
XCrossNet: Feature Structure-Oriented
Learning for Click-Through Rate

Prediction

Runlong Yu1, Yuyang Ye2, Qi Liu1(B), Zihan Wang3, Chunfeng Yang4,
Yucheng Hu4, and Enhong Chen1

1 Anhui Province Key Laboratory of Big Data Analysis and Application,
School of Computer Science and Technology,

University of Science and Technology of China, Hefei, China
yrunl@mail.ustc.edu.cn, {qiliuql,cheneh}@ustc.edu.cn

2 Management Science and Information Systems, Rutgers Business School,
Rutgers University, Newark, USA

yuyang.ye@rutgers.edu
3 MOE Key Laboratory of Computational Linguistics, School of Electronics

Engineering and Computer Science, Peking University, Beijing, China
wzh@stu.pku.edu.cn

4 Tencent Inc, Shenzhen, China
{yannisyang,nikohu}@tencent.com

Abstract. Click-Through Rate (CTR) prediction is a core task in nowa-
days commercial recommender systems. Feature crossing, as the main-
line of research on CTR prediction, has shown a promising way to
enhance predictive performance. Even though various models are able
to learn feature interactions without manual feature engineering, they
rarely attempt to individually learn representations for different feature
structures. In particular, they mainly focus on the modeling of cross
sparse features but neglect to specifically represent cross dense features.
Motivated by this, we propose a novel Extreme Cross Network, abbrevi-
ated XCrossNet, which aims at learning dense and sparse feature inter-
actions in an explicit manner. XCrossNet as a feature structure-oriented
model leads to a more expressive representation and a more precise CTR
prediction, which is not only explicit and interpretable, but also time-
efficient and easy to implement. Experimental studies on Criteo Kaggle
dataset show significant improvement of XCrossNet over state-of-the-art
models on both effectiveness and efficiency.

1 Introduction

Accurate targeting of commercial recommender systems is of great importance,
in which Click-Through Rate (CTR) prediction plays a key role. CTR prediction
aims to estimate the ratio of clicks to the impression of a recommended item for
a user. Therefore, we consider users have negative preferences instead of implicit
feedbacks on those un-clicked items [25,26]. In common display advertising sys-
tems, advertisers expect lower costs to achieve a higher return on investment.
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 436–447, 2021.
https://doi.org/10.1007/978-3-030-75765-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_35&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_35

XCrossNet: Feature Structure-Oriented Learning for CTR Prediction 437

The ad exchange platforms usually trade with advertisers and publishers
according to the generalized second price of the maximum effective Cost Per
Mille (eCPM). If CTR is overestimated, advertisers could waste campaign
budgets on the useless impression; On the other hand, if CTR is underesti-
mated, advertisers would lose some valuable impressions and the campaigns may
under deliver. With multi-billion dollar business on commercial recommendation
today, CTR prediction has received growing interest from communities of both
academia and industry [3,13,21].

In web-scale commercial recommender systems, the inputs of users’ charac-
teristics are in two kinds of structures. The first kind of structure is described by
numerical or dense parameters, e.g., “Age years=22, Height cm=165”. Each
of such characteristics is formalized as a value associated with a numerical
field, while the values are named as dense features. The second kind of struc-
ture is described by categorical or sparse parameters, e.g.,“Gender=Female,
Relationship=In love”. Each of such characteristics is formalized as a vec-
tor of one-hot encoding associated with a categorical field, while the vectors are
named as sparse features. Research shows an important property of recommen-
dation datasets for industrial use cases is the availability of both dense features
and sparse features [22]. Thus, Criteo Kaggle dataset1 is usually regarded as
representative of real production use cases. Moreover, the number of dense and
sparse features for industrial use cases are often 100s to 1000 with a 50:50 split2.

Data scientists usually spend much time on interactions of raw features to
generate better predictive models. Among these feature interactions, cross fea-
tures, previously focused more on the product of sparse features, show a promis-
ing way to enhance the performance of prediction [15]. Owing to the fact that
correct cross features are mostly task-specific and difficult to identify a priori,
the crucial challenge is in automatically extracting sophisticated cross features
hidden in high-dimensional data. Research on feature crossing as the mainline
of CTR prediction has attracted widespread attention in recent years. Shallow
models are simple, interpretable, and easy to scale, but limited in expressive
ability. Alternatively, deep learning has shown powerful expressive capabilities,
nevertheless, deep neural networks (DNNs) require many more parameters than
tensor factorization to approximate high-order cross features. Besides, almost
all deep models leverage multilayer perceptron (MLP) to learn high-order fea-
ture interactions, however, whether plain DNNs indeed effectively represent right
functions of cross features remains an open question [10,21].

In addition, most methods neglect to represent cross dense features. There
are three major patterns for handling dense features. First, dense features are
discarded when crossing features, that is, dense features only participate in the
linear part of the model [20]. Second, dense features are directly concatenated
with the embeddings of sparse features, which could cause an important feature
dimensionality imbalance problem [21]. Third, dense features are converted into

1 https://labs.criteo.com/2013/12/download-terabyte-click-logs/.
2 The statistics for the dense and sparse features and proportion are based on the

survey outcome conducted in December 2019 with the MLPerf Advisory Board.

https://labs.criteo.com/2013/12/download-terabyte-click-logs/

438 R. Yu et al.

sparse features through bucketing, which could introduce hyper-parameters and
loss information of dense features [12].

Based on all these observations, we propose a novel Extreme Cross Net-
work (XCrossNet), to represent feature structure-oriented interactions. Mod-
eling with XCrossNet consists of three stages. In the Feature Crossing stage, we
separately propose a cross layer for crossing dense features and a product layer
for crossing sparse features. In the Feature Concatenation stage, cross dense fea-
tures and cross sparse features interact through a concatenate layer and a cross
layer. Lastly, in the Feature Selection stage, we employ an MLP for capturing
non-linear interactions and their relative importance. Experimental results on
Criteo Kaggle dataset demonstrate the superior performance of XCrossNet over
the state-of-the-art baselines.

2 Related Work

Studies on CTR prediction can be categorized into five classes which will be
respectively introduced below.

Generalized Linear Models. Logistic Regression (LR) models such as FTRL
are widely used in CTR prediction for their simplicity and efficiency [9,16].
Ling Yan et al. argue that LR cannot capture nonlinear feature interactions
and propose Coupled Group Lasso (CGL) to solve it [24]. Human efforts are
usually needed for LR models. Gradient Boosting Decision Tree (GBDT) is a
method to automatically do feature engineering and search interactions [4], then
the transformed feature interactions can be fed into LR. In practice, tree-based
models are more suitable for dense features but not for sparse features.

Quadratic Polynomial Mappings and Factorization Machines. Poly2
enumerates all pairwise feature interactions to avoid feature engineering which
works well on dense features [2]. For sparse features, Factorization Machine (FM)
and its variants project each feature into a low-dimensional vector and model
cross features by inner product [20]. SFM introduces Laplace distribution to
model the parameters and better fit the sparse data with a higher ratio of zero
elements [17]. FFM enables each feature to have multiple latent vectors to inter-
act with features from different fields [8]. As FM and its variants can only model
order-2nd cross features. An efficient algorithm Higher-Order FM (HOFM) for
training arbitrary-order cross features was proposed by introducing the ANOVA
kernel [1]. As reported in [23], HOFM achieves marginal improvement over FM
whereas using many more parameters and only its low-order (usually less than
5) form can be practically used.

Implicit Deep Learning Models. As deep learning has shown promising rep-
resentation capabilities, several models use deep learning to improve FM. Atten-
tion FM (AFM) enhances the importance of different order-2nd cross features
via attention networks [23]. Neural FM (NFM) stacks deep neural networks on
top of the output of the order-2nd cross features to model higher-order cross
features [6]. FNN uses FM to pre-train low-order features and then feeds fea-

XCrossNet: Feature Structure-Oriented Learning for CTR Prediction 439

ture embeddings into an MLP [27]. In contrast, DSL uses MLP to pre-train
high-order non-linear features and then feeds them with basis features into an
FM layer [7]. Moreover, CCPM uses convolutional layers to explore local-global
dependencies of cross features [14]. IPNN (also known as PNN) feeds the inter-
action results of the FM layer and feature embeddings into an MLP [18]. PIN
introduces a micro-network for each pair of fields to model pairwise cross fea-
tures [19]. FGCNN combines a CNN and MLP to generate new features for
feature augmentation [11]. However, all these approaches learn the high-order
cross features in an implicit manner, therefore lack good model explainability.

Wide&Deep Based Models. Jianxun Lian et al. argue that implicit deep
learning models focus more on high-order cross features but capture little low-
order cross features [10]. To overcome this problem, there has been proposing a
hybrid network structure, namely Wide&Deep, which combines a shallow com-
ponent and a deep component with the purpose of learning both memorization
and generalization [3]. Wide&Deep framework revolutionizes the development of
CTR prediction, and attracts industry partners a lot from the beginning. As for
the first Wide&Deep model proposed by Google [3], it combines a linear model
(wide part) and DNN, while the input of the wide part still relies on feature engi-
neering. Later on, DeepFM uses an FM layer to replace the wide component.
Deep&Cross [21] and xDeepFM [10] take outer product of features at the bit-
and vector-wise level respectively. However, xDeepFM uses so many parameters
that great challenges are posed to identify important cross features in the huge
combination space.

AutoML Based Models. There exist some pre-trained approaches using
AutoML techniques to deal with cross features. AutoCross is proposed to search
over subsets of candidate features to identify effective interactions [15]. This
requires training the whole model to evaluate the selected feature interactions, but
the candidate sets are incredibly many. AutoGroup treats the selection process of
high-order feature interactions as a structural optimization problem, and solves it
with Neural Architecture Search [12]. It achieves state-of-the-art performance on
various datasets, but is too complex to be applied in industrial applications.

3 Extreme Cross Network (XCrossNet)

In this section, we will introduce the problem statement and describe the details
of Extreme Cross Network (XCrossNet) in the following three steps: Feature
Crossing, Feature Concatenation, and Feature Selection. The complete XCross-
Net model is depicted in Fig. 1.

3.1 Problem Statement

In web-scale commercial recommender systems, the inputs of users’ char-
acteristics are in two kinds of structures. The first kind of structure is
described by numerical or dense parameters, denoted as D. The second kind
of structure is described by categorical or sparse parameters, denoted as S.

440 R. Yu et al.

Fig. 1. The structure of XCrossNet.

Suppose that the dataset for training consists of n instances ([D;S], y), where
D = [D1,D2, · · · ,DM] indicates dense features including M numerical fields,
and S = [S1, S2, · · · , SN] indicates sparse features including N categorical fields,
and y ∈ {0, 1} indicates the user’s click behaviors (y = 1 means the user clicked
the item, and y = 0 otherwise). The task of CTR prediction is to build a predic-
tion model ŷ = pCTR Model([D;S]) to estimate the ratio of clicks to impres-
sions of a given feature context.

3.2 Feature Crossing

A cross feature is defined as a synthetic feature formed by multiplying (crossing)
two features. Crossing combinations of features can provide predictive abilities
beyond what those features can provide individually. Based on the definition,
cross features can be generalized to high-order cases. If we consider individual
features as order-1st features, an order-kth cross feature is formed by multiplying
k individual features.

Cross Layers on Dense Features. First we introduce a novel cross layer for
crossing dense features (see in Fig. 2). Cross layers have the following formula:

C1 = D · DT · WC,0 + bC,0, OC
1 = [D; C1],

Cl+1 = D · CT
l · WC,l + bC,l , OC

l+1 = [OC
l ; Cl+1],

(1)

where D ∈ R
M indicates the input dense features, and Cl ∈ R

M is a col-
umn vector denoting the order-(l + 1)th cross features. Later we prove how
Cl expresses multivariate polynomials of degree (l + 1) after weighted mapping.
WC,l , bC,l ∈ R

M are the weight and bias parameters respectively, and OC
l ,OC

l+1

denote the outputs from the l-th and the (l + 1)-th cross layers.
We denote α = [α1, · · · , αM]. If our proposed cross layer expresses any cross

features of order-(l+1)th, it could approximate to any multivariate polynomials

XCrossNet: Feature Structure-Oriented Learning for CTR Prediction 441

Fig. 2. The structure of cross layers.

of degree (l + 1), denoted as Pl+1(D):

Pl+1(D) =

{ ∑
α

Wα Dα1
1 Dα2

2 · · · DαM
M

∣∣∣∣ |α| = l + 1

}
, (2)

where |α| =
∑M

i=1 αi. For simplicity, here we use W i = [W i
1,W

i
2, · · · ,W i

M]
to denote the original subscript of WC,i . We study the coefficient Ŵα given by
CT

l ·W l from cross layers, since it constitutes the output OC
l+1 from the (l+1)-th

cross layer. Besides, the following derivations do not include bias terms. Then:

CT
l · W l =

(
CT

l−1 · W l−1
)

·
(
DT · W l

)
=

∏l
i=0 DT · W i

=
∏l

i=0[D1, D2, · · · , DM]T · [W i
1 , W

i
2 , · · · , W i

M].
(3)

Afterwards, let I denotes the multi-index vectors of orders [0, 1, · · · , l], and Ij
denotes the order of field j. Clearly CT

l · W l from cross layers approaches the
coefficient Ŵα as:

Ŵα =
M∑

k=1

∑
|I |=αk

M∏
j=1

W
Ij
j . (4)

With CT
l · W l approximate to multivariate polynomials of degree (l + 1), the

output OC
l+1 from the (l + 1)-th cross layer that includes all cross features to

order-(l + 1)th could approximate polynomials in the following class:

Pl+1(D) =

{ ∑
α

Wα Dα1
1 Dα2

2 · · · DαM
M

∣∣∣∣ 0 ≤ |α| ≤ l + 1

}
. (5)

Embedding and Product Layers on Sparse Features. Here we introduce
the embedding layer and product layer for crossing sparse features (see in Fig. 3).
As sparse features S are represented as vectors of one-hot encoding of high-
dimensional spaces, we employ an embedding layer to transform these one-hot
encoding vectors into dense vectors E as:

E = [E1, · · · , Ei , · · · , EN],

Ei = embed(Si),
(
Ei ∈ R

K , i = 1, · · · , N
) (6)

where Si indicates the input sparse feature of field i, K denotes the embedding
size, and Ei denotes the feature embedding of field i.

442 R. Yu et al.

Fig. 3. The structure of embedding layer and product layer.

Afterwards, we can propose a product layer for cross sparse features. First,
we donate order-2nd cross sparse features as P2, and order-1st sparse features
as P1, thus the output of product layer is OP = [P1;P2].

The cross feature of two sparse features of field i and field j equals the
inner product of two embedding vectors as 〈Ei ,Ej 〉. Intuitively, we expect cross
features to be vectors, so we concatenate the weighted sums of inner products
to formulate order-2nd cross features as:

P2 = [P 1
2 , · · · , P t

2 , · · · , P T
2], (7)

where T is the size of product layer, and P2 is a T dimensional vector, of each
dimension P t

2 denotes a weighted sum of inner products of two sparse features.
Thus, we have P t

2 =
∑N

i=1

∑N
j=1 W 2,t

i,j 〈Ei ,Ej 〉. We assume that the weighted
parameter W 2,t

i,j = Θt
i · Θt

j for reduction, so P t
2 can be given as:

P t
2 =

N∑
i=1

N∑
j=1

Θt
i · Θt

j〈Ei , Ej 〉 =

〈 N∑
i=1

Θt
i · Ei ,

N∑
j=1

Θt
j · Ej

〉
. (8)

The feature vector of order-1st features has a similar formula as follows:

P1 = [P 1
1 , · · · , P t

1 , · · · , P T
1], (9)

where P1 is a T dimensional vector, of each dimension P t
1 denotes a weighted

sum of sparse features. The weighted feature can be expressed as inner product
〈W 1,t

i ,Ei〉. Thus, we have P t
1 =

∑N
i=1〈W 1,t

i ,Ei〉.

3.3 Feature Concatenation

In the Feature Concatenation stage, in order to learn feature interactions of
different structures, cross dense features OC and cross sparse features OP are
concatenated as a vector through a concatenate layer, then the concatenated
feature vector is fed into a cross layer, which can be expressed as:

X0 = [OC ; OP],

X1 = X0 · XT
0 · WX ,0 + bX ,0, H0 = [X0; X1],

(10)

where X0 denotes the concatenated feature of cross dense features and cross
sparse features, X1 denotes the cross features between two kinds of feature

XCrossNet: Feature Structure-Oriented Learning for CTR Prediction 443

structures, H0 denotes the output from this cross layer, and WX,0, bX,0 are the
weight and bias parameters of this cross layer.

3.4 Feature Selection

In the Feature Selection stage, we employ an MLP to capture non-linear inter-
actions and the relative importance of cross features. The deep layers and the
output layer respectively have the following formula:

Hi = ReLU(WH ,i−1 · Hi−1 + bH ,i−1),

OG = Sigmoid(WH ,i · Hi + bH ,i),
(11)

where Hi ,Hi−1 are hidden layers, ReLU(·) and Sigmoid(·) are activation func-
tions, WH,i ,WH,i−1 are weights, and bH,i , bH,i−1 are biases, and OG is the
output result.

For CTR prediction, the loss function is the Logloss as follows:

L = − 1
n

n∑

i=1

yi log(OG) + (1 − yi) log(1 − OG), (12)

where n is the total number of training instances. The optimization process is
to minimize the following objective function:

J = L + λ||Θ||, (13)

where λ denotes the regularization term, and Θ denotes the set of learning
parameters, including cross layers, embedding layer, product layer, deep layers
and output layer.

4 Experiments

In this section, extensive experiments are conducted to answer the following
research questions3:

RQ1: How does XCrossNet perform compared with the state-of-the-art CTR
prediction models?

RQ2: How does the feature dimensionality imbalance impact CTR prediction?
RQ3: How do hyper-parameter settings impact the performance of XCrossNet?

4.1 Experimental Setup

Dataset. Experiments are conducted on Criteo Kaggle dataset, which is from a
world-wide famous Demand-Side Platforms. Criteo Kaggle dataset contains one
month of 45, 840, 617 ad click instances. It has 13 integer feature fields and 26
categorical feature fields. We select 7 consecutive days of samples as the training
set while the next one day for evaluation.
3 We release the source code at https://github.com/bigdata-ustc/XCrossNet/.

https://github.com/bigdata-ustc/XCrossNet/

444 R. Yu et al.

Table 1. Performance comparison of
different CTR prediction models.

Model AUC(%) Logloss

LR 78.00 0.5631
GBDT 78.62 0.5560
FM 79.09 0.5500
AFM 79.13 0.5517
FFM 79.80 0.5438
CCPM 79.55 0.5469
Wide& Deep 79.77 0.5446
Cross 78.70 0.5550
Deep& Cross 79.76 0.5445
FNN 79.87 0.5428
DeepFM 79.91 0.5423
IPNN 80.13 0.5399
PIN 80.18 0.5394
CIN 78.81 0.5538
xDeepFM 80.06 0.5408
FGCNN 80.22 0.5389
AutoGroup 80.28 0.5384

XCrossNet 80.68 0.5339

Fig. 4. Training time comparison of differ-
ent CTR prediction models.

dim(OC)

Fig. 5. Impact of feature dimensionality
imbalance.

Baselines. As aforementioned, we use following highly related state-of-the-
art models as baselines: LR [9], GBDT [4], FM [20], AFM [23], FFM [8],
CCPM [14], Wide&Deep [3], Deep&Cross [21] and its shallow part Cross
network, FNN [27], DeepFM [5], IPNN [18], PIN [19], xDeepFM [10] and
its shallow part CIN, FGCNN [11], and AutoGroup [12].

Hyper-parameter Settings. For model optimization, we use Adam with a
mini-batch size of 4096, and the learning rate is set as 0.001. We use the L2
regularization with λ = 0.0001 for all neural network models. For Wide&Deep,
Deep&Cross, FNN, DeepFM, IPNN, PIN, xDeepFM, and XCrossNet, the num-
bers of neurons per deep layer are 400, and the depths of deep layers are set as 2.
For our XCrossNet, the number of cross layers on dense features is set as l=4. In
the main experiments, we set the embedding size for all models be a fixed value
of 20.

4.2 Overall Performance (RQ1)

Table 1 summarizes the performance of all compared methods on Criteo Kaggle
datasets, while the training time on Tesla K80 GPUs is shown in Fig. 4 for com-
parison of efficiency. From the experimental results, we have the following key
observations: Firstly, most neural network models outperform linear models (i.e.,

XCrossNet: Feature Structure-Oriented Learning for CTR Prediction 445

A
U

C

0.7900

0.7933

0.7967

0.8000

0.8033

0.8067

0.8100

Embedding size
4 6 8 10 12 14 16 18 20

(a)

A
U

C

0.8048

0.8054

0.8059

0.8065

0.8070

Number of deep layers

1 2 3 4

(b)

A
U

C

0.7600

0.7720

0.7840

0.7960

0.8080

0.8200

Activation functions

Sigmoid tanh ReLU Identity

(c)

A
U

C

0.8025

0.8039

0.8053

0.8066

0.8080

Neurons per layer
300 400 500 600 700

(d)

Fig. 6. Impact of network hyper-parameters on AUC performance.

Lo
gl

os
s

0.5320

0.5358

0.5397

0.5435

0.5473

0.5512

0.5550

Embedding size
4 6 8 10 12 14 16 18 20

(a)

L
o

g
lo

ss

0.5333

0.5343

0.5353

0.5363

0.5373

Number of deep layers

1 2 3 4

(b)
L
o

g
lo

s
s

0.5200

0.5330

0.5460

0.5590

0.5720

0.5850

Activation functions

Sigmoid tanh ReLU Identity

(c)

L
o

g
lo

ss

0.5330

0.5335

0.5340

0.5345

0.5350

Neurons per layer
300 400 500 600 700

(d)

Fig. 7. Impact of network hyper-parameters on Logloss performance.

LR), tree-based models (i.e., GBDT), and FM variants (i.e., FM, FFM, AFM),
which indicates MLP can learn non-linear feature interactions and endow bet-
ter expressive ability. Meanwhile, comparing IPNN, PIN with FNN, Wide&Deep
based models, we find that explicitly modeling low-order feature interactions can
simplify the training of MLP and boost the performance. Secondly, XCrossNet
achieves the best performance. Statistically, XCrossNet significantly outperforms
the best baseline in terms of AUC and Logloss on p-value < 0.05 level, which
indicates feature structure-oriented learning can provide better predictive abil-
ities. Thirdly, from the training time comparison, we can observe XCrossNet is
very efficient, especially compared to field-aware models, mainly because these
models further allow each feature to learn several vectors where each vector is
associated with a field, which leads to huge parameter consumption and time
consumption.

4.3 Feature Dimensionality Imbalance Study (RQ2)

In XCrossNet, we denote dim(OC)
dim(OP)

/
M
N as the balance index of dimensions of

dense and sparse features. Noted that, the dimension of cross dense features
OC equals M · l, increasing with the depth of cross layers. As for Criteo Kag-
gle dataset, M = 13 and N = 26, we set the depths of cross layers from 1 to
8, while the corresponding dimensions of cross dense features are from 13 to
104. Experimental results are shown in Fig. 5 in terms of AUC. We can observe
that increasing the depth of cross layers benefits XCrossNet to achieve stable
improvements on AUC performance, mainly because the higher dimensions of
cross dense features are able to boost the balance index, which results in rela-
tively balanced impacts of dense and sparse features on prediction.

446 R. Yu et al.

4.4 Hyper-parameter Study (RQ3)

We study the impact of hyper-parameters of XCrossNet, including (1) embedding
size; (2) number of deep layers; (3) activation function; (4) neurons per layer.
Figures 6a and 7a demonstrate the impact of embedding size. We can observe
that model performance boosts steadily when the embedding size increase from
4 to 20. Even with very low embedding sizes, XCrossNet still has comparable
performance to some popular Wide&Deep based models with high embedding
size. Specifically, XCrossNet achieves AUC> 0.800 and Logloss< 0.541 with
embedding size set as 10, which is even better than DeepFM with embedding
size set as 20. Figures 6b and 7b demonstrate the impact of the number of deep
layers. The model performance boosts with the depth of MLP at the beginning.
However, it starts to degrade when the depth of MLP is set to greater than 3. As
shown in Figs. 6c and 7c, ReLU is indeed more appropriate for hidden neurons
of deep layers compared with different activation functions. As shown in Figs. 6d
and 7d, model performance barely boosts as the number of neurons per layer
increasing from 300 to 700. We consider 400 is a more suitable setting to avoid
the model being overfitting.

5 Conclusion

Due to the fact that previous work rarely attempts to individually learn repre-
sentations for different feature structures, this paper presented a novel feature
structure-oriented learning model, namely Extreme Cross Network (XCrossNet),
for improving CTR prediction in recommender systems. A XCrossNet model
starts with a Feature Crossing stage, followed by a Feature Concatenation stage
and a Feature Selection stage. The main contribution of our approach is to
represent dense and sparse feature interactions in an explicit and efficient way.
Empirical studies verified the effectiveness of our model on Criteo Kaggle dataset.

Acknowledgements. This research was partially supported by grants from the
National Key Research and Development Program of China (No. 2018YFC0832101),
and the National Natural Science Foundation of China (Grants No. 61922073 and
U20A20229). Qi Liu acknowledges the support of the Youth Innovation Promotion
Association of CAS (No. 2014299).

References

1. Blondel, M., et al.: Higher-order factorization machines. In: NeurIPS, pp. 3351–
3359 (2016)

2. Chang, Y., et al.: Training and testing low-degree polynomial data mappings via
linear SVM. J. Mach. Learn. Res. (JMLR) 11, 1471–1490 (2010)

3. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: 1st Work-
shop on Deep Learning for Recommender Systems, pp. 7–10 (2016)

4. Friedman, J.H.: Greedy function approximation: a gradient boosting machine.
Annals of Statistics, pp. 1189–1232 (2001)

XCrossNet: Feature Structure-Oriented Learning for CTR Prediction 447

5. Guo, H., et al.: DeepFM: a factorization-machine based neural network for CTR
prediction. In: IJCAI, pp. 1725–1731 (2017)

6. He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics.
In: SIGIR, pp. 355–364 (2017)

7. Huang, Z., et al.: An ad CTR prediction method based on feature learning of deep
and shallow layers. In: CIKM, pp. 2119–2122 (2017)

8. Juan, Y., et al.: Field-aware factorization machines for CTR prediction. In: RecSys,
pp. 43–50 (2016)

9. Lee, K., et al.: Estimating conversion rate in display advertising from past perfor-
mance data. In: SIGKDD pp. 768–776. ACM (2012)

10. Lian, J., et al.: XDeepFM: combining explicit and implicit feature interactions for
recommender systems. In: SIGKDD, pp. 1754–1763 (2018)

11. Liu, B., et al.: Feature generation by convolutional neural network for click-through
rate prediction. In: WWW, pp. 1119–1129 (2019)

12. Liu, B., et al.: Autogroup: automatic feature grouping for modelling explicit high-
order feature interactions in CTR prediction. In: SIGIR, pp. 199–208. ACM (2020)

13. Liu, Q., et al.: Personalized travel package recommendation. In: ICDM, pp. 407–
416. IEEE (2011)

14. Liu, Q., et al.: A convolutional click prediction model. In: CIKM, pp. 1743–1746
(2015)

15. Luo, Y., et al.: Autocross: automatic feature crossing for tabular data in real-world
applications. In: SIGKDD, pp. 1936–1945 (2019)

16. McMahan, H.B., et al.: Ad click prediction: a view from the trenches. In: SIGKDD,
pp. 1222–1230. ACM (2013)

17. Pan, Z., et al.: Sparse factorization machines for click-through rate prediction. In:
ICDM, pp. 400–409. IEEE (2016)

18. Qu, Y., et al.: Product-based neural networks for user response prediction. In:
ICDM pp. 1149–1154. IEEE (2016)

19. Qu, Y., et al.: Product-based neural networks for user response prediction over
multi-field categorical data. ACM Trans. Inf. Syst. (ACM TOIS) 37(1), 1–35 (2018)

20. Rendle, S.: Factorization machines. In: ICDM pp. 995–1000. IEEE (2010)
21. Wang, R., et al.: Deep & cross network for ad click predictions. In: ADKDD, pp.

1–7 (2017)
22. Wu, C.J., et al.: Developing a recommendation benchmark for MLPerf training

and inference. arXiv preprint arXiv:2003.07336 (2020)
23. Xiao, J., et al.: Attentional factorization machines: learning the weight of feature

interactions via attention networks. In: IJCAI, pp. 3119–3125 (2017)
24. Yan, L., et al.: Coupled group lasso for web-scale CTR prediction in display adver-

tising. ICML 32, 802–810 (2014)
25. Yu, R., et al.: Collaborative list-and-pairwise filtering from implicit feedback.

IEEE Trans. Know. Data Eng. (IEEE TKDE). https://doi.org/10.1109/TKDE.
2020.3016732

26. Yu, R., et al.: Multiple pairwise ranking with implicit feedback. In: CIKM, pp.
1727–1730. ACM (2018)

27. Zhang, W., Du, T., Wang, J.: Deep learning over multi-field categorical data. In:
Ferro, N., Crestani, F., Moens, M.-F., Mothe, J., Silvestri, F., Di Nunzio, G.M.,
Hauff, C., Silvello, G. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 45–57. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30671-1 4

http://arxiv.org/abs/2003.07336
https://doi.org/10.1109/TKDE.2020.3016732
https://doi.org/10.1109/TKDE.2020.3016732
https://doi.org/10.1007/978-3-319-30671-1_4

	XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction
	1 Introduction
	2 Related Work
	3 Extreme Cross Network (XCrossNet)
	3.1 Problem Statement
	3.2 Feature Crossing
	3.3 Feature Concatenation
	3.4 Feature Selection

	4 Experiments
	4.1 Experimental Setup
	4.2 Overall Performance (RQ1)
	4.3 Feature Dimensionality Imbalance Study (RQ2)
	4.4 Hyper-parameter Study (RQ3)

	5 Conclusion
	References

