of head entities (respec-
tively, tail entities) that appear in the FB15k dataset for each relationship �, a
pair (�, t) is given (respectively, a pair (h, �)). If the average value is less than
1.5, the parameter is marked as 1, otherwise it is marked as N. For example, a
relation with an average tail of 1.2 and an average tail of 3.2 is classified as 1-N.

According to the results of Table 5, the advantage of our method on the
FB15k dataset lies in dealing with the kind of 1-N and N-1 relations. We have
obtained the best results compared with other baselines on predictions in the two
categories: for head prediction, our 1-N prediction is the best among all baselines,
and for tail prediction, our N-1 prediction is the best among all baselines, and
the other metrics are slightly worse than TransMS. Results show that the overall
performance of our method on Hits@10 is comparable to TransMS on FB15k,
yet still suffer from some shortcomings when it comes to dealing with 1-1 and
N-N relations. Our method is designed to combine the influence of linked tail
and head entities, yet entities involved in complex relations may interfere with
each other during the learning process.

5 Concluding Remarks

We have presented a new model named ATransD-NL based on extending the
model TransD. Our method learns the attention-based translational knowledge
graph embedding via nonlinear dynamic semantic projection from entity spaces
to relation-specific embedding spaces. The model captures nonlinear correlations
among entities and relations. Moreover, our attention-based embedding combines
contextual information into the translation-based learning process. Experimental
results show that ATransD-NL achieves consistent and significant improvements
on link prediction (especially on the MeanRank metric) compared with both
state-of-the-art translation-based methods and neural-network based methods.
As future work, we will explore more fine-grained attention-based mechanisms
to better deal with N-N relations.
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Abstract. Recent neural Open Information Extraction (OpenIE) mod-
els have improved traditional rule-based systems significantly for Chi-
nese OpenIE tasks. However, these neural models are mainly word-based,
suffering from word segmentation errors in Chinese. They utilize depen-
dency information in a shallow way, making multi-hop dependencies hard
to capture. This paper proposes a Multi-Grained Dependency Graph
Neural Network (MGD-GNN) model to address these problems. MGD-
GNN constructs a multi-grained dependency (MGD) graph with depen-
dency edges between words and soft-segment edges between words and
characters. Our model makes predictions based on character features
while still has word boundary knowledge through word-character soft-
segment edges. MGD-GNN updates node representations using a deep
graph neural network to fully exploit the topology structure of the MGD
graph and capture multi-hop dependencies. Experiments on a large-scale
Chinese OpenIE dataset SpanSAOKE shows that our model could alle-
viate the propagation of word segmentation errors and use dependency
information more effectively, giving significant improvements over previ-
ous neural OpenIE models.

Keywords: Open information extraction · Dependency graph model ·
Graph neural network

1 Introduction

Open information extraction (OpenIE) is an important task in natural language
processing (NLP), aiming to mine semi-structured fact knowledge from unstruc-
tured text. Unlike traditional relation extraction tasks with schema constraint,
OpenIE imposes no limitations on relations or arguments and could extract more
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Fig. 1. An example of Chinese OpenIE. Given a sentence, two fact knowledge triples in
the form of (subject, predicate, object) are extracted from this sentence. The segmented
words and dependency edges between words are also shown.

fact knowledge from text sources. OpenIE has benefited many downstream tasks,
such as knowledge base construction, question answering [13], and summariza-
tion [9].

Traditional OpenIE systems are mostly based on syntactic patterns and
heuristic rules. For example, ReVerb [8], ClausIE [6], OpenIE4 [19] for English
and CORE [28], ZORE [21] for Chinese, leverage external NLP tools to obtain
part-of-speech (POS) tags or dependency features and generate syntactic pat-
terns to extract fact knowledge tuples1. The syntactic patterns in these sys-
tems are usually language-specific and cannot generalize well to other languages.
Besides, these pattern-based approaches cannot handle the complexity and diver-
sity of languages well, and the performance is usually far from satisfactory.

Recently, neural models have been employed on OpenIE tasks to conquer the
limitations of syntactic pattern-based methods. Neural OpenIE methods could
be divided into two categories: sequence generation and span selection. Sequence
generation models, such as Neural Open IE [5], Logician [27] and IMOJIE [16],
generate fact tuples directly using the encoder-decoder framework. Span selec-
tion models, such as RnnOIE [25] and SpanOIE [33], select spans of a sentence as
predicates or arguments. Previous sequence generation and span selection mod-
els are mostly word-based, and thus would propagate word segmentation errors
when applied to Chinese. For example, as illustrated in Fig. 1, “
(Foreign Minister of China)” which is composed of word “ (China)” and
“ (Foreign Minister)” is segmented incorrectly as a whole word, which
would cause word-based models to neglect the first fact knowledge triple.

It is proven that dependency knowledge benefits many information extrac-
tion tasks, such as semantic role labeling [18] and relation extraction [35]. How-
ever, existing neural OpenIE models usually integrate dependency information
into neural models in a shallow way. For example, SpanOIE concatenates word
embedding with corresponding dependency label embedding as the input of a

1 We express n-ray extraction as tuple and binary extraction as triple in this paper.
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sentence encoder. This ignores the topology structure of a dependency tree, mak-
ing it hard to capture multi-hop dependencies. As shown in Fig. 1, the depen-
dency between subject “ (Yi Wang)” and predicate “ (visit)” is multi-
hop, which is hard to capture for shallow integration approach.

To address these issues, we propose a multi-grained dependency graph neural
network (MGD-GNN) model for Chinese OpenIE. (1) To avoid propagating of
word segmentation errors, we leverage multi-granularity information and make
predictions on characters rather than words. Specifically, we construct a multi-
grained dependency (MGD) graph with words and characters interconnected
with each other. Words are connected to their corresponding characters to pro-
vide soft hints of word boundaries rather than hard predictions. (2) To capture
multi-hop dependencies, we incorporate the dependency relations between words
and adopt a graph neural network (GNN) to encode the MGD graph. Deep GNN
updates node representations using information from its multi-hop neighbors and
thus could capture multi-hop dependencies. To the best of our knowledge, we
are the first to explore character-based models and introduce GNN to Chinese
OpenIE. The main contributions of this paper can be summarized as follows:

– We propose a character-based neural OpenIE model for the Chinese OpenIE
task and introduce graph neural networks to neural OpenIE models.

– We propose an MGD-GNN model for Chinese OpenIE, which could alleviate
word segmentation errors in Chinese and capture multi-hop dependencies.

– Experiments on SpanSAOKE, a Chinese OpenIE dataset, demonstrate that
our proposed model has significant improvements over baselines.

2 Problem and Methodology

We first formulate the problem of Chinese open information extraction. As
shown in Fig. 1, it is formalized as a span extraction task: given a sentence
S = 〈c1, ..., cN 〉 with N characters, the goal is to extract M fact triples
T = {(s1, p1, o1), . . . , (sM , pM , oM )} from the sentence. si, pi, oi represent sub-
ject, predicate and object of a fact triple respectively, and are defined as
spans of sentence S. Here we define span as a continuous character segment
〈ci, ..., cj〉1≤i≤j≤N of sentence S. Similar as [5], we only consider binary triples,
which have exactly one subject and one object.

Next, we introduce our MGD-GNN model. Our model employs a two-stage
pipeline extraction method, including predicate extraction and argument
extraction stages following [33]. Both stages share the same neural network
architecture to get character embeddings with the context encoder and our
MGD-GNN. In the predicate extraction stage, our model extracts all predicate
spans from the sentence. Then, in the argument extraction stage, our model
predicts its corresponding subject and object for each predicate.

2.1 Context Encoder

Our model first maps each character ci to its distributed representation ci ∈ R
dc

using pre-trained embeddings via word2vec [20]. We also concatenate different
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Fig. 2. The architecture of our multi-grained dependency graph neural network (MGD-
GNN) model for Chinese OpenIE. The left side is the overall architecture, and the right
side shows the details of MGD-GNN.

feature embeddings fi for each character in predicate and argument extrac-
tion stages. After concatenation xi = [ci; fi], we get an embedding sequence
〈x1, ...,xN 〉 which is directly fed to a context encoder.

To get the contextualized representations for each character, we use a bidi-
rectional LSTM (BiLSTM) [24] to model the sequence. Other character-based
context encoders, such as BERT Chinese [7], could also be applied. BiLSTM
processes character-based sentences from forward and backward directions.

−→
h i = BiLSTM(xi,

−→
h i−1) (1)

←−
h i = BiLSTM(xi,

←−
h i+1) (2)

where
−→
h i and

←−
h i represent the left and right hidden states of the i-th character

respectively. By concatenating the hidden states from both sides, we get the final
contextual representations hi = [

−→
h i;

←−
h i] ∈ R

d.

2.2 MGD-GNN

Multi-Grained Dependency Graph Construction. To alleviate word seg-
mentation errors in Chinese and capture multi-hop dependency knowledge, we
propose to build a multi-grained dependency (MGD) graph as illustrated in
Fig. 2. The word and character nodes in MGD graph are interconnected through
two types of undirected edges, naming dependency edge and soft-segment edge.
To build the MGD graph, we first obtain segmented words and dependency
tree of a sentence using LTP [4]. We keep segmented words as word nodes in
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MGD graph, and make directed dependency tree edges as undirected depen-
dency edges between word nodes. Meanwhile, each character in the sentence
is added to MGD graph as a character node. A word node has soft-segment
edges connected to the character nodes that make up the word. For example,
word node “ (Singapore)” in Fig. 2 has soft-segment edges with its three
character nodes ” and “ ”. In this way, when we make predictions
on character nodes afterward, the word segmentation result of a specific NLP
tool acts as soft hints to alleviate word segmentation errors in Chinese. MGD
graph incorporates dependency and word segmentation knowledge by its word-
word dependency edges and word-character soft-segment edges to help the model
make better decisions.

Graph Neural Network over MGD Graph. Graph neural network (GNN)
has been used widely in modeling graph-structured data [12,15,31]. GNN cap-
tures multi-hop dependency features on graphs by aggregating information from
neighborhoods of a node. Among these variants of GNN, we use graph attention
network (GAT) [31] as our graph encoder, which is capable of controlling node
weights when aggregating information from neighbors.

Formally, let G = {V, E} denote a graph, where V is the vertex set and E is
the edge set. In our MGD graph, V = W ∪ C consists of all word nodes W and
character nodes C, and E contains all dependency edges and soft-segment edges.
Let ul

i ∈ R
d indicate node embedding of the i-th node at the l-th GAT layer,

where d is the dimension of node embeddings. We initialize node embeddings
using hidden state outputs from BiLSTM encoder,

u0
i =

{
hi if i ∈ C
(
∑

j∈N s
i
hj)/|N s

i | otherwise
(3)

where N s
i represents all neighbors of node i that have soft-segment edge con-

nections with i. The initialization vector of a word node is computed by mean
pooling of its character hidden states.

We use multi-head attention [30] to update node representations. Specifically,
multi-head attention adopts H attention heads when aggregating information
from neighbors, each transforming input to different spaces and focusing on
different aspects of neighbors. For attention head h, we first calculate attention
scores e

(h)
ij between each pair of nodes using a feed-forward neural network,

e
(h)
ij = LeakyReLU(a(h) · (W(h)ul−1

i ||W(h)ul−1
j )) (4)

where ul−1
i ∈ R

d and ul−1
j ∈ R

d express the features of node i and node j at the
l − 1-th layer. W(h) ∈ R

dh×d is the linear projection matrix, transforming input
to dh dimensions. || is the concatenation operator. a(h) ∈ R

dh is the learnable
weight vector of attention.
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Then we compute normalized attention weights using a softmax function,

α
(h)
ij = softmax(e(h)ij ) =

exp (e(h)ij )∑
k∈Ni

exp (e(h)ik )
(5)

where Ni denotes the set of neighbors of node i. We perform a linear combination
of the features of node neighbors using normalized attention weights. The output
features of node i on head h is obtained as follows,

u(h)
i =

∑
j∈Ni

α
(h)
ij W(h)ul−1

j (6)

where u(h)
i ∈ R

dh is the dh dimensional output features.
We concatenate outputs of H attention heads to get the updated node fea-

tures ul
i = [u(1)

i ;u(2)
i ; · · · ;u(H)

i ], where ul
i is a dh × H dimensional vector. For

implementation convenience, we choose the dimensions of input and output rep-
resentations of a GAT layer to be the same, that is, d = dh × H.

By stacking L GAT layers, each node could gather information from its L-
hop neighbors. We retain character node features of the last GAT layer U =
[uL

1 ,uL
2 , · · · ,uL

|C|] for triple extraction.

2.3 Triple Extraction

Predicate Extraction. Following [33], we model predicate extraction as a span
classification problem. We only preserve the spans satisfying maximum length,
non-overlapping and syntactic constraints [33] as candidates to classify. To incor-
porate syntactic features, we take POS tag embeddings ti ∈ R

dt as additional
feature input fi = ti. For a candidate span 〈ci, ..., cj〉1≤i≤j≤N , we select its start
and end character features, and predict the probability of it being a predicate.

p = softmax(Wp[uL
i ;uL

j ;uL
i + uL

j ;uL
i − uL

j ]) (7)

where Wp ∈ R
2×4d is the weight of linear predicate classifier.

Argument Extraction. Given each predicate span acquired in the predicate
extraction phase, we extract its corresponding subject and object. We adopt
relative position embeddings [32] as additional input features fi = pi ∈ R

dp to
indicate predicate positions. To extract the subject, we apply linear classifiers
on U to compute the probability of each character being the start and end of a
subject span.

psubj start = softmax(Wsubj startU) (8)
psubj end = softmax(Wsubj endU) (9)

where Wsubj start ∈ R
1×d and Wsubj end ∈ R

1×d are weight matrices, and
psubj start ∈ R

|C| and psubj end ∈ R
|C| are start and end probability distribu-

tions over characters of the sentence. The object is extracted in the same way.
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During training, the predicate extraction model and argument extraction
model are optimized independently. The argument extraction model is trained
using gold predicates of a sentence. At inference, predicates obtained by the
predicate extraction model are fed to the argument extraction model, and we
combine the results of two stages to get final fact triples.

3 Experiments

3.1 Experiment Settings

Dataset. We evaluate our model on the SpanSAOKE dataset, a span extrac-
tion dataset from the original SAOKE [27]. SAOKE is a large-scale sentence-
level dataset for Chinese OpenIE. Each sentence in SAOKE is manually labeled
with its contained facts in a unified knowledge representation format. To adapt
SAOKE dataset to our span extraction setting, we filter unknown, description
and concept facts because they either have missing subject, predicate and object
or introduce special predicates such as ISA and DESC. Besides, we only retain
binary relation facts whose triple components are spans of the sentence. The
processed dataset, SpanSAOKE, contains 26, 496 Chinese sentences with 53, 869
facts. We randomly split SpanSAOKE into train, dev and test set. The statistics
of SpanSAOKE is shown in Table 1.

Table 1. Statistics of SpanSAOKE
dataset. #Sent. denotes the number of
sentences and #Avg. represents average
number of facts per sentence.

Split #Sent. #Fact #Avg.

Train 21, 196 43, 216 2.04

Dev 2, 649 5, 311 2.01

Test 2, 651 5, 342 2.02

Total 26, 496 53, 869 2.03

Table 2. Main results on the test set of
SpanSAOKE dataset.

Model P R F1

ZORE 31.5 17.7 22.7

CharLSTM 40.4 45.4 42.7

SpanOIE 41.8 44.3 43.0

WD-GNN 41.3 47.2 44.1

MGD-GNN 45.0 47.1 46.0

Evaluation Metrics. To evaluate the results, we need to compare the predicted
triples Tp = {(ŝi, p̂i, ôi) | 1 ≤ i ≤ P} of a sentence with ground truth triples
facts T = {(sj , pj , oj) | 1 ≤ j ≤ M}. Each triple in Tp is regarded as correct if it
matches one of the triples in T . Two triples tp = (ŝi, p̂i, ôi) and t = (sj , pj , oj)
are considered as matched if they satisfy one of the two matching conditions
described in [27]: (1) g(ŝi, sj),g(p̂i, pj),g(ôi, oj) ≥ δ, (2) g(Cat(tp),Cat(t)) ≥ δ,
where g(·, ·) is the gestalt pattern matching function [22] and Cat(·) concatenates
triple components as a whole string. We choose the threshold δ = 0.85 in our
experiments. The matched triples in T are excluded for later matching. We use
precision, recall and F1 score to evaluate model performance.
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Parameters. The hyper-parameters in our experiments are illustrated in
Table 3. All hyper-parameters are tuned on the dev set. We use the same model
structure and training hyper-parameters for both predicate and argument extrac-
tion models. For our MGD-GNN model, we use character embeddings from
[34] with dimension dc = 50, which is pre-trained on Chinese Giga-Word using
word2vec. We choose Adam optimizer [14] to minimize the cross entropy train-
ing loss for its faster convergence rate. The learning rate of Adam is decayed by
0.01 every epoch, and the training process is early stopped with a patience of
30. In the predicate extraction stage, we set the weights of positive and negative
samples to 3 and 1 for handling the label imbalance problem.

Table 3. Hyper-parameter settings.

Parameter Value Parameter Value

BiLSTM layers 1 BiLSTM hidden d 300

Multi-head attention H 5 Attention hidden dh 60

GAT layers L 3 GAT dropout 0.3

Batch size 50 Learning rate 0.001

3.2 Overall Results

We compare our proposed MGD-GNN with several competitive baselines for
Chinese OpenIE.

ZORE [21] is a syntactic-based system, which extracts relational tuples and
their semantic patterns iteratively based on parsed dependency trees of sen-
tences. To evaluate ZORE under our binary triple extraction setting, we identity
subject and object from possibly multiple arguments of ZORE tuples. In prac-
tice, we find that taking arguments with one of nsubj, SBV dependency labels
as subject and arguments with nobj, VOB, POB labels as object gives better F1

score. We use this strategy to refine ZORE tuples in our experiments.
SpanOIE [33] is a span selection based neural OpenIE model. It is a word-

based span classification model and achieves competitive results on English Ope-
nIE. To adapt SpanOIE to Chinese OpenIE, we use the pre-trained Chinese word
embeddings from [17] and obtain POS tags and dependency labels from LTP [4]
as in our model.

CharLSTM applies a vanilla character-based BiLSTM to encode characters
to extract predicates and arguments. The only difference between CharLSTM
and our proposed MGD-GNN is that CharLSTM has no extra graph encoder
component to integrate dependency and word segmentation knowledge.

We present the comparison results in Table 2. We observe that neural Ope-
nIE models outperform rule-based ZORE by a large margin, showing their abil-
ities to handle complex and diverse sentences. Without additional word and
dependency information, simple CharLSTM achieves comparable performance to
word-based SpanOIE, validating the effectiveness of character-based models on
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Chinese OpenIE task. We hypothesis that character-based neural encoder could
capture word boundary features of Chinese and avoid propagating word segmen-
tation errors. By introducing GAT to encode multi-grained dependency graph,
our proposed MGD-GNN further outperforms SpanOIE by 3 F1, demonstrating
that our MGD-GNN could utilize dependency and word boundary knowledge
more effectively.

3.3 Effect of Multi-Grained Information

To demonstrate the effectiveness of multi-grained input in alleviating the propa-
gation of word segmentation errors, we prune all character nodes from our MGD
graph and keep the other components. The pruned model, word dependency
graph neural network (WD-GNN), only has word-level nodes and extracts pred-
icates and arguments based on word representations. As shown in Table 2, our
multi-grained MGD-GNN outperforms single-grained WD-GNN by 1.9 F1. This
shows the effectiveness of incorporating multi-grained information and demon-
strates that making predictions on characters rather than words could alleviate
word segmentation errors on Chinese OpenIE.

Table 4. Results on the test set of SpanSAOKE dataset. We present precision, recall
and F1 score for both triple and predicate extraction. Subj Acc. denotes accuracy of
subject in argument extraction and Obj Acc. denotes accuracy of object.

#layer Triple Predicate Argument

P R F1 P R F1 Subj Acc. Obj Acc.

0 40.4 45.4 42.7 48.4 54.4 51.2 70.5 77.6

1 43.0 45.5 44.3 50.4 53.3 51.8 70.6 77.4

2 43.9 46.4 45.1 50.8 53.7 52.2 72.0 82.6

3 45.0 47.1 46.0 51.4 53.8 52.5 73.0 83.2

4 43.9 48.3 46.0 50.2 55.3 52.7 73.4 83.3

3.4 Analysis of Multi-hop Dependencies

To analyze the ability to capture multi-hop dependency features, we test our
MGD-GNN with different number of GAT layers and present the results in
Table 4. Predicates and arguments are compared using the gestalt string match-
ing function as the first triple matching condition in [27]. Stacking K GAT layers
makes our model capable of aggregating information at most K-hop away. We
find that models with GAT layers give better performance than models without
GAT layers, especially on the argument extraction. This demonstrates the effec-
tiveness of our proposed MGD-GNN model. We also observe that the 2-layer
version has an improvement of 1.4 on subject accuracy and 5.2 on object accu-
racy compared with the 1-layer version. This observation reveals that multi-hop
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dependency features are crucial to Chinese OpenIE. Shallow ways of incorporat-
ing dependency information are hard to capture these multi-hop features, and
thus perform poorly on Chinese OpenIE. We can also see that even with one
additional GAT layer, the 4-layer version has similar performance compared with
the 3-layer model on triple, predicate and argument extractions. We hypothesis
that deeper GNN models such as our 4-layer model are hard to optimize and may
cause overfitting on the dataset. To trade off model efficiency and performance,
we choose our MGD-GNN with 3 GAT layers.

4 Related Work

During the past decades, many systems have been built to solve the OpenIE
problem. TextRunner [3] is the first OpenIE system that could extract a far
broader set of facts from the Web using only part-of-speech (POS) tags. After
that, several systems, e.g., ReVerb [8], Ollie [23], ClausIE [6], Stanford Ope-
nIE [1], OpenIE4 [19], were introduced gradually to break the limitations of
previous systems. For Chinese, CORE [28] is the first Chinese OpenIE system
that applies a pipeline of NLP tools, and ZORE [21] identifies Chinese relational
tuples and semantic patterns simultaneously. These systems are rule-based and
depend on syntactic outputs of NLP tools.

Recently, neural models have been applied to OpenIE. The sequence gener-
ation method provides an end-to-end approach to solve OpenIE tasks. Neural
Open IE [5] uses encoder-decoder framework with attention [2] and copying
mechanism [11] to generate fact triples. To alleviate under- and over-extraction
problems and incorporate dependency information, Logician [27] leverages addi-
tional coverage mechanism [29] and gated dependency attention compare with
Neural Open IE, and achieves competitive results on Chinese OpenIE. IMOJIE
[16] produces one triple in each decoding phase and concatenates the sentence
and previously extracted triples as encoder input. Though it increases computa-
tion cost during training and inference, this multi-turn generation strategy could
adapt the number of extractions to the sentence length.

Recent works [16,33] show that span selection based models could achieve
better performance at the expense of more flexible outputs. In these works,
predicates and arguments are defined as spans of a sentence. RnnOIE [25] first
identifies verbs and nominal predicates using heuristic rules, and then uses a
bidirectional LSTM (BiLSTM) sequence tagger to extract arguments. SpanOIE
[33] introduces a word-based BiLSTM span model to classify candidate pred-
icate and argument spans. To incorporate syntactic knowledge, SpanOIE also
concatenates POS tag and dependency label embeddings with word embeddings
for each word. For its superiors performance, we follow the line of span selection
works for Chinese OpenIE.

Graph neural network [12,15,31] has achieved state-of-the-art performance
on graph-related tasks, such as node classification and graph classification.
Among variants of GNN, graph attention network (GAT) stands a strong base-
line compared with other models. GNN has been widely applied on various NLP
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tasks, such as relation extraction [35], named entity recognition [26], question
answering [10]. For example, [35] uses GNN to encode pruned dependency tree to
improve performance on relation extraction task. To the best of our knowledge,
we are the first to introduce GNN to OpenIE task and show its effectiveness on
this task.

5 Conclusion

In this paper, we explore character-based dependency graph models for the Chi-
nese OpenIE task. Our proposed model, MGD-GNN, constructs a multi-grained
dependency graph to incorporate dependency and word boundary information
and employs GNN to get node representations for predicate and argument pre-
dictions. Our character-based MGD-GNN model could avoid propagating word
segmentation errors and capture multi-hop dependency features. We evaluate
our model on a large-scale dataset SpanSAOKE and show that our proposed
model outperforms baselines significantly.
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Abstract. The widespread use of deep neural networks has achieved
substantial success in many tasks. However, there still exists a huge gap
between the operating mechanism of deep learning models and human-
understandable decision making, so that humans cannot fully trust the
predictions made by these models. To date, little work has been done on
how to align the behaviors of deep learning models with human percep-
tion in order to train a human-understandable model. To fill this gap,
we propose a new framework to train a deep neural network by incor-
porating the prior of human perception into the model learning process.
Our proposed model mimics the process of perceiving conceptual parts
from images and assessing their relative contributions towards the final
recognition. The effectiveness of our proposed model is evaluated on two
classical visual recognition tasks. The experimental results and analysis
confirm our model is able to provide interpretable explanations for its
predictions, but also maintain competitive recognition accuracy.

Keywords: Interpretability · Human-understandable decision

1 Introduction

Deep neural networks (DNNs) have made remarkable success in many areas
such as computer vision, speech recognition, and natural language processing.
Although DNNs have achieved human-level performance or even beaten humans
on some tasks like object recognition or video games, their underlying operation
mechanism still remains a “black box” for humans to fully comprehend. As a
result, humans cannot fully trust the predictions made by DNNs, particularly in
life-critical applications, such as auto-driving, and medical diagnosis. Therefore,
not only the academia, but also the industry is regarding interpretability as one
of the most important components and even a must-have one for responsible use
of deep learning models [8].
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Interpretability of machine learning refers to the ability to explain or to
present the results in understandable terms to a human [6]. There have been
considerate research efforts on studying the interpretability of deep learning
models. A stream of research has adopted a post-hoc approach, which yields
explanations by visualizing important features [1,18,19], or by creating a sur-
rogate model with high fidelity to the original model [17,21]. However, feature
visualisation based methods are found to be unreliable, as small perturbations
to the input data can lead to dramatically different explanations [1,7]. Methods
based on surrogate models do not reveal the essential process of the original
model to enhance human understanding [14].

Recently, researchers have attempted to train an inherently interpretable
model directly [5,10,23]. The aim is to learn a deep learning model from scratch
that is able to give explanations. These methods often use auxiliary information
as additional supervision to train the model. Such information is encoded in
the loss function to regularize model training, aiming to learn certain mappings
between latent features and human-understandable semantic information. Model
prediction results are then augmented with auxiliary outputs, such as topic words
[5], sentences [10], or object parts [5], to improve human understanding. However,
due to the lack of connection between model learning and human-understandable
decision making, how these models make decisions is still beyond the direct
comprehension of humans. Even worse, there is no clue to assert whether or not
decisions made by these models are reliable.

(a):parsing to components (b): recognition

Fig. 1. (a) Humans parse the object into
different semantic components; (b) Results
from different semantic components are
aggregated for final recognition. This figure
is adapted from [13].

To fill this research gap, in this
paper, we propose a new learning
framework that makes predictions in
a human-understandable way. Our
core idea is inspired by key find-
ings from cognitive science [2,13] that
humans make decisions based on their
perception. As illustrated by Fig. 1,
humans parse an object into differ-
ent components and then aggregate
the results from these components to
derive the final recognition. We call
these semantic components as con-
ceptual parts in this paper. A ques-
tion naturally comes into our mind:
Can we build a deep learning model
that makes predictions following this
human-understandable way? If we can link model learning with this human
decision making process, it is likely that the learned deep learning model can be
better understood by humans.

To achieve this goal, we design a new learning framework in analogy to the
process of human-understandable decision making. Our framework comprises an
automatic concept partition model and a concept-based recognition model via
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Fig. 2. The overview of the proposed method. Our model learns to partition the input
image into conceptual parts, whose features are passed to the expert networks to make
predictions. The gate network learns the importance weights of different conceptual
parts for the final prediction.

mixture of experts [12]. The concept partition model first parses the input images
into meaningful conceptual parts associated with different semantics, such as dif-
ferent body parts of a bird or sense organs of human faces. The features of each
conceptual part are then passed to a respective expert model for recognizing
the input image. A gate network is used to aggregate the predictions from dif-
ferent experts to obtain the final prediction results as well as the importance
weights of different conceptual parts. The importance weights reflect the con-
tributions of different conceptual parts to the final prediction. As a result, our
designed model incorporates how humans perceive from images and is able to
give human-understandable explanations. We show that our proposed model is
able to achieve comparable or even better accuracy on two visual recognition
tasks. More importantly, our model can provide human-understandable expla-
nations by conceptual parts and their importance weights, thereby enhancing
human understanding of how the model makes predictions.

The contribution of this paper is three-fold:

– We propose to inject human perception from images into model design and
learning of DNN models to enable human-understandable decision making.

– Our new framework is able to give explanations through conceptual parts and
their relative importance for the recognition result of each input image.

– Experiments on two visual recognition tasks verify the consistency between
the learned explanations and human cognition.

2 Model Design with Human Perception

Our proposed framework trains a deep learning model by injecting the prior of
how humans perceive from images. The overview of the proposed framework is
shown in Fig. 2. Our model first learns to parse the input images into conceptual
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parts with different semantics. Features of conceptual parts are then fed to the
concept-based recognition model to make the final prediction.

2.1 Concept Partition Model

We train a concept partition model to automatically segment the input images
X = {X0, · · · ,XN} into a set of conceptual parts with different semantics using
only image-level labels. Following [11], we transform the concept partition prob-
lem into the problem of estimating the probability p(cj |Xi) that each concept
cj occurrs in the input image Xi. The classical convolution neural networks,
i.e., ResNet, are used as the backbone to build our partition model. We use fea-
ture maps Si ∈ RD×H×W from one layer of the neural network to estimate the
probability whether or not each concept appears in an input image Xi. Based
on the feature maps shw ∈ RD at position (h,w) of Si, the probability pj

h,w of
the j-th concept cj ∈ RD occurring at the position (h,w) is formulated as:

pj
h,w =

exp
(
− ‖(shw − cj) /αj‖22 /2

)

∑
j exp

(
− ‖(shw − cj) /αj‖22 /2

) , (1)

where αj ∈ (0, 1) is a learnable smoothing factor for each concept cj ; cj is a
vector representing the j-th concept, which can be considered as the center of a
cluster; pj

h,w > 0 and
∑K

j=1 pj
h,w = 1; K is the number of concepts.

Then, we can obtain the concept occurrence map O = [pj
h,w] ∈ RK×H×W

by assembling all the pj
h,w’s, which indicates the probability of each concept

occurring at each position. At each position, we rank the occurrence probability
of each concept and assign the concept with the highest probability as the one
occurring at that position, i.e., j∗ = arg maxj O, where j = 1, · · · ,K represents
the index of concepts. Using this approach, we obtain the concept partition result
for each input image. One example is given in Fig. 2, where the image is parsed
into different conceptual parts represented by different colors.

As we have only image-level labels as the supervision to train the concept
partition model, we obtain the concept features Zi to predict image-level labels,
based on the concept occurrence map O and feature maps Si. Let Zj

i be the
j-th dimension of Zi, representing concept features of the j-th concept, we have
Zj

i = tji
‖tji‖2

, where tji = 1
∑

hw pj
hw

∑
hw pj

hw (shw − cj) /σj . The concept features

Zi are passed to a classifier h constructed with several convolutional layers
and fully connected layers. The cross-entropy loss is used to train the concept
partition model and the classifier. The classification loss is formulated as lcls =
− 1

n

∑N
i=1 ŷi log(h(Zi)), where N is the number of input images, and ŷi is the

ground-truth label of image Xi.
However, our exploration shows that using only the classification loss is insuf-

ficient to obtain meaningful concept partition results. Given the prior knowledge
that all relevant concepts could occur in each image; for example, different body
parts are likely to occur in most of bird images, we introduce a regularizer to
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incorporate such prior knowledge. Our goal is to maximize the probability of
each concept appearing in the input images, which is formulated as:

lr = min
1

K ∗ N

N∑
i=1

K∑
j=1

| log(p(cj |Xi) + δ)|, (2)

where δ is a small value (1e–5) for stable training; p(cj |Xi) is the proba-
bility of concept cj occurring in the input image Xi. It can be obtained
through aggregating the probability of concept cj occurring in each position,
i.e., p(cj |Xi) = maxhw G × Oj , where G is a 2D Gaussian kernel for smooth-
ing, Oj ∈ RH×W , max indicates the max pooling operation. Finally, the cross-
entropy loss lcls and the loss lr in Eq. (2) are combined to train the concept
partition model.

2.2 Concept-based Recognition Model

Based on concept features obtained from the concept partition model, we train
a concept-based recognition model to perform the final prediction. Our concept-
based recognition model involves a set of experts, each of which takes features
of each concept as input to make a prediction. These concept features repre-
sent different semantic concepts, such as mouth, eyes, and cheek in the facial
expression recognition task. A gate network is used to aggregate the prediction
results from different experts to produce the final recognition and to estimate
the importance weights of each concept. The importance weights reflect different
contributions made by distinct conceptual parts to the final recognition.

For a specific recognition task, suppose the input image Xi is transformed
into concept features Zi via the concept partition model. Each concept feature
Zj

i is recognized by an expert fj(Z
j
i ). The predictions by all experts are aggre-

gated by the importance weights to get the final recognition. The importance
weights of different experts are learned by a gate network g(Zi). Formally, we
build a recognition model that can be formulated as follows:

f(xi) =
[
w1

i , w
j
i · · · wK

i

] ×

⎡
⎢⎢⎢⎣

f1(Z1
i )

fj(Z
j
i )

...
fK(ZK

i )

⎤
⎥⎥⎥⎦. (3)

Above, f(xi) is the final predicted label for the input Xi. The gate network
g(Zi) is parameterized by [w1

i ,w
j
i , · · · ,wK

i ], where wj
i is the weight of concept

feature Zj
i for the j-th concept in Xi. K is the number of experts, which is

equal to the number of conceptual parts.
Each expert fj(Z

j
i ) is constructed with the same network structure but is

given different concept features as input. The gate network g(Zi) is also a neural
network, which takes all concept features Zi as input. The last layer of the gate
network is a softmax layer that produces the weights summed to one. The weight
wj

i can be regarded as importance weight of each concept for the final prediction.
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The learned importance weights facilitate humans to better understand how
much contribution each conceptual part makes towards the final recognition.

To train the concept-based recognition model, we use the cross-entropy loss
with a regularizer imposed on importance weights. Specifically, we use image-
level labels as supervision to train each expert. The overall loss function for all
experts is: lept = − 1

n

∑N
i=1

∑K
j=1 ŷi log(fj(Z

j
i )), where N is the number of input

images, ŷi is the ground true label of image Xi and fj(Z
j
i ) is the predicted

label for image Xi by expert j. We also use the cross-entropy loss to train the
gate network. Additionally, a constraint is imposed on the value of importance
weight wi, preventing one weight from dominating the prediction and generating
meaningless importance weights. γ is the weighting factor for balancing the two
terms. The overall loss function for training the gate network is formulated as:

lg = − 1
N

N∑
i=1

ŷi log (f(Zi)) + γ
1

K ∗ N

N∑
i=1

K∑
j=1

∥∥∥∥∥w
j
i − 1

K

∥∥∥∥∥
2

2

. (4)

3 Experimental Evaluation

To validate the effectiveness of our proposed model, we perform two visual recog-
nition tasks with varying task difficulty. We use ResNet101 as the backbone to
parse the images into conceptual parts. Concept features of each conceptual part
are further used to train each expert and the gate network.

3.1 Facial Expression Recognition

We begin with the facial expression recognition task on the FER-2013 dataset [9].
It consists of 28,709 training images, 3,589 public test images, and 3,589 private
test images. The original face images in the dataset are grey-scale images of size
48 × 48. All images are categorized into 7 classes. Ian [9] reported that human
accuracy on FER-2013 was around 65%.

Table 1. Classification accuracy on
FER2013 test dataset.

Model Accuracy (%)

ResNet101 71.44
ResNet50 70.47
ResNet18 69.74
Vgg16 bn 70.35
InceptionV3 68.99

Our model 73.67

Classification Performance. We
train our model using training images
resized into 224 × 224 with three chan-
nels. We set the learning rate λ as 1e-
4; use the SGD optimizer with momen-
tum as 0.9 and weight decay as 5e-4;
set weighting factor γ as 1.0; set num-
ber of experts and number of concep-
tual parts as 6; set the maximum iter-
ation as 200. We compare our model
with several classical baseline models
(i.e. ResNet, VGG, Inception V3) on
the FER2013 private test dataset. The
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classification results are summarized in Table 1. All classification results are
obtained by training from pre-trained weights on ImageNet. From this table,
we can see that our model achieves the best classification accuracy. This vali-
dates the effectiveness of our model in facial expression recognition, beating the
human accuracy of 65% on this dataset.

Explanation Results. After our model is trained, the prediction results can be
explained through partitioned conceptual parts and their importance weights.
Figure 3 shows three example images from FER2013 and the learned conceptual
parts. The first-column images are the original images with their class labels
on the top. The columns 2–7 are the identified conceptual parts with the con-
cept name on the top. The images in the last column are the conceptual parts
collated with each color indicating one concept. When we set the number of
conceptual parts as 6, the partition model parses each image into 6 parts with
different semantics, i.e., nose/forehead, eye, nasal bridge, mouth/eyebrow, cheek,
and other part. These conceptual parts are easy for humans to recognize and
understand. Furthermore, the partition results are consistent for different input
images. That is to say, the concept partition model is able to identify meaningful
concepts for the recognition task.

Disgust nose, forehead eye other partnasal bridgemouth, eyebrow cheek conceptual parts

Happy

Angry

Fig. 3. The conceptual parts learned by our model on FER2013 dataset.

Table 2. Average weight of conceptual parts learned on FER2013.

Conceptual parts Mouth/eyebrow Nose/forehead Nasal bridge Eye Cheek Other parts

Avg. Weight 0.2127 0.1912 0.1856 0.1539 0.1444 0.1120
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Fig. 4. Classification accuracy vs.
adding/removing important conceptual
parts.

To show the importance of dif-
ferent conceptual parts for recogni-
tion, we calculate the average weight
of each conceptual part for test
images on FER-2013. Table 2 shows
the average weight of each concep-
tual part. When γ = 1.0, conceptual
parts are ranked as mouth/eyebrow,
nose/forehead, nasal bridge, eye,
cheek and other parts, according to
their importance weights.

We further test the effect of adding
or removing the learned conceptual
parts according to their associated
rank in Table 2. As shown in Fig. 4,
the green line indicates the baseline
classification accuracy (73.67%) of our model with all concept features as input.
The red line (with squares) shows the accuracy loss caused by gradually removing
the most important conceptual parts from the input. As can be seen, the accu-
racy drops significantly to 17.47%, after the top 4 important conceptual parts
are removed. The blue curve (with dots) shows the changes in accuracy when
important conceptual parts are added. As we gradually add the most impor-
tant conceptual parts, the prediction accuracy increases from 17.44% to 73.67%.
With only 4 important conceptual parts, our method achieves the accuracy of
66.70%. This validates the effectiveness of the learned importance weights and
their contribution towards the overall classification performance.

Lastly, we also conduct human evaluation to verify the consistency between
our model and human decision making. We asked 30 participates to answer two
questions: Q1, how important are the learned conceptual parts? Q2, what is the
importance order of conceptual parts for them to make decisions? We randomly
selected 60 images from FER2013 test dataset to conduct human evaluation
with results summarized as follows. Firstly, we calculate the average importance
score in Q1 across different images and participants. Out of 5 points, we obtain
4.21 points on average. That means that participants think the predictions made
by our trained model is consistent with their perception for visual recognition.
Secondly, we calculate the recall of top 4 conceptual parts considered important
by participants and also selected as the top 4 important ones by our model. The
average recall is 78.17%. This also exhibits a high level of consistency between
our model predictions and human judgements.

3.2 Fine-Grained Bird Classification

Next, we conduct experiments on a more difficult, fine-grained bird classifica-
tion task. CUB 200 2011 [20] is a fine-grained bird dataset that contains 11,788
images of 200 bird species. The training dataset has 5,994 images, and the rest
of 5,774 images are for testing.



176 X. Zhou et al.

Table 3. Classification accuracy on
CUB 200 2011 test dataset.

Model Accuracy (%)

ResNet101 85.02
ResNet50 84.45
ResNet18 81.67
Vgg16 bn 83.81
InceptionV3 84.05
MC (TIP2020) [3] 87.30

Our model 86.66

Classification Performance. We
train our model on CUB 200 2011
training dataset, where images are
resized into 448 × 448 as input. We set
the learning rate λ as 5e-5; set num-
ber of experts and number of concep-
tual parts as 5; other parameters are
the same as on FER-2013. We compare
classification performance of our model
with ResNet, VGG, InceptionV3, and
MC Loss method [3] on the test dataset,
as reported in Table 3. All results are
obtained by training from pre-trained
weights on ImageNet. We can see that our model performs better than the other
three classical models except for MC method that is specially designed for fine-
grained classification. Overall, our model is able to achieve better accuracy than
classical models and comparable accuracy with state-of-the-art model.

Fig. 5. The conceptual parts learned by our model on the CUB 200 2011 dataset. The
text description underneath conceptual concepts are the definitions of the correspond-
ing bird species from Wikipedia. (Color figure online)

Explanation Results. Figure 5 shows several example images from
CUB 200 2011 and their important conceptual parts learned for classification.
The images in the first column are the original images with their class labels on
the bottom. The last column shows conceptual parts identified with each color
indicating one concept. The columns 2–6 are conceptual parts with the con-
cept definition on the top, where the values under the partition results are the
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importance weights of different concepts for classifying that image. The descrip-
tion texts are the definitions of the corresponding bird species from Wikipedia,
where key features of different bird species are highlighted in red.

We notice that the important conceptual parts learned by our model have
a high degree of consistency with key features of bird species given by human
experts. For example, for the first image in the second row in Fig. 5, labeled as
Grasshopper Sparrow, crown, face, breast, belly, and tail are the discriminative
features that human experts use to define this bird species. These corresponding
conceptual parts are also identified and attributed with high weights by our
model; crown/neck and belly/breast are ranked by our method as the first and
second most important concepts for classification.

Table 4 lists the average importance weights of conceptual parts learned on
CUB 200 2011. We find that neck/crown is the most important concept for
recognition. In contrast, background is the least important concept. We also
observe that the importance weight of concept leg/tail/beak is nearly 0, when
γ is 0. This is inconsistent with the definition of bird species given by human
experts (see Fig. 5). This proves the necessity of adding the constraint in Eq.(4)
that prevents certain weight from dominating the parameter estimation.
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Fig. 6. Classification accuracy vs.
adding/removing important conceptual
parts.

Based on the importance ranking
of conceptual parts (γ = 1), we study
the influence on recognition accuracy
by adding or removing important con-
ceptual parts. As shown in Fig. 6, the
baseline accuracy (86.66%) achieved
by our model is plotted as the green
line. Again, this is the result using
all concept features as input. As indi-
cated by the red line (with squares),
when we remove the top 3 impor-
tant conceptual parts, the prediction
accuracy drops markedly from 86.66%
to 3.26%. The prediction accuracy
shown by the blue line (with dots)
increases from 0.5% to 79.84%, when
the top 2 important conceptual parts
are added. All results validate the
effectiveness of our learned importance weights in quantifying the contributions
of different conceptual parts towards the final classification.

Table 4. Average weight of conceptual parts learned on CUB 200 2011.

Conceptual parts Leg/tail/beak Back/wing Background Belly/breast Neck/crown

γ =1 0.1760 0.2461 0.0079 0.2404 0.3296

γ =0 0.0044 0.2283 0.0022 0.2611 0.5039



178 X. Zhou et al.

4 Discussions on Related Work

Post-hoc explanation is the most popular method for interpreting deep learning
models. This branch of methods can be divided into two categories: 1) important
feature visualization, which yields explanations by identifying and visualizing
important features for input features. [19] proposed a method called integrated
gradients to attribute the important features in input images. Grad-cam++ [4]
used the gradients of each class as weights to combine the features of the last
layer to get important features. However, these methods are found to be unre-
liable; small perturbations to the input data can lead to dramatically different
explanations [1,7]. 2) surrogate models, which create a surrogate model that can
be more easily understood to mimic the performance of the original model. [17]
tried to train a linear model to mimic the behaviors of the original deep learning
models locally and used the learned model to explain the decisions of deep learn-
ing models. RICE [16] was proposed to give explanations for the target model
by synthesizing logic program. However, methods based on surrogate models do
not reveal how a decision is made by the original model [14].

Training an inherently interpretable model is another recent theme for inter-
preting deep learning models. [10] trained a deep classifier and an additional text
generator to obtain classification results as well as text explanations for the orig-
inal classifier. [23] attributed the filters in high layers to different object parts by
adding a mutual information loss between object parts and filters, when train-
ing a classifier. Semantic information was used as additional supervision in [5] to
train a video caption model, and the trained model could give the top important
topics for explaining the results. These models augment their prediction results
with auxiliary outputs, such as topic words [5], sentences [10], or object parts [5],
to improve human understanding. However, due to disconnection between model
learning and human decision making, it is still rather difficult for humans to fully
comprehend how these models make predictions.

Our method is built upon semantic concepts for learning the partition and
recognition model. We focus on training an interpretable model from a new angle
of view; we inject human perception into the model design and learning process,
yielding explanations that are more consistent with human cognition. Although
there are many part-based object recognition methods [15,22], they solely aim
at improving classification accuracy, without considering the interpretability of
such models. In addition, the existing part-based methods either partition images
into object-level parts rather than concept-level parts, or rely on pre-trained
segmentation models with both image-level class labels and segment labels.

5 Conclusion

We proposed a new learning framework to train a deep learning model that makes
predictions in a human-understandable way. Inspired by cognitive science, our
framework is composed of a concept partition model, which learns conceptual
parts with different semantics, and a concept-based recognition model, which
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makes the final prediction as well as yields relative importance weights of con-
ceptual parts. Our method is able to provide human understandable explana-
tions, because its design is more aligned with human-understandable decision
making. Experiments on two visual recognition tasks showed that our method
compares favourably to state-of-the-art methods on recognition accuracy, but
also provides explanations that are highly consistent with human perception.
For future work, we will investigate how to design our model in more complex
classification tasks where the recognition by parts assumption may not hold.
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Abstract. Knowledge graph embedding (KGE) models learn to project
symbolic entities and relations into a continuous vector space based on
the observed triplets. However, existing KGE models cannot make a
proper trade-off between the graph context and the model complexity,
which makes them still far from satisfactory. In this paper, we propose
a lightweight framework named LightCAKE for context-aware KGE.
LightCAKE explicitly models the graph context without introducing
redundant trainable parameters, and uses an iterative aggregation strat-
egy to integrate the context information into the entity/relation embed-
dings. As a generic framework, it can be used with many simple KGE
models to achieve excellent results. Finally, extensive experiments on
public benchmarks demonstrate the efficiency and effectiveness of our
framework.

Keywords: Knowledge graph embedding · Lightweight · Graph
context

1 Introduction

Recently, large-scale knowledge graphs (KGs) have been widely applied to
numerous AI-related applications. 6Indeed, KGs are usually expressed as multi-
relational directed graphs composed of entities as nodes and relations as edges.
The real-world facts stored in KGs are modeled as triplets (head entity, relation,
tail entity), which are denoted as (h, r, t).

Nevertheless, KGs are usually incomplete due to the constant emergence
of new knowledge. To address this issue, a series of knowledge graph embed-
ding (KGE) models have been proposed [14]. KGE models project symbolic
entities and relations into a continuous vector space, and use scoring functions
to measure the plausibility of triplets. By optimizing the scoring functions to
assign higher scores to true triplets than invalid ones, KGE models learn low-
dimensional representations (called embeddings) for all entities and relations,
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and these embeddings are then used to predict new facts. Most of the previous
KGE models use translation distance based [2,15] and semantic matching based
[11,17] scoring functions which perform additive and multiplicative operations,
respectively. These models have been shown to be scalable and effective.

However, the aforementioned KGE models only focus on modeling individ-
ual triplets and ignore the graph context, which contains plenty of valuable
structural information. We argue that there are two types of important graph
contexts required for successfully predicting the relation between two entities:
(1) The entity context, i.e., for an entity, its neighboring nodes and the corre-
sponding edges connecting the entity to its neighboring nodes. The entity con-
text depicts the subtle differences between two entities. As an example shown in
Fig. 1(a), we aim to predict whether Joe Biden or Hillary Clinton is the pres-
ident of the USA. Both of them have the same relation “birthplace of ” with
the USA, but they have distinct entity contexts. Joe Biden’s neighboring node,
Donald Trump, is the president of the USA, and Biden is his successor. Whereas
there is no such relationship between Hillary Clinton and her neighboring nodes.
Capturing such entity context will help predict the correct triplet (Joe Biden,
president of, USA). (2) The relation context, i.e., the two endpoints of a given
relation. Relation context implicitly indicates the category of related entities.
Taking Fig. fig1(b) as an example, both the USA and New York were Donald
Trump’s birthplace, but according to the context of “president of ”, the related
tail entities {China, Russia, . . . } tend to be a set of countries. Since New York is
a city and it is part of the USA which is a country, (Donald Trump, president of ,
USA) is the right triplet. Moreover, entities and relations rarely appear in iso-
lation, so considering entity context and relation context together will provide
more beneficial information.

(a) Entity Context (b) Relation Context

Fig. 1. Examples of graph context which can help the relation prediction
in knowledge graph. Nodes represent entities, solid lines represent actual relations,
dashed lines represent the relations to be predicted. Red dashed boxes frame the critical
entity context (Figure a) and relation context (Figure b) that can provide important
information for correctly predicting the relation between two entities. (Color figure
online)

In order to model the graph context, some recent work has attempted to
apply graph neural network (GNN) to KGE [1,8]. These GNN-based KGE mod-
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els are effective to aggregate information from multi-hop neighbors to enrich the
entity/relation representation. However, GNN introduces more model parame-
ters and tensor computations, therefore making it difficult to utilize these models
for large-scale real-world KGs. In addition, most GNN-based KGE models only
exploit entity context or relation context individually, which may lead to infor-
mation loss.

In this paper, we propose a Lightweight Framework for Context-Aware
Knowledge Graph Embedding (LightCAKE) to address the shortcomings of
existing models. LightCAKE first builds the context star graph to model the
entity/relation context. It then uses non-parameterized operations like subtrac-
tion (inspired by TransE [2]) or multiplication (inspired by DistMult [17]) to
encode context nodes in the context star graph. Lastly, every entity/relation
node in the context star graph aggregates information from its surrounding con-
text nodes based on the weights calculated by a scoring function. LightCAKE
considers both entity context and relation context, and introduces no new param-
eters, making it very lightweight and capable of being used on large-scale KGs.
The contributions of our work can be summarized as follows: (1) We propose a
lightweight framework (LightCAKE) for KGE that explicitly model the entity
context and relation context without the sacrifice in the model complexity; (2)
As a general framework, we can apply many simple methods like TransE [2] and
DistMult [17] to LightCAKE; (3) Through extensive experiments on relation
prediction task, we demonstrate the effectiveness and efficiency of LightCAKE.

2 Related Work

Most early KGE models only exploit the triplets and can be roughly categorized
into two classes [14]: translation distance based and semantic matching based.
Translation distance based models are also known as additive models, since
they project head and tail entities into the same embedding space, and treat the
relations as the translations from head entities to tail entities. The objective is
that the translated head entity should be close to the tail entity. TransE [2] is
the first and most representative of such models. A series of work is conducted
along this line such as TransR [7] and TransH [15]. On the other hand, semantic
matching based models such as DistMult [17] and ComplEx [11] use multiplica-
tive score functions for computing the plausibility of the given triplets, so they
are also called multiplicative models. Both models are conceptually simple
and it is easy to apply them to large-scale KGs. But they ignore the structured
information stored in the graph context of KGs.

In contrast, GNN-based models attempt to use GNN for graph context
modeling. These models first aggregate graph context into entity/relation embed-
dings through GNN, then pass the context-aware embeddings to the context-
independent scoring functions for scoring. R-GCN [8] is an extension of the graph
convolutional network [6] on relational data. It applies a convolution operation
to the neighboring nodes of each entity and assigns them equal weights. A2N [1]
uses a method similar to graph attention networks [12] to further distinguish
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the weights of neighboring nodes. However, this type of KGE models suffer from
overparameterization since there are many parameters in GNN, which will hin-
der the application of such models to large-scale KGs. In addition, they don’t
integrate entity context and relation context, which may cause information loss.

Fig. 2. Overview of LightCAKE. (1) For a KG (Middle), we build an entity con-
text star graph (Left) for all entities and a relation context star graph (Right) for all
relations. In entity/relation context star graph, each entity/relation is surrounded by
its entity/relation context and they are connected to each other by solid black lines.
(2) The yellow rhombus φent and φrel denote context encoders (Details in Sect. 4.1),
and the gray dashed line indicates the input and output of the encoders. (3) The blue
dashed line denotes the weight α (Eq. (3)), and the green dashed line denotes the
weight β (Eq. (4)). The thicker the line, the greater the weight.

3 Preliminaries

3.1 Notation and Problem Formulation

A KG can be considered as a collection of triplets G = {(h, r, t) | (h, r, t) ∈
E ×R×E}, where E is the entity set and R is the relation set. h, t ∈ E represent
the head entity and tail entity, r ∈ R denotes the relation linking from the head
entity h to tail entity t. Given a triplet (h, r, t), the corresponding embeddings
are eh, er, et, where eh, er, et ∈ R

d, and d is the embedding dimension. KGE
models usually define a scoring function ψ : Rd × R

d × R
d → R. It takes the

corresponding embedding (eh, er, et) of a triplet (h, r, t) as input, and produces
a score reflecting the plausibility of the triplet.

In this paper, the objective is to predict the missing links in G, i.e., given
an entity pair (h, t), we aim to predict the missing relation r between them. We
refer to this task as relation prediction. Some related work formulates this
problem as link prediction, i.e., predicting the missing tail/head entity given a
head/tail entity and a relation. The two problems have proven to be actually
reducible to each other [13].
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3.2 Context Star Graph

Definition 1. Entity Context: For an entity h in G, the entity context of h
is defined as Cent(h) = {(r, t) | (h, r, t) ∈ G}, i.e., all the (relation, tail) pairs in
G whose head is h.

Definition 2. Relation Context: For a relation r in G, the relation context
of r is defined as Crel(r) = {(h, t) | (h, r, t) ∈ G}, i.e., all the (head, tail) pairs
in G whose relation is r.

Note that the entity context Cent(h) only considers the neighbors of h for its
outgoing edges and ignores the neighbors for its incoming edges. This is because
for each triplet (h, r, t) ∈ G, we create a corresponding inverse triplet (t, r−1, h)
and add it to G. In this way, for entity t, {(r, h) | (h, r, t) ∈ G} can be converted
to a format of {(r−1, h) | (t, r−1, h) ∈ G}, and it is equivalent to Cent(t). Thus,
Cent(·) can contain both the outgoing and incoming neighbors for each entity.

To explicitly model entity context and relation context for a KG G (As shown
in Fig. 2 middle), we construct an entity context star graph (As shown in
Fig. 2 left) and a relation context star graph (As shown in Fig. 2 right),
respectively. In the entity context star graph, all the central nodes are the entities
in G, and each entity h is surrounded by its entity context Cent(h). Similarly, in
the relation context star graph, all the central nodes are the relations in G, and
each relation r is surrounded by its relation context Crel(r).

4 Methodology

Given the context star graph, LightCAKE can (1) encode each entity/relation
context node into an embedding; (2) learn the context-aware embedding for each
entity/relation by iteratively aggregating information from its context nodes.

4.1 LightCAKE Details

Denote e
(0)
h and e

(0)
r as the randomly initialized embedding of an entity h and a

relation r respectively. The aggregation functions are formulated as:

e
(l+1)
h = e

(l)
h +

∑

(r′,t′)∈Cent(h)

α
(l)
h,(r′,t′)φent(er′ , et′) (1)

e(l+1)
r = e(l)r +

∑

(h′,t′)∈Crel(r)

β
(l)
r,(h′,t′)φrel(eh′ , et′) (2)

Here, e
(l+1)
h and e

(l+1)
r are the embeddings of h and r after l-iterations aggrega-

tions. 0 ≤ l ≤ L and L is the total number of iterations. φent(·) : Rd ×R
d → R

d

is the entity context encoder, and φrel(·) : Rd × R
d → R

d is the relation con-
text encoder. α

(l)
h,(r′,t′) and β

(l)
r,(h′,t′) are the weights in iteration l, representing
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how important each context node is for h and r, respectively. We introduce the
scoring function ψ(·) to calculate them:

α
(l)
h,(r′,t′) =

exp(ψ(e(l)h , e
(l)

r′ , e
(l)

t′ )
∑

(r′′ ,t′′ )∈Cent(h)
exp(ψ(e(l)h , e

(l)

r′′ , e
(l)

t′′ ))
(3)

β
(l)
r,(h′,t′) =

exp(ψ(e(l)
h′ , e

(l)
r , e

(l)

t′ )
∑

(h′′ ,t′′ )∈Crel(r)
exp(ψ(e(l)

h′′ , e
(l)
r , e

(l)

t′′ ))
(4)

When Eq. (1) and Eq. (2) are iteratively executed L times, for any h, t ∈ E
and r ∈ R, we obtain the final context-enhanced embeddings e

(L)
h , e

(L)
r , e

(L)
t . To

perform relation prediction, we compute the probability of the relation r given
the head entity h and tail entity t using a softmax function:

p(r|h, t) =
exp(ψ(e(L)

h , e
(L)
r , e

(L)
t )

∑
r′ ∈R exp(ψ(e(L)

h , e
(L)

r′ , e
(L)
t ))

(5)

where R is the set of relations, ψ(·) is the same scoring function used in Eq. (3)
and Eq. (4). Then, we train the model by minimizing the following loss function:

L = − 1
|D|

|D|∑

i=0

log p (ri | hi, ti) (6)

where D is the training set, and (hi, ri, ti) ∈ D is one of the training triplets.

4.2 Special Cases of LightCAKE

LightCAKE is a generic framework, and we can substitute different scoring func-
tion ψ(·) of different KGE models into Eq. (3), Eq. (4), and Eq. (5). And we
can design different φent(·) and φrel(·) to encode context. In order to make the
framework lightweight, we apply TransE [2] and DistMult [17], which are the sim-
plest and most representative of the additive models and multiplicative models
respectively, to LightCAKE.

LightCAKE-TransE. The scoring function of TransE [2] is:

ψTransE(eh, er, et) = − ‖eh + er − et‖2 = − ‖et − er − eh‖2 (7)

where ‖·‖2 is the L2-norm. Equation (7) can be decomposed of the two following
steps:6

e(h,r,t) = VTransE(eh, er, et) = et − er − eh (8)

score = STransE(e(h,r,t)) = −∥∥e(h,r,t)
∥∥
2

(9)

where V· : R
d × R

d × R
d → R

d and S· : R
d → R. The e(h,r,t) denotes the

embedding of a triplet (h, r, t), score denotes the score of the triplet. In Eq. (8),
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TransE uses addition and subtraction to encode triplets. Moreover, the operation
between er and et is subtraction, and the operation between eh and et is also
subtraction. So we design φent(er′ , et′) = et′ − er′ and φrel(eh′ , et′) = et′ − eh′

to encode context, then the aggregation function of LightCAKE-TransE can be
formalized as:

e
(l+1)
h = e

(l)
h +

∑

(r′,t′)∈Cent(h)

α
(l)
h,(r′,t′)(et′ − er′) (10)

e(l+1)
r = e(l)r +

∑

(h′,t′)∈Crel(r)

β
(l)
r,(h′,t′)(et′ − eh′) (11)

Lastly, substitute ψTransE(eh, er, et) from Eq. (7) into Eq. (3), Eq. (4) and Eq.
(5), we will get the complete LightCAKE-TransE.

LightCAKE-DistMult. The scoring function of DistMult [17] is:

ψDistMult(eh, er, et) = 〈eh, er, et〉 (12)

where 〈·〉 denotes the generalized dot product. Equation (12) can be decomposed
of the two following steps:

e(h,r,t) = VDistMult(eh, er, et) = eh � er � et (13)

score = SDistMult(e(h,r,t)) =
∑

i

e(h,r,t)[i] (14)

where � denotes the element-wise product, and e(h,r,t)[i] denotes the i-th element
in embedding e(h,r,t). In Eq. (13), DistMult uses multiplication to encode triplets.
Moreover, the operation between er and et is multiplication, and the operation
between eh and et is also multiplication. So we design φent(er′ , et′) = et′ � er′

and φrel(eh′ , et′) = et′ � eh′ to encode context, then the aggregation function of
LightCAKE-DistMult can be formalized as:

e
(l+1)
h = e

(l)
h +

∑

(r′,t′)∈Cent(h)

α
(l)
h,(r′,t′)(et′ � er′) (15)

e(l+1)
r = e(l)r +

∑

(h′,t′)∈Crel(r)

β
(l)
r,(h′,t′)(et′ � eh′) (16)

Lastly, substitute ψDistMult(eh, er, et) from Eq. (12) into Eq. (3), Eq. (4) and
Eq. (5), we will get the complete LightCAKE-DistMult.

Notably, there are no extra trainable parameters introduced in LightCAKE-
TransE and LightCAKE-DistMult, making them lightweight and efficient.
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5 Experiments

5.1 Dataset

We evaluate LightCAKE on four popular benchmark datasets WN18RR [3],
FB15K-237 [10], NELL995 [16] and DDB14 [13]. WN18RR is extracted from
WordNet, containing conceptual-semantic and lexical relations among English
words. FB15K-237 is extracted from Freebase, a large-scale KG with general
human knowledge. NELL995 is extracted from the 995th iteration of the NELL
system containing general knowledge. DDB14 is extracted from the Disease
Database, a medical database containing terminologies and concepts as well as
their relationships. The statistics of the datasets are summarized in Table 1.

Table 1. Statistics of four datasets. avg.|Cent(h)| and avg.|Crel(r)| represent the
average number of entity context and relation context, respectively.

Dataset FB15K-237 WN18RR NELL995 DDB14

#entitiy 14,541 40,943 63,917 9,203

#relation 237 11 198 14

#train 272,115 86,835 137,465 36,561

#test 17,535 3,034 5,000 4,000

#valid 20,466 3,134 5,000 4,000

Avg.|Cent(h)| 37.4 4.2 4.3 7.9

Avg.|Crel(r)| 1148.2 7894.1 694.3 2611.5

5.2 Baselines

To prove the effectiveness of LightCAKE, we compare LightCAKE-TransE and
LightCAKE-DistMult with six baselines, including (1) original TransE and Dist-
Mult without aggregating entity context and relation context; (2) three state-of-
the-art KGE models: ComplEx, SimplE, RotatE; (3) a classic GNN-based KGE
model: R-GCN. Brief descriptions of baselines are as follows:

TransE [2]: TransE is one of the most widely-used KGE models which translates
the head embedding into tail embedding by adding it to relation embedding.

DistMult [17]: DistMult is a popular tensor factorization based model which
uses a bilinear score function to compute scores of knowledge triplets.

ComplEx [11]: ComplEx is an extension of DistMult which embeds entities and
relations into complex vectors instead of real-valued ones.

SimplE [4]: SimplE is a simple interpretable fully-expressive tensor factorization
model for knowledge graph completion.
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RotatE [9]: RotatE defines each relation as a rotation from the head entity to
the tail entity in the complex vector space.

R-GCN [8]: RGCN is a variation of graph neural network, it can deal with the
highly multi-relational knowledge graph data and aggregate context information
to entities.

To simplify, we use L-TransE to represent LightCAKE-TransE and use L-
DistMult to represent LightCAKE-DistMult.

5.3 Experimental Settings

We use Adam [5] as the optimizer with the learning rate as 5e-3. We set the
embedding dimension of entity and relation as 256, l2 penalty coefficient as 1e-
7, batch size as 512, the total number of iterations L as 4 and a maximum of
20 epochs. Moreover, we use early stopping for training, and all the training
parameters are randomly initialized.

We evaluate all methods in the setting of relation prediction, i.e., for a given
entity pair (h, t) in the test set, we rank the ground-truth relation type r against
all other candidate relation types. We compare our models with baselines using
the following metrics: (1) Mean Reciprocal Rank (MRR, the mean of all the
reciprocals of predicted ranks); (2) Mean Rank (MR, the mean of all the pre-
dicted ranks); (3) Hit@3(the proportion of correctly predicted entities ranked in
the top 3 predictions).

Table 2. Results of relation prediction. (Bold: best; Underline: runner-up.)
The results of ComplEx, SimplE and RotatE are taken from [13]. Noted that the
trainable parameters in L-TransE and L-DistMult are only entity embeddings and
relation embeddings, for a fair comparison, we only choose those 3 traditional baselines
from [13] with a small number of parameters. In addition, in order to compare context-
aware KGE and context-independent KGE in the same experimental environment to
prove the validity of LightCAKE, we implemented TransE and DistMult ourselves.

Method WN18RR FB15K-237 NELL995 DDB14

MRR MR↓ Hit@3 MRR MR↓ Hit@3 MRR MR↓ Hit@3 MRR MR↓ Hit@3

ComplEx 0.840 2.053 0.880 0.924 1.494 0.970 0.703 23.040 0.765 0.953 1.287 0.968

SimplE 0.730 3.259 0.755 0.971 1.407 0.987 0.716 26.120 0.748 0.924 1.540 0.948

RotatE 0.799 2.284 0.823 0.970 1.315 0.980 0.729 23.894 0.756 0.953 1.281 0.964

RGCN 0.823 2.144 0.854 0.954 1.498 0.973 0.731 22.917 0.749 0.951 1.278 0.965

TransE 0.789 1.755 0.918 0.932 1.979 0.952 0.719 16.654 0.766 0.936 1.487 0.957

L-TransE 0.813 1.648 0.933 0.943 2.281 0.962 0.793 9.325 0.831 0.964 1.184 0.969

DistMult 0.865 1.743 0.922 0.935 1.920 0.979 0.712 22.340 0.744 0.937 1.334 0.958

L-DistMult 0.955 1.134 0.988 0.967 1.174 0.988 0.852 2.271 0.914 0.972 1.097 0.991

5.4 Experimental Results and Analysis

The results on all datasets are reported in Table 2. We can observe that: (1)
Comparing with the original TransE and DistMult, our proposed L-TransE and
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L-DistMult consistently have superior performance on all datasets, proving that
LightCAKE can greatly improve the performance of context-independent KGE
models; (2) Comparing with all six KGE baselines, the proposed L-TransE and
L-DistMult achieve substantial improvements or state-of-the-art performance on
all datasets, showing the effectiveness of L-TransE and L-DistMult.

5.5 Ablation Study

LightCAKE utilizes both entity context and relation context. How does each
context affect the performance of LightCAKE? To answer this question, we pro-
pose model variants to conduct ablation studies on L-TransE and L-DistMult
including: (1) the original TransE and DistMult without considering entity con-
text and relation context; (2) Lrel-TransE and Lrel-DistMult that just aggregate
the relation context and discard the entity context; (3) Lent-TransE and Lent-
DistMult that just aggregate the entity context and discard the relation context.

The experimental results of MRR on datasets WN18RR and FB15K237 are
reported in Fig. 3 (a),(b),(d), and (e). L-TransE and L-DistMult achieve best
performance compared with their corresponding model variants, demonstrating
that integrating both entity context and relation context is most effective for
KGE. Also, Lrel-TransE and Lent-TransE are both better than TransE, Lrel-
DistMult and Lent-DistMult are both better than DistMult, indicating that

(a) WN18RR (b) FB15K237 (c) L-TransE

(d) WN18RR (e) FB15K237 (f) L-DistMult

Fig. 3. The performance of model variants for (a) L-TransE and (d) L-DistMult on
WN18RR dataset. The performance of model variants for (b) L-TransE and (e) L-
DistMult on FB15K237 dataset. The performance of various L for (c) L-TransE and
(f) L-DistMult on WN18RR dataset.
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entity context and relation context are both helpful for KGE. Lent-TransE is
better than Lrel-TransE and Lent-DistMult is better than Lrel-DistMult, show-
ing that entity context contributes more to improving the model performance
than relation context.

5.6 Analysis on Number of Iterations

In this section, we investigate the sensitivity of the parameter L, i.e., the number
of iterations. We report the MRR on WN18RR dataset. We set that L ranges
from 1 to 5. The results of L-TransE and L-DistMult are shown in Fig. 3 (c)
and (f), we can observe that with the growth of the number of iterations, the
performance raises first and then starts to decrease slightly, which may due to
when further contexts are involved, more uncorrelated information are integrated
into embeddings. So properly setting the number of L can help to improve the
performance of our method.

5.7 Efficiency Analysis

We evaluate the efficiency of LightCAKE by comparing it with DistMult and
R-GCN. We investigate the difference of DistMult, R-GCN and L-DistMult in
the views of entity context, relation context, parameter quantities (space com-
plexity), and the MRR in WN18RR dataset. The results are shown in Table 3.
We can observe that the parameter quantities of L-DistMult are far less than R-
GCN, that is because R-GCN use complicated matrix transformation to encode
context information, while L-DistMult only uses multiplication on embeddings
to encode context information. Also, both DistMult and L-DistMult achieve bet-
ter prediction results than R-GCN in the relation prediction task, which may
because R-GCN is overfitted due to the use of too many parameters. In summary,
L-DistMult is lighter, more efficient and more robust.

Table 3. Efficiency Analysis. Here, d is the embedding dimension, L is the number
of iterations, |E| and |R| indicate the total number of entities and relations respectively.

Models Entity context Relation context Space complexity MRR

DistMult [17] ✗ ✗ O(|E|d + |R|d) 0.865

R-GCN [8] ✓ ✗ O(L(d2 + |E|d + |R|d)) 0.823

L-DistMult ✓ ✓ O(L(|E|d + |R|d)) 0.955

6 Conclusion

In this paper, we propose LightCAKE to learn context-aware knowledge graph
embedding. LightCAKE considers both the entity context and relation context,
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and extensive experiments show its superior performance comparing with state-
of-the-art KGE models. In addition, LightCAKE is very lightweight and efficient
in aggregating context information. Future research will explore more possible
context encoder, i.e. φent and φrel, and more possible scoring functions used in
Eq. (3), Eq. (4) and Eq. (5) to make LightCAKE more general and powerful.
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Abstract. Recent advances in Reinforcement Learning (RL) have sur-
passed human-level performance in many simulated environments. How-
ever, existing reinforcement learning techniques are incapable of explic-
itly incorporating already known domain-specific knowledge into the
learning process. Therefore, the agents have to explore and learn the
domain knowledge independently through a trial and error approach,
which consumes both time and resources to make valid responses. Hence,
we adapt the Deep Deterministic Policy Gradient (DDPG) algorithm to
incorporate an adviser, which allows integrating domain knowledge in
the form of pre-learned policies or pre-defined relationships to enhance
the agent’s learning process. Our experiments on OpenAi Gym bench-
mark tasks show that integrating domain knowledge through advisers
expedites the learning and improves the policy towards better optima.

Keywords: Actor-critic architecture · Deterministic policy gradient ·
Reinforcement learning · Transferring domain knowledge

1 Introduction

Conventional reinforcement learning approaches have been limited to domains
with low dimensional discrete state and action spaces or fully observable state
and action spaces, where handcrafted features are heavily used. But the emer-
gence of deep Q-network (DQN) [15] extended its applicability to high dimen-
sional state spaces. DQN has surpassed human-level performance in some of the
challenging Atari 2600 games using only unprocessed pixels as input [15]. It was
still not a generalized solution, and DQN was not suited well for the higher
dimensional or continuous action spaces [12,22]. The Deep Deterministic Policy
Gradient (DDPG) algorithm derived from Deterministic Policy Gradient [22]
extended the Deep Q-Learning for continuous state and action space.

Although advancements in RL have reached continuous state and action
spaces, they are still incapable of incorporating already known domain knowledge

c© Springer Nature Switzerland AG 2021
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directly into the learning process. Thus, they unnecessarily consume time and
computational resources to acquire the fundamental knowledge learning from
scratch, i.e., agents will follow a trial and error approach many times before
successfully converging to an optimal policy. In a simulated world, this is not
efficient, and it is particularly not welcomed in real-world tasks where the agents
cannot make fatal mistakes during learning, such as the autonomous navigation
domain. To this end, an algorithm that facilitates the incorporation of domain
knowledge into the learning process enables an agent to accelerate the learning
procedure by limiting the exploration space and converge to better policies.

In this paper, we propose a novel approach to train an agent efficiently in
continuous and high-dimensional state-action spaces. Our approach adapts the
DDPG algorithm to incorporate already available information into the training
process as an adviser to accelerate it. The DDPG algorithm updates policy in
each iteration with approximated policy gradients derived from the gradients of
Critic-network output with respect to Actor-network parameters. However, this
approach updates the policy parameters directly and does not facilitate to use
of domain knowledge for the policy updating process. In contrast, we update the
existing policy to a new policy based on a two-step approach. During the policy
parameter update in each iteration, we first set a temporary target to the policy
and then push the current policy towards it by reducing the L2 distance.

This two-fold optimization facilitates taking the adviser’s suggestions into
account when updating the policy. In addition, the adviser can be used to enforce
the agent to explore the better regions of the state-action space. It enables the
agent extract of good policies while reducing the exploration cost. We theoret-
ically prove the convergence of the adapted DDPG algorithm and empirically
show that the proposed approach itself improves over the existing DDPG algo-
rithm with chosen benchmark tasks in the continuous domain. We further plug
advisers to the adapted DDPG algorithm to show accelerated learning, validat-
ing the utility of the two-fold policy updating process.

2 Related Work

Modern foundations of RL are formed by intertwining several trial and error
methods and solutions to optimal control problems with temporal methods [23].
Deep Q-networks [15] extended the applicability of RL to the continuous high-
dimensional state spaces. Later, the DDPG algorithm [12,22] combined the
DQN and deterministic policy gradient algorithm to handle continuous high-
dimensional state-action spaces. Integrating the DDPG algorithm with actor-
critic [20] architecture allows learning parameterized continuous policies.

Reinforcement learning has been an emerging trend in the autonomous nav-
igation domain [8,9,13,30]. End-to-end trained asynchronous deep RL-based
models [14] were used to do continuous control of mobile robots in mapless
navigation [24]. Recent studies have shown a greater interest in reducing train-
ing time, increasing sample efficiency, and minimizing the trial and error nature
of the learning process to make RL applicable to real-world applications safely
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and confidently. DQN and DDPG are sample-inefficient since they demand a
large number of samples during the training. Nagabandi et al. [16] show that
combining medium-sized neural networks with model predictive control and a
model-free learner initialized by deep neural network dynamic models tested on
MuJoCo locomotion tasks [27] achieves high sample efficiencies. Kahn et al. [7,29]
proposed a self supervising generalized computational graph for autonomous
navigation, which subsumes the advantages of both model-free and model-based
methods.

To reduce the trial and error nature in training, successor-feature-based RL
[31] employs knowledge transferring across similar navigational environments.
Taylor et al. [26] introduced offline RL algorithms for transferring knowledge
between agents with different internal representations. Multitask and transfer
learning has been utilized in autonomous agents where they learn multiple tasks
at once and apply the generalized knowledge to new domains [19]. Ross et al.
[21] discuss the DAgger algorithm, which is similar to no-regret online learning
algorithms. It uses a dataset of trajectories collected using an expert to initialize
policies that can mimic the expert better. Methods of automatically mapping
different tasks by analyzing agent experience have improved the training speed
in RL significantly. [25].

Self-imitation learning [18] learns to reproduce the past good decisions of the
agent to enhance deep exploration. Hindsight experience replay has been used
with DDPG to overcome exploration bottlenecks on simulated robotics tasks in
[17]. Hester et.al [6] proposed deep Q learning from demonstrations that use
small sets of demonstration data to accelerate the learning process. The effect
of function approximation errors in actor-critic settings has been addressed by
employing a novel variant of Double Q-Learning [3]. Maximum entropy RL is
used in off-policy actor-critic methods [10] to overcome sample inefficiency and
convergence in conjunction [5]. Continuous variants of Q-learning combined with
learned models have shown to be effective in addressing the sample complexity
of RL [4].

Our approach uses the actor-critic architecture to deviate from the existing
methods due to several reasons. First, we adapt the DDPG algorithm to incorpo-
rate domain knowledge as an adviser in continuous tasks with high dimensional
state-action spaces. Secondly, we employ the adviser in data collection to enforce
the agent to explore regions of state-action space with a higher return.

3 Method

The proposed adapted DDPG algorithm improves the policy in the direction of
the gradient of the Q-value function. It also facilitates integrating pre-learned
policies or existing relationships as advisers to transfer domain knowledge. Dur-
ing the training process, advisers can be deployed in; 1) data collection, as well as
2) policy updating processes. Once the adviser is involved in the data collection
process, it enforces the agent to explore better regions in state and action spaces
according to the adviser’s perspective. When the adviser is incorporated into the
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policy updating process, it aids to reach better policies rapidly by selecting the
best set of actions. In this section, we first introduce the adapted DDPG algo-
rithm and show its convergence. Then we explicitly describe the proposed ways
of employing an adviser for the data collection and policy updating processes to
achieve an efficient training approach in continuous tasks.

3.1 Adapted Deep Deterministic Policy Gradient Algorithm

Fig. 1. Policy updating method with gradient of Q-value function.

Moving the current policy in the direction of the gradient of the Q-value func-
tion is computationally efficient than globally maximizing the Q-value function
[22] in extracting the optimal policy in the continuous domain. Therefore, the
proposed method can be utilized to extract better policies in tasks with high-
dimensional continuous state and action spaces by improving the current policy
in the direction of the gradient of the action-value (Q-value) function. The sur-
face in Fig. 1 represents the Q-value function corresponding to a hypothetical RL
problem in the continuous domain. For explanation simplicity, it only contains a
single action variable (A) and a single state variable (S). Let the π(S;φ) be the
policy function that governs the actions in given states, and it is parameterized
by φ. Similarly, Q-value function Q(S,A; θ) is parameterized by θ.

The peak red line on the surface in Fig. 1 represents the Q-values correspond-
ing to the state-action pairs on the optimal policy π∗(S). Its projection on the
state-action plane denotes the optimal policy. The direction of the gradient of the
Q-value function with respect to actions ∇AQ(S,A) corresponding to a point on
current policy πt(S) at a particular time step t always leads towards either local
or global optimal-policy. Therefore, the term ∇AQ(S,A) can be used to update
the current policy and obtain a better-updated policy πt+1(S) by pushing πt in
the direction of ∇AQ(S,Aπt), as shown in Fig. 1. Thus, the corresponding policy
improvement at a particular step can be represented by;

πt+1(S) ← πt(S) + β∇AQ(S,Aπt ; θ). (1)

Here, β is the updating rate of the current policy, and it represents the degree
of shift between updated and current policies. Once the updated policy πt+1(S)
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is set, it is used as a temporary target to optimize the current policy πt(S;φ).
We update φ by performing the gradient descent to minimize the loss Lπ;

Lπ =
1
n

∑
[πt+1(S) − πt(S;φ)]2, (2)

which is the mean squared error between current and updated policy samples.
The main advantage of this two-fold policy update is that we can plug suggestions
of an adviser who has domain knowledge in between the aforementioned two
steps to achieve a better-updated policy at a particular time step.

Algorithm 1. Adapted DDPG Algorithm
For each update of Actor-network π(S; φ) and Critic-network Q(S, A; θ) at a given time
step t ;

1: Select a batch of experiences M =< S, A, R, S′ > randomly from memory replay
buffer with the size of n

2: Set Q̂(S, A) ← R + γQ−(S′, π−(S′; φ−); θ−)
3: Update θ by minimizing the loss function

LQ = 1
n
Σ(Q̂(S, A) − Q(S, A; θ))2

4: Set πt+1(S) ← πt(S; φ) + β∇AQ(S, Aπt ; θ)
5: Update φ by minimizing the loss function

Lπ = 1
n
Σ(πt+1(S) − πt(S; φ))2

6: Update the parameters of the target networks, θ− and φ−

θ− ← τθ + (1 − τ)θ−

φ− ← τφ + (1 − τ)φ−

In our approach, the Q-value function is updated with the Temporal Differ-
ence (TD) error similar to the DDPG algorithm presented in [12]. It main-
tains two parameterized Q-value functions known as “Q-network” Q(s, a; θ)
and “target Q-network” Q−(s, a; θ−). Similarly, it keeps two policy functions
named “policy-network” π(s, a;φ) and “target policy-network” π−(s, a;φ−).
Algorithm 1 illustrates the steps followed in each update of the Q-network and
policy-network. A soft update mechanism weighted by τ and (1 − τ) (where
0 < τ << 1) is used to update the target policy-network and target Q-network
as shown in the last step of Algorithm 1. Maintaining two separate networks and
using a soft updating mechanism enhances the stability of the learning process
and supports training the Q-network without a divergence [12].

3.2 Convergence of Adapted DDPG Algorithm

Smooth Concave Functions. If f : Rn −→ R is a twice differentiable function
and holds Lipschitz continuity with constant L > 0 then,

‖∇f(y) − ∇f(x)‖ ≤ L ‖x − y‖ ∀x, y ∈ R
n (3)
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Here, L is a measurement for the smoothness of the function [11] and if f(x) is
a concave function then the following inequality is satisfied;

f(y) ≥ f(x) + 〈∇f(x), (y − x)〉 +
L

2
‖y − x‖2 ∀x, y ∈ R

n (4)

Convergence Analysis: Let Q : Rm+n −→ R be the action-value function where
m and n represent the number of state variables and the number of actions. S
and A be the state and action vectors, such that S ∈ R

m and A ∈ R
n. Let’s define

(S,A) = (s1, s2, . . . , sm, a1, a2, . . . , an) where s1, . . . , sm and a1, . . . , an ∈ R. Let
Aπ = π(S) where π is the policy function that predicts the action to be executed
for a given state S. Consider the policy update at a particular time step t.

Aπt+1 = πt+1(S) = πt(S) + β∇AQ(S,Aπt) (5)

If Q(S, A) is a concave and twice differentiable function with Lipschitz continuity
then considering the Eq. 4;

Q(S,Aπt+1) ≥ Q(S,Aπt) + 〈∇Q(S,Aπt), ((S,Aπt+1) − (S,Aπt))〉
−L

2
‖(S,Aπt+1) − (S,Aπt)‖2

(6)

Q(S,Aπt+1) ≥ Q(S,Aπt) + 〈∇AQ(S,Aπt), (Aπt+1 − Aπt)〉
−L

2
‖(Aπt+1 − Aπt)‖2

(7)

Since Aπt+1 − Aπt = β∇AQ(S,Aπt) by substituting for Eq. 7

Q(S,Aπt+1) ≥ Q(S,Aπt) + β ‖∇AQ(S,Aπt)‖2 − Lβ2

2
‖∇AQ(S,Aπt)‖2 (8)

Considering Eq. 8 and if 0 < β ≤ 2
L then,

Q(S,Aπt+1) − Q(S,Aπt) ≥ β(1 − βL

2
) ‖∇AQ(S,Aπt)‖2 ≥ 0 (9)

Therefore, Q((S,Aπt+1) ≥ Q(S,Aπt) at any time step. Once all the time steps
from 0 to k considered in Eq. 9,

t=k∑

t=0

{Q(S,Aπt+1) − Q(S,Aπt)} ≥
t=k∑

t=0

{β(1 − βL

2
) ‖∇AQ(S,Aπt)‖2} (10)

Q(S,Aπk+1) − Q(S,Aπ0) ≥ β(1 − βL

2
)

t=k∑

t=0

‖∇AQ(S,Aπt)‖2 (11)

If Q(S,Aπ∗) is the Q-value at optimal policy π∗(S) then Q(S,Aπ∗) ≥
Q(S,Aπk+1). By considering Eq. 11,
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Q(S,Aπ∗) − Q(S,Aπ0) ≥ Q(S,Aπk+1) − Q(S,Aπ0)

≥ β(1 − βL

2
)

t=k∑

t=0

‖∇AQ(S,Aπt)‖2 (12)

Eq. 12 implies that as k −→ ∞, the right hand side converges.

∴ lim
k→∞

‖∇AQ(S,Aπk)‖2 = 0 (13)

Since π∗(S) = arg maxA Q(S,A), at optimal policy ∇AQ(S,Aπ∗) = 0. Therefore,
the Eq. 13 implies that limk→∞ Aπk+1 = Aπ∗ .

3.3 Adapted DDPG with Actor-Critic Agent

Fig. 2. Actor-Critic architecture with adviser module.

Actor-Critic architecture is generally used in model-free RL, and it consists of
two main components, namely “Actor” and “Critic”. The Actor decides which
action to be executed by the agent and the Critic always tries to improve the
Actor’s performance by analyzing rewards received in each time-step. Gener-
ally, the Actor is updated with the policy gradient approach, while the Critic
gets updated with the temporal difference error [20]. Our agents are based on
the Actor-Critic architecture and learn a diverse set of RL benchmark tasks
in the continuous domain. Figure 2 illustrates the basic block diagram of the
Actor-Critic architecture that employs the adviser for data collection and pol-
icy updating processes. In our implementation, the Actor and Critic modules
represent the parameterized policy and Q-value functions, respectively.

3.4 Employing an Adviser to Transfer Domain Knowledge

Although model-free value-based approaches have demonstrated state-of-the-art
performance in the RL domain, the low sample efficiency is one of the main con-
cerns that limit their applicability in real-world applications [7]. One solution
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to this issue is integrating domain knowledge into the learning process. Thus,
the agent does not need to learn everything from scratch. Here, we propose two
techniques that employ an adviser to integrate domain knowledge into the learn-
ing process. Firstly, we enforce the agent to explore better regions in the state
and action spaces by enabling adviser suggestions for the data collecting pro-
cess. Secondly, we improve the policy updating process by allowing the adviser
to adjust the updated policy to a better policy based on the current knowledge.

Algorithm 2. Data collection with
an adviser
At a given time step t;

1: Observe current state st

2: aadv ← f(st)
3: aact ← π(st)
4: C ← 1 − e−λN

5: ε ← e−Q(st,aadv)/T

e−Q(st,aadv)/T +e−CQ(st,aact)/T

6: With probability ε, at+1 ← aadv

7: Otherwise, at+1 ← aact

8: at+1 ← at+1 + noise

Algorithm 3. Policy updating with
an adviser
For each update of Actor-network
π(s; φ) and Critic-network Q(s, a; θ);

1: Steps 1 - 3 in Algorithm 1
2: Aadv ← f(S)
3: Aact ← π(S; φ)
4: Â(S) ← Aact + β∇AQ(S, A; θ)
5: for 1 : i : n do
6: if Q(si, ai

adv) > Q(si, âi) then
7: âi ← ai

adv

8: Steps 5 - 6 in Algorithm 1

3.5 Adviser for Data Collection Process

Here, we employ an adviser (f) as in Algorithm 2, that maps states (S) to
actions (A), to make sampling more efficient by comparing the Actor’s current
prediction against the adviser’s suggestion. In each time step, both Actor (Aact)
and adviser (Aadv) suggests the action corresponding to the current state (St).
Then, both suggestions are evaluated with respect to the current knowledge (Q-
value) of the Critic module, and the adviser’s action is selected for the execution
with a probability of ε. Calculation of ε is adapted by the work [2], and our
method deviates in several ways. We employ the softmax function to induce a
higher probability corresponding to the action with a higher Q-value. By varying
the softmax temperature T , it is possible to change the priority given to the
adviser. The constant C (C = 1 − e−λN ) is a confidence value calculated on the
agent’s behalf, where N is the number of episodes elapsed, and λ (λ > 0) is the
decaying constant. It enforces the agent to give higher priority to the adviser’s
suggestions at the beginning, and enables the agent to explore near a better
policy. In the end, we add a noise signal to the selected action for exploration.
The noise generation is influenced by the Ornstein-Uhlenbeck process [28], and
it ensures a better exploration near the selected action.

3.6 Adviser for Policy Updating Process

Since the adapted DDPG algorithm improves the existing policy with an updated
set of sampled actions, it enables integrating adviser’s suggestions into the pol-
icy updating process as described in Algorithm 3. At each iteration, a batch of
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experiences with n samples is fetched randomly from the memory replay buffer,
and the Q-value function is updated as similar to Algorithm 1. Before updat-
ing the policy, both adviser and actor suggestions for the selected batch (Aadv

and Aact respectively) are calculated. Then updated set of actions (Â(S)) is
calculated similarly to Algorithm 1. In the next step, each updated action (âi)
is replaced by the adviser’s action (ai

adv) if the Q-value corresponding to the
adviser suggested action is greater than the corresponding updated action (âi).
In Algorithm 3, si and ai refer to the state and action of the ith sample of the
selected batch. Finally, policy parameters are updated with the modified set of
updated actions corresponding to the selected batch.

Table 1. The averaged total episodes score of the trained agents for 30 runs with 500
episodes in each. The adapted DDPG surpasses the conventional DDPG in all tasks.
Although the adviser performance is comparatively low, the adapted DDPG algorithm
with an adviser shows the best performance.

Pendulum MountainCar

continuous

LunarLander

continuous

Bipedal walker

adviser –508.5 12.2 –126.5 20.1

DDPG –398.9 28.5 –65.7 100.3

Adapted DDPG –272.7 55.1 –31.4 150.1

Adapted DDPG + adviser –178.3 93.4 –30.1 190.3

4 Experiments

To evaluate the performance of the adapted DDPG algorithm and adviser-
based agent architecture, we experiment on a diverse set of benchmark tasks in
the continuous domain. It includes four OpenAI Gym [1] environments namely
Pendulum-v0, MountainCarContinuous-v0, LunarLanderContinuous-v2 and Bi-
-pedalWalker-v2. We train three distinct agents using the DDPG, Adapted
DDPG, and the Adapted DDPG with adviser algorithms in separation for each
benchmark task. As the adviser of the BipedalWalker, we deploy a policy trained
for a similar task, and classical control approaches (Proportional Integral and
Derivative controllers) and predefined rules are used in the other three. We
employed neural networks to parameterize the Q-value function and the pol-
icy function. We set the β to a lower like 0.01 to satisfy condition β < 2

L (see
Sect. 3.2) to ensure convergence of learning as we don’t have enough information
about the smoothness of the Q-Value function.

In each task, we train the agents for 30 runs, where each run consists of a
pre-defined number of training episodes. After each run, we test the agents for
500 episodes. We define the “total episode score” as the total reward earned by
the agent in all the steps of a given episode. We take the average of such “total
episode scores” gained in all 500 test episodes in a given run and average this
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figure again over the 30 runs. Table 1 reports this average total episode score
where the adapted DDPG algorithm comfortably surpasses the conventional
DDPG algorithm in all tasks. The adviser is incapable of performing the given
tasks to the level of agents trained with DDPG or adapted DDPG algorithms
(see the first row of Table 1). However, the combination of the adapted DDPG
algorithm and the adviser attain the best performance in all the tasks. It shows
that the adviser assists the adapted DDPG agents to converge towards a policy
with higher scores, even though the adviser is not perfect.

(a) Pendulum (b) MountainCar

(c) LunarLanderContinuous (d) BipedalWalker

Fig. 3. Reward per step of trained agents with the episode number on continuous
benchmark tasks. The adapted DDPG algorithm reaches higher reward levels rapidly
compared to the DDPG algorithm, and the adviser always accelerates the training
speed further with a low variance in the learning curve.

We further plot the averaged training reward per step with the episode num-
ber in Fig. 3. “The rewards per step” is the total reward earned by the agent in
an episode divided by the number of steps. We obtain this value for all episodes
across all runs. The average of the “rewards per step” for a particular indexed
episode is calculated by averaging these values belonging to the same indexed
episodes across the 30 runs. It demonstrates that the adapted DDPG algorithm
achieves higher reward levels rapidly than conventional DDPG. It further illus-
trates that incorporating an adviser during the training phase expedites the
learning process significantly compared to both DDPG and adapted DDPG algo-
rithms. It is also evident that the agent with adviser converges to better policies,
achieving higher rewards compared to other methods. Additionally, the adapted
DDPG with adviser shows considerably less variance than all the others.
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5 Conclusion

In this paper, we adapt the DDPG algorithm to incorporate an adviser with
domain knowledge to expedite the training process. The adviser in our actor-
critic architecture causes the data collection and policy updating process to be
more effective. We theoretically proved the convergence of the adapted DDPG
algorithm and showed experimentally that the proposed adapted DDPG algo-
rithm outperforms the standard DDPG algorithm in conventional RL benchmark
tasks in the continuous domain. Additionally, we also demonstrated that the
proposed two-fold policy updating mechanism of the adapted DDPG algorithm
effectively incorporates domain knowledge, resulting in an accelerated conver-
gence.
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Abstract. We present a Bayesian Nonparametric model for Hierarchi-
cal Clustering (HC). Such a model has two main components. The first
component is the random walk process from parent to child in the hier-
archy and we apply nested Chinese Restaurant Process (nCRP). Then,
the second part is the diffusion process from parent to child where we
employ Hierarchical Dirichlet Process Mixture Model (HDPMM). This
is different from the common choice which is Gaussian-to-Gaussian. We
demonstrate the properties of the model and propose a Markov Chain
Monte Carlo procedure with elegantly analytical updating steps for infer-
ring the model variables. Experiments on the real-world datasets show
that our method obtains reasonable hierarchies and remarkable empirical
results according to some well known metrics.

1 Introduction

We study the problem of Hierarchical Clustering (HC) via a Bayesian Nonpara-
metric (BNP) modelling perspective. A BNP proposes a generative model for
the observed data whose dimension is not fixed, but rather is learned from the
data. In the case of HC, this allows the structure of the hierarchy to be inferred
along with its clusters. Considering a model for generating the data, a BNP for
HC typically associates each node in the hierarchy with a particular choice of
parameters. Then the model consists of two components: 1) the random process
for generating a path through the hierarchy from the root node to a leaf; 2) a
parent-to-child transition kernel that models how a child node’s parameters are
related to those of its parent. The generative model posits that each observation
firstly selects a path randomly, and is then sampled through the distribution
associated with the leaf node of the path.

An early example of the parametric generative probabilistic model is the
Gaussian tree generative process [6], such that each non-root node is sam-
Electronic supplementary material The online version of this chapter (https://
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available to authorized users.
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(a) Gaussian node (b) Mixture node

Fig. 1. A simple example of the two nodes (distinguished by colour) at the first layer
after the root node. Figure 1a depicts a manner of clustering the data with Gaussian-
to-Gaussian node transition from root to the level 1, and Fig. 1b is the version of
applying HDPMM. (Color figure online)

pled from a Gaussian distribution with the mean of the parent node and pre-
defined level-wise covariances. In general, for the first component, there are
some well-known random processes, e.g. the nested Chinese Restaurant Pro-
cess (nCRP) [1,4], the Dirichlet Diffusion Tree (DDT) [21], the Pitman-Yor
Diffusion Tree (PYDT) [15], which is a generalisation of the DDT, and the
tree-structured stick-breaking construction (TSSB) [1], which generalises the
(nCRP). It is proved in [15], that the nCRP and PYDT (and so also the DDT)
are asymptotically equivalent—thus, this work focuses on the second compo-
nent and selects the nCRP for the first component, given its simplicity. Exist-
ing BNP methods mostly utilise Gaussian-to-Gaussian (G2G) diffusion kernels
for the node parameters [1,6,15,21]. Within such a setting, e.g., if a parent
node’s distribution (denoted by ∼) is Normal(μp,Σp), its child has the node
parameters μc ∼ Normal(μp,Σp) and is associated with the data distribution
Normal(μc,Σc) where Σp and Σc can be predefined hyperparameters.

G2G kernels are easy to apply but somehow lack the ability to handle more
complex patterns. In our work, we investigate the Hierarchical Dirichlet Process
Mixture Model (HDPMM) for the parent-to-node transition. In this setting, each
node is actually a mixture distribution and the node parameters maintain the
mixture weights for a global book of components. Then, the parent-to-node tran-
sition follows a Hierarchical Dirichlet Process (HDP) [28]. As a simple example,
in Fig. 1, a single level of clustering is applied to the shown data points, using
G2G (Fig. 1a) and HDPMM (Fig. 1b). The HDPMM fits a mixture model to
the purple nodes, which can be further refined in lower levels of the tree. Note
that, the HDP [29] is discussed in [1], for applications based on Latent Dirichlet
Allocations. However, our setting HDPMM is more suited to general clustering.

Related Work. Our focus is on statistical methods, despite that there are many
non-statistical methods for HC e.g. [5,16,19,30], to name just a few. Statistical
extensions to Agglomerative clustering (AC) have been proposed in [11,12,18,26]
but these are not generative models. On the other hand, Teh et al. [27] has
proposed applying the Kingman’s coalescent as a prior to the HC, which is
similar in spirit to DDT and PYDT, however it is a backward generative process.
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It is worth mentioning that the tree generation and transition kernels that we
exploit have been used in a number of other contexts, beyond HC. For example,
Paisley et al. [22] discuss the nested Hierarchical Dirichlet Process (nHDP) for
topic modelling which, similar to the method we present here, uses the nCRP
to navigate through the hierarchy, but associates nodes in the tree with topics.
The nHDP first generates a global topic tree using the nCRP where each node
relates to one atom (topic) drawn from the base distribution. In summary, nHDP
constitutes multiple trees with one global tree and many local trees, whereas our
construction has a single tree capturing the hierarchical structure of the data.
Ahmed et al. [2] also proposed a model that is very similar to the nHDP, but
appealed to different inference procedures.

2 Preliminary

Dirichlet Process. We briefly describe the CRP and the stick-breaking process
which are two forms of the Dirichlet Process (DP).

In the CRP, we imagine a Chinese restaurant consisting of an infinite number
of tables, each with sufficient capacity to seat an infinite number of customers. A
customer enters the restaurant and picks one table at which to sit. The nth cus-
tomer picks a table based on the previous customers’ choices. That is, assuming
cn is the table assignment label for customer n and Nk is the number of cus-
tomers at table k, one obtains

p(cn+1 = k | c1:n) =

{
Nk

n+α existing k
α

n+α new k
θ∗

n+1 | θ∗
1:n ∼ α

n + α
H +

K∑
k=1

Nk

n + α
δθk

where c1:n = {c1, . . . , cn}, likewise for θ∗
1:n. The right hand side indicates how

the parameter θ∗
n+1 is drawn given the previous parameters, where each θk is

sampled from a base measure H, and θ1, . . . , θK are the unique values among
θ∗
1 , . . . , θ

∗
n.

Denoting a distribution by G, the stick-breaking process can be depicted
by G =

∑∞
k=1 βkδθk

, {θk}∞
k=1 ∼ H and β ∼ GEM(α). Also, GEM (named after

Griffiths, Engen and McCloskey), known as a stick-breaking process, is analogous
to iteratively breaking a portion from the remaining stick which has the initial
length 1. In particular, we write β ∼ GEM(α) when uk ∼ Beta(1, α), β1 = u1,
and βk = uk

∏k−1
l=1 (1 − ul).

Nested CRP. In the nCRP [4], customers arrive at a restaurant and choose a
table according to the CRP, but at each chosen table, there is a card leading
to another restaurant, which the customer visits the next day, again using the
CRP. Each restaurant is associated with only a single card. After L days, the
customer has visited L restaurants, by choosing a particular path in an infinitely
branching hierarchy of restaurants.
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Hierarchical Dirichlet Process Mixture Model. When the number of mixture
components is infinite, we connect components along a path in the hierarchy
using a HDP. The 1-level HDP [29] connects a set of DPs, Gj , to a common base
DP, G0. It can be simply written as Gj ∼ DP(γ,G0) and G0 ∼ DP(γ0,H). It
has several equivalent representations while we will focus on the following form:
β0 ∼ GEM(γ0), βj ∼ DP(γ,β0), and θk ∼ H to obtain G0 =

∑∞
k=1 β0kδθk

and then Gj =
∑

k βjkδθk
. Hence Gj has the same components as G0 but with

different mixing proportions. It may be shown that βj can be sampled by firstly
drawing ujk ∼ Beta(γβk, γ(1 − ∑k

�=1 β�)) and then βjk = ujk

∏k−1
�=1 (1 − uj�).

Considering each data in x belongs to one of the mixture models and in particular
xn belongs to the group associated with Gj , the 1-level HDPMM is completed by
having xn ∼ F (θcn

) where cn ∼ Categorical(βj). This process can be extended
to multiple levels, by defining another level of DPs with Gj as a base distribution
and so on to higher levels. In fact, we can build a hierarchy where, for any length
L path in the hierarchy, the nodes in the path correspond to an L-level HDP.

3 Generative Process

We call our model BHMC, for Bayesian Hierarchical Mixture Clustering and
illustrate it using Fig. 2.

βz0

βz1

βz3 βz4

βz2

βz5 βz6 βz7

wz01

wz11 wz12

wz02

Fig. 2. One example of a BHMC
hierarchy

Let z be the label for a certain node in the
tree. We can denote the probability to choose
the first child under z by wz1. Also, let us
denote the mixing proportion for a node z by
βz, and denote the global component assign-
ment for the nth data item, xn, by cn. To draw
xn, the hierarchy is traversed to a leaf node, z,
at which cn is drawn from mixing proportions
βz. A path through the hierarchy is denoted
by a vector e.g. v = {z0, z1, z4}. In a finite
setting, with a fixed number of branches, such
a path would be generated by sampling from
weights wz0 ∼ Dir(α), at the first level, then wz1 ∼ Dir(α) at the second level
and so on. The nCRP enables the path to be sampled from infinitely branched
nodes. Mixing proportions, βz, along a path are connected via a multilevel HDP.
Hence, if the probability of a mixture component goes to zero at any node in
the tree, it will remain zero for any descendant nodes. Moreover, the smaller γ
is, the sparser the resulting distribution drawn from the HDP [20].

The generative process with an infinite configuration is shown in Algorithm 1.
For a finite setting, the mixing proportions are on a finite set and Line 1 should
be changed to βz0 ∼ Dir(γ0/K, . . . , γ0/K). Correspondingly, Line 9 has to be
changed to βz′ ∼ Dir(γβz) according to the preliminary section.
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3.1 Properties

Let us denote the tree by H = (ZH, EH). First, the node set is ZH =
{z0, . . . , zM−1} where M is the number of nodes. Then, EH is the set of edges
in the tree, where (z, z′) ∈ EH means that there exists some path vn, such
that xn moves from z to z′ in the path vn. Hence, we infer the following vari-
ables: B = {βz0 , . . . ,βzM−1}, the mixing proportions for the components in the
node z; θ = {θ1, . . . , θK}, component parameters; V = {v1, . . . ,vN} where each
vn = {vn0, vn1, . . . , vnL} is the ordered set of nodes in ZH corresponding to
the path of xn; c = {c1, . . . , cN}, the component label for all the observations.
Denoting Φ = {γ0, γ, α,H,L}, we focus on the marginal prior p(V,θ,B | Φ) and
obtain p(V,θ,B | Φ) = p(B | V, γ0, γ)p(V | α,L)p(θ | H).

The first term is p(B | V, γ0, γ) = p (β0 | γ0)
∏

(z,z′)∈EH p(βz′ | γ,βz). To
expand the second term, we first denote by mz the number of children of z.
Hence, the CRP probability for a set of clusters {z′

n}mz
n=1 under the same parent

z [3,8]:

p({z′
n}mz

n=1 | α) =
αmzΓ (α)

Γ (Nz + α)

mz∏
n=1

Γ
(
Nz′

n

)
where Nz is the number of observations in z. With this equation, one can observe
the exchangeability of the order of arriving customers—the probability of obtain-
ing such a partition is not dependent on the order. The tree H is constructed
via V with the empty nodes all removed. For such a tree, the above result can
be extended to

p(V | α) = Γ (α)|IH| ∏
z∈IH

αmz

Γ (Nz+α)

∏
(z,z′)∈EH Γ (Nz′)

where IH is the set of internal nodes in H. Next, we obtain p(θ | H) =∏K
k=1 p(θk | H). The likelihood for a single observation is

p (xn | vnL,θ,βvnL
) =

∑K
k=1 βvnLkf(xn; θk) + β∗

vnL
f∗(xn) (1)

where β∗
z denotes the probability of drawing a new component which is always

the last element in the vector βz. Here, f(·) is the corresponding density func-
tion for the distribution F and we obtain f(x; θ) ≡ p(x | θ). Furthermore,
f∗(x) =

∫
p(x | θ)dp(θ | H). The above presentation is similar to the Polyá urn

construction of DP [23], which trims the infinite setting of DP to a finite con-
figuration. Then, one can see p(X | V,θ,B) =

∏
n p (xn | vnL,θ,βvnL

). Finally,
the unnormalised posterior is p(V,θ,B | X, Φ) ∝ p(X | V,θ,B)p(V,θ,B | Φ).
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Algorithm 1: Generative process
(infinite)
1 Sample βz0 ∼ GEM(γ0)
2 Sample θ1, θ2, . . . ∼ H
3 for n = 1 . . . N do
4 vn0 ← z0
5 for 	 = 1 . . . L do
6 Sample vn� using CRP(α)
7 z, z′ ← vn(�−1), vn�

8 if z′ is new then
9 Sample βz′ ∼ DP (γ,βz)

10 Attach (z, z′) to the tree

11 Sample cn ∼ Categorical (βvnL
)

12 Sample xn ∼ F (θcn
)

Algorithm 2: MH sampler
// ε: stopping threshold

1 Sample βz0 until β∗
z0

< ε
2 for xn ∈ Shuffled(X) do
3 Clean up cn and vn

4 Sample v̂n (and possibly
new β) through the
generative process

5 s ∼ Unif(0, 1)
6 if s ≤ A then vn ← v̂n

7 Sample cn using a
Gibbs step by Eq.(2)

8 Update B by Eqs.(3)and (4)
9 Update θ by Eq.(5)

4 Inference

We appeal to Markov Chain Monte Carlo (MCMC) for inferring the model.
One crucial property for facilitating the sampling procedure is exchangeability,
which, as noted in the previous section, follows from the model’s connection to
the CRP.

Sampling V and c. Following [4], we sample a path for a data index as a complete
variable using nCRP and decide to preserve the change based on a Metropolis-
Hastings (MH) step.

Recall that the component will only be drawn at the leaf. Thus,

p (cn = k | xn, vnL = z,B,θ) ∝
{

βzkf(xn; θk) existing k

β∗
zf∗(xn) new k .

(2)

Sampling the set c is necessary for updating the set of mixtures at each node
i.e., B. Our MH scheme applies a partially collapsed Gibbs step. Following the
principles in [7], our algorithm first samples V with c being collapsed out, and
subsequently updates c based on V.

Sampling B. It is straightforward to decide the sampling for a leaf node. For non-
root nodes, we would like to find out p

(
cn = k | B\{Bz̄}, vn(L−1) = z

)
where Bz̄

is the set of mixing proportions in the sub-tree rooted at z excluding βz. We
write p

(
cn = k | B\{Bz̄}, vn(L−1) = z

)
to be

p
(
vnL = z′ | vn(L−1) = z

)
p

(
cn = k | βz, vnL = z′, vn(L−1) = z

)
.
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Logically, p(cn = k | B,vn) = p
(
cn = k | {βvn�

}L
�=0

)
which is then p

(
cn = k |

βvnL

)
. We also derive p

(
cn = k | βz, vnL = z′, vn(L−1) = z

)
to be

∫
p(cn = k | βz′)dp(βz′ | βz) =

∫
p (cn = k | βz′)

Γ
(∑K

j=1 γβzj

)
∏K

j=1 Γ (γβzj)

K∏
j=1

β
γβzk−1
z′k dβz′

=
Γ

(∑K
j=1 γβzj

)
∏K

j=1 Γ (γβzj)

∫ K∏
j=1

β
1{cn=k}+γβzk−1

z′j dβz′

=
Γ

(∑K
j=1 γβzj

)
∏K

j=1 Γ (γβzj)

∏K
j=1 Γ (1{cn = k} + γβzj)

Γ (1 +
∑K

j=1 γβzj)
= βzk

given that Γ (x + 1) = xΓ (x) holds when x is any complex number except
the non-positive integers. Therefore, p

(
cn = k | B\{Bz̄}, vn(L−1) = z

)
= βzk.

This indicates that, marginalising out the subtree rooted at z, the component
assignment is thought to be drawn from βz, which can be seen through induction.
Therefore, it allows us to conduct the size-biased permutation,

root z0 βz01, . . . , βz0K , β∗
z0

∼ Dir (Nz01, . . . , Nz0K , γ0) (3)

∀z′ : (z, z′) ∈ EH βz′1, . . . , βz′K , β∗
z′ ∼ Dir

(
Ñz′1, . . . , Ñz′K , γβ∗

z

)
(4)

where Ñz′k = Nz′k + γβzk. Eq. (3) employs a Polyá urn posterior construction
of the DP to preserve the exchangeability when carrying out the size-biased
permutation [23]. This step in our inference enables an analytical form of node
parameter update.

Sampling θ. Even though there are many options for H, we choose a Gaussian
distribution in this paper. With θk := μk, we define f(x;μk) = Normal(x;μk,Σ)
and H = Normal(μ0,Σ0), where covariance matrices Σ and Σ0 are known and
fixed. Collapsing out the unused terms, we can write p(θk | X, c) ∼ p(θk |
H)

∏
n:cn=k p(xn | θk) . Given the conjugacy of a Gaussian prior with a Gaussian

of known covariance, by considering x̄k = 1
Nk

∑
n 1{cn = k}xn and NK =∑

n 1{cn = k}, we obtain μk | X, c ∼ Normal(μ̃k, Σ̃k) where

μ̃k = Σ̃k(Σ−1
0 μ0 + NkΣ−1x̄k) Σ̃k = (Σ−1

0 + NkΣ−1)−1 . (5)

4.1 Algorithmic Procedure

In practice, one useful step of the inference is to truncate the infinite setting of
βz0 to a finite setting. Referring back to Eq. (1), one can have a threshold such
that the sampling of βz0 terminates when the remaining length of the stick β∗

z0

is shorter than that threshold. Once a new component is initialised, each node
will update its β by one more stick-breaking step. That is, for the root node, it
samples one u from Beta(1, γ0), and assigns βz0(K+1) = β∗

z0
u and the remaining

stick length 1−∑K+1
k=1 βz0k as a new β∗

z0
. For a non-root node z′ inheriting from
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node z, we apply the results from the preliminary section such that u is sampled
from Beta(γβz(K+1), γβ∗

z ) and then update in the same manner as the root node.
Algorithm 2 depicts the procedure. The MH scheme samples a proposal path

and the corresponding β’s if new nodes are initialised. MH considers an accep-
tance variable A such that A = min

{
1, P′ q(V,B|V′,B′)

P q(V′,B′|V,B)

}
. Here, P and P ′ are

the posteriors at the current and proposed states, respectively. Then, q is the
proposal for sampling V′ and B′, which in our case is the nCRP and HDP. At
each iteration for a certain data index n, V changes to V′ by replacing vn with
v′

n. Thus, in this example, q(V′ | V) = nCRP(v′
n;V\{vn}) and vice versa. The

term q(B | V)/q(B′ | V′) is cancelled out by the terms p(B′ | V′)/p(B | V)
in the posterior, as q(B | V) and p(B | V) are identical. Apart from that, θ
will be updated only after all the paths are decided, and hence gain no changes.
Therefore, for a specific xn, we have that

A = min
{
1,

p(xn | βv′
nL

, v′
nL,θ)p(V′)

p(xn | βvnL
, vnL,θ)p(V)

nCRP(vn;V′ \ {v′
n})

nCRP(v′
n;V \ {vn})

}

given that the likelihood for X\{xn} remains unaltered. After the paths V for
all the observations are sampled, the process updates B and θ using the manner
discussed above.

4.2 Time Complexity

Contrary to first impression, at each iteration, the algorithm complexity is only
N2 for the worst case, and log-linear for the expected case.

Assume that the maximum number of children is M∗
z�

at the level 	, then the
cost of sampling a path for a single observation with the nCRP is O(

∑L
�=1 M∗

z�
).

After that, sampling cn is carried out with time O(Kg(D)) where g(D) is the
time for computing the Gaussian likelihood of D-dimensional data. In regard
to the global variables, B will be updated with every node and thus achieves
O(K|ZH|). Lastly, θ will be updated with time O(Kgs(D)) where gs(D) is the
complexity of sampling the Gaussian mean. In addition, we notice

∑L
�=1 M∗

z�
=

O(|ZH|) and g(D) = O(gs(D)). Overall, for one iteration, we can summarise
the complexity by N

∑L
�=1 M∗

z�
+ K|ZH| + NKgs(D) = O((N + K)|ZH| +

NKgs(D)) . Since the number of components will not exceed the data size, K ≤
N holds. With respect to |ZH|, at each level, it is no more than N . The extreme
case is that each datum is a node and extends to L levels. It follows that |ZH| ≤
NL. Hence, O((N + K)|ZH| + NKgs(D)) = O

(
N2(L + gs(D))

)
.

The expected number of DP components, considering γ0, is γ0 logN for suf-
ficiently large N [20]. Likewise for the first level in the nCRP, which is then
α logN . Let E[·] denote the expectation over all random H drawn from the
BHMC. If N is sufficiently large, we can have

∑L
�=1 E[Mz�

] = O(Lα logN), as
the expected number of nodes will be no greater than α logN . However, E[|ZH|]
is hard to decide but is known to be ≤ min(NL, (α logN)L). If N 	 0 and
α > 0, then NL ≤ (α logN)L. We can obtain N(

∑L
�=1 E[Mz] + E[K]gs(D)) =
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O(N logN(αL + γ0gs(D))) and E[K|ZH|] = O(γ0 logN × NL). Combining the
two expressions, we derive the upper bound O(N logN(L + gs(D))) for the
average case.

5 Experiments

Forqualitative analysis,weuse thedatasets:Animals [14] andMNIST-fashion [31].
Following this, we carry out a quantitative analysis for the Amazon text data [10]
since it contains the cluster labels of all the items at multiple levels.

We fix the parameters for H as μ0 = 0 and Σ0 = I. Additionally, we set the
covariance matrix for F as Σ = σ2I. We set the number of levels L intuitively
based on the data. For more complex cases, one can consider the theoretical
results of the effective length of the nCRP [25].

5.1 Convergence Analysis

We examine the convergence of the algorithm using Animals. Figure 3 shows
the unnormalised log likelihood for five individual simulations. The simulations
quickly reach a certain satisfactory level. Apart from that, the fluctuation shows
that the algorithm keeps searching the solution space over the iterations.

5.2 Results

Animals. This dataset contains 102 binary features, e.g. “has 6 legs”, “lives in
water”, “bad temper”, etc. Observing the heat-map of the empirical covariance
of the data, there are not many influential features. Hence, we employ Principal
Component Analysis (PCA) [20] to reduce it to a seven-dimensional feature
space. The MCMC burns 500 runs and then reports the one with the greatest
complete data likelihood p(X, c,V | B,θ) amongst the following 5, 000 draws
(following [1]).

We apply the hyperparameters: α = 0.4, γ0 = 1, γ = 0.5, σ2 = 1, L = 4.
Figure 4 shows a rather intuitive hierarchical structure. From the left to the right,
there are insects, (potentially) aggressive mammals, herbivores, water animals,
and birds.

MNIST-Fashion. This data is a collection of fashion images. Each image is
represented as a 28 × 28 vector of grayscale pixel values. For better visual-
isation, we sample 100 samples evenly from each class. PCA transforms the
data to 22 dimensions via the asymptotic root mean square optimal thresh-
old [9] for keeping the singular values. Using the same criterion as for Ani-
mal, we output two hierarchies with two sets of hyperparameters. We set
α = 0.5, γ0 = 1.5, γ = 2, σ2 = 1, L = 5. This follows precisely the same run-
ning settings as for Animals.



Bayesian Nonparametric Hierarchical Mixture Clustering 215

Fig. 3. Convergence analysis Fig. 4. The tree of Animals

Fig. 5. The tree of MNIST-fashion

Figure 5 reflects a property of the CRP which is “the rich get richer”. As it is
grayscale data, in addition to the shape of the items, other factors affecting the
clustering might be, e.g., the foreground/background colour area, the percentage
of non-black colours in the image, the darkness/lightness of the item, etc. The
hierarchical structure forms a hierarchy with high purity per level. Some mis-
labelled items are expected in a clustering task.

Amazon. We uniformly down-sample the indices in the fashion category of Amazon
and reserve 2, 303 entries from the data, which contain textual information about
items such as their titles and descriptions1. The data is preprocessed via the
method in [9] and only 190 features are kept, formed as the Term Frequency and
Inverse Document Frequency (TF-IDF) of the items’ titles and descriptions.

In this study, we adopt a Bayesian approach to dealing with the hyperparame-
ters. Due to a compromise to the runtime efficiency, we run BHMC once with 500
runs for burn-in, during which a MH-based hyperparameter sampling procedure
is performed with hyperpriors α ∼ Ga(3, 1), γ0 ∼ Ga(3.5, 1), γ ∼ Unif(0, 1.5)
and σ2 ∼ Unif(0, 0.1). We limit σ2 as mentioned since the feature values in
the data are all less than 1 and some are far less. In addition, L is fixed to be
7 (presuming that we have little information about the real number of levels).

1 http://jmcauley.ucsd.edu/data/amazon: the data is available upon request.

http://jmcauley.ucsd.edu/data/amazon
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The tree with the maximal complete likelihood in the subsequent 2, 500 draws
is reported.

We use the evaluation methodology in [17] to compare the clustering results
against the ground-truth labels level by level. We compare 6 levels, which is
the maximum branch length of the items in the ground truth. When extracting
the labels from the trees (either for the algorithm outputs or the ground truth),
items that are on a path of length less than 6 are extended to level 6 by assigning
the same cluster label as that in their last level to the remaining levels. This is
to keep the consistency of the number of items for computing metrics at each
level.

For the comparison, we first consider the gold standard AC with Ward dis-
tance [30]. We adopt the existing implementations for PERCH and PYDT2. For
PYDT which is sensitive to the hyperparameters, we applied the authors’ imple-
mented hyperparameter optimisation to gather the hyperparameters prior to
running the repeated simulations. At each level, we consider four different eval-
uation metrics, namely, the purity, the normalised mutual information (NMI),
the adjusted rand index (ARI), and the F-Measure [13]. Level 1 is the level for
the root node.

Fig. 6. Metrics on Amazon by levels

Figure 6 depicts that our method achieves clearly better scores with respect to
purity and NMI. In the figure, PYDT-SL and PYDT-MH correspond to the slice
and the MH sampling solutions, respectively. As the tree approaches to a lower
level, our method also achieves a better performance in F-measure. For ARI,
despite that PERCH performs the best, all numerical values are exceedingly
close to 0. However, some theoretical work of [24] suggests that ARI is more
preferred in the scenario that the data contains big and equal-sized clusters.
This is opposed to our ground truth which is highly unbalanced among the
clusters at each level. BHMC does show the potential to perform well according
to certain traditional metrics.

6 Conclusion

This paper has discussed a new perspective for Bayesian nonparametric HC. Our
model, BHMC, develops an infinitely branching hierarchy of mixture parameters,

2 https://github.com/iesl/xcluster and https://github.com/davidaknowles/pydt.

https://github.com/iesl/xcluster
https://github.com/davidaknowles/pydt
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that are linked along paths in the hierarchy through a multilevel HDP. A nested
CRP is used to select a path in the hierarchy and mixture components are
drawn from the mixture distribution in the leaf node of the selected path. The
evaluation shows that BHMC is able to provide good hierarchical clustering
results on three real-world datasets with different types of characteristics (i.e.,
binary, visual and textual) and clearly performs better than other methods with
respect to purity and NMI on the Amazon dataset with ground truth, which
shows the promising potential of the model.
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Abstract. Hierarchical classification requires annotations with hierar-
chical class structures. Although crowdsourcing services are inexpensive
ways to collect annotations for hierarchical classification, the results are
often incomplete because of the workers’ limited abilities that unable to
label all classes, and crowdsourcing platforms also allow suspensions dur-
ing the labeling flow. Unfortunately, existing quality control approaches
for refining low-quality annotations discard those incomplete annota-
tions, and this limits the quality improvement of the results. We pro-
pose a quality control method for hierarchical classification that lever-
ages incomplete annotations and the similarity between classes in the
hierarchy for estimating the true leaf classes. Our method probabilisti-
cally models the labeling process and estimates the true leaf classes by
considering the class-likelihood of samples and workers’ class-dependent
expertise. Our method embeds the class hierarchy into a latent space
and represents samples as well as the worker’s prototypical samples for
classes (prototypes) as vectors in this space. The similarities between the
vectors in the latent space are used to estimate the true leaf classes. The
experimental results on both real-world and synthetic datasets demon-
strate the effectiveness of our method and its superiority over the baseline
methods.

Keywords: Crowdsourcing · Quality control · Hierarchical
classification

1 Introduction

Hierarchical classification, in which the classes are organized within a given hier-
archical structure, is used in many applications such as document categorization
[1,6]. In hierarchical classification, there are different layers for different levels
of classes. A sample can be associated with one of the classes in the leaf layer
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through a single path and can also be associated with all classes on its path. As
shown in Fig. 1a, if a sample belongs to the leaf class “Cat,” it also belongs to
its parent class “Animal.” Hierarchical classification tasks always have a large
number of classes. For example, the hierarchy of nouns in WordNet [8] contains
5,247 classes, and the average depth of the hierarchy is seven, i.e., it requires
to label seven times for a sample. Because it is costly to use experts to label
such a large number of classes, the use of crowdsourcing services for hierarchical
classification tasks is preferable.

In reality, however, crowdsourced hierarchical classification suffers from the
incompleteness of the annotations from workers, which we call an incomplete
annotation problem. As shown in Fig. 1b, a worker may not cover all classes
in an annotation of a sample for several reasons including limited ability, lack
of motivation, suspensions on crowdsourcing platforms, and limited budget [13].
Since most existing hierarchical classification methods [10] require a sample to
be labeled at all layers for training classifiers, the incomplete annotation problem
limits the real-world applicability of applying crowdsourcing to the hierarchical
classification.

Fig. 1. (a) A class hierarchy with two intermediate classes and four leaf classes. (b) An
example of complete and incomplete annotations to an image of an apple from workers.
The row with white cells is an incomplete annotation. The cells in orange, blue, and
white correspond to “should belong to the class”, “should not belong to the class”, and
“missed answers”. (Color figure online)

Historically, low-quality annotations by crowd workers are refined by the
quality control process that asks a question (labeling task) to several workers.
Then the high-quality labels are obtained by aggregating all annotations such as
majority voting [3,14]. Unfortunately, the conventional quality control method
for hierarchical classification discards those incomplete annotations, limiting the
quality improvement of labels [9]. There are works on multi-label classification
with incomplete annotations [7,11] but they cannot incorporate with the class
hierarchy. The classes in the class hierarchy have dependencies in the parent-child
relationship, and the aforementioned quality control methods cannot capture
these dependencies leading to poor performance.

We may avoid collecting incomplete annotations (e.g., by forcing workers
to label all classes) and obtain high-quality labels at a low-cost by aggregating
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complete annotations using conventional methods. However, the labeling cost of
complete annotations is large because of the large number of classes. Under a
situation in which a crowdsourcing platform sends the same number of queries to
workers, we observed that the quality of the labels obtained by aggregating both
complete annotations and incomplete annotations was higher than that obtained
by aggregating only complete annotations (see Sect. 2.1). Thus, collecting and
aggregating incomplete annotations is a cost-effective way to obtain high-quality
labels.

In this paper, we propose a quality control method for hierarchical classifica-
tion. It leverages the incomplete annotations and the similarity between classes
in the hierarchy to estimate the true leaf classes. Our method is based on a
generative probabilistic model for annotations that include the parameters of
the latent features of the samples, the class-dependent expertise of the workers,
and the true leaf classes. We make assumptions that a worker’s expertise for a
specific class is represented by the typical features of the samples (prototype) of
this class in her experience. Her answer to this class is generated based on the
similarity between the sample and the class prototype. Based on these assump-
tions, our method represents a sample and a prototype as embedded vectors of
a latent space for the class hierarchy. The probabilities of answers are gener-
ated through the similarities in this space. This modeling allows us to estimate
the parameters of true leaf classes with the similarity in the latent space of the
hierarchical structure.

We conducted experiments on real and synthetic datasets for hierarchical
classification. We tested the case of random injection of incomplete annotations
on the open-source dataset, and our method outperformed the baseline methods
when the observed ratio of answers is less than or equal to 40%. We collected
a dataset of incomplete annotations by human workers and our method also
worked better than the baseline methods. In addition, we tested the effective-
ness of our method in estimating the class-dependent expertise by modeling
prototypes on synthetic datasets. Our contributions can be summarized as fol-
lows:

– We observe that aggregating incomplete annotations is a cost-effective app-
roach to obtaining high-quality labels for hierarchical classification.

– We propose a novel quality control method that leverages incomplete anno-
tations based on a generative probabilistic model, in which a class hierarchy
is embedded into a latent space, and the samples and the expertise of the
workers are represented by latent vectors of the space.

– The results of experiments on both real and synthetic datasets show that the
performance of our approach is better than those of the baseline methods.

2 Crowdsourcing with Incomplete Annotations

We first introduce a preliminary experiment to show the cost-effectiveness of
the incomplete annotations used in a crowdsourced hierarchical classification.
We then define the problem of quality control for hierarchical classification with
incomplete annotations.
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2.1 Cost-Effectiveness of Incomplete Annotations

The requesters of crowdsourcing want to obtain high-quality labels at a low-
cost. Typically, complete annotations are collected and aggregated using quality
control methods to achieve this goal. Although the number of classes to which
a worker labeled in a complete annotation is larger than that in an incomplete
annotation, the labeling cost is higher. Thus, two types (complete and incom-
plete) of annotations lead us to the following research question: Should we collect
not only the complete annotations but also the incomplete annotations to obtain
high-quality labels under the same budget?

Fig. 2. The comparison result of the quality of aggregated labels by majority vote
on only complete annotations and annotations including incomplete ones, varying the
number of queries. The bars represent the standard deviation.

To answer the above research question, we conducted a preliminary exper-
iment. We collected annotations from five crowd workers by using images and
taxonomy in the ImageNet dataset [5]. We adopted the first two layers under
the “musical instrument, instrument” category for hierarchical classification. We
picked up 10 images for each leaf class and asked the workers to organize them
into the taxonomy. A worker sequentially labeled the hierarchical classes from
coarse to fine and was asked to skip the labeling halfway through. As a result,
we collected annotations including 426/1999 � 21% of incomplete annotations.
We created complete annotations by extracting 1573 annotations that workers
did not skip labeling.

We compared the quality of the aggregated labels when using the com-
plete annotations with that of the aggregated labels when using the annotations
including incomplete ones. We estimated the true leaf classes of the samples by
majority vote in a top-down manner: after choosing a class in the first layer
by majority vote, we again took a majority vote with the answers for its child
classes. We assumed that a crowdsourcing platform sends a single query to a
worker to collect answers in each layer. We randomly selected the answers and
estimated the true leaf classes 10 times for each number of queries, then reported
the average of the hierarchical F1-measure (hF) [6] scores.
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Figure 2 shows the comparison results of the quality of the aggregated
labels by majority vote. To our surprise, as the number of queries increased, we
obtained higher-quality labels when we used annotations including incomplete
ones, which is statistically significant (p < 0.05) between the types of annota-
tions. We therefore examined the percentage of correct answers assuming that
we sent 3000 queries. We observed that the quality of the annotations including
incomplete ones (46% correct) is higher than that of the complete annotations
(43% correct). Incomplete annotations contain more answers for coarse-grained
classes than fine-grained classes since workers labeled from coarse to fine. The
answers in incomplete annotations tend to be correct since most answers are for
coarse-grained classes which do not require expertise. Furthermore, incomplete
annotations include annotations for a single sample from more workers. We can
ask a worker regarding some classes on multiple samples instead of all classes
on a single sample at the same cost, and the obtained labels are robust against
incorrect answers by aggregating incomplete annotations.

2.2 Problem Definition

In a crowdsourced hierarchical classification, we ask a set of workers M to label
the set of samples N using the set of classes C including both intermediate classes
and leaf classes. As mentioned previously, each worker does not always cover all
classes in the annotations for several reasons. Thus, we use A = {(i, j, k) |
i ∈ N, k ∈ Mi ⊆ M, j ∈ Cik ⊆ C} to represent the observed answers where
Mi is a set of the workers labeled samples i and Cik is a set of the labeled
classes of sample i by worker k. As observed answer (i, j, k) points to an answer
from a worker, we use Yijk ∈ {0, 1} to represent whether worker k regards
sample i should belongs to class j (Yijk = 1) or not (Yijk = 0). We use YA =
{Yijk}(i,j,k)∈A to represent incomplete annotations from workers.

Given incomplete annotations from workers, YA, our goal is to obtain quality-
controlled labels for hierarchical classification. Since the intermediate class of a
sample can be determined by its leaf class, our interest is then to estimate
the true leaf classes of the samples from incomplete annotations. Provided this,
the problem can be formalized as follows: Given incomplete annotations YA by
workers M on samples N and class hierarchy T , to estimate the true leaf classes
of the samples, Z = {zi}i∈N .

We use H to denote the height of class hierarchy T , and Ch to denote h-th
layer’s intermediate classes. Because we often distinguish the leaf classes and the
intermediate classes, we use alias L to represent all leaf classes, that is, L := CH .
We use leaf(j) ⊂ L to denote the set of the leaf classes of the subtree rooted at
class j. Given leaf classes L, the true leaf class for sample i can be represented
by a one-hot vector zi ∈ {0, 1}|L|, where zil = 1 when sample i belongs to leaf
class l.
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3 Modeling Labeling Process of Workers

To estimate the true leaf classes of the samples, we model the worker’s labeling
process that incorporates a class hierarchy. Furthermore, we infer the parameters
from the observed incomplete annotations. We first introduce the assumptions
of our model, then propose a probabilistic generative model in the next section.

Fig. 3. Conceptual view of our method. (a) Embedding the exemplars of the leaf classes
into a latent space, similar exemplars are close to each other. (b) The prototypes of the
workers and the samples are distributed around the exemplars. Typical samples and
prototypes of experts are close to the exemplar of the corresponding class.

In our model, for each leaf class in a hierarchy, a worker creates the prototype
which is typical features of samples of the class by aggregating the samples based
on experience. For a non-leaf intermediate class, the prototype is determined by
the aggregation procedure (e.g., a weighted average) of the prototypes of the
leaf classes in its descendants because we assume that a worker again aggregates
samples of these leaf classes. In labeling phase, we assume that a worker deter-
mines whether a sample belongs to a class or not by considering the relevance
between the sample and the prototype of the class.

Since prototypes are just personal cognitive representations of a worker, we
prepare the ground-truth prototype called exemplar for each class, which is essen-
tially the prototype of the oracle worker. We also assume that all samples, all
prototypes, and all exemplars are from the same latent space. With this model-
ing, (1) the class-likelihood of a sample is represented by the similarity between
the exemplar of the class and the sample in the latent space, and (2) the worker’s
class-dependent expertise (e.g., how she is familiar with apples) is represented
by the similarity between the exemplar and the worker’s prototype of the class
in the latent space.

To aggregate annotations by considering the similarity between classes rep-
resented by a class hierarchy, we assume that the samples, the prototypes, and
the exemplars are distributed in the latent space to reflect the similarity. To
reflect the similarity between leaf classes with a common ancestor, we embed
the exemplars of the leaf classes into a latent space (Fig. 3a). The similarity
between parent and child classes is also reflected in the latent space. Recall that
we assume that a prototype (exemplar) of an intermediate class is the weighted
average of the prototypes (exemplars) of leaf classes in its descendants. In the
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latent space, the prototypes of the workers and the samples corresponding to a
class are distributed around the exemplar of the class (Fig. 3b).

4 Proposed Method

We introduce our proposed method for solving the problem by probabilistically
modeling the labeling process of workers.

4.1 Probabilistic Generative Model

We define a D dimensional Euclidean space R
D as the latent space to capture

the similarities between exemplars, prototypes, and samples. The exemplar of
leaf class l in class hierarchy T is represented as vector μl ∈ R

D. In the same
way, the prototype of class j from worker k is represented as vector vj

k ∈ R
D,

and the latent features of sample i is represented as vector ui ∈ R
D, in the latent

space. We evaluate the similarity between two points in the latent space by the

Euclidean distance ‖p − q‖2 =
√∑D

d=1(pd − qd)2.
Given incomplete annotations YA, the true leaf classes Z = {zi}, the latent

features of the samples U = {ui}, and the prototypes on the leaf classes V =
{vl

k}, the joint probability distribution is defined as follows: p(YA,U,V,Z) =
p(YA|U,V)p(U|Z)p(Z)p(V), p(Z) =

∏
i∈N p(zi), p(U|Z) =

∏
i∈N p(ui|zi),

p(V) =
∏

k∈M

∏
l∈L p(vl

k), and p(YA|U,V) =
∏

(i,j,k)∈A p(Yijk|ui,v
j
k).

The true leaf class zi of sample i is generated from the following categorical
distribution: p(zi) = Cat(zi|π) =

∏
l∈L πzil

l , where hyper-parameter πl denotes
the prior probability that a sample belongs to leaf class l. As mentioned in
Sect. 3, we assume that the latent features of the samples are distributed around
the exemplars. Thus, the latent features ui of sample i is generated from the
normal distribution with precision parameter m centered at the exemplar of the
true leaf class zi: p(ui|zi) =

∏
l∈L N (ui|μl,m−1ID)zil where ID is an identity

matrix of size D.
Similarly, we also assume that the prototypes are distributed around the

exemplars. Worker k’s prototype vl
k of leaf class l is generated from the nor-

mal distribution with precision parameter s centered at the exemplar μl of
leaf class l: p(vl

k) = N (vl
k|μl, s−1I). The prototype vj

k of an intermediate
class j ∈ C is represented as the weighted average of the prototypes of leaf
classes leaf(j) in its descendant with the prior probability {πl}, as follows:
vj

k =
∑

l∈leaf(j)(πl/s(j))vl
k, where s(j) =

∑
l∈leaf(j) πl.

We assume that answers of a class from a worker are determined based on
the similarities between samples and her class prototype, i.e., she labels samples
to the class if they are similar. The answer Yijk is generated from a Bernoulli
distribution of the parameter calculated using the latent features ui of sample i

and worker k’s prototype vj
k of class j: p(Yijk = 1|ui,v

j
k) = fh

α,β

(
‖ui − vj

k‖2
)
,

where fh
α,β : [0,∞) → [0, 1] denotes a monotonically decreasing function with

hyper-parameters α and β to transform the Euclidean distance to probabilities
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depending on the h-th layer (j ∈ Ch). We use the scaling function fh
α,β so that

workers who have exemplars choose the true class in h-th layer with high proba-
bility. The setting of the scaling function and the hyper-parameters is described
in Sect. 5.1.

4.2 Inference

Given annotations YA, we aim at inferring the true leaf classes Z, the latent
features of the samples U and the prototypes V. The EM (expectation-
maximization) algorithm enables us to obtain the MAP (maximum a posteriori)
estimates of parameters {U,V}, and the posterior probabilities of the true leaf
classes Z. The E step calculates the posterior distribution p(Z|YA,U,V) of the
true leaf classes Z with annotations YA and the values of parameters {U,V}
from the last M step. Then, we take the expectation of the logarithm of the
joint probability p(YA,U,V,Z) over the posterior distributions. The M step
determines the values of parameters {U,V} by locally maximizing the expected
value using gradient descent. The cycle of the EM algorithm optimizes the value
of the parameters {U,V} so that the lower bound of the posterior probability
p(U,V|YA) always increases until convergence.

4.3 Embedding Class Hierarchy

To obtain the exemplars which preserve similarity between classes, we embed
class hierarchy T into latent space R

D. We define the semantic distance d(l, l′)
between two leaf classes l and l′ by the length of the path connected between
the corresponding nodes on class hierarchy T . We can obtain exemplars μ =
{μl;μl ∈ R

D}l∈L by metric multi-dimensional scaling [2] that places each leaf
class into latent space R

D such that the semantic distances {d(l, l′)}l∈L are
preserved as well as possible.

5 Experiments and Discussion

5.1 Experimental Setup

We evaluated our method on annotations on two real crowdsourced hierarchical
classification datasets. We collected a dataset named “ImageNet Musical Instru-
ment (INMI)” with the crowdsourcing workflow that allowed workers to skip
labeling halfway through as described in Sect. 2.1. In the INMI dataset, five
workers classified 440 samples, using the class hierarchy with a depth of two
which contains six intermediate classes and 44 leaf classes. The other dataset
is the TDB dataset used in [9]. In the TDB dataset, 93 workers classified 388
samples, using the class hierarchy with a depth of two which contains 21 inter-
mediate classes and 273 leaf classes. We randomly replace the values in complete
annotations to generate the incomplete annotations.

We also evaluated our method on several sets of synthetic incomplete anno-
tations. We first created hierarchies with a depth of three, and each class has n
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children (3 ≤ n ≤ 6), and the total number of leaf classes is from 27 to 216. We
assumed that 10 samples belong to each leaf class. For each sample, 10 workers
choose a path to a leaf class in a hierarchy. We also assumed that a worker has
an expertise parameter on each leaf class rkl = p(Yilk = 1|zil = 1), which was
sampled from a beta distribution. A worker chooses incorrect path uniformly,
i.e., p(Yilk 
= 1|zil = 1) = (1 − rkl)/(|L| − 1). After sampling annotations from
workers based on their expertise parameters, we randomly selected 20% answers
from them to generate incomplete annotations.

We compared our method with majority voting (MV), DS [4], GLAD [12],
CRIAV [7] and Steps-GLAD [9] (SGLAD). CRIAV leverages incomplete anno-
tations and sample features to complete the missing answers by assuming the
low-rank structure of an annotation tensor. Note that we modified the method
without using the sample features since they are not available in our problem.
SGLAD utilizes a class hierarchy to aggregate answers on intermediate and leaf
classes based on the GLAD algorithm, which estimates the class-independent
expertise of workers and the degree of difficulty of samples.

For evaluating the effectiveness of the quality control for hierarchical clas-
sification, we used the hierarchical F1-measure (hF) [6], which is widely used
in hierarchical classification. It is an extension of the standard F-measure to
reflect the distance between true leaf class li = arg maxl∈L zil and estimated leaf
class l̃i = arg maxl∈L z̃il on a class hierarchy. In our setting, hF is defined as∑

i∈N |path(li) ∩ path(l̃i)|/H|N |, where path(l) denotes the set of classes on the
path from the root to leaf class l.

We set the scaling function fh
α,β : [0,∞) → [0, 1] as a piecewise func-

tion that consists of three functions with the input of 0, ah, bh and the out-
put of 1, α, β as follows: fh

α,β(x) = α−1
ah x + 1 (0 ≤ x ≤ ah), fh

α,β(x) =
α−β

ah−bh
(x − bh) + β (ah < x ≤ bh), fh

α,β(x) = β exp(bh − x) (bh < x), where
ah, bh are assigned with a high probability value α and a low probability value
β, and are defined as follows: ah = 1∑

j∈Ch
|leaf(j)|

∑
j∈Ch

∑
l∈leaf(j) ‖μl − μj‖2,

bh = 1∑
j∈Ch

|leaf(pa(j))\leaf(j)|
∑

j∈Ch

∑
l∈leaf(pa(j))\leaf(j) ‖μl − μj‖2, where

pa(j) denotes the parent of class j. In the same way as the obtaining of pro-
totypes, the exemplar μj of an intermediate class j ∈ C is represented as the
weighted average of the exemplars of the leaf classes in its descendants.

Our probabilistic model includes the hyper-parameters D, π, α, β, m, and
s. We set D, πl, α and β to L, 1/|L|, 0.9 and 0.1, respectively. For each dataset,
we determined the values of precision parameters m and s by grid search to
maximize the approximation of model evidence p(YA|m, s). For each possible
parameter pair on the searching grid, we calculated average of 10 values of the
likelihood function p(YA|U,V) using the values of parameters {U,V} sampled
from the prior distribution p(U,Z|m) and p(V|s).

5.2 Experimental Results and Discussion

Estimation of True Leaf Classes on Human-Labeled Annotations. We
first tested the performance of our method and the baseline methods on the
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Table 1. Comparison results on the human-labeled incomplete annotations (hF), vary-
ing observed ratio ρ. Winners are shown in bold. In table (a), statistically significant
results compared with the second-best results by paired t-test are shown with � (p <
0.05).

(a) Comparison result on the TDB dataset

ρ 10% 20% 40% 60% 80% 100%

MV 0.32 ± 0.02 0.44 ± 0.01 0.51 ± 0.01 0.55 ± 0.01 0.55 ± 0.01 0.55 ± 0.00

DS 0.36 ± 0.02 0.44 ± 0.02 0.49 ± 0.01 0.51 ± 0.01 0.51 ± 0.01 0.52 ± 0.00

GLAD 0.33 ± 0.02 0.45 ± 0.01 0.52 ± 0.01 0.55 ± 0.01 0.56 ± 0.01 0.56 ± 0.01

CRIAV 0.28 ± 0.03 0.43 ± 0.01 0.53 ± 0.01 0.56 ± 0.01 0.56 ± 0.01 0.56 ± 0.00

SGLAD 0.33 ± 0.02 0.45 ± 0.02 0.53 ± 0.01 0.56 ± 0.01 0.57 ± 0.01 0.57 ± 0.00

OURS �0.40 ± 0.02 �0.50 ± 0.01 �0.54 ± 0.01 0.56 ± 0.01 0.57 ± 0.01 0.58 ± 0.00

(b) Comparison result on the INMI dataset

MV DS GLAD CRIAV SGLAD OURS

0.60 0.60 0.60 0.62 0.64 0.65

human-labeled annotations. To generate randomly incomplete annotations using
the TDB dataset, we randomly selected ρ% answers from complete annotations
and varied ρ as 10% to 100%. For each ρ, we estimated the true leaf classes 10
times, then reported the average of the hF scores. We also reported the average
of the 10 hF scores on the INMI dataset since our method uses gradient descent.

Table 1a shows the comparison results for true leaf class estimation on TDB
dataset. Our method outperformed the baseline methods, and significant dif-
ferences were observed when we could only observe less than or equal to 40%
answers, i.e., ρ ≤ 40%. This demonstrates the effectiveness of our method can
accurately estimate the true leaf classes even there are a lot of incomplete anno-
tations since it utilizes incomplete annotations. Note that CRIAV also utilized
the incomplete annotations but had less performance than our method since it
cannot incorporate with a class hierarchy. There were no significant differences
between our method and SGLAD when ρ ≥ 60%. This is because both methods
considered the relation of hierarchical structure, which can help to estimate the
true leaf classes accurately. Table 1b shows the comparison results for true leaf
class estimation on the INMI dataset. Our method outperformed the baseline
methods. This result proved that our method works on the dataset collected for
a hierarchical classification task that allowed incomplete annotation.

Effectiveness of Modeling Class-Dependent Expertise. We also tested
the performance of our method on the synthetic incomplete annotations assum-
ing workers with class-independent expertise (IND) and class-dependent exper-
tise (DEP). In both datasets, the expertise parameters {rkl} were generated
from the beta distribution with α = 0.1 and β = 0.1. The probability density
of this distribution is high near 0 and 1, i.e., p(1/3 < rkl), p(2/3 < rkl) = 0.47.
For the IND dataset, a single expertise parameter was sampled per worker, and
annotations were generated independently of the true leaf classes. For each trial,
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we generated a class hierarchy and incomplete annotations and estimated the
true leaf classes. Then, we reported the average of the hF scores of 10 trials.

Table 2. Comparison results on the synthetic incomplete annotations (hF). Winners
are shown in bold.

MV SGLAD OURS

IND 0.63 ± 0.06 0.74 ± 0.05 0.77± 0.07

DEP 0.55 ± 0.02 0.56 ± 0.02 0.68± 0.02

Table 2 shows the comparison results for true leaf class estimation on the syn-
thetic incomplete annotations assuming workers with class-independent exper-
tise (IND) and class-dependent expertise (DEP). Our method improved the qual-
ity of the labels by more than 10% from the MV on both datasets. On the other
hand, the quality improvement by SGLAD on the DEP dataset was only 1%,
which was limited compared to our method. This demonstrates the effectiveness
of our method that can estimate class-dependent expertise by modeling proto-
types. Recall that the worker’s expertise on each leaf class is polarized into high
and low levels in DEP datasets. The discovery of the worker’s strong classes
is, therefore, important to improve the quality of the labels. For this reason,
the quality improvement by SGLAD was limited because it cannot model the
worker’s expertise of each class.

6 Related Work

Crowdsourcing platforms such as Amazon Mechanical Turk1 enable us to collect
many labels at a low-cost. However, the quality of collected labels is one of the
important issues in research and industrial fields. Truth inference [14] and quality
control for crowdsourcing [3] aimed at finding the true classes of samples accu-
rately from given workers’ annotations. There are a few quality control methods
for hierarchical classification tasks [9]. The method proposed by Otani et al. [9]
used answers for intermediate classes to utilize the similarities between classes
and outperformed approaches that ignore a class hierarchy [4,12]. However, it
assumed all annotations are complete, which is different from our problem of
incomplete annotations.

Quality control methods using incomplete annotations have been proposed
for multi-label classification tasks [7,11]. Li et al. [7] assumed that annotations
are incomplete because workers label related classes, but they do not check all
classes. Thus, this method estimated the missing answers from incomplete anno-
tations by assuming the low-rank structure of an annotation tensor. Tu et al. [11]
estimated the co-occurrence dependency between classes and workers’ skills to
obtain the true labels accurately by using incomplete annotations. However, the
1 https://www.mturk.com/.

https://www.mturk.com/
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above researches are different from our problem as they focused on the multi-
label classification without a class hierarchy.

7 Conclusion

In this paper, we studied the problem of estimating the true leaf classes of sam-
ples with incomplete annotations for hierarchical classification. We designed a
novel method for quality control by utilizing incomplete annotations and mod-
eling the labeling process that considers the class-likelihood of samples and the
class-dependent expertise in the same latent space. Extensive experiments on
both real and synthetic datasets demonstrated the effectiveness of our method
and its superiority over the baseline methods.
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Abstract. Multi-label learning handles instances associated with mul-
tiple class labels. The original label space is a logical matrix with entries
from the Boolean domain ∈ {0, 1}. Logical labels are not able to show
the relative importance of each semantic label to the instances. The vast
majority of existing methods map the input features to the label space
using linear projections with taking into consideration the label depen-
dencies using logical label matrix. However, the discriminative features
are learned using one-way projection from the feature representation of
an instance into a logical label space. Given that there is no manifold in
the learning space of logical labels, which limits the potential of learned
models. In this work, inspired from a real-world example in image anno-
tation to reconstruct an image from the label importance and feature
weights. We propose a novel method in multi-label learning to learn the
projection matrix from the feature space to semantic label space and
projects it back to the original feature space using encoder-decoder deep
learning architecture. The key intuition which guides our method is that
the discriminative features are identified due to map the features back
and forth using two linear projections. To the best of our knowledge, this
is one of the first attempts to study the ability to reconstruct the orig-
inal features from the label manifold in multi-label learning. We show
that the learned projection matrix identifies a subset of discriminative
features across multiple semantic labels. Extensive experiments on real-
world datasets show the superiority of the proposed method.

Keywords: Multi-label learning · Feature selection · Label
correlations

1 Introduction

Multi-label learning deals with the problem where each sample is represented by
a feature vector and is associated with multiple concepts or semantic labels. For
example, in image annotation, an image may be annotated with different scenes;
or in text categorization, a document may be tagged to multiple topics. Formally,
given a data matrix X ∈ R

d×n is composed of n samples of d-dimensional feature
space. The feature vector xi ∈ X is associated with label set Yi = {yi1, yi2,··· , yik}
where k is the number of labels, and y(i,j) ∈ {0, 1} is a logical value where
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12714, pp. 233–245, 2021.
https://doi.org/10.1007/978-3-030-75768-7_19
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the associated label is relevant to the instance xi. Over the past decade, many
strategies have been proposed in the literature to learn from multi-labeled data.
Initially, the problem was tackled by learning binary classification models on
each label independently [14]. However, this strategy ignores the existence of
label correlation. Interestingly, several methods [2,10,11] show the importance
of considering the label correlation during multi-label learning to improve the
classification performance. However, these methods use logical labels where no
manifold exist and apply traditional similarity metrics such as Euclidean distance
which is mainly built for continuous data.

In this study, contrary to the majority of the methods, in addition to learning
the mapping function from a feature space to multi-label space, we explore the
projection function from label space to feature space to reconstruct the original
feature representations. For example, in image annotation, our novel method
is able to reconstruct the scene image using the projection function and the
semantic labels. Initially, it is necessary to explore the natural structure of the
label space in multi-labeled data. Existing datasets naturally contain logical
label vectors which indicate whether the instance is relevant or not relevant to a
specific label. For example, as shown in Fig. 1, both images tagged the label boat
with the same weight equal to 1 (present). However, to accurately describe the
labels in both images, we need to identify the importance of the labels in each
image. It is clearly seen that the label boat in image (Fig. 1b) is more important
than that in image (Fig. 1a). Furthermore, the label with the zero value in the
logical label vector refers to different meanings, which may either be irrelevant,
unrepresented or missing. Using the same example in Fig. 1, the boat and the sun
labels in images (Figs. 1a and 1b) are not tagged due to their small contribution
(unrepresented). Our method learns a numerical multi-label matrix in semantic
embedding space during the optimization method based on label dependencies.
Therefore, replacing the importance of labels using numerical values instead of
the logical labels can improve the multi-label learning process.

Importantly, learning the numerical labels is essential to our novel approach
that is developed based on the encoder-decoder deep learning paradigm [9].
Specifically, the input training data in the feature space is projected into the
learned semantic label space (label manifold) as an encoder step. In this step,
simultaneously through an optimization problem, it learns the projection func-
tion and the semantic labels in Euclidean space. Significantly, we also consider
the reconstruction task of the original feature representations using the projec-
tion matrix as input to a decoder. This step imposes a constraint to ensure
that the projection matrix preserves all the information in the original feature
matrix. The decoder allows the original features to be recovered using the pro-
jection matrix and the learned semantic labels. In the case of image annotation,
this process is similar to combining puzzle pieces to create the picture. However,
in the case of logical labels where the label either exists or not, it is incapable
of reconstructing the original visual feature representations. We show that the
impact of the decoder in identifying the relevant features can improve multi-label
classification performance. This is because the feature coefficients are estimated
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Fig. 1. Two images annotated with labels: sea, sunset, and boat

based on the actual numerical labels and more importantly the weights of the
relevant features results in a reduction of the reconstruction error. The proposed
method is visualized in Fig. 2. We test the proposed approach on a variety of
public multi-label datasets, and clearly verify that they favourably outperform
the state-of-the-art methods in feature selection and data reconstruction.

We formulate the proposed approach as a constrained optimization problem
to project feature representations into semantic labels with a reconstruction
constraint. More precisely, the method is designed by an effective formulation
of the encoder and decoder model using a linear projection to and from the
learned semantic labels, respectively. This design alleviates the computational
complexity of the proposed approach making it suitable for large scale datasets.
To the best of our knowledge, this is the first attempt to learn the semantic label
representation from the training data that can be used for data reconstruction in
multi-label learning. In summary our contribution are: (1) a semantic encoder-
decoder model to learn the projection matrix from original features to semantic
labels that can be used for data reconstruction; (2) we extend the logical label
to a numerical label which describes the relative importance of the label in a
specific instance; (3) we propose a novel Learning Discriminative Features using
Multi-label Dual Space (LDFM) which is able to identify discriminative features
across multiple class labels.

2 Related Work

Label Correlation. Over the past decade until recently, it has been proven that
label correlation has improved the performance of multi-label learning methods.
The correlation is considered either between pairs of class labels or between all
the class labels which is known as second and high order approaches, respec-
tively [4,14,15]. However, in these models, the common learning strategy is to
deal with logical labels which represents whether the label is relevant or irrel-
evant to an instance. The label matrix in the available multi-labeled datasets
contains logical values which lack semantic information. Hence, few works reveal
that transforming the labels from logical into numerical values improves the
learning process.
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Semantic Labels. The numerical value in the label space carries semantic infor-
mation, i.e., the value may refer to the importance or the weight of an object
in the image. The numerical label matrix in Euclidean space is not explicitly
available in the multi-labeled data. A few works have studied the multi-label
manifold by transforming the logical label space to the Euclidean label space.
For example, [6] explore the label manifold in multi-label learning and recon-
struct the numerical label matrix using the instance smoothness assumption.
Another work [3] incorporates feature manifold learning in the multi-label fea-
ture selection method, and [7] select the meaningful features using the constraint
Laplacian score in manifold learning. However, our proposed method differs from
these by learning an encoder-decoder network to reconstruct the input data using
the learned projection matrix along with predicting the semantic labels.

Autoencoder. Several variants use an autoencoder for multi-label learning. [5]
learn the unknown labels using the entropy measure from existing labels, then the
completed label matrix is used as an input layer feature set in autoencoder archi-
tecture. However, our method reconstructs the original input data in the decoder
using the learned semantic labels. Further, [8] propose a stacked autoencoder for
feature encoding and an extreme learning machine to improve the prediction
capability. However, the authors did not take label correlation into considera-
tion and the original logical labels are used in the learning process. In this paper,
we select the discrete features that are important to detect the objects’ weights
during the encoding phase and simultaneously they are significant to reconstruct
the original data in the decoding phase.

3 The Proposed Method

In multi-label learning, as mentioned above, the training set of multi-labeled
data can be represented by {xi ∈ X|i = 1, · · · , n}, the instance xi ∈ R

d is a d-
dimensional feature vector associated with the logical label Yi = {yi1, yi2,··· , yik},
where k is the number of possible labels; and the values 0 and +1 represent the
irrelevant and relevant label to the instance xi respectively.

3.1 Label Manifold

To overcome the key challenges in logical label vectors, we first propose to learn
a new numerical label matrix ˜Y ∈ R

k×n which contains labels with semantic
information. According to the label smoothness assumption [12] which states
that if two labels are semantically similar, then their feature vectors should
be similar, we initially exploit the dependencies among labels to learn ˜Y by
multiplying the original label matrix with the correlation matrix C ∈ R

k×k. Due
to the existence of logical values in the original label matrix, we use the Jaccard
index to compute the correlation matrix as follows

˜Y = Y TC (1)
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where the element ˜Yi,j = Y T
i,1 × C1,j + Y T

i,2 × C2,j + · · ·+ Y T
i,n × Cn,j is initially

determined as the predictive numerical value of instance xi is related to the j-
th label using the prior information of label dependencies. Following is a simple
example to investigate the efficiency of using label correlation to learn the seman-
tic numerical labels. The original logical label vectors Y of images Figs. (1a)
and (1b) are shown in Fig. 2. The zero values of the original label matrix point
to three different types of information. The grey and red colors in Fig. 2 refer to
unrepresented and missing labels respectively. However, the white color means
that images Figs. (1a) and (1b) are not labeled as “Grass”. We clearly show that
the predictive label space ˜Y can distinguish between three types of zero values
and it provides the appropriate numerical values which include semantic infor-
mation. For example, due to the correlation between “Boat” and “Ocean” and
“Sunset” and “Sun”, the unrepresented label information for “Boat” and “Sun”
in image (Fig. 1a) and “Sun” in image (Fig. 1b) is learned. Further, the missing
label of the “Ocean” image (Fig. 1b) is predicted. Interestingly, we can further
see in the predictive label matrix that the numerical values of the “Grass” label
in both images are very small because the “Grass” label is not correlated with
the other labels. Thus, this perfectly matches with the information in the origi-
nal label matrix that the “Grass” object does not exist in images Figs. (1a) and
(1b) as shown in Fig. 2. Therefore, based on the above example, we can learn the
accurate numerical labels with semantic information. The completed numerical
label matrix ˜Y of the training data is learned in the optimization method of the
encoder-decoder framework in the next section.

3.2 Approach Formulation

Suppose there is training data X ∈ R
d×n with n samples that are associated with

Y ∈ R
k×n labels. The predictive numerical matrix ˜Y is initialised using Eq. 1.

The intuition behind our idea is that the proposed method is able to capture the
relationship between the feature space and the manifold label space. Inspired by
the autoencoder architecture, we develop an effective method that integrates the
characteristics of both the low-rank coefficient matrix and semantic numerical
label matrix. Specifically, our method is composed of encoder-decoder architec-
ture which tries to learn the projection matrix W ∈ R

k×d from the feature space
X to the numerical label space ˜Y in the encoder. At the same time, the decoder
can project back to the feature space with WT ∈ R

d×k to reconstruct the input
training data as shown in Fig. 2. The objective function is formulated as

min
W

∥

∥X − WTWX
∥

∥

2

F
s.t. WX = ˜Y (2)

where ‖.‖F is the Frobenius norm.

Optimization Algorithm. To optimize the objective function in Eq. 2, we
first substitute WX with ˜Y . Then, due to the existence of constraint WX = ˜Y ,
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Fig. 2. Encoder-decoder architecture of our proposed method LDFM. A predicted
numerical label matrix ˜Y is initialized by multiplying the correlation matrix with the
original logical label matrix Y . The zero values of the images in red, grey and white
boxes represent missing, misrepresented, and irrelevant labels, respectively (Color figure
online)

it is very difficult to solve Eq. 2. Therefore, we relax the constraint into a soft
one and reformulates the objective function (2) as

min
W

∥

∥

∥X − WT
˜Y

∥

∥

∥

2

F
+ λ

∥

∥

∥WX − ˜Y
∥

∥

∥

2

F
(3)

where λ is a parameter to control the importance of the second term. Now, the
objective function in Eq. 3 is non-convex and it contains two unknown variables
W and ˜Y . It is difficult to directly solve the equation. We propose a solution
to iteratively update one variable while fixing the other. Since the objective
function is convex by updating one variable, we compute the partial derivative
of Eq. 3 with respect to W and ˜Y and set both to zero.

– Update W :

− ˜Y
(

XT − ˜Y TW
)

+ λ
(

WX − ˜Y
)

XT = 0

⇒ ˜Y ˜Y TW + λWXXT = ˜Y XT + λ˜Y XT

⇒ PW + WQ = R

(4)

where P = ˜Y ˜Y T , Q = λXXT , and R = (λ + 1) ˜Y XT
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ALGORITHM 1: Learning Discriminative Features using Multi-label
Dual Space (LDFM)

Input: Training data X ∈ R
d×n

Logical label matrix Y ∈ R
k×n

Parameters: λ and MaxIteration
Initialization:
Cjk =

∑n
i=1 xijxjk∑n

i=1 xij+
∑n

i=1 xik−
∑n

i=1 xijxik
; j, k are the label vectors

˜Y = Y C
t = 0
while MaxIteration> t do

Update W by the solving the Eq. 6 ;

Update ˜Y by the solving the Eq. 7 ;
t = t + 1;

end

Output: Projection matrix W ∈ R
k×d

Rank features by ‖Wm,:‖2 in descending order and return the top ranked
features

– Update ˜Y :

− WX + WWT
˜Y + λ

(

−WX + ˜Y
)

= 0

⇒ WWT
˜Y + λ˜Y = WX + λWX

⇒ A˜Y + ˜Y B = D

(5)

where A = WWT , B = λI, D = (λ + 1) WX and I ∈ R
k×k is an identity

matrix.

Equations 4 and 5 are formulated as the well-known Sylvester equation of the
form MX + XN = O. The sylvester equation is a matrix equation with given
matrices M,N, and O and it aims to find the possible unknown matrix X. The
solution of the Sylvester equation can be solved efficiently and lead to a unique
solution. For more explanations and proofs, the reader can refer to [1]. Using the
Kronecker products notation and the vectorization operator vec, Eqs. 4 and 5
can be written as a linear equation respectively

(

Id ⊗ P + QT ⊗ Ik
)

vec(W ) = vec(R) (6)

where Id ∈ R
d×d and Ik ∈ R

k×k are identity matrices and ⊗ is the Kronecker
product.

(

In ⊗ A + BT ⊗ Ik
)

vec(˜Y ) = vec(D) (7)

where In ∈ R
n×n is an identity matrix. Fortunately, in MATLAB, this equation

can be solved with a single line of code sylvester1. Now, the two unknown matri-
1 https://uk.mathworks.com/help/matlab/ref/sylvester.html.

https://uk.mathworks.com/help/matlab/ref/sylvester.html
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ces W and ˜Y can be iteratively updated using the proposed optimization rules
above until convergence. The procedure is described in Algorithm 1.

Our proposed method learns the encoder projection matrix W . Thus, we can
embed a new test sample xs

i to the semantic label space by ỹi = Wxs
i . Similarly,

we can reconstruct the original features using the decoder projection matrix WT

by xs
i = WT ỹi. Therefore, W contains the discriminative features to predict the

real semantic labels. To identify these features, we rank each feature according
to the value of ‖Wm,:‖2 (m = 1, · · · , d) in descending order and return the top
ranked features.

Table 1. Characteristics of the evaluated datasets

Dataset Domain #Instance #Training #Test #Features #Labels

Scene Image 2407 1211 1196 294 6 scenes

Emotions Audio 593 391 202 72 6 emotions

Reference Text (Yahoo) 5000 2000 3000 793 33 topics

Computers Text (Yahoo) 5000 2000 3000 681 33 topics

4 Experiments

4.1 Experimental Datasets

We open source for our LDFM code for reproducibility of our experiments2.
Experiments are conducted on four public multi-label datasets which can be
downloaded from the Mulan repository3. The details of these datasets are sum-
marized in Table 1. Due to space limitations, we use three evaluation metrics
namely Hamming loss, Average precision, and Micro-F1 which define in [2].

4.2 Comparing Methods and Experiment Settings

Multi-label feature selection methods attracted the interest of the researchers in
the last decade. In this study, we compare our proposed method LDFM against
the recent state-of-the-art multi-label feature selection methods, including GLO-
CAL [15], MCLS [7], and MSSL [3]. MCLS and MSSL methods consider feature
manifold learning in their studies. ML-KNN (K = 10) [13] is used as the multi-
label classifier to evaluate the performance of the identified features. The results
based on a different number of features, vary from 1 to 100 features. PCA is
applied as a prepossessing step with and retain 95% of the data. To ensure a fair
comparison, the parameters of the compared methods are tuned to find the opti-
mum values. For GLOCAL, the regularization parameters λ3 and λ4 are tuned in
2 https://github.com/alibraytee/LDFM.
3 http://mulan.sourceforge.net/datasets-mlc.html.

https://github.com/alibraytee/LDFM
http://mulan.sourceforge.net/datasets-mlc.html
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{0.0001, 0.001, . . . , 1}, the number of clusters is searched from {4, 8, 16, 32, 64},
and the latent dimensionality rank is tuned in {5, 10, . . . , 30}. MCLS uses the
defaults settings for its parameters. For MSSL, the parameters α and β are tuned
by searching the grid {0.001, 0.01, . . . , 1000}. The parameter settings for LDFM
are described in the following section.

Fig. 3. Comparison of multi-label feature selection algorithms on Scene

Fig. 4. Comparison of multi-label feature selection algorithms on Emotions

4.3 Results

Classification Results. Several experiments have been conducted to demon-
strate the classification performance of LDFM compared to the state-of-the-art
multi-label feature selection methods. Figures 3, 4, 5 and 6 show the results
in terms of Hamming loss, Average precision, and Micro-F1 evaluation metrics
on the four datasets. In these figures, the classification results are generated
based on top-ranked 100 features (except Emotions which only has 72 features).
Based on the experiment results shown in Figs. 3, 4, 5 and 6, interestingly, it is
clear that our proposed method has a significant classification improvement with
an increasing number of selected features, and then remains stable. Thus, this
observation indicates that it is meaningful to study dimensionality reduction in
multi-label learning. Further, it highlights the stability and capability of LDFM
to achieve good performance on all the datasets with fewer selected features.

The proposed method is compared with the state-of-the-art on each dataset.
As shown in Figs. 3, 4, 5 and 6, LDFM achieves better results compared to
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Fig. 5. Comparison of multi-label feature selection algorithms on Reference

Fig. 6. Comparison of multi-label feature selection algorithms on Computers

MCLS, MSSL, and GLOCAL on almost all the evaluated datasets. Specifically,
in terms of the Hamming loss evaluation metric, where the smaller the values,
the better the performance, LDFM’s features substantially improve the classifi-
cation results compared to the state-of-the-art. It can be observed that MCLS
has the worst results and MSSL and GLOCAL achieve comparable results as
shown in Figs. 3, 4, and 6. In terms of Average precision, and Micro-F1 evalu-
ation metrics, where the larger the values, the better the performance, LDFM
generally achieves better results against the compared methods in all datasets.
We note that LDFM performs slightly better than MSSL and GLOCAL on the
Emotions dataset using Micro-F1 metric. We also note that the compared meth-
ods produce unstable results on the Reference and Computers datasets using
the Micro-F1 metric. In general, our proposed method demonstrates the great
benefits of using label manifolds in encoder-decoder architecture to identify the
discriminative features. Furthermore, using the Friedman test, we investigate
whether the results that are produced by LDFM are significantly different to
the state-of-the-art. In particular, we examine the Friedman test between LDFM
against each compared method for each evaluation metric in the four datasets.
The statistical results show that the p-value in all tests is less than 0.05 which
rejects the null hypothesis that the proposed method and the compared methods
have an equal performance. Finally, we explored the reconstruction capability of
the decoder in LDFM using the projection matrix W to reconstruct the original
data. Table 2 reports the reconstruction errors using the training logical labels
(Y ), training predicted labels (˜Y ), and the logical testing labels. It is observed
that the percentage reconstruction error of the original training matrix using the
logical training labels only ranges between 4% to 8% on the four dataset, and this
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error is dramatically decreased to 0.1% to 3% by using the predicted numerical
label matrix. This observation reveals that the decoder plays an important role
in selecting the important features which can be used to reconstruct the origi-
nal matrix. Further, it supports our argument to reconstruct the visual images
using the semantic labels and the coefficient matrix. In addition, we report the
capability of reconstructing the testing data matrix using the projection matrix
and the testing labels with a small error that ranges between 4% to 8%.

Table 2. Reconstruction different error values using the decoder

Dataset Logical error Predicted error Testing error

Scene 0.042 0.032 0.043

Emotions 0.087 0.022 0.086

Reference 0.044 0.001 0.044

Computers 0.051 0.001 0.051

LDFM Results for Handling Missing Labels. In this experiment, to inves-
tigate the ability of the proposed method to handling missing labels, we ran-
domly removed different proportions of labels from the samples from moderate
to extreme levels: 20%, 40%, 60%, and 80%. Table 3 shows that LDFM achieved
consistent improvement over the base especially on 20%, 40%, and 60% miss-
ing label levels. Further, it is superior across four datasets using four different
missing label proportions.

Table 3. Results on four datasets with different missing label proportions

Dataset↓ Evaluation criteria Base LDFM

Missing label proportion → 20% 40% 60% 80% 20% 40% 60% 80%

Scene Hamming loss 0.18 0.24 0.69 0.81 0.10 0.14 0.39 0.78

Average precision 0.57 0.54 0.51 0.49 0.81 0.79 0.76 0.73

Micro-F1 0.25 0.32 0.32 0.30 0.67 0.63 0.44 0.32

Computers Hamming loss 0.04 0.05 0.18 0.91 0.03 0.04 0.17 0.91

Average precision 0.58 0.56 0.55 0.55 0.61 0.59 0.57 0.56

Micro-F1 0.39 0.40 0.24 0.09 0.42 0.42 0.26 0.10

Reference Hamming loss 0.03 0.04 0.15 0.92 0.02 0.03 0.14 0.91

Average precision 0.54 0.52 0.50 0.50 0.60 0.57 0.55 0.54

Micro-F1 0.40 0.41 0.20 0.07 0.42 0.45 0.23 0.07

Emotions Hamming loss 0.23 0.33 0.57 0.65 0.21 0.28 0.51 0.64

Average precision 0.76 0.74 0.70 0.68 0.79 0.76 0.75 0.72

Micro-F1 0.62 0.59 0.50 0.48 0.65 0.63 0.54 0.49
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4.4 Parameter Sensitivity and Convergence Analysis

In this section, we study the influence of the proposed method’s parameters
λ and MaxIteration on the classification results. First, λ controls the contri-
bution of the decoder and encoder in the method, however the second param-
eter defines the number of iterations required to convergence. The parameter
λ and MaxIteration are tuned using a grid search from {0.2, 0.4, . . . , 2} and
{1, 20, 40, . . . , 100} respectively. As shown in Fig. 7a and 7b, using the average
precision metric on the two datasets, we can observe that with an increasing λ,
the learning performance is improved. Further, we investigate the convergence of
the LDFM optimization method. As shown in Fig. 7c and 7d using two datasets,
it is clearly seen that our method converges rapidly and has around 10 iterations
which demonstrates the efficacy and speed of our algorithm.

(a) Emotions (b) Reference (c) Emotions (d) Reference

Fig. 7. LDFM Results on Emotions and Reference datasets. (a) and (b) the average
precision results w.r.t different parameters. (c) and (d) convergence curves

5 Conclusion

This paper proposes a novel semantic multi-label learning model based on an
autoencoder. Our proposed method learns the projection matrix to map from
the feature space to semantic space back and forth. The semantic labels are
predicted in the optimization method because they are not explicitly available
from the training samples. We further rank the feature weights in the learned
project matrix for feature selection. The proposed method is simple and compu-
tationally fast. We demonstrate through extensive experiments that our method
outperforms the state-of-the-art. Furthermore, we demonstrate the efficiency of
the proposed method to reconstruct the original data using the predicted labels.
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Abstract. Automated clustering automatically builds appropriate clus-
tering models. The existing automated clustering methods are widely
based on meta-learning. However, it still faces specific challenges: lack-
ing comprehensive meta-features for meta-learning and general cluster-
ing validation index (CVI) as objective function. Therefore, we propose a
novel automated clustering method named AutoCluster to address these
problems, which is mainly composed of Clustering-oriented Meta-feature
Extraction (CME) and Multi-CVIs Clustering Ensemble Construction
(MC2EC). CME captures the meta-features from spatial randomness and
different learning properties of clustering algorithms to enhance meta-
learning. MC2EC develops a collaborative mechanism based on cluster-
ing ensemble to balance the measuring criterion of different CVIs and
construct more appropriate clustering model for given datasets. Exten-
sive experiments are conducted on 150 datasets from OpenML to create
meta-data and 33 test datasets from three clustering benchmarks to val-
idate the superiority of AutoCluster. The results show the superiority
of AutoCluster for building an appropriate clustering model compared
with classical clustering algorithms and CASH method.

Keywords: Clustering · Automated machine learning ·
Meta-learning · Model selection · Clustering ensemble

1 Introduction

Clustering, one of the most popular unsupervised learning methods, divides
instances into clusters where instances in same cluster are similar while in differ-
ent clusters are dissimilar [7]. However, algorithm selection and hyperparameter
optimization are still two of the most challenging tasks for clustering problem.

In order to build high-quality clustering models, automated clustering as the
subtask of Automated Machine Learning (AutoML) [20] has been proposed to
address the above challenges. Existing automated clustering methods are widely
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12714, pp. 246–258, 2021.
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based on meta-learning [1,3,4,6,9,13]. They learned from prior experience how
different clustering models perform across datasets to speed up model design
for given datasets [17,20]. Despite the recent progress of meta-learning used in
automated clustering, it still faces two specific problems: lacking comprehensive
meta-features for meta-learning and general clustering validation index (CVI)
as objective function in optimization process.

Meta-features play an important role in selecting promising algorithms or
configurations in meta-learning based automated clustering. Most of the exist-
ing meta-features are extracted from labeled data, while applicable meta-features
proposed for automated clustering are still incomprehensive. Reference [3] first
studied meta-learning in clustering algorithm selection but they only used sta-
tistical meta-features. Later, meta-features from instances distance, link con-
straints, internal measures, and correlation for clustering datasets are proposed
respectively [1,4,13,19]. However, data distribution and the learning schema of
clustering model are also important to characterize clustering datasets in meta-
learning, which are related to the intrinsic features of clustering datasets.

Moreover, clustering validation indexes (CVIs) are used to measure the qual-
ity of clustering results. CVIs with different measuring criteria are suitable for
specific clustering datasets and algorithms. Therefore, no general CVI is con-
sistently superior to others in clustering validation [2,11], which is one of the
biggest challenges for model optimization in automated clustering. Reference [4]
and [13] combined multiple CVIs and ranked algorithms based on their perfor-
mance to choose the appropriate one. However, they are not robust since the
error selection under any CVI can affect the overall algorithm ranking. In addi-
tion, the use of internal CVIs remains uncertain in hyperparameter optimization
process for clustering evaluation. Hence, these methods still can not alleviate the
dilemma of lacking general CVI.

In this paper, we propose a novel meta-learning based automated clustering
method named AutoCluster to address the above problems, which is composed of
Clustering-oriented Meta-feature Extraction (CME) and Multi-CVIs Clustering
Ensemble Construction (MC2EC). The contributions of our work are highlighted
as follows.

– In order to provide a more comprehensive characterization of clustering
datasets, we propose CME for meta-learning. It extracts clustering-oriented
meta-features from spatial randomness of data distribution and landmarker,
i.e. running simple landmark clustering algorithms to fleetly capture the learn-
ing scheme, to enhance meta-learning.

– In order to alleviate the dilemma of lacking general CVI, we propose MC2EC
for clustering model construction. It optimizes hyperparameters of promising
algorithms suggesting by meta-learning under different CVIs and combines
them to construct an ensemble model. Therefore, it provides a collaborative
mechanism to balance the measuring criteria of different CVIs for discovering
better clusters.

– In order to effectively build an appropriate clustering model for given datasets,
we incorporate CME with MC2EC, and propose AutoCluster. It determines
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promising clustering algorithms through CME-enhanced meta-learning under
multiple CVIs, and performs automated ensemble construction based on these
algorithms through MC2EC to provide appropriate clustering model.

– Finally, extensive experiments are conducted with a wide range of datasets
from OpenML [18] and clustering benchmarks [5,16], as well as various clus-
tering algorithms from scikit-learn [12]. The results show the superiority of
AutoCluster for building appropriate clustering model compared with classi-
cal clustering algorithms and CASH method.

The remainder of this paper is as follows: Sect. 2 presents the proposed
automated clustering: AutoCluster. The extensive experiments for AutoCluster
are analyzed in Sect. 3. Finally, we conclude this work in Sect. 4.

2 AutoCluster: Toward Automated Unsupervised
Clustering

2.1 The Goal and Process of AutoCluster

Automated clustering automatically builds appropriate clustering model for
given datasets. In the process, AutoCluster has two specific problems: i) What
meta-features can characterize unlabeled clustering datasets? ii) How to measure
clustering result impartially? Thus, the goal of AutoCluster can be defined as
follows.

Definition 1 (AutoCluster). For i = 1, 2, ..., d, let xi denote a feature vector
of instance i without target value from clustering dataset D. Given a set of
clustering algorithms A =

{
A1, A2, ..., Am

}
, and let the hyperparameters of each

clustering algorithm Ai have domain θi. The goal of AutoCluster is to discover
more reasonable clusters π∗ as Eq. 1.

π∗ = arg min
π∈Comb(A∗,λ∗)

C

({

arg min
Ai∈A,λi∈θi

CVIj
(
Ai, λi,D

) |j = 1, ..., c

})

(1)

where CV Ij

(
Ai, λi,D

)
denotes CVI measured by clustering algorithm Ai with

hyperparameter λi on dataset D, and c is the number of CVI in AutoCluster.
Since AutoCluster handles the dilemma of lacking general CVI for model opti-
mization by clustering ensemble, C (·) represents consensus function to combine
clustering model A∗ with hyperparameter λ∗ optimized with individual CVI.

As shown in Fig. 1, it is mainly composed of Clustering-oriented Meta-
feature Extraction (CME) enhanced meta-learning and Multi-CVIs Clustering
Ensemble Construction (MC2EC). For CME, traditional and clustering-oriented
meta-features are extracted from data distribution and landmarker. The perfor-
mance data with multiple CVIs is collected for meta-decision data and meta-
auxiliary data. For MC2EC, it optimizes hyperparameters of promising algo-
rithms suggesting from CME-enhanced-meta-learning under CVI metrics respec-
tively through grid search and combines these clustering results to construct
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AutoCluster: Towards Automated Unsupervised Clustering
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Fig. 1. The process of AutoCluster

ensemble model through Majority Voting. Multiple CVIs and hyperparameter
optimization process ensure AutoCluster can obtain diverse individual models
with high quality for clustering ensemble to discover better data partition.

2.2 Enhanced Meta-learning for Finding Promising Algorithms

As the fundament of AutoCluster, meta-data is composed of meta-feature matrix
and performance data. Here, we introduce the formulation of them respectively.

Clustering-Oriented Meta-feature Extraction (CME) for Similarity
Computation. CME extracts five new clustering-oriented meta-features from
data distribution and landmarker to provide a more comprehensive characteri-
zation for given datasets. It also extracts 19 traditional meta-features from [10].
The summary of meta-features is depicted in the supplementary material1.

The first meta-feature is from data distribution. Different clustering algo-
rithms are suitable for the data with a specific distribution. Thus, data distri-
bution is an important meta-feature in promising algorithm selection. Hopkins
Statistic tests the spatial randomness of data distribution and also for cluster
tendency which is defined as Eq. 2.

H =
∑d

i=1 ui
∑d

i=1 ui +
∑d

i=1 wi

(2)

where ui represents the distance from d′ sampling instances placed at random in
the subspace of the entire h-dimensional sample space where d′ � d to its near-
est neighbor in dataset and wi represents the distance from a randomly selected
1 The supplementary material of this paper is available at https://github.com/wj-

tian/AutoCluster.

https://github.com/wj-tian/AutoCluster
https://github.com/wj-tian/AutoCluster
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instance to its nearest neighbor. For example, the hopkins statistic of regularly
spaced and clustered datasets are always around 0.01 to 0.3 and 0.7 to 0.99
respectively. Thus, it can be an important meta-feature to describe datasets.
Moreover, the learning properties of landmark clustering algorithms reflect the
relative performance on given datasets, which are captured by learning scheme of
landmark clustering algorithms. Specially, three different clustering algorithms
are applied to extract landmarker meta-features: 1) The distance of the instances
to their closest cluster center through KMeans (partition-based), which mea-
sures the compactness of cluster. 2) The number of leaves in the hierarchical
tree through Agglomerative Clustering (hierarchy-based). 3) The reachability
distances of instances and distance at which each instance becomes a core point
through OPTICS (density-based), which measures density around an instance.

We denote Fi = {f1, f2, ...f24} to be a feature vector of the enhanced meta-
features of dataset Di, where {f1, ..., f19} are the traditional meta-features from
[10] and {f20, ..., f24} are clustering-oriented meta-features proposed by us. The
distance metric between datasets determines how to find promising algorithms
or configurations from the nearest dataset. In AutoCluster, we define p-norm
distance in meta-features space to measure the similarity of datasets, which is
computed as Eq. 3.

dF = ||Fi − Fj ||p (3)

Multi-performance Data for Promising Algorithms Selection. Since
AutoCluster develops a collaborative mechanism based on clustering ensemble
to address the problem of lacking general CVI, every entry in performance data
records the performance measured by different CVIs. We employ three inter-
nal CVIs, including two center-based representatives, Calinski-Harabasz Index
(CHI) and Davies-Bouldin Index (DBI), and one non-center-based representa-
tive, Silhouette Coefficient (SC). They measure intra-cluster compactness and
inter-cluster separation of a cluster from different criteria. Meanwhile, the prior
datasets in meta-data have ground true labels. Thus, auxiliary information is
extracted from external CVI. We apply Adjusted Rand index (ARI) to create
meta-auxiliary data. The promising algorithm selection by ARI provides auxil-
iary information for internal CVIs as performing intersection to conduct joint
decision and provide more promising algorithms.

2.3 Multi-CVIs Clustering Ensemble for Model Construction

No general CVI as objective function to measure clustering model impartially
is one of the biggest challenges for model optimization in automated clustering.
The important improvement of AutoCluster is to employ clustering ensemble
to address this problem. In order to obtain better ensemble model, it requires
diverse (making uncorrelated errors) and high-quality individuals for combina-
tion [15]. The application of multiple CVIs ensures the diverse generation of
individuals. For high-quality individuals, MC2EC adopts grid search for a bet-
ter configuration of promising algorithms. Suppose that a collection of optimized
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models through grid search are obtained. The ensemble method apply in MC2EC
is Majority Voting [8] to combine them, which is not conditioned by any par-
ticular clustering algorithm. It assumpts that neighboring instances in ground
true cluster are still likely to partition into same cluster, and then formulates
consensus function based on co-association matrix to render pairs of instances
voting for association in each partition produced by different clustering model.
Each (i, j)th entry of instance xi and xj in co-association matrix is calculated
as Eq. 4.

COij =
cij

nSC + nCHI + nDBI
(4)

where n represents the number of optimized models with each CVI, and cij

counts instance pair (xi, xj) co-occurring in same cluster. For final ensemble
model, Majority Voting compares COij in co-association matrix with a defined
threshold θ. Here, the final partition is formed with multiple CVIs.

3 Experiments

3.1 Datasets and Clustering Algorithms

The evaluation of AutoCluster used 150 datasets in OpenML [18] sorted by most
runs and selected by filtering with no more than 5000 samples and 50 features
to create meta-data. Besides, 33 datasets are collected to test AutoCluster from
Clustering basic benchmark [5]2, Fundamental clustering problem suite (FCPS)
[16]3 and Tomas Barton’s clustering benchmark4. More dataset information is
described in Table 1. Six clustering algorithms are involved: KMeans, Affinity
Propagation, Mean Shift, Agglomerative Clustering, DBSCAN, and Birch, which
are implemented in scikit-learn [12] and corresponding hyperparameter spaces
are depicted in the supplementary material.

Table 1. The summary of test datasets

No. AutoCluster Classes Data points Dimensions No. AutoCluster Classes Data points Dimensions
1 a1 20 3000 2 18 Lsun 3 400 2
2 Aggregation 7 788 2 19 Lsun3D 4 404 3
3 aml28 5 804 2 20 Pathbased 3 300 2
4 Atom 2 800 3 21 R15 15 600 2
5 balance-scale 3 625 4 22 s1 15 5000 2
6 Compound 6 399 2 23 s2 15 5000 2
7 curves1 2 1000 2 24 s3 15 5000 2
8 curves2 2 1000 2 25 smile1 4 1000 2
9 D31 13 1232 2 26 Target 6 770 2
10 dietary survey IBS 2 400 42 27 Tetra 4 400 3
11 dim32 16 1024 32 28 unbalanced 8 6500 2
12 Flame 2 240 2 29 WingNut 2 1016 2
13 fourty 40 1000 2 30 zelnik1 3 299 2
14 gaussians1 2 100 2 31 zelnik5 4 512 2
15 Hepta 7 212 3 32 zelnik6 3 238 2
16 hypercube 8 800 3 33 zoo 7 101 16
17 Jain 2 373 2

2 http://cs.uef.fi/sipu/datasets/.
3 https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data.
4 https://github.com/deric/clustering-benchmark.

http://cs.uef.fi/sipu/datasets/
https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data
https://github.com/deric/clustering-benchmark


252 Y. Liu et al.

3.2 Experimental Setup

All datasets are preprocessed by removing missing values, one-hot encoding for
categorical features, and z-score standardization for all features. Our experiments
selected three most similar datasets to perform majority selection of promising
algorithms. 2-norm is used to compute the distance between datasets. The clus-
tering ensemble is based on OpenEnsemble [14] and the threshold is set as 0.5.
Moreover, our experiment is repeated 10 times to take the mean, and ARI is com-
puted to measure the performance of AutoCluster to build clustering model.
Then, the distance between hyperparameter configurations (HCD) is used to
measure the diversity of individuals as defined in Eq. 5.

HCD =
2

N (N − 1)

∑N

i=1

∑N

j=i+1
dλ

(
λi, λj

)
(5)

where N = nSC + nCHI + nDBI , and dλ
(
λi, λj

)
is equal to 1 when the algo-

rithms of hyperparameter configuration λi and λj are different while the ratio
of different hyperparameter values when λi and λj are for the same algorithm.

All procedures are run on Linux operating system with Intel(R) Xeon(R)
Gold 6130 CPU @ 2.10 GHz processor. The process of running on a specific
dataset is limited to a single CPU core.

3.3 Experimental Results and Analysis

The Performance Evaluation of AutoCluster. When tackling a specific
problem by unsupervised clustering, many users lack enough experience to
choose right algorithm or hyperparameter. It leads them to tend to choose algo-
rithms with high reputations such as KMeans, and leave hyperparameter as
default value or tuning the number of clusters with trial and error. In this basic
experiment, we compare with six clustering algorithms with default hyperparam-
eter values (KM-d, AP-d, MS-d, AC-d, DB-d, BI-d), and three KMeans algo-
rithms with the number of clusters from 2 to 20 under SC, CHI, DBI respectively
(SC-K, CHI-K, DBI-K). The result shown in Table 2 can be observed that Auto-
Cluster obtains the highest ARI on 15/33 test datasets (the other test datasets
are also close to the best methods), and the average ARI (0.776) dramatically
surpasses the compared methods. Moreover, AutoCluster has a more stable pre-
diction on these datasets since other compared methods only can perform well
on few datasets, and these compared methods have more test datasets perform-
ing significantly worse. Thus, AutoCluster on different categories of datasets to
automatically discover appropriate clusters is effective.

The Performance Comparison of AutoCluster with CASH. In this
experiment, we compare with the most classic method named CASH to ver-
ify the superior of AutoCluster, in which the clustering algorithm selection is
viewed as a super-hyperparameter and executed with hyperparameter optimiza-
tion simultaneously. The objective function respectively sets as internal CVI
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Table 2. The comparison with default hyperparameter values and simple optimization.
For these compared methods, if the performance is highest, the corresponding entries
are bolded, and if the performance is significantly worse than the highest performance
on this dataset (lower than 0.3), the corresponding entries are underlined.

No. AutoCluster KM-d AP-d MS-d AC-d DB-d BI-d SC-K CHI-K DBI-K

1 0.904 0.424 0.558 0.091 0.092 0.000 0.174 0.936 0.930 0.835

2 0.991 0.664 0.391 0.628 0.377 0.000 0.396 0.762 0.377 0.762

3 0.996 0.333 0.043 0.975 0.859 0.999 0.959 0.975 0.396 1.000

4 0.528 0.576 0.519 0.548 0.067 0.568 0.149 0.547 0.537 0.535

5 0.121 0.136 0.034 0.000 0.121 0.000 0.111 0.127 0.095 0.104

6 0.745 0.456 0.319 0.722 0.484 0.740 0.734 0.721 0.721 0.721

7 1.000 0.249 0.010 1.000 1.000 1.000 0.777 1.000 0.099 1.000

8 0.523 0.249 0.061 0.179 0.019 0.000 0.130 0.199 0.098 0.098

9 0.704 0.670 0.736 0.254 0.126 0.319 0.274 0.885 0.976 0.885

10 1.000 0.360 0.137 0.689 1.000 0.000 0.784 1.000 1.000 1.000

11 1.000 0.514 0.363 0.000 0.123 0.883 0.175 1.000 1.000 1.000

12 0.635 0.205 0.128 0.524 0.289 0.013 0.278 0.425 0.204 0.426

13 0.771 0.277 0.614 0.000 0.045 0.000 0.078 0.636 0.628 0.625

14 1.000 0.262 0.498 1.000 1.000 1.000 1.000 1.000 1.000 1.000

15 1.000 0.958 0.720 0.000 0.269 1.000 0.354 1.000 1.000 1.000

16 1.000 1.000 1.000 0.000 0.222 1.000 0.426 1.000 1.000 1.000

17 0.893 0.167 0.105 0.000 0.569 0.000 0.531 0.553 0.075 0.300

18 0.528 0.390 0.239 0.420 0.282 0.000 0.559 0.583 0.326 0.583

19 0.864 0.449 0.293 0.881 0.602 0.532 0.788 0.599 0.599 0.599

20 0.614 0.404 0.235 0.063 0.414 0.000 0.468 0.480 0.200 0.205

21 0.989 0.264 0.693 0.000 0.041 0.264 0.099 0.993 0.993 0.993

22 0.330 0.500 0.388 0.182 0.133 0.000 0.189 0.551 0.739 0.552

23 0.916 0.585 0.203 0.113 0.121 0.000 0.232 0.938 0.938 0.938

24 0.685 0.481 0.172 0.098 0.110 0.000 0.217 0.727 0.727 0.727

25 0.749 0.659 0.538 0.331 0.326 1.000 0.290 0.707 0.674 0.681

26 0.691 0.612 0.462 0.628 0.252 1.000 0.259 0.563 0.178 0.299

27 1.000 0.607 0.295 0.000 0.332 0.687 0.713 1.000 1.000 1.000

28 0.998 1.000 0.193 0.612 0.124 0.610 0.127 0.998 0.450 0.998

29 1.000 0.226 0.073 0.000 1.000 0.000 0.476 0.670 0.264 0.156

30 0.308 0.280 0.266 0.000 0.024 0.630 0.112 0.288 0.260 0.269

31 0.773 0.721 0.360 0.000 0.310 1.000 0.226 0.603 0.301 0.437

32 0.768 0.822 0.615 0.829 0.580 0.813 0.675 0.779 0.323 0.779

33 0.586 0.691 0.480 0.034 0.448 -0.052 0.677 0.355 0.818 0.356

Ave 0.776 0.491 0.356 0.327 0.356 0.424 0.407 0.715 0.574 0.663
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in AutoCluster (CASH-SC, CASH-CHI, and CASH-DBI). The result shown in
Table 3 can be observed that AutoCluster performs better than CASH methods,
which obtains the highest average ARI (0.776) and highest performance on 21/33
datasets. Moreover, AutoCluster is more stable over this experiment with one
worse performance. CASH-SC, CASH-CHI, and CASH-DBI are uncomparable
where the number of bolded/underlined entries is 12/5, 12/13, and 4/15 respec-
tively. Thus, it can conclude that it is infeasible to directly introduce AutoML
methods in supervised learning to unsupervised clustering problems to discover
optimal partition.

Why Does AutoCluster Work Well? AutoCluster performs the effective-
ness and superiority of discovering appropriate clusters for users automatically
in comparison with classical clustering algorithms and CASH method. In this
section, ablation studies of AutoCluster are conducted to interpret why Auto-
Cluster works well and whether its components are reasonable.

The Importance of CME. In order to discover which meta-features are more
important to algorithm selection, F-test is employed to evaluate the significant
influence of meta-features on each algorithm. For each CVI and each algorithm,
two groups of samples in meta-data are divided according to whether this algo-
rithm is selected as a promising one under this CVI. Then, we calculate F-
statistic between these two groups, which reflects whether the meta-features
of any algorithm selected differ significantly from those of the algorithm not
selected. We show the result of CHI as Fig. 2. From this figure, CME has a
significant influence on algorithm selection, such as Agglomerative Clustering
(No. 20 (Hopkins Statistic)), DBSCAN (No. 22 (Agglomerative Clustering)) and
Mean Shift (No. 21 (KMeans)), which illustrates the importance of CME in
AutoCluster. The remaining experimental results are described in the supple-
mentary material.

Table 3. The comparison with three CASH methods

No. AutoCluster CASH-SC CASH-CHI CASH-DBI No. AutoCluster CASH-SC CASH-CHI CASH-DBI
1 0.904 0.936 0.916 0.424 18 0.528 0.584 0.319 0.582
2 0.991 0.776 0.259 0.771 19 0.864 0.597 0.599 0.591
3 0.996 0.975 0.104 0.988 20 0.614 0.476 0.143 0.539
4 0.528 0.540 0.244 0.518 21 0.989 0.993 0.993 0.851
5 0.121 0.166 0.082 0.022 22 0.330 0.548 0.757 0.595
6 0.745 0.721 0.721 0.768 23 0.916 0.938 0.938 0.224
7 1.000 1.000 0.068 0.000 24 0.685 0.711 0.726 0.110
8 0.523 0.199 0.068 0.000 25 0.749 0.733 0.649 0.411
9 0.704 0.855 0.976 0.792 26 0.691 0.242 0.105 0.049
10 1.000 1.000 1.000 0.501 27 1.000 1.000 1.000 0.667
11 1.000 1.000 1.000 0.464 28 0.998 0.998 0.287 0.353
12 0.635 0.425 0.203 0.009 29 1.000 0.693 0.081 -0.001
13 0.771 0.806 0.845 0.748 30 0.308 0.225 0.201 0.238
14 1.000 1.000 1.000 1.000 31 0.773 0.617 0.217 0.233
15 1.000 1.000 1.000 0.901 32 0.768 0.779 0.222 0.858
16 1.000 1.000 1.000 1.000 33 0.586 0.177 0.129 0.266
17 0.893 0.553 0.053 0.877 Ave 0.776 0.705 0.512 0.495
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Fig. 2. The F-statics of meta-features grouped by the selected algorithm under CHI
metric. No. 1–19 are for traditional meta-features from [10]. No. 20 is for the meta-
feature of hopkins statistic and No. 21–24 are for landmarker meta-features

The Effectiveness of Clustering Ensemble. Clustering ensemble requires diverse
and high-quality individual clustering models to construct ensemble model. Mul-
tiple CVIs and meta-learning with grid search ensure these two conditions in
AutoCluster. HCD evaluates the diversity of hyperparameter configuration of
individuals. The result shown in Fig. 3 illustrates the scores of HCD in clus-
tering ensemble of all test datasets are higher than 0.75 and 31/33 datasets
are higher than 0.9. Therefore, the high diversity of individuals in clustering
ensemble makes AutoCluster effective to perform better.

Fig. 3. The HCD of clustering ensemble on test datasets

Fig. 4. The comparison of disabling meta-learning and multiple CVIs
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The Comparison of Disabling Meta-learning and Multiple CVIs. The key compo-
nents of AutoCluster are CME-enhanced meta-learning and MC2EC. Thus, we
compare with the following methods: 1) No-D, No-K, No-A, No-B: They disable
meta-learning. No-D is heterogeneous ensemble with six clustering algorithms
with default hyperparameters involved in AutoCluster. No-K, No-A, and No-B
are isomorphic clustering ensemble of KMeans, Agglomerative Clustering, and
Birch with different numbers of clusters. 2) SC-E, CHI-E, DBI-E: These meth-
ods disable multiple CVIs. They execute meta-learning and clustering ensemble
under a single CVI. As shown in Fig. 4, AutoCluster achieves drastic improve-
ment with meta-learning and multiple CVIs. It has the highest performance on
18/33 test datasets, and the best average ARI of these two categories of meth-
ods are 0.532 and 0.675 respectively, which are well below 0.776 of AutoCluster.
Since the methods disabling meta-learning lead to the individuals with low qual-
ity and the methods disabling multiple CVIs lead to the individuals with low
diversity, they both fail to discover promising partition. Therefore, the result can
show the necessity of meta-learning and multiple CVIs in AutoCluster.

The Comparison of Selection Strategy of Individuals in Clustering Ensemble.
The evaluation of the individual selection based on ARI in AutoCluster is com-
pared with three methods: 1) No-ARI: It directly executes clustering ensemble
from meta-learning under internal CVIs. 2) SIM: It selects individuals based
on similarity of clustering result measuring by Normalized Mutual Information.
When it is greater than 0.8, one of these two models is removed from ensem-
ble. 3) MAJ: When the algorithms are selected by majority (2/3) CVIs, their
corresponding models are selected for final ensemble.

Fig. 5. The comparison of selection strategy of individual models

The result is shown in Fig. 5. Since the measure criteria of internal CVIs
are difficult to fit the ground true label, it is important for meta-learning to
provide external auxiliary information for clustering ensemble. No-ARI directs
to select individuals without auxiliary information, where it only performs best
on 11 test datasets, worse than AutoCluster of 23, and the average ARI is 0.131
lower than AutoCluster. SIM inevitably removes promising individuals when
the high similarity between them. Thus, it fails to surpass AutoCluster where
the number of best datasets is 7 and the average ARI is 0.526. MAJ method
also can remove promising individuals since different criteria of CVIs. It leads
the bad performance compared with AutoCluster with 12 best datasets and the
average ARI of 0.567. Therefore, it shows the feasibility of individual selection to
provide external auxiliary information in AutoCluster. In addition, the runtime
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of AutoCluster on 33 test datasets is also considered to verify the efficiency of
this method, which is depicted in the supplementary material.

4 Conclusions

Automated clustering based on meta-learning faces its specific problems: lack-
ing comprehensive meta-features and general CVI. This paper proposes a novel
automated clustering method named AutoCluster, mainly composed of CME
and MC2EC. CME extracts five clustering-oriented meta-features to extend tra-
ditional meta-features from spatial randomness and learning properties of clus-
tering algorithms. MC2EC develops a collaborative mechanism to balance the
measuring criterion of different CVIs based on clustering ensemble. Extensive
experiments are conducted with a wide range of datasets from OpenML and
three- clustering benchmarks. The results show that AutoCluster has strong
ability to construct appropriate clustering model than compared methods.

Meta-learning and clustering ensemble are important to promote the per-
formance of AutoCluster. Hence, applying meta-features into manifold space or
importance-weighted space is promising in future works. For clustering ensem-
ble, optimized clustering ensemble methods like evidence accumulation also can
be applied to improve the performance of AutoCluster.
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Abstract. We propose an extensible deep learning method that uses
reinforcement learning to train neural networks for offline ranking in
information retrieval (IR). We call our method BanditRank as it treats
ranking as a contextual bandit problem. In the domain of learning to rank
for IR, current deep learning models are trained on objective functions
different from the measures they are evaluated on. Since most evalua-
tion measures are discrete quantities, they cannot be used by gradient
descent algorithms without approximation. BanditRank bridges this gap
by directly optimizing a task specific measure, such as mean average pre-
cision (MAP). Specifically, a contextual bandit whose action is to rank
input documents is trained using a policy gradient algorithm to directly
maximize a reward. The reward can be a single measure, such as MAP, or
a combination of several measures. The notion of ranking is also inherent
in BanditRank, similar to the current listwise approaches. To evaluate
the effectiveness of BanditRank by answering five research questions, we
conducted a series of experiments on datasets related to three different
tasks, i.e., non-factoid, and factoid question answering and web search.
We found that BanditRank performed better than strong baseline meth-
ods in respective tasks.

Keywords: Contextual bandits · Policy gradient · REINFORCE ·
Information retrieval · Learning to rank · Question answering · Web
search

1 Introduction

Learning to rank is an important sub-field of information retrieval and involves
designing models that rank documents corresponding to a query in order of their
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relevance. Considering the type of learning approach used, all ranking models
can be classified into three categories, i.e., pointwise, pairwise, and listwise. The
ranking models are either trained on indirect objective functions, such as classi-
fication related functions, or direct objective functions related to the evaluation
measures. Direct optimization of IR measures has been a long standing challenge
in the learning-to-rank domain. If we only consider bounded IR measures such
as MAP, a theoretical justification is provided regarding the superiority of direct
optimization techniques according to [27], which states that if an algorithm can
directly optimize an IR measure on training data, the ranking function learned
with the algorithm will be one of the best ranking functions one can obtain
in terms of expected test performance with respect to the same IR measure.
Several algorithms have been developed that use direct optimization, and they
can be grouped into three categories. The algorithms in the first category try
to optimize surrogate objective functions, which are either upper bounds of IR
measures [7,43,47] or smooth approximations of IR measures [11,34]. The algo-
rithms in the second category smoothly approximate the true gradient of the
evaluation measures, similar to LambdaRank [4,5,9,46]. The algorithms in the
third category directly optimize evaluation measures in the form of rewards with-
out any approximation using reinforcement learning such as MDPRank [41,50].
However, the sequential decision process of MDPRank causes a problem so seri-
ous in exploration that learning with only 46 weight parameters requires more
than 10,000 epochs for convergence when training neural networks.

Deep learning [18] models have been proven to be effective with state-of-the-
art results in many machine learning applications such as speech recognition,
computer vision, and natural language processing, which leads to the intro-
duction of neural networks in IR. Neural networks have been used for func-
tions such as automatic feature extraction and comparison and aggregation
(Compare-Aggregate) of local relevance [12,14,15,23,35]. However, they are gen-
erally trained on objective functions such as cross entropy, which are not directly
related to the IR evaluation measures. They do not have information about the
measures that they are going to be evaluated on, i.e., the objective functions indi-
rectly optimize the evaluation measures. Since most evaluation measures such as
MAP, mean reciprocal rank (MRR), and normalized discounted cumulative gain
(nDCG) are not differentiable, they cannot be used as the objective functions
for training neural networks.

For leveraging the efficacy of neural networks and the superiority of direct
optimization, we propose an extensible deep learning method called BanditRank.
BanditRank formulates ranking as a contextual bandit problem and trains neural
networks using the policy gradient algorithm [31] for directly maximizing target
measures. Contextual bandit is a type of multi-armed bandit, optimization prob-
lem formalization used in decision-making scenarios in which an action has to be
taken by an agent depending on the provided context. The exact details of the
formulation are provided in Sect. 3. BanditRank follows the listwise approach by
treating a query and the corresponding candidate documents as a single instance
for training.
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The major contributions of this paper are summarized as follows.

– For training neural networks by directly optimizing evaluation measures using
gradient descent algorithms, we formulate the ranking problem as a contex-
tual bandit and introduce a new deep learning method called BanditRank for
offline ranking.

– BanditRank is the listwise deep learning method that uses reinforcement
learning to train neural networks for offline ranking purposes. We enabled
this by introducing a hybrid training objective in order to solve the explo-
ration problem when the number of possible actions is large.

2 Related Work

BanditRank is similar to BanditSum [8], which was proposed previously for
extractive summarization tasks in NLP. BanditSum introduces a theoretically
grounded method based on contextual bandit formalism for training neural-
network-based summarizers with reinforcement learning. We have adapted the
formulation of ranking as a contextual bandit from that of BanditSum. Adapta-
tion of the contextual bandit framework to the ranking problem is not straight-
forward at all. For example, a naive application of BanditSum suffers from inade-
quate exploration when the number of actions is very large, which is prevalent in
ranking tasks. Thus, we propose the use of hybrid loss for leveraging the feedback
from a supervised loss function as explained in Sect. 3.4. Reinforcement learning
was used for directly optimizing measures such as BLEU [24] and ROUGE [21]
in different tasks of natural language processing such as summarization and
sequence prediction [1,19].

In the domain of learning-to-rank for IR, MDPRank [41] uses reinforcement
learning for ranking by formulating ranking as the sequential decision process.
Since such sequential processes are affected by the order of the decisions, they
may be biased towards selecting documents with a low relevance level at the
beginning. Consequently, MDPRank is not suitable for training neural networks
because the training with only 46 weight parameters requires more than 10,000
epochs for convergence. In contrast, BanditRank is suitable for deep architec-
tures, and all the best results of BanditRank were achieved in less than 30 epochs
of training. For a query q with nq candidate documents, the search space of Ban-
ditRank is nq

PM while that of MDPRank is nq!, and nq
PM � nq! for a small

M .
The policy gradient algorithm was also used to train the generator of

IRGAN [37], but the rewards for the generator depend on a scoring function
learned by the discriminator. Both Bandits [16,17,20] and MDPs [48] were used
to model the process of interaction between a search engine and user with the
user providing implicit relevance feedback. As stated earlier in this paper, we
focus on offline learning issues in this paper and refrain from further mentioning
these lines of studies.

An overview of approaches that use reinforcement learning for different IR
tasks such as query reformulation, recommendation, and session search can be
found in a previous paper [50].
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3 BanditRank Formulation

We formulate ranking as a contextual bandit trained using policy gradient rein-
forcement learning. A bandit is a decision-making problem in which an agent
repeatedly chooses one out of several actions and receives a reward based on this
choice. The goal of the agent is to maximize the cumulative reward it achieves by
learning the actions that yield good rewards. The term agent is generally used
to refer to an entity that interacts with an environment. Contextual Bandit is a
variant of the bandit problem that forms a subclass of Markov decision processes
with the length of each episode being one.

Now, we can formulate the ranking problem as a contextual bandit with
the environment being the dataset of queries and documents. A set of query-
document pairs corresponding to a single query is treated as a context, and
each permutation of the candidate documents is treated as a different action.
Formally, given a query q and its candidate documents d = {d1, d2, . . . , dnq

},
each context is the set c given by c = {(q, d1), (q, d2), . . . , (q, dnq

)}, where nq is
the number of candidate documents of q, and the cardinality of c is given by
nc = nq. Given c, the action of the agent is given by the permutation ac =
(dk1 , dk2 , . . . , dknq

) of the candidate documents, where kt ∈ {1, 2, . . . , nq} and
kt �= kt′ for t �= t′. The reward is given by a scalar function R(ac, gc) like MAP,
that takes action ac and the ground-truth permutation gc corresponding to c as
the input.

The action taken by the agent is determined by its policy. In the current for-
mulation, a policy is a neural network pθ(.|c) parameterized by θ. For each input
c, pθ(.|c) encodes a probability distribution over permutations of the candidate
documents. The goal is to find θ that cause the network to assign high proba-
bility to the permutations that can yield good rewards induced by R. This can
be achieved by maximizing the following objective function with respect to θ:

J(θ) = E[R(ac, gc)], (1)

where the expectation is taken over c paired with gc and ac generated according
to pθ(.|c).

3.1 Structure of Policy pθ(.|c)
Similar to the approach used for extractive summarisation [8], pθ(.|c) is decom-
posed into a deterministic function πθ, which contains all the network’s param-
eters, and μ, a probability distribution induced by the output of πθ defined as
follows.

pθ(.|c) = μ(.|πθ(c)) (2)

Provided a c corresponding to a q, the network πθ outputs a real valued vector
of document affinities within the range [0, 1]. The affinity score of a document
di given by πθ(c)i represents the network’s propensity to keep the document at
the top position in the output permutation.
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Provided the above document affinities πθ(c), μ implements a process of
repeated sampling without replacement by repeatedly normalizing the set of
affinities of documents not yet selected. In total, M unique documents are sam-
pled following an ε-greedy strategy, yielding an ordered subset of the candidate
documents. According to the prescribed definition of μ, the probability pθ(ac|c)
of producing a permutation ac corresponding to c according to (2) is given by

pθ(ac|c) =
M∏

i=1

(
ε

nc − i + 1
+

(1 − ε)πθ(c)ki

z(c) − ∑i−1
l=1 πθ(c)kl

)
, (3)

where kt is the index to the t-th document in ac, dkt
and z(c) =

∑nc

m=1 πθ(c)m.
We define M = min(nc,M

′), where M ′ is an integer hyperparameter that
depends on the environment or dataset. At test time, we output all the can-
didate documents sorted in descending order according to their affinity scores.

3.2 Policy Gradient Reinforcement Learning

The gradient of objective function (1) cannot be calculated directly as ac is dis-
cretely sampled while calculating R(ac, gc). After a reformulation of the expec-
tation term according to the REINFORCE algorithm [42], the gradient of that
function can be calculated using the following equation.

∇θJ(θ) = E[∇θ log pθ(ac|c)R(ac, gc)], (4)

where the expectation is over the same variables as (1).
The expectation in (4) is empirically calculated by first sampling a context-

true permutation pair (c, gc) from the dataset or environment D(c, gc), sampling
B permutations a1

c , a
2
c , . . . , a

B
c from pθ(.|c) using the sampling method mentioned

in Sect. 3.1 and finally taking the average. Empirically, the inner expectation of
(4) is given by the following.

∇θJc(θ) ≈
∑B

i=1 ∇θ log pθ(ai
c|c)R(ai

c, gc)
B

(5)

Given the expression for pθ(ac|c) (3), gradient (5) can be calculated by any
automatic differentiation package. As mentioned in Sect. 3.1, we sample M =
min(nc,M

′) number of documents from the candidate documents during train-
ing time. Therefore, we take reward feedback from an M -length ordered subset.
Since we cannot efficiently explore the whole action space for a large M as
the number of possible actions or permutations would then become nc

PM
1, we

choose M on the basis of the average number of relevant documents per query
in the dataset.

The gradient estimate in (5) is prone to have high variance [31]. We use a
baseline function, which is subtracted from all rewards. This can significantly
reduce the variance of the estimate [31] by acting as an advantage function,
1 Permutation nPr is an increasing function of r.
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and it ensures that the permutations with low rewards receive negative rewards.
Using a baseline rbase, the sample-based estimate (5) becomes the following.

∇θJc(θ) ≈
∑B

i=1 ∇θ log pθ(ai
c|c)[R(ai

c, gc) − rbase]
B

(6)

For choosing the baseline function, we follow the terminology of self-critical
reinforcement learning, in which the test time performance of the current model
is used as the baseline [8,25]. Therefore, while calculating the gradient estimate
(6) after sampling the context-true permutation pair (c, gc), we greedily generate
a permutation using the current model similar to the test time action.

agreedy
c = arg max

ac

pθ(ac|c) (7)

The baseline for a c is then calculated by setting rbase = R(agreedy
c , gc).

3.3 Reward Function R

As mentioned earlier, the reward function can be a single target measure or
a combination of several measures. For the question answering datasets, the
following reward function was used.

R(ac, gc) =
AP (ac, gc) + RR(ac, gc)

2
(8)

For the web search dataset, the following reward function was used.

R′(ac, gc) =
AP (ac, gc) + nDCG@10(ac, gc)

2
, (9)

where the measures average precision (AP), reciprocal rank (RR), and nDCG@10
are traditional IR measures.

3.4 Hybrid Training Objective

As mentioned in Sect. 3.2, the problem of exploring the action space when M is
large can be tackled using a hybrid loss, which is a combination of reinforcement
learning loss and a standard supervised learning loss such as binary cross entropy,
that can compensate the cost incurred due to the inefficient exploration. The
hybrid loss function is given as follows.

Lhybrid = γLrl + (1 − γ)Lsl, (10)
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where Lrl is the loss given by the reinforcement-learning algorithm, which is the
negative of (1), and Lsl is a supervised loss such as binary cross entropy. The
notation γ is a scaling factor accounting for the difference in magnitude between
Lrl and Lsl. It is a hyperparameter lying between 0 and 1.

4 Experiments

We conducted experiments on four different datasets in the domains of question
answering and web search. For the question answering task, we tested Bandi-
tRank on InsuranceQA [10], which is a community question answering dataset
(closed domain, non-factoid), and on WikiQA [44], which is a well studied factoid,
open-domain question answering dataset. For the web search task, we conducted
our experiments on the benchmark MQ2007 [26] and the Yahoo! Learning-to-
Rank [6] datasets.

4.1 Model Architecture

For question answering datasets, we used Multi Cast Attention Networks
(MCAN) [33] for feature extraction followed by two feed forward highway layers
with a sigmoid unit in the output layer. For web-search datasets, we used feed
forward network with three highway layers for encoding the policy of the agent.
We tune the γ parameter from set of values in [0, 0.25, 0.5, 0.75, 1.0]. The hyper
parameters B and M ′ are chosen from the set of values [5, 10, 15, 20, 25, 30]. We
optimized the model using the Adam optimizer with the beta parameters set
to (0, 0.999), and a weight decay of 10−6 was used for regularization. The exact
details of the datasets and the hyper parameters of the models are given in the
supplementary material2.

4.2 Results

InsuranceQA and WikiQA. The results given in Table 1 indicate the supe-
riority of BanditRank over the previous compare-aggregate based deep learning
methods on both InsuranceQA and WikiQA datasets.

MQ2007 and Yahoo! Learning to Rank. The results given in Table 2
and Table 3 show that BanditRank clearly outperformed strong baselines like
ListNet, AdaRank, Coordinate Ascent, RankSVM, PGRank and MDPRank on
MQ2007 and Yahoo! LTR [6] datasets.

2 We also plan to release the code used for experiments post the publication of paper.
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Table 1. Precision@1 for InsuranceQA dataset, and MAP, MRR for WikiQA dataset.
Best results are in bold, and second best are underlined.

InsuranceQA test-1 test-2

IR model [2] 0.5510 0.5080

QA-CNN [29] 0.6133 0.5689

LambdaCNN [29,49] 0.6294 0.6006

IRGAN [37] 0.6444 0.6111

CNN with GESD [10] 0.6530 0.6100

Attentive LSTM [32] 0.6900 0.6480

IARNN-Occam [36] 0.6890 0.6510

IARNN-Gate [36] 0.7010 0.6280

Comp-Agg (MULT) [38] 0.7520 0.7340

Comp-Agg (SUBMULT+NN) [38] 0.7560 0.7230

BanditRank (γ = 1) 0.8494 0.8283

BanditRank (γ = 0.75) 0.8572 0.8522

WikiQA MAP MRR

CNN-Cnt [44] 0.6520 0.6650

QA-CNN [29] 0.6890 0.6960

NASM [22] 0.6890 0.7070

Wang et al. [40] 0.7060 0.7230

He and Lin [13] 0.7090 0.7230

NCE-CNN [28] 0.7010 0.7180

BIMPM [39] 0.7180 0.7310

Comp-Agg [38] 0.7430 0.7550

Comp-Clip [3] 0.7540 0.7640

Comp-Clip (LM) [45] 0.7480 0.7680

Comp-Clip (LM+LC) [45] 0.7590 0.7720

BanditRank (γ = 0.75) 0.6663 0.6730

BanditRank (γ = 1) 0.7043 0.7160

(Pretrained features from BERT)

BanditRank-BERT-base (γ = 1) 0.7437 0.7589

BanditRank-BERT-large (γ = 1) 0.7649 0.7807
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Table 2. Comparing BanditRank to the baseline LTR methods from [30] on the Yahoo
dataset. Best results are in bold, and second best are underlined.

Yahoo! LTR NDCG@10 ERR

BM25F-SD 0.73214 0.42853

RankSVM 0.75924 0.43680

PGRank [30] 0.77082 0.45440

BanditRank (γ = 1) 0.78210 0.46011

Table 3. Results of MQ2007 dataset. Best results are in bold. Statistically significant
differences compared with the best model according to paired t-test are denoted as *,
and Wilcoxon signed rank test are denoted as +. The metric NDCG is denoted by N.
(p − value < 0.05)

MQ2007 P@1 P@3 P@10 MAP N@1 N@3 N@10 MRR

ListNet 0.446*+ 0.409*+ 0.366*+ 0.452*+ 0.391*+ 0.392*+ 0.435 0.556*+

AdaRank 0.474*+ 0.434*+ 0.379*+ 0.471*+ 0.432*+ 0.426*+ 0.457 0.577*+

Coordinate Ascent 0.474*+ 0.435*+ 0.382*+ 0.474*+ 0.418*+ 0.420*+ 0.449 0.574*+

LambdaMART 0.477*+ 0.444* 0.390*+ 0.477*+ 0.431*+ 0.434*+ 0.470* 0.582*+

MDPRank 0.415*+ 0.400*+ 0.360*+ 0.431 0.376*+ 0.386*+ 0.419 0.534*+

BanditRank (γ = 1) 0.460 0.432 0.382 0.468 0.412 0.413 0.454 0.572

BanditRank (γ = 0.5) 0.498 0.457 0.393 0.483 0.447 0.437 0.473 0.597

5 Conclusion

We proposed an extensible listwise deep learning method BanditRank for search
ranking. It can directly optimize IR evaluation measures using the policy gra-
dient algorithm. BanditRank is successfully applied to the question answering
tasks like InsuranceQA and WikiQA, outperforming the previous best compare-
aggregate methods. In the web search task, we reported statistically significant
improvements over the five strong listwise baselines on MQ2007 dataset along
with improvements over good ranking baselines on Yahoo! LTR dataset. We
showed how BanditRank is extensible and applicable to diverse tasks. Thus, we
answered the four RQs as follows:

RQ1 Does BanditRank perform better than strong baselines when applied to
the non-factoid question answering task?: Yes.

RQ2 Does BanditRank perform better than strong baselines when applied to the
factoid question answering task?: Yes using pretrained features from BERT.

RQ3 Does BanditRank perform better than strong learning-to-rank baselines,
when applied to the web search task?: Yes on the MQ2007 dataset with
statistical significance, and Yahoo! LTR dataset.

RQ4 Is the hybrid training objective effective in each task?: Yes in many con-
texts, but not always. When the number of relevant answers is limited, it is
not effective.
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Future work can involve modifying the structure of the policy network dis-
cussed in Sect. 3.1 for efficiently addressing the issue of exploration when the
number of actions is large. For example, we could use adaptive exploration strate-
gies instead of a simple ε-greedy strategy for exploring the action space. There
is also the possibility of defining reward functions as the weighted average of
different measures with trainable weights for better feedback. Regarding the
theoretical aspects, we can compare the directness of BanditRank to other algo-
rithms such as LambdaRank. Developing scenarios for applying BanditRank to
online learning to rank tasks is also a natural expansion of the current study on
offline learning.
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Abstract. SegNet is a Convolution Neural Network (CNN) architecture
consisting of encoder and decoder for pixel-wise classification of input
images. It was found to give better results than state of the art pixel-
wise segmentation of images. In proposed work, a compressed version of
SegNet has been developed using Differential Evolution for segmenting
the diseased regions in leaf images. The compressed model has been
evaluated on publicly available street scene images and potato late blight
leaf images from PlantVillage dataset. Using the proposed method a
compression of 25x times is achieved on original SegNet and inference
time is reduced by 1.675x times without loss in mean IOU accuracy.

Keywords: SegNet · Differential Evolution · Model compression ·
Diseased leaf dataset

1 Introduction

While a large number of researchers have been interested in identifying plant dis-
eases from leaf images [16,21,23], there has been a growing interest in applying
segmentation techniques to determine the extent of the disease on the leaves.
Several researchers have used Machine Learning techniques such as Support
Vector Machine (SVM) for segmenting the diseased region and background from
leaf images [15,17,28]. Researchers have also used deep learning methods like
Convolution Neural Networks (CNN) for disease region segmentation [9,19].
Very recently, Badrinarayanan et al. [5] have proposed SegNet, a highly effi-
cient encoder- decoder CNN architecture for pixel wise segmentation of images.
In this paper we have attempted to use SegNet for segmenting diseased regions
of leaf images. Keeping in mind the fact that large computational power would
not be readily available in agricultural fields, we have developed a compressed
SegNet model using differential evolution [8] whose memory requirement are a
fraction of the original SegNet without any compromise on pixel wise accuracy.

The motivation for carrying out compression [7,10,11] is driven by the idea
that the farmer should be enabled to run the deep learning models on edge
devices like tiny mobiles instead of seeking access to large computing devices.
c© Springer Nature Switzerland AG 2021
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This is essential if someone wants to deploy the solution on a farm rover robot
for continuous pixel based segmentation of videos captured by robot to figure
out extent of disease visible on the leaves, and to spray fungicide at affected
areas.

The main contributions of this paper can be summarized as below:

– Development of a SegNet based pixel wise diseased region segmentation
method of plant leaves.

– Compression and acceleration of SegNet using Differential Evolution.
– Development of novel fitness function which helps to compress the SegNet.

The rest of the paper is organized as follows: A brief summary of previous
research on compression of various CNN models is presented in Sect. 2. Section 3
introduces the SegNet model and development of its compressed version. The
experimental setup and results of disease segmentation on uncompressed and
compressed version are presented in Sect. 4. Section 5 concludes the paper.

2 Literature Review

To employ popular CNN models on edge devices, a number of researchers have
developed compressed versions of these architectures. Most researchers have used
techniques such as matrix factorization, flattened convolution, network pruning,
huffman coding etc. for this purpose.

Anwar et al. [4] described a model compression technique using pruning which
also accelerates the model. Pruning has been done by two methods: evolutionary
particle filtering and activation sum voting. Authors mention that 70% pruning
was obtained with less than 1% loss in accuracy on CIFAR-10 network. He
et al. [13] proposed pruning of pre-trained CNN models like GoogleNet and
ResNet by single layer pruning, whole network pruning and multi-branch prun-
ing.

Gong et al. [10] have developed compression models based on Matrix fac-
torization methods and Vector quantization methods for reducing the number
of nodes in the dense layer based on the fact that 90% of contribution of CNN
weights are from dense layers. The authors showed that the model could be com-
pressed 16–24% while compromising the accuracy by 1%. Cheng et al. [7] have
proposed pruning by discarding the redundant weights and came up with com-
pression ratio of 4.94 on AlexNet. Han et al. [11] described a 3-stage mechanism
to compress a CNN model employing K-means clustering and Huffman coding.

Han et al. [12] also described a CNN pruning process in which all weights
of convolution and Dense layers which are less than a threshold value are made
zero. Li et al. [18] proposed compression by discarding low ranked filters from
each convolution layer based on their L1-norm. Liu et al. [20] have described
network slimming technique during training which prunes unimportant chan-
nels using sparsity-based regularization. Zhang et al. [27] have explored various
methods for CNN compression and acceleration from the structure, algorithmic
and implementation perspectives.
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SegNet is a Encoder Decoder based deep learning model introduced by Badri-
narayanan et al. [5] in 2017. They have used VGG16 like architecture for encoder
portion and then added same number of CNN layers for upscaling the input in
the decoder part of network to finally predict a class for each pixel in the input
images. Authors have demonstrated that segmentation carried out by SegNet
outperforms state of art segmentation networks using CamVid road scene seg-
mentation and SUN RGB-D indoor scene segmentation datasets [6,25].

A number of researchers have demonstrated the use of SegNet for other
segmentation applications. Alqazzaz et al. [3] demonstrated the usage of SegNet
in detecting brain tumor from MRI slices. Nguyen et al. [24] employed SegNet for
hand gestures recognition using RGB-depth kinect camera. Manickam et al. [22]
showed that SegNet segmentation for detecting persons in aerial imagery gave
superior results when compared with VGG16, ResNet and GoogleNet usage.

In this paper a meta heuristics based approach has been used to compress the
SegNet model to enable it to be employed on edge devices. An application has
been shown for diseased region identification on potato leaves. The next section
presents the SegNet structure and the compression technique.

3 Proposed Model

SegNet is basically an encoder-decoder type deep learning network (Fig. 1). The
encoder part has 16 layers. The 1st and 2nd convolution layer consist of 64 filters
each. The 3rd and 4th layer has 128 filters each, 5th, 6th and 7th layer have
256 filters each and 8th layer onward till 13th layer have 512 filters each. Each
convolution block is followed by a max pooling layer in the encoder part. This is
followed by the decoder part which starts with an upsampling layer followed by
convolution blocks in the reverse order, and finally ending with a softmax layer.

Fig. 1. Figure depicting architecture of SegNet.
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3.1 Differential Evolution Based Compressed SegNet

Although SegNet is a derived version of the famous VGG architecture, the num-
ber of parameters is still 14.7 Million, and is not employable on tiny edge devices.
For many small applications, using Differential Evolution (DE) it is possible to
reduce the size still further by retaining only those nodes and filters whose con-
tribution to meaningful segmentation is significant.

DE is a stochastic process for generating solution to a nonlinear problem,
introduced by Storn and Price in 1996 [26]. A basic flow diagram of the process
is illustrated in Fig. 2.

Fig. 2. Differential Evolution flow chart.

The various steps involved in DE process applied to SegNet compression are
explained below.

Initial Population. To start with a random vector is created to represent the
various filters and nodes of the hidden layers of SegNet. The elements of the
vector (neurons) were randomly assigned values 1 and 0, with 1 denoting that
the particular node is being retained and 0 denoting that the node is being
discarded. Initially a population pool of 100 such vectors is created. A sample
initial vector is shown in Fig. 3 with different colors representing the various
layers of CNN.

Fig. 3. A sample vector randomly initialized with 0’s and 1’s representing various filters
in SegNet. (Color figure online)

Mutation in DE. For each target vector, three random vectors are chosen from
the population. The difference of two of the random vectors is multiplied by a
mutation factor (a value between 0 and 1) and added to the third random vector
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in population. If the values of the new vector (named donor vector) do not lie
between lower bound and upper bound, these are re-scaled to the desired range.
For SegNet compression, the donor vector is computed as shown in equation (1).

vg+1
i = wg

ri1 + F × (wg
ri2 − wg

ri3) (1)

Here vg+1
i is the donor vector of (g+1)th generation and wg

ri1, wg
ri2, and wg

ri3

are three random vectors for a target vector at index i of the population. Here i
takes on values 1, 2, 3, . . . , N. F is the mutation factor and chosen as 0.5 and N
is chosen as 100. The values taken on by the donor vector range between – 0.5
to 1.5. These are normalized to 1 for values more than 0.5, and normalized to 0
otherwise. A representative mutation vector is shown in Fig. 4.

Fig. 4. Process showing generation of mutation vector using 3 random vectors.

Recombination in DE. In this step, a trial vector is created using the target
vector and the donor vector based on a recombination factor. A random number
is generated between 0 and 1 for each index position of vectors, and if it is found
to be greater than recombination factor, then the trial vector element at that
index position is retained in the target vector, else it is taken from donor vector.
The recombination factor has been chosen as 0.7 for SegNet compression. The
recombination step follows Eq. (2).

fg+1
i,k =

{
vg+1
i,k rand() ≤ Rp or i = Irand

wg
i,k rand() > Rp and i �= Irand

(2)

Here vg+1
i,k is the ith element of kth donor vector of (g + 1)th generation.

Similarly wg+1
i,k is the ith element of kth target vector of (g)th generation and

fg+1
i,k is the ith element of kth trial vector of (g + 1)th generation. Rp is the

recombination factor and Irand is random integer between 0 and L. Irand ensures
that all elements are not picked from target vector. Also i = 1, 2, 3, . . . , L (size
of the vector), and k = 1, 2, 3, . . . , N .
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Selection in DE. The selection between the original vector and the new vector
created after mutation and recombination is done based on a fitness function.
Some terms are being introduced here for further usage.

– M = number of hidden layers in original model.
– α = {α1, α2, α3, . . .αM} represent number of hidden units at hidden layers

1, 2, 3 . . .M in original model.
– β = {β1, β2, β3 . . .βM} represent number of hidden units at hidden layers 1,

2, 3 . . .M in compressed model.
– IoU(k) denotes the mean intersection over union value of predicted images

with ground truth after k compression steps.

Then the Linear Programming Formulation (LPP) can be formed as:

Maximize X = w × αi

βi
+ (1 − w) × IoU(k) (3)

Subject to:

βi ≤ αi, ∀ 1 ≤ i ≤ M (4)

The constraint (4) ensures that nodes in compressed layer are lesser than
nodes in original model at layer i for all i = 1, 2, 3 . . . M . Term X in Eq. (3)
denotes value for minimization at layer i during compression process. This pro-
cess is iterated layer wise for i = 1, 2, 3 . . . M over entire model. Here w is a
relative weighting factor to provide balance between compression and model
performance, it’s value is taken as 0.5 for experimental purpose. The flow of
SegNet compression process is shown in Fig. 5.

The DE process was implemented on this pool of vectors using pixel wise clas-
sification accuracy of the model on a chosen test set as fitness criteria. Depending
on final optimum vector, a new compressed SegNet is created and weights copied
from original SegNet where vector element has a value 1. This model is further
trained for 10–50 epochs and tested on the test data set. If the evaluation metrics
such as sensitivity, specificity, F1-score or accuracy shows deterioration by more
than a preset threshold say 2%, then the last model is taken as the final model,
else the DE process is repeated with this compressed model as original model.

4 Experimental Setup and Results

For developing the compressed version of SegNet, the dataset used was the same
as used by proposers of SegNet [5]. This is the CamVid road scenes dataset [1],
and comprises of 367 training and 233 testing RGB images (day and dusk scenes)
at 360×480 resolution. The challenge is to segment 11 classes such as pedestrians,
roads, building, cars, etc. The performance analysis is done using mean of the
predictive accuracy over the eleven classes, and mean intersection over union
(mIoU) over all classes.
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4.1 Testing the Compressed SegNet Model

The experiments were performed using NVIDIA DGX v100 machine using
python. This machine is equipped with 40600 CUDA cores, 5120 tensor cores,
128 GB RAM and 1000 TFLOPS speed on UBUNTU 20.0.1 operating system.

The various parameters used in Differential Evolution compression process
are given in Table 1. The SegNet was trained for 500 epochs on this dataset [1]
and mean IoU and predicted images were saved. Since predicted images were
lacking in clarity, training was carried out on a reduced version of SegNet with
its consecutive convolution layers in a convolution block merged into a single
layer [2]. This model does not support index transferring proposed in SegNet
and has encoder and decoder part with total 8 convolution layers and filters
numbering 64, 128, 256, 512, 512, 256, 128 and 64 in these layers from input

Fig. 5. Process flow diagram of iteratively compressing SegNet along with training.
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Table 1. Parameters used for Differential Evolution Algorithm.

S.No. Parameter Remark

1 Gene value Binary (0–1)

2 Poplulation Size 100

3 Maximum Iterations 50

4 Mutation Factor 0.5

5 Recombination Factor 0.7

6 Termination Criteria Change in fitness < 0.000001

side. Training for 500 epochs reported better accuracy and predicted images
were closer to ground truth segmentation results. This could be attributed to
the reason that model being simpler it can learn better in same number of epochs.
On SegNet similar accuracy was obtained on training for 1000 epochs. This mini

Fig. 6. A comparison of SegNet with mini SegNet and compressed mini SegNet on
street scene images with ground truth pixel wise segmentation.
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version of SegNet was used to obtain the compressed model using DE approach.
This also gave good accuracy and predicted images were very close to ground
truth. A visual comparison of three models has been shown in Fig. 6.

Comparison of performance evaluation metrics before and after compression
are given in Tables 2 and 3. It is observed that the compressed SegNet model can
be accommodated in 4% of space required for the original SegNet without any
perceptible change in mean IoU measure, while the inference time per sample
reduces to 40% of original inference time, making it feasible for deployment on
mobiles and edge devices.

4.2 Segmentation Using Other CNN Models

The process of pixel wise segmentation was also tried using UNet and Fully
Convolution Network (FCN) with VGG16 like model but the results were not
good. UNet model gave only 3% mIoU after 100 epochs and weight file size
was 121,307 KB. FCN model gave mIoU of 50.39% after 100 epochs and weight
file size was even more 524,726 KB. Thus these two solutions could not predict
the output segmented images correctly and were far from ground truth. Even
their weight files were not suitable to deploy these solutions on mini edge or
mobile devices. These models were also experimented to be compressed using DE
based approach and they could be satisfactorily compressed but mIoU was still
not good, so could not generate output segmented images for their compressed
versions.

Table 2. Comparison of performance and size before and after compression of SegNet.

Model mIoU Size Percent decrease in size

SegNet 79.16% 115,283 KB –

Mini SegNet 84.21% 21,434 KB 81.40%

Mini SegNet Compressed 83.89% 4,501 KB 96.09%

Table 3. Comparison of inference time for 1 sample before and after compression of
SegNet.

Model Prediction time Percent decrease

SegNet 10.72 s –

Mini SegNet 7.26 s 32.27%

Mini SegNet Compressed 6.40 s 40.3%
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4.3 Identification of Diseased Region of Leaves Using SegNet

The compressed SegNet was also used for disease identification in potato crop
from leaf images. The data consisted of 256 × 256 sized images of potato
leaves affected by late blight disease from PlantVillage dataset [14]. The dis-
eased regions were manually annotated and marked with brown color with RGB
value (128, 128, 0), the greener part of leaf was marked green with RGB value
(0, 255, 0). The background was assigned black color with RGB value (0, 0, 0). A
set of sample images and their corresponding annotations are shown in Fig. 71.
The data was transformed in HSV space, and Hue value was checked for green,
brown and yellow parts of the image. This color assignment agrees with human
color perception and also helps in manual annotation of diseased portions in raw
images of leaves affected by disease.

Fig. 7. (a), (b), (c), (d), (e) sample images of potato late blight. (f), (g), (h), (i), (j)
the corresponding annotations in 3 colors (Color figure online)

Results on Leaf Dataset. In this experiment, the Compressed SegNet ver-
sion was created by merging the consecutive convolution layers of SegNet in a
convolution block. This model was trained and tested on the dataset by dividing
images in ratio of 81:6:13 for training, validation and testing. This model was also
compressed using the proposed DE method and results are presented in Table 4.
The results on leaves dataset were better than CamVid dataset as it had only
3 classes whereas previous dataset had 11 classes and thus classification could
be more accurate due to better distinguishing ability of model in lesser classes.
It can be observed that even with a very highly compressed SegNet model, the
mean IoU measure is hardly compromised. Mini Compressed SegNet mIoU in
Table 4 was better by 0.01%, this was due to fitness criteria based on choosing

1 Dataset can be downloaded from: https://github.com/mohit-aren/Leaf colormap

https://github.com/mohit-aren/Leaf_colormap
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best neurons giving higher mIoU and discard unwanted nodes. Figure 8 presents
visual comparison of ground truth and predicted outputs. It is clear that the
diseased portions have been correctly identified by the compressed SegNet.

Fig. 8. Sample images of dataset, ground truth annotations of same images, predicted
outputs of mini SegNet, predicted output of compressed mini SegNet.

Table 4. Comparison of performance and size before and after compression of mini
SegNet on leaf dataset.

Model mIoU Size Percent decrease

Mini SegNet 94.64% 21,433 KB –

Mini SegNet Compressed 94.74% 4,842 KB 77.41%

5 Conclusion

This paper has proposed a scheme for developing a compressed SegNet architec-
ture using differential evolution, so that it can be deployed on tiny mobile/edge
devices. To illustrate this, an application of compressed SegNet for identifica-
tion of diseased regions in potato leaves has been presented. It has been shown
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that without compromising on mean IoU, tremendous saving on storage can be
achieved, as well as having a large reduction in inference time when a test sample
is presented to the system. This has tremendous possibilities in the agriculture
arena, and can help the farmer in proper treatment of diseased crops. Possibly
a farm rover robot can move around in the field collecting images which can
be processed by edge devices and help the farmer to selectively spray fungicide
on the affected leaf portions. The leaves used were on a plain background but
in actual scenarios they can have complex backgrounds like stems, other leaves,
soil, etc. This could be experimented as a future version of this research work.
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Abstract. Transformer-based models, such as GPT-2, have revolution-
ized the landscape of dialogue generation by capturing the long-range
structures through language modeling. Though these models have exhib-
ited excellent language coherence, they often lack relevance and terms
when used for domain-specific response generation. In this paper, we
present DSRNet (Domain Specific Response Network), a transformer-
based model for dialogue response generation by reinforcing domain-
specific attributes. In particular, we extract meta attributes from con-
text and joinly model with the dialogue context utterances for better
attention over domain-specific keyterms and relevance. We study the use
of DSRNet in a multi-turn multi-interlocutor environment for domain-
specific response generation. In our experiments, we evaluate DSRNet on
Ubuntu dialogue datasets, which are mainly composed of various techni-
cal domain related dialogues for IT domain issue resolutions and also on
CamRest676 dataset, which contains restaurant domain conversations.
We observe that the responses produced by our model carry higher rele-
vance due to the presence of domain-specific key attributes that exhibit
better overlap with the attributes of the context. Our analysis shows
that the performance improvement is mostly due to the infusion of key
terms along with dialogues which result in better attention over domain-
relevant terms.

Keywords: Response generation · Meta context · Transformers

1 Introduction

Transformer-based pertained language models, such as BERT [3], GPT-2 [2,14],
XLNet [20], have revolutionized the landscape of natural language processing
lately. These models have achieved state-of-the-art performance on many tasks,
such as natural language understanding (NLU), sentence classification, named
entity recognition and question answering. The ability to capture the long-range
temporal dependencies in the input sequences is one of the key reason behind
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the success of these models. However, generated responses tend to be either
generic, out-of-context or disproportionately short. Some of the previous works
attributed such behavior to various causes e.g. prevalence of generic utterances
in training data, inadequate sized model architecture to capture the long term
temporal dependence, absence of low frequency words in vocabulary, exposure
bias in training models. In a domain specific multi-turn and multi interlocutor
dialogue environment, where multiple users converse over a common channel
simultaneously, often regarding a common subject, the above stated problems
exacerbate in the generated response.

In this paper, we propose DSRNet (Domain Specific Response Network), a
transformer based model, where in we alleviate some of the highlighted issues
stated above by explicitly inserting meta-contextual attributes to capture the
context better. In particular, we extract various meta attributes such as key-
words, queries etc. The input of DSRNet includes the context which constitutes
of a predefined number of previous utterances (before the response) in the con-
versation, and the meta-attributes. The meta attributes are composed of conver-
sation topic, query, entities which are extracted from the conversation at hand
using traditional NLP approaches. We have evaluated DSRNet on the Ubuntu-
IRC corpus (multi-interlocutor conversation) [6] to generate response utterances
which clearly indicate improved response text in terms of alignment with context
utterances of the conversation topic.

We have experimented on technical domain specific datasets namely Ubuntu
1.0 dataset (direct conversation) [8], Ubuntu-IRC [6] (mainly pertains to the IT
domain) and CamRest676 [18] which contains restaurant related conversations.
For domain specific environment, it is of great importance to have the response
aligned with the context instead of being generic. We also extended the Ubuntu-
IRC, Ubuntu 1.0 and CamRest676 dataset with meta-contexts and intend to
release both the source code and extended datasets for future research. To the
best of our knowledge, our approach is the first to consider explicitly meta-
context attributes and leverage it in a transformer based model to generate
dialogue responses in a multi-turn dialogue environment. The key contributions
of our work are as follows:

– We propose a novel approach, DSRNet, a GPT-2 based model which jointly
models the meta-contextual attributes along with context, for domain specific
multi-turn and multi-interlocutor dialogue response generation.

– We extend Ubuntu 1.0, Ubuntu-IRC and CamRest676 datasets with meta-
context attributes for better context capturing.

2 Related Literature

Pre-trained transformer based language models have shown tremendous
advances in the state-of-the-art across a variety of natural language processing
(NLP) tasks ([3,5,13,20]). GPT-2 [2,14] is one of the most known auto-regressive
language models and closest to our work which learns language granularity from
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large amounts of open web text data. Other variants to ground language gener-
ation on prescribed control codes are CTRL [5] and Grover [21] or latent vari-
ables such as Optimus [7]. GPT-2 first investigated massive Transformer-based
auto-regressive language models with large-scale text data for pre-training. After
fine-tuning, GPT-2 achieves drastic improvements on several generation tasks.
One drawback of GPT-2 is the lack of high-level semantic controlling ability in
language generation. To alleviate this issue CTRL [5] was introduced to train
the model based on pre-defined codes such as text style, content description,
and task-specific behaviour, mean while Grover [21] generates news article con-
ditioned on authors, dates etc. Unlike these, SC-GPT [12] models the text gen-
eration more explicitly which is applied to task-oriented dialogue NLG in a few
shot setting.

In Dialogue domain, DialoGPT [22] and CGRG [19] extended GPT-2 for
chit chat dialogue system. SC-GPT [12] and SOLOIST [11] are pre-trained mod-
els for NLG module that converts a dialogue act into response in natural lan-
guage. DLGNet [10] is a large transformer model trained on dialogue dataset
and achieves good performance on multi-turn dialogue response generation. Our
work is very close to SC-GPT and DLGNet as we also build our model on GPT2
to generate response for multi-turn dialogues. Moreover, our model reinforces
better relevancy by explicit inclusion of context related meta-attributes which
helps to capture the context better and its content in the generated responses.

3 Proposed Approach

We model the task of response generation by incorporating fine-grained meta-
contextual attributes to capture domain specific goals in the generated utter-
ances more effectively. We infuse various contextual attributes, called as meta-
attributes, in our response generation model to capture the content of the conver-
sation context better in the input. Given M training samples S = (Cm, xm)M

m=1,
where C is the input context and x refers to the corresponding response text;
our aim is to build a neural model which maximises the likelihood of the gener-
ated response conditioned on the context (C) and meta-attributes (f(C)), i.e.,
pθ(x|C, f(C)) parameterized by θ (model parameters). The decoder being auto-
regressive allows us to express the likelihood as

pθ(x|C) =
W∏

w=1

pθ(xw|x<w, C, f(C)) (1)

where W is the number of tokens in the ground-truth response. To capture
domain-related terms in a better way, we extract the domain-specific keywords
(entities or topic words) and the query vector information (question detected or
not) of the utterances and perform a massive language fine tuning, allowing the
model to learn domain-related word representations along with their contexts
more effectively.

Prior to fine tuning the model, we perform pre-training on a massive Ubuntu-
dialogue (technical IT support) domain related corpus with the aim to further
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enrich the model with domain-related knowledge. To achieve that, we have
adopted the pre-trained GPT-2 architecture [14] and have trained it further
on a language modeling task using the Ubuntu 2.0 Corpora [8].

3.1 Meta-attribute Infused Fine Tuning

The next utterance in a conversation is usually constructed using key-terms
from the context. In DSRNet, we propose infusing meta-attributes, namely top-
ics/entities and queries, from conversations in the training procedure. We pro-
cess the mined meta-attributes and generate input instances as shown in Table 1.
Thus the meta-attribute f(C) in Eq. 1 can be represented as: f(C) = [qm; tm]Mm=1

where, M is the number of instances in the dataset, qm represents the query
detection result on the mth instance and tm represents the topics/entities
extracted from the context (cm) of the mth instance. In the sections to fol-
low, we provide a detailed description of our meta-attribute mining algorithms.
The proposed architecture of DSRNet is illustrated in Fig. 1, where the explicit
dependency of the generation of one word in the response, on the context, meta-
attributes and the previous words generated in the response are highlighted.

Fig. 1. The proposed Meta-Context Transformer. Special tokens [eoc], [eoq], [eot] sepa-
rate the dialogue history, contextual queries and topics in the context respectively. The
token [sep], separates the context from the ground truth that needs to be generated
and the token [eos] marks the end of an utterance in our work.

Topic Infusion - While we are aware of the domain of the corpora, more than
often it has been observed that each conversation has a topical premise of it’s
own. We have used Latent Dirichlet Allocation [1] method to determine the
topics of the conversations in the corpus. We have treated each conversation in
the corpus as a document in our approach. The number of topics rendering the
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optimal coherence score was found to be 80 for the Ubuntu-IRC data-set. Using
the learnt topic model, we determine the dominant topic of each utterance and
have appended the 10 most contributing topic keywords from the corpus to each
utterance. Using the statistical approach of topic modeling has not only saved us
annotation labour, it has also supported the model with consistent performance
as reported in Tables 2 and 3.

Query Mining and Infusion - We observe that query utterances, if present,
directly influences the response utterance in the conversation. We infuse the iden-
tified queries as a part of meta-attributes in the form of query vector. To identify
both implicit and explicit queries [4,16], we have adopted a semi-supervised app-
roach where we augment some lexical rules along with an SVM model. The lexical
rules are apt to capture queries containing question words (mainly constituting
5W1h question words, for e.g.’?’, when, how, where), along with a set of other
curated verb and adverb based question words (e.g.,could, did, kindly, please).
On the other hand, the SVM model is trained on the NPS Chat dataset1 to
detect the implicit queries which captures the informal query utterances. Our
algorithm identifies an utterance as negative query only when both the lexical
and SVM model yields a negative label. We report a precision score of 86.90%, a
recall of 92.03% and an F-Score of 89.39% over randomly sampled 100 instances
from the Ubuntu datasets. We append a sequence of ‘Y-N’s to the context -
‘Y’s confirming the presence of a query at that index in the context and ‘N’s
confirming otherwise as shown in Table 1.

Entity Extraction - Although we capture the topical preference of the conver-
sation by infusing topic keywords with each utterance in the context, we realise
that the domain-keywords in the context may still not be captured in the gener-
ation. This is mainly because i) the topic keywords do not necessarily pertain to
that particular conversational context, ii) it is often tricky to capture the optimal
number of topics for topic modeling and may result in topic overlaps - hence, losing
out on important topic words, iii) dialogues are known to be privy to noisy text -
with spelling mismatches and word distortions, some important domain words in
the context may not be captured accurately. To tackle these issues, we experiment
with entity phrases extracted from the context, instead of topic words and report
the performance in Tables 2 and 3. To extract entity words from conversations we
adopt the weakly supervised method as outlined in [9].

4 Experimental Studies

In this section, we evaluate our proposed model DSRNet on three different dia-
log corpus. We address the following questions during the evaluation process,
which are (i) How efficient is DSRNet when compared with other state-of-the-
art (SOTA) methods of generating response in dialog settings and (ii) How
efficiently DSRNet is able to improve the task of response generation using the
meta-contexual information.
1 http://faculty.nps.edu/cmartell/NPSChat.htm.

http://faculty.nps.edu/cmartell/NPSChat.htm
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Dataset - We have used three popular, publicly available datasets to train and
evaluate our proposed model DSRNet. For the domain language pre-training
step, our data of choice were the training samples from the Ubuntu 2.0 dataset2

due to it’s massive collection of annotated examples. For fine-tuning the domain
pre-trained language model for the response generation task, we have used the
original Ubuntu 1.0 dataset[8] and the Ubuntu-IRC dataset[6]. For the generic
restaurant enquiry response generation, we skip the domain pretraining step and
fine-tune the vanilla GPT-2 on the CamRest676 dataset[18]. It is important to
note, that natural language generation for domains like restaurant, hotels and
travel are much simpler than the same in a technical domain, which contains
plenty of non-English keywords and commands (e.g. sudo apt-get, html, css,
Windows). We tackle most of these challenges through our domain language
pre-training and meta-attribute learning steps. Moreover, the dialogues in the
Ubuntu-IRC dataset occur in a multi-turn, multi-locutor setting. We adhere to
the following pre-processing rules to tackle some of the challenges of the dataset:
i) We extract the conversations from the dataset using the disentanglement anno-
tations provided (for the Ubuntu-IRC dataset), and we remove, ii) slang from
the dialogues, iii) usernames, timestamps, iv) non-English utterances from the
corpus (we encountered a number of Spanish utterances in the conversations),
v) instances of utterance repetitions, and vi) one word utterances which are
neither questions nor commands. Ubuntu 1.0 corpus has about 3 million train-
ing instances, when the context has 3 utterances. Camrest676 has 2515 training
instances and Ubuntu-IRC dataset has 22,582 training instances. For Ubuntu
1.0, we randomly sample 10,000 conversations for the development and test sets
and have used the rest of the dataset for fine-tuning purposes. We use 1000 sam-
ples from each of the other two dataset for testing purposes. Ubuntu-IRC corpus
[6] has 153 conversation files, each of which have several parallel conversations.
We use the annotation provided by Kummerfeld et al. and extract 4621, 392 and
298 conversations for training, evaluation and test split respectively. The entire
dataset with extracted meta-contextual attributes along with the source code
will be made available online for research purposes3.

4.1 Experimental Settings

We fine-tune the pre-tuned GPT-2 model on our dataset using 2 V100 cores using
100 GPU memory in each of the them, for most of the experimental settings.
We fine-tune the proposed DSRNet on CamRest676 dataset for 20 epochs and
on Ubuntu 1.0, Ubuntu-IRC datasets for 5 epochs. We did not observe a con-
siderable improvement in performance on training DSRNet beyond the reported
number of epochs.

Dataset Format for Fine-Tuning - We create the training instances by con-
sidering contexts in a sliding window fashion, containing three consecutive utter-
ances. The context is followed by the query feature vector (Y represents pres-
2 https://github.com/rkadlec/ubuntu-ranking-dataset-creator.
3 https://github.com/DebanjanaKar/DSRNet.

https://github.com/rkadlec/ubuntu-ranking-dataset-creator
https://github.com/DebanjanaKar/DSRNet
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ence of query, N represent absence of query) obtained from query mining. This
is followed by (i) the list of entities extracted from the context or (ii) list of 10
dominant topic words that represent the context. Typical examples of training
instances, using both query information and entities are shown in Table 1.

Table 1. Examples of training samples from Ubuntu-IRC and CamRest676 dataset
used in DSRNet.

Dataset Training example

Ubuntu IRC (with queries + topics) however, in addition, I’ve observed
something odd with this machine [eos]
Sorry, I’ve had a quick look over a few
Ubuntu mirrors, but can’t find a Live PPC
CD of Warty... are they available? [eos] any
reboot short of turning the mains power off
causes the bios to fail to recognize the hard
drive [eos][eoc] N-Y-N [eoq] connect, fail,
reinstal, final, enter, normal, command,
address, account, mode [eot] [sep] there’s no
ppc live cd yet [eos]

CamRest676 (with queries + entities) I need to find an expensive restauant that’s
in the south section of the city. [eos] There
are several restaurants in the south part of
town that serve expensive food. Do you
have a cuisine preference? [eos] No I don’t
care about the type of cuisine. [eos] [eoc]
N-Y-N [eoq] city, town, type, south section,
expensive restauant, expensive food, south
part, several restaurant, cuisine preference
[eot] [sep] Chiquito Restaurant Bar is a
Mexican restaurant located in the south
part of town. [eos]

Topic Modeling - We apply a standard LDA based topic-modeling to extract
the dominant topics in the corpus. Figure 2 shows the topic distribution (number
of topics 40 in this case, for better visual aid) at utterance level and conversation
level respectively. It is clear from the figure that better discriminating topics are
obtained at the conversation level. Before feeding the data to the topic modeling
algorithm, we heavily preprocessed our data by tokenizing, stemming and remov-
ing common words from the corpus. To remove common words, we considered
a list of English stopwords, words with either very low or very high tf-idf scores
and words with noun, adjective, verb and adverb part-of-speech tags. We set
the number of topics to 80 in all the three corpus, after observing the coherence
score.
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Fig. 2. Figure shows the topic distribution when topic modeling is done at (i) utterance
level (left) & (ii) conversation level (right) for 40 topics.

Evaluation Metrics - We use the nlg-eval toolkit4 and MultiTurnDialogZoo
toolkit5 for obtaining the values for the following metrics during our experimen-
tation:

1. BLEU and ROUGE - BLEU has been used for measuring the coherency of
the generated output. It mainly looks at the precision of the common n-grams
in the ground truth and the generated output. Similarly, ROUGE measures
the recall of the common n-grams occurring in ground truth and generated
output.

2. DISTINCT - It measures the diversity of the words in the generated output.
We consider the average of DISTINCT-1 and DISTINCT-2 scores.

3. BERT-Score (BERTSc) - BERT score represents the cosine similarity of the
pair-wise similar words in the embedded space.

However, it is difficult to compare the generated response with the ground truth,
as an utterance can be represented correctly with many different sentences. Many
a times, human evaluation is the best way to determine the correctness of a
generated output.

Baseline - The following methods have been adapted as baselines which gives
state-of-the-art (SOTA) results on response generation in dialog settings: (i)
Vanilla GPT-2 - We use the GPT-2, finetuned on the training set, as one of the
baselines. As the proposed DSRNet is an improved version of GPT-2, it gives an
idea about how strong the modification of the proposed method is with respect
to the base model. (ii) HRED, VHRED - We train [17] and [15] on each of the
datasets for 20 epochs. Both of the methods model the task using recurrent
encoders and decoders in a hierarchical fashion. (iii) DLGNet - We consider
DLGNet for comparison purposes for the Ubuntu 1.0 dataset. The evaluation
metric values are directly taken from the paper.
4 https://github.com/Maluuba/nlg-eval.
5 https://github.com/gmftbyGMFTBY/MultiTurnDialogZoo.

https://github.com/Maluuba/nlg-eval
https://github.com/gmftbyGMFTBY/MultiTurnDialogZoo
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4.2 Performance and Evaluation

We choose the training parameters based on the performance on the evaluation
data split and report the metric results on the test split. We show the results of
different variations of DSRNet - (i) DSRNet (qstn) - having question detection
only as the meta-attribute (ii) DSRNet (qstn+top) - having question detection
and dominant topic words as meta attribute, and (iii) DSRNet (qstn+ent) -
having question detection and entities extracted from context as meta attribute.
We keep topic words and entities as complimentary information in forming the
meta attribute of an instance. The results for three dataset are explained below.

Table 2 shows the performance of different models on generating response
for CamRest676 dataset. We compare the performance of DSRNet with that of
vanilla GPT-2, HRED and VHRED.

Table 2. Performance evaluation on CamRest676 dataset (best in bold).

Method BLEU ROUGE BERTSc Distinct

HRED 0.0332 0.0582 −0.0007 0.0655

VHRED 0.0298 0.0722 0.0049 0.0667

GPT-2 0.1382 0.1496 0.242 0.4164

DSRNet (qstn) 0.211 0.2581 0.3296 0.4356

DSRNet (qstn+top) 0.1896 0.1679 0.2254 0.4002

DSRNet (qstn+ent) 0.260 0.2587 0.6603 0.4533

Table 3 shows the performance of different models on generating response for
Ubuntu 1.0 & Ubuntu IRC dataset. We compare the performance of DSRNet
with that of vanilla GPT-2 and DLGNet. We can observe that DLGNet is having
better BLEU score than DSRNet for Ubuntu 1.0, which is mostly because of the
fact that DLGNet considered a much larger sequence length (1024) while training
their model. This is particularly helpful for Ubuntu 1.0 dataset, where the length
of utterance can be very long.

Table 3. Performance evaluation on Ubuntu 1.0 and Ubuntu-IRC dataset.

Method Ubuntu 1.0 Ubuntu IRC

BLEU ROUGE BERTSc Distinct BLEU ROUGE BERTSc Distinct

HRED 0.017 0.048 NA 0.046 0.118 0.11 0.070 0.0003

VHRED 0.017 0.086 NA 0.089 0.111 0.21 0.210 0.002

DLGNet 0.028 0.219 – 0.495 – – – –

GPT-2 0.012 0.024 0.401 0.202 0.085 0.103 0.235 0.219

DSRNet (qs) 0.015 0.023 0.034 0.480 0.106 0.145 0.290 0.468

DSRNet (qs+top) 0.016 0.024 0.034 0.5051 0.1287 0.1890 0.298 0.443

DSRNet (qs+ent) 0.020 0.032 0.033 0.556 0.148 0.157 0.347 0.470
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It is evident from the tables that adding of meta contextual attributes does
help in generating better responses. Addition of entities is performing better
than that of topic words, as entities are directly picked up from the correspond-
ing context, whereas, a dominant topic word may come from outside of the given
context. It is also to be noted, that the repetition of generated response for mul-
tiple similar context is least for DSRNet, which is evident from the DISTINCT
score. Also, as per our observation, DSRNet produced more semantically and
syntactically meaningful responses.

4.3 Result Analysis

Importance of Query mining and Entity Extraction - The idea of includ-
ing the query mining as the meta-attribute is that the questions in the context
should get more importance while generating the response. We observed the
response generated without using the question mining in the context and also
when the question detection module gives erroneous results. In both these cases,
the quality of the generated response degrades, as seen in Fig. 3. Similarly, as
shown in Fig. 3, DSRNet exhibits improved performance for all the three datasets
when entities are being used as the meta attribute.

Fig. 3. Examples of generated response from DSRNet with and without using questions
(left) and entities (right) as a meta attribute.

Ablation Study - Most of the time the generated response of DSRNet is mean-
ingful to the context, with proper grammar. However, at times, the generated
output suffers from repetition of words and sentences. We believe that this prob-
lem is mostly due to the small training size of the dataset. Also, there has been
some responses, which end abruptly, such as “there are two moderately priced
mid-range restaurants, both in the centre part of town. do you”. This is mainly
because of the sequence length that we are considering during training of DSR-
Net, due to computational effectiveness of the model training. With a large value
of sequence length, this problem can be resolved.
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There are also some of the generated responses, which are highly relevant
with the context, but is different from the ground truth utterance, such as:

Context: “There are several good restaurants in the south part of town. Do you
have a preference for the type of food or price range? [eos] Yes, I’d like a restau-
rant that serves portuguese food. [eos] nandos is the only restaurant i can find in
the south that serves portuguese. [eos] [eoc] Y-N-N [eoq] town, type, preference,
nandos, south part, price range, portuguese food, restaurant [eot]”
Generated: “what is the address?”
True: “Nandos sounds great. Thank you.”

These generated outputs will reduce the metric scores used for evaluation, but
a human evaluation may consider the generated output as a relevant one.

5 Conclusion

In this paper, we have proposed DSRNet, a transformer-based model, for
dialogue response generation by explicitly infusing domain-specific attributes.
To infuse meta-contextual information in DSRNet, we have extracted meta
attributes, namely conversation topics, key entities and queries from the conver-
sation context which enables better relevance of the generated response. We con-
ducted thorough investigation over Ubuntu-IRC, Ubuntu 1.0, and CamRest676
dataset and reported multiple performance metrics, such as BLEU, ROGUE,
and semantic similarity scores. Our evaluation results indicate that DSRNet
shows improvement with other existing models in terms of generating responses
which are more relevant to the conversation context. The generated responses
have better presence of domain-specific key attributes that exhibit better overlap
with the attributes of the context.
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Abstract. Survival analysis aims to predict the occurring times of cer-
tain events of interest. Most existing methods for survival analysis either
assume specific forms for the underlying stochastic processes or linear
hypotheses. To cope with non-linearity in data, we propose a unified
framework that combines multi-task and kernel learning for survival anal-
ysis. We also develop optimization methods based on the Pegasos (Primal
estimated sub-gradient solver for SVM) algorithm for learning. Experi-
ment results demonstrate the effectiveness of the proposed method for
survival analysis, on synthetic and real-world data sets.

Keywords: Survival analysis · Multi-task learning · SVM · Kernel
method

1 Introduction

Survival analysis, also known as time-to-event analysis, is crucial in areas such
as finance, engineering, medicine, etc. Its goal is to predict the occurring times of
certain events of interest, especially the first occurrences. However, those events
might not always be observed during the course of study due to time limitations
or missing data, which is known as censoring. Censoring distinguishes survival
analysis from standard regression models.

A fundamental problem of survival analysis is to understand the relationship
between the underlying distribution of event occurrence, and sample character-
istics. Most of the previous work has tackled this problem by assuming specific
forms for the underlying stochastic process [2], but such assumption may not
hold in practise. To overcome such issues, multi-task learning models [12,13] are
introduced, whose tenet is to learn a shared representation across related tasks
to reduce the prediction error of individual tasks. Existing multi-task learning
models have been built with a linear hypothesis, which may not cope with non-
linear structures in data.
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In this paper, we propose a method that combines multi-task and kernel
learning, which is a structured way for non-linear transformation. Our contribu-
tions are two-fold: (i) a unified framework that consolidates multi-task and kernel
learning, which is capable of utilizing complex non-linearity exhibited in data;
(ii) Pegasos (Primal Estimated sub-Gradient SOlver for SVM) based optimiza-
tion algorithms for learning parameters. By exploiting the non-linearity in data,
our approach achieves competitive performance on both synthetic and real-world
data sets. The rest of the paper is organized as follows: Sect. 2 reviews existing
survival analysis methods, Sect. 3 presents our method, Sect. 4 demonstrates our
experimental results and Sect. 5 concludes our work.

2 Related Work

Previous works on survival analysis can be briefly categorized as follows: statis-
tical models, multi-task learning models, and deep learning models.

Statistical models can be categorized into parametric and non-parametric
models. Both assume specific forms of distribution for the underlying process of
event occurrence. For example, the Cox proportional hazard model (CPH) [2]
and its variants [17,18], assume the log of the hazard rate to be a linear function
of covariates, while other models make different assumptions about data, e.g., the
Weibull [11] distribution. These parametric models suffer from rigid assumptions
that may not hold in practice. Non-parametric models relax those assumptions.
Examples include Kaplan–Meier estimator [6], which is generalised as Random
Survival Forest [5], Bayesian non-parametric (BNP) like beta/gamma process
[14,15], Lomax delegate racing (LDR) [19], Gaussian process [1,3] etc. As their
numbers of parameters grow with data size, the inference can have issues in both
complexity and efficiency.

Multi-task learning models for survival analysis overcome the weakness of the
statistical models by the multi-task formulation. Specifically, it translates the
original problem into a series of related tasks. Zhou et al. propose a multi-task
learning formulation for predicting the progression of the Alzheimer’s disease
measured via the clinical scores at multiple time points [20]. Li et al. propose an
MTLSA (Multi-Task Learning model for Survival Analysis) model that trans-
forms the original cancer survival analysis problem into a multi-task learning
problem by decomposing the regression component into related classification
tasks [13]. Similarly, Li et al. propose a survival analysis approach to model the
turnover and career progression behaviors in talent management based on multi-
task learning [12]. Despite the effectiveness of these models, they are built with
linear hypotheses, which may not cope with data with non-linear structures.

Recently medical practitioners have employed nonlinear survival analysis,
such as deep learning models to understand the relationship between patients’
covariates and the effectiveness of different treatment options. Katzman pre-
sented a treatment recommender system based on Cox proportional hazards deep
neural network to provide personalized treatment recommendations [7]. DeepHit
is another attempt to tackle survival analysis using the deep neural network [10].



300 Z. Meng et al.

It learns the distribution of survival time directly, without assumptions about
the underlying stochastic process. These methods consider the survival analy-
sis problem as a point-wise prediction problem, which ignores the relationship
between adjacent time slices.

3 Methods

In this section, we present our unified framework that consists of objective func-
tions that incorporate the hinge loss for SVM and ranking constraints for survival
analysis, and also Pegasos (Primal estimated sub-gradient solver for SVM) [16]
based algorithms for optimization.

3.1 Problem Formulation

This paper only considers the non-recurring case of survival analysis, i.e., the
event of interest occurs only once. Each sample i has either a survival time (Oi)
or a censored time (Ci) but not both. Specifically a sample can be represented
as a triplet ( �Xi, Ti, δi), where �Xi ∈ R

1×M is a feature vector; δi is a censoring
indicator that is set to 1 for censored samples and 0 otherwise; Ti denotes the
observed time and is equal to the survival time Oi for uncensored samples and
Ci otherwise. A sample is considered right-censored if only if Ti = min(Oi, Ci).

We use the following notations for any matrix X: the entry at i -th row and
j -th column is denoted as xi,j , while the i -th row in X is expressed as xi,·
and the j -th column of X is written as x·,j . We follow the practice of [13] to
transform the original survival data for multi-task learning. Let N be the number
of samples, and T be max(Ti), the transformation defines the following:

– Y ∈ R
N×T : the target (ground truth) matrix that indicates the “survival

state” (alive or not) of N samples for T intervals where: yi,j = 1 if sample i
is alive at time interval j and −1 otherwise. As the status of some samples
may be unknown, e.g., censored samples (δi = 0). For those samples, we set
the values of corresponding cells to “−1” respectively, according to [13];

– X ∈ R
N×M : the feature matrix that contains N samples. Each row xi,· is a

feature vector for one sample;
– W ∈ R

M×T : the coefficient matrix for predicting samples’ survival behavior.
Each column w·,j defines the weights for a time interval;

– Ŷ ∈ R
N×T : the predicted survival matrix.

3.2 Learning Framework

We learn an SVM model for each task, which associates with the predictions for
the corresponding time interval. In other words, an SVM is trained for each time
interval based on the same X. The coefficients of the SVM at the j -th interval
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are specified by the column w,j of W . The goal is to estimate W by optimizing
the following objective function:

min
W

λ

2
||W ||2 + L (1)

where L defines the constraints in the formulation. In our problem there are two
constraints: L1 that enforces the minimization of the discrepancy between Y
and Ŷ , and L2 that relates to non-recurring setting in which once the survival
state of a sample becomes “1” it will not change back to “−1”. It is termed
as the “Non-increasing” constraint, which can be expressed as follows: yi,j �
max({yi,k|k > j}),∀i ∈ {1, 2, ..., N}, j, k ∈ {1, 2, ...,M}.

Objective Functions. We design two objective functions for basic and ker-
nel learning respectively. For the basic learning the SVM at the j -th interval
classifies each input vector xi,· by learning the following linear model:

ŷi,j = 〈xi,·,w·,j〉, (2)

where 〈xi,·,w·,j〉 denotes the inner product of xi,· and w·,j .
L1 computes the error of each SVM individually:

L1 =
N∑

i=1

M∑

j=1

max{0, 1 − yi,j ŷi,j} (3)

L2 ensures that a “returning-back-to-life” action incurs a loss:

L2 =
N∑

i=1

M∑

j=1

M∑

k>j

1[ŷi,k > 0, ŷi,j < 0](ŷi,k − ŷi,j) (4)

For the kernel learning, SVMs are trained based on the inner products of
training samples specified by a kernel operator, as per the Representer Theorem
[8]. Instead of learning a classifier from training samples xi,·, we can do so by
learning it from some implicit mapping φ(xi,·) of the samples. By applying the
mapping φ(·), we rewrite (2) as:

ŷi,j = 〈φ(xi,·),w·,j〉, (5)

After plugging (5) into (3), (4), the L1 and L2 for kernel algorithm are calculated
in a similar way as the basic version. Note that the mapping φ(·) is never specified
explicitly but rather through a kernel operator K(x, x′) = 〈φ(x), φ(x′)〉 that
yields the inner products after the application of mapping φ(·).

Optimization. We develop two multi-task sub-gradient descent algorithms
based on the Pegasos algorithm [16]. As shown in Algorithm 1, the Basic algo-
rithm optimizes (1) iteratively. Let W (t) be to the weight matrix at the t-th
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Algorithm 1. Multi-task Basic Learning Algorithm

Require: λ, Maximum iteration: Tm

Input: Feature Matrix: X ∈ R
N×M , Target Matrix: Y ∈ R

N×T

1: Set W (1) ∈ R
M×D ← 0

2: for t=1,2...Tm do
3: Set the step size η(t) ← 1

λt

4: Select a sample x
(t)
i,· ∈ R

M randomly, i.e. the i-th row of X

5: Make prediction : ŷ
(t)
i ← (W (t))T xi,·

6: Compute the sub-gradient of L1, L2 w.r.t W (t) according to ŷ
(t)
i

∂L1

∂W (t)
+

∂L2

∂W (t)
=

m∑

j∈P

∂(1 − yi,j ŷ
(t)
i,j )

∂W (t)
+

m∑

j=1

∑

k∈Q

∂(ŷ
(t)
i,k − ŷ

(t)
i,j )

∂W (t)

= −
m∑

j∈P

(yi,j

∂ŷ
(t)
i,j

∂W (t)
) +

m∑

j=1

∑

k∈Q

∂(ŷ
(t)
i,k − ŷ

(t)
i,j )

∂W (t)

where

– P = {j‖y
(t)
i,j ŷ

(t)
i,j < 1}

– Q = {k‖ŷ
(t)
i,j < 0, ŷ

(t)
i,k > 0 ∧ j < k}

–
∂ŷ

(t)
i,j

∂W (t) is a 0 matrix ∈ RM×T , except the j -th column which is set to x
(t)
i,·

7: W (t+1) ← W (t) − η(t)∇W (t)(λ
2
||W (t)||2 + L1 + L2)

8: end for
9: Output: W (Tm+1)

iteration. At each iteration, the sub gradients of L1 and L2 w.r.t W (t) are com-
puted, which are used to update W (t).

The Kernel algorithm also follows the iterative sub gradient optimization
strategy optimize (1). Let W (1) = 0 and L = L1 + L2, W (t) is updated as
follows:

W (t+1) = W (t) − ∇W (t)
1
λt

(
λ

2
||W (t)||2 + L) = (1 − 1

t
)W (t) − 1

λt

∂L
∂W (t)

= (1 − 1
t
)[(1 − 1

t − 1
)W (t−1) − 1

λ(t − 1)
∂L

∂W (t−1)
] − 1

λt

∂L
∂W (t)

=
t − 2

t
W (t−1) − 1

λt
(

∂L
∂W (t)

+
∂L

∂W (t−1)
) = · · · = − 1

λt

t∑

j=1

∂L
∂W (j)

(6)
The value of ∂L

∂W (j) requires ∂L1
∂W (t) , ∂L2

∂W (t) . Note that L1 reflects the classification
performance at each iteration. To aid the calculation, we define an auxiliary
matrix α(t) ∈ R

N×T , which is initialized to 0 at t = 1. At iteration t, α
(t)
i,j

records the times that, until iteration t, the i-th sample has been selected and
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is mis-classified at the j-th time interval. For the i-th sample, the corresponding
vector α

(t)
i,· is updated as: α

(t+1)
i,j = α

(t)
i,j + 1[yi,j ŷ

(t)
i,j < 1],∀j ∈ N

M . As such the
derivative for L1 w.r.t W (t) is:

∂L1

∂W (t)
= −

N∑

i=1

xi,· ⊗ (α(t)
i,· � Yi,·) (7)

where � is element-wise multiplication, and ⊗ is the outer product of two vectors.
Likewise, we define a tensor β ∈ R

N×T×T to keep track of the ‘returning-back-
to-life’ predictions, so as to aid the computation of ∂L2

∂W (t) :

βi,j,k =

⎧
⎨

⎩

0 j > k
| {k | ŷi,j < 0 ∧ ŷi,k > 0}| j < k

(−1) ∗ ∑M
p=j+1 βi,j,p j = k

(8)

where there is one matrix βi ∈ R
T×T associated for each sample xi,·. The value

at the j -th row and k -th column of βi keeps the number of violated predictions
for the “Non-increasing” constraint, i.e., | {(j, k) | ŷi,j < 0 ∧ ŷi,k > 0}| for j < k.
Thus we have

∂L2

∂W (t)
=

N∑

i=1

M∑

j=1

xi,· ⊗ β
(t)
i,j,· (9)

Combing (7) and (9) yields:

∂L
∂W (t)

=
1
λt

N∑

i=1

M∑

j=1

−xi,· ⊗ (α(t)
i,· � Yi,·) + xi,· ⊗ β

(t)
i,j,· (10)

Applying the kernel operator φ{·} to x in (6) and (10) yields:

W
(t)
kernel =

1
λt

N∑

i=1

M∑

j=1

φ{xi,·} ⊗ (α(t)
i,· � Yi,·) − φ{xi,·} ⊗ β

(t)
i,j,· (11)

The prediction for a specific sample c’s survival status : ŷc can be written as:

ŷ(t)
c = φ{xc,·}W

(t)
kernel =

1
λt

N∑

i=1

M∑

j=1

Kc,i(α
(t)
i,· � Yi,) − Kc,iβ

(t)
i,j,· (12)

where Kc,i is a scalar from the kernel matrix K. The kernel optimization algo-
rithm is outlined in the Algorithm2. Unlike the Algorithm 1, Algorithm 2 does
not learn the weight matrix explicitly. Instead it relies on α and β for making
predictions as per (12).

4 Experiments

In this section, we describe the experiment setup, including data sets, base-
line methods, and evaluation metrics, followed by the experiment results that
demonstrate the effectiveness of the proposed approach.
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Algorithm 2. Multi-task Kernel Learning Algorithm

Require: λ, Tm

Input: X ∈ R
N×M , Y ∈ R

N×T

1: Set α(1) ∈ R
N×T ← 0, β(1) ∈ R

N×T×T ← 0
2: Compute the kernel matrix K
3: for t=1,2...,Tm do
4: Set the step size η(t) ← 1

λt

5: Select a sample x
(t)
c,· ∈ R

M randomly, i.e., a random row of X
6: Make prediction:

ŷc = 1
λt

∑N
i=1

∑M
j=1 Kc,i(α

(t)
i,· � yi,·) − Kc,iβ

(t)
i,j

7: Update α(t): according to ŷc:
8: for j=1,2,...,M do
9: α

(t+1)
c,j = α

(t)
c,j + 1[yc,j ŷc,j < 1]

10: end for
11: Update β(t): according to ŷc:

12: for (j, k) ∈ {(j, k)‖ŷ
(t)
i,j < 0, ŷ

(t)
i,k > 0 ∧ j < k} do

13: βc,j,k = βc,j,k + 1[ŷc,j < 0, ŷc,k > 0]
14: end for
15: Update the diagonal entries of βc,·,·
16: for j=1,2,...,M do
17: β

(t+1)
c,j,j = (−1) ∗ ∑M

p=j+1 β
(t+1)
c,j,p

18: end for
19: end for
20: Output: α(Tm+1), β(Tm+1)

4.1 Experiment Setup

Dataset Description. We use synthetic and public real-world sets for evalua-
tion. The descriptive statistics for all public sets are summarized in Table 1.

– SYNTHETIC To demonstrate the capability of our method in coping with
highly heterogeneous patient cohorts expected in medical data, we construct
the following synthetic survival model that exhibits the relationship between
patient survival times and their covariates, based on [1]:

xi ∼ N (0, I),

Ti ∼ exp((γT
1 xi)2 + γT

2 xi).
(13)

We assume that the survival times Ti are exponentially distributed with a
mean parameter that is a sum of a quadratic function ((γT

1 xi)2) and a linear
function (γT

2 xi) of the covariates xi ∈ R
M for patients. The hyperparameters

γ1 and γ2 are set to 10 respectively. Negative mean parameters are rejected
and each Ti is rounded to the closest integer. To simulate censoring, a subset
(50%) of the generated samples have their survival time Ti set to a random
time between [1, Ti], which is denoted as Ci. Different synthetic data are
generated by varying the sample numbers N , and the feature size F .
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– METABRIC The Molecular Taxonomy of Breast Cancer International Con-
sortium (METABRIC) data set consists of gene expression profiles and clin-
ical features for determining breast cancer subgroups. Pre-processing work
includes replacing missing values with mean values for real-valued features,
and mode for categorical features.

– CLINIC This data set tracks the patient clinic status [9]. The goal of sur-
vival analysis is to estimates survival over a 180-day period for seriously ill
hospitalized adults.

– SEER The Surveillance, Epidemiology, and End Results Program (SEER)
data set provides information on breast cancer patients from the San Jose-
Monterey, Los Angeles, Rural Georgia, and Alaska Natives SEER registries
for 1992–2016.

Table 1. Descriptive statistics of public data sets

Data set No. features No. samples Event time Censor time

Categorical Numerical Uncensored Censored Max Min Max Min

METABRIC 15 6 888 (44.8%) 1,093 (55.2%) 745 0 768 2

CLINIC 5 9 4,238 (87.8%) 590 (12.2%) 47 1 50 1

SEER 8 6 17,126 (21.4%) 63,055 (78.6%) 297 0 299 0

Baseline Methods. The following popular baseline methods are chosen:

– The Cox model: The Cox proportional hazards (CPH) model regards the
log-hazard of an individual as a linear function of its static covariates and a
population-level baseline hazard that changes over time.

– The Weibull method: Weibull Analysis is to fit a Weibull distribution for
the sample set so that the parameterized distribution can be used to estimate
the life characteristics of samples.

– MTLSA: the MTLSA (Multi-Task Learning for Survival Analysis) model
[13] formulates the survival analysis problem as a series binary classification
problems in a multi-task learning setting. We use its Matlab implementation1

for evaluation. Note that this is the closest baseline to our approach.
– DeepHit: DeepHit [10] is a deep learning model that learns the distribution

of the first hitting time of an underlying stochastic process. We use its Python
implementation2 for evaluation.

– DeepSurv: DeepSurv [7] combines CPH and neural network for modeling
interactions between a patient’s covariates and treatment effectiveness to pro-
vide personalized treatment recommendations. We use its Python implemen-
tation 3 for evaluation.

1 https://github.com/MLSurvival/MTLSA.
2 https://github.com/chl8856/DeepHit.
3 https://github.com/jaredleekatzman/DeepSurv.

https://github.com/MLSurvival/MTLSA
https://github.com/chl8856/DeepHit
https://github.com/jaredleekatzman/DeepSurv
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These methods output the following values:

– Hazard rate: the risk of failure (i.e., the probability of experiencing the
event) given that the participant has survived up to a specific time. Cox,
Weibull, and DeepSurv output hazard rates, where the event is the death of
samples.

– Occurrence probability: the probability of an event occurring at a given
time, which is a value between 0 and 1. DeepHit predicts the probabilities of
an event, which is the death of samples.

– Survival status: the survival status at a given time, which is often a binary
value indicating if the sample is alive or dead. MTLSA and our proposed
approach produces survival status for samples

Evaluation Metric. The concordance index (C-index) [4] is chosen to compare
the performance of all methods, which reflects how well a model predicts the
ordering of samples according to their survival times. The C-index that compares
a pair of bi-variate observations (T1, T̂1), and (T2, T̂2), where Ti is the ground
true survival time while T̂i is the prediction, is defined as:

C = PE(T̂1 ≥ T̂2|T1 ≥ T2), (14)

where PE is empirical probability calculated from prediction and ground truth
data. As there are three types of output values, it is necessary to transform them
for fair comparisons. The following strategies were applied to baseline outputs:

– Direct comparison The predicted survival time T̂i can be calculated as per
the predicted survival status. As such C-index values can be computed for
each pair by using the prediction and ground truth values as per (14).

– Hazard rate transformation The hazard rate hi(t) reveals the estimated
death”occurrence” for sample i at time unit t. We need to convert it into
survival probabilities to compute C-index values. Let Si(t) be the predicted
probability that sample i is alive until time t:

Si(t) = P (ŷi,1 > 0 ∧ · · · ∧ ŷi,t > 0|hi(1), · · · , hi(t)) (15)

At each time t, we use a Poisson distribution with parameter hi(t) to express
the probability of the death event occurring. Its probability mass function of
is given by: f(k|λ) = λke−λ

k! , where λ is set to hi(t), and k is 0. Thus at each
time t, the death probability is e−hi(t). Combining them yields:

Si(t) = P (ŷi,1···t > 0|hi(1), · · · hi(t)) = exp{−
∑

τ=1...t

hi(τ)}. (16)

Once Si(t) is obtained for all samples, we search for a survival time Tρ that
maximizes the C-index for the test set.

– Occurrence probability conversion Let pi(t) be the death probability at
time t for the i-th sample, we can calculate Si(t), the predicted probabil-
ity that sample i is alive until time t, as: Si(t) = 1 − ∑

τ=1···t pi(τ). After
Si(t) is obtained for all samples, we follow similar strategy in Hazard rate
transformation to compute the average C-index value for the test set.
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4.2 Results

Synthetic Data. We create 15 synthetic sets by setting the feature size F to 15,
20, and 25, and the sample number N to 500, 1000, 2000, 5000, 10000 respectively.
Each data set is split into training and test data randomly with a ratio of 9:1.
We compare both the basic and kernel algorithms (Gaussian kernel is chosen due
to its popularity) with baseline methods. Hyper-parameters are set empirically.
Table 2 summarizes the C-index values obtained by all methods where higher C-
index values indicate better performance. It can be seen from Table 2 our kernel
algorithm achieves the best performance in most cases. Specifically, it beats the
basic algorithm and the MTLSA method. The proposed kernel algorithm appears
to have utilized non-linear patterns inside the data for survival analysis. Though
DeepHit is also a nonlinear method for survival analysis, its performance, in
general, suggests the proposed kernel method can better cope with the data
distribution governed by the synthetic model.

Table 2. The C-index values of all methods on synthetic sets

Methods N = 500 N = 1000 N = 2000 N = 5000 N = 10000

F = 15 Cox 0.4059 0.5248 0.5376 0.4893 0.5418

WeibullAFT 0.4152 0.0.5419 0.5540 0.5055 0.5611

MTLSA 0.4587 0.5887 0.5784 0.5196 0.5830

DeepSurv 0.5602 0.5156 0.5804 0.5042 0.5130

DeepHit 0.6314 0.5727 0.5489 0.5581 0.5154

Ours (basic) 0.5975 0.6473 0.5830 0.5813 0.5795

Ours (kernel) 0.6193 0.6565 0.6610 0.5938 0.6120

F = 20 Cox 0.5332 0.4903 0.4693 0.5504 0.5089

WeibullAFT 0.5332 0.4982 0.4711 0.5712 0.5283

MTLSA 0.6276 0.5168 0.5381 0.5812 0.5459

DeepSurv 0.4888 0.4819 0.5116 0.5012 0.4954

DeepHit 0.5689 0.5354 0.5455 0.5539 0.4714

Ours (basic) 0.6146 0.5269 0.5653 0.5640 0.5545

Ours (kernel) 0.7340 0.6234 0.6200 0.5968 0.5819

F = 25 Cox 0.3996 0.4847 0.6121 0.4721 0.5323

WeibullAFT 0.3703 0.4969 0.6197 0.4906 0.5485

MLTSA 0.5088 0.5467 0.6255 0.5077 0.5618

DeepSurv 0.3430 0.3623 0.5228 0.5105 0.5264

DeepHit 0.5732 0.5496 0.5871 0.4807 0.4819

Ours (basic) 0.5855 0.5727 0.5916 0.5387 0.5521

Ours (kernel) 0.6447 0.6655 0.6563 0.5733 0.5875
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To learn how the kernel algorithm behaves during testing, we plot the loss
values and the standard variation of C-index on some test sets in Fig. 1. Specifi-
cally we record the loss values and compute the standard deviation values of the
C-index whenever 10% training data is sampled. As depicted in Fig. 1, the loss
and the C-index standard deviation values exhibit a decreasing trend as more
data is sampled. This shows that the proposed algorithm optimizes the C-index
while minimizing the loss.

(a) N=10000,F=20 (b) N=10000,F=25

Fig. 1. The loss and standard deviation values of C-index observed on test sets.

Public Data. For each data set we use 10 fold cross-validation and report
the mean C-index values for comparison. Furthermore, we also compare all the
methods in the perspective of resource allocation, e.g., hospital triage.

C-index Evaluation. We compare with baseline methods the performance of
different kernels, namely the Linear, Polynomial, Sigmoid and Gaussian kernels.
Table 3 lists the C-index values obtained by all the methods on public data
sets. As shown in the table, our algorithm with Gaussian kernel achieves the
best performance on all public sets, amongst all kernels. Furthermore, it also
outperforms all baseline methods on all data sets. Out of all baseline methods,
MTLSA’s performance comes top on the METABRIC set, whilst DeepHit is
the best baseline on CLINIC and SEER sets. Our algorithm beats MTLSA (the
closet baseline) on all sets. As a non-linear method, it also achieves slightly better
performance than DeepHit on CLINIC and SEER sets. Note that CLINIC and
SEER set contain more samples than the METABRIC set. This shows that our
algorithm’s performance is stable on data sets of different sizes.

Wastage-Survival Evaluation. All samples can be ranked by their predicted
survival status, based on the imminence of respective death events. Resource
wastage is caused by the early treatment of samples of lower priority. Let
tr ∈ {1 · · · T} be the time to treat samples. We assume that at each time only
the top (N

T �) living samples can be treated. A sample i is considered still alive
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at time tr if Ti ≥ tr. The accumulated wastage ψm(tr) at time tr for method m
can be formulated as

ψm(tr) =
tr∑

j=1

∑

i∈Sm
j

log(Ti − j), (17)

where Sm
j represents the ranked sample list produced at time unit j by method

m, and the log(·) function is used for numerical control. We then use the aggre-
gated Wastage-Survival(W-S) score to compare all methods, which favours meth-
ods that generate low wastage and high survival numbers. We choose to com-
pute the W-S score at T/2. For method m, the wastage at T/2 is defined as
wm = c/ψm(T/2) where c is a scaling constant, and the survival number sm

at T/2 is defined as 1 − Dm/N where Dm is the number of death occurrence
at T/2. The aggregated score for m is Fm = 2 ∗ wm ∗ sm/(wm + sm). We use
the ratio WSm = Fm/FOurs as the W-S measurement for method m. As a result
WSm < 1 indicates our method performs better. The W-S scores for all methods
are shown in Fig. 2, which suggests our method achieves the best performance
in general, as most of the bars are under the horizontal line of 1.

Table 3. C-index values of all methods on
public sets

Metabric Clinic Seer

Cox 0.6774 0.5729 0.6988

Weibull 0.6779 0.5640 0.6993

MTLSA 0.6918 0.5631 0.7695

DeepSurv 0.5658 0.5098 0.4972

DeepHit 0.6810 0.5923 0.7833

Ours (Linear) 0.6469 0.5823 0.6460

Ours (Polynomial) 0.6854 0.5492 0.7590

Ours (Sigmoid) 0.7104 0.5666 0.7196

Ours (Gaussian) 0.7233 0.5955 0.7879

Fig. 2. W-S measurement

5 Conclusions

We have presented a multi-task kernel learning framework for survival analy-
sis. We have also developed Pegasos based optimization algorithms for learning
parameters. Experiment results demonstrate the effectiveness of our method.
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Abstract. Automated machine learning (AutoML) attempts to auto-
matically build appropriate learning model for given dataset. Despite the
recent progress of meta-learning to find good instantiations for AutoML
framework, it is still difficult and time-consuming to collect sufficient
meta-data with high quality. Therefore, we propose a novel method
named Meta-data Augmentation based Search Strategy (MDASS) for
AutoML model selection, which is mainly composed of Meta-GAN Sur-
rogate model (MetaGAN) and Self-Adaptive Meta-model (SAM). Meta-
GAN employs Generative Adversarial Network as surrogate model to
collect effective meta-data based on the limited meta-data, which can
alleviate the dilemma of meta-overfitting in meta-learning. Based on
augmented meta-data, SAM self-adaptively builds multi-objective meta-
model, which can select the algorithms with proper trade-off between
learning performance and computational budget. Furthermore, for new
datasets, MDASS combines promising algorithms and hyperparameter
optimization to perform automated model selection under time con-
straint. Finally, the experiments on various classification datasets from
OpenML and algorithms from scikit-learn are conducted. The results
show that GAN is promising to incorporate with AutoML and MDASS
can perform better than the competing approaches with time budget.

Keywords: AutoML · Meta-learning · Data augmentation ·
Generative Adversarial Network · Automated model selection

1 Introduction

Automated machine learning (AutoML) attempts to automate tedious but core
tasks efficiently [22] to enable the wide-spread use of machine learning by non-
experts [21]. It has shown promising results in various tasks, such as feature
engineering [14], hyperparameter optimization [12], model selection [5,7,18].
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Despite recent progress, model selection in high-dimension configuration
space is still a major challenge in AutoML. To improve the efficiency, meta-
learning is widely adopted [5,6,21] to learn how different configuration performs
across datasets (meta-knowledge) from previous learning experience of prior
datasets (meta-data) [19]. The existing researches pay more attention to how
to better extract meta-knowledge. However, meta-data also plays an important
role in meta-learning. It is difficult to collect sufficient meta-data with high qual-
ity for the following problems: i) Since some configurations may spend several
hours or days to evaluate performance, collecting sufficient meta-data endures
more computational budget. ii) The datasets provided by repositories such as
UCI [2] and OpenML [20] are still limited and their distribution cannot cover
the entire distribution of prior datasets. Meta-learning cannot work well when
the distribution of new datasets is significantly different from prior datasets.

To efficiently collect meta-data, the existing promising methods limit maxi-
mum runtime or memory consumption in model evaluation. The models exceed-
ing runtime or memory remain missing entries in meta-data. Afterward, the
techniques such as collaborative filtering [16,21] or matrix factorization [7] are
to complete meta-data. However, these techniques require at least one model
on each dataset trained successfully, and become poor when facing numerous
missing entries. Reference [11] showed that some datasets are not reliable for
being used in hyperparameter optimization, and presented an interesting app-
roach of using probabilistic encoder to generate inexpensive and realistic data
for optimization benchmarking. Therefore, it is significant to directly generate
meta-data through generative model for meta-learning. Generative Adversarial
Network (GAN), a framework to estimate generative models through adversar-
ial training [1,8,15], has been prevailing for data augmentation since its origin
[9]. One of the key features of GAN is its generic nature in sampling from an
unspecified distribution underlying the given data. This feature fits well when
augmenting data from datasets collected without knowing a prior distribution,
such in the case of meta-learning. Therefore, meta-data augmentation based on
GAN is a promising approach to improve the generalization of meta-learning.

In this paper, we investigate the approach of incorporating GAN with meta-
learning for meta-data augmentation, named as Meta-GAN Surrogate Model
(MetaGAN). We then further propose Meta-data Augmentation based Search
Strategy (MDASS) for AutoML model selection, composed of MetaGAN and
Self-Adaptive Meta-model (SAM). Our contributions are summarized as fol-
lows:1

– In order to efficiently collect sufficient meta-data with high quality, we pro-
pose MetaGAN for meta-data augmentation. It employs GAN as surrogate
model to generate meta-data described by meta-features and specific class
that indicates the algorithm performance. Therefore, it drastically reduces
the computational budget to collect meta-data and renders meta-learning
more comprehensive to exploit the underlying distribution of meta-data.

1 The supplementary material of MDASS is available at https://github.com/wj-tian/
MDASS.

https://github.com/wj-tian/MDASS
https://github.com/wj-tian/MDASS
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– In order to effectively extract meta-knowledge, we propose SAM for algorithm
selection. It self-adaptively builds meta-model based on augmented meta-
data through appropriate classification and regression learners with two meta-
tasks: selecting high-performance algorithms and predicting runtime order
respectively. This model can determine which algorithms have the right trade-
off between computational budget and performance.

– In order to build appropriate models for new datasets under time constraint,
MDASS combines promising algorithms selection and hyperparameter opti-
mization, and employs Bayesian optimization to search the best model with
the runtime order in the expected budget.

– Finally, we conduct experiments on a wide range of datasets from OpenML
[20] and various machine learning algorithms from scikit-learn [17]. The
results show that MetaGAN can significantly improve the performance of
meta-learning and MDASS can obtain an appropriate model with the proper
trade-off between runtime and accuracy within certain time constraints.

The remainder of this paper is organized as follows. Section 2 describes the
main idea of MDASS. Section 3 analyzes the experiments and results. Finally,
we present the conclusion and future work in Sect. 4.

2 Meta-data Augmentation Based Search Strategy
for AutoML Model Selection (MDASS)

The framework of MDASS as shown in Fig. 1 is to perform meta-data augmen-
tation through MetaGAN and determine which algorithms have proper trade-off
between runtime and accuracy through SAM. We construct accurcacy-oriented
meta-data and runtime-oriented meta-data from hand-picked datasets and spe-
cific algorithms. Then, accuracy-oriented meta-data is to execute augmentation
through MetaGAN (see Sect. 2.1). Based on augmented meta-data, SAM is built
for promising algorithm selection and runtime order prediction (see Sect. 2.2).
Given a new dataset, MDASS computes its meta-feature for SAM, and the
promising algorithms are evaluated in this order until exceeding the time budget
to build appropriate model. Here, we employ the commonly used Bayesian opti-
mization [5,12,18] to evaluate algorithm performance. Notably, when all promis-
ing algorithms have been evaluated sequentially but time budget is not exceed-
ing, MDASS executes the process of joint optimization, i.e. combining promising
algorithm selection and corresponding hyperparameter optimization.

2.1 MetaGAN for Meta-data Augmentation

Problem Formulation. Meta-data, the foundation of meta-learning, in
MDASS can be defined as M = 〈F,A,R〉, where F ∈ R

m×l, A ∈ R
m×n and

R ∈ R
m×n are the matrixes of meta-features, accuracy and runtime. l, m and n

represent the number of meta-features, hand-picked datasets and specific algo-
rithms.
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Fig. 1. The framework of Meta-data Augmentation-based Search Strategy (MDASS).

Let d1, ..., dm be a set of hand-picked datasets. They are the instantiations
sampled from an unknown datasets distribution di ∼ p (d). For each dataset di,
it has an associated objective function fd : Fi ∈ R

l → R
n mapping the meta-

features to algorithm performance. Every entry Aij in accuracy matrix records
the accuracy of algorithm aj on dataset di. The runtime of corresponding learn-
ing model is recorded as Rij . Here, we name the combination of F and A as
accuracy-oriented meta-data while F and R as runtime-oriented meta-data. For
new datasets, most meta-learning methods are to compute the similarity with
prior datasets in meta-feature space, or build machine learning model to learn fd
on meta-data and predict the algorithm performance. However, the distribution
p (d) is unknown and the hand-picked datasets are hard to represent this distri-
bution. It limits the capacity of meta-learning learning from prior experience.
Therefore, the main intention of MetaGAN is to approximate p (d) with GAN
and sample new meta-data that belongs to datasets d∗ ∼ p (d|F,A).

MetaGAN: Conditional WGAN-Based Meta-data Augmentation.
Hand-picked datasets can be viewed as instantiations sampling from unspeci-
fied distribution. GAN fits well when augmenting data from datasets sampled
without knowing prior distribution. Since unconditional GAN has no control for
the generated data mode, MetaGAN is based on conditional setting. Figure 2
shows the process of MetaGAN. To perform conditional meta-data augmenta-
tion, accuracy matrix is first labeled through the following steps: i) Each entry
Aij is normalized by A∗

ij = max {Aij}nj=1 − Aij . ii) The normalized accuracy is
labeled by predefined threshold ξ. When A∗

ij is greater than ξ, it is labeled as
True, representing algorithm aj on dataset di has promising performance and
vice versa.
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Fig. 2. The process of MetaGAN. It is built with conditional WGAN through gradient

descent method. 1© represents ∇θd

[
1
m

m∑
i=1

D
(
xi, ci; θd

) − 1
m

m∑
i=1

D
(
G

(
zi

)
, ci; θd

)]
, and

2© represents −∇θg
1
m

m∑
i=1

D
(
G

(
zi

)
, ci; θg

)
.

Afterwards, MetaGAN is conditioned on class to direct accuracy-oriented
augmentation under WGAN framework. It is formulated as two adversarial
model: meta-generator G and meta-discriminator D. G implicitly learns the
distribution of dataset from input meta-data and transforms a prior noise distri-
bution pz(z) into meta-features space of datasets drawn from the learned distri-
bution. D estimates the Wasserstein distance explicating the minimum cost of
transporting mass for transforming the dataset distribution p (d) into the learned
distribution of generator pg. Thus, the objective function of MetaGAN can be
defined as Eq. 1, which also reflects the quality of meta-data augmentation.

V (G,D) = Ex∼p(d)D (x, c) − EG(z)∼pg
D (G (z), c) (1)

where c is specific class of condition. G and D are trained simultaneously, alter-
nating between the training phases of them as optimizing their parameters shown
in Fig. 2. When MetaGAN has been trained, meta-data can be collected with an
insignificant cost, bounded only by the computational overhead of MetaGAN.

2.2 Self-Adaptive Meta-Model for Algorithm Selection

The intention of MDASS experienced by users is to efficiently obtain high-
performance learning model. Therefore, it requires the algorithms with higher
performance but lower runtime in optimization process. We propose SAM to
solve these two meta-tasks: high-accuracy algorithm selection and runtime order
prediction. It can carry out the trade-off of learning performance and runtime
to provide more time for promising algorithms in evaluation process. The key
problem for SAM is to achieve global optimum under different algorithm predic-
tion. Since there exists no such universal learner outperforming other learners
consistently, different algorithm prediction should be considered separately.

For accuracy-oriented meta-model, it is built on augmented accuracy-oriented
meta-data to predict whether an algorithm has promising performance. There-
fore, it can be viewed as multi-output classification problem. We consider the
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classification learners with best performance in accuracy matrix, and base learn-
ers of each output is from these learners. The objective function is defined as
Eq. 2, which can be achieved by minimizing the loss of each output greedily.

facc
j = arg min

facc
j ∈Γcla

1
m

m∑

i=1

∣∣facc
j (Fi) − Aij

∣∣ (2)

where facc
j represents the base learner of each algorithm selection and Γcla repre-

sents the collection of classification learners. For runtime-oriented meta-model,
it is built on runtime-oriented meta-data to predict algorithm runtime rank-
ing. Similar to accuracy-oriented meta-model, this meta-model can be viewed as
multi-output regression problem, and we consider regression learners from three
different categories including ridge regression, support machine vector regression
and random forest for base learners. Then, this meta-model can be achieved by
minimizing the objective function as Eq. 3.

f time
j = arg min

ftime
j ∈Γreg

m∑

i=1

(
f time
j (Fi) − Rij

)2
(3)

where f time
j represents the base learner of each runtime prediction and Γreg

represents the collection of regression learners.
Therefore, SAM applys appropriate learners to adapt each algorithm predic-

tion. When the SAM trained, MDASS can evaluate high-performance algorithms
in the order of runtime ranking for new datasets. Notably, SAM is built on aug-
mented meta-data through MetaGAN and this process is performed offline only.
Runtime on it does not increase the runtime of MDASS employed by users,
bounded only with the automated model selection stage for new given datasets.

3 Experiments

3.1 Generation of Meta-Data

We ran all experiments on 405 classification datasets sorted by most runs in
OpenML [20]. They were selected by filtering with no more than 10000 samples
and 300 features. The same preprocessings were applied to all datasets: remov-
ing missing value, one-hot encoding for categorical features and standardizing
all features. All involved algorithms were implemented by scikit-learn [17]: Ker-
nel SVM, Linear SVM, Gaussian naive Bayes, Bernoulli naive Bayes, k-Nearest
Neighbor (KNN), Decision Tree, Random Forest, Adaboost, Stochastic Gradient
Descent (SGD), Latent Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA), Passive Aggressive, and Extra Tree. We generated accuracy
matrix through running Bayesian optimization implemented in Hyperopt [3] to
search best performance for a specific algorithm on each dataset and we set the
labeled threshold as 0.025. Moreover, the meta-features used in experiments are
divided into five groups: simple, statistical, information-theoretic, complexity
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(a) iteration (b) time budget

Fig. 3. Comparison of random method and auto-sklearn in a time-constrained setting.
(a) the average rank with the increasing of iteration, 1 is the best and 3 is the worst.
(b) the average rank with different time budget, 1 is the best and 2 is the worst.

and landmarkers. More details of meta-feature and algorithm hyperparameter
space are listed in supplementary material. We only used six meta-features which
are more relevant to runtime prediction for runtime-oriented meta-model: num-
ber of instances, number of features, dataset ratio and their log values.

3.2 Experimental Setup

In our experiments, hold-out-validation is used to evaluate MDASS, and repeated
10 times. Therefore, out of the 405 total datasets, 10% (≈40) were identified to
comprise the held-out test set and the remaining datasets were to build MDASS
in each hold-out-validation. Six base learners were to formulate accuracy-oriented
meta-model: Adaboost, Extra Tree, Random Forest, Decision Tree, Kernel SVM
with the highest performance in accuracy matrix and the commonly used learner
in literature [5,13], KNN. For generator and discriminator of MetaGAN, they
both had same neural architecture: Multi-layer Perceptron with two hidden lay-
ers, and ReLU activation function was applied for all layers except the output
layer which was linear combination. For hidden layers, we used dropout strat-
egy with the probability of 0.2. Besides, MetaGAN used RMSProp optimizer
with global learning rate of 1e−4 and decay rate of 0.9. We set the weight clip-
ping parameter as 0.01. We augmented the number of meta-data to approximate
600 though MetaGAN. All procedures are ran on Windows server with Intel(R)
Xeon(R) CPU E5-2609 v4 @1.79 GHZ processor.

3.3 Experimental Evaluation and Analysis

The Performance Validation of MDASS. When tackling a specific domain
problem through machine learning, many users tend to quickly construct learn-
ing model to mining the knowledge in domain data. MDASS provides a novel
AutoML system to efficiently obtain high-quality model with an automatic man-
ner for given datasets. Therefore, it can alleviate the challenge of model design.
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Fig. 4. Comparison of random method and auto-sklearn without time-constrain setting

In order to evaluate the effectiveness of MDASS, we compare it with the
following baselines: i) random: randomly searching algorithm and hyperparam-
eters to evaluate for each dataset in test set. ii) auto-sklearn [5]: Since ensemble
and preprocessing are not involved in MDASS, we disabled automated ensem-
ble construction and preprocessing in auto-sklearn. Figure 3 shows the average
rank of these methods from optimization iteration and time budget within a
time-constrained setting. From Fig. 3(a), the average rank of MDASS is decreas-
ing consistently, while auto-sklearn is increasing. Besides, auto-sklearn is the
best at the beginning 10 iteration, but MDASS can surpass auto-sklearn quickly
and become the optimal about 52 iteration. From Fig. 3(b), MDASS is bet-
ter than auto-sklearn consistently and the performance of MDASS turns better
with the increasing of time budget. We can conclude that MDASS performs
surprisingly well than other methods with time budget, since random performs
optimization in all configuration space and auto-sklearn selects multiple hyper-
parameter configurations to warm-start optimization according to the distance
between datasets, while MDASS only optimizes in promising model space, i.e.,
higher accuracy and lower runtime algorithms. In addition, Fig. 3 also illustrates
that MDASS can search better individual model than auto-sklearn and random
method since we both disable ensemble construction in these methods.

In addition, we disable the time-constrain setting and joint optimization
(CASH) is applied to the promising algorithms with corresponding hyperpa-
rameters. The result is shown in Fig. 4. We can observe that MDASS turns
lowest in earlier phase and the average rank of MDASS drops faster than that
with time-constrain setting, surpassing random method from the beginning of
optimization consistently. When considering time budget, the initial evaluated
algorithm may not be the best model, which consume a few iterations.

Why Dose MDASS Work Well? MDASS performs well in comparison with
random and auto-sklearn method. In this section, we execute ablation studies
of MDASS to interpret why MDASS works well and whether its components,
MetaGAN and SAM, are reasonable.

The Improvement of MetaGAN and SAM. MDASS contains two main compo-
nents: MetaGAN and SAM. In order to evaluate the improvement of MDASS,
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we compare four variants of our method: original version without MetaGAN
and SAM (Original), MetaGAN only, SAM only and combining MetaGAN and
SAM on the following five metrics: 1) Single Best Rate (SB): overlap of one best
algorithms, i.e. the best algorithm in predicted promising algorithms of SAM. 2)
Two Best Rate (TB): overlap of two best algorithms. 3) Single Worst Rate (SW):
overlap of one worst algorithm. 4) Global Accuracy (GA): average accuracy of
each algorithm prediction. 5) Global BER (GB): the balanced error rate (the
average of false negative and false positive rates) of each algorithm prediction.
For these metrics, the greater values of SB, TB, GA and lower values of SW, GB
indicate better performance of each component. Here, we evaluate the accuracy-
oriented meta-model (promising algorithm selection), and the performance of
runtime-oriented meta-model is evaluated in the following experiment. We set
base learner of Original and MetaGAN variants as Random Forest.

Table 1 shows the comparison of these methods. We observe that Meta-
GAN+SAM achieves superior performance over all variants. Compared with
Original, the SB, TB, GA of MetaGAN+SAM have increased by 0.074, 0.057,
0.035 and SW, GB have reduced by 0.031, 0.018 respectively, which reveals our
approach can find out more promising algorithms. Besides, both two components
can yield improvement over Original. MetaGAN can improve meta-learning to
search more promising algorithms. Compared with Original, SB, TB and GA
are increased from 0.795, 0.879 and 0.788 to 0.828, 0.918 and 0.796 while SW
and GB are reduced from 0.113 and 0.105 to 0.085 and 0.098 respectively, which
demonstrates the promise of GAN to meta-learning. SAM adapts meta-data
using multi-learners for each algorithm selection instead of single learner for all
outputs, which also improves the performance of MDASS. Compared with Orig-
inal, SB, TB and GA have increased by 0.026, 0.021 and 0.014 while SW has
reduced by 0.013. Fig. 5 shows algorithm selection performance of MDASS on 39
datasets of meta-test set in one of 10 hold-out-validation. We can observe that
the lighter algorithms (top) have larger probability to be selected (bottom).

Moreover, in order to demonstrate the superiority of GAN, we compare Meta-
GAN with the following synthetic data methods: 1) Resample: random sampling
from origin meta-data repeatedly. 2) SMOTE [4]: random resampling for one
class and SMOTE for another, and vice versa. 3) ADASYN [10]: random resam-
pling for one class and ADASYN for another, and vice versa. The result is shown
in Table 2. Resample method only generates same meta-data, which is easy to
introduce more variance for algorithm selection. Thus, it is uncompetitive with
MetaGAN, even with Original. Since SMOTE and ADASYN are both based on
the distance of instances in meta-data, they perform poorer than MetaGAN on
all metrics, even for comparison to Resample method with higher SW and GB
which are both more than 0.12. MetaGAN generates meta-data through learning
the distribution of origin meta-data, maintaining the highest performance and
lower variance (more robust for meta-learning) in four competing approach.

The Runtime Prediction Performance of SAM. In order to evaluate the run-
time prediction performance in MADSS, we compare the runtime-oriented meta-
model in SAM and the polynomial regression models with the factor of 2 to 4
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Fig. 5. Algorithm performance heatmap. Top: Each block is colored by the perfor-
mance of each algorithm on 39 datasets. The lighter block represents the performance
of corresponding algorithm is better, and vice versa. Bottom: the selection result of
SAM on these 39 datasets. The white block represents the algorithm selected by SAM
while the black block represents the algorithm is not selected as promising one. The
algorithms represented by y-axis from bottom to top in these two figures are Kernel
SVM, Linear SVM, Gaussian naive Bayes, Bernoulli naive Bayes, KNN, Decision Tree,
Random Forest, Adaboost, SGD, LDA, QDA, Passive Aggressive, and Extra Tree.

Table 1. Four variants compasion on held-out test set.

Variants Metrics

SB(↑) SW(↓) TB(↑) GA(↑) GB(↓)

Original 0.795 ± 0.044 0.113 ± 0.042 0.879 ± 0.057 0.788 ± 0.021 0.105 ± 0.017

MetaGAN 0.828 ± 0.030 0.085 ± 0.036 0.918 ± 0.050 0.796 ± 0.020 0.098 ± 0.017

SAM 0.821 ± 0.055 0.100 ± 0.047 0.900 ± 0.053 0.802 ± 0.019 0.101 ± 0.016

MetaGAN+SAM 0.869 ± 0.051 0.082 ± 0.047 0.936 ± 0.052 0.823 ± 0.021 0.087 ± 0.018

Table 2. The comparison of different synthetic data.

Methods Metrics

SB(↑) SW(↓) TB(↑) GA(↑) GB(↓)

Resample 0.785 ± 0.066 0.090 ± 0.015 0.879 ± 0.051 0.794 ± 0.051 0.102 ± 0.015

SMOTE 0.797 ± 0.053 0.121 ± 0.067 0.882 ± 0.040 0.792 ± 0.022 0.099 ± 0.020

ADASYN 0.800 ± 0.045 0.128 ± 0.018 0.885 ± 0.048 0.794 ± 0.022 0.100 ± 0.018

MetaGAN 0.828 ± 0.030 0.085 ± 0.036 0.918 ± 0.050 0.796 ± 0.020 0.098 ± 0.017

using in OBOE [21] on algorithm runtime prediction. In our experiment, the
polynomial regression with the factor of 3 and 4 performs much worse than the
factor of 2. Therefore, we only present the performance of the model with fac-
tor of 2. Table 3 show the runtime prediction accuracy (the distance of actual
time and predicted time less than 1 s) of these method. We can observe that
SAM performs better than OBOE in 9 algorithms runtime prediction and the
accuracy of other algorithm prediction is similar with OBOE. Although runtime
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Table 3. Runtime prediction accuracy.

Algorithm type Methods

With factor of 2 SAM

Kernel SVM 0.846 ± 0.055 0.872 ± 0.053

Linear SVM 0.635 ± 0.034 0.685 ± 0.050

Gaussian naive Bayes 0.972 ± 0.027 0.977 ± 0.021

Bernoulli naive Bayes 0.982 ± 0.020 0.990 ± 0.012

KNN 0.967 ± 0.023 0.967 ± 0.033

Decision Tree 0.751 ± 0.051 0.851 ± 0.043

Random Forest 0.849 ± 0.068 0.892 ± 0.043

Adaboost 0.454 ± 0.040 0.523 ± 0.083

SGD 0.821 ± 0.070 0.846 ± 0.068

LDA 0.941 ± 0.046 0.923 ± 0.049

QDA 0.890 ± 0.043 0.885 ± 0.043

Passive Aggressive 0.895 ± 0.045 0.928 ± 0.039

Extra Tree 0.951 ± 0.035 0.946 ± 0.045

prediction for machine learning algorithm is difficult to predict, the performance
of SAM on multiple algorithms is a roughly good prediction and the predicted
runtime ranking for MDASS is acceptable.

4 Conclusion

Meta-learning is widely used in AutoML. However, collecting sufficient meta-
data with high quality is difficult. In this work, we incorporate GAN with meta-
learning for meta-data augmentation, and propose Meta-data Augmentation-
based Search Strategy (MDASS) for AutoML model selection, which is com-
posed of Meta-GAN Surrogate Model (MetaGAN) and Self-adaptive Meta-
model (SAM). MetaGAN generates effective meta-data through WGAN as sur-
rogate model. SAM applies hybrid learners to self-adaptively build meta-models
to search the algorithms with right trade-off of runtime and accuracy. For a
new dataset, MDASS evaluate promising algorithms with Bayesian optimiza-
tion under time constraint. Our experiments, evaluated on 405 classification
datasets from OpenML and 13 classifiers from scikit-learn, show that our pro-
posed method both can yield improvement than comparative methods.

This work demonstrates the promise of GAN for AutoML research. However,
there still many lefts to future research. The well-known dilemma is the stable
training process of GAN, and the neural architecture of GAN using in MDASS
should be elaborate to design. Therefore, one obvious direction is to adapt neural
architecture search for GAN. Moreover, MetaGAN can incorporate with semi-
supervised learning and be extended to semi-AutoML through the adversarial
training of meta-model, generator and discriminator.
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22. Zöller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning
frameworks. arXiv preprint arXiv:1904.12054 (2019)

http://arxiv.org/abs/1810.03548
http://arxiv.org/abs/1904.12054


Tree-Capsule: Tree-Structured Capsule
Network for Improving Relation

Extraction

Tianchi Yang1, Linmei Hu1, Luhao Zhang2, Chuan Shi1(B), Cheng Yang1 ,
Nan Duan3, and Ming Zhou3

1 Beijing University of Posts and Telecommunications, Beijing, China
{yangtianchi,hulinmei,shichuan}@bupt.edu.cn

2 Meituan, Beijing, China
zhangluhao@meituan.com

3 Microsoft Research, Beijing, China
{nanduan,mingzhou}@microsoft.com

Abstract. Relation extraction benefits a variety of applications requir-
ing relational understanding of unstructured texts, such as question
answering. Recently, capsule network-based models have been proposed
for improving relation extraction with better capability of modeling com-
plex entity relations. However, they fail to capture the syntactic struc-
ture information of a sentence which has proven to be useful for rela-
tion extraction. In this paper, we propose a Tree-structured Capsule
network based model for improving sentence-level Relation Extraction
(TCRE), which seamlessly incorporates the syntax tree (Generally, syn-
tax trees include constituent trees and dependency trees.) information
(constituent tree is used in this work). Particularly, we design a novel
tree-structured capsule network (Tree-Capsule network) to encode the
constituent tree. Additionally, an entity-aware routing algorithm for
Tree-Capsule network is proposed to pay attention to the critical rele-
vant information, further improving the relation extraction of the target
entities. Experimental results on standard datasets demonstrate that our
TCRE significantly improves the performance of relation extraction by
incorporating the syntactic structure information.

1 Introduction

Relation extraction aims to identify the relation between two entities in a sen-
tence. It plays an important role in many natural language processing (NLP)
tasks, such as question answering [15] and knowledge base population [21]. Com-
pared with traditional approaches focusing on human-designed feature engineer-
ing, neural models have achieved significant improvement for relation extrac-
tion, such as Convolutional Neural Networks (CNN) [7,16,17] and Recurrent
Neural Networks (RNN) [8,21,22]. Recently, some researchers begin to explore
capsule networks [10] for many NLP tasks [1,4,14], including relation extrac-
tion [3,18,19], which could benefit from the stronger representing capability of
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12714, pp. 325–337, 2021.
https://doi.org/10.1007/978-3-030-75768-7_26
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capsules. For example, [18] and [19] developed capsule network with attention
mechanism for multi-instance multi-label relation extraction. [3] proposed an
attribute-driven capsule network for relation extraction. However, they fail to
take into account the syntax tree information (e.g., dependency tree and con-
stituent tree) which captures the long-range semantic relations among words and
has proven to be very useful in relation extraction [8,13,20].

Generally, syntax trees include dependency trees and constituent trees. Since
capsule network is good at modeling part-whole relationships [10] and con-
stituent trees encompass part-whole semantic relationships between words and
phrases in the sentences, we explore to extend the capsule network to encode the
constituent tree. However, it is nontrivial due to the following three challenges.
(1) Traditional capsule networks are based on word sequence, which cannot be
directly applied to the constituent tree. How can we develop a new structured
capsule network that aggregates information from child to parent constituents
based on the constituent tree? (2) Different types of constituents contribute in
different patterns to the parent constituent. For example, a Noun (NN) con-
tributes more to a Noun Phrase (NP), while a Verb (VB) provides more infor-
mation to a Verb Phrase (VP). In addition, some constituents may contain irrel-
evant and noisy information. How can we capture the difference of constituent
types and pay attention to critical information in encoding the constituent tree?
(3) Existing capsule networks are usually shallow (no more than 2 layers) due
to the gradient vanishing problem, while the constituent tree is quite deep (10
on average). How can we avoid the gradient vanishing problem?

To address the above challenges, in this paper, we propose a Tree-Capsule
network based model for Relation Extraction (TCRE), which improves the per-
formance by seamlessly incorporating the constituent tree information. Specif-
ically, we design a novel tree-structured capsule network (called Tree-Capsule
network) to encode the constituent tree information. Tree-Capsule network has a
carefully designed part-whole aggregation mechanism tailored to the constituent
tree. In this way, it can aggregate information from child to parent constituents
along the constituent tree. During the aggregation, it considers that different
types of constituents (e.g., NN, VB, NP and VP) contribute in different patterns
to their parent constituents. In addition, an entity-aware routing algorithm for
the Tree-Capsule network is proposed to pay attention to the critical relevant
information for the relation extraction of the target entities. At last, to address
the gradient vanishing problem caused by the deep structure of the constituent
tree, a new activation function (hardtanh with the gradient as constant 1 around
0) is also introduced. In summary, the main contributions of this paper are as
follows:

1) To the best of our knowledge, we are the first to propose tree-structured
capsule (Tree-Capsule) network, which is tailored to encode the syntactic
structure information (constituent tree) for improving sentence-level relation
extraction.
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2) In the Tree-Capsule network, we design a new part-whole aggregation mech-
anism for encoding the constituent tree. It considers different types of con-
stituents during information aggregation along the tree. In addition, an entity-
aware routing algorithm is proposed to pay attention to the target entity rele-
vant information. A new activation function is also introduced for alleviating
gradient vanishing problem.

3) Extensive experimental results have demonstrated that our proposed model
significantly improves the performance of relation extraction by incorporating
the syntactic structure information.

2 Our Proposed Model

Fig. 1. Illustration of our model TCRE (left) and the new part-whole aggregation
mechanism (right) of Tree-Capsule network (taking Nc = 2 as an example).

In this section, we will detail our proposed model TCRE, which improves
the sentence-level relation extraction by taking full advantage of the syntax
tree information (i.e., constituent tree in this paper). As shown in the left of
Fig. 1, TCRE contains three parts: (1) Sequence-based encoder first encodes the
sequence of words in a sentence. (2) Tree-Capsule network then encodes the
constituent tree structure based on above. (3) Finally, relation prediction mod-
ule combines the sequential and structural information for improving relation
extraction. In the following, we will describe them in detail.

2.1 Sequence-Based Encoder

In this paper, we apply BiLSTM as sequence encoder to deeply learn the semantic
meaning of a sentence. Note that we can also try state-of-the-art sentence encoder
such as BERT [5] to obtain better performance.

The input of the BiLSTM is constructed by concatenating the word embed-
dings w ∈ R

Dw and position embeddings p1 and p2 ∈ R
Dp which are respectively



328 T. Yang et al.

adopted for incorporating relative distances to the two target entities [16]. For-
mally, for each word wi of the sentence S = {w1, · · · , wn}, the representation is
initialized as ŵi = wi ◦ pi1 ◦ pi2 ∈ R

Dw+2Dp , where ◦ represents concatenation
operator.

Then, we adopt BiLSTM to read the input sentences in two directions and
then sum the states for each time step i. The corresponding state vector hi of
BiLSTM are taken as the i-th word embedding with contextual information.

To pay attention to critical words in the sentence, we apply an attention
mechanism [22]. Let H = [h1, · · · ,hn] be the matrix consisting of the output
state vectors of BiLSTM, the sentence embedding hsent is the weighted sum of
these output vectors:

α = softmax(aT · tanh(H)) , (1)

hsent = H · αT . (2)

where a is a trained parameter vector.
Finally, we concatenate the sentence embedding with the embeddings of the

two target entities. The embedding (output by BiLSTM) of the first word in an
entity mention is taken as the entity embedding (e.g., Barack for Barack Hussein
Obama). The final sequence-based representation for relation extraction is com-
puted as, hseq = hhead ◦ hsent ◦ htail. hhead and htail represent the embeddings
of the target head entity and tail entity, respectively.

2.2 Tree-Capsule Network

In this subsection, we detail our Tree-Capsule network which encodes the con-
stituent tree structure to improve the relation extraction. Specifically, in the
Tree-Capsule network, we first construct primary capsules as the input. Then
we design a part-whole aggregation mechanism which considers different con-
stituent types with a type-specific transformation during information aggrega-
tion along the tree. Additionally, an entity-aware routing algorithm is proposed
to pay attention to the target entity relevant information. Finally, we add an
attentive fully connected capsule layer also with the entity-aware routing algo-
rithm, to combine the information of all the constituents in the tree for relation
extraction.

Primary Capsule Layer. After running BiLSTM, we obtain the scalar-output
hidden representations H ∈ R

n×Dh of words with contextual information. To
transform the scalar-output features into vector-output capsules, while preserv-
ing the local order of words and semantic representations of words [14], a linear
layer with multi-channels is applied as,

Ui = H · Wi + bi, i = 1, · · · , Nc , (3)

where the transformation matrix Wi ∈ R
Dh×Dc projects the output word embed-

ding (states of BiLSTM) H ∈ R
n×Dh into a capsule matrix Ui ∈ R

n×Dc , where
n is the number of words in the sentence. Then we stack the capsule matrices
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{Ui|i = 1, · · · , Nc} as a capsule tensor U ∈ R
n×Nc×Dc , where Nc is the capsule

number (i.e., number of channels) and Dc denotes the capsule size. Consequently,
each word is represented by a group of Nc primary capsules.

Part-Whole Aggregation. Given the primary capsules as input, we now aim to
obtain groups of higher-level capsules representing the higher-level constituents
in the constituent tree using a part-whole aggregation mechanism from bottom to
up. The right of Fig. 1 shows one single part-whole aggregation process from child
constituents to parent constituent. It includes three steps: type-specific trans-
formation, entity-aware routing and child-mean pooling. We will detail them as
follows.

In the first step, i.e., type-specific transformation, each capsule in the groups
of capsules representing the child constituents is transformed to predict several
1st-level potential capsules that encode higher-level information, considering its
distinct constituent type (e.g., NN and VB). Formally, a child capsule ui ∈ R

Dc

produces a group of 1st-level potential capsules {ûj|i|j = 1, · · · , Nc} by the
transformation matrices {W τ

j |j = 1, · · · , Nc} w.r.t. the constituent type τ of ui:

ûj|i = ui · W τ
j + bτ

j|i , (4)

where bj|i is the capsule bias term, W τ
j ∈ R

Dc×Dc is the type-specific transforma-
tion matrix of the jth channel. Note that capsules with transformation matrices
allow networks to learn potential part-whole relationships automatically [19].

The second step, i.e., entity-aware routing algorithm, aims to filter out the
noisy and irrelevant 1st-level potential capsules, and get the 2nd-level potential
capsules sj representing relation features. The traditional routing algorithm [10]
fails to focus on the entities, which are critical for relation extraction. Therefore,
in this work, we present an entity-aware routing algorithm, which pays atten-
tion to the relevant and critical information for the entity relation extraction.
Formally, we first compute the averaged capsule ê of the two groups of capsules
respectively representing the two target entities. Then we can guide the routing
process with ê as follows:

sj = hardtanh(
Nc∑

i=1

σ(êT · ûj|i) · cij · ûj|i) , (5)

where σ(·) denotes the sigmoid function, and the coupling coefficient cij is iter-
atively determined as shown in Algorithm 1. Note that the hardtanh1 activation
function, whose gradient around 0 is constant 1, is introduced to replace the tra-
ditional Squash function for alleviating the gradient vanishing problem caused
by the deep structure of the constituent tree.

The final step, child-mean pooling , is to get the parent capsule vj that rep-
resent the j-th channel of the parent constituent by averaging the 2nd-level
potential capsules C(vj) corresponding to the j-th channel:

vj =
1

|C(vj)|
∑

k∈C(vj)

sk . (6)

1 hardtanh(x) = min(max(x, −1), 1).
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The group of capsules from all channels {vj |j = 1, · · · , Nc} together represent a
parent constituent.

The above shows a single part-whole aggregation process. After recursively
repeating the process along the constituent tree from bottom to up, we obtain
the groups of capsules representing all the constituents in the tree.

Algorithm 1. Entity-aware Routing Algorithm
Require: The 1st-level potential capsules, ûj|i;
Ensure: The 2nd-level potential capsules, sj ;
1: Initialize the logits of coefficients: bij ← 0
2: for r iteations do
3: ∀ 1st-level indicator i: ci ← softmax(bi)
4: Calculate the averaged entity capsule: ê = 1

2Nc

∑Nc
j=1(ûj|head + ûj|tail)

5: ∀ 2nd-level indicator j: sj ← hardtanh(
∑Nc

i=1 σ(êT · ûj|i)cijûj|i)
6: ∀ 1st-level and 2nd-level indicator i, j: bij ← bij + ûj|i · sj

7: end for
8: return sj

Attentive Fully Connected Capsule Layer. With the groups of capsules
representing the constituents in the constituent tree, we now leverage all the
capsules to generate the structural sentence embedding. All the capsules in the
tree are flattened into a list of capsules and fed into the attentive fully con-
nected capsule layer. Specifically, each capsule is first transformed with a shared
transformation matrix W ∈ R

1×Dc×3Dh and fed into the entity-aware routing
algorithm (as shown in Algorithm1) which pays attention to the critical relevant
information related to the relation extraction of the entities. Finally, we get one
single capsule hcap ∈ R

3Dh .
Through the Tree-Capsule network, we obtain the structural sentence embed-

ding represented by the single capsule hcap that encodes the constituent tree
structure information.

2.3 Relation Prediction

In this subsection, we concatenate the sequence-based sentence embedding and
the structural sentence embedding for relation prediction through a softmax
layer:

P (y|S) = softmax(Ws · [hseq ◦ hcap] + bs) , (7)

where Ws and bs are the parameters. During model training, we exploit the
cross-entropy loss over training data with the L2-norm of model parameters. For
model optimization, we adopt the gradient descent algorithm.



Tree-Capsule: Tree-Structured Capsule Network 331

3 Experiments

3.1 Datasets and Evaluation Metrics

We conduct extensive experiments on 2 benchmark datasets for sentence-level
relation extraction. SemEval 2010 Task 8 [6] contains 10.7k instances of 19
relation classes over entity pairs: 9 directed relations and a special “Other”
class. For evaluation metrics, we follow the convention and report the official
macro-average F1 score, which is based on the 9 actual relations (excluding the
“Other” relation) and takes their directions into consideration. TACRED [21]
is a large scale dataset with 106k instances, containing 41 relation classes and
a special “no relation” class. The average length of sentences (36.4) and depth
of the corresponding constituent trees (14.2) are larger than those of SemEval,
indicating more complexity of contexts. For convenient and fair comparison,
following [21], we use the same “entity mask” strategy where each subject entity
is replaced with a special “SUBJ-<NER>” token (similarly to object entity).
The micro-average Precision, Recall and F1 score are reported.

3.2 Baselines

We compare our model TCRE with several state-of-the-art models, which can
be divided into four categories: Semantic-based models include: SVM [9] and
LR [21], achieving the top performance in SemEval and TACRED with a vari-
ety of handcrafted features, respectively; CNN [17] based on word embeddings
and position embeddings. Att-BiLSTM [22] which employs a word-level atten-
tion over BiLSTM outputs; PA-LSTM [21] proposing a position-aware attention
mechanism over LSTM outputs. Syntactic structure-based models consist
of: SDP-LSTM [13], which applies a neural sequence model on the shortest path
between the subject and object entities in the dependency tree. Tree-LSTM
[11], which generalizes the LSTM to arbitrary syntax tree structures. Capsule-
based models include: Att-CapNet (CNN) [19], which integrates an attentive
capsule network based on CNN for relation extraction. Att-CapNet (RNN) [19]
integrating an attentive capsule network based on RNN for relation extraction.
Pretrained models include: BERT [5], which uses a multi-layer bidirectional
Transformer encoder and is trained with a masked language model. We fine-
tuned BERT-base (768 hidden dimensions) until convergence. Note that we also
try to apply BERT to replace Att-BiLSTM as our sentence encoder in our model
TCRE, named TCRE-BERT.

3.3 Experimental Settings

In our experiments, we use the 50-dimension word vectors pre-trained in
Glove setting with randomly initialized 5-dimensional position embeddings for
SemEval. For TACRED, following [20], we use the 300-dimension word vectors
with 30-dimensional position, POS and NER embeddings. For all sentences of
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the two datasets, we use Stanford Parser tool2 to obtain their constituent trees.
For fair comparison with capsule-based methods, following [10], we set the hid-
den dimension Dh = 256, capsule number and size Nc = Dc = 16 for the two
datasets. L2 regularization (5e−6) and dropout (0.7 for SemEval and 0.5 for
TACRED) are adopted to avoid overfitting. To train our model efficiently, we
apply a two-step training strategy, i.e., we first optimize the parameters of the
sequence-based encoder for 10 epochs with learning rate 1.0 by AdaDelta opti-
mizer and then fine-tune all the parameters with learning rate 0.1 for SemEval
and 0.01 for TACRED by Adam optimizer until convergence.

3.4 Overall Performance

Table 1. Performance on SemEval and TACRED. The notation ∗ means our model
significantly outperforms the baselines based on t-test (p < 0.05).

Method SemEval TACRED

F1(%) P(%) R(%) F1(%)

SVM [9]/LR [21] 82.2 73.5 49.9 59.4

CNN [17] 79.5 70.3 54.2 61.2

LSTM [21]/Att-BiLSTM [22] 81.7 65.7 59.9 62.7

PA-LSTM [21] 82.7 65.7 64.5 65.1

SDP-LSTM [13] 82.4 66.3 52.7 58.7

Tree-LSTM [11] 83.8 66.0 59.2 62.4

SPTree [8] 84.4 – – –

Tree-LSTM + Att-BiLSTM 82.6 – – –

Att-CapNet (CNN) [19] 79.9 68.1 57.3 62.2

Att-CapNet (RNN) [19] 83.3 66.0 61.2 63.7

TCRE 84.6∗ 68.9 64.6∗ 66.7∗

BERT-base [5] 87.3 69.9 64.5 67.1

TCRE-BERT 87.6∗ 69.8 65.7∗ 67.6∗

We present the comparison results in Table 1. We can find that our TCRE
achieves the best performance against all the baselines except BERT-base.
TCRE-BERT with BERT-base as sentence encoder also achieves better per-
formance than BERT-base. These demonstrate that our proposed model signifi-
cantly improves relation extraction by seamlessly incorporating the constituent
tree information. Besides, we have the following detailed observations: (1) Com-
pared to semantic-based models (e.g., CNN), the syntactic structure-based mod-
els (e.g., SDP-LSTM) generally perform better on dataset SemEval due to the

2 https://nlp.stanford.edu/software/lex-parser.html.

https://nlp.stanford.edu/software/lex-parser.html
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incorporated syntactic structure information, but fail to perform well on dataset
TACRED. The reason could be that the sentences in TACRED are much longer
than those in SemEval, containing sufficient semantic information for relation
extraction. They may fail to consider noise when introducing the syntax tree
information. Nevertheless, our TCRE can successfully reduce the noise in the
constituent tree by entity-aware routing algorithm. (2) Capsule-based models
(i.e., Att-CapNet(CNN) and (RNN)) outperform those semantic-based mod-
els (i.e., Att-CapNet(CNN) vs CNN and Att-CapNet(RNN) vs Att-BiLSTM),
due to the stronger capability of capsules for representation. However, gener-
ally they achieve inferior performance to the syntactic based model Tree-LSTM.
(3) Our TCRE significantly outperforms the capsule-based baselines, indicating
that our proposed Tree-Capsule network successfully encodes the constituent tree
information for improving relation extraction. (4) Note that Tree-LSTM + Att-
BiLSTM achieves lower performance (82.6%) on SemEval than our model TCRE
based on Att-BiLSTM, which demonstrates that our Tree-Capsule Network can
better encode the syntactic tree information. (5) Finally, BERT-base obtains
good performance since it was pretrained on a large corpus. TCRE-BERT per-
forms better than BERT-base, which verifies that our proposed Tree-Capsule
network can consistently improve relation extraction.

Different from the traditional capsule networks which can only model a
sequence structure [3,10,18,19], we integrate syntactic structure information
into the capsule network to form a tree structure. Since the traditional cap-
sule network uses Att-BiLSTM as the basic encoder [18,19], for fair compar-
ison, we also choose it as the sequence encoder in our TCRE model, which
limits the performance of our model, failing to outperform some SOTA BERT-
based methods[2,12]. Note that we also tried an advanced sequence encoder, i.e.,
BERT-base as the basic encoder in our TCRE-BERT, which outperforms most
SOTA methods. This further verifies the effectiveness of our TCRE.

3.5 Comparison of TCRE Variants

Table 2. Performance of TCRE variants on SemEval.

Variants F1(%)

TCRE 84.6

TCRE w/o Att-BiLSTM 76.2

TCRE w/o Tree-Capsule 81.7

TCRE w/o Type 84.0

TCRE w/o Entity-aware Routing 84.2

TCRE w/ squash 82.9

In this subsection, we evaluate several variants of TCRE on the test set of
SemEval to verify the effectiveness of its delicate designs. The performance com-
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parisons of TCRE variants are shown in Table 2. As we can see, the performance
of TCRE w/o Tree-Capsule which does not consider the constituent tree infor-
mation drops largely by around 3.0% on macro-F1, while the performance of
TCRE w/o Att-BiLSTM (removing the sequence-based sentence embedding)
is further lower. We believe that though the part-whole aggregation mechanism
learns syntactic structure information, it loses sequential information, which may
be the key information for relation extraction. However, we find that syntac-
tic structure information is complementary to the sequential information, since
TCRE (combining the syntactic structure and sequential information) achieves
the best performance, outperforming the models using individual syntactic struc-
ture information or sequential information. Next, TCRE w/o Type ignoring the
different types of constituents during part-whole aggregation and TCRE w/o
Entity-aware Routing using traditional routing algorithm both achieve inferior
performance, compared to TCRE. It validates the necessity of considering the
constituent types and entity-aware routing in Tree-Capsule network. At last,
the performance of TCRE w/squash which replaces our hardtanh with the tra-
ditional activation function Squash3 decreases substantially by 2%, due to the
gradient vanishing problem caused by the deep structure of the constituent tree.

3.6 Case Study

Fig. 2. An example of relation extraction for the entity “laughter” and “joke”.

In this subsection, we present a practical case in the SemEval test set to illustrate
how the proposed Tree-Capsule network improves relation extraction. As shown
in Fig. 2, the relation of the input sentence is mistakenly predicted as “Other” by
the sequence-based encoder Att-BiLSTM, while it is correctly labeled as “Cause-
Effect” by our model TCRE which incorporates the constituent tree informa-
tion. Specifically, TCRE pays attention to the constituent “IN” (Preposition)

3 Squash(x) = ‖x‖·x
1+‖x‖2 , x is a capsule.



Tree-Capsule: Tree-Structured Capsule Network 335

corresponding to word “after” with the entity-aware routing algorithm, and suc-
cessfully predicts the relation “Cause-Effect”. It conforms to our intuition that
“after” may indicate a cause-effect relationship.

3.7 Parameter Analysis

Fig. 3. Influence of (a) hidden dimension, (b) capsule number and capsule size.

In this subsection, we study the influence of hyper-parameters on the test set of
SemEval dataset. Figure 3 (a) shows the average F1 score and its variance (error
bars) of our TCRE over running 10 times with different hidden dimensions from
16 to 1,024. We can see that the relation extraction performance of TCRE grows
(the variance decreases) with the increase of the hidden dimension, because
higher dimension brings stronger representation capability. To study the influ-
ence of capsule number Nc and size Dc, we fix the product of them as 256, i.e.,
Nc ·Dc = 256. As shown in Fig. 3 (b) where the two lines of the x-axis represent
Nc and Dc, respectively, we can see that the model performance first increases,
achieves the best performance when Nc = 8,Dc = 32, and then begins to fall
rapidly to the worst performance 80.6% on Macro-F1 when Nc = 256,Dc = 1.
This is because the representation capability of the capsules is much lower as
the size of capsules degrades to 1.

4 Conclusion

In this paper, we propose a novel Tree-Capsule network based method TCRE
for improving sentence-level relation extraction by seamlessly incorporating the
constituent tree information. Specifically, we design a new Tree-Capsule network
with a part-whole aggregation mechanism, tailored to encode the constituent
tree. It considers the different constituent types. Additionally, an entity-aware
routing algorithm for Tree-Capsule network is proposed to pay attention to tar-
get entity relevant information for the relation extraction. We also introduce a
new activation function for the Tree-Capsule network to address the gradient
vanishing problem caused by the deep structure of the constituent tree. Exten-
sive experiments demonstrate that our proposed model significantly improves
the performance of relation extraction.
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Abstract. Knowledge graph reasoning is a crucial part of knowledge discovery
and knowledge graph completion tasks. The solution based on generative adver-
sarial imitation learning (GAIL) has made great progress in recent researches and
solves the problem of relying heavily on the design of the reward function in rein-
forcement learning-based reasoning methods. However, only the semantic feature
is considered in existing GAIL-based methods, which is not enough to assess the
quality of reasoning paths. While logical rules contain rich factual logic that can
be used for reasoning. Thus, we introduce the first-order predicate logic rule in
our model called Rule Injection-based Generative Adversarial Path Reasoning.
The key idea is to train the generator to learn reasoning strategies by imitating
the demonstration from both semantic and rule levels. Particularly, we design a
path discriminator and a logic rule discriminator to distinguish paths respectively
from these two levels. Furthermore, both discriminator feedback to the generator
a self-adaptively reward by assessing the quality of the generated reasoning path.
Extensively experiments on two benchmarks show that our method improves the
performance than the state-of-the-art baseline and some cases study also confirmed
the explainability of our model.

Keywords: Query answering · Rule Injection · Reinforcement learning ·
Knowledge graph reasoning

1 Introduction

The knowledge graphs (KGs) store massive reality facts in the form of triples (h, r, t),
supporting many tasks such as query answering [1], recommendation system [2], and
natural language understanding [3]. However, due to the incompleteness of the KGs, the
performance ofmany downstream taskswill be limited. To solve the problem, knowledge
graph reasoningmethods,which discover newor complementmissing facts fromexisting
ones, have attracted greater attention. In this paper, we focus on the query answering
task and hope to complete the query triples automatically by multi-hop path reasoning.

Multi-hop path reasoning obtains the reasoning result by finding the path from the
KGs and uses the reasoning path as evidence of the reasoning process. Among the solu-
tions, the reinforcement learning (RL) based methods have achieved excellent results.
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But the most common problem of RL-based methods is how to design a reasonable
reward to fit the specific knowledge graph. Because they are sensitive to reward, and
a small difference may have a great impact on performance. Thus, Li et al. proposed
a reasoning method based on generative adversarial imitation learning called DIVINE
[4], which gives the agent a self-adaptively reward through imitating the demonstrations
extracted from KG and without any extra reward engineering.

However, the generator in theDIVINEwill only imitate learning the relation semantic
feature extracted by convolutional neural networks from the demonstrations. It doesn’t
make full use of the effective information in the demonstrations. While logical rules
contain rich factual logic that can be used for reasoning [5]. Combining logic rules and
imitation learning allows the generator to additionally imitate learning from demonstra-
tions at the perspective of rules. Thus, we present a Rule Injection-based Generative
Adversarial Path Reasoning model called RIGAPR. Our goal is to assess the quality of
the path at semantic and logical rule levels and train the generator to learn reasoning
strategies by imitating the demonstrations at both levels.

More specifically, we designed a representation method of path logical rule, and
it can be used to extract the logical rule contained in the paths. For example, given
a query triple (MichaelJordan,AthletePlaysSport, ?), a possible two-hop reasoning
path: Michael Jordan  Chicago Bulls  Basketball . We com-
bine the atomic triples and logical connectives (e.g. conjunction ∧ and implication ⇒)
to form the logical rule as ∀a, b, c : (a,PlaysforTeam, b) ∧ (b,TeamPlaysSport, c) ⇒
(a,AthletePlaysSport, c). Furthermore, we model the path logical rule by t-norm fuzzy
logic [6] and its truth value is used to measure the reasonableness of the rule. In this way,
RIGAPR trains the generator to learn some reasoning strategies by imitating the demon-
stration from semantic and rule levels respectively, improved the reasoning performance
and explainability (explain in sematic and logical rule levels).

In general, the main contributions of this paper can be summarized as follows:

• We introduce the logical rules into path reasoning and design an extraction method
of the rule contained in the paths. To the best of our knowledge, we are the first to
combine logic rules and GAIL for path reasoning.

• We propose a Rule Injection-based Generative Adversarial Path Reasoning model
and design a logical rule discriminator to calculate the truth values of the logical rule
contained in the paths.

• We design a reward enhancement method to enhance the reward at the semantic and
logical rule levels without any extra reward engineering.

• Extensively experiments on two benchmarks show that our method improves the per-
formance than the state-of-the-art baselines and some reasoning cases also confirmed
the explainability of our model.

2 Related Work

Knowledge graph reasoning that discovers new or complements missing facts from
existing ones has attracted greater attention. The most commonly embedding based
reasoning methods maps entities and relations to a continuous vector space and designs
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a score function to evaluate the truth value of triples. They mainly including translation-
based methods [7–9], tensor factorization based methods [10], and semantic matching
based methods [11, 12]. Although they achieved good performance, most of them only
returned the entity with the highest score among all entities as the reasoning result, which
lacks explainability.

Consequently, a series of path-based reasoning methods are proposed, which use
the reasoning path as an explanation of the reasoning process. The Path Ranking Algo-
rithm (PRA) [13] and its extension [14] adopt random walk and restart strategies to get
some relation paths between entity pairs. However, the path obtained through random
walks often contains noisy information. Thus, some researchers combine reinforcement
learning and path reasoning, hoping to guide the agent to generate a path by learning a
reasoning strategy. DeepPath [15] is the first to introduce RL into path reasoning and
regards the path finding as a Markov decision process. AttPath [16] incorporates LSTM
and graph attention mechanism as memory components on the basis of DeepPath, get-
ting rid of the pretraining process. But the state of MDP requires the target entity to be
known in advance in DeepPath. MINERVA [1] is an RL-based end-to-end model for
a more challenging query answering task. And MARLPaR [17] is proposed to solve
the entity selection problem when a 1-N relation occurs, which uses two agents in path
reasoning, one agent for relations reasoning and the other for entities reasoning.

However, most of the RL-based reasoning models mentioned above use the ter-
minal reward function, which may cause the sparse reward problem. To address this,
Lin et al. [18] used a pre-training well-embedding model as the reward shaping func-
tion and Qiu et al. [19] proposed a potential-based reward shaping function for natural
language question answering task. Different from them, Li et al. [4] first proposed a
generative adversarial imitation learning based path reasoning model DIVINE, which
gives the agent a self-adaptively reward through the demonstrations extracted from KG
and without any extra reward engineering.

3 Methodology

In this section, we first formalize the query answering task we focus on in this paper.
Then, we elaborate our proposed RIGAPR model, which consists of three parts: path
generator for reasoning, demonstration extraction module, and rule injection adversarial
imitation learning. Finally,we introduce the reward enhancementmethod and the training
procedure.

3.1 Problem Formulation

A knowledge graph G with entity set E and relation set R can be defined as G =
{(h, r, t)|h ∈ E, t ∈ E, r ∈ R}, where the triple (h, r, t) represent a fact of relation r
from head entity h to tail entity t.

For query answering task, given a query triple (es, rq, ?) with practical ques-
tion meaning, e.g., the query triple (MichaelJordan,AtheltePlaysSport, ?), it expresses
the question of “what sports does Jordan plays?”, our goal is to automatically
reason a path to find the answer entity set {ea}. Such as the reasoning path:
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Michael Jordan  Chicago Bulls  Basketballand we can find
the answer of the example query triple is Basketball. More especially, the tripe(
es, rq, ea

)
/∈ G.

In the following sections, we elaborate our proposed RIGAPR model. It solves the
problem that existing GAIL-based methods are insufficient to discriminate the path. As
illustrated in Fig. 1, themain idea is to extract semantic feature and logical rule contained
in the expert demonstrations, training the generator (agent) to learn reasoning strategies
by imitating the demonstration from both semantic (sematic reward Rp) and logical rule
(rule reward Rr) levels, and improving the reasoning performance and explainability
(explain in sematic and logical rule levels).

Fig. 1. The framework of our proposed RIGAPR model.

3.2 Path Generator for Reasoning

In order to solve the query answering task, RIGAPR regards the reasoning process as a
Markov Decision Process. The generator stepwise selects the most likely action through
the interaction with the MDP environment. The interaction process is that the MDP
environment feedbacks to the generator a reward according to the action selected by the
generator, and update its current state. The generator will select a new action based on
the new state. The definition of the MDP component as follows:

State. The state st of the generator is formulated as st = (es, rq, et),which consists of
current entity et where the generator stays at and global information (es, rq) obtained by
query triple.

Action. The set of possible actionsAt at t step are consist of all outgoing edges (relations)
and its linked entities of the current entity where the generator stays at. Specifically,
At = {(r, e)|(et, r, e) ∈ G}. In order to give the generator option to recover frommistakes
or find short paths (due to the fixed steps of reasoning), we have added self-loop and
inverse relations to the KGs, i.e., (h,NO_OP, h) ∈ G and (t, r−1, h) ∈ G.
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Transition. The next state st+1 of the generator is determined by the previous state st
and the action at . Formality, st+1 = δ(st, at) = (es, rq, et+1).

Reward. We only consider terminal rewards Re,t = {1|eT = ea} and enhance it at the
semantic and logical rule levels. In other words, we only enhance the reward for the
correct reasoning paths, and the rewards for other paths are still zero. This may lead to
the problem of sparse rewards, but we have proved through ablation experiments that it
will not affect reasoning performance.

The generator selects the most likely action based on the current state st , which can
be modeled as a network consisted of an action history encoder and fully connected
layers. In particular, the generator learns a reasoning policy π(at |St,At) that calculates
the probability distribution of the action space At and the formula is as follows:

ht = LSTM (ht−1, [rt; et]) (1)

π(at |St,At) = σ
(
At × Wg2ReLU

(
Wg1

[
et; rq; ht

]))
(2)

Where σ is the Softmax function. rt, et, rq ∈ R
d is the embedding representation of the

corresponding entity or relation and [;] denotes the concatenation operator.Wg1 andWg2
are parameters that need to be trained in the generator. To make the reasoning strategy
learned by the generator more correct, we enhance the rewards obtained by the generator
through imitation learning. Specifically, the demonstration extracted from the KGs is
used as the background truth to guide the generator.

3.3 Demonstration Extraction

Whether imitation learning can improve performance mainly depends on the quality
of expert demonstrations. A high-quality expert demonstration will guide the generator
well in reasoning, otherwise it will be misleading. In this paper, we will use a more
direct method to extract expert demonstrations. More specifically, for each query triple
in the training dataset, we use a bi-directional breadth-first search (Bi-BFS) to explore
the shortest path between the head entity and the tail entity. The reason we extract in
this way is that the shortest path can more directly indicate the connection between two
entities, and is easier to understand and explain. And the longer path may not always
contain richer information, it may be repetition or noise information.

3.4 Rule Injection Adversarial Imitation Learning

To make the path reasoned by the generator similar to the expert demonstration, we
utilize Generative Adversarial Imitation Learning [20] to model this process. Different
from DIVINE [4], the discriminators in RIGAPR are composed of path discriminator
Dp and logical rule discriminator Dr , and distinguish the generated path and expert
demonstration from the semantic and logical rule levels respectively. To getmore rewards
from the discriminator, the generator will reason a path to fool the discriminator by
imitating the expert demonstration.
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Path Discriminator. Dp distinguishes the generated path and expert demonstration

from the semantic feature of the path. For a path e0
r1→ e1

r2→ · · · rn→ en, we first
encode it to a path real value matrix as follow:

p = e0 ⊕ r1 ⊕ e1 ⊕ · · · ⊕ rn ⊕ en (3)

Where e, r ∈ R
d is the embedding vectors and ⊕ denotes the concatenation operator.

And p ∈ R
(2n+1)×d is the path truth matrix obtained by vector concatenation. Note that

we consider both entities and relations in path embedding, not just relations in DIVINE.
Then, we use a CNN to extract the semantic feature s of the path, and it will be further
analyzed by full-connection layers. The goal of the path discriminatorDp is to distinguish
the path through the further semantic feature and it can be modeled as:

(4)

D(p) = σ
(
Wp2ReLU

(
Wp1s

))
(5)

Here, is the convolution kernel and bp denotes the bias. Then, we use the
ReLU activation function in both the convolution layer and the full-connection layer.
And we use the sigmoid function σ in the output layer to make the path semantic feature
outputted by path discriminator Dp on the interval (0, 1).

Logical Rule Discriminator. Dr further distinguishes the path from the point of the
first-order predicate logic rule, so that the generator can imitate the logic rule implied
in the expert demonstration. To achieve this, we design a path logical rule extraction

method. For path e0
r1→ e1

r2→ · · · rn→ en, we extract the logical rule rp contained in it as:

rp � ∀a0, . . . , an ∈ E, (ah, r, at) ∈ G
(a0, r1, a1) ∧ (a1, r2, a2) ∧ · · · ∧ (an−1, rn, an) ⇒ (

a0, rq, an
) (6)

f = (e0, r1, e1) ∧ (e1, r2, e2) ∧ · · · ∧ (en−1, rn, en) ⇒ (
e0, rq, en

)
(7)

Where rp is the first-order predicate logic rule (FOL) contained in the path and f denotes
an instance of the rule which consists of the reasoning path. More specifically, we use f1
to fn to represent atomic triple in the rule body, and fh to denote the rule head consisting
of the query triple (e0, rq, ?) and the reasoned answer entity en.

To identify the rationality of the rule contained in the path, we introduce the t-norm
fuzzy logic [6], which defines the truth value of rules as a composition of the truth
values of its constituent atomic triples (e.g. f1, . . . , fn, fh). We follow the definition [5]
of compositions associated with conjunction (∧), disjunction (∨), and negation (¬) as:

I(f1 ∧ f2) = I(f1) · I(f2)

I(f1 ∨ f2) = I(f1) + I(f2) − I(f1) · I(f2)

I(¬f1) = 1 − I(f1)
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I(f1 ⇒ f2) = I(¬f1 ∨ f2) = I(f1) · I(f2) − I(f1) + 1

We use the feedforward neural network to calculate the truth value I(fi) of the atomic
triples (fi : (hi, ri, ti)), and use the sigmoid function σ to make the rule truth value on
the interval (0, 1). It can be formulated as follows:

ci = tanh([hi; ri; ti]) (8)

I(fi) = σ(Wr2ReLU (Wr1ci)) (9)

Where Wr1 and Wr2 are the parameters needed to be trained in the rule discriminator.
Then we calculate the truth value I(f ) of the rule instance f through t-norm fuzzy logical
and the larger the truth value is, the more reasonable the rule is. Specifically, the output
(3-hop paths) of the rule discriminator is as follows:

D(r) = I(f ) = I(f1) · I(f2) · I(f3) · I(fh) − I(f1) · I(f2) · I(f3) + 1 (10)

3.5 Reward Enhancement and Model Training

Reward Enhancement. To make the generator imitates learning the demonstrations in
terms of semantics and logical rules, we enhance the rewards it receives as follow:

R(st) = (
Re,t + αRp + (1 − α)Rr

)
Re,t (11)

WhereRe,t is the terminal reward given by theMDP environment, depending onwhether
the generator finds the correct answer entity. Rp and Rr represent the semantic and the
logical rule rewards respectively, obtained from the path discriminatorDp and the logical
rule discriminator Dr . And α is a weight to balance semantics and logical rule rewards.

Note that only when the generator generates a path, in other words, when the number
of reasoning step reaches the maximum path length T , the path will be assessed in terms
of semantic and logical rule, and the generator will be rewarded. Here only the correct
reasoning path (i.e. the path obtained the terminal reward) is rewarded and enhanced.
Although this may lead to sparse rewards, our experiment has proved that it does not
affect reasoning performance.

Similar to the DIVINE, we introduce random noise ‡ ∼ U (a, b) into the reward to
discard the generation paths whose quality is not as good as the noise. It can be formu-
lated as follows. pN and rN respectively denote path noise and rule noise embeddings
composed of random noise with continuous uniform distribution.

Rp = max
(
D

(
pG

) − D
(
pN

)
, 0

)
(12)

Rr = max
(
D

(
rG

) − D
(
rN

)
, 0

)
(13)
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Model Training. We train the path and logical rule discriminators byminimizing its loss
so that they can distinguish generation paths and expert demonstrations from semantic
and logical rule levels respectively. For path discriminator Dp, we adopt WGAN-GP
[21] algorithm to train and its loss Lp as follows. For logical rule discriminator Dr , we
define a classification loss Lr .

Lp = D
(
pG

) − D
(
pE

) + λ(‖∇p∧D
(
p
∧)‖

2
− 1)2 (14)

Lr = −(
logD

(
rE

) + log
(
1 − D

(
rG

)))
(15)

Where Lp consists of original critic loss and gradient penalty. pG and pE denote the
generated path and the demonstration respectively. λ is the gradient penalty coefficient
and p

∧

is sampled uniformly along straight lines between pG and pE . Similarly, rG and rE

is the instance of FOLcontained in the generated path and the demonstration respectively.
We first pre-train the discriminator with demonstrations and random paths and then use
the generated paths and demonstrations for adversarial training.

For all query triples in the training dataset, we will update the parameter θ in the
generator by REINFORCE [22] algorithm once it is rewarded. More specifically, the
object of generator J (θ) is to maximize expected rewards and updates parameter θ =
{Wg1,Wg2} with the stochastic gradient as following:

J (θ) = E(es,rq,ea)∼DEA1...AT∼π [R(st |es, r)] (16)

∇θJ (θ) = ∇θ

∑

t
R(st)logπ(at |st,At) (17)

4 Experiments

In this section, we introduce the benchmarks for our experiments and the state-of-the-art
baselines we compared, as well as the evaluation and experiment details (Sect. 4.1).
Then we quantitatively compare the reasoning performance of our model with other
baselines (Sect. 4.2). Ablation studies and parameter sensitivity analysis also show the
effectiveness of ourmodel components (Sect. 4.3). Finally, some case analysis illustrated
the explainability of our model at the semantic and logical rule levels (Sect. 4.4).

Table 1. The statistics of WN18RR and NELL-995 datasets

Dataset #Entitie #Relations #Facts #Queries

WN18RR 40,945 11 86,835 3,134

NELL-995 75,492 200 154,213 3,992
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4.1 Experiment Setup

Dataset. We adopt WN18RR [23] and NELL-995 [15] datasets in our experiments,
which are created from the WN18 and NELL datasets respectively. Same as the MIN-
ERVA, we combine all the graphs and removed all test triples (including the triples with
inverse relations) from the graph for the query answering task. The details of the datasets
are shown in Table 1.

Baseline and Evaluation. We compare our method with the state-of-the-art path rea-
soning method, including MINERVA [1], MARLPaR [17], DIVINE [4], and the model
proposed in [18]. And the detailed introduction of these baselines has been discussed in
related work. All methods are evaluated by some widely used metrics, including Hits@k
and mean reciprocal rank (MRR).

Implementation Details. The default settings of the model in the experiment are as
follows. For embedding representations, we set the embedding dimension to 100 and use
TransR [9] to generate embedding vectors. For the generator, we use one-layer LSTM
as the path history encoder and set its hidden dimension to 200. And the maximum
reasoning hop (i.e. the maximum path length) is set to 3. Meanwhile, the size of the
convolution kernel is set to 3 × 5. Through parameter sensitivity analysis, we set the
reward enhancement weight α to 0.5 forWN18RR, and 0.6 for NELL-995. The gradient
penalty coefficient λ is set to 5 in both datasets. For the model training, we set the batch
size to 256 for WN18RR and 512 for NELL-995. And we adopt Adam optimization
[24] for generator training and SGD for discriminator training both with the learning
rate 0.001.

Table 2. Comparison of reasoning performance to other baselines on two large KG datasets. The
results are reported in percentage and the best baseline results are marked with a star (*).

Dataset WN18RR NELL-995

Metrics (%) @1 @3 @10 MRR @1 @3 @10 MRR

MINERVA
MARLPaR
[18] (ComplEx)
[18] (ConvE)
DIVINE

41.3
42.1
43.7
41.8
43.8*

45.6
47.2
–
–
48.0*

51.3
52.0
54.2*

51.7
53.8

44.8
–
47.2*

45.0
46.8

66.3*

– –
65.5
65.6
65.0

77.3*

–
–
–
75.4

83.1
–
83.6
84.4*

81.4

72.5
–
72.2
72.7*

71.1

RIGAPR -PD
RIGAPR -RD
RIGAPR -RN
RIGAPR -RE
RIGAPR

43.0
43.2
43.6
43.6
44.6

47.6
48.0
47.7
47.9
48.8

53.3
53.4
53.6
54.2
54.3

46.3
46.6
46.7
46.8
47.7

62.9
65.0
65.7
66.7
68.4

75.1
76.6
77.1
77.2
78.1

81.5
82.6
82.7
83.0
83.7

69.9
71.6
72.1
72.7
73.9



Rule Injection-Based Generative Adversarial Imitation Learning 347

4.2 Results and Discussion

Wecompared our proposedRIGAPRwith state-of-the-art baselines in terms of reasoning
performance, and the results are listed in Table 2which shows that RIGAPR outperforms
other baselines in overall performance.More specifically, we can find that path reasoning
by imitating expert demonstrations is effective and can solve the problem of existing
RL-based methods (e.g. MINERVA, MARLPaR, and [18]) relying on reward function
design. Compared with the DIVINE model, we have enhanced the generator’s rewards
from both semantics and logical rules, thus achieving performance improvements.

Furthermore, we noticed that RIGAPR does not perform well in the Hits@10 of the
NELL-995 dataset. The possible reason is that the quality of the expert demonstrations
extracted through the shortest path is not enough, which makes it difficult for the gen-
erator to learn the reasoning strategy. Therefore, it is necessary to study how to balance
the diversity of expert demonstrations and noise information in the future.

4.3 Ablation Study

We conduct ablation experiments by removing the components in RIGAPR to verify its
effectiveness and parameter sensitivity analysis to determine some parameters.

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
et

ric
s o

n 
Te

st
 S

et

α

Hits@1
MRR

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
et

ric
s o

n 
Te

st
 S

et

α

Hits@1
MRR

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.05 0.1 0.5 1 5 15 50

M
et

ric
s o

n 
Te

st
 S

et

λ

Hits@1
MRR

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.05 0.1 0.5 1 5 15 50

M
et

ric
s o

n 
Te

st
 S

et

λ

Hits@1
MRR

Fig. 2. Parameter sensitivity analysis of α and λ on WN18RR (left) and NEL-995 (right).

Effectiveness of Discriminator. To verify the effectiveness of the discriminator in
our model, we removed the path discriminator (RIGAPR-PD) and rule discriminator
(RIGAPR-RD) from the complete model RIGAPR respectively. The result of the com-
parison is shown in Table 2, we can find RIGAPR is better than RIGAPR-PD and
RIGAPR-RD in all metrics, which illustrates that the discriminators in our model can
distinguish paths at the semantic and logical rule levels and can help the generator to
imitate learning expert demonstrations from both levels.

Effectiveness of Random Noise. We introduce random noise when rewarding the gen-
erator to discard low-quality generated paths. To verify this, we compare the noise-
removed ablation model RIGAPR-RN with RIGAPR. The results show that random
noise can improve the model’s reasoning performance to a certain extent by improving
the quality of the generated path.

Influence of Reward Enhancement. In ourmodel, onlywhen the correct answer entity
is found,will the generator be reward enhanced according to the corresponding reasoning
path. We compared the ablation model RIGAPR-RE (reward enhancement for all paths)
with RIGAPR, and the results show that the reward enhancement method we designed
does not reduce the reasoning performance due to sparse rewards.
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Influence of Model Weight. We conduct parameter sensitivity analysis to determine
the values of the reward enhancement weight α and the gradient penalty coefficient λ,
and we set the value of α on the interval (0, 1) and the range of λ is {0.05, 0.1, 0.5, 1,5,
15, 50}. As shown in Fig. 2, RIGAPR achieves the best reasoning performance when
α = 0.5 in WN18RR, and α = 0.6 in NELL-995, and the gradient penalty coefficient
λ = 5 in both datasets.

4.4 Case Study

To intuitively understand the reasoning process and explainability of our model, we
give some cases in NELL-995 for query answering task. As shown in Table 3, we
choose three query relations in NELL-995 and the first two query relations illustrate the
explainability of our model at the semantic and rule levels. The latter proves the role of
adding self-loop and inverse relations to the KG. For example, it can be formulated as
(JimMurry,works for, ?) in the first query relation, and the generator finds through step-
wise reasoning that both JimMurry and Michael Hiltzik are writing for the Los Angeles
Times newspaper, and then the person Michael Hiltzik works for Los Angeles Times
television station. Finally, the generator concludes that JimMurry also works for the Los
Angeles Times television station. The corresponding first-order predicate logic rule can
be expressed as: ∀A,B,C,D ∈ E, (A,write_for_pub,B) ∧ (B,write_for_pub−1,C) ∧
(C,works_for,D) ⇒ (A,works_for,D).

Table 3. Reasoning cases on the NELL-995 dataset and shown at the semantic and rule levels
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5 Conclusion

In this paper, we propose a rule injection-based generative adversarial imitation learning
for knowledge graph path reasoning, which solves the issue that the existingGAIL-based
model is insufficient in assessing the quality of the path. We first propose a method of
expressing the first-order predicate logic rule contained in the path. Then we design the
path discriminator and the logical rule discriminator to distinguish the path from the
semantic and logical rule levels respectively. And we propose a reward enhancement
method to enhance the generator’s reward, which can train the generator by imitating
learning expert demonstrations at sematic and logical rule levels. Extensively experi-
ments on two benchmarks show that our method outperforms the state-of-the-art base-
line. In the future, we will investigate how to extract high-quality and diverse expert
demonstrations and avoid introducing noise information.
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Abstract. Wearable sensor based human activity recognition is a chal-
lenging problem due to difficulty in modeling spatial and temporal depen-
dencies of sensor signals. Recognition models in closed-set assumption are
forced to yield members of known activity classes as prediction. How-
ever, activity recognition models can encounter an unseen activity due
to body-worn sensor malfunction or disability of the subject performing
the activities. This problem can be addressed through modeling solution
according to the assumption of open-set recognition. Hence, the pro-
posed self attention based approach combines data hierarchically from
different sensor placements across time to classify closed-set activities
and it obtains notable performance improvement over state-of-the-art
models on five publicly available datasets. The decoder in this autoen-
coder architecture incorporates self-attention based feature representa-
tions from encoder to detect unseen activity classes in open-set recogni-
tion setting. Furthermore, attention maps generated by the hierarchical
model demonstrate explainable selection of features in activity recogni-
tion. We conduct extensive leave one subject out validation experiments
that indicate significantly improved robustness to noise and subject spe-
cific variability in body-worn sensor signals. The source code is available
at: github.com/saif-mahmud/hierarchical-attention-HAR.

Keywords: Attention mechanism · Human Activity Recognition ·
Autoencoder · Open-set recognition

1 Introduction

Automated Human Activity Recognition (HAR) has a pivotal role in mobile
health, physical activity monitoring, and rehabilitation. Body-worn sensor based
HAR can broadly be defined as classification of human physical activity based
on signals from multitude of wearable sensors worn at different body locations.
Human physical activities include activities of daily living as well as complex
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activities comprised of multiple simpler micro-activities. Increasing usage of
smart handheld devices with multi-modal sensors has paved the way to deploy
HAR system in applications of elderly activity monitoring, physiotherapy exer-
cise evaluation, and smart home solutions.

HAR techniques rely on spatial information and temporal dynamics of physi-
cal activity captured from heterogeneous sensors placed at different human body
locations. Activities involve different dominant body parts and thus hierarchical
fusion of sensor signals from different sensor placements is able to capture salient
information required for the task. Most human activities can be viewed as a ses-
sion comprising a number of short time windows containing low level actions.
Hierarchical fusion of temporal information is able to take this phenomenon into
account. Further, HAR systems in real world scenarios are likely to encounter
samples different from training classes. An optimal framework should be able to
distinguish them from known classes with explainable visualizations.

Though initial works relied on domain knowledge and heuristic based sta-
tistical feature representation [19] for activity recognition, recent end-to-end
deep learning models utilize convolutional [8] and recurrent [16] architectures
for learning representations. Attention mechanism, described as weighted aver-
age of feature representations, is adopted to model HAR task like other sequence
modeling problem such as NLP in recent works [12,13,15,29,31]. However, such
approaches do not utilize hierarchical modelling of spatio-temporal information.
Moreover, these approaches follow conventional training method under closed
set assumption where unknown samples are forced to be recognised as one of the
prior known classes.

Considering the aforementioned requirement towards hierarchical fusion of
spatio-temporal features, the methodological approach taken in this paper incor-
porates hierarchical aggregation of sensor signals from different placements
across time to construct representation for a specific window. Feature represen-
tations from different windows within the same session are aggregated to yield
representation for that session. In the case of predicting label for specific window,
we utilize session information guided window feature representation instead. The
proposed approach models HAR under open set assumption where test samples
are identified as seen or unseen and labeled as one of the known classes from
training set simultaneously. Such capabilities are highly desirable in the scenario
of a subject performing an activity in a completely unexpected way e.g. doing
rehabilitation exercise incorrectly due to physical limitations or malfunctioning
of sensor devices. In this regard, we have designed autoencoder architecture along
with hierarchical encoder to model the distribution of the known activity classes
where unseen activities are supposed to yield higher reconstruction loss. Explain-
able feature attention maps are obtained from hierarchical self-attention layers
to demonstrate dominant sensor placement and temporal importance within ses-
sion to classify specific physical activity.

We conduct extensive experiments on five publicly available benchmark
activity recognition datasets: PAMAP2, Opportunity, USC-HAD, Daphnet and
Skoda. Our model outperforms prior methods in several datasets. Furthermore,
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we evaluate the robustness of the model to noise and subject-specific variabil-
ity through leave-one-subject-out validation experiments. Moreover, we evaluate
open-set recognition performance and generate feature attention maps to demon-
strate the activity distinguishing characteristics in the learned representation. In
brief, the key contributions of our work are listed below:

1. Proposed hierarchical self attention encoder models spatial and temporal
information of raw sensor signals in learned representations which are used
for closed-set classification as well as detection of unseen activity class with
decoder part of the autoencoder network in open-set problem definition

2. Interpretable visualization of feature attention maps indicate fusion of causal
and coherent features for activity recognition

3. Our extensive experiments achieve superior performance in several benchmark
datasets and demonstrate robustness to subject-specific variability in sensor
readings

2 Related Work

Wearable Sensor Based HAR. The earlier research works on HAR mostly
relied on hand-crafted statistical or distribution-based [11,20] features that have
been designed based on domain expertise [9]. However, recent works for wearable-
based HAR have mostly focused on end to end deep learning systems for mod-
eling effective feature representation. In that regard, various forms of convolu-
tional, recurrent and hybrid architectures such as [7,8,16] were proposed and
demonstrated varying levels of success in recognition of the activities under
consideration. In recent years, the incorporation of attention mechanism with
deep learning-based architectures [12,15,29,31] have demonstrated significant
performance improvement. However, most of these works [4,18] do not rely on
hierarchical modeling of spatio-temporal information from wearable sensors.

Self Attention Architecture. Recently, self-attention [27] based models have
emerged as a popular alternative to recurrent networks for various NLP tasks
and has also been proposed for HAR [13]. Using self-attention in a hierarchical
manner has been proposed for various tasks such as classifying text documents
[6], generating recommendations [10] etc. in order to break up the task into
relevant hierarchical parts. However, no such work exists for wearable sensor
data to the best of our knowledge though such hierarchy allows for intuitive
representation of complex human activities.

Interpretability and Open-Set Recognition. The data from wearable sen-
sor devices are usually high dimensional involving different body placements
over some time duration. Furthermore, most of the deep-learning based models
used for classification of such data offer little to zero interpretability towards the
predicted outcome. Some progress has been made in this regard for video based
action recognition task [14,21]. Although attention-based models for wearable
HAR offer more interpretability using the attention-scores, it is still scarce in
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HAR community. With regards to HAR systems, it is often useful to be able to
identify previously unseen activities. Class conditioned [17] or variational [2,26]
autoencoder for unseen sample detection has been proposed for image data.
Although unseen activity recognition for skeleton data [25] & smart-home envi-
ronment [1,5] have been proposed, autoencoder architectures for unseen sample
detection in wearable based HAR are very scarce.

3 Proposed Method

3.1 Task Definition

We assume that S = {S1, S2, S3, ...} is the set of sensors placed at different loca-
tions on the body of human subjects. Generally, an Inertial Measurement Unit
(IMU) or smart-device contains sensors and records data at a sampling rate of
f Hz from multiple axes (e.g. tri-axial accelerometer or gyroscope yields signal
along x, y and z-axis). Therefore, there will be record of m = |S| ∗ ∑

i(ai) sig-
nals at any particular time-step where ai = number of axes at Si. In a dataset
containing sensor signal recording of n time-steps, the readings along time is
represented as a multidimensional time-series X as in (1) and reading at partic-
ular time-step xk can be represented as in (2). The human activity recognition
problem can be defined as the task to detect physical activity class labels given
the multidimensional time-series of sensor signals X of particular duration.

X = [x1, x2, ..., xk, ..., xn] (1)

xk = [xk1, xk2, ..., xkj , ..., xkm]T (2)

We propose to represent sensor signals hierarchically as an activity session com-
posed of windows representing short segments within the sequence. On the other
hand, a window is composed of a fixed number of data-points representing the
sensor signal at the corresponding time-stamps. We use the proposed hierarchical
encoder to learn representation for a session which is used for both classification
and open-set detection. The different components of the model are described in
the following subsections.

3.2 Hierarchical Self Attention Encoder

The proposed model incorporates two distinct types of hierarchy - temporal
and body location-based. These hierarchies are implemented by the Hierarchical
Window Encoder (HWE) and Session Encoder (SE), respectively. Self attention
is the core element in both of the aforementioned components and is used in two
ways within the components. We refer to them as Modular Self Attention and
Aggregator Self Attention, respectively.

Modular Self Attention: Modular self attention consists of N identical blocks
of multi-headed self attention and position-wise feed forward layers. For each
time-step, three linear transformations referred to as key (K), query (Q), and
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value (V ) are learned. Attention score is obtained by applying softmax function
on the scaled dot products of queries and keys and is used to get a weighted
version of the values. This operation is performed in matrix form as defined
in (3).

fsa(Q,K, V ) = softmax(
QKT

√
dk

)V (3)

Here, Q = XWQ,K = XWK , V = XWV where WQ,WK ,WV are weight matri-
ces; X is the input and K ∈ IRt×dk , Q ∈ IRt×dk and V ∈ IRt×dv . Furthermore,
multi-head self attention is defined in (4) where each attention head uses differ-
ent WQ,WK ,WV and the output from different attention heads are combined
according to (4).

fmhsa(X) = concat(h(1), ...., h(n)) · Wo (4)

where, h(j) = fsa(W (j)
Q X,W

(j)
K X,W

(j)
V X). Position-wise feed forward refers to

identical fully connected feed forward network composed of two feed forward
layers with ReLU activation in between applied independently to each time-step.
In addition, layer normalization is used after self-attention and position-wise feed
forward layers and the aforementioned layers contain residual connections.

Aggregator Self Attention: In order to obtain an aggregate representation
from all the time-steps in the input sequence, we use Aggregator Self Attention.
The primary difference between Modular and Aggregator blocks is in the learned
linear representations used in (5). The construction of query and value are the
same as the former. The key matrix Ka in (5) is initialized randomly and learned
during optimization with the rest of the parameters.

fagr(Qa, Va) = softmax(
QaKT

a√
dka

)Va (5)

Where, Qa = XWaQ, V = XWaV ;WaQ,WaV are weight matrices; X is the
input to the layer and Qa ∈ IRt×dka , Va ∈ IRt×dva ,Ka ∈ IR1×dka . In contrast
to Modular Self Attention, the position-wise feed forward layer is applied both
before and after the self attention operation. Moreover, we use single headed
attention in this block in order to simplify the use of the attention scores for
interpretability.

Hierarchical Window Encoder (HWE) consists of m modular self attention
blocks and an aggregator self attention block where m is the number of sensor
placements. First, the values from all sensor modalities placed in a body location
are combined using 1-D convolution over single time-step to create a dmodel sized
vector. The position information is incorporated by adding positional encoding
based on sine and cosine function. Afterwards, the sequence from each sensor
placement goes through modular self attention block. Finally, the transformed
time-steps are concatenated along the temporal axis and aggregator self attention
is used to obtain a representation for the window as defined in (6) and (7).

Zwindow = concat(fmhsa(X(i)
w ), ... ,fmhsa(X(m)

w )) (6)
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(a) Hierarchical Self Attention Encoder (b) Hierarchical Window Encoder

Fig. 1. Overview of the (a) Hierarchical Self Attention Encoder, consisting of
Hierarchical window encoders and session encoder, is used to obtain representation
for classification and open set detection (b) Hierarchical Window Encoder, where
sensor signals from different body locations within short time span are separately trans-
formed and fused later using self attention

Z̃window = fagr(Zwindow) (7)

Session Encoder (SE) comprises n identical HWEs where n is the number
of windows within the session. All of the HWE within the session have shared
parameters. The input to the session encoder is the output from n temporally
ordered window encoders where n is the number of windows within the session.
Similar to the HWE, the input goes through Modular Self Attention and Aggre-
gator Self Attention as defined in (8) and (9) to obtain a representation for the
session.

Zsession = fmhsa(Xs) (8)

Z̃session = fagr(Zsession) (9)

Window and Session Classification: For session-level classification, the out-
put from SE is passed to dense and softmax layers to obtain the class label.
However, for widow-level classification we concatenate the output from SE with
each window representation and pass that to dense and softmax layers. There-
fore, we utilize the hierarchical structure to augment the window representation
with session information to guide the window-level classification.
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3.3 Open Set Human Activity Recognition

Autoencoder, constructed upon the proposed hierarchical self-attention encoder,
models the relationship between random variable z representing low-dimensional
latent space and random variable x denoting learned representation vector to be
reconstructed. We have designed the decoder as multi-layer feed-forward neural
network estimating the approximation of distribution pθ(x|z) where θ is the
learned decoder parameters. On the other hand, the encoder is trained to model
the posterior distribution qφ(z|x) where φ indicates encoder network parameters.

As illustrated in Fig. 2, the objective of proposed autoencoder is to approx-
imate the intractable true posterior pθ(z|x) with qφ(z|x). The approximation
depends on the network parameters and they are tuned based on reconstruc-
tion loss and Kullback–Leibler (KL) divergence DKL(qφ(z|x)||pθ(z|x)). As the
KL divergence cannot be computed directly from feature representation x and
latent space representation z, the loss is minimized through maximizing sum-
mation of Evidence Lower Bound (ELBO). Therefore, the loss of autoencoder is
computed as, LAE = −∑

i ELBOi, where ELBOi is defined as below in (10):

ELBOi = IEqφ(z|xi)[log(pθ(z|xi))] − DKL(qφ(z|xi)||pθ(z)) (10)

Here, ELBOi is the Evidence Lower Bound on the marginal likelihood of the
i-th learned representation, xi. pθ(z) indicates prior probability and modeled as
unit Gaussian. The expected value defined in the first term indicates reconstruc-
tion loss of learned representations. It is assumed according to the characteristics
of autoencoder that known activity classes will demonstrate lower reconstruc-
tion loss whereas unseen or novel ones should yield higher. The novel activities
are detected based on reconstruction loss threshold which is tuned as hyperpa-
rameter. The threshold is set from the range μ(Lknown) − α · σ(Lknown) where
Lknown is the reconstruction loss of autoencoder on training data containing
known activity classes and α ∈ [0.0, 0.50].

Fig. 2. Overview of the autoencoder architecture where representations from hierar-
chical self attention encoder is utilized for closed-set classification and reconstructed
with decoder for open-set recognition
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4 Experiments

Datasets: We use five publicly available benchmark datasets - PAMAP2 [22],
Opportunity [23], USC-HAD [30], Daphnet [3] and Skoda [24] for our experi-
ments. A summary of the datasets used is presented in Table 1.

Table 1. Summary of the Datasets used in experiments. For Skoda, we use a 10% split
for test and validation since it contains data from a single subject. For the Sensor Used
column, A = Accelerometer, G = Gyroscope, M = Magnetometer

Dataset Sampling
rate

No. of
activity

No. of
subject

Validation
subject ID

Test
subject ID

Sensor
used

PAMAP2 100Hz 12 9 105 106 A, G

Opportunity 30Hz 18 4 1 (run 2) 2, 3 (run 4, 5) A, G, M

USC-HAD 100Hz 12 14 11, 12 13, 14 A, G

Daphnet 64Hz 2 10 9 2 A

Skoda 98Hz 11 1 1 (10%) 1 (10%) A

Construction of Activity Window and Session: Activity sessions are con-
structed using overlapping sliding-window across the temporal axis. Each activ-
ity session comprises a number of non-overlapping short activity segments which
we refer to as windows.

Open-Set Experiment: We randomly hold out the data for a fraction of the
classes (22% and 27% of the classes in case of Oppotunity & Skoda, 33.33% for
rest) as part of the open-set and include the benchmark test data as defined in
Table 1 to construct the test set for evaluation. We train the model with the
remaining data and report the cross validation results.

Training and Hyperparameters: We implement the proposed model in Ten-
sorflow and train on eight Tesla K80 GPUs. We use Adam optimizer with learn-
ing rate set to 10−3 with momentum β1 = 0.9 and β2 = 0.999 and weight
decay ε = 10−7. The number of identical blocks and head for multi-headed self-
attention is set to N = 2 and n = 4 respectively for our experimental setup. The
dropout applied to placement specific encoder block and the size of the repre-
sentation vector learned from each session is configured to 0.2 and dmodel = 64
respectively.

5 Results and Discussion

Evaluation Metric: For the evaluation of activity recognition performance,
we use the macro average F1-score defined in (11) as metric where |C| and



Hierarchical Self Attention Based Autoencoder 359

i = 1, ..., C in (11) indicate number of classes and the set of classes respectively.

Macro F1 =
1

|C| ∗
C∑

i=1

2 ∗ Precisioni ∗ Recalli
Precisioni + Recalli

(11)

Baselines and Performance Comparison. We compare the proposed
method with a number of baselines which includes most of the prominent feature-
based deep learning methods for HAR as well as the recent state-of-the-art mod-
els. In particular, we compare our approach with recurrent, convolutional, hybrid
and attention-based models. Recurrent network based baselines include LSTM
and b-LSTM [8]. For convolutional baselines we compare with simple CNN as
well as convolutional autoencoder. Hybrid baselines include DeepConvLSTM
(4 CNN and 2 LSTM layers). Attention based baselines include attention aug-
mented DeepConvLSTM as well as SADeepSense [28] (CNN, GRU and sensor
& temporal self-attention modules) and AttnSense [12] (attention based modal-
ity fusion subnet and GRU subnet). We also compare with self-attention based
transformer classifier [13] which does not use any hierarchical modelling.

Table 2. Performance comparison of the proposed method with baselines in terms of
window-wise results on benchmark test set

Methods PAMAP2 Opportunity USC-HAD Daphnet Skoda

LSTM (2014) 0.75 0.63 0.38 0.68 0.89

CNN (2015) 0.82 0.59 0.41 0.59 0.85

b-LSTM [8] (2016) 0.84 0.68 0.39 0.74 0.91

DeepConvLSTM [16] (2016) 0.75 0.67 0.38 0.84 0.91

Conv AE [9] (2017) 0.80 0.72 0.46 0.73 0.79

DeepConvLSTM + Attn [15] (2018) 0.88 0.71 0.51 0.76 0.91

SADeepSense [28] (2019) 0.66 0.66 0.49 0.80 0.90

AttnSense [12] (2019) 0.89 0.66 0.49 0.80 0.93

Transformer Encoder [13] (2020) 0.96 0.67 0.55 0.82 0.93

Proposed HSA autoencoder 0.99 0.68 0.55 0.85 0.95

Performance on Benchmark Test Set: Table 2 shows that the proposed
model outperforms the baseline methods for all of the datasets except Opportu-
nity in terms of window-based results. Specifically, the proposed method out-
performs the other methods for PAMAP2, Skoda and Daphnet dataset. On
USC-HAD dataset, the performance of the proposed model is on par with the
transformer encoder which can be explained by the fact that the dataset contains
sensor readings from only one body location (waist) thus not being able to take
advantage of sensor location hierarchy. With regards to the Opportunity dataset,
some of the mid-level gestures are very short (e.g. less than one second) for which
the hierarchical model does not improve much on the existing results. However,
the advantage of the proposed hierarchy becomes apparent when we consider the
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performance on longer and more complex activities. In particular, for the recog-
nition of 5 high level complex activities in the Opportunity dataset, we observe
better performance compared to the others (proposed model obtains macro-F1
of 0.91 compared with 0.71, 0.73, 0.791, 0.838 for CNN, LSTM, DeepConvLSTM
and AROMA [18] respectively). Therefore, the proposed hierarchical method not
only produces better performance in case of longer complex activities (session-
wise) but also improves the recognition of shorter activities (window-wise).

Table 3. Performance evaluation in LOSO experiment

Dataset Proposed model Transformer encoder DeepConvLSTM Conv AE

PAMAP2 0.94 0.92 0.61 0.48

Opportunity 0.43 0.42 0.44 0.42

USC-HAD 0.68 0.60 0.59 0.63

Daphnet 0.72 0.71 0.69 0.67

Performance on Leave-One-Subject-Out (LOSO) Experiment: In order
to demonstrate the proposed hierarchical model’s robustness to subject specific
variability in sensor reading, we perform leave-one-subject-out (LOSO) valida-
tion experiments. In this regard, we hold data of one subject out for evaluation.
Table 3 presents macro F1 score of LOSO experiments on four datasets (Skoda
contains single subject) used for experiments. As can be seen from the table,
the model demonstrates better performance on LOSO experiments compared
to benchmark test data while other models suffer from subject specific variable
sensor reading patterns for the same activity.

Attention Maps for Interpretability: We can obtain temporal and sensor-
placement specific attention maps based on the attention scores obtained from
SE and HWE respectively. The attention maps are useful for understanding
the predictions made by the model. With regards to temporal attention maps, a
snapshot of which time frames were of more importance for the prediction is use-
ful for understanding both the model output and activity itself in case of unseen
activities. Moreover, such attention maps demonstrate good correspondence with
mid-level or micro activities that comprise the action. One such example is illus-
trated in Fig. 3 for a complex activity from the Opportunity dataset using the
annotated mid level actions and locomotion. It is evident that more emphasis
is given on the relevant actions for recognition of the activity. Furthermore, the
sensor-placement based attention maps provide a finer granularity of informa-
tion regarding which placements played more prominent roles at different times
which is in line with the intuitive understanding that distinct micro activities
may be dominated by different body parts.

Performance on Open set HAR: Furthermore, the proposed model also pro-
duces noteworthy results in the case of open set recognition as shown in Table 4.
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Fig. 3. Attention map for activity ‘Cleanup’ from Opportunity dataset comprising loco-
motion and mid-level gestures (top two rows - plotted using ground truth annotation),
bottom x-axis shows temporal attention weight and y-axis indicates body locations of
sensors [(L = Left, R = Right), (L = Lower, U = Upper) & A = Arm] where darker
color indicates higher attention score

Table 4. Open set activity detection performance

Dataset Total number of
classes

Number of
novel classes

Accuracy Macro F1 score

PAMAP2 12 4 0.85 0.69

Opportunity 18 4 0.75 0.58

USC HAD 12 3 0.61 0.52

Skoda 11 3 0.55 0.44

Daphnet 3 1 0.42 0.39

The proposed auto-encoder obtains good performance in terms of accuracy and
macro F1-score on PAMAP2, Opportunity and USC HAD dataset indicating
the capability to distinguish between the activities belonging to the known &
unknown classes. With regards to Daphnet dataset, the scores are lower com-
pared to rest since the unknown class includes transition activities in between
the two known classes resulting in similar distribution for known and unknown
activities.

6 Conclusion

The aim of this work was to design self-attention based model with hierarchi-
cal fusion of spatial and temporal features. Our extensive experiments confirmed
that hierarchical aggregation leads to better modelling of spatio-temporal depen-
dency in multimodal time-series sensor signal. These findings have significant
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implications for the understanding of how to construct feature representation
that leverages better separability for classification and unseen class detection.
The findings reported here lays the groundwork of future research into natural
language description generation from multimodal sensor signals. However, pub-
licly available benchmark HAR dataset is limited by the lack of complex activity
annotations. Notwithstanding these limitations, the hierarchical self-attention
model demonstrates interpretable activity recognition as well as robust feature
representation.
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Bangladesh, and Independent University, Bangladesh (IUB).
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8. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models
for human activity recognition using wearables. arXiv preprint arXiv:1604.08880
(2016)

9. Haresamudram, H., Anderson, D.V., Plötz, T.: On the role of features in human
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11. Kwon, H., Abowd, G.D., Plötz, T.: Adding structural characteristics to
distribution-based accelerometer representations for activity recognition using
wearables. In: Proceedings of the 2018 ACM ISWC. ACM (2018)

12. Ma, H., Li, W., Zhang, X., Gao, S., Lu, S.: AttnSense: multi-level attention mech-
anism for multimodal human activity recognition. In: Proceedings of the IJCAI
2019, pp. 3109–3115 (2019)

13. Mahmud, S., et al.: Human activity recognition from wearable sensor data using
self-attention (ECAI 2020) (2020)

14. Meng, L., et al.: Interpretable spatio-temporal attention for video action recogni-
tion. In: Proceedings of the IEEE International Conference on Computer Vision
Workshops (2019)

http://arxiv.org/abs/1604.08880


Hierarchical Self Attention Based Autoencoder 363
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Abstract. Distant supervision (DS) has the advantage of automatically
annotate large amounts of data and has been widely used for relation
classification. Despite its efficiency, it often suffers from the label noise
problem, which would impair the performance of relation classification.
Recently, there are two ways to solve the label noise problem. The first
way is to use multi-instance learning to consider the noises of instances,
but they do not perform well for sentence-level prediction. The second
way is to use reinforcement learning or adversarial learning to directly
find noisy label instances but with high computational overhead and poor
performance. In this paper, we propose to use the natural language infer-
ence (NLI) model to evaluate the quality of the instances directly, and
select the high-quality instances as refined training data for sentence-level
relation classification. Due to the lack of high-quality supervised data, we
use reinforcement learning to train the NLI model. Experimental results
on two human re-annotated NYT datasets show the effectiveness and
efficiency of our method at the sentence-level relation classification. The
source code of this paper can be found in https://github.com/xubodhu/
RLRC.

1 Introduction

The task of relation classification is to predict the semantic relations between
two entities from a given text. Knowing the relations of entities is essential
for many downstream applications, such as knowledge graph completion and
question answering.

Typically, each relation classification task requires its own annotated data
for training the model, which is expensive and time-consuming. To address this
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problem, distant supervision has been proposed to automatically annotate a
large number of unlabeled instances from knowledge bases. It assumes that all
sentences mentioning an entity pair from the knowledge base express that rela-
tion [9].

For example, the entity pair (Steve Jobs, Apple) has a relation of Founder
in a given knowledge base. Then a sentence “Steve Jobs was the co-founder
and CEO of Apple and formerly Pixar” mentions the entity pair (Steve
Jobs, Apple) will be automatically labeled as relation Founder by distant
supervision.

Despite its efficiency, distantly supervised relation classification often suf-
fers from the label noise problem. For example, the sentence “Steve Jobs
moved into a house near the Apple office in Cupertino” also mentions
the entity pair (Steve Jobs, Apple) but does not express the relation of
Founder. The label noise problem would impair the performance of relation
classification.

Recently, there are two ways to solve the label noise problem. The first way is
to use multi-instance learning to consider the noises of instances [2,3,8,10,14].
They divide the training data into many bags, and each bag contains many
sentences mentioning the same entity pair. Then the training and test process
proceeds at the bag level. However, bag-level relation classification does not
perform well for sentence-level prediction [1,18]. The second way is to find the
noisy labeling instances directly. They mainly use reinforcement learning [1,7,16]
or adversarial learning [6,12] to select high-quality instances or remove noisy
instances. However, their computational overhead is high, and the performance
of these methods needs to be improved.

Fig. 1. An example of using the NLI model to evaluate the quality of two instances.

To address these issues, we propose to use the natural language inference
(NLI) model [17] to evaluate the quality of the instances directly, and select the
high-quality instances as refined training data for sentence-level relation classifi-
cation. Natural language inference studies whether a hypothesis can be inferred
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from a premise, where both are a text sequence [17]. In this paper, given an
instance of the training data, we transform the triple of the instance into a
hypothesis and use the text of the instance as a premise. Then we use the NLI
model to evaluate whether the triple can be inferred from the sentence. For exam-
ple, in Fig. 1, there are two sentences mentioning the same entity pairs (Steve
Jobs, Apple). After transforming the entity pair and their relation Founder
into the hypothesis sentence, we use the NLI model to determine whether each
sentence can infer the hypothesis, and thus determine whether each sentence
express the relation of the entity pair.

Due to the lack of high-quality supervised data, we use reinforcement learning
to train the NLI model. Specifically, we first use the NLI model to evaluate the
quality of the instances. Then we feed the selected high-quality instances to the
relation classification model and use the performance of the relation classification
model as a reward to guide the parameter update of the NLI model. Our main
contributions can be summarized as follows:

– Firstly, to the best of our knowledge, we are the first to use the natural lan-
guage inference model to improve distantly supervised relation classification.
We evaluate the quality of the instances directly and select the high-quality
instances as refined training data for sentence-level relation classification.

– Secondly, due to the lack of high-quality supervised data, we use reinforcement
learning to train the NLI model.

– Finally, experimental results on two human re-annotated NYT datasets show
our method’s effectiveness and efficiency at the sentence-level relation classi-
fication.

2 Overview

2.1 Problem Formulation

Our goal is to select some high-quality instances from DS training data to
improve sentence-level relation classification, which consists of two subtasks,
namely instance selection and sentence-level relation classification. Sentence-
level relation classification has been widely studied in recent years [3,15]. In this
paper, we only focus on the instance selection subtask and adopt a CNN archi-
tecture proposed by [1] for relation classification in all subsequent experiments.

Let D be the distantly supervised training data, which contains N instances
{(hi, ti, ri, texti)}N

i=1. For each instance Di, texti is a text mentioning an entity
pair (hi, ti). hi is the head entity, ti is the tail entity, ri is one of the relations
between them in a given knowledge base. The instance selection subtask’s goal
is to select a subset of DS training data D′ ⊂ D as refined training data for
sentence-level relation classification.

2.2 Framework

The framework of our method is shown in Fig. 2. The general process is as
follows: we first select a batch of instances from the DS training data randomly
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Fig. 2. The framework of our method.

and evaluate the quality of these instances by the NLI model. After that, we
use a weighted Bernoulli sampler to select instances based on their NLI scores
and obtain a selection vector for the instances, where 1 means the instance
is selected, and 0 means not. Due to the lack of high-quality supervised data,
we use reinforcement learning to train the NLI model. Specifically, we use the
selected instances to train a sentence-level relation classifier (RC) and get a
reward according to the performance of the relation classifier on the validation
set. Finally, the NLI model updates parameters based on the feedback of the
reward.

3 Method

In this section, we will introduce each part of our method in detail. We first intro-
duce how to preprocess the DS training data for the natural language inference
model and the relation classification model, then introduce these two models
respectively, and finally explain how to update the NLI model’s parameters.

3.1 Data Processing

Our framework includes two main models, namely the NLI model and the rela-
tion classification model. To train these two models, we need to preprocess the
DS training data.

For the NLI model, the input is a premise and a hypothesis. The output is the
likelihood between 0 and 1, indicating the probability that the hypothesis can
be inferred from the premise. We convert the DS training data into the input of
the NLI model as follows: for each instance Di = (hi, ti, ri, texti), we regard the
text texti as the premise Pi of the NLI model and use human crafted templates
to convert the triples (hi, ti, ri) into the hypothesis Hi of the NLI model. We
design a conversion template for each relation. Table 1 shows some examples of
the templates.
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Table 1. Some examples of human crafted templates to convert the triples (hi, ti, ri)
into the hypothesis of the NLI model.

Relations ri(hi, ti) Hypothesis

NA There’s no relationship
between ti and hi

/location/neighborhood/neighborhood of ti is the neighborhood of hi

/location/administrative division/country hi is the administrative
division of ti

/people/person/nationality hi’s nationality is ti

/business/person/company hi works in ti

/people/person/place lived hi lives in ti

/location/location/contains ti is located in hi

For the relation classification model, the input is the text mentioning the
head entity and tail entity, and the output is the relation between the entity
pair. We convert the DS training data into the input, and output of the relation
classification model as follows: for each instance Di = (hi, ti, ri, texti), we regard
the (hi, ti, texti) as the input, and ri as the output.

3.2 Natural Language Inference Model

Natural language inference model is used for instance selection. As shown in
Fig. 2, our NLI model gφ consists of an input layer, a BERT layer and an output
layer.

For each input of the NLI model, (Pi,Hi), we represent it as a sequence of
words with two special tokens: “[CLS] Pi [SEP] Hi”. The first token of the
sequence is the [CLS] which contains the information of both the premise Pi

and the hypothesis Hi. The other token [SEP] is used for separating the text of
premise Pi and hypothesis Hi. Each token consists of three types of embedding,
namely word embedding, position embedding and segment embedding.

BERT is a multi-layer bidirectional Transformer encoder. It has been
pre-trained using a combination of masked language modeling objective and
next sentence prediction on a large corpus comprising the Book Corpus and
Wikipedia. BERT can be used for a variety of downstream tasks. These two pre-
training goals allow it to be used for any single sequence and sequence pair task
without the need for a large number of task-specific architectural modifications.
In this paper, we use BERT to encode the information of both the premise Pi

and the hypothesis Hi. Specifically, it takes an input of a sequence and outputs
the representation of the sequence. The final hidden state of the [CLS] token is
taken as the output.

Finally, we use a fully-connected dense layer to evaluate the quality for each
instance. Specifically, It takes the final hidden state CLSi of the first token [CLS]
as input and outputs the probability that the hypothesis Hi can be inferred from
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the premise Pi. The probability is predicted as follows:

gφ(Pi,Hi) = σ(WcCLSi + bc), (1)

where Wc and bc are the parameters for the dense layer, σ is the sigmoid active
function.

3.3 Relation Classification Model

We adopt the CNN architecture proposed by [1] for relation classification. The
model consists of an input layer, a convolution layer, a max pooling layer and
an output layer.

For each text of the input, texti, we represent it as a sequence of word vector
x = (w1,w2, . . . ,wm). Each word vector consists of two types of embedding,
namely word and position embedding. For word embedding, we use the pre-
trained word vectors from word2vec1. For position embedding, we follow the
previous work [15] to represent the relative distances from the current word
respectively to the head entity hi and tail entity ti in the text texti. Finally, we
concatenate the word and position embedding to form a word vector.

We then use a convolution layer and a max pooling layer to extract features
from the input layer. This can be briefly described as follows:

C = CNN(x) (2)

Finally, we feed the output of max pooling layer into a dense layer to predict
the relation of the entity pair:

p(r|x) = softmax(Wo tanh(C) + bo), (3)

where Wo and bo are the parameters of the dense layer. tanh and softmax
are active functions. Given the selected instances {(xi, ri)}n

i=1 provided by the
sampler, we use cross entropy to define the objective function of the relation
classification model as follows:

L(θ) = − 1
n

n∑

i=1

log p(ri|xi) (4)

3.4 Model Training

Now we introduce how to train the NLI model and the relation classification
model alternately. Inspired by [13], we use the REINFORCE algorithm [11] to
optimize the parameters, with the reward obtained from the relation classifica-
tion model’s performance on the validation set. The training procedure is shown
in Algorithm 1.

We first initialize parameters θ, φ for relation classification model fθ and
natural language inference model gφ (Step 1). Then we iteratively update the

1 https://code.google.com/p/word2vec/.

https://code.google.com/p/word2vec/
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Algorithm 1. The Training Procedure of the Whole Model
Inputs: Training dataset D = {(hi, ti, ri, texti)}N

i=1, validation dataset Dv =
{(hv

k, tv
k, rv

k, textv
k)}M

k=1, learning rates α, β, batch size Bp, Bs, inner iteration count
NI , moving average window T .
Output: The natural language inference model gφ.

1: Initialize parameters θ, φ for fθ and gφ, moving average δ = 0.
2: while until convergence do
3: Sample a batch of data DB = (hj , tj , rj , textj)

Bs
j=1 from D

4: (xj , rj)
Bs
j=1, (Pj , Hj)

Bs
j=1 = DATAPROCESSING(DB)

5: for j =1,...,Bs do
6: Predict selection probability: wj = gφ(Pj , Hj)
7: Bernoulli sample an instance: sj = SAMPLE(wj)

8: for t = 1, ..., NI do
9: Sample a batch of data (xm, rm)

Bp

m=1 from (xj , rj)
Bs
j=1 with sj = 1

10: Update θ according to Eq. 5

11: Update φ according to Eq. 6
12: Update the moving average δ according to Eq. 8

parameters of the two models (Step 2–12). Specifically, we first sample a batch
of data DB = (hj , tj , rj , textj)Bs

j=1 from the training data D (Step 3). Next, we
process this data for NLI model and relation classification model, respectively
(Step 4). Then, for each instance of batch data, we use the NLI model to evaluate
its quality, and perform Bernoulli sampling according to its probability (steps 5–
7). sj = {0, 1} is an indicator variable, indicating whether to select this instance
for the subsequent relation classification model. After that, we start to update
the parameters of the relation classification model NI times. In each parameter
update, we first sample Bp batch size of data from the selected data in the
previous step, and then update the parameters according to Eq. 5 (Step 8–10):

θ ← θ +
α

Bp

Bp∑

m=1

∇θ log p(rm|xm) (5)

Then we update the natural language inference model parameters φ according
to Eq. 6 (Step 11):

φ ← φ + β [F1(fθ(xv), rv) − δ] · ∇φ log πφ(DB , (s1, ..., sBs
)), (6)

where F1(fθ(xv), rv) is the F1 score of relation classification model on validation
set Dv, πφ(DB , (s1, ..., sBs

)) is the probability that selection vector (s1, ..., sBs
)

is selected based on gφ.

πφ(DB , (s1, ..., sBs
)) =

Bs∏

i=1

gφ(Pj ,Hj)si · (1 − gφ(Pj ,Hj))1−si (7)

To improve the stability of the policy gradient-based learning, we use the
moving average of the previous F1 score δ with a window size T as the baseline
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and update the parameter as follows (Step 12):

δ ← T − 1
T

δ +
1
T

F1(fθ(xv), rv) (8)

4 Experiment

4.1 Experiment Setup

Dataset. We evaluated our method on the widely used DS relation classifica-
tion dataset, NYT10 [8], which was automatically generated by aligning Freebase
with the New York Times corpus. NYT10 contains a total of 53 relations. One of
them is the special label NA, which means that there is no relationship between a
given entity pair. In our experiment, we follow the previous work [3,14] and use
the accuracy metric to evaluate the performance of sentence-level relation clas-
sification on Non-NA relations. In order to accurately evaluate the performance
of sentence-level relationship classification, we used two new test data that were
manually relabeled based on the original NYT10 test data. We denote them as
HA-Test1 [18] and HA-Test2 [5], respectively. The statistics about these datasets
are listed in Table 2.

Table 2. Statistics of the datasets.

Datasets Relation types Full size Size of Non-NA

NYT10 training [8] 53 522,611 136,379

HA-Test1 [18] 22 5,202 5,202

HA-Test2 [5] 28 4,288 4,288

Model and Training Setting. For the NLI model, the input layer consists of
two parts: premise and hypothesis. The max size of a premise is 70, and the max
size of a hypothesis is 20. For the BERT layer, we use BERT-Base2 in our model,
which contains an encoder with 12 layers (transformer blocks), 12 self-attention
heads, and the hidden size of 768. For the output layer, the size of the output
is 1.

For the relation classification model, we follow the same settings in [1]. For
the input layer, the word and position embedding dimensions are 50 and 5,
respectively. For the convolution layer, the convolution operation is performed
on 3 consecutive words, and the number of feature maps is set to 230. For the
output layer, we set the output size as 53, which is the total number of relations.

For training the whole model, we randomly select 90% of the NYT10 Training
as the training set, and the remaining 10% as the validation set. Moreover, for
Algorfithm 1, the learning rate α is 0.1, β is 0.005. The batch size of Bp is 4
and Bs is 5,120. The inner iteration counts NI is 10000, and the moving average
baseline T is 10.
2 https://github.com/google-research/bert.

https://github.com/google-research/bert
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Baselines. Our goal is to build a good instance selector. To verify the effective-
ness of our method, we compared different instance selection strategies. Each
strategy will select a subset of data from the DS data. This subset of data will
be used to train a relation classifier, and the performance of this classifier on
the test set is used to evaluate the quality of instance selection strategies. Those
strategies are as follows:

– DS. The DS strategy refers to retaining the DS training data without any
selection operation.

– RL [1]. The RL strategy refers to using the state-of-the-art reinforcement
learning model for instance selection, which is a bag-level instance selector.

– Random. The Random strategy refers to randomly selecting a certain ratio
of instances from the DS training data.

– NLIRL. NLIRL is our proposed method, which selects a certain ratio of
instances with higher NLI scores from the DS training data.

– NLIRL(Low). NLIRL(Low) is a variant of our proposed method, which selects
a certain ratio of instances with lower NLI scores from the DS training data.

4.2 Performance Comparison and Analysis

Fig. 3. The overall performance of different selection strategies.

We first compare the overall performance of different selection strategies. As
shown in the figure, the DS and RL methods do not need to set a selection
ratio threshold, so their performance is straight. Using the RL strategy to filter
the training set reduces the performance of the classification method, which
shows that this strategy cannot find high-quality instances. The performance
of the remaining three strategies varies with the selection ratio threshold. It
can be found from the figure that our method NLIRL is better than all other
strategies. When the selection ratio is 50%, our method achieves the best results.
Compared with NLIRL(Low), if we select instances with low NLI values, namely
remove instances with high NLI values, then the classification performance will
be reduced. These two aspects prove that our method can find high-quality
instances and significantly improve relation classification performance (Fig. 3).
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Then we conduct further analysis of some typical relations. We compared
the performance of DS, RL and our method (NLIRL with the selection ratio
threshold set to 0.5) on these relations. The results are shown in Table 3. Our
approach can significantly improve the recall of the relation classifier, thereby
improving the overall performance.

Table 3. The performance of four typical relations

Relations Size NLIRL RL DS

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

HA-Test1

/location/location/contains 2,754 0.892 0.822 0.856 0.934 0.640 0.760 0.914 0.752 0.825

/people/person/nationality 731 0.946 0.910 0.927 0.966 0.620 0.755 0.979 0.766 0.860

/business/person/company 468 0.965 0.639 0.769 0.975 0.585 0.732 0.980 0.536 0.693

/people/person/place lived 225 0.791 0.671 0.726 0.702 0.147 0.243 0.863 0.533 0.659

HA-Test2

/location/location/contains 1,987 0.832 0.786 0.808 0.906 0.444 0.596 0.876 0.636 0.737

/people/person/nationality 568 0.948 0.900 0.923 0.974 0.526 0.683 0.979 0.764 0.858

/business/person/company 277 0.903 0.570 0.699 0.948 0.523 0.674 0.963 0.480 0.641

/people/person/place lived 270 0.913 0.659 0.766 0.773 0.063 0.116 0.927 0.570 0.706

We also compared the running time of RL and our proposed method NLIRL.
Although we all use reinforcement learning methods, our method runs faster.
Specifically, we only use 10 h to train our instance selector on a single NVIDIA
GeForce RTX2080Ti GPU, while RL needs more than 48 h. That has been proved
in [13], our method is not directly proportional to the dataset size, but depends
on the number of iterations in Algorithm 1. Besides, we use the pre-trained
model Bert for the NLI model to minimize computational overhead.

5 Related Work

Relation extraction based on deep learning requires a lot of training data, but
manual labeling of these training data is very time-consuming and expensive. [4]
first used distant supervision technology in 2009 to align the sentences in the
input text with the triples in the Freebase knowledge graph to solve this problem.
At this time, the triples provide supervision information. Despite its efficiency,
distantly supervised relation classification often suffers from the label noise prob-
lem. Recently, there are two ways to solve the label noise problem.

The first way is to use multi-instance learning to consider the noises of
instances [2,3,8,10,14]. They divide the training data into many bags, and each
bag contains many sentences mentioning the same entity pair. Then the training
and test process proceeds at the bag level. The most important thing is how to
find the most relevant sentence from a bag of sentences. For example, [14] con-
siders entity’s position when extracting the feature vector representation of the
sentence, uses the segmentation max-pooling operation to encode each sentence,
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and selects the sentence with the highest probability of correctly predicting the
relation in a bag for parameter update. Considering the different importance of
the expression relation of different sentences in a bag, [3] introduced a sentence-
level attention mechanism. A sentence with a larger weight contributes more
to the update of the parameter. Conversely, a sentence with a smaller weight
contributes to the update of the parameter small, so that all training data can
be fully utilized. However, bag-level relation classification does not perform well
for sentence-level prediction [1,18]. In this paper, we focus on improving the
performance of the sentence-level relation classification task.

The second way is to find the noisy labeling instances directly. There are
two main types of methods, namely reinforcement learning and adversarial
learning. Many reinforcement learning methods have been proposed in recent
years [1,7,16], they decompose the problem of relation extraction into two
tasks: instance selection and relation classification. Among them, [1,7] regard
the instance selector as a reinforcement learning agent, while [16] regards the
relation classification as the agent. Moreover, [7] dynamically identify false pos-
itive instances of each relation, and redistribute false positive instances to true
negative instances. The first proposed method of adversarial training is to add
adversarial noise to word embeddings to extract relations based on CNN and
RNN under the framework of multi-instance multi-label learning (MIML) [12].
DSGAN [6] eliminates noisy data in distantly supervised relation classification by
learning the generator and discriminator of sentence-level real positive instances.
However, their computational overhead is high. In this paper, we use the natu-
ral language inference model as the agent, and propose a reinforcement learning
method which is not directly proportional to the dataset size, but depends on
the number of iterations in the training procedure.

6 Conclusion

In this paper, we propose to use the natural language inference(NLI) model to
evaluate the quality of the instances directly and select the high-quality instances
as refined training data for sentence-level relation classification. Due to the lack
of high-quality supervised data, we use reinforcement learning to train the NLI
model to find high-quality instances. Specifically, we use the NLI model to select
instances, and then feed the sampled instances to the relation classifier, and use
the performance of the relation classifier as a reward to guide the parameter
update of the NLI model. Experimental results on two human re-annotated
NYT datasets show our method’s effectiveness and efficiency at the sentence-
level relation classification.
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Abstract. Document-level Relation Extraction(DocRE) aims at
extracting semantic relations among entities in documents. However,
current models lack long-range dependency information and the reason-
ing ability to extract essential structure information from the text. In
this paper, we propose SaGCN, a Structure-aware Graph Convolution
Network, extracting relation with explicit and implicit dependency struc-
ture. Specifically, we generate the implicit graph by sampling from a
discrete and continuous distribution, then dynamically fuse the implicit
soft structure with the dependent hard structure. Experimental results of
SaGCN outperform the performance achieved by current state-of-the-art
various baseline models on the DocRED dataset.

Keywords: Document-level relation extraction · Structure-aware
information injection · Graph neural network

1 Introduction

The Relation Extraction(RE) task aims to detect semantic relations between
named entities from text. Sentence-level relation extraction tasks have been
extensively studied [31,32]. Due to understanding unstructured text in realis-
tic scenarios should extract various entity relations among multiple sentences,
document-level relation extraction is necessary.

Prior work [30,33] of document-level relation extraction utilizes position-
aware or context-aware attention to combine with LSTM [10] or hierarchical
networks [11,22] to learn more accurate entity representations. These approaches
only enhance the model’s ability to aggregate contextual information, but they
are still ineffective for relation extracting cross multiple words or sentences.
In Table 1, entity North American and California are almost 30 words apart.
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12714, pp. 377–389, 2021.
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Long-range relation depend on both local and non-local dependencies. Sahu et
al. [19] construct the document-level graph by dependency tree and co-reference
links. iDepNN [9] extracts relations within and across sentence boundaries via
the shortest and augmented dependency paths. We argue that these approaches
are incapable of relation inference. As shown in the Table 1, the first sentence
indicates that Antennaria media is a North American species, and the second
sentence states that it is native to western Canada. The relation between the
two entities needs to be reasoned. Some recent works [3,17,26] make use of
different graph structures to solve reasoning problems. However, these models
do not in-depth explore the structural information which is critical to models’
understanding of the entire document.

Table 1. An example document from DocRED [30]. All mentions of an entity are
represented by same color and only the entities that appear in the example are marked.

Document Text

[1] Antennaria media is a North American species of flowering plants in
the daisy family known by the common name Rocky Mountain
pussytoes. [2] It is native to western Canada and the Western United
States from Alaska and Yukon Territory to California to New Mexico.
[3] It grows in cold Arctic and alpine regions , either at high latitudes in
the Arctic or at high elevations in the mountains (Rocky Mountains,
Cascades, Sierra Nevada). ...

Subject: Canada Subject: California

Object: North American Object: North American

Relation: continent, part of Relation: continent

Evidence: 1, 2 Evidence: 1, 2

To overcome these drawbacks, we propose a structure-aware model with infer-
ential capabilities. Our primary motivation is to use both explicit and implicit
structural information to mine the key information to predict relations between
entities. HardKuma distribution [1] is used to obtain implicit structural infor-
mation which has both continuous and discrete properties. Meanwhile, explicit
structural information is introduced by hard connection of dependency tree, then
we fuse the implicit and explicit information in a heuristic way to obtain the final
fused graph neural network. Additionally, to enable the model to have reasoning
ability, we construct a inference graph with mention and entities to propagate
information with graph convolution operations.

In summary, our main contributions are following:

• We propose a novel model, SaGCN, to predict relations between entities for
document-level relation extraction. SaGCN can handle multiple sentences and
long-range information efficiently, and has the ability to reason about entity
relations.
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• We introduce a structure-aware graph that captures both explicit and implicit
structures in a document, with contextual and critical information from
dependency tree.

• We conduct experiments on document-level datasets. The results show that
SaGCN has superior performance on extracting relations over long distances
to other sequence-based, graph-based and BERT-based models.

2 Method

2.1 Model Overview

Given a document D = [x1, x2, ..., xn], where i ∈ [1, n] and xi is ith word in
document, our goal is to extract the relation rij between each pair of entities
(ei, ej) from the document. We work on this task through the following steps.
(1) We encode a document by universal context encoder, such as BiLSTM [20]
and BERT [5], which can obtain contextual information. (2) Creating a fusion
structure aware graph that incorporates explicit and implicit structures between
mention and meta dependency path (MDP) nodes. (3) We construct a inference
graph with mention and entity nodes to reasoning relation of entities by graph
convolution. The overview of our model is shown in Fig. 1.

2.2 Context Encoder

To obtain the contextualized representations of each word, we feed a document D
into a contextual encoder. In this paper, we use Bi-directional Long Short-Term
Memory (BiLSTM) [20] and BERT [5] as encoder, the word hidden representa-

tion calculated by BiLSTM is hl
i = [

−→
hl

i ;
←−
hl

i ], specifically

−→
hl

i =
−−−−→
LSTM(hl

i−1, h
l−1
i ) (1)

←−
hl

i =
←−−−−
LSTM(hl

i+1, h
l−1
i ) (2)

where hl
i−1 is ith word hidden vector in lth layer and hl−1

i is ith word hidden
vector in (l−1)th layer. Then we can get contextual representation of each token
in the document.

2.3 Graph Nodes

We extract three types of nodes: document meta dependency path (DMDP)
nodes, mention nodes, entity nodes. Sentence meta dependency path (SMDP)
nodes [17] are the tokens on the shortest dependency path between all men-
tion pairs in a sentence. We extend SMDP to DMDP by connecting root nodes
of each sentence dependency tree in a document. Concretely, given four men-
tions m1,m2,m3,m4 in two sentences s1, s2 of a document D, where m1,m2 ∈
s1,m3,m4 ∈ s2. The DMDP nodes are MDPmi ,mj

, i, j ∈ {1, 2, 3, 4} and i �= j, are
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different from SMDP nodes which only contain MDPm1 ,m2
,MDPm3 ,m4

. Mention
nodes are the corresponding mention words for all entities in a document. An
entity node representation takes the average of all its mention nodes. We gen-
erate the structural graph by DMDP nodes and mention nodes. The inference
graph is constructed by entity nodes and mention nodes.

Fig. 1. Overview of SaGCN, the Fused Graph is generated by Structural Graph Gen-
erator, Mention Nodes and Entity Nodes construct the Inference Graph. The original
DMDP nodes, Mention nodes, Entity nodes are encoded by contextual encoder, such
as BiLSTM [20], BERT [5]. The Implict Graph is a fully connected graph with learned
edge weight from 0.0 to 1.0, the other nodes’ connection is same as the example node.

2.4 Structural Graph

Explicit Graph. We construct explicit graph adjacency matrix AE by using
the dependencies of the syntactic dependency tree generated via spaCy1. We
define AE i,j

= 1 when there is a edge connects word i and word j in dependency
tree.

Implicit Graph. In order to obtain an implicit graph containing hidden struc-
tural information of mention nodes and DMDP nodes, we apply HardKuma
distribution [1], which is a hard mode of Kumaraswamy distribution, both con-
tinuous and discrete. Samples on this distribution will closely approximate 0 and
1. A brief description is following:
1 https://spacy.io/.

https://spacy.io/
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Kumaraswamy Distribution. Like the Beta distribution, the Kumaraswamy
[14] is a two-parameters distribution in the open interval (0, 1), we define
K ∼ Kuma(α, β) to represent a Kumaraswamy distributed variable, where
α, β ∈ R>0 control the distribution’s shape. The Kumaraswamy has a simple
Cumulative Distribution Function (CDF) and the inverse of CDF is:

C−1
K (u;α, β) =

(
1 − (1 − u)1/β

)1/α

(3)

C−1
K (U ;α, β) ∼ Kuma(α, β) (4)

Then the above formula is used to take samples, and U ∼ U(0, 1) is a uniform
distribution, we can exploit this property to perform parameter reconstructions
to produce new CDF functions.

HardKuma Distribution. HardKuma is a constraint method that make the value
of samples from Kumaraswamy distribution stretched and rectified to 0 and 1.
Firstly, stretching the original Kumaraswamy distribution to obtain the variable
V ∼ Kuma(α, β, γ, η) which can be sampled in the open interval(γ, η) where
γ < 0 and η > 0, and the new CDF:

CV (v;α, β, γ, η) = CV ((v − γ)/(η − γ);α, β) (5)

Second, by applying a hard-sigmoid function, h = min(1,max(0, t)), the
sample V ∼ Kuma(α, β, γ, η) convert to a rectified variable H ∼
HardKuma(α, β, γ, η). Note that the variable H is covered the closed interval
[0, 1] now. All negative values can be constrained to 0 and all value over 1 can
converge to 1.

Implicit Graph Generator. We generate the implicit graph by sampling the
trained parameters α and β from the HardKuma distribution. Firstly, calcu-
late the prior c of (α, β) by employing multihead self-attention [23]:

cα = MultiSelfAttentionα(x) (6)

cβ = MultiSelfAttentionβ(x) (7)

where x are structural graph nodes. Subsequently, we get α and β by:

α = LayerNorm
(
cαcT

α

)
(8)

β = LayerNorm
(
cβcT

β

)
(9)

Hence, the implicit graph AI is sampled via learned parameters α and β:

AI i,j ∼ HardKuma
(
αij ,βij , γ, η

)
(10)
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Fusion Graph and Convolution. To benefit from explicit and implicit struc-
tural information in learning more plentiful mention representation, we merge
the explicit and implicit graph with a fused layer inspired by prior work [2,19].
The adjacency matrix AF for fused graph with nodes x calculated by:

AF = σ(Wx)AE + (1 − σ(Wx))AI (11)

where σ is sigmoid function, W ∈ R
m×1 is trainable gate variable. Then we

feed mention and MDP nodes into GCN [12] to capture structural information
for mention nodes. The GCN iteratively updates the representation of each input
graph node i as following:

hl+1
i = ReLU

⎛
⎝

n∑
j=1

AF i,j W
lhl

j + bl

⎞
⎠ (12)

We use ReLU [6] as the activation function, and W l is the trainable parame-
ter in lth layer, hl+1

i is hidden representation of ith node in (l +1)th convolution
layer. The mention nodes contain contextual and cross sentence structural infor-
mation by dynamically integrating from both explicit and implicit graph. We
mark them as ms .

2.5 Inference Graph

In this section, we generate a fully connect graph with all mention nodes ms

which already captured the backbone information of the document and entity
nodes e, and aggregate the information from ms to e. Meanwhile, reasoning
relation from mention-mention, mention-entity, entity-entity levels. The graph
convolution calculation is similar to the previous step:

hl
i = ReLU

⎛
⎝

n∑
j=1

AijW
lhl−1

j + b(l)

⎞
⎠ (13)

where Aij is the adjacency matrix of ms and e, all values of it equal 1. After
the operation of mutual reasoning between entities and mentions, we get the final
entity representations e, which contains a vast amount of mention information
and entities reasoning information.

2.6 Relation Classification

Before classification, we concatenate distance of head entity to tail entity for
head entities, and distance of tail entity to head entity for tail entities as same
as Yao et al. [30].

ehead
i = [eK

i ;Disthead2tail(eK
i )] (14)

etail
i = [eK

i ;Disttail2head(eK
i )] (15)
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where eK
i corresponds to the ith entity after K blocks of inference graph,

and ehead
i ,etail

i are resulted head and tail representation for ith entity. Then,
relation category scores of entity pairs are calculated by a bi-affine layer.

scores(ehead,etail) = ReLU(eheadWetail + b) (16)

where W ∈ R
d×r×d is trainable tensor with r relation types.

3 Experiments

3.1 Dataset

We evaluate SaGCN on DocRED [30], which was built from Wikipedia and Wiki-
data, covering 96 relation types and 132, 275 entities. Both manually-annotated
and distantly-supervised data are offered. We use the manually-annotated data.

3.2 Baseline Models

We compare the performance of SaGCN with the following models.

• Sequence-based RE Models. We select CNN, LSTM and BiLSTM that
are adapted by Yao et al. [30]. Context-Aware [30] incorporates the attention
mechanism into LSTM. Hierarchical inference network (HIN) [22] aggregates
three levels information which are entity, sentence, document to reason rela-
tions between entities.

• Graph-Based RE Models. GCNN [19] constructs document graph through
co-definition, dependency, and adjacency sentence links, and performs rela-
tion reasoning on the graph. EoG [3] extracts three types of nodes, entity,
mention, and sentence nodes which compose graph and reason with edge-
oriented graphs. GAT [24] first leverages attention into graph neural network.
AGGCN [8] updates the weight of soft connections between dependency tree
nodes through multi-head attention mechanism. LSR [17] uses the maximum
tree theory to obtain latent structure information, by iterating multiple GCNs
to obtain new entity representations of the information interaction.

• BERT-Based RE Models. BERT [5] encodes text using multiple Trans-
former [23] stacks, has achieved excellent results in many downstream NLP
tasks. Two-Phase BERT [27] is very similar to the basic BERT, except that
it first predicts whether a relationship exists between two entities, then pre-
dicts the relation. GLRE [26] constructs a local and global graph of entities
and mentions. This composition gives it the ability to capture both local and
global information.

3.3 Results

We show the results of SaGCN for the DocRED in Table 2. From the experimen-
tal results, we have following findings. (1) As our proposed model is graph-based,



384 S. Yang et al.

we concentrate on the comparison with graph-based models. SaGCN outper-
forms the best results among all the graph-based models. Compared with LSR,
SaGCN achieves 0.33% and 0.07% higher F1 on dev and test set, respectively.
It suggests that SaGCN is more effective in capturing long-range dependencies,
and the explicit dependency connection is conducive to document-level relation
extraction. (2) SaGCN with BERT improves 8.92%/3.1% Ign F1/F1 on the dev
set compared with BERT, which indicates our model can induce more infor-
mative structures for reasoning. (3) Sequence-based models obtained medium
performance due to unavailability of structural information.

Table 2. Performance of SaGCN on DocRED. Results with � are reported in their
original papers. Results with ♦ are implemented and published by Nan et al. [17].

Model Dev Test

Ign F1 Ign AUC F1 AUC Ign F1 F1

CNN� [30] 41.58 36.85 43.45 39.39 40.33 42.26

LSTM� [30] 48.44 46.62 50.68 49.48 47.71 50.07

BiLSTM� [30] 48.87 47.61 50.94 50.26 48.78 51.06

Contex-Aware� [30] 48.94 47.22 51.09 50.17 48.40 50.70

HIN� [22] 51.06 – 52.95 – 51.15 53.30

GCNN♦ [19] 46.22 – 51.52 — 49.59 51.62

EoG♦ [3] 45.94 – 52.15 – 49.48 51.82

GAT♦ [24] 45.17 – 51.44 – 47.36 49.51

AGGCN♦ [8] 46.29 – 52.47 – 48.89 51.45

LSR� [17] 48.82 – 55.17 – 52.15 54.18

SaGCN-GloVe 52.99 51.74 55.50 55.62 52.31 54.25

BERT♦ [5] 48.44 50.68 56.57 41.47 47.71 50.0

Two-Phase BERT♦ [27] – – 54.42 – – 53.92

HIN-BERT� [22] 54.29 – 56.31 - 53.70 55.60

LSR-BERT� [17] 52.43 — 59.00 – 56.97 59.05

GLRE� [26] 56.70 – 58.90 – – –

SaGCN-BERT 56.73 55.56 59.67 58.43 56.83 59.37

3.4 Detail Analysis

Analysis of Intra and Inter Sentence. Since one of the major challenges
of document-level relation extraction is that the entity pairs span multiple sen-
tences, we check the performance of the model in intra and inter sentence. The
determination of intra- or inter- relation is based on the evidence that have been
labeled in the dataset. We consider relation is a intra-relation when the evidence
only has one sentence. The results of this experiment show in Table 3. We observe
that the performance of SaGCN-GloVe over LSR for extracting relations across
sentences is better and can be improved by 0.55%. This indicates the way we
extract DMDP nodes and structure-aware graph is able to induce more accurate
structures across sentences.
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Table 3. Intra and Inter sentence experimental results.

Model Intra-F1 Inter-F1

CNN 51.87 37.58

LSTM 56.57 41.47

BiLSTM 57.05 43.49

Context Aware 56.74 42.26

LSR 60.83 48.35

SaGCN-GloVe 60.99 48.52

BERT 61.61 47.15

Two-Phase BERT 61.80 47.28

LSR-BERT 65.26 52.05

SaGCN-BERT 65.27 52.23

Ablation Study. To further analyze the effectiveness of each module in SaGCN,
we perform ablation experiments. We observe from Table 4 that when the implicit
graph is removed, the F1 and Inter-F1 drop significantly. This result confirms
that our implicit structure is valid for this task and implicit information is ben-
eficial to capture long-range dependency relation. There is almost 0.04% F1 a
slight decrease in the model performance when the explicit graph is removed,
and the explicit dependency is helpful in improving the model performance.
Accordingly, we remove the inference graph and directly map the mentions that
contain the most important information of the entire document to entities in the
previous step to extract the relations. There is a 0.4% decrease in F1, indicat-
ing that information interaction at mention-entity level is necessary. Removal of
implicit graph leads to a 0.87% drop in terms of Inter-F1 score, which indicates
the implicit structure introduction is the most important part of our model.

Table 4. Ablation study of SaGCN on DocRED.

F1 Ign F1 Intra-F1 Inter-F1

Full model 55.50 52.99 61.03 49.21

–emplicit graph 55.44 52.70 59.97 49.04

–implicit graph 54.85 51.98 59.45 48.34

–inference graph 55.22 52.03 59.55 48.78

Case Study. We list some examples of DocRED [30] in Table 5 for better under-
standing. (1) The head entity Agrippa and tail entity Lucius Caesar in example 1
cross three sentences, which require the model be robust enough to handle long-
range cross sentence information. SaGCN predicts the correct relation sibling by
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gathering both explicit and implicit document-level information with graph con-
volution operation on the structure-aware graph. (2) From example 2, we know
Eric Butters Stough is an American in sentence 1, he was born in University of
Colorado in sentence 3. Model needs to reason from the two above relations of
entities, then can predict the relation of University of Colorado and American
is country. Benefiting from the inference graph in SaGCN, our model correctly
predicts the relation. (3) Example 3 needs prior knowledge. Model must knows
that Catholic Church is a proper noun ahead of time, then extracts the relation
instance of between Catholic Church and Church. SaGCN and LSR both lack
the knowledge, which we leave to feature work.

Table 5. Case study on the DocRED. Head entities and Tail entities are colored
accordingly.

[1] Lucius Caesar was the grandson of Augustus. [2] The son of Marcus
Vipsanius Agrippa and Julia the Elder, Augustus’ only daughter ...[4] His
brother Gaius also died at ... [5] The untimely loss of both heirs compelled
Augustus to ... Agrippa Postumus as well as his stepson, Tiberius on 26 June
AD 4.

Relation Label: sibling SaGCN: sibling LSR:
N/A

[1] Eric Butters Stough (born July 31 , 1972) is an American animator and
producer. [2] He is best known as the animation director and a producer on the
television series South Park. [3] Born in Evergreen, Colorado, Stough attended
the University of Colorado at Boulder and graduated in 1995 with a degree
in film.

Relation Label: country SaGCN: country LSR:
N/A

[1] Thomas Wolsey (c. March 1473 29 November 1530; sometimes spelled
Woolsey or Wulcy) was an English churchman, statesman and a cardinal of
the Catholic Church. [2] When Henry VIII became King of England in
1509 ... [3] Wolsey’s affairs prospered, and by 1514 he had become ... within
the Church, as Archbishop of York, a cleric in England junior only to the
Archbishop of Canterbury.

Relation Label: instance of SaGCN: N/A LSR:
N/A

4 Related Work

Document-Level Relation Extraction. With the shifting of relation extrac-
tion task from sentence-level [7,28,31,33] to document-level, several cross-
sentence datasets [30,33] has been released. To enhance the ability of the model
to learn contextual information, Zhang et al. [33] proposed a method for entity
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location-aware attention that could be combined with LSTM. Tang et al. [22]
proposed HIN which is a hierarchical inference network that could aggregate
information to entities from entity-level, sentence-level and document-level. EoG
[3] considered mention nodes, entity nodes and sentence nodes, verified that the
establishment of different nodes improved the accuracy of relation extraction.
However, this work only extracted relations based on a walking strategy, did
not perform further graph-based information interaction. With the development
of graph neural networks, much work [9,18,19,29,32] built document graphs
by dependency trees. Nan et al. [17] defined a latent document graph by using
Matrix-Tree Theorem [13]. GLRE [26] encoded the document graph into entity
global and local representations by using a heterogeneous graph. Different from
the previous work, we construct a structural graph to capture context and long-
range dependency information. Moreover, we generate an inference graph to
reason logical relations between entities.

Dependency Tree for Relation Extraction. The dependency tree repre-
sents semantic dependency relations [4,15] in a sentence which is widely utilized
in relation extractions [18,19,25,32]. Miwa et al. [16] and Tai et al. [21] com-
bined LSTM [10] and dependency structures for sentence-level relation extrac-
tion. Xiong et al. [29] represented the dependency tree as a graph. However,
these methods can only handle a single sentence relation extraction. GCNN [19]
extended the single sentence dependency tree structure to multiple sentences by
connecting the root nodes of each tree. To address the difficulties in paralleliz-
ing over different tree structures. Zhang et al. [32] and Guo et al. [8] proposed
hard and soft methods to prune dependency tree nodes respectively. Recently,
Nan et al. [17] discarded the connectivity present in the dependency tree and
generated a latent graph using only the dependency nodes. Unlike previous mod-
els that only used explicit or implicit structures based on dependency trees, we
argue that both structures should be considered. SaGCN leverages an efficient
method to compute implicit graph and dynamically fuses the implicit graph with
the dependent explicit graph to obtain abundant structural information.

5 Conclusion

In this paper, we propose a Structure-aware Graph Convolution Network
(SaGCN) for document-level relation extraction to alleviate the insufficiency of
exploring the structure of documents. SaGCN utilizes HardKuma distribution to
capture implicit structure dependency information, and leverages a dynamical
fusion mechanism to process both explicit and implicit structures of dependen-
cies. This method is able to capture dependency semantics and process long-
range information simultaneously to extract relations end-to-end. In future work,
we plan to incorporate the types of dependency paths into document-level RE
models.
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Abstract. Image segmentation in the medical domain has gained a lot
of research interest in recent years with the advancements in deep learn-
ing algorithms and related technologies. Medical image datasets are often
imbalanced and to handle the imbalance problem, deep learning models
are equipped with modified loss functions to effectively penalize the train-
ing weights for false predictions and conduct unbiased learning. Recent
works have introduced various loss functions suitable for certain sce-
narios of segmentation. In this paper, we have explored the existing loss
functions that are widely used for medical image segmentation, following
which an accelerated Tversky loss (ATL) function is proposed that uses
log cosh function to better optimize the gradients. The no-new U-Net
(nn-Unet) model is adopted as the base model to validate the behaviour
of the loss functions by using the standard benchmark segmentation per-
formance metrics. To establish the robustness and effectiveness of the loss
functions, multiple datasets are adopted, where ATL function illustrated
better performance with faster convergence and better mask generation.

Keywords: Deep learning · Image segmentation · Medical images ·
Loss function · Optimization · nn-Unet.

1 Introduction

Image segmentation is widely used in the medical domain to design computer-
aided diagnosis (CAD) systems. It is the process of partitioning the image into
multiple segments and used to locate regions of interest and associated bound-
aries. Image segmentation is categorized into semantic segmentation and instance
segmentation. In semantic segmentation the multiple objects of the same class
are treated as the same entity, whereas instance segmentation extends further
to treat multiple objects of the same class as different individual objects.
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With the advancements in deep convolutional neural networks, many archi-
tectures were proposed for image segmentation. The image segmentation models
such as SegNet [1], ResNet [6], GoogLeNet [22], proposed for natural images are
more efficient and are widely used for various domains and applications. How-
ever, for medical image analysis, these models are not suitable and record a poor
performance as these models are designed for datasets of huge size. The samples
in medical imaging datasets are limited due to limitations in domain expertise
and expensive manual delineation of the data [24]. The major role of segmenta-
tion in the medical domain is to classify the pixels/voxels concerning targeted
regions and localize its position in the modality. Since the number of pixels cor-
responding to the regions of interest being less (minority class) compared to the
background class (majority class), raises th class imbalance problem in the task
of medical image segmentation (MIS) which cannot be addressed by the direct
implication of architectures used for natural image segmentation [10].

With an uneven distribution of pixels, the model fails to learn the features
concerning the minority class, due to which the false negative prediction of the
pixel values increases. To address this challenging problem, several deep learn-
ing models have been proposed for MIS based on fully convolutional neural net-
works [12]. Most segmentation models incorporate U-Net model [19] structure
that consists of symmetrical encoder-decoder design to capture feature maps
efficiently at the multi-scale level and reconstruct the spatial information into
desired feature space of imbalanced distribution. In addition to the architecture
level solution, the objective functions are also improved due to its direct impact
on the learning process of the model. The intention is to improve the performance
of the model by enabling the loss function to penalize the training parameters
more for false classification as compared to the true classification, thereby mak-
ing the model to learn the desired features efficiently. The main contribution of
the present study can be highlighted as follows:

– An exhaustive analysis for the existing loss functions for MIS by using the
nn-UNet [8] as a base model over multiple datasets, where the performance
of each loss function is monitored in terms of dice coefficient, Jaccard index,
accuracy, precision, recall, specificity and F1-score.

– Accelerated Tversky loss (ATL) is proposed that uses a log cosh function
to better optimize the gradients, while resulting in faster convergence and
improvement in the segmentation results.

With the objective and contributions highlighted above, the rest of the paper
is organized into several sections. The literature review section presents the
recent developments in the deep learning segmentation approaches followed by
materials and methods section to cover the background knowledge. The later
section covers the novel loss function motivation along with the exhaustive exper-
imental trials over multiple datasets. Finally, the results and concluding remarks
are presented with future research directions.
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2 Literature Review

In recent years, due to the success of deep learning approaches, the develop-
ment of CAD systems has gained stature in the healthcare sector [5]. Many deep
learning frameworks have been proposed for object detection, classification and
segmentation in the medical imaging [21], where segmentation of the targeted
regions is the initial requirement of any diagnostic procedure. For image seg-
mentation, Badrinarayanan et al. proposed a SegNet [1] model which follows
encoder-decoder architecture design. The encoder downsamples the input image
to generate feature maps that are utilized by the corresponding decoder blocks
to upsample the features into the input spatial resolution, followed from the
softmax classifier. The SegNet model was trained using the cross-entropy loss
function [27]. In the ResNet model [6], the skip connections were introduced
to address the computational overhead that occurs with the increase in depth
of layers. The model achieved state-of-the-art results and served as a baseline
design for many other models. DenseNet [7] is an architectural advancement over
the existing models that contains dense blocks of convolutional layers that are
subsequently concatenated for the rich flow of information with less number of
parameters.

The U-Net [19] aimed at medical image segmentation with the symmetrical
encoder-decoder architecture that generates segmentation mask in a similar spa-
tial resolution as input. Inspired by U-Net architecture, many variants of deep
learning models are proposed based on the nature of the dataset covering 2D
and 3D segmentation. In one such variant, inception blocks are integrated into
the U-Net model to form inception U-Net model [15] that was trained using
segmentation loss function proposed as the combination of cross entropy loss,
dice loss and Jaccard loss. Similarly, Dense-Inception U-Net [4] is another model
which combines the concept of dense blocks and inception modules into the U-
Net which outperformed the existing models in terms of dice score. The same
models can be extended into three dimensional volumes such as 3D inception
U-Net model [16] with the addition of depth channel in the convolution oper-
ations. Apart from the architectural improvements, various loss functions were
also proposed for MIS [9]. As image segmentation is similar to the classifica-
tion problem, the most commonly used loss function is pixel-wise cross entropy
loss. This loss evaluates the loss for class predictions of each pixel and computes
the average loss for all pixels. This approach is suitable for datasets with equal
distribution of samples. Medical image datasets are not equally distributed and
require advance loss functions to address this imbalance. Following from this
context, U-Net introduced a weighting scheme for each pixel such that the pixel
at the border is associated with higher weights. The weighting scheme for pixels
is further developed to generate various advanced loss functions that improve
the segmentation performance. In the next section, we discuss the advanced loss
functions proposed for imbalanced datasets in recent years.
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3 Materials and Methods

The existing loss functions are categorized based on the mathematical interpre-
tation into the following categories - distribution based loss, region based loss
and boundary based loss as mentioned in subsequent sections.

3.1 Distribution Based Loss

These loss functions are focused on minimizing the error between the distribu-
tions.

Cross Entropy Loss - It is derived from KL-Divergence and is based on
the term entropy, that denotes the number of bits required to differentiate one
distribution from another. The formula to minimize the loss is represented in
Eq. 1. Cross entropy (CE) used for binary classification is called as binary cross
entropy (BCE). The weighted cross entropy (WCE) [14] is another variant of
cross entropy, where each class is assigned a weight, wc, based on the availability
of the class samples to address the imbalance problem.

LCE = − 1
N

N ,C∑

i,c=1

gc
i logsc

i (1)

where g ∈ {0, 1}, if class label c is correct classification for ith pixel and s is the
respective predicted probability.

Top-K Loss - It is used when the task is more focused on hard samples instead
of easy samples [26]. The loss function shown in Eq. 2 ignores the pixels that
are too easy for the model by checking their loss value. If the loss value is below
the threshold, t ∈ (0, 1], it ignores them and focuses only on hard samples.

LTopK = − 1
∑N ,C

i,c=1 1{gi = c and pc
i < t}

(
N ,C∑

i,c=1

1{yi = c and sc
i < t}logsc

i ) (2)

where p is the predicted probability of the pixel.

Focal Loss - This function is based on the standard CE loss, specifically to
deal with the case of background and foreground imbalance [13]. This can be for-
mulated as Eq. 3. It reduces the significance of easy samples by down-weighting
and trains more on hard samples.

LF =
{−α(1 − p)γ

log(p), if y=1
−(1 − α)pγ log(1 − p), otherwise. (3)

where α controls the weight of positive and negative samples, while γ handles
the easy and hard samples.
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Distance Penalized CE Loss - It is an extension to the CE loss to handle
the imbalance by calculating the weights based on distance maps of the ground
truth masks [3] as shown in Eq. 4. This weight helps the network to focus on
hard segment boundary regions.

LDPCE = − 1
N (1 + D) ◦

N ,C∑

i,c=1

gc
i logsc

i (4)

where D represents the distance penalty term, ◦ is the Hadamard product, g is
the binary output indicator and s is the predicted probability.

3.2 Region Based Loss

These functions calculate the mismatch between the actual truth value and pre-
dicted segmentation in terms of regions. The focus is on minimizing the mismatch
regions or maximizing the overlapping regions.

Dice Loss - This loss is based on the dice coefficient (DC), a metric used to
evaluate the segmentation and the loss function focuses on optimizing the DC.
The dice loss can be defined in terms of DC (Eq. 5), as one minus the ratio of
area of overlap to total pixel area.

LDice = 1 − 2yp̂ + 1
y + p̂ + 1

(5)

Specificity-Sensitivity Loss - Specificity (Sp) and sensitivity (Se) are the
evaluation metrics that measure the true negative rate and true positive rate of
the model. This loss function as shown in Eq. 7 is based on these metrics [2] to
address the imbalance problem by applying weight (w) on each metric.

Sp. =
TN

TN + FP
, Se. =

TP

TP + FN
(6)

LSS = w ∗ Se + (1 − w) ∗ Sp (7)

where, TN is true negative, TP is true positive, FN is false negative and FP
is false positive.

IoU Loss - Intersection over union or Jaccard index (JI) is the most widely
used metric in segmentation of imbalanced datasets [17]. The IoU index is the
ratio of area of overlap to the area of union. The IoU loss is represented in the
Eq. 8.

JI =
TP

TP + FP + FN
LIoU = 1 − JI (8)
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3.3 Boundary Based Loss

These loss functions work based on the distance between the ground truth region
and predicted the segmented region. The aim is to minimize the distance between
the ground truth and predicted segment images.

Boundary Loss - This loss function computes the distance mismatch between
ground truth and predicted segment image using the integrals over boundary
regions [11]. The distance map along with network softmax outputs are used
together to form a trainable loss function as shown in Eq. 9.

LBD =
∫

Φg(p)sθ(p)dp (9)

where Φ is the representation of boundary distance and s is the softmax proba-
bility output.

Hausdorff Distance Loss - The loss function focuses on maximizing the Haus-
dorff distance (d), an evaluation metric of segmentation, which calculates the
error between the distance transforms of ground truth and predicted segmenta-
tion images. The Hausdorff metric and loss [18] is given by the Eq. 11.

d(X ,Y ) = max
xεX

min
yεY

‖x − y‖2 (10)

LHD =
1
N

N∑

i=1

[(si − gi)(̇d2gi + d2si)] (11)

3.4 Compound Loss

These loss functions are obtained by combining the above discussed loss func-
tions.

Combo Loss - It is obtained by combining dice loss with weighted cross entropy
loss [23].

Lcombo = wLCE − (1 − w)LDice (12)

Exponential Logarithmic Loss - The dice and cross entropy loss are used
along with the exponential and logarithmic functions as shown in Eq. 14 such
that the network can focus more on areas that are predicted less accurately [25].

LDice = exp(−ln(DC)γ) LCE = exp(wi(−ln(pt))γ) (13)

Lexp = wDiceLDice + wCELCE (14)

From the above categories of loss functions, the region based loss functions
are more suitable for the medical domain. The boundary based loss functions
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can be used along with region based loss functions to get better performance. We
can also create custom loss functions by combining two or more loss functions
based on the dataset and requirement. Hence, the selection of loss function that
can be applied for all datasets is difficult. The performance of each of these loss
functions is analysed by training the nn-Unet model on multiple datasets.

3.5 nn-UNet

No new U-Net also known as nn-UNet [8] is the same as the basic U-Net in terms
of architecture but focused on proposing an automated framework for the entire
segmentation process that can configure the non-architectural aspects based on
input datasets. The intention to use nn-Unet is that U-Net is the backbone of
this architecture which provides optimal results for MIS. Moreover, the nn-UNet
framework supports the evaluation of various datasets without the need of man-
ual intervention to tune the parameters. The complicated process of automating
segmentation for a dataset is explained using Fig. 1 (from left to right). It shows
the steps to be followed in a sequence to setup the nn-UNet architecture and
automate the training and tuning process for various datasets. The pipeline of
nn-UNet starts with train data, but to handle a wide variety of datasets, nn-
UNet proposed a file structure to arrange the input data into train, test and
label images along with a JSON file describing the dataset properties. The con-
verted train data is used to extract the dataset fingerprints such as image size,
the modality of the image, number of classes etc. Later, the blueprint parameters
such as loss functions, optimizer and architecture template are configured. The
inferred parameters generate the image resampling, normalization and batch size
parameters that are combined with feedback to generate pipeline fingerprints.
nn-UNet provides three variants of U-Net namely 2D U-Net, 3D U-Net and 3D-
cascade U-Net to handle all possible datasets. The pipeline fingerprints generate
the model based on the input, user choice of the training model and the hyper-
parameters. After training the model, an ensemble of various networks can be
performed to determine the model with the highest dice score which is then used
to perform inference on test images.

Fig. 1. nnU-Net pipeline to automate the segmentation process.
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3.6 Proposed Loss Function

It is evident from the literature review that the class imbalance problem of MIS
is addressed using class weights. The class weights modify the loss functions
by assigning more weights to penalize the false predictions. In the Tversky loss
function, the Tversky index is utilized to evaluate the error as shown in Eq. 15,
that assigns different weights to more penalize the training weights for false
negative and false positive predictions. But using the Tversky index inside the
loss function may result in sub optimal gradients due to its non-convex nature.
With this motivation, in the novel accelerated Tversky loss (ATL) function,
Tversky index is encapsulated inside log cosh function. The log-cosh function
acts as convex surrogate and reduces the non-convexity. This transformation of
loss function through encapsulation smoothens the curve thus optimizing the
gradients. For F (x) = log(cosh(x)), the derivative F ′(x) = tanh(x). The tanh
function is continuous and differentiable in the range [−1, 1] and due to its
nonlinearity, the non-convex nature of the loss function is reduced compared to
the Tversky loss function. The ATL function can be formulated as in Eq. 16.

LTv. = 1 − pp̂

pp̂ + β(1 − p)p̂ + αp(1 − p̂)
(15)

LATL = log(cosh(1 − pp̂

pp̂ + β(1 − p)p̂ + αp(1 − p̂)
)) (16)

To fine tune the training parameters of the model the gradient of the LATL

can be computed with respect to the predicted value during the backward pass
using the Eq. 17.

∂LATL

∂p̂
= tanh(LTv.)

∂LTv.

∂p̂
(17)

∂LTv.

∂p̂
= − αp2

(pp̂ + β(1 − p)p̂ + αp(1 − p̂))2
(18)

4 Experiments and Results

4.1 Experiments

The experiments are conducted to compare the performances of loss functions
using the nn-Unet model. To compare the performances, the considered evalua-
tion metrics are accuracy, precision, f1-score, dice score, Jaccard index, specificity
and sensitivity. The comparison is done on loss functions that are widely used
for MIS such as dice loss, Tversky loss, dice and cross entropy combined, focal
loss, specificity-sensitivity loss and the proposed accelerated Tversky loss. The
datasets used for the experiment are Hippocampus, Prostate and Heart dataset
which contain the MRI images of organs and Hepatic Vessel dataset which con-
tains CT images, under the Medical Segmentation Decathlon challenge [20]. The
training and evaluation of the proposed framework is performed in the high per-
formance computing environment having NVidia Titan GPUs in Google Colab.
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The 3D-UNet is chosen as the base model and the network topology, batch size
and patch size are automatically tuned based on the input dataset dimensions.
The model is trained using 5-fold cross validation technique and an early stop-
ping technique is employed to halt the training if there is no improvement in
terms of loss for consecutive iterations.

Table 1. Metrics for datasets over various loss functions.

Dataset Metrics Dice DC+CE Tversky Focal SS loss ATL

Hippocampus Accuracy 0.994 0.995 0.994 0.994 0.992 0.995

Precision 0.912 0.911 0.861 0.902 0.786 0.848

F1 score 0.913 0.912 0.905 0.891 0.869 0.896

Dice score 0.913 0.911 0.904 0.891 0.868 0.895

Jaccard index 0.813 0.834 0.827 0.801 0.769 0.842

Specificity 0.997 0.997 0.995 0.996 0.992 0.997

Sensitivity 0.918 0.908 0.954 0.881 0.974 0.951

Prostate Accuracy 0.997 0.996 0.997 0.997 0.996 0.998

Precision 0.928 0.948 0.849 0.842 0.716 0.833

F1 score 0.925 0.934 0.898 0.819 0.818 0.871

Dice score 0.918 0.925 0.884 0.809 0.799 0.861

Jaccard index 0.861 0.862 0.815 0.704 0.686 0.777

Pecificity 0.997 0.997 0.998 0.998 0.997 0.998

Sensitivity 0.924 0.921 0.955 0.814 0.955 0.924

Heart Accuracy 0.999 0.998 0.999 0.998 0.999 0.999

Precision 0.964 0.939 0.898 0.929 0.821 0.914

F1 score 0.964 0.938 0.936 0.915 0.895 0.941

Dice score 0.942 0.939 0.936 0.915 0.895 0.952

Jaccard index 0.908 0.884 0.881 0.845 0.812 0.888

Specificity 0.998 0.998 0.998 0.998 0.998 0.998

Sensitivity 0.941 0.937 0.978 0.901 0.985 0.969

Hepatic Vessel Accuracy 0.998 0.998 0.998 0.998 0.998 0.998

Precision 0.758 0.787 0.722 0.707 0.545 0.717

F1 score 0.777 0.778 0.789 0.664 0.678 0.768

Dice score 0.763 0.762 0.783 0.644 0.645 0.761

Jaccard index 0.834 0.651 0.654 0.518 0.506 0.633

Specificity 0.998 0.996 0.998 0.998 0.998 0.999

Sensitivity 0.797 0.769 0.871 0.627 0.898 0.829

*Bold values indicate the highest metric value
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Fig. 2. Loss vs epoch of various loss functions on each datatset. Each columns cor-
responds to a dataset. The datasets from left to right are - Hippocampus, Prostate,
Heart and Hepatic Vessel.

Fig. 3. Convergence of loss functions using early stopping on Hippocampus dataset.
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4.2 Results and Discussion

The segmentation metrics for each dataset and corresponding loss functions are
stored in a JSON file which contains the metric values for each data item and
overall mean values. The training progress for each dataset and the corresponding
loss function is presented in a graph, as shown in Fig. 2. Besides, a detailed
compilation of the metrics for each loss function is summarized in Table 1. From
the table, it is observed that the ATL function provides the best results in
specificity, accuracy and is relatively similar in other metrics, indicating that
false acceptance of the pixels is minimized. Furthermore, the improvement in
the rate of convergence is conveyed through the number of epochs at which the
training is halted. From the plots of the loss function in Fig. 3, it is observed that
the ATL function converges 46.75% faster than the vanilla Tversky loss function.
The improvement in rate of convergence for Prostate, Heart and Hepatic Vessel
datasets is 22.3%, 25.7% and 43.2% respectively. With such results, it is believed
that the proposed loss function can be applied to any class imbalance problem.

5 Conclusion

In this paper, we discussed the difficulties faced in the medical image segmen-
tation problem and explored various loss functions that are applicable to over-
come the class imbalance problem. We have also proposed a novel loss function
named accelerated Tversky loss function that tends to better optimize the train-
ing gradients. The performance is compared with the widely used segmentation
loss functions while using nn-Unet as a base model for training across multi-
ple datasets. With the exhaustive experiments, it is observed that the novel
loss function is on par with the best values for most of the evaluation metrics
along with the faster rate of convergence towards minimum error. The research
can further be extended in the direction to find an optimal loss function that
guarantees best results across multiple modalities.
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Abstract. The greater public has become aware of the rising prevalence
of untrustworthy information in online media. Extensive adaptive detec-
tion methods have been proposed for mitigating the adverse effect of fake
news. Computational methods for detecting fake news based on the news
content have several limitations, such as: 1) Encoding semantics from
original texts is limited to the structure of the language in the text, mak-
ing both bag-of-words and embedding-based features deceptive in the
representation of a fake news, and 2) Explainable methods often neglect
relational contexts in fake news detection. In this paper, we design a
knowledge graph enhanced framework for effectively detecting fake news
while providing relational explanation. We first build a credential-based
multi-relation knowledge graph by extracting entity relation tuples from
our training data and then apply a compositional graph convolutional
network to learn the node and relation embeddings accordingly. The pre-
trained graph embeddings are then incorporated into a graph convolu-
tional network for fake news detection. Through extensive experiments
on three real-world datasets, we demonstrate the proposed knowledge
graph enhanced framework has significant improvement in terms of fake
news detection as well as structured explainability.

Keywords: Fake news detection · Knowledge graphs · Explainable
machine learning

1 Introduction

Misinformation in online media has become a menace, from being a public con-
cern [7,12] to causing major financial loss and security risks. Existing work on
content-based fake news detection focuses on semantic content using statistical
or deep learning models [22] while neglecting rich relational information among
entities (names, organizations, etc.). In this paper, we propose to investigate
a self-discovered knowledge graph method to enhance the representation learn-
ing of entities and relations in fake news detection. While knowledge-based fact
checking approaches [4,15,28] have been studied, they often suffer from issues
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such as reliability or incompleteness of web knowledge. In contrast to these pre-
vious approaches, we extract a credential based multi-relation knowledge graph
from our corpus without external domain knowledge. We do not involve external
data considering 1) accessibility: extracting knowledge from given news corpora
is more flexible and scalable compared to external knowledge base; 2) dynamic
context: knowledge is dynamic and updates over time. Keeping external data
up to date requires excessive human labor efforts; and 3) relevance: external
knowledge often contain global noise rather than useful information.

Hillary Clinton Fake

sitting with

True: 2016 Democratic presidential candidate 
Hillary Clinton delivers remarks at the 

National Urban League Conference

Deliver

True

national urban league

remarks

Chelsea Clinton

at

Fake: Hillary Clinton was sitting her 
daughter, Chelsea, at the Chappaqua 

Motor Speedway when 11 tons of 
American steel and iron jumped the 

killing Clinton
Chappaqua Motor 

Speedway 

Does not 
exist

Steel and iron

kill
at

Fig. 1. An example of a knowledge graph extracted from news articles.

In this work, we follow the broad definition of fake news [31] as “false news”
where news includes false information related to public figures and organizations
in articles, statements, and speeches. The veracity of news articles can be discov-
ered from multiple aspects such as writing styles, languages, and focused stories.
From the presented example in Fig. 1, we observe one important factor that dis-
tinguishes fake news from real news is the involved entities and their relations.
Given the significant roles of entities and their relations in news content, we
create a knowledge graph of entities and relations that appear in existing data
to represent a few aspects of structured knowledge: credentials, relations, and
contexts. In which, each node represents an entity (e.g., persons, organizations,
locations) and each edge/relation between a pair of nodes indicates the action
(e.g., predicate) among them.

However, several challenges are encountered in learning KG-based represen-
tations. First, multiple relations may exist between pairs of entities when two
entities appear in different news articles. For instance, [Obama, approves, nuclear
deals] (fake) and [Obama, plans, nuclear policy changes] (real) are two relations
between the same pair of entities from different contexts. Thus, relational infor-
mation embeds credential values while most existing works ignore these struc-
tured knowledge. Second, relations between entities can be complex and changing
over time. Figure 1 shows an example in the PolitiFact dataset [23], where same
entities appear in both fake news and true news. However, the relation between
entity “Hilary Clinton” and entity “Steel and iron” is not trustworthy given
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that they only appear in fake news. Third, integrating and fusing heterogeneous
information is challenging. Relational representations into semantic encoding has
been proven effective in several natural language processing tasks [30]. However,
discovering relational indicators for fake news remains open.

To address aforementioned challenges, we summarize the main contributions
of this work as below:

– We build a credential-based multi-relation knowledge graph from existing fake
news corpora. Each link between a pair of entities indicates the relation/action
from the source entity to the target entity.

– We apply a compositional graph convolutional network to pre-train relational
representations of entities and relations simultaneously from the discovered
knowledge graph. Thus, the representations of new entities or relations can
be inferred and updated.

– We design a new framework to enhance semantic embeddings with structured
knowledge in order to predict the trustworthiness of a news article (fake or
real). The knowledge embeddings include both relations and entities infor-
mation. In addition, the proposed framework is able to provide explainable
relational evidence for predictions of fake news.

2 Related Work

This section reviews the state-of-the-art methods in the context of fake new
detection and knowledge graph learning, and discuss the advantage of our work
over them.

Content-Based Fake News Detection. Content-based solutions have
attracted wide attention, which mainly focus on extracting the semantics or
writing styles of the news articles [9,22,27]. For example, an attention-based
deep learning approach (i.e., dEFEND [22]) was proposed for jointly capturing
explainable top-k sentences and user comments for fake news detection using
a sentence-comment co-attention sub-network. Wang et al. [27] presented an
event adversarial network in multi-task learning to derive event-invariant fea-
tures, which can benefit the detection of fake news on newly arrived events.
They considered event types along with an adversarial network to better learn
the representation of news. Additionally, the images in news articles are also
encoded with a CNN model for combining the image features with text fea-
tures. Levi et al. [13] designed a machine learning model using semantic and
linguistic features to distinguish fake news from satire stories. Recently, Nguyen
et al. [16] presented a Markov random field (MRF) model to study the correla-
tion association among documents to assist fake news detection. The most recent
approach [14] takes into account short texts (e.g., tweets, users’ credits, and
propagation patterns) in a Graph-aware Co-Attention Network (GCAN) where
the representations of the corresponding source text, user features, and prop-
agation graphs are learned first. Then, a dual co-attention model is developed
for prediction. However, most of the content-based detection methods face a few



406 K. Wu et al.

limitations: 1) the leveraged auxiliary features (e.g. user comments, images, etc.)
are tailored to the specific domains, which thus cannot be scaled or generalized
to a different domain; 2) explainability is limited: attention mechanisms focus
on existing features (e.g., words), failing to capture relational dependencies.

Knowledge-Based Fact Checking. Information retrieval methods based on
knowledge have been proposed to determine the veracity of news articles. For
instance, Magdy et al. [15] identified the trustworthiness of a claim by using
query results from the web. Wu et al. [28] presented a method through “per-
turbing” a claim from querying knowledge bases and using the result variations
as an indicator for fact checking. In addition, Ciampaglia et al. [4] considered
the shortest path between concepts in a knowledge graph and [21] employed a
link prediction algorithm with discriminative meta paths for fact checking. How-
ever, these approaches encounter problems of determining the trustworthiness
and reliability of the external knowledge (web or knowledge base). In addition,
they are deficient when the corresponding entries do not exist in a knowledge
base or the knowledge base is compromised.

Knowledge Graphs (KG) that organize relations of entities in directed graphs
are widely used in many fields, such as link prediction and question answering.
KGs are constructed from triples, e.g., (head, relation, tail) or (subject, pred-
icate, object), to provide rich and strong facts to enhance the understanding
of natural languages [26]. Knowledge graph embedding focuses on learning hid-
den representations of nodes and/or relations. A few state-of-the-art approaches
include: TransE [2], DistMult [29], and ConvE [6]. A recent development for
multi-relation representation learning in KGs, CompGCN [25], jointly learns
the embeddings of nodes and relations using a graph convolutional network. A
knowledge graph based fake news detection [18] utilizes the ability of link pre-
diction in KGs to detect fake news. It extracts triples from news and employs
TransE to present entities and relations into a vector space. By measuring the
distances between subjects combined with relations and objects extracted from
news, they can predict the veracity of the news. However, this approach only
considers the features of knowledge graphs, omitting global semantic features of
news which also provide critical information for fake news detection.

To conclude, our approach will explore semantic content of news articles and
enrich the semantic features with structural embeddings from knowledge graphs.
Our developed KG embedding model can be compatible with other models and
offer relation level explainability beyond keywords’ contributions.

3 The Proposed Method

In this section, we present our design of a novel knowledge graph enhanced
framework for fake news detection, abbreviated as KGF, that can be applied
in a variety of deep learning models to jointly predict if a news article is fake
while providing explainable structured knowledge for the prediction. The overall
framework is present in Fig. 2. We first introduce the notations and the problem
formulation and then we discuss the details of the proposed framework.
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Notations and Problem Formulation. Given a collection of news articles D,
each one contains a sequence of words {w1, ..., wk, ..., wW } and its corresponding
label y ∈ {0, 1} indicating if the news is fake (y = 1) or not (y = 0). We extract
a knowledge graph from this corpus and denote it by G = (V, E ,X ,Z) where
V = {v1, v2, ...v|V|} denotes the set of vertices (i.e., entities) such as person
names or locations. E denotes the edges between pairs of nodes where each entry
E [i, j] = {r1, r2, ...r|E[i,j]|} is a set of relations between node i and node j given
that entity i and j may appear in different contexts. X ∈ R

|V|×d0 denotes the d0-
dimensional input features of each node. Z ∈ R

|R|×d
′
0 denotes the d

′
0-dimensional

input features of each relation.

Knowledge Graph Extraction. We apply the Stanford NLP tool, OpenIE [1],
to extract triples from sentences. Each triple (u, r, v) consists of a source entity
which is the subject in a clause, a target entity v which is an object in a clause,
and a relation r between them. The subject and object entities are usually per-
sons, places, organizations, or general nouns. The relation, also called predicate,
is a directed action (e.g., verb) from a subject to an object. As such, we get a set
of triples from each news article. During this process, we notice that the OpenIE
tool generates some noisy triples. For instance, the triples extracted from the
sentence: “the American people must be able to trust that the American people
government is looking out for all of us” are: (‘american people’, ‘must’, ‘must
able’). This kind of triples is noise we want to avoid. Hence, we investigate a few
techniques to improve the quality of extracted entities and relations. First, We
adopt a coreference resolution approach, NeuralCoref, to avoid the ambiguity
of pronouns.1 Next, we use Spacy to lemmatize the verbs in a relation given
multiple tenses.2 To reduce the number of duplicated relations, we remove the
adverb in the predicate and only keep the lemmatized verb. As shown in the
previous examples, we find that subject or object entities may be invalid. We
assume that entities have to contain at least one noun. Therefore, we filter out
all the entities that do not contain a noun.

Learning Relational Representations. After cleaning the triples, we orga-
nize all the entities into nodes and construct a multi-relational knowledge graph
G based on all the triples in our training corpus. In this multi-relational graph,
we assume each node and relation is encoded by an embedding vector. We
adapt the compositional graph convolutional network (CompGCN) [25] to jointly
embed both nodes and relations in a relational graph. Assuming node v is an
object entity node, N(v) is a set of its immediate neighbors for its incoming
edges, and each edge corresponds to a specific relation, CompGCN updates the
object node embedding vector as below:

h(l+1)
v = f

( ∑
(u,r)∈N(v)

W(l)
q φ

(
h(l)
u ,o(l)

r

)) ∈ R
dl+1 , (1)

1 https://github.com/huggingface/neuralcoref.
2 https://spacy.io/.

https://github.com/huggingface/neuralcoref
https://spacy.io/
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Fig. 2. The overall framework of knowledge graph enhanced fake news detection. The
left module is a standard deep neural network on word embedding features. The right
module learns the embeddings of entities and their relations using the self-discovered
knowledge graph from the corpus. In the aggregation part, the semantic document
embeddings learned from the left module are combined with the knowledge embeddings
of the document.

where φ : Rd × R
d → R

d is a composition operation [17] between the subject
vector h(l)

u and the relation vector o(l)
r . Layer-wise parameter matrix W(l)

q ∈
R

dl+1×dl maps the dimension of hidden features from layer l to layer l + 1. The
first layer embedding matrix H(0) is initialized by X . After the node embedding
update, the relation embeddings are also transformed as follows:

o(l+1)
r = W(l)

relo
(l)
r ∈ R

dl+1 , (2)

where Wrel is a learnable transformation matrix which projects edges to the
same embedding space as nodes. The relation embedding matrix is initialized by
O(0) = Z.

Given a subject entity (u), a relation (r), and their anticipated object entity
(v), we design a link prediction task as in ConvE [6] to estimate the embedding
parameters. Both subject and relation embeddings are passed through a convo-
lutional layer and several fully connected layers to get an estimated vector for
the object (v). The score function s estimates the similarity between the esti-
mated vector and the anticipated object entity. The loss function for the link
prediction task is defined as below:

LG = −
∑
(u,r)

∑
e∈V

[
ye log σ(s(u, r, e)) + (1 − ye) log(1 − σ(s(u, r, e)))

]
, (3)

where e is a randomly sampled object entity. When e is equal to the ground truth
object (v), ye = 1. Otherwise, ye = 0. V is the set of nodes. We adopt ConvE [6]
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as the score function s(u, r, e) = s(φ(hu,hr),he) where φ denotes a composition
operator for estimating the embedding vector of the object given a subject u
and a relation r. All model parameters can be trained via back-propagation and
optimized using the Adam algorithm.

Integration of Relational Knowledge in Detection. After learning the
embedding vectors of all triples in the knowledge graph, we incorporate the pre-
trained embeddings in a global vector to improve prediction performance. For
each node, its embedding vector is learned from its neighbors and their corre-
sponding multi-type relations. Therefore, we utilize node embeddings instead of
triple embeddings. Given a news article x, assuming there are Nx entity extracted
from the article. The corresponding entity/node embedding are denoted as
N = {n0, n1, ..., nNx

}. We apply a global attention mechanism to capture the
contributions of the nodes embeddings to the global semantic vector of an arti-
cle. We first introduce how we learn the global vector dx for each news article.

Learning Global Semantics. Assuming the word embedding matrix for a docu-
ment x is represented by Ex ∈ R

W×d, where W is the number of unique words in
this document. We take advantage of a multi-layer Graph Convolutional Network
to learn hidden representations of words given its effectiveness [11]. We build an
adjacency matrix A to represent the context frequency between pairs of words.
Following the setup in the Dynamic GCN model for event predictions [5], the
edge weight between two words in a document is calculated as below:

A[i, j] =
{

PMI(i, j) PMI(i, j) > 0
0 otherwise. (4)

The PMI value of a word pair i, j is computed as PMI(i, j) = log s(i,j)
s(i)s(j)/S , where

s(i) and s(j) are the total number of sentences in the document containing at
least one occurrence of i and j, respectively. S is the total number of sentences
in the document. The message passing process on the graph of words is denoted
as H = f(ÂEWg) where Â is the normalized symmetric adjacency matrix
Â = D̃− 1

2 (A+ IW )D̃− 1
2 . D̃ is the degree matrix. IW is an identity matrix with

dimensions of W . Eventually the hidden features of words are updated by their
neighboring word vectors. Assuming the final layer output is H(L) ∈ R

W×dw ,
we adapt a pooling strategy to get the semantic embedding of the document:
dx = pooling(Hi) ∈ R

dw , i ∈ {1, ...,W}.

Bridging Relational Knowledge with Global Semantics. We next learn relational
representation of news based on the relational embeddings of entities. Assuming
there are Nx entities in news x and each entity embedding hi ∈ R

dL(i = 1, ...Nx)
is learned from the previous CompGCN, the relational embedding vector of this
news is calculated as kx =

∑Nx

i αihi ∈ R
dL where αi is the attention weight of

each entity and is computed as follows:

αi =
exp(t�

i dx)∑Nx

n=0 exp(t�
ndx)

. (5)
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Here, ti ∈ R
dw is the entity embedding after projected into the same vector

space of semantic embedding by:

ti = σ(Whi + b) ∈ R
dw , (6)

where σ is activation function, W ∈ R
dw×dL and b ∈ R

dw are trainable param-
eters, and hi is the representation of entity i from the last layer of our multi-
relational graph.

Optimization. After obtaining the semantic embedding and the knowledge
embedding, we apply a single layer MLP on the concatenation of these two
vectors to predict the label of the document ŷx = σ(w�[kx ⊕ dx]). The ground
truth labels of the news articles are binary. Thus, we adopt binary cross-entropy
loss to optimize the model parameters:

L = −
D∑

x=1

(
yx log ŷx + (1 − yx) log(1 − ŷx)

)
, (7)

where y is the ground truth and ŷ is the model prediction. All model parameters
can be trained via back-propagation and optimized using the Adam algorithm
given its efficiency and ability to avoid overfitting.

4 Experiment Setup

In this section, we introduce the datasets, the baseline methods for comparison,
and the evaluation metrics for measurement in our experiments.

Datasets. To fairly evaluate the performance of our model, we conduct the
experiments on three datasets corresponding to different topics: 1) Celebrity
dataset [19] was collected from web sources targeting rumors, hoaxes, and fake
reports on celebrities. We sampled 250 fake news and 250 real news with 1670
relations, 19978 entities, and 31857 triples in total. 2) PolitiFact dataset [23,
24] was collected from “politifact.com” and most news are related to political
campaigns. We sampled 474 real news and 369 fake news with 51918 entities,
3251 relations, and 91366 triples in total. 3) GossipCop dataset [23,24] was
collected from “E!Online (eonline.com)” and “GossipCop.com”. We sampled 500
real news and 500 fake news with 43371 entities, 2438 relations, and 71842 triples
in total.

Comparison Methods. We compare the proposed model with some com-
mon NLP models and several state-of-the-art fake news detection methods as
baselines including: 1) logistic regression models with news style features by
mapping the frequencies of rhetorical relations to a vector space (RST) [20]; 2)
Recurrent neural networks (RNN) including vanilla RNN, Long Short-Term
Memory (LSTM) [8], Gated Recurrent Units (GRU) [3]; 3) Text Convolutional
Neural Networks (Text-CNN) [10]; 4) Graph based models such as Graph Con-
volutional Networks (GCN) [11], Compositional Graph Covluiontal Networks
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(CompGCN) [25] using pre-trained knowledge graph features; 5) Attention-
based approaches such as dEFEND♦ [22], and 6) the Hierarchical Discourse-
level Structure (HDSF) [9] model. We implement the dEFEND♦ model with-
out news comments and use the source code of HDSF from its paper directly
in our k-fold cross validation.

Hyperparameter Setup. In the pretraining model, the dimensions of the ini-
tial and output embeddings (for both nodes and relations) are 100 and 200,
respectively. We use the combination of circular-correlation and ConvE as the
operator during the training process. We introduce a 30% sparsity dropout into
the ConvE layer and utilize the Adam method as the optimizer with the 0.001
learning rate. In the detection framework, we take advantage of Glove as the
pretrained word embeddings with the dimension of 100. We use one layer GCN
model with 64 hidden units. Afterward, an average pooling layer on the output
of GCN is applied to get a context vector of each news.

Evaluation. We apply 5-fold cross-validation on the datasets and compare our
approach with the selected baseline methods. In each test set, we make sure the
number of fake and real news are the same. Moreover, for each fold, we run all
the models 10 times and average the results. To measure the performance of fake
news detection, we utilize the commonly used evaluation metrics for classification
problems: Accuracy and F1 score, given that our test sets are balanced over the
two classes.

Table 1. Performance Comparison of Fake News Prediction using Accuracy (Acc) and
F1 score (%). Bold numbers are the best results and underline indicates the second
best.

Celebrity PolitiFact GossipCop

Acc F1 Acc F1 Acc F1

LR+RST 54.2(±0.035) 54.7(±0.034) 57.8(±0.038) 49.3(±0.059) 53.4(±0.034) 51.6(±0.055)

RNN 53.0(±0.012) 57.1(±0.055) 68.6(±0.016) 68.1(±0.026) 63.9(±0.026) 63.1(±0.035)

LSTM 57.6(±0.047) 63.5(±0.080) 78.8(±0.024) 77.0(±0.025) 66.5(±0.045) 66.9(±0.035)

GRU 59.0(±0.081) 64.9(±0.050) 79.0(±0.027) 77.3(±0.038) 69.7(±0.025) 69.7(±0.039)

HDSF 50.0(±0.009) 66.7(±0.008) 50.4(±0.005) 66.8(±0.003) 50.7(±0.005) 67.1(±0.004)

dEFEND♦ 53.2(±0.041) 63.1(±0.056) 70.4(±0.053) 73.9(±0.039) 52.1(±0.025) 65.1(±0.025)

CompGCN 51.8(±0.053) 62.1(±0.050) 63.6(±0.035) 54.8(±0.083) 61.1(±0.067) 65.9(±0.036)

Text-CNN 64.4(±0.060) 65.0(±0.087) 77.5(±0.041) 75.3(±0.046) 69.9(±0.049) 68.4(±0.038)

GCN 62.0(±0.056) 69.1(±0.033) 79.9(±0.020) 76.7(±0.038) 65.4(±0.062) 70.0(±0.046)

KGF-CNN 68.4(±0.083) 71.7(±0.044) 81.6(±0.027) 81.1(±0.028) 71.2(±0.060) 70.8(±0.028)

KGF 71.4(±0.047) 72.1(±0.074) 86.0(±0.031) 85.3(±0.034) 73.3(±0.031) 72.3(±0.041)

5 Results

Fake News Detection Performance. Table 1 exhibits the experimental
results of KGF and other baseline methods on three datasets in terms of accu-
racy and F1 score. Overall, our approach outperforms all the baseline models.
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When comparing to the Logistic Regression model with Rhetorical Struc-
ture Theory(RST) features, we observe our proposed KGF model can improve
accuracy and F1 score both by 17% on Celebrity. For PolitiFact, the proposed
model outperforms LR by 30% in Accuracy and by 35% in F1. CompGCN with
only KG features achieves the inferior performance compared to other baselines.
From which, we believe the semantic features learned from the original text pro-
vide rich information of contexts and backgrounds in detecting fake news. Our
KGF can also beat both HDSF and dEFEND♦, in both performance metrics.
But notably, HDSF and dEFEND♦ models do not perform well as the reported
results in the original papers. For dEFEND♦, we think there are three reasons:
(1) we used different data sampling strategies; (2) we applied K-fold cross vali-
dation for averaged results; (3) our experiments do not consider the comments of
the news. For HDSF, the datasets we used in this paper cover different varieties
of topics, which differs from the original paper. The GCN model achieves the best
performance among all the baseline models on Celebrity and GossipCop regard-
ing F1 scores. However, our KGF model can still beat GCN in both accuracy
and F1 scores across all datasets, due to the use of encoded KG embeddings.

Ablation Study. In order to investigate the effectiveness of our framework, we
define a variant of KGF: KGF-CNN. We substitute GCN by Text-CNN to obtain
the global semantic embedding and combine it with knowledge embedding. From
Table 1, we can see KGF outperforms KGF-CNN and GCN. Meanwhile, KGF-
CNN outperforms CNN. The results show the effectiveness of relational represen-
tations in detecting fake news.

Table 2. Examples of selected KG entities for a fake news prediction. Lime color
denotes selected entities by our model and yellow color denotes the detected relations.
Cyan denotes the keywords selected by dEFEND♦ attention scores.

Police Discover Meth Lab In Back Room of Alabama Walmart DECATUR,
Alabama – Police were recently tipped off to a reported meth lab that was
being run by Walmart employees in what they are calling one of the
biggest busts in decades. Police Chief Robert Garner said that an anonymous
tip was left on their drug hotline, expressing concern about a horrible burning
smell that was coming from the back of the Decatur WalMart facility. When an
officer was sent to investigate, the store was instantly shut down as he
discovered a meth lab that took up the entire back room. “The thing was
massive, and contained enough materials to make hundreds, if not thousands, of
pounds of crystal meth,” said Chief Garner. “Apparently, every employee in the
store was a part of it, from working with and gathering materials, to cooking, to
selling it outside of the store. It was a full, massive operation.”

Explainability Evaluation and Case Study. We select an example from the
correctly predicted fake news in the test set of PolitiFact. In Table 2, we highlight
the entities and relations which received high attention weights obtained by
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Eq. 5. Meanwhile, we highlight the keywords which received high word attention
scores from dEFEND with a different color. In this example, we can see that
the entities (e.g., “meth lab”, “Back Room of Alabama Walmart DECATUR”,
“Police”) with relations (e.g., “tripped”, “discovered”) chosen by our method
are the essential components to the news. Since entities and relations represent
facts that the news tries to express, our KGF provides the facts in the news that
contribute most to the predictions. We can utilize the triples with the highest
attention scores to provide explanations of why the news is classified as real or
fake. It is worth mentioning that the facts represented by triples in our case can
be real or fake.

Model Complexity. The computational complexity of pretraining mainly
relies on the number of layers of GCN, i.e., K, the dimension of entity d, the
total number of relations |R|, and the number of basis vectors B. CompGCN
uses the basis vectors {v0, v1, ..., vB} to initialize the relation embeddings. Thus,
the computational complexity of pretraining is O(Kd2 + Bd + B|R|).

6 Conclusion

This paper proposed a new representation learning framework for explainable
fake news detection using knowledge graph enhanced embeddings. Without
external databases, we first extracted and organized a knowledge graph from
accessible and reliable training corpora. Then we adapt a compositional graph
neural network to pre-train structured features for entities and relations. Lastly,
the pre-trained relational features are incorporated with semantic features for
fake news recognition. The extensive experiments on two real-world datasets
demonstrated the strengths of our proposed approach in fake news detection
tasks, measured by standard classification evaluation metrics. We also exhibit
case studies to provide structured explanations for the prediction results. In the
future, we plan to investigate meta learning approaches to extract relations from
text and examine other types of news including rumor and satire news.
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Abstract. Relation Extraction (RE) is a premier task of informa-
tion extraction (IE) and crucial to many applications including knowl-
edge graph completion (KGC). In recent years, some RE models have
employed the topic knowledge of relations through topic words to enrich
relation representations, demonstrating better performance than tradi-
tional distantly supervised paradigms. However, these models have not
taken different syntactic information of relations into account, which have
been proven significant in many NLP tasks. In this paper, we propose a
novel RE pipeline which incorporates syntactic information into relation
representations to enhance RE performance. Representations of sentence
and relation in our pipeline are generated by a modified multi-head self-
attention structure respectively, where the sentence is represented based
on its words and the relation is represented based on the relation-specific
embeddings of its topic words. Furthermore, all sentences labeled with
the input relation are used to construct an entire weighted directed graph
based on their dependency trees. Then, the relation-specific embeddings
of words (nodes) in the graph are learned by a GCN-based model. Our
extensive experiments have justified that our pipeline significantly out-
performs other RE models thanks to the incorporation of syntactic infor-
mation.

Keywords: Relation Extraction · Relation representation · Syntactic
information · Graph convolutional networks

1 Introduction

As one of the premier issues in information extraction (IE) and knowledge graph
completion (KGC), relation extraction (RE) has received extensive attention in
recent years. The goal of RE is to recognize a relation predefined in knowledge
graphs (KGs) for two named entities existing in plain texts. For example, given
the entity pair [Steve Jobs, Apple] in the sentenceSteve Jobs and Wozniak co-
founded Apple in 1976 to sell Wozniak’s Apple I personal computer., the relation
the-founder-of can be recognized by a RE model precisely.
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In recent years, some researchers have employed deep neural networks
(DNNs) to achieve RE. For example, convolutional neural networks (CNNs) [26],
recurrent neural networks (RNNs) [28] and sentence-level attention mechanism
[10,24] has already been proven effective in RE tasks. Rather than only focusing
on sentence-level features, the RE pipeline proposed by [11] accomplishes RE
task through evaluating the matching degree between a given sentence contain-
ing a target entity pair and a candidate relation, and further exploits relation
representation learning to improve matching precision. The basic assumption of
their solution is that, the sentence collection of a specific relation contains sev-
eral latent topics and these topics are semantically related to the relation. Based
on this assumption, a relation is represented by the embeddings of some topic
words which are distilled by a topic model from the sentence collection labeled
with this relation. However, they only utilized the co-occurrences of topic words
to generate relation representations without taking the syntactic context of this
relation into account. The syntactic information has been proven to be a class
of significant features for many NLP tasks [1,6,18], inspiring us to leverage syn-
tactic information to enhance RE performance.

In order to fully exploit syntactic information of different relations, we pro-
pose a novel RE pipeline which also follows the basic principle of sentence-
relation matching. In our pipeline, a relation’s representation is generated based
on the embeddings of its topic words, but the embeddings of topic words are
learned by a method different to the embeddings of sentence words. This is
because that a topic word may have different syntactic contexts when represent-
ing different relations. We illustrate an example in Fig. 1 to explain it, where
the word Apple acts as the direct object (dobj) of the verb co-founded in sen-
tence 1 labeled with the relation founder. While it acts as the passive nominal
subject (nsubjpass) in sentence 2 labeled with the relation location. If each word
occurring in different syntactic contexts is represented by a fixed embedding, the
performance of the following sentence-relation matching network will likely be
limited. Based on this intuition, we should learn an adaptive embedding for a
topic word in terms of the relation it represents.

Fig. 1. Example of different syntactic contexts for ‘Apple’ when occurring in different
relations.
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In summary, we have the following contributions in this paper.

– We propose a method to learn relation-specific and syntax-enhanced embed-
dings for the topic words of a given relation, which are beneficial to generate
better relation representations, resulting in better RE performance.

– We further construct a modified multi-head self-attention networks to effec-
tively generate the representations of sentences and relations based on the
syntax-enhanced word embeddings.

– Our extensive experiments have justified that the rationality of considering
different syntactic information of different relations for relation representa-
tions.

The rest of this paper is organized as follows. We first introduce some research
works related to our work in Sect. 2. Then, we introduce our pipeline briefly in
Sect. 3, followed by the detailed descriptions in Sect. 4. We present and analyze
our experiment results in Sect. 5 and conclude our work in Sect. 6.

2 Related Works

2.1 Relation Extraction Models

Many early RE models based on supervised paradigms can be categorized mainly
into two classes, i.e., feature-based [2] and kernel-based models [5]. These mod-
els have demonstrated good performance, but require huge amount of labeled
data. Collecting these data is an arduous and labor-intensive task. To address
this problem, distant supervision was first introduced by [16] to generate train-
ing data automatically. It gives the basic assumption that any sentence that
contains a pair of entities participating in a known Freebase relation is likely
to express that relation in some way. However, this solution not only increases
the amount of labeled sentences, but also introduces undesirable noises caused
by wrong labeling, which greatly limits RE model’s performance. Some related
methods were proposed to alleviate this problem. For example, [24] proposed
selective attention mechanism to de-emphasize noisy instances introduced by
distant supervision, and to highlight the informative sentences. These works
have shown promising results.

More recently, many researchers have employed deep-learning models to
achieve RE task. For example, [27] proposed an end-to-end CNN model to extract
lexical and sentence-level features. [26] further introduced the piece-wise CNNs
(PCNNs), and incorporated multi-instance learning into PCNNs. [28] proposed
an RNN-based framework to learn long-distance relation patterns which is capa-
ble of handling complicated expressions in real-world applications. By transform-
ing extraction problem into a tagging task, [29] proposed a novel tagging scheme
to jointly extracted entities and relations. Furthermore, reinforcement learning
method was also proposed by [8], which is constituted by an instance selector
and a relation classifier, and the instance selection is modeled as a reinforcement
learning problem.
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Besides exploiting the inherent merits of deep learning models, there have
been many works trying to leverage external knowledge to further optimize the
performance of RE. For example, [9] incorporated extra information including
the separated lexical, syntactic and semantic knowledge into a feature-based RE
model. [23] clustered relations into a set of relation topics, and modeled the
relationship among relations. In addition, logic knowledge (in form of first-order
logic formulae) was used in [20] by matrix factorization to generate enhanced
embeddings of relations and entity-pairs. [10] proposed a sentence-level attention
model which introduces entity description as external knowledge. Unlike above
deep RE models, [11] modeled RE as a matching problem between a sentence
containing entity pairs and a candidate relation, which is similar to our pipeline.
Their proposed RE framework utilizes semantic knowledge of relation labels
through topic word embeddings to improve RE performance.

2.2 Syntax-Based Word Embeddings and GCNs

Many previous works have exploited syntactic information for learning powerful
word embeddings which are the basis of many NLP tasks. For instance, [18] first
introduced dependency parse based embeddings and demonstrated its advan-
tage on some word-function specific tasks. Furthermore, higher order depen-
dencies were included to enhance embedding performance [1,6]. [21] successfully
incorporated syntactic and semantic relationships into word embeddings without
expanding the vocabulary using GCNs. These works inspire us to incorporate
syntactic information to solve RE problem effectively. In addition, due to the
success of GCNs on encoding structural information of graphs [14,17], some
researchers also employed GCNs for the tasks of machine translation [4], seman-
tic role labeling [12], document dating [22] and text classification [25]. These
pioneer works inspire us to utilize GCNs to design an effective RE pipeline.

3 Framework Overview

As stated before, we model RE as a sentence-relation matching problem, where
the given sentence is represented based on the embeddings of its words and the
candidate relation is represented by its topic knowledge. Formally, we denote
the set of relations as R. A training sample is denoted as < s, t, r, y >, where
s is a sentence containing an entity pair t, r is a candidate relation and y is
the ground-truth label. Specifically, a positive sample (i.e., y = 1) indicates the
relation between entity pair t under sentence s is r, otherwise it is a negative
sample (i.e., y = 0). The training goal of our model is to efficiently learn the
matching function by which the probability P (y = 1|s, t, r) is calculated, so that
the matching probability (score) of any test samples can be predicted. In our
pipeline, the matching function is modeled based on the representations of s
and r.

The workflow of our RE pipeline is depicted in Fig. 2, where ovals and rect-
angles denote data and operations, respectively. The overall workflow can be
divided into the following three steps.
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Fig. 2. The overall workflow of our RE pipeline.

– STEP1: For each relation r collected from our training set, we first retrieve
all the sentences labeled with r as its sentence collection, denoted as Cr.
Then, we construct the dependency parsing graph of each sentence s in Cr

using Stanford CoreNLP parser [7], and merge them into a weighted directed
labeled graph Gr in which the nodes represent the words once appear in
Cr. Each edge in Gr represents a weighted directed dependency relation, of
which the weight is quantified as occurrence frequency of the edge between its
two ends(words) in dependency parsing graphs generated form Cr. Next, we
apply another GCN-based model on Gr to obtain the embedding of each node
in Gr, the initialization of each node follows the strategy in [21]. Given the
construction principle of Gr, such learned embeddings are syntax-enhanced
and relation-specific, which will be used to generate better r’s representation.

– STEP2: From the sentence collection Cr collected in STEP1, we extract
top-c topic words for the relation r by topic modeling. Therefore, r’s topic
knowledge can be represented by the embeddings of these topic words which
have been learned in STEP1.

– STEP3: The semantic distance dis(s, r) between s and r is measured by the
Word Movers Distance (WMD) [13]. For each sentence s, we choose some
negative relation r′ with smaller distance dis(s, r′). A deep sentence-relation
matching network is constructed in our pipeline, to compute the final match-
ing score between s and r, i.e., P (y = 1|s, t, r).
In the next section, we will introduce the details of STEP1 and STEP3 in

our RE pipeline.

4 Details of Our Relation Extraction System

In this section, we will first introduce how to learn the relation-specific embed-
dings for topic words. Then, we will introduce the architecture of our sentence-
relation matching network. In the following section, we use a bold uppercase to
denote a matrix, and a bold lowercase to denote a vector.

4.1 Relation-Specific Word Embeddings for Relation Representation

Inspired by the merits of syntactic information in many other NLP works
[1,6,18], we believe that syntactic information is also helpful to improve the
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embeddings of relation topic words, which is however ignored in previous works
[11]. Therefore, the relation-specific word embeddings for topic words are learned
at first in our RE pipeline, in order to generate a better relation representation
for sentence-relation matching network.

Weighted Directed Graphs for Relation. For each relation r and its
weighted directed labeled graph Gr = (Vr, Er), Vr is the set of nodes and Er

is the collection of edges in Gr. All edges in Er are represented in the form
of (wi, wj , pij) where pij is the weight of the dependency relation wi → wj .
Specifically, pij is computed as

pij = σ
(
log(freq[wi → wj ])

)
(1)

where σ is sigmoid function and freq[wi → wj ] is the frequency of dependency
relation wi → wj occurring in the dependency parsing graphs of the sentences
in Cr. In these graphs, the representation of each node in Gr is initialized by
pre-trained word embeddings learned by SynGCN [21].

GCN on Weighted Directed Graph. As shown in Fig. 3, for a given relation
r, its weighted directed graph Gr is delivered to GCNs of K layers to learn the
embedding of each node in Gr. This GCN’s propagation rule for its k-th layer is
defined as

hk+1
i = f

⎛

⎝
∑

j∈N+(i)

pij × (
W khk

j + bk
)
⎞

⎠ (2)

Fig. 3. The GCN-based model utilizing corpus-level syntactic information to learn
relation-specific word embeddings for a relation.
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where hk+1
i ∈ R

d1 is the embedding of word wi after the k-th layer, N+(i) =
{i}⋃ N (i) and N (i) is the direct neighbor set of node, pij is the weight of the
dependency relation wi → wj , W k ∈ R

d1×d1 and bk ∈ R
d1 are both trainable

parameters and d1 is the embedding dimension of each node. Note that by adding
pij to the propagation rule, we leverage the importance of different dependency
relations in different relations’ syntactic contexts.

GCN’s Training Objective. Formally, for each node (word) in graph Gr, the
training objective of our GCN-based model is to predict the target word given
its direct neighbors in Gr. That is, for the target word wt, we maximize the
following objective:

O =
|Vr|∑

t=1

logP (wt|wt
1, w

t
2, . . . , w

t
|N (t)|) (3)

where N (t) = {wt
1, w

t
2, . . . , w

t
|N (t)|} are wt’s direct neighbors.

Specifically, the probability is defined in the form of softmax function:

P (wt|wt
1, w

t
2, . . . , w

t
|N (t)|) =

exp(vT
t ht)

∑|Vr|
i=1 exp(vT

i ht)
(4)

where ht ∈ R
d1 is wt’s embedding in the final layer of our SynGCN, and vt ∈

R
d1 is wt’s target embedding which contains the information of wt’s syntactic

contexts and will be used to generate relation r’s representation afterwards.
As a result, the objective can be expressed as

O =
|Vr|∑

t=1

(
vT
t ht − log

|Vr|∑

i=1

exp(vT
i ht)

)
(5)

Thanks to GCN’s excellent ability to integrate graph structure information,
relation-specific syntactic information of different relations is incorporated into
their topic words embeddings.

4.2 Sentence-Relation Matching Network

Inspired by [11], we propose a module based on modified multi-head self-
attention layers to generate the final representation of sentences and relations.

Sentence Initialization. Suppose an input sentence s consists of m words,
denoted as {w1, w2, . . . , wm}. Inspired by the basic assumption in [26] that each
block in a sentence has different importance for its relation inference, we first
divide s into three blocks based on the two entities it contains. For example,
the sentence in Fig. 4 can be divided by the entity pair [Jobs, Apple] into three
blocks.
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Fig. 4. Sentence-relation Matching Network of our RE pipeline.

In details, the embeddings of a certain word w in s is defined in the con-
catenation form [xw;xp] ∈ R

d1+d2 , where xw ∈ R
d1 is w’s word embedding

pre-trained by [21] and xp ∈ R
d2 is w’s position embedding. The method of gen-

erating position embeddings we adopted is the same as the one in [24]. We fix the
length of each block as l by truncation and zero-padding. As a result, the initial
representation of the i-th block is denoted as Ii ∈ R

(d1+d2)×l. Besides, dividing
a sentence into some blocks will significantly reduce the space complexity of our
RE pipeline.

Sentence Representation. In recent years, multi-head self-attention mech-
anism has been proven effective in encoding sentences [3]. Before feeding each
block into our multi-head self-attention layers which contains P parallel atten-
tion heads. The self-attention operation for each head is defined as below:

Attentions(Qs,Ks,V s) = softmax

(
QsKsT

√
d

)
V s (6)

where d is the dimension of the self-attention heads, Qs,Ks,V s are generated by
linear transformation upon the initial representation matrix of each block, i.e., Ii.
The output of the attention layer for each block Ii is Hi ∈ R

d×l. Furthermore,
we apply a max pooling layer to above self-attention layer. The output of this
layer is Hs

i ∈ R
d×p.

At last, final representation of each sentence s is the concatenation of its
block representations Hs

i , denoted as Os ∈ R
d×b, where b = 3p.
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Relation Representation. This module aims to generate the final representa-
tion of a candidate relation. Topic words for a relation r are generated by topic
modeling (e.g., LDA) over Cr.

In this paper, we regard a given relation r’s topic words as a weighted bag
of words (WBoW), denoted as Ar = {w1(tw1), . . . , wc(twc)}, 1 ≤ i ≤ c, where
wi is the i-th topic word of r with weight twi. wi’s relation-specific embedding
is xt

i ∈ R
d1 . To this end, the relation-specific embeddings of r’s topics words

constitute its initial representation Ir ∈ R
d1×c. In addition, the weight vector

{tw1, . . . , twc} is transformed into a diagonal matrix W c ∈ R
c×c where W c

i,i =
twi.

Note that different topic words in r’s WBoW have different weights. Thus
we propose a modified multi-head self-attention layer which takes the priori
weights of r’s topic words into account. Then, the definition of this self-attention
operation for each relation is as below:

Attentionr(Qr,Kr,V r,W c) = softmax

(
QrW cKrT

√
d

)
V r (7)

where Qr,Kr,V r are generated by linear transformation upon r’s initial repre-
sentation Ir, W c is a diagonal matrix generated by priori weights.

The output of this layer is Hr ∈ R
d×c. Finally, we further feed Hr into

standard multi-head self-attention layer and linear transformation, to obtain r’s
final representation Or ∈ R

d×b′
.

Sentence-Relation Interaction and Training Objective. The sentence-
relation interaction layer is defined as below:

sim(s, r|t) = wT tanh
(
sum(W 1O

s) + sum(W 2O
r) + b1

)
(8)

P (y = 1| < s, t, r >) =
1

1 + e−sim(s,r|t) (9)

where the function sum(· ) transforms a matrix into a single column vector by
summing all elements in a row. W 1 ∈ R

d′×d, W 2 ∈ R
d′×d, w and b1 ∈ R

d′
are

the trainable parameters.
The definition of the loss function is shown as below:

L(θ) =
|D|∑

i=1

LB [p(yi| < si, ti, ri >; θ)] (10)

where LB is the binary cross entropy, D = {< si, ti, ri, yi >}, i = 1, 2, . . . , |D| is
the training set where yi is the ground-truth label of the sample < si, ti, ri >, θ
represents all trainable parameters.

5 Experiments

In this section, we will try to answer the following question: Can our pro-
posed relation-specific embeddings of topic words improve relation representa-
tion, resulting in better RE performance? To this end, our proposed RE pipeline
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was evaluated from two aspects: overall performance and performance of relation-
specific topic representation.

5.1 Experiment Settings

Dataset. In our experiments, our RE pipeline and its competitors were eval-
uated on a widely used distant supervision dataset, which was generated by
aligning Freebase relations with New York Times corpus (NYT for short) [19].

Baselines. We compared our RE pipeline with several RE models as below.

– Logic-MF [20]: a matrix factorization-based model adopting distant super-
vision and injects first order logical knowledge into the entity and relation
representations.

– PCNN+ATT [24]: a CNN-based model applying selective attention mecha-
nism to address the problem of wrong labeling in distant supervision.

– APCNN+D [10]: a sentence-level attention model with description-enhanced
entity representation for RE.

– CNN+ATT+RL [8]: an advanced revision of PCNN+ATT with an instance
selector based on reinforcement learning.

– TopicRE [11]: a RE framework similar to our pipeline with topic word based
relation representation.

Evaluation Metrics. We used precision, recall and F1 as the metrics to eval-
uate the performance of our pipeline and baselines. Specifically, we adopted
held-out evaluation [8,24,26] in our experiments.

Table 1. The precision scores under different recall of all models in terms of RE.

Model Recall

0.05 0.1 0.15 0.2 0.25 0.3 0.35 maxF1

Logic-MF 0.79 0.75 0.68 0.66 0.63 0.53 0.49 0.408

PCNN+ATT 0.83 0.78 0.71 0.66 0.62 0.59 0.53 0.422

APCNN+D 0.78 0.76 0.72 0.65 0.62 0.58 0.51 0.415

CNN+ATT+RL 0.85 0.73 0.68 0.67 0.59 0.57 0.52 0.418

TopicRE 0.94 0.84 0.75 0.71 0.69 0.65 0.63 0.445

Ours 0.96 0.93 0.88 0.81 0.75 0.70 0.66 0.485

5.2 Experiment Results

In this subsection, we not only display the performance comparisons between our
pipeline and the baselines, but also justify the merits of relation-specific topic-
word representation through ablation studies. All results were obtained through
held-out evaluation.
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Overall Performance Comparison. We compared our pipeline with five
baselines in terms of RE performance. Table 1 displays maxF1 of each model and
their precision scores under different recalls. The results show that our pipeline
outperforms the baselines apparently. Even compared with TopicRE which has
the best maxF1 in all baselines, our pipeline still gains 9% improvement of
maxF1. Next, we further investigate the effectiveness of relation-specific topic-
words’ representations which take different syntactic contexts of different rela-
tions into consideration.

Fig. 5. PR curve comparison of incor-
porating relation-specific word embed-
dings or not.

Fig. 6. PR curve comparison of incor-
porating syntax-based word embed-
dings or not.

Evaluation of Relation-Specific Topic Word Representation. To this
end, we first designed an ablated variant of our pipeline, namely Ours−, by
removing relation-specific word representation from relation representation. In
other words, the relation’s topic words are directly represented by the pre-trained
word embeddings learned by SynGCN [21]. Figure 5 displays the Precision-Recall
curves of our pipeline and Ours−. Our pipeline’s superiority over Ours− justifies
the rationality of learning relation-specific embeddings for relation’s topic words,
which help our pipeline better recognize a relation in terms of the syntactic
contexts involving the relation’s topic words.

Also, We are interested in whether syntax or semantics is more important
in RE tasks, we conduct another experiment. We use our sentence-relation
matching network, which is denoted as SRMN, to accomplish RE tasks with
different word embeddings. In fact, the baseline TopicRE uses the pre-trained
word embeddings pre-trained on New York Times Annotated Corpus (LDC Data
LDC2008T19) [24] by Word2Vec [15], which focus mainly on semantics. In con-
trast, the proposed SynGCN focus more on syntax. We adopt three word embed-
dings strategies: Semantics follows the strategy in TopicRE, Syntax directly
uses SynGCN and Syntax&Semantics initializes SynGCN with embeddings
learned in TopicRE. It is taken for granted that Syntax&Semantics should
outperform Syntax since semantics are also considered. However, it is unex-
pected that these two strategies are inseparable according to the curves shown
in Fig. 6. A possible reason for this observation is that, semantic information
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and syntactic information are of different scales in sentence representation, as
semantic information is extracted mainly in corpus-level while syntactic informa-
tion is extracted mainly in sentence-level. Furthermore, the available syntactic
information is much more than the semantic information [21]. However, both of
these two strategies outperform Semantics apparently. It also verifies that our
RE pipeline’s perfect performance is mainly attributed to the syntax-enhanced
word embeddings. We try to guess that syntax is more important than semantics
for RE tasks, but this requires proof of further works.

6 Conclusion

In this paper, we propose a novel RE pipeline which incorporates syntactic infor-
mation into relation representation. Specifically, we model RE as a matching
problem between a given sentence containing entity pair and a candidate rela-
tion. Specifically, we incorporate a modified multi-head self-attention network in
our pipeline to compute the final matching scores based on sentence and relation
representations.

According to the results of our experiments, our pipeline clearly outperforms
all the baselines. The extensive experiments further prove that the improvement
of our pipeline over similar baselines is mainly attributed to the relation-specific
word embeddings which make full use of the advantages of GCNs in integrating
syntactic information. We also found an interesting phenomenon that initialing
GCNs with the pre-trained embeddings fused with semantic information will not
significantly improve the model’s performance, we will further explore whether
syntax is more important that semantics for RE tasks in future works.
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