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Abstract. Constrained clustering has been intensively explored in the
data mining. Popular clustering algorithms such as k-means and spec-
tral clustering are combined with prior knowledge to guide the cluster-
ing process. Recently, constrained clustering with deep neural network
gains superior performance by jointly learning cluster-oriented feature
representations and cluster assignments simultaneously. However, these
methods face a common issue that they have poor performance when
only minimal constraints are available because of their single way to
mine constraint information. In this paper, we propose an end-to-end
clustering method that learns unsupervised information and constraint
information in two consecutive modules: an unsupervised clustering mod-
ule to obtain feature representations and cluster assignments followed
by a constrained clustering module to tune them. The constrained clus-
tering module is composed of a Siamese or triplet network to maintain
consistency with constraints. To capture more information from minimal
constraints, the consistency is maintained from two perspective simulta-
neously: embedding space distance and cluster assignments. Extensive
experiments on both pairwise and triplet constrained clustering validate
the effectiveness of the proposed algorithm.

Keywords: Constrained clustering - Semi-supervised clustering -
Deep clustering - Metric learning

1 Introduction

Clustering with deep neural networks has extensively explored due to the inher-
ent property of highly non-linear transformation of DNNs. These methods effec-
tively combine the neural network with popular clustering algorithms, such as
k-means [7,14,22], spectral clustering [17], subspace clustering [10], agglomer-
ative clustering [23] to joint dimensionality reduction and clustering-oriented
representation learning. These unsupervised methods refer to unlabeled data,
however, some prior knowledge such as pairwise constraints or triplet constraints
could be obtained automatically in many clustering tasks.
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Constrained clustering is a kind of task that few auxiliary information is
provided to guide clustering. Some constrained clustering methods are explored
with pairwise constraints (must-link and cannot-link) [8,16]. SDEC [16] decreases
the embedding distance between must-link pairs and increases distance between
cannot-link pairs. But the distance in the embedding space between cannot-link
pairs have already been large at the beginning of training due to the good sepa-
ration of the pre-trained network, which leads to the inefficiency of its objective.
Hsu et al. [8] present their objective on softmax output with KL divergence
but abandon the contribution of instances without constraints. Zhang et al. [25]
explore more complex constraints. They enforce the must-link pairs with similar
assignment probability and cannot-link pairs oppositely. But when the number
of constraints is not enough to mitigate the negative effect of imbalance (which
means very few must-link assignments can be referred to, e.g. approximately
10% in Fashion dataset), this method that only mines constraint information
from the perspective of cluster assignments is sensitive to the reduction of the
number of constraints. For these reasons, these methods face a common issue
that they have poor performance when the number of constraints is small.

In this paper, we propose a Constrained Deep Clustering method (CDC) that
aims to maintain consistency with constraints. To be effective even if minimal
constraints are available, our method learns unsupervised information and con-
straint information in two consecutive modules: an unsupervised clustering mod-
ule followed by a constrained clustering module. Inspired by the metric learning,
we construct the network based on a Siamese network or triplet network in the
constrained clustering module. For the purpose of capturing more information
from minimal constraints, the consistency is maintained from two perspective
simultaneously: embedding space distance and cluster assignments. The model
is trained by cosine function as the similarity metric avoiding the inefficiency
when embedding distance between cannot-link pairs is large and weighted cross
entropy objective to tune cluster assignments. The main contributions of this
paper are summarized as follows:

— We propose an end-to-end clustering method that learns unsupervised infor-
mation and constraint information in two consecutive modules: an unsuper-
vised clustering module to obtain feature representations and cluster assign-
ments followed by a constrained clustering module to tune them.

— We propose effective objective function to maintain consistency with con-
straints from two perspective: embedding space distance and cluster assign-
ments.

— Extensive experiments are conducted on both image and text datasets. The
results show competitive performance on both pairwise and triplet con-
strained clustering, validating the effectiveness of CDC algorithm.

2 Related Work

Deep clustering is a category of clustering in recent years that combine deep
neural network to learn cluster-friendly features. There are approaches [6,7,21,
22] obtaining feasible feature space based on autoencoder (AE). Other novel
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methods adopt deep generative model to perform clustering task, such as VAE-
based [5,11] and GAN-based [3,15,24] methods. In addition, some clustering
methods recently has shifted to handle high-dimensional data, including spectral
clustering [9,17] and subspace clustering [10,26,27].

Constrained clustering has been widely studied to lead an auxiliary guidance
to clustering. Some methods explore strategies for improving clustering perfor-
mance with pairwise constraints [1,2,18,19]. Other methods with deep neural
network gains better performance. Hsu et al. [8] view the outputs of the softmax
layer as the distribution of possible clusters given a sample and evaluate the sim-
ilarity with KL divergence. Zhang et al. [25] explore more complex constraints
generated from new types of side information. Although these methods capture
the point that similar samples should output similar assignment distribution,
there is no work noticing consistency of embedding space distance and cluster
assignments simultaneously.

3 Proposed Method

Consider a task about clustering a data set X containing n unlabeled instances,
each sample {xz; € Rd}?:l should be assigned to one of k clusters. Except these
unlabeled data, two types of user-specified prior information is also provided
to guide the clustering process, including pairwise constraints and triplet con-
straints. A pairwise constraint indicates that a pair of samples {(z;, x;) : z;, x; €
X} have a relationship of must-link (z; and z; belong to the same clusters) or
cannot-link (z; and z; belong to different clusters). A triplet constraint consists
of a triple of samples {(Z, zp, x,) : T, 2p, z,, € X}, where the positive sample z,,
is closer to the anchor Z than the negative sample x,, in the embedding space.

We propose to find a non-linear mapping fg : X — Z that transforms the
original data into latent space Z, in which the embedding distance is consis-
tent with the original semantic distance and cluster assignments are consistent
with constraints. The model contains two consecutive modules: the unsupervised
clustering module followed by our constrained clustering module. The whole
structure of CDC is illustrated in Fig. 1.

We introduce the referred method in unsupervised clustering module in
Sect. 3.1. Then we propose two types of constrained clustering module with pair-
wise constraints and triplet constraints respectively in Sect. 3.2 and Sect. 3.3.

3.1 Unsupervised Clustering Module

The first module aims to learn cluster-oriented feature representations. We refer
the DEC [21] to learn feature representations and cluster assignments.

The DEC method initializes the centroids {u; ?:1 through k-means on
the embedding space of the autoencoder pre-trained by a stacked autoencoder
(SAE), then computes the soft assignments ¢;; as:
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Fig. 1. The process of CDC algorithm. The method learns unsupervised information
and constraint information in two consecutive modules: an unsupervised clustering
module to obtain feature representations and cluster assignments followed by a con-
strained clustering module to tune them.

where ¢;; measures the similarity between embedded data z; and centroids p;
with Student’s t-distribution being the kernel, « is a constant, e.g. a = 1.

The auxiliary distribution P is defined to refine the cluster assignments . By
squaring the soft assignments g;; and then normalizing it, p;; is formulated as:

4/ 2 g
- .
Zj':l (qizj// > Gig)

The loss function is defined as the reconstruction loss added to the KL divergence
between soft assignments ) and auxiliary distribution P as follows:

i
L=KLP|Q)+Lr= Zi Zj pi; log qJ + Zi s — @42 (3)
iJ

(2)

Dij =

The clusters are iteratively refined during this self-training process. Constrained
clustering module inherits the parameters and centroids and then learn from
pairwise constraints or triplet constraints.

3.2 Clustering with Pairwise Constraints

The pairwise constraints are learned in our constrained clustering module based
on a Siamese architecture, which is a popular network in metric learning. Two
samples with pairwise constraints are required as inputs at the same step. Each
group of inputs can be expressed as a triad ((z1,22),y), where y is an indicator
that y = 1 when given z; and xy with must-link relationship while y = 0 with
cannot-link constraint. The structure of pairwise constrained clustering module
is illustrated in Fig.2. For the purpose of maintaining consistency with con-
straints, we define the objective function in two parts: embedding space distance
and cluster assignments.
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Fig. 2. The structure of constrained clustering module on pairwise constrained clus-
tering based on a Siamese network. Constrained pairs are transformed into embedded
features Z; and Zs. Soft assignments Q1 and Q)2 are normalized to compute assignment
objective. The shared parameters are optimized by Eq. (7).

Consistency of Embedding Space Distance. The main idea of this part is
to seek a mapping that transforms pairs of inputs into a embedding space, in
which a similarity measure approximates the semantic information in the original
space. To this end, the distance loss for all m groups of ((z1,x2),y) is defined
as:

1 m ; NG ; NG
Law === (0ol 47) - 1=y o 200)) . (@)
where zgi) and zéi) are corresponding embedded features of the i*" group of
inputs, o(-) is a similarity function, A\; and Ay are trade-off parameters. In sum-
mary, the embedded features with the same label prefer larger similarity, while

points with different labels obtain smaller similarity by minimizing the objective
function.

Consistency of Cluster Assignments. The main idea of this part is to tune
cluster assignments with given constraints. Soft assignments are learned from its
high confidence assignments in the unsupervised clustering module. We expect
to tune cluster assignments to maintain the consistency with constraints. Specif-
ically, must-link pairs are expected to have similar cluster assignments distribu-
tion, while assignment differences of cannot-link pairs are strengthened. The
assignment loss is formulated as:

1 m i i i i i i i i
Lassign = —— Do <y< Mgw log(af” - a8”) + (1 — y@)w® log(1 — ¢f” - of ))> )

This process is treated as a binary classification problem that whether or not
two constrained samples belong to the same cluster. The inner product of corre-
sponding normalized soft assignments qgl) and qél) reflects the probability that
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two inputs zgi) and xéi) are assigned into the same cluster. By minimizing the
cross entropy loss, the must-link pairs prefer to be allocated into the same cluster
and the cannot-link pairs are the opposite. In addition, we introduce a weight w
to pay more attention to those pairs whose distances in the embedding space are
not consist with constraints. Precisely speaking, the weights increase for those
must-link pairs with large differences in embedded features and those cannot-link
pairs with small differences. The weight formulas are defined as:

1 .
14 e—d if(x1,22) D € must — link,
w® = 54 o o (6)
o if(x1,22)" € cannot — link,
2(1+ ed?)

where d(V) = oz||z§l) - zéZ)Hz reflects the difference between a pair of embedded
features, « is an adjustment parameter to control the distance. We set a = 0.01
in all experiments because the great masses of samples are well-separated. The
weight w is a monotonically increasing function for must-link, while monotoni-
cally decreasing function in the opposite case.

In summary, we define the objective function in constrained clustering mod-
ule for pairwise constraints as:

Lpai'r = Ldist + Lassign + Lrecoru (7)

1 ™G i
L'r‘econ = E Zi:l y( )(”‘Tl - {I?/1||2 + ||[IJ2 - x/2H2)( )7 (8)

where Lyccon 18 the sum of reconstruction losses of two instances, which is added
to the must-link cases to avoid a large scale cluster.

3.3 Clustering with Triplet Constraints

Triplet constraints are weaker constraints and easily accessible with only a
trained embedding space. They could replace the stronger constraints in some
constrained clustering tasks that lack ground truth labels or partition-based
constraints, e.g. pairwise constraints. Different from these stronger constraints
coming from specific partitions, triplet constraints convey the differences in dis-
tance level.

We construct a triplet network for training triplet constraints. As we can
see in Fig. 3, a triple of samples (Z,x,,x,) are input to the network simulta-
neously. The similarities o(Z, z,,) and o(Z, z,) are calculated in the embedding
space output by the network with shared parameters. The objective function in
constrained clustering module for triplet constraints is formulated as:

Ltrip = max(a(z, Z’ﬂ) - 0'(3, Zp) + m, 0)7 (9)

where 0(Z, z,) and o(Z, z,) represent similarities between positive and negative
samples against the anchor respectively. Those positive samples are pulled close



A Constrained Deep Clustering Method 225

.

Similarity
Metric

Similarity
Metric

Positive ltem Anchor Item Negative Item

Fig. 3. The structure of constrained clustering module on triplet constrained clustering
based on a triplet network. A triple of samples are input into the network at the same
step. The similarities are obtained in the embedding space. Parameters are shared
among the triplet network and are optimized by Eq. (9).

to their anchor and negative samples are separated from them. A hyperparameter
margin m is introduced as a threshold that tries to widen the gap in o(Zz, 2,,) and
0(Z, zp). Due to the partition uncertainty of triplet constraints, some cases cannot
be avoided that some positive samples and their anchors come from different
classes, or some negative samples have the same labels with their anchors, which
we call imperfect triplet constraints. The margin m also works by preventing x,,
being too close or x,, being too separated from T in these cases. The parameter
study about m is illustrated in Sect. 4.4.

In summary, our method learns feature representations and cluster assign-
ments in the unsupervised clustering module and then tunes them in the
constrained clustering module in one epoch. The procedure is summarized in
Algorithm 1.

4 Experiments

4.1 Datasets

To verify the effectiveness and efficiency of the proposed CDC on constrained
clustering tasks, we evaluate it on five benchmark datasets:

— MNIST [12]: A dataset composed of 70000 handwritten digits of 10 types.
Each sample is a 28 x 28 gray image.

— Fashion-MNIST [20]: A dataset of Zalando’s article images with the same
size as MNIST. Each sample is a 28 x 28 gray image, divided into 10 classes.

— USPS: A handwritten digits dataset that contains 9298 images (7291 for
training, 2007 for test) with size of 16 x 16 pixels.
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Algorithm 1. Constrained Deep Clustering (CDC)

Input: Dataset X, pairwise or triplet constraint dataset )~(7 number of clusters k.
Output: Embedded features Z and cluster assignment vector s.

Initialization: Pre-train the stacked denoising autoencoder layer by layer to obtain
Z. Obtain k initial centers {41;}5—; with k-means in space Z.

1: while not reach the maximum epochs do

2: Unsupervised clustering module:

3 for every mini-batch data in X do

4 Obtain z; = fg(z;) through the encoder.

5: Compute ¢;; and p;; according to Eq. (1, 2).
6: Update 6 and {y;}5_, by minimizing Eq. (3).
7 Constrained clustering module:
8 for every mini-batch data in X do

9: Obtain (z1, 2z2) or (Z, zp, zn) through Siamese or triplet network.

10: Update 0 and {u; }?:1 by minimizing pairwise loss or triplet loss Eq. (7, 9).
11: Obtain Z and s; = arg max; gi; for all instances.

12: if stopping criterion is met then

13: Stop training.

— KMNIST [4]: Kuzushiji-MNIST is a dataset which focuses on cursive
Japanese, composed of 28 x 28 images of 10 types. Train and test set sizes
are 6,000 and 1,000 per class.

— Reuters10K [13]: A subset consist of 10000 examples of Reuters. Each sam-
ple is composed of the 2000 most frequently occurring word stems in an
English news story.

All datasets are preprocessed for each element before being fed into the algo-
rithms. Precisely, we normalize all datasets to approach Z||z;||3 to 1 for each
z; € R%in X.

4.2 Experimental Setting

The structure of the encoder network is set in the same way as DEC [21],
SDEC [16] and FDCC [25] to be comparable with them. Concretely, we set
the encoder network with dimensions of d - 500 - 500 - 2000 - 10 and the decoder
with a symmetrical structure, where d is the dimension of input data. All layers
are fully connected and activated by ReLLU function except for the input, output,
and embedding layers.

The parameters and centroids are initialized with a SAE and k-means in
the same way as DEC [21]. Cosine similarity cos(a,b) = W is selected in
Eq. (4, 9) for all experiments. In each iteration, we train the network with Adam
optimizer. The learning rate and batch-size are set to 0.001 and 256 respectively.
We investigate the influence of trade-off parameter in Eq. (5) with grid search
and set it as 10. The whole training process will stop when breaks the threshold
in stopping criterion § = 0.001 or reach the maximum epoch.
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Table 1. Clustering performance of pairwise constraints in terms of accuracy (ACC %)
and normalized mutual information (NMI %) over 5 datasets. The results of baseline
models are obtained by running the released code except the ones marked by (*), which
are reported from the corresponding papers. The mark (-) represents that the result is
unavailable.

Dataset ~ MNIST Fashion USPS | KMNIST | Reuters10K
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means 53.09 49.87 46.14 50.85 42.55 37.95 2852 10.89 50.38 48.61

SAE-KM 85.23 80.76 58.03 60.57 68.75 65.99 47.16 39.10 76.53 56.61

DEC 86.59 83.73 56.62 62.21 75.81 76.91 48.64 40.79 72.17 53.08
IDEC 88.72  86.47 58.48 62.47 72.20 72.66 48.89 40.89 75.27 54.16
FCSP 62.80*% 58.70% 41.70% 46.20% - - - - - -

COP-KM 81.60* 77.30*% 54.80* 58.90* 71.85 70.24 46.78 38.53 70.42 51.83
MPC-KM 84.60* 80.80* 58.90* 61.30* 75.61 74.36 49.75 41.82 73.08 55.06
SDEC 85.02 81.69 59.62 63.89 75.84 76.96 50.05 42.18 75.31 55.24
FDCC 96.29 90.72 66.29 67.08 80.54 76.62 56.90 42.88 77.90 58.42
CDC 96.69 91.92 76.88 72.13 82.71 77.26 71.78 55.38 88.20 69.88

4.3 Experimental Results

Evaluation of Experiments on Pairwise Constraints. Our method is
compared with both unsupervised clustering algorithms and constrained clus-
tering methods. Unsupervised algorithms include k-means [14], k-means on
latent feature space obtained by SAE (SAE-KM), DEC [21] and IDEC [6].
Constrained clustering algorithms include flexible CSP [19], COP-kmeans [18],
MPC-kmeans [2], SDEC [16] and FDCC [25].

For the purpose of simulating human-guided constraints, we construct con-
straints from existing labeled data sets. We pick a set of randomly selected pair-
wise samples from training set and generate must-link or cannot-link constraints
according to their ground truth labels. The number of constraints N is set to
3600 on MNIST, Fashion and KMNIST that accounts for merely 0.0002% of
the number of possible constraints C2, and 1000 on USPS and Reuters10K that
accounts for 0.0038% and 0.002% respectively. Besides, transitive constraints are
also added to the known constraints. For instance, given must-link (a,b), (a, c)
and cannot-link (a,d), we can easily deduce addable constraint: must-link (b, ¢)
and cannot-link (b, d), (¢, d). This conduction may cause an explosion of the con-
straint quantity when N is large, but can be ignored with a small amount of
constraints.

The evaluation of ACC and NMI are reported in Table 1. As we can see, the
performance of CDC outperforms the unsupervised algorithms with just minimal
pairwise constraints. This shows that our algorithm of maintaining consistency
with constraints has a positive effect on clustering. The constrained methods
below are set with the same ratio of number of constraints as ours for fair com-
parison. The results show obvious improvement, especially on Fashion, KMNIST
and Reuters10K, validating the superiority of CDC algorithm.
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Fig. 4. Clustering ACC and NMI on MNIST and Fashion with different numbers of
triplet constraints.

Evaluation of Experiments on Triplet Constraints. We evaluate the clus-
tering performance of our method on triplet constraints by comparative experi-
ment with FDCC [25] that put forwards triplet constraints first. To be compara-
ble fairly with it, we introduce the same embedding space to compute Euclidean
Metric among triples. Figure 4 plots the results of comparative experiment with
different numbers of constraints. The results show clearly that the increase
of constraint number reflects positive feedback in performance. On MNIST,
minimal constraints bring about obvious improvement and then performance
becomes stable, which means enough prior information has been captured. On
Fashion-MNIST, the performance enhances continuously and leads to a sharp
improvement in range [3000, 6000]. Comparing with FDCC, our method brings
slight improvements on MNIST and obvious enhancement on Fashion-MNIST.
The results validate the effectiveness of our algorithm for weak constraint
information.

4.4 Parameter Analysis

We evaluate the performance with different settings of m in Eq. (9) by grid
search in range [0.3,0.6]. Figure 5 shows the parameter study results on Fashion-
MNIST. Two interesting observations can be obtained: (1) The larger m pro-
duce better performance than a smaller one when given less constraints. (2)
As the number of constraints increases, the results of larger m are not signifi-
cantly improved or even decreased. The first observation can be explained that
our objective tends to widen the difference in the similarity between positive
and negative samples against the anchor, larger m enforces larger threshold to
be broken down, which can promote the optimization when constraints are not
enough. The second consequence occurs because our method learns enough infor-
mation when more constraints are provided, a smaller m reduce the inefficiency
of imperfect triplet constraints, which we illustrate in Sect. 3.3.
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Fig. 5. The performance of our method across different settings of m on Fashion.

5 Conclusion

In this paper, we propose a Constrained Deep Clustering method (CDC) that
aims to maintain consistency with constraints. The CDC method learns unsu-
pervised information and constraint information in two consecutive modules.
Effective objective function are proposed to maintain the consistency from two
perspective simultaneously: embedding space distance and cluster assignments.
Extensive experimental results on both pairwise and triplet constrained cluster-
ing validate the effectiveness of our method even if only minimal constraints are
provided. Our future work will be explored from the perspective of exploring
more complex similarity metric or addressing the imbalance of the constraints.
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