
Kamal Karlapalem · Hong Cheng ·
Naren Ramakrishnan · R. K. Agrawal ·
P. Krishna Reddy · Jaideep Srivastava ·
Tanmoy Chakraborty (Eds.)

LN
AI

 1
27

13

25th Pacific-Asia Conference, PAKDD 2021
Virtual Event, May 11–14, 2021
Proceedings, Part II

Advances in
Knowledge Discovery
and Data Mining

Lecture Notes in Artificial Intelligence 12713

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this subseries at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Kamal Karlapalem • Hong Cheng •

Naren Ramakrishnan • R. K. Agrawal •

P. Krishna Reddy • Jaideep Srivastava •

Tanmoy Chakraborty (Eds.)

Advances in
Knowledge Discovery
and Data Mining
25th Pacific-Asia Conference, PAKDD 2021
Virtual Event, May 11–14, 2021
Proceedings, Part II

123

Editors
Kamal Karlapalem
IIIT, Hyderabad
Hyderabad, India

Hong Cheng
Chinese University of Hong Kong
Shatin, Hong Kong

Naren Ramakrishnan
Virginia Tech
Arlington, VA, USA

R. K. Agrawal
Jawaharlal Nehru University
New Delhi, India

P. Krishna Reddy
IIIT Hyderabad
Hyderabad, India

Jaideep Srivastava
University of Minnesota
Minneapolis, MN, USA

Tanmoy Chakraborty
IIIT Delhi
New Delhi, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-75764-9 ISBN 978-3-030-75765-6 (eBook)
https://doi.org/10.1007/978-3-030-75765-6

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2528-7979
https://orcid.org/0000-0003-1238-5174
https://orcid.org/0000-0002-0210-0369
https://doi.org/10.1007/978-3-030-75765-6

General Chairs’ Preface

On behalf of the Organizing Committee, it is our great pleasure to welcome you to the
25th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD
2021). Starting in 1997, PAKDD has long established itself as one of the leading
international conferences in data mining and knowledge discovery. Held during May
11–14, 2021, PAKDD returned to India for the second time, after a gap of 11 years,
moving from Hyderabad in 2010 to New Delhi in 2021. Due to the unexpected
COVID-19 epidemic, the conference was held fully online, and we made all the
conference sessions accessible online to participants around the world.

Our gratitude goes first and foremost to the researchers, who submitted their work to
the PAKDD 2021 main conference, workshops, and data mining contest. We thank
them for the efforts in research, as well as in preparing high-quality online presentations
videos. It is our distinct honor that five eminent keynote speakers graced the confer-
ence: Professor Anil Jain of the Michigan State University, USA, Professor Masaru
Kitsuregawa of the Tokyo University, and also the National Institute of Informatics,
Japan, Dr. Lada Adamic of Facebook, Prof. Fabrizio Sebastiani of ISTI-CNR, Italy,
and Professor Sunita Sarawagi of IIT-Mumbai, India. Each of them is a leader of
international renown in their respective areas, and we look forward to their
participation.

Given the importance of data science, not just to academia but also to industry, we
are pleased to have two distinguished industry speakers. The conference program was
further enriched with three high-quality tutorials, eight workshops on cutting-edge
topics, and one data mining contest on the prediction of memory failures.

We would like to express our sincere gratitude to the contributions of the Senior
Program Committee (SPC) members, Program Committee (PC) members, and
anonymous reviewers, led by the PC co-chairs, Kamal Karlapalem (IIIT, Hyderabad),
Hong Cheng (CUHK), Naren Ramakrishnan (Virginia Tech). It is through their
untiring efforts that the conference have an excellent technical program. We are also
thankful to the other Organizing Committee members: industry co-chairs, Gautam
Shroff (TCS) and Srikanta Bedathur (IIT Delhi); workshop co-chairs, Ganesh
Ramakrishnan (IIT Mumbai) and Manish Gupta (Microsoft); tutorial co-chairs,
B. Ravindran (IIT Chennai) and Naresh Manwani (IIIT Hyderabad); Publicity Co-Chairs,
Sonali Agrawal (IIIT Allahabad), R. Uday Kiran (University of Aizu), and Jerry C-W
Lin (WNU of Applied Sciences); competitions chair, Mengling Feng (NUS); Pro-
ceedings Chair, Tanmoy Chakraborthy (IIIT Delhi); and registration/local arrangement
co-chairs, Vasudha Bhatnagar (University of Delhi), Vikram Goel (IIIT Delhi), Naveen
Kumar (University of Delhi), Rajiv Ratn Shah (IIIT Delhi), Arvind Agarwal (IBM),
Aditi Sharan (JNU), Mukesh Giluka (JNU) and Dhirendra Kumar (DTU).

We appreciate the hosting organizations IIIT Hyderabad and the JNU, Delhi, and all
our sponsors for their institutional and financial support of PAKDD 2021. We also
appreciate Alibaba for sponsoring the data mining contest. We feel indebted to the

PAKDD Steering Committee for its continuing guidance and sponsorship of the paper
and student travel awards.

Finally, our sincere thanks go to all the participants and volunteers. There would be
no conference without you. We hope all of you enjoy PAKDD 2021.

May 2021 R. K. Agrawal
P. Krishna Reddy
Jaideep Srivastava

vi General Chairs’ Preface

PC Chairs’ Preface

It is our great pleasure to present the 25th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2021). PAKDD is a premier international forum
for exchanging original research results and practical developments in the space of
KDD-related areas, including data science, machine learning, and emerging
applications.

We received 768 submissions from across the world. We performed an initial
screening of all submissions, leading to the desk rejection of 89 submissions due to
violations of double-blind and page limit guidelines. Six papers were also withdrawn
by authors during the review period. For submissions entering the double-blind review
process, each paper received at least three reviews from PC members. Further, an
assigned SPC member also led a discussion of the paper and reviews with the PC
members. The PC co-chairs then considered the recommendations and meta-reviews
from SPC members in making the final decision. As a result, 157 papers were accepted,
yielding an acceptance rate of 20.4%. The COVID-19 pandemic caused several chal-
lenges to the reviewing process, and we appreciate the diligence of all reviewers, PC
members, and SPC members to ensure a quality PAKDD 2021 program.

The conference was conducted in an online environment, with accepted papers
presented via a pre-recorded video presentation with a live Q/A session. The confer-
ence program also featured five keynotes from distinguished researchers in the com-
munity, one most influential paper talk, two invited industrial talks, eight cutting-edge
workshops, three comprehensive tutorials, and one dedicated data mining competition
session.

We wish to sincerely thank all SPC members, PC members, and external reviewers
for their invaluable efforts in ensuring a timely, fair, and highly effective PAKDD 2021
program.

May 2021 Hong Cheng
Kamal Karlapalem

Naren Ramakrishnan

Organization

Organization Committee

General Co-chairs

R. K. Agrawal Jawaharlal Nehru University, India
P. Krishna Reddy IIIT Hyderabad, India
Jaideep Srivastava University of Minnesota, USA

Program Co-chairs

Kamal Karlapalem IIIT Hyderabad, India
Hong Cheng The Chinese University of Hong Kong, China
Naren Ramakrishnan Virginia Tech, USA

Industry Co-chairs

Gautam Shroff TCS Research, India
Srikanta Bedathur IIT Delhi, India

Workshop Co-chairs

Ganesh Ramakrishnan IIT Bombay, India
Manish Gupta Microsoft Research, India

Tutorial Co-chairs

B. Ravindran IIT Madras, India
Naresh Manwani IIIT Hyderabad, India

Publicity Co-chairs

Sonali Agarwal IIIT Allahabad, India
R. Uday Kiran The University of Aizu, Japan
Jerry Chau-Wei Lin Western Norway University of Applied Sciences,

Norway

Sponsorship Chair

P. Krishna Reddy IIIT Hyderabad, India

Competitions Chair

Mengling Feng National University of Singapore, Singapore

Proceedings Chair

Tanmoy Chakraborty IIIT Delhi, India

Registration/Local Arrangement Co-chairs

Vasudha Bhatnagar University of Delhi, India
Vikram Goyal IIIT Delhi, India
Naveen Kumar University of Delhi, India
Arvind Agarwal IBM Research, India
Rajiv Ratn Shah IIIT Delhi, India
Aditi Sharan Jawaharlal Nehru University, India
Mukesh Kumar Giluka Jawaharlal Nehru University, India
Dhirendra Kumar Delhi Technological University, India

Steering Committee

Longbing Cao University of Technology Sydney, Australia
Ming-Syan Chen National Taiwan University, Taiwan, ROC
David Cheung University of Hong Kong, China
Gill Dobbie The University of Auckland, New Zealand
Joao Gama University of Porto, Portugal
Zhiguo Gong University of Macau, Macau
Tu Bao Ho Japan Advanced Institute of Science and Technology,

Japan
Joshua Z. Huang Shenzhen Institutes of Advanced Technology, Chinese

Academy of Sciences, China
Masaru Kitsuregawa Tokyo University, Japan
Rao Kotagiri University of Melbourne, Australia
Jae-Gil Lee Korea Advanced Institute of Science and Technology,

South Korea
Ee-Peng Lim Singapore Management University, Singapore
Huan Liu Arizona State University, USA
Hiroshi Motoda AFOSR/AOARD and Osaka University, Japan
Jian Pei Simon Fraser University, Canada
Dinh Phung Monash University, Australia
P. Krishna Reddy International Institute of Information Technology,

Hyderabad (IIIT-H), India
Kyuseok Shim Seoul National University, South Korea
Jaideep Srivastava University of Minnesota, USA
Thanaruk Theeramunkong Thammasat University, Thailand
Vincent S. Tseng National Chiao Tung University, Taiwan, ROC
Takashi Washio Osaka University, Japan
Geoff Webb Monash University, Australia
Kyu-Young Whang Korea Advanced Institute of Science and Technology,

South Korea
Graham Williams Australian National University, Australia
Min-Ling Zhang Southeast University, China
Chengqi Zhang University of Technology Sydney, Australia

x Organization

Ning Zhong Maebashi Institute of Technology, Japan
Zhi-Hua Zhou Nanjing University, China

Senior Program Committee

Fei Wang Cornell University, USA
Albert Bifet Universite Paris-Saclay, France
Alexandros Ntoulas University of Athens, Greece
Anirban Dasgupta IIT Gandhinagar, India
Arnab Bhattacharya IIT Kanpur, India
B. Aditya Prakash Georgia Institute of Technology, USA
Bart Goethals Universiteit Antwerpen, Belgium
Benjamin C. M. Fung McGill University, Canada
Bin Cui Peking University, China
Byung Suk Lee University of Vermont, USA
Chandan K. Reddy Virginia Tech, USA
Chang-Tien Lu Virginia Tech, USA
Fuzhen Zhuang Institute of Computing Technology, Chinese Academy

of Sciences, China
Gang Li Deakin University, Australia
Gao Cong Nanyang Technological University, Singapore
Guozhu Dong Wright State University, USA
Hady Lauw Singapore Management University, Singapore
Hanghang Tong University of Illinois at Urbana-Champaign, USA
Hongyan Liu Tsinghua University, China
Hui Xiong Rutgers University, USA
Huzefa Rangwala George Mason University, USA
Jae-Gil Lee KAIST, South Korea
Jaideep Srivastava University of Minnesota, USA
Jia Wu Macquarie University, Australia
Jian Pei Simon Fraser University, Canada
Jianyong Wang Tsinghua University, China
Jiuyong Li University of South Australia, Australia
Kai Ming Ting Federation University, Australia
Kamalakar Karlapalem IIIT Hyderabad, India
Krishna Reddy P. International Institute of Information Technology,

Hyderabad, India
Lei Chen Hong Kong University of Science and Technology,

China
Longbing Cao University of Technology Sydney, Australia
Manish Marwah Micro Focus, USA
Masashi Sugiyama RIKEN, The University of Tokyo, Japan
Ming Li Nanjing University, China
Nikos Mamoulis University of Ioannina, Greece
Peter Christen The Australian National University, Australia
Qinghua Hu Tianjin University, China

Organization xi

Rajeev Raman University of Leicester, UK
Raymond Chi-Wing Wong Hong Kong University of Science and Technology,

China
Sang-Wook Kim Hanyang University, South Korea
Sheng-Jun Huang Nanjing University of Aeronautics and Astronautics,

China
Shou-De Lin Nanyang Technological University, Singapore
Shuigeng Zhou Fudan University, China
Shuiwang Ji Texas A&M University, USA
Takashi Washio The Institute of Scientific and Industrial Research,

Osaka University, Japan
Tru Hoang Cao UTHealth, USA
Victor S. Sheng Texas Tech University, USA
Vincent Tseng National Chiao Tung University, Taiwan, ROC
Wee Keong Ng Nanyang Technological University, Singapore
Weiwei Liu Wuhan University, China
Wu Xindong Mininglamp Academy of Sciences, China
Xia Hu Texas A&M University, USA
Xiaofang Zhou University of Queensland, Australia
Xing Xie Microsoft Research Asia, China
Xintao Wu University of Arkansas, USA
Yanchun Zhang Victoria University, Australia
Ying Li ACM SIGKDD Seattle, USA
Yue Xu Queensland University of Technology, Australia
Yu-Feng Li Nanjing University, China
Zhao Zhang Hefei University of Technology, China

Program Committee

Akihiro Inokuchi Kwansei Gakuin University, Japan
Alex Memory Leidos, USA
Andreas Züfle George Mason University, USA
Andrzej Skowron University of Warsaw, Poland
Animesh Mukherjee IIT Kharagpur, India
Anirban Mondal Ashoka University, India
Arnaud Soulet University of Tours, France
Arun Reddy Arizona State University, USA
Biao Qin Renmin University of China, China
Bing Xue Victoria University of Wellington, New Zealand
Bo Jin Dalian University of Technology, China
Bo Tang Southern University of Science and Technology, China
Bolin Ding Data Analytics and Intelligence Lab, Alibaba Group,

USA
Brendon J. Woodford University of Otago, New Zealand
Bruno Cremilleux Université de Caen Normandie, France
Byron Choi Hong Kong Baptist University, Hong Kong, China

xii Organization

Cam-Tu Nguyen Nanjing University, China
Canh Hao Nguyen Kyoto University, Japan
Carson K. Leung University of Manitoba, Canada
Chao Huang University of Notre Dame, USA
Chao Lan University of Wyoming, USA
Chedy Raissi Inria, France
Cheng Long Nanyang Technological University, Singapore
Chengzhang Zhu University of Technology Sydney, Australia
Chi-Yin Chow City University of Hong Kong, China
Chuan Shi Beijing University of Posts and Telecommunications,

China
Chunbin Lin Amazon AWS, USA
Da Yan University of Alabama at Birmingham, USA
David C Anastasiu Santa Clara University, USA
David Taniar Monash University, Australia
David Tse Jung Huang The University of Auckland, New Zealand
Deepak P. Queen’s University Belfast, UK
De-Nian Yang Academia Sinica, Taiwan, ROC
Dhaval Patel IBM TJ Watson Research Center, USA
Dik Lee HKUST, China
Dinesh Garg IIT Gandhinagar, India
Dinusha Vatsalan Data61, CSIRO, Australia
Divyesh Jadav IBM Research, USA
Dong-Wan Choi Inha University, South Korea
Dongxiang Zhang University of Electronic Science and Technology

of China, China
Duc-Trong Le University of Engineering and Technology, Vietnam

National University, Hanoi, Vietnam
Dung D. Le Singapore Management University, Singapore
Durga Toshniwal IIT Roorkee, India
Ernestina Menasalvas Universidad Politécnica de Madrid, Spain
Fangzhao Wu Microsoft Research Asia, China
Fanhua Shang Xidian University, China
Feng Chen UT Dallas, USA
Florent Masseglia Inria, France
Fusheng Wang Stony Brook University, USA
Gillian Dobbie The University of Auckland, New Zealand
Girish Palshikar Tata Research Development and Design Centre, India
Giuseppe Manco ICAR-CNR, Italy
Guandong Xu University of Technology Sydney, Australia
Guangyan Huang Deakin University, Australia
Guangzhong Sun School of Computer Science and Technology,

University of Science and Technology of China,
China

Guansong Pang University of Adelaide, Australia
Guolei Yang Facebook, USA

Organization xiii

Guoxian Yu Shandong University, China
Guruprasad Nayak University of Minnesota, USA
Haibo Hu Hong Kong Polytechnic University, China
Heitor M Gomes Télécom ParisTech, France
Hiroaki Shiokawa University of Tsukuba, Japan
Hong Shen Adelaide University, Australia
Honghua Dai Zhengzhu University, China
Hongtao Wang North China Electric Power University, China
Hongzhi Yin The University of Queensland, Australia
Huasong Shan JD.com, USA
Hui Xue Southeast University, China
Huifang Ma Northwest Normal University, China
Huiyuan Chen Case Western Reserve University, USA
Hung-Yu Kao National Cheng Kung University, Taiwan, ROC
Ickjai J. Lee James Cook University, Australia
Jaegul Choo KAIST, South Korea
Jean Paul Barddal PUCPR, Brazil
Jeffrey Ullman Stanford University, USA
Jen-Wei Huang National Cheng Kung University, Taiwan, ROC
Jeremiah Deng University of Otago, New Zealand
Jerry Chun-Wei Lin Western Norway University of Applied Sciences,

Norway
Ji Zhang University of Southern Queensland, Australia
Jiajie Xu Soochow University, China
Jiamou Liu The University of Auckland, New Zealand
Jianhua Yin Shandong University, China
Jianmin Li Tsinghua University, China
Jianxin Li Deakin University, Australia
Jianzhong Qi University of Melbourne, Australia
Jie Liu Nankai University, China
Jiefeng Cheng Tencent, China
Jieming Shi The Hong Kong Polytechnic University, China
Jing Zhang Nanjing University of Science and Technology, China
Jingwei Xu Nanjing University, China
João Vinagre LIAAD, INESC TEC, Portugal
Jörg Wicker The University of Auckland, New Zealand
Jun Luo Machine Intelligence Lab, Lenovo Group Limited,

China
Jundong Li Arizona State University, USA
Jungeun Kim ETRI, South Korea
Jun-Ki Min Korea University of Technology and Education,

South Korea
K. Selçuk Candan Arizona State University, USA
Kai Zheng University of Electronic Science and Technology

of China, China
Kaiqi Zhao The University of Auckland, New Zealand

xiv Organization

Kaiyu Feng Nanyang Technological University, Singapore
Kangfei Zhao The Chinese University of Hong Kong, China
Karan Aggarwal University of Minnesota, USA
Ken-ichi Fukui Osaka University, Japan
Khoat Than Hanoi University of Science and Technology, Vietnam
Ki Yong Lee Sookmyung Women’s University, South Korea
Ki-Hoon Lee Kwangwoon University, South Korea
Kok-Leong Ong La Trobe University, Australia
Kouzou Ohara Aoyama Gakuin University, Japan
Krisztian Buza Budapest University of Technology and Economics,

Hungary
Kui Yu School of Computer and Information, Hefei University

of Technology, China
Kun-Ta Chuang National Cheng Kung University, China
Kyoung-Sook Kim Artificial Intelligence Research Center, Japan
L Venkata Subramaniam IBM Research, India
Lan Du Monash University, Canada
Lazhar Labiod LIPADE, France
Leandro Minku University of Birmingham, UK
Lei Chen Nanjing University of Posts and Telecommunications,

China
Lei Duan Sichuan University, China
Lei Gu Nanjing University of Posts and Telecommunications,

China
Leong Hou U University of Macau, Macau
Leopoldo Bertossi Universidad Adolfo Ibañez, Chile
Liang Hu University of Technology Sydney, Australia
Liang Wu Airbnb, USA
Lin Liu University of South Australia, Australia
Lina Yao University of New South Wales, Australia
Lini Thomas IIIT Hyderabad, India
Liu Yang Beijing Jiaotong University, China
Long Lan National University of Defense Technology, China
Long Yuan Nanjing University of Science and Technology, China
Lu Chen Aalborg University, Denmark
Maciej Grzenda Warsaw University of Technology, Poland
Maguelonne Teisseire Irstea, France
Maksim Tkachenko Singapore Management University, Singapore
Marco Maggini University of Siena, Italy
Marzena Kryszkiewicz Warsaw University of Technology, Poland
Maya Ramanath IIT Delhi, India
Mengjie Zhang Victoria University of Wellington, New Zealand
Miao Xu RIKEN, Japan
Minghao Yin Northeast Normal University, China
Mirco Nanni ISTI-CNR Pisa, Italy
Motoki Shiga Gifu University, Japan

Organization xv

Nam Huynh Japan Advanced Institute of Science and Technology,
Japan

Naresh Manwani International Institute of Information Technology,
Hyderabad, India

Nayyar Zaidi Monash University, Australia
Nguyen Le Minh JAIST, Japan
Nishtha Madan IBM Research, India
Ou Wu Tianjin University, China
P. Radha Krishna National Institute of Technology, Warangal, India
Pabitra Mitra Indian Institute of Technology Kharagpur, India
Panagiotis Liakos University of Athens, Greece
Peipei Li Hefei University of Technology, China
Peng Peng inspir.ai, China
Peng Wang Southeast University, China
Pengpeng Zhao Soochow University, China
Petros Zerfos IBM T.J Watson Research Center, USA
Philippe Fournier-Viger Harbin Institute of Technology, China
Pigi Kouki Relational AI, USA
Pravallika Devineni Oak Ridge National Laboratory, USA
Qi Li Iowa State University, USA
Qi Qian Alibaba Group, China
Qian Li University of Technology Sydney, Australia
Qiang Tang Luxembourg Institute of Science and Technology,

Luxembourg
Qing Wang Australian National University, Australia
Quangui Zhang Liaoning Technical University, China
Qun Liu Louisiana State University, USA
Raymond Ng UBC, Canada
Reza Zafarani Syracuse University, USA
Rong-Hua Li Beijing Institute of Technology, China
Roy Ka-Wei Lee Singapore University of Technology and Design,

Singapore
Rui Chen Samsung Research, USA
Sangkeun Lee Korea University, South Korea
Santu Rana Deakin University, Australia
Sebastien Gaboury Université du Québec à Chicoutimi, Canada
Shafiq Alam The University of Auckland, New Zealand
Shama Chakravarthy The University of Texas at Arlington, USA
Shan Xue Macquarie University, Australia
Shanika Karunasekera University of Melbourne, Australia
Shaowu Liu University of Technology Sydney, Australia
Sharanya Eswaran Games24x7, India
Shen Gao Peking University, China
Shiyu Yang East China Normal University, China
Shoji Hirano Biomedical Systems, Applications in Medicine –

Shimane University, Japan

xvi Organization

Shoujin Wang Macquarie University, Australia
Shu Wu NLPR, China
Shuhan Yuan Utah State University, USA
Sibo Wang The Chinese University of Hong Kong, China
Silvia Chiusano Politecnico di Torino, Italy
Songcan Chen Nanjing University of Aeronautics and Astronautics,

China
Steven H. H. Ding Queen’s University, Canada
Suhang Wang Pennsylvania State University, USA
Sungsu Lim Chungnam National University, South Korea
Sunil Aryal Deakin University, Australia
Tadashi Nomoto National Institute of Japanese Literature, Japan
Tanmoy Chakraborty IIIT Delhi, India
Tetsuya Yoshida Nara Women’s University, Japan
Thanh-Son Nguyen Agency for Science, Technology and Research,

Singapore
Thilina N. Ranbaduge The Australian National University, Australia
Tho Quan John Von Neumann Institute, Germany
Tianlin Zhang University of Chinese Academy of Sciences, China
Tianqing Zhu University of Technology Sydney, Australia
Toshihiro Kamishima National Institute of Advanced Industrial Science

and Technology, Japan
Trong Dinh Thac Do University of Technology Sydney, Australia
Tuan Le Oakland University, USA
Tuan-Anh Hoang L3S Research Center, Leibniz University of Hanover,

Germany
Turki Turki King Abdulaziz University, Saudi Arabia
Tzung-Pei Hong National University of Kaohsiung, Taiwan, ROC
Uday Kiran Rage University of Tokyo, Japan
Vahid Taslimitehrani PhysioSigns Inc., USA
Victor Junqiu Wei Huawei Technologies, China
Vladimir Estivill-Castro Griffith University, Australia
Wang Lizhen Yunnan University, China
Wang-Chien Lee Pennsylvania State University, USA
Wang-Zhou Dai Imperial College London, UK
Wei Liu University of Western Australia, Australia
Wei Luo Deakin University, Australia
Wei Shen Nankai University, China
Wei Wang University of New South Wales, Australia
Wei Zhang East China Normal University, China
Wei Emma Zhang The University of Adelaide, Australia
Weiguo Zheng Fudan University, China
Wendy Hui Wang Stevens Institute of Technology, USA
Wenjie Zhang University of New South Wales, Australia
Wenpeng Lu Qilu University of Technology (Shandong Academy

of Sciences), China

Organization xvii

Wenyuan Li University of California, Los Angeles, USA
Wilfred Ng HKUST, China
Xiang Ao Institute of Computing Technology, CAS, China
Xiangliang Zhang King Abdullah University of Science and Technology,

Saudi Arabia
Xiangmin Zhou RMIT University, Australia
Xiangyu Ke Nanyang Technological University, Singapore
Xiao Wang Beijing University of Posts and Telecommunications,

China
Xiaodong Yue Shanghai University, China
Xiaohui (Daniel) Tao The University of Southern Queensland, Australia
Xiaojie Jin National University of Singapore, Singapore
Xiaoyang Wang Zhejiang Gongshang University, China
Xiaoying Gao Victoria University of Wellington, New Zealand
Xin Huang Hong Kong Baptist University, China
Xin Wang University of Calgary, Canada
Xingquan Zhu Florida Atlantic University, USA
Xiucheng Li Nanyang Technological University, Singapore
Xiuzhen Zhang RMIT University, Australia
Xuan-Hong Dang IBM T.J Watson Research Center, USA
Yanchang Zhao CSIRO, Australia
Yang Wang Dalian University of Technology, China
Yang Yu Nanjing University, China
Yang-Sae Moon Kangwon National University, South Korea
Yanhao Wang University of Helsinki, Finland
Yanjie Fu Missouri University of Science and Technology, USA
Yao Zhou UIUC, USA
Yashaswi Verma IIT Jodhpur, India
Ye Zhu Deakin University, Australia
Yiding Liu Nanyang Technological University, Singapore
Yidong Li Beijing Jiaotong University, China
Yifeng Zeng Northumbria University, UK
Yingfan Liu Xidian University, China
Yingyi Bu Google, USA
Yi-Shin Chen National Tsing Hua University, Taiwan, ROC
Yiyang Yang Guangdong University of Technology, China
Yong Guan Iowa State University, USA
Yu Rong Tencent AI Lab, China
Yu Yang City University of Hong Kong, China
Yuan Yao Nanjing University, China
Yuanyuan Zhu Wuhan University, China
Yudong Zhang University of Leicester, UK
Yue Ning Stevens Institute of Technology, USA
Yue Ning Stevens Institute of Technology, USA
Yue-Shi Lee Ming Chuan University, China
Yun Sing Koh The University of Auckland, New Zealand

xviii Organization

Yunjun Gao Zhejiang University, China
Yuqing Sun Shandong University, China
Yurong Cheng Beijing Institute of Technology, China
Yuxiang Wang Hangzhou Dianzi University, China
Zemin Liu Singapore Management University, Singapore
Zhang Lei Anhui University, China
Zhaohong Deng Jiangnan University, China
Zheng Liu Nanjing University of Posts and Telecommunications,

China
Zheng Zhang Harbin Institute of Technology, China
Zhengyang Wang Texas A&M University, USA
Zhewei Wei Renmin University of China, China
Zhiwei Zhang Beijing Institute of Technology, China
Zhiyuan Chen University of Maryland Baltimore County, USA
Zhongying Zhao Shandong University of Science and Technology,

China
Zhou Zhao Zhejiang University, China
Zili Zhang Southwest University, China

Competition Sponsor

Host Institutes

Organization xix

Contents – Part II

Classical Data Mining

Mining Frequent Patterns from Hypergraph Databases 3
Md. Tanvir Alam, Chowdhury Farhan Ahmed, Md. Samiullah,
and Carson K. Leung

Discriminating Frequent Pattern Based Supervised Graph Embedding
for Classification. 16

Md. Tanvir Alam, Chowdhury Farhan Ahmed, Md. Samiullah,
and Carson K. Leung

Mining Sequential Patterns in Uncertain Databases Using Hierarchical
Index Structure . 29

Kashob Kumar Roy, Md Hasibul Haque Moon, Md Mahmudur Rahman,
Chowdhury Farhan Ahmed, and Carson K. Leung

Similarity Forests Revisited: A Swiss Army Knife for Machine Learning 42
Stanisław Czekalski and Mikołaj Morzy

Discriminative Representation Learning for Cross-Domain
Sentiment Classification . 54

Shaokang Zhang, Lei Jiang, Huailiang Peng, Qiong Dai,
and Jianlong Tan

SAGCN: Towards Structure-Aware Deep Graph Convolutional Networks
on Node Classification. 67

Ming He, Tianyu Ding, and Tianshuo Han

Hierarchical Learning of Dependent Concepts for Human
Activity Recognition . 79

Aomar Osmani, Massinissa Hamidi, and Pegah Alizadeh

Improving Short Text Classification Using Context-Sensitive
Representations and Content-Aware Extended Topic Knowledge. 93

Zhihao Ye, Rui Wen, Xi Chen, Ye Liu, Ziheng Zhang, Zhiyong Li,
Ke Nai, and Yefeng Zheng

A Novel Method for Offline Handwritten Chinese Character Recognition
Under the Guidance of Print . 106

Keping Yan, Jun Guo, and Weiqing Zhou

Upgraded Attention-Based Local Feature Learning Block for Speech
Emotion Recognition . 118

Huan Zhao, Yingxue Gao, and Yufeng Xiao

Memorization in Deep Neural Networks: Does the Loss Function Matter? . . . 131
Deep Patel and P. S. Sastry

Gaussian Soft Decision Trees for Interpretable
Feature-Based Classification . 143

Jaemin Yoo and Lee Sael

Efficient Nodes Representation Learning with Residual
Feature Propagation. 156

Fan Wu, Duantengchuan Li, Ke Lin, and Huawei Zhang

Progressive AutoSpeech: An Efficient and General Framework
for Automatic Speech Classification . 168

Guanghui Zhu, Feng Cheng, Mengchuan Qiu, Zhuoer Xu, Wenjie Wang,
Chunfeng Yuan, and Yihua Huang

CrowdTeacher: Robust Co-teaching with Noisy Answers
and Sample-Specific Perturbations for Tabular Data. 181

Mani Sotoodeh, Li Xiong, and Joyce Ho

Effective and Adaptive Refined Multi-metric Similarity Graph Fusion
for Multi-view Clustering . 194

Wentao Rong, Enhong Zhuo, Guihua Tao, and Hongmin Cai

aHCQ: Adaptive Hierarchical Clustering Based Quantization Framework
for Deep Neural Networks . 207

Jiaxin Hu, Weixiong Rao, and Qinpei Zhao

Maintaining Consistency with Constraints: A Constrained Deep
Clustering Method. 219

Yi Cui, Xianchao Zhang, Linlin Zong, and Jie Mu

Data Mining Theory and Principles

Towards Multi-label Feature Selection by Instance and Label Selections 233
Dou El Kefel Mansouri and Khalid Benabdeslem

FARF: A Fair and Adaptive Random Forests Classifier 245
Wenbin Zhang, Albert Bifet, Xiangliang Zhang, Jeremy C. Weiss,
and Wolfgang Nejdl

Sparse Spectrum Gaussian Process for Bayesian Optimization 257
Ang Yang, Cheng Li, Santu Rana, Sunil Gupta, and Svetha Venkatesh

xxii Contents – Part II

Densely Connected Graph Attention Network Based on Iterative Path
Reasoning for Document-Level Relation Extraction 269

Hongya Zhang, Zhen Huang, Zhenzhen Li, Dongsheng Li, and Feng Liu

Causal Inference Using Global Forecasting Models
for Counterfactual Prediction . 282

Priscila Grecov, Kasun Bandara, Christoph Bergmeir,
Klaus Ackermann, Sam Campbell, Deborah Scott, and Dan Lubman

CED-BGFN: Chinese Event Detection via Bidirectional Glyph-Aware
Dynamic Fusion Network. 295

Qi Zhai, Zhigang Kan, Sen Yang, Linbo Qiao, Feng Liu,
and Dongsheng Li

Learning Finite Automata with Shuffle . 308
Xiaofan Wang

Active Learning Based Similarity Filtering for Efficient and Effective
Record Linkage . 321

Charini Nanayakkara, Peter Christen, and Thilina Ranbaduge

Stratified Sampling for Extreme Multi-label Data . 334
Maximillian Merrillees and Lan Du

Vertical Federated Learning for Higher-Order Factorization Machines 346
Kyohei Atarashi and Masakazu Ishihata

dK-Projection: Publishing Graph Joint Degree Distribution
with Node Differential Privacy . 358

Masooma Iftikhar and Qing Wang

Recommender Systems

Improving Sequential Recommendation with Attribute-Augmented Graph
Neural Networks . 373

Xinzhou Dong, Beihong Jin, Wei Zhuo, Beibei Li, and Taofeng Xue

Exploring Implicit Relationships in Social Network for Recommendation
Systems . 386

Yunhe Wei, Huifang Ma, Ruoyi Zhang, Zhixin Li, and Liang Chang

Transferable Contextual Bandits with Prior Observations 398
Kevin Labille, Wen Huang, and Xintao Wu

Modeling Hierarchical Intents and Selective Current Interest
for Session-Based Recommendation . 411

Mengfei Zhang, Cheng Guo, Jiaqi Jin, Mao Pan, and Jinyun Fang

Contents – Part II xxiii

A Finetuned Language Model for Recommending cQA-QAs
for Enriching Textbooks . 423

Shobhan Kumar and Arun Chauhan

XCrossNet: Feature Structure-Oriented Learning for Click-Through
Rate Prediction . 436

Runlong Yu, Yuyang Ye, Qi Liu, Zihan Wang, Chunfeng Yang,
Yucheng Hu, and Enhong Chen

Learning Multiclass Classifier Under Noisy Bandit Feedback 448
Mudit Agarwal and Naresh Manwani

Diversify or Not: Dynamic Diversification for
Personalized Recommendation . 461

Bin Hao, Min Zhang, Cheng Guo, Weizhi Ma, Yiqun Liu,
and Shaoping Ma

Multi-criteria and Review-Based Overall Rating Prediction. 473
Edgar Ceh-Varela, Huiping Cao, and Tuan Le

W2FM: The Doubly-Warped Factorization Machine 485
Mao-Lin Li and K. Selçuk Candan

Causal Combinatorial Factorization Machines
for Set-Wise Recommendation . 498

Akira Tanimoto, Tomoya Sakai, Takashi Takenouchi,
and Hisashi Kashima

Transformer-Based Multi-task Learning for Queuing Time Aware Next
POI Recommendation . 510

Sajal Halder, Kwan Hui Lim, Jeffrey Chan, and Xiuzhen Zhang

Joint Modeling Dynamic Preferences of Users and Items Using Reviews
for Sequential Recommendation . 524

Tianqi Shang, Xinxin Li, Xiaoyu Shi, and Qingxian Wang

Box4Rec: Box Embedding for Sequential Recommendation 537
Kai Deng, Jiajin Huang, and Jin Qin

UKIRF: An Item Rejection Framework for Improving Negative Items
Sampling in One-Class Collaborative Filtering . 549

Antônio David Viniski, Jean Paul Barddal,
and Alceu de Souza Britto Jr.

IACN: Influence-Aware and Attention-Based Co-evolutionary Network
for Recommendation . 561

Shalini Pandey, George Karypis, and Jaideep Srivasatava

xxiv Contents – Part II

Nonlinear Matrix Factorization via Neighbor Embedding 575
Xuan Li, Yunfeng Wu, and Li Zhang

Deconfounding Representation Learning Based on User Interactions
in Recommendation Systems . 588

Junruo Gao, Mengyue Yang, Yuyang Liu, and Jun Li

Personalized Regularization Learning for Fairer Matrix Factorization 600
Sirui Yao and Bert Huang

Instance Selection for Online Updating in Dynamic
Recommender Environments . 612

Thilina Thanthriwatta and David S. Rosenblum

Text Analytics

Fusing Essential Knowledge for Text-Based Open-Domain
Question Answering . 627

Xiao Su, Ying Li, and Zhonghai Wu

TSSE-DMM: Topic Modeling for Short Texts Based on Topic Subdivision
and Semantic Enhancement . 640

Chengcheng Mai, Xueming Qiu, Kaiwen Luo, Min Chen, Bo Zhao,
and Yihua Huang

SILVER: Generating Persuasive Chinese Product Pitch 652
Yunsen Hong, Hui Li, Yanghua Xiao, Ryan McBride, and Chen Lin

Capturing SQL Query Overlapping via Subtree Copy for Cross-Domain
Context-Dependent SQL Generation . 664

Ruizhuo Zhao, Jinhua Gao, Huawei Shen, and Xueqi Cheng

HScodeNet: Combining Hierarchical Sequential and Global Spatial
Information of Text for Commodity HS Code Classification. 676

Shaohua Du, Zhihao Wu, Huaiyu Wan, and YouFang Lin

PLVCG: A Pretraining Based Model for Live Video Comment Generation . . 690
Zehua Zeng, Neng Gao, Cong Xue, and Chenyang Tu

Inducing Rich Interaction Structures Between Words for Document-Level
Event Argument Extraction . 703

Amir Pouran Ben Veyseh, Franck Dernoncourt, Quan Tran,
Varun Manjunatha, Lidan Wang, Rajiv Jain, Doo Soon Kim,
Walter Chang, and Thien Huu Nguyen

Exploiting Relevant Hyperlinks in Knowledge Base for Entity Linking 716
Szu-Yuan Cheng, Yi-Ling Chen, Mi-Yen Yeh, and Bo-Tao Lin

Contents – Part II xxv

TANTP: Conversational Emotion Recognition Using Tree-Based Attention
Networks with Transformer Pre-training. 730

Haozhe Liu, Hongzhan Lin, and Guang Chen

Semantic-Syntax Cascade Injection Model for Aspect Sentiment
Triple Extraction . 743

Wenjun Ke, Jinhua Gao, Huawei Shen, and Xueqi Cheng

Modeling Inter-aspect Relationship with Conjunction for Aspect-Based
Sentiment Analysis . 756

Haoliang Zhao, Yun Xue, Donghong Gu, Jianying Chen,
and Luwei Xiao

Author Index . 769

xxvi Contents – Part II

Classical Data Mining

Mining Frequent Patterns
from Hypergraph Databases

Md. Tanvir Alam1 , Chowdhury Farhan Ahmed1(B) , Md. Samiullah1,
and Carson K. Leung2

1 Department of Computer Science and Engineering, University of Dhaka,
Dhaka, Bangladesh

{farhan,samiullah}@du.ac.bd
2 Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada

kleung@cs.umanitoba.ca

Abstract. Hypergraph is a complex data structure capable of express-
ing associations among any number of data entities. Overcoming the lim-
itations of traditional graphs, hypergraphs are useful to model real-life
problems. Frequent pattern mining is one of the most popular problems
in data mining with a lot of applications. To the best of our knowledge,
there exists no flexible frequent pattern mining framework for hyper-
graph databases decomposing associations among data entities. In this
work, we propose a flexible and complete framework for mining frequent
patterns from a collection of hypergraphs. We also develop an algorithm
for mining frequent subhypergraphs by introducing a canonical label-
ing technique for isomorphic subhypergraphs. Experiments conducted
on real-life hypergraph databases demonstrate both the efficiency of the
algorithm and the effectiveness of the proposed framework.

Keywords: Frequent pattern mining · Graph mining · Hypergraphs

1 Introduction

Graphs are being widely used to represent complex structures such as social
network, web, protein structures, chemical compounds, etc. It has the ability
to model complex pairwise relationships among various types of data entities.
However, in many real-life problems, relationships among data entities go beyond
pairs. Graphs fail to preserve any kind of associations involving more than two
entities. To illustrate this limitation, let us consider a problem of presenting col-
laborations of authors in a bibliography of a paper. A naive solution can be using
a graph where each vertex represents an author and vertices representing authors
collaborating in a paper are connected by edges. But from such a representation,
it cannot be determined whether a paper has contributions from any three or
more given authors. Hypergraph is a flexible data structure that overcomes this
limitation. A hypergraph consists of a set of vertices and a set of hyperedges
where a hyperedge can associate any number of vertices. In Fig. 1(a), we show
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 3–15, 2021.
https://doi.org/10.1007/978-3-030-75765-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_1&domain=pdf
http://orcid.org/0000-0001-9543-4503
http://orcid.org/0000-0002-6101-4591
http://orcid.org/0000-0002-7541-9127
https://doi.org/10.1007/978-3-030-75765-6_1

4 Md. T. Alam et al.

a hypergraph presenting collaborations of authors in a bibliography of a paper.
Here the vertices v1, v2, v3, v4, v5 and v6 refers to six authors and hyperedges
e1, e2 and e3 refers to three papers. For example, authors referred by vertices v1,
v2 and v3 has collaborated in the paper referred by e1. Hypergraphs are being
used in various data mining and machine learning tasks as classification and
clustering [1,11,13].

v4v3

v2

v1

v5

v6e1

e2

e3

(a)

v4v3

v2

v1

v5

e1

e2

(b)

v4v3

v2

v1

e1

e2

(c)

Fig. 1. (a) A hypergraph, (b) A subhypergraph pattern, (c) Another subhypergraph
pattern.

Extracting interesting patterns from a collection of data is a core problem of
data mining. Frequency is one of the mostly used parameters in pattern mining.
Frequent pattern mining can be applied to many real-life applications such as
clustering, classification, outlier analysis, etc. Various algorithms have been pro-
posed for mining frequent patterns from transactional itemset databases [2,9],
sequential databases [6,8] and graph databases [4,5,12]. A framework for fre-
quent hypergraph mining has been proposed in [3]. However, the proposed frame-
work is rigid as it avoids decomposing associations presented by any hyperedge.
Let us consider a hypergraph H, presented in Fig. 1(a); a subhypergraph pattern
h1, presented in Fig. 1(b); and another subhypergraph pattern h2, presented in
Fig. 1(c). Let each hyperedge represent a research paper containing vertices cor-
responding to authors collaborating in the paper. For example, the hyperedge e1
in hypergraph H expressed the collaborations of authors corresponding to ver-
tices v1, v2 and v3 in a paper. According to the framework in [3], h1 is considered
only as a candidate pattern or subhypergraph of H but not h2 as the hyperedge
e2 has been decomposed in h2. But the collaborations in h2 of authors v1, v2
and v3 in paper e1; v3 and v4 in paper e2 is also expressed by H. Thus h2 is
a potential interesting pattern for H and inflexible definition of subhypergraph
without decomposing hyperedges leads to loss of many interesting patterns.

In the current work, we establish a complete and flexible framework for min-
ing frequent patterns from a collection of hypergraphs. In our framework, the
definition of subhypergraph decomposes each hyperedge considering all the sub-
sets of vertices contained by it. This provides flexibility in the framework and
results in mining more useful patterns for real-life applications. We also propose

Mining Frequent Patterns from Hypergraph Databases 5

an efficient algorithm named FHGM (Frequent HyperGraph Miner) for mining
frequent hypergraphs from a vertex and edge labeled hypergraph database. The
major challenge in frequent pattern mining is the explosion of candidate pattern
search space especially for complex types of data. Mining frequent patterns from
graph databases is more costly than sequential databases. For hypergraphs, the
search space explodes even more. Besides, finding subhypergraph isomorphism is
an NP-complete problem and so testing false candidates are costly. To cope with
these challenges, our algorithm constructs the search space in a depth first search
manner unlike Apriori [9] based algorithms. It helps to avoid costly level-wise
candidate generation process and minimizes false candidates. Another major
challenge of frequent hypergraph mining is the generation of isomorphic sub-
hypergraph candidates. To avoid testing and expanding duplicate isomorphic
subhypergraphs, we introduce canonical labeling of subhypergraph candidates.
Testing and expanding candidates associated with canonical label only helps
to skip redundant subhypergraph isomorphism tests. Furthermore, following the
widely used downward closure property to prune the search space, our algorithm
does not expand any infrequent candidates as any hypergraph extended from an
infrequent hypergraph will also be infrequent.

Our key contributions can be summarized as:

– We propose a flexible framework for frequent hypergraph mining.
– We develop an efficient algorithm named FHGM for extracting frequent

hypergraphs that constructs the search space avoiding level-wise candidate
generation.

– We devise a canonical labeling technique for hypergraph to define the repre-
sentative of the whole isomorphism class of a hypergraph to prune duplicate
isomorphic candidates.

The rest of the paper is organized as follows: Sect. 2 defines the proposed
framework. In Sect. 3, we present our proposed methods. Section 4 contains the
details of experiments and we conclude the paper in Sect. 5.

2 Proposed Framework

Let D be a set of labeled hypergraphs and L be the set of labels. A hypergraph H
can be represented with a 3-tuple, < VH , EH , lH >, where VH is a set of vertices,
EH is a set of hyperedges each containing the vertices that it connects, lH :
VH ∪ EH → LH is a function that labels the vertices and hyperedges. In Fig. 2,
we show an example database of hypergraphs containing three hypergraphs H1,
H2 and H3 with labeled vertices and hyperedges. For example, the vertex v1 and
the hyperedge e1 in H1 are labeled as a and p respectively. A subhypergraph
isomorphism from a subhypergraph h = < Vh, Eh, lh > to a hypergraph H =
< VH , EH , lH > holds if there exists a function φ : Vh ∪ Eh → VH ∪ EH , such
that,

1. ∀v ∈ Vh, lh(v) = lH(φ(v)).
2. ∀e ∈ Eh, lh(e) = lH(φ(e)) and e ⊆ φ(e).

6 Md. T. Alam et al.

v4v3

v2

v1

e1

p

e2

q
ac

b

a

H1

v4v3

v2

v1

v5

v6

v7

e1

p

e2

q
e3

p
a

c

c a c

b

a

H2

v1

v4

v2

v3

e1

q

e2

p

b c

c

b

H3

Fig. 2. A hypergraph database D

In Fig. 3, we present a subhypergraph h’. In Table 1, we show two subhyper-
graph isomorphism from h’, φ1 and φ2, to hypergraphs H1 and H2 respectively.
There exists no subhypergraph isomorphism from h’ to hypergraph H3.

v4v3

v2

v1

e1

p

e2

q

ac

b

a

Fig. 3. A subhypergraph h’

Table 1. Subhypergraph isomorphisms

Vertex/Hyperedge φ1(in H1) φ2(in H2)

v1 v1 v7

v2 v2 v6

v3 v3 v5

v4 v4 v4

e1 e1 e3

e2 e2 e2

Let Φ(h,H) be the set of all subhypergraph isomorphism from a subhyper-
graph h to a hypergraph H. The frequency support of a subhypergraph h in a
hypergraph H can be defined as,

sup(h,H) =

{
1, if |Φ(h,H)| ≥ 1
0, otherwise

(1)

In our example database, the frequency support of a subhypergraph h in a
hypergraph H, sup(h′,H1) = 1 as there is a subhypergraph isomorphism from
h’ to hypergraph H1. Similarly, sup(h′,H2) = 1. But sup(h′,H3) = 0 as there
exists no subhypergraph isomorphism from h’ to hypergraph H3.

The frequency support of a subhypergraph h in a hypergraph database D
can be defined as

sup(h,D) =
∑
H∈D

sup(h,H) (2)

Mining Frequent Patterns from Hypergraph Databases 7

For example, the frequency support of the subhypergraph h’ of Fig. 3 in
the hypergraph database D of Fig. 2, sup(h′,D) = sup(h′,H1) + sup(h′,H2) +
sup(h′,H3) = 1 + 1 + 0 = 2.

Frequent Hypergraph Mining Problem: Given a set of labeled hypergraphs
D and a user defined threshold δ, frequent subhypergraph mining discovers all
subhypergraphs h, such that sup(h,D) ≥ minsup where minsup = |D| × δ. For
our example database D, if δ is 2

3 , then minsup = 3× 2
3 = 2. Now h’ is a frequent

subhypergraph as sup(h′,D) ≥ minsup.

3 Proposed Methods

In this section, we present our proposed algorithm named FHGM. To discover
all the frequent subhypergraphs, we have to develop a search space of candidate
subhypergraphs in such a way that all frequent subhypergraphs are enumerated.
For generating candidate subhypergraphs, starting from an empty hypergraph,
we extend each candidate subhypergraph in a depth first search fashion rather
than level-wise candidate generation which have been proven to be expensive in
terms of both runtime and memory for itemset, sequence and graph mining. A
naive way of extending a candidate can be adding vertex or a new hyperedge
to the existing subhypergraph in every possible way but it will generate large
number of duplicate subhypergraphs. In our algorithm, we identify each ver-
tex and hyperedge of all candidates with a unique discovery time value that is
assigned according to the order in which they have been added to the candidate.
We define the vertex and hyperedge with maximum discovery time value as last
vertex and last hyperedge respectively. For a candidate subhypergraph h, we can
denote them as lastv(h) and laste(h) respectively. To minimize duplicate sub-
hypergraphs generation, FHGM extends the candidates in any of the following
ways possible:

– Hyperedge-extension: Adding a vertex to the last hyperedge. This ver-
tex can be a new vertex or one the the vertices that already exists in the
candidate.

– Hyperedge-append: Adding a new hyperedge containing only one of the
existing vertices.

We can present an extension using a 4-tuple <type, vertex, vertex label, edge
label>. For example, <e, 1, a, -> represents hyperedge-extension by adding
a vertex with label “a” and discovery time 1. On the contrary, <a, 0, b, p>
represents hyperedge-append by adding a new hyperedge with label “p” that
contains only one vertex with label “b” and discovery time 0. Now, we can
present each candidate subhypergraph with a sequence of extension tuples. In
Algorithm 1, we present the pseudocode for finding all possible extensions of a
candidate in a hypergraph database.

However, extending this manner can still generate duplicate isomorphic can-
didates. A solution to this problem can be keeping a list of candidates generated.

8 Md. T. Alam et al.

Algorithm 1: Find Extensions
Input : h : a candidate subhypergraph, D: a set of hypergraphs
Output: E: the set of possible extensions

1 begin
2 E ← ∅;
3 for H ∈ D do
4 if h = ∅ then
5 for e ∈ EH do
6 for v ∈ e do
7 E ← E ∪ {<a, 0, l(v), l(e)>};

8 else
9 for φ ∈ Φ(h, H) do

10 for e ∈ EH do
11 for v ∈ e do
12 if e /∈ φ−1 and v /∈ φ−1 then
13 E ← E ∪ {<a, discovery(φ−1(v)), l(v), l(e)>};

14 for v ∈ φ(laste(h)) do
15 if v /∈ φ−1 then
16 E ← E ∪ {<e, discovery(lastv(h)) + 1, l(v), ->};
17 else if φ−1(v) /∈ laste(h) then
18 E ← E ∪ {<e, discovery(φ−1(v)), l(v), ->};

Whenever a new candidate is generated, it can be discarded if any isomorphic
candidate already exist in the list. But it requires a lot of hypergraph isomor-
phism tests which is costly. To solve this problem, we introduce canonical labeling
to candidates. We define a partial order among the isomorphic candidate and
extended the minimum isomorphic candidate as a representative of the whole
isomorphism class.

Given two extensions ext1 =< t1, d1, lv1 , le1 > and ext2 =< t2, d2, lv2 , le2 >,
let us define a partial order among extensions such that ext1 < ext2 if and only
if one of the followings holds,

– t1 = e and t2 = a.
– t1 = a and t2 = a and d1 < d2.
– t1 = a and t2 = a and d1 = d2 and le1 < le2 .
– t1 = a and t2 = a and d1 = d2 and le1 = le2 and lv1 < lv2 .
– t1 = e and t2 = e and d1 < d2.
– t1 = e and t2 = e and d1 = d2 and lv1 < lv2 .

Given two candidate subhypergraphs, we can define a partial order between
them by comparing their extension tuple by tuple according to the sequence.
Based on this order, we define the minimum sequence of extension tuples as
the canonical representative. FHGM extends a candidate if it is canonical and
discards others as they are isomorphic form of the canonical one. Algorithm 2
shows how to determine whether a candidate is canonical or not. Finally, we
utilize downward closure property by not extending any infrequent candidates

Mining Frequent Patterns from Hypergraph Databases 9

as any candidate extended from an infrequent candidate will also be infrequent.
Pruning the search space using downward closure property helps to eliminate
many false candidates. We present the pseudocode of FHGM for mining frequent
subhypergraph in Algorithm 3.

Algorithm 2: Check Canonical
Input : C : a sequence of extension tuples

1 begin
2 h ← GetHypergraph(C) // converts extensions to hypergraph

3 Ct ← ∅;
4 for i ← 1 to —C— do
5 E ← FindExtensions(GetHypergraph(Ct), {h});
6 if C[i] �= min(E) then
7 return False;
8 Ct.insert(C[i]);

9 return True;

Algorithm 3: FHGM
Input : h : a subhypergraph, D: a set of hypergraphs,

minsup: a support threshold // Initially h ← ∅
1 begin
2 E ← FindExtensions(h, D);
3 for e ∈ E do
4 ht ← extend(h, e);
5 if CheckCanonical(ht)= true and sup(ht, D) ≥ minsup then
6 ht is a frequent subhypergraph;
7 FHGM(ht, D, minsup);

In Fig. 4, we present a simulation of our proposed FHGM algorithm on
database D of Fig. 2. For the convenience of presentation, we have taken a high
value of δ = 1 to limit candidate generation. For δ = 1, minsup = 3 × 1 = 3.
Starting from an empty subhypergraph candidate C0, we have extended each
candidate using Algorithm 1. We have presented each candidates in the search
tree using a sequence of extension tuples. We have skipped extending any non-
canonical candidates which are presented by dashed boxes. For example, we have
not extended candidate C13 as it is a non canonical representation. However, the
candidate C10 represents an isomorphic subhypergraph of the subhypergraph
presented by C13 and C10 has been extended for being the canonical represen-
tation. The infrequent candidates are shown in dotted boxes. For example, the
candidate C17 is a canonical representation. But it has not been extended as
the frequency of C17 in D is 1 which fails to satisfy the minsup threshold. The
frequent candidates are shown in solid box. That means the subhypergraphs
corresponding to C2, C3, C5, C7, C10 and C16 are frequent in D with respect to
δ = 1.

10 Md. T. Alam et al.

∅

C1 Sup : 2
< a, 0, a, p >

C2 Sup : 3
< a, 0, b, p >

C3 Sup : 3
< a, 0, c, p >

C4 Sup : 2
< a, 0, a, q >

C5 Sup : 3
< a, 0, c, q >

C6 Sup : 2
< a, 0, b, p >
< e, 1, a, − >

C7 Sup : 3
< a, 0, b, p >
< e, 1, c, − >

C8 Sup : 2
< a, 0, c, p >

< e, 1, a, − >

C9 Sup : 3
< a, 0, c, p >

< e, 1, b, − >

C10 Sup : 3
< a, 0, c, p >

< a, 0, c, q >

C11 Sup : 2
< a, 0, c, p >

< e, 1, c, − >

C12 Sup : 2
< a, 0, c, q >

< e, 1, a, − >

C13 Sup : 3
< a, 0, c, q >

< a, 0, c, p >

C14 Sup : 2
< a, 0, c, q >

< e, 1, c, − >

C15 Sup : 2
< a, 0, b, p >
< e, 1, c, − >

< e, 2, a, − >

C16 Sup : 3
< a, 0, b, p >
< e, 1, c, − >

< a, 1, c, q >

C17 Sup : 1
< a, 0, b, p >
< e, 1, c, − >

< e, 2, c, − >

C18 Sup : 2
< a, 0, c, p >

< a, 0, c, q >

< e, 1, a, − >

C19 Sup : 2
< a, 0, c, p >

< a, 0, c, q >

< e, 1, c, − >

C20 Sup : 2
< a, 0, b, p >
< e, 1, c, − >

< a, 1, c, q >

< e, 2, a, − >

C21 Sup : 2
< a, 0, b, p >
< e, 1, c, − >

< a, 1, c, q >

< e, 2, c, − >

Fig. 4. Simulation of frequent hypergraph mining algorithm

4 Experiments

To evaluate the effectiveness and efficiency of our proposed algorithm, we have
conducted experiments. In this section, we discuss the experimental settings and
result analysis. We present the details of dataset extraction process in Sect. 4.1,
experimental result analysis in Sect. 4.2. To evaluate the framework, we analyze
hypergraph classification performance using frequent patterns in Sect. 4.3.

4.1 Dataset Description

We have extracted academic social networks data provided by ArnetMiner [10]
to build hypergraph databases. The ArnetMiner [10] dataset provides details of
research articles such as authors, domain, bibliography, and etc. We have built six
databases using papers from six different domains. From each domain, we have
randomly selected 1000 papers. For each paper, we have created a hypergraph
where the hyperedges represent the papers that have been cited and contains
vertices corresponding to the authors of the cited paper. In Table 2, we present
the statistical description of the databases.

Mining Frequent Patterns from Hypergraph Databases 11

Table 2. Statistical description of databases

Domain No. of

hypergraphs

Average no.

of vertices

Average no.

of hyperedges

Average

hyperedge

length

No. of vertex

labels

Data mining 1000 15.865 5.884 3.095 107

Machine learning 1000 11.895 5.146 2.653 96

Computer security 1000 17.051 6.488 3.053 92

Computer network 1000 17.048 5.852 3.227 110

Bioinformatics 1000 19.16 4.688 4.428 263

Distributed computing 1000 14.584 5.013 3.275 127

4.2 Results and Discussions

For analyzing the performance of our proposed algorithm, we have conducted
experiments on our collected real-life datasets. We have implemented the FHGM
algorithm using Python 3.7 programming language. We have utilized an Intel
Core i7-6700k CPU @ 4.00 GHz with 16 GB RAM to conduct all the experiments.
As a baseline for comparison, we have considered a naive version of FHGM that
mines frequent subhypergraphs without pruning the search space using canonical
labeling. For performance evaluation metrics, we have included runtime and
the number of candidates generated. Higher number of candidates generation
indicates higher number of false candidates generation as well as weaker search
space pruning ability.

In Fig. 5, we present the runtime of FHGM both with and without pruning
using canonical labeling on six real-life hypergraph databases. It is evident that
pruning using canonical labeling reduces the runtime substantially. The runtime
increases as the frequency threshold decreases. The increment in runtime is less
significant when pruning using canonical labeling is performed which results in
higher performance gap for lower frequency thresholds. For example, the runtime
increases by 53.91 s when the frequency threshold reduces from 1.0% to 0.6% on
database Data Mining without pruning whereas the increment with pruning is
only 12.54 s. In Table 3, we present the number of candidates generated and
the number of frequent patterns. The number of candidates generated is higher
without pruning which is the reason behind longer runtime. The number of
frequent patterns also increases as the frequency threshold decreases.

4.3 Hypergraph Classification Using Frequent Patterns

To evaluate the effectiveness of our proposed frequent pattern mining frame-
work, we have implemented a hypergraph classification algorithm. The task is
to predict the domain of a paper given the hypergraph representation of the bib-
liography. For feature extraction, we have mined frequent subhypergraphs from
the six databases separately. We have followed elbow method on the number of
frequent patterns [7] to determine the frequency thresholds. Finally, we build a
feature vector for each hypergraph of size equal to the number of total mined

12 Md. T. Alam et al.

0.6 0.7 0.8 0.9 1

30

60

90

120

150

frequency threshold(%) δ

ti
m
e(
se
co
nd

s)
(a)Data Mining

Without Pruning With Pruning

0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

frequency threshold(%) δ

ti
m
e(
se
co
nd

s)

(b)Machine Learning

0.9 1 1.1 1.2 1.3
0

20

40

60

80

100

frequency threshold(%) δ

ti
m
e(
se
co
nd

s)

(c)Computer Security

1.5 1.6 1.7 1.8 1.9
0

50

150

250

350

450

frequency threshold(%) δ

ti
m
e(
se
co
nd

s)

(d)Computer Network

1.6 1.7 1.8 1.9 2
0

2

4

6

8

10

frequency threshold(%) δ

ti
m
e(
se
co
nd

s)

(e)Bioinformatics

1.5 1.6 1.7 1.8 1.9
0

50
100
150
200
250
300
350
400

frequency threshold(%) δ

ti
m
e(
se
co
nd

s)

(f)Distributed Computing

Fig. 5. Runtime analysis of FHGM

frequent patterns. The i-th element of the vector is 1 if there exists a subhyper-
graph isomorphism from the i-th pattern to the hypergraph, and 0 otherwise. We
have utilized an ensemble classifier of Multi-layer Perceptron classifier (Neural
Network), SupportVector Machine, Decision Tree classifier, Naive Bayes classi-
fier, and K-NearestNeighbour classifier with max voting strategy. To split the
train set and test set, we have followed K-Fold stratified cross-validation tech-
nique(Nine folds for training and one fold for testing). For comparison, we have
considered another classifier that uses frequent patterns mined without decom-
posing hyperedges as proposed in [3] to build the feature vector. In Table 4,
we present the classification accuracy for both the methods along with stan-
dard deviation. Significantly higher accuracy indicates the effectiveness of our
proposed framework to mine interesting patterns from hypegraphs.

Mining Frequent Patterns from Hypergraph Databases 13

Table 3. Runtime and patterns statistics of FHGM

(a) Data mining

δ Without pruning With pruning Frequent patterns

Runtime(sec.) Candidates Runtime(sec.) Candidates

0.9% 71.626 19985 10.034 13155 371

0.8% 75.742 21574 11.920 13911 445

0.7% 104.241 29440 15.185 15514 629

0.6% 120.555 34968 21.081 17243 813

(b) Machine learning

0.9% 7.562 9347 4.072 8867 171

0.8% 16.16 10540 5.204 9249 231

0.7% 21.562 11846 6.188 9826 294

0.6% 27.110 12961 8.962 10518 424

(c) Computer security

1.2% 8.715 12916 6.464 12223 237

1.1% 20.112 14549 8.209 12951 318

1.0% 29.329 18366 11.380 14122 411

0.9% 101.041 51535 14.532 16154 603

(d) Computer network

1.8% 11.345 13623 2.990 11372 93

1.7% 11.836 13908 3.273 11554 104

1.6% 397.913 84111 6.012 12205 203

1.5% 447.722 13830 7.888 12311 213

(e) Bioinformatics

1.9% 1.586 12130 1.468 11862 32

1.8% 2.305 13176 1.829 12289 46

1.7% 4.614 17252 2.467 13134 63

1.6% 9.693 21952 3.420 14014 93

(f) Distributed computing

1.8% 10.154 12637 2.114 10405 60

1.7% 10.526 12783 2.339 10501 67

1.6% 389.831 94635 4.554 11112 158

1.5% 410.713 94730 4.754 11202 162

Table 4. Classification accuracy

Features Without decomposing hyperedges FHGM framework

Accuracy(%) 33.15 ± 1.80 51.55 ± 1.57

14 Md. T. Alam et al.

5 Conclusions

In this paper, we have proposed a complete framework for mining frequent pat-
terns from hypergraph databases that decomposes hyperedges to build patterns.
We have also developed an efficient algorithm named FHGM for mining fre-
quent patterns from a collection of hypergraphs. To cope with the exploding
search space, we have adopted search space pruning techniques in the algorithm.
We have introduced a canonical labeling technique for the whole isomorphic
class of a hypergraph for search space reduction. We have conducted experi-
ments on real-life datasets. Significantly lower runtime and reduced search space
demonstrates the efficiency of our algorithm whereas higher classification accu-
racy obtained by using frequent patterns as features indicates the effectiveness
of the framework to mine interesting patterns. More efficient methods for min-
ing using parallel processing, approximate methods can be considered as future
work.

Acknowledgement. This work is partially funded by (a) ICT Division, Government
of People’s Republic of Bangladesh; (b) NSERC (Canada); and (c) University of Man-
itoba.

References

1. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In:
AAAI 2019, pp. 3558–3565 (2019)

2. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: ACM SIGMOD 2000, pp. 1–12. ACM (2000)

3. Horváth, T., Bringmann, B., De Raedt, L.: Frequent hypergraph mining. In: Mug-
gleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol.
4455, pp. 244–259. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73847-3 26

4. Inokuchi, A., Washio, T., Motoda, H.: An Apriori-based algorithm for mining fre-
quent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow,
J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45372-5 2

5. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: IEEE ICDM 2001,
pp. 313–320. IEEE (2001)

6. Pei, J., et al.: PrefixSpan: mining sequential patterns efficiently by prefix-projected
pattern growth. In: ICDE 2001, pp. 215–224. IEEE (2001)

7. Rousseau, F., Kiagias, E., Vazirgiannis, M.: Text categorization as a graph classi-
fication problem. In: ACL-IJCNLP 2015, pp. 1702–1712 (2015)

8. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and perfor-
mance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT
1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0014140

9. Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints.
In: KDD 1997, pp. 67–73 (1997)

10. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and
mining of academic social networks. In: KDD 2008, pp. 990–998 (2008)

https://doi.org/10.1007/978-3-540-73847-3_26
https://doi.org/10.1007/978-3-540-73847-3_26
https://doi.org/10.1007/3-540-45372-5_2
https://doi.org/10.1007/BFb0014140
https://doi.org/10.1007/BFb0014140

Mining Frequent Patterns from Hypergraph Databases 15

11. Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.: Hyper-
GCN: a new method for training graph convolutional networks on hypergraphs.
In: NeurIPS 2019, pp. 1511–1522 (2019)

12. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: IEEE
ICDM 2002, pp. 721–724 (2002)

13. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classi-
fication, and embedding. In: NIPS 2006, pp. 1601–1608 (2006)

Discriminating Frequent Pattern Based
Supervised Graph Embedding

for Classification

Md. Tanvir Alam1 , Chowdhury Farhan Ahmed1(B) , Md. Samiullah1,
and Carson K. Leung2

1 Department of Computer Science and Engineering, University of Dhaka,
Dhaka, Bangladesh

{farhan,samiullah}@du.ac.bd
2 Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada

kleung@cs.umanitoba.ca

Abstract. Graph is used to represent various complex relationships
among objects and data entities. One of the emerging and important
problems is graph classification that has tremendous impacts on various
real-life applications. A good number of approaches have been proposed
for graph classification using various techniques where graph embedding
is one of them. Here we propose an approach for classifying graphs by
mining discriminating frequent patterns from graphs to learn vector rep-
resentation of the graphs. The proposed supervised embedding technique
produces high-quality entire graph embedding for classification utilizing
the knowledge from the labeled examples available. The experimental
analyses, conducted on various real-life benchmark datasets, found that
the proposed approach is significantly better in terms of accuracy in
comparison to the state-of-the-art techniques.

Keywords: Pattern mining · Graph mining · Frequent pattern
mining · Discriminating pattern mining · Graph classification

1 Introduction

Graph is a widely used data structure for many domains such as social net-
work analysis, bioinformatics, and chemo-informatics. It has gained popularity
due to its ability to represent a variety of data types and complex relation-
ships between data entities. Graphs can also be used to represent sequences and
trees. With the colossal amount of graph data being accumulated worldwide
from various sources, graph classification has become an important problem in
the domain of Knowledge Discovery and Data Mining. It can be applied to
many real-world problems, namely predicting property of chemical compounds,
detecting anomalous activity in social networks, etc. However, many of the exist-
ing classification algorithms consider vector representation of data entities that

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 16–28, 2021.
https://doi.org/10.1007/978-3-030-75765-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_2&domain=pdf
http://orcid.org/0000-0001-9543-4503
http://orcid.org/0000-0002-6101-4591
http://orcid.org/0000-0002-7541-9127
https://doi.org/10.1007/978-3-030-75765-6_2

Discriminating Frequent Pattern Based Supervised Graph Embedding 17

encodes descriptive, discriminating features. The accuracy of any classification
algorithm depends primarily on the discriminating power of the features used.

Graph kernel-based approaches [13,14,19] have been proposed for accom-
plishing above mentioned or various data analytical tasks on graph dataset.
A graph kernel is a function that captures the similarity between two objects
or entities represented by graphs. The similarity is defined generally based on
the similarity between the elementary fragments of the objects such as random
walks or paths, fixed-sized sub-graphs, or rooted sub-trees. The kernel-based
approaches have some major limitations: (i) the fragments used as features are
not often discriminating as randomly sampled fragments are used as features;
(ii) these methods scale poorly to large datasets or large graphs as the number
of fragments escalates highly; and finally, (iii) the generated fragments are often
not large enough to distinguish between graphs well due to loss of connectivity
information.

Inspired by the success of word and document embedding techniques [6,8],
methods for embedding of substructures within a graph such as nodes, edges [5]
have been proposed. The approaches are effective for tasks like node classifica-
tion, link prediction, etc. For graph analysis tasks, such as graph classification
and clustering, simple aggregate functions like average is used on the embed-
dings of the substructures within a graph to obtain the entire graph embedding
which results in loss of structural information. To address the limitation, various
attempts have been made to obtain entire graph embedding directly. One such
approach is, Graph2vec [9], an unsupervised approach to learn graph embedding
from rooted sub-trees. GE-FSG [10], another similar unsupervised approach,
employs frequent subgraphs to learn entire graph embedding. A major drawback
of using Graph2vec and GE-FSG for graph classification is that they follow unsu-
pervised approaches without exploiting the knowledge of ground truths (labeled
examples) available while learning the embedding. As a result, it becomes hard
to determine the class from the embedding. Besides, in the case of GE-FSG,
frequent subgraphs may not be contained in many of the graphs as frequent
subgraphs mining with a significantly lower threshold is prohibited due to com-
putational complexity. For example, 191 graphs of 1000 graphs from benchmark
graph dataset IMDB-B do not contain any of the frequent subgraphs mined with
20% frequency threshold. In consequence, these graphs are characterized in the
embedding only by the absence of all feature subgraphs and such characteriza-
tion fails to help determine the class properly as these graphs belong to different
classes (123:68 in IMDB-B).

In the current paper, we propose a supervised entire graph embedding tech-
nique dedicated to graph classification. We develop an algorithm for extracting
discriminating frequent subgraphs as features. To ensure that each graph con-
tains a significant amount of feature subgraphs while overcoming the compu-
tational complexity, we adopt multi-phase frequent subgraph mining. We also
propose a measure for filtering non-discriminating candidate feature subgraphs
which utilizes the given classes of the labeled graphs. Then we employ the dis-
criminating subgraphs to learn graph embeddings which have turned out to be

18 M. T. Alam et al.

effective for classification even though we have used simple and shallow neural
network to learn the embeddings. Substantial improvement from other existing
approaches in classification accuracy along with visualization of the embeddings
demonstrate the effectiveness of our proposed feature extraction, representation
learning and classification methods for graphs. Our key contributions in this
work can be summarized as:

– We propose a supervised embedding method that produces entire graph
embedding for classification.

– We develop an algorithm for extracting discriminating feature subgraphs from
a graph dataset.

– We conduct extensive experiments on benchmark graph datasets and achieved
significant improvement in graph classification accuracy.

The rest of the paper is organized as follows: Sect. 2 describes the neural word and
document embedding methods related to our approach. In Sect. 3, we propose our
graph embedding method in detail. Section 4 contains details about experimental
setup, results and analysis. In Sect. 5, we discuss the future research scopes and
summarize our methods and analysis.

2 Background

In this section, we review two popular approaches for neural embedding of words
and documents respectively. These approaches are successfully being applied to
many natural language processing (NLP) tasks such as document classification,
word clustering, and etc. Continuous bag of words (CBOW) and Skip-gram
model [8] attempt to produce high-quality dense vector representation of words
that are able to capture semantic properties of a word. In both approaches,
the embedding of a target word is learned from the context. The context is
defined by the encompassing words. This model takes a corpus of sentences as
sequences of words. Given such a sequence {w1, w2,..., wt,..., wT }, the m-length
context of a target word wt is defined by the words wt−m,..., wt−1, wt+1,...,
wt+m. CBOW model tries to predict the target word given the context. Mathe-
matically, for each target word wt in a sequence, it maximizes the log-likelihood
log Pr(wt|wt−m, ..., wt−1, wt+1, ..., wt+m). However, Skip-gram model adopts a
somewhat different approach. It tries to predict the context words given the
target word. That is, it maximizes log Pr(wt−m, ..., wt−1, wt+1, ..., wt+m|wt).

PV-DBOW [6] is an approach for learning vector representation of entire
document from the words contained. The proposed model is an extension of
Skip-gram model. Here, the entire document is comparable to the target word,
and the words in the document is used as the context. Given a set of documents
D = {d1, d2,..., dn}, where each d∈D is a sequence of words {w1, w2,.., wl},
PV-DBOW outputs the embeddings of the documents in D. For each document
d ∈ D, it maximises the following log likelihood

∑l
j=1 log Pr(wj |d).

Discriminating Frequent Pattern Based Supervised Graph Embedding 19

3 The Proposed Method

This section presents the proposed graph classification method. After defining
the framework, we present the candidate feature subgraphs mining process in
Sect. 3.1, non-discriminating feature filtering process in Sect. 3.2 and Sect. 3.3
explains the graph embedding learning technique.

Definition 1 Supervised Graph Embedding Learning Framework: Let
D be a set of labeled graphs and L be a set of labels for nodes and edges in D.
A labeled graph G ∈ D can be represented by 3-tuple < V,E, l > where V is a
set of vertices; E ⊆ V × V is a set of edges; l: V ∪ E → L, is a function that
labels vertices and edges. The graphs in D can be divided into mutually exclusive
sets Dt and Dp where for each graph in Dt class labels are known and D = Dt∪
Dp. A function c: Dt → C is given where C is the set of class labels. Given this
information, we have to learn a function f: D → Rm that maps each graph G ∈
D to a fixed m-length vector. Finally, we have to predict the class label of each
graph Gp ∈ Dp, that is, learning a function cp: Dp → C.

3.1 Candidate Feature Subgraphs Mining

For extracting feature subgraphs to characterize the graphs, we have employed
frequent subgraph mining techniques. To enforce the constraint of coverage, we
define a minimum coverage threshold, min cov. A graph is covered by a subgraph
if there exists at least one subgraph isomorphism from the subgraph to the graph.
Our goal is to find a set of feature subgraphs so that for each graph G ∈ D, the
number of subgraphs that covers G is at least min cov. Initially, we have mined
frequent subgraphs in multiple phases (k phases where k ≥ 1). In each phase,
frequent subgraphs are mined from those graphs with min cov threshold yet
to be fulfilled with a frequency threshold lower than the previous phase. We
have used gSpan [18] algorithm to mine frequent subgraphs. However, frequent
subgraph mining is expensive and not reasonable for executing a higher number
of phases. On the other hand, with a lower number of phases, it is likely that
min cov threshold of many graphs may not be satisfied. Hence, in the next
step, we have mined the smallest subgraphs from those graphs by the number
of edges until their min cov threshold is satisfied. The reason behind mining
smallest subgraphs is that their frequency will always be higher than the larger
subgraphs.

3.2 Filtering Candidate Feature Subgraphs

The number of candidate feature subgraphs extracted by frequent subgraph min-
ing and smallest subgraphs mining is often enormous. Using all these subgraphs
to learn embedding leads to higher computation cost. Note that all of the mined
subgraphs are not effective for learning embeddings, especially for classification.
To filter-out such non-discriminating subgraphs, we propose a feature selection
measure for subgraphs inspired by information-gain measure. The entropy value
of the set of graphs Dt is defined as follows:

20 M. T. Alam et al.

H(Dt) = −
∑

i∈C

Ni

|Dt| log2
Ni

|Dt| (1)

Here, Ni is the number of graph G ∈ Dt such that c(G) = i. Let g be a
subgraph and Dg

t ∈ Dt be a set of graphs such that each Gt ∈ Dt is covered by
g. Now, we define the gain of a subgraph g in Dt as,

Gaing(Dt) =
|Dg

t |
|D| × H(Dg

t) + |D−Dg
t |

|D| × H(D − Dg
t)

|Dg
t |

|D| × log2
|Dg

t |
|D| + |D−Dg

t |
|D| × log2

|D−Dg
t |

|D|
(2)

Algorithm 1: Feature Subgraphs Extraction
Input : D = Dt ∪ Dp: a set of graphs, k: number of phases, min cov:

minimum coverage threshold, δ: frequency threshold, Δ: frequency
threshold discount

Output: Df : a set of feature subgraphs
1 begin
2 Df ← ∅;
3 Candidates ← ∅;
4 for i ← 1 to k do
5 temp ← ∅;
6 for G ∈ D do
7 if Coverage(G, Candidates)< min cov then
8 temp ← temp ∪ {G};

9 if temp.length() ≤ 1 then
10 Break;
11 FSGs ← FindFSG(temp, δ) // FindFSG mines frequent subgraphs

from temp with a frequency threshold δ
12 Candidates ← Candidates ∪ FSGs;
13 δ ← δ − Δ;

14 for G ∈ D do
15 while Coverage(G, Candidates)< min cov do
16 g = Find smallest subgraph by edge number in G which is not in

Candidates;
17 Candidates ← Candidates ∪ {g};

18 while True do
19 if Candidates = ∅ then
20 Break;
21 g = Find subgraph in Candidates with maximum Gaing(Dt) value ;
22 for G ∈ D do
23 if Coverage(G, Df)< min cov and g∈G then
24 Df ← Df ∪ {g};
25 Break;

26 Candidates ← Candidates - {g};

27 end

Discriminating Frequent Pattern Based Supervised Graph Embedding 21

To obtain the final set of feature subgraphs, we start with an empty set of
subgraphs Df . We pick each candidate feature subgraphs in descending order
of gain value. The subgraph is added to Df if it covers a graph whose coverage
threshold is not satisfied by the subgraphs in Df .

Algorithm 1 presents a pseudo-code of our feature subgraphs extraction pro-
cess. At first, we generate candidate subgraphs by mining frequent subgraphs
in multiple phases (lines 4–13) and then the smallest subgraphs (lines 14–17).
Next, we pick subgraphs from candidates, based on the order of their gain value,
that covers any graph whose coverage falls below the threshold (lines 18–26).

3.3 Learning Embedding from Feature Subgraphs

Our graph embedding method is inspired by PV-DBOW [6] but we have followed
CBOW model rather than Skip-gram. We have designed a model that attempts
to predict the graph given the feature subgraphs covering it to learn the graph
embeddings. We define a partial ordering among the graphs in D and another
among the subgraphs in Df . Let Gt be the t-th graph in D, gj be the j-th
subgraph in Df and gt1 , gt2 , ..., gtn be the subgraphs in Df that cover Gt. For
each Gt ∈ D, we maximize log Pr(Gt|gt1 , gt2 , ..., gtn). Let W ∈ R|Df |×m and
W’ ∈ Rm×|D| be two matrices. The i-th row of W corresponds to the vector
embedding of i-th subgraph in Df and j-th column of W’ corresponds to the
vector embedding of j-th graph in D. We learn W and W’ using back-propagation
algorithm. Our model is similar to the neural network model proposed in CBOW
model as shown in Fig. 1. It is a 3-layer neural network with a hidden layer.

x̄ ∈ R|Df |

h ∈ Rm

y ∈ R|D|W ∈ R|Df |×m W ′ ∈ Rm×|D|

Fig. 1. Graph embedding model

Let xi ∈ R|Df | be a vector where the i-th element is 1 and all other elements
are 0. For each Gt ∈ D, x̄ = 1

n

∑n
i=1 xti is the input vector of the model. The

values of the hidden layer is calculated as, h = WT x̄. The output layer is com-
puted as y = Softmax(u) where u = W ′Th. Here, yi represents the probability
of the predicted graph to be the Gi. We can define the loss function to minimize
as follows,

L(W,W ′) = −
∑

Gt∈D

log Pr(Gt|gt1 , gt2 , ..., gtn) = −
∑

Gt∈D

log(yt) (3)

In this model, W and W’ are the parameters to optimize. We have used
Stochastic Gradient Descent algorithm for optimizing Eq. (3). Vector embedding

22 M. T. Alam et al.

of graph Gt can be obtained as, f(Gt) = w’t, the t-th column of W’. Finally, the
vector embeddings of the graphs in Dt can be directly used to train a classifier
model and vector embeddings of the graphs in Dp can be used to predict their
classes.

4 Experiments

In this section, we describe the experiments conducted for evaluating the pro-
posed graph classification technique. Details and characteristics of the datasets
are presented in Sect. 4.1. We define our evaluation criteria and experimental set-
tings in Sect. 4.2. Experimental results and comparative analyses are presented
in Sect. 4.3. In Sect. 4.4, we examine the sensitivity of the algorithm perfor-
mance towards parameter values. Section 4.5 shows the runtime analysis of our
algorithm. Finally, in Sect. 4.6, we analyze the effectiveness of our method using
visualization techniques.

4.1 Datasets

We have conducted our experiments on eight benchmark real-life datasets. These
datasets cover chemoinformatics, bioinformatics and social network domains.
D&D [4] is a graph dataset of protein structures divided into two classes: enzymes
or non-enzymes. The nodes represent amino acids and edges denote spatial close-
ness. ENZYMES [1] is a dataset obtained from the BRENDA enzyme database
in which the graphs correspond to protein tertiary structures. IMDB-B [19] is
a dataset from social network domain. Here, the nodes indicate actors/actresses
and edges represent their co-appearance in the same movie. The graphs are
labeled with two classes of genre (Action or Romance). Mutag [3] is a graph
dataset containing chemical compounds associated with class labels according
to their mutagenic effect on a specific bacteria. NCI1 and NCI109 [17] are two
chemical compound datasets screened for activity against ovarian cancer and
lung cancer cell lines. PROTEINS [1] contains graphs with nodes indicating
secondary structure elements and edges indicating neighborhood in amino-acid
sequence. PTC [16] is another chemical compound dataset with class labels
denoting carcinogenicity on rats.

4.2 Experimental Setup

To evaluate the effectiveness of the proposed algorithm, we have performed
graph classification on the aforementioned benchmark datasets. As a classifier, an
ensemble classifier of Multi-layer Perceptron classifier (Neural Network), Support
Vector Machine, Decision Tree classifier, Naive Bayes classifier, and K-Nearest
Neighbour classifier have been employed. We have adopted max voting strategy
to combine their votes. K-Fold stratified cross-validation method is employed
with nine folds for training and one fold for testing. For each dataset, the exper-
iment is repeated five times then the average accuracy is taken and the standard

Discriminating Frequent Pattern Based Supervised Graph Embedding 23

deviation is noted. All the experiments have been conducted on an Intel Core
i7-6700k CPU @ 4.00 GHz with 16 GB RAM and our algorithm is implemented
using Python 3.7 programming language. The major parameters in our model
are k: the number of phases, min cov: minimum coverage threshold, δ: frequency
threshold, Δ: frequency threshold discount and m: length of embedding vector.
We have determined δ, the frequency threshold using elbow method on the num-
ber of frequent subgraphs as proposed in [12]. This base frequency threshold
value for each dataset is presented in Table 1. We have examined with parameter
values of min cov ∈ {10, 15, 20, 25, 30} and m ∈ {2, 4, 8,..., 256}. Empirically,
we have derived that the parameter values: min cov = 10, m = 64, k = 5, Δ
= 0.025 works well across all the datasets. We present the parameter sensitivity
analysis of the algorithm later in Sect. 4.4.

Table 1. Classification accuracy of our method and state-of-the-art methods on bench-
mark datasets.

Method D&D Enzymes IMDB-B Mutag NCI1 NCI109 Proteins PTC

GK 78.45 26.61 65.87 81.66 62.28 62.60 71.67 57.26

(0.26) (0.99) (0.98) (2.11) (0.29) (0.19) (0.55) (1.41)

Deep GK 73.50 27.08 66.96 82.66 62.48 62.69 71.68 57.32

(1.01) (0.79) (0.56) (1.45) (0.25) (0.23) (0.50) (1.13)

WL 77.95 53.15 72.86 80.72 80.13 80.22 72.92 56.97

(0.70) (1.14) (0.76) (3.00) (0.50) (0.34) (0.56) (2.01)

PSCN 77.12 – 71.00 92.63 78.59 – 75.89 –

(2.41) – (2.29) (4.21) (1.89) – (2.76) –

ECC 73.65 50.00 – 89.44 83.80 81.87 – –

– – – – – – – –

SAGPool 76.45 – 78.10 90.42 74.18 74.06 71.86 –

(0.97) – (4.20) (7.78) (1.20) (0.78) (0.97) –

Graph2Vec 58.64 44.33 63.10 83.15 73.22 74.26 73.30 60.17

(0.01) (0.09) (0.03) (9.25) (1.81) (1.47) (2.05) (6.86)

GE-FSG 91.69 49.33 73.00 84.74 84.36 85.59 81.79 62.57

(0.02) (0.07) (0.04) (0.07) (0.02) (0.01) (0.04) (0.09)

GSSNN 80.26 – 80.10 96.77 80.75 – 79.73 –

(2.50) – (3.25) (4.68) (4.07) – (3.31) –

GAT-GC – 58.45 – 90.44 – – 76.81 –

– (6.35) – (6.44) – – (3.77) –

GCKN – – 77.8 97.2 83.9 – 76.4 70.8

– – (2.6) (2.8) (1.6) – (3.9) (4.6)

Ours 93.46 59.82 88.56 97.00 94.92 97.40 83.44 84.94

(0.54) (0.16) (0.34) (0.53) (0.21) (0.12) (0.67) (0.50)

δ 0.30 0.70 0.20 0.30 0.20 0.20 0.50 0.20

24 M. T. Alam et al.

4.3 Results and Discussions

We have compared the performance of our algorithm with several baseline
methods: Graphlet kernel (GK) [14], Deep GK [19], Weisfeiler-Lehman kernel
(WL) [13], PSCN [11], ECC [15], SAGPool [7], Graph2Vec [9], GE-FSG [10],
GSSNN [21], GAT-GC [20], and GCKN [2]. In Table 1, we have presented the
accuracy (with standard deviation) of our model and other state-of-the-art meth-
ods. Accuracies of the baseline methods have been collected as reported in the
papers. The best accuracy achieved by the methods in consideration is marked
in bold. We can observe notable improvement in accuracy. Our method has out-
performed other approaches on seven datasets D&D, Enzymes, IMDB-B, NCI1,
NCI109, Proteins and PTC with significant gain. Despite, on dataset Mutag,
our model has been outperformed by GCKN on a small margin, small standard
deviation indicates our model to be more robust. This robustness is also visible
for other datasets.

4.4 Parameter Sensitivity

In this section, we explore how the accuracy of our algorithm is affected by differ-
ent choices of parameters. In Fig. 2, we demonstrate how classification accuracy
gets affected by different choices of frequency threshold. For both the datasets,
PTC and Enzymes, the accuracy is higher for lower frequency threshold. In our
algorithm, high frequency threshold leads to fewer large subgraphs mined for
feature subgraph candidates as large subgraphs tend to have a lower frequency
than small ones. So, the increment in accuracy with lower frequency threshold
shows the importance of capturing large structural information in embedding
for better graph classification. In Fig. 3, we present the classification accuracy
of our algorithm on datasets: PTC, Enzymes and IMDB-B for different choices
of embedding vector length while keeping values of other parameters fixed. For
relatively lower values of m (embedding vector length), with increment of vector
length, accuracy gets better. This is a reflection of the fact that with very low
vector size it is hard to capture effective feature representation. However, for rel-
atively higher values of m, we can observe that increment of vector length results
in worse accuracy for Enzymes which is due to over-fitting in embedding learn-
ing step. Figure 4 shows classification accuracy for different values of min cov
(Minimum coverage threshold). As the value of min cov increases, less patterns
are filtered out and the accuracy decreases for datasets PTC and Enzymes. This
demonstrates the effectiveness of our proposed feature selection technique to fil-
ter out the non-discriminating subgraphs. However, for dataset IMDB-B, we can
observe that lower value of min cov may filter out too many patterns and result
in low classification accuracy.

Discriminating Frequent Pattern Based Supervised Graph Embedding 25

15 20 25 30 35 40
40

60

80

100

Frequency threshold, δ

A
cc
ur
ac
y(
%
)

PTC

68 70 72 74 76 78
40

45

50

55

60

Frequency threshold, δ

A
cc
ur
ac
y(
%
)

Enzymes

Fig. 2. Classification accuracy vs frequency threshold on PTC and Enzymes

2 4 8 16 32 64 128 256 512
40

60

80

100

Length of vector embedding, m

A
cc
u
ra
cy
(%

)

PTC
Enzymes
IMDB-B

Fig. 3. Classification accuracy vs
length of vector embedding

1 5 10 15 20 25 30
20

40

60

80

100

Minimum coverage threshold, min cov

A
cc
u
ra
cy
(%

)

PTC
Enzymes
IMDB-B

Fig. 4. Classification accuracy vs
minimum coverage threshold

4.5 Runtime Analysis

For analyzing the runtime of the proposed algorithm we divide the algorithm in
three phases: Feature Mining, Filtering and Embedding as described in Sects.
3.1, 3.2 and 3.3 respectively. Runtime for each of these phases on benchmark
datasets is presented in Table 2. Across all datasets, feature mining phase takes
significantly more time than the other two phases.

Table 2. Runtime(in minutes) for different phases on benchmark datasets.

Phase D&D Enzymes IMDB-B Mutag NCI1 NCI109 Proteins PTC

Feature mining 28.13 61.88 1132.08 230.36 24.66 22.58 403.26 8.68

Filtering 0.74 0.04 0.05 0.03 0.63 0.61 0.30 0.02

Embedding 0.26 0.37 0.12 0.01 2.13 2.12 0.27 0.53

26 M. T. Alam et al.

4.6 Visualization

To demonstrate how using discriminating subgraphs only improves the classifica-
tion accuracy, in this section, we present visualization of the graph embeddings
produced by the proposed method. We have used principal component analy-
sis for dimensionality reduction to visualize the vectors in R

2. For comparison,
we have produced visualization for embeddings both with and without filter-
ing non-discriminating candidate feature subgraphs. In Fig. 5, visualizations of
embeddings for dataset PTC and NC109 have been presented. Data points asso-
ciated with different classes are displayed in different colors. From Fig. 5, it is
evident that embeddings produced using discriminating subgraphs only tend to
cluster better according to their classes. These well separable clusters make it
easy to distinguish between classes and result in better classification accuracy.

(a) PTC-Without Filtering (b) PTC-With Filtering

(c) NC109-Without Filtering (d) NC109-With Filtering

Fig. 5. Visualization of embedding for datasets PTC and NC109

5 Conclusions

In this paper, we have proposed a supervised neural embedding-based graph clas-
sification algorithm. We have developed an algorithm for mining discriminating

Discriminating Frequent Pattern Based Supervised Graph Embedding 27

frequent subgraphs from a collection of graphs using our proposed feature selec-
tion measure. Utilizing the discriminating subgraphs, our proposed algorithm
produces entire graph embeddings that are easily separable between classes as
demonstrated through embedding visualization. We have conducted experiments
on benchmark graph datasets. Comprehensive analysis, comparing our method
against baseline methods, shows that our algorithm has outperformed others
with remarkable improvement in accuracy for graph classification. For future
work, developing efficient methods for mining discriminating feature subgraphs
faster, using deep neural network architecture can be considered.

Acknowledgement. This work is partially funded by (a) ICT Division, Government
of People’s Republic of Bangladesh; (b) NSERC (Canada); and (c) University of Man-
itoba.

References

1. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J.,
Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics,
21(suppl 1), i47–i56 (2005)

2. Chen, D., Jacob, L., Mairal, J.: Convolutional kernel networks for graph-structured
data. In: ICML, pp. 1576–1586 (2020)

3. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Han-
sch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity.
J. Med. Chem. 34(2), 786–797 (1991)

4. Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes
without alignments. J. Mol. Biol. 330(4), 771–783 (2003)

5. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: ACM
SIGKDD, pp. 855–864 (2016)

6. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML, pp. 1188–1196 (2014)

7. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: ICML, pp. 3734–3743
(2019)

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119
(2013)

9. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.:
graph2vec: Learning distributed representations of graphs. In: MLG (2017)

10. Nguyen, D., Luo, W., Nguyen, T.D., Venkatesh, S., Phung, D.: Learning graph
representation via frequent subgraphs. In: SDM, pp. 306–314 (2018)

11. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for
graphs. In: ICML, pp. 2014–2023 (2016)

12. Rousseau, F., Kiagias, E., Vazirgiannis, M.: Text categorization as a graph classi-
fication problem. In: ACL-IJCNLP, pp. 1702–1712 (2015)

13. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. JMLR 12(77), 2539–2561 (2011)

14. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient graphlet kernels for large graph comparison. In: AISTATS, pp. 488–495 (2009)

28 M. T. Alam et al.

15. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In: IEEE CVPR, pp. 3693–3702 (2017)

16. Toivonen, H., Srinivasan, A., King, R.D., Kramer, S., Helma, C.: Statistical eval-
uation of the predictive toxicology challenge 2000–2001. Bioinformatics 19(10),
1183–1193 (2003)

17. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical
compound retrieval and classification. Know. lnf. Syst. 14(3), 347–375 (2008)

18. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: IEEE
ICDM, pp. 721–724 (2002)

19. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: ACM SIGKDD, pp. 1365–
1374 (2015)

20. Zhang, S., Xie, L.: Improving attention mechanism in graph neural networks via
cardinality preservation. In: IJCAI, pp. 1395–1402 (2020)

21. Zhu, S., Zhou, L., Pan, S., Zhou, C., Yan, G., Wang, B.: GSSNN: graph smoothing
splines neural networks. In: AAAI, pp. 7007–7014 (2020)

Mining Sequential Patterns in Uncertain
Databases Using Hierarchical Index

Structure

Kashob Kumar Roy1 , Md Hasibul Haque Moon1 ,
Md Mahmudur Rahman1 , Chowdhury Farhan Ahmed1(B) ,

and Carson K. Leung2

1 Department of Computer Science and Engineering, University of Dhaka,
Dhaka, Bangladesh

{mahmudur,farhan}@du.ac.bd
2 Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada

kleung@cs.umanitoba.ca

Abstract. In this uncertain world, data uncertainty is inherent in many
applications and its importance is growing drastically due to the rapid
development of modern technologies. Nowadays, researchers have paid
more attention to mine patterns in uncertain databases. A few recent
works attempt to mine frequent uncertain sequential patterns. Despite
their success, they are incompetent to reduce the number of false-positive
pattern generation in their mining process and maintain the patterns effi-
ciently. In this paper, we propose multiple theoretically tightened pruning
upper bounds that remarkably reduce the mining space. A novel hierar-
chical structure is introduced to maintain the patterns in a space-efficient
way. Afterward, we develop a versatile framework for mining uncertain
sequential patterns that can effectively handle weight constraints as well.
Besides, with the advent of incremental uncertain databases, existing
works are not scalable. There exist several incremental sequential pat-
tern mining algorithms, but they are limited to mine in precise databases.
Therefore, we propose a new technique to adapt our framework to mine
patterns when the database is incremental. Finally, we conduct exten-
sive experiments on several real-life datasets and show the efficacy of our
framework in different applications.

Keywords: Sequential pattern mining · Uncertain database ·
Weighted sequential patterns · Incremental database

1 Introduction

Sequential Pattern Mining is an important and challenging data mining prob-
lem [11,13] with broad applications where the order of the itemsets or events
in a sequence is important. There are many applications such as environmen-
tal surveillance, medical diagnosis, security, and manufacturing systems etc.,

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 29–41, 2021.
https://doi.org/10.1007/978-3-030-75765-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_3&domain=pdf
http://orcid.org/0000-0003-4691-7060
http://orcid.org/0000-0003-4392-6084
http://orcid.org/0000-0002-9571-5185
http://orcid.org/0000-0002-6101-4591
http://orcid.org/0000-0002-7541-9127
https://doi.org/10.1007/978-3-030-75765-6_3

30 K. K. Roy et al.

where uncertainty is inherent in nature due to several limitations: (i) our limited
understanding of reality; (ii) limitations of the observation equipment; or (iii)
limitations of available resources for the analysis of data, etc. A large number
of approaches have been introduced in [1,5,7,8] to mine frequent itemsets from
uncertain databases. Algorithms proposed in [3,15] mine sequential patterns in
uncertain databases. However, in the real world, not all items are equally impor-
tant. For example, in biomedical data analysis, some genes are more vital than
others in causing a particular disease. Weighted pattern mining methods are
proposed in [6,14] for this task. Rahman et al. [12] handle weight constraints in
mining uncertain sequential patterns by maintaining weight and expected sup-
port threshold separately. Thus, it can efficiently mine sequences having high
frequencies with high weights but incompetent to mine sequences which have low
frequencies with high weights or high frequencies with low weights. Besides, exist-
ing uncertain sequential pattern mining methods have some vital limitations such
as: (i) generation of a huge number of false-positive patterns due to the pruning
upper bounds; (ii) inefficient maintenance of candidate patterns, which results
in costly support computation; and (iii) lack of a sophisticated weight upper
bound to mine weighted patterns efficiently while maintaining anti-monotone
property. To address these limitations, we propose multiple novel pruning upper
bounds that are theoretically tightened than respective upper bounds already
introduced in the literature and utilize a hierarchical index structure to maintain
potential candidate patterns in a space-efficient way.

Moreover, with the advent of modern technologies, most databases are
dynamic and incremental in nature. A large number of researches [2,4,9] have
been successful in incremental pattern mining. But none of the existing uncer-
tain sequential pattern mining algorithms are effective in handling the dynamic
nature because running batch algorithms from scratch after each increment is
not a feasible solution in the sense of time. To the best of our knowledge, our
proposed technique is the first work to mine sequential patterns in incremental
uncertain databases. In summary, our contributions in this work are as follows,

1. Three theoretically tightened upper bounds: expSupcap, wgtcap, wExpSupcap

to reduce the search space of mining potential candidate patterns.
2. A novel hierarchical index structure, USeq-Trie, to maintain the patterns.
3. A faster method, SupCalc, to compute expected support of patterns.
4. An efficient algorithm, FUSP , to mine sequential patterns in uncertain

database.
5. An approach InUSP for incremental mining of uncertain sequential patterns.

Extensive experimental analysis validates the efficacy of our proposed methods
and shows that our methods consistently outperform other baseline approaches.

2 Background Study

Related Works. Among a plethora of research on sequential pattern mining,
GSP [13] works based on candidate generation and testing paradigm whereas

Uncertain Seq. Mining With Hier. Index Struct. 31

Table 1. Initial database, DB

Id Uncertain sequence

1 (a:0.9, c:0.6) (a:0.7) (b:0.3)(d:0.7)

2 (a:0.6, c:0.4) (a:0.5) (a:0.4, b:0.3)

3 (a:0.3) (a:0.2, b:0.2) (a:0.4, b:0.3, g:0.5)

4 (a:0.1, c:0.1) (a:0.3, b:0.1, c:0.4)

5 (d:0.1) (a:0.4) (d:0.1) (a:0.5, c:0.6)

6 (b:0.3) (b:0.4) (a:0.1) (a:0.1, b:0.2)

Table 2. Weight table

Item Weight Item Weight

a 0.8 b 1.0

c 0.9 d 0.9

e 0.7 f 0.9

g 0.8

PrefixSpan [11] follows the divide-and-conquer approach to mine frequent
sequences in precise databases. PrefixSpan [11] expands patterns by recursively
projecting the database into smaller parts and mining local patterns in those
prefix-projected databases. Uncertain data has gained great attention in recent
years [1,6,10,12,15]. Inspired by PrefixSpan, U-PrefixSpan [10] mines proba-
bilistic frequent sequences whereas uWSequence [12] mines expected support-
based frequent sequences with weight constraints in uncertain databases. uWSe-
quence [12] uses expSupporttop upper-bound to prune the mining space of
patterns. They use weight threshold as an extra level of filtering which is
not aligned with the concept of weighted support defined in [14] for precise
databases. Following [14], we introduce the concept of weighted expected sup-
port in uncertain sequential pattern mining that considers both expected sup-
port and weight of patterns simultaneously.Further, researchers proposed vari-
ous algorithms in [2,4,9] to handle increments in databases. IncSpan [2] intro-
duces the concept of buffering semi-frequent sequences (SFS) mined from initial
databases which may become frequent after future increments. WIncSpan [4]
finds weighted sequential patterns in incremental precise databases. Despite the
promising significance of incremental uncertain sequential pattern mining in dif-
ferent applications, existing works are not capable to mine patterns efficiently.
Hence, we introduce a new concept of promising frequent sequences (PFS) to
improve the efficiency

Preliminaries. Let I = {i1, i2,..., in} be the set of all items in a database.
An event ei = (i1, i2,...,ik) is a subset of I. A sequence is an ordered set
of events. For example, α=<(i2), (i1, i5), (i1)> consists of 3 consecutive events.
In uncertain sequences, items in each event are assigned with their existen-
tial probabilities such as α =<(i2: P i2), (i1: P i1 , i5: P i5), (i1: P i1)>. An
uncertain sequential database is a collection of uncertain sequences shown in
Table 1. Support of a sequence α in a database is the number of data tuples
that contain α as a subsequence. In this paper, we follow the definition of
expected support (expSup) for a sequence (items within the sequence are inde-
pendent) which is defined in [12] as the sum of the maximum possible probabil-
ities of that sequence in each data tuple where the probability of a sequence is

32 K. K. Roy et al.

computed simply by multiplying the uncertainty value of its all items. A sequence
α can be extended with an item i in two ways: i) i-extension, insert i to the
last event of α, and ii) s-extension, add i to α as a new event. Weight of a
sequence (sWeight) is the sum of its each individual item’s weight divided by
the length of the sequence [14] i.e., the total number of items in the sequence.
According to Table 1 and Table 2, for sequence α = <(a)(b)>, support of α
is 5, expSup(α) = max(0.9 × 0.3, 0.7 × 0.3) + max(0.6 × 0.3, 0.5 × 0.3) +
max(0.3 × 0.2, 0.3 × 0.3, 0.2 × 0.3) + (0.1 × 0.1) + 0 + (0.1 × 0.2) = 0.57, and
sWeight(α) = (0.8 + 1.0)/2 = 0.9 as per the definitions.

3 A Framework for Mining Uncertain Sequential
Patterns

In this section, we propose a new framework for mining sequential patterns
in uncertain databases efficiently with/without the weight constraints in min-
ing patterns followed by discussing the incremental mining approach when the
database would be of dynamic nature.

Definitions. maxPr is the maximum possible probability of a sequence α =<
(i1)(i2)...(i|α|) > in the whole database [12],

maxPr(α) =
|α|∏

k=1

(P̂DB|αk−1(ik)) where αk−1 =< (i1)...(ik−1) > (1)

where P̂DB|α(i) = maximum possible probability of item i in a database DB | α
that is the projection of original database with α as current prefix [11]. Moreover,
[12] shows that the maxPr measure holds anti-monotone property. Similar to
maxPr, we define another measure maxPrS(α) as the maximum probability of
a pattern α in a single data sequence S. According to Table 1, the maxPr(<
(c)(a) >) = 0.6×0.7 = 0.54 and maxPr(< (ac) >) = 0.9×0.6 = 0.54; where for
the 1st data sequence, maxPrS(<(a)(b)>) = max(0.9 × 0.3, 0.7 × 0.3) = 0.27.
We define an upper bound of expected support of a sequence α of length m as,

expSupcap(αm) = maxPr(αm−1) ×
∑

∀S∈(DB|αm−1)

maxPrS(im) (2)

Lemma 1. For a sequence α, expSupcap(α) ≥ expSup(α) and expSup(α) ≥
expSup(α

′
),where α ⊆ α

′
; ∴ expSupcap(α) ≥ expSup(α

′
). If expSupcap(α) < a

minimum threshold γ holds, then expSup(α) < γ and expSup(α′) < γ,∀α
′ ⊇ α

must be true. Thus it satisfies the anti-monotonicity constraints.

Lemma 2. For a sequence α, expSupcap(α) ≤ expSupporttop(α)1always holds.
Hence, expSupcap(α) significantly reduces the search space in mining patterns
and leads to a smaller number of false positive patterns than expSupporttop(α).
1 uWSequence[12] defines the upper bound of expected support as expSupporttop(α)

= maxPr(αm−1) × maxPr(im) × supim where supim is the support count of im.

Uncertain Seq. Mining With Hier. Index Struct. 33

Later on, we define few more definitions where each item has a weight to indicate
its importance. We will be consistent with weighted pattern mining in following
sections. Note that our framework is easily adaptable to mine patterns without
weight constraints that is discussed in the experiments section. Following the con-
cept of weighted support for precise database in [14], we define weighted expected
support of a sequence α as WES(α) = expSup(α) × sWeight(α). According to
Tables 1 and 2, WES(<(a)(b)>) = 0.57 × 0.9 = 0.513. A sequence α is called
weighted sequential pattern if WES(α) meets a minimum threshold. This thresh-
old is defined to be minWES = min sup × (size of the whole database) ×
WAM × wgtFct. Here, min sup is user given value in range [0,1] related to
a sequence’s frequency, WAM is weighted arithmetic mean of all item-weights
present in the database and defined as WAM = (

∑
i∈I wi × fi)/

∑
i∈I fi, where

w i and f i are the weight and frequency of item i in current database. Hence, the
value of WAM changes after each increment in the database. wgtFct is a user-
given positive value chosen to tune the mining of weighted sequential patterns.
Choice of min sup and wgtFct depends on how much frequent and weighted
patterns are required in the respective applications.

However, the measure WES does not hold anti-monotone property as any
item with higher weight can be appended to a weighted-infrequent sequence and
the resulting super-sequence may become weighted-frequent. So, to employ anti-
monotone property in mining weighted frequent patterns, we propose two other
upper bound measures, wgtcap and wExpSupcap, which are used as upper bound
of weight and weighted expected support respectively. Upper bound of weight of
a sequence α, wgtcap(α) is defined as,

wgtcap(α) = max(mxWDB(DB|α),mxWs(α)) (3)

where mxWDB(DB|α) is the maximum weight of all frequent items in the α-
projected database and mxWs(α) is the maximum weight of all items in the
sequence α. To enforce the anti-monotone property of weighted frequent patterns
in precise databases, authors in [4,14] make an attempt to use the maximal
weight of all items in database as upper bound of weight of a sequence. It is
obvious to see that wgtcap of a sequence is always less than or equal to the
maximal weight of all items in database. As wgtcap becomes tighter, it generates
fewer false positive patterns compared to the existing methods.

Lemma 3. For any sequence α, wgtcap(α) is at least equal to the sWeight value
of α and all of its supersequences, α′. Because, wgtcap(α) ≥ sWeight(α) and
wgtcap(α) ≥ wgtcap(α

′
), where α ⊆ α

′
; ∴ wgtcap(α) ≥ sWeight(α

′
).

The proposed upper bound of weighted expected support is defined as,

wExpSupcap(α) = expSupcap(α) × wgtcap(α) (4)

Lemma 4. For a sequence α, if wExpSupcap(α) < minWES, then none of
α and its supersequences can be weighted frequent. Because, wExpSupcap(α) ≥
WES(α), and wExpSupcap(α) ≥ WES(α

′
), for all α ⊆ α

′
.

34 K. K. Roy et al.

According to Lemma 4, we can safely define our pruning condition to reduce the
search space of patterns in pattern-growth based mining as follows:

If for any k-sequence α, wExpSupcap(α) < minWES, then searching pos-
sible extension of α to (k+1)-sequence can be pruned, i.e., neither α nor any
super sequences of α would be frequent at all.

Moreover, Lemma 4 ensures that our proposed algorithms do not generate
any false negative patterns. However, as wExpSupcap(α) ≥ WES(α), some pat-
terns may be discovered with wExpSupcap(α) ≥ minWES but WES(α) <
minWES. An extra scan of the database is required to remove them. We have
omitted proof of the lemmas due to space limitation.

3.1 USeq-Trie: Maintenance of Patterns

We use a hierarchical data structure, named as USeq-Trie, to store uncertain
sequences and update their weighted expected support efficiently. Each node in
the USeq-Trie represents an item in a sequence and will be created as either
s-extension or i-extension from its parent node. Recall that a sequence is an
ordered set of events, and an event is a set of items. In s-extension, the edge
label is added as a different event. In i-extension, it is added in the same event
as its parent. Each edge is labeled by an item. The edge labels in a path to
a node from the root form a pattern. For example, <(a)>, <(b)>, <(ab)>,
<(c)>, <(b)(c)>, <(d)>, <(cd)> and <(c)(d)> are sequential patterns which
are stored into USeq-Trie shown in Fig. 1. In this figure, the s-extensions are
denoted by the solid lines and i-extensions by dashed lines. For simplicity of the
figure, we are not showing edge labels here. Each node represents a (weighted)
frequent uncertain sequence and stores its (weighted) expected support. Now,
we present an efficient method, SupCalc, to calculate expSup or WES for each
candidate pattern stored in a USeq-Trie.

root
(d):0.81

(c):0.27

(cd):0.0

(c)(d):0.24

(b):0.7

(b)(c):0.2

(a):0.72

(ab):0.49

0.8 0.0 0.9 0.0 0.0

0.0 0.0 0.0 0.3 0.0
0.0 0.7 0.6 0.0 0.0

0.0 0.0 0.0 0.0 0.9
1.0 1.0 1.0 1.0 1.0

WES(<(a)>) = 0+0.9*0.8 = 0.72

0.0 0.0 0.54 0.0 0.0

WES(<(ab)>)
= 0+0.54*(0.8+1.0)/2 = 0.49

WES(<(b)>)
= 0+0.7*1.0 = 0.7

WES(<(b)(c)>)
= 0+0.21*(1.0+0.9)/2 = 0.2

WES(<(c)>) = 0+0.3*0.9 = 0.27

WES(<(c)(d)>)
= 0+0.27*(0.9+0.9)/2

= 0.24

WES(<(cd)>)
= 0+0.0*(0.9+0.9)/2 = 0.0

WES(<(d)>) = 0+0.9*0.9 = 0.81

0.0 0.0 0.0 0.21 0.0 0.0 0.0 0.0 0.0 0.27

0.0 0.0 0.0 0.0 0.0

(a:0.8)(b:0.7) (a:0.9, b:0.6) (c:0.3)(d:0.9)

the considering data sequence

<(e1) (e2) (e3) (e4) (e5)>

i-extension

s-extension

Initial WES
of pattern s

α =

Fig. 1. An efficient way to compute WES of patterns stored into USeq-Trie

Uncertain Seq. Mining With Hier. Index Struct. 35

Support Calculation, SupCalc. It reads sequences from the dataset one by
one and updates the support of all patterns in USeq-Trie against them. For a
sequence α =< e1e2..en > (where ei is an event/itemset), the steps are following,

1. Define an array of size n at each node. For the root node, all values are 1.0.
At a particular node, the maximum expected support of pattern s from root
to that node is stored at proper indices of the node’s array - are the ending
positions of s as a sub-sequence in α. The values at other indices are 0.0.

2. While traversing the USeq-Trie in depth-first order: (i) For a node created by
a s-extension with an item ik, iterate over all events in α and calculate the
support of the current pattern s (ends with ik in a new event) by multiplying
the probability of item ik in current event em with the maximum probability
in the parent node’s array up to the event em−1. The resulting support is
stored at position m in the following node’s array. (ii) For i-extension, the
support will be calculated by multiplying the probability of the item ik in em

with the value at position m in the parent node’s array and stored at position
m in the following child node’s array. After that, the maximum value in the
resulting array multiplied by its weight will be added to the weighted expected
support of the current pattern at the corresponding node.

3. Use the resultant array to calculate the weighted expected support of all super
patterns while traversing the next child nodes.

Figure 1 shows the resulting USeq-Trie after updating WES for all the stored
patterns against a sequence, α=<(a:0.8)(b:0.7)(a:0.9,b:0.6)(c:0.3)(d:0.9)>.

Complexity of SupCalc. It takes O(N ×|α|) for updating N number of nodes
against the sequence α. Therefore, the total time complexity of actual support
calculation is O(|DB| × N × k) where k is the maximum sequence length in
the dataset. It outperforms the procedure used in uWSequence [12] which needs
O(|DB| × N × k2) to calculate a sequence’s actual expected support. Moreover,
we can remove false-positive patterns and find frequent ones from the USeq-Trie
in O(N). Thus, the use of USeq-Trie has made our method efficient.

3.2 FUSP: Faster Mining of Uncertain Sequential Patterns

Inspired by PrefixSpan [11], we propose FUSP to mine weighted sequential pat-
terns in an uncertain database. It uses the wExpSupcap measure and SupCalc
method to reduce the search space and improve the efficiency. The sketch of
FUSP algorithm is as follows.

1. Process the database such that the existential probability of an item in a
sequence is replaced with the maximum probability of all of its next occur-
rences in this sequence. This idea is similar to the preprocess function of
uWSequence [12]. This preprocessed database will be used to run the Pre-
fixSpan-like mining approach to find the candidates for frequent sequences.
While processing, sort the items in an event/itemset in lexicographical order.

2. Calculate WAM of all items present in the current database and calculate
the threshold of weighted expected support, minWES.

36 K. K. Roy et al.

3. Find length-1 frequent items and for each item, project the preprocessed
database into smaller parts and expand longer patterns recursively. Store the
potential candidates patterns into a USeq-Trie.

4. While growing longer patterns, extend current prefix α to α′ with an item β
as s-extension or i-extension according to the pruning condition.

5. Use of wExpSupcap value instead of actual support generates few false-
positive candidates. Scan the whole actual database, update weighted
expected supports and prune false-positive candidates based on their WES.

3.3 InUSP: Incremental Mining of Uncertain Sequential Patterns

Existing incremental works [2,4] follow the technique to lower the minimum sup-
port threshold by a user-given buffer ratio, μ ∈ [0, 1], and find almost frequent
sequences called SFS - stating that most of the frequent patterns in the appended
database will either come from SFS or already frequent sequences (FS) in the
initial database. Inspired by this concept, we use minWES

′
= minWES × μ

to find SFS where minWES
′ ≤ WES < minWES, along with FS where WES

≥ minWES. However, we argue that SFS is not necessarily enough to capture
new frequent patterns in future increments. Let us consider some cases: (a) an
increment to the database may introduce a new sequence which was initially
absent in both FS and SFS but frequently appeared in later increments; (b)
a sequence had become infrequent after an increment but could have become
semi-frequent or even frequent again after next few increments. There are many
real-life cases where new frequent patterns might appear in future increments due
to its seasonal behavior or different other characteristics. Existing approaches do
not handle these cases. To address these cases, we propose to maintain another
set of sequences denoted as Promising Frequent Sequences (PFS) which are nei-
ther globally frequent nor semi-frequent after each increment ΔDB introduced
into DB but their WES satisfy a user-specified threshold that can be defined as
LWES = γ × μ × min sup × |ΔDB| × WAM × wgtFct where γ is a constant
factor, to find locally frequent patterns in ΔDB at a particular point. Here, the
globally frequent or semi-frequent implies when considering the size of the entire
database, and locally frequent when using the size of only one increment. Intu-
itively, we can say that locally frequent patterns may become globally frequent or
semi-frequent after next few increments. The patterns whose WES values do not
meet the local threshold LWES, are very unlikely to become globally frequent
or semi-frequents. Thus maintaining PFS may significantly increase the perfor-
mance of an algorithm in finding the almost complete set of frequent patterns
after each increment. Therefore, we devise InUSP to incorporate the concept of
PFS in mining patterns. Instead of performing FUSP from scratch after each
increment, InUSP works only on ΔDB. Initially, it runs FUSP once to find out
FS and SFS from initial database and uses USeq-Trie to store FS and SFS. In
addition, a different USeq-Trie, which is initially empty, is used to store PFS.

After each increment ΔDB, the steps of InUSP algorithm are as follows:

1. Update the values of database size, WAM, minWES, and minWES
′
.

Uncertain Seq. Mining With Hier. Index Struct. 37

2. Run FUWS only in ΔDB to find locally frequent sequences (LFS) against
a local threshold, LWES, and store them into USeq-Trie. Users can choose
LWES based on the aspects of application.

3. For all α in FS, SFS and PFS, update WESα using the SupCalc method.
– if WESα < LWES, delete α’s information.
– else if WESα < minWES′, move α to PFS′.
– else if WESα < minWES, move α to SFS′.
– else move α to FS′.

4. Move new patterns α from LFS to PFS′ or SFS′ or FS′ based on WESα.
5. Use FS′, SFS′, and PFS′ as FS, SFS, and PFS respectively for the next

increment.

Fig. 2. FUSP outperforms uWSequence in candidate pattern generation

Table 3. Runtime (seconds) comparison between uWSequence and FUSP

Sign dataset Kosarak dataset Fifa dataset

min sup uWSeq FUSP min sup uWSeq FUSP min sup uWSeq FUSP

20% 717.69 10.64 0.25% 5942.06 348.32 20% 1615.50 12.73

18% 1116.75 18.34 0.22% 7102.27 443.13 18% 2943.45 25.85

15% 2052.04 32.64 0.2% 8581.56 475.12 17% 4003.97 34.79

12% 4316.43 72.39 0.18% 14622.38 659.30 16% 6114.34 56.05

10% 7275.41 122.94 0.15% 33864.18 1029.70 15% 9033.86 74.95

4 Experimental Results

We have evaluated our algorithms using several real-life and popular datasets
such as Sign, Kosarak, Fifa, Leviathan, Retail, Foodmart, Chainstore, and Online
Retail from SPMF 2 data repository. We assigned probability and weight values

2 http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php.

http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

38 K. K. Roy et al.

to the items of these datasets as all of them were precise and none of them
contained weight information. We followed normal distribution with mean of
0.5 and standard deviation of 0.25 (for probabilities) or 0.125 (for weights) to
generate these values. We implemented our algorithms in Python programming
language and a machine with CoreTM i5-9600U 2.90GHz CPU and 8GB RAM.

Performance of FUSP . We have compared with the recent algorithm, uWSe-
quence [12], which proposed a framework where the definition of weighted
sequential pattern in uncertain databases is different from ours. Furthermore,
uWSequence [12] outperforms existing methods for mining sequential patterns
also without weight constraints in uncertain databases. So, to show the efficiency
of FUSP in mining uncertain sequential patterns without weight constraints, we
have compared FUSP with the current best uWSequence by setting the weights
of all items to 1.0 which brings both algorithms under a unifying framework.

Fig. 3. Completeness comparison
between WIncSpan′ and InUSP

Fig. 4. Runtime comparison between
WIncSpan′ and proposed InUSP

(a) False Candidate Generation: Recall that both FUSP and uWSequence
work like PrefixSpan using some upper bound of actual expected support value
and thus, generate some false positive candidates. From Fig. 2, we can see that
FUSP generates a smaller number of false candidates for any support threshold
as it uses a tighter upper bound. For example, in the Sign (dense) dataset with
15% minimum support threshold, it generates 11 times fewer candidates com-
pared to uWSequence. In Kosarak (sparse) with 0.15% support threshold, FUSP
generates only 79.7% false candidates where for uWSequence, it is 97.4%.

(b) Runtime Analysis: FUSP needs to maintain a smaller number of can-
didate patterns in its mining process and uses a faster method to calculate
expected support of a pattern. Thus, it is a way faster than the uWSequence
for any support threshold. Results shown in Table 3 validates this claim. We can
see FUSP is 50–70 times faster in Sign dataset for different thresholds. Interest-
ingly, the difference in their runtime increases with the decrease in the threshold
parameter. We have found similar results also in other datasets.

Uncertain Seq. Mining With Hier. Index Struct. 39

Performance of the Incremental Technique, InUSP . We have modified
the current best incremental solution, WIncSpan [4] to work in uncertain data
by replacing the core PrefixSpan-like algorithm by FUSP so that both the pro-
posed InUSP and modified WIncSpan′ mine weighted sequential patterns from
uncertain database. The baseline approach is running FUSP from scratch in the
whole updated database after each increment. We define completeness of the
result from an incremental solution to be the percentage of patterns found with
respect to the result of the baseline. To use the datasets as incremental ones, we
used the first 50% of the dataset to be the initial part and then introduced 5
increments of random sizes3, unless mentioned otherwise.

(a) Analysis with respect to buffer ratio: Buffer ratio, μ = 1.0 means
no buffer and lower values mean larger buffers to store semi-frequent sequences.
Thus, with lower μ, incremental approaches generate and maintain more pat-
terns which help to increase the completeness of their result. However, due
to local mining in incremented portions and maintaining additional promising
sequences, InUSP always achieves more completeness than WIncSpan′. For
the same reason, it also requires slightly more time than WIncSpan′. From
Fig. 3 and Fig. 4, we can see the trade-off between completeness and runtime.
We observe that difference in completeness is larger in datasets like Retail and
Foodmart (market-basket) where increments contain frequent items or introduce
new items frequently than datasets like Leviathan (word sequences) where the
initial database contains almost all of the frequent sequences. By repeating this
experiment in other datasets and by varying the support threshold, we find that
though InUSP consumes slightly more time, it outperforms WIncSpan′ in terms
of completeness of result in every dataset for any combination of μ and min sup.

Fig. 5. Comparison of scalability using
Kosarak dataset

Fig. 6. Change in completeness for dif-
ferent initial sizes of a dataset

(b) Scalability Analysis: To test scalability we have run InUSP, WIncSpan′

and the baseline approach in several large datasets introducing several incre-
ments. Figure 5 shows the result for Kosarak dataset with min sup = 0.1%.
3 For the Retail market-basket dataset, we used the first one-fifth transactions (1st

month) as the initial portion and then 4 increments to represent the next 4 months.

40 K. K. Roy et al.

InUSP and WIncSpan′ requires slightly more time at the initial point as they
have to find and buffer the semi-frequent patterns for future use. After that,
at any point of dataset increment, both of them take significantly less time to
find the updated set of frequent sequences. Our proposed technique outperforms
the baseline approach in terms of scalability and although it takes slightly more
time than WIncSpan′, the difference is negligible as InUSP provides better
completeness.

(c) Varying Initial Size of Datasets: We considered different initial sizes for
this analysis and introduced required number of increments (each sized 50–80%
of the initial size) to use the full dataset. Figure 6 shows the result in Chainstore
and Online Retail dataset with min sup = 0.05% for both. We have found that
the smaller the initial dataset, the more are the sequences to be found as new
patterns after the increments. The completeness of incremental approaches also
depends on the distribution of items among the increments. As a result, the
completeness of WIncSpan′ is competitive only if the initial dataset contains
sufficient sequences compared to the total size of all future increments. However,
the completeness of InUSP is less affected by initial size as it also mines in the
incremented portions.

5 Conclusions

In this work, our proposed FUSP algorithm can mine sequential patterns in
uncertain databases with or without weight constraints. It uses multiple theo-
retically tightened upper bounds in pruning technique and hence, generates a
smaller number of false-positive patterns compared to the state-of-the-art works.
Furthermore, the use of a space-efficient data structure USeq-Trie for pattern
maintenance and an efficient method SupCalc for support calculation, has made
FUSP superior to other works in terms of runtime. In case of incremental mining,
the concept of promising frequent sequences lifts the effectiveness of our InUSP
algorithm. The experimental analysis shows that our proposed techniques can be
great tools for a lot of real-life applications such as medical records, sensor net-
work, user behavior analysis, privacy-preserving data mining, that use uncertain
sequential data. We hope that the concept of USeq-Trie structure and promis-
ing frequent sequences will help researchers to design efficient mining methods
in related fields (e.g., uncertain data streams, spatio-temporal data, etc.).

Acknowledgement. This work is partially supported by NSERC (Canada) and
University of Manitoba.

References

1. Ahmed, A.U., Ahmed, C.F., Samiullah, M., Adnan, N., Leung, C.K.S.: Mining
interesting patterns from uncertain databases. Inf. Sci. 354, 60–85 (2016)

2. Cheng, H., Yan, X., Han, J.: IncSpan: incremental mining of sequential patterns
in large database. In: ACM SIGKDD, pp. 527–532 (2004)

Uncertain Seq. Mining With Hier. Index Struct. 41

3. Ge, J., Xia, Y., Wang, J.: Mining uncertain sequential patterns in iterative MapRe-
duce. In: Cao, T., et al. (eds.) PAKDD 2015, Part II. LNCS (LNAI), vol. 9078, pp.
243–254. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18032-8 19

4. Ishita, S.Z., Noor, F., Ahmed, C.F.: An efficient approach for mining weighted
sequential patterns in dynamic databases. In: Perner, P. (ed.) ICDM 2018. LNCS
(LNAI), vol. 10933, pp. 215–229. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-95786-9 16

5. Le, T., Vo, B., Huynh, V.N., Nguyen, N.T., Baik, S.W.: Mining top-k frequent
patterns from uncertain databases. Appl. Intell. 50, 1487–1497 (2020). https://
doi.org/10.1007/s10489-019-01622-1

6. Li, Z., Chen, F., Wu, J., Liu, Z., Liu, W.: Efficient weighted probabilistic frequent
itemset mining in uncertain databases. Expert Syst. e12551 (2020)

7. Lin, C.W., Hong, T.P.: A new mining approach for uncertain databases using
CUFP trees. Expert Syst. Appl. 39(4), 4084–4093 (2012)

8. Lin, J.C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P., Tseng, V.S.: Weighted
frequent itemset mining over uncertain databases. Appl. Intell. 44(1), 232–250
(2015). https://doi.org/10.1007/s10489-015-0703-9

9. Lyu, X., Ma, H.: An efficient incremental mining algorithm for discovering sequen-
tial pattern in wireless sensor network environments. Sensors 19(1), 29 (2019)

10. Muzammal, M., Raman, R.: Mining sequential patterns from probabilistic
databases. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II.
LNCS (LNAI), vol. 6635, pp. 210–221. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-20847-8 18

11. Pei, J., et al.: Mining sequential patterns by pattern-growth: the PrefixSpan app-
roach. IEEE TKDE 16(11), 1424–1440 (2004)

12. Rahman, M.M., Ahmed, C.F., Leung, C.K.S.: Mining weighted frequent sequences
in uncertain databases. Inf. Sci. 479, 76–100 (2019)

13. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and perfor-
mance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT
1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0014140

14. Yun, U.: A new framework for detecting weighted sequential patterns in large
sequence databases. Knowl.-Based Syst. 21(2), 110–122 (2008)

15. Zhao, Z., Yan, D., Ng, W.: Mining probabilistically frequent sequential patterns in
large uncertain databases. IEEE TKDE 26(5), 1171–1184 (2013)

https://doi.org/10.1007/978-3-319-18032-8_19
https://doi.org/10.1007/978-3-319-95786-9_16
https://doi.org/10.1007/978-3-319-95786-9_16
https://doi.org/10.1007/s10489-019-01622-1
https://doi.org/10.1007/s10489-019-01622-1
https://doi.org/10.1007/s10489-015-0703-9
https://doi.org/10.1007/978-3-642-20847-8_18
https://doi.org/10.1007/978-3-642-20847-8_18
https://doi.org/10.1007/BFb0014140
https://doi.org/10.1007/BFb0014140

Similarity Forests Revisited: A Swiss
Army Knife for Machine Learning

Stanis�law Czekalski and Miko�laj Morzy(B)

Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland
{Stanislaw.Czekalski,Mikolaj.Morzy}@put.poznan.pl

Abstract. Random Forests are one of the most reliable and robust
general-purpose machine learning algorithms. They provide very com-
petitive baselines for more complex algorithms. Recently, a new algo-
rithm has been introduced into the family of decision tree learners –
Similarity Forests, aiming at mitigating some of the well-known deficien-
cies of Random Forests. In this paper we extend the originally proposed
Similarity Forests algorithm to one-class classification, multi-class clas-
sification, regression and metric learning tasks. We also introduce two
new criteria for split evaluation in regression learning. The results of
conducted experiments show that Similarity Forests can be a competi-
tive alternative to Random Forests, in particular, when high quality data
representation is difficult to obtain.

Keywords: Decision trees · Random forests · Similarity forests

1 Introduction

Despite current enchantment with deep neural networks, many traditional classi-
fication and regression algorithms can compete successfully with neural models.
Random Forests [6] stand out as an example of such methods. Over the years,
Random Forests have consistently outperformed other learners on a wide spec-
trum of datasets [10]1. One of the most notable features of Random Forests is
their resistance to over-fitting. Random Forests avoid over-fitting by combining
answers from many independently induced decision trees, and each individual
decision tree is built based on a subset of input features, thus forcing the model
to search for multiple relationships between input features and the target fea-
ture. Another advantage of Random Forests (especially when compared with
neural models) is the ability of the algorithm to produce a strong learner even
in the case of data scarcity. Random Forests can be built using relatively small
training sets, which makes them a perfect tool for tasks where the curating of
large quantities of labeled data is prohibitively expensive.

A feature of Random Forests which is often praised by machine learning
practitioners, is their versatility. The basic formulation of the algorithm can
1 Although it should be noted that methodological objections have been raised [22]

regarding this often cited study.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 42–53, 2021.
https://doi.org/10.1007/978-3-030-75765-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_4&domain=pdf
http://orcid.org/0000-0002-2905-9538
https://doi.org/10.1007/978-3-030-75765-6_4

Similarity Forests Revisited: A Swiss Army Knife for Machine Learning 43

be readily applied to classification and regression tasks [16], but a straightfor-
ward modification turns Random Forests into Isolation Forests, a simple yet
effective outlier detection mechanism [17]. Finally, Random Forests are among
few machine learning algorithms which are inherently interpretable [13]. Today,
when algorithmic fairness and machine learning interpretability are becoming
indispensable elements of machine learning workflows, this property of Random
Forests makes them the go-to algorithm for machine learning tasks.

However, Random Forests also suffer from certain deficiencies. First and fore-
most, the algorithm is fully dependent on the tabular representation of the
training data. This makes the algorithm unsuitable for tasks in which input
data structures are complex. This is not to say that Random Forests cannot
be applied to time-series forecasting [21], text classification [23], or genomics
data [8], but these applications require purposeful feature engineering to align
the data representation with Random Forests requirements.

Recently, a new decision tree induction algorithm has been proposed, which
addresses some of the deficiencies of Random Forests. Similarity Forests [19] can
be readily applied to any data, irrespective of its representation. More surpris-
ingly, the algorithm does not need to know this representation, as it utilizes only
pairwise object similarity. So, Similarity Forests can be used to perform classifi-
cation, regression, or metric learning tasks with any kernel similarity function.

The original paper introducing Similarity Forests focused only on binary
classification tasks. In this paper we present extensions of the original frame-
work for one-class and multi-class classification. We also introduce two new
inequality-based metrics that can be used to perform regression tasks with Sim-
ilarity Forests. Last, but not least, we introduce a new metric learning method
based on Similarity Forests and we test this method on a clustering task. For each
task we perform extensive experimental evaluation. We manage to reproduce the
original results of Sathe and Aggarwal to a certain degree, but we also point out
to scenarios where the authors have chosen a weaker baseline, thus producing a
misleadingly optimistic impression of Similarity Forests effectiveness.

The original contribution of this paper includes:

– the extension of Similarity Forests to one-class and multi-class classification,
– the extension of Similarity Forests to regression,
– the introduction of a new metric learning method,
– the critical experimental comparison of Similarity Forests and Random

Forests on diverse datasets.

The code required to reproduce all experiments and the full implementation
of Similarity Forests compatible with the scikit-learn interface is available in
the GitHub repository2.

2 Related Work

Since their introduction [6], Random Forests have attracted intense attention
from the scientific community [4]. Much work has been directed at the evalu-
2 www.github.com/anonymous: anonymized for blind review.

www.github.com/anonymous

44 S. Czekalski and M. Morzy

ation of the consistency of Random Forests [9], at the analysis of the bias in
Random Forests [2], at the analysis of feature importance measures for Random
Forests [1], and at the extension of the original algorithm to new domains.

Ishwaran and Lu develop a modification of Random Forests for survival anal-
ysis [15]. Isolation Forests, a version of Random Forests for one-class classi-
fication, are introduced in [17]. In [18] Lucas et al. present Proximity Forests,
distance-based Random Forests designed for the classification of time-series data.
Yet another version of the original algorithm, called Extremely Randomized
Trees [11], proposes to increase the generalizability of the algorithm by random-
izing both feature- and cut-point choice when constructing the tree. Random
Forests have even inspired the design of neural networks, leading to the concept
of a Neural Random Forest [5], a multi-layer neural network which reconstructs
a given ensemble of regression trees.

Comparison-based Random Forests [12] are an algorithm very similar to Sim-
ilarity Forests. The main concept is identical: to define an internal splitting node
of a tree by a pair of objects which belong to different classes, and to partition the
remaining objects based on pairwise similarities to splitting objects. The authors
start with the Classification and Regression Tree (CART) algorithm [7] and
develop a procedure of branch splitting based on comparisons between objects.
This procedure is less efficient than the 1-D projection proposed for Similarity
Forests. Also, our extension of Similarity Forests to regression tasks includes
efficient measures of split impurity, which is missing from [12].

3 Methods

3.1 Original Similarity Forests

Similarity Forests algorithm has been introduced by Sathe and Aggarwal in [19].
It is a decision tree induction algorithm, in which splitting points are based on
pairwise similarities of randomly selected objects. The algorithm begins with all
objects in a single partition and proceeds to recursively split partitions until the
stopping criteria are met. Below we present the description of the algorithm,
following the original notation presented in [19].

Consider a set of objects O1, O2, . . . , On that can be represented in some
multidimensional space as vectors X̄1, X̄2, . . . , X̄n. The exact representation of
objects in this multidimensional space does not need to be known, only a simi-
larity measure is required. Selecting any two objects Oi and Oj defines a vector
pointing in space from X̄i to X̄j , and each hyper-plane perpendicular to this vec-
tor defines a split of the space into two partitions. The impurity of partitions can
be evaluated using traditional measures, such as the Gini index, the information
gain, or the gain ratio. For a given pair of objects (Oi, Oj) which defines the
current split, the hyper-plane moves along the vector of unit direction equal to

X̄j−X̄i

‖X̄j−X̄i‖ and evaluates the impurity of the splitting at each point. All remaining
objects Ok are projected on this unit direction by the dot product of X̄k − X̄i

and the unit direction. The projection is defined as:

Similarity Forests Revisited: A Swiss Army Knife for Machine Learning 45

P (X̄k) = (X̄k − X̄i) · X̄j − X̄i

‖X̄j − X̄i‖

=
X̄k · X̄j − X̄k · X̄i − X̄i · X̄j + X̄i · X̄i

‖X̄j − X̄i‖ =
Skj − Ski − Sij + Sii

‖X̄j − X̄i‖
where Sij denotes the similarity between objects Oi and Oj . The denominator

can also be expressed in terms of object similarities using

‖X̄j − X̄i‖ =
√

‖Xj‖2 + ‖Xi‖2 − 2X̄i · X̄j =
√

Sii + Sjj − 2Sij

but Sathe and Aggarwal notice that the value of the denominator is indepen-
dent of the object Ok being projected, so it only re-scales the position of P (X̄k)
on the 1-dimensional line between Oi and Oj , but it does not change the relative
ordering of the projected points. So, the projection P (X̄k) is proportional only
to four similarities: P (X̄k) ∝ Skj − Ski − Sij + Sii, and since Sij and Sii are
constant for a given splitting point, the only values required to compute the pro-
jection P (X̄k) are Skj and Ski. The authors refer to Skj − Ski as the scaled and
translated proxy for the projection P (X̄k). When evaluating a splitting point
for the current partition, the algorithm randomly selects two objects Oi and Oj ,
and sorts the remaining objects Ok{n

k=1} in the order of (Skj − Ski), computing
the weighted Gini index at each of the possible n + 1 splitting points. After
establishing the splitting point, the objects are partitioned by the hyper-plane
defined by the splitting point and the procedure continues recursively until the
desired depth of the tree is reached, or the size of the partition is too small to
consider splitting, or the partition is pure (i.e., consists of objects of the same
class). In the original paper the authors also experiment with a slightly modified
splitting procedure when, at each stage, instead of selecting random objects, the
pairs are always selected such that Oi and Oj belong to different classes. As the
authors note, this procedure leads to more discriminative splits.

Similarity Forests have several interesting properties, which make this
method an attractive alternative to Random Forests. Firstly, it is character-
ized by low computational complexity. Construction of a single split is linear in
the number of objects in the split. If the original dataset consists of n points,
and assuming that the height of the tree is of the order of O(n log n) (i.e., the
tree is approximately balanced), the construction time of the Similarity Forests
is also of the order of O(n log n). At inference, each object is compared against
O(log n) pairs of objects defining splitting points.

Another advantage of Similarity Forests is the fact that the representation X̄i

of Oi does not have to be known in advance. Also, if similarity metric is not avail-
able, the algorithm can use distances instead of similarities. Sathe and Aggarwal
propose to either use exact translation of distances to similarities using the
cosine law transformation (which is computationally expensive), or to approx-
imate similarities by squared distances. Furthermore, the algorithm uses only
pairwise comparisons between objects, thus allowing for the application of the
kernel trick [20].

46 S. Czekalski and M. Morzy

3.2 One-Class Classification

For the one-class classification problem (also known as the outlier detection prob-
lem) the adaptation of the original Similarity Forests algorithm is inspired by
the Isolation Forests algorithm [17] and its extensions [14]. We build a Similarity
Forests ensemble consisting of hundreds of independently induced trees. For each
object in the training set we record the level (i.e. distance from the root of the
tree) of the leaf into which the object has been separated. The intuition is that
if an object is typical, it should not be separated early during the tree induction
process. Similarly, if an object is an outlier, in many random splits the object
will be projected to one of the extremes on the 1-dimensional line defining the
split, thus becoming a part of a leaf node early in the induction process. In other
words, if few random hyper-planes are sufficient to isolate an object, it can be
considered an outlier.

3.3 Multi-class Classification

The original paper presented only the binary classification variant of Similarity
Forests. Obviously, this binary classifier can be trivially adapted to multi-class
setting using many techniques, such as Error Correcting Output Codes, or train-
ing a 1-versus-1 or 1-versus-all ensembles. Here we present a simple modification
of Similarity Forests which adapts this method to multi-class classification. The
algorithm proceeds as in the binary classification, but at each split only the first
object is chosen randomly. The second object is chosen from a different class,
and the best splitting point is determined based on the selected impurity met-
ric. The selection of the second object is then repeated for all remaining classes,
searching for the class which minimizes the impurity metric.

3.4 Regression

In addition to extending Similarity Forests for one-class and multi-class clas-
sification, we propose a simple modification which allows to use the algorithm
for regression. The only thing that has to change is the evaluation procedure
for potential splitting points. When we process a partition, as the first step we
compute the standard deviation of the target value within the partition. Then,
we randomly select the first object, and the second object is drawn only from
objects which differ from the first object’s target value by at least one standard
deviation.

Again, let us consider the set of objects O1, O2, . . . , On, and let y1, y2, . . . , yn

denote the numerical target value associated with every object. Let us fur-
ther assume that the splitting point is defined by two objects Oi and Oj ,
and the remaining objects are projected onto the 1-dimensional line connect-
ing Oi and Oj . Let the projection P (X̄k) of the object Ok define the parti-
tioning of the set of objects into two partitions Q−

K = {O1, O2, . . . Ok} and
Q+

K = {Ok+1, Ok+2, . . . On} laying on the 1-dimensional line to the left and to
the right of P (X̄k), respectively. We propose the following metrics to evaluate
the quality of splitting objects into partitions Q−

K and Q+
K :

Similarity Forests Revisited: A Swiss Army Knife for Machine Learning 47

– weighted variance: defined as Var(Q) =
∑

i:Oi∈Q
(yi−ȳ)2, where ȳ = 1

|Q|
∑

i:Oi∈Q
yi

is the average label value of objects in the partition. We are minimizing the
weighted variance of the split, i.e., arg mink(k

nVar(Q−
K) + n−k

n Var(Q+
K)).

– Thiel index : defined as T (Q) = 1
|Q|

∑
i:Oi∈Q

yi

ȳ lnyi

ȳ , where ȳ is the average label

value of objects in the partition. The Thiel index measures the difference
between the maximum possible entropy of the partition and the observed
entropy of the partition. As in the case of variance, we are minimizing the
average Thiel index of normalized by the size of partitions, i.e., we are looking
for arg mink(k

nT (Q−
K) + n−k

n T (Q+
K)).

– Atkinson index [3]: defined as A(Q) = 1− 1
ȳ (1

|Q|
∑

i:Oi∈Q

√
yi

(1−ε))
1

(1−ε) measures

not only the degree of inequality in the distribution, but it also indicates which
side of the distribution skews the distribution more. In this research we are
setting the inequality aversion parameter ε of the original index to 0.5. As
with the Thiel index we are minimizing arg mink(k

nA(Q−
K) + n−k

n A(Q+
K)).

3.5 Metric Learning

Another interesting application of Similarity Forests is the ability to model the
structure of the dataset in an unsupervised manner in order to learn a distance
metric in the data manifold. The method is straightforward and resembles the
approach used in one-class classification. An ensemble of trees is built, and all
training objects are partitioned by each tree. After Similarity Forests construc-
tion, for each pair of objects (Oi, Oj) the depth dt(Oi, Oj) at which objects are
split between partitions in the tree t is recorded. This procedure is repeated for
all T trees. The distance between objects is then calculated as follows:

d(Oi, Oj) =
1

1
T

∑T
t=1 dt(Oi, Oj)

=
T∑T

t=1 dt(Oi, Oj)

The maximum distance d(Oi, Oj) = 1 is obtained if objects Oi and Oj always
split at the root of the tree. The distance is symmetrical, however, it does not
satisfy either the identity axiom (d(Oi, Oi) �= 0) or the triangle inequality, so,
strictly speaking, this measure is not a proper metric.

4 Results

Table 1 presents the set of benchmark datasets used to evaluate Similarity
Forests. We use the same datasets as [19] with the goal of reproducing their
results, and we add several new datasets to test Similarity Forests in more chal-
lenging classification tasks (high dimensional data, multi-class classification) as
well as to verify the usability of Similarity Forests in regression tasks.

48 S. Czekalski and M. Morzy

Table 1. Datasets used in the experiments

Name Task Rows Features Name Task Rows Features

Heart Binary 270 13 Asian religions Multi-class 590 1023

Ionosphere scale Binary 352 34 Glass Multi-class 214 9

Breast cancer Binary 683 10 Seed Multi-class 210 7

German numer Binary 1000 24 Wine Multi-class 177 13

Madelon Binary 2000 500 Dna Multi-class 2000 180

Diabetes Binary 768 8 Segment Multi-class 2310 19

Australian Binary 690 14 Boston Regression 506 13

Splice Binary 1000 60 Mpg Regression 392 7

a1a Binary 1605 119 Comp. hard Regression 209 8

Svmguide3 Binary 1234 22 Space ga Regression 3107 6

Liver disorders Binary 345 5 Eunite2001 Regression 336 16

Fourclass Binary 862 2 Wine quality Regression 4898 11

Leukemia High dim 72 7129 Abalone Regression 4177 8

Duke High dim 44 7129 Concrete flow Regression 103 8

Colon cancer High dim 62 2000 kdd 99 http One-class 58725 3

Arcene High dim 200 10000 kdd 99 sf One-class 73237 21

Shuttle One-class 4909 9 kdd 99 sa One-class 100655 99

4.1 Classification

We split the presentation of results between four types of classification tasks: one-
class classification, binary classification, classification of high dimensional data,
and multi-class classification. We use boldface to denote cases when an algorithm
attains better results at the statistical significance level α = 0.05. We compare
Similarity Forests and Random Forests using accuracy, F1 score, and the area
under the ROC curve (AUROC). For each test of statistical significance of the
difference of averages we report the p-value of the Student’s t-test performed
over 20 repetitions of each algorithm.

4.2 One-Class Classification

We test the effectiveness of Similarity Forests in the one-class classification task
by comparing it to a standard implementation of Isolation Forests algorithm.
Both methods use the same principle for classifying objects as outliers (the
average height at which an object is assigned to a leaf node), so the only difference
between the algorithms is the splitting procedure. The results of the comparison
are presented in Table 2. The results are equivocal, both algorithms perform very
similarly. Isolation Forests tend to achieve better accuracy and AUROC, while
Similarity Forests result in better recall and F1 score. Although the comparison
is far from conclusive, it is safe to assume that Similarity Forests present a viable
alternative to Isolation Forests in one-class classification.

Similarity Forests Revisited: A Swiss Army Knife for Machine Learning 49

Table 2. Outlier detection results

Dataset Precision Recall F1 AUROC p-val

SF IF SF IF SF IF SF IF Precision Recall F1 AUROC

kdd 99 http 1.00 1.00 0.94 0.91 0.97 0.95 0.99 0.99 0.333 4.70e–20 6.95e–20 1.23e–13

kdd 99 sf 0.99 1.00 0.92 0.88 0.96 0.93 0.94 0.93 7.44e–14 6.71e–19 8.60e–18 1.69e–07

kdd 99 sa 0.98 0.99 0.96 0.93 0.97 0.96 0.94 0.96 1.01e–06 2.62e–11 9.92e–03 1.05e–03

Shuttle 0.99 0.99 0.92 0.95 0.96 0.97 0.98 0.99 4.71e–23 2.99e–12 7.45e–13 1.54e–23

Table 3. Binary classification results

Dataset acc F1 AUROC p-val

SF RF SF RF SF RF acc F1 AUROC

Heart 0.89 0.85 0.89 0.85 0.94 0.91 9.02e–06 5.95e–06 5.09e–14

Ionoshphere scale 0.96 0.94 0.96 0.93 1.00 0.99 1.49e–07 2.46e–07 2.21e–08

Breast cancer 0.97 0.96 0.97 0.96 1.00 1.00 1.17e–2 1.19e–02 2.82e–09

German numer 0.75 0.79 0.71 0.77 0.77 0.82 1.24e–11 2.26e-14 4.73e–12

Madelon 0.56 0.65 0.56 0.65 0.59 0.72 6.97e–17 9.47e–17 1.73e–22

Diabetes 0.74 0.74 0.74 0.75 0.80 0.83 0.841 0.258 6.27e–15

Australian 0.85 0.87 0.85 0.87 0.90 0.92 2.18e–05 1.78e–05 5.00e–09

Splice 0.83 0.94 0.83 0.94 0.92 0.98 1.71e–28 1.61e–28 1.16e–30

a1a 0.81 0.83 0.77 0.81 0.88 0.88 7.95e–08 1.25e–13 0.179

svmguide3 0.80 0.83 0.76 0.81 0.78 0.86 2.15e–14 9.78e–20 3.71e–20

Liver disorders 0.64 0.67 0.63 0.67 0.64 0.69 1.54e–04 9.78e–05 5.99e–09

4.3 Binary Classification

Table 3 presents the results for binary classification. We use the same datasets
as the authors of the original publication, with the exclusion of the Mushroom
dataset (as this dataset is trivial for classification). We manage to reproduce
the results reported in [19] only partially. For instance, we obtain better accu-
racy for Random Forests on the Heart dataset (85% vs 79% reported by Sathe
and Aggarwal), the German numer dataset (79% vs 77%), but we also do not
manage to obtain 90% accuracy on the svmguide3 dataset. More disturbingly,
though, Random Forests outperform Similarity Forests on all datasets that we
add beyond the datasets used in the original publication. Thus, our evaluation
paints a less optimistic view of the efficacy of Similarity Forests. While it may
be competitive with SVM, it is usually outperformed by Random Forests as
measured by all scores.

4.4 High-Dimensional Classification

We have hypothesized that Similarity Forests may perform better for datasets
with a large number of features, where simple splits on single features performed
by Random Forests might be insufficient to discover the decision boundaries in
high dimensional space. However, the results presented in Table 4 do not support

50 S. Czekalski and M. Morzy

Table 4. High dimensional classification results

Dataset acc F1 AUROC p-val

SF RF SF RF SF RF acc F1 AUROC

Leukemia 0.85 0.95 0.84 0.85 0.97 1.00 1.77e–10 2.19e–10 2.09e–12

Duke 0.87 0.90 0.88 0.87 0.91 1.00 0.138 0.138 6.76e–14

Colon cancer 0.68 0.79 0.68 0.69 0.75 0.80 2.18e–05 2.35e–05 2.58e–02

Arcene 0.78 0.82 0.78 0.78 0.85 0.89 1.76e–04 1.65e–04 2.51e–07

Fourclass 0.99 0.99 0.99 0.99 1.00 1.00 0.713 0.714 0.713

Asian religions 0.68 0.70 0.65 0.68 0.94 0.93 0.0062 0.003 8.67e–14

Table 5. Multi-class classification results

Dataset acc F1 AUROC p-val

SF RF SF RF SF RF acc F1 AUROC

Glass 0.78 0.84 0.76 0.84 0.93 0.96 1.14e–06 2.87e–08 1.15e–14

Seed 0.90 0.87 0.90 0.87 0.98 0.98 3.22e–05 3.60e–05 0.314

Wine 0.96 0.94 0.96 0.94 0.99 0.99 3.97e–02 3.96e–02 6.84e–08

dna 0.81 0.93 0.80 0.93 0.97 0.99 7.72e–34 1.59e–33 2.17e–28

Segment 0.96 0.97 0.96 0.97 0.99 0.99 3.43e–10 2.21e–10 4.28e–11

this hypothesis. Random Forests outperform Similarity Forests on all scores and
almost all examined datasets.

4.5 Multi-class Classification

Finally, we evaluate Similarity Forests on the multi-class classification task
(Table 5). Although Random Forests still present a very strong baseline, the
results are less equivocal than in the case of binary or high dimensional clas-
sification. Even for datasets where Random Forests achieve better scores, the
differences are not large, and for some datasets Similarity Forests outperform
Random Forests on the accuracy, the F1 score, and the AUROC. This result
strengthens, in our opinion, the claim that Similarity Forests are a viable alter-
native to Random Forests and should be considered as a go-to classification
algorithm.

4.6 Regression

In Table 6 we compare the effectiveness of Similarity Forests with Random
Forests using the root mean squared error (RMSE) score. Both Similarity Forests
and Random Forests underwent a similar grid search optimization of hyper-
parameters. The maximum depth range was [8, 10, 12, 14,None], the splitting

Similarity Forests Revisited: A Swiss Army Knife for Machine Learning 51

criteria were variance minimization, Theil index, and Atkinson index, the sim-
ilarity kernel for Similarity Forests was either dot product or radial basis func-
tion. Ensembles consisted of 25, 50, and 100 estimators. The Similarity Forests
γ parameter range was [0.0001, 0.001, 0.01, 0.1].

Random Forests outperform Similarity Forests on almost all datasets, the
differences might not be large, but are statistically significant. It may be that the
advantage of having a single multi-task algorithm outweighs the loss of predictive
power, but we do not find sufficient evidence to claim that Similarity Forests
present a viable alternative to Random Forests with respect to regression.

4.7 Metric Learning

Table 6. Regression results

Dataset RMSE p-val

SF RF

Boston 3.860 2.966 2.64e–34

mpg 2.429 2.396 0.119

Computer hardware 0.180 0.150 6.24e–18

Space ga 0.123 0.122 7.67e–04

Eunite2001 24.719 23.535 2.69e–06

Wine quality 0.587 0.589 3.51e–02

Abalone 2.241 2.225 2.68e–08

Concrete flow 12.182 11.528 5.42e–03

Table 7. Datasets (metric learning)

Name Rows Features

Glass 214 9

iris 150 4

cpu 209 6

e.coli 336 7

Segment 2000 19

Vehicle 846 18

Wine 178 13

Zoo 101 16

To check how well Similarity Forests can learn a meaningful structure of a
dataset, we use the learned distance metric to perform clustering using HDB-
SCAN, comparing the results to the traditional Euclidean distance. We use the
Clustering Benchmark datasets3 described in Table 7. To assess the quality of
clustering, Silhouette and Davies-Bouldin scores are recorded. We also present
a 2D PCA projection of obtained clusters for visual inspection (see Fig. 1, best
viewed in color). Similarity Trees are constructed using the linear dot prod-
uct kernel. The results reported in Table 8 are averaged over 20 runs over each
dataset. Similarity Forests distance usually produces better silhouette score, but
results in a worse Davies-Bouldain value. Best results were obtained when the
maximum depth of Similarity Forests has been constrained (which is reasonable,
usually only a few splits are required to separate main clusters in the data mani-
fold). In general, distance metric learned using Similarity Forests works well and
introduces non-linearity which results in better and more meaningful clusters.

3 https://github.com/deric/clustering-benchmark.

https://github.com/deric/clustering-benchmark

52 S. Czekalski and M. Morzy

Table 8. Clustering results

Dataset SF silhouette Eucl. Silhouette SF Davies-Bouldain Eucl. Davies-Bouldain

Glass 0.509 0.436 3.156 4.241

iris 0.556 0.525 3.118 0.481

cpu 0.382 0.280 1.507 1.872

e.coli 0.194 0.414 5.514 3.388

Segment 0.590 −0.038 0.674 1.464

Vehicle 0.097 0.218 6.162 3.199

Wine 0.197 0.142 2.660 1.361

Zoo 0.575 0.424 1.088 1.410

(a) segment dataset (b) vehicle dataset

Fig. 1. Visualization of clusters

5 Conclusions

Random Forests remain one of the most robust and efficient algorithms for clas-
sification and regression tasks. They provide a hard-to-beat baseline in many
practical applications. Despite their popularity and widespread use, they suf-
fer from strong dependence on the particularities of input representation. In
this paper we have advocated in favor of Similarity Forests, a recently proposed
decision tree induction algorithm which addresses some of the aforementioned
deficiencies. We describe the method, we present simple extensions which allow
to apply Similarity Forests to one-class, binary, and multi-class classification, as
well as regression. We perform an extensive comparison of Similarity Forests and
Random Forests for one-class, binary, high dimensional, and multi-class classi-
fication. Finally, we show how Similarity Forests can be used for unsupervised
metric learning. We believe that Similarity Forests present a viable alternative
to Random Forests and should become one of the default baseline algorithms in
every machine learning toolbox.

Acknowledgements. This work is supported by the National Science Center, Poland,
decision no. DEC-2016/23/B/ST6/03962.

Similarity Forests Revisited: A Swiss Army Knife for Machine Learning 53

References

1. Archer, K.J., Kimes, R.V.: Empirical characterization of random forest variable
importance measures. Comp. Stat. Data Anal. 52(4), 2249–2260 (2008)

2. Arlot, S., Genuer, R.: Analysis of purely Random Forests bias. arXiv:1407.3939
(2014)

3. Atkinson, A.B., et al.: On the measurement of inequality. J. Econ. Theory 2(3),
244–263 (1970)

4. Biau, G.: Analysis of a random forests model. J. Mach. Learn. Res. 13, 1063–1095
(2012)

5. Biau, G., Scornet, E., Welbl, J.: Neural random forests. Sankhya 81(2), 347–386
(2019)

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
7. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression

Trees. CRC Press, Boca Raton (1984)
8. Chen, X., Ishwaran, H.: Random forests for genomic data analysis. Genomics,

99(6), 323–329 (2012)
9. Denil, M., Matheson, D.: Consistency of online random forests. Tech. rep. (2013)

10. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., Fernández-Delgado,
A.: Do we need hundreds of classifiers to solve real world classification problems?.
J. Mach. Learn. Res. 15, 3133–3181 (2014)

11. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn.
63(1), 3–42 (2006)

12. Haghiri, S., Ghoshdastidar, D., von Luxburg, U.: Comparison Based Nearest Neigh-
bor Search. arXiv:1704.01460 (4 2017)

13. Hara, S., Hayashi, K.: Making Tree Ensembles Interpretable. arXiv:1606.05390
(2016). http://arxiv.org/abs/1606.05390

14. Hariri, S., Kind, M.C.: Extended isolation forest. arXiv:1811.02141 (2018)
15. Ishwaran, H., Lu, M.: Random survival forests. In: Wiley StatsRef: Statistics Ref-

erence Online, pp. 1–13. John Wiley & Sons Ltd, Chichester, UK (2 2019)
16. Liaw, A.: Classification and regression by random forests. Tech. rep. (2002)
17. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE Interna-

tional Conference on Data Mining, pp. 413–422. IEEE (2008)
18. Lucas, B., et al.: Proximity forest: an effective and scalable distance-based classifier

for time series. Data Mining Knowl. Discov. 33(3), 607–635 (2019)
19. Sathe, S., Aggarwal, C.C.: Similarity forests. In: Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. vol. Part
F1296, pp. 395–403 (2017)

20. Schölkopf, B.: The kernel trick for distances. Adv. Neural Inf. Process. Syst. 301–
307 (2001)

21. Tyralis, H., Papacharalampous, G.: Variable selection in time series forecasting
using random forests. Algorithms, 10(4), 114 (2017)

22. Wainberg, M., Alipanahi, B., Frey, B.J.: Are random forests truly the best classi-
fiers? J. Mach. Learn. Res. 17, 1–5 (2016)

23. Xu, B., Guo, X., Ye, Y., Cheng, J.: An improved random forest classifier for text
categorization. J. Comput. (2012)

http://arxiv.org/abs/1407.3939
http://arxiv.org/abs/1704.01460
http://arxiv.org/abs/1606.05390
http://arxiv.org/abs/1606.05390
http://arxiv.org/abs/1811.02141

Discriminative Representation Learning
for Cross-Domain Sentiment Classification

Shaokang Zhang1,2, Lei Jiang1,2, Huailiang Peng1,2(B), Qiong Dai1,2,
and Jianlong Tan1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{zhangshaokang,jianglei,penghuailiang,daiqiong,tanjianlong}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. Cross-domain sentiment classification aims to solve the lack
of labeled data in the target domain by using the knowledge of the source
domain. Most existing approaches mainly focus on learning transferable
feature representations for knowledge transfer across domains. Few of
them pay attention to the feature discriminability, which contributes
to distinguish different sentiment polarity and improves the classifica-
tion accuracy. In this work, we propose discriminative representation
learning, which extracts transferable and discriminative features. Specif-
ically, we use spectral clustering to reduce the negative effect of low
prediction accuracy on the target domain. Centroid alignment enforces
samples of the same polarity with smaller distance in the feature space
and enlarges the difference between samples of different polarities. Then
intra-class compactness benefits true centroid by reducing samples dis-
tributed at the edges of the clusters. Experiments on the multiple public
datasets demonstrate that discriminative representation learning outper-
forms state-of-the-art methods.

Keywords: Discriminative representation learning · Cross-domain
sentiment classification · Domain adaptation · Clustering

1 Introduction

Sentiment classification, which aims to automatically identify the sentiment
polarity (e.g., positive or negative) of a document, has attracted more and more
research attention [8]. Traditional methods have been explored to learn good
feature representations of sample and achieve outstanding effect [13]. However,
these works are highly dependent on sufficient labeled data which needs time-
consuming and expensive manual annotation.

To solve the problem, cross-domain sentiment classification has been pro-
posed as a promising direction. Blitzer et al. [1] aims to find out the correla-
tion between pivots (domain-shared sentiment words) and non-pivots (domain-
specific sentiment words). However, these methods are complicated and the clas-
sification accuracy is low. Recently, deep neural networks are explored to auto-
matically obtain shared sentiment features across domains. Typically, adversarial
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 54–66, 2021.
https://doi.org/10.1007/978-3-030-75765-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_5

DRL for Cross-Domain Sentiment Classification 55

learning methods [6] focus on extracting domain-invariant features whose dis-
tribution is similar in the source and target domains. It introduces a domain
classifier which can minimize the discrepancy between the source and target
domains by reversing the gradient direction of the neural network. This method
merely extracts the transferable features (domain-invariant features) and ignores
the feature discriminability which indicates the ability of separating different
sentiment polarity by a classifier trained over labeled dataset. Some methods
align the same polarity from different domains by assigning pseudo-labels to
target samples, to increase the feature discriminability. Nevertheless, the falsely-
pseudo-labeled samples can lead to serious bias that the centroid easily deviates
from the true position in mini-batch, especially for the low prediction accuracy
on the target samples.

In this paper, we propose discriminative representation learning (DRL) model
for cross-domain sentiment classification. DRL considers the feature discrim-
inability by aligning centroid and making intra-class distance more compact in
the source and target domains. Specifically, we cluster features of target samples
in mini-batch because of unlabeled data in the target domain. The cluster sen-
timent polarity is judged according to the centroid of source domain. Centroid
alignment of the same polarity achieves the level of sentiment polarity alignment
by minimizing the centroid distance. Centroid alignment of different polarities
make samples more separable by maximizing the centroid distance. However,
samples distributed at the edges of the clusters, or far from the high density
regions are easily misclassified. To solve this issue, we make each polarity more
compact by reducing the intra-class distance. In this way, the number of samples
that are far from each centroid will be greatly decreased. The main contributions
of our work are summarized as follows:

• As far as we know, we are the first to simultaneously learn transferable and
discriminative features in cross-domain sentiment classification.

• We propose the discriminative representation learning which produces trans-
ferable and distinguishable features. After clustering the unlabeled data on
target domain, it uses the centroid alignment and intra-class compactness to
learn better features for sentiment classification tasks.

• We conducted the comparative experiments on Amazon, IMDB, Yelp and
Airline datasets. Our method outperforms other state-of-the-art methods.

2 Related Work

Domain adaptation such as cross-domain sentiment classification has attracted
more and more research attention over the past decades. In supervised domain
adaptation, the training data consists of labeled source samples and a small
number of target domain samples. A common method is training the classifier
with labeled source samples and fine-tuning the classifier with labeled target
domain samples. Some unsupervised domain adaptation methods are proposed to
learning the domain-invariant features. The Structural Correspondence Learning

56 S. Zhang et al.

(SCL) [1] is proposed to produce correspondences among the features across
domains. Using domain-independent words as a bridge, the Spectral Feature
Alignment (SFA) [12] solves the feature mismatch problem by aligning domain-
specific words. Unfortunately, the steps of these methods are cumbersome and
the domain-shared features is bad.

Recently, deep learning methods have obtained better feature representations
for cross-domain sentiment classification. The Stacked Denoising Auto-encoders
(SDA) [7] successfully learns hidden representations from different domains. The
Marginalized Stacked Denoising Autoencoder (mSDA) [3] addresses the problem
of high computational cost and lack of scalability to high-dimensional features.
The Domain-Adversarial training of Neural Networks (DANN) [6] which lever-
ages the adversarial mechanism to mix the source and target domains. The Hier-
archical Attention Transfer Network (HATN) [9] which transfers word-level and
sentence-level attentions. But these methods only focus on extracting the trans-
ferable information, which can lead to poorly separable features across domains.
To solve the above problem, we propose to produce more discriminative features
by aligning centroid and making intra-class distance more compact. In computer
vision applications, there are also some works which learn more discriminative
features [2].

3 Approach

In this section, we first illustrate the problem definition and overall framework,
followed by an overview of the domain adversarial network. Finally we introduce
the details of discriminative representation learning.

3.1 Problem Definition and Overall Framework

We assume that there are two domains Ds and Dt which denote the source and
the target domain, respectively. We further suppose that we give a set of labeled
training data Xl

s = {xi
s, y

i
s}N l

s
i=1, where N l

s is the number of labeled data. Besides,
we give a set of unlabeled training data Xt = {xj

t}Nt
j=1 from the target domain,

where Nt is the number of unlabeled data. N indicates the batch size during the
training stage and L is the feature dimension. The goal of cross-domain sentiment
classification is building a classifier based on labeled data in the source domain
and unlabeled data in the target domain.

We present an overview of the DRL model in Fig. 1 and describe the details of
the model. We first introduce general adversarial domain network which reduces
discrepancy between the source and target domains. However, this method does
not take the feature distinguishability into account. Thus we propose the discrim-
inative representation learning (DRL) which includes three parts, i.e., clustering,
centroid alignment and intra-class compactness. The first part clusters the unla-
beled data on target domain to calculate the centroid and intra-class distance.
The second part makes centroid distance of the same polarity samples closer and
enlarges the centroid distance between different polarities. The third part not

DRL for Cross-Domain Sentiment Classification 57

Sentiment
Classifier

I highly recommend
this well written

book

The film is certainly
memorable, and

certainly different

Feature
encoder

Source domain

Target domain
Domain
classifier

Clustering

GRL
C

entroid Alignm
ent

drlL

sL

y y

Intra-class C
om

pactness

dL

d d

Fig. 1. The architecture of the DRL, where ŷ is the predicted sentiment label and ̂d is
the predicted domain label. y and d are the ground truth. GRL stands for the Gradient
Reversal Layer. Ls, Ld and Ldrl are losses.

only reduces the number of samples that are far from the high density region
but also obtains smaller intra-class distance for each polarity. In this way, we
can obtain transferable and discriminative features.

3.2 Domain Adversarial Network

Domain adversarial network [6] has been successfully applied to transfer learning
and the basic idea is to learn domain-invariant features. The adversarial learning
procedure contains two parts, i.e., a domain classifier d = D(f) is trained to
correctly distinguish the source domain from the target domain and a feature
encoder f = F (x) is trained to fool the domain classifier. The parameters of
domain classifier are updated by minimizing the loss of the domain classifier,
while the parameters of the feature encoder are updated by maximizing the
loss of domain classifier. To achieve this goal, the common method is Gradient
Reversal Layer (GRL) [6] which reverses the gradient in the training process. The
definition is R(f) = f , ∂R(f)

∂f = −λI. In addition, the feature encoder f = F (x)
and the sentiment classifier y = G(f) are simultaneously learned by minimizing
the loss of the category classifier. The objective function of domain adversarial
network is as follows:

Ls =
1

N l
s

N l
s∑

i=1

L(Gy(Gf (xi
s)), y

i
s) (1)

Ld = − 1
N l

s + Nt

N l
s+Nt∑

i=1

L(Gd(Gf (xi)), di) (2)

58 S. Zhang et al.

where Ls and Ld the sentiment classification loss and the domain loss, respec-
tively. The loss uses cross-entropy loss functions. di is the domain label (0 and
1 indicate the source and target domains).

3.3 Discriminative Representation Learning

To learn the discriminative deep features, we propose the discriminative rep-
resentation learning method. In the following, we describe the details of this
method successively.

Clustering: We cluster the unlabeled data on target domain. Because general
clustering methods such as K-means are suitable for low-dimensional features
and poor clustering effect in high-dimensional space, we select the spectral clus-
tering [11]. However, we don’t know the sentiment polarity of the cluster. The
decision method can be formulated as follows:

‖ csp − c1 ‖<‖ csp − c2 ‖, ‖ csn − c1 ‖>‖ csn − c2 ‖
⇒ c1 is positive centroid, c2 is negative centroid

‖ csp − c1 ‖>‖ csp − c2 ‖, ‖ csn − c1 ‖<‖ csn − c2 ‖
⇒ c1 is negative centroid, c2 is positive centroid

(3)

where c1, c2 are cluster centroids of target domain and the csp, csn are the
positive and negative centroids of source domain. If the csp gives a closer distance
with c1 than c2 and csn gives a closer distance with c2 than c1, the decision
method assigns the positive centroid to c1 and the negative centroid to c2. It
is similar when the csp gives a closer distance with c2 than c1 and the csn

gives a closer distance with c1 than c2. If cluster centroids does not satisfy
the above formula, the model will not be updated. To verify the performance
of spectral clustering, we compare with BERT-DRLp (assign pseudo labels to
target samples).

Centroid Alignment: The motivation of the centroid alignment is that the
samples from the same polarity should be mapped nearby in the feature space,
and the samples from the different polarities should stay as far away from each
other as possible. The centroid effectively represents a set of samples [10]. The
centroid distance can be formulated as follows:

dc =
c∑

i=1

‖ ci
s − ci

t ‖2 (4)

du = {
c∑

i,j=1,i �=j

‖ ci
s − cj

t ‖2 +
c∑

i,j=1,i �=j

‖ ci
d − cj

d ‖2 /2} (5)

where ci
s and ci

t are the i-th polarity centroid in the source and target
domains, respectively. c ∈ {positive, negative} and ci

d denotes the i-th polar-
ity centroid in d domain, d ∈ {s, t}. The centroid alignment loss Lca can be
formulated as:

Lca = dc + (m − du) (6)

DRL for Cross-Domain Sentiment Classification 59

The centroid alignment loss minimizes the centroid distance of same polarity
and enforces the centroid distance of different polarities at least m, where m is
the constraint boundary. Note that centroid alignment is similar with moving
average centroid alignment [15]. Both of them reduce the centroid distance of
the same polarity. The difference is that we also enlarge the difference across
different polarities.

Intra-class Compactness: Although centroid alignment produces more distin-
guishing features, samples distributed at the edges of the clusters are not reduced
and easily lead to the deviation of centroid. So we introduce the intra-class com-
pactness which makes each polarity more compact. The intra-class compactness
loss Lic can be formulated as follows:

Lic = ds + dt =
1
ns

ns∑

i=1

‖ fis − cyi
s ‖2 +

1
nt

nt∑

i=1

‖ fit − cyi

t ‖2 (7)

where f i
s, f

i
t ∈ RL denotes the i-th deep feature in the source and target

domains, respectively. cyi

t is the yi-th polarity centroid of the deep features,
yi ∈ {positive, negative}. Finally, we propose the discriminative representation
learning loss as below:

Ldrl = Lic + Lca (8)

Our method can be easily implemented and embedded into modern deep
learning frameworks. Algorithm 1 describes the training procedure of DRL. Dif-
ferent from discriminative feature learning [2], which only utilizes the source
domain samples because of the unlableled target samples. We utilize the unla-
beled data by spectral clustering which avoids the negative effects of falsely-
pseudo-labeled samples.

Algorithm 1. Training procedure of DRL
Input: Labeled source domain S, unlabeled target domain T , N is the batch size,
M is the total number of iterations, F is feature encoder, G is sentiment classi-
fier.

1: Let t = 0.
2: while t <M do
3: t = t + 1.
4: St = RandomSelect(S,N),Tt = RandomSelect(T,N).
5: Cluster target features f = F (Tt).
6: Compute the current centroid csp, csn on St.
7: Determine the polarity of the cluster center c1, c2.
8: Compute the centroid alignment loss Lca

9: Compute the intra-class compactness loss Lic

10: Compute the discriminative representation learning loss Ldrl

11: Update the model parameters by minimizing Ldrl

12: end while

60 S. Zhang et al.

Training Strategy: Our totally objective can be written as follows:

L = Ls + Ld + βLdrl + ρLreg (9)

where β is trade-off parameter to balance the discriminative representation learn-
ing loss. ρ is the regularization parameter. The regularization term Lreg prevents
the overfitting. DRL model minimize L except the GRL training part which
will be maximized. Additionally, all parameters are optimized by the adaptive
momentum algorithm.

4 Experiment

4.1 Dataset Preparation

We use Amazon reviews dataset [1] with same origin to evaluate the effective-
ness of our method. We select the data from five domains: Books (B), Dvd
(D), Electronics (E) and Kitchen (K), Video (V). Each domain contains 6000
labeled reviews with 3000 positive reviews (higher than 3 stars) and 3000 nega-
tive reviews (lower than 3 stars). We conduct 20 cross-domain sentiment classi-
fication tasks: B → D, B → E, B → K, B → V, D → B, D → E, D → K, D →
V, E → B, E → D, E → K, E → V, K → B, K → D, K → E, K → V, V → B, V
→ D, V → E, V → K. Furthermore, we randomly select 2800 positive and 2800
negative samples from the source domain as the training data, the rest from the
source domain as the validation data, and all samples from the target domain
for testing.

Moreover, to investigate the performance in different domains with the dif-
ferent origins. We randomly select samples from the IMDB (I), Yelp (Y) [14]
and Airline (A) datasets1. The number of positive and negative samples is equal
in the training and testing data. We construct 6 cross-domain sentiment classi-
fication tasks: I → Y, I → A, Y → I, Y → A, A → I, A → Y. One issue is that
Yelp, IMDB and Airline datasets have 5, 10 and 2 sentiment labels, respectively.
To align the space of sentiment labels for domain adaptation, we select positive
reviews (higher than 3 stars for Yelp and 6 stars for IMDB) and negative reviews
(lower than 3 stars for Yelp and 6 stars for IMDB). Table 1 summarizes the all
datasets.

Table 1. Statistics of the experimental datasets

Domain Books Dvd Kitchen Electronics Video IMDB Yelp Airline

Train 5600 5600 5600 5600 5600 5600 5600 5600

Test 400 400 400 400 400 400 400 400

1 https://github.com/quankiquanki/skytrax-reviews-dataset.

https://github.com/quankiquanki/skytrax-reviews-dataset

DRL for Cross-Domain Sentiment Classification 61

4.2 Implementation Details

BERT is a large-scale language model with multiple layers of transformers and
can learn bidirectional representations [5]. In our experiment, we adopt the
BERTbase(uncased) to extract features. The maximum sequence length, batch
size, epoch and dropout is 256, 20 ,10 and 0.1 respectively. The learning rate
is 2e–5. The adaptation rate is increased as λ = 2

1+exp(−10p)−1 , where p = t
T .

The t and T are current epoch and the maximum epoch, respectively. For the
hyper-parameter β , we select the optimal parameters on the experiments B →
K and K → B (Fig. 3). Finally, We set β = 0.01 in all our experiments. The
average and the standard error of the accuracy are calculated over 5 runs with
different random seeds on each transfer task.

4.3 Benchmark Methods

We consider the following approaches for comparisons:

Table 2. Classification accuracy (%) on the Amazon reviews dataset.

S T DANN HATNh BERT BERT-JDDA BERT-DRLp BERT-DRL

B D 81.2 ± 0.4 87.1 ± 0.1 88.6 ± 0.3 89.5 ± 0.5 89.9 ± 0.3 90.2±0.2

B E 76.5 ± 0.7 84.4 ± 0.3 89.4 ± 1.3 90.4 ± 1.4 90.6 ± 0.7 90.9±0.4

B K 80.3 ± 0.2 86.4 ± 0.4 90.5 ± 0.4 91.4 ± 0.6 92.3 ± 0.3 92.5±0.2

B V 81.7 ± 0.8 87.0 ± 0.6 88.9 ± 0.2 90.3 ± 0.6 90.6 ± 0.4 91.1±0.4

D B 81.6 ± 0.6 87.6 ± 0.6 90.3 ± 0.5 91.4 ± 0.2 91.0 ± 0.4 91.5±0.2

D E 76.9 ± 0.4 85.2 ± 0.5 88.5 ± 1.0 89.5 ± 0.6 89.7 ± 0.7 90.7±0.5

D K 77.6 ± 0.6 87.0 ± 0.7 90.9 ± 0.2 91.6 ± 0.7 92.2±0.5 92.1 ± 0.1

D V 85.4 ± 0.7 88.2 ± 0.1 90.8 ± 0.8 91.7 ± 0.6 91.9 ± 0.7 92.4±0.3

E B 77.7 ± 0.2 81.9 ± 0.2 88.7 ± 0.2 88.6 ± 0.2 89.1 ± 0.5 89.2±0.3

E D 75.5 ± 0.3 81.8 ± 0.5 86.4 ± 0.6 87.1 ± 0.6 87.5 ± 0.4 87.8±0.3

E K 85.0 ± 0.6 89.5 ± 0.3 92.8 ± 0.6 93.4 ± 1.0 94.1±0.3 94.0 ± 0.1

E V 76.1 ± 1.0 80.8 ± 0.2 87.3 ± 0.5 87.6 ± 0.7 87.9 ± 0.3 88.7±0.2

K B 79.0 ± 0.5 83.8 ± 0.4 89.2 ± 0.3 89.9 ± 0.3 89.7 ± 0.6 90.0±0.5

K D 78.3 ± 0.4 82.3 ± 0.2 87.9 ± 0.4 87.9 ± 0.7 88.1 ± 0.2 88.2±0.4

K E 84.6 ± 0.2 87.5 ± 0.3 92.5 ± 0.2 92.9 ± 0.6 92.8 ± 0.6 93.5±0.2

K V 76.4 ± 0.1 81.9 ±0 .2 88.1 ± 0.8 88.8 ± 0.4 88.4 ± 0.3 89.0±0.5

V B 79.9 ± 0.7 86.6 ± 0.4 88.7 ± 0.7 89.8 ± 0.6 90.5 ± 0.3 91.1±0.3

V D 83.3 ± 0.3 86.8 ± 0.3 89.7 ± 0.5 90.4 ± 0.4 89.7 ± 0.3 90.9±0.2

V E 74.7 ± 0.3 81.5 ± 0.2 89.4 ± 0.7 90.7 ± 0.3 90.7 ± 0.5 91.2±0.3

V K 74.3 ± 0.4 84.4 ± 0.3 91.1 ± 0.5 91.6 ± 0.3 91.7 ± 0.4 92.1±0.1

Avg 79.3 85.1 89.5 90.2 90.4 90.9

62 S. Zhang et al.

DANN: it performs domain adaptation with the representation encoded in
a 5000-dimension feature vector [6].
HATNh: it extracts pivots and non-pivots by the hierarchical attention net-
work across domains [9].
BERT: it fine-tunes vanilla BERT by source domain labeled data.
BERT-JDDA: JDDA [2] model based on BERT.
BERT-DRLp: it assigns pseudo labels to target samples and uses all losses
on vanilla BERT.
BERT-DRL: it utilizes spectral clustering for target samples and uses all
losses on vanilla BERT.

Table 3. Classification accuracy (%) on the IMDB, Yelp and Airline datasets.

S T DANN HATNh BERT BERT-JDDA BERT-DRLp BERT-DRL

I Y 72.4 ± 2.1 75.9 ± 1.1 80.8 ± 1.7 81.6 ± 1.5 82.1 ± 1.8 82.8±1.1

I A 74.6 ± 1.8 77.1 ± 0.9 80.1 ± 2.1 80.6 ± 1.8 81.2 ± 2.3 82.7±0.9

Y I 69.5 ± 1.5 71.0 ± 0.8 72.1 ± 1.3 75.3 ± 2.6 73.8 ± 1.8 76.5±1.2

Y A 74.2 ± 2.2 78.5 ± 1.2 83.8 ± 1.6 82.7 ± 2.3 84.4 ± 2.1 85.2±1.4

A I 63.7 ± 1.9 65.7 ± 1.1 70.6 ± 1.5 72.3 ± 2.4 73.1 ± 1.4 74.3±0.8

A Y 73.9 ± 1.3 75.7 ± 0.8 81.0 ± 1.3 81.1 ± 1.8 82.5 ± 1.1 83.2±0.9

Avg 71.4 74.0 78.1 78.9 79.5 80.6

We compare our method with other state-of-the-art methods on the Ama-
zon reviews dataset and the experimental results are shown in Table 2. As can
be seen, BERT-DRL has achieved the best performances on most tasks. HATNh

achieves great improvements compared with traditional methods, which come to
85.1% on average. The vanilla BERT has achieved 89.5% on average by training
the source domain samples. It shows that bert model can produce good word
embedding vectors. The prediction accuracy on the target domain is high, so
the quality of pseudo labels is good. The performance of BERT-DRLp exceeds
BERT-DRL on some tasks (D → K, E → K). Comparing with BERT, BERT-
DRL exceeds 1.4% on average. It proves that discriminative representation learn-
ing loss can produce more distinguishing features. The BERT-DRL improves the
classification accuracy by 0.7% than BERT-JDDA. We cluster target domain
samples and calculate the DRL loss is very necessary.

However, the cross-domain sentiment classification tasks are same origin in
Table 2. To verify the effectiveness of our method on different origins, we con-
struct 6 new tasks. The classification accuracy on the IMDB, Yelp and Airline
datasets are shown in Table 3. The DANN and HATNp without BERT achieve
71.4% and 74.0% on average, respectively. the performance of BERT-DRL still
outperforms BERT-JDDA and achieve 80.6% on average. The BERT-DRL and
BERT-DRLp improve the classification accuracy by 2.5% and 1.4% than BERT,

DRL for Cross-Domain Sentiment Classification 63

respectively. Comparing with BERT-DRLp, BERT-DRL improves the classifi-
cation accuracy substantially on hard transfer tasks. Since the discriminative
representation learning loss does not depend on the prediction accuracy of tar-
get domain samples but features of target domain samples generated by feature
encoder. We can train the model more effectively when features are easy to be
distinguished.

4.4 Feature Visualization

For more intuitive understanding our approach, we select all samples in the
source and target domains and visualize the feature of last layer as shown in
Fig. 2. We perform the visualization on B → D and K → V tasks by t-SNE.
The samples of different polarities in source domain are well separated in vanilla
BERT (Fig. 2b and Fig. 2d). While the target domain samples with different
polarities are mixed together. It shows that the source domain samples are not
satisfy with the target domain classification. The samples from different domains
are mixed together through discriminative representation learning loss (Fig. 2a
and Fig. 2c). The boundary of sentiment polarity classification is very clear. We
also quantitatively analyzed separability and compactness in Table 4. The intra-
class distance (ds and dt) and centroid distance of the same polarity (dc) are
reduced and the centroid distance of the different polarities (du) is increased. For
compactness, the decrease is small for one sample, but the effect is obvious when
all samples are accumulated. All of the above observations can demonstrate that
BERT-DRL model is able to simultaneously learn more transferable and more
discriminative features.

Table 4. Separability and compactness on B → D and K → V tasks. Separability is
calculated by centroid distance. Compactness is represented by the average of intra-
class distances.

Separability Compactness

dc du ds dt

B D BERT 0.878 26.175 0.898 3.721

BERT-DRL 0.475 30.059 0.846 3.638

K V BERT 1.625 28.794 1.188 4.053

BERT-DRL 0.592 30.595 1.038 3.832

4.5 Parameter Sensitivity

We investigate the effects of the parameter β which balances the contributions of
discriminative representation learning in Fig. 3. The average is calculated over 5
runs with different random seeds. We find that the accuracy curve increases first
and then decreases as β increases. It shows that our proposed loss can improve
the performance of the model through appropriate parameters to obtain more
distinguished features.

64 S. Zhang et al.

(a) BERT-DRL (b) BERT

(c) BERT-DRL (d) BERT

Fig. 2. The t-SNE visualization of the B → D task (a) (b) and K → V task (c) (d). The
red, blue, purple and green points denote the source positive, source negative, target
positive and target negative examples correspondingly. (Color figure online)

Fig. 3. Parameter sensitivity analysis of our approach on B → V task and K → B task.

4.6 Ablation Studies

To analyze the effect of Domain-Adversarial training of Neural Networks
(DANN) [6], centroid alignment (CA) and intra-class compactness (IC), we con-
duct the ablation experiments on task B → D, E → V, V → D, I → A, Y → I
and A → I in Table 5. The experimental results show that DANN, CA and IC
are both beneficial to cross-domain sentiment classification.

DRL for Cross-Domain Sentiment Classification 65

Table 5. Results of ablation study.

Model B → D E → V V → D I → A Y → I A → I

BERT-DANN 89.4± 0.4 87.8 ± 0.4 90.1 ± 0.4 80.8 ± 2.5 73.7 ± 2.8 72.7 ± 1.3

BERT-DANN-IC 89.8 ± 0.6 88.3 ± 0.3 90.4 ± 0.5 81.7 ± 1.6 76.2 ± 1.1 73.2 ± 2.3

BERT-DANN-CA 90.1 ± 0.5 88.5 ± 0.6 90.6 ± 0.4 82.1 ± 1.4 75.0 ± 2.0 73.4 ± 1.5

BERT-DRL 90.2 ± 0.2 88.7± 0.2 90.9±0.2 82.7 ± 0.9 76.5 ± 1.2 74.3 ± 0.8

5 Conclusion

In this paper, we propose to improve the transfer performance by discriminative
representation learning for cross-domain sentiment classfication. It uses spectral
clustering to avoid the harmful effect of low prediction accuracy on the target
domain. Centroid alignment can map the sampels of same polarity to the neigh-
borhood in feature space and enforces the samples of the different polarities with
greater distance. Besides, the samples distributed at the edges of the clusters are
reduced and classification accuracy is improved by intra-class compactness. In
this way, we can product transferable and distinguishable features by introducing
our discriminative loss. Experiments on the Amazon, IMDB, Yelp and Airline
datasets demonstrate that DRL significantly outperforms the state-of-the-art
methods.

Acknowledgments. This paper is Supported by National Key Research and Devel-
opment Program of China under Grant No. 2017YFB0803003 and National Science
Foundation for Young Scientists of China (Grant No. 61702507).

References

1. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural corre-
spondence learning. In: Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics, pp.
120–128 (2006)

2. Chen, C., Chen, Z., Jiang, B., Jin, X.: Joint domain alignment and discriminative
feature learning for unsupervised deep domain adaptation. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 33, pp. 3296–3303 (2019)

3. Chen, M., Xu, Z., Weinberger, K., Sha, F.: Marginalized denoising autoencoders
for domain adaptation. arXiv preprint arXiv:1206.4683 (2012)

4. Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability: batch
spectral penalization for adversarial domain adaptation. In: International Confer-
ence on Machine Learning, pp. 1081–1090 (2019)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

6. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn.
Res. 17(1), 2096–2030 (2016)

http://arxiv.org/abs/1206.4683
http://arxiv.org/abs/1810.04805

66 S. Zhang et al.

7. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment
classification: a deep learning approach. In: Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pp. 513–520 (2011)

8. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 168–177. ACM (2004)

9. Li, Z., Wei, Y., Zhang, Y., Yang, Q.: Hierarchical attention transfer network for
cross-domain sentiment classification. In: Thirty-Second AAAI Conference on Arti-
ficial Intelligence (2018)

10. Luo, Z., Zou, Y., Hoffman, J., Fei-Fei, L.F.: Label efficient learning of transferable
representations a crosss domains and tasks. In: Advances in Neural Information
Processing Systems, pp. 165–177 (2017)

11. Luxburg, U.V.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

12. Pan, S.J., Ni, X., Sun, J.T., Yang, Q., Chen, Z.: Cross-domain sentiment classi-
fication via spectral feature alignment. In: Proceedings of the 19th International
Conference on World Wide Web, pp. 751–760. ACM (2010)

13. Tang, D., Qin, B., Feng, X., Liu, T.: Target-dependent sentiment classification with
long short term memory. arXiv preprint arXiv:1512.01100 (2015)

14. Tang, D., Qin, B., Liu, T.: Learning semantic representations of users and products
for document level sentiment classification. In: Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics, pp. 1014–1023 (2015)

15. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsu-
pervised domain adaptation. In: International Conference on Machine Learning,
pp. 5419–5428 (2018)

16. Zhang, K., Zhang, H., Liu, Q., Zhao, H., Zhu, H., Chen, E.: Interactive attention
transfer network for cross-domain sentiment classification (2019)

http://arxiv.org/abs/1512.01100

SAGCN: Towards Structure-Aware Deep
Graph Convolutional Networks on Node

Classification

Ming He(B), Tianyu Ding, and Tianshuo Han

Faculty of Information Technology, Beijing University of Technology, Beijing, China
heming@bjut.edu.cn, {dingtianyu,hants}@emails.bjut.edu.cn

Abstract. Graph Convolutional Networks (GCNs) have recently
achiev-ed impressive performance in different classification tasks. How-
ever, over-smoothing remains a fundamental burden to achieve deep
GCNs for node classification. This paper proposes Structure-Aware Deep
Graph Convolutional Networks (SAGCN), a novel model to overcome
this burden. At its core, SAGCN separates the initial node features from
propagation and directly maps them to the output at each layer. Further-
more, SAGCN selectively aggregates the information from different prop-
agation layers to generate structure-aware node representations, where
the attention mechanism is exploited to adaptively balance the infor-
mation from local and global neighborhoods for each node. Our exper-
iments verify that the SAGCN model achieves state-of-the-art perfor-
mance in various semi-supervised and full-supervised node classification
tasks. More importantly, it outperforms many other backbone models,
by using half the number of layers, or even fewer layers.

Keywords: Deep learning · Graph Convolutional Networks · Node
classification · Attention mechanism

1 Introduction

Graph Convolutional Networks (GCNs) [6] are an efficient variant of Convolu-
tional Neural Networks (CNNs) on graphs. A GCN learns representation for a
node by aggregating representations of its neighbors iteratively. In recent years,
GCNs and their variants have been successfully applied to a wide range of appli-
cations, including node classification [25], social analysis [8,15], biology [3,19],
recommender systems [4], and computer vision [11,24].

Despite their enormous success, most of the current GCN models are shallow.
Numerous recent models, such as GCN [6], GAT [21], and APPNP [7], achieve
their best performance with two-layer models. Such shallow architectures limit
their ability to extract information from high-order neighbors. Moreover, the
performance of these models degrades significantly when stacking multiple layers.
This phenomenon, called over-smoothing [9], states that representations from
different classes become inseparable due to repeated propagation.
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 67–78, 2021.
https://doi.org/10.1007/978-3-030-75765-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_6

68 M. He et al.

Recently, several works have tried to tackle over-smoothing problem. The
JKNet model [22] uses dense skip connections combining the output of each
layer to preserve the locality of the node representations. A further model, GCNII
[1] suggests that by utilizing residual connection to carry information about the
initial layer and the previous layer, one can relieve the impact of over-smoothing.
Most existing methods, however, still face two problems. First, these models do
not consider how to adequately preserve initial node features, which can lead to
the loss of information that is crucial for node classification. Second, they lack
the capability of adapting neighborhood ranges to nodes individually, which may
not dynamically aggregate neighborhood information with different weights.

In this paper, SAGCN, a structure-aware deep GCN model is proposed to
address the aforementioned issues and relieve over-smoothing. Unlike GCNII,
which combines information about the initial layer with propagation to achieve
this task, information from propagation is separated, and mapped directly to
the output at each layer. In this manner, SAGCN can both reduce the loss
of important information and alleviate over-smoothing. Furthermore, all layers
are stacked and an attention mechanism is applied to selectively aggregate the
information from different neighborhood ranges for each node. Extensive com-
putational experiments show that our model outperforms other state-of-the-art
models on both semi-supervised and full-supervised node classification tasks.

The key contributions of the present work are summarized as follows:

– A novel model named SAGCN is proposed to help improve classification accu-
racy, which can fully preserve initial node features by separating them from
propagation. Different from recent models, SAGCN adequately keeps the fea-
ture information that is critical for node classification.

– An attention mechanism is utilized, that can adaptively leverage the infor-
mation from local and global neighborhoods for each node, thus obtaining
structure-aware node representations. Compared to existing works, SAGCN
flexibly aggregates information from different neighborhood ranges for each
node rather than a fixed receptive field.

– Extensive experiments of both semi-supervised and full-supervised node clas-
sification tasks are conducted on real-world datasets. Results reveal that our
model significantly outperforms baseline models.

2 Related Work

2.1 Deep GCNs

In spite of fruitful progress in this field, most previous studies only focus on
shallow GCNs, while the deeper extension is seldom discussed. The first attempt
to build deep GCNs is dated back to the GCN paper [6], where the residual
mechanism is applied. The follow-up study PPNP [7] employs the relationship
between GCNs and PageRank to derive an improved propagation scheme. Oono
[13] generalizes the forward propagation of a GCN as a specific dynamical system,
and theoretically proves that the node features of deep GCNs will converge to

SAGCN: Structure-Aware Deep Graph Convolutional Networks 69

a subspace and incur information loss. Over-smoothing is solved in DropEdge
[16] by randomly removing a certain number of edges from the input graph at
each training epoch. A recent method GCNII [1] incorporates initial residual and
identity mapping into GCN to facilitate the development of deep architectures.
The major difference between previous work and the present model is that we
apply an attention mechanism to flexibly leverage different neighborhood ranges
for each node, rather than aggregating information from a fixed receptive field.

2.2 Attention-Based GCNs

A separate line of techniques target the attention-based GCN model. For exam-
ple, GAT [21] utilizes attention mechanisms to learn the edge weights at each
layer based on node features. The method by Thekumparampil [20] replaces the
propagation layers with attention mechanisms to learn a dynamic and adaptive
local summary of the neighborhood. Jumping Knowledge Networks [22] employ
LSTM-attention to obtain adaptive node representations. Recently, DAGNN [10]
introduced an attention mechanism after the propagation to derive more dis-
criminative node embeddings. Compared with previous studies, not only do we
additionally introduce a smoothed representation of this layer, but also include
a large number of initial node representations in each layer of our model to get
better node embeddings for classification.

3 Preliminaries

3.1 Notations

A graph is formally defined as G = (V, E), where V is the set of nodes (vertices)
indexed from 1 to n, and E ⊆ V × V is the set of edges between nodes in V.
The numbers of nodes and edges are n = |V| and m = |E|, respectively. In this
paper, we consider unweighted and undirected graphs. Topology information for
the whole graph is described by the adjacency matrix A ∈ R

n×n, where A(i,j)

= 1 if an edge exists between node i and node j, otherwise it is 0. The diagonal
matrix of node degrees is denoted as D ∈ R

n×n, where D(i,i) =
∑

j A(i,j). Ni

denotes the neighboring nodes set of node i. A graph has a initial node feature
matrix h(0) ∈ R

n×d, where each row h(0)
i ∈ R

d represents the feature vector of
node i and d is the dimension of node features.

3.2 Graph Convolutional Network (GCN)

The GCN was originally developed by Kipf & Welling [6]. The feed forward
propagation in GCN is recursively conducted as

H(l+1) = σ
(
ÂH(l)W(l)

)
, (1)

where H(l) ∈ R
n×d(l)

and H(l+1) ∈ R
n×d(l+1)

are the input and output node rep-
resentation matrices of layer (l + 1). Â = D̂−1/2ÃD̂−1/2 is the re-normalization

70 M. He et al.

of the adjacency matrix, where Ã = A+I is the adjacency matrix with added self-
connections and D̂ indicates the corresponding degree matrix of Ã. Adding an
extra self-loop, however, makes the features indistinguishable and hurt the clas-
sification accuracy according to another study [9]. In this paper, we use original
adjacency matrix A and the corresponding degree matrix D. W(l) ∈ R

d(l)×d(l+1)

is a layer-specific trainable weight matrix and σ is a non-linear activation func-
tion, such as ReLU [12]. It was originally applied for semi-supervised classifica-
tion tasks, where only partial nodes have training labels in a graph. Owing to
the propagation process, the representation of a labeled node carries informa-
tion from its neighbors that are usually unlabeled, thus training signals can be
propagated to the unlabeled nodes.

4 Proposed Model

This section shows the proposed model, with its architecture of as illustrated in
Fig. 1. Two components in the framework are described: (1) information propa-
gation and (2) layer aggregation.

Fig. 1. The overall architecture of our proposed model. It contains two major compo-
nents: information propagation and layer aggregation. In the figure, att is the attention
vector, which computes retainment scores for representation generating from various
receptive fields, and s0, s1, sL represent the retainment scores of H(0), H(1) and H(L),
respectively.

4.1 Information Propagation

In this iterative process, each iteration indicates that an additional hop of
information has been propagated on the graph. Due to the shallow architec-
ture of GCNs, the nodes on the graph cannot capture sufficient neighbor-
hood information. Nevertheless, the performance degrades greatly when multi-
ple layers are applied to leverage more neighborhood information. Several recent
works attribute this performance degradation to the over-smoothing issue. Over-
smoothing is indeed a challenging problem, however our model effectively relieves
it by two modifications: 1) The initial features h(0) are separated from propaga-
tion; 2) A smoothed representation ÂH(l) of this layer is additionally introduced.

SAGCN: Structure-Aware Deep Graph Convolutional Networks 71

Formally, the l-th layer of SAGCN is defined as

H(l+1) = σ
((

δÂH(l)W(l) + (1 − δ) ÂH(l)
)

+ ηh(0)
)

, (2)

where δ and η are two hyper-parameters. The symmetrical normalization propa-
gation mechanism Â = D−1/2AD−1/2 is employed. It is important to note that
original adjacency matrix A is used instead of Ã. Most of the previous studies
add a self-connection to retain its information during layer-wise propagation.
However, it is stated in other works [9,25] that a self-connection is meaningless
and may even introduce extra noises. Correspondingly, the original node degree
matrix D is used instead of D̂ in the present work. σ is an activation function,
for which ReLU is used.

As mentioned above, initial node embeddings play an important role in the
classification task. A recent study [10] verifies that the exclusive application of a
Multi-Layer Perceptron to the original feature matrix h(0) performs well without
using any graph structure information. This shows that the original structure
of data is important for classification, thereby this work aims to fully preserve
it. Moreover, it has been observed that frequent interaction between different
dimensions of the feature matrix [7] degrades the performance of the model.
Unlike GCNII, which combines h(0) with propagation, our model reduces such
interactions by separating h(0) from propagation and mapping it directly to the
output. In this manner, SAGCN is capable of making full use of h(0) to improve
classification accuracy, and relieve the over-smoothing problem.

Furthermore, the additional introduction of smoothed representation ÂH(l)

assures that a deep model achieves at least the same performance as a shallow
one, facilitating its implementation. The principle of setting δ is to ensure that
the decay of weight matrix W(l) adaptively increases as we stack more layers.
Notably, SAGCN ignores the weight matrix W(l) by setting sufficiently small δ.
In our experiments, we set δ following the design of GCNII (i.e., δ = log

(
λ
l + 1

)
,

where λ is a hyper-parameter).

4.2 Layer Aggregation

The hidden representation of the layers (e.g., H(0), H(1)) is obtained through
information propagation. Many existing models aggregate information from a
fixed range of neighbors. Nevertheless, JKNet [22] shows that the same number
of iterations (i.e., layers) can lead to very different effects for different nodes in
the same graph and the range of effective information obtained by each node
is heavily affected by the graph structure. In order to get structure-aware node
representations for classification, we employ an attention mechanism to flexibly
leverage the information from different neighborhood ranges for each node. The
mathematical expression of this subsection is defined as

H = stack
(
H(0),H(1), · · · ,H(L)

)
∈ R

n×(L+1)×d, (3)

S = σ
(
softmax (Hatt)

)
∈ R

n×(L+1)×1, (4)

72 M. He et al.

Ŝ = reshape (S) ∈ R
n×1×(L+1), (5)

Hout = squeeze
(
ŜH

)
∈ R

n×d, (6)

where att ∈ R
d×1 is a trainable attention vector; σ is an activation function, for

which sigmoid is used; stack, reshape and squeeze are used to adjust the data
dimension, so it can be matched during computation.

As mentioned in Sect. 4.1, H(l) denotes the hidden representations derived
by extracting information from nodes that are l-hop away, thus H(l) captures
the information from the sub-tree of height l with the target node as the root.
As the number of layers l increase, more global information is propagated in H(l)

because the corresponding sub-tree is deeper. However, it is difficult to determine
an appropriate l. A small l may fail to extract sufficient high-order neighbor-
hood features, while a large l may bring too much global information leading
to a dilution of essential local information. Furthermore, each node has a dif-
ferent sub-tree structure rooted at this node (e.g., tree-like, expansion-like) and
the most appropriate receptive field for each node should be different. For this
reason, an attention mechanism is applied after the information propagation. A
trainable attention vector att is employed, which is shared by all nodes to gener-
ate retainment scores. These retainment scores measure how much information
of the corresponding representations obtained by different propagation layers
should be retained to generate the final representation for each node. By using
this attention mechanism, SAGCN selectively aggregates different propagation
layers according to their importance to generate an adaptive structure-aware
representation for each node.

5 Experiments

In this section, extensive experiments are conducted on both semi-supervised
and full-supervised tasks to evaluate the performance of the proposed SAGCN.

Table 1. Statistics of the datasets.

Dataset Classes Nodes Edges Features

Cora 7 2708 5429 1433

Citeseer 6 3327 4732 3703

Pubmed 3 19717 44338 500

Chameleon 4 2277 36101 2325

Cornell 5 183 295 1703

Texas 5 183 309 1703

Wisconsin 5 251 499 1703

SAGCN: Structure-Aware Deep Graph Convolutional Networks 73

5.1 Datasets

Following previous pieces of work [18,21,23], we use three standard citation
network datasets Cora, Citeseer, and Pubmed for semi-supervised node classi-
fication. In these citation datasets, nodes and edges represent documents and
citation relations, respectively, between documents. The Chameleon [17], Cor-
nell, Texas, and Wisconsin [14] datasets are also included for full-supervised node
classification. These datasets are web networks, where nodes and edges represent
web pages and hyperlinks, respectively. The feature of each node is the bag-of-
words representation of the corresponding page. Some statistics of these datasets
are provided in Table 1.

5.2 Semi-supervised Node Classification

Experimental Settings. To ensure a fair comparison, the standard fixed train-
ing/validation/testing split [23] is utilized for the semi-supervised node classi-
fication task on three datasets: Cora, Citeseer and Pubmed, with 20 nodes per
class for training, 500 nodes for validation and 1,000 nodes for testing. We use
the Adam SGD optimizer [5] and early stopping with a patience of 100 epochs
to train SAGCN.

Baselines. The following state-of-the-art models are used as baselines in our
experiments:

• GCN [6] is an efficient variant of convolutional neural networks which oper-
ates directly on graph-structured data.

• GAT [21] leverages masked self-attentional layers instead of a symmetrically
normalized adjacency matrix in the GCN model.

• APPNP [7] utilizes the relationship between GCN and PageRank to derive
an improved propagation scheme based on personalized PageRank.

• JKNet [22] is the first deep GCN model employing dense skip connections
to combine the output of each layer, preserving the locality of the node rep-
resentations.

• JKNet(Drop) [16] is an improved version of JKNet, which randomly
removes some edges from the graph to retard convergence speed of over-
smoothing.

• Incep(Drop) [16] is an improved version of IncepGCN that randomly
removes a certain number of edges to relieve the information loss caused
by over-smoothing.

• GCNII [1] is a state-of-the-art deep GCN model with initial residual and
identity mapping, which effectively relieves the problem of over-smoothing.

Hyper-parameter Settings. In our model, we set η = 0.7 and λ = 2.0 on all
datasets. We tune the following hyper-parameters: (1) layers ∈ {8, 16, 32}, (2)
learning rate ∈ {0.001, 0.003, 0.004}, (3) hidden layer dimensions ∈ {64, 256},
(4) dropout rate ∈ {0.5, 0.8}, (5) weight decay for convolutional layers ∈ {0.01,
0.02, 0.15}, and (6) weight decay for dense layers ∈ {0.02, 0.005, 0.01}.

74 M. He et al.

Performance Comparison. The mean classification accuracy after 100 runs
for three citation datasets are summarized in Table 2. We reuse the metrics
already reported in [2] for GCN, GAT, and APPNP, the best metrics reported
in [16] for JKNet, JKNet(Drop), Incep(Drop), and the metrics reported in [1] for
GCNII. As shown in Table 2, our results successfully demonstrate that SAGCN
achieves new state-of-the-art performance across all three datasets. Notably, the
fact that deep models (e.g., GCNII) always work better than shallow models
(e.g., GCN and GAT) indicates that global and local information together help
boost performance. It is also worthwhile to note that we use half the num-
ber of layers to achieve even better results than the deep GCN model GCNII,
which benefits from the ability of our model to flexibly utilize local and global
information.

Table 2. Mean classification accuracy (%) of semi-supervised node classification. The
number in parentheses corresponds to the number of layers in the model.

Model Cora Citeseer Pubmed

GCN 81.5 71.1 79.0

GAT 83.1 70.8 78.5

APPNP 83.3 71.8 80.1

JKNet 81.1 (4) 69.8 (16) 78.1 (32)

JKNet(Drop) 83.3 (4) 72.6 (16) 79.2 (32)

Incep(Drop) 83.5 (64) 72.7 (4) 79.5 (4)

GCNII 85.5 (64) 73.4 (32) 80.3 (16)

SAGCN 86.3 (32) 73.6 (16) 80.9 (8)

A Detailed Comparison with Other Deep Models. Table 3 summarizes
the results for the deep models with various numbers of layers. We reuse the
best-reported results for JKNet, JKNet(Drop), Incep(Drop) and GCNII. It can
be observed that on three datasets, the performance of SAGCN consistently
improves as the number of layers are increased. Notably, SAGCN achieves state-
of-the-art results with half the number of layers than deep model GCNII. This
suggests that too many layers may lead to a dilution of local information that
is important for node classification.

5.3 Full-Supervised Node Classification

Experimental Settings. Following the setting in [14], 7 datasets are used:
Cora, Citeseer, Pubmed, Chameleon, Cornell, Texas, and Wisconsin. For each
dataset, nodes of each class are randomly split into 60%, 20%, and 20% for
training, validation and testing, respectively, and the performance of all models
on the test sets are measured over 10 random splits, as suggested in [14].

SAGCN: Structure-Aware Deep Graph Convolutional Networks 75

Table 3. Summary of classification accuracy (%) results with various depths.

Dataset Method
Layers

2 4 8 16 32 64

Cora

GCN 81.1 80.4 69.5 64.9 60.3 28.7

GCN(Drop) 82.8 82.0 75.8 75.7 62.5 49.5

JKNet - 80.2 80.7 80.2 81.1 71.5

JKNet(Drop) - 83.3 82.6 83.0 82.5 83.2

Incep - 77.6 76.5 81.7 81.7 80.0

Incep(Drop) - 82.9 82.5 83.1 83.1 83.5

GCNII 82.2 82.6 84.2 84.6 85.4 85.5

SAGCN 74.5 80.3 82.6 83.8 86.3 -

Citeseer

GCN 70.8 67.6 30.2 18.3 25.0 20.0

GCN(Drop) 72.3 70.6 61.4 57.2 41.6 34.4

JKNet - 68.7 67.7 69.8 68.2 63.4

JKNet(Drop) - 72.6 71.8 72.6 70.8 72.2

Incep - 69.3 68.4 70.2 68.0 67.5

Incep(Drop) - 72.7 71.4 72.5 72.6 71.0

GCNII 68.2 68.9 70.6 72.9 73.4 73.4

SAGCN 64.0 66.2 70.2 73.6 - -

Pubmed

GCN 79.0 76.5 61.2 40.9 22.4 35.3

GCN(Drop) 79.6 79.4 78.1 78.5 77.0 61.5

JKNet - 78.0 78.1 72.6 72.4 74.5

JKNet(Drop) - 78.7 78.7 79.1 79.2 78.9

Incep - 77.7 77.9 74.9 - -

Incep(Drop) - 79.5 78.6 79.0 - -

GCNII 77.7 78.2 78.8 80.3 79.8 80.1

SAGCN 77.8 80.0 80.9 - - -

Baselines. In addition to the previously mentioned baselines, three variants of
the state-of-the-art Geom-GCN model [14] are included on these datasets.

• Geom-GCN: This is a geometric aggregation scheme for graph neural net-
works, which can extract the discriminative structures and long-range depen-
dencies. Geom-GCN-I, Geom-GCN-P, and Geom-GCN-S are three variants
of Geom-GCN.

Hyper-parameter Settings. In SAGCN, we fix the η to 0.7 on all datasets.
We tune the following hyper-parameters: (1) layers ∈ {8, 16, 32}, (2) learning
rate ∈ {0.005, 0.01, 0.03}, (3) hidden layer dimensions ∈ {64, 128}, (4) dropout

76 M. He et al.

rate ∈ {0.4, 0.5}, (5) L2 regularization ∈ {0.0002, 0.001, 0.005, 0.01}, and (6) λ
∈ {2.0, 2.5}.

Performance Comparison. Table 4 reports the mean classification accuracy
of each model. The metrics already reported in [1] are reused for GCN, GAT,
Geom-GCN, and GCNII. Notably, it is observed that SAGCN achieves better
performance over the current state-of-the-art models by significant margins of
0.8%, 1.6%, 5.7%, and 1.6% on the Chameleon, Cornell, Texas, and Wisconsin,
respectively.

Table 4. Mean classification accuracy (%) of full-supervised node classification.

Model Cora Cite. Pumb. Cham. Corn. Texa. Wisc.

GCN 85.77 73.68 88.13 28.18 52.70 52.16 45.88

GAT 86.37 74.32 87.62 42.93 54.32 58.38 49.41

Geom-GCN-I 85.19 77.99 90.05 60.31 56.76 57.58 58.24

Geom-GCN-P 84.93 75.14 88.09 60.90 60.81 67.57 64.12

Geom-GCN-S 85.27 74.71 84.75 59.96 55.68 59.73 56.67

APPNP 87.87 76.53 89.40 54.30 73.51 65.41 69.02

JKNet 85.25 75.85 88.94 60.07 57.30 56.49 48.82

JKNet(Drop) 87.46 75.96 89.45 62.08 61.08 57.30 50.59

Incep(Drop) 86.86 76.83 89.18 61.71 61.62 57.84 50.20

GCNII 88.49 77.13 90.30 62.48 76.49 77.84 81.57

SAGCN 88.71 77.29 90.82 63.33 78.11 83.51 83.14

5.4 Ablation Study

The results of an ablation study are shown in Fig. 2. We remove the attention
from SAGCN (denoted by “SAGCN-A”) and initial node features separating
from SAGCN (denoted by “SAGCN-S”), respectively, to see how its perfor-
mance changes. We make four observations from Fig. 2: 1) Applying an attention

Fig. 2. Ablation study on initial node features separating and attention.

SAGCN: Structure-Aware Deep Graph Convolutional Networks 77

mechanism significantly improves the performance of the model. 2) Separating
initial node features from propagation increases the performance of the model
to varying degrees. 3) Employing both techniques simultaneously achieves the
best results on the three different datasets.

6 Conclusion

In this paper, we propose SAGCN, a novel deep GCN model that relieves the
over-smoothing problem. Differently from previous deep models like GCNII, we
separate initial node features from propagation to fully preserve the original
information that is important for node classification. We further employ an
attention mechanism that flexibly leverages different neighborhood ranges for
each node, leading to structure-aware node representations for classification.
Experiments show that our model can achieve new state-of-the-art performance
with half the number of layers, or even less, on various semi-supervised and
full-supervised node classification tasks.

Acknowledgements. This work is supported by the Beijing Natural Science Foun-
dation under grant 4192008.

References

1. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional
networks. arXiv preprint arXiv:2007.02133 (2020)

2. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric.
arXiv preprint arXiv:1903.02428 (2019)

3. Fout, A., Byrd, J., Shariat, B., Ben-Hur, A.: Protein interface prediction using
graph convolutional networks. In: Proceedings of the 31th Advances in Neural
Information Processing Systems, pp. 6530–6539 (2017)

4. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplify-
ing and powering graph convolution network for recommendation. arXiv preprint
arXiv:2002.02126 (2020)

5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: Proceedings of the 6th International Conference on Learning Repre-
sentations (2017)

7. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural
networks meet personalized pagerank. arXiv preprint arXiv:1810.05997 (2018)

8. Li, C., Goldwasser, D.: Encoding social information with graph convolutional net-
works forpolitical perspective detection in news media. In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pp. 2594–2604
(2019)

9. Li, Q., Han, Z., Wu, X.-M.: Deeper insights into graph convolutional networks for
semi-supervised learning. arXiv preprint arXiv:1801.07606 (2018)

10. Liu, M., Gao, H., Ji, S.: Towards deeper graph neural networks. In: Proceedings
of the 26th International Conference on Knowledge Discovery & Data Mining,
pp.338–348 (2020)

http://arxiv.org/abs/2007.02133
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/2002.02126
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1810.05997
http://arxiv.org/abs/1801.07606

78 M. He et al.

11. Ma, J., Wen, J., Zhong, M., Chen, W., Zhou, X., Indulska, J.: Multi-source multi-
net micro-video recommendation with hidden item category discovery. In: Li, G.,
Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol.
11447, pp. 384–400. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
18579-4 23

12. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: International Conference on Machine Learning (2010)

13. Oono, K., Suzuki, T.: On asymptotic behaviors of graph cnns from dynamical
systems perspective. arXiv preprint arXiv:1905.10947 (2019)

14. Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph
convolutional networks. arXiv preprint arXiv:2002.05287 (2020)

15. Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: DeepInf: social influence
prediction with deep learning. In: Proceedings of the 24th International Conference
on Knowledge Discovery & Data Mining, pp. 2110–2119 (2018)

16. Rong, Y., Huang, W., Xu, T., Huang, J.: DropEdge: towards deep graph convo-
lutional networks on node classification. In: International Conference on Learning
Representations (2019)

17. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding.
arXiv preprint arXiv:1909.13021 (2019)

18. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93–93 (2008)

19. Shang, J., Xiao, C., Ma, T., Li, H., Sun, J.: GAMNet: graph augmented memory
networks for recommending medication combination. In: Proceedings of the 33rd
AAAI Conference on Artificial Intelligence, vol. 33, pp. 1126–1133 (2019)

20. Thekumparampil, K.K., Wang, C., Oh, S., Li, L.J.: Attention-based graph neural
network for semi-supervised learning. arXiv preprint arXiv:1803.03735 (2018)

21. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. In: Proceedings of the 7th International Conference on Learn-
ing Representations (2018)

22. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Repre-
sentation learning on graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536 (2018)

23. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with
graph embeddings. In: International Conference on Machine Learning, pp. 40–48.
PMLR (2016)

24. Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic graph con-
volutional networks for 3d human pose regression. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3425–3435 (2019)

25. Zhu, H., et al.: Bilinear graph neural network with neighbor interactions. In: Pro-
ceedings of the 29th International Joint Conference on Artificial Intelligence, vol.
5 (2020)

https://doi.org/10.1007/978-3-030-18579-4_23
https://doi.org/10.1007/978-3-030-18579-4_23
http://arxiv.org/abs/1905.10947
http://arxiv.org/abs/2002.05287
http://arxiv.org/abs/1909.13021
http://arxiv.org/abs/1803.03735
http://arxiv.org/abs/1806.03536

Hierarchical Learning of Dependent
Concepts for Human Activity Recognition

Aomar Osmani1, Massinissa Hamidi1(B), and Pegah Alizadeh2

1 LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord, Villetaneuse, France
{ao,hamidi}@lipn.univ-paris13.fr

2 Léonard de Vinci Pôle Universitaire, Research Center,
92 916 Paris, La Défense, France
pegah.alizadeh@devinci.fr

Abstract. In multi-class classification tasks, like human activity recog-
nition, it is often assumed that classes are separable. In real applications,
this assumption becomes strong and generates inconsistencies. Besides,
the most commonly used approach is to learn classes one-by-one against
the others. This computational simplification principle introduces strong
inductive biases on the learned theories. In fact, the natural connections
among some classes, and not others, deserve to be taken into account. In
this paper, we show that the organization of overlapping classes (multiple
inheritances) into hierarchies considerably improves classification perfor-
mances. This is particularly true in the case of activity recognition tasks
featured in the SHL dataset. After theoretically showing the exponential
complexity of possible class hierarchies, we propose an approach based
on transfer affinity among the classes to determine an optimal hierarchy
for the learning process. Extensive experiments show improved perfor-
mances and a reduction in the number of examples needed to learn.

Keywords: Activity recognition · Dependent concepts ·
Meta-modeling

1 Introduction

Many real-world applications considered in machine learning exhibit dependen-
cies among the various to-be-learned concepts (or classes) [6,17]. This is partic-
ularly the case in human activity recognition from wearable sensor deployments
which constitutes the main focus of our paper. This problem is two-folds: the high
volume of accumulated data and the criteria selection optimization. For instance,
are the criteria used to distinguish between the activities (concepts) running and
walking the same as those used to distinguish between driving a car and being in
a bus? what about distinguishing each individual activity against the remaining
ones taken as a whole? Similarly, during the annotation process, when should
someone consider that walking at a higher pace corresponds actually to run-
ning? These questions naturally arise in the case of the SHL dataset [7] which
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 79–92, 2021.
https://doi.org/10.1007/978-3-030-75765-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_7

80 A. Osmani et al.

exhibits such dependencies. The considered activities in this dataset are difficult
to separate due to the existence of many overlaps among certain activities. Some
of the important causes for these overlaps are: (1) the on-body sensors deploy-
ments featured by this dataset, due to sensors coverage overlaps, tend to capture
movements that are not necessarily related to a unique activity. Authors in [8],
for example, have exhibited such overlaps; (2) The difficulty of data annota-
tion during data collection conducted in real-world conditions. For instance, the
annotation issues can include the time-shift of a label with respect to the activ-
ity [19], as well as wrong or missing labels [13]. Similarly, long lines of research
in computer vision [20] and time-series analysis [13,19] raised these issues which
hinder the development and large-scale adoption of these applications.

To solve these problems, we propose an original approach for structuring
the considered concepts into hierarchies in a way that very similar concepts are
grouped together and tackled by specialized classifiers. The idea is that classifi-
cations at different levels of the hierarchy may rely on different features, or differ-
ent combinations of the same features [27]. Indeed, many real-world classification
problems are naturally cast as hierarchical classification problems [1,24,25,27]. A
work on the semantic relationships among the categories in a hierarchical struc-
ture shows that they are usually of the type generalization-specialization [27].
In other words, the lower-level categories are supposed to have the same general
properties as the higher-level categories plus additional more specific properties.
The problem at hand is twice difficult as we have to, first, find the most appro-
priate hierarchical structure and, second, find optimal learners assigned to the
nodes of the hierarchical structure.

We propose a data-driven approach to structure the considered concepts in a
bottom-up approach. We start by computing the affinities and dependencies that
exist among the concepts and fuse hierarchically the closest concepts with each
other. We leverage for this a powerful technique based on transfer which showed
interesting empirical properties in various domains [14,26]. Taking a bottom-
up approach allows us to leverage learning the complete hierarchy (including
the classifiers assigned to each non-leaf node) incrementally by reusing what was
learned on the way. Our contributions are as follows: (1) we propose a theoretical
calculation for computing the total number of tree hierarchical combinations (the
search space for the optimal solution) based on the given number of concepts;
(2) we propose an approach based on transfer affinity to determine an optimal
organization of the concepts that improves both learning performances and accel-
erates the learning process; (3) extensive experiments show the effectiveness of
organizing the learning process. We noticeably get a substantial improvement of
recognition performances over a baseline which uses a flat classification setting;
(4) we perform a comprehensive comparative analysis of the various stages of
our approach which raises interesting questions about concept dependencies and
the required amount of supervision.

Hierarchical Learning of Dependent Concepts for HAR 81

2 Problem Statement

In this section, we briefly review the problem of hierarchical structuring of the
concepts in terms of formulation and background. We then provide a complexity
analysis of the problem size and its search space.

2.1 Problem Formulation and Background

Let X ⊂ R
n be the inputs vector1 and let C be the set of atomic concepts

(or labels) to learn. The main idea of this paper comes from the fact that the
concepts to be learned are not totally independent, thus grouping some concepts
to learn them against the others using implicit biases considerably improves
the quality of learning for each concept. The main problem is to find the best
structure of concepts groups to be learned in order to optimize the learning of
each atomic concept. For this we follow the three dimensions setting defined
in [10], and we consider: (1) single-label classification as opposed to multi-label
classification; (2) the type of hierarchy (or structure) to be trees as opposed to
directed acyclic graphs; (3) instances that have to be classified into leafs, i.e.
mandatory leaf node prediction [17], as opposed to the setting where instances
can be classified into any node of the hierarchy (early stopping).

A tree hierarchy organizes the class labels into a tree-like structure to rep-
resent a kind of “IS-A” relationship between labels. Specifically, [10] points out
that the properties of the “IS-A” relationship can be described as asymmetry,
anti-reflexivity and transitivity [17]. We define a tree as a pair (C,≺), where C
is the set of class labels and “≺” denotes the “IS-A” relationship.

Let {(x1, c1), . . . , (xN , cN)} i.i.d.∼ X,C be a set of training examples, where
X and C are two random variables taking values in X × C, respectively. Each
xk ∈ X and each ck ∈ C. Our goal is to learn a classification function f : X −→ C
that attains a small classification error. In this paper, we associate each node
i with a classifier Mi, and focus on classifiers f(x) that are parameterized by
M1, . . . ,Mm through the following recursive procedure [27] (check Fig. 2):

f(x) =

⎧
⎪⎨

⎪⎩

initialize i := 0

while (Child(i) is not empty) i := argmaxj∈Child(i) Mj(x)

return i %Child(i) is the set of children for the node i

(1)

In the case of the SHL dataset, for instance, learning train and subway or car and
bus before learning each concept alone gives better results. As an advantage, con-
sidering these classes paired together as opposed to the flat classification setting
leads to significant degradation of recognition performances as demonstrated in
some works around the SHL dataset [23]. In contrast, organizing the various
concepts into a tree-like structure, inspired by domain expertise, demonstrated

1 In our case, we select several body-motion modalities to be included in our exper-
iments, among the 16 input modalities of the original dataset: accelerometer, gyro-
scope, etc. Segmentation and processing details are detailed in experimental part.

82 A. Osmani et al.

significant gains in terms of recognition performances in the context of the SHL
challenge [12] and activity recognition in general [15,16].

Designing such structures is of utmost importance but hard because it
involves optimizing the structure as well as learning the weights of the clas-
sifiers attached to the nodes of that structure (see Sect. 2.2). Our goal is then
to determine an optimal structure of classes that can facilitate (improve and
accelerate) learning of the whole concepts.

2.2 Search Space Size: Complexity Analysis

A naive approach is to generate the lattice structure of concepts groups and
to choose the tree hierarchies which give the best accuracy of atomic concepts.
In practice, this is not doable because of the exponential (in the number of
leaf nodes) number of possible trees. We propose a recurrence relation involving
binomial coefficients for calculating the total number of tree hierarchies for K
different concepts (class labels).

Example 1. Assume we have 3 various concepts, and we are interested in count-
ing the total number of hierarchies for classifying these concepts. We consider
that we have three classes namely c1, c2 and c3, there exist 4 different tree hier-
archies for learning the classification problem as following: (1) (c1c2c3) the tree
has one level and the learning process takes one step. Three concepts are learned
while each concept is learned separately from the others (flat classification), (2)
((c1c2)c3) the tree has two levels and the learning process takes two steps: at the
first level, it learns two concepts (atomic c3 and two atomics c1 and c2 together).
At the second level it learns separately the two joined concepts c1 and c2 of the
first level, etc. and (3) (c1(c2 c3)) and (4) ((c1c3)c2).

Theorem 1. Let L(K) be the total number of trees for the given K number of
concepts. The total number of trees for K + 1 concepts satisfies the following
recurrence relation: L(K +1) =

(
K

K−1

)
L(K)L(1)+2

∑K−2
i=0

(
K
i

)
L(i+1)L(K − i).

(See Appendix A in the supplementary material for complete proof).

3 Proposed Approach

Our goals are to: (i) organize the considered concepts into hierarchies such that
the learning process accounts for the dependencies existed among these con-
cepts; (ii) characterize optimal classifiers that are associated to each non-leaf
node of the hierarchies. Structuring the concepts can be performed using two
different approaches: a top-down approach where we seek to decompose the
learning process; and a bottom-up approach where the specialized models are
grouped together based on their affinities. Our approach takes the latter direc-
tion and constructs hierarchies based on the similarities between concepts. This
is because, an hierarchical approach as a bottom-up method is efficient in the
case of high volume SHL data-sets. In this section, we detail the different parts
of our approach which are illustrated in Fig. 1. In the rest of this section, we
introduce the three stages of our approach in detail: Concept similarity analysis,
Hierarchy derivation, and Hierarchy refinement.

Hierarchical Learning of Dependent Concepts for HAR 83

1

2 3 4

5 6 7 8

1

2

3

4

5

6

7

8

7

8
6

5

43

2 1

3rd order
2nd order

...

Source Concept Encoder
(e.g. 1:Still)

Target Concept Decoder
(e.g. 6:Bus)

Concepts

Fig. 1. Our solution involves several repetitions of 3 main steps: (1) Concept similarity
analysis: encoders are trained to output, for each source concept, an appropriate repre-
sentation which is then fine-tuned to serve target concepts. Affinity scores are depicted
by the arrows between concepts (the thicker the arrow, the higher the affinity score).
(2) Hierarchy derivation: based on the obtained affinity scores, a hierarchy is derived
using an agglomerate approach. (3) Hierarchy refinement: each non-leaf node of the
derived hierarchy is assigned with a model that encompasses the appropriate repre-
sentation as well as an ERM which is optimized to separate the considered concepts.

3.1 Concept Similarity (Affinity) Analysis

In our bottom-up approach we leverage transferability and dependency among
concepts as a measure of similarity. Besides the nice empirical properties of this
measure (explained in the Properties paragraph below), the argument behind it
is to reuse what has been learned so far at the lower levels of the hierarchies.
Indeed, we leverage the models that we learned during this step and use them
with few additional adjustments in the final hierarchical learning setting.

Transfer-Based Affinity. Given the set of concepts C, we compute during this
step an affinity matrix that captures the notion of transferability and similarity,
among the concepts. For this, we first compute for each concept ci ∈ C an encoder
fci

θ (parameterized by θ) that learns to map the ci labeled inputs, to Zci . Learn-
ing the encoder’s parameters consists in minimizing the reconstruction error, sat-
isfying the following optimization [22]: argminθ,θ′ Ex,c∼X,C|c=ciL(gci

θ′ (fci
θ (x)), x),

where gci
θ′ is a decoder (parameterized by θ′) which maps back the learned rep-

resentation into the original inputs space. We propose to leverage the learned
encoder, for a given concept ci, to compute affinities with other concepts via fine-
tuning of the learned representation. Precisely, we fine-tune the encoder fθ

ci to
account for a target concept cj ∈ C. This process consists, similarly, in minimiz-
ing the reconstruction error, however rather than using the decoder gci

θ′ learned
above, we design a genuine decoder g

cj
θ′ that we learn from the scratch. The corre-

sponding objective function is argminθ,θ′ Ex,c∼X,C|c=cjL(gcj
θ′ (fci

θ (x)), x). We use
the performance of this step as a similarity score from ci to cj which we denote
by pci−→cj ∈ [0, 1]. We refer to the number of examples belonging to the concept
cj used during fine-tuning as the supervision budget, denoted as b, which is used
to index a given measure of similarity. It allows us to have an additional indi-
cator as to the similarity between the considered concepts. The final similarity
score is computed as

α·pci−→cj
+β·b

α+β . We set α and β to be equal to 1
2 .

84 A. Osmani et al.

Properties. In many applications, e.g. computer-vision [26] and natural language
processing [14], several variants of the transfer-based similarity measure have
been shown empirically to improve (i) the quality of transferred models (wins
against fully supervised models), (ii) the gains, i.e. win rate against a network
trained from scratch using the same training data as transfer networks’, and
more importantly (iii) the universality of the resulting structure. Indeed, the
affinities based on transferability are stable despite the variations of a big corpus
of hyperparameters. We provide empirical evidence (Sect. 4.2) of the appropri-
ateness of the transfer-based affinity measure for the separability of the similar
concepts and the difficulty to separate concepts that exhibit low similarity scores.

3.2 Hierarchy Derivation

Given the set of affinity scores obtained previously, we derive the most appro-
priate hierarchy, following an agglomerative clustering method combined with
some additional constraints. The agglomerative clustering method proceeds by a
series of successive fusions of the concepts into groups and results in a structure
represented by a two-dimensional diagram known as a dendrogram. It works
by (1) forming groups of concepts that are close enough and (2) updating
the affinity scores based on the newly formed groups. This process is defined
by the recurrence formula proposed by [11]. If defines a distance between a
group of concepts (k) and a group formed by fusing i and j groups (ij) as
dk(ij) = αidki + αjdkj + βdij + γ|dki − dkj |, where dij is the distance between
two groups i and j. By varying the parameter values αi, αj , β, and γ, we expect
to get clustering schemes with various characteristics.

In addition to the above updating process, we propose additional constraints
to refine further the hierarchy derivation stage. Given the dendrogram produced
by the agglomerative method above, we define an affinity threshold τ such that
if the distance at a given node is dij ≥ τ , then we merge the nodes to form a
unique subtree. In addition, as we keep track of the quantities of data used to
train and fine-tune the encoders during the transfer-based affinity analysis stage,
this indicator is exploited to inform us as to which nodes to merge. Let T be
the derived hierarchy (tree) and let t indexes the non-leaf or internal nodes. The
leafs of the hierarchy correspond to the considered concepts. For any non-leaf
node t, we associate a model Mt that encompasses (1) an encoder (denoted in
the following simply by Zt in order to focus on the representation) that maps
inputs X to representations Zt and (2) an ERM (Empirical Risk Minimizer) [21]
ft (such as support vector machines SVMs) that outputs decision boundaries
based on the representations produced by the encoder.

3.3 Hierarchy Refinement

After explaining the hierarchy derivation process, we will discuss: (1) which
representations are used in each individual model; and (2) how each individual
model (including the representation and the ERM weights) is adjusted to account
for both the local errors and also those of the hierarchy as a whole.

Hierarchical Learning of Dependent Concepts for HAR 85

Which Representations to Use? The question discussed here is related to the
encoders to be used in each non-leaf node. For any non-leaf node t we distinguish
two cases: (i) all its children are leafs; (ii) it has at least one non-leaf node. In the
first case, the final considered ERM representation, associated with the non-leaf
node, is the representation learned in the concept affinity analysis step (first-
order transfer-based affinity). In the second case, we can either fuse the nodes
(for example, in a case of classification between 3 concepts, we get all 3 together
rather than, first {1} vs. {2,3}, then {2} vs. {3}), or keep them as they are
and leverage the affinities based on higher-order transfer where, rather than
accounting for a unique target concept, the representation is then fine-tuned.
Figure 2 illustrates how transfers are performed between non-leaf nodes models.
We index the models with the encoder M[Zi]. In the case of higher-order transfer,
the models are indexed using all concepts involved in the transfer, i.e. M[Zi,j,...].

M[zj]

cj ck

M[zi,j]

ci

(a)

cj ck

M[zi,j,k]

ci

(b)

M[zj]

cj ck

M[zi,j]

M[zj]

...

(c)

Fig. 2. Transfers are performed between non-leaf nodes models. The hierarchy in (a)
can be kept as they are merged to form the hierarchy in (b). (b): a high-order transfer
between the concepts ci, cj , and ck is performed. (c): no transfers can be made.

Adjusting Models Weights. Classifiers are trained to output a hypothesis based
on the most appropriate representations learned earlier. Given the encoder (rep-
resentation) assigned to any non-leaf node t, we select a classifier f̂ := argminf∈H
R̂(f,Zt) where R̂(f,Zt) := 1

M

∑
x,c∼X,C|c∈Child(t) Ez∼Zt|x[L(c, f(z))] and H is

the hypothesis space. Models are adjusted to account for local errors as well as
for global errors related to the hierarchy as a whole. In the first case, the loss is
defined as the traditional hinge loss used in SVMs which is intended to adjust
the weights of the classifiers that have only children leaves. In the second case,
we use a loss that encourages the models to leverage orthogonal representations
(between children and parent nodes) [27].

4 Experiments and Results

Empirical evaluation of our approach are performed on three steps: we evalu-
ate classification performances in the hierarchical setting (Sect. 4.1); then, we
evaluate the transfer-based affinity analysis step and the properties related to
the separability of the considered concepts (Sect. 4.2); finally, we evaluate the
derived hierarchies in terms of stability, performance, and agreement with their

86 A. Osmani et al.

counterparts defined by domain experts (Sect. 4.3)2. Training details can be
found in Appendix B and evaluation metrics are detailed in Appendix C.

SHL Dataset [7]. It is a highly versatile and precisely annotated dataset dedi-
cated to mobility-related human activity recognition. In contrast to related rep-
resentative datasets like [2], the SHL dataset (26.43 GB) provides , simultane-
ously, multimodal and multilocation locomotion data recorded in real-life set-
tings. Among the 16 modalities of the original dataset, we select the body-motion
modalities including: accelerometer, gyroscope, magnetometer, linear accelera-
tion, orientation, gravity, and ambient pressure. This makes the data set suit-
able for a wide range of applications and in particular transportation recognition
concerned with this paper. From the 8 primary categories of transportation, we
are selected: 1:Still, 2:Walk, 3:Run, 4:Bike, 5:Car, 6:Bus, 7:Train, and 8:Subway
(Tube).

4.1 Evaluation of the Hierarchical Classification Performances

In these experiments, we evaluate the flat classification setting using neural net-
works which constitute our baseline for the rest of the empirical evaluations.
To compare our baseline with the hierarchical models, we make sure to get the
same complexity, i.e. comparable number of parameters as the largest hierar-
chies including the weights of the encoders and those of the ERMs. We also use
Bayesian optimization based on Gaussian processes as surrogate models to select
the optimal hyperparameters of the baseline model [9,18]. More details about
the baseline and its hyperparameters are available in the code repository [9].

Per-Node Performances. Figure 3 shows the resulting per-node performances,
i.e. how accurately the models associated with the non-leaf nodes can predict the
correct subcategory averaged over the entire derived hierarchies. The nodes are
ranked according to the obtained per-node performance (top 10 nodes are shown)
and accompanied by their appearance frequency. It is worth noticing that the
concept 1:still learned alone against the rest of the concepts (first bar) achieves
the highest gains in terms of recognition performances while the appearance
frequency of this learning configuration is high (more than 60 times). We see
also that the concepts 4:bike, 5:car, and 6:bus grouped together (5th bar) occur
very often in the derived hierarchies (80 times) which is accompanied by fairly
significant performance gains (5.09 ± 0.3%). At the same time, as expected, we
see that the appearance frequency gets into a plateau starting from the 6th bar
(which lasts after the 10th bar). This suggests that the most influential nodes
are often exhibited by our approach.

Per-Concept Performances. We further ensure that the performance improve-
ments we get at the node levels are reflected at the concept level. Experimental

2 Software package and code to reproduce empirical results are publicly available at
https://github.com/sensor-rich/hierarchicalSHL.

https://github.com/sensor-rich/hierarchicalSHL

Hierarchical Learning of Dependent Concepts for HAR 87

0

2

4

6

8

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10

Perf. gains
Appear. freq.

P
er

fo
rm

an
ce

ga
in

s
(%

)

Nodes

A
pp

ea
ra

nc
e

fr
eq

ue
nc

y

(a)

C
la

ss
ifi

ca
ti
on

pe
rf
or

m
an

ce
s

(%
)

Hierarchical
Baseline

1:still 2:walk 3:run 4:bike 5:car 6:bus 7:train 8:subway

85

80

75

70

65

60

(b)

Fig. 3. (a) Per-node performance gains, averaged over the entire derived architectures
(similar nodes are grouped and their performances are averaged). The appearance
frequency of the nodes is also illustrated. Each bar represents the gained accuracy
of each node in our hierarchical approach. For example, the 8th bar corresponds to
the concepts 2:walk-3:run-4:bike grouped together. (b) Recognition performances of
each individual concept, averaged over the entire derived hierarchies. For reference, the
recognition performances of the baseline model are also shown.

results show the recognition performances of each concept, averaged over the
whole hierarchies derived using our proposed approach. We indeed observe that
there are significant improvements for each individual concept over the baseline
(flat classification setting). We observe that again 1:still has the highest classi-
fication rate (72.32 ± 3.45%) and an improvement of 5 points over the baseline.
Concept 6:bus also exhibits a roughly similar trend. On the other hand, concept
7:train has the least gains (64.43 ± 4.45%) with no significant improvement over
the baseline. Concept 8:subway exhibits the same behavior suggesting that there
are undesirable effects that stem from the definition of these two concepts.

4.2 Evaluation of the Affinity Analysis Stage

These experiments evaluate the proposed transfer-based affinity measure.
We assess, the separability of the concepts depending on their similarity
score (for both the transfer-affinity and supervision budget) and the learned
representation.

Appropriateness of the Transfer-Based Affinity Measure. We reviewed above
the nice properties of the transfer-based measure especially the universality and
stability of the resulting affinity structure. The question that arises is related
to the separability of the concepts that are grouped together. Are the obtained
representations, are optimal for the final ERMs used for the classification? This
is what we investigate here. Figure 4b shows the decision boundaries generated
by the considered ERMs which are provided with the learned representations
of two concepts. The first case (top right), exhibits a low-affinity score, and
the second case (bottom right) shows a high-affinity score. In the first case, the
boundaries are unable to separate the two concepts while it gets a fairly distinct
frontier.

Impact on the ERMs’ Decision Boundaries. We train different models with vari-
ous learned representations in order to investigate the effect of the initial affinities

88 A. Osmani et al.

M[zi]

ci cj

(a) (b)

In
it
ia

lt
ra

ns
fe

r-
ba

se
d

affi
ni

ty
sc

or
es

Supervision budget (# learning examples)200 300 400 500

0.2

0.4

0.6

0.8

(c)

Fig. 4. (a) Non-leaf node grouping concepts ci and cj . (b) Decision boundaries gener-
ated by the ERM of the non-leaf node using an encoder (representation) fine-tuned to
account for (top) the case where ci and cj are dissimilar (low-affinity score) and (bot-
tom) the case where ci and cj are similar (high-affinity score). (c) Decision boundaries
obtained by SVM-based classifiers trained on the representations Zt as a function of
the distance between the concepts (y-axis) and the supervision budget (x-axis).

(obtained solely with a set of 100 learning examples) and the supervision budget
(additional learning examples used to fine-tune the obtained representation) on
the classification performances of the ERMs associated with the non-leaf nodes
of our hierarchies. Figure 4c shows the decision boundaries generated by various
models as a function of the distance between the concepts (y-axis) and the super-
vision budget (x-axis). Increasing the supervision budget to some larger extents
(more than ∼300 examples) results in a substantial decrease in classification per-
formances of the ERMs. This suggests that, although our initial affinity scores
are decisive (e.g. 0.8), the supervision budget is tightly linked to generalization.
This shows that a trade-off (controlled by the supervision budget) between sep-
arability and initial affinities arises when we seek to group concepts together.
In other words, the important question is whether to increase the supervision
budget indefinitely (in the limits of available learning examples) in order to find
the most appropriate concepts to fuse with, while expecting good separability.

4.3 Universality and Stability

We demonstrated in the previous section the appropriateness of the transfer-
based affinity measure to provide distance between concepts as well as the exis-
tence of a trade-off between concepts separability and their initial affinities. Here
we evaluate the universality of the derived hierarchies as well as their stabil-
ity during adaptation with respect to our hyperparameters (affinity threshold
and supervision budget). We compare the derived hierarchies with their domain
experts-defined counterparts, as well as those obtained via a random sampling
process. Figure 5 shows some of the hierarchies defined by the domain experts
(first row) and sampled using the random sampling process. For example, the
hierarchy depicted in Fig. 5d corresponds to a split between static (1:still, 5:car,
6:bus, 7:train, 8:subway) and dynamic (2:walk, 3:run, 4:bike) activities. The dif-
ference between the hierarchies depicted in Fig. 5a and 5b is related to 4:bike
activity which is linked first to 2:walk and 3:run then to 5:car and 6:bus. A pos-
sible interpretation is that in the first case, biking is considered as “on feet”

Hierarchical Learning of Dependent Concepts for HAR 89

1

2 3 4 5 6 7 8

(a)

1

2 3 4 5 6 7 8

(b)

1

2 3 4

5 6 7 8

(c)

1

2 3 4 5 6 7 8

(d)

Fig. 5. Examples of hierarchies:
(a) defined via domain expertise,
(b-c) derived using our approach,
and (d) randomly sampled. Con-
cepts 1—8 from left to right.

Table 1. Summary of the recognition
performances obtained with our proposed
approach compared to randomly sampled
and expert-defined hierarchies.

Method Agree Perf. avg.± std.

Expertise – 72.32 ± 0.17

Random 0.32 48.17 ± 5.76

Proposed 0.77 75.92 ± 1.13

activity while in the second case as “on wheels” activity. What we observed is
that the derived hierarchies tend to converge towards the expert-defined ones.

We compare the derived hierarchies in terms of their level of agreement. We
use for this assessment, the Cohen’s kappa coefficient [4] which measures the
agreement between two raters. The first column of Table 1 provides the obtained
coefficients. We also compare the average recognition performance of the derived
hierarchies (second column of Table 1). In terms of stability, as we vary the
design choices (hyperparameters), defined in our approach, we found that the
affinity threshold has a substantial impact on our results with many adjustments
involved (12 hierarchy adjustments on avg.) whereas the supervision budget has
a slight effect, which confirms the observations in Sect. 4.2.

5 Conclusion and Future Work

This paper proposes an approach for organizing the learning process of depen-
dent concepts in the case of human activity recognition. We first determine a
suitable structure for the concepts according to a transfer affinity-based mea-
sure. We then characterize optimal representations and classifiers which are then
refined to account for both local and global errors. We provide theoretical bounds
for the problem and empirically show that using our approach we are able to
improve the performances and robustness of activity recognition models over a
flat classification baseline. In addition to supporting the necessity of organizing
concepts learning, our experiments raise interesting questions for future work.
Noticeably, Sect. 4.2 asks what is the optimal amount of supervision for deriving
the hierarchies. Another future work is to study different approaches for search-
ing and exploring the search space of different hierarchical types (lattices, etc.).

Appendix A

Proof. Theorem 1. It can be explained by observing that, for K + 1 concepts
containing K existed concepts c1, · · · cK and a new added concept γ, we can
produce the first level trees combinations as below. Notice that each atomic
element o can be one of the c1, · · · cK concepts. In order to compute the total

90 A. Osmani et al.

number of trees combinations, we show what is the number of tree combinations
by assigning the K concepts to each item:

– (γ(
Kconcepts︷ ︸︸ ︷
o · · · o)): the number of trees combinations by taking the concept labels

into the account are:
(
K
0

)
L(1) × 2 × L(K); the reason for multiplying the

number of trees combinations for K concepts to 2 is because while the left
side contains an atomic γ concept, there are two choices for the right side
of the tree in the first level: either we compute the total number of trees

for K concepts from the first level or we keep the first level as a
Kconcepts︷ ︸︸ ︷
o · · · o

atomics and keep all K concepts together, then continue the number of K
trees combinations from the second level of the tree.

– ((γo)(
K−1concepts︷ ︸︸ ︷

o · · · o)): similar to the previous part we have
(
K
1

)
L(2)×2×L(K −

1) trees combinations by taking the concepts labels into the account.
(
K
1

)

indicates the number of combinations for choosing a concept from the K
concept and put it with the new concept separately. While L(2) is the number
of trees combinations for the left side of tree separated with the new concept
γ.

– ((γoo)(
K−2concepts︷ ︸︸ ︷

o · · · o)), · · ·

– ((γ
K−1concepts︷ ︸︸ ︷

o · · · o)o):
(

K
K−1

)
L(K)L(1) in this special part, we follow the same

formula except the single concept in the right side has only one possible
combination in the first level equal to L(1).

All in all, the sum of these items calculates the total number of tree hierarchies
for K + 1 concepts.

The first few number of total number of trees combinations for 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, · · · concepts are: 1, 1, 4, 26, 236, 2752, 39208, 660032, 12818912,
282137824, · · · . In the case of the SHL dataset that we use in the empirical
evaluation, we have 8 different concepts and thus, the number of different types
of hierarchies for this case is L(8) = 660, 032.

Appendix B Training Details

We use Tensorflow for building the encoders/decoders. We construct encoders by
stacking Conv1d/ReLU/MaxPool blocks. These blocks are followed by a Fully
Connected/ReLU layers. Encoders performance estimation is based on the vali-
dation loss and is framed as a sequence classification problem. As a preprocessing
step, annotated input streams from the huge SHL dataset are segmented into
sequences of 6000 samples which correspond to a duration of 1 min. given a sam-
pling rate 100 Hz. For weight optimization, we use stochastic gradient descent
with Nesterov momentum of 0.9 and a learning-rate of 0.1 for a minimum of
12 epochs (we stop training if there is no improvement). Weight decay is set

Hierarchical Learning of Dependent Concepts for HAR 91

to 0.0001. Furthermore, to make the neural networks more stable, we use batch
normalization on top of each convolutional layer. We use SVMs as our ERMs in
the derived hierarchies.

Appendix C Evaluation Metrics

In hierarchical classification settings, the hierarchical structure is important and
should be taken into account during model evaluation [17]. Various measures
that account for the hierarchical structure of the learning process have been
studied in the literature. They can be categorized into: distance-based; depth-
dependent; semantics-based; and hierarchy-based measures. Each one is display-
ing advantages and disadvantages depending on the characteristics of the con-
sidered structure [5]. In our experiments, we use the H-loss, a hierarchy-based
measure defined in [3]. This measure captures the intuition that “whenever a
classification mistake is made on a node of the taxonomy, then no loss should
be charged for any additional mistake occurring in the sub-tree of that node.”
�H(ŷ, y) =

∑N
i=1{ŷi �= yi ∧ ŷj = yj , j ∈ Anc(i)}, where ŷ = (ŷ1, · · · ŷN) is the

predicted labels, y = (y1, · · · yN) is the true labels, and Anc(i) is the set of
ancestors for the node i.

References

1. Cai, L., Hofmann, T.: Hierarchical document categorization with support vector
machines. In: CIKM, pp. 78–87 (2004)

2. Carpineti, C., et al.: Custom dual transportation mode detection by smartphone
devices exploiting sensor diversity. In: PerCom wksh, pp. 367–372. IEEE (2018)

3. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchical
classification. JMLR 7, 31–54 (2006)

4. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur.
20(1), 37–46 (1960)

5. Costa, E., Lorena, A., Carvalho, A., Freitas, A.: A review of performance evaluation
measures for hierarchical classifiers. In: Evaluation Methods for machine Learning
II: papers from the AAAI-2007 Workshop, pp. 1–6 (2007)

6. Essaidi, M., Osmani, A., Rouveirol, C.: Learning dependent-concepts in ilp: Appli-
cation to model-driven data warehouses. In: ILP, pp. 151–172 (2015)

7. Gjoreski, H., et al.: The university of sussex-huawei locomotion and transportation
dataset for multimodal analytics with mobile devices. IEEE Access 6, 42592-42604
(2018)

8. Hamidi, M., Osmani, A.: Data generation process modeling for activity recognition.
In: ECML-PKDD. Springer (2020)

9. Hamidi, M., Osmani, A., Alizadeh, P.: A multi-view architecture for the shl chal-
lenge. In: UbiComp/ISWC Adjunct, pp. 317–322 (2020)

10. Kosmopoulos, A., Partalas, I., Gaussier, E., Paliouras, G., Androutsopoulos,
I.: Evaluation measures for hierarchical classification: a unified view and novel
approaches. Data Min. Knowl. Disc. 29(3), 820–865 (2014). https://doi.org/10.
1007/s10618-014-0382-x

https://doi.org/10.1007/s10618-014-0382-x
https://doi.org/10.1007/s10618-014-0382-x

92 A. Osmani et al.

11. Lance, G.N., Williams, W.T.: A general theory of classificatory sorting strategies:
1. hierarchical systems. Comput. J. 9(4), 373–380 (1967)

12. Nakamura, Y., et al.: Multi-stage activity inference for locomotion and transporta-
tion analytics of mobile users. In: UbiComp/ISWC, pp. 1579–1588 (2018)

13. Nguyen-Dinh, L.V., Calatroni, A., Tröster, G.: Robust online gesture recognition
with crowdsourced annotations. JMLR 15(1), 3187–3220 (2014)

14. Peters, M.E., Ruder, S., Smith, N.A.: To tune or not to tune? adapting pretrained
representations to diverse tasks. arXiv preprint arXiv:1903.05987 (2019)

15. Samie, F., Bauer, L., Henkel, J.: Hierarchical classification for constrained IoT
devices: a case study on human activity recognition. IEEE IoT J. 7(9), 8287-8295
(2020)

16. Scheurer, S., et al.: Using domain knowledge for interpretable and competitive
multi-class human activity recognition. Sensors 20(4), 1208 (2020)

17. Silla, C.N., Freitas, A.A.: A survey of hierarchical classification across different
application domains. Data Min. Knowl. Disc. 22(1–2), 31–72 (2011)

18. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: NIPS, pp. 2951–2959 (2012)

19. Stikic, M., Schiele, B.: Activity recognition from sparsely labeled data using multi-
instance learning. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds.)
LoCA 2009. LNCS, vol. 5561, pp. 156–173. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01721-6 10

20. Taran, V., Gordienko, Y., Rokovyi, A., Alienin, O., Stirenko, S.: Impact of ground
truth annotation quality on performance of semantic image segmentation of traffic
conditions. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2019.
AISC, vol. 938, pp. 183–193. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-16621-2 17

21. Vapnik, V.: Principles of risk minimization for learning theory. In: NIPS (1992)
22. Vincent, P., et al.: Stacked denoising autoencoders: Learning useful representations

in a deep network with a local denoising criterion. JMLR 11(12), (2010)
23. Wang, L., et al.: Summary of the sussex-huawei locomotion-transportation recog-

nition challenge. In: UbiComp/ISWC, pp. 1521–1530 (2018)
24. Wehrmann, J., Cerri, R., Barros, R.: Hierarchical multi-label classification net-

works. In: ICML, pp. 5075–5084 (2018)
25. Yao, H., Wei, Y., Huang, J., Li, Z.: Hierarchically structured meta-learning. In:

ICML, pp. 7045–7054 (2019)
26. Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy:

Disentangling task transfer learning. In: CVPR, pp. 3712–3722 (2018)
27. Zhou, D., Xiao, L., Wu, M.: Hierarchical classification via orthogonal transfer. In:

ICML, pp. 801–808 (2011)

http://arxiv.org/abs/1903.05987
https://doi.org/10.1007/978-3-642-01721-6_10
https://doi.org/10.1007/978-3-642-01721-6_10
https://doi.org/10.1007/978-3-030-16621-2_17
https://doi.org/10.1007/978-3-030-16621-2_17

Improving Short Text Classification Using
Context-Sensitive Representations
and Content-Aware Extended Topic

Knowledge

Zhihao Ye1, Rui Wen2, Xi Chen2, Ye Liu3, Ziheng Zhang2, Zhiyong Li1(B),
Ke Nai1, and Yefeng Zheng2

1 Hunan University, Changsha, China
zhiyong.li@hnu.edu.cn

2 Tencent, Jarvis Lab, Shenzhen, China
{ruiwen,jasonxchen,zihengzhang,yefengzheng}@tencent.com

3 Sun Yat-sen University, Guangzhou, China

Abstract. Most existing short text classification models suffer from
poor performance because of the information sparsity of short texts and
the polysemous class-bearing words. To alleviate these issues, we pro-
pose a context-sensitive topic memory network (cs-TMN) by learning
context-sensitive text representations and content-aware extended topic
knowledge. Different from TMN that utilizes context-independent word
embedding and extended topic knowledge, we further employ context-
sensitive word embedding, comprised of local context representation and
global context representation to alleviate the polysemous issue. Besides,
extended topic knowledge matched by context-sensitive word embed-
ding is proven content-aware in comparison with previous works. Empir-
ical results demonstrate the effectiveness of our cs-TMN, outperform-
ing state-of-the-art models on short text classification on four public
datasets.

Keywords: Short text classification · Context-sensitive text
representations · Topic knowledge

1 Introduction

Short text classification, widely applied to question answering, dialogue systems,
sentiment analysis and others, is one of the most important tasks in natural
language processing. Many models designed for text classification, like support
vector machines (SVM) [27] and neural networks [10,11,29], have been proposed
and achieved promising results, but these models inevitably underperform when
being directly applied to the short text classification due to the information
sparsity.

Recently, many novel methods have been proposed to classify short texts.
On one hand, to alleviate the problem of polysemy, some researchers [20,21]
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 93–105, 2021.
https://doi.org/10.1007/978-3-030-75765-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_8

94 Z. Ye et al.

proposed to learn context-sensitive word embedding by leveraging local con-
textual information or global topic information. Nonetheless, these models are
incapable of representing the interactions among the words, topics and contexts
clearly, thereby under-utilizing topic knowledge. On the other hand, in order to
solve the information sparsity of short text, some researchers [4,19] applied topic
models to derive latent topics, and then employed topic knowledge as features
to enrich the representations of short texts from extra large corpora.

More recently, topic memory network (TMN), proposed by [31], jointly
explored topic inference and text classification with memory networks in an
end-to-end manner. Their model achieved the state-of-the-art results on differ-
ent short text datasets. This model, however, has two limitations. Firstly, it
utilizes the context-independent word representation, leading to the issue of pol-
ysemous word confusion. Moreover, due to the polysemy of class-bearing words,
the topic memory mechanism sometimes cannot match to the extended latent
topic knowledge accurately.

In this paper, to address the aforementioned limitations of TMN, we develop
a context-sensitive topic memory network (cs-TMN) and demonstrate that sig-
nificant improvements can be achieved by using context-sensitive word repre-
sentations. It can not only effectively address the polysemy of class-bearing
words, but also help to match content-aware extended topic knowledge. Our
cs-TMN first encodes the short text into local context representations via a self-
attention mechanism [25] or bidirectional encoder representation from Trans-
formers (BERT) [5]. Inspired by the success of neural topic model (NTM) [16],
we employ it to capture the co-occurrence of words and text topic representation,
thereby discovering latent topics. The context-sensitive word representations are
then obtained by leveraging local context representation and the relevant global
topic information mapping using a word-topic attention mechanism. Finally, cs-
TMN employs context-sensitive text representation and a topic memory mech-
anism to match the content-aware extended topic knowledge. In other words,
topic information is applied to cs-TMN in two aspects. One is to apply global
topic information of text to help establish context-sensitive word embedding;
the other is to apply content-aware topic knowledge as extended features of
classification. The contributions of this paper can be summarized as follows:

(1) We propose a novel short text classification model that employs context-
sensitive word embedding comprised of local context and global context repre-
sentation.

(2) We demonstrate that context-sensitive word embeddings can alleviate the
polysemy issue effectively and gain better extended topic knowledge for short
texts.

(3) Our cs-TMN achieves state-of-the-art performance on four commonly
used short text datasets and shows robustness across languages.

2 Framework Overview

In real-world scenarios, short texts suffer from information sparsity, and many
class-bearing words being polysemous or ambiguous. For instance, in the

Improving Short Text Classification 95

Fig. 1. Overview of cs-TMN consisting of five modules: 1) neural topic model, 2) local
context representation, 3) global context representation, 4) extended topic memory
map, and 5) the classifier.

sentence “He would go to her birthday party.”, the word “party” may refer
to a social event under the topic “activity”, or a political organization under the
topic “politics”. In short text classification, due to the problem of polysemy and
information sparsity, previous methods may classify this sentence as relating to
political events rather than relating to entertainment activities. To address those
issues, our cs-TMN firstly generates the context-sensitive word embedding which
can express the specific meaning of polysemous words in a sentence more accu-
rately. Moreover, cs-TMN matches the content-aware topic knowledge features
with context-sensitive word embeddings. The overall framework is illustrated in
Fig. 1.

2.1 Neural Topic Model

In cs-TMN, we utilize topic information from two aspects: the global topic infor-
mation of words, which represents the global semantic information, and the
extended features of texts, such as other topic words that are not in the original
text but play an important role in the classification task. Specifically, following
TMN, we employ a neural topic model (NTM) [16,22] to induce latent topics.

Different from the TMN, inspired by NTM-R [6], which achieves substantially
higher topic coherence, the objective function of our NTM is defined as:

LNTM−R = LNTM + λC (1)

where LNTM is the loss function of NTM and C is topic coherence regularization.
Specifically, LNTM is defined as:

LNTM = DKL(q(z)||p(z|x)) − Eq(z)[p(x|z)] (2)

96 Z. Ye et al.

where q(z) denotes a standard normal prior N(0; I). Here, p(z|x) and p(x|z) are
probabilities describing the encoding and decoding processes, respectively. The
DKL(·||·) is the Kullback–Leibler divergence and the C is defined as:

F = (WφE)T (3)
S = EF (4)

C =
∑

i

(ST � Wφ)i (5)

where E ∈ R
|V |×d is the pre-trained word embedding matrix for the vocabulary,

F ∈ R
d×T is the Wφ-weighted centroid (topic) vector, and S ∈ R

|V |×T is the
cosine similarity matrix between word vectors and topic vectors. Here, d is the
dimension of the embedding space. Due to the space limitation, we leave out the
derivation details and refer the readers to [6,16].

2.2 Local Context Representation

We evaluate and compare two local context representations within the cs-TMN
framework: the self-attention mechanism vs. BERT.

We apply self-attention [25] to obtain the local context representations of the
input sentence. Formally, given an input text X = x0, x1, ..., xn, where n is the
text length, each hidden state in the r-th layer is constructed by attending to
the states in the (r − 1)-th layer, where the first layer is the word embedding
layer. Specifically, the (r − 1)-th layer Hr−1 ∈ R

n×d is first transformed into the
queries Q ∈ R

n×d, the keys K ∈ R
n×d, and the values A ∈ R

n×d with three
separate weight matrices. The r-th layer is calculated as:

Hr = Attention(Q,K,A) = ATT (Q,K)A (6)

where ATT () is a dot-product attention model, defined as:

ATT (Q,K) = softmax(
QKT

√
d

) (7)

where
√

d is the scaling factor.
In addition, we also attempt to experiment with the state-of-the-art BERT

model [5], to generate word vectors since BERT representation is expected
to further enhance the performance of our cs-TMN. Specifically, we employ
a pre-trained BERT model to predict text category, and we take the word
vectors obtained by all BERT hidden layers as local context representation
L = l0, l1, ..., ln, which are taken as the context-sensitive representations.

2.3 Global Context Representation and Context-Sensitive Word
Embedding

In order to take advantage of global topic information, which could disam-
biguate polysemous words, we employ a word-topic attention mechanism to

Improving Short Text Classification 97

match related topics. Specifically, we assume that after the local context repre-
sentation module, we will obtain the local context representation of all n words,
where n equals the length of the short text. For the global context gi of each
word, we have:

gi =
T∑

k=1

αiktk (8)

αik = softmax(tkli) (9)

where tk is vector representation of the k-th topic, i.e., the k-th row of topic-
word weight matrix Wφ. The αij is the similarity of local context representation
li and each latent topic.

After obtaining the global information of n words, we add the local context
vector of word li and the global topic vector of word gi:

ci = li + gi (10)

where ci is the context-sensitive word embedding of the word i.

2.4 Exploiting Content-Aware Topic Knowledge

We apply a topic memory mechanism [23,28] to map the content-aware topic
knowledge as the extended features for classification. Specifically, after obtaining
the topical-word weight matrix Wφ using NTM, we input this matrix into two
ReLU-activated neural perceptrons and output two memory matrices, a source
memory O and a target memory M . We first compute the match score between
the k-th topic of source memory and the context-sensitive embedding of the i-th
word as:

Pk,i = sigmoid(W scon(Ok;Ui) + bs) (11)

where the con(·; ·) operation [4,8] denotes the concatenation of two matrices,
U = [c0...ci...cn] is the embedded sentence X (in the word sequences form), and
W s and bs are parameters to be learned. Then, we design the integrated memory
weights as:

ϕk = θk + γ
∑

i

Pk,i (12)

where γ is the pre-defined coefficient. Finally, we obtain the output representa-
tion Rk = ϕkMk of the topic memory mechanism and R ∈ R

n×d can represent
other topic words which are beneficial to text classification. The concatenation of
R and U , i.e., the context-sensitive word sequence, further serves as classification
features.

98 Z. Ye et al.

2.5 Classifier and Training

We use the convolutional neural network (CNN) as the final classifier. Specif-
ically, after exploiting extended topic knowledge, the concatenation of topic
knowledge R and context-sensitive word sequences U further serves as feature
inputs to the CNN to obtain the final text category. Topic discovery is induced
jointly with text classification in an end-to-end manner, and the loss function of
the overall framework to combine the two effects is defined as:

Lloss = LNTM−R + λLCLS (13)

where LNTM−R denotes the loss of NTM-R in Eq. (6), LCLS represents the cross-
entropy to reflect classification loss, and λ is the trade-off parameter to control
the balance between topic model and classification.

3 Experiments

3.1 Datasets

We conduct experiments on four different short text datasets: SearchSnippets,
StackOverflow, Biomedical, and Weibo. The dataset details are described as
follows:

SearchSnippets. This dataset contains Google search snippets released by [19].
There is a total of eight ground-truth labels, e.g., business, engineering, and
sport.

StackOverflow. This dataset is extracted from competition data released by
Kaggle. Following [30], in our experiment, we randomly sample 18,000 question
titles from 20 different tags, e.g., excel, svn, and ajax.

Biomedical. We use the challenge data related to biomedicine released on
BioASQ, an internationally renowned biomedical platform. Following [30], we
randomly select 18,000 paper titles from 20 different MeSH5 major topics, e.g.,
chemistry, cats, and lung.

Weibo. To evaluate cs-TMN on a different language other than English, we
use Chinese microblog (Weibo) data to conduct the experiment. We experiment
with the raw dataset [9] with 50 distinct categories in total.

Table 1 lists the statistics information of these four datasets. Since Search-
Snippets, StackOverflow and Biomedical were already preprocessed by [19] and
[30], we did not process these datasets further. For Weibo data, short texts were
converted into sequences of words using the Jieba Chinese word segmentation
module.1 It should be noted that the average length of Weibo is the number of
words in Chinese.

1 https://github.com/fxsjy/jieba.

https://github.com/fxsjy/jieba

Improving Short Text Classification 99

Table 1. Statistics of the experimental datasets. EN denotes English and ZH denotes
simplified Chinese.

Dataset #Docs #Classes Average length Vocabulary size

SearchSnippets (EN) 12,332 8 17.0 7,334

StackOverflow (EN) 18,000 20 7.3 6,123

Biomedical (EN) 18,000 20 16.1 5,722

Weibo (ZH) 30,000 50 7.3 10,001

3.2 Experimental Methods

We compare our approach with five widely used short text classification methods.
The comparative baseline models along with cs-TMN are described as follows:

SVM-based methods. We use the popular baseline SVM+BOW proposed by
[27].

AttBiLSTM. The model is a widely used neural classifier from [32].

CNN-based models. CNN [11] is another widely used neural classifier. We
employ the pre-trained CNN+ELMo [18] and CNN+NTM as two different base-
lines.

TMN. The TMN [31] jointly learns the topic inducing module and classification
module, and it is a state-of-the-art model on short text classification, acting as
a strong baseline in our comparison.

BERT. We fine-tune BERT on each of our datasets with a small learning rate
and its output is considered as the text category.

cs-TMN. Our proposed model uses context-sensitive word embeddings and the
content-aware topic knowledge as extended features. In our experiments, we
apply the self-attention mechanism (cs-TMN-Self shown in Table 2) and BERT
(cs-TMN-BERT shown in Table 2) to generate the local context representation
respectively.

3.3 Experiment Settings

In our experiment, we randomly select 90% of the samples as the training set
and the remaining 10% as the test set for all the datasets. We use pre-trained
embeddings to initialize all word embeddings. Specifically, for datasets Search-
Snippets, StackOverflow, and Biomedical, we use pre-trained GloVe embeddings
[17] with a dimension of 200. For Weibo, we use pre-trained word2vec embed-
dings obtained from large Chinese corpora [13] with a dimension of 300. For the
final classifier, we employ a one-layer CNN with three kernels. The kernel sizes of
CNN layer are set to d, 2d, and 3d, respectively, where d is the word embedding
dimension. The number of feature maps of the CNN is set to 500. In the training
process, we train cs-TMN for at most 800 epochs, and an early-stop strategy is

100 Z. Ye et al.

adopted to avoid overfitting [2]. For the BERT model, we adopt a pre-trained
uncased BERT Base model for English datasets, while for the Chinese Weibo
dataset, we apply a pre-trained BERT-Base Chinese model.2

3.4 Experimental Results

As can be seen from the experimental results in Table 2, both cs-TMN-Self
(self-attention based local embeddings) and cs-TMN-BERT (BERT based local
embeddings) perform better than all other models in these four short text
datasets.

Our cs-TMN gains significant improvements in short text classifica-
tion. According to Table 2, we can conclude that compared with TMN, cs-TMN
yields a significant improvement of about 2% on F1 and accuracy on English
dataset Biomedical, and Chinese dataset Weibo. In particular, for StackOver-
flow, the improvement is up to 7%. The experimental results fully show that the
ability of cs-TMN to classify short texts has been greatly improved due to the
context-sensitive word embedding, which can not only solve the problem of the
polysemy of class-bearing words in the text but also improve the matching effect
of relevant extended topic knowledge features. In addition, it also proves that
cs-TMN makes more comprehensive use of the latent topic information than
TMN. The specific ablation study is shown in Sect. 3.5.

Context-sensitive word representation and content-aware topic knowl-
edge can improve the classification accuracy. We can find that for four
experimental datasets (especially for Weibo), cs-TMN outperforms CNN+ELMo
and BERT. This suggests that compared with existing multi-sense word embed-
ding approaches, the proposed context-sensitive word embedding comprised
of global topic information and local context representation is more effective.

Table 2. The comparison of different models w.r.t accuracy (Acc) and weighted average
F1.

Models SearchSnippets StackOverflow Biomedical Weibo

Acc F1 Acc F1 Acc F1 Acc F1

SVM+BOW 0.210 0.080 0.232 0.231 0.202 0.200 0.102 0.039

AttBiLSTM 0.943 0.943 0.801 0.801 0.698 0.699 0.547 0.547

CNN+NTM 0.945 0.945 0.816 0.817 0.713 0.715 0.556 0.556

CNN+ELMo 0.937 0.940 0.825 0.828 0.714 0.719 0.553 0.558

BERT 0.964 0.967 0.903 0.903 0.742 0.742 0.602 0.602

TMN 0.964 0.964 0.830 0.831 0.724 0.723 0.595 0.586

cs-TMN-Self 0.967 0.967 0.841 0.841 0.734 0.734 0.611 0.601

cs-TMN-BERT 0.967 0.968 0.908 0.908 0.745 0.745 0.624 0.624

2 https://github.com/google-research/bert.

https://github.com/google-research/bert

Improving Short Text Classification 101

It also proves that content-aware topic features can improve the classification
accuracy of short text. In addition, cs-TMN jointly generates context-sensitive
word embedding and text classification with neural networks in an end-to-end
manner, which is more efficient and effective.

Local context representation generated by pre-trained BERT
improves the model. From Table 2, we see that local context representa-
tion generated by pre-trained BERT word vectors is more effective and greatly
improves the classification ability of cs-TMN, especially in the StackOverflow
dataset.

3.5 Ablation Study

In order to explore the influence of different components of our cs-TMN, we per-
form corresponding ablation experiments and the results are shown in Table 3.
Specifically, “cs-TMN w/o local” indicates that when constructing context-
sensitive word embedding, only global context representation is employed, and
the local context representation is removed. “cs-TMN w/o global” indicates that
when constructing context-sensitive word embedding, only local context rep-
resentation is employed. From Table 3, both modules are demonstrated to be
necessary and removing any module deteriorates the performance as cs-TMN
without local representation shows similar performance as TMN. Specifically, on
dataset SearchSnippets, cs-TMN w/o local even perform worse than TMN, and
the possible reason could be that there are fewer labels and the dataset is rela-
tively simple. Finally, cs-TMN CI represents extended topic knowledge matching
in the same way as TMN, that is, using context-independent word embedding
to match the corresponding extended topic knowledge. It can be found that
using context-sensitive as opposed to context-independent word embedding gains
better extended topic knowledge for short text. In addition, for “cs-TMN w/o
global”, cs-TMN CI, and cs-TMN, we employ the self-attention mechanism and
BERT to generate the local context representation, respectively.

Table 3. Experimental results of the ablation study w.r.t. accuracy.

Models SearchSnippets StackOverflow Biomedical Weibo

TMN 0.964 0.830 0.724 0.595

cs-TMN w/o local 0.957 0.839 0.721 0.602

cs-TMN w/o global 0.956† 0.958‡ 0.833† 0.905‡ 0.727† 0.739‡ 0.602† 0.615‡

cs-TMN CI 0.965† 0.961‡ 0.841† 0.905‡ 0.726† 0.740‡ 0.605† 0.617‡

cs-TMN 0.967† 0.967‡ 0.841† 0.908‡ 0.734† 0.745‡ 0.611† 0.624‡

Self-attention based and BERT based local embeddings are denoted as † and ‡ respectively.

102 Z. Ye et al.

3.6 Visualization of Matching Mechanism for Content-Aware Topic
Knowledge

In order to understand the matching mechanism of our cs-TMN and TMN in an
intuitive way, we create heat maps of the weight matrix (Fig. 2) and top-5 words
of some selected topics (Table 4). From Fig. 2, it shows that the matching mech-
anisms of cs-TMN and TMN can match the corresponding topic information
effectively. However, for cs-TMN, the context-sensitive word embedding of pol-
ysemous words can match to the content-aware topic knowledge, while context-
independent word embedding of TMN cannot. For example, from Fig. 2 and
Table 4, we can find that for cs-TMN, the polysemous word “party” is matched
with topic 6 of “entertainment activity” and not matched with topic 4 of “poli-
tics”. On the contrary, for TMN, the polysemous word “party” is matched topic
4 and not matched with topic 6, which causes extra noises.

Table 4. Top-5 words of some selected topics corresponding to Fig. 2.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9

e-business Application Welfare Labour Fracking Athletics Civilized Club Arty

Client Load Attachment Policy Coal Game Facility Party Culture

Churn Programming Shape Independent Mining Play Service Activity Soul

4 Related Work

Recently, many researchers employed deep learning methods for short text clas-
sification [7,12,26] which achieved promising performance. Some previous works
further applied topic representation [4,19,21] to improve the classification of
short text. Besides, pre-trained topic mixtures [4,19] learned by latent dirich-
let allocation (LDA) were leveraged as part of features to alleviate data spar-
sity issues. Combining word embedding and the neural topic model, TMN [31]
achieved state-of-the-art performance on short text classification. However, with
context-independent word embedding, it suffers from the polysemy issue of class-
bearing keywords. Although cs-TMN is largely inspired by TMN, it differs in the
following respects. First, cs-TMN generates context-sensitive representation by
local context representation and global topic information while TMN employs
context-independent word embedding. Second, we not only use global topic infor-
mation to help establish context-sensitive word representation but also apply
content-aware topic knowledge as extended features for classification.

In order to obtain the context-sensitive word embedding, [1] represented each
word with a Gaussian mixture density, where the mean of a mixture compo-
nent is given by the sum of n-grams. [24] proposed to learn multiple embed-
ding vectors for polysemous words from a probabilistic perspective, by designing
an expectation-maximization algorithm. [21] proposed a model to learn topic-
enriched multiprototype. Some researchers [14,15] combined topic vectors and
word vectors via a neural network, and concatenated pre-trained topic vectors

Improving Short Text Classification 103

with the word vectors to represent word prototypes. More recently, BERT pro-
posed by [5], achieved state-of-the-art performance in a series of NLP tasks. We
also try to apply the vectors obtained by BERT’s hidden layers as local context
representation. Different from previous models, cs-TMN applies both local con-
text representation and global topic information to obtain context-sensitive word
embedding. Finally, unlike approaches that are dependent on external knowledge
bases [3,26], cs-TMN does not require additional knowledge, and topic informa-
tion is extracted through the task-specific dataset.

(a) Matching of cs-TMN (b) Matching of TMN

Fig. 2. Visualization of attention weights for one selected example.

5 Conclusions and Future Work

In this paper, we have proposed a novel context-sensitive Topic Memory Net-
work (cs-TMN), which utilizes the latent topic knowledge discovered by neural
topic networks. The model applies context-sensitive embedding and extends the
features with content-aware topic knowledge to improve short text classification
accuracy. In future work, we will try to address multi-label classification tasks
and test larger datasets to further verify the robustness of the model.

Acknowledgements. This work was partially supported by National Key Research
and Development Program of China (No. 2018YFB1308604), National Natural Sci-
ence Foundation of China (No. 61672215, No. 61976086), Hunan Innovation Technol-
ogy Investment Project (No. -2019GK5061), Special Project of Foshan Science and
Technology Innovation Team (No. FS0AA-KJ919-4402-0069), and the Foundation of
Guangdong Provincial Key Laboratory of Big Data Analysis and Processing (2017017,
201805), the Research Project Foundation in the Data Center of Flamingo Network
Co., Ltd.

References

1. Athiwaratkun, B., Wilson, A.G., Anandkumar, A.: Probabilistic FastText for
multi-sense word embeddings. arXiv preprint arXiv:1806.02901 (2018)

http://arxiv.org/abs/1806.02901

104 Z. Ye et al.

2. Caruana, R., Lawrence, S., Giles, C.L.: Overfitting in neural nets: backpropaga-
tion, conjugate gradient, and early stopping. In: Advances in Neural Information
Processing Systems, pp. 402–408 (2001)

3. Chen, J., Hu, Y., Liu, J., Xiao, Y., Jiang, H.: Deep short text classification with
knowledge powered attention. In: 33rd Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 6252–6259 (2019)

4. Chen, P., Sun, Z., Bing, L., Yang, W.: Recurrent attention network on memory
for aspect sentiment analysis. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 452–461 (2017)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

6. Ding, R., Nallapati, R., Xiang, B.: Coherence-aware neural topic modeling. arXiv
preprint arXiv:1809.02687 (2018)

7. Dos Santos, C., Gatti, M.: Deep convolutional neural networks for sentiment anal-
ysis of short texts. In: Proceedings of the 25th International Conference on Com-
putational Linguistics: Technical Papers, pp. 69–78 (2014)

8. Dou, Z.Y.: Capturing user and product information for document level sentiment
analysis with deep memory network. In: Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pp. 521–526 (2017)

9. He, Y.: Extracting topical phrases from clinical documents. In: 30th AAAI Con-
ference on Artificial Intelligence (2016)

10. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 (2016)

11. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

12. Lee, J.Y., Dernoncourt, F.: Sequential short-text classification with recurrent and
convolutional neural networks. arXiv preprint arXiv:1603.03827 (2016)

13. Li, S., Zhao, Z., Hu, R., Li, W., Liu, T., Du, X.: Analogical reasoning on Chinese
morphological and semantic relations. arXiv preprint arXiv:1805.06504 (2018)

14. Liu, P., Qiu, X., Huang, X.: Learning context-sensitive word embeddings with
neural tensor skip-gram model. In: 24th International Joint Conference on Artificial
Intelligence (2015)

15. Liu, Y., Liu, Z., Chua, T.S., Sun, M.: Topical word embeddings. In: 29th AAAI
Conference on Artificial Intelligence (2015)

16. Miao, Y., Grefenstette, E., Blunsom, P.: Discovering discrete latent topics with
neural variational inference. In: Proceedings of the 34th International Conference
on Machine Learning, vol. 70, pp. 2410–2419. JMLR. org (2017)

17. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

18. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K.,
Zettlemoyer, L.: Deep contextualized word representations. arXiv preprint
arXiv:1802.05365 (2018)

19. Phan, X.H., Nguyen, L.M., Horiguchi, S.: Learning to classify short and sparse
text & web with hidden topics from large-scale data collections. In: Proceedings of
the 17th International Conference on World Wide Web, pp. 91–100. ACM (2008)

20. Reisinger, J., Mooney, R.J.: Multi-prototype vector-space models of word meaning.
In: The 2010 Annual Conference of the North American Chapter of the Associ-
ation for Computational Linguistics, pp. 109–117. Association for Computational
Linguistics (2010)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1809.02687
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1603.03827
http://arxiv.org/abs/1805.06504
http://arxiv.org/abs/1802.05365

Improving Short Text Classification 105

21. Ren, Y., Zhang, Y., Zhang, M., Ji, D.: Improving Twitter sentiment classification
using topic-enriched multi-prototype word embeddings. In: 30th AAAI Conference
on Artificial Intelligence (2016)

22. Srivastava, A., Sutton, C.: Autoencoding variational inference for topic models.
arXiv preprint arXiv:1703.01488 (2017)

23. Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: End-to-end memory networks.
In: Advances in Neural Information Processing Systems, pp. 2440–2448 (2015)

24. Tian, F., et al.: A probabilistic model for learning multi-prototype word embed-
dings. In: Proceedings of the 25th International Conference on Computational Lin-
guistics, pp. 151–160 (2014)

25. Vaswani, A., et al.: Attention is all you need. In: Neural Information Processing
Systems, pp. 5998–6008 (2017)

26. Wang, J., Wang, Z., Zhang, D., Yan, J.: Combining knowledge with deep convolu-
tional neural networks for short text classification. In: International Joint Confer-
ence on Artificial Intelligence, pp. 2915–2921 (2017)

27. Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic
classification. In: Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics, pp. 90–94. Association for Computational Linguistics
(2012)

28. Weston, J., Chopra, S., Bordes, A.: Memory networks. arXiv preprint
arXiv:1410.3916 (2014)

29. Xiao, Y., Cho, K.: Efficient character-level document classification by combining
convolution and recurrent layers. arXiv preprint arXiv:1602.00367 (2016)

30. Xu, J., Xu, B., Wang, P., Zheng, S., Tian, G., Zhao, J.: Self-taught convolutional
neural networks for short text clustering. Neural Net. 88, 22–31 (2017)

31. Zeng, J., Li, J., Song, Y., Gao, C., Lyu, M.R., King, I.: Topic memory networks
for short text classification. arXiv preprint arXiv:1809.03664 (2018)

32. Zhang, S., Zheng, D., Hu, X., Yang, M.: Bidirectional long short-term memory net-
works for relation classification. In: Proceedings of the 29th Pacific Asia Conference
on Language, Information and Computation, pp. 73–78 (2015)

http://arxiv.org/abs/1703.01488
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1602.00367
http://arxiv.org/abs/1809.03664

A Novel Method for Offline Handwritten
Chinese Character Recognition Under

the Guidance of Print

Keping Yan1, Jun Guo1(B), and Weiqing Zhou2

1 School of Data Science and Engineering, East China Normal University,
Shanghai, China

51194507015@stu.ecnu.edu.cn, jguo@cc.ecnu.edu.cn
2 DongQi AI Co., Ltd., Nanjing, China

zhouweiqing@dqaitech.net

Abstract. In this paper, we present a new method that views offline
handwritten chinese character recognition (HCCR) as a Re-identification
(ReID) task. We introduce a print dataset as the target that needs to
be retrieved, and make the test set of offline HCCR as the object of
interest. According to ReID’s scene, the goal is to find the most similar
print sample as the prediction result for each object of interest. We also
employ triplet loss for metric learning, and train model together with
cross-entropy loss, which has a good effect on improving performance.
Compared with the classification model, the experimental results show
that our method achieves much better results in few-shot learning, whose
dataset is randomly selected from overall datasets. When the training set
used is 5% of HWDB1.1, the gap between them even reached 9.8%. At
the same time, it also obtains an accuracy of 97.69% on ICDAR-2013
offline HCCR competition dataset.

Keywords: HCCR · Few-shot learning · ReID · Metric Learning ·
ResNet

1 Introduction

Handwritten Chinese character recognition (HCCR) has received extensive
research and attention in recent decades. With the development of deep learning,
this task has made breakthrough progress in method and performance. HCCR is
divided into online HCCR and offline HCCR according to the dataset collection
method. The handwritten text processed by offline HCCR is two-dimensional
pictures of the handwritten text collected by image capture devices such as
scanners or cameras, while the handwritten text processed by online HCCR is
text signal obtained by using physical devices such as digital handwriting pad.
The former is still hard to identify because of the following reasons, and some
samples of different writing styles and indistinguishable samples are shown in
Fig. 1.
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 106–117, 2021.
https://doi.org/10.1007/978-3-030-75765-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_9

A Novel Method for Offline HCCR Under the Guidance of Print 107

Fig. 1. Samples of different writing styles (left part) and several pairs of indistinguish-
able samples (right part).

1. Handwritten writing is random and irregular, and everyone has a different
writing style, which can’t meet the requirements of print.

2. Many Chinese characters are hard to distinguish because the majority of the
Chinese are similar in appearance.

3. Online HCCR can obtain the writing track information through timing sam-
pling, but the offline HCCR samples are only two-dimensional images, so it
is more difficult to achieve good performance.

In order to address these problems, we propose a method, which establishes a
relationship between handwriting and print with the thought of Re-identification
(ReID). ReID is widely regarded as a sub-problem of image retrieval. It’s a
task that uses computer vision technology to determine whether there is spe-
cific pedestrian in an image or video sequence. For example, given a monitored
pedestrian image, retrieve the pedestrian image under cross-devices. It hasn’t yet
been used in HCCR, previous attempts [3,12,27,29] either only consider the loss
function and template separately, or have not obtained particularly good result
on the overall datasets. Moreover, they regard offline HCCR as a classification
task and only use a multi-classification model to train them, which requires a
large number of image samples for Chinese characters with many categories.

Our method introduces the print, and establishes a relationship with hand-
written through the ReID thought. We view print as the gallery in ReID and
handwritten as the query in ReID. For each query object, find the most similar
object in gallery. Cross-entropy loss [18] and triplet loss [19] are both adopted to
train the model. We also show the few-shot learning performance of our proposed
method, and the shot percentages are 5%, 10% 30% and 60%. In the following,
we’ll call these shots small-scale datasets. Experiments show that our method
is much better than classification method that just use cross-entropy loss. The
model is evaluated on ICDAR-2013 offline HCCR competition dataset. And the
results also illustrate the robustness of our method.

The rest of this paper is organized as follows. Related works are reviewed
in Sect. 2. Section 3 are the details of our proposed method. Experiments are
described in Sect. 4, and Sect. 5 gives the conclusion of our work.

2 Related Work

2.1 Re-identification

Re-identification is a retrieval task, which is to find the same person images
from a dataset collected by different cameras for each query pedestrian image

108 K. Yan et al.

[2,24,31,32,35]. Many deep learning methods have been proposed in ReID which
can be divided into two major directions. Some works [21,25,33] extract features
on entire images by using classification models. They treat each person ID as a
category and train the ReID model as image classification. These works usually
use the pre-trained parameters on ImageNet [11] to initialize their models. There
are also some works focus on local features and divide the whole image into
several parts (by Hand-crafted Splitting [26], Semantic Segmentation [10], etc.),
and extract features for each part separately. Obviously, the former method
which we select is more suitable for offline HCCR, because the class can only be
recognized from the information of an entire image. Hermans et al. [9] finds that
triplet loss significantly increases the performance of ReID, so we have a try to
apply it in our method.

Most of the datasets of ReID such as DukeMTMC-reID [17] and Market-
1501 [31] include three parts: train, query and gallery. Correspondingly, we use
the train dataset of HCCR datasets and the print, the test dataset of HCCR
datasets, the print. And the print are the images that generated by font files.
The dataset will be described in detail in Sect. 4.1.

2.2 Offline HCCR

HCCR has been studied in the past fifty years, and a large number of methods
have been proposed to improve the accuracy of recognition. Traditional methods
for offline HCCR are often based on three steps: shape normalization [1], fea-
ture extraction [13] and classification [14]. With the rapid development of deep
learning, it has played an important role in HCCR. It has also proved that deep
learning methods far surpass traditional methods. Multi-column Deep Neural
Network (MCDNN) [4] is the first method of deep learning for HCCR, which
obtains an error rate of 4.21% on the ICDAR-2013 dataset (the same dataset as
below works). The GoogLeNet [36] is the first model beyond human-level, and
the accuracy of ensemble model reached 96.74%. The difference between inter-
class and intra-class of the samples is considered in [3,29], where Cheng et al.
[3] introduces the triplet ranking into deep learning, which achieves an accuracy
of 97.07%. And Zhang et al. [29] achieves an accuracy of 97.03% by using center
loss in deep network. Zhang et al. [30] obtains a new highest accuracy of 97.37%
by integrating the traditional normalized cooperative direction decomposition
feature map (directMap) with the deep convolutional neural network (convNet),
and adding an adaptation layer. Template images are introduced in [12], this
paper proposes a method for training Siamese neural network and gets an accu-
racy of 92.31%. Wang et al. [22] uses the radical-level composition of Chinese
characters and get an accuracy of 96.97%.

According to the above descriptions, most of the previous works consider
HCCR as a multi-classification task, so they only design a multi-class classifier
to solve it. But this approach requires a large number of data samples to get
good results. In other methods, either only add template images, or just the
loss function is considered. There isn’t a way to combine them to achieve better
results. Therefore, with the help of ReID’s thought, we establish a relationship

A Novel Method for Offline HCCR Under the Guidance of Print 109

between handwritten and print, and introduce cross-entropy loss and triplet
loss functions to learn more accurate features. This method achieves a higher
accuracy than previous related methods.

3 Method Description

3.1 Proposed Architecture

We select the ResNet-50 [7] as backbone because of its outstanding performance
on ImageNet, and take handwritten images and print images together as the
input of the network. According to [16], we add a batch normalization layer (BN)
before the last fully connected layer (FC), and set the last stride of ResNet-50 to
1, which achieves better results. The final model architecture is shown in Fig. 2,
and only cross-entropy loss is employed in classification model. In training phrase
of overall network, cross-entropy loss and triplet loss are both employed. One
of the differences of them is that the features triplet loss uses are from the last
pooling layer, while cross-entropy loss’s features are from the last fully connected
layer. In evaluation phrase, we also use the features which are extracted from
the last pooling layer. In order to obtain the results, distance metric learning
methods, Euclidean and cosine measures, are employed to calculate the distance
between handwritten features and print features. More details can be seen in
next subsection.

ResNet50
conv1~conv5_x

last stride = 1
Input

Avg pool

BN

FC Cross-entropy
loss

Triplet loss

Cosine/
Euclidean

metric
Results

Training phrase

Evaluation

3755

Classification model

Gallery

Query

Fig. 2. Overall network

3.2 Loss Function

Our method applies two different loss functions, which have different effective
effects on the performance of the model. The total loss is defined as Eq. 1, where
Lcl and Ltl wil be introduced below.

Ltotal = Lcl + Ltl (1)

110 K. Yan et al.

Cross-Entropy Loss. Cross-entropy loss measures the performance of classi-
fication tasks whose output is a probability value between 0 and 1. It increases
as the predicted probability deviates from the actual label. In multi-class classi-
fication tasks, it can be defined as Eq. 2.

Lcl =
C∑

c=1

−yo,c log (po,c) (2)

where C is the number of classes, p is predicted probability that observed sample
o belongs to the category. y is the indicator variable (0 or 1), if the category is
same as the sample o’s category, it is 1, otherwise it is 0. By applying cross-
entropy loss to train the model, it will tend to make the predicted output better
fit to the ground truth.

Triplet Loss. Unlike the classification loss, the triplet loss requires three input
samples, and an input triple includes a pair of positive samples and a pair of
negative samples. It is expressed as Eq. 3.

Ltl = da,p − da,n + α (3)

where da,p represents the distance between the anchor sample a of a specific class
and a positive sample p of the same class, and da,n is the distance between the
anchor sample a and a negative sample n of any other classes. Each image and
the images with its own ID form positive samples, and the images with other
IDs form negative samples. α is a margin that is enforced between positive and
negative pairs. In this paper, cosine distance is used to calculate da,p and da,n,
and α is set to 0.3. As illustrated in [19], the triplet loss can shorten the distance
between positive sample pairs, and push the distance between negative sample
pairs, so it can also make the Chinese character images of the same category form
clusters in the feature space to better achieve the purpose of image retrieval.

3.3 Evaluation

Distance Metric. The distance metric is used to calculate the distances
between the features extracted from input samples to predict the most simi-
lar sample for each query image. Euclidean and cosine measures are tried to be
used in experiments. The results comparison can be viewed in Sect. 4.3.

Evaluation Metric. Cumulative matching characteristics (CMC) [23] is the
most widely used measurements in ReID evaluation. Only Rank-1 in CMC is
selected in our experiments because the main factor is the accuracy of the classi-
fication results for HCCR. Rank-1 represents the accuracy of the first retrieved
target of query images, it can be represented as follows Eq. 4 and 5.

Rank-1 =
1

||Q||
∑

q ∈ Q

R
(
Lq, L

1
q

)
(4)

A Novel Method for Offline HCCR Under the Guidance of Print 111

R(Lq, L
i
q) =

{
1, Lq = Li

q

0, Lq �= Li
q

(5)

where Q is the query images, Lq is the label for a query image q, and Li
q represents

the class of the image ranked i-th in similarity to q in its query results (for
example, L1

q is the class of the most similar image to q in its query results).

4 Experiments

In this section, we show that our proposed method achieves competitive results
compared to other methods on HWDB datasets. We have also verified that this
method is more robust than the model only uses classification, and it has a
strong performance on few-shot learning. Finally, we provide an ablation result
of image preprocessing, loss function, distance metrics and other settings.

Fig. 3. Samples of the print.

4.1 Datasets

We use the datasets HWDB1.0-1.1 [15] to train the model, which is collected by
National Laboratory of Pattern Recognition(NLPR) and Institute of Automa-
tion of Chinese Academy of Sciences(CASIA). ICDAR-2013 offline HCCR com-
petition dataset [28], the most common benchmark for offline HCCR, is used
to evaluate the model. We merge HWDB1.0 and HWDB1.1 according to the
classes of HWDB1.1 to ensure that the merged dataset and ICDAR-2013 have
the same class labels.

The dataset of ReID is divided into three parts, including train, query and
gallery, so we first generate a print dataset (corresponding to 3755 classes) that
consists of 10 fonts every class (stzhongs.ttf, stxinwei.ttf, stxingka.ttf, stxihei.ttf,
stsong.ttf, stliti.ttf, stkaiti.ttf, sthupo.ttf, stfangso.ttf, dengl.ttf). Examples of
print are shown in Fig. 3. Then put them into train and gallery. At the same
time, the train set of HWDB is also added in train, and the test set of HWDB
(training phrase) or ICDAR-2013 (evaluation) is put in query. Our goal is to find
the most similar sample in the gallery as the prediction result for each query
sample.

112 K. Yan et al.

When we conduct few-shot learning experiments on small-scale datasets, we
randomly select several proportion of datasets in train and test of the HWDB1.1.
For example, when the proportion is 5%, the train datasets is composed by
randomly selecting 12 samples from each class of HWDB1.1 training set. And
the sub test dataset is always the same (randomly select 10 samples from each
class of HWDB1.1 test dataset). The number of class is always 3755, which is
the level-1 set of GB2312-80. More detailed information is showed in Table 1.

Table 1. Offline Handwritten Chinese character recognition datasets.

Dataset Writers Total Train/Test Class

HWDB1.0 420 1,556,675 1,246,991/309,684 3740

HWDB1.1 300 1,121,749 897,758/223,991 3755

ICDAR-2013 60 224,419 n/a 3755

5% sub HWDB1.1 300 82,610 45,060/37,550 3755

10% sub HWDB1.1 300 127,670 90,120/37,550 3755

30% sub HWDB1.1 300 307,910 270,360/37,550 3755

60% sub HWDB1.1 300 578,270 540,720/37,550 3755

Print n/a 37,550 n/a 3755

4.2 Training Strategy

We implement the proposed models using Pytorch and conduct all experiments
on GeForce GTX 1080 Ti. The classification model and our proposed model are
trained separately, but they have the same backbone.

Classification Model. We resize the images to 64 × 64, and we use stochastic
gradient descent (SGD) with the momentum of 0.9 for training. The learning rate
is set to 0.01 and the batch size is 128. In order to deal with the overfitting of this
model, we add dropout with the 0.5 probability before the last fully connected
layer. The model is initialized with pre-trained parameters on ImageNet [5]. We
also find if we initialize the model with the trained parameter of our proposed
model, the performance can get better.

Our Proposed Model. We resize the images to 128 × 128. As used in many
ReID papers [6,8,16,20], we also apply random padding with 10 pixels on each
border and random erasing with 0.5 probability in the image preprocessing for
training and only image resize is employed in the test phase. Experiments show
that they all have a positive influence on the results. The optimizer this model
uses is Adam, and its batch size is set to 1024. For triplet loss, we select 4
samples for each class, so it will have 256 classes and 4 images per class in every
batch. The learning rate adjustment strategies we use include warm up and

A Novel Method for Offline HCCR Under the Guidance of Print 113

MultiStepLR [16]. During the first 10 epochs, the learning rate will gradually
increase from 3.5 × 10−5 to 3.5 × 10−4, and then it will become 3.5 × 10−5 and
3.5 × 10−6 in steps 40 and 90 respectively. By the way, the model is always
initialized with pre-trained parameters on ImageNet [5].

4.3 Results

We first evaluate our method by comparing the results on small-scale datasets.
As mentioned above, for classification model, the sub train dataset is randomly
selected from HWDB1.1 train dataset according to a specific ratio, and the
test dataset is composed by randomly selecting 10 samples from each class of
HWDB1.1 test dataset. For our proposed model, the print is the gallery and it
is also put into the train dataset. And ICDAR-2013 is always used to evaluate
their performance. As the Table 2 shows that our method has better performance
than classification method. And when the size of training set is smaller, the gap
between these two methods gets bigger. Their accuracy differs by about 9.8%
when the ratio is 5%. The experimental results demonstrate that our method
has better robustness.

Table 2. Results of our method and classification model on small-scale datasets.

Dataset Classification Acc (%) Our method Acc (%)

5% sub HWDB1.1 85.82 95.63

10% sub HWDB1.1 90.84 96.33

30% sub HWDB1.1 94.50 97.05

60% sub HWDB1.1 95.68 97.39

100% HWDB1.1 96.19 97.55

Fig. 4. Result samples

The experiments on total dataset are also conducted. We use the HWDB1.0
and HWDB1.1 for training, and ICDAR-2013 for evaluation. Similar to small-
scale datasets’ experiments, the print is still used as gallery and put in train
dataset. Examples of evaluation result are shown in Fig. 4. It shows the top 10

114 K. Yan et al.

results of each query sample. The first row is an example of wrong results and
the others are correct examples. From the first row of Fig. 4, we can see that the
handwritten sample is hard to distinguish, which leads to multiple prediction
results. Although these results are incorrect, they all look similar to the sample.
Table 3 shows the results and the comparison with other models’ performances.
As we can see, the accuracy of our proposed work is 97.55% when the training
data is HWDB1.1, and it is 97.69% when training data is HWDB1.0+1.1. Some
works [12,27] also introduce extra dataset as template. The method Xiao et al.
[27] proposed is to calculate template feature distance by using template dataset
which is different from our method. Li et al. [12] is to predict the similarity
between handwritten and print, and their work get a good result on new classes
that don’t appear in training set, while the performance on total dataset is
92.31%. Similar to our work, Cheng et al. [3], Zhang et al. [29] respectively use
triplet loss and center loss to distinguish the learning of inter-class and intra-
class information. The difference between our methods is that they still use
classification prediction in the testing phase. And compared to other ResNet-
based models, we add a batch normalization (BN) layer between the final fully
connected layer and the last pooling layer, which has a positive effect on results.

Table 3. Results on ICDAR-2013 Offline HCCR competition Dataset. * indicates
whether extra data samples are added during the experiment, such as the print.

Method Acc (%) Training Data Ensemble Extra*

Human Performance [28] 96.13 n/a n/a n/a

HCCR-Gabor-GoogLeNet [36] 96.35 HWDB1.0+1.1 No No

HCCR-Gabor-GoogLeNet-Ensemble [36] 96.74 HWDB1.0+1.1 Yes No

STN-Residual-34 [34] 97.37 HWDB1.0+1.1 No No

DCNN-Similarity ranking [3] 96.44 HWDB1.1 No No

DCNN-Similarity ranking [3] 97.07 HWDB1.0+1.1 No No

DirectMap+ConvNet+Adaptation [30] 97.37 HWDB1.0+1.1 No No

ResNet+Center loss [29] 97.03 HWDB1.0+1.1 No No

Deep Template Matching [12] 92.31 HWDB1.0+1.1 No Yes

Template-Instance loss [27] 97.45 HWDB1.0+1.1 No Yes

Our Method 97.55 HWDB1.1 No Yes

Our Mthod 97.69 HWDB1.0+1.1 No Yes

4.4 Ablation Experiment

In order to demonstrate the influences of different model settings and modules,
we also conduct ablation experiments on image preprocessing, distance metric,
loss function and whether to add the BN layer. A comparison of these methods on
5% sub HWDB1.1 dataset is shown in Table 4. The first line of Table 4 is the opti-
mal setting of the model parameters, and the ablation experiments is performed
by changing a single parameter and comparing their results. As Table 4 shows,

A Novel Method for Offline HCCR Under the Guidance of Print 115

we can know that cosine distance metric is better than Euclidean, this might
because cosine distance pays more attention to the relative differences between
dimensions and is more suitable for distinguishing the similarity between the
Chinese character features, while the Euclidean distance mainly measures the
differences in values. The BN layer added before the last fully connected layer
also plays an important role, and the difference is nearly 1%. The effects of these
two loss functions are almost the same, but they can get better results by using
together. Triplet loss better constrains the distance between intra-class and inter-
class, while cross-entropy loss pays more attention to whether the results of each
class classification is close to the ground truth. Random erasing and Random
padding all have good performance, probably because they have a good effect
on alleviating overfitting caused by so many classes.

Table 4. Ablation experiment results for parameters.

Random erasing Random padding Cosine Euclidean Add BN Cross-entropy Triplet Acc (%)

� � � � � � 95.63

� � � � � 95.58

� � � � � 95.48

� � � � � � 95.27

� � � � � 94.89

� � � � � 94.69

� � � � � 94.59

5 Conclusion

In this paper, we propose a new method for offline handwritten Chinese charac-
ter recognition by learning from Re-identification’s method, and achieve a good
performance. We generate print as the gallery dataset, and find the most similar
gallery image for each handwritten test sample, so the relationship is established
between the handwritten and the print. We also use triplet loss for metric learn-
ing, and train the network together with cross-entropy loss. Experiments show
that the performance of our proposed method on few-shot learning is signifi-
cantly improved compared to the classification model. Moreover, the result on
the ICDAR-2013 exceeds the previous related works, the highest is 97.69%.

References

1. Casey, R., Nagy, G.: Recognition of printed Chinese characters. IEEE Trans. Elec-
tron. Comput. 1, 91–101 (1966)

2. Chang, X., Hospedales, T.M., Xiang, T.: Multi-level factorisation net for person
re-identification. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2109–2118 (2018)

116 K. Yan et al.

3. Cheng, C., Zhang, X.Y., Shao, X.H., Zhou, X.D.: Handwritten Chinese character
recognition by joint classification and similarity ranking. In: 2016 15th Interna-
tional Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 507–511.
IEEE (2016)

4. Cireşan, D., Meier, U.: Multi-column deep neural networks for offline handwritten
Chinese character classification. In: 2015 International Joint Conference on Neural
Networks (IJCNN), pp. 1–6. IEEE (2015)

5. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE
(2009)

6. Guo, J., Yuan, Y., Huang, L., Zhang, C., Yao, J.G., Han, K.: Beyond human parts:
dual part-aligned representations for person re-identification. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 3642–3651 (2019)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

8. He, L., Liao, X., Liu, W., Liu, X., Cheng, P., Mei, T.: FastReID: a Pytorch toolbox
for general instance re-identification. arXiv preprint arXiv:2006.02631 (2020)

9. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737 (2017)

10. Kalayeh, M.M., Basaran, E., Gökmen, M., Kamasak, M.E., Shah, M.: Human
semantic parsing for person re-identification. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1062–1071 (2018)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS (2012)

12. Li, Z., Xiao, Y., Wu, Q., Jin, M., Lu, H.: Deep template matching for offline
handwritten Chinese character recognition. J. Eng. 2020(4), 120–124 (2020)

13. Liu, C.L.: Normalization-cooperated gradient feature extraction for handwritten
character recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1465–1469
(2007)

14. Liu, C.L., Sako, H., Fujisawa, H.: Discriminative learning quadratic discriminant
function for handwriting recognition. IEEE Trans. Neural Netw. 15(2), 430–444
(2004)

15. Liu, C.L., Yin, F., Wang, D.H., Wang, Q.F.: CASIA online and offline Chinese
handwriting databases. In: 2011 International Conference on Document Analysis
and Recognition, pp. 37–41. IEEE (2011)

16. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for
deep person re-identification. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops (2019)

17. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures
and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.)
ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48881-3 2

18. Rubinstein, R.: The cross-entropy method for combinatorial and continuous opti-
mization. Methodol. Comput. Appl. Probab. 1(2), 127–190 (1999)

19. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 815–823 (2015)

20. Wang, D., Zhang, S.: Unsupervised person re-identification via multi-label classi-
fication. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10981–10990 (2020)

http://arxiv.org/abs/2006.02631
http://arxiv.org/abs/1703.07737
https://doi.org/10.1007/978-3-319-48881-3_2
https://doi.org/10.1007/978-3-319-48881-3_2

A Novel Method for Offline HCCR Under the Guidance of Print 117

21. Wang, F., Zuo, W., Lin, L., Zhang, D., Zhang, L.: Joint learning of single-image
and cross-image representations for person re-identification. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1288–1296
(2016)

22. Wang, T., Xie, Z., Li, Z., Jin, L., Chen, X.: Radical aggregation network for few-
shot offline handwritten Chinese character recognition. Pattern Recogn. Lett. 125,
821–827 (2019)

23. Wang, X., Doretto, G., Sebastian, T., Rittscher, J., Tu, P.: Shape and appear-
ance context modeling. In: 2007 IEEE 11th International Conference on Computer
Vision, pp. 1–8. IEEE (2007)

24. Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap
for person re-identification. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 79–88 (2018)

25. Wu, L., Shen, C., van den Hengel, A.: PersonNet: person re-identification with
deep convolutional neural networks. arXiv preprint arXiv:1601.07255 (2016)

26. Wu, S., Chen, Y.C., Li, X., Wu, A.C., You, J.J., Zheng, W.S.: An enhanced deep
feature representation for person re-identification. In: 2016 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV), pp. 1–8. IEEE (2016)

27. Xiao, Y., Meng, D., Lu, C., Tang, C.K.: Template-instance loss for offline handwrit-
ten Chinese character recognition. In: 2019 International Conference on Document
Analysis and Recognition (ICDAR), pp. 315–322. IEEE (2019)

28. Yin, F., Wang, Q.F., Zhang, X.Y., Liu, C.L.: ICDAR 2013 Chinese handwrit-
ing recognition competition. In: 2013 12th International Conference on Document
Analysis and Recognition, pp. 1464–1470. IEEE (2013)

29. Zhang, R., Wang, Q., Lu, Y.: Combination of ResNet and center loss based metric
learning for handwritten Chinese character recognition. In: 2017 14th IAPR Inter-
national Conference on Document Analysis and Recognition (ICDAR), vol. 5, pp.
25–29. IEEE (2017)

30. Zhang, X.Y., Bengio, Y., Liu, C.L.: Online and offline handwritten Chinese charac-
ter recognition: a comprehensive study and new benchmark. Pattern Recogn. 61,
348–360 (2017)

31. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-
identification: a benchmark. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1116–1124 (2015)

32. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and
future. arXiv preprint arXiv:1610.02984 (2016)

33. Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q.: Person re-
identification in the wild. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1367–1376 (2017)

34. Zhong, Z., Zhang, X.Y., Yin, F., Liu, C.L.: Handwritten Chinese character recog-
nition with spatial transformer and deep residual networks. In: 2016 23rd Interna-
tional Conference on Pattern Recognition (ICPR), pp. 3440–3445. IEEE (2016)

35. Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for
person re-identification. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5157–5166 (2018)

36. Zhong, Z., Jin, L., Xie, Z.: High performance offline handwritten Chinese character
recognition using GoogLeNet and directional feature maps. In: 2015 13th Interna-
tional Conference on Document Analysis and Recognition (ICDAR), pp. 846–850.
IEEE (2015)

http://arxiv.org/abs/1601.07255
http://arxiv.org/abs/1610.02984

Upgraded Attention-Based Local Feature
Learning Block for Speech Emotion

Recognition

Huan Zhao(B), Yingxue Gao, and Yufeng Xiao

College of Computer Science and Electronic Engineering, Hunan University,
Changsha 410082, China

hzhao@hnu.edu.cn

Abstract. Speech emotion recognition (SER) plays a vital role in natu-
ral interaction between humans and machines. However, due to the com-
plexity of human emotions, the features learned in existing researches
contain a large amount of redundant information that has nothing to do
with emotions, which reduces the performance of SER. To alleviate the
problem, in this paper we propose a novel model, named as Upgraded
Attention-based Local Feature Learning Block (UA-LFLB). Concretely,
the LFLB is used to extract deep local sequence features and as input to
the UA mechanism to capture the salient features of the discourse level
with contextual information. In doing this, more accurate and discrimi-
native features can be learned, which greatly reduces redundant informa-
tion in the features. To evaluate the feasibility of the proposed model, We
conduct experiments on a widely used emotional database. Experimental
results show that the proposed model outperforms the state-of-the-art
methods on the IEMOCAP database and achieving 9% improvement in
terms of average accuracy.

Keywords: Speech emotion recognition · Convolutional neural
network · Bidirectional long short-term memory · 3D attention
mechanism

1 Introduction

SER plays an important role in human-computer interaction (HCI) [5,19,20],
which can help computers perceive human purpose and make users feel a natural
interactive experience. It has been applied in many real-world scenarios [17],
such as psychology, robotics engineering, automotive systems, and call centers
[1,3,7,13,15]. In recent years, deep neural networks (DNN) has been widely used
in SER. For example, Mao et al. [10] used convolutional neural networks (CNN)
to extract salient features of emotions for SER and achieved good performance
on several public corpora. The CNN model has two training processes. First, the
model is trained to learn local invariant features with unlabeled data. Second, the
learned local invariant features are fed into the feature extractor to learn salient
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 118–130, 2021.
https://doi.org/10.1007/978-3-030-75765-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_10

UA-LFLB: Upgraded Attention-Based Local Feature Learning Block 119

features. Chen et al. [4] proposed a 3D convolutional recurrent neural network
(CRNN) based on the attention mechanism for SER. The log-Mel spectrogram
and the deltas and delta-deltas of the spectrogram are used as input to the
model to reduce the influence of speaker-related features. Overall, the high-
level features captured by deep learning are better than the results obtained
by traditional low-level features. Haomeng et al. [11] proposed the dilated CNN
with residual block and BiLSTM based on the attention mechanism to capture
significant emotional features.

Since the features captured in the above researches contain a large number
of redundant features that are not related to emotions, the performance of SER
is reduced. In this paper, we propose an UA-LFLB model. The model can not
only reduce the interference of redundant features, but also capture the contex-
tual salient features. Concretely, the LFLB composed of Convolutional layers,
Batch Normalization (BN) layers, and Leaky-Relu activation functions learns
local sequence features from the input signal. Then, the UA composed of bidi-
rectional long short-term memory (BiLSTM) and 3D attention obtains salient
features with contextual information by calculating the weight values of the fea-
tures. Hence, the UA-LFLB network can learn discriminative features from the
input signal for SER.

The contributions of this paper can be summarized as below.

* We propose a novel model: UA-LFLB. It can be divided into two main mod-
ules, one is the segment-level local feature learning block, and the other is the
discourse-level salient feature learning block. Combining these two modules
for SER can enhance the discrimination of features.

* We utilize the UA mechanism that can learn significant features with con-
text relevance and ignore the interference of irrelevant emotional information.
This mechanism combines the BiLSTM layer and 3D Attention. The BiLSTM
obtains past and future information and captures contextual relevance. Then,
the 3D Attention focuses attention on significant emotional features by cal-
culating the weight values of features.

* We evaluate our method on the public dataset IEMOCAP. The results show
that the performance of our proposed model has been significantly improved
compared with the state-of-the-art models.

The structure of this paper is organized as follows: Sect. 2 briefly discusses
the previous work of SER. Section 3 details our approach. Section 4 presents the
visualization of our experimental results. Section 5 summarizes the paper.

2 Related Work

In recent years, SER has become one of the hot topics of researchers in the field
of signal processing [8,18,21]. Researchers are gradually paying attention to how
to extract salient features from speech and use these features to improve recog-
nition performance. Nowadays, with the rapid development of DNN, researchers

120 H. Zhao et al.

have attempted to use DNN to learn deep emotional features for SER. Com-
pared with traditional machine learning methods, deep learning can learn more
discriminative features.

Huang et al. [6] used semi-CNN to learn salient features. This method
includes two stages. One was to use unlabeled samples to learn candidate fea-
tures. The other was to use objective functions to enhance feature saliency,
orthogonality, and discrimination. Mirasamadi et al. [12] combined DNN and
recurrent neural network (RNN) with local attention. By calculating the weight
coefficients of different features, the model can automatically focus on the parts
of prominent emotional features. Schmidt et al. [16] used a deep belief network to
learn emotional features from the magnitude spectra. Experimental results show
that compared with traditional acoustic features, it has better recognition per-
formance. The deep belief network is very useful for identifying music emotions.
Mustaqeem et al. [14] designed a framework that using a key sequence segment
selection based on redial based function network (RBFN). They used the short
time fourier transform (STFT) algorithm to convert the selected sequence into
a spectrogram and passed it to the CNN model to extract discriminative salient
features from the speech spectrogram. Zhao et al. [22] investigated that the over-
all performance of the 2D CNN network is better than the 1D CNN network.
Zheng et al. [24] established a CNN model to process labeled data. Experimen-
tal results show that the method is better than support vector machine (SVM)
classification. Zhao et al. [23] proposed attention-based BiLSTM+RNN and full
convolutional network to solve the problem of speech emotion feature extraction
to automatically learn the best spatio-temporal representation of speech signals.
Finally, input the learned features into the DNN for emotion prediction. To
reduce the interference of redundant information in the features on classification
results. We use the LFLB to extract local sequence features and use the UA
mechanism to capture salient discourse-level features.

3 Methodology

In this section, we introduce the UA-LFLB model for SER. First, we generate 3D
static data as the input of UA-LFLB model. Then, we introduce the architecture
of UA-LFLB, followed by a dropout layer, a dense layer, and a softmax classifier.
The overall framework of our model is shown in Fig. 1.

3.1 3D Static Data

We extract 3D static representations from speech raw signal as the input of
the model to reduce the impact of speaker-related information (e.g. speaking
styles). It is composed of the Log-Mel spectrum, the deltas and delta-deltas of
the spectrogram. The deltas and delta-deltas can not only reduce the interference
of irrelevant information, but also perceive emotional changes to capture more
emotional information. The waveform and spectrogram of speech are shown in
Fig. 2.

UA-LFLB: Upgraded Attention-Based Local Feature Learning Block 121

Fig. 1. Framework of upgraded attention-based local feature learning block (UA-
LFLB).

Fig. 2. Voice waveform and spectrogram of the Angry, Happy, Neutral, and Sad
emotional state in IEMOCAP database.

The spectrogram represents the short-term power spectrum of an audio clip,
which has been proven to be an effective distinguishing feature in emotion recog-
nition. It can be observed from Fig. 2 that the signal strength of different fre-
quency bands of the voice changes along the time axis. The horizontal stripes in
the figure reflect the strong energy in the voice. We also find that the frequency
of happy emotion and neutral emotion 8192 Hz at the same time distribution.
Their emotional signal intensity distribution is similar.

122 H. Zhao et al.

3.2 Local Feature Learning Block (LFLB)

Given the 3D static data, the LFLB is used to extract local sequence features
for SER. The module mainly contains 6 LFLBs of size 32, 32, 64, 64, 128, 128,
and one 2D Max-Pooling layer. The 2D max-Pooling layer is used to reduce the
dimensionality of features and prevent model overfitting. Each LFLB includes
one 2D convolutional layer, one BN layer, and one leaky-relu activation function.
The model is shown in Fig. 3.

Fig. 3. Framework of the local feature learning block

The 2D convolution layer can be written as:

z(x, y) = i(x, y) × w(x, y)

=
c∑

a=−c

d∑

b=−d

i(a, b) × w(x − a, y − b),
(1)

where i(x, y) is the input signal, w(x, y) is the convolution kernel of size c, z(x, y)
is the convolution result of the input signal and convolution kernel, the size is c
× d. We input the value of z(x, y) into the convolution layer to obtain sequence
features:

zlx = blx +
∑

y

zl−1
x × wl

xy, (2)

where zlx is the x-th output feature of layer l, zl−1
x represents the x input feature

of layer l − 1, wl
xy represents the convolution kernel between the x-th feature and

the y-th feature of the l-layer. The convolutional layer can be used as a local
feature extractor. Then, we input the output zlx of the convolution layer into the
BN layer to standardize the activation of each batch of convolution layers. The
BN layer can be defined as:

Zl
x = BN(zlx) = γ(

zlx − μ√
σ2 + ε

) + β, (3)

where μ and σ2 represent the mean value and variance of the x-th output value
in the l layer, respectively. The ε and β represent the parameters that can be

UA-LFLB: Upgraded Attention-Based Local Feature Learning Block 123

adjusted in the training process. Then, we input the value processed by the
BN layer into the leaky-relu activation function. The leaky-relu function can be
expressed as:

px =

{
qx, qx ≥ 0
qx
ax

, qx < 0
. (4)

The leaky-relu solves the situation where the input value of relu is negative and
the first derivative is zero, avoiding the phenomenon that neurons may die. In
the end, we can obtain the 128-dimensional frame-level local feature sequence.

3.3 Upgrade Attention Mechanism (UA)

To focus attention on useful features, in this paper, we use the UA mechanism to
learn salient and discriminative features that contain context information. The
UA mechanism includes the BiLSTM layer and 3D attention mechanism. The
structure of the UA mechanism is shown in Fig. 4. First, we use the BiLSTM layer
to associate context information. So far, the features learned are still segment
level. It is more useful to obtain the speaker’s emotional state according to
the utterance. Then, we input the obtained segment-level features into the 3D
attention mechanism and combine the time step information to calculate the
attention value of each feature to obtain the discourse-level salient features.
Finally, we pass the salient features into a Dropout layer to prevent over fitting
and a Dense layer with a size of 4 units.

Fig. 4. Framework of the upgrade attention mechanism

The BiLSTM layer obtains the past and future information by hiding the con-
nections between the layers in reverse order and automatically ignores irrelevant
information. The calculation process of the BiLSTM layer is as follows:

→
hi = fa(

→
hi−1,

→
xi) +

→
xi, (5)

←
hi = f

′
a(

←
hi+1,

←
xi) +

←
xi, (6)

hi = (
→
hi +

←
hi), (7)

124 H. Zhao et al.

where fa and f
′
a are LSTMs with parameter α forward and backward, hi repre-

sents the hidden state of time step i, xi represents the i-th spectral feature in

the audio signal,
→
hi means forward propagation,

←
hi means backward propagation,

(
→
hi +

←
hi) is the hidden representation of the forward and backward LSTM.

The 3D attention learns significant features by calculating and comparing
the attention values of the features. First, the input is a three-dimensional array
including BatchSize, TimeStep, and HiddenVector. Second, we use the permu-
tation function to transpose the input features to get the required dimensions.
Third, we connect a Dense layer, which includes a softmax activation function.
It can calculate the weight value of each dimension of HiddenVector in each
TimeStep. Each feature has its attention weight value. The core of the Dense
layer is to select the vector dimension that has the greatest impact on the final
classification result. Fourth, we get the weight matrix through the permuta-
tion function. Finally, the original input of the model is multiplied with the
obtained weight matrix to complete the distribution of the feature attention
weight value. Different from the traditional Attention mechanism that directly
performs weighted summation to obtain features. We use transposition, softmax,
and flatten to filter features based on the degree of contribution to the model.

4 Experiments

In this section, we evaluate the UA-LFLB model on IEMOCAP dataset. First,
we briefly introduce the details of the experimental implementation. Then, the
parameters of the UA-LFLB model are optimized and we compare the perfor-
mance with the previous models. Finally, the t-distributed stochastic neighbor
embedding (t-SNE) technology is used to visualize the features to evaluate the
performance of the model.

4.1 Implementation Details

The experiment is carried out on the IEMOCAP [2] dataset. The IEMOCAP is
a dataset composed of a male and a female dialogue form. There are five groups
of conversations. During the conversation, the motion capture equipment will be
worn to record facial expressions and head Data on posture and hand movements.
To be consistent with the previous research [4], we only consider four emotions:
1) angry, 2) happy, 3) neutral, and 4) sad. We use the 10-fold cross-validation
technique and split the dataset into a training set, validation set, and test set to
perform the model.

To verify the performance of the model, we choose unweighted accuracy rate
(UAR), Precision, Recall, and F1 score as the evaluation measure. The UAR
is the unweighted average of recalls for a specific category. The Precision rep-
resents how many of the samples predicted to be positive are true positive sam-
ples. In this paper, it is abbreviated as Pre. The Recall refers to the proportion
of positive examples that have been correctly determined to the total positive
examples. The F1 score is a harmonic average of model precision and recall.

UA-LFLB: Upgraded Attention-Based Local Feature Learning Block 125

We set the sampling rate of the sound wave 16000 Hz. The signal is divided
into the same length of 3 s for better parallel acceleration. The utterance of less
than 3 s is filled with zeros. Based on suggestions from previous work [4], we
use openEAR toolkit to extract log-Mels from the audio signal and we set the
window size to 25 ms and the offset to 10 ms. The number of CNN layers is set
as 6. The first CNN layer has 32 filters and the input size is (100, 34, 1). Our
input consists of data processed by 34 filter banks, which are replaced with 100-
point height and width. This means that the data will be convolved with the
convolution kernel in the input volume. The remaining CNN layers have 32, 64,
64, 128, and 128 filters respectively. The kernel size of each CNN layer is 3 × 3,
and the step size is (1, 1). The model is implemented with Keras toolkit and
Adam optimizer.

4.2 Parameter Optimization

We choose different batch-size and learning rates for experiments. We mainly
optimize the parameters of the two sets of experiments, the difference is whether
the model has 3D attention and BiLSTM. The optimization result is shown in
Table 1.

Table 1. The performance of the model was evaluated on the IEMOCAP dataset
with different batch-size, learning rates. Notes: BS stands for batch-size, LR stands for
learning rates.

Model BS LR (%) UAR (%) Pre (%) F1 (%)

Proposed model (with 3D attention + BiLSTM) 32 0.001 74.18 73.63 72.60

0.0001 84.25 83.88 83.35

0.00001 80.08 80.15 79.15

64 0.001 73.50 73.59 72.58

0.0001 83.95 83.82 83.30

0.00001 77.8 76.95 77.10

Proposed model (without 3D attention + BiLSTM) 32 0.001 74.02 73.35 72.17

0.0001 82.83 82.53 82.40

0.00001 79.03 79.08 78.45

64 0.001 73.16 73.24 71.78

0.0001 82.80 82.50 81.85

0.00001 76.43 76.78 76.70

From Table 1, we can observe that when the learning rate is 0.0001 and the
batch size is 32, the model with 3D attention and BiLSTM has better per-
formance. Compared with the model without 3D Attention and BiLSTM, the
UAR, Precision, and F1 scores are improved by 1.42%, 1.35%, and 0.95%,
respectively. The reason is that the 3D attention mechanism based on BiLSTM
can learn salient features with contextual information for SER.

Since when the model contains 3D attention and BiLSTM, and the learning
rate and batch size are 0.0001 and 32 respectively, the model performs better.

126 H. Zhao et al.

To verify the model’s ability to correctly recognize emotions, we show the recog-
nition rate of the model in terms of emotion. As shown in Table 2.

Table 2. Emotion recognition result in IEMOCAP dataset

Emotion Recall Pre F1

Angry 0.91 0.89 0.90

Happy 0.69 0.68 0.69

Neutral 0.86 0.91 0.88

Sad 0.90 0.84 0.87

Average 0.84 0.83 0.84

It can be seen from Table 2, the average recognition rate of emotion is around
84%. To further verify the recognition performance of the model, we generate a
confusion matrix of emotions. The confusion matrix shows the correct prediction
rate and false mixing rate of different emotions, as shown in Fig. 5.

Fig. 5. The confusion matrix of the model on the IEMOCAP dataset. The experimental
parameters are set to the batch size is 32 and the learning rate is 0.0001.

From Fig. 5, we can observe that the recognition rates of angry, neutral,
and sad emotions are higher, reaching 91%, 86%, and 90%, respectively. The
recognition rate of happy emotion is 69%, which is low compared with the other
three emotions. It is observed that happy emotion is easily confused with other

UA-LFLB: Upgraded Attention-Based Local Feature Learning Block 127

emotions such as neutral emotion. The reason may be that the signal strengths
of happy emotions and neutral emotions reach similar frequencies at the same
time.

4.3 Performance Comparison

To verify the performance of the UA-LFLB model, we selected several repre-
sentative works with similar structures to the proposed model. The results are
shown in Table 3.

Table 3. The recognition rate of IEMOCAP dataset is compared with the existing
models using the 10 fold cross-validation. Notes: \ indicates that the evaluation index
has not been used in previous work.

Network UAR(%) F1(%) Pre(%)

3D ACRNN [4] (2018) 64.74 \ \
3Dilated CNN [11] (2019) 69.32 \ \
RBFN+BiLSTM [14] (2020) 72.25 74.00 74.00

UA-LFLB (ours) 84.25 83.35 83.88

From Table 3, we can observe that the average recognition rate of the pro-
posed UA-LFLB model is improved by 9% compared with the previous models.
The improvement of recognition performance is attributed to the model pro-
posed in this paper that can capture the salient features with context relevance.
To alleviate the problem of a low recognition rate caused by a large amount of
irrelevant information in the extracted features, we propose a UA-LFLB model
based on [4]. The comparative experiment is shown in Table 4.

Table 4. Compare the proposed model and [4] with the 10-fold cross-validation on the
IEMOCAP dataset to compare the recognition accuracy.

Model Hap(%) Ang(%) Neu(%) Sad(%)

3D ACRNN [4] (2018) 29.95 70.47 66.52 84.32

UA-LFLB (ours) 69.00 91.00 86.00 90.00

From Table 4 we can observe that the identification performance of the pro-
posed model is better than the 3D attention-based convolutional recurrent neural
networks (ACRNN) [4] model. The recognition rates of angry, happy, natural,
and sad emotions increased by 20.53%, 39.05%, 19.48%, and 5.68%, respectively.
The recognition rate of happy emotion has been greatly improved. This indicates
that the LFLB can extract deep local sequence features. Then, the obtained local
features are used as the input of the UA mechanism. This mechanism can cap-
ture the contextual relevance of the features and learn the salient features of the
discourse level by calculating the weight of the features.

128 H. Zhao et al.

4.4 Feature Visualization

The t-SNE [9] is mainly used for the visualization of high-dimensional data
to evaluate the algorithm performance or verify the effectiveness of algorithms
through visual observation. The visualization of emotional features on the IEMO-
CAP dataset is shown in Fig. 6.

(a) Without 3D Attention + BiLSTM (b) With 3D Attention + BiLSTM

Fig. 6. t-SNE visualization of features on IEMOCAP dataset

As can be seen from Fig. 6, there are four different color coordinate points
distributed in the two-dimensional map, which represent four different emotional
characteristics. When the proposed model without 3D Attention and BiLSTM,
there is a large amount of overlap in the distribution of clustering features,
resulting in fuzzy emotional features, as shown in Fig. 6(a). When the proposed
model includes 3D Attention and BiLSTM, the overlap of features is signifi-
cantly reduced, shown in Fig. 6(b). The experimental result shows that the UA
mechanism composed of 3D Attention and BiLSTM can make the features more
prominent and improve the recognition performance of the model.

5 Conclusion

In this paper, we propose a UA-LFLB model to learn context-related salient
features to reduce the interference of irrelevant emotional information in the
features. The LFLB can extract deep local sequence features. The UA is com-
posed of BiLSTM and 3D attention. Based on local features, the BiLSTM can
capture context information, while 3D attention can focus attention on salient
features by calculating the weight value of features. The experimental results
show that compared with the baseline methods, the average accuracy rate is
increased by 9%. In the future, we will extract features from multiple modalities
to increase the diversity and completeness of features. We will also improve the
loss function to make the distance between the same features more concentrated,
and the distance between the different features more scattered. This will greatly
reduce the overlap of features and enhance the discrimination of features.

UA-LFLB: Upgraded Attention-Based Local Feature Learning Block 129

References

1. Basu, S., Bag, A., Mahadevappa, M., Mukherjee, J., Guha, R.: Affect detection in
normal groups with the help of biological markers. In: 2015 Annual IEEE India
Conference (INDICON), pp. 1–6 (2015)

2. Busso, C., et al.: IEMOCAP: interactive emotional dyadic motion capture
database. Lang. Resour. Eval. 42, 335–359 (2008)

3. Chen, L.F., Su, W., Feng, Y., Wu, M., She, J., Hirota, K.: Two-layer fuzzy multiple
random forest for speech emotion recognition in human-robot interaction. Inf. Sci.
509, 150–163 (2020)

4. Chen, M., He, X., Yang, J., Zhang, H.: 3-d convolutional recurrent neural networks
with attention model for speech emotion recognition. IEEE Sig. Process. Lett.
25(10), 1440–1444 (2018)

5. Han, J., Zhang, Z., Cummins, N., Schuller, B.: Adversarial training in affective
computing and sentiment analysis: Recent advances and perspectives [review arti-
cle]. IEEE Comput. Intell. Mag. 14, 68–81 (2019)

6. Huang, Z., Dong, M., Mao, Q., Zhan, Y.: Speech emotion recognition using CNN.
In: MM 2014, pp. 801–804 (2014)

7. Landau, M.J.: Acoustical properties of speech as indicators of depression and sui-
cidal risk. Vanderbilt Undergraduate Res. J. 4 (2008)

8. Li, Y., Baidoo, C., Cai, T., Kusi, G.A.: Speech emotion recognition using 1d cnn
with no attention. In: International Computer Science and Engineering Conference
(ICSEC), pp. 351–356 (2019)

9. Maaten, L.V.D., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res.
9, 2579–2605 (2008)

10. Mao, Q., Dong, M., Huang, Z., Zhan, Y.: Learning salient features for speech
emotion recognition using convolutional neural networks. IEEE Trans. Multimedia
16(8), 2203–2213 (2014)

11. Meng, H., Yan, T., Yuan, F., Wei, H.: Speech emotion recognition from 3d log-mel
spectrograms with deep learning network. IEEE Access 7, 125868–125881 (2019)

12. Mirsamadi, S., Barsoum, E., Zhang, C.: Automatic speech emotion recognition
using recurrent neural networks with local attention. In: ICASSP, pp. 2227–2231
(2017)

13. Mishra, S., Mandal, B., Puhan, N.B.: Multi-level dual-attention based CNN for
macular optical coherence tomography classification. IEEE Sig. Process. Lett. 26,
1793–1797 (2019)

14. Sajjad, M., Kwon, S.: Clustering-based speech emotion recognition by incorporat-
ing learned features and deep BiLSTM. IEEE Access 8, 79861–79875 (2020)

15. Park, J.S., Kim, J., Oh, Y.: Feature vector classification based speech emotion
recognition for service robots. IEEE Trans. Consum. Electron. 55, 1590–1596
(2009)

16. Schmidt, E.M., Kim, Y.E.: Learning emotion-based acoustic features with deep
belief networks. In: IEEE WASPAA, pp. 65–68 (2011)

17. Swain, M., Routray, A., Kabisatpathy, P.: Databases, features and classifiers for
speech emotion recognition: a review. Int. J. Speech Technol. 21(1), 93–120 (2018)

18. Xia, G., Li, F., Zhao, D.D., Zhang, Q., Yang, S.: Fi-net: a speech emotion recogni-
tion framework with feature integration and data augmentation. In: 2019 5th Inter-
national Conference on Big Data Computing and Communications (BIGCOM), pp.
195–203 (2019)

130 H. Zhao et al.

19. Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affect recognition meth-
ods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach.
Intell. 31(1), 39–58 (2009)

20. Zhang, Z., Cummins, N., Schuller, B.: Advanced data exploitation in speech anal-
ysis: an overview. IEEE Sig. Process. Mag. 34, 107–129 (2017)

21. Zhao, H., Xiao, Y., Han, J., Zhang, Z.: Compact convolutional recurrent neural
networks via binarization for speech emotion recognition. In: 2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP
2019, pp. 6690–6694 (2019)

22. Zhao, J., Mao, X., Chen, L.: Speech emotion recognition using deep 1D & 2D CNN
LSTM networks. Biomed. Sign. Process. Control 47, 312–323 (2019)

23. Zhao, Z., Zheng, Y., Zhang, Z., Wang, H., Zhao, Y., Li, C.: Exploring spatio-
temporal representations by integrating attention-based bidirectional-LSTM-
RNNs and FCNs for speech emotion recognition. In: INTERSPEECH, pp. 272–276
(2018)

24. Zheng, W., Yu, J., Zou, Y.: An experimental study of speech emotion recognition
based on deep convolutional neural networks. In: 2015 International Conference on
Affective Computing and Intelligent Interaction (ACII), pp. 827–831 (2015)

Memorization in Deep Neural Networks:
Does the Loss Function Matter?

Deep Patel(B) and P. S. Sastry

Indian Institute of Science, Bangalore 560012, India
{deeppatel,sastry}@iisc.ac.in

Abstract. Deep Neural Networks, often owing to the overparameteri-
zation, are shown to be capable of exactly memorizing even randomly
labelled data. Empirical studies have also shown that none of the stan-
dard regularization techniques mitigate such overfitting. We investigate
whether choice of loss function can affect this memorization. We empir-
ically show, with benchmark data sets MNIST and CIFAR-10, that a
symmetric loss function as opposed to either cross entropy or squared
error loss results in significant improvement in the ability of the net-
work to resist such overfitting. We then provide a formal definition for
robustness to memorization and provide theoretical explanation as to
why the symmetric losses provide this robustness. Our results clearly
bring out the role loss functions alone can play in this phenomenon of
memorization.

Keywords: Memorization · Deep networks · Random labels ·
Symmetric losses

1 Introduction

Deep Neural Networks have been remarkably successful in a variety of classi-
fication problems involving image, text or speech data [12,18,20,21,24]. This
is remarkable because these networks often have a large number of parameters
and are trained on data sets that are not large enough for the sizes of these
networks. This raises many questions about the (unreasonable) effectiveness of
deep networks in applications and whether they can go wrong on some kind of
data sets.

In an interesting recent study, [25] showed that standard deep network archi-
tectures are highly susceptible to extreme overfitting. They show that when one
randomly alters class labels in the training data, these networks can learn the
random labels almost exactly (with the gradient based learning algorithm driv-
ing the training error to near zero). It is seen that this memorization of the
training examples cannot be mitigated through any of the standard regulariza-
tion techniques such as weight decay or dropout. These results seem to imply
that the usual complexity measures of statistical learning theory are inadequate
to understand the learning dynamics of deep neural networks. In a further study,
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 131–142, 2021.
https://doi.org/10.1007/978-3-030-75765-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_11

132 D. Patel and P. S. Sastry

[1] investigates this phenomenon more closely. While their study also confirms
this memorization, they formulate some characterizations under which the learn-
ing dynamics of a network differ for the two cases of learning from real data and
random data. Their study suggests that the data may be playing a vital role in
resisting brute-force memorization by a network. While these studies experiment
with many scenarios of regularization techniques and randomization of data, the
role that the loss function itself can play in this has not been investigated. Moti-
vated by this, here we present some experiments to show that a loss function
can also play a significant role in preventing a network from memorizing data.

Neural networks are universal approximators [8] and networks with sufficient
parameters have the capacity to exactly represent any finite amount of data
[25]. Such results show that there exist parameter values that can represent any
arbitrary function. However, as discussed in [1], what a network learns depends
on the parameter values that a gradient-based learning algorithm can reach
starting from some random initial parameter values. This learning dynamics is
certainly affected, among other factors, by the loss function because the loss
function determines the topography of the empirical risk, which is minimized by
the learning algorithm. Hence, it would be interesting to investigate whether it
is possible to have loss functions that can inherently resist (to some degree) the
memorization of data by a network.

Here we present some experimental results for benchmark datasets, MNIST
[14] and CIFAR-10 [11], with labels randomly changed with different probabili-
ties. We see that for varying probabilities of random labelling, networks trained
with standard loss functions such as categorical cross entropy (CCE) or mean
square error (MSE) exhibit memorization by reaching close to zero training error.
Then, we investigate learning these same networks using a special class of loss
functions – symmetric loss functions. We specifically use the so-called robust log
loss (RLL) [13] – which is obtained by modifying CCE – though we also com-
ment on other similar loss functions. We show that keeping everything else in
the training algorithm same but changing the loss function alone results in the
network significantly resisting overfitting. With these loss functions the training
error saturates at a level much above zero (depending on the amount of random
label flipping). We also see that the learning dynamics with these symmetric loss
functions resembles more of what one expects with the clean, real data. It was
suggested in [1] that, with real data, the networks try to fit the patterns in the
data rather than memorizing the data, while with randomly flipped labels the
networks seem to be using brute-force memorization. We show that with fairly
high (though less than 100%) randomization of labels in training data, networks
trained with CCE or MSE loss seem to be using brute-force memorization while
the same networks trained with the symmetric loss, RLL, seem to be resisting
such memorization by trying to fit mainly the clean part of the data. This ade-
quately demonstrates that the loss function also has an important role to play
in resisting this type of memorization of data.

We also present some theoretical justification (using the known properties of
these symmetric losses) for the ability of these loss functions to resist overfitting.

Memorization in Deep Neural Networks: Does the Loss Function Matter? 133

For the case of random label flipping, we formally define what can be called
resisting of overfitting or memorization. Using this, we explain why symmetric
loss functions can resist brute-force memorization in these scenarios. The analysis
we present provides some theoretical justification for the empirically observed
performance with RLL. We discuss the implications of this and speculate on how
loss functions may be crucial in realizing better learning dynamics.

1.1 Related Work

Memorization in deep networks got a lot of attention recently due to [25] which
showed that SGD-based training of neural networks drives the training set accu-
racy to 100% even in case of randomly labelled data with none of the standard
regularization methods being helpful for avoiding this memorization. They spec-
ulate on the implications of this for characterizing the generalization abilities of
networks. In further studies, [1,7] characterize the behaviour of neural networks
on real and randomly-labelled data experimentally and find that deep networks
learn simpler patterns first before starting to memorize the data. They also claim
that explicit regularization such as dropout can actually help resist memoriza-
tion to some extent. [3] shows that memorization is necessary for generalization
for some types of distributions which has been tested empirically by [4]. How-
ever, none of these studies investigate whether the loss function has a role in
memorization and that is what is explored in this paper

There are many works that attempt comparative study of loss functions
for classification tasks. [9] shows, with extensive empirical experiments on a
variety of data sets, that MSE performs better than CCE thus challenging the
conventional wisdom of the superiority of CCE loss for classification tasks. [2]
argue that CCE is favourable (compared to MSE) for multi-class settings but
propose a technique that makes performance of MSE comparable to that of
CCE. [19,22] find MSE has comparable or better performance than hinge loss for
several tasks. [16] show that minimizers of risk obtained in case of MSE and hinge
loss are the same for overparameterized linear models under certain conditions.
These and other similar works compare different loss functions for classification
and regression tasks from the point of view of generalization whereas our work
looks at the role loss functions can play in affecting the degree of memorization
in overparameterized networks.

The problem of learning under label noise, that is, learning when training
data has random labeling errors, has also been extensively studied in recent
years. (See, e.g., [5,6,15,17,23]). In tackling label noise the focus is mostly on
algorithms that deliver good performance by, e.g., sample reweighting, label
cleaning, loss correction, etc. In this work our focus is on the inherent robustness
of a loss function and not on any algorithmic modifications to take care of label
noise.

The main contributions of the paper are as follows: We consider some scenar-
ios of network architectures and randomization of training labels under which
deep networks are earlier demonstrated to be susceptible to memorization.

134 D. Patel and P. S. Sastry

We show through empirical studies that training the same network with a dif-
ferent loss function, namely, RLL, can significantly resist this memorization as
compared to training with standard CCE or MSE. Our experiments adequately
demonstrate that the loss function has a crucial role and supports our viewpoint
that it is important to study such properties of loss functions. We propose a for-
mal definition for the ability of a network to resist overfitting of the kind studied
[1,25]. Using this definition, for these scenarios of random label flipping on train-
ing data, we provide theoretical justification for the observed performance with
the symmetric loss functions.

The rest of the paper is organized as follows: In Sect. 2, we present our empir-
ical studies with the CCE, MSE, & RLL loss functions. Section 3 presents our
theoretical analysis. Conclusions are presented in Sect. 4.

2 Role of Loss Function in Resisting Memorization

We experiment with two network architectures. One is an Inception-like network
architecture (referred to as Inception-Lite in this paper) which is same as that
used in [25] for demonstrating memorization in deep networks. The second is
ResNet-32 (and ResNet-18 for MNIST) architecture as used in [23].

In this section we present results with three loss functions. Two are the
standard loss functions used with neural networks, namely, CCE and MSE, and
the third is a symmetric loss, viz. RLL. Since we are considering classification
problems, for all the networks we assume a softmax output layer. For an input, x,
let g(x) denote the vector output of the network with components gi(x). When
x belongs to class k, the label would be the one-hot vector ek where ek

k = 1 and
ek
j = 0, ∀j �= k. Let K denote the number of classes. With this notation, the

three loss functions can be defined as follows:

LCCE(g(x), ek) = −
∑

i

ek
i log (gi(x)) = − log(gk(x))

LMSE(g(x), ek) =
∑

i

(
gi(x) − ek

i

)2

LRLL(g(x), ek) = log
(

α + 1
α

)
− log(α + gk(x)) +

∑

j �=k

1
K − 1

log(α + gj(x))

where α > 0 is a parameter of the RLL.
We can get some insights on behaviour of RLL versus CCE as follows: When x

is in class-k, gk(x) is the posterior probability assigned to class-k by the network.
If this is high, then the CCE loss, which is − log(gk(x), is low. However, the CCE
loss is unbounded because, in principle, gk(x) can be arbitrarily small. Disregard-
ing the constant term, the RLL takes − log(α+gk(x))+

∑
j �=k

1
K−1 log(α+gj(x))

as its value. Since we are using log(α + gj(x)) rather than log(gj(x)), the loss
is now bounded. More importantly, the loss is essentially determined through a

Memorization in Deep Neural Networks: Does the Loss Function Matter? 135

kind of comparison of the posterior probability assigned to class-k by the net-
work against the average probability assigned to all other classes. (The constant
term in RLL is there only to ensure that the loss is non-negative). As we shall
see, this gives some amount of robustness in the risk minimization resulting in
RLL exhibiting good resistance to memorization.

We train all the networks to minimize empirical risk (with each of the loss
functions). We employ mini-batch based stochastic gradient descent (SGD) for
Inception-Lite & ResNet-32 (for CIFAR-10) and Adam [10] for ResNet-18 (for
MNIST). For Inception-Lite, we use a constant step-size of 0.01 in each epoch
which is reduced by a factor of 0.95 after each epoch for 100 epochs whereas a
constant step-size of 0.1 is used for ResNet-32 which is reduced by a factor of 0.1
after 100 and 150 epochs. ResNet-32 & ResNet-18 are trained for 200 epochs.
The ResNet-18 is trained with a step-size of 0.001. Inception-Lite is trained for
100 epochs because the training accuracies saturate by then. Inception-Lite and
ResNet-18 are trained without weight decay whereas ResNet-32 is trained with
a weight decay of 0.0001.

CIFAR-10 and MNIST benchmark datasets are used for the experiments. As
explained earlier, we study the memorization by the networks through randomly
altering the class labels in the training set. For this, independently for each
example, we retain the original label with probability (1− η) and change it with
probability η. When the label is changed, it is changed to one of the other classes
with equal probability. We experiment with η = 0, 0.2, 0.4, and 0.6. (Note that
η = 0 corresponds to the clean or original training data). By varying η we can
change the amount of pattern information present in training data and hence can
study whether a loss function can result in learning this information. Here, we
are considering 10-class classification task. Our randomization of labels is such
that up to η < 0.9, in an expectation sense, for any class-j, the number of data
points in the training set that are correctly labelled as class-j would be more
than the number of data points of a class-i, i �= j, incorrectly labelled as class-j.
Hence, at η well below 0.9 there should be scope for learning the underlying
patterns and not overfitting the randomized training data.

(a) CCE (b) MSE (c) CCE (d) MSE

Fig. 1. Training set accuracies for ResNet-32 ((a) & (b)) & Inception-Lite ((c) & (d))
trained on CIFAR-10 with CCE and MSE losses for for η ∈ {0., 0.2, 0.4, 0.6}

136 D. Patel and P. S. Sastry

Fig. 2. Training set accuracies for ResNet-18 trained on MNIST with CCE and MSE
losses for different levels of label noise

Fig. 3. Training set accuracies for networks trained on CIFAR-10 ((a) & (c)) & MNIST
((b)) with RLL for η ∈ {0., 0.2, 0.4, 0.6}

Figure 1 shows the training accuracies achieved with ResNet-32 and Incep-
tionLite when we train the network with CCE & MSE for various values of η
on CIFAR-10 while Fig. 2 shows training accuracies of ResNet-18 with CCE and
MSE for MNIST. As can be seen from the figures, for all values of η the training
error goes down close to zero though it takes a few epochs more with higher val-
ues of η. The only exception is when ResNet-18 is trained on MNIST with MSE;
but even here the training accuracy reaches a high value. This is consistent with
the results reported in [1,25]. (Note that [25] show training set performances only
for η = 1 and do not experiment with varying levels of noise as was done here.)
Note that at η = 0.2, 80% of training samples of a class are correctly labelled
and hence would contain the patterns that the network would have learnt when
trained with clean data. However, the network ends up learning a function that
can exactly reproduce the training set labels. This seems to indicate that with
these loss functions the topography of the empirical risk function is such that
the learning dynamics takes the network to a point that fits the random labels
exactly. The brute-force memorization manifests itself in these networks trained
with CCE even at moderate levels of label randomization.

These results may be contrasted with those presented in Fig. 3 which are
obtained when the same networks are trained with RLL for different values of
η on MNIST & CIFAR-10. As can be seen from the figures, the training set
accuracy achieved by RLL for non-zero values of η is always well below that

Memorization in Deep Neural Networks: Does the Loss Function Matter? 137

achieved on clean data. This shows that the network does not blindly learn to
reproduce the training set labels. This is significant because this shows that when
we keep everything else same and change only the loss function, the learning
dynamics now seem to be able to resist brute-force memorization. Also, for
η = 0.2 and η = 0.4 the difference in training-accuracy on clean and noisy
data is almost equal to the noise-rate thus suggesting that this loss function
seems to be able to disregard data that are wrongly labelled.

We now take a closer look to understand the kind of classifier learnt by
RLL under noisy data. Let {Xi, yi}�

i=1 denote the original training data and
let {Xi, ỹi}�

i=1 denote the noisy or randomly-labelled data given to the learning
algorithm. Let h(X) denote the actual class label predicted by the network for
X (which is determined by max(gi(X)) where g(X) is the output of softmax
layer). Then the training accuracy, say J1, is defined by

J1 =
1
�

�∑

i=1

I[h(Xi)=ỹi)]

where IA is indicator of A. This is the accuracy defined with respect to the labels
as given in the training set. We define another accuracy, J2, by

J2 =
1
�

�∑

i=1

I[h(Xi)=yi)]

J2 is the accuracy with respect to original, uncorrupted training set. This accu-
racy indicates how well the network, learned with randomly-altered labels, would
be able to reproduce the original clean labels of the training data.

Fig. 4. J1 and J2 accuracies for Inception-Lite ((a) & (b)) & ResNet-18 ((c) & (d))
trained on CIFAR-10 and MNIST resp. for η ∈ {0., 0.2, 0.4, 0.6} (Solid lines show J1

accuracy; dashed lines show J2 accuracy)

We show in Fig. 4 the accuracies J1 and J2 for networks learned with the
different loss functions for different values of η. As can be seen from Figs. 4a &
4c for networks trained with CCE and MSE losses, the J2 accuracy (dashed line)
is always well below the J1 accuracy (solid line). This is as expected because, as

138 D. Patel and P. S. Sastry

Fig. 5. Train. accuracy and J1 & J2 accuracies for Inception-Lite ((a) & (c)) & ResNet-
18 ((b) & (d)) trained on CIFAR-10 and MNIST resp. for η ∈ {0., 0.2, 0.4, 0.6} (Solid
lines show J1 accuracy; dashed lines show J2 accuracy)

seen earlier, the training accuracy, which is equal to J1, is close to 100%. However,
for networks learned with RLL (Fig. 4b & 4d), it is the J2 (dashed line) accuracy
that is always higher than the J1 accuracy (solid line). As a matter of fact, for
η = 0.2, 0.4, the J2 accuracy of the networks learned using RLL is close to the
training accuracy achieved with clean data. This suggests that this loss function
is able to disregard the randomly altered labels and help the network learn a
classifier that it would have learned with clean data.

There is another interesting point about this figure. The figure shows how
the J1 and J2 accuracies evolve with epochs. As can be seen from the figure, the
networks learned using CCE with noisy data seemed to have initially tried to
learn the patterns and thus the J2 accuracy is higher in the early epochs. But
eventually the network ‘flips’ and overfits to the random labels in training data.
However, this ‘flip’ never happens for networks trained using RLL; through all
the epochs, the J2 accuracy stays higher.

All the empirical results presented in this section amply demonstrate that
a loss function can play a significant role in mitigating the memorization effect
observed with deep neural networks. In the next section, we present some theo-
retical analysis that explains, to some extent, the results presented in this section.

3 Robustness of Symmetric Loss Functions

In [25], for networks learned using training data with random labels, the accuracy
obtained on part of the original data is taken as test error for the purpose of
discussing the generalization abilities. However, this may be somewhat of an
inaccurate nomenclature. Normally the test error is error on new data but drawn
from the same distribution as that from which training data is drawn.

We will now present another way of formalizing this. For this section we
assume class labels, yi, take values in Y = {1, · · · ,K} rather than being one-
hot vectors. Let S = {Xi, yi}�

i=1 be the original training data and we assume
it is drawn iid according to a distribution D. The training data with randomly

Memorization in Deep Neural Networks: Does the Loss Function Matter? 139

altered labels is denoted by Sη = {Xi, ỹi}�
i=1, where, for each i,

ỹi =
{

yi with probability 1 − η
j ∈ Y − {yi} with probability η

K−1

That is, ỹi is same as yi with probability (1 − η) and takes each of the other
possible labels with equal probability. We denote the distribution from which Sη

is drawn as Dη and it is related to D as given above.
When one is empirically investigating memorization of random labels, one is

using training data drawn according to distribution Dη but is interested in test
error according to distribution D. Because of the special relationship between
the two distributions, we are asking whether it is possible for the network learned
using data drawn from Dη to do well on data drawn from D. As a matter of
fact, we want it to do well on data only from D; we do not want it to learn
distribution Dη.

Let h and hη denote the classifier function (network) learned by an algorithm
when given S and Sη as training data, respectively. We can say that an algorithm
resists memorization if

Prob(X,y)∼D[h(X) = y] = Prob(X,y)∼D[hη(X) = y]

What this means is that the accuracy on the original data achieved by the
network learnt with noisy data is same as that of network learnt with original
clean data. This is the ideal case where random altering of labels would have
no effect on the classifier learnt. Note that the RHS above is what we called J2

accuracy in the previous section.
The standard algorithm employed for training all networks is empirical risk

minimization. The above property can be established for risk minimization if the
loss function satisfies a special property called symmetry [6].

Definition: A loss function L is called symmetric if it satisfies

K∑

j=1

L(g(X), j) = C, ∀g,X

where C is a finite constant. That is, given any network (or function) g and any
input X, if we sum the loss values over all class labels, it should give the same
constant.

Theorem 1. Let L be a symmetric loss, D and Dη be as defined above. Assume
η < K−1

K . Let yx and ỹx denote the original and noisy label corresponding to a
pattern X. The risk of h over D and over Dη is RL(h) = ED[L(h(X), yx)] and
Rη

L(h) = EDη [L(h(X), ỹx)] respectively. Then, given any two classifiers h1 and
h2, if RL(h1) < RL(h2), then Rη

L(h1) < Rη
L(h2) and vice versa.

140 D. Patel and P. S. Sastry

Proof. (This follows easily from the proof of Theorem 1 in [6].) Given the way
the randomized labels are generated, we have

Rη
L(h) = EX,ỹx

L(h(X), ỹx)
= EXEyx|XEỹx|X,yx

L(h(X), ỹx)

= EXEyx|X

⎡

⎣(1 − η)L(h(X), yx) +
η

K − 1

∑

i�=yx

L(h(X), i)

⎤

⎦

= (1 − η)RL(h) +
η

K − 1
(C − RL(h))

=
Cη

K − 1
+

(
1 − ηK

K − 1

)
RL(h)

where C is the constant in the symmetry condition on the loss function and K
is the number of classes. Since η < K−1

K , we have (1 − ηK
K−1) > 0. Hence, the

above shows that whenever RL(h1) < RL(h2), we get Rη
L(h1) < Rη

L(h2) and
vice versa. This completes the proof.

Theorem 1 shows that the symmetric loss maintains the risk ranking of differ-
ent networks regardless of random flipping of labels (as long as η < K−1

K). This
implies that any local minimum of risk under randomly flipped labels would also
be a local minimum of risk under original labels if the loss function is symmetric.

The loss function RLL satisfies the symmetry condition [13]. Thus, if we
are using RLL, then any local minimum of risk under Dη would also be a local
minimum of risk under D. Even though this result is only for minima of risk, one
can expect local minima of empirical risk under random label flips to be good
approximators of local minima of empirical risk with clean, original samples.
This explains the empirical results presented in the previous section regarding
the ability of RLL to resist memorization.

There are other losses that satisfy the symmetry condition, e.g., 0–1 loss,
mean absolute value of error (MAE), etc.

It is easy to verify that neither CCE nor MSE satisfy the symmetry condition.
Though the symmetry of loss is only a sufficient condition for robustness, this
may provide an explanation of the overfitting observed with these loss functions
when the labels are randomly flipped.

As is easy to see, the symmetry condition implies that the loss function is
bounded. Given a bounded loss function we can satisfy the symmetry condition
by ‘normalizing’ it. Given a bounded loss L, define L̄ by

L̄(g(X), j) =
L(g(X), j)∑
s L(g(X), s)

It is easy to see that L̄ satisfies the symmetry condition. As mentioned ear-
lier, CCE loss is unbounded and hence normalization would not turn it into a
symmetric loss. However, we can normalize MSE loss.

In Fig. 5 we show results obtained using normalized MSE. Once we normal-
ize MSE, it no longer fits the data with random labels perfectly; the training

Memorization in Deep Neural Networks: Does the Loss Function Matter? 141

accuracy now saturates at a value below 100% and thus it behaves more like
RLL now.

The empirical results presented in the previous section adequately demon-
strate that the loss function can play a crucial role in mitigating the tendency of
deep networks to memorize the training examples. The analysis presented here
provides an explanation for this ability of RLL to resist such memorization. As
a mater of fact, if the loss function is symmetric it would have such robustness
and we can normalize a bounded loss to have such robustness.

4 Conclusions

Many recent studies have shown that overparameterized deep networks seem to
be capable of perfectly fitting even randomly-labelled data. This phenomenon of
memorization in deep networks has received a lot of attention because it raises
important questions on how to understand generalization abilities of deep net-
works. In this paper we have shown through empirical studies that changing the
loss function alone can significantly change the memorization in such deep net-
works. We showed this with the symmetric loss functions and we have provided
some theoretical analysis to explain the empirical results. The results presented
here suggest that choice of loss function can play a critical role in overfitting
by deep networks. We feel it is important to further investigate the nature of
different loss functions for a better understanding of generalization abilities of
deep networks.

References

1. Arpit, D., et al.: A closer look at memorization in deep networks. In: ICML (2017)
2. Demirkaya, A., Chen, J., Oymak, S.: Exploring the role of loss functions in multi-

class classification. In: 2020 54th Annual Conference on Information Sciences and
Systems (CISS), pp. 1–5 (2020)

3. Feldman, V.: Does learning require memorization? a short tale about a long tail.
In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-
puting, pp. 954–959 (2020)

4. Feldman, V., Zhang, C.: What neural networks memorize and why: discovering the
long tail via influence estimation. In: Advances in Neural Information Processing
Systems, vol. 33 (2020)

5. Frenay, B., Verleysen, M.: Classification in the presence of label noise: a survey.
IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

6. Ghosh, A., Kumar, H., Sastry, P.: Robust loss functions under label noise for deep
neural networks. In: Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, pp. 1919–1925 (2017)

7. Gu, J., Tresp, V.: Neural network memorization dissection (2019)
8. Hornik, K., Stinchcombe, M., White, H., et al.: Multilayer feedforward networks

are universal approximators. Neural Netw. 2(5), 359–366 (1989)
9. Hui, L., Belkin, M.: Evaluation of neural architectures trained with square loss vs

cross-entropy in classification tasks (2020)

142 D. Patel and P. S. Sastry

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Ph.D.
thesis, University of Toronto (2009)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

13. Kumar, H., Sastry, P.S.: Robust loss functions for learning multi-class classifiers.
In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
pp. 687–692 (2018)

14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

15. Manwani, N., Sastry, P.S.: Noise tolerance under risk minimization. IEEE Trans.
Cybern. 43(3), 1146–1151 (2013)

16. Muthukumar, V., Narang, A., Subramanian, V., Belkin, M., Hsu, D., Sahai, A.:
Classification vs regression in overparameterized regimes: Does the loss function
matter? (2020)

17. Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., Qu, L.: Making deep neural
networks robust to label noise: a loss correction approach. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

18. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of
NAACL (2018)

19. Que, Q., Belkin, M.: Back to the future: radial basis function networks revis-
ited. In: Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, Proceedings of Machine Learning Research, vol. 51, pp. 1375–1383.
PMLR, Cadiz (2016)

20. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020)

21. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

22. Rifkin, R.M.: Everything old is new again: a fresh look at historical approaches in
machine learning. Ph.D. thesis, Massachussets Insitute of Technology (2002)

23. Shu, J., et al.: Meta-weight-net: Learning an explicit mapping for sample weighting.
In: Advances in Neural Information Processing Systems, pp. 1919–1930 (2019)

24. Wang, W., et al.: StructBERT: incorporating language structures into pre-training
for deep language understanding (2019)

25. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization (2017)

http://arxiv.org/abs/1412.6980

Gaussian Soft Decision Trees
for Interpretable Feature-Based

Classification

Jaemin Yoo1 and Lee Sael2(B)

1 Seoul National University, Seoul, South Korea
jaeminyoo@snu.ac.kr

2 Ajou University, Suwon, South Korea
sael@ajou.ac.kr

Abstract. How can we accurately classify feature-based data such that
the learned model and results are more interpretable? Interpretability is
beneficial in various perspectives, such as in checking for compliance with
exiting knowledge and gaining insights from decision processes. To gain
in both accuracy and interpretability, we propose a novel tree-structured
classifier called Gaussian Soft Decision Trees (GSDT). GSDT is charac-
terized by multi-branched structures, Gaussian mixture-based decisions,
and a hinge loss with path regularization. The three key features make it
learn short trees where the weight vector of each node is a prototype for
data that mapped to the node. We show that GSDT results in the best
average accuracy compared to eight baselines. We also perform an abla-
tion study of the various structures of covariance matrix in the Gaussian
mixture nodes in GSDT and demonstrate the interpretability of GSDT
in a case study of classification in a breast cancer dataset.

Keywords: Gaussian Soft Decision Trees · Interpretable machine
learning · Feature-based classification · Tabular data · Gaussian
mixtures

1 Introduction

The interpretability of a model and its predictions is often an important factor
in choosing machine learning models in various domains. Interpretable machine
learning allows us to understand a decision process or the cause of a decision
that can advance our understanding of the problem at hand [13,18]. Furthermore,
in specific domains such as biology and medicine, there are numerous feature-
based data where each feature is meaningful and conveys unique information.
These data require interpretable models, which is why less accurate models with
interpretable structures such as decision trees are still being widely used.

Decision trees and linear models are representative models where the decision
process and the importance of features are intrinsically human-understandable,
but have limited representation power. Recent advancement of decision trees is
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 143–155, 2021.
https://doi.org/10.1007/978-3-030-75765-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_12

144 J. Yoo and L. Sael

(a) Identity. (b) Only diagonal. (c) Low-Rank Perturbed.

Fig. 1. Comparison of Gaussian covariances of various structures on a synthetic
dataset. Each point represents a data example with its label as a color, and each
ellipse represents a leaf distribution learned by GSDT. The diagonal covariance with
low-rank perturbations in (c) matches the true distribution better than the (a) identity
and (b) diagonal covariances, resulting in higher accuracy. (Color figure online)

soft decision trees (SDT) [6] that improve the representation power of decision
trees by performing soft decisions using all input features at each node. How-
ever, the interpretability of an SDT is limited, because it requires a large depth
to learn complex decision rules, involving many branches for interpreting each
prediction. Unlike decision trees that use only one feature at each branch with
a hard threshold, the large depth of SDTs leads to a complex decision process
that is difficult to interpret even with the tree structure.

In this work, we propose Gaussian Soft Decision Trees (GSDT), our novel
tree model that parameterizes each tree node as a Gaussian mixture, boosting
the limited accuracy of previous tree-structured models without sacrificing the
interpretability. Each edge in GSDT represents a multivariate Gaussian distri-
bution parameterized by the learnable mean and covariance, which summarizes
the examples that pass through it as an interpretable prototype. This makes it
possible for GSDT to naturally adopt a multi-branched structure where each
edge is learned and interpreted independently of the other edges in the branch.
As a result, GSDT shows at least 4.8% higher average accuracy and 4× smaller
depth compared to SDT-based models in six feature-based datasets. GSDT
outperforms even black box models such as random forests and multilayer per-
ceptrons that are not interpretable but have large representation power.

The contributions of this work are summarized as follows:

– Model: We propose GSDT, our novel tree-structured model that supports
high interpretability as well as high accuracy by modeling the internal nodes
as Gaussian mixtures. We propose various options of modeling the Gaussian
covariance and compare them as in Fig. 1.

– Experiments: We demonstrate the superior performance of GSDT by
extensive experiments on six feature-based datasets, where both interpretabil-
ity and classification accuracy are important.

Gaussian Soft Decision Trees for Interpretable Feature-Based Classification 145

– Case study: We analyze the structure and learned parameters of GSDT
and shows its superior interpretability by demonstrating the decision process
on an actual example on a breast cancer dataset with visualizations.

The rest of this paper is organized as follows. We introduce related works in
Sect. 2. We propose GSDT in Sect. 3 with theoretical analysis in Sect. 4. We show
experimental results in Sect. 5 and conclude at Sect. 6. The codes and datasets
are publicly available at https://github.com/leesael/GSDT.

2 Related Works

Soft Decision Trees. Soft decision trees (SDT) [11] are tree-structured models
that perform soft decisions. The internal nodes of SDTs are generalized linear
classifiers [12] that pass input features through the tree structure, and the leaves
learn fixed distributions over classes. With the improved representation power
and interpretable nature, SDTs have been applied for various applications such
as generative learning [10] and distilling the knowledge of deep neural networks
[6]. EDiT [21] is a variant of SDTs, which improves the interpretability of SDTs
by imposing sparsity on tree nodes and weight vectors.

Hierarchical Gaussian Mixture Models. Hierarchical Gaussian mixture
models (HGMM) [5,15,19] are Gaussian mixture models (GMM) structured as
a tree. HGMMs improve the efficiency of GMMs by stacking multiple layers of
Gaussian components, instead of increasing the number of components horizon-
tally. However, such models use all Gaussian components for the prediction of
each example x, making it difficult to interpret the decision process; it is required
to examine all components in the model for explaining each decision.

Kernel Methods. Various machine learning algorithms adopt kernel functions
to generalize linear decisions by mapping input features to another space where
clear separations of classes are possible [1,9]. SVM with the radial basis function
(RBF) kernel [2] is one of the most famous kernel methods, which learns a
decision boundary based on the Euclidean distance between features. Kernel
logistic regression [22] generalizes logistic regression by applying kernel functions
to the weight vectors instead of examples. Kernel methods improve the accuracy
of linear models, but degrade the interpretability due to the nonlinearity.

3 Proposed Approach

We introduce Gaussian Soft Decision Trees (GSDT), our novel tree model that
makes Gaussian mixture-based decisions at the internal nodes to maximize the
accuracy while gaining in interpretability.

https://github.com/leesael/GSDT

146 J. Yoo and L. Sael

3.1 Overview

GSDT is represented as a multi-branched tree of depth d, where each node has
b children. Each internal node i computes the probability of passing a feature x
to its child node j as a function fij such that the sum of outgoing probabilities
is one. GSDT passes x through all branches in the tree until it reaches the bd−1

leaf nodes where the arrival probability vector r(x) is computed. In other words,
rj(x) represents the probability of x arriving at leaf node j and is computed as
the multiplication of all decision probabilities in the path from the root.

Each leaf node j has a probability distribution qj ∈ R
|Y|, where Y is the set

of target classes, which does not change for the input x once it is learned. The
k-th element of qj , which is the prediction for class k ∈ Y, is defined as

qjk =
exp(ujk)∑
l∈Y exp(ujl)

, (1)

where uj is a parameter vector that represents an unnormalized probability. In
other words, each leaf learns fixed knowledge as a result of training based on the
examples that are passed to that leaf with high arrival probabilities.

The parameters in all internal and leaf nodes are learned by a gradient-based
approach for minimizing the following loss function:

lM (x, y) =
∑

j∈Nd

rj(x)lcls(uj , y), (2)

where Nd is the set of all leaf nodes, and lcls(uj , y) is a loss function that measures
the difference between the prediction at node j and the true label y.

In the inference phase, GSDT chooses the path that leads to the leaf node
j having the maximum arrival probability rj(x) and returns the distribution qj

it has learned during the training. Interpreting the single most probable path is
more straightforward than interpreting all possible paths at each prediction. The
complexity of the inference is also reduced from O(bd) (considering all branches)
to O(d). This is the main difference from HGMM [5,15,19] and ensemble mod-
els [12] that involve all experts in a tree or a forest at every prediction to boost
the performance, making the decision processes not interpretable.

3.2 Gaussian Decisions

The main characteristic of GSDT is the modeling of decisions as Gaussian mix-
tures. Each node i models its child j as a Gaussian distribution N (μj ,Σj), where
μj and Σj are learnable mean and covariance, respectively. It then computes the
likelihood of x being sampled from the distribution Nj of each child j and passes
x to the next layer following the computed likelihoods.

In other words, the probability fij of passing x to node j from node i is

fij(x) =
exp(L(θj | x))

∑
k exp(L(θk | x))

, (3)

Gaussian Soft Decision Trees for Interpretable Feature-Based Classification 147

where L(θj | x) is the log likelihood of x being generated from N (μj ,Σj), which
is defined as follows:

L(θj | x) = −1
2

(
(x − μj)

�Σ−1
j (x − μj) + log det(Σj) + d log(2π)

)
. (4)

However, it is computationally expensive to learn the full covariance matrix
Σj for all nodes due to the inverse and determinant operations in Eq. (4), as Σj

is a m × m matrix where m is the number of features. Thus, we introduce two
simpler structures for learning the covariance matrices.

Diagonal Covariance. A naive approach is to assume a diagonal covariance
for every node and determine its elements by a vector σj such that σjt = Σjtt for
all t. Since σj should contain only positive values, we introduce a free parameter
σ̄j and apply the softplus function [4] as follows:

Σ(diagonal)
j = diag(σj), (5)

where σj = log(1+exp(σ̄j)), and diag(·) makes a diagonal matrix from a vector.
This approach is the simplest but neglects the correlations between features.

Diagonal Covariance with Low-Rank Perturbations. A more principled
approach is to generalize the diagonal covariances by adding low-rank perturba-
tions [17] with a small number of parameters by the choice of a rank k:

Σ(perturbed)
j = diag(σj) + UU�, (6)

where U ∈ R
m×k is a rectangular matrix learned as a free parameter, k is given

as a hyperparameter, and σj is the same as in Eq. (5). It efficiently makes the
covariance matrix have non-diagonal entries for feature correlations only by the
additional mk parameters included in the U matrix.

log det(Σj) and the inverse Σ−1
j are computed efficiently thanks to the matrix

determinant lemma and the Woodbury matrix identity, respectively [7]:

log det(Σj) = log det(Im + U�A−1U) + log det(A), (7)

Σ−1
j = A−1 − A−1U(Ik + U�A−1U)−1U�A−1, (8)

where A = diag(σj), and Im ∈ R
m×m and Ik ∈ R

k×k are identity matrices with
different sizes. Equations (7) and (8) are easily differentiable with respect to both
A and U, allowing the updates of parameters in gradient-based optimization.

3.3 Training with Path Regularization

The training process of GSDT consists as three parts: parameter initialization,
a loss function for each leaf node, and regularization for better performance.

148 J. Yoo and L. Sael

Initialization. We initialize the leaf and internal nodes with different strategies
considering the property of GSDT. For the leaf nodes, we randomly initialize
the logit ui of every node i following the standard normal distribution N (0, 1).
For the internal nodes, we set the Gaussian mean μi of every node i to zero to
allow examples to be equally distributed to all leaf nodes at the early iterations
of training. This allows the predictions of leaf nodes to have a sufficient variance
needed to guide the training of internal nodes while minimizing the randomness
of internal nodes whose parameters should be tuned carefully.

Loss Function. We use the hinge loss [3] as the function lcls of Eq. (2), which
is typically used by maximum-margin classifers, as follows:

lcls(uj , y) =
∑

k∈Y\{y}
max(0, 1 + ujk − ujy), (9)

where Y is the set of labels. The hinge loss gives a zero if ujk +1 < ujy. In other
words, it maximizes the score ujy for the target class y, but stops the training if
it reaches a reasonably good performance. Unlike the cross entropy loss [8], the
hinge loss improves the robustness by allowing GSDT to focus on learning the
leaf nodes whose predictions are inaccurate.

Path Regularization. We propose to add path regularization to encourage
GSDT to utilize more leaf nodes instead of a few dominant ones. The regularizer
measures the negative entropy of the arrival probability vector r(B) as

llr(B) =
∑

j∈Nd

rj(B) log rj(B) where r(B) =
1

|B|
∑

x∈B
r(x), (10)

where r(x) is the vector representation of arrival probabilities of x, and B is a
training batch. The regularizer llr(B) forces GSDT to distribute the examples in
each batch equally to all leaves to minimize the negative entropy. We add llr(B)
to the overall objective function of GSDT with a regularization strength λ.

Post-optimization of Leaf Nodes. GSDT uses gradient-based optimization
to minimize the objective function, instead of the EM algorithm commonly used
with the Gaussian mixture models. To accommodate for possible weaknesses in
the gradient-based approach, we apply additional post-optimization at each leaf
as described in Algorithm 1. This step allows the leaf Gaussians to be closer to
the examples that they represent, with respect to both mean and covariance. All
parameters of GSDT are fine-tuned according to the change of leaf nodes.

4 Theoretical Analysis

We compare our GSDT with previous tree models, especially soft decision trees
(SDT) that adopt the binary structure with linear decisions, with respect to the
multi-branched structure and the nonlinearity of decisions.

Gaussian Soft Decision Trees for Interpretable Feature-Based Classification 149

Algorithm 1: Post-optimization of the leaf Gaussians of GSDT.
Input: A trained GSDT M , a set D of training features, a learning rate α for

the covariances, and the number n of iterations
1: for leaf node j in M do
2: Xj ← {x ∈ D | argmaxk rk(x) = j}
3: μj ← ∑

x∈Xj
x

4: for i ∈ [1, n] do
5: l ← sum((Σj − cov(Xj))

2)
6: Σj ← Σj − α · ∂l/∂Σj

7: end for
8: end for
9: Fine-tune the whole parameters of M for a fixed number of epochs

Multiple Branches. Our Gaussian decisions make it possible to adopt multi-
ple branches at each node without affecting the interpretability of the decision
tree structure. This is because the learned distribution N (μj ,Σj) of each node j
is itself interpretable regardless of the other children in the same branch. Specif-
ically, μj summarizes the examples that pass through node j as an interpretable
prototype, while Σj takes into account the different effect of each feature in the
split; small σjk represents that the k-th feature is dominant in determining the
score, as a small change of xk can change the score greatly.

The main advantage of such multi-branched structures is that one can reduce
the depth of a tree while maintaining a similar number of leaf nodes, improving
the interpretability of individual decisions; a tree depth directly tells the number
of decisions that need to be interpreted to explain each prediction. However, such
generalization to multi-branched structures is not straightforward in linear tree
models such as SDTs. Consider a linear decision function fij that is represented
as a multinomial logistic classifier:

fij(x) =
exp(x�wij + bij)∑
k exp(x�wik + bik)

, (11)

where wij and bij are the weight and bias for path (i, j), respectively. This is a
direct extension of SDTs into the multi-branched structure.

The main limitation of this approach is that the weight wij for each child j
should be interpreted in relation to the other weights, unlike the binary version
where a single weight wi is a complete explanation for node i. In other words,
a positive weight wij > 0 does not guarantee the positive correlation between x
and fij(x), since the other weights in the branch can have more strong weights;
what matters is the relative size compared to the other children in that branch.
Thus, one needs to examine all weights in that branch for interpreting a decision,
which significantly drops the interpretability of the model.

150 J. Yoo and L. Sael

Table 1. Classification accuracy for feature-based classification. The best performances
are in bold, and the second-best ones are underlined. GSDT shows the highest accu-
racies in five datasets compared with eight strong baselines.

Model Brain Breast Breast-wis Diabetes Heart Hepatitis

LR 63.4 ± 0.0 65.5 ± 0.0 97.1 ± 0.0 76.0 ± 0.0 86.9 ± 0.0 77.4 ± 0.0

SVM-lin 61.0 ± 0.0 62.1 ± 0.0 97.1 ± 0.0 76.6 ± 0.0 83.6 ± 0.0 77.4 ± 0.0

SVM-rbf 58.5 ± 0.0 70.7 ± 0.0 97.1 ± 0.0 76.0 ± 0.0 86.9 ± 0.0 77.4 ± 0.0

DT 70.5 ± 0.7 68.8 ± 1.6 96.0 ± 0.9 69.7 ± 1.6 67.2 ± 1.6 70.0 ± 6.9

SDT 66.8 ± 5.0 73.3 ± 5.2 97.9 ± 0.0 76.0 ± 0.7 80.7 ± 2.7 67.3 ± 4.7

EDiT 58.5 ± 0.0 75.0 ± 2.6 97.1 ± 0.2 74.6 ± 1.5 85.2 ± 2.3 77.8 ± 3.8

MLP 73.4 ± 1.7 73.3 ± 2.3 98.6 ± 0.2 75.0 ± 0.8 80.5 ± 1.5 64.2 ± 3.0

RF 68.0 ± 2.3 76.6 ± 0.8 98.1 ± 0.3 73.4 ± 0.7 84.8 ± 0.8 70.3 ± 2.4

GSDT 73.5 ± 1.5 77.2 ± 1.7 98.8 ± 0.6 76.0 ± 0.9 86.9 ± 1.2 78.2 ± 3.1

Number of Parameters. GSDT has a similar number of parameters to a
binary SDT assuming the same number of leaf nodes, when the rank k of low-
rank Gaussian covariances is fixed as a small constant. An SDT has O(n(m+y))
parameters, where n is the number of leaf nodes, m is the number of features,
and y is the number of classes, respectively. The number of parameters in GSDT
is given formally as Lemma 1.

Lemma 1. The number of parameters of GSDT is O(n(mk+y)), where m, n,
and y are the numbers of features, leaf nodes, and classes, respectively, assuming
that every node has the same number of children, and k is the rank of low-rank
perturbations of Gaussian covariances.

Proof. Let d be the depth of GSDT. Each internal node has n1/d children, and
the overall number of branches in the tree is

∑d
i=1 ni/d = (n − 1)/(1 − n−1/d),

which is O(n). Since each branch involves m(k +1) parameters in the mean and
covariance, the number of parameters in all internal decisions is O(nmk).

This shows that GSDT efficiently models the decision process by hierarchical
Gaussian mixtures with a few additional parameters from SDTs. The rank k is
set to 1 or 2 in our experiments, since small k is sufficient to model the relations
between features for learning non-diagonal covariance matrices.

5 Experiments

We compare GSDT with baseline models for feature-based classification on six
datasets. We also demonstrate the interpretability of GSDT in a case study and
compare the different approaches for modeling Gaussian covariances.

Gaussian Soft Decision Trees for Interpretable Feature-Based Classification 151

5.1 Experimental Settings

Datasets. We use six public feature-based datasets that are generated from the
bio and medical domains, where interpretability is a crucial factor. Brain-tumor1

is used to find a brain tumor from the information of a patient. Breast-cancer2

and Breast-cancer-wisconsin3 are used to predict breast cancers from clinical
cases. Diabetes4 is used to predict the status of a patient from diabetes. Heart-
disease5 is used to find the presence of heart disease in a patient. Hepatitis6 is
used to predict whether a patient lives or dies from the hepatitis disease.

Baselines. We compare GSDT with baseline models that have been used widely
for classification tasks. Our main competitors are models that provide direct
interpretability. Logistic regression (LR), support vector machines (SVM), and
decision trees (DT) make interpretable decisions but have low accuracy in over-
all [1]. We implement two kinds of SVMs with the linear and RBF kernels,
respectively. Soft decision trees (SDT) [11] and EDiT [21] improve decision trees
by adopting soft decisions at internal branches, but weaken the interpretability.
We also consider popular black box models that are not interpretable such as
random forests (RF) and multilayer perceptrons (MLP) for completeness.

Implementation. We split each dataset randomly into training and testing by
the 8:2 ratio. We run eight experiments for each model and report the average
and standard deviation of classification accuracy on the test data. Some models
have zero standard deviations as they are learned to find the global optima.

We use Scikit-learn implementations [20] of most baselines except SDTs and
EDiT that we have implemented by PyTorch along with GSDT. We set the tree
depth of SDTs and EDiT to 8 as in their original papers. On the other hand, we
set the tree depth and the number of children of GSDT to 2 and 6, respectively.
We set the strength λ of path regularization to 0.001 and the number n of post-
optimization updates to 10. We set the rank k of Gaussian covariances to 1 or 2
based on the datasets. We use the Adam optimizer [14] for training.

5.2 Classification Accuracy

Table 1 compares the accuracies of GSDT and the baselines on the six datasets.
GSDT achieves at least the second-best accuracy in all datasets, outperforming
all baselines and even the black box models by the average accuracy: the accuracy
of GSDT is 4.1 and 5.5 points higher than that of the RF and MLP, respectively.
This shows the effectiveness of GSDT for feature-based classification, which can
1 https://www.kaggle.com/pranavraikokte/braintumorfeaturesextracted.
2 https://archive.ics.uci.edu/ml/datasets/Breast+Cancer.
3 https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original).
4 https://www.kaggle.com/uciml/pima-indians-diabetes-database.
5 https://archive.ics.uci.edu/ml/datasets/Heart+Disease.
6 https://archive.ics.uci.edu/ml/datasets/Hepatitis.

https://www.kaggle.com/pranavraikokte/braintumorfeaturesextracted
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Hepatitis

152 J. Yoo and L. Sael

Fig. 2. The structure of simple GSDT trained for the Breast-cancer-wisconsin dataset
having nine features and two labels. Each node is a Gaussian mixture that contains
two Gaussian distributions with separate mean and covariance, but we represent only
the mean vectors for simplicity. GSDT passes the example x to the third leaf through
two Gaussian mixtures, classifying it as benign.

avoid overfitting by our regularized training while having enough representation
power for learning complex decision rules even with a few tree layers.

We compare the SDT-based models from the result: SDT, EDiT, and GSDT.
The accuracy of EDiT is similar to that of SDTs, as it focuses on improving the
interpretability of SDTs rather than its representation power; an SDT is better
at Brain-tumor, while EDiT is better at Heart-disease and Hepatitis. The core
structure of EDiT is the same as SDTs, and thus it shares the same limitations
that we aim to address in this work. GSDT achieves the highest accuracy among
the three models, effectively improving the performance of SDTs.

5.3 Interpretability

Figure 2 shows the learned structure of GSDT of depth two, having two children
at each branch, trained for the Breast-cancer-wisconsin dataset. The dataset has
nine features that represent the cell characteristics of tissue images extracted
from breast cancer patients to classify them into benign or malignant. The root
node softly passes x to the right child by the probability of 72%, and the arrived
node passes x again to the left leaf node, classifying it as benign. Since examples
take a single path during inference, which is represented by a Gaussian node, it
is straightforward to interpret both the structure and decisions.

Figure 3 illustrates the learned distributions and decisions of GSDT as 2D
scatter plots. The same Breast-cancer-wisconsin dataset is used, but we run the
t-SNE algorithm [16] before the training for clear visualization. Figure 3a shows
test examples that are categorized into two classes. The root node first divides
the examples into two clusters based on the Gaussian likelihoods in Fig. 3b. The
distribution of the right child of the root has the largest covariance in the figures,

Gaussian Soft Decision Trees for Interpretable Feature-Based Classification 153

Fig. 3. Gaussian distributions learned by GSDT for the Breast-cancer-wisconsin
dataset. The test examples are divided first by the root and then by the internal
nodes, based on the likelihoods of Gaussian distributions. The ellipses represent the
covariance matrices, and the blurry points represent examples that reach at each node
only at the training time, not at the inference time. (Color figure online)

reflecting the uncertainty of the decision. In Figs. 3c and 3d, each of the internal
nodes splits examples to the leaf nodes for the final prediction.

Each distribution reflects the property of a decision in its mean vector and
covariance matrix. Specifically, the mean vector works as an interpretable proto-
type that summarizes the examples that pass through that node, which is itself
interpretable regardless of the other nodes. The blue and red distributions (and
the orange and green distributions) have similar roles at the different branches,
which is to classify the examples as benign (and malignant).

5.4 Ablation Study

We compare various options of modeling the Gaussian covariance in Fig. 1 by
generating a synthetic dataset consisting of two-dimensional features. GSDT
with the identity covariance works well in Fig. 1a, but the centers of Gaussians

154 J. Yoo and L. Sael

are different from those of true data because the covariance cannot be changed
during training; the distributions have moved due to the bias of data. The diag-
onal covariance in Fig. 1b works also well, but the covariance matrices cannot
reflect the long shape of true clusters. Our choice of the covariance, which is to
combine the diagonal entries with the low-rank perturbations, reflect accurately
the property of original data. Moreover, the diagonal covariance with low-rank
perturbations is able to capture both positive and negative correlations as seen
by the yellow and green clusters, respectively, without limitations.

6 Conclusion

In this work, we have proposed Gaussian Soft Decision Trees (GSDT), a novel
tree-structured classifier that models the internal nodes as Gaussian mixtures.
Each edge in GSDT represents a multivariate Gaussian distribution parameter-
ized by the learnable mean and covariance, which summarizes the examples that
pass through it as an interpretable prototype. This makes it possible for GSDT
to adopt a multi-branched structure where each edge is learned and interpreted
independently of the other edges in the branch. Our experiments on six feature-
based datasets show that GSDT achieves at least 4.8% higher average accuracy
than models based on soft decision tree (SDT), while having a depth 4× smaller
than that of SDTs. We also visualize the learned structure and decision process
of GSDT to demonstrate its interpretability on an actual feature-based dataset
of the biomedical domain as a case study.

Acknowledgments. Publication of this article has been funded by the Basic
Science Research Program through the National Research Foundation of Korea
(2018R1A1A3A0407953, 2018R1A5A1060031).

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

2. Chang, Y., Hsieh, C., Chang, K., Ringgaard, M., Lin, C.: Training and testing
low-degree polynomial data mappings via linear SVM. J. Mach. Learn. Res. 11,
1471–1490 (2010)

3. Dogan, Ü., Glasmachers, T., Igel, C.: A unified view on multi-class support vector
classification. J. Mach. Learn. Res. 17, 45:1–45:32 (2016)

4. Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., Garcia, R.: Incorporating second-
order functional knowledge for better option pricing. In: NIPS, pp. 472–478. MIT
Press (2000)

5. Eckart, B., Kim, K., Kautz, J.: HGMR: hierarchical gaussian mixtures for adaptive
3D registration. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11219, pp. 730–746. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01267-0 43

6. Frosst, N., Hinton, G.E.: Distilling a neural network into a soft decision tree. In:
AI*IA. CEUR Workshop Proceedings, vol. 2071. CEUR-WS.org (2017)

https://doi.org/10.1007/978-3-030-01267-0_43
https://doi.org/10.1007/978-3-030-01267-0_43

Gaussian Soft Decision Trees for Interpretable Feature-Based Classification 155

7. Harville, D.A.: Matrix algebra from a statistician’s perspective (1998)
8. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network

(2015). CoRR abs/1503.02531
9. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning.

Ann. Statistics 36, 1171–1220 (2008)
10. Irsoy, O., Alpaydin, E.: Autoencoder trees. In: ACML, vol. 45, pp. 378–390 (2015)
11. Irsoy, O., Yildiz, O.T., Alpaydin, E.: Soft decision trees. In: ICPR (2012)
12. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm.

Neural Comput. 6(2), 181–214 (1994)
13. Kim, B., Khanna, R., Koyejo, O.: Examples are not enough, learn to criticize!

criticism for interpretability. In: NIPS (2016)
14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
15. Liu, M., Chang, E., Dai, B.Q.: Hierarchical Gaussian mixture model for speaker

verification. In: Seventh International Conference on Spoken Language Processing
(2002)

16. Maaten, L.V.D., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res.
9(Nov), 2579–2605 (2008)

17. Magdon-Ismail, M., Purnell, J.T.: Approximating the covariance matrix of gmms
with low-rank perturbations. Int. J. Data Min. Model. Manag. 4(2), 107–122 (2012)

18. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell 267, 1–38 (2018)

19. Olech, L.P., Paradowski, M.: Hierarchical gaussian mixture model with objects
attached to terminal and non-terminal dendrogram nodes. In: CORES (2015)

20. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

21. Yoo, J., Sael, L.: Edit: interpreting ensemble models via compact soft decision
trees. In: ICDM, pp. 1438–1443 (2019)

22. Zhu, J., Hastie, T.: Kernel logistic regression and the import vector machine. In:
NIPS, pp. 1081–1088 (2001)

Efficient Nodes Representation Learning
with Residual Feature Propagation

Fan Wu1, Duantengchuan Li2(B), Ke Lin3, and Huawei Zhang1

1 School of Computer Science and Technology, Wuhan University of Technology,
Wuhan 430070, China

2 National Engineering Research Center for E-Learning,
Central China Normal University, Wuhan 430079, China

3 Department of Control Science and Engineering,
Harbin Institute of Technology Shenzhen, Shenzhen 518055, China

Abstract. Graph Convolutional Networks (GCN) and their variants
have achieved brilliant results in graph representation learning. However,
most existing methods cannot be utilized for deep architectures and can
only capture the low order proximity in networks. In this paper, we have
proposed a Residual Simple Graph Convolutional Network (RSGCN),
which can aggregate information from distant neighbor node features
without over-smoothing and vanishing gradients. Given that node fea-
tures of the same class have certain similarity, a weighted feature propa-
gation is considered to ensure effective information aggregation by giving
higher weights to similar neighbor nodes. Experimental results on sev-
eral datasets of node classification demonstrate the proposed methods
outperform the state-of-the-art methods in terms of effectiveness and
efficiency.

Keywords: Graph convolutional networks · Graph representation
learning · Feature propagation · Node classification

1 Introduction

The goal of graph representation learning is to represent nodes on the graph
by low-dimensional dense vectors while maintaining the property characteristics
of nodes and the structural features of graphs. Graph convolutional networks
(GCN) [5], a variant of Convolutional Neural Networks (CNNs), have shown
efficacious performance in graph representation learning. GCN can learn appro-
priate node representation by aggregating neighbor node information. Moreover,
in order to capture the high-order similarity of nodes, a non-linear transforma-
tion is introduced in each layer of GCN propagation [8,17]. Recently, GCN have
been widely utilized in graph structure data researches, such as node classifi-
cation [9], node clustering [21], graph classification [10], and link prediction [6].
In addition, researchers have successfully applied GCN and subsequent variants
to their application areas, such as knowledge graph [13], computer vision [11],
natural language processing [18], and recommendation system [19].
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 156–167, 2021.
https://doi.org/10.1007/978-3-030-75765-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_13

Efficient Nodes Representation Learning with Residual Feature Propagation 157

In GCN, because each layer of graph convolution needs to aggregate features
from the connected node, the dependence relationship between nodes should be
known before model training. This makes the optimization method of min-batch
no longer applicable to GCN, which will make GCN training very difficult.

Considering these limitations of GCN, many researchers have made some
improvements to solve the above problems. In [2], the authors introduced Graph-
SAGE, a general inductive manner for learning node representation on large
graph structure data. This method randomly sampled a fix-sized neighborhood
for each node and aggregated node features from this neighborhood by a spe-
cific aggregator. Moreover, in order to resolving dependence relationship between
nodes, Zeng et al. [20] constructed mini-batch by sampling the training graph
and built a complete GCN on the sampled subgraph for each iteration. Although
the large graph structure data can be processed by these methods, it is hard to
stack more layers to obtain high-order node information.

Inspired by the great success of residual connections, dense connections and
dilated convolution in deep learning, Li et al. [7] adapted these ideas into GCN
to solve the vanishing gradients problem and proposed Deep Graph Convolu-
tional Networks (DeepGCNs). Although DeepGCNs can extract deeper node
information in the graph and have several advantages over previous methods.
Unfortunately, it consumes bulky computing resources and prodigious time in
the inference process, which means its application to large graph structure data
would be difficult. The large graph structure data are very common in practical
applications. However, previous works fail to efficiently aggregate deeper node
information and separate dependence relationship between nodes during training
processes in large graph structure data.

To build a high-efficiency graph representation learning model and separate
dependence of nodes during training processes, a Residual Simple Graph Con-
volutional NetWork (RSGCN) by removing the non-linear activation function
of DeepGCNs is proposed. In RSGCN, residual feature propagation enables the
model to learn higher order node information and restrain the over-smoothing of
the graph. Furthermore, as average aggregation confuses the importance of dif-
ferent classes to nodes itself, we propose a weighted feature propagation model
RSGCN+ to learn the important information from similar nodes. RSGCN+
ensures effective information aggregation by giving higher weights to similar
neighbor nodes, which is measured by the cosine similarity between node fea-
tures. Finally, our models can learn accurate node representation. The major
contributions of this paper are summarized as follows.

– A Residual Simple Graph Convolutional Network (RSGCN) is proposed by
removing the non-linear activation function of DeepGCNs. With the residual
feature propagation, RSGCN can aggregate information from distant neigh-
bor node features without over-smoothing and vanishing gradients. More
importantly, RSGCN can achieve high effectiveness and efficiency during
training process.

– Given that node features of the same class have certain similarity, we pro-
pose a weighted feature propagation model RSGCN+ to ensure effective

158 F. Wu et al.

information aggregation by giving higher weights to similar neighbor nodes,
which further improves the node representation and the robustness of the
model.

– To verify the performance of the proposed methods, three standard bench-
mark datasets for citation networks are taken as the comparing experiments.
The results demonstrate that our models obtain significant improvements for
the semi-supervised node classification tasks in the terms of both prediction
accuracy and the training efficiency.

2 Preliminaries and Related Work

2.1 Primary Definition

Given an undirected attributed graph G = (V,A), where V = {νi }i=1,...,n

represents the nodes and A = {aij} ∈ R
n×n is the adjacency matrix of the graph

G. If there is an edge between node vi and node vj , then aij = 1, otherwise it
equals to 0. For ease of notation, the neighbor set of node vi can be denoted as
Ai = [j|aij = 1]. Note that Ã = A + I denotes the adjacency matrix A with
self-loops and the degree matrix D̃ = diag{d1, d2, ..., dn} ∈ R

n×n is a diagonal
matrix where the i-th value on the diagonal di =

∑
j ãij is equal to the degree

of the i-th node of matrix Ã. For the semi-supervised node classification tasks,
we observe the labels of a subset of the nodes in the graph G. The goal of node
classification is to predict the unknown node labels based on the graph structure
and node features we known the labels.

2.2 Graph Convolutional Network

For each node vi ∈ V, h0
i represents initial node representation, which is d-

dimensional feature vector xi ∈ R
d. Then, GCN can learn node representation

for each node based on node initial features and graph structure. Specifically, for
each node vi in the graph convolution layer, the node representation is updated
recursively with the following three steps: feature propagation, linear transfor-
mation, and non-linear activation.

Feature Propagation. For each node vi, the feature propagation step aggre-
gates the node information from node itself representation hk

i at previous layer
k and graph neighbors Ai,

hi
(k+1) =

1
di + 1

hi
(k) +

n∑

j=1

aij√
(di + 1) (dj + 1)

hj
(k) (1)

where di denotes the degree of node vi. Besides, the update of entire graph
can be expressed as a simple matrix operation. The symbol S = D̃− 1

2 ÃD̃− 1
2

Efficient Nodes Representation Learning with Residual Feature Propagation 159

represents the “normalized” adjacency matrix with added self-loops. Thus, the
update process in Eq. (1) for all nodes can be expressed as,

H̄(k+1) = SH(k) (2)

Intuitively, this step makes each node aggregate information from connected
node and eventually has a positive influence on node classification tasks. Theo-
retically, feature propagation output layer is regarded as the Laplacian smooth-
ing of the node features at the previous layer [8,15].

Linear Transformation and Non-linear Activation. After feature propa-
gation, linear transformation and non-linear activation is identical to a standard
multilayer perceptron. In a GCN layer, there is a learned weight Wk as linear
transformation after the feature propagation, which can transform node repre-
sentation linearly. Finally, a non-linear activation produces the node representa-
tion of the (k + 1)-th layer as,

H(k+1) = σ
(
H̄(k+1)Wk

)
(3)

where σ(·) is a non-linear activation function.

2.3 Simplifying Graph Convolutional Network

Recently, considerable literature has grown up around the theme of simplifying
GCN in order to reduce training time and memory. A Simple Graph Convolu-
tional Network (SGCN) is proposed [16], which removes the non-linear activation
function in Eq. (3) as,

H(k) = SS . . .SH(0)W0W1 . . .Wk (4)

where W0W1 . . .Wk can be rewritten as a single matrix W and the repeated
multiplication with the matrix S can be simplified to a single matrix Sk. The
above linear matrix multiplication turns to,

H(k) = SkH(0)W (5)

With the simplification of SGCN, k times feature propagation Sk can be cal-
culated before training, and the parameters are much less than GCN, which
makes it easy to apply SGCN to large graph structure data. Many experiments
show that removing the non-linear activation function in GCN does not have a
negative impact on performance in many graph tasks. However, [16] shows that
SGCN has the best node classification performance at feature propagation depth
of 2 or 3. When feature propagates for too many times, the node representation
information propagated to well-connected node rapidly increase. This leads to
the over-smoothing issue, which means the features of each node are mixed by
too many neighbors and lose locality.

160 F. Wu et al.

2.4 Deep Graph Convolutional Networks

In GCN, the depth has a crucial function: after k layers each node can aggre-
gate feature information from the nodes that are k-hops away in the graph.
However, GCN with deep layers will lead to vanishing gradients, which makes
accuracy drop sharply in classification tasks. Inspired by the success of the Deep
CNNs technology, DeepGCNs [7] employed residual/dense connections to solve
the above problem.

ResNet [3] can alleviate the problems of vanishing gradients and network
degradation caused by increasing depth in deep neural networks. The node rep-
resentation of the (k + 1)-th layer in ResGCN can be defined as:

Hk+1
res = σ

(
SH(k)Wk

)
+ H(k) (6)

where Wk has the same dimension as H(0). Although DeepGCNs can effectively
stack more layers, and the performance does not decline severely with depth
increasing like GCN, it consumes abundant computing resources and prodigious
time in the training process. Thus, it is difficult to apply it to large graph struc-
ture data.

3 Our Proposed Methods

In this section, we propose Residual Simple Graph Convolutional Network
(RSGCN), a model of node representation learning that extracts deep node
information. The overall architecture of the proposed models is shown in Fig. 1,
which can be summed as two processes: (1) For mitigating over-smoothing,
we propose residual feature propagation RSGCN (dashed-blue) to retain more
node itself information. (2) On the basis of residual feature propagation, we
adjust the final node features by adding weighted feature propagation RSGCN+
(dashed-red).

Fig. 1. Outline of our models framework.

Efficient Nodes Representation Learning with Residual Feature Propagation 161

3.1 Residual Feature Propagation

Considering that non-linear activation functions have almost no benefit in the
node representation, we can simplify ResGCN by removing the non-linear acti-
vation functions. Hence, Eq. (6) can become as follows:

H(k+1)
R = SH(k)

R Wk + H(k)
R

(7)

In order to better mine the node feature information and simplify the model,
we move the linear transformation to the end of each layer, so Eq. (7) could be
changed to Eq. (8).

H(k+1)
R = (S + I)H(k)

R Wk′
(8)

where I ∈ R
n×n denotes the identity matrix. The node representation of the

k-th layer can be defined as:

H(k)
R = (S + I) (S + I) . . . (S + I)H(0)W0′

W1′
. . .Wk′

(9)

where W0′
W1′

. . .Wk′
can be rewritten as a single matrix W and the repetitive

multiplication operation of the matrix S+ I can be simplified to a single matrix
(S + I)k. The node representation of residual feature propagation can be defined
as:

H(k)
R = (S + I)k H

(0)
W (10)

In residual feature propagation, their node features of inputs are added to
the inputs of the next feature propagation, which means that node features can
be well preserved. In this way, RSGCN enables more feature propagation, which
can aggregate information from more distant neighbor nodes with weaker over-
smoothing impact. In addition, as residual feature propagation can be calculated
before training, the scale of parameters in RSGCN is lessened and the training
efficiency is raised vastly. Thus, the matrix H(k)

R can be expanded as:

H(k)
R =

(
Sk + C1

kS
k−1

+ . . . + I
)
H

(0)

W (11)

In general, lower order neighbor nodes contain more important information,
whereas higher order neighbor nodes may contain some noisy information. In
addition, SiH(0) contains the information about the 1 to i-hop neighbors node
features and initial node features. Equation (11) represents that the more distant
neighbor node features are given smaller weights, which enables the node to
aggregate less noisy information.

3.2 Weighted Feature Propagation

Currently, most graph neural networks use mean aggregation to learn node rep-
resentation. Valid information and noise are treated equally, which may hurt
the performance of models. The graph attention network [14] introduces the
attention mechanism into the GCN by assigning a learned weight parameter

162 F. Wu et al.

for neighbor nodes of each node. The huge performance improvement in node
classification tasks illustrates that assigning a suitable weight to neighbor node
is a better way of feature propagation. However, the attention mechanism sig-
nificantly increases parameters of model, thus it is difficult to apply it to large
graph structure data. Therefore, we can change our mind to consider assigning
a weight to neighbor nodes based on their initial features before training.

On condition that the node features of the same class have more similarity,
cosine similarity is utilized as a criterion for determining the similarity of two
node features. The cosine similarity matrix Θ can be defined as:

Θij = aij ·
√∑d

p=1 xpyp
√∑d

p=1 xp

√∑d
p=1 yp

(12)

where xp is the p-th feature of vi and y is the p-th feature of vj . In order to
balance the cosine similarity scale, we normalize them by using the softmax
function by row. Hence, the node weight matrix can be defined as:

Φij =
exp(Θij)∑n

j=1 exp(Θij)
(13)

In order to retain more information from the node itself features, we borrowed
the idea of residual feature propagation into the weighted feature propagation.
The weighted feature propagation can be defined as:

H(k)
Φ = (Φ + I)k H

(0)
W (14)

By using residual feature propagation to obtain the final node features, RSGCN
can learn part of the useful information from the node features and the graph
structure. In addition, weighted feature propagation can extract further useful
information about neighbor nodes and reduce the influence of irrelevant neighbor
node. This information may contain some information that is not contained in
the residual feature propagation. In order to preserve the useful features of both
two feature propagation, we merge them in a stacked manner. Therefore, the
final weighted feature propagation can be defined as:

H(k)
F = H(k)

R + H(k)
Φ (15)

The weighted feature propagation can assign a weight to neighbor node based
on their similarity to node itself features. Although weighted feature propaga-
tion increases some memory to some extent, the neighbor node features can be
aggregated more efficiently and rationally. In addition, weight feature propaga-
tion can be completed before training, and weighted feature propagation can be
performed separately for each node, which is ideal for large graph structure data.

3.3 Classifier

Similar to common classification tasks, we can use a softmax function as a classi-
fier after feature propagation and linear transformation. For a node classification

Efficient Nodes Representation Learning with Residual Feature Propagation 163

task with C classes, the class prediction Ŷ ∈ R
n×C in RSGCN of k times feature

propagation can be defined as:

Ŷ = softmax
(
H(k)

F

)
(16)

where softmax(x) = exp(x)/
∑C

c=1 exp(xc). For multi-class node classification
tasks, we generally take cross entropy as the loss function.

4 Experiments and Discussions

4.1 General Setting

Datasets. Cora, Citeseer, and Pubmed [5] are employed to evaluate the semi-
supervised node classification task, which are the standard benchmark datasets
for citation networks. The statistics of datasets are summarized in Table 1. The
above dataset composed of diverse scientific publications are classified into dif-
ferent classes. Each publication in the dataset is described by a 0/1-valued word
vector indicating the absence/presence of the corresponding word from the dic-
tionary. And the edges in the datasets represent the citation relationship between
articles. In order to obtain unbiased and objective results, we have leveraged
10%–20%–70% train-validation-test settings.

Comparison Algorithms. We compared the proposed RSGCN and RSGCN+
with many state-of-the-art methods, including DeepWalk [12], GCN [5], SGCN
[16], FastGCN [1], GraphSAGE [2], and DeepGCNs [7]. Since GraphSAGE and
DeepGCNs have a variety of models, we choose GraphSAGE-mean and ResGCN
with good effects as representatives.

Experimental Implementation. The parameters of compared methods are
adjusted as the suitable ones according to their papers. On all citation networks
datasets, RSGCN is trained for 200 epochs using Adam optimizer [4] with learn-
ing rate 0.2. And the setting of hyper parameters like the feature propagation
depth and weight decay are manually adjusted according to the validation set
results. We select the model with the best performance of validation sets dur-
ing the training to test the performance of test sets. RSGCN+ has the same
parameters setting as RSGCN.

Table 1. Dataset statistics of the citation networks

Dataset Cora Citeseer Pubmed

#Nodes 2708 3327 19717

#Edges 5429 4732 44338

#Features 1433 3703 500

#Classes 7 6 3

164 F. Wu et al.

Table 2. Test Micro-F1 Score (%) averaged over 10 runs. The best and second values
are marked by the bold font and underlines.

Method Cora Citeseer Pubmed

DeepWalk [12] 73.51 55.06 79.36

GCN [5] 83.01 72.03 86.41

SGCN [16] 83.35 71.71 85.60

FastGCN [1] 80.36 70.15 85.42

GraphSAGE [2] 81.26 71.30 85.63

ResGCN [7] 82.85 71.94 86.30

RSGCN 84.06 73.06 86.33

RSGCN+ 85.10 74.06 86.95

4.2 Results and Discussion

Performance. For accuracy comparison of DeepWalk, GCN, SGCN, FastGCN,
GraphSAGE, ResGCN, RSGCN on all three datasets, the highest Micro-F1 of
each model are summarized in Table 2. Table 2 shows that the performance of
RSGCN is superior to GCN and its variants on the citation networks. In par-
ticular, on the Cora and Citeseer datasets, RSGCN has 1% improvement in
Micro-F1 score than GCN. On the Pubmed dataset, RSGCN has similar per-
formance to GCN result. The improvement of RSGCN performance comes from
two aspects. On the one hand, RSGCN can propagate feature more times than
GCN, which allows each node to aggregate feature information from more distant
neighbor nodes. On the other hand, RSGCN has fewer parameters compared to
GCN. This means that RSGCN has a strong generalization capability and suffers
less from overfitting. Furthermore, RSGCN+ achieve the higher Micro-F1 score
than RSGCN on the citation datasets. It proves that the RSGCN+ is a high-
performance graph model and has the capability to enhance model effectiveness
by weighted feature propagation.

Efficiency. In Table 3, we show the time to train comparison methods and our
models for 200 epochs on the citation networks and the number of layers is set
to be 2 for all models. In particular, RSGCN and RSGCN+ take into account
the time of residual feature propagation and weighted feature propagation. The
training time is measured by a PC Server equipped with an Intel(R) Xeon(R)
CPU E5-2620 V4 @2.10GHz, NVIDIA TITAN V, and 64 GB RAM.

Table 3 shows RSGCN is faster than comparison methods. RSGCN
achieves 80.2%/75.9%/78.3% improvement of time in training of the
Cora/Citeseer/Pubmed dataset than GCN. As for other methods besides SGCN,
feature propagation in each epoch with enormous parameters make training inef-
ficient. Since SGCN with only one learned parameter matrix performs less than
satisfactory, the providing source code uses two learned parameters matrix to
obtain accurate classification performance. However, our models perform well

Efficient Nodes Representation Learning with Residual Feature Propagation 165

Table 3. Training time (seconds) on citation networks averaged over 10 runs. The
values of brackets represent performance improvement compared to GCN method.

Method Cora Citeseer Pubmed

GCN [5] 3.99 4.15 4.51

SGCN [16] 1.24 1.73 1.74

FastGCN [1] 2.15 2.32 2.63

GraphSAGE [2] 8.35 8.79 9.12

ResGCN [7] 12.64 46.15 21.78

RSGCN 0.79 (↑ 80.2%) 1.00 (↑ 75.9%) 0.98 (↑ 78.3%)

RSGCN+ 2.07 (↑ 52.0%) 3.15 (↑ 24.1%) 4.08 (↑ 9.5%)

using one learned matrix and therefore faster than SGCN. RSGCN+ consumes
more time due to calculating cosine similarity, which is still faster than GCN.

Fig. 2. Training processes of all models compared with Micro-F1 score on (a) Core,
(b) Citeseer, and (c) Pubmed.

Because FastGCN and GraphSAGE will be affected by random sampling, the
training has greater volatility, so they are not recorded in Fig. 2 and Fig. 3. The
Micro-F1 score at a training process is depicted in Fig. 2. Figure 2 illustrates the
relationship between the Micro-F1 score and the epoch on the Cora, Citeseer, and
Pubmedand datasets. One can see that the proposed RGSCN and RSGCN+ not
only achieve the highest Micro-F1 score in the validation set, but also require
fewer epochs to converge than traditional GCN. During the training process,
RSGCN and RSGCN+ demonstrate high efficiency, which shows good industrial
conversion application prospects.

Training Depth Analysis. Figure 3 shows the performance in test sets of
GCN, SGCN, ResGCN, RSGCN, RSGCN+ measured by Micro-F1 score with
different depth on three citation datasets. For the case of 1 to 3 depth, the Micro-
F1 score of above methods increases with more layers added, which suggests
that deeper feature propagation may be useful. From Fig. 3, RSGCN achieve the

166 F. Wu et al.

Fig. 3. Performance in test sets of five models measured by Micro-F1 score with dif-
ferent depth on (a) Core, (b) Citeseer, and (c) Pubmed.

best classification performance at depth between 4 and 6, while others achieves
the best classification performance at depth between 2 and 3. Due to gradient
vanishing problem caused by the deep network and the over-smoothing caused
by the feature propagation, GCN performance decreases sharply at depth of
4. In addition, the performance of ResGCN also starts to decrease sharply at
depth of 7 because enormous parameters in the ResGCN lead to over-fitting.
With increasing depth of model, the effect of SGCN, RSGCN, and RSGCN+ on
classification performance is less pronounced. This is largely due to the fact that
SGCN, RSGCN, and RSGCN+ have fewer parameters and not over-fitting. Due
to the slower feature convergence, the performance of RSGCN in shallow layers
is slightly inferior to other models. However, the performance of RSGCN, and
RSGCN+ is still better than SGCN. An explanation is that the residual feature
propagation in RSGCN can effectively slow down the smoothness, which also
gives RSGCN some edge in depth.

5 Conclusion

In this paper, we have proposed a Residual Simple Graph Convolutional Network
(RSGCN), which can aggregate information from distant neighbor node features
without over-smoothing and vanishing gradients. Given that node features of the
same class have certain similarity, a weighted feature propagation is considered
to ensure effective information aggregation by giving higher weights to similar
neighbor nodes. Experimental results indicate that the proposed method per-
forms better than compared methods on both accuracy and training efficiency
in terms of quantitative assessments.

References

1. Chen, J., Ma, T., Xiao, C.: Fastgcn: fast learning with graph convolutional networks
via importance sampling. In: International Conference on Learning Representations
(2018)

Efficient Nodes Representation Learning with Residual Feature Propagation 167

2. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034
(2017)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

4. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International
Conference on Learning Representations (2014)

5. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

6. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308 (2016)

7. Li, G., Muller, M., Thabet, A., Ghanem, B.: Deepgcns: can gcns go as deep as cnns?
In: IEEE International Conference on Computer Vision, pp. 9267–9276 (2019)

8. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for
semi-supervised learning. In: AAAI Conference on Artificial Intelligence (2018)

9. Li, R., Wang, S.: Adaptive graph convolutional neural networks. In: AAAI Con-
ference on Artificial Intelligence (2018)

10. Ma, Y., Wang, S., Aggarwal, C.C., Tang, J.: Graph convolutional networks with
eigenpooling. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 723–731 (2019)

11. Monfardini, G., Di Massa, V., Scarselli, F., Gori, M.: Graph neural networks for
object localization. Frontiers in Artificial Intelligence and Applications. pp. 665–
669 (2006)

12. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

13. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware
convolutional networks for knowledge base completion. In: AAAI Conference on
Artificial Intelligence (2019)

14. Velickovic, P., Cucurull, G., Casanova, A., et al.: Graph attention networks. In:
International Conference on Learning Representations (2018)

15. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative
filtering. In: Proceedings of the 42nd international ACM SIGIR conference on
Research and development in Information Retrieval, pp. 165–174 (2019)

16. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: International Conference on Machine Learning, pp.
6861–6871 (2019)

17. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: International Conference on Learning Representations (2018)

18. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In:
AAAI Conference on Artificial Intelligence, pp. 7370–7377 (2019)

19. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 974–983 (2018)

20. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graphsaint: graph
sampling based inductive learning method. In: International Conference on Learn-
ing Representations (2019)

21. Zhang, X., Liu, H., Li, Q., Wu, X.M.: Attributed graph clustering via adaptive
graph convolution. In: AAAI Conference on Artificial Intelligence (2019)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1611.07308

Progressive AutoSpeech: An Efficient
and General Framework for Automatic

Speech Classification

Guanghui Zhu, Feng Cheng, Mengchuan Qiu, Zhuoer Xu, Wenjie Wang,
Chunfeng Yuan, and Yihua Huang(B)

National Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

{chengfeng,mengchuan.qiu,zhuoer.xu,
wenjie.wang}@smail.nju.edu.cn,{zgh,cfyuan,yhuang}@nju.edu.cn

Abstract. Speech classification has been widely used in many speech-
related applications. However, the complexity of speech classification
tasks often exceeds the scope of non-experts, the off-the-shelf speech
classification methods are urgently needed. Recently, the automatic
speech classification (AutoSpeech) without any human intervention has
attracted more and more attention. The practical AutoSpeech solution
should be general and can automatically handle classification tasks from
different domains. Moreover, AutoSpeech should improve not only the
final performance but also the any-time performance especially when the
time budget is limited. To address these issues, we propose a three-stage
any-time learning algorithm framework called Progressive AutoSpeech
for automatic speech classification under a given time budget. Progres-
sive AutoSpeech consists of the fast stage, enhancement stage, and explo-
ration stage. Each stage uses different models and features to ensure gen-
eralization. Additionally, we automatically construct ensembles of top-k
prediction results to improve the robustness. The experimental results
reveal that Progressive AutoSpeech is effective and efficient for a wide
range of speech classification tasks and can achieve the best ALC score.

Keywords: Automatic speech classification · Deep learning ·
Any-time learning

1 Introduction

Deep learning has achieved great success in speech-related applications such as
speaker verification, language identification, and emotion classification. Since the
complexity of these tasks often exceeds the scope of non-experts, it leads to an
ever-growing demand for off-the-shelf speech classification methods that can be
easily used without expert knowledge.

Automatic machine learning (AutoML) aims at automating the process of
applying machine learning to real-life problems [8]. Meanwhile, the automatic
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 168–180, 2021.
https://doi.org/10.1007/978-3-030-75765-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_14

Progressive AutoSpeech 169

speech classification (AutoSpeech) without any human intervention has attracted
more and more attention from both academic researchers and industrial practi-
tioners. In practice, AutoSpeech solutions should fulfill following requirements:

1. Strong anytime performance: In practical application scenarios, the avail-
able time budget is always limited. Thus, the AutoSpeech method should be
able to yield good models with a small time budget.

2. Strong final performance: As the time budget increases, the AutoSpeech
method should be able to yield better prediction performance.

3. Generalization ability: Speech-related classification tasks may come from
different domains. There is no single model that can solve all tasks. The
AutoSpeech strategy should be able to deal with different speech classification
tasks in a unified framework.

According to these requirements, a novel metric called ALC (Area under
Learning Curve) was proposed [13,24]. ALC considers the whole learning trajec-
tory, instead of the traditional metric that focuses on the converged performance
only. Both the NeurIPS 2019 AutoSpeech challenge and the InterSpeech 2020
AutoSpeech challenge adopt the ALC metric. Formally, the ALC metric of the
AutoSpeech problem can be stated as follows:

Definition 1. Given a training dataset Dtrain and a test dataset Dtest, at each
timestamp t,let s(t) denote the normalized AUC (i.e., 2*AUC-1) of the most
recent prediction on Dtest. To normalize time to the [0, 1] interval, the time t is
transformed by t̃(t) = 1+t/t0

1+T/t0
, where T is the time budget and t0 is a reference

time amount. The AutoSpeech problem aims to maximize the area under the
learning curve using the formula:

ALC =
∫ 1

0

s(t)dt̃(t) =
∫ T

0

s(t)t̃′(t)dt

=
1

log (1 + T/t0)

∫ T

0

s(t)
t + t0

dt

(1)

Figure 1 shows an example of the ALC learning curve. According to Definition
1, we can see that s(t) is weighted by 1/(t + t0), giving stronger importance to
predictions made at the beginning of the learning curve. Thus, it is encouraged
to train a model with good any-time performance.

In this paper, we propose a three-stage progressive AutoSpeech framework1

to maximum the ALC metric under a given time budget. Progressive AutoSpeech
consists of the fast stage, enhancement stage, and exploration stage. The fast
stage encourages any-time learning and aims to generate good prediction results
as early as possible. Thus, the traditional machine learning model is employed
in the fast stage. Next, the enhancement stage that contains a complex neural
network model is responsible for quick performance boosting. To ensure the
1 Progressive AutoSpeech won the first place in the NeurIPS 2019 AutoSpeech chal-

lenge and the second place in the Interspeech 2020 AutoSpeech challenge.

170 G. Zhu et al.

Fig. 1. An example of the ALC learning curve

generalization ability for different speech classification tasks, we employ multiple
other deep neural network models that differ from the enhancement stage. Once
the enhancement stage is ineffective for a specific task, the exploration stage can
be used to improve the performance. Thus, as the training process progresses,
the prediction performance can be continuously improved. Moreover, we leverage
meta-learning to select suitable models for each stage.

Additionally, we dynamically construct an ensemble of top-k prediction
results to further improve the final performance and robustness. The experi-
mental results reveal that Progressive AutoSpeech is effective and efficient for a
wide range of speech classification tasks and can achieve the best ALC score.

2 Related Work

Researchers have been working in the area of speech classification for many years.
Traditional ML approaches including Gaussian Mixture Model [22] and Support
Vector Machine [11] are widely used in speech classification tasks. With the rise of
deep learning in recent years, deep neural networks have been applied to process
speech classification tasks. The commonly-used features in the deep learning
based approaches are the low-dimensional representations extracted from the raw
audio such as Mel-spectrogram (Mel) [23], Mel Frequency Cepstrum Coefficients
(MFCCs) [17], and Short Time Fourier Transform (STFT) [20].

Due to the short-term and long-term temporal relationship in the speech
data, the Recurrent Neural Network (RNN) has received much attention in many

Progressive AutoSpeech 171

speech classification tasks such as emotion classification [14] and audiobook genre
classification [4]. The Long Short-Term Memory (LSTM) model has also been
proposed to address speech recognition [12] and music genre classification [9].
The LSTM model can be combined with the attention mechanism to handle the
language recognition task. The attention mechanism assigns a higher weight to
the important part of speech [9,18].

Another commonly-used deep learning model for speech classification is the
Convolutional Neural Network (CNN). Due to the great success achieved by
CNNs on image classification, many image processing models and methods have
been applied to speech classification tasks such as tone classification [10] and
urban sound classification [5]. The Convolutional Recurrent Neural Network
(CRNN) models have been proposed for sound event detection [2], bird audio
classification [1], and music emotion recognition [15]. Moreover, the popular
ResNet model can also be used for speech classification and has achieved excel-
lent performance on many tasks [16].

Although RNN and CNN models can be used in speech classification, they
usually perform well on the tasks from specific domains, lacking the generaliza-
tion for cross-domain speech classification. Moreover, the existing models only
focus on the final performance without considering the time cost.

Incremental
Sampling

Feature
Engineering

Traditional ML
Model Training

repeated
k times Incremental

Truncation

Feature
Engineering

Neural Network
Model Training

Incremental
Truncation

Feature
Engineering

Neural Network Model
Training

Neural Network Model
Training

Neural Network Model
Training

adaptive
switching

Model
Sequence

Model library
constructed on
offline datasets

Model
Selection

Meta Learning

prediction

…

prediction

prediction

prediction

Fast Stage Exploration StageEnhancement Stage

Update dynamically ensemble set (top k prediction result)

Ensemble Prediction

Progressive AutoSpeech with limited time budget

Fig. 2. Workflow of progressive AutoSpeech

3 Progressive AutoSpeech

In this section, we propose a general algorithm framework called Progressive
AutoSpeech for automatic speech classification with limited time budget, which
can achieve good any-time and final performance simultaneously. As shown in
Fig. 2, the workflow of Progressive AutoSpeech consists of three stages: fast stage,
enhancement stage, and exploration stage.

According to the definition of the ALC metric, the predictions made at the
beginning of the learning curve play an important role. Training deep learning

172 G. Zhu et al.

models is often time-consuming. Thus, the fast stage employs a traditional ML
model along with the sampling technique to produce prediction results as early as
possible. The following enhancement stage aims to achieve performance boosting
by using the deep neural network model. To speed up the training process, the
incremental speech truncation technique is proposed. The exploration stage uses
multiple other deep neural network models that differ from the enhancement
stage to improve the upper bound of the prediction performance. Additionally,
if the model in the enhancement stage is ineffective for a specific task, the explo-
ration stage can improve the prediction performance by exploring more models.
The switching between different stages is adaptively determined.

Moreover, we leverage meta-learning [3] to select suitable models for each
stage. Specifically, we first calculate the average rank for all available models
including traditional ML models and complex deep neural network models over
all offline datasets. Then, the traditional ML model that ranks first among all
traditional ML models is selected as the model in the fast stage. Moreover,
the deep neural network model that achieves better performance on most of
the offline datasets is employed in the enhancement stage for fast performance
boosting. The model sequence in the exploration stage contains other neural
networks whose average ranks are close to the model in the enhancement stage.

Furthermore, we employ the ensemble technique to further improve the
robustness. The ensemble set contains top-k prediction results on the test dataset
from each stage. As the training process progresses, we dynamically update the
ensemble set and generate the ensemble prediction result at each time of predic-
tion. Next, we introduce each stage in detail.

3.1 Fast Stage

Since the AutoSpeech problem encourages any-time learning by maximizing the
ALC score, the time when the first prediction results appear is very important.
Also, the performance of the first prediction cannot be very bad. Thus, we train
a traditional ML model for the first prediction. According to meat-learning, we
select the linear regression model in the fast stage.

Incremental Sampling: To speed up the training process, we sample from
the training set without replacement. The sample size nsample can be calculated
by Eq. 2, where nclass denotes the number of classes, k the sample size for each
class, and nmin the minimum sample size for each training of LR. We set k = 3
and nmin = 200 respectively.

nsample = max(nclass ∗ k, nmin) (2)

Since the sampling process is incremental, we do not put the sampled data back
into the training set. Each time we train the LR model, we use both the newly
sampled data and the last sampled data.

Progressive AutoSpeech 173

Feature Engineering: Because we need the first prediction results as early
as possible, we only truncate at most the first five seconds of the raw audio
to extract features. In this stage, we extract Mel-spectrogram [23] from the
raw speech. The Mel-spectrogram is a spectrogram where the frequencies are
converted to the mel scale. Each Mel-spectrogram extracted from a single speech
sample is a two-dimensional array. Since the LR model only supports a one-
dimensional array as input, we need to transform the 2-D Mel-spectrogram array
into a 1-D array. Specifically, we first calculate the mean value and the standard
deviation of each row in the 2-D Mel-spectrogram array, then we concatenate
these mean values and standard deviations as a 1-D array. Finally, the 1-D array
is standardized as the input feature of the LR model. Since the Mel-spectrogram
features of the last sampled data have been extracted, we only need to extract
features for the newly sampled data.

Once the number of LR models trained in the fast stage reaches the given
value, we switch to the enhancement stage.

3.2 Enhancement Stage

From the enhancement stage, we focus on improving the prediction accuracy
as much as possible by employing the deep neural network models. As shown
in Sect. 4.3, the Thin-Resnet model can achieve better performance on most of
the offline datasets. Thus, in the enhancement stage, we select the Thin-Resnet
model [25] with meta-learning.

Incremental Truncation: As can be seen in Sect. 4.1, the length of raw audio
usually differs a lot and the length of each raw audio in the same dataset also
varies greatly. In the fast stage, we just truncate up to the first five seconds
of raw audio. This is very fast and convenient. However, it will drop too much
information from raw audio and cannot utilize the whole raw audio. To make full
use of raw audio, we perform incremental data truncation in the enhancement
stage. At the beginning of the enhancement stage, we truncate raw audio from
a shorter length, and as the training progresses, we truncate longer and longer
raw audio in each epoch. In our experiments, we truncate the raw audio from 5 s
to 35 s. If the truncation length is longer than that of the raw audio, we simply
copy the raw audio to meet the truncation requirements. If the short audio is
effective for classification, then we can get good prediction results in the early
stage of training. Otherwise, we can use more and more information in the raw
audio as the truncation length continues to increase.

Feature Engineering: In this stage, we extract STFT [20] from the original
audio. STFT represents a signal in the time-frequency domain by computing
Discrete Fourier transforms (DFT) over short overlapping windows. We sepa-
rate a complex-valued spectrogram D into magnitude S and phase P . Thus,
D = S × P . The phase component is dropped and the magnitude component
is standardized as the input features for the thin-Resnet model. Additionally,

174 G. Zhu et al.

to make the training process faster, we do not use all STFT features of the
truncated speech data as the input of the model. We randomly intercept the
STFT features for at most 2.5 s. Moreover, we reverse the STFT features with
a 30% probability. These data augmentation strategies can not only speed up
the training process but also greatly improve data utilization and randomness,
leading to better generalization.

Adaptive Termination: The termination of the enhancement stage should
satisfy one of the following conditions:

1. Although thin-Resnet performs well on most datasets, it may perform poorly
on the datasets from specific domains. If this situation occurs, we need to
terminate this stage as early as possible. Specifically, after several consecutive
training processes, if the prediction performance of the thin-Resnet model
cannot exceed that of the LR model, we directly switch to the next stage.

2. When the thin-Resnet model converges, continuing training may lead to over-
fitting. Thus, we need to stop training timely. The convergence condition is
that there is no significant performance gain for multiple consecutive times
of training processes.

3.3 Exploration Stage

When the enhancement stage is terminated, we enter the exploration stage,
where we use a sequence of deep neural networks to further strengthen the final
performance for different types of speech classification tasks. The model sequence
that contains LSTM, Bi-directional LSTM, and CRNN is trained repeatedly
until the time budget is reached. Similar to the enhancement stage, we also
adopt the incremental enhancement technique.

In this stage, we extract MFCCs from the raw audio. MFCCs are commonly
used as features in speech recognition systems [7], such as the systems which
can automatically recognize numbers spoken into a telephone. MFCCs are also
increasingly finding uses in music information retrieval applications such as genre
classification, audio similarity measures. Moreover, MFCCs are the most popular
acoustic features used in speaker identification [17]. MFCCs take into account
human perception for sensitivity at appropriate frequencies by converting the
conventional frequency to Mel Scale.

When the AUC of one model on the validation set is not rising for three
consecutive times, we will switch to the next model.

3.4 Dynamic Result Ensemble

Each stage may train multiple models with different training sets or different
network architectures. To further improve robustness and avoid overfitting, we
adopt a simple and fast ensemble method. Specifically, during the training pro-
cess of each stage, if one model can achieve better prediction performance on the

Progressive AutoSpeech 175

validation dataset, then we use that model to predict the test dataset and add
the prediction results into the ensemble set. Thus, the ensemble set that contains
the top-k prediction results is dynamically updated. Every time the prediction
on the test dataset is required, we access the ensemble set and calculate the
average ensemble prediction.

4 Experiments

4.1 Datasets

We evaluated the performance of Progressive AutoSpeech on 10 speech datasets
from different domains. The meta-features of these datasets are shown in Table 1.
From Table 1, we can see that the meta-features such as the number of classes,
the number of instances, maximum length, and minimum length differ a lot.

All the audios are first converted to single-channel, 16-bit streams at a 16 kHz
sampling rate for consistency, then they are loaded by librosa and dumped to
pickle format. Also, the speech datasets contain both long audios and short
audios without padding.

Table 1. Meta-features of speech datasets from different domains

Dataset

name

Domain Source Train/Test

number

Class

number

Maximum/Minimum

class number

Maximum

length(s)

Minimum

length(s)

95%

Length(s)

data01 Speaker VoxCeleb [16] 1650/3300 330 5/5 1.00 1.00 1.00

data02 Emotion Berlin

emotional

speech (see

footnote 1)

346/162 7 50/7 8.98 1.23 5.16

data03 Accent Speech sccent

archive2
164/308 11 20/10 55.00 18.45 45.00

data04 Genre Uspop2002 [6] 343/739 20 20/12 30.00 30.00 30.00

data05 Language CSS10 [21] 132/151 10 23/5 2.00 2.00 2.00

data06 Speaker Librispeech

[19]

3000/3000 100 115/7 73.16 3.96 19.08

data07 Emotion Berlin

emotional

speech2

428/107 7 81/37 6.79 1.23 4.52

data08 Accent Speech accent

archive3
796/200 3 407/104 91.33 16.46 40.63

data09 Genre Uspop2002 [6] 939/474 20 49/28 5.00 5.00 5.00

data10 Language CSS10 [21] 199/597 10 25/16 16.39 2.08 10.05

2 http://www.expressive-speech.net/.

3 http://accent.gmu.edu.

http://www.expressive-speech.net/.
http://accent.gmu.edu

176 G. Zhu et al.

Table 2. Performance comparison with the ALC and accuracy metric

Method data01 data02 data03 data04 data05

ALC ACC ALC ACC ALC ACC ALC ACC ALC ACC

LR+Mel 0.7015 0.0198 0.8429 0.4838 0.156 0.1179 0.5944 0.1738 0.9366 0.4537

CNN2D+MFCCs 0.4473 0.0292 0.8452 0.6827 0.0432 0.0998 0.4807 0.2335 0.7374 0.3805

CRNN2D+MFCCs 0.4677 0.0613 0.8571 0.7603 0.0659 0.1121 0.5749 0.3831 0.8666 0.7248

BiLSTM+MFCCs 0.5604 0.1218 0.7718 0.6418 0.0136 0.0967 0.6338 0.4456 0.8928 0.785

LSTM+MFCCs 0.558 0.1144 0.8147 0.656 0.0616 0.1106 0.6528 0.4886 0.9057 0.8318

ThinResnet+STFT 0.5735 0.2102 0.8099 0.8914 0.2106 0.1929 0.6238 0.7189 0.8844 0.9404

ProgressiveAutoSpeech 0.8237 0.2082 0.9579 0.8928 0.2447 0.1893 0.7973 0.7215 0.9829 0.9426

Method data06 data07 data08 data09 data10

ALC ACC ALC ACC ALC ACC ALC ACC ALC ACC

LR+Mel 0.7943 0.2493 0.7405 0.4581 0.4371 0.5325 0.6016 0.2057 0.9723 0.7091

CNN2D+MFCCs 0.5895 0.219 0.7962 0.5342 0.3887 0.5436 0.4309 0.1831 0.8885 0.7804

CRNN2D+MFCCs 0.6462 0.5016 0.8128 0.7174 0.5878 0.705 0.5021 0.2724 0.8798 0.9897

BiLSTM+MFCCs 0.6786 0.4654 0.7199 0.5271 0.4475 0.6013 0.5319 0.3174 0.8909 0.992

LSTM+MFCCs 0.7198 0.6203 0.7489 0.5662 0.4729 0.6151 0.5575 0.3421 0.8964 0.9921

ThinResnet+STFT 0.6788 0.8704 0.8317 0.8094 0.6636 0.8206 0.618 0.5178 0.8563 0.9927

ProgressiveAutoSpeech 0.9388 0.8747 0.924 0.8044 0.7516 0.8153 0.7456 0.5163 0.9847 0.9928

4.2 Experimental Setting

We employed the ALC and accuracy metrics to evaluate all speech classification
models. We sampled 20% of the training set as the validation set. We used sklearn
to implement the Logistic Regression model. Moreover, we used TensorFlow to
implement all deep neural network models. For all deep learning models, the loss
function is the cross-entropy. The learning rate of the Adam optimizer is 0.001.
The batch size is 32. We trained deep learning models on a Tesla K80 GPU and
the time budget is set to 1800 s. Each experiment is run three times and the
average result is calculated.

4.3 Comparison with Baselines

The commonly-used baselines for the speech classification task are as follows.

– LR+Mel: We extracted Mel-spectrogram as features and ran the Logistic
Regression model with the max iteration of 1000.

– LstmAttention+MFCCs: LstmAttention model consists of an LSTM
layer, an Attention layer, and two dense layers. We extracted MFCCs as
features.

– BiLstmAttention+MFCCs: BiLstmAttention model consists of a bidirec-
tional LSTM layer, an Attention layer, and two dense layers. We extracted
MFCCs as features.

– CRNN+MFCCs: CRNN model consists of four conv blocks, two GRU lay-
ers, and a dense layer. We extracted MFCCs as features.

– CNN+MFCCs: CNN model consists of five conv blocks, and two dense
layers. We extracted MFCCs as features.

Progressive AutoSpeech 177

– ThinResnet+STFT: ThinResnet model consists of ConvBlock and Identi-
tyBlock [25]. We extracted STFT as features.

These baselines represent the models employed in each stage of Progres-
sive AutoSpeech. Moreover, these baselines and Progressive AutoSpeech use the
same speech truncation and data augmentation techniques. We evaluated all
methods in terms of both the ALC and the accuracy metrics. Table 2 shows the
experimental results. Progressive AutoSpeech can achieve the best ALC score in
all datasets due to its strong any-time performance and generalization ability.
Moreover, Progressive AutoSpeech outperforms other methods in terms of accu-
racy. Note that the ThinResnet+STFT method also has excellent accuracy in
most datasets. Because of this, we selected the ThinResnet+STFT model in the
enhancement stage. Due to the instability of the result ensemble, the accuracy
performance of Progressive AutoSpeech may worse than the ThinResnet+STFT
method. But, the performance gap is very small.

4.4 Ablation Study

Performance of Each Stage: For comparison, we further evaluated the per-
formance of each single stage of Progressive AutoSpeech. In fact, each single
stage can be equivalent to a specific speech classification model. Table 3 shows
the ALC score of the fast stage, enhancement stage, and exploration stage. Pro-
gressive AutoSpeech combines the advantage of each stage and thus achieves the
best ALC score in all datasets. The fast stage can get the prediction results as
early as possible. The enhancement stage and exploration stage are responsible

Table 3. Ablation study

Method data01 data02 data03 data04 data05

EnhancementStage 0.6734 0.8823 0.2223 0.6589 0.9174

ExplorationStage 0.5492 0.8571 0.0782 0.6019 0.906

FastStage 0.7189 0.8119 0.1369 0.5483 0.9312

ProgressiveAutoSpeech-Truncate5s 0.8167 0.957 0.217 0.7476 0.9831

ProgressiveAutoSpeech-Truncate15s 0.7948 0.9517 0.1951 0.7452 0.981

ProgressiveAutoSpeech-Truncate10s 0.8051 0.9572 0.181 0.7501 0.9823

ProgressiveAutoSpeech 0.8237 0.9579 0.2447 0.7973 0.9829

Method data06 data07 data08 data09 data10

EnhancementStage 0.7567 0.865 0.6865 0.6607 0.8922

ExplorationStage 0.7127 0.8201 0.4722 0.5517 0.8938

FastStage 0.9063 0.6038 0.4395 0.6039 0.9821

ProgressiveAutoSpeech-Truncate5s 0.9315 0.9169 0.7377 0.7469 0.9825

ProgressiveAutoSpeech-Truncate15s 0.9292 0.9135 0.7406 0.7413 0.9833

ProgressiveAutoSpeech-Truncate10s 0.9349 0.9208 0.7349 0.7448 0.9845

ProgressiveAutoSpeech 0.9388 0.924 0.7516 0.7456 0.9847

178 G. Zhu et al.

for improving the prediction performance as much as possible. Therefore, com-
bining all stages not only produces prediction results faster but also achieves
better any-time performance and final performance for different cross-domain
speech classification tasks.

Evaluation of Incremental Truncation: We disabled the incremental data
truncation technique and truncated the raw audio for 5 s, 10 s, and 15 s respec-
tively. From Table 3, we can see that Progressive AutoSpeech outperforms the
fixed truncation methods in most datasets except for data05 and data09. In these
two datasets, the length of each raw audio is less than or equal to 5 s. Thus, the
ProgressiveAutoSpeech-Truncate5s method can capture all information of the
two datasets without overfitting.

4.5 Scalability of Time Budget

We further evaluated the scalability of time budget. Because the gap between
some ALC scores is too small, we performed Min-Max scaling for ALC scores
under different time budgets on each dataset to better show the trend of change.
From Fig. 3, we can see that the performance of Progressive AutoSpeech is get-
ting better and better with the continuous increase of time budget, which indi-
cates that Progressive AutoSpeech has good scalability of time budget.

Fig. 3. Scalability of time budget

5 Conclusion and Future Work

In this paper, we proposed a general, three-stage AutoSpeech framework called
Progressive AutoSpeech to maximum the ALC metric under a given time bud-
get. Progressive AutoSpeech consists of the fast stage, enhancement stage, and

Progressive AutoSpeech 179

exploration stage. Moreover, we leveraged meta-learning to select suitable mod-
els for each stage. The experimental results reveal that Progressive AutoSpeech
is effective and efficient for a wide range of speech classification tasks and can
achieve the best ALC score.

In the future, we plan to integrate more models and features for AutoSpeech
and further perform automatic data argumentation for speech-related tasks.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (U1811461), National Key R&D Program of China (2019YFC1711000),
and Collaborative Innovation Center of Novel Software Technology and
Industrialization.

References

1. Adavanne, S., Drossos, K., Çakir, E., Virtanen, T.: Stacked convolutional and
recurrent neural networks for bird audio detection. In: Proceedings of the European
Signal Processing Conference (EUSIPCO), pp. 1729–1733 (2017)

2. Adavanne, S., Virtanen, T.: Sound event detection using weakly labeled
dataset with stacked convolutional and recurrent neural network. arXiv preprint
arXiv:1710.02998 (2017)

3. Brazdil, P., Giraud-Carrier, C.: Metalearning and algorithm selection: progress,
state of the art and introduction to the 2018 special issue. Mach. Learn. 107(1),
1–14 (2018)

4. Carmi, N., Cohen, A., Avigal, M., Lerner, A.: A storyteller’s tale: literature audio-
books genre classification using CNN and RNN architectures. In: Proceedings of
Interspeech 2019, pp. 3387–3390 (2019)

5. Dai, W., Dai, C., Qu, S., Li, J., Das, S.: Very deep convolutional neural networks
for raw waveforms. In: Proceedings of the International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 421–425 (2017)

6. Ellis, D.P.W.: Classifying music audio with timbral and chroma features. In: Pro-
ceedings of the International Conference on Music Information Retrieval, pp. 339–
340 (2007)

7. Ganchev, T., Fakotakis, N., Kokkinakis, G.: Comparative evaluation of various
mfcc implementations on the speaker verification task. In: Proceedings of the Inter-
national Conference on Speech and Computer, pp. 191–194 (2005)

8. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning. TSS-
CML. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5

9. Irvin, J., Chartock, E., Hollander, N.: Recurrent neural networks with attention
for genre classification (2016)

10. Kim, T., Lee, J., Nam, J.: Comparison and analysis of sample cnn architectures
for audio classification. IEEE J. Sel. Topics Signal Process. 13(2), 285–297 (2019)

11. Lin, Y.L., Wei, G.: Speech emotion recognition based on HMM and SVM. In:
Proceedings of the International Conference on Machine Learning and Cybernetics,
pp. 4898–4901 (2005)

12. Liu, C., Wang, Y., Kumar, K., Gong, Y.: Investigations on speaker adaptation of
LSTM RNN models for speech recognition. In: Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5020–5024
(2016)

http://arxiv.org/abs/1710.02998
https://doi.org/10.1007/978-3-030-05318-5

180 G. Zhu et al.

13. Liu, Z., et al.: Autocv challenge design and baseline results. In: CAp 2019 -
Conférence sur l’Apprentissage Automatique. Toulouse, France (2019)

14. Majumder, N., Poria, S., Hazarika, D., Mihalcea, R., Gelbukh, A., Cambria, E.:
Dialoguernn: an attentive RNN for emotion detection in conversations. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6818–6825
(2019)

15. Malik, M., Adavanne, S., Drossos, K., Virtanen, T., Ticha, D., Jarina, R.: Stacked
convolutional and recurrent neural networks for music emotion recognition. arXiv
preprint arXiv:1706.02292 (2017)

16. Nagrani, A., Chung, J.S., Zisserman, A.: Voxceleb: a large-scale speaker identifica-
tion dataset. arXiv preprint arXiv:1706.08612 (2017)

17. Nakagawa, S., Wang, L., Ohtsuka, S.: Speaker identification and verification by
combining MFCC and phase information. IEEE Trans. Audio Speech Lang. Pro-
cess. 20(4), 1085–1095 (2011)

18. Padi, B., Mohan, A., Ganapathy, S.: Attention based hybrid i-vector BLSTM model
for language recognition. In: Proceedings of Interspeech 2019, pp. 1263–1267 (2019)

19. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: an ASR corpus
based on public domain audio books. In: Proceedings of the International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–5210 (2015)

20. Parchami, M., Zhu, W.P., Champagne, B., Plourde, E.: Recent developments in
speech enhancement in the short-time fourier transform domain. IEEE Circ. Syst.
Mag. 16(3), 45–77 (2016)

21. Park, K., Mulc, T.: Css10: a collection of single speaker speech datasets for 10
languages. arXiv preprint arXiv:1903.11269 (2019)

22. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted
gaussian mixture models. Dig. Signal Process. 10(1–3), 19–41 (2000)

23. Shen, J., et al.: Natural TTS synthesis by conditioning wavenet on mel spectrogram
predictions. In: 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 4779–4783. IEEE (2018)

24. Wang, J., et al.: Autospeech 2020: the second automated machine learning chal-
lenge for speech classification. In: Interspeech 2020, pp. 1967–1971 (2020)

25. Xie, W., Nagrani, A., Chung, J.S., Zisserman, A.: Utterance-level aggregation for
speaker recognition in the wild. In: Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5791–5795 (2019)

http://arxiv.org/abs/1706.02292
http://arxiv.org/abs/1706.08612
http://arxiv.org/abs/1903.11269

CrowdTeacher: Robust Co-teaching
with Noisy Answers and Sample-Specific

Perturbations for Tabular Data

Mani Sotoodeh(B), Li Xiong, and Joyce Ho

Emory University, Atlanta, GA, USA
{msotood,lxiong,jho31}@emory.edu

Abstract. Samples with ground truth labels may not always be avail-
able in numerous domains. While learning from crowdsourcing labels
has been explored, existing models can still fail in the presence of sparse,
unreliable, or differing annotations. Co-teaching methods have shown
promising improvements for computer vision problems with noisy labels
by employing two classifiers trained on each others’ confident samples in
each batch. Inspired by the idea of separating confident and uncertain
samples during the training process, we extend it for the crowdsourcing
problem. Our model, CrowdTeacher, uses the idea that perturbation in
the input space model can improve the robustness of the classifier for
noisy labels. Treating crowdsourcing annotations as a source of noisy
labeling, we perturb samples based on the certainty from the aggregated
annotations. The perturbed samples are fed to a Co-teaching algorithm
tuned to also accommodate smaller tabular data. We showcase the boost
in predictive power attained using CrowdTeacher for both synthetic and
real datasets across various label density settings. Our experiments reveal
that our proposed approach beats baselines modeling individual anno-
tations and then combining them, methods simultaneously learning a
classifier and inferring truth labels, and the Co-teaching algorithm with
aggregated labels through common truth inference methods.

Keywords: Crowdsourcing · Noisy labels · Input space perturbation

1 Introduction and Background

Labeled data is essential to guarantee the success of increasingly more complex
classifiers. Unfortunately obtaining large quantities of high-quality labels can
be cost-prohibitive for several fields. For example, in the medical domains, it
may take a clinician several hours to annotate the health records of hundreds of
patients. One alternative is to gather labels using crowdsourcing, where remotely
located workers are utilized to perform the task of labeling the data. Although
these crowdworkers individually may not be as accurate as an expert, construct-
ing the true label from their aggregated opinions can approximate the accuracy
of an expert. However, the subjectivity of annotators and their different qualifi-
cations introduce noise to the labeling process. To model this noise, most studies
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 181–193, 2021.
https://doi.org/10.1007/978-3-030-75765-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_15

182 M. Sotoodeh et al.

either focus on modeling the reliability of annotators and their correlation and
reflecting it in the label aggregation phase or combining classifier training with
learning the annotators’ trust parameters. Yet, learning through crowdsourcing-
based models can still fail in the presence of differing annotations and unreliable
users [13].

A promising direction for dealing with noisy labels for training complex clas-
sifiers is Co-teaching [5]. Under the Co-teaching paradigm, two peer neural net-
works are trained separately and specific samples are exchanged between the
networks to reduce the error of the two models and yield a more accurate model.
As a result, Co-teaching methods have shown great promise for computer vision
problems with noisy labels. Co-teaching can naturally counteract crowdsourcing
noise since it filters out noisy samples in the beginning and only adds them at
later training stages when they will be valuable. However, Co-teaching treats
each sample with the same weight. This can cause the classifier to incorrectly
learn from samples that may have fewer annotations or diverging human labels.

To address this limitation, we propose to leverage the certainty of samples
from the label aggregation phase to inform the selection process of Co-teaching,
which has not been studied before. Our model, CrowdTeacher, uses a perturba-
tion scheme based on the uncertainty of the samples to improve the robustness of
the Co-teaching framework. Given the availability of samples’ uncertainty from
the label aggregation step, our model uses this information to counter the inher-
ent noise by perturbing the input space. In addition, the framework prioritizes
the more confident samples of the classifier during the learning process. Thus,
we tackle the problem of classification with features and crowdsourcing labels
using three mechanisms:

• Estimation of the features’ distributions to generate synthetic data which is
then used to perturb each sample in an additive manner, proportional to its
estimated label’s uncertainty.

• Enhancing Co-teaching by knowledge distillation, i.e. a student-teacher model
of a simple and a complex network to accommodate smaller tabular data.

• Utilization of the perturbed samples as input to the above classifier to further
differentiate uncertain and certain training points based on their loss in each
epoch

Next, we formally define the problem and summarize and delineate where
and how CrowdTeacher ties into the relevant literature in crowdsourcing, data
augmentation, and learning with noisy labels.

1.1 Problem Definition: Classification with Crowdsourcing
Annotations

In practice, there are numerous applications in which the ground truth of a
classification task is not available, or disputed. For instance in medicine, mul-
tiple pathologists do not always necessarily agree on the malignancy status of
a tumor in an image [8], or multiple nurses do not all agree on the presence of

CrowdTeacher 183

Table 1. Summary of notations.

Symbol Description

N Number of samples

R Number of annotators

K Number of classes

α Perturbation lction

Xtr Training feature matrix

A Answer matrix of all annotators

S Synthetic feature matrix

˜Xtr Perturbed training samples feature matrix

Fc Set of continuous features

Fd Set of all discrete features

P Class probability matrix

ci Certainty of i-th

hospital-acquired bedsores for a patient given their charts [15]. Similarly, obtain-
ing ground truth from experts to train reliable classifiers can be expensive, as in
the case of content filtering and regulation of posts on social media, which are
distributed among multiple non-expert annotators to obtain some good quality
labels [9]. Formally, we define learning with crowdsourcing labels as follows:

Definition 1. (Classification with Crowdsourcing Annotations) Consider a set
of R annotators labeling N samples with K possible classes. Given an answer
matrix A ∈ R

N×R where each element anr indicates the label for sample n
provided by annotator r, and the training feature matrix Xtr ∈ R

N×M , the goal
is to train a classifier that accurately predicts the true labels for the test data
using only its feature matrix Xts.

We use K to denote number of classes. Simulated data from the synthesizer
used for perturbation is shown by S and the perturbed samples are denoted
with ˜Xtr. The set of continuous and discrete features are shown by Fc and Fd

respectively. Table 1 summarizes the notations used throughout this paper.

1.2 Related Works

Classification with noisy answers or multiple crowdsourced labels overlaps with
three other areas: learning with crowdsourcing labels, data augmentation and
synthetic data generation for robust learning, and selective gradient propagation.

Learning with Crowdsourcing Labels. Here we summarize the three main
high-level approaches for learning with multiple annotations.

184 M. Sotoodeh et al.

Sequential. This approach first uses a truth inference method to estimate the
ground truth for training samples. The estimated label is then used to train a
classifier. A recent survey extensively comparing these models has shown the
overall efficiency and utility of the D&S method [14]. Our proposed model falls
into this category, however, we introduce ideas from the two other overlapping
areas to further improve the predictive performance of this basic classifier.

Simultaneous. The second perspective jointly tackles the problem of learning
classifier parameters and the estimated ground truth of the samples. Albar-
qouni et al. uses the Expectation-Maximization (EM) algorithm and Maximum
a posteriori estimation to iteratively compute these two sets of parameters until
convergence [1]. Yet, this method is computationally challenging especially for
more complex classifiers.
Individual Annotator’s Label Modeling. The last set of research works
entail learning a model for each individual labeler. Dr. Net was proposed to
learn a classifier to reproduce the labels of each annotator and is composed of two
phases, individual annotator modeling and learning labelers’ averaging weights
for the final prediction [4]. To overcome the computational challenge of simul-
taneous learning and Dr. Net, multiple crowd-layer variants were introduced to
remove the computational burden of the EM loop [11], by first estimating the
ground truth of samples and then attempting to replicate the individual anno-
tator’s labels using a very simple neural network. Unfortunately, such models
require significant samples to properly learn a robust classifier.

Data Augmentation and Synthetic Data Generation for Robust Learn-
ing. To overcome the obstacle of noisy labels or features, perturbation schemes
and data augmentations have been investigated. In computer vision, data aug-
mentation is done by applying operations like cropping and rotation to com-
bat potential mislabelled training data [2,12,17]. Another line of work achieves
robustness against noisy data by generating data synthesizers that achieves the
same predictive performance as using the real data. Xu et al. have extended
data augmentations to tabular data with heterogeneous feature types using
Generative Adversarial Networks and Variational Autoencoders [16]. However,
such synthesizers are modeled independent of the labels or the conflicting
annotations.

Selective Gradient Propagation. To counter noisy labels and memorization
effects in neural networks, the Co-teaching algorithm adaptively changes both
the number of and the set of participating samples used in stochastic gradient
descent epochs for two differently-initialized classifiers [5]. For each epoch, Co-
teaching chooses a different number of samples with the lowest loss (as a proxy
for clean data) and updates each classifier using the clean samples of the other
network. This is in contrast to using all the samples or the clean samples of
the classifier itself that may result in memorization and early overfitting which
prohibits learning a generalizable classifier. A parallel can be drawn to similarly

CrowdTeacher 185

Algorithm 1. CrowdTeacher.
Input: Training Features Xtr, Answer matrix A, Perturbation Fraction α
Output: Model
Train synthesizer to generate synthetic data:
Data sampler ←− Synthesizer(Xtr)
Generate N samples from resulting sampler: S ←− Data sampler(N)
Run truth inference method to get class probabilities:
P ←− D&S Algorithm(A)

/* Generate perturbed samples ˜Xtr */
for i = 1, · · · , N do

Set sample’s certainty using Eq. (1)
Sample si from 10% closest samples of synthetic samples S to xi using KNN
/* Generate continuous features */
for j ∈ Fc do

Generate feature x̃ij according to Eq. (2)

/*Generate discrete features*/
Calculate f i

d using Eq. (3)
Sample discrete features to perturb: F i

dp from Fd such that |F i
dp | = f i

d

for j ∈ F i
dp do

Generate single feature value x̃ij according to Eq. (4)

Train Co-teaching Algorithm on Perturbed Samples:
Model ←− Co teaching(˜Xtr)

deal with the inherent noisiness of aggregated crowdsourcing labels. Co-teaching
mechanism of prioritizing a smaller set of confident samples in the initial stages
of learning, and gradually incorporating more of the uncertain samples in later
epochs can be leveraged for problem of classification with crowdsourcing labels.

2 Methodology

Our idea is to enhance the Co-teaching framework to account for the uncer-
tainty associated with the estimated truth label of the sample. We introduce a
perturbation-based scheme to the Co-teaching framework so the trained model
will be more robust to sparsity and unreliability in the annotations. For each
mini-batch update of Co-teaching, synthetic samples are generated and used to
perturb each sample dependent on the uncertainty of the estimated truth label.
Thus a sample that has more certainty in the label will be perturbed more
whereas a sample that has fewer annotations is likely to have less perturbation.
The perturbed sample is then used to train the classifier.

2.1 Generating Synthetic Samples

To improve the robustness of the Co-teaching framework, CrowdTeacher gener-
ates synthetic samples of the data which are then used to perturb the samples

186 M. Sotoodeh et al.

to train the classifier. Any data synthesizer with reasonable data generation per-
formance can be used. For the purpose of our paper, we focus on three data
synthesizers: Conditional GAN (CTGAN) [16], TVAE [16] and Gaussian copula
[10]. CTGAN can handle mixed feature types (discrete and continuous) and has
been shown to perform competitively with other GAN-based, VAE-based, and
Bayesian network-based data synthesizer for vision benchmark datasets [10]. It
is worthwhile to note that the data synthesizer is not tied to the learning task
and can be used as a stand-alone tool.

To generate synthetic data within CrowdTeacher, the training feature matrix
Xtr is fed to the synthesizer. For CTGAN synthesizer, the discrete features Fd

are specified explicitly since they are modeled differently compared to the contin-
uous features Fc. Once the synthesizer has estimated the data distribution, any
number of samples can be drawn. For CrowdTeacher, we generate the synthetic
set S ∈ R

N×M with N synthetic samples once and assume each synthetic sample
can serve as a unique perturbation source. Although S is drawn once and is the
same size as our training data to minimize the computational footprint of our
model, the synthetic set can be re-drawn at each mini-batch of the Co-teaching
framework with a larger number of samples.

2.2 Sample-Specific Perturbations

The generated synthetic samples, S, fail to account for the uncertainty associated
with the estimated sample label as the synthetic samples are only dependent on
original training data. Thus, we introduce a mechanism to leverage the uncer-
tainty that arises from the truth inference method to individually perturb each
sample. For the purpose of illustration and experimentation, we focus on the
D&S algorithm [3], but note that CrowdTeacher can be used with any robust
truth inference method that quantifies the label uncertainty for each sample.
The D&S algorithm takes as an input the matrix of annotations (A) and models
annotators by a confusion matrix to capture their chance of mistaking one class
for another or correctly reporting them in addition to the class priors. D&S out-
puts a matrix P ∈ R

N×K , where the Pik element denotes the probability that
sample i is of class k. The certainty of each sample, ci, is then defined as the
maximum probability across all the classes:

ci = max
k∈K

(Pik) ∀i ∈ N (1)

Choosing an Appropriate Simulated Sample for Perturbation. Given
the data synthesizer can generate synthetic samples that are quite different from
the original data point and can lead to more uncertainty with respect to the truth
label, we use k-nearest neighbors (KNN) to identify reasonable close samples
from S. For each sample, KNN is run to find the top 10% closely simulated
samples. A simulated data point, si, is then randomly chosen from this top 10%
and used to perturb the original point.

Perturbation. Each sample xi is perturbed using the simulated data point
si according to the uncertainty, ci and a user-specified perturbation fraction

CrowdTeacher 187

α ∈ [0, 1] to obtain the perturbed sample x̃i. Let sij represent the jth feature of
sample si. If the jth feature is continuous, the value for the synthetic, perturbed
sample x̃ij is a convex combination of the original and simulated sample:

x̃ij = (1 − αci)xij + (αci)sij , ∀i ∈ N, ∀j ∈ Fc (2)

For the discrete features, we use ci and α to calculate the number of discrete
features to swap. Let |Fd| denote the number of discrete features in the dataset,
then the number of discrete features to swap for each sample xi, f i

d is calculated
as:

f i
d = round(αci|Fd|) (3)

Then f i
d features are randomly selected for perturbation from the original dis-

crete feature set and denoted as F i
dp

. For each feature, j in this perturbation set,
the feature values are replaced with the synthetic sample value sij .

x̃ij = sij , ∀i ∈ N, ∀j ∈ F i
dp

(4)

2.3 Knowledge Distillation-Based Co-teaching for Smaller Tabular
Data

To combat the large performance variations associated with running the Co-
teaching algorithm on smaller-sized tabular data, we incorporated the student-
teacher idea from knowledge distillation [6]. Thus instead of two peer networks
with the same architecture, we used one simple and one complex network such
that the number of hidden units of the simpler network is half of the other one.
Empirical results showed these modifications helped with both the convergence
of the two networks in achieving more similar evaluation metrics and overall
better performance across different synthetic datasets.

3 Experiments

3.1 Baseline Methods

The best performing methods from crowdsourcing studies (see Sect. 1.2) are cho-
sen as comparison models. The original Co-teaching algorithm and Co-teaching
using only uniformly perturbed input are also used to illustrate the advantage
of certainty-aware perturbation. All methods employ the same base classifier,
a neural network with one hidden layer of |Fc|+|Fd|

4 units. Sequential methods
share the same truth inference method (D&S) and are marked with *.

– Naive baseline* (Base clf) [3]: Base classifier trained with D&S labels.
– Simultaneous Expectation Maximization (S-EM) [1]: An algorithm that

jointly learns the classifier and annotators’ parameters using EM algorithm.
– Dr. Net [4]: An individual annotation based model that separately learns each

annotator’s labels and their weights.

188 M. Sotoodeh et al.

– Crowdlayer (CL MW and CL VW) [11]: An algorithm that estimates ground
truth first and replicates each annotator’s labels via a simple final layer. This
final layer is removed at test time. The number of parameters for the last
layer determines the Crowdlayer variant. We evaluated the vector of weights
(VW) and matrix of weights (MW) variants.

– Vanilla Co-teaching* (V Coteach) [5]: The original Co-teaching algorithm
trained with D&S labels.

– Co-teaching with uniform perturbation* (P Coteach): The Co-teaching algo-
rithm trained on D&S labels and synthetic samples.

– CrowdTeacher*: Our proposed method with the Co-teaching algorithm
trained on D&S labels and sample-specific certainty-informed perturbed
samples.

We conducted our experiments using these baseline models. Since S-EM and
Dr. Net constantly performed poorly compared to the other baselines, we omitted
them from the plots for better readability. The Python implementation for all
our experiments is publicly available on GitHub1.

3.2 Annotation Simulation

For our experiments, we set the number of annotators to be 5 (R = 5). To simu-
late the annotators’ behavior, we consider two parameters: (1) mean reliability,
or the average likelihood of the annotators to label a positive sample correctly
and (2) variability in annotators’ expertise or the difference in their qualities. We
set the distribution of samples having 1 to 5 labels as [τ , 0.55(1−τ), 0.27(1−τ),
0.13(1 − τ), 0.05(1 − τ)] and vary the parameter τ for our experiments. Note
that τ determines the average number of labels per sample.

Conventionally, the Beta distribution is used to generate each annotator’s
reliability. After determining each annotator’s reliability, its labels are created
by randomly choosing (100-reliability) percent of positive cases and switching
their labels into negative 0. Flipping negative samples to positive occurs at 0.01
times this rate. Samples not assigned to specific annotators are marked with −1
in the answer matrix (A). The exact parameters used for simulating annotations
in each experiment are summarized in the GitHub repository.

3.3 Datasets

Synthetic Datasets: To test the performance of our framework on a non-
specific dataset for which the ground truth is known, we generated synthetic
data to mimic real-world features and a range of annotator reliabilities.

Statistical Distribution Families: Families of continuous and discrete distribu-
tions were used to generate the synthetic data. In particular, we used Normal,
Beta, Wald, Laplace, Binomial, Multinomial, Geometric and Poisson distribu-
tions. The corresponding distribution parameters for a feature within each family
1 https://github.com/manisci/CrowdTeacher.

https://github.com/manisci/CrowdTeacher

CrowdTeacher 189

are randomly chosen from a specified range. 5 features were chosen from each
family for a total of 40 features.

Output: The ground truth labels are determined based on a polynomial combi-
nation of feature values. Each feature’s coefficient value is chosen randomly. To
assign labels and model class balance (% of positive samples), outputs falling in
percentiles below the level of balancedness are assigned to the positive class.

Noise Level: Two versions of labels are generated. Labels for a specified per-
centage of samples are flipped to obtain the noisy truth used for annotation
generation. However the true labels before flipping are used for evaluation pur-
poses. This resembles the availability of noisy labels in practice.

PUI Dataset: Determining whether a patient has developed a pressure ulcer
injury (bedsore) is a complex clinical decision that requires considerable nursing
expertise. Early detection of PUI is extremely useful since it is preventable with
proper care. However, even highly trained nurses do not agree on the existence or
severity of PUI cases. Training a classifier that utilizes a limited set of annotated
health records from multiple nurses can revolutionize nursing care through use in
similar clinical settings. We use the MIMIC-III dataset [7], a publicly available
dataset which holds information of patients admitted to intensive care units
(ICU) of a populated tertiary care hospital from 2001 to 2012. We identified
hospital stays of individuals over 20 years old with length of stays between 2 d
and 120 d. A hospital stay was considered positive if there was a presence of the
ICD-9 diagnosis code associated with pressure ulcer and there was a mention of
PUI in the notes. A hospital stay was negative if there was no indication of PUI
in both the ICD-9 codes or the notes. A total of 10518 samples were identified,
31% of which are positive.

4 Results

Since the datasets are imbalanced, we evaluate all the models based on the area
under the precision recall curve (AUPRC). AUPRC offers a holistic picture of
CrowdTeacher’s predictive performance, independent of the classification thresh-
old choice. We split each dataset into 80% training & 20% test. The AUPRCs in
plots are averaged across multiple seeds. We also confirmed CrowdTeacher per-
formance on AUROC metric, but omit the results due to limited space.

4.1 Synthetic Dataset

Sensitivity to Choice of Synthesizer: To analyze the effect of using differ-
ent synthesizers on CrowdTeacher performance, we compared the average gain
obtained by using CrowdTeacher with CTGAN, TVAE, and Gaussian copula
synthesizers compared to using the next two top-performing baseline methods

190 M. Sotoodeh et al.

of P Coteach and V Coteach, respectively shown by circle and cross mark-
ers in Fig. 1b. Firstly, we can see that Gaussian copula has the greatest gain
among the three synthesizers. However, employing the two other synthesizers
for CrowdTeacher would still be beneficial in terms of predictive performance
in many of the sparsity settings. Given the promising performance of Gaussian
copula synthesizer, we use Gaussian copula for all the remaining experiments.

Sensitivity to Perturbation Fraction (α): To understand the impact of
the perturbation fraction, α, we varied it between [0.01, 0.2] and evaluated the
performance of CrowdTeacher and P Coteach (the two perturbation-based meth-
ods). Figure 1a shows the average AUPRC of P Coteach and CrowdTeacher as
α increases with the average number of labels set to 2.34. It is observed that
CrowdTeacher constantly outperforms P Coteach regardless of the chosen per-
turbation fraction indicating its robustness. From the results, there is an optimal
range of α to achieve the greatest benefit from CrowdTeacher and that either a
very low (α ≤ 0.05) or very high (α ≥ 0.2) perturbation fraction decreases the
usefulness of CrowdTeacher but does not diminish it. Given these results, the
remainder of our experiments uses α = 0.11.

(a) Perturbation fraction. (b) Different synthesizers.

Fig. 1. CrowdTeacher Sensitivity to perturbation fraction and synthesizer choice (in
Fig. 1b circles/crosses show gain w.r.t. P Coteach/V Coteach accordingly)

Predictive Performance: Figure 2a shows the performance of baseline crowd-
sourcing and Co-teaching variants against CrowdTeacher across various sparsity
settings on the synthetic dataset. Confirming intuition, all methods experience
an increase in AUPRC since the average number of labels per sample increases,
which exposes methods to less noisy annotation. All Co-teaching based meth-
ods (CrowdTeacher, V Coteach, and P Coteach) constantly outperform both
crowdlayer variants and also Dr.Net and S-EM. The last two always performed
the worst and therefore were excluded from these plots. Even though the base
classifier performance improves with more labels, its performance gap with Co-
teaching based methods remains large in all sparsity settings. Across a wide
range of label sparsities, using CrowdTeacher results in a significant boost in

CrowdTeacher 191

AUPRC, compared to the other two Co-teaching based methods, even with as
low as only 1.68 labels per sample. Also, we can observe that V Coteach per-
forms worse than P Coteach in very sparse settings (average number of labels <
2.1), but as the number of labels increases it catches up with P Coteach and even
surpasses it at higher densities. Another interesting observation is that beyond
an average of 2 labels per sample, all three methods reach a plateau and only
improve negligibly in response to an increased number of labels.

(a) Synthetic dataset. (b) PUI dataset.

Fig. 2. CrowdTeacher Performance on Synthetic and PUI data as average number of
labels per sample increases, averaged on 10 and 4 initializations respectively.

4.2 PUI Dataset

To challenge CrowdTeacher’s performance under more chaotic distributions of
real data, we tested it on the bedsore detection task with 10k samples. Figure 2b
shows how the performance of the chosen methods changes as the average number
of labels per sample goes up. We observed similar patterns to synthetic dataset
here too in terms of Co-teaching variants’ overall predictive advantage over other
methods, however, the gap between Co-teaching variants and other methods
is less substantial. The range of AUPRC of all models on this dataset proves
that this is a much harder learning problem, yet CrowdTeacher is able to beat
P Coteach and V Coteach at multiple points, especially at lower sparsities, which
are actually more practical for obtaining labels for hospital-acquired bedsores,
while at other sparsity points it has comparable performance to these methods.

5 Conclusion

We proposed CrowdTeacher, a novel Co-teaching based approach that leverages
certainty of samples from truth inference algorithms to apply sample-specific
perturbations on training points, and combines it with Co-teaching algorithm to
further rectify noisy annotations and incorporate that knowledge in the training
process. Our proposed approach bridges overarching themes and ideas from data

192 M. Sotoodeh et al.

augmentation, crowdsourcing, and learning with noisy labels and is agnostic to
the truth inference method and the synthesizer used. To illustrate the predictive
benefits of CrowdTeacher over similar methods, we conducted experiments on
both synthetic and real dataset of different scales, and our results for both tasks
(including a real-world medical classification task) confirmed CrowdTeacher’s
performance edge for learning with crowdsourced labels. We also successfully
employed Co-teaching mechanism primarily tested on images, for tabular data.
For our future work, we plan to propose new perturbation schemes to introduce
more variety for perturbations of a given sample during training, and extend our
current framework to semi-supervised learning.

Acknowledgements. This work was supported by the National Science Foundation,
awards IIS-#1838200 and CNS-1952192, National Institutes of Health (NIH) awards
1R01LM013323, 5K01LM012924, and CTSA UL1TR002378.

References

1. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.:
Aggnet: deep learning from crowds for mitosis detection in breast cancer histology
images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016)

2. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.:
Mixmatch: a holistic approach to semi-supervised learning. In: Advances in Neural
Information Processing Systems, pp. 5049–5059 (2019)

3. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates
using the EM algorithm. Appl. Stat. 28, 20–28 (1979)

4. Guan, M.Y., Gulshan, V., Dai, A.M., Hinton, G.E.: Who said what: modeling
individual labelers improves classification. arXiv preprint arXiv:1703.08774 (2017)

5. Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely
noisy labels. In: Advances in Neural Information Processing Systems, pp. 8527–
8537 (2018)

6. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

7. Johnson, A.E., et al.: Mimic-iii, a freely accessible critical care database. Sci. Data
3, 1–9 (2016)

8. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics
using convolutional networks. Proc. Natl. Acad. Sci. 115(13), E2970–E2979 (2018)

9. Nguyen, V.A., et al.: CLARA: confidence of labels and raters, pp. 2542–2552.
Association for Computing Machinery, New York (2020). https://doi.org/10.1145/
3394486.3403304

10. Patki, N., Wedge, R., Veeramachaneni, K.: The synthetic data vault. In: 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pp.
399–410 (2016). https://doi.org/10.1109/DSAA.2016.49

11. Rodrigues, F., Pereira, F.: Deep learning from crowds. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

12. Soans, N., Asali, E., Hong, Y., Doshi, P.: Sa-net: robust state-action recognition for
learning from observations. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 2153–2159. IEEE (2020)

http://arxiv.org/abs/1703.08774
http://arxiv.org/abs/1503.02531
https://doi.org/10.1145/3394486.3403304
https://doi.org/10.1145/3394486.3403304
https://doi.org/10.1109/DSAA.2016.49

CrowdTeacher 193

13. Tahmasebian, F., Xiong, L., Sotoodeh, M., Sunderam, V.: Edgeinfer: robust truth
inference under data poisoning attack. In: 2020 IEEE International Conference
on Smart Data Services (SMDS), pp. 45–52 (2020). https://doi.org/10.1109/
SMDS49396.2020.00013

14. Tahmasebian, F., Xiong, L., Sotoodeh, M., Sunderam, V.: Crowdsourcing under
data poisoning attacks: a comparative study. In: Singhal, A., Vaidya, J. (eds.)
DBSec 2020. LNCS, vol. 12122, pp. 310–332. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-49669-2 18

15. Waugh, S.M., Bergquist-Beringer, S.: Inter-rater agreement of pressure ulcer risk
and prevention measures in the national database of nursing quality indicators
(ndnqi). Res. Nurs. Health 39(3), 164–174 (2016)

16. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tab-
ular data using conditional GAN. In: Advances in Neural Information Processing
Systems, pp. 7335–7345 (2019)

17. Zhang, Z., Zhang, H., Arik, S.O., Lee, H., Pfister, T.: Distilling effective supervision
from severe label noise. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9294–9303 (2020)

https://doi.org/10.1109/SMDS49396.2020.00013
https://doi.org/10.1109/SMDS49396.2020.00013
https://doi.org/10.1007/978-3-030-49669-2_18
https://doi.org/10.1007/978-3-030-49669-2_18

Effective and Adaptive Refined
Multi-metric Similarity Graph Fusion

for Multi-view Clustering

Wentao Rong, Enhong Zhuo, Guihua Tao, and Hongmin Cai(B)

School of Computer Science and Engineering, South China University of Technology,
Guangzhou 510006, China

hmcai@scut.edu.cn

Abstract. Multi-view graph-based clustering aims to partition samples
via fusing similarity graphs from different views into a unified graph. The
clustering performance relies on the accuracy of similarity measurement.
However, most existing methods utilize a single metric whose similarity
measurement can be easily corrupted by noises thus lacking high accu-
racy and generalization capability. We propose an effective multi-metric
similarity graph refinement and fusion method for multi-view clustering.
We construct multiple similarity graphs for each view by different metric,
exploit a novel refined similarity through symmetric conditional proba-
bility to preserve the important similarity information and finally adap-
tively fuse multiple refined similarity graphs to an informative unified
one. Extensive experiments on eight benchmark datasets have validated
the effectiveness and superiority of our proposed method comparing to
thirteen state-of-the-art methods.

Keywords: Multi-metric · Similarity graph fusion · Symmetric
conditional probability · Multi-view clustering

1 Introduction

Clustering aims to partition objects into different groups such that objects in
the same groups are similar. Many graph-based clustering methods partition
the data based on the similarity matrix. The similarity matrix, similarity mea-
surement among samples, plays a crucial role in affecting the clustering perfor-
mance. Similarity can be constructed by various metrics. The kernel is one of
the popular similarity measurements, which is wildly used in spectral clustering.
However, the performance of spectral clustering highly dependent on the choice
and parameter of the kernel matrix. For instance, how to select a proper stan-
dard deviation parameter for the Gaussian kernel is an open problem [21]. Then,

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-75765-6 16) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 194–206, 2021.
https://doi.org/10.1007/978-3-030-75765-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_16
https://doi.org/10.1007/978-3-030-75765-6_16
https://doi.org/10.1007/978-3-030-75765-6_16

Effective and Adaptive Refined Multi-metric Similarity Graph Fusion 195

multiple kernel learning (MKL) is developed to pick or combine the candidate
kernels. In addition to the kernel matrix, the similarity can be constructed by
subspace clustering based on self-representation.

Although these approaches are effective, the information provided by single-
source data is limited or insufficient. In real-world applications, each object has
a variety of relationship graphs as each object can be sampled in different views
and the sampled data of each view can form a graph. Multi-view graph-based
clustering [9,11,13,15,22] aim to partition data into different groups by making
use of complementary information from multiple similarity graphs. They fuse
multiple similarity graphs from all view into a unified similarity graph. The
weights of these similarity graphs can be automatically learned, manually set, or
without consideration. Some of these methods [4,15] perform similarity fusion
and clustering simultaneously.

These methods have made significant progress in multi-view clustering. How-
ever, for most of them, the clustering performance is affected by similarity mea-
surement which is easily corrupted by noises. Similarity refinement is in demand
to attain accurate similarity. Besides, most of them tend to utilize a single met-
ric to attain similarity matrix for each view. A single metric does not fit various
feature type well and lacks generalization capability. To overcome these limita-
tion, we propose an effective and adaptive multi-metric refined similarity fusion
method. Firstly, we generate multiple similarity graphs with multiple metrics
and exploit a novel symmetric conditional probability to attain refined similar-
ity. Then, we fuse refined similarity graphs of all views under different metric
into an informative unified similarity graph. Meanwhile, we directly learn the
clustering membership. Our main contributions are as follows:

1 We exploit a novel similarity refinement and multiple metrics to improve the
accuracy and generalization of measuring similarity.

2 We propose an effective and adaptive multi-metric similarity fusion method
where graph fusion and clustering promote mutually.

3 Extensive experimental results demonstrate that our method outperforms
several state-of-the-art multi-view clustering methods.

The remainder of the paper is organized as follows. Section 2 briefly reviews
related works for multi-view clustering. Section 3 introduces the proposed model.
Section 4 demonstrates the extensive experimental results. Section 5 presents the
conclusion of this paper.

2 Related Work

Our method falls into multi-view graph-based clustering. The multi-view graph-
based clustering method fuses multiple graphs constructed for each view into a
unified graph. For example, similarity network fusion (SNF) [13] fuses the simi-
larity networks, obtained from each of their respective data types, by propagating
similarity through the common neighborhood. Neighborhood-based multi-omics
clustering (NEMO) [11] fuses multiple graphs to a unified graph by average strat-
egy, where relative similarity is defined based on the neighborhood. Multiview

196 W. Rong et al.

consensus graph clustering (MCGC) [22] learns a consensus graph by minimizing
disagreement between different views and constraining the rank of the Laplacian
matrix. Auto-weighted multiple graph learning (AMGL) [7] and graph-based
system for multi-view clustering (GBS) [16] firstly learn the similarity matrix of
each view from data and then performs graph fusion and data clustering. These
methods divide the construction of graph and graph fusion into two indepen-
dent processes without adaptive interaction. In contrast, graph-based multi-view
clustering (GMC) [15] weights each view automatically, learns the graph of each
view and the fusion graph jointly, and produces the final clusters directly after
fusion.

In addition to multi-view graph-based clustering, there are three categories
of multi-view clustering methods: 1) Co-training style clustering; 2) multi-kernel
clustering; 3) and multi-view subspace clustering.

Co-training style clustering applies a co-training strategy to multi-view data.
Co-regularized multiview spectral clustering [3] (Co-reg) utilizes the eigenvectors
from one view to guide the graph constructions in the other views. Consequently,
the clusterings of multiple views tend towards consensus. Co-training for multi-
view spectral clustering [2] (Co-training) co-regularizes the clustering hypotheses
to make the clusterings in different views agree with each other. The multi-kernel
clustering method predefines a group of candidate kernels and then combines or
picks these kernels. For example, cancer integration via multi-kernel learning
(CIMLR) [10] learns a similarity matrix with block structure by combining mul-
tiple Gaussian kernels of each view, corresponding to the different and comple-
mentary representations of the data. The multi-view subspace clustering is based
on self-representation where each data point can be expressed by a linear com-
bination of the data points themselves [19]. The self-representation matrix with
different regularizations is constructed from samples and then used to construct
the similarity matrix. For example, Low-rank representation (LRR) [5] subspace
clustering and sparse subspace clustering (SSC) [1] pursue a sparse and low rank
representation, respectively. Low-rank and sparse subspace clustering (LRSSC)
[17] takes the advantages of LRR and SSC in preserving the self-expressiveness
property and graph connectivity at the same time.

3 Methodology

3.1 Construction of Multiple Similarity Graphs via Different Metric

Given a multi-view dataset X = {X(1),X(2), ...,X(nv)} of nv views, X(i) =
{X(i)T

j ∈ R
p(i)}Nj=1 consists N samples with p(i) features in the i-th view. For

each view, we use different metrics to measure the sample similarity, yielding
multiple similarity graphs. Let W (v)(q) denote the similarity matrix in the v-th
view measured by q-th metric, with each entry defined by

W (v)(q)(i, j) = d(X(v)
i ,X

(v)
j) (1)

Effective and Adaptive Refined Multi-metric Similarity Graph Fusion 197

3.2 Measurement of Sample Similarity via Symmetric Conditional
Probability

Based on original similarity W (v)(q), we propose a novel similarity refinement to
retain only the highly proximal samples while filtering out the weak ones. Such
operation is valuable to elucidate the sample-wised similarity by diminishing the
distance deterioration caused by noises or outliers [8,13]. The similarity between
the sample xj and sample xi is the conditional probability P (j|i) that xi would
pick xj as its top k% neighbor if neighbors are picked in proportion to their
probability density under a Gaussian distribution centered at xi. Conversely, one
can also compute the similarity between xi and xj via its conditional probability
P (i|j). Then the overall refined similarity between xi and xj is calculated by
their mean conditional probabilities

M(i, j) =
P (i|j) + P (j|i)

2
, (2)

where

P (j|i) =
W (i, j)

∑
Topk% W (i, k)

· 1(j rank to top k%)

and

P (i|j) =
W (j, i)

∑
Topk% W (j, k)

· 1(i rank to top k%).

Here, 1 is the indicator function.

3.3 Fusion of Multiple Similarity Graphs Through Directly
Learning Cluster Membership

We propose a multi-metric similarity graph fusion theme as follow:

min
S,H,w

‖S −
nv∑

v=1

nq∑

q=1

w(v)(q)M (v)(q)‖2F + λ‖S − HHT‖2F

s.t. H ∈ {0, 1},H1 = 1,wT1 = 1,w ≥ 0,

(3)

where w(v)(q) and M (v)(q) are the weight and refined similarity matrix of the
v-th view data under the q-th metric, respectively. H ∈ R

N×C is the cluster
assignment matrix, where C is the number of clusters. λ is the tuning parame-
ter. The first term is used to adaptively fuse multiple refined similarity matrices
from different metric and view to a unified one S. Our method can pick up or
integrate different metrics and consider the differences of view through automat-
ically learned weights. The second term is used to directly learn the clustering
membership by minimizing the difference between the fused similarity matrix S
and the pairwise similarity matrix of clustering result H. Furthermore, S will
be constrained as a low-rank block diagonal matrix because, in an ideal case,
HHT is strictly block diagonal matrix.

198 W. Rong et al.

The first constraint in problem (3) can be relaxed from binary values to
real values with U = H

‖H ‖2
and the second constraint is relaxed to UTU = Ic.

Therefore, the problem (3) is relaxed to the following optimization problem:

min
S,U,w

‖S −
nv∑

v=1

nq∑

q=1

w(v)(q)M (v)(q)‖2F + λ‖S − UUT‖2F

s.t. UTU = Ic,w
T1 = 1,w ≥ 0.

(4)

Once we have the clustering assignment matrix U , we apply k-means to cluster
the samples into different groups. Since k-means is sensitive to the initialization,
a discretization method [12] has been used to remedy this drawback.

3.4 Optimization Algorithm

We optimize three variables in Eq. (4) by alternating optimization strategy.
In the first step, by fixing both S and w, (4) is reduced to

min
U

λ‖S − UUT‖2F s.t. UTU = Ic. (5)

The problem (5) is minimized when U is an orthogonal basis of the eigenspace
associated with the C largest eigenvalues of S.

In the second step, by fixing both U and w, (4) is reduced to

min
S

‖S −
nv∑

v=1

nq∑

q=1

w(v)(q)M (v)(q)‖2F + λ‖S − UUT‖2F . (6)

Setting the partial derivative of Eq. (6) with respect to S to zero. S is updated
as follows:

S =

∑nv

v=1

∑nq

q=1 w
(v)(q)M (v)(q) + λUUT

1 + λ
. (7)

In the third step, by fixing both U and S, (4) is reduced to

min
w

‖S −
nv∑

v=1

nq∑

q=1

w(v)(q)M (v)(q)‖2F s.t. wT1 = 1,w ≥ 0. (8)

We vectorize each matrix M (v)(q) into m̂(v)(q), i.e.,

m̂(v)(q) = [m(v)(q)
1 ;m(v)(q)

2 ; ...m(v)(q)
n] ∈ R

NN×1, (9)

where m
(v)(q)
i denotes the i-th column of M (v)(q). Therefore, the similarities

of from all views and measure functions can be gathered into matrix M̂ =
[m̂(1)(1); m̂(1)(2); ...m̂(v)(q)] ∈ R

NN×nvnq and ŝ denotes the vector of S. The
problem (8) becomes:

min
w

‖ŝ − M̂w‖2F s.t. wT1 = 1,w ≥ 0, (10)

Effective and Adaptive Refined Multi-metric Similarity Graph Fusion 199

and then transformed into:

min
w

wTAw − wTf s.t. wT1 = 1,w ≥ 0, (11)

where A = M̂TM̂ and f = 2M̂Tŝ. It is a constrained least square problem and
can be efficiently solved by standard quadratic programming methods.

Algorithm 1. The algorithm for solving the proposed method
Require: X = {X (v)}nv

v=1, {{M (v)(q)}nv
v=1}nq

q=1, λ, the number of clusters C

1: Initialize: w = 1
nvnq

, S =
∑nv

v=1

∑nq

q=1 w
(v)(q)M (v)(q), U = 0

2: while not converge do
3: Fix S,w, and update U by solving (5)
4: Fix U,w, and update S by solving (7)
5: Fix U,S, and update w by solving (11)
6: end while
7: Apply k-means clustering to U
Ensure: The clustering result

The above three steps are iteratively solved and updated until convergence.
The convergence condition is that relative change in consecutive rounds is lower
than a threshold (‖St+1−St‖

‖St‖ + ‖Ut+1−Ut‖
‖Ut‖) < 10−2. The complete algorithm is

summarized in Algorithm 1. Given N is the number of samples, P is the total
number of the feature of all views and nq is the number of metric functions.
Initializing all similarity matrices M (v)(q) requires O(N2 · P · nq). Updating
U needs to calculate the eigenvectors of S. It takes O(C · N2). Updating S

takes O(N2). The update of weights w takes O((nq · nv)
2). K-means clustering

takes O(t · C2 · N), where t is the number of iterations in k-means. The total
computational complexity of our method is O(N2 · P · nq + T · (C · N2 + N2 +
(nq · nv)

2) + t · C2 · N), where T is number of iterations.

4 Experiments

4.1 Experiment Setting

We use eight benchmark datasets to evaluate the performance of our method.
These datasets are as follows: Hdigit1, 100leaves2, Caltech 1013, Pascals [18],
NGs4, BBCSport5, MSRCV1 [20] and 3-sources6. The statistics of these data
sets are summarized in Table 1.
1 https://cs.nyu.edu/roweis/data.html.
2 https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+

data+set.
3 http://www.vision.caltech.edu/archive.html.
4 http://lig-membres.imag.fr/grimal/data.html.
5 http://mlg.ucd.ie/datasets/bbc.html.
6 http://mlg.ucd.ie/datasets/3sources.html.

https://cs.nyu.edu/roweis/data.html
https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set
https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set
http://www.vision.caltech.edu/archive.html
http://lig-membres.imag.fr/grimal/data.html
http://mlg.ucd.ie/datasets/bbc.html
http://mlg.ucd.ie/datasets/3sources.html

200 W. Rong et al.

To evaluate the performance of the proposed method, we compare it with
thirteen state-of-the-art methods, including five single-view clustering methods
and eight multi-view clustering methods. SP [6], SSC [1], LRR [5], LRSSC [17]
and SIMLR [14] are the single view methods. These method are performed with
the best single view. Also, we compare our method with eight state-of-the-art
multi-view clustering methods that have been mentioned at the related works of
Sect. 2: Co-reg [3], Co-training [2], AMGL [7], NEMO [11], GMC [15], MCGC
[22], SNF [13] and CIMLR [10]. The comparative methods are searched gridwise
to achieve the best performances. For our method, we use four different met-
rics, including Gaussian similarity, Pearson correlation, Spearman correlation
and Cosine similarity. Parameters k and λ are tuned from the set {1, 3, 5, 7, 9}
and {1, 5, 10}, respectively. For evaluation metrics, we utilize the normalized
mutual information (NMI), accuracy (ACC), and adjusted rand index (ARI) to
comprehensively evaluate the clustering performance. For all of them, a higher
value indicates better clustering performance. Throughout the experiments, we
perform ten times for all methods. The means and standard deviations are com-
puted and recorded for performance comparison. The Gaussian kernel is used
to compute the sample similarity when needed. The standard deviation of the
Gaussian kernel is set to be equal to the median of the pair-wise Euclidean
distances between the samples.

4.2 Experiment Results

We report the performances of all methods on eight benchmark datasets in
Tables 2 and 3. The best result is in bold to highlight. Overall, our method is
superior to the state-of-art multi-view methods in most of datasets. Although
our method presents a similar performance as GMC or CIMLR in Hdigit and
100leaves datasets, our method achieves the best performance in another six
datasets. Especially, our method achieves significant improvements of approxi-
mately 5%, 9%, and 13% over the most competitive method GMC in Caltech
101, Pascals, and 3-sources, in terms of NMI, respectively. NEMO is similar to

Table 1. Statistical information on the datasets

Dataset # of instances # of views # of classes Feature type

Hdigit 2000 2 10 Continuous, sparse

100leaves 1600 3 100 Continuous, dense

Caltech 101 1474 6 7 Continuous, dense

Pascals 1000 2 20 Continuous, sparse

NGs 500 3 5 Continuous, sparse

BBCSport 282 3 5 Discrete, sparse

MSRCV1 210 3 7 Continuous, dense

3-sources 169 3 6 Continuous, sparse

Effective and Adaptive Refined Multi-metric Similarity Graph Fusion 201

Table 2. Clustering performances on benchmark datasets

Dataset View Method NMI ACC ARI

Hdigit Single SP 0.480 (0.006) 0.555(0.007) 0.360 (0.008)

SSC 0.481 (0.000) 0.444 (0.000) 0.300 (0.000)

LRR 0.037 (0.003) 0.104 (0.001) 0.000 (0.000)

LRSSC 0.376 (0.001) 0.444 (0.004) 0.251 (0.002)

SIMLR 0.740 (0.017) 0.727 (0.025) 0.636 (0.026)

Multiple Co-reg 0.844 (0.001) 0.844 (0.001) 0.692(0.002)

Co-training 0.820 (0.006) 0.899 (0.011) 0.806 (0.010)

NEMO 0.655 (0.000) 0.561 (0.000) 0.477 (0.000)

GMC 0.985(0.000) 0.994(0.000) 0.987 (0.000)

MCGC 0.619 (0.000) 0.569 (0.000) 0.396 (0.000)

SNF 0.979 (0.000) 0.992 (0.000) 0.981 (0.000)

CIMLR 0.816 (0.009) 0.693 (0.020) 0.655 (0.027)

AMGL 0.950 (0.042) 0.945 (0.093) 0.925 (0.106)

Ours 0.982 (0.000) 0.993 (0.000) 0.984 (0.000)

100leaves Single SP 0.775 (0.004) 0.561 (0.013) 0.441 (0.009)

SSC 0.742 (0.000) 0.509 (0.000) 0.374 (0.000)

LRR 0.668 (0.003) 0.405 (0.011) 0.263 (0.007)

LRSSC 0.515 (0.003) 0.213 (0.003) 0.077 (0.004)

SIMLR 0.779 (0.018) 0.541 (0.036) 0.212 (0.057)

Multiple Co-reg 0.913(0.004) 0.783(0.016) 0.724(0.015)

Co-training 0.920 (0.003) 0.786 (0.007) 0.741 (0.008)

NEMO 0.748 (0.001) 0.471 (0.001) 0.348 (0.002)

GMC 0.930 (0.000) 0.824 (0.000) 0.497 (0.000)

MCGC 0.526 (0.013) 0.262 (0.012) 0.015 (0.002)

SNF 0.969 (0.002) 0.935 (0.003) 0.909 (0.004)

CIMLR 0.993(0.002) 0.977(0.009) 0.968 (0.014)

AMGL 0.901 (0.019) 0.749 (0.046) 0.446 (0.131)

Ours 0.972 (0.000) 0.913 (0.000) 0.894 (0.000)

Caltech 101 Single SP 0.505 (0.001) 0.402 (0.001) 0.300 (0.000)

SSC 0.428 (0.000) 0.560 (0.000) 0.258 (0.000)

LRR 0.100 (0.003) 0.339 (0.0143) 0.083 (0.010)

LRSSC 0.541 (0.001) 0.595 (0.0040) 0.401 (0.004)

SIMLR 0.631 (0.000) 0.417 (0.000) 0.365 (0.000)

Multiple Co-reg 0.487(0.003) 0.394(0.002) 0.281(0.002)

Co-training 0.512 (0.007) 0.422 (0.010) 0.322 (0.010)

NEMO 0.509 (0.000) 0.523 (0.000) 0.342 (0.000)

GMC 0.662 (0.000) 0.692 (0.000) 0.594 (0.000)

MCGC 0.509 (0.000) 0.571 (0.000) 0.399 (0.000)

SNF 0.637 (0.000) 0.647 (0.000) 0.504 (0.000)

CIMLR 0.613 (0.000) 0.495 (0.000) 0.405 (0.000)

AMGL 0.557 (0.033) 0.637 (0.047) 0.414 (0.038)

Ours 0.712(0.000) 0.701(0.000) 0.609 (0.000)

Pascals Single SP 0.627(0.007) 0.598(0.014) 0.444(0.011)

SSC 0.512 (0.000) 0.462 (0.000) 0.298 (0.000)

LRR 0.470 (0.010) 0.409 (0.016) 0.264 (0.012)

LRSSC 0.474 (0.006) 0.397 (0.011) 0.219 (0.012)

SIMLR 0.557 (0.013) 0.522 (0.026) 0.331 (0.027)

Multiple Co-reg 0.650 (0.006) 0.620 (0.014) 0.475(0.007)

Co-training 0.641 (0.002) 0.609 (0.007) 0.463 (0.004)

NEMO 0.609 (0.000) 0.511 (0.000) 0.344 (0.000)

GMC 0.578 (0.000) 0.464 (0.000) 0.204 (0.000)

MCGC 0.500 (0.000) 0.398 (0.000) 0.177 (0.000)

SNF 0.635 (0.002) 0.591 (0.007) 0.441 (0.006)

CIMLR 0.571 (0.010) 0.516 (0.030) 0.366 (0.023)

AMGL 0.565 (0.011) 0.467 (0.019) 0.258 (0.030)

Ours 0.669(0.000) 0.638(0.000) 0.495 (0.000)

202 W. Rong et al.

Table 3. Clustering performances on benchmark datasets

Dataset View Method NMI ACC ARI

NGs Single SP 0.048 (0.010) 0.230 (0.034) 0.007 (0.009)

SSC 0.130 (0.000) 0.350 (0.000) 0.056 (0.000)

LRR 0.049 (0.011) 0.220 (0.016) 0.001 (0.003)

LRSSC 0.704 (0.000) 0.880 (0.000) 0.728 (0.000)

SIMLR 0.477 (0.000) 0.622 (0.000) 0.427 (0.000)

Multiple Co-reg 0.091 (0.01) 0.252 (0.009) 0.008 (0.003)

Co-training 0.442 (0.014) 0.514 (0.025) 0.237 (0.012)

NEMO 0.131 (0.000) 0.358 (0.000) 0.095 (0.000)

GMC 0.939 (0.000) 0.982 (0.000) 0.955 (0.000)

MCGC 0.064 (0.000) 0.220 (0.000) 0.001 (0.000)

SNF 0.563 (0.000) 0.506 (0.000) 0.296 (0.000)

CIMLR 0.119 (0.000) 0.354 (0.000) 0.076 (0.000)

AMGL 0.417 (0.017) 0.526 (0.037) 0.251 (0.015)

Ours 0.960(0.000) 0.988(0.000) 0.970 (0.000)

BBCSport Single SP 0.237(0.006) 0.451(0.016) 0.141(0.010)

SSC 0.150 (0.000) 0.376 (0.000) 0.054 (0.000)

LRR 0.048 (0.004) 0.351 (0.002) 0.009 (0.006)

LRSSC 0.409 (0.002) 0.621 (0.000) 0.353 (0.001)

SIMLR 0.588 (0.000) 0.794 (0.000) 0.629 (0.000)

Multiple Co-reg 0.288 (0.012) 0.520 (0.017) 0.216 (0.024)

Co-training 0.424 (0.012) 0.577 (0.016) 0.336 (0.014)

NEMO 0.060 (0.000) 0.408 (0.000) 0.039 (0.000)

GMC 0.801 (0.000) 0.886 (0.000) 0.790 (0.000)

MCGC 0.093 (0.000) 0.316 (0.000) −0.018 (0.000)

SNF 0.157 (0.000) 0.390 (0.000) 0.018 (0.000)

CIMLR 0.448 (0.000) 0.716 (0.000) 0.499 (0.000)

AMGL 0.133 (0.037) 0.376 (0.025) 0.020 (0.012)

Ours 0.812(0.000) 0.887(0.000) 0.826 (0.000)

MSRCV1 Single SP 0.544 (0.015) 0.700 (0.015) 0.460 (0.021)

SSC 0.580 (0.000) 0.695 (0.000) 0.495 (0.000)

LRR 0.506 (0.015) 0.569 (0.011) 0.403 (0.012)

LRSSC 0.599 (0.010) 0.719 (0.007) 0.521 (0.012)

SIMLR 0.703 (0.021) 0.794 (0.044) 0.614 (0.028)

Multiple Co-reg 0.722 (0.010) 0.837(0.007) 0.661(0.013)

Co-training 0.681 (0.007) 0.764 (0.008) 0.606 (0.008)

NEMO 0.632 (0.000) 0.676 (0.000) 0.520 (0.000)

GMC 0.771 (0.000) 0.748 (0.000) 0.640 (0.000)

MCGC 0.634 (0.002) 0.668 (0.002) 0.446 (0.004)

SNF 0.718 (0.000) 0.757 (0.000) 0.629 (0.000)

CIMLR 0.733 (0.010) 0.706 (0.018) 0.580 (0.006)

AMGL 0.674 (0.038) 0.684 (0.088) 0.512(0.092)

Ours 0.793(0.000) 0.819 (0.000) 0.716(0.000)

3-sources Single SP 0.473(0.036) 0.496(0.015) 0.240 (0.036)

SSC 0.174 (0.000) 0.408 (0.000) 0.097 (0.000)

LRR 0.124 (0.006) 0.381 (0.003) 0.038 (0.005)

LRSSC 0.482 (0.015) 0.608 (0.021) 0.399 (0.017)

SIMLR 0.462 (0.030) 0.466 (0.011) 0.298 (0.025)

Multiple Co-reg 0.528 (0.014) 0.556 (0.021) 0.315 (0.009)

Co-training 0.569 (0.009) 0.576 (0.014) 0.388 (0.018)

NEMO 0.210 (0.000) 0.325 (0.000) 0.054 (0.000)

GMC 0.627 (0.000) 0.692 (0.000) 0.443 (0.000)

MCGC 0.173 (0.000) 0.367 (0.000) −0.012 (0.000)

SNF 0.418 (0.000) 0.497 (0.000) 0.175 (0.000)

CIMLR 0.468 (0.000) 0.521 (0.000) 0.284 (0.000)

AMGL 0.121 (0.021) 0.336 (0.018) −0.019 (0.013)

Ours 0.770(0.000) 0.793(0.000) 0.665 (0.000)

Effective and Adaptive Refined Multi-metric Similarity Graph Fusion 203

our method but it only uses Gaussian kernel to constructs similarity. With the
power of multiple metrics, our method performs better than NEMO with a wide
margin. For example, it achieves average improvements of approximately 32%,
22%, 82%, 75%, and 56% over NEMO in Hdigit, 100leaves, NGs, BBCSport and
3-sources, respectively. The performance of our method using multiple views of
features is better than that of only considering one single view of feature, indi-
cating that it can effectively fuse useful information of multiple views to improve
the clustering performance, as shown in Table 6.

The superior performances of our method lie in three aspects. Firstly, our
method can automatically learn the weights of similarity graphs constructed by
multiple metrics. Hence it is fit to the data of a variety of features, such as dense
and sparse features. To verify the effectiveness of the multiple metrics, we com-
pare the clustering performances between our methods using single metric and
multiple metrics. Our method with single metric only uses the Gaussian simi-
larity. As shown in Table 4, our method using multiple metrics outperforms that
using a single metric. Especially, owing to complementary information provided
by other metrics, our method achieves overwhelming performance in datasets
with sparse features, such as BBCSport, 3-sources, and NGs. Secondly, the noise
of the similarity graph, caused by weak similarities, is substantially reduced
by our proposed similarity refinement through symmetric conditional probabil-
ity. We compare the clustering performances between our methods with refined
similarity and no-refined similarity to validate the necessity of the proposed sim-
ilarity measurement, as shown in Table 5. From the results, our method achieves
better clustering performance due to our proposed similarity refinement. After
utilizing similarity refinement, the within-class similarity is strengthened and
between-class noise is substantially reduced (see Suppl.Table 1, available at
https://github.com/scutbioinformatic/MMRSGF). Thirdly, our method directly
learns the clustering membership and enforces the final similarity matrix to be a
block diagonal matrix simultaneously. It is clear that the final similarity matrix
of our method reveals a clear diagonal block structure, which contributes to
enhancing the clustering performance.

On all datasets, the algorithm reaches the convergence status within 5 itera-
tions (see Suppl.Fig. 1). In our method, there are two free parameters, i.e., k, λ

Table 4. Clustering performances comparison between our method using single metric
and multiple metrics

Dataset Hdigit 100leaves Caltech 101 Pascals

Single metric 0.971 (0.000) 0.961 (0.001) 0.646 (0.000) 0.637 (0.000)

Multiple metrics 0.982(0.000) 0.972(0.000) 0.712(0.000) 0.669(0.001)

Dataset NGs BBCSport MSRCV1 3-sources

Single metric 0.367 (0.000) 0.484 (0.000) 0.706 (0.000) 0.403 (0.000)

Multiple metrics 0.960(0.000) 0.812(0.000) 0.783(0.000) 0.770(0.000)

https://github.com/scutbioinformatic/MMRSGF

204 W. Rong et al.

Table 5. Clustering performances comparison between refined similarity and no-refined
similarity of our method

Dataset Hdigit 100leaves Caltech 101 Pascals

No-refined similarity 0.481 (0.000) 0.940 (0.000) 0.316 (0.000) 0.575 (0.000)

Refined similarity 0.982(0.000) 0.972(0.001) 0.712(0.000) 0.669(0.000)

Dataset NGs BBCSport MSRCV1 3-sources

No-refined similarity 0.891 (0.000) 0.700 (0.000) 0.486 (0.000) 0.610 (0.000)

Refined similarity 0.960(0.000) 0.812(0.000) 0.793(0.000) 0.770(0.000)

Table 6. Clustering performances comparison between our method using single view
and multiple views

Dataset Hdigit 100leaves Caltech 101 Pascals

Single view 0.622 (0.000) 0.853 (0.000) 0.620 (0.000) 0.647 (0.000)

Multiple views 0.982(0.000) 0.972(0.001) 0.712(0.000) 0.669(0.000)

Dataset NGs BBCSport MSRCV1 3-sources

Single view 0.612 (0.000) 0.640 (0.000) 0.648 (0.000) 0.715 (0.000)

Multiple views 0.960(0.000) 0.812(0.000) 0.793(0.000) 0.770(0.000)

in Eq. (3). Suppl.Fig. 2 and Suppl.Fig. 3 demonstrate the sensitivity of the
parameters k and λ on eight datasets, respectively. Our method is robust with
respect to the parameters λ and k.

5 Conclusions

We propose an effective and adaptive multi-metric refined similarity graph fusion
method for multi-view clustering. Our main novelty is making use of different
metric to construct similarity graphs, exploiting a novel similarity refinement to
preserve the reliable important similarity information, and then fusing refined
similarity graphs from all views and metrics to a unified one. The proposed
method fuses useful information of multiple view and directly learns the clus-
ter membership to improve the clustering performance. In addition, it has two
free but insensitive parameter, which greatly relieves the burden of parameter
tuning. The experimental results on eight datasets demonstrate the effectiveness
and superiority of our proposed model, compared with thirteen state-of-the-art
methods.

Acknowledgment. This work was partially supported by the National Natural Sci-
ence Foundation of China (61771007), Key-Area Research and Development of Guang-
dong Province (2020B010166002, 2020B111119001), Science and Technology Planning
Project of Guangdong Province (2017B020226004), and the Health & Medical Collab-
orative Innovation Project of Guangzhou City (202002020049).

Effective and Adaptive Refined Multi-metric Similarity Graph Fusion 205

References

1. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and appli-
cations. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

2. Kumar, A., Daumé, H.: A co-training approach for multi-view spectral clustering.
In: Proceedings of the 28th International Conference on Machine Learning (ICML-
11), pp. 393–400 (2011)

3. Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. Adv.
Neural Inf. Process. Syst. 24, 1413–1421 (2011)

4. Li, X., Zhang, H., Wang, R., Nie, F.: Multi-view clustering: a scalable and
parameter-free bipartite graph fusion method. IEEE Trans. Pattern Anal. Mach.
Intell. (2020)

5. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace
structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell.
35(1), 171–184 (2012)

6. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algo-
rithm. Adv. Neural Inf. Process. Syst. 14, 849–856 (2002)

7. Nie, F., Li, J., Li, X., et al.: Parameter-free auto-weighted multiple graph learning:
a framework for multiview clustering and semi-supervised classification. In: IJCAI,
pp. 1881–1887 (2016)

8. Olayan, R.S., Ashoor, H., Bajic, V.B.: DDR: efficient computational method to pre-
dict drug-target interactions using graph mining and machine learning approaches.
Bioinformatics 34(7), 1164–1173 (2018)

9. Peng, H., Hu, Y., Chen, J., Haiyan, W., Li, Y., Cai, H.: Integrating tensor similarity
to enhance clustering performance. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

10. Ramazzotti, D., Lal, A., Wang, B., Batzoglou, S., Sidow, A.: Multi-omic tumor
data reveal diversity of molecular mechanisms that correlate with survival. Nat.
Commun. 9(1), 1–14 (2018)

11. Rappoport, N., Shamir, R.: Nemo: cancer subtyping by integration of partial multi-
omic data. Bioinformatics 35(18), 3348–3356 (2019)

12. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22(8), 888–905 (2000)

13. Wang, B., et al.: Similarity network fusion for aggregating data types on a genomic
scale. Nat. Meth. 11(3), 333 (2014)

14. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., Batzoglou, S.: Visualization and
analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Meth.
14(4), 414–416 (2017)

15. Wang, H., Yang, Y., Liu, B.: GMC: graph-based multi-view clustering. IEEE Trans.
Knowl. Data Eng. 32(6), 1116–1129 (2019)

16. Wang, H., Yang, Y., Liu, B., Fujita, H.: A study of graph-based system for multi-
view clustering. Knowl.-Based Syst. 163, 1009–1019 (2019)

17. Wang, Y.X., Xu, H., Leng, C.: Provable subspace clustering: When LRR meets
SSC. IEEE Trans. Inf. Theory 65(9), 5406–5432 (2019)

18. Wei, Y., et al.: Modality-dependent cross-media retrieval. ACM Trans. Intell. Syst.
Technol. (TIST) 7(4), 1–13 (2016)

19. Weng, W., Zhou, W., Chen, J., Peng, H., Cai, H.: Enhancing multi-view clustering
through common subspace integration by considering both global similarities and
local structures. Neurocomputing 378, 375–386 (2020)

206 W. Rong et al.

20. Winn, J., Jojic, N.: Locus: learning object classes with unsupervised segmentation.
In: Tenth IEEE International Conference on Computer Vision (ICCV 2005) Volume
1, vol. 1, pp. 756–763. IEEE (2005)

21. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. Adv. Neural Inf. Pro-
cess. Syst. 17, 1601–1608 (2004)

22. Zhan, K., Nie, F., Wang, J., Yang, Y.: Multiview consensus graph clustering. IEEE
Trans. Image Process. 28(3), 1261–1270 (2018)

aHCQ: Adaptive Hierarchical Clustering
Based Quantization Framework for Deep

Neural Networks

Jiaxin Hu, Weixiong Rao(B), and Qinpei Zhao(B)

School of Software Engineering, The Tongji University, Shanghai, China
{wxrao,qinpeizhao}@tongji.edu.cn

Abstract. For deep neural networks (DNNs), a high model accuracy
is usually the main focus. However, millions of model parameters com-
monly lead to high space overheads, especially parameter redundancy. By
maintaining network weights with less bit-widths, network quantization
has been used to compress DNNs for lower space costs. However, exist-
ing quantization methods cannot well optimally balance the model size
and the accuracy, thus they suffer from the accuracy loss more or less.
Besides, though few of existing quantization techniques can adaptively
determine layers quantization bit-widths, they either give little consider-
ation on the relations of different DNN layers, or are designed for special
hardware environment that are not universal in broad computer fields.
To overcome these issues, we propose an adaptive Hierarchical Cluster-
ing based Quantization (aHCQ) framework. The aHCQ can find a largely
compressed model from the quantization of each layer and take only little
loss on the model accuracy. It is shown from the experiments that the
aHCQ can achieve 11.4× and 8.2× model compression rates with only
around 0.5% drop of the model accuracy.

Keywords: Deep neural network · Hierarchical clustering · Network
quantization · Compression rate

1 Introduction

Nowadays deep neural networks (DNNs) are ubiquitous in many learning tasks,
and particularly popular for image classification, where large images usually lead
to large NN models. Due to millions of network parameters, DNNs unfortunately
suffer from high model storage sizes.

Model quantization has been widely used to maintain network weights with
shorter bit-widths [1,19]. One of the commonly used quantization approaches is
weights rounding. The main idea of the approach is to round each weight into
low bit-width. The most straightforward weights rounding in [2,3] simply rounds
each float weight to 16 bits and 8 bits respectively. Ternary Neural Network
[11] on the other hand represents each weight by either +1, 0 or −1, and the
Binarized Neural Network [12] represents each weight by +1 or −1. The QIL
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 207–218, 2021.
https://doi.org/10.1007/978-3-030-75765-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_17

208 J. Hu et al.

framework in [6] adjusts the [min,max] weights range for weights rounding. Yang
et al. [2] propose to round the weights into low bit-widths by sigmoid functions.
These weight rounding approaches can lead to high compression rate and shorten
running time. However, they inevitably damage the model structure through the
simplification of the weights of models, leading to the drop of accuracy.

Compared to weights rounding, weights sharing methods can better keep the
weights information so as to better preserve the model accuracy. The main idea of
the weights sharing is to group weights into a few clusters so that each weight can
be represented by its cluster index with lower bit-width. In the weights sharing,
two data structures are obtained, which are the code book for storing the cluster
indexes to which the weights belong, and the centroids for storing the mean of
each cluster. The idea of weights sharing was first introduced by Song, et al. in
[5], and was extended by plenty of works [4,9]. Basically, previous works used
k-means clustering to share weights (namely k-means weights sharing), where
they simply picked the initial centroids that evenly divide the range [min,max]
of original weights. The initialization issue and the local optimal problem lead
to the loss of accuracy also.

Instead of quantizing layers by a fixed bit-width, an adaptive quantization
framework that employs various bit-widths to different layers can adaptively
keep the model accuracy with a relatively small model size. The quantization
bit-width margin for each layer is mathematically determined by loss functions
all at once in [10]. However, it is pointed out in [14] that if one layer is quan-
tized, the other layers weights’ optimal distribution would be changed, as well as
their quantization bit-widths margins. The recent works [7,8] exploit reinforce-
ment learning such as DDPG and DQN to learn an optimal quantization bit-
width for each DNN’s layer. However, these frameworks are designed for special
hardware environments (e.g., FPGA) and heuristic metrics from weights (i.e.,
weights input/output channels number, weights change after high bit-widths
quantization) to offer meaningful rewards, which are not universal quantization
algorithms.

Nevertheless, all these quantization works suffer from the following issues.

Issue 1: Existing quantization techniques suffer from the accuracy loss more or
less. The key point of the issue therefore is to find the optimal balance between
the model size and the accuracy loss, i.e., largely compress the model while
keeping the accuracy as high as possible.

Issue 2: Existing adaptive quantization methods cannot well determine the
optimal bit-widths for DNN layers. They either give little consideration on the
relations of different DNN layers (The change of the weights on one layer globally
affects the other layers), or are designed for special hardware environment that
are not universal in broad computer fields.

To tackle the two issues, we propose an adaptive Hierarchical Clustering based
Quantization (aHCQ) framework. For each layer in the DNN, the aHCQ adap-
tively determines the quantized bit-width by monitoring the accuracy loss of
DNN during quantization, where a hierarchical clustering quantization is per-
formed. To solve Issue 1, compared with existing quantization techniques (e.g.
k-means weights clustering), the aHCQ uses an improved weights sharing method

Adaptive Hierarchical Clustering Based Quantization Framework for DNNs 209

to preserve the weights distribution so as to better maintain the model accuracy.
To solve Issue 2, the aHCQ quantizes a DNN layer by layer and adaptively
decides each layer’s quantization bit-width by directly monitoring the accuracy
loss of DNN during the quantization procedure, but not by heuristic metrics.

The experiments demonstrate that our proposed aHCQ framework guaran-
tees model accuracy loss no more than the given accloss, as well as achieves
higher accuracy with same model size compared with other quantizaton tech-
niques. Experiments show that our aHCQ can achieves 11.4× and 8.2× model
compression rates with only 0.5% cost on the model accuracy.

2 An Adaptive Hierarchical Clustering Based
Quantization (aHCQ) Framework

We introduce the adaptive Hierarchical Clustering based Quantization (aHCQ)
framework for DNNs in this section. The aHCQ intends to find a largely com-
pressed model while keeping the model accuracy as high as possible. To achieve
this goal, the aHCQ adaptively determines the quantization bit-width for each
layer by globally considering the whole model. For each layer, the quantization is
constrained by a threshold on the accuracy loss, which is determined by model
accuracy obtained from the whole model on part of the training set and the
pre-trained model accuracy. With the quantization bit-width determined, the
hierarchical clustering is employed in the weights sharing method for each layer.

We firstly introduce the weights sharing method and the hierarchical agglom-
erative clustering in the following part of the section. Then, the details of the
aHCQ framework are presented.

2.1 Weights Sharing and the Hierarchical Agglomerative Clustering

Weights sharing is a quantization technique [4,5]. In Fig. 1, we illustrate how the
weights sharing technique quantizes a 3 × 3 = 9 weight-matrix from bt = 32 bits
to 2 bits.

The weights sharing method usually consists of two steps. The first step is
the clustering quantization and the second step is the centroids re-training for
fine-tuning the weights quantization.

Step 1. Weights Clustering. This step is to cluster the weights in W into
several groups whose labels can be represented by lower bit-width integers. In
this way the original weights matrix can be quantized to a code book matrix B,
whose shape is the same as the W and elements are lower bit-width labels of the
corresponding weights, and an array of centroids O. The ith element of the O is
the centroid of the ith group. In Fig. 1, the number of groups is 4 so all labels
can be represented by a 2 bits integer. And O is composed of the centroids of the
4 groups. The clustering method in this step is usually the k-means clustering.

Step 2. Centroids Re-training. In order to fine tune the centroids O, the
centroids re-training step is performed. After the clustering quantization, the
original weight matrix W is approximated by Wq, which can be acquired by O

210 J. Hu et al.

1.1 0.2 0.3

0.4 1.3

1. Weights
Clustering

Weights
(32 bits float)

ID:3 ID:2 ID:2

ID:2 ID:3 ID:1

ID:1 ID:1 ID:0

Code book
(2 bits integer)

ID:0

1.2

0.3

Centroids

Centroids

ID:1

ID:2

-0.62

ID:3

ID:0

ID:1

ID:2

ID:3

-1.22

-0.58

0.33

1.21

Weights Gradients
2.3 Calculate

Sum of
Gradients of
each cluster

-0.03

-0.03

-0.03

-0.02

-0.02

_

2.4 Update
Centroids

Centroid
gradients

-0.02

0.00

-0.03 -0.01

0.01

-0.01 0.01 -0.02

-0.6 -0.7 -1.2

-0.5

-1.2

-0.6

Step 1: Weights clustering

Step 2: Centroids re-training

ID:0

ID:1

ID:2

ID:3

1.2 0.3 0.3

0.3 1.2 -0.6

-0.6 -0.6 -1.2

2.1 Restore Weights
Weights after

quantization

2.2 Infer DNN on
Data Set and

Backpropagate

Fig. 1. The weights sharing method: How to quantize a weights matrix from 32 bits
into 2 bits?

and B (restore weights in Step 2.1). To compensate the accuracy loss brought by
the quantization, the centroids O are retrained. The weights on the correspond-
ing DNN layer are updated by the Wq, and the DNN is inferred on the data set
and a back-propagation approach (i.e., SGD) is exploited to find the gradients
GW of the Wq. The gradients of each group are summed up to have centroid
gradients GO (Step 2.3). Finally, with a given learning rate lr, the operation
O′ = O − lr × GO (Step 2.4) is performed to update the centroids.

As a classic clustering algorithm, it is natural that k-means is chosen to
cluster the weights in previous works [4,5,9]. The k-means weight sharing method
is relatively fast. However, it suffers from centroids initialization problem, which
could lead to high accuracy loss. Besides, the number of clusters (i.e., 2bt) in the
k-means is set as a parameter, where the bt is not adaptively determined. Unlike
the k-means clustering, Hierarchical Agglomerative Clustering (HAC) has better
ability to discover the data structure. We denote the size of the dataset as N .
Starting from N clusters, the main idea of the HAC is to gradually merge the
closest two in all clusters at a time, until all the clusters have been merged into
a single cluster. The merge of two closest clusters is calculated by an average
linkage in this paper. In the algorithm, the merge can be stopped at any number
of clusters.

One of the advantages of the HAC compared with the k-means is that it
has no initialization problem, which may lead to local optimal. Another benefit
is that the clustering results with different number of clusters can be obtained
from one run of the HAC. The cost of the two advantages is the high time
complexity of the HAC. For a data set with N items, the time complexity of a

Adaptive Hierarchical Clustering Based Quantization Framework for DNNs 211

usual implementation of the HAC can lead to O(N3). In terms of keeping the
advantage and overcoming the disadvantage of the HAC, we introduce the adap-
tive Hierarchical Clustering based Quantization (aHCQ) framework. In order to
reduce the time complexity of the HAC, the weights are sorted firstly and the
merge is between the neighbor clusters. Thereby, the time complexity is reduced
to O(N2). Furthermore, the bit-width (corresponds to the number of clusters)
for each layer in the DNN model is adaptively determined by considering the
relationship with other layers. The bit-width is dynamically changed according
to the accuracy change of the whole model during the quantization.

2.2 Details of the aHCQ Framework

The proposed aHCQ framework is designed based on the weights sharing method
and adaptive quantization. Taking the model weights (W) of each layer in a
network and a target accuracy loss (accloss) as inputs, the aHCQ framework
outputs a quantized weights matrix, which is represented by a code book B and
a centroid list O.

To overcome the high time complexity from the distance calculation on pairs
of clusters, the aHCQ ensures each weights cluster only needs a limited num-
ber of linkage comparisons with other clusters in each merging loop by sorting
the weights at the beginning. In this way, we can reduce the running time from
O(N3) into O(N2). Besides, the input accloss is to help decide each layers’ quan-
tization bit-width by directly monitoring the accuracy loss in each merging loop.
The adaptively determined bit-widths therefore promise the model accuracy.

An example on how to quantize one layer in a DNN is illustrated in Fig. 2.
A 3 × 3 weights matrix W and a target accuracy loss accloss are the inputs.
Besides, the total number of layers in the DNN is represented by n and the
training data set for the model is denoted as Dtrain.

The aHCQ firstly sorts the weights in W ascendingly to get a sorted weights
list Wr. At the beginning, each weight is considered as a cluster. The merge
step is then performed on pairs of clusters. Since the clusters are ordered, the
merge is conducted on their neighbors. To merge two neighbor clusters (say
−0.02 and 0.08), we make sure that the distance between such clusters must be
smaller than the one between each of such clusters (say −0.02) and its alter-
native neighbor (say −0.31), if any. That is, since both ||(−0.02) − (0.08)||2 <
||(−0.02) − (−0.31)||2 and ||(−0.02) − (0.08)||2 < ||(0.23) − (0.08)||2 hold, we
then merge −0.02 and 0.08, but not −0.02 and −0.31. Those neighbor clusters
marked by solid arrows are merged. One unique property of this improved algo-
rithm is that these clusters, after merging, still preserve ascending order. In this
way, we do not need to re-sort clusters in the next merging loop, thus leading
to higher efficiency. The clustering results CW contains the centroids O and the
code book B.

The merge between pairs of clusters needs a stopping criterion. Note that
there are totally n layers, and the overall accuracy loss is accloss. As a result, the
average accuracy loss for each layer’s weights is simply set as accloss

n . Therefore,

212 J. Hu et al.

Sorted List of Weights:

Generate Target Clusters

Original Weights

1.20 0.23 -0.31

0.85 0.32 0.39

-0.02 0.08 -0.37

-0.37 -0.31 -0.02 0.23 0.320.08 0.85 1.200.39

-0.31

-0.37
0.23

Sort

Merge Neighboring Clusters

Weights
Clusters

-0.37 -0.31 -0.02 0.23 0.320.08 0.85 1.200.39

0.08

-0.02

0.39

0.32
0.85 1.20

Cluster WeightsTraining Data Set

Select

ID: 0

Code Book Centroids

ID: 1

ID: 2

ID: 3

ID: 4

ID: 5

Restore Weights and Inference DNN

-0.34

0.03

0.31

1.02

3 2 0

3 2 2

1 1 0

ID: 0
Code Book

Centroids

ID: 1

ID: 2

ID: 3

Target
Accuracy Loss

Input

Weights
Clusters

Quantization
Layers Number

Input

Output

Centroids
Retraining

-0.32

0.04

0.29

1.01

3 2 0

3 2 2

1 1 0

ID: 0
Code Book

Centroids ’

ID: 1

ID: 2

ID: 3

5 2 0

4 3 3

1 1 0

0.36

0.85

1.20

-0.34

0.03

0.23

Yes

No

Inference Pre-
trained DNN

Evaluation Data Set

Fig. 2. The adaptive Hierarchical Clustering Quantization (aHCQ) framework. The
quantization steps on an individual DNN layer are described.

the stopping criterion is set as the number of clusters (i.e., the bit-widths) that
leads the accuracy loss on the layer δacc be larger than accloss

n .
As for the accuracy loss on the layer δacc that caused by the quantization,

it is obtained from the difference of the accbase and the acceval, which are the
model accuracy trained from the training data set (Dtrain) and a small part of
it (De). The De is randomly chosen from the training data set Dtrain with a
proportion of γ (10% by default).

When the stopping criterion is met (δacc ≥ accloss
n), the clustering results O

and B are obtained. The centroids O is re-trained to compensate the accuracy
loss (see Fig. 1). Suppose there are c clusters of the O list, the quantization bit-
width for the layer is �log2(c)�. As shown in Fig. 2, the weights matrix W is
clustered into four clusters, where 2-bits can represent code book B.

Considering the efficiency of the aHCQ on large data sets, a pre-processing
step is added to speed up the aHCQ. The idea of the pre-processing step is
to perform a rough compression on the original weights matrix. Generally, the
bit-widths from 32 to 8 bits rarely reduce the model accuracy. Therefore, the
pre-processing is to run the aHCQ once with a hard bit-widths setting. Given
the target 8-bit-widths, the number of clusters is then 28 = 256, which is set as
the stopping criterion.

Adaptive Hierarchical Clustering Based Quantization Framework for DNNs 213

Table 1. The settings and parameters of the networks including the number of layers,
the batch size, the momentum, the learning rate and the model size.

Network Layers number n Batch size Momentum Learning rate Model size

LeNet [16] 5 128 0.9 0.05 243 KB

AlexNet [17] 8 128 0.9 0.05 217 MB

ResNet18 [18] 18 64 0.9 0.1 42.6 MB

ResNet34 [18] 34 64 0.9 0.1 81.2 MB

3 Experiments

3.1 Experiments Settings

The experiments are conducted on two datasets which are the CIFAR-10 and
CIFAR-100 [15]. The two datasets both consist of 60,000 32 × 32 color images
with 50,000 training images and 10,000 test images. The CIFAR-10 has 10 classes
while the CIFAR-100 has 100 classes.

Four DNNs have been chosen to be quantized in the experiments, which are
the LeNet [16], AlexNet [17], ResNet18 [18] and ResNet34 [18]. LeNet is a classic
shallow neural network containing a small number of weights. AlexNet contains
five convolutional (Conv) layers and three fully connected (FC) layers, where
FC layers contain quite a large number of weights. Compared with the AlexNet,
ResNet18/34 contains more Conv layers but less FC layers, thus we can deepen
the depths of the models as well as reduce the model sizes. Except for the input
and output layers, ResNet18/34 consist of several blocks which contain multiple
sequential convolutional layers. Commonly, the quantization operation of DNNs
do not include the first convolutional layer and the last fully connected layer
[11]. The settings of the networks are shown in Table 1.

Besides, we choose top-1 and top-5 accuracy as evaluation metrics. Top-
k accuracy refers to the accuracy rate at which the top k ranked categories
include the actual result, and we use accuracy to represent top-1 accuracy for
simplification. In Sect. 2.2, γ of the training data set are randomly chosen as the
evaluation data set to help monitor the accuracy loss, which is set as 10% in the
experiments. Because of the length of the article, this paper omits the compar-
ative experiments with γ as 5%, 10% and 20% respectively. The experimental
results show that the aHCQ can attain highest model compression rate under
the same accloss settings on CIFAR-10 and 4 models in Table 1.

The experiments are conducted on the hardware with Ubuntu 16.04 LTS(x64)
as the operating system, Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz, 32 GB
memory and a 11 GB GeForce GTX 1080 Ti graphics card.

3.2 Comparison on the aHCQ and Other Weights Sharing

In this section, we compare the aHCQ with the k-means and HAC weights
sharing. For a fair comparison, the quantization bit-width of the aHCQ has been

214 J. Hu et al.

(a) Comparison of the accuracy change during centroids retraining. Method-
refers to bits quantization using this method.

(b) Comparison of the time consumption of quantizing an individual layer

Fig. 3. Comparison of accuracy change during quantization and time consumption
between our aHCQ, HAC and k-means weights sharing on CIFAR-10. Here ResNet18
Block i refers to first convolutional layer of ith block.

fixed as the same as that in the k-means and the HAC. We choose four layers
of the AlexNet and the ResNet18, and we set the quantization bit-width bt as 4
and 2 bits respectively. We choose the 2nd, 3rd, 4th and 5th convolutional layers
in AlexNet as well as the first convolutional layers of four blocks in ResNet18
as target layers, on the dataset CIFAR-10. The model accuracy and the time
consumption of the methods on different models are compared.

As shown in Fig. 3, the aHCQ has comparable performance with the HAC
weights sharing on model accuracy, both of which are better than the k-means
weights sharing. It further verifies that the hierarchical clustering can better
discover the weights structure than the k-means. In general, the accuracy loss of
2-bits quantization is higher than that of 4-bits. Therefore, the bit-width has to
be well determined for controlling the accuracy loss of the whole model.

Time consumption here refers to the running time on the weights clustering
step (step 1 in Fig. 1) in the weights sharing method. The running time of the
aHCQ is much less than the HAC with the improvements performed, e.g., the

Adaptive Hierarchical Clustering Based Quantization Framework for DNNs 215

Table 2. Experiments on the pre-processing step of the aHCQ on four DNNs, where
the bit-width for each layer is 8. R refers to the results of the original model and Q
refers to that of quantized model. The accuracy and compression rate are compared.

Dataset Network Top-1 acc (R/Q) (%) Top-5 acc (R/Q) (%) Compression rate

CIFAR-10 LeNet 65.92% / 66.96% - / - ×3.5

AlexNet 73.67% / 73.68% - / - ×3.8

ResNet18 92.60% / 92.63% - / - ×3.9

ResNet34 93.01% / 93.02% - / - ×3.9

CIFAR-100 AlexNet 56.52% / 56.56% 79.07% / 80.12% ×3.8

ResNet18 74.23% / 74.26% 92.13% / 92.22% ×3.9

ResNet34 75.62% / 75.48% 92.41% / 92.37% ×3.9

sorting procedure. Theoretically, the time complexity of the k-means is O(N),
which is the most efficient among the three methods. However, the consumption
time at this stage is very trivial compared to the quantization on the whole
model. The running time of the k-means on the ResNet18 into 4-bits is larger
than that into 2-bits. The higher bit-width indicates larger number of clusters
and the time complexity of the k-means is proportional to the number of clusters.

3.3 Results for Preprocessing Step of aHCQ

In the aHCQ framework, a pre-processing step has been introduced to enhance
the efficiency. The pre-processing step is to hardly compress each layer from
32-bits into 8-bits. We show that the pre-processing step brings little effect on
the accuracy from Table 2. The experiments are performed on the four networks
trained on the CIFAR-10 and CIFAR-100. The top-1 accuracy and top-5 accu-
racy on the original models (R) and quantized models (Q) are compared. Basi-
cally, top-5 accuracy is not commonly used to measure the accuracy of CIFAR-
10. As a result, the top-5 accuracy of four models is omitted on CIFAR-10 in
this table. It is shown that there is little accuracy loss of the quantized model.
The accuracy even increases because the quantization has reduced the redun-
dancies among the model. Therefore, with a 3.5–3.9 compression rate achieved,
the pre-processing step brings little on the accuracy loss.

3.4 Results for Adaptability of aHCQ

As a parameter in the aHCQ, the accloss is tested in the experiment, where the
accloss is set in the range of [0.0%, 1.8%] with 0.2% as an interval. The experi-
ment is performed on the ResNet18/34 on data CIFAR-10 and CIFAR-100. The
actual accuracy loss is calculated from the accuracy difference of the quantized
model and the original model. For each setting of the accloss, a compression
rate is obtained after the quantization. It is shown from Fig. 4 that the aHCQ
guarantees the actual accuracy loss is always less than the accloss while high
compression rates can be achieved. It also shows that the aHCQ can adaptively
quantize the networks.

216 J. Hu et al.

Fig. 4. The experiment on the setting of accloss. The compression rates and the actual
accuracy loss of the DNNs after the aHCQ quantization are obtained at each setting
of the accloss.

3.5 Results for aHCQ Compared with Benchmarks

We compare the aHCQ with the state-of-art DNN quantization methods in
the experiment, where the Resnet18/34 are selected on dataset CIFAR-10
and CIFAR-100. The existing quantizatin methods can be categorized as non-
adaptive and adaptive. For non-adaptive methods, the bit-width of each layer are
the same. Here the non-adaptive methods include the SLQ/MLQ [9] (SLQ/MLQ-
i means quantizing DNNs with i bit-width by improved k-means weights shar-
ing), TWN [11] (rounding DNNs weights into 2 bits), QIL [6] (adjusting quan-
tization intervals to improve the TWN) and Deep Compression [4] (DC, which
quantizes convolutional layers into 8 bits and fully connected layers into 5 bits).
For adaptive quantization methods, the Adaptive Quantization framework (AQ)
[10] is compared. The AQ uses the loss function gradients to iteratively determine
the quantization bit-width margin for each layer’s weights.

The accuracy of the models that have been quantized with different compres-
sion rates are shown in Fig. 5. Compared with the non-adaptive methods (TWN,
QIL, MLQ-2, SLQ-3 and DC), our aHCQ can preserve the model accuracy under
basically same compression rate, as well as achieve adaptability. Besides, com-
pared with the AQ, the aHCQ’s compression-accuracy curves are all above these
of AQ, which means our aHCQ’s trade-off between accuracy and compression
rate is better than that of AQ overall. Besides, the aHCQ method perform-
ing slightly better than the MLQ-2 when compression rate is around 15x is
acceptable, because the aHCQ framework mainly focus on how to adaptively

Adaptive Hierarchical Clustering Based Quantization Framework for DNNs 217

Fig. 5. The comparison on different DNN quantization methods. aHCQ compared with
commonly used methods.

find proper bit-width for each layer. In conclusion, the aHCQ achieves higher
accuracy with same model size compared with other quantizaton techniques.

4 Conclusion

In this paper, we propose an adaptive hierarchical clustering quantization
(aHCQ) framework that can compress the weights of the network models while
largely preserve the model accuracy. A hierarchical agglomerative clustering algo-
rithm has been introduced on the weights quantization of each layer, which
promises less accuracy loss happened during the quantization. Meanwhile, the
quantized bit-width for each layer is determined adaptively according to the
accuracy loss happened locally from each layer and globally at the whole net-
work. The experiments demonstrate that the aHCQ achieves a high compression
rate of the model with quite less model accuracy loss.

Acknowledgment. We would like to thank all reviewers for their comments. This
work was partially supported by National Natural Science Foundation of China (Grant
No. 61972286). And this work was supported by the Natural Science Foundation of
Shanghai, China (No. 20ZR1460500).

References

1. Cheng, Y., Wang, D., Zhou, P., et al.: A survey of model compression and accel-
eration for deep neural networks. arXiv preprint arXiv:1710.09282 (2017)

http://arxiv.org/abs/1710.09282

218 J. Hu et al.

2. Choi, Y., El-Khamy, M., Lee, J.: Towards the limit of network quantization. arXiv
preprint arXiv:1612.01543 (2016)

3. Gupta, S., Agrawal, A., Gopalakrishnan, K., et al.: Deep learning with limited
numerical precision. In: International Conference on Machine Learning, pp. 1737–
1746 (2015)

4. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

5. Han, S., Pool, J., Tran, J., et al.: Learning both weights and connections for efficient
neural network. Advances in Neural Information Processing Systems (2015)

6. Jung, S., Son, C., Lee, S., et al.: Learning to quantize deep networks by optimizing
quantization intervals with task loss. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4350–4359 (2019)

7. Liu, S., Lin, Y., Zhou, Z., et al.: On-demand deep model compression for mobile
devices: a usage-driven model selection framework. In: Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and Services,
pp. 389–400 (2018)

8. Wang, K., Liu, Z., Lin, Y., et al.: Haq: hardware-aware automated quantization
with mixed precision. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 8612–8620 (2019)

9. Xu, Y., Wang, Y., Zhou, A., et al.: Deep neural network compression with single
and multiple level quantization. arXiv preprint arXiv:1803.03289 (2018)

10. Zhou, Y., Moosavi-Dezfooli, S.M., Cheung, N.M., et al.: Adaptive quantization for
deep neural network. arXiv preprint arXiv:1712.01048 (2017)

11. Zhu, C., Han, S., Mao, H., et al.: Trained ternary quantization. arXiv preprint
arXiv:1612.01064 (2016)

12. Courbariaux, M., Hubara, I., Soudry, D., et al.: Binarized neural networks: training
deep neural networks with weights and activations constrained to + 1 or -1. arXiv
preprint arXiv:1602.02830 (2016)

13. Wen, W., Wu, C., Wang, Y., et al.: Learning structured sparsity in deep neural
networks. arXiv preprint arXiv:1608.03665 (2016)

14. Wu, J., Leng, C., Wang, Y., et al.: Quantized convolutional neural networks for
mobile devices. In: On Computer Vision and Pattern Recognition, pp. 4820–4828
(2016)

15. Darlow, L.N., Crowley, E.J., Antoniou, A., et al.: CINIC-10 is not ImageNet or
CIFAR-10. arXiv preprint arXiv:1810.03505 (2018)

16. LeCun, Y.: LeNet-5, convolutional neural networks, vol. 20, no. 5, p. 14 (2015).
http://yann.lecun.com/exdb/lenet

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

18. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2016)

19. Choudhary, T., Mishra, V., Goswami, A., Sarangapani, J.: A comprehensive survey
on model compression and acceleration. Artif. Intell. Rev. 53(7), 5113–5155 (2020).
https://doi.org/10.1007/s10462-020-09816-7

http://arxiv.org/abs/1612.01543
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1803.03289
http://arxiv.org/abs/1712.01048
http://arxiv.org/abs/1612.01064
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1608.03665
http://arxiv.org/abs/1810.03505
http://yann.lecun.com/exdb/lenet
https://doi.org/10.1007/s10462-020-09816-7

Maintaining Consistency
with Constraints: A Constrained Deep

Clustering Method

Yi Cui, Xianchao Zhang(B), Linlin Zong, and Jie Mu

School of Software, Dalian University of Technology, Dalian 116620, China

Abstract. Constrained clustering has been intensively explored in the
data mining. Popular clustering algorithms such as k-means and spec-
tral clustering are combined with prior knowledge to guide the cluster-
ing process. Recently, constrained clustering with deep neural network
gains superior performance by jointly learning cluster-oriented feature
representations and cluster assignments simultaneously. However, these
methods face a common issue that they have poor performance when
only minimal constraints are available because of their single way to
mine constraint information. In this paper, we propose an end-to-end
clustering method that learns unsupervised information and constraint
information in two consecutive modules: an unsupervised clustering mod-
ule to obtain feature representations and cluster assignments followed
by a constrained clustering module to tune them. The constrained clus-
tering module is composed of a Siamese or triplet network to maintain
consistency with constraints. To capture more information from minimal
constraints, the consistency is maintained from two perspective simulta-
neously: embedding space distance and cluster assignments. Extensive
experiments on both pairwise and triplet constrained clustering validate
the effectiveness of the proposed algorithm.

Keywords: Constrained clustering · Semi-supervised clustering ·
Deep clustering · Metric learning

1 Introduction

Clustering with deep neural networks has extensively explored due to the inher-
ent property of highly non-linear transformation of DNNs. These methods effec-
tively combine the neural network with popular clustering algorithms, such as
k-means [7,14,22], spectral clustering [17], subspace clustering [10], agglomer-
ative clustering [23] to joint dimensionality reduction and clustering-oriented
representation learning. These unsupervised methods refer to unlabeled data,
however, some prior knowledge such as pairwise constraints or triplet constraints
could be obtained automatically in many clustering tasks.

This work was supported by National Science Foundation of China (No.61632019;
No.61876028; No.61972065; No.61806034).

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 219–230, 2021.
https://doi.org/10.1007/978-3-030-75765-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_18

220 Y. Cui et al.

Constrained clustering is a kind of task that few auxiliary information is
provided to guide clustering. Some constrained clustering methods are explored
with pairwise constraints (must-link and cannot-link) [8,16]. SDEC [16] decreases
the embedding distance between must-link pairs and increases distance between
cannot-link pairs. But the distance in the embedding space between cannot-link
pairs have already been large at the beginning of training due to the good sepa-
ration of the pre-trained network, which leads to the inefficiency of its objective.
Hsu et al. [8] present their objective on softmax output with KL divergence
but abandon the contribution of instances without constraints. Zhang et al. [25]
explore more complex constraints. They enforce the must-link pairs with similar
assignment probability and cannot-link pairs oppositely. But when the number
of constraints is not enough to mitigate the negative effect of imbalance (which
means very few must-link assignments can be referred to, e.g. approximately
10% in Fashion dataset), this method that only mines constraint information
from the perspective of cluster assignments is sensitive to the reduction of the
number of constraints. For these reasons, these methods face a common issue
that they have poor performance when the number of constraints is small.

In this paper, we propose a Constrained Deep Clustering method (CDC) that
aims to maintain consistency with constraints. To be effective even if minimal
constraints are available, our method learns unsupervised information and con-
straint information in two consecutive modules: an unsupervised clustering mod-
ule followed by a constrained clustering module. Inspired by the metric learning,
we construct the network based on a Siamese network or triplet network in the
constrained clustering module. For the purpose of capturing more information
from minimal constraints, the consistency is maintained from two perspective
simultaneously: embedding space distance and cluster assignments. The model
is trained by cosine function as the similarity metric avoiding the inefficiency
when embedding distance between cannot-link pairs is large and weighted cross
entropy objective to tune cluster assignments. The main contributions of this
paper are summarized as follows:

– We propose an end-to-end clustering method that learns unsupervised infor-
mation and constraint information in two consecutive modules: an unsuper-
vised clustering module to obtain feature representations and cluster assign-
ments followed by a constrained clustering module to tune them.

– We propose effective objective function to maintain consistency with con-
straints from two perspective: embedding space distance and cluster assign-
ments.

– Extensive experiments are conducted on both image and text datasets. The
results show competitive performance on both pairwise and triplet con-
strained clustering, validating the effectiveness of CDC algorithm.

2 Related Work

Deep clustering is a category of clustering in recent years that combine deep
neural network to learn cluster-friendly features. There are approaches [6,7,21,
22] obtaining feasible feature space based on autoencoder (AE). Other novel

A Constrained Deep Clustering Method 221

methods adopt deep generative model to perform clustering task, such as VAE-
based [5,11] and GAN-based [3,15,24] methods. In addition, some clustering
methods recently has shifted to handle high-dimensional data, including spectral
clustering [9,17] and subspace clustering [10,26,27].

Constrained clustering has been widely studied to lead an auxiliary guidance
to clustering. Some methods explore strategies for improving clustering perfor-
mance with pairwise constraints [1,2,18,19]. Other methods with deep neural
network gains better performance. Hsu et al. [8] view the outputs of the softmax
layer as the distribution of possible clusters given a sample and evaluate the sim-
ilarity with KL divergence. Zhang et al. [25] explore more complex constraints
generated from new types of side information. Although these methods capture
the point that similar samples should output similar assignment distribution,
there is no work noticing consistency of embedding space distance and cluster
assignments simultaneously.

3 Proposed Method

Consider a task about clustering a data set X containing n unlabeled instances,
each sample {xi ∈ R

d}ni=1 should be assigned to one of k clusters. Except these
unlabeled data, two types of user-specified prior information is also provided
to guide the clustering process, including pairwise constraints and triplet con-
straints. A pairwise constraint indicates that a pair of samples {(xi, xj) : xi, xj ∈
X} have a relationship of must-link (xi and xj belong to the same clusters) or
cannot-link (xi and xj belong to different clusters). A triplet constraint consists
of a triple of samples {(x̃, xp, xn) : x̃, xp, xn ∈ X}, where the positive sample xp

is closer to the anchor x̃ than the negative sample xn in the embedding space.
We propose to find a non-linear mapping fθ : X → Z that transforms the

original data into latent space Z, in which the embedding distance is consis-
tent with the original semantic distance and cluster assignments are consistent
with constraints. The model contains two consecutive modules: the unsupervised
clustering module followed by our constrained clustering module. The whole
structure of CDC is illustrated in Fig. 1.

We introduce the referred method in unsupervised clustering module in
Sect. 3.1. Then we propose two types of constrained clustering module with pair-
wise constraints and triplet constraints respectively in Sect. 3.2 and Sect. 3.3.

3.1 Unsupervised Clustering Module

The first module aims to learn cluster-oriented feature representations. We refer
the DEC [21] to learn feature representations and cluster assignments.

The DEC method initializes the centroids {μj}kj=1 through k-means on
the embedding space of the autoencoder pre-trained by a stacked autoencoder
(SAE), then computes the soft assignments qij as:

qij =
(1 + ‖zi − μj‖2/α)− α+1

2

∑k
j′=1(1 + ‖zi − μj′ ‖2/α)− α+1

2

, (1)

222 Y. Cui et al.

W

Unsupervised Process Tune Process Positive Relationship Negative Relationship

Initialization
Process

Self-training
Process

Unsupervised Clustering Module

Consistency
Learning

Constraint
Generation

Constrained Clustering Module

Fig. 1. The process of CDC algorithm. The method learns unsupervised information
and constraint information in two consecutive modules: an unsupervised clustering
module to obtain feature representations and cluster assignments followed by a con-
strained clustering module to tune them.

where qij measures the similarity between embedded data zi and centroids μj

with Student’s t-distribution being the kernel, α is a constant, e.g. α = 1.
The auxiliary distribution P is defined to refine the cluster assignments . By

squaring the soft assignments qij and then normalizing it, pij is formulated as:

pij =
q2ij/

∑

i qij
∑k

j′=1(q
2
ij′/

∑

i qij′)
. (2)

The loss function is defined as the reconstruction loss added to the KL divergence
between soft assignments Q and auxiliary distribution P as follows:

L = KL(P‖Q) + LR =
∑

i

∑

j
pij log

pij
qij

+
∑

i
‖xi − x′

i‖2. (3)

The clusters are iteratively refined during this self-training process. Constrained
clustering module inherits the parameters and centroids and then learn from
pairwise constraints or triplet constraints.

3.2 Clustering with Pairwise Constraints

The pairwise constraints are learned in our constrained clustering module based
on a Siamese architecture, which is a popular network in metric learning. Two
samples with pairwise constraints are required as inputs at the same step. Each
group of inputs can be expressed as a triad ((x1, x2), y), where y is an indicator
that y = 1 when given x1 and x2 with must-link relationship while y = 0 with
cannot-link constraint. The structure of pairwise constrained clustering module
is illustrated in Fig. 2. For the purpose of maintaining consistency with con-
straints, we define the objective function in two parts: embedding space distance
and cluster assignments.

A Constrained Deep Clustering Method 223

Objective

Lrecon

Lassign

Ldist

Encoder

Fig. 2. The structure of constrained clustering module on pairwise constrained clus-
tering based on a Siamese network. Constrained pairs are transformed into embedded
features Z1 and Z2. Soft assignments Q1 and Q2 are normalized to compute assignment
objective. The shared parameters are optimized by Eq. (7).

Consistency of Embedding Space Distance. The main idea of this part is
to seek a mapping that transforms pairs of inputs into a embedding space, in
which a similarity measure approximates the semantic information in the original
space. To this end, the distance loss for all m groups of ((x1, x2), y) is defined
as:

Ldist = − 1
m

∑m

i=1

(

y(i)λ1σ(z(i)1 , z
(i)
2) − (1 − y(i))λ2σ(z(i)1 , z

(i)
2)

)

, (4)

where z
(i)
1 and z

(i)
2 are corresponding embedded features of the ith group of

inputs, σ(·) is a similarity function, λ1 and λ2 are trade-off parameters. In sum-
mary, the embedded features with the same label prefer larger similarity, while
points with different labels obtain smaller similarity by minimizing the objective
function.

Consistency of Cluster Assignments. The main idea of this part is to tune
cluster assignments with given constraints. Soft assignments are learned from its
high confidence assignments in the unsupervised clustering module. We expect
to tune cluster assignments to maintain the consistency with constraints. Specif-
ically, must-link pairs are expected to have similar cluster assignments distribu-
tion, while assignment differences of cannot-link pairs are strengthened. The
assignment loss is formulated as:

Lassign = − 1

m

∑m

i=1

(
y(i)λ3w(i) log(q

(i)
1 · q(i)2) + (1− y(i))w(i) log(1− q

(i)
1 · q(i)2)

)
. (5)

This process is treated as a binary classification problem that whether or not
two constrained samples belong to the same cluster. The inner product of corre-
sponding normalized soft assignments q

(i)
1 and q

(i)
2 reflects the probability that

224 Y. Cui et al.

two inputs x
(i)
1 and x

(i)
2 are assigned into the same cluster. By minimizing the

cross entropy loss, the must-link pairs prefer to be allocated into the same cluster
and the cannot-link pairs are the opposite. In addition, we introduce a weight w
to pay more attention to those pairs whose distances in the embedding space are
not consist with constraints. Precisely speaking, the weights increase for those
must-link pairs with large differences in embedded features and those cannot-link
pairs with small differences. The weight formulas are defined as:

w(i) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
1 + e−d(i) , if(x1, x2)(i) ∈ must − link,

3 + ed
(i)

2(1 + ed(i))
, if(x1, x2)(i) ∈ cannot − link,

(6)

where d(i) = α‖z
(i)
1 − z

(i)
2 ‖2 reflects the difference between a pair of embedded

features, α is an adjustment parameter to control the distance. We set α = 0.01
in all experiments because the great masses of samples are well-separated. The
weight w is a monotonically increasing function for must-link, while monotoni-
cally decreasing function in the opposite case.

In summary, we define the objective function in constrained clustering mod-
ule for pairwise constraints as:

Lpair = Ldist + Lassign + Lrecon, (7)

Lrecon =
1
m

∑m

i=1
y(i)(‖x1 − x′

1‖2 + ‖x2 − x′
2‖2)(i), (8)

where Lrecon is the sum of reconstruction losses of two instances, which is added
to the must-link cases to avoid a large scale cluster.

3.3 Clustering with Triplet Constraints

Triplet constraints are weaker constraints and easily accessible with only a
trained embedding space. They could replace the stronger constraints in some
constrained clustering tasks that lack ground truth labels or partition-based
constraints, e.g. pairwise constraints. Different from these stronger constraints
coming from specific partitions, triplet constraints convey the differences in dis-
tance level.

We construct a triplet network for training triplet constraints. As we can
see in Fig. 3, a triple of samples (x̃, xp, xn) are input to the network simulta-
neously. The similarities σ(z̃, zn) and σ(z̃, zp) are calculated in the embedding
space output by the network with shared parameters. The objective function in
constrained clustering module for triplet constraints is formulated as:

Ltrip = max(σ(z̃, zn) − σ(z̃, zp) + m, 0), (9)

where σ(z̃, zn) and σ(z̃, zp) represent similarities between positive and negative
samples against the anchor respectively. Those positive samples are pulled close

A Constrained Deep Clustering Method 225

Negative ItemAnchor Item

Decoder

Encoder

Decoder

Encoder

Decoder

Encoder
Xp

Xp
’

··· X

X’

··· Xn

Xn
’

···

Ltrip

Similarity
Metric

Similarity
Metric

Zp Zn
Z

Positive Item

Fig. 3. The structure of constrained clustering module on triplet constrained clustering
based on a triplet network. A triple of samples are input into the network at the same
step. The similarities are obtained in the embedding space. Parameters are shared
among the triplet network and are optimized by Eq. (9).

to their anchor and negative samples are separated from them. A hyperparameter
margin m is introduced as a threshold that tries to widen the gap in σ(z̃, zn) and
σ(z̃, zp). Due to the partition uncertainty of triplet constraints, some cases cannot
be avoided that some positive samples and their anchors come from different
classes, or some negative samples have the same labels with their anchors, which
we call imperfect triplet constraints. The margin m also works by preventing xp

being too close or xn being too separated from x̃ in these cases. The parameter
study about m is illustrated in Sect. 4.4.

In summary, our method learns feature representations and cluster assign-
ments in the unsupervised clustering module and then tunes them in the
constrained clustering module in one epoch. The procedure is summarized in
Algorithm 1.

4 Experiments

4.1 Datasets

To verify the effectiveness and efficiency of the proposed CDC on constrained
clustering tasks, we evaluate it on five benchmark datasets:

– MNIST [12]: A dataset composed of 70000 handwritten digits of 10 types.
Each sample is a 28 × 28 gray image.

– Fashion-MNIST [20]: A dataset of Zalando’s article images with the same
size as MNIST. Each sample is a 28 × 28 gray image, divided into 10 classes.

– USPS: A handwritten digits dataset that contains 9298 images (7291 for
training, 2007 for test) with size of 16 × 16 pixels.

226 Y. Cui et al.

Algorithm 1. Constrained Deep Clustering (CDC)

Input: Dataset X, pairwise or triplet constraint dataset ˜X, number of clusters k.
Output: Embedded features Z and cluster assignment vector s.
Initialization: Pre-train the stacked denoising autoencoder layer by layer to obtain
Z. Obtain k initial centers {µj}kj=1 with k-means in space Z.

1: while not reach the maximum epochs do
2: Unsupervised clustering module:
3: for every mini-batch data in X do
4: Obtain zi = fθ (xi) through the encoder.
5: Compute qij and pij according to Eq. (1, 2).
6: Update θ and {µj}kj=1 by minimizing Eq. (3).

7: Constrained clustering module:
8: for every mini-batch data in ˜X do
9: Obtain (z1, z2) or (z̃, zp, zn) through Siamese or triplet network.

10: Update θ and {µj}kj=1 by minimizing pairwise loss or triplet loss Eq. (7, 9).

11: Obtain Z and si = arg maxj qij for all instances.
12: if stopping criterion is met then
13: Stop training.

– KMNIST [4]: Kuzushiji-MNIST is a dataset which focuses on cursive
Japanese, composed of 28 × 28 images of 10 types. Train and test set sizes
are 6,000 and 1,000 per class.

– Reuters10K [13]: A subset consist of 10000 examples of Reuters. Each sam-
ple is composed of the 2000 most frequently occurring word stems in an
English news story.

All datasets are preprocessed for each element before being fed into the algo-
rithms. Precisely, we normalize all datasets to approach 1

d‖xi‖22 to 1 for each
xi ∈ R

d in X.

4.2 Experimental Setting

The structure of the encoder network is set in the same way as DEC [21],
SDEC [16] and FDCC [25] to be comparable with them. Concretely, we set
the encoder network with dimensions of d - 500 - 500 - 2000 - 10 and the decoder
with a symmetrical structure, where d is the dimension of input data. All layers
are fully connected and activated by ReLU function except for the input, output,
and embedding layers.

The parameters and centroids are initialized with a SAE and k-means in
the same way as DEC [21]. Cosine similarity cos(a, b) = a·b

‖a‖‖b‖ is selected in
Eq. (4, 9) for all experiments. In each iteration, we train the network with Adam
optimizer. The learning rate and batch-size are set to 0.001 and 256 respectively.
We investigate the influence of trade-off parameter in Eq. (5) with grid search
and set it as 10. The whole training process will stop when breaks the threshold
in stopping criterion δ = 0.001 or reach the maximum epoch.

A Constrained Deep Clustering Method 227

Table 1. Clustering performance of pairwise constraints in terms of accuracy (ACC %)
and normalized mutual information (NMI %) over 5 datasets. The results of baseline
models are obtained by running the released code except the ones marked by (*), which
are reported from the corresponding papers. The mark (-) represents that the result is
unavailable.

Dataset MNIST Fashion USPS KMNIST Reuters10K

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means 53.09 49.87 46.14 50.85 42.55 37.95 28.52 10.89 50.38 48.61

SAE-KM 85.23 80.76 58.03 60.57 68.75 65.99 47.16 39.10 76.53 56.61

DEC 86.59 83.73 56.62 62.21 75.81 76.91 48.64 40.79 72.17 53.08

IDEC 88.72 86.47 58.48 62.47 72.20 72.66 48.89 40.89 75.27 54.16

FCSP 62.80* 58.70* 41.70* 46.20* - - - - - -

COP-KM 81.60* 77.30* 54.80* 58.90* 71.85 70.24 46.78 38.53 70.42 51.83

MPC-KM 84.60* 80.80* 58.90* 61.30* 75.61 74.36 49.75 41.82 73.08 55.06

SDEC 85.02 81.69 59.62 63.89 75.84 76.96 50.05 42.18 75.31 55.24

FDCC 96.29 90.72 66.29 67.08 80.54 76.62 56.90 42.88 77.90 58.42

CDC 96.69 91.92 76.88 72.13 82.71 77.26 71.78 55.38 88.20 69.88

4.3 Experimental Results

Evaluation of Experiments on Pairwise Constraints. Our method is
compared with both unsupervised clustering algorithms and constrained clus-
tering methods. Unsupervised algorithms include k-means [14], k-means on
latent feature space obtained by SAE (SAE-KM), DEC [21] and IDEC [6].
Constrained clustering algorithms include flexible CSP [19], COP-kmeans [18],
MPC-kmeans [2], SDEC [16] and FDCC [25].

For the purpose of simulating human-guided constraints, we construct con-
straints from existing labeled data sets. We pick a set of randomly selected pair-
wise samples from training set and generate must-link or cannot-link constraints
according to their ground truth labels. The number of constraints N is set to
3600 on MNIST, Fashion and KMNIST that accounts for merely 0.0002% of
the number of possible constraints C2

n, and 1000 on USPS and Reuters10K that
accounts for 0.0038% and 0.002% respectively. Besides, transitive constraints are
also added to the known constraints. For instance, given must-link (a, b), (a, c)
and cannot-link (a, d), we can easily deduce addable constraint: must-link (b, c)
and cannot-link (b, d), (c, d). This conduction may cause an explosion of the con-
straint quantity when N is large, but can be ignored with a small amount of
constraints.

The evaluation of ACC and NMI are reported in Table 1. As we can see, the
performance of CDC outperforms the unsupervised algorithms with just minimal
pairwise constraints. This shows that our algorithm of maintaining consistency
with constraints has a positive effect on clustering. The constrained methods
below are set with the same ratio of number of constraints as ours for fair com-
parison. The results show obvious improvement, especially on Fashion, KMNIST
and Reuters10K, validating the superiority of CDC algorithm.

228 Y. Cui et al.

(a) MNIST (b) Fashion-MNIST

Fig. 4. Clustering ACC and NMI on MNIST and Fashion with different numbers of
triplet constraints.

Evaluation of Experiments on Triplet Constraints. We evaluate the clus-
tering performance of our method on triplet constraints by comparative experi-
ment with FDCC [25] that put forwards triplet constraints first. To be compara-
ble fairly with it, we introduce the same embedding space to compute Euclidean
Metric among triples. Figure 4 plots the results of comparative experiment with
different numbers of constraints. The results show clearly that the increase
of constraint number reflects positive feedback in performance. On MNIST,
minimal constraints bring about obvious improvement and then performance
becomes stable, which means enough prior information has been captured. On
Fashion-MNIST, the performance enhances continuously and leads to a sharp
improvement in range [3000, 6000]. Comparing with FDCC, our method brings
slight improvements on MNIST and obvious enhancement on Fashion-MNIST.
The results validate the effectiveness of our algorithm for weak constraint
information.

4.4 Parameter Analysis

We evaluate the performance with different settings of m in Eq. (9) by grid
search in range [0.3, 0.6]. Figure 5 shows the parameter study results on Fashion-
MNIST. Two interesting observations can be obtained: (1) The larger m pro-
duce better performance than a smaller one when given less constraints. (2)
As the number of constraints increases, the results of larger m are not signifi-
cantly improved or even decreased. The first observation can be explained that
our objective tends to widen the difference in the similarity between positive
and negative samples against the anchor, larger m enforces larger threshold to
be broken down, which can promote the optimization when constraints are not
enough. The second consequence occurs because our method learns enough infor-
mation when more constraints are provided, a smaller m reduce the inefficiency
of imperfect triplet constraints, which we illustrate in Sect. 3.3.

A Constrained Deep Clustering Method 229

(a) ACC evaluation (b) NMI evaluation

Fig. 5. The performance of our method across different settings of m on Fashion.

5 Conclusion

In this paper, we propose a Constrained Deep Clustering method (CDC) that
aims to maintain consistency with constraints. The CDC method learns unsu-
pervised information and constraint information in two consecutive modules.
Effective objective function are proposed to maintain the consistency from two
perspective simultaneously: embedding space distance and cluster assignments.
Extensive experimental results on both pairwise and triplet constrained cluster-
ing validate the effectiveness of our method even if only minimal constraints are
provided. Our future work will be explored from the perspective of exploring
more complex similarity metric or addressing the imbalance of the constraints.

References

1. Basu, S., Banerjee, A., Mooney, R.J.: Active semi-supervision for pairwise con-
strained clustering. In: Proceedings of the 2004 SIAM, pp. 333–344 (2004)

2. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning
in semi-supervised clustering. In: ICML, p. 11 (2004)

3. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
gan: interpretable representation learning by information maximizing generative
adversarial nets (2016)

4. Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.:
Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718
(2018)

5. Dilokthanakul, N., et al.: Deep unsupervised clustering with gaussian mixture vari-
ational autoencoders. arXiv preprint arXiv:1611.02648 (2016)

6. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local
structure preservation. In: IJCAI (2017)

7. Guo, X., et al.: Adaptive self-paced deep clustering with data augmentation. IEEE
TKDE, p. 1 (2019)

8. Hsu, Y.C., Kira, Z.: Neural network-based clustering using pairwise constraints.
CoRR abs/1511.06321 (2015)

http://arxiv.org/abs/1812.01718
http://arxiv.org/abs/1611.02648

230 Y. Cui et al.

9. Huang, Z., Zhou, J.T., Peng, X., Zhang, C., Lv, J.: Multi-view spectral clustering
network. In: IJCAI (2019)

10. Ji, P., Zhang, T., Li, H., Salzmann, M., Reid, I.: Deep subspace clustering networks.
In: NIPS (2017)

11. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embed-
ding: an unsupervised and generative approach to clustering. arXiv preprint
arXiv:1611.05148 (2016)

12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

13. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: a new benchmark collection for
text categorization research. J. Mach. Learn. Res. 5(4), 361–397 (2004)

14. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, pp. 281–297. Oakland, CA, USA (1967)

15. Mukherjee, S., Asnani, H., Lin, E., Kannan, S.: Clustergan: latent space clustering
in generative adversarial networks. Proc. AAAI Conf. Artif. Intell. 33, 4610–4617
(2019)

16. Ren, Y., Hu, K., Dai, X., Pan, L., Hoi, S.C., Xu, Z.: Semi-supervised deep embed-
ded clustering. Neurocomputing 325, 121–130 (2019)

17. Shaham, U., Stanton, K., Li, H., Nadler, B., Basri, R., Kluger, Y.: Spectralnet:
spectral clustering using deep neural networks (2018)

18. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al.: Constrained k-means clus-
tering with background knowledge. ICML 1, 577–584 (2001)

19. Wang, X., Davidson, I.: Flexible constrained spectral clustering. In: SIGKDD, pp.
563–572 (2010)

20. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

21. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering
analysis (2015)

22. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces:
simultaneous deep learning and clustering (2017)

23. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations
and image clusters. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5147–5156 (2016)

24. Yu, Y., Zhou, W.J.: Mixture of gans for clustering. In: IJCAI (2018)
25. Zhang, H., Basu, S., Davidson, I.: A framework for deep constrained clustering

- algorithms and advances. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A.,
Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11906,
pp. 57–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46150-8 4

26. Zhang, T., Ji, P., Harandi, M., Huang, W., Li, H.: Neural collaborative subspace
clustering (2019)

27. Zhou, L., Xiao, B., Liu, X., Zhou, J., Hancock, E.R., et al.: Latent distribution
preserving deep subspace clustering. In: IJCAI. York (2019)

http://arxiv.org/abs/1611.05148
http://arxiv.org/abs/1708.07747
https://doi.org/10.1007/978-3-030-46150-8_4

Data Mining Theory and Principles

Towards Multi-label Feature Selection
by Instance and Label Selections

Dou El Kefel Mansouri1(B) and Khalid Benabdeslem2

1 University Ibn Khaldoun, BP P 78 Zaâroura, 14000 Tiaret, Algeria
douelkefel.mansouri@univ-tiaret.dz

2 University Lyon1, 43 Bd. du 11 Novembre, 69622 Villeurbanne, France
khalid.benabdeslem@univ-lyon1.fr

Abstract. In multi-label learning, feature and instance selection rep-
resent two effective dimensionality reduction techniques, which remove
noise, irrelevant and redundant entries from original data for easy later
analysis, such as clustering and classification. Label selection also plays a
fundamental role in the pre-processing step since label-noises could neg-
atively affect the performance of the underlying learning algorithms. The
literature has been mainly limited to feature and/or instance selection,
but has somewhat overlooked label selection. In this paper, we intro-
duce, for the first time, a combination of the three selection techniques
(feature, instance and label) for multi-label learning. We propose an effi-
cient convex optimization based algorithm that evaluates the usefulness
of features, instances and labels in order to select the most relevant
ones, simultaneously. Experimental results on some known benchmark
datasets are presented to demonstrate the performance of the proposed
method.

Keywords: Multi-label learning · Feature selection · Instance
selection · Label selection · Optimization

1 Introduction

In multi-label learning, data might be determined by multiple features and
instances, and simultaneously associated with multiple labels. For example, in
image annotation, images are usually represented by multiple features and, at
the same time, associated with multiple semantic labels [13]. In text categoriza-
tion, each document can be represented by a set of instances and is assigned to
multiple categories [25,30]. In bio informatics, a gene may have many functions,
simultaneously [20].

Due to the curse of the large dimensionality of such data, which are only likely
to grow further both in terms of the sample size as well as the number of classes,
the performance of multi-label learning algorithms would be strongly influenced
[17]. Hence, selecting the most meaningful features or instances become a crucial
pre-processing steps for these algorithms [22]. In fact, feature selection (FS) aims
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 233–244, 2021.
https://doi.org/10.1007/978-3-030-75765-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_19

234 D. E. K. Mansouri and K. Benabdeslem

to select the most informative feature subsets from the original set, whereas
instance selection (IS) is a procedure that reduces noise or outlier data points.

Many works have been carried out in this context, for example Huang
et al. [12] proposed JFSC, a method which can perform joint feature selection
and classification for multi-label learning . Zhang et al. [33] proposed MSFS, a
multi-view multi-label sparse feature selection that exploits both label correla-
tions and view relations for hierarchical multi-view multi-label feature selection.
Jian et al. [15] introduced MIFS, a novel multi-label informed feature selection
framework that exploits label correlations to select discriminative features across
multiple labels. In [1], authors applied two new instance selection methods, based
on the adaptation of single-label classification algorithms to multi-label learn-
ing: LSBo and LSSm. It should be noted that feature selection and instance
selection are often addressed separately, while few works combine both tasks
in single-label scenario [5,6,16,26], and to our knowledge no work has been
proposed in multi-label scenario. In addition, all works cited evaluate the corre-
lation between features and labels associated with for each instance in order to
remove only unnecessary features or instances. Unfortunately, labeled data are
often noisy and as it often exhibit dependencies, the performance of the under-
lying learning algorithms could be negatively affected [14]. For that reason, it
seems evident that label selection step may greatly contribute to improving per-
formance. To the best of our knowledge, the literature was mainly limited to
feature and/or instance selection, but there is no work that directly selects the
best labels from the original labelset, while considering feature and instance
selection simultaneously.

In this paper, we propose a novel unified framework called mFILS that com-
bines the three selection tasks (features, instances and labels) for multi-label
learning. The framework is based on l2,1-norm regularization which is performed
to evaluate the usefulness of features, instances and labels in order to select the
most relevant ones, simultaneously.

We summarize the technical contributions of this paper as follows:

1. We propose a novel framework mFILS for multi-label triple selection of fea-
tures instances and labels, simultaneously.

2. We apply l2,1-norm regularization to promote sparsity and remove irrelevant
information.

3. We conduct experiments on some known benchmark datasets to validate our
proposal with different scenarios.

2 Proposed Method: mFILS

In a multi-labeled dataset, we have n instances {x1,x2, ...,xn} and k differ-
ent labels {c1, c2, ..., ck}. We assume that X = [x1,x2, ...,xn] ∈ R

n×m be the
instance matrix and Y = [y1,y2, ...,yn] ∈ {0, 1}n×k be the label matrix. m and
k represent the size of feature vectors and the number of class labels, respec-
tively. yi = [yi1, yi2, ..., yik] ∈ {0, 1}k is a binary vector, where yij = 1 if xi is
associated with the label cj and yij = 0, otherwise. The Frobenius norm of a

Towards Multi-label Feature Selection by Instance and Label Selections 235

matrix X is denoted as ‖ X ‖F =
√∑n

i=1

∑m
j=1 x2

ij , and its l2,1-norm is denoted

as ‖ X ‖2,1=
∑n

i=1

√∑m
j=1 x2

ij .
According to [10], the multi-labeled output space Y can be decomposed to

a product of two low-dimensional nonnegative matrices V and B. The nonnega-
tive constraint is imposed on the decomposition phase since the latent semantic
matrix obtained later will be more physically interpretable [7,18].

Let V ∈ R
n×l be the low-dimensional latent semantics matrix and B ∈ R

l×k

be the coefficient matrix of latent semantics. Mathematically, the decomposition
is done by minimizing the following reconstruction error:

min
V,B

‖ Y − VB ‖2F (1)

In addition to the Eq. (1) that will guide the feature selection process, our
goal is to select the most effective labels from the original label-set in order to
reduce its size (matrix Y) and facilitate the learning task. We use the coefficient
matrix B to weight the labels. Thus, the Eq. (1) can be formulated as follows:

min
V,B

‖ Y − VB ‖2F +δ ‖ B ‖2,1 (2)

δ is a regularization parameter, used to control the sparsity of B and ‖
B ‖2,1 is the l2,1-norm of B. Then, we employ the Eq. (3) to ensure that local
geometry structures are consistent between the input space X and the reduced
low-dimensional semantics V. To be specific, if two instances are close to each
other in X, they should also show the similar characteristic in V.

1
2

n∑
i=1

n∑
j=1

Sij(Vi: − Vj:)2 = Tr(VT (Z − S)V) = Tr(VTLV) (3)

where Sij denotes the similarity matrix. Vi is the latent semantics of yi. Z
is a diagonal matrix with Zii =

∑n
j=1 Sij . L = Z − S is the graph laplacian

matrix. We model the affinity graph S by Eq. (4) according to [4],

Sij =

⎧⎨
⎩

e
− ‖xi−xj‖2

ξ2 if xi ∈ Np(xj) or xj ∈ Np(xi)
0 otherwise,

(4)

where Np(x) denotes the p-nearest neighbors of instance x. By integrating
the local geometric structure of the data, the Eq. (2) becomes:

min
V,B

‖ Y − VB ‖2F +αTr(VTLV) + δ ‖ B ‖2,1 (5)

where α represents a regularization parameter, used to control local geometry
structures.

Our second main goal in this paper is to incorporate instance selection with
feature and label selection. Therefore, we evaluate the usefulness of the features,

236 D. E. K. Mansouri and K. Benabdeslem

instances and labels at the same time and we select the most relevant ones
simultaneously.

First, feature selection term based on l2,1-norm regularization can be given
by Eq. (6) [21]. Note that the latent semantics matrix V replaces Y since it is
more able to reflect the label information.

min
W

‖ XW − V ‖2F +λ ‖ W ‖2,1 (6)

where W ∈ R
m×l and ‖ W ‖2,1 are the feature coefficient matrix and the

l2,1-norm of W, respectively. λ is a regularization parameter, used to control the
sparsity of W.

Afterwards, we incorporate a new unknown variable A into the Eq. (6) for
weighting the instances, in addition to W (associated with features). This new
variable is a strong indicator of anomalies in a dataset [27].

Let A = WTXT − VT − E, be a residual matrix where E is a random
matrix, generally assumed to be a multi-dimensional normal distribution [27].
Each column of A corresponds to a data instance, and a large norm of A(:, i)
indicates an important deviation of the i th data instance, potentially to be an
irrelevant instance [26]. Therefore, the residual matrix A can be used to realize
instance selection.

Note that the residual matrix idea is inspired by the works in [24,27].
By incorporating the instance selection, the Eq. (6) becomes:

min
W,A

‖ XW − AT − V ‖2F +λ ‖ W ‖2,1 +γ ‖ A ‖2,1 (7)

‖ A ‖2,1 is the l2,1-norm of A, and γ is introduced to control the sparsity of
A.

Based on the different aforementioned equations, the objective function of
mFILS can be finally defined as follows (Eq. (8)):

min
W,A,V,B

‖ XW − AT − V ‖2F +αTr(VTLV) + β‖ Y − VB ‖2F
+λ ‖ W ‖2,1 +γ ‖ A ‖2,1 +δ ‖ B ‖2,1

(8)

where β is used to balance the contribution of feature learning and label
decomposition.

Our mFILS framework is now suitable for the simultaneous triple selection
of features instances and labels.

Since the objective function of mFILS is not convex with respect to W, A,
V and B, jointly, and not smooth due to the l2,1-norm regularization term, it
is therefore difficult to resolve it. To settle this problem, we rely on the work
of Nie et al. [21]. We relax the terms ‖ W ‖2,1, ‖ A ‖2,1 and ‖ B ‖2,1 by
2Tr(WTDW), 2Tr(ATAT) and 2Tr(BTJB), respectively. D, T and J are a
diagonal matrices with its diagonal elements ddjj = 1

2‖W(j,:)‖2
, ttii = 1

2‖AT (:,i)‖2

and jjll = 1
2‖B(:,l)‖2

respectively.

Towards Multi-label Feature Selection by Instance and Label Selections 237

Thus, we can rewrite the objective function shown in Eq. (8) as follows:

min
W,A,V,B

‖ XW − AT − V ‖2F +αTr(VTLV) + β‖ Y − VB ‖2F
+2λTr(WTDW) + 2γTr(ATAT) + 2δTr(BTJB)

(9)

For minimizing Eq. (9), we adopt an alternating optimization over W, A, V
and B, by solving the following problems:

Problem 1: Derivative w.r.t W by fixing A, V and B to find the solution for
W (for feature selection). The optimization problem for updating W becomes:

min
W

‖ XW − AT − V ‖2F +2λTr(WTDW) (10)

The derivative w.r.t W is given as:

∂L
∂W

= 2[XT (XW) − XT (AT + V) + λDW]. (11)

Problem 2: Derivative w.r.t A by fixing W, V and B to find the solution for
A (for instance selection). The optimization problem for updating A becomes:

min
A

‖ XW − AT − V ‖2F +2γTr(ATAT) (12)

The derivative w.r.t A is given as:

∂L
∂A

= 2[AT − (XW − V) + γTAT]. (13)

Problem 3: Derivative w.r.t V by fixing W, A and B to find the solution for
V (for latent label space). The optimization problem for updating V becomes:

min
V

‖ XW − AT − V ‖2F +αTr(VTLV) + β‖ Y − VB ‖2F (14)

The derivative w.r.t V is given as:

∂L
∂V

= 2[(AT + V − XW) + αLV + β(VB − Y)BT]. (15)

Problem 4: Derivative w.r.t B by fixing W, A and V to find the solution for
B (for label selection). The optimization problem for updating B becomes:

min
B

β ‖ Y − VB ‖2F +2δTr(BTJB) (16)

The derivative w.r.t B is given as:

∂L
∂B

= 2[βVT (VB − Y) + δJB]. (17)

238 D. E. K. Mansouri and K. Benabdeslem

To ensure the nonnegative constraints of matrices V and B, we use the
projected gradient descent method [19] to project the updated solution of the
gradient descent to a bounded region. Depending on these, the update rule of
the alternating algorithm for mFILS can be summarized as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

W := W − φW
∂L
∂W

A := A − φA(∂L
∂A)T

V := P [V − φV
∂L
∂V]

B := P [B − φB
∂L
∂B]

(18)

where P [H] represents a box projection operator that maps the update H to
a bounded region in order to ensure the nonnegativity:

P [H]ij =

{
Hij if Hij ≥ 0
0 otherwise,

(19)

and φW , φA, φV and φB are stepsizes for the different rules in Eq. (18).
It is crucial to choose suitable stepsizes for the gradient descent update rules
in Eq. (18), to accelerate the convergence rate and to reduce the running time
of mFILS. In this paper, we employ Armijo rule [15] to adaptively determine
stepsizes φW , φA, φV and φB in each iteration. We summarize all the above
mathematical developments on Algorithm (1).

Algorithm 1. mFILS
Input: Data matrix X ∈ R

n×m; Label matrix Y ∈ {0, 1}n×k; Parameters:
α, β, λ, γ, δ, ξ.
Output: Top ranked features, instances and labels.

1: Initialize W, V and B randomly (V and B are initialized to be nonnegative);
2: Initialize A to zero-matrix; initialize D, T and J as identity matrices;
3: repeat
4: determine step sizes φW , φA, φV and φB with Armijo rule;
5: Update the matrices W, A, V and B according to Eq. 18)
6: Update the matrices D, T and J as ddjj = 1

2‖W(j,:)‖2
, ttii = 1

2‖AT (:,i)‖2
, jjll =

1
2‖B(:,l)‖2

, respectively.
7: until Convergence
8: Rank the features according to ‖ W(j, :) ‖2 in descending order (j = 1..m).
9: Rank the instances according to ‖ A(:, i) ‖2 in ascending order (i = 1..n).

10: Rank the labels according to ‖ B(:, l) ‖2 in descending order (l = 1..k).

Towards Multi-label Feature Selection by Instance and Label Selections 239

3 Experiments

3.1 Datasets and Compared Methods

Experiments are performed on six benchmark datasets, including: birds [3],
CAL500 [29], enron [11], genbase [8], medical [23] and scene [2], to validate
the performance of mFILS. All datasets are available in MULAN Project1.

As long as there is no method that makes the triple and simultaneous selec-
tion of instances, features and labels in multi-label setting, we compare our
mFILS with the six competitive state-of-the-art feature selection/extraction
methods for multi-label classification, including: Fisher Score (F-score) [9], CoSe-
lect [26], Robust Feature Selection (RFS) [21], Multilabel Dimensionality Reduc-
tion via Dependence Maximization (MDDM) [32], Multi-label Informed Feature
Selection (MIFS) [15] and (MDFS) Embedded multi-label feature selection tech-
nique with manifold regularization [31].

3.2 Experimental Setting

The necessary parameters for implementing mFILS include α, β, λ, γ and
δ. We use a grid search strategy to adjust these parameters from
{10−3, 10−2, 10−1, 1, 10, 102}. To model the local geometric structures, ξ and p are set
to 1 and 5, respectively. Five-fold cross-validation is performed to split of training
and testing sets. The number of selected features is varied from 5% to 30% of the
total number of features. As for the numbers of selected instances and labels, we
set them at 70% and 30%, respectively. The performance of the selected feature,
instance and label subsets were evaluated using Binary Relevance (BR) with
Ridge classifier [28]. We employ four evaluation metrics widely used in multi-label
learning for comparison, including: Area Under the Receiver Operating Charac-
teristic curve metric (AUC), Macro-average, Micro-average and Hamming loss
[28]. Note that, the higher the AUC, Macro-Average, and Micro-Average values
are, the better the classification performance is. For Hamming loss, a lower value
indicates a better classification performance.

3.3 Results

In this section, we present and discuss the obtained results. We evaluate mFILS
by incorporating the instance and label selections into the feature selection pro-
cess. As a reminder, the numbers of selected instances and labels are set at 70%
and 30%, respectively. Table 1 and Figs. (1, 2, 3) show the results of the clas-
sification performance comparison of mFILS in terms of AUC, Macro-average,
Micro-average and Hamming on six aforementioned datasets. We can make the
following observations.

– In terms of average rank, across all datasets and with different numbers of
selected features, our mFILS ranks first followed by MIFS. It means that the

1 http://mulan.sourceforge.net/datasets.html.

http://mulan.sourceforge.net/datasets.html

240 D. E. K. Mansouri and K. Benabdeslem

idea of decomposing the label information into a low-dimensional semantic
space places mFILS and MIFS in the foreground. The superior performance
of mFILS compared to MIFS is explained by the fact of modifying the feature
selection term in Eq. (6) and the latent semantics term of multi-label infor-
mation in Eq. (1), by adding the functions of instance and label importance
(see Eq. (8)).

– In terms of most evaluation metrics, and on at least five out of six of datasets,
mFILS consistently outperforms other methods. Some degradation in perfor-
mance are reported with “scene” dataset where mFILS is ranked second after
CoSelect.

In summary, in view of the very favorable results of the mFILS method, we
can safely conclude that our framework is competitive with the other compared
methods.

Table 1. Performance comparison in terms of AUC of different methods on six datasets.
The last row illustrates the average ranking of each method. The best results are bold
face.

Datasets F-score CoSelect RFS MDDM MIFS MDFS mFILS

Birds 78.95 ±0.00 58.31 ±0.03 79.13 ±0.01 77.19 ±0.01 80.46 ±0.02 68.41 ±0.01 81.89 ±0.00

CAL500 80.51 ±0.00 50.19 ±0.09 80.56 ±0.00 80.81 ±0.00 80.36 ±0.00 59.00 ±0.07 81.12 ±0.00

Enron 84.73 ±0.02 78.75 ±0.06 83.57 ±0.01 83.79 ±0.01 86.01 ±0.00 61.08 ±0.02 87.99 ±0.00

Genbase 87.72 ±0.02 81.84 ±0.03 90.42 ±0.00 48.55 ±0.23 90.36 ±0.03 93.07 ±0.09 94.24 ±0.04

Medical 89.80 ±0.00 74.01 ±0.05 81.30 ±0.02 77.60 ±0.07 90.50 ±0.00 84.95 ±0.03 91.94 ±0.02

Scene 68.55 ±0.08 92.43 ±0.03 86.87 ±0.00 71.55 ±0.05 88.92 ±0.04 83.33 ±0.01 90.10 ±0.03

Average rank 4.33 5.66 3.83 5 3 5 1.16

Fig. 1. Macro-average (↗) v.s. percentage of selected features.

Towards Multi-label Feature Selection by Instance and Label Selections 241

Fig. 2. Micro-average (↗) v.s. percentage of selected features.

Fig. 3. Hamming loss (↘) v.s. percentage of selected features.

In the following, we study the impact of changing the number of selected
labels on the performance of our proposed method. We vary the number of
selected labels from 20% to 100% of the total number of labels, and we set the
number of selected features and instances at 30% and 70%, respectively. Recall
that in previous experiments, we varied the number of selected features from 5%
to 30% of the total number of features and set the number of selected instances
and labels to 70% and 30%, respectively. Based on Fig. 4, we can conclude that

242 D. E. K. Mansouri and K. Benabdeslem

Fig. 4. Impact of label selection on the performance of mFILS with 30% of best features
and 70% of best instances.

as the number of selected labels increases, the corresponding accuracy of our
proposed method keeps practically stable. i.e., we can easily achieve better per-
formance with a reduced number of labels.

4 Conclusion and Future Works

In this paper, a novel method that includes the instance and label selections
in the feature selection process, called mFILS, has been proposed. The method
is based on the latent semantics principle of multi-labels and l2,1-norm regu-
larization. With the help of these two principles, noise, irrelevant and redun-
dant data presented at the level of features, instances or labels are considerably
reduced. Extensive experiments on different benchmark datasets up to date show
that, mFILS achieves significant and competitive performance compared to other
state-of-the-art methods.

In future works, we will extend mFILS to consider regression problems. We
will also consider the triple selection with multi-view data that can help handle
noisy and partial data for single-view triple selection.

References

1. Arnaiz-González, Á., Dı́ez-Pastor, J.F., Rodŕıguez, J.J., Garćıa-Osorio, C.: Local
sets for multi-label instance selection. Appl. Soft Comput. 68, 651–666 (2018)

2. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classifi-
cation. Pattern Recogn. 37(9), 1757–1771 (2004)

Towards Multi-label Feature Selection by Instance and Label Selections 243

3. Briggs, F., et al.: Acoustic classification of multiple simultaneous bird species: a
multi-instance multi-label approach. J. Acoust. Soc. Am. 131(6), 4640–4650 (2012)

4. Cai, D., Zhang, C., He, X.: Unsupervised feature selection for multi-cluster data.
In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 333–342 (2010)

5. Derrac, J., Garćıa, S., Herrera, F.: Ifs-coco: instance and feature selection based on
cooperative coevolution with nearest neighbor rule. Pattern Recogn. 43(6), 2082–
2105 (2010)

6. Derrac, J., Triguero, I., Garćıa, S., Herrera, F.: Integrating instance selection,
instance weighting, and feature weighting for nearest neighbor classifiers by coevo-
lutionary algorithms. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(5),
1383–1397 (2012)

7. Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-
factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 126–135 (2006)

8. Diplaris, S., Tsoumakas, G., Mitkas, P.A., Vlahavas, I.: Protein classification
with multiple algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS,
vol. 3746, pp. 448–456. Springer, Heidelberg (2005). https://doi.org/10.1007/
11573036 42

9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New Jersey
(2012)

10. Dumais, S.T.: Latent semantic analysis. Ann. Rev. Inform. Sci. Technol. 38(1),
188–230 (2004)

11. Goldstein, J., Kwasinksi, A., Kingsbury, P., Sabin, R.E., McDowell, A.: Annotating
subsets of the enron email corpus. In: CEAS (2006)

12. Huang, J., Li, G., Huang, Q., Wu, X.: Joint feature selection and classification for
multilabel learning. IEEE Trans. Cybern. 48(3), 876–889 (2017)

13. Huang, S.J., Gao, W., Zhou, Z.H.: Fast multi-instance multi-label learning. In:
Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

14. Jian, L., Li, J., Liu, H.: Exploiting multilabel information for noise-resilient feature
selection. ACM Trans. Intell. Syst. Technol. (TIST) 9(5), 1–23 (2018)

15. Jian, L., Li, J., Shu, K., Liu, H.: Multi-label informed feature selection. In: IJCAI,
pp. 1627–1633 (2016)

16. Kuncheva, L.I., Jain, L.C.: Nearest neighbor classifier: simultaneous editing and
feature selection. Pattern Recogn. Lett. 20(11–13), 1149–1156 (1999)

17. Lapin, M., Hein, M., Schiele, B.: Analysis and optimization of loss functions for
multiclass, top-k, and multilabel classification. IEEE Trans. Pattern Anal. Mach.
Intell. 40(7), 1533–1554 (2017)

18. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In:
Advances in Neural Information Processing Systems, pp. 556–562 (2001)

19. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural
Comput. 19(10), 2756–2779 (2007)

20. Lin, Y., Hu, Q., Liu, J., Duan, J.: Multi-label feature selection based on max-
dependency and min-redundancy. Neurocomputing 168, 92–103 (2015)

21. Nie, F., Huang, H., Cai, X., Ding, C.H.: Efficient and robust feature selection via
joint l2, 1-norms minimization. In: Advances in Neural Information Processing
Systems, pp. 1813–1821 (2010)

22. Paniri, M., Dowlatshahi, M.B., Nezamabadi-pour, H.: Mlaco: A multi-label feature
selection algorithm based on ant colony optimization. Knowl.-Based Syst. 192,
105285 (2020)

https://doi.org/10.1007/11573036_42
https://doi.org/10.1007/11573036_42

244 D. E. K. Mansouri and K. Benabdeslem

23. Pestian, J., et al.: A shared task involving multi-label classification of clinical free
text. In: Biological, Translational, and Clinical Language Processing, pp. 97–104
(2007)

24. She, Y., Owen, A.B.: Outlier detection using nonconvex penalized regression. J.
Am. Stat. Assoc. 106(494), 626–639 (2011)

25. Shen, X., Liu, W., Tsang, I.W., Sun, Q.S., Ong, Y.S.: Multilabel prediction via
cross-view search. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4324–4338 (2017)

26. Tang, J., Liu, H.: Coselect: feature selection with instance selection for social media
data. In: Proceedings of the 2013 SIAM International Conference on Data Mining,
pp. 695–703. SIAM (2013)

27. Tong, H., Lin, C.Y.: Non-negative residual matrix factorization with application
to graph anomaly detection. In: Proceedings of the 2011 SIAM International Con-
ference on Data Mining, pp. 143–153. SIAM (2011)

28. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data
Warehouse. Min. (IJDWM) 3(3), 1–13 (2007)

29. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and
retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process.
16(2), 467–476 (2008)

30. Yang, S.H., Zha, H., Hu, B.G.: Dirichlet-bernoulli alignment: a generative model for
multi-class multi-label multi-instance corpora. In: Advances in Neural Information
Processing Systems, pp. 2143–2150 (2009)

31. Zhang, J., Luo, Z., Li, C., Zhou, C., Li, S.: Manifold regularized discriminative
feature selection for multi-label learning. Pattern Recogn. 95, 136–150 (2019)

32. Zhang, Y., Zhou, Z.H.: Multilabel dimensionality reduction via dependence maxi-
mization. ACM Trans. Knowl. Discovery Data (TKDD) 4(3), 1–21 (2010)

33. Zhang, Y., Wu, J., Cai, Z., Philip, S.Y.: Multi-view multi-label learning with sparse
feature selection for image annotation. IEEE Trans. Multimedia 22(11), 2844–2857
(2020)

FARF: A Fair and Adaptive Random
Forests Classifier

Wenbin Zhang1(B), Albert Bifet2,3, Xiangliang Zhang4, Jeremy C. Weiss5,
and Wolfgang Nejdl6

1 University of Maryland, Baltimore County, MD 21250, USA
wenbinzhang@umbc.edu

2 University of Waikato, Hamilton 3216, New Zealand
abifet@waikato.ac.nz

3 Télécom Paris, Institut Polytechnique de Paris, Palaiseau 91764, France
4 King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

xiangliang.zhang@kaust.edu.sa
5 Carnegie Mellon University, Pittsburgh, PA 15213, USA

jeremyweiss@cmu.edu
6 L3S Research Center and Leibniz University Hannover, 30167 Hannover, Germany

nejdl@L3S.de

Abstract. As Artificial Intelligence (AI) is used in more applications,
the need to consider and mitigate biases from the learned models has
followed. Most works in developing fair learning algorithms focus on the
offline setting. However, in many real-world applications data comes in
an online fashion and needs to be processed on the fly. Moreover, in
practical application, there is a trade-off between accuracy and fairness
that needs to be accounted for, but current methods often have multiple
hyper-parameters with non-trivial interaction to achieve fairness. In this
paper, we propose a flexible ensemble algorithm for fair decision-making
in the more challenging context of evolving online settings. This algo-
rithm, called FARF (Fair and Adaptive Random Forests), is based on
using online component classifiers and updating them according to the
current distribution, that also accounts for fairness and a single hyper-
parameters that alters fairness-accuracy balance. Experiments on real-
world discriminated data streams demonstrate the utility of FARF.

1 Introduction

AI-based decision-making systems are routinely being used across a wide
plethora of online (e.g., the targeting of products, the setting of insurance rates)
as well as offline services (e.g., the issuing of mortgage approval, the allocation of
health resource). As AI becomes integrated into more systems, various AI-based
discriminatory incidents have also been observed and reported [3,18,24].

A large number of methods have been proposed to address this issue, ranging
from discrimination discovery to discrimination elimination and interpretation
in order to provide ethical and accurate decisions [28,30]. These studies have

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 245–256, 2021.
https://doi.org/10.1007/978-3-030-75765-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_20

246 W. Zhang et al.

typically adopted one or more of the three following strategies: i) Pre-processing
solutions aim to eliminate discrimination at the data level, including the most
popular ones massaging [21] and reweighting [9]. ii) In-processing approaches
mitigate bias by modifying the algorithm design [4,22]. As a recent example,
the Bayesian probabilistic modeling is leveraged to account for fairness [15]. iii)
Post-processing techniques consist of a-posteriori adjusting the output of the
model [18,19]. For instance, the decision boundary for the protected group is
shifted based on the theory of margins for boosting [14].

However, most of these methods tackle fairness as a static problem, i.e., that
all the data is available at training time. This does not satisfy situations that
may require online learning due to a continuously drifting data distribution, or
can not computationally afford to process all of their data in memory [29]. There
is very little work in the area of online learning that includes any definition of
fairness as a goal of the method [20,27]. Our work seeks to fill this void.

Current methods also lack a mechanism for easily adjusting the trade-off that
exists between accuracy and fairness [23]. For instance, the “business necessity”
clause [2] states that a certain degree of disparate impact discrimination can be
allowed for the sake of meeting certain performance-related business constrains,
on the condition that such decision-making causes the least disparate impact
when fulfilling the current business needs. If an initial model fails to meet the
discrimination or accuracy requirement for practical use, we would prefer there
exist a single parameter with a direct and predictable impact on this trade-off.
However, current studies solely focus on preserving prediction performance while
minimizing discrimination, and do not allow for fine-grained control between
fairness and accuracy [3,30].

To overcome these issues we propose FARF, an online statistical parity aware
Random Forest (RF) model. Like prior online RF algorithms, it is built from a
sampling approach for the ensemble creation. In creating this fair variant of RF,
we develop a number of contributions: i) We study a new research direction of
fairness-aware learning considering concept and fairness drift. We then propose
FARF, a fairness-aware and fairness-updated ensemble method to tackle online
fairness. ii) We study another research direction of fairness-aware learning with
customized control, and design a clear mechanism for fine-grained fairness con-
trol, providing more flexibility than state of the art. iii) We theoretically analyze
the inadequacy of current sampling approaches in fairness studies and introduce
a new effective sampling direction with experimental verification. iv) Extensive
experimental evaluation on real-world datasets demonstrates the capability of
the proposed model in online settings.

2 Problem Definition

An online stream D consists of a sequence of instances arriving over time, poten-
tially infinite. One instance xt at time step t in D is described in a feature space
A = {A1, ..., An} within respective domains dom(Ai) and its class label Ct. An
online classifier is trained incrementally by taking instances up to time t to pre-
dict Ct+1 for the unlabeled instance arriving at time step t + 1. Once Ct+1 is

FARF: A Fair and Adaptive Random Forests Classifier 247

predicted, the actual class label of xt+1 becomes available and can be used for
model update, known as prequential evaluation [16].

We assume one of the attributes A is a special attribute S, referred to as
sensitive attribute (e.g., gender) with a special value s ∈ dom(S) referred to as
sensitive value (e.g., female), from which the discriminated group is defined. For
simplicity, we consider binary classification tasks assuming dom(C) ∈ {+,−}
and S also is binary with dom(S) ∈ {p, u} (i.e., protected and unprotected
respectively). Four fairness related groups can therefore be distinguished com-
bining S and C. These groups are p+, p− and u+, u− representing protected
group (e.g., female) receiving positive and negative classification and unprotected
group (e.g., male) receiving positive and negative classification, respectively.

Although more than twenty notions have been proposed to measure the dis-
criminative behavior of AI models [26], formalizing fairness is a hard topic per
se, and there is no consensus which measure is more versatile than others [3].
In addition, what constitutes “fair” or “discriminative” is dependent on many
factors and context, as well as philosophical questions that have been researched
long before the AI communities’ interest [7]. In this work, we adopt the statistical
parity because American user studies have found that it is a measure compatible
with many users’ intuition of what constitutes a “fair” decision [25], expecting a
wide spectrum of applications of our method. Briefly, statistical parity examines
whether the probability of being granted for a positive benefit (e.g., the provision
of health care) is the same for both protected and unprotected groups. While
statistical parity is designed for offline fairness, the discriminative behavior of
the AI model up to time t in the online setting, which we term as accumulated
statistical parity, can be analogically defined as:

Disc(Dt) =
u+
t

u+
t + u−

t

− p+
t

p+
t + p−

t

(1)

where u+
t , u−

t , p+
t and p+

t are up to time t the number of individuals from
respective groups.

People from the protected group can claim they are discriminated up to
time t when more of them are rejected a benefit comparing to the people of
the unprotected group. The aim of online fairness-aware learning is therefore
to provide real time accurate but also fair predictions from the massive data
streams, where D needs to be processed on the fly without the need for storage
and reprocessing, and data distribution including Disc(Dt) could also evolve
over time.

3 The Fair and Adaptive Random Forests

Ensemble learning combines multiple base learners to generate more robust
descriptions. Three common strategies are bagging, boosting and random forests.
Specific to online learning, there are multiple versions of bagging and boosting

248 W. Zhang et al.

that are part of the state of the art ensemble methods for evolving online learn-
ing [6,11], while random forests for non-stationary data stream are currently rep-
resented by [1,17], which also show random forests approaches have a superior
performance comparing to bagging and boosting methods. One possible reason is
that training on sampled data and selected features for splitting generalize more
than adding more random weights to instances by bagging and adding weights
to incorrectly classified instances by boosting. In this paper, we follow the idea
of online random forests [1,17] as a powerful tool to increase the generalization
and fairness when constructing an ensemble of classifiers.

Specifically, the proposed Fair and Adaptive Random Forests (FARF) is an
adaptation of the classical random forest algorithm [8], and can also be viewed
as an updated and fairness-aware version of the previous attempts to perform
this adaptation [1,17]. In comparison to these attempts, FARF proposes a the-
oretically sound and fairness-oriented sampling (Sect. 3.2), an updated adaptive
strategy (Sect. 3.3) as well as employing a fairness-aware base learner also for
ensemble diversity (Sect. 3.1) to cope with discriminatory evolving data streams
collectively. The following subsections elaborate these three improvements one
by one.

3.1 Diversified Fairness-Aware Base Learner

Most of the existing online ensemble approaches [1,17] induce their base learners
based on the Hoeffding Tree (HT) algorithm [13], which exploits the fact that
an optimal splitting attribute can be determined by a small sample and the
learned model is asymptotically nearly identical to that of a conventional non-
incremental learner. However, such induction is based on the information gain
(IG) aiming to optimize for predictive performance and does not account for
fairness. In our previous work [27], the fair information gain (FIG) is proposed
as an alternative tree splitting criterion to address the discrimination issue of
IG, formally put,

FIG(D,A) =
{

IG(D,A), if FG(D,A) = 0
IG(D,A) × FG(D,A), otherwise (2)

where fairness gain (FG) measures the discrimination difference due to the
splitting and is formulated as:

FG(D,A) = |Disc(D)| −
∑

v∈dom(A)

|Disc(Dv)| (3)

where D is the collection of instances and A represents the attribute that under
evaluation, Dv, v ∈ dom(A) are the partitions induced by A, and the resultant
discrimination value is assessed according to Eq. (1). In FIG, multiplication is
favoured, when combining IG and FG as a conjunctive objective, over other
operations for example addition as the values of these two metrics could be in
different scales, and in order to promote fair splitting which results in a reduction
in the discrimination after split, i.e., FG is a positive value.

FARF: A Fair and Adaptive Random Forests Classifier 249

In FARF, other than the discrimination reduction merit similar to the previ-
ous fairness-driven IG reformulation efforts [22,27], such splitting criterion also
detects local discrimination to increase diversity for the sake of maximizing the
accumulated fairness. Specifically, each partition induced by the attribute A con-
tributes equally to the accumulated fairness of A regardless the number and size
of branches. In the context of ensemble learning, diversity of the each individual
classifier plays a key role. Increasing diversity by eyeing on local discrimina-
tion, i.e., identifying certain attribute values with a high discrimination rate but
small in representation size, could therefore induce diversified base classifiers,
reflecting different discrimination representation and improving the final ensem-
ble capability. Such emphasis can also be regarded as selecting those attributes
that otherwise would not be used for splitting thus adding more randomization
for the construction of the tree.

This diversified fairness-aware learner therefore learns different attribute
value level discrimination during the tree construction to maximize the accu-
mulated fairness, and is used as the base learner of FARF. To align with such
diversity-promoting strategy, different from the base learner of the previous
ensemble approaches [1,17], FARF also does not perform early tree pruning
for its base learners, and a random subset of fair features are selected for new
split attempts to further encourage diversity.

3.2 Fairness-Aware Sampling

In batch random forests, each base classifier is trained on a bootstrap of the entire
training set. However, such bootstrap replicates sampling strategy is infeasible in
online setting as each training instance needs to be processed once “on arrival”
without reprocessing. Oza et al. [6] simulate the construction of bootstrap repli-
cates in online context by sending K copies of each training instance to update
the base classifier accordingly, where K is a suitable Poisson random variable.
Considering the arbitrary length of online stream, we follow [6] that found setting

K = Poisson(6) (4)

to have the best accuracy by increasing diversity of the base learners. Oth-
ers have consistently found this approach effective in accuracy and computing
requirements [17]. Then the latest arriving instances can be classified by voting
of the base learners, the same way in online and batch random forests. We will
propose two different methods of altering the sampling of K to encourage fair
tree induction.

Sampling techniques have been studied in recent fairness-aware learning
approaches to alleviate discrimination [4,19]. In these studies, they exclusively
concentrate on over-sampling the protected positive group through differ-
ent heuristics. However, we argue that such interventions are insufficient espe-
cially in online setting for two reasons. First, the protected positive group is
normally the under-represented minority. Solely focusing on sparse representa-
tion might not have significant bias mitigation effect. Such ineffectiveness is fur-
ther exacerbated in online setting as instances from the protected positive group

250 W. Zhang et al.

could discontinue for a certain period of time. Second, over-sampling protected
positive group in random forest can be regarded as minority over-sampling
with replacement. Previous research has noted that it does not significantly
improve minority class recognition [10]. We interpret the underlying effect in
terms of spreading the decision regions of protected positive group to mitigate
biases. Essentially, as protected positive group is over-sampled by increasing
amounts, the effect is to learn qualitatively similar but more specific regions that
overfit the protected positive group rather than spreading its decision boundary
into the unprotected positive group region.

Therefore, instead of over-sampling protected positive group, our ensemble
learning method under-samples the unprotected positive group to miti-
gate the discrimination. We design the update rule for instance weight for sam-
pling as:

fairK(xt) =
{

Disc(Dt) ∗ K, if xt ∈ u+&Disc(Dt) > 0
K, otherwise (5)

where Disc(Dt) measures the accumulated discrimination up to the current
instance at time t in the stream and K is the Poisson weight defined in Eq. (4).
When the current accumulated discrimination is positive (Disc(Dt) > 0), i.e.,
protected group has been discriminated, and the current instance is a member
of unprotected positive group, the sampling weight fairK(xt) is down-scaled for
the current instance xt, making it to be Disc(Dt) proportional of Poisson weight
K. When there is no membership discrimination against the protected group or
the current instance belongs to unprotected group, fairK(xt) is equivalent to
the Poisson weight K. This allows our models to learn a more effective decision
surface for the unprotected group, while avoiding prior shortcomings to sampling
based fairness.

Other than exclusively focusing on over-sampling the protected positive
group, the previous fair sampling studies also require additional neighborhood
information through KNN [4] and clustering [19]. On the contrary, sampling
in our work is directly defined in terms of the targeting discrimination. While
enjoying simplicity, this also opens the door to flexible control on the degree of
fairness. Specifically, we present a second method of altering the sampling ratio
K that allows the user to control a trade off between model accuracy and fairness
by manually customizing the re-scaling ratio in fairK to manage the trade-off.
This is done with a fixed under-sampling weight α that is incorporated into an
alternative equation customK as:

customK(xt) =
{

α ∗ K, if xt ∈ u+

K, otherwise (6)

where α is the tunable parameter adjusting the sampling ratio. Note that like
fairK, the under-sampling only occurs for positive instances of the unprotected
group. Such flexible control on the degree of fairness instantiates application-
wise fairness-aware learning to accommodate scenarios such as the “business
necessity” clause [2].

FARF: A Fair and Adaptive Random Forests Classifier 251

3.3 FARF Algorithm

Online fairness additionally requires learning algorithms process each instance
upon arrival as well as dealing with non-stationary data distribution indicating
concept drifts and fairness implications. That is to say, the relationship between
sensitive attribute and class variable might also change over time. A stream
classifier pays attention to the boundary evolution but ignores fairness drift.
To this end, FARF encapsulates the capability of fairness drift detection and
adaptation as well as standby trees and weighted voting to address online fairness
comprehensively.

Ensemble learning has been used as a powerful tool by resetting under-
performing base learners to adapt to change quickly. The conventional approach
resets base learners the moment a drift is detected [6]. However, such reseting
could be ineffective since the reseted learner cannot have a positive impact on
the ensemble process as it has not been well trained. To this end, FARF employs
a more permissive threshold to detect potential drifts and builds standby trees
for ensemble members who detect such drifts. The standby trees are trained
along the ensemble without intervening the ensemble prediction, and appear on
the stage when they outperform their respective ensemble members.

The ensemble design of FARF also offers space for different change detec-
tors being incorporated. One possible detector is ADWIN [5], which recomputes
online whether two “large enough” subwindows of the most recent data exhibit
“distinct enough” averages, and the older portion of the data is dropped when
such distinction is detected. Different from the previous non-stationary stud-
ies [11,17], FARF employs ADWIN to detect changes in accuracy but also fair-
ness, reflecting both concept and fairness drifts. That is to say drift is detected
when either of them evolves.

FARF also weights the prediction of each base learner in proportion to their
prequential evaluation [16] fairness since its last reset, reflecting the tree per-
formance on the current fairness distribution. Such weighting scheme enjoys the
merit of free of predefined window or fading factor to estimate fairness as in other
stream ensembles [1,17] (their estimation focus is accuracy to reflect concept
drift though). Note that FARF prioritizes fairness over accuracy by weighting
and replacing ensemble members according to fairness. Algorithm 1 shows the
sketch of FARF.

For each new instance (line 2), FARF first decides its weight according to
fairness-aware sampling based on its fairness information and the accumulated
discrimination up to the current instance (line 5–7). When customizable fairness
is deployed, the weight is set according to customized sampling ratio (line 3–4).
FARF then trains each ensemble member (line 9) with this weight (line 10).
When a change is detected (line 11) in one ensemble member who does not have
a standby tree (line 12), a respective standby tree is created (line 13), otherwise
performances between the ensemble member and its respective standby tree are
compared (line 15) to decide ensemble membership replacement if needed (line
16). All standby trees are also trained along the ensemble (line 21–22). The
weighted vote can be performed at anytime to predict the class of an instance

252 W. Zhang et al.

Algorithm 1: FARF Leaning Algorithm
Input: a discriminated data stream D, the number of base models M , optional

sampling ratio α
1 Init base models hm for all m ∈ {1, 2, ..., M}
2 for each instance xt in D do
3 if α specified then
4 wt ← customK(xt) according to Equation (6);
5 else
6 Calculate Disc(Dt) according to Equation (1);
7 wt ← fairK(xt) according to Equation (5);

8 end
9 for m= 1, 2, ..., M do

10 Update hm with xt with weight wt;
11 if ADWIN detects a change in fairness or accuracy in hm then
12 if standby learner h′

m = ∅ then
13 Build a new diversified fair standby learner h′

m;
14 else
15 if |Disc(hm)| > |Disc(h′

m)| then
16 Replace hm with h′

m;
17 end

18 end

19 end

20 end
21 for all h′

m do
22 Update h′

m with xt with weight wt;
23 end

24 end

25 anytime output: h(xt) = argmaxc∈C

∑M
m=1 W (hm(xt) = μm(c))

(line 25). Note that the replacement and voting could also be performed from
the accuracy perspective, i.e., replacing the ensemble member when its error is
higher and weighted vote on accuracy instead. FARF does fairness replacement
and voting in order to prioritize fairness at these steps.

4 Experimental Evaluation

In the case of static datasets and evaluation, accepted benchmarks for evalu-
ating fairness mitigating approaches are limited in number [3]. With respect
to the highly under-explored online fairness, this challenge is further magnified
by the drift and the demanding requirement of the number of instances con-
tained therein. We evaluate our approach on the datasets used in the recent
works of this research direction [20,27], the Adult and the Census datasets [12]
both targeting the learning task of determining whether a person earns more
than 50K dollars per annum. We follow the same options in our experiments
for fair comparison including the selection of sensitive attribute “gender” with

FARF: A Fair and Adaptive Random Forests Classifier 253

female being the sensitive value and processing them in sequence. One difference
is that instead of randomizing the order, we order the datasets by the “race”
attribute for both datasets to better simulate concept drift and possibly increase
the learning bias. The previous discussed prequential evaluation is employed for
evaluation.

4.1 Benchmark Performance

This section first investigates the theoretically designed fairness-aware and
fairness-updated capabilities of FARF. For comparison, we implemented two
recently proposed fair online learners, FEI [20] and FAHT [27]. While the paper
of FEI did not compare with any baselines, FAHT studied two. We compare with
these two baselines therein as well, namely the Hoeffding Tree (HT) and KHT in
which the fairness-aware splitting criterion proposed in [22] is embedded into HT.
We also trained the state of the art concept-adapting ensemble learner ARF [17]
as another baseline. Other competing fairness methods, including recent pro-
posed fairness ensemble methods which require multiple full data scan, are not
considered as none of them can be transferred to online settings. All methods
are trained the same way for fair comparison. Relevant results on all datasets
are shown in Table 1. Note that since accuracy can be misleading for imbalanced
class distributions, we also report Kappa statistics [16].

Table 1. The predictive performance-vs-discrimination between FARF and baseline
models. Best results in bold, second best in italics.

Methods
Metric Adult dataset Census dataset

Disc% Acc% Kappa% Disc% Acc% Kappa%
HT 24.14 82.16 68.15 6.61 93.11 87.54
KHT 24.24 82.43 67.2 6.74 93.26 87.12
FAHT 17.20 81.62 70.48 3.63 93.06 88.14
ARF 24.17 84.51 78.15 6.64 94.18 90.41

FEI 23.06 74.27 54.27 6.64 80.06 84.27
FARF 8.89 84.19 77.54 0.07 94.83 90.33

As shown in Table 1 our new FARF method dominates all other baselines in
terms of minimizing discrimination, and is best of second-best by both Accuracy
and Kappa scores in all other cases. We note that when second best FARF is
still highly competitive, being at most 0.78% within the top performer. This is
a desirable trade-off since FARF reduced the discrimination score by a factor of
1.9× and 51.8× for Adult and Census dataset, respectively.

4.2 Accuracy-Fairness Control

The design of FARF provides a clear mechanism to manage the trade-off between
fairness and accuracy. This can be necessary when an initial model does not meet

254 W. Zhang et al.

one of these requirements, allowing the end-user to make adjustments. FARF
controls thus with the α parameter. As α is in proportion to accuracy, increasing
its value leads to a higher accuracy at the expense of a higher discrimination.
Such expected trend is clear from the results visualized in Fig. 1. Clients can
therefore accommodate their needs according to their respective constraints.

Fig. 1. The predictive performance and accumulated discrimination trade-off fined-
grained by the tunable parameter α ranging from 0.3 to 1.5 with step size 0.3.

The x-axis of the above figure is with respect to the amount of discrimination
that is present (larger values indicate more discrimination), and the y-axis is the
predictive accuracy (larger is more accurate). With respect to both accuracy
and Kappa scores we see a monotonic behavior with respect to the α parameter.
This means it behaves as we desire: a simple and direct relationship controlling
the trade-off between accuracy and statistical parity. This makes it easy to use,
compared to most methods that have multiple parameters that all need to be
adjusted to achieve a satisficing trade-off [23].

4.3 Justification of Sampling Component in FARF

Recent fairness-aware learning approaches employ sampling techniques to mit-
igate bias, which exclusively focus on over-sampling protected positive group
through different heuristics. We theoretically discussed the drawbacks of these
methods (c.f., Sect. 3.2). This section provides experimental justification and
verifies our choice to instead under sample the protected positive group and
that it is critical to our results. We perform two ablations to confirm this by
replacing our sampling with: 1) over-sampling protected positive group, and 2)
over-sampling protected positive group and under-sampling unprotected positive
group. All other components of our approach remain the same so that we can
isolate our sampling approach as the critical factor in results. These two types of
ensemble are denoted as FARFS− and FARFS−+ respectively in comparison
with RF, which refers to random forests without sampling intervention, and our
proposed FARF. The results are shown in Table 2.

FARF: A Fair and Adaptive Random Forests Classifier 255

Table 2. The predictive performance-vs-discrimination comparison between different
sampling strategies. Best results in bold second best in italics.

Methods
Metric Adult dataset Census dataset

Disc% Acc% Kappa% Dis% Acc% Kappa%
RF 16.32 84.31 78.05 1.34 94.13 90.37

FARFS− 19.36 83.26 73.47 1.10 94.17 90.24
FARFS−+ 10.53 81.64 72.49 0.45 93.95 89.15
FARF 8.89 84.19 77.54 0.07 94.83 90.33

As can be seen FARF is the only method that consistently obtains accuracy
near that of an unconstrained Random Forest. At the same time, neither app-
roach is able to reach discrimination rates as low as FARF. This shows that
over-sampling approaches of prior fairness studies are not as effective as our
under-sampling based approach.

5 Conclusions

Our work has proposed the first online version of Random Forests with fairness
constraints. Our design includes a mechanism for altering the trade off between
accuracy and fairness so that users can adjust it easily toward their specific
applications. In doing so we have show positive results compared to alternative
methods available, without compromising on the desirable properties of online
Random Forests.

References

1. Abdulsalam, H., Skillicorn, D.B., Martin, P.: Classifying evolving data streams
using dynamic streaming random forests. In: Bhowmick, S.S., Küng, J., Wagner,
R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 643–651. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85654-2 54

2. Barocas, S., Selbst, A.D.: Big data’s disparate impact. Calif. Law Rev. 104(3), 671
(2016)

3. Beutel, A. et al.: Putting fairness principles into practice: challenges, metrics, and
improvements. In: AIES (2019)

4. Bhaskaruni, D., Hu, H., Lan, C.: Improving prediction fairness via model ensemble.
In: ICTAI, pp. 1810–1814 (2019)

5. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing.
In: SDM, pp. 443–448 (2007)

6. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams.
In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010.
LNCS (LNAI), vol. 6321, pp. 135–150. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15880-3 15

7. Binns, R.: Fairness in machine learning: Lessons from political philosophy. In Con-
ference on Fairness, Accountability and Transparency, pp. 149–159 (2018)

https://doi.org/10.1007/978-3-540-85654-2_54
https://doi.org/10.1007/978-3-642-15880-3_15
https://doi.org/10.1007/978-3-642-15880-3_15

256 W. Zhang et al.

8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
9. Calders, T., Kamiran, F., Pechenizkiy, M.: Building classifiers with independency

constraints. In: ICDMW, pp. 13–18 (2009)
10. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic

minority over-sampling technique. JAIR 16, 321–357 (2002)
11. Chen, S.-T., Lin, H.-T., Lu, C.-J.: An online boosting algorithm with theoretical

justifications. In: ICML, pp. 1873–1880 (2012)
12. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017)
13. Domingos, P., Hulten, G.: Mining high-speed data streams. In: KDD, pp. 71–80.

ACM (2000)
14. Fish, B., Kun, J., Lelkes, Á.D.: A confidence-based approach for balancing fairness

and accuracy. In: SDM, pp. 144–152 (2016)
15. Foulds, J.R., Islam, R., Keya, K.N., Pan, S.: Bayesian modeling of intersectional

fairness: the variance of bias. In: SDM, pp. 424–432 (2020)
16. Gama, J.: Knowledge discovery from data streams. Chapman and Hall/CRC, Boca

Raton (2010)
17. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classifi-

cation. Mach. Learn. 106(9), 1469–1495 (2017). https://doi.org/10.1007/s10994-
017-5642-8

18. Hardt, M., Price, E., Srebro, N., et al.: Equality of opportunity in supervised
learning. In: Advances in Neural Information Processing Systems, pp. 3315–3323
(2016)

19. Iosifidis, V., Fetahu, B., Ntoutsi, E.: Fae: a fairness-aware ensemble framework. In:
IEEE International Conference on Big Data (Big Data), pp. 1375–1380 (2019)

20. Iosifidis, V., Tran, T.N.H., Ntoutsi, E.: Fairness-enhancing interventions in stream
classification. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G.,
Tjoa, A.M., Khalil, I. (eds.) DEXA 2019. LNCS, vol. 11706, pp. 261–276. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-27615-7 20

21. Kamiran, F., Calders, T.: Classifying without discriminating. In: 2nd International
Conference on Computer, Control and Communication, pp. 1–6 (2009)

22. Kamiran, F., Calders, T., Pechenizkiy, M.: Discrimination aware decision tree
learning. In: ICDM, pp. 869–874 (2010)

23. Kleinberg, J., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair deter-
mination of risk scores. In: FAT ML Workshop (2016)

24. Meyer, D.: Amazon reportedly killed an AI recruitment system because it couldn’t
stop the tool from discriminating against women. fortune (10 October 2018)

25. Srivastava, M., Heidari, H., Krause, A.: Mathematical notions vs. human percep-
tion of fairness: a descriptive approach to fairness for machine learning. In: KDD,
pp. 2459–2468 (2019)

26. Verma, S., Rubin, J.: Fairness definitions explained. In: 2018 IEEE/ACM Interna-
tional Workshop on Software Fairness (FairWare), pp. 1–7. IEEE (2018)

27. Zhang, W., Ntoutsi, E.: Faht: an adaptive fairness-aware decision tree classifier.
In: IJCAI, pp. 1480–1486 (2019)

28. Zhang, W., Tang, X., Wang, J.: On fairness-aware learning for non-discriminative
decision-making. In: ICDMW, pp. 1072–1079. IEEE (2019)

29. Zhang, W., Wang, J.: A hybrid learning framework for imbalanced stream classi-
fication. In: 2017 IEEE International Congress on Big Data (BigData Congress),
pp. 480–487. IEEE (2017)

30. Zliobaite, I.: A survey on measuring indirect discrimination in machine learning.
arXiv preprint arXiv:1511.00148 (2015)

https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1007/978-3-030-27615-7_20
http://arxiv.org/abs/1511.00148

Sparse Spectrum Gaussian Process
for Bayesian Optimization

Ang Yang(B), Cheng Li, Santu Rana, Sunil Gupta, and Svetha Venkatesh

Deakin University, Geelong, Australia

Abstract. We propose a novel sparse spectrum approximation of Gaus-
sian process (GP) tailored for Bayesian optimization (BO). Whilst the
current sparse spectrum methods provide desired approximations for
regression problems, it is observed that this particular form of sparse
approximations generates an overconfident GP, i.e., it produces less epis-
temic uncertainty than the original GP. Since the balance between the
predictive mean and variance is the key determinant to the success of
BO, the current methods are less suitable for BO. We derive a new reg-
ularized marginal likelihood for finding the optimal frequencies to fix
this overconfidence issue, particularly for BO. The regularizer trades off
the accuracy in the model fitting with targeted increase in the predictive
variance of the resultant GP. Specifically, we use the entropy of the global
maximum distribution (GMD) from the posterior GP as the regularizer
that needs to be maximized. Since the GMD cannot be calculated ana-
lytically, we first propose a Thompson sampling based approach and then
a more efficient sequential Monte Carlo based approach to estimate it.
Later, we also show that the Expected Improvement acquisition function
can be used as a proxy for it, thus making the process further efficient.

1 Introduction

Bayesian optimization (BO) is a leading method for global optimization for
expensive black-box functions [1–3]. It is widely used in hyperparameter tun-
ing of massive neural networks [4], some of which can take days to train. It has
also been used for optimization of physical products and processes [5] where
one experiment can cost days, and experiments can also be expensive in terms
of material cost. However, there could be scenarios when a large number of
observations is available from priors or during the experiments. For example, in
transfer learning, where many algorithms [6,7] pool existing observations from
source tasks together for use in the optimization of a target task. Then even
though the target function is expensive, the number of observations can be large
if the number of source tasks is large and/or the number of observations from
each source is large. Another scenario where we may have a large number of
observations is when we deal with optimization of objective functions which are
not very costly. For example, consider the cases when BO is performed using
simulation software. They are often used in the early stage of a product design

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 257–268, 2021.
https://doi.org/10.1007/978-3-030-75765-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_21

258 A. Yang et al.

process to reduce a massive search space to a manageable one before real prod-
ucts are made. Whilst evaluation, a few thousands may be feasible, but millions
are not because each evaluation can still take from several minutes to hours. We
term this problem as a semi-expensive optimization problem. Such a problem
cannot be handled by the traditional global optimizers which often require more
than thousands of evaluations. Bayesian optimization will also struggle, because
its main ingredient, Gaussian process (GP) does not scale well beyond few hun-
dreds of observations. In this paper, we address the scalability issue of GP for
BO in such scenarios where a large number of observations appear naturally.

The scalability issue for Bayesian optimization has been previously addressed
in two main ways: 1) by replacing GP with a more scalable Bayesian model, e.g.
using Bayesian neural network [8] or random forest [9], or 2) by making sparse
approximation of the full GP. The latter is often desirable as it still maintains
the principled Bayesian formalism of GP. There are many sparse models in the
literature, such as fully independent training conditional (FITC) [10,11] which
induces pseudo inputs to approximate the full GP, and variational approxima-
tion (VFE) [12] which learns inducing inputs and hyperparameters by minimiz-
ing the KL divergence between the true posterior GP and an approximate one.
Another line of work involves approximating a stationary kernel function using a
sparse set of frequencies in its spectrum domain representation, e.g., sparse spec-
trum Gaussian process (SSGP) [13]. These methods suffer from either variance
underestimation (i.e. overconfidence) [10,13] or overestimation [12] and thus may
hamper BO as the balance between predictive mean and variance is important
to the success of BO. Recently, [14] has proposed variational Fourier features
(VFF), which combines variational approximation and spectral representation
of GP together and plausibly can approximate both mean and variance well.
However, it is difficult to extend VFF to multiple dimensional problems, since
a) the number of inducing variables grows exponentially with dimensions if the
Kronecker kernel is used, or b) the correlation between dimensions would be
ignored if an additive kernel is used. We also note that there has been a push to
scale GP inference to millions of data points using modern hardware [15]. How-
ever, it remains computationally demanding and vulnerable to kernel matrix
ill-conditioning, thus infeasible for practical use.

In this paper, we aim to develop a sparse GP model tailored for Bayesian
optimization. The main intuition that drives our solutions is that while being
overconfident at some regions is not very critical to BO when those regions have
both low predictive value and low predictive variance. However, being overcon-
fident in the regions where either predictive mean or predictive variance is high
would be quite detrimental to BO. Hence, a targeted fixing may be enough to
make the sparse models suitable for BO. An overall measure of goodness of GP
approximation for BO would be to look at the global maximum distribution
(GMD) [16,17] from the posterior GP and check its difference to that of the full
GP. Fixing overconfidence in the important regions may be enough to make the
GMD of the sparse GP closer to that of the full GP. The base method in our
work (SSGP) is known to underestimate variance, which is why we need max-

Sparse Spectrum Gaussian Process for Bayesian Optimization 259

imizing the entropy of GMD. Following this idea, we add entropy of the GMD
as a new regularizer that is to be maximized in conjunction with the marginal
likelihood so the optimal sparse set of the frequencies are not only benefit for
model fitting, but also fixes the overconfidence issue from the perspectives of the
Bayesian optimization.

We first provide a Thompson sampling approach to estimate the maximum
distribution for the sparse GP, and then propose a more efficient sequential
Monte Carlo based approach. The latter approach provides efficiency as many
Monte Carlo samples can be reused during the optimization for the optimal
frequencies. Later, we empirically show that expected improvement acquisition
function can be used as a proxy of the maximum distribution, significantly
improving the computational efficiency. We demonstrate our method on two syn-
thetic functions and two real world problems, one involving alloy design using a
thermodynamic simulator and another involving hyperparameter optimization
in a transfer learning setting. In all the experiments our method provides supe-
rior convergence rate over standard sparse spectrum methods. Additionally, our
methods also performs better than the full GP when the covariance matrix faces
ill-conditioning due to large number of observations placed close to each other.

2 Background

We consider the maximization problem x∗ = argmaxx∈X f(x), where f : x → R,
X is a compact subspace in R

d, and x∗ is the global maximizer.

2.1 Bayesian Optimization

Bayesian optimization includes two main components. It first uses a probabilistic
model, typically a GP, to model the latent function and then constructs an
acquisition function that determines the next sample point.

Gaussian process [18] provides a distribution over the space of functions and
it can be specified by a mean function μ(x) and a covariance function k(x,x′).
A sample from a GP is a function f(x) ∼ GP(μ(x), k(x,x′)). Without loss of
generality, we often assume that the prior mean function is zero function and
thus GP can be fully defined by k(x,x′). The squared exponential kernel and
the Matérn kernel are popular choices of k.

In GP, the joint distribution for any finite set of random variables are multi-
variate Gaussian distribution. Given a set of noisy observations Dt = {xi, yi}t

i=1,
where yi = fi + εi with εi ∼ N (0, σ2

n), the predictive distribution of yt+1 in
GP follows a normal distribution p(ft+1|Dt,xt+1) = N (μ(xt+1), σ2(xt+1)) with
μ(xt+1) = kT

[
K + σ2

nI
]−1

Y and σ2(xt+1) = k(xt+1,xt+1)−kT
[
K + σ2

nI
]−1

k,
where k = [k(xt+1,x1), · · · , k(xt+1,xt)], K is the Gram matrix, and Y =
{yi}t

i=1.
The posterior computation of GP involves the inversion of the Gram matrix

and it is very costly for a large number of observations. Sparse approximation is
the usual way to reduce the computational cost with slight reduction in modeling

260 A. Yang et al.

accuracy. We focus on the SSGP for optimization purpose due to its simplifica-
tion and scalability, details of which is discussed in the following subsection.

Once the GP has been built to model the latent function, we can construct
acquisition functions by combining the predictive mean and variance of the pos-
terior GP to find the next query. Some popular acquisition functions include
Expected Improvement (EI) [1], and GP-UCB [19]. We use EI function since it
can work well without human efforts.

2.2 Sparse Spectrum Gaussian Process

Sparse Gaussian process often introduce inducing points to approximate the
posterior mean and variance of full GP whilst sparse spectrum Gaussian process
uses optimal spectrum frequencies to approximate the kernel function. Briefly,
according to the Bochner’s theorem [20], any stationary covariance function can
be represented as the Fourier transform of some finite measure σ2

fp(s) with p(s)
a probability density as

k(xi,xj) =
∫

RD

e2πisT (xi−xj)σ2
fp(s)ds, (1)

where the frequency vector s has the same length D as the input vector x. In
other words, a spectral density entirely determines the properties of a stationary
kernel. Furthermore, Eq. (1) can be computed and approximated as

k(xi,xj) = σ2
fEp(s)

[
e2πisT xi(e2πisT xj)∗

]
� σ2

f

m

m∑

r=1

cos
[
2πsT

r (xi − xj)
]

(2)

=
σ2

f

m
φ(xi)T φ(xj). (3)

The Eq. (2) can be obtained by Monte Carlo approximation with symmetric
sets {sr,−sr}m

r=1 sampled from sr ∼ p(s), where m is the number of spectral
frequencies (Fourier features). Equation (3) holds with the setting

φ(x) = [cos(2πsT
1 x), sin(2πsT

1 x), · · · , cos(2πsT
mx), sin(2πsT

mx)]T , (4)

which is a column vector of length 2 m containing the evaluation of the m pairs
of trigonometric functions at x. The posterior mean and variance are derived as

μ(xt+1) = φ(xt+1)TA−1ΦY , σ2(xt+1) = σ2
n + σ2

nφ(xt+1)TA−1φ(xt+1), (5)

where Φ = [φ(x1), . . . ,φ(xt)] ∈ R
2m×t and A = ΦΦT + mσ2

n

σ2
f
I2m. We maximize

the log marginal likelihood logp(Y |Θ) =

− 1
2σ2

n

[Y T Y − Y T ΦTA−1ΦY] − 1
2
log|A| + mlog

mσ2
n

σ2
f

− t

2
log2πσ2

n (6)

to select the optimal frequencies, where Θ is the set of all hyperparameters
in the kernel function and the frequencies. By using m optimal frequencies to
approximate the full GP, SSGP holds the computational complexity O(tm2),
and provides computational efficiency if m � t.

Sparse Spectrum Gaussian Process for Bayesian Optimization 261

3 Bayesian Optimization Using Regularized Sparse
Spectrum Gaussian process

The naive SSGP can be directly used for Bayesian optimization by replacing the
full GP. However, it leads to overconfidence on the GMD of interest in BO. We
illustrate the overconfidence of SSGP in Fig. 1a and b, where we compared the
GMD of SSGP to that of full GP and found the GMD of SSGP (the lower graph
of 1b) is narrower and sharper than that of full GP (the lower graph of 1a).

To overcome this overconfidence on GMD, we propose a novel sparse spec-
trum Gaussian process model tailoring for BO. Our approach involves maximiz-
ing a new loss function to select the optimal spectrum frequencies. We design
the loss function to include the marginal likelihood in the SSGP and a regular-
ization term, which has the goal of minimizing the difference between the GMD
of the full GP and that of the proposed sparse spectrum model. We denote our
proposed model as the regularized SSGP (RSSGP). For the sake of convenience,
we denote the GMD of the full GP as p(x∗) and that of RSSGP as q(x∗).

We first discuss the choice for our regularizer. Whilst the KL divergence
DKL(q || p) seems to be the solution to measure difference between two distri-
butions, it is not feasible in our cases as we cannot access p(x∗). Nevertheless,
the property that the SSGP tends to be over-fitting implies that the entropy
of the GMD in SSGP would be smaller than that of the full GP. Therefore, we
can use the entropy of q(x∗), or H[q(x∗)] as the regularization term in the loss
function that needs to be maximized. In this way, the resultant sparse GP would
minimize the difference between q(x∗) and p(x∗). Formally, the loss function in
RSSGP is defined as

L = logp(Y |Θ) + λlogH [q(x∗)] , (7)

where the first term is the log marginal likelihood as Eq. (6) in the SSGP, the
second term is the entropy of q(x∗) and λ is the trade-off parameter. Now we
can obtain Θ by maximizing the loss function

Θ = argmaxlogp(Y |Θ) + λlogH [q(x∗)] . (8)

The questions break down to that how q(x∗) can be computed and how q(x∗) is
relevant to spectrum frequencies. Next, knowing there is no analytical form for
q(x∗), we propose two methods to estimate q(x∗). One is Thompson sampling
and the other is a sequential Monte Carlo approach that takes less computa-
tion. We also propose a significantly computationally-efficient approximation by
treating the EI acquisition function as a proxy of q(x∗).

3.1 Thompson Sampling Based Approach

We show how to approximate q(x∗) by following the work of [17]. In Thomp-
son sampling (TS), we use a linear model to approximate the function f(x) =
φ(x)T θ̄, where θ̄ � N (0, I) is a standard Gaussian. Giving observed data Dt,

262 A. Yang et al.

Fig. 1. (a)–(c) The visualization of overconfidence of SSGP on the GMD. The upper
graphs show 200 posterior samples of Sinc function, modeled by (a) full GP, (b) SSGP
with 30 optimal frequencies, and (c) RSSGP with 30 optimal frequencies. The red circle
denotes observation and the blue circle denotes the maximum location of a posterior
sample. The lower graphs illustrate the resultant GMD respectively. The H [GMD] is
the entropy of the GMD. We can see the GMD of RSSGP is closer to that of full GP
than SSGP. (d) RSSGP with 30 optimal frequencies by using the EI function as a proxy
to the regularization. Its GMD is at the middle and the EI function is at the bottom.
(e) MC approach and (f) TS approach to approximate the reference p(x∗) distribution
within the same running time. (Color figure online)

the posterior of θ̄ conditioning Dt is a normal N (A−1ΦT Y ,A−1σ2
n), where A

and Φ have already been defined in Eq. (5). Note that φ(x) is a set of random
Fourier features in the original TS while it is a set of m pairs of symmetric
Fourier features (Eq. (4)) in our framework.

To estimate the GMD in RSSGP, we let φi and θ̄i be a random set of m pairs
of features and corresponding posterior weights. Both are sampled according
to the generative process above and they can be used to construct a sampled
function fi(x) = φi(x)T θ̄i. We can maximize this function to obtain a sample
x∗

i . Once we have acquired sufficient samples, we use histogram based method to
obtain the probability mass function (PMF) over all x∗, denoted as F (x∗). Then
we estimate the entropy via H [q(x∗)] = −∑L

i=1 F (x∗
i) logF (x∗

i), where L is the
number of samples. Since our RSSGP uses Fourier features φ(x) to approximate
a stationary kernel function, and q(x∗) also changes with applying different
Fourier features, therefore we can obtain the optimal features by maximizing the
combined term L in Eq. (7). As a result, the selected optimal features in RSSGP
are not only take care of posterior mean approximation, but also maximize the

Sparse Spectrum Gaussian Process for Bayesian Optimization 263

entropy of q(x∗). This is the key why we choose SSGP as our base sparse method.
Sparse models like FITC and VFE are not capable with this idea since we cannot
relate their sparse sets to their GMDs due to insufficient research in this area.

We illustrate the GMD of RSSGP in Fig. 1c. We can see that it is closer
to the GMD of the full GP than that of SSGP. The GMDs in Fig. 1a –d are
estimated via TS.

3.2 Monte Carlo Based Approach

The estimation of q(x∗) by TS often requires thousands of samples, one of which
involves the inversion of a m×m matrix. Inspired by a recent work [21] employ-
ing sequential Monte Carlo algorithm to approximate the GMD, we develop an
significant efficient approach to estimate q(x∗) in our RSSGP.

We start with np particles at positions x̄1, . . . , x̄np . Then we assign each
particle a corresponding weight ω1, . . . , ωnp

. Ultimately, these particles are sup-
posed to converge to the GMD. At each iteration, we can approximate the q(x∗)
through kernel density estimation

q(x∗ = x) ≈

∑np

i=1 ωik(x, x̄i)
∑np

i=1 ωi

, (9)

where k(x, x̄i) is the approximated kernel function using m features as in Eq. (3).
All the particles are sampled from the flat density distribution v(x) = β at

the beginning, so that they are randomly distributed across the input space and
the constant β is nonzero. To obtain the maximum position, we will challenge
existing particles. We first sample a number of nc challenger particles from a
proposal distribution v′(x) and denote them as x̄C1 , . . . , x̄Cnc

. To challenge an
existing particle e.g. x̄i, we need to set up the joint distribution over x̄iand
all challenger particles, which is a multivariate Gaussian distribution. We can
subsequently generate a sample [f̄i, f̄C1 , · · · , f̄Cnc

]T from the joint distribution.
If the maximum value in the sample is greater than f̄i, we replace x̄i with the
corresponding challenger particle. Otherwise, we retain x̄i.

The challenger particle has an associated weight, which is often set as the
ratio of the initial distribution over the proposal distribution. To speed up con-
verge, we use the proposal distribution v′(x) that is the mixture of the initial
distribution and the current particle distribution as

v′(x) = (1 − α)v(x) + αq(x∗ = x), (10)

where q(x∗ = x) is estimated through Eq. (9) and α is trade-off parameter (e.g.,
0.5 in our experiments). To generate a challenger particle x̄i

C1
, we first select

one of the existing particles e.g. x̄i according to the particle weights. Based on
Eq. (10), we then can sample x̄i

C1
from k(x, x̄i) with the probability α or from

the flat density distribution v(x) with the probability 1−α. Hence, the challenger
particle has a weight as

ωi
Cj

=
v(x̄i

Cj
)

αk(x̄i
Cj

, x̄k) + (1 − α)v(x̄i
Cj

)
. (11)

264 A. Yang et al.

Algorithm 1. Sparse spectrum Gaussian process for Bayesian optimization
1:for n = 1, 2,...t do
2: Optimize Eq.(8) to obtain hyerpararameters and optimal features,
3: Fit the data Dt with RSSGP,
4: Suggest the next point xt+1 by maximising xt+1 = argmaxαEI(x|Dt),
5: Evaluate the function value yt+1,
6: Augment the observationsDt = Dt ∪ (xt+1, yt+1).
7: end for

Based on this, we will challenge every particle once. After each round, the sys-
tematic re-sampling [22] will be employed to make sure that all particles have
the same weight for the next round. This process stops till sufficient rounds.
Thereafter, we calculate the PMF of the particles and then estimate its entropy.

The Monte Carlo (MC) approach does not require a large matrix inversion or
nonlinear function optimization for the purpose of q(x∗) approximation. More-
over, during the optimization process, q(x∗) does not vary a lot with the change
of Θ. Therefore, most of the particles can be reused in the process, significantly
reducing computation cost.

We demonstrate the superiority in Fig. 1. We denote the GMD estimated
from 50,000 TS samples of a full GP posterior on a 1d function as our reference
p(x∗), showing as blue lines in Fig. 1e and f. We give the same running time
(0.5 s) to TS and MC approaches to approximate the reference p(x∗) respectively,
showing as red lines in the figures. We can see that our MC approach successfully
approximate the reference p(x∗) while TS is not desirable.

3.3 Expected Improvement Acquisition Function as a Proxy

To further reduce the computation, we propose to use EI function as a proxy for
q(x∗). This choice is reasonable in sense that they both measure the belief about
the location of the global maximum, It can be seen from Fig. 1d that the GMD
of full GP and the EI resembles closely. We can expect that this approximation
setting has a similar performance of capturing q(x∗) information as RSSGP
with TS does, which is justified in Fig. 1c–d. Since EI is a function, we firstly
use histogram based method to acquire the PMF of EI and then calculate the
entropy. In most of the cases we find the approximation works well.

We use stochastic gradient descent to optimize Eq. (8) although alternatives
are available. The proposed method is described in Algorithm 1.

4 Experiments

In this section, we evaluate our methods on optimizing benchmark functions, an
alloy design problem and hyperparameter tuning of machine learning problems
by transfer learning. We compare the following probabilistic models used for
Bayesian optimization: 1. Full Gaussian process (Full GP), 2. Sparse spectrum
Gaussian process (SSGP), 3. Our method 1: RSSGP using MC estimation for

Sparse Spectrum Gaussian Process for Bayesian Optimization 265

q(x∗) (RSSGP-MC), 4. Our method 2: RSSGP using EI approximation for
q(x∗) (RSSGP-EI), 5. VFF using additive kernel (VFF-AK), 6. VFF using
Kronecker kernel (VFF-KK)

In all settings, we use EI as the acquisition function in BO and use the opti-
miser DIRECT [23] to maximize the EI function. We include both RSSGP-MC
and RSSGP-EI in synthetic experiments. We later only use RSSGP-EI due to its
computational advantage and the similar performance with RSSGP-MC. Given
d-dimensional optimization problems and m frequencies, the size of inducing
variables would be (2m) ∗ d for VFF-AK and (2m)d for VFF-KK [14]. Thus,
VFF-KK becomes almost prohibitively expensive for d > 2 and a large m.

4.1 Optimizing Benchmark Functions

We test on the following two benchmark functions:

– 2d Ackley function. The search space is [−10, 10]2;
– 6d Hartmann function. The search space is [0, 1]6.

We run each method for 50 trials with different initializations and report
the average simple regret along with its standard error. The simple regret
is defined as rt = f(x∗) − f(x+), where f(x∗) is the global maximum and
f(x+) = max x∈{x1:t}f(x) is the best value till iteration t. We use the squared
exponential kernel in our experiments. In terms of kernel parameters, we use the
isotropic length scale, ρl = 0.5,∀l, signal variance σ2

f = 2, and noise variance
σ2

n = (0.01)2. We empirically find that the proposed algorithms perform well
when the regularization term has the more or less scale with the log marginal
likelihood. Hence, we set the trade-off parameter λ = 10 for all of our methods.

For the 2d Ackley function, we start with 20 initial observations and use 20
frequencies in all sparse GP models. The experimental result is shown in Fig. 2a.
The Full GP setting performs the best, and both of our approaches (e.g., RSSGP-
MC and RSSGP-EI) perform better than SSGP. RSSGP-EI performs slightly
worse than RSSGP-MC since it only provides a rough approximation to the true
global maximum distribution but holds simplicity. VFF-KK performs well in a
low dimensional problem whilst VFF-AK performs worst. The use of additive
kernel which does not capture the correlation between dimensions may result in
a bad performance.

For the 6d Hartmann function, we start with 150 initial observations and
use 50 frequencies in all spectrum GP models. Similar results as the 2d Ackley
function can be seen in Fig. 2b. We did not run VFF-KK on this case due to a
huge size of inducing variables mentioned before.

4.2 Alloy Optimization

In the joint project with our metallurgist collaborators, we aim to design an alloy
with a micro-structure that contains as much fraction of FCC phase as possible.
We use a thermodynamic simulator called ThermoCalc [24]. Given a compo-
sition of an alloy, the simulator can compute thermodynamic equilibrium and

266 A. Yang et al.

Fig. 2. (a)–(b) Simple regret vs iterations for the optimization of benchmark functions.
The plots show the mean of minimum reached and its standard error at each iteration.
(c) Alloy optimization at 15 dimensions. The plot shows the mean of maximal FCC
reached and its standard error at each iteration. (d)–(f) Hyperparameter tuning for
the SVM by transfer learning. We use 2700 observations from source tasks and 3
observations from target task. The plots show the mean of maximal accuracy reached
till the current iteration and its standard error.

predict the micro-structure of the resultant alloy using CALPHAD [25] method-
ology. In this experiment, the search space is a 15 dimensional combination of the
elements: Fe, Ni, Cr, Ti, Co, Al, Mn, Cu, Si, Nb, Mo, W, Ta, C, N. For each com-
position, ThermoCalc provides the amount of FCC in terms of volume fraction.
The best value of volume fraction is 1. Since ThermoCalc takes around 10 min
per composition to compute volume fraction, it fits perfectly in our notion of
semi-expensive functions. We use 500 initial points and 50 frequencies and run
5 different trials with different initial points. The results in Fig. 2c shows BO
with RSSGP-EI performs the best over all three methods. We found that the
covariance matrix of the full GP quickly became ill-conditioned in the presence
of a large number of observations, and hence, fails to be inverted properly, being
ended up harming the BO.

4.3 Hyperparameter Tuning by Transfer Learning

Transfer learning in the context of Bayesian optimization pools together obser-
vations from the sources and the target to build a combined covariance matrix
in the GP. In this case when the number of sources is large or/and the number
of existing observations per source is large, the resultant covariance matrix can
be quite huge, demanding a sparse approximation. We conduct experiments for

Sparse Spectrum Gaussian Process for Bayesian Optimization 267

tuning hyperparameters of support vector machine (SVM) classifier in a transfer
learning setting. We use the datasets: LiverDisorders, Madelon, Mushroom and
BreastCancer from UCI repository [26] and construct three transfer learning sce-
narios. For each scenario, we use 3 out of 4 datasets as the source tasks, and the
rest one as the target task. We randomly generate 900 samples of hyperparam-
eters and the corresponding accuracy from each source task. We also randomly
generate 3 initial samples from the target task. As a result, we have 2703 initial
observations to build the combined covariance matrix. Following the framework
[27], where the source points are considered as noisy observations for the target
function, we add a higher noise variance (3 times of that in target observations)
to 2700 source observations. This allows us to use the same covariance function
to capture the similarity between the observations from both source and target
tasks. We optimize two hyperparameters in SVM which are the cost parame-
ter (C) and the width of the RBF kernel (γ). The search bounds for the two
hyperparameters are C = 10λ where λ ∈ [−3, 3], and γ = 10ω with ω ∈ [−3, 0],
respectively, and we optimize λ and ω. We run each scenario 30 trials with dif-
ferent initializations. The results are showed in Fig. 2d–f. We can see that in all
scenarios BO with RSSGP-EI outperforms the naive SSGP. We note that the
covariance matrix of full GP does not suffer from ill-conditioning since the source
observations have a higher noise. Therefore, we can see the Full GP case works
well from the results.

5 Conclusion

In this paper we propose a new regularized sparse spectrum Gaussian process
method for Bayesian optimization applications. The original SSGP formulation
results in an overconfident GP. BO using such GP may fare poorly as the cor-
rect uncertainty prediction is crucial for the success of Bayesian optimization.
We propose a modification to the marginal likelihood in the original SSGP by
adding the entropy of the GMD induced by the posterior GP as a regularizer.
By maximizing the entropy of the GMD along with the marginal likelihood, we
aim to obtain a sparse approximation which is more aligned with the goal of
BO. We show that an efficient formulation can be obtained by using a sequential
Monte Carlo approach to approximate the GMD. We also experimented with
the expected improvement acquisition function as a proxy for the GMD. Exper-
iments on benchmark functions and two real world problems show superiority of
our approach over the vanilla SSGP method at all times and even better than
the usual full GP based approach at certain scenarios.

Acknowledgment. This research was partially funded by the Australian Government
through the Australian Research Council (ARC). Prof Venkatesh is the recipient of an
ARC Australian Laureate Fellowship (FL170100006).

References

1. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455–492 (1998)

268 A. Yang et al.

2. Shahriari, B., et al.: Taking the human out of the loop: a review of Bayesian
optimization. Proc. IEEE 104(1), 148–175 (2015)

3. Yang, A., Li, C., Rana, S., Gupta, S., Venkatesh, S.: Efficient Bayesian optimisation
using derivative meta-model. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS
(LNAI), vol. 11013, pp. 256–264. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-97310-4 29

4. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: NeurIPS, pp. 2951–2959 (2012)

5. Li, C., et al.: Rapid Bayesian optimisation for synthesis of short polymer fiber
materials. Sci. Rep. 7, 5683 (2017)

6. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2009)

7. Long, M., et al.: Transfer feature learning with joint distribution adaptation. In:
Proceedings of the IEEE International Conference on Computer Vision (2013)

8. Jasper, S., et al.: Scalable Bayesian using deep neural networks. In: ICML (2015)
9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization

for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

10. Snelson, E., et al.: Sparse GP using pseudo-inputs. In: NeurIPS (2006)
11. Yang, A., Li, C., Rana, S., Gupta, S., Venkatesh, S.: Sparse approximation for

Gaussian process with derivative observations. In: Mitrovic, T., Xue, B., Li, X.
(eds.) AI 2018. LNCS (LNAI), vol. 11320, pp. 507–518. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03991-2 46

12. Titsias, M.: Variational learning of inducing variables in SGP. In: AISTATS (2009)
13. Lazaro, G., et al.: Sparse spectrum gaussian process regression. J. Mach. Learn.

Res. 11, 1865–1881 (2010)
14. Hensman, J., Durrande, N., Solin, A., et al.: Variational Fourier features for Gaus-

sian processes. J. Mach. Learn. Res. 18(151), 1–151 (2017)
15. Wang, K., et al.: Exact GP on a million data points. In: NeurIPS (2019)
16. Hennig, P., Schuler, C.J.: Entropy search for information-efficient global optimiza-

tion. J. Mach. Learn. Res. 13, 1809–1837 (2012)
17. Hernández, J.M., Hoffman, M.W., Ghahramani, Z.: Predictive entropy search for

efficient global optimization of black-box functions. In: NeurIPS, pp. 918–926
(2014)

18. Rasmussen, C.E., et al.: Gaussian Processes for Machine Learning, vol. 1 (2006)
19. Srinivas, N., et al.: Gaussian process optimization in the bandit setting: no regret

and experimental design. arXiv preprint arXiv:0912.3995 (2009)
20. Bochner, S.: Lectures on Fourier Integrals. Princeton University Press, Princeton

(1959)
21. Bijl, H., et al.: A sequential Monte Carlo approach to Thompson sampling for

Bayesian optimization. arXiv preprint arXiv:1604.00169 (2016)
22. Kitagawa, G.: Monte Carlo filter and smoother for non-gaussian nonlinear state

space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996)
23. Finkel, D.E.: DIRECT Optimization Algorithm User Guide. CRSC (2003)
24. Andersson, J.O., Helander, T., Höglund, L., Shi, P., Sundman, B.: Thermo-Calc

& DICTRA, computational tools for materials science. Calphad 26(2), 273–312
(2002)

25. Saunders, N., et al.: CALPHAD: A Comprehensive Guide. Elsevier (1998)
26. Dheeru, D., Karra Taniskidou, E.: UCI Machine Learning Repository (2017)
27. Joy, T.T., et al.: A flexible transfer learning framework for Bayesian optimization

with convergence guarantee. Exp. Syst. Appl. 115, 656–672 (2019)

https://doi.org/10.1007/978-3-319-97310-4_29
https://doi.org/10.1007/978-3-319-97310-4_29
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-030-03991-2_46
http://arxiv.org/abs/0912.3995
http://arxiv.org/abs/1604.00169

Densely Connected Graph Attention
Network Based on Iterative Path

Reasoning for Document-Level Relation
Extraction

Hongya Zhang, Zhen Huang(B), Zhenzhen Li, Dongsheng Li, and Feng Liu

School of Computer Science, National University of Defense Technology,
Changsha, China

{zhanghongya 0727,huangzhen,lizhenzhen,dsli,richardlf}@nudt.edu.cn

Abstract. Document-level relation extraction is a challenging task in
Natural Language Processing, which extracts relations expressed with
one or multiple sentences. It plays an important role in data mining
and information retrieval. The key challenge comes from the indirect
relations expressed across sentences. Graph-based neural networks have
been proved effective for modeling structural information among the doc-
ument. Existing methods enhance the graph models by using either the
attention mechanism or the iterative path reasoning, which is not enough
to capture all the effective structural information. In this paper, we pro-
pose a densely connected graph attention network based on iterative
path reasoning (IPR-DCGAT) for document-level relation extraction.
Our approach uses densely connected graph attention network to model
the local and global information among the document. In addition, we
propose to learn dynamic path weights for reasoning relations across sen-
tences. Extensive experiments on three datasets demonstrate the effec-
tiveness of our approach. Our model achieves 84% F1 score on CDR,
which is about 16.3%–22.5% higher than previous models with a signifi-
cant margin. Meanwhile, the results of our approach are also comparably
superior to the state-of-the-art results on the GDA and DocRED dataset.

Keywords: Relation extraction · Densely connected graph attention
network · Iterative path reasoning

1 Introduction

Relation extraction (RE) aims to identify the relations of entities from the plain
text. It is important for many downstream NLP tasks, such as data mining
and information retrieval [21]. Most previous RE approaches [11,19,26] extract
relations within one sentence. However, it is also common that two entities may
express some relation across sentences [2]. Recently, document-level RE [2,25]
that requires intra- and inter-sentence RE has gained increasing attention. The
key challenge is to extract relations indirectly expressed across several sentences.
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 269–281, 2021.
https://doi.org/10.1007/978-3-030-75765-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_22

270 H. Zhang et al.

Fig. 1. Example of document-level RE from DocRED [25].

We further illustrate the challenge of inferring the different types of relations
by giving an example in Fig. 1. There are two sentences in this excerpt, in which
entities are represented with different colors. The relation between Emancipation
Proclamation and United States can be identified through the first sentence,
which is an example of intra-sentence RE. However, we need to consider two
sentences together to infer the relation between entities Susan Blue Parsons and
United States. These two entities are connected through entity Washington Place.
By considering the relatedness of Susan Blue Parsons and Washington Place in
the first sentence and the connection of United States and Washington Place
in the second sentence, our approach can infer the indirect relation expressed
between Susan Blue Parsons and United States.

Previous approaches tackle the document-level RE with sequential methods
[4,10] or graph-based neural network models [17,20]. The graph-based neural
networks are capable of modeling structural information between sentences over
long distances [6,17], so that they can perform better than sequential methods.
Recent approaches further enhance the graph-based models by using convolution
network [28], attention mechanism [13] or iterative path reasoning algorithms [2].
However, they only capture the structural information from one aspect and fail
to model all effective connections within the graph. In addition, the methods
described above either rely on an external parser to learn the attention among
different entities, which suffer errors from the parser [13] or regard the weights
of different rounds in iterative path reasoning as the same, which should be
considered contextually [2]. Intuitively, the more distant path information should
have less impact when performing path reasoning.

To address above challenges, we propose a novel approach - IPR-DCGAT:
an iterative-path-reasoning based densely connected graph attention network
model, for document-level RE. We construct the heterogeneous graph for each
document based on three types of nodes, i.e., entities, mentions and sentences.
To model the local and global information of the graph, we propose the densely
connected graph attention network (DCGAT) to compute attention weights of
adjacent nodes when updating node representations. Besides, our approach fur-
ther captures the structural information across sentences through a multiround
iterative path reasoning algorithm. We also empirically find that including the
entity type and co-reference information is essential for inter-sentence RE.

IPR-DCGAT 271

We conduct extensive experiments on three datasets for document-level RE.
Our approach achieves new state-of-the-art results on two public biomedical-
domain datasets - CDR [9] and GDA [24] as well as the result of our method
is comparably superior to other current state-of-the-art methods in a general-
domain dataset DocRED [23]. Our contributions are summarized as follows:

– We propose IPR-DCGAT - a novel approach for document-level RE, which
combines the advantages of both attention mechanism and path reasoning for
capturing structural information of the document graph.

– We innovatively apply dense connectivity to graph attention network in het-
erogeneous graph for better modeling useful information. Meanwhile, we
investigate some other related structures such as GCN to verify the valid-
ity of our structure.

– Our iterative path reasoning algorithm with varied path weights further
enhance relation inferring across sentences. Experiments show that using dif-
ferent weights in multiple iterations is effective.

2 Related Work

Previous researches on RE mainly focus on the extraction at the intra-sentence
RE. Researchers have proposed a series of supervised approaches such as CNN
[11], CNN with max-pooling [27]. In recent years, graph neural network attracts
tremendous attention and has been applied in various NLP applications such
as RE. Miwa et al.(2016)’s proposed model [12] depends on external grammar
tools to construct the shortest dependency path (SDP) between two entities in
a sentence. Then Christopoulou et al.(2018) [3] further improve performance by
a walk-based graph independent of external grammar tools.

However, such kind of methods are hard to be performed well in inter-
sentence RE, because this task requires better extraction of structure feature
[2,13]. Recently, many methods based on graph have also been developed to
address it. The original models [6,17] consider words as nodes and the con-
nections between them as edges while updating node representations during
training. Then Christopoulou et al.(2019) [2] propose an edge-oriented neural
network model. The model constructs heterogeneous types of nodes and edges
to generate graph of the document, so as to infer the relation between entity
pairs through updating edge representations. The researchers [13] then integrate
the meta dependency paths using external tools to improve performance. Mean-
while, Zeng et al.(2020) [28] also innovatively propose the double graph based
reasoning architecture from another perspective of heterogeneous graph struc-
ture. There are also some models [15,29] that take two different submodels to
improve performance according to the characteristics of different types of RE.

The existing works have some limitations. Some approaches [2,13] extract
structured information from only one aspect such as structured attention or
iterative algorithm. Some other models [10,29] use different models for inter-
and intra-sentence RE with external knowledge and tools. Combining the sur-
rounding information from the two perspectives by DCGAT and iterative path

272 H. Zhang et al.

reasoning algorithm, our model architecture has a stronger expression ability to
collect and synthesize inter-sentence information.

3 Proposed Model

Fig. 2. The overall model architecture. The model consists of four modules, i.e.,
Encoder Layer for encoding tokens by each sentence, Node Construction for construct-
ing the nodes of graphs, Edge Construction for edges similarly and Inference Layer.

Figure 2 shows the overall framework of our model. We will elaborate on the
details of each module later. Significantly, the key to document-level RE is how
to extract structured information. Attention Layer and Weighted Walk Layer in
our model can enhance information extraction from two aspects.

3.1 Task Modeling

Formally, we define the task as follows. Given a document, it consists of n sen-
tences D = {s1, s2, ..., sn}, each sentence contains different numbers of words
si = {w1, w2, ..., wd|i ∈ [1, n]}. Meanwhile, the document contains multiple enti-
ties E = {e1, e2, ..., ej} , each entity ei has k mentions ei = {m1,m2, ...,mk|i ∈
[1, j]}. A relation list R = {r1, r2, ..., rl} is also provided. We should infer the rela-
tion of specified entity pair (ei, ej) in the relation list R. In order to express the
difference between entities and mentions, we give an example that as “Obama”
is a unique concept-level entity, it can be mentioned in different ways, such as
“President of the United States”, “Obama”, “Michelle’s husband”, and etc.

3.2 Encoder Layer

Firstly, we encode the sentences in the document via a encoder to obtain each
word vector wi combined with the context. In this paper, we adopt BiLSTM
[18] as the encoder. The inputs of the encoder respectively are word embedding

IPR-DCGAT 273

dwi
, co-reference embedding dpi

, entity type embedding dei . dpi
marks different

mentions to the same entity while dei maps the entity categories (e.g. PER,
LOC) of the words. We concatenate these three kinds of embeddings, denote
the intermediate variable as γi = [dwi

;dpi
;dei] where the square bracket [;]

shows the concatenation of vectors. Then γi is fed into BiLSTM to get the final
representation wi for each word as the following equation:

hi left = LSTMleft(h(i+1) left, γi)
hi right = LSTMright(h(i−1) right, γi)
wi = [hi left;hi right]

(1)

It’s worth noting that we directly fixed them after initialization in this work.

3.3 Node Construction

After the word vectors W = [w1,w2, ...,wn] of the document are obtained, we
construct the heterogeneous graph [2] with different kinds of nodes and edges of
the document. Firstly, we conduct Node Construction.

Initial Node Layer. There are three types of nodes in our heterogeneous
network, i.e., sentence nodes s, mention nodes m, and entity nodes e, while
the corresponding representations are denoted as ns, nm, ne, respectively. The
representation of a mention node is the average of the words that form the
mention. Sentence nodes are in the same way. The representation of an entity
node is computed as the mean of the representations of mentions which belong to
the specified entity. To distinguish between the three node types, we concatenate
type embedding te, tm, ts at the end of the original representation. Thus we give
the final representations for the three types of nodes:

nm = [avgwi∈m(wi); tm], ne = [avgmi∈e(nm); te], ns = [avgwi∈s(wi); ts] (2)

Attention Layer. For document-level RE, especially inter-sentence RE, the
association between nodes is particularly important. Inspired by DCGCN [5],
we introduce an Attention Layer to update the node representation such that it
contains more information about its neighbors.

The inputs of Attention Layer are adjacency matrix A ∈ R
n×n and the

initial node representations N′ = {n′
1,n

′
2, ...,n

′
n|n′

i ∈ R
d}. The outputs are the

updated values N = {n1,n2, ...,nn|ni ∈ R
d}. The principle of adjacency matrix

is as follows [2]: any two sentence nodes; any two mention nodes in the same
sentence; the mention node and entity node when the former is an instance of
the latter; the mention node and sentence node when the words of mention are
contained in the sentence; the entity node and sentence node when an instance
of the entity appears in the sentence. The information can be obtained directly
or indirectly from the data set. We consider that these node pairs are related
and concatenate to one at the corresponding position of adjacency matrix A.

274 H. Zhang et al.

Dense connectivity allows nodes to receive information not only from the
latest layer, but also from all the preceding layers. Meanwhile, each intermediate
layer is specified to a very small size for learning different sets of feature maps
at different locations [5]. Thus, assume that Attention layer has t sub layers,
let hk

i ∈ R
dtemp be the output and gk

i ∈ R
d+(k−1)×dtemp be the input for the

ith node in the kth sub layer where dtemp = d/t. Particularly, g1
i is the initial

node representation. gk
i is the concatenation of initial node representation and

the outputs of the previous hidden layers {h1
i ,h

2
i , ...,h

k−1
i } as shown below:

gk
i = [n′

i;h
1
i ; ...;h

k−1
i], k ∈ [2, t] (3)

Then vector ak ∈ R
2dtemp and weight matrix Wk ∈ R

dtemp×[d+(k−1)×dtemp]

are introduced for implementing self-attention mechanism. We compute the coef-
ficient ekij to represent the importance of the jth node to the ith node as follows:

ekij = ak[Wkgk
i ;W

kgk
j] (4)

It is worth noting that if Aij is 0, the coefficient ekij should be set to 0. The
resulting coefficient is then nonlinearly activated by LeakyRelu and normalized
by softmax to get the final coefficient αk

ij between the ith and jth node. The
specific equation is as follows:

αk
ij =

exp(LeakyRelu(ekij))
Σm∈N exp(LeakyRelu(ekim))

(5)

where N expresses the node set.
Thus we can get the new node representations hk

i ∈ R
dtemp for the ith node:

hk
i = σ(Σj∈N αk

ijW
kgk

i) (6)

where σ expresses the activation function.
Finally, we add the concatenation of all outputs of the sub layers and the

initial node representation together, then take a linear conversion to obtain the
updated node representation. Wo is the learned weight for linear conversion.

ni = Wo([h1
i ;h

2
i ; ...;h

t
i] + n′

i) (7)

3.4 Edge Construction

Next, we build edge construction with the updated node representations.

Initial Edge Layer. We construct the edges according to heuristic rules for
constructing adjacency matrix. An edge is added between adjoining nodes in
adjacency matrix A. Edge representation is the concatenation of the represen-
tations of the corresponding node pair. Our edges are divided into five types
based on their node types, i.e., Mention-Mention edge Emm, Mention-Sentence

IPR-DCGAT 275

edge Ems, Mention-Entity edge Eme, Sentence-Sentence edge Ess and Entity-
Sentence edge Ees. The Entity-Entity edge Eee will be generated in the next
subsection Weighted Walk Layer. Distance between different mentions in the
same sentence or different sentences plays a role in RE, so the corresponding
edge adds embedding dmm or dss. The edge representations are as follows:

Ees = [ne;ns]; Ems = [nm;ns]; Eme = [nm;ne];
Emm = [nm;nm;dmm]; Ess = [ns;ns;dss]

(8)

Weighted Walk Layer. Attention Layer is mainly responsible for fusion of
information between node and its first-order neighbor nodes, however, it is nec-
essary to extract further information for inter-sentence RE at the document
level. Therefore, we obtain more information in Weighted Walk Layer inspired
by Christopoulou et al.(2019) [2]. We divide it into two stages, generating stage
and aggregating stage.

– Generating Stage Denote the intermediate nodes between of the ith and
jth node as Ntemp = {n1,n2, ...nm}. We utilize edge Eik and Ekj to generate
the new representation of edge Enew

ij . It is implemented by einsum operation
� and a learned matrix W according to the equation below:

Enew
ij = Σnk∈Ntemp

σ((WEik) � Ekj) (9)

– Aggregating Stage After obtaining new representation, we take linear
interpolation between old and new representation using coefficient β to control
the contribution of old one. The final representation is computed as follows:

Eij = βEij + (1 − β)Enew
ij (10)

Intuitively, we analyse the relation of an entity pair usually starting with
content that is close to the entity pair. The information obtained from a long
distance is relatively insignificant in the final generated edge representation.
That is to say, the weight W of different iteration rounds should be different,
whereas the previous work [2] was handled with the same weight.

3.5 Inference Layer

We incorporate a softmax classifier to predict relation between entity pair (ei, ej)
using the generated edge Enei

,nej
by the following equation:

y = softmax(WEnei
,nej

+ b) (11)

where W is the weight and b is the bias. We adopt the cross entropy loss function.

276 H. Zhang et al.

4 Experiment

Dataset. Our experiment employs two datasets in biology spheres. One is a
human annotated dataset CDR [9] while another is a distantly supervised dataset
GDA [24]. We also apply one generic dataset DocRED [25] built by Wikipedia
and Wikidata. The statistics for these datasets are shown in Table 1.

Implementation Details. Firstly, we utilize the GENIA Sentence Splitter4
and GENIA tagger to get the processed data following the paper [2]. During
training, we use early stopping to identify the best training epoch and employ
Adam [7] to optimize our model with β1 = 0.9, β2 = 0.999. Learning rate is
0.001, weight deacy is 0.0001 and gradient clipping is 10. CDR, GDA, DocRED
employ PubMed pre-trained embeddings [1], randomly initialized word embed-
dings, and GloVe embeddings [16] respectively. In Weighted Walk Layer, the
value of the coefficient β is different for CDR, GDA and DocRED. The first
two are 0.8, while DocRED is 0.9. Finally, due to the uneven distribution of
DoCRED, we utilize weighted cross entropy. Table 2 shows some other hyper-
parameters.

Table 1. Statistics for datasets.

CDR GDA DocRED

Documents 1,500 30,192 5,053

Relations 2 2 97

Entities 10,225 146,198 98,610

Mentions 28,848 557,128 132,375

Facts 3,116 46,343 63,427

Table 2. Hyper-parameters list.

Hyperparameters name Value

Batch size 3

DCGAT/DCGCN dropout 0.5

Classifier dropout 0.3

Co-reference/distance dimension 10

Node/Entity type dimension 10

Inference iterations 3

DCGAT/DCGCN layers 2

Evaluation Metrics. We evaluate the performance of CDR and GDA on
the overall, intra- and inter-sentence RE in terms of F1, precision, recall values
which are marked as F1, P and R, respectively. For DocRED, we report the F1
excluding those relational facts shared by the training and dev/test sets [25],
denoted as Ign F1. Different metrics are adopted to facilitate direct comparison
with previous experimental results of these data sets. For different datasets, we
also list current state-of-the-art results and the baselines when the datasets are
presented. The experimental results fluctuate within a small range. We repeat
each experiment five times and report the highest value. The results of the test
set in DocRED are submitted online1. We also make the source code available2.

1 https://competitions.codalab.org/competitions/20717.
2 https://github.com/zhanghongya0727/IPR-DCGAT.

https://competitions.codalab.org/competitions/20717
https://github.com/zhanghongya0727/IPR-DCGAT

IPR-DCGAT 277

5 Results

Overall Comparison
Table 3 depicts the performance of our proposed model (IPR-DCGAT) on various
datasets. In Table 3(a), our model can achieve 84.0% F1 on test set, outperform
all available models by a wide margin of 16.3%–22.5% on the whole. F1 on Intra-
and inter-sentence improve 17.6% and 24.7% respectively which proves that our
model is not only effective for intra-, but also more effective for inter-sentence
RE. We also report the results on GDA and DocRED. Compared with CDR,
GDA is larger but the proportion of inter-sentence RE is smaller [2]. Thus, the
effect of Attention Layer and the iterative algorithm for inter-sentence RE will
be compromised. However, it still exceeds the best results available by 1.1% as
shown in Table 3(b). Table 3(c) shows the comparisons with baseline and state-
of-the-art models on DocRED. Significantly, it is a new relation(NA) if entities
express no specific relation, and NA accounts for up to 97%. In such a complex
situation, our model obtains a 4.4%/3.9% F1 improvement compared with the
best baseline(Contex Aware). Even our model exceeds the performance of the
model using Bert by 1.3%/1.4%, which shows strong capturing capability.

Table 3. Main results on various datasets
(a) Results on the test set of CDR

model
Overall{%} Intra {%} Inter{%}

P R F1 P R F1 P R F1

Zheng et al.[29] ∗ 56.2 67.9 61.5 - - - - - -

Nguyen et al.[14] 57.0 68.6 62.3 - - - - - -

Peng et al.[15] ∗ 62.1 64.2 63.1 - - - - - -

Christopoulou et al. [2] 62.1 65.2 63.6 64.0 73.0 68.2 56.0 46.7 50.9

Nan et al. [13] - - 64.8 - - 68.9 - - 53.1

Li et al.[10] ∗ 60.8 76.4 67.7 67.3 52.4 58.9 - - -

IPR-DCGAT 89.6 79.0 84.0 91.2 82.2 86.5 85.4 71.5 77.8

The methods with ∗ utilize additional training data or tools.

(b) Results on the test set of GDA

Model
F1{%}

Overall Intra Inter

EoG [2] 81.5 85.2 50.0

EoG(Full) [2] 80.8 84.1 54.7

EoG(NoInf) [2] 74.6 79.1 49.3

LSR [13] 82.2 85.4 51.1

IPR-DCGAT 82.6 85.9 52.9

(c) Results on DocRED

Model
Dev / Test{%}
F1 IngF1

CNN [25]† 43.5/42.3 41.6/40.3

BiLSTM [25]† 50.9/51.1 48.9/48.8

Contex Aware [25]† 51.1/50.7 48.9/48.4

BERT [23] 54.2/53.2 -

HIN-GloVe [21] 53.0/53.3 51.1/51.2

LSR-GloVe [13] 55.2/54.2 48.8/52.2

GAIN-GloVe [28] 55.3/55.1 53.1/52.7

IPR-DCGAT 55.5/54.6 52.1/52.8

The results with † are baselines from [25].

Analysis on Attention Layer. Firstly, we report the performances of several
contrastive settings in Table 4, i.e., IPR-BASELINE, IPR-GCN, IPR-GAT, IPR-
DCGCN. They do not include Attention Layer or realize it separately through

278 H. Zhang et al.

GCN [8], GAT [22] and DCGCN [5]. The performances of IPR-GCN and IPR-
DCGCN are 0.9% and 0.7% lower than IPR-GAT and IPR-DCGAT. This indi-
cates that assigning different weights to each node based on the features of its
neighbors is effective for that the strength of association between different nodes
is generally not the same empirically. Meanwhile, almost all results are better
than BASELINE, which proves that the effectiveness of Attention Layer. IPR-
DCGAT is 0.6% higher than IPR-GAT and IPR-DCGCN is 0.8% higher than
GCN. It shows dense connectivity can learn a better structural representation [5].

Table 4. Analysis on attention layer

Model Overall{%} Intra {%} Inter{%}
P R F1 P R F1 P R F1

IPR-DCGAT 89.6 79.0 84.0 91.2 82.2 86.5 85.4 71.5 77.8

IPR-BASELINE 89.2 77.9 83.1 90.0 83.0 86.4 86.8 65.8 74.9

IPR-GCN 86.2 79.2 82.5 87.8 84.0 85.8 81.9 68.0 74.3

IPR-DCGCN 90.0 77.5 83.3 91.5 82.5 86.8 85.7 65.8 74.5

IPR-GAT 89.5 78.1 83.4 91.3 83.1 87.0 84.4 66.1 74.2

Analysis on Weighted Walk Layer. The impact of Weighted Walk Layer is
shown in Fig. 3. We do not add Attention Layer here to avoid confusing effects.
Adding Weighted Walk Layer can improve the performance by 3.3%. Compared
with the inspired method [2] which used the same learnable parameter , we
believe that the contents learned in different iterations are diverse. It has been
proved effective that the improved model has a 0.9% higher F1 and the result
of inter-sentence RE is improved more than that of inter-sentence RE.

Fig. 3. Analysis on weighted walk layer

Table 5. Ablation analysis on CDR

Model F1{%}
Overall Intra Inter

IPR-DCGAT 84.0 86.5 77.8

- distance 83.3 86.4 75.5

- entity type 82.4 86.0 73.2

- co-reference 68.8 73.0 57.8

- all 67.3 72.4 54.3

Ablation Study. For ablation experiments, weighted Walk Layer and Atten-
tion Layer have been discussed in detail above. For other components, it can
be seen from Table 5 that removing the distance, entity type and co-reference

IPR-DCGAT 279

embedding will lead the worse results. Each component plays a greater role in the
inter- than intra-sentence RE. Entity type embeddings can cause a 0.5% drop
in intra- while a 4.6% drop in inter-sentence. The effect of co-reference embed-
dings surprisingly brings 13.5%/20.0% improvements. This phenomenon only
appears in CDR, while other datasets are not so obvious in the same experimen-
tal configuration. It also leads to the most significant improvement in CDR. We
consider the reason is that CDR is a smaller, manually annotated data set with
fewer types of relations and a balanced distribution. The above aspects cause
the effect brought by the addition of co-reference embeddings will be relatively
obvious. For GDA, the large size makes the impact of data scale on the result
more important. Distant supervision also introduces some noise. While the co-
reference information has already been applied in previous papers referencing
DocRED. The performance degradation caused by removing all components is
less than the sum of removing one of them separately, indicating that there may
be overfitting.

Fig. 4. Some errors in CDR

Case Study. Finally, we summarize several typical errors in Fig. 4. From the
first one, entity parkinsonian disability does not appear in a single sentence with
any other entity, making it difficult to capture the connection between them.
The second is the confusion between entities. Entity isotretinoin embryopathy
and isotretinoin are two completely different entities whose words are similar.
The last type is that the distance between entity pair is too long. The ability to
capture structured information will be weakened with the increase of distance.

6 Conclusion

We introduce a novel heterogeneous graph network (IPR-DCGAT) for better
document-level RE. It not only adopts DCGAT to update representations of
nodes, but also update the representations of edges with a two-step iterative algo-
rithm. This model outperforms new state-of-the-art results in various datasets.
We will further improve the model to solve some problems mentioned above.

Acknowledgment. This work was supported by the National Key R&D Program of
China (Grant No.2018YFB0204300).

280 H. Zhang et al.

References

1. Chiu, B., Crichton, G., Korhonen, A., Pyysalo, S.: How to train good word embed-
dings for biomedical NLP. In: Proceedings of the BioNLP 2016 Workshop

2. Christopoulou, F., Miwa, M., Ananiadou, S.: Connecting the dots: document-level
neural relation extraction with edge-oriented graphs. In: EMNLP-IJCNLP(2019)

3. Christopoulou, F., Miwa, M., Ananiadou, S.: A walk-based model on entity graphs
for relation extraction. In: ACL (2018)

4. Gu, J., Sun, F., Qian, L., Zhou, G.: Chemical-induced disease relation extraction
via convolutional neural network. Database (2017)

5. Guo, Z., Zhang, Y., Teng, Z., Lu, W.: Densely connected graph convolutional
networks for graph-to-sequence learning. TACL 7, 297–312 (2019)

6. Gupta, P., Rajaram, S., Schütze, H., Runkler, T.: Neural relation extraction within
and across sentence boundaries. In: AAAI (2019)

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

9. Li, J., et al.: Biocreative V CDR task corpus: a resource for chemical disease
relation extraction. Database (2016)

10. Li, Z., et al.: CIDExtractor: a chemical-induced disease relation extraction system
for biomedical literature. In: BIBM (2016)

11. Liu, C.Y., Sun, W.B., Chao, W.H., Che, W.X.: Convolution neural network for
relation extraction. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang,
W. (eds.) ADMA 2013, Part II. LNCS (LNAI), vol. 8347, pp. 231–242. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-53917-6 21

12. Miwa, M., Bansal, M.: End-to-end relation extraction using LSTMs on sequences
and tree structures. In: ACL (2016)

13. Nan, G., Guo, Z., Sekulić, I., Lu, W.: Reasoning with latent structure refinement
for document-level relation extraction. In: ACL (2020)

14. Nguyen, D.Q., Verspoor, K.: Convolutional neural networks for chemical-disease
relation extraction are improved with character-based word embeddings. In: Pro-
ceedings of the BioNLP 2018 Workshop (2018)

15. Peng, Y., Wei, C.H., Lu, Z.: Improving chemical disease relation extraction with
rich features and weakly labeled data. J. Cheminf. (2016). https://doi.org/10.1186/
s13321-016-0165-z

16. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP (2014)

17. Quirk, C., Poon, H.: Distant supervision for relation extraction beyond the sentence
boundary. In: EACL (2017)

18. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. TSP 45(11),
2673–2681 (1997)

19. Soares, L.B., FitzGerald, N., Ling, J., Kwiatkowski, T.: Matching the blanks: dis-
tributional similarity for relation learning. In: ACL (2019)

20. Song, L., Zhang, Y., Wang, Z., Gildea, D.: N-ary relation extraction using graph-
state LSTM. In: EMNLP (2018)

21. Tang, H., et al.: HIN: hierarchical inference network for document-level relation
extraction. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K.,
Pan, S.J. (eds.) PAKDD 2020, Part I. LNCS (LNAI), vol. 12084, pp. 197–209.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47426-3 16

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
https://doi.org/10.1007/978-3-642-53917-6_21
https://doi.org/10.1186/s13321-016-0165-z
https://doi.org/10.1186/s13321-016-0165-z
https://doi.org/10.1007/978-3-030-47426-3_16

IPR-DCGAT 281

22. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

23. Wang, H., Focke, C., Sylvester, R., Mishra, N., Wang, W.: Fine-tune bert for
DocRED with two-step process. arXiv preprint arXiv:1909.11898 (2019)

24. Wu, Y., Luo, R., Leung, H.C.M., Ting, H.-F., Lam, T.-W.: RENET: a deep learning
approach for extracting gene-disease associations from literature. In: Cowen, L.J.
(ed.) RECOMB 2019. LNCS, vol. 11467, pp. 272–284. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17083-7 17

25. Yao, Y., et al.: DocRED: a large-scale document-level relation extraction dataset.
In: ACL (2019)

26. Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction
via piecewise convolutional neural networks. In: EMNLP (2015)

27. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolu-
tional deep neural network. In: COLING (2014)

28. Zeng, S., Xu, R., Chang, B., Li, L.: Double graph based reasoning for document-
level relation extraction. In: EMNLP (2020)

29. Zheng, W., et al.: An effective neural model extracting document level chemical-
induced disease relations from biomedical literature. JBI 83, 1–9 (2018)

http://arxiv.org/abs/1909.11898
https://doi.org/10.1007/978-3-030-17083-7_17

Causal Inference Using Global
Forecasting Models for Counterfactual

Prediction

Priscila Grecov1(B), Kasun Bandara1(B) , Christoph Bergmeir1(B) ,
Klaus Ackermann2(B) , Sam Campbell3(B), Deborah Scott3(B),

and Dan Lubman3(B)

1 Department of Data Science and Artificial Intelligence, Monash University,
Melbourne, Australia

{priscila.grecov,herath.bandara,christoph.bergmeir}@monash.edu
2 Department of Econometrics and Business Statistics, Monash University,

Melbourne, Australia
klaus.ackermann@monash.edu

3 Turning Point, Eastern Health Clinical School, Monash University,
Melbourne, Australia

{sam.campbell,debbie.scott,dan.lubman}@monash.edu

Abstract. This research proposes a global forecasting and inference
method based on recurrent neural networks (RNN) to predict policy
interventions’ causal effects on an outcome over time through the coun-
terfactual approach. The traditional univariate methods that operate
within the well-established synthetic control method have strong linear-
ity assumptions in the covariates. This has recently been addressed by
successfully using univariate RNNs for this task. We use an RNN trained
not univariately per series but globally across all time series, which allows
us to model treated and control time series simultaneously over the
pre-treatment period. Therewith, we do not need to make equivalence
assumptions between distributions of the control and treated outcomes
in the pre-treatment period. This allows us to achieve better accuracy
and precisely isolate the effect of an intervention. We compare our novel
approach with local univariate approaches on two real-world datasets
on 1) how policy changes in Alcohol outlet licensing affect emergency
service calls, and 2) how COVID19 lockdown measures affect emergency
services use. Our results show that our novel method can outperform the
accuracy of state-of-the-art predictions, thereby estimating the size of a
causal effect more accurately. The experimental results are statistically
significant, indicating our framework generates better counterfactual pre-
dictions.

Keywords: Global forecasting · Causal inference · Counterfactual

Acknowledgments to Turning Point researchers who code the NASS data and ambu-
lance services and paramedics who create and provide that data.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 282–294, 2021.
https://doi.org/10.1007/978-3-030-75765-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_23&domain=pdf
http://orcid.org/0000-0001-9029-1478
http://orcid.org/0000-0002-3665-9021
http://orcid.org/0000-0001-7693-8538
https://doi.org/10.1007/978-3-030-75765-6_23

Causal Inference Using DeepCPNet for Counterfactual Prediction 283

1 Introduction

Causal inference determines causal relationships of interventions and effects, and
measures the impact of interventions. It is important in situations where fully
randomized control trials (A/B testing) are too costly, ethically questionable,
or otherwise not possible. The insights drawn from causal inference analysis are
useful to understand why and how effects happen, and enable targeted inter-
ventions and robust predictions. Causal inference has important applications in
policy-making, as well as in marketing, advertisement targeting, and other areas.

The base idea is that an intervention affects only part of the overall amount
of observable instances, known as the treated instances, so that the remaining
instances can be used as the control group that is not impacted by the interven-
tion. For example, a policy change (e.g., about COVID19 lockdowns, Alcohol
licenses issued, or others), could have affected only certain counties, not oth-
ers. This is the base idea behind the Rubin Causal model [24] and is called
the “potential outcome” approach. In this approach, the difference between the
counterfactual prediction and the true values is considered as an estimation of
the causal effect. Here, the counterfactual prediction refers to the prediction
under the assumption of absence of intervention, for treated instances in the
post-intervention period.

Using the Rubin Causal model premise, numerous strategies have been devel-
oped in the literature to conduct causal inference analysis. This includes the
regression discontinuity methods [17], the differences-in-differences methods [3],
the synthetic control methods [1], the network settings methods [9], and the
observational combined methods [2]. In these methods, to compute the coun-
terfactual prediction, usually a time series forecasting model is trained on parts
of the dataset that have not been affected by the intervention (pre-intervention
period), and is then applied to parts that have been affected (post-intervention
period). Recently, deep neural network based counterfactual prediction meth-
ods have been introduced [12,14,20,21,25]. These studies argue that the non-
parametric nature of deep learning models obviate the nonlinear, non-convex
limitations of the traditional counterfactual prediction methods.

Nonetheless, the underlying forecasting methods used in the current coun-
terfactual prediction frameworks are mostly univariate models. In contrast, the
state of the art in time series forecasting has moved from such local, per-series
univariate modelling to global forecasting models (GFM) that learn across many
time series [4,19]. Compared to univariate forecasting models that treat each
time series separately, GFMs are unified forecasting models that are trained
across sets of many time series. This allows the GFMs to exploit the cross-series
information available in a set of time series. The application of GFMs to conduct
causal analysis, using the notion of Granger Causality [13], has already proven
useful [5]. We say that a variable Yt “Granger causes” Xt+1 if making Yt avail-
able as an input to the forecasting of Xt+1 yields a more accurate forecast. It
indicates that Y contains useful information, not found in the other inputs to
the forecasting procedure, that helps to explain the behaviour of X. However,
when using Granger Causality analysis, in practice it is usually not possible to

284 P. Grecov et al.

include all the relevant external variables for model training [22]. Therefore, we
focus our work on the application of the counterfactual prediction approach to
perform causal impact analysis.

In this work, we propose Deep Counterfactual Prediction Net (DeepCPNet),
a GFM-based counterfactual prediction method that performs causal analysis.
To the best of our knowledge, this is the first study that employs a GFM-based
methodology to conduct causal inference using the counterfactual approach.
Compared to univariate approaches [23,26], GFMs are better suited for making
counterfactual prediction, as they learn across multiple time series simultane-
ously. In univariate approaches, training during the pre-treatment period takes
into consideration only the combination of control unit time series as covariates,
having then to transfer the learned parameters (e.g., network weights) to the
treated time series in the post-intervention period to predict the counterfactual.
With a global approach, when we add the treated unit before the intervention
effect to the training phase, we are able to add more information to the mod-
elling and therewith the forecasting without the effects of the intervention and
therewith the subsequent causal inference becomes more accurate. Furthermore,
we do not need to make an assumption of equivalence between distributions of
the control and treated outcomes in the pre-treatment period, and do not need
to search for or limit ourselves to similar control units (therewith also not hav-
ing to define a notion of similarity). With a global approach, we are in addition
reducing the risk to bias the results by pre-splitting our data in control and
treated group. Forgoing cross-series dependence between the groups could oth-
erwise dramatically decrease the overall forecasting performance. To model the
nonlinear, non-convex, and dynamic interactions between the treated and con-
trolled time series groups, we use Long Short-Term Memory networks (LSTM)
that are naturally suited for time series forecasting.

We evaluate the proposed DeepCPNet using two real-world datasets. The
first dataset is an Emergency Medical Services (EMS) demand dataset, which
consists of attendances related to alcohol intoxication reported in Australia.
The second dataset is related to 911 emergency call demand in the Montgomery
County, Pennsylvania, United States. In our framework, we first validate the
externally given policy variable for the potential causal factors that can influence
the time series. In the first dataset, we identify the number of alcohol licenses
issued (ALI) as a potential causal influence towards the alcohol intoxication
related EMS demand. Here, ALI is a factor that policymakers can control and is
therefore of interest [5]. We consider the effect of COVID19 lockdown measures
as a potential causal factor in the second dataset. As the second step of our
DeepCPNet framework, we classify each time series into treated and control
groups, based on the effect of the causal factor. As the third step, we define the
time periods for the pre-intervention and the post-intervention process. For the
second and the third steps, we perform a comprehensive exploratory analysis to
validate our exogenous given policy variable and the intervention starting time.
Next, we use the GFM forecast architecture in DeepCPNet to train across all
the treated and the controlled time series for the pre-treatment period. Then,
the DeepCPNet estimates the counterfactual outcome for the treated unit in
the post-intervention period, which is considered as the estimated treated unit

Causal Inference Using DeepCPNet for Counterfactual Prediction 285

trajectory without the effect of the intervention. Finally, we perform Wilcoxon
signed-rank test to assess whether the difference between the gaps of errors from
the control units and the treats units are statistically significant. The source
code of our DeepCPNet framework and the experiments is available at https://
bit.ly/3mWFbEO.

The rest of this research paper is organised as follows. In Sect. 2, we formally
define the counterfactual prediction task and describe the methodology used in
the DeepCPnet framework. In Sect. 3, we apply DeepCPnet to the benchmark
datasets. In Sect. 4, we analyse the results obtained, and discuss the main insights
from our experiments. Finally, Sect. 5 concludes the paper.

2 Methodology

In the following, we first define the counterfactual prediction task. Then, we
explain the forecast engine used to generate the counterfactual prediction in the
DeepCPNet framework, and detail the placebo testing framework.

2.1 Counterfactual Prediction

The problem of counterfactual output prediction is formulated as follows. Let
N be the number of time series of each unit i = 1, ..., N , and T be the time
t = 1, ..., T0, ..., T , where T0 is the beginning of the intervention. We denote Y as
the matrix N × T . Among the units i, the control units are represented by Y C

i,t,
and the treated units are represented by Y I

i,t. Thus, Y C,I
i,t≤T0

is the pre-intervention
matrix and Y C,I

i,t>T0
the post-intervention matrix.

The counterfactual outcome for the treated units is their forecasting output
Ŷ I
i,t>T0

from the model fitted over the whole pre-intervention matrix Y C,I
i,t≤T0

of
observed values, assuming that treated units are exposed to the intervention
at time T0 and forward. There is an implicit assumption that the treatment
is well-defined, i.e., each unit presenting the same number of potential out-
comes [18]. Finally, the causal effect estimation of this intervention over the
treated units φ̂I

i,t>T0
, will be the difference between their observed values in the

post-intervention period and the counterfactual prediction, for each treated unit
i = 1, ..., N , as follows [8]:

φ̂I
i,t>T0

= Y I
i,t>T0

− Ŷ I
i,t>T0

, (1)

Causal Effecti =
T∑

t=T0+1

φ̂I
i,t, (2)

2.2 DeepCPNet Forecast Engine

We implement the DeepCPNet framework using the open-source deep-learning
toolkit TensorFlow [15]. The forecasting engine of DeepCPNet consists of three

https://bit.ly/3mWFbEO
https://bit.ly/3mWFbEO

286 P. Grecov et al.

layers, namely: 1) the preprocessing layer, 2) the DeepCPNet training layer, and
3) the post-processing layer.

In the pre-processing layer, the time series are first normalised using the
mean-scale transformation strategy. Then, we apply the log transformation to
stabilise the variance of the time series, which also assures seasonality and trend
in the series to be additive. As the last step of the pre-processing phase, we use a
decomposition technique to extract the seasonal components of the time series.
These extracted components are later used as teacher inputs to the DeepCPNet
training layer. In our experiments, we use the Seasonal and Trend Decomposi-
tion using Loess (STL) [10] method as our primary time series decomposition
technique.

The DeepCPNet training layer uses an LSTM, which is naturally suited for
modelling time series data, and has been heavily used in the time series forecast-
ing literature [4,7]. To train the DeepCPNet, we use the past observations of time
series in the form of input and output windows, following the Moving Window
transformation strategy recommended by Hewamalage et al. [15]. Furthermore,
we use the Seasonal Exogenous (SE) training approach proposed by Bandara et
al. [6] to train our framework. In the SE training approach, the seasonal com-
ponents which are extracted in the pre-processing phase are used as exogenous
variables to the original time series observations. This supplements the Deep-
CPNet to learn the seasonality present across multiple related time series. Fur-
thermore, we use the stacked architecture as the primary training architecture
of DeepCPNet. Again following the recommendations of Hewamalage et al. [15],
we use COntinuous COin Betting (COCOB) as the primary learning algorithm
to learn DeepCPNet.

The third layer of DeepCPNet, the post-processing layer, reverts back the
transformations applied in the pre-processing phase. Finally, to calculate the
counterfactual predictions, the DeepCPNet is applied to the pre-intervention
matrix Y C,I

i,t≤T0
(as defined in Sect. 2.1) to obtain the counterfactual outcome for

each treated unit Ŷ I
i,t>T0

, where the training window is [1, T0] and the forecasting
window is (T0, T].

Our method has different hyper-parameters such as LSTM-cell-dimension,
Mini-batch-size, Epoch-size, Hidden Layers, etc. We reserve the last output win-
dow of each time series for automatic hyper-parameter tuning. Here, we use
the sequential model-based configuration (SMAC) algorithm that implements a
Bayesian hyper-parameter optimisation process [16].

2.3 Placebo Tests

In the literature, studies often conduct a placebo test to benchmark the accuracy
of the model estimators used for counterfactual predictions [1,8,23]. The placebo
method evaluates the performance of the predictor only over the forecasting
accuracy of the control units. That is, it removes the actual treated units from
the training phase and evaluates the models on their ability to produce lower
error on the control units. Good accuracy in the placebo tests indicates that the

Causal Inference Using DeepCPNet for Counterfactual Prediction 287

counterfactual forecasts are accurate, and the predictor is able to successfully
generalise.

Also, if the placebo tests generate error gaps that are similar to the one
estimated in the treated units, the analysis does not provide significant evidence
of a null effect of the treatment over-analysis. This shows that the counterfactual
predictions are not accurate enough. On the other hand, if the placebo tests
demonstrate the error gap for treated units is unusually large relative to the ones
for the control units, then the results indicate the quality of the counterfactual
predictions.

To ensure that the difference between these error gap magnitudes are statis-
tically significant, we apply a non-parametric paired Wilcoxon signed-rank exact
test. We use the default implementation of this statistical test available in R,
with a significance level of α = 0.05.

3 Experimental Setup

In this section, we present the experimental setup used to evaluate the Deep-
CPNet on two real-world datasets, including a discussion of the datasets, error
metrics, and benchmarks.

3.1 Datasets

The National Ambulance Surveillance System (NASS) Dataset. The national
dataset of coded ambulance clinical records held by Turning Point, an Australian
addiction research and education centre. This dataset [11] holds surveillance data
on alcohol and other drug, self-harm and mental health-related ambulance atten-
dances across 5 of the 6 Australian states and 2 territories. In our experiments,
we only use the monthly EMS demand data relevant to the alcohol intoxication
category for 79 local government areas (LGAs) in Australia. In this dataset, we
investigate how the number of alcohol licenses issued (ALI) impacts the alcohol
intoxication calls demand. The ALI variable is used to separate the time series
into control and treated units, and it is also used as an exogenous variable to
train the DeepCPNet. The entire time period for both alcohol intoxication and
ALI time series is from January-15 to May-19. The observations from June-18
to May-19 are used as the test set because they correspond to the intervention
period. This intervention period is determined by the abnormal increase of ALI
observed for some local jurisdictions during July-18 to November-18; then, the
pre-intervention time period is set to January-15 to May-18. When training the
DeepCPNet, the training output window size is set to 12, as the intended fore-
cast horizon is 12 months. Also, the corresponding input window size is set to
15 (1.25*12), following the recommendations of Hewamalage et al.[15].

911 Emergency Calls Dataset. This dataset contains emergency calls relevant to
EMS, traffic, and fire, specified in detail in 88 distinct types of codes. The data
is available for 62 municipalities of Montgomery County in the United States

288 P. Grecov et al.

for the time period of December-2015 to July-2020. We aggregate the original
daily observations to monthly level to overcome the data sparsity, and cate-
gorise the 88 codes into EMS, traffic, and fire. In this dataset, we investigate the
impact of COVID19 lockdown measures on the 911 emergency calls demand. The
COVID19 lockdown restriction measures were put into place from the beginning
of January 2020. Therefore, the post-intervention period is set to January-2020
to July-2020, whereas the pre-intervention period is set to December-2015 to
December-2019. Following the same heuristic used for the NASS dataset, here
we set the training output window size of the DeepCPNet to 7, and the corre-
sponding training input window size to 15.

3.2 Error Metrics for Performance Measuring

To evaluate the forecast accuracy of the DeepCPNet, we report two scale-
independent error metrics that are commonly used in time series forecasting
research. These are the symmetric Mean Absolute Percentage Error (sMAPE)
and the Mean Absolute Scaled Error (MASE), defined as follows:

sMAPE =
2
h

n+h∑

t=n+1

|Ft − Yt|
|Yt| + |Ft| , MASE =

1
h

∑n+h
t=n+1 |Ft − Yt|

1
n−S

∑n
t=S+1 |Yt − Yt−S |

(3)

Here, h indicates the number of data points in the test set (the forecasting
horizon), n is the number of observations in the training set, Ft represents the
forecasts generated by DeepCPNet, and Yt the actual observation at time t. Also,
S refers to the frequency of the seasonality in a given time series. The mean and
median of these error measures across series are reported in our evaluation.

3.3 Benchmarks and DeepCPNet Variants

We benchmark the GFM-based forecasting engine used in the DeepCPNet
against some univariate state-of-the-art forecasting algorithms, namely ETS and
ARIMA. Both these methods are used with their default parameters from the
forecast package in R. We also compare the results with a univariate LSTM
method, which is identical to DeepCPNet but trained on each series separately.
Furthermore, we define DeepCPNet-ALI as a variant of the DeepCPNet model
that adds a time series of the amount of ALI as an external variable to the
original ambulance calls time series when training the DeepCPNet.

4 Results and Discussion

Table 1 shows the evaluation summary of the DeepCPNet variants and bench-
marks for the NASS dataset. According to Table 1, we can see that overall the
proposed DeepCPNet-ALI variant achieves the best results for both treated and
control groups. We see that after incorporating ALI as an exogenous variable
(DeepCPNet-ALI), the accuracy of DeepCPNet has improved, outperforming

Causal Inference Using DeepCPNet for Counterfactual Prediction 289

Table 1. Results for the 79 monthly series of NASS.

Method Mean sMAPE Median sMAPE Mean MASE Median MASE

DeepCPNet

- All LGAs 0.1527 0.1425 1.0628 0.9818

- Treated Group 0.1547 0.1477 1.0731 0.9790

- Control Group 0.1388 0.1375 0.9917 1.0117

DeepCPNet-ALI

- All LGAs 0.1396 0.1341 0.9786 0.9467

- Treated Group 0.1405 0.1341 0.9812 0.9413

- Control Group 0.1332 0.1357 0.9604 0.9733

LSTM-univariate

- All LGAs 0.1557 0.1537 1.0828 1.0205

- Treated Group 0.1570 0.1560 1.0900 1.0205

- Control Group 0.1464 0.1323 1.0331 0.9716

ARIMA

- All LGAs 0.1560 0.1458 1.0888 0.9853

- Treated Group 0.1572 0.1427 1.0973 0.9643

- Control Group 0.1476 0.1490 1.0300 1.0069

ETS

- All LGAs 0.1507 0.1441 1.0647 1.0078

- Treated Group 0.1515 0.1427 1.0705 0.9981

- Control Group 0.1450 0.1555 1.0244 1.0876

the original DeepCPNet and the rest of the statistical benchmarks, LSTM uni-
variate, ARIMA, and ETS.

Afterwards, we confirm the causal influence of ALI over the alcohol intoxica-
tion calls demand using the counterfactual modelling approach. To achieve this,
we first investigate the trend of the ALI to capture a possible anomaly trajectory.
Here, we normalise the 79 ALI time series by the population of the respective
LGA, and then use the STL decomposition through the overall ALI time series.
In Fig. 1, we see that there exists a non-seasonal and abnormal growth in the
issuing of alcohol licenses from June 2018 to November 2018. Therefore, we take
this event as our intervention event and set the post-intervention period from
June 2018. Our aim is to predict the counterfactual outcome for the treated
units (LGAs that presented this same outlier trajectory of abnormally high ALI
increase) from June 2018 onwards.

Based on the above grouping criteria, we split the ALI time series into
control and treated groups. The control group represents the LGAs with no
increase/decrease of ALI during the post-intervention period, while the treated
group represents the LGAs with growth at the number of ALI during this period.
We identify 69 LGAs for the treated group, and 10 LGAs for the control group.

290 P. Grecov et al.

Fig. 1. (A) The STL Decomposition of the ALI time series. The blue line indicates
a non-seasonal and abnormally high increase in the amount of alcohol licenses (ALI)
issued between July 2018 and November 2018. (B) STL Decomposition of the ALI
time series. This plot displays each decomposition component in the time series. In the
remainder component, it clearly shows the non-seasonal event that occurred between
July 2018 and November 2018, which is considered as the intervention event for this
dataset. (Color figure online)

In Table 1, we see that in both DeepCPNet and DeepCPNet-ALI variants
the errors for the control group are smaller than those of the treated group. To
confirm the quality of the counterfactual outcome prediction, two factors need
to be confirmed: (1) the forecast for the control group outcome should be at
least as accurate as that for the alternative benchmark methods and (2) the null
effect of the intervention over the control units (the placebo test proceedings).
Concerning the first point, Table 1 shows that DeepCPNet and DeepCPNet-ALI
for the control groups perform better, compared to LSTM univariate, ARIMA,
and ETS. To validate the second point, as described in Sect. 2.3, we perform
statistical significance tests of the differences between the gaps of errors from
the control units and the treated units. The results are statistically significant
with a p-value of 0.012 and 0.021 for the DeepCPNet and the DeepCPNet-ALI,
respectively. These results show supporting evidence that the variable ALI has a
causal effect on the alcohol intoxication related EMS demand. Here, the causal
effect can be considered as the difference between the observed trajectory of the
treated units and its counterfactual trend (see Fig. 2-A).

Table 2 summarises the results of the DeepCPNet and benchmarks for the
911 emergency calls. To estimate the counterfactual outcome for the townships
that were affected by the COVID19 lockdown, we train the DeepCPNet up to
December 2019 (pre-intervention period), and forecast from January 2020 to July
2020 (post-intervention period). The control group for this dataset is the set of
townships that implemented lighter (or none) lockdown restriction measures.
Following a similar procedure to Fig. 2-A, we identify 12 municipalities from

Causal Inference Using DeepCPNet for Counterfactual Prediction 291

Table 2. Results for the 62 monthly series of 911 emergency calls.

Methods

Control group Treated group

Error metric DeepCPNet LSTM-uni ARIMA ETS DeepCPNet LSTM-uni ARIMA ETS

Mean sMAPE 0.1899 0.1945 0.1847 0.1920 0.2525 0.2525 0.2508 0.2624

Median sMAPE 0.1740 0.1783 0.1717 0.1746 0.2290 0.2256 0.2250 0.2336

Mean MASE 0.8521 0.8698 0.8288 0.8616 1.3939 1.3926 1.3857 1.4498

Median MASE 0.9176 0.9370 0.9272 0.9430 1.3100 1.2842 1.2848 1.3334

Fig. 2. The full lines denote the observed data and the dashed lines represent the
forecasts. The dashed blue line indicates the counterfactual prediction for the treated
group, where its trajectory is free from the intervention effect. We can see that the
error gap from the control group is smaller than the error gap for the treated group.
The difference between the blue lines indicate the causal effect of the variable ALI over
the alcohol intoxication related EMS demand - graphic (A); and the causal effect of the
COVID19 lockdown measures over the 911 emergency callouts - graphic (B). (Color
figure online)

a total of 62 townships, as the control group. According to Table 2, we observe
that the performance of DeepCPNet in the control group time series is at least as
accurate as the benchmarks, LSTM univariate, ETS, and ARIMA. Furthermore,
the results are statistically significant with a p-value of 0.005.

Therefore, we conclude that the COVID19-lockdown has affected the number
of 911 emergency calls. Here, the counterfactual prediction can be considered as

292 P. Grecov et al.

a good estimation for the trend of 911 emergency calls, in the absence of the
COVID19 lockdown measures. Hence, the effect of the lockdown measures over
the number of 911 emergency calls can be estimated as the difference between
the observed trajectory and the projected counterfactual trend (see Fig. 2-B).

5 Conclusions

We have proposed a novel counterfactual framework based on global forecasting
models. By incorporating the global forecasting approach, the proposed method
offers more complex and realistic modelling to predict reliable counterfactual
outcomes. In particular, our global RNN-based approach uses a stacked archi-
tecture, LSTM cells, a COCOB optimizer, deseasonalisation, and some further
pre-processing techniques.

Our method not only handles non-convexity limitations of traditional syn-
thetic control methods, but also allows us to relax the assumption of equiva-
lence between the distributions of the control and treated outcomes in the pre-
treatment period. Our counterfactual prediction method is trained over both
control and treated units together in the pre-treatment period to predict the
counterfactual of treated units, by applying the forecasting model to the post-
intervention periods. Though we do not need to assume equal distribution for
control and treated series in the pre-treatment period, we assume an equivalent
distribution between the pre- and post-treatment-period outcomes for control
units, which is more likely to be satisfied.

Our results show that the proposed framework outperforms univariate state-
of-the-art forecasting methods in terms of accuracy. The statistically significant
results obtained from the placebo testing indicate that the causal factors have
affected the emergency services demand. These results show the ability of Deep-
CPNet to estimate the size of a causal effect more accurately. Moreover, we have
demonstrated that DeepCPNet is capable of conducting causal analysis in the
events of two treatment scenarios: (1) the one-off treatment event depicted in the
case of COVID-19 lockdown measures and (2) the across-time treatment event
depicted in the case of liquor licensing policies.

Some limitations of the counterfactual approach remain in our method, such
as the assumption that intervention effects keep constant in the post-treatment
period. Also, RNN-based estimators continue to require sufficient pre-treatment
period observations, thus being more appropriate in contexts of higher frequency
and higher dimensional datasets of sufficient size.

A future direction of our research is the framework’s use on simulated data
where the causality relationships can be added to the variables for the simulation
of causal effects. The inclusion of more than one external factor to study the
effects of more than one intervention also is a possible future direction.

Causal Inference Using DeepCPNet for Counterfactual Prediction 293

References

1. Abadie, A., Diamond, A., Hainmueller, J.: Synthetic control methods for compar-
ative case studies: estimating the effect of California’s tobacco control program. J.
Am. Stat. Assoc. 105(490), 493–505 (2010)

2. Athey, S., Chetty, R., Imbens, G., Kang, H.: Estimating treatment effects using
multiple surrogates: The role of the surrogate score and the surrogate index. arXiv
preprint arXiv:1603.09326 (2016)

3. Athey, S., Imbens, G.W.: Identification and inference in nonlinear difference-in-
differences models. Econometrica 74(2), 431–497 (2006)

4. Bandara, K., Bergmeir, C., Smyl, S.: Forecasting across time series databases using
recurrent neural networks on groups of similar series: a clustering approach. Expert
Syst. Appl. 140, 112896 (2020)

5. Bandara, K., Bergmeir, C., Campbell, S., Scott, D., Lubman, D.: Towards accurate
predictions and causal ‘what-if’ analyses for planning and policy-making: a case
study in emergency medical services demand. In: IJCNN, pp. 1–10. IEEE (2020)

6. Bandara, K., Bergmeir, C., Hewamalage, H.: LSTM-MSNet: leveraging forecasts
on sets of related time series with multiple seasonal patterns. IEEE TNNLS (2020)

7. Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., Seaman, B.: Sales
demand forecast in e-commerce using a long short-term memory neural network
methodology. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019, Part III.
LNCS, vol. 11955, pp. 462–474. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36718-3 39

8. Brodersen, K.H., Gallusser, F., Koehler, J., Remy, N., Scott, S.L.: Inferring causal
impact using Bayesian structural time-series models. Ann. Appl. Stat. 9(1), 247–
274 (2015)

9. Chandrasekhar, A.: Econometrics of network formation. In: The Oxford Handbook
of the Economics of Networks, pp. 303–357 (2016)

10. Cleveland, R., Cleveland, W., McRae, J., Terpenning, I.: STL: a seasonal-trend
decomposition procedure based on loess. J. Off. Stat. 6(1), 3–33 (1990)

11. Lubman, D.I., et al.: The national ambulance surveillance system. PLoS One 15,
e0228316 (2020)

12. Farrell, M.H., Liang, T., Misra, S.: Deep neural networks for estimation and infer-
ence. arXiv preprint arXiv:1809.09953 (2018)

13. Granger, C.W.: Testing for causality: a personal viewpoint. J. Econ. Dyn. Control
2, 329–352 (1980)

14. Hartford, J., Lewis, G., Leyton-Brown, K., Taddy, M.: Deep IV: a flexible approach
for counterfactual prediction. In: ICML, pp. 1414–1423 (2017)

15. Hewamalage, H., Bergmeir, C., Bandara, K.: Recurrent neural networks for time
series forecasting: current status and future directions. Int. J. Forecast. 37(1),
388–427 (2020)

16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

17. Imbens, G.W., Lemieux, T.: Regression discontinuity designs: a guide to practice.
J. Econ. 142(2), 615–635 (2008)

18. Imbens, G.W., Rubin, D.B.: Causal Inference in Statistics, Social, and Biomedical
Sciences. Cambridge University Press, Cambridge (2015)

http://arxiv.org/abs/1603.09326
https://doi.org/10.1007/978-3-030-36718-3_39
https://doi.org/10.1007/978-3-030-36718-3_39
http://arxiv.org/abs/1809.09953
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40

294 P. Grecov et al.

19. Januschowski, T., et al.: Criteria for classifying forecasting methods. Int. J. Fore-
cast. 36(1), 167–177 (2020)

20. Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual
inference. In: International Conference on Machine Learning, pp. 3020–3029 (2016)

21. Lim, B.: Forecasting treatment responses over time using recurrent marginal struc-
tural networks. NeurIPS 18, 7483–7493 (2018)

22. Nauta, M., Bucur, D., Seifert, C.: Causal discovery with attention-based convolu-
tional neural networks. ML Knowl. Extr. 1(1), 312–340 (2019)

23. Poulos, J.: RNN-based counterfactual prediction. arXiv preprint arXiv:1712.03553
(2017)

24. Rubin, D.B.: Estimating causal effects of treatments in randomized and nonran-
domized studies. J. Educ. Psycho. 66(5), 688 (1974)

25. Shi, C., Blei, D., Veitch, V.: Adapting neural networks for the estimation of treat-
ment effects. In: NeurIPS. pp. 2507–2517 (2019)

26. Steinkraus, A.: Estimating treatment effects with artificial neural nets: a compar-
ison to synthetic control method. Econ. Bull. 39(4), 2778–2791 (2019)

http://arxiv.org/abs/1712.03553

CED-BGFN: Chinese Event Detection via
Bidirectional Glyph-Aware Dynamic

Fusion Network

Qi Zhai, Zhigang Kan, Sen Yang, Linbo Qiao(B), Feng Liu(B),
and Dongsheng Li(B)

College of Computer, National University of Defense Technology, Changsha, China
{zhaiqi18,qiao.linbo,richardlf,dsli}@nudt.edu.cn

Abstract. Event Detection is an essential task in information extrac-
tion. However, most existing studies on event detection are designed
for English text. There is still a lack of efficient algorithm for Chi-
nese event detection, which is expected to be greatly improved. Recent
work has shown that enhanced text representation, such as introducing
glyph information, can significantly improve downstream tasks in natu-
ral language processing. In this paper, we propose a novel method for
Chinese Event Detection via Bidirectional Glyph-aware Dynamic Fusion
Network, called CED-BGFN. We use two representations: glyph-aware
information and pre-trained language model. To integrate the hetero-
geneous representation modules, we propose a creative fusion network
Bidirectional Glyph-aware Fusion Network, named BGFN. Considering
the dynamic interaction of the two expressions, BGFN adaptively learns
the fusion weights for the downstream event detection task. We con-
duct extensive experiments to investigate the validity of the proposed
method on the ACE 2005 Chinese corpus. Results demonstrate that com-
pared with the previous state-of-the-art methods, our approach obtains
transcendent performance in both event trigger identification task and
classification task, with an increase of 5.48 (7.46%) and 5.03 (7.1%) in
F1-score, respectively.

Keywords: Chinese event detection · Interactive fusion network ·
Glyph

1 Introduction

As a complex natural language processing (NLP) task, event detection is a vital
step of event extraction. It aims to automatically extract trigger words from
unstructured text and identify event types by trigger words. For example, “The
militants attacked the town and injured three people” illustrates an “Attack”

The work was partially supported by the National Key Research & Development Pro-
gram of China under Grant No. 2018YFB0204300, and the National Natural Science
Foundation of China under Grant No. 61806216, 62025208 and 61932001.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 295–307, 2021.
https://doi.org/10.1007/978-3-030-75765-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_24

296 Q. Zhai et al.

Fig. 1. An example of word-triggers mismatch and character-triggers ambiguity.

event triggered by the word “attacked” and an “Injure” event triggered by
the word “injured”. Due to the characteristics of Chinese itself, Chinese event
detection (CED) still has the following two challenges: (1) Since there is no
obvious segmentation in Chinese, the word-wise method may cause mismatches
in the stage of trigger words identification stage. (2) The same trigger words
may express different semantics in various contexts. As shown in Fig. 1, in the
S1 (hit) and (wounded) in the word (wounded) represent
the trigger words “Attack” and “Injure”, respectively. On the contrary, in the
S2 (protest\demonstration) is a trigger but contains two words.
What’s more, in the S1 the trigger word (kill) represents the event “Die”,
but denotes “Attack” in the S3.

Currently, several studies have attempted to address these issues utilizing
various methods. Traditional methods are almost feature-based, which may be
restricted by hand-crafted features, leading to error accumulation, ambiguity,
and portability problems [2,12,19]. Nowadays, as neural networks evolve, their
strengths in automatically extracting and learning features offer exciting new
opportunities for researchers to alleviate these troubles [6,14,23–25,30]. However,
these methods directly and simply concatenate information in the acquisition
of language structure information, without considering the interactions between
diverse representations. Simultaneously, as a fresh NLP paradigm, pre-trained lan-
guagemodels (PLMs) have the profit of providing bettermodel initializationmeth-
ods and general language representations, but glyphs are not taken into account in
the processes of pre-training [5]. Notably, Glyce [16] scanned 13 Chinese natural
language task records and experimentally showed that glyphs provided effective
support for the acquisition of structural information in Chinese.

In this paper, we propose a new CED method via BGFN. Instead of directly
encoding Chinese glyph images, we adopt multiple CNN encoding methods which
model the fine-grained representation of characters in different kernels to gain
more comprehensive glyph information. We apply BiLSTM for glyph charac-
ters to learn position information implicitly and to reduce the generation gap
between the context-aware representations of PLMs and glyph, which is bene-
ficial to couple heterogeneous networks. Besides, BGFN uses cross-coding two

Chinese Event Detection via BGFN 297

expressions and obtains interactive attentional dynamic weights to fuse the two
representations. In summary, our contributions in this paper are:

– To our knowledge, this is the first attempt to fuse glyph information with
PLMs for CED. Our proposed bidirectional glyph-aware method further
increases sequence information and reduces the generation gap with the
context-aware representation of PLMs.

– We design the BGFN to integrate heterogeneous representations, thus enrich-
ing the language structure information.

– We conduct extensive experiments on the ACE 2005 Chinese corpus. The
results not only show that our approach outperforms the previous state-of-
the-art methods, but also demonstrate the effectiveness of glyphs in CED.

2 Related Works

Event Detection (ED). ED is a key link in the field of information extraction.
The traditional methods [2,12,19] use existing natural language processing toolk-
its (e.g., part of speech tagging, entity information, etc.) to obtain feature rep-
resentations. Wu et al. [23] proposed to incorporate part of speech, dependency
grammar, distance from the HEAD information. These approaches may lead to
error accumulation, ambiguity, and portability problems. Recently, deep learn-
ing methods [9,10,27] have been extensively used in the ED task. Ding et al. [6]
introduced the Trigger-aware Lattice Neural Network to enhance the under-
standing of polysemous trigger words through an external language knowledge
base (HowNet). However, it didn’t consider the complete context and required
the construction of a large number of external features. Xi et al. [25] first used
the language model representation to obtain contextual semantic information in
CED. Based on character-wise models, it also incorporated word embeddings to
aid structural pattern learning.

Pre-trained Language Models (PLMs). PLMs use different tasks to pre-
train on the large-scale unlabeled text and then fine-tune the model or represen-
tation for a specific task. Early PLMs like ELMo [18] used the deep bidirectional
language model that consists of a forward and a backward LSTM. GPT [20]
adopted a left-to-right Transformer decoder to generate context word vectors.
But they only use one-way information. In terms of this issue, BERT [5] proposed
to use the bidirectional Transformer encoder. ERNIE [22] added the prior knowl-
edge of phrases and entities, BERT-wwm [4] utilized the whole word masking in
Chinese text, RoBERTa [15] improved the BERT training method and optimized
the training process, and XLNet [28] introduced the permutation language model
and Transformer-XL. To obtain a more fine-grained internal semantic represen-
tation of Chinese characters, researchers proposed some methods: radicals [13],
strokes [1], wubi [17], glyphs [16], characters [3], etc.

298 Q. Zhai et al.

Fig. 2. Illustration of the CED-BGFN architecture. It shows the processing of the
event instance triggered by the word (shoot). The labels are (a) BERT input
representation, (b) bidirectional Transformer encoder, (c) BiLSTM, (d) scalar mul-
tiplication, (e) glyph representation, (f) two-layer BiLSTM, (g,h) final forward and
backward hidden states, respectively, (i) context encoder output, (j) PReLU(·).

Meta-embeddings. Recently, some researches combine multiple word embed-
dings in the text representation stage. CharWNN [7] combined character-based
and word-based embeddings. Glyce [16] concatenated glyph representation with
BERT. Yin and Schütze [21] first proposed the meta-embeddings through neural
networks. However, word embedding fusion was considered as a pre-processing
step. It did not dynamically adapt to specific tasks. DME [11] dynamically
obtained the weight value of each word embedding based on sentence-level self-
attention. The interaction between the elements inside the word embeddings were
not considered. Based on DME, DTFME [26] increased the internal relations of
word embeddings through factorization and pooling operations.

3 Methodology

We regard the event detection task as a sequence labeling task to identify and
classify each character in the input sentence. The architecture of our model is
shown in Fig. 2, which includes the following three stages:

(1) Representation stage, this module is mainly to obtain the word embed-
dings that need to be fused. One is the glyph-aware representation, the other
is context-aware representation by BERT.

(2) Fusion stage, this module is to merge heterogeneous representations and
construct new independent representation from them.

(3) Sequence tagger stage, this module mainly uses multi-layer nonlinear
perception to project the fusion representation of each character into 35 (add
pad and null types) event type space.

Chinese Event Detection via BGFN 299

Fig. 3. Three encoding methods of the glyph character images. The gray box represents
ResNet, the yellow box denotes AutoEncoder, and the purple box is GroupCNN. (Color
figure online)

3.1 Representation Stage

Given a sentence, CED-BGFN will first learn a representation for each charac-
ter. The embeddings consist of glyph-aware and context-aware representations.

Glyph-Aware Representation. In this module, we convert the input charac-
ters into font images to form the glyph-level embedding. The specific realization
is shown in Fig. 3. Given an input sequence S = {c1, c2, ..., cs}, where ci repre-
sents the ith character in the sequence. For ci, firstly we use GroupCNN, ResNet,
AutoEncoder three encoding methods to obtain glyph information from different
perspectives. GroupCNN [16] uses two-layer group convolutions with the 2 * 2 ker-
nel. ResNet is composed of two residual blocks with the 3 * 3 kernel. AutoEncoder
contains the three-layer encoder and decoder. At each layer of AutoEncoder’s
encoder, the input channels are twice as large as the output channels, and con-
versely, at the decoder layer, the output channels are twice as much as the input
channels. Then they are concatenated, which can be formulated by Eq. (1):

Gi = [EmbGroup; EmbRes; EmbAE ; EmbChar] (1)

where EmbGroup, EmbRes, EmbAE , EmbChar denote GroupCNN, ResNet,
AutoEncoder, and Character embedding, respectively. When encoding glyph
images, we add an image classification loss Limg given as follows:

Limg = − log softmax(W × G + b) (2)

where W , b are parameters, G refers to the glyph image representations of the
input sentence. Then we apply a two-layer bidirectional LSTM to construct the
contextual glyph embedding, which can be formulated by Eq. (3):

300 Q. Zhai et al.

−→
G i =

−−−−→
LSTM(G1, G2, ..., Gi)←−

G i =
←−−−−
LSTM(Gi, Gi+1, ..., Gs)

G
′
i = [

−→
Gi;

←−
G i]

(3)

where G
′
i is the ci glyph-aware representation.

(3)BGFN(1)General fusion (2)Task-specific self-attention

avg

max

A
dd &

N
orm

M
ulti-H

ead
A

ttention

A
dd &

N
orm

Feed
Forw

ard

Fig. 4. Three fusion representation learning methods. The purple block and the
orange block represent the context-aware representation and glyph-aware representa-
tion, respectively. The labels are (a,b) fully connected layer, (c) ReLU(·), (d) softmax(·).
(Color figure online)

Context-Aware Representation. Context-aware representation relies on the
PLMs BERT. The architecture of BERT is a multi-layer bidirectional Trans-
former encoder. The bidirectional Transformer encoder is composed of multi-
head attention and feed-forward neural network. Multi-head attention consists
of multiple self-attention structures. For ci, we use B

′
i to denote its context-aware

representation, B denotes the context-aware representation of the sentence.

3.2 Fusion Stage

This section describes how we fuse them up to get a representation with rich
language structure information. We design three different paradigms to integrate
them: General fusion, Task-specific self-attention, and BGFN. As illustrated in
Fig. 4, general fusion includes simply concatenation, summation, max-pooling,
and avg-pooling. Task-specific self-attention directly captures the sentence-level
self-attention of each representation and learns the weights of different embed-
dings by softmax(·). BGFN first couples two heterogeneous encoding methods:

GT
i = Encoder(G

′
i) (4)

where Encoder is a layer bidirectional Transformer encoder.

−→
B

′
i =

−−−−→
LSTM(B

′
1, B

′
2, ..., B

′
i)

←−
B

′
i =

←−−−−
LSTM(B

′
i , B

′
i+1, ..., B

′
s)

BL
i = [

−→
B

′
i;

←−
B

′
i]

(5)

Chinese Event Detection via BGFN 301

where GT
i and BL

i are ci interactive representations, respectively. To better mea-
sure two heterogeneous encoding interaction, we add the similarity calculation
loss function, as shown in Eq. (6):

Lsim(GT , BL) =
1
s

s∑

i=1

{
0.5(GT − BL)2, |GT − BL| < 1

|GT − BL| − 0.5, otherwise.
(6)

For fusion embedding, we dynamically acquire the weights of each character by
using the interaction between the two representations:

Embfusion = αGGT × αBBL (7)

where αG, αB = f({ci}sj=1) is a self-attention mechanism in Eq. (8):

αG, αB = f({ci}sj=1) = softmax(Wσ(GT , BL)) (8)

where Embfusion is the fusion representation, σ is the PReLU activation func-
tion, W is the linear weight initialized through Xavier.

3.3 Sequence Tagger Stage

The goal of sequence tagger stage is to calculate the event category of each
character in the event mention. We input the fusion representation Embfusion
into the classifier P (F):

P (F) = max(0,EmbfusionW1 + b1)W2 + b2 = Y (9)

where W , b are learnable parameters. We train the output results through the
cross entropy error function Eq. (10):

Loss(Y, P) = −
s∑

j=1

C∑

c=1

pjc · log(
eYjc

∑C
c=1 eYjc

) (10)

where C is all event types. pjc is 1 if the sample j belongs to class c. Besides
calculating the task loss function, we add the classification accuracy loss of the
glyph encoding and encoding similarity calculation loss function. The final loss
function is obtained, namely:

Lossfinal = Loss(Y, P) + βLimg + Lsim(GT , BL) (11)

where β is a hyperparameter, and set to 0.1 in the experiment. To optimize the
parameters, we use Adam for the optimizer.

4 Experiments

4.1 Experiment Setup

We conduct massive experiments on the ACE 2005 Chinese corpus for CED. The
dataset contains 633 documents in total. We follow our previous work and divide

302 Q. Zhai et al.

the data into 569/64/64, using 569 training set, 64 validation set, 64 test set.
The dimensions of GroupCNN embedding, ResNet embedding, AutoEncoder
embedding, and Character embedding are 128/64/64/50, respectively. To be
consistent with the dimension of BERT, the hidden state of BiLSTM is set to
384. In addition, we set the learning rate of the glyph encoder to 0.002 and
BERT to 1e–5. Furthermore, we set the batch size to 16 and the epoch to 100.
Finally, we follow the evaluation methods in the previous works [2,14,25], using
precision (P), recall (R), and F1-score (F1) as the evaluation values. And only
when the trigger word offset and type are exactly the same as the label, the
trigger word can be correctly matched.

4.2 Baselines

We propose a novel fusion network that specifically fuses the information of the
glyph and the pre-trained language model BERT. We compare CED-BGFN with
previous state-of-the-art methods as follows:

C-BiLSTM. [29] proposed to input the text into BiLSTM and CNN separately,
and concatenated the hidden state of BiLSTM with feature extracted by CNN.

HNN. [8] developed a hybrid neural network to capture both sequence and
chunk information from specific contexts.

NPN. [14] proposed entire trigger nuggets centered at each character regardless
of word boundaries and divided trigger words identification and classification
tasks into different models.

TLNN. [6] used HowNet as an external knowledge base to obtain sense-level
information. Trigger-aware lattice LSTM was designed as the feature extractor.

Hybrid Character Representation. [25] formed character embedding, word
embedding, segmentation embedding, and language model embedding concate-
nate into character representation.

4.3 Overall Results

The results are depicted in Table 1. It displays that: (1) CED-BGFN yields sig-
nificant improvements on the ACE 2005 Chinese corpus. It achieves 5.48 (7.46%)
and 5.03 (7.1%) F1-score improvements on trigger identification and classifica-
tion, respectively, which demonstrates its effectiveness on glyph information and
fusion network. (2) Glyph information plays an important role in the semantic
representations. Compared with the model BiLSTM +CRF (char+ lm), which
takes character embedding and BERT as input, CED-BGFN achieves at least
6.18 (8.49%) and 5.33 (7.55%) F1-score improvements, respectively.

Chinese Event Detection via BGFN 303

Table 1. Comparison with existing Chinese event detection methods (%).

Model Trigger identification Trigger classification

P R F1 P R F1

Char-based C-BiLSTM 65.6 66.7 66.1 60.0 60.9 60. 4

Word-based C-BiLSTM 75.8 59.0 66.4 69.8 54.2 61.0

HNN 74.2 63.1 68.2 77.1 53.1 63.0

NPN 64.8 73.8 69.0 60.9 69.3 64.8

TLNN 67.34 74.68 70.82 64.45 71.47 67.78

BiLSTM+CRF (char+lm) ∗ 69.5 76.6 72.8 67.4 74.2 70.6

BiLSTM+CRF (char+lm+seg+word) ∗ 68.9 78.8 73.5 66.4 76.0 70.9

CED-BGFN (ours) 77.41 80.62 78.98 74.42 77.51 75.93

The methods with ∗ are from the Hybrid Character Representation.

Table 2. Effect of different text representations on CED task. Group, Res, AE and
Char denote GroupCNN, ResNet, AutoEncoder, Character embeddings, respectively.

Model Trigger identification Trigger classification

P R F1 P R F1

Group+Res+AE+Char 73.76 67.13 70.29 71.10 64.71 67.75

Only Char 69.86 68.17 69.00 67.02 65.40 66.20

Group+Res+AE 70.67 69.20 69.93 67.84 66.44 67.13

Group+AE+Char 74.46 71.63 73.02 69.78 67.13 68.43

Res+AE+ Char 70.77 69.55 70.16 68.66 67.47 68.06

Group+Res 67.81 68.51 68.16 65.75 66.44 66.09

Char+Res 68.97 69.20 69.08 67.24 67.47 67.36

Char+Group 71.75 66.78 69.18 69.89 65.05 67.38

Group+Res+Char 71.53 71.28 71.40 69.10 68.86 68.98

4.4 Effect of Glyph Embedding

To further investigate the effects of the glyph embedding, we carry out supple-
mentary experiments by only using glyph encoding for text representation. Glyph
encoding consists of two parts: one is character embedding, the other is glyph
information encoded by GroupCNN, ResNet, and AutoEncoder. In the experi-
ments, BiLSTM is used as the context encoding, and only the text representation
is changed to test the effect of different glyph representation components.

Through Table 2, we can observe Group + Res + Char clearly outperforms
other methods in trigger classification. (1) Compared top five models with
Group + Res+ Char, we notice that while the first model Group + Res + AE +
Char has more information, it is still inferior to Group + Res + Char in perfor-
mance. We analyze that this may be due to the focus of information obtained by
different encoding methods is different, and the effect after the fusion is differ-
ent. Therefore, the usefulness of information can’t be achieved simply by accu-

304 Q. Zhai et al.

mulating multiple types of information, but based on specific downstream tasks
analysis and selection. (2) Compared Group + Res, Char + Res, Char + Group
with Group + Res + Char, we can see that the trigger word classification is
improved 2.89 (4.37%), 1.62 (2.4%) and 1.6 (2.37%), respectively. It shows the
effectiveness of three encoding methods.

4.5 Effect of Context Encoding

Glyph embedding obtains glyph and character information. To further obtain
contextual semantic information, we compare two classical semantic encoding
structures: LSTM and Transformer. As Table 3 shows, the effect of LSTM is far
better than the encoding of the Transformer. Our explanations for the inferior
performance of the Transformer encoding are as follows: on the one hand, the
input representation of the glyph is different from BERT, which may cause the
performance of Transformer not to perform well; on the other hand, the length of
the text in the corpus is not very long, so LSTM can obtain richer the semantic
information of the context.

Table 3. Effect of context encoding methods.

Model Trigger identification Trigger classification

P R F1 P R F1

No-context 35.74 29.07 32.06 35.32 28.72 31.68

Transformer 41.19 52.60 46.20 39.30 50.17 44.07

LSTM 71.53 71.28 71.40 69.10 68.86 68.98

CED-BGFN ∗ 75.08 83.39 79.02 71.65 79.58 75.41

CED-BGFN 77.41 80.62 78.98 74.42 77.51 75.93
∗ denotes CED-BGFN without glyph context encoding during
the fusion.

Table 4. Effect of different fusion methods.

Model Trigger identification Trigger classification

P R F1 P R F1

BERT 73.52 81.66 77.38 70.72 78.55 74.43

Glyph 71.53 71.28 71.40 69.10 68.86 68.98

Concatenate 74.14 82.35 78.03 71.03 78.89 74.75

Max pooling 74.44 80.62 77.41 70.93 76.82 73.75

Avg pooling 74.76 82.01 78.22 71.29 78.20 74.59

Sum 74.28 79.93 77.00 71.38 76.82 74.00

Liner attention 73.75 81.66 77.50 71.25 78.89 74.88

CED-BGFN # 74.92 80.62 77.67 71.70 77.16 74.33

CED-BGFN 77.41 80.62 78.98 74.42 77.51 75.93
denotes CED-BGFN without interacting with two heteroge-

neous semantic encoding methods during the fusion.

Chinese Event Detection via BGFN 305

4.6 Effect of Fusion Methods

This part is to study the importance of fusion networks. Different word embed-
dings are encoded in different ways and the information obtained is complemen-
tary. Therefore, we propose BGFN to acquire richer semantic information.

We conduct a mass of ablation experiments to verify the effectiveness of the
fusion network. Table 4 shows the performance of the fused word vectors outper-
forms the independent representations of the first block. Moreover, from different
fusion methods: max-pooling, avg-pooling, summation, concatenate, and liner
attention, the performance of concatenating and liner attention that dynami-
cally allocates weights are better. Our explanation for the superior performance
of the these two strategy is as follows: the dimension of these methods is twice
as much as max-pooling, avg-pooling, summation, which can obtain more infor-
mation while avoiding the problem of information loss in the other methods.
From the last two lines we can obviously see the importance of the interaction
of the two heterogeneous encoding methods. The trigger word identification and
classification are improved by 1.32 (1.69%) and 1.6 (2.15%), respectively.

4.7 Effect of Auxiliary Task Training Objectives

When encoding the glyph representation, to better fit the encoded glyph image
information, we add an image classification loss. In the fusion stage, in order
to better fit the similarity of the two encoding methods, we propose to employ
a similarity calculation loss function. It can be seen from Table 5: By adding
the above two losses simultaneously, the F1-score of the trigger classification is
increased by 0.8 (1.07%). The two auxiliary tasks play an essential role in the
loss function calculation, avoiding overfitting.

Table 5. Effect of auxiliary task training objectives

Model Trigger identification Trigger classification

P R F1 P R F1

Task loss 76.49 79.93 78.17 73.51 76.82 75.13

Task loss+fusion loss 74.52 80.97 77.61 71.97 78.20 74.96

Task loss+ image loss 74.60 81.31 77.81 71.75 78.20 74.83

Task loss+fusion loss+image loss 77.41 80.62 78.98 74.42 77.51 75.93

5 Conclusion

In this paper, we propose a novel method for Chinese Event Detection via
Bidirectional Glyph-aware Dynamic Fusion Network (CED-BGFN) to integrate
glyph information with a pre-trained language model. Moreover, to better fuse
these information, we propose the BGFN. It dynamically obtains the weights

306 Q. Zhai et al.

of each representation through the interaction between the two representations.
The experimental results indicate that the proposed CED-BGFN model yields
substantial improvements in the Chinese event detection task compared to the
state-of-the-art methods. In the further, we will integrate other types of knowl-
edge into representation models, such as entity types, whole word information,
etc. In addition, we will also validate this idea in other NLP tasks.

References

1. Cao, S., Lu, W., Zhou, J., Li, X.: cw2vec: learning Chinese word embeddings with
stroke n-gram information. In: AAAI (2018)

2. Chen, Z., Ji, H.: Language specific issue and feature exploration in Chinese event
extraction. In: NAACL (2009)

3. Collobert, R., Weston, J.: A unified architecture for natural language processing:
deep neural networks with multitask learning. In: ICML (2008)

4. Cui, Y., et al.: Pre-training with whole word masking for Chinese bert. arXiv
preprint arXiv:1906.08101 (2019)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL (2019)

6. Ding, N., Li, Z., Liu, Z., Zheng, H., Lin, Z.: Event detection with trigger-aware
lattice neural network. In: EMNLP-IJCNLP (2019)

7. Dos Santos, C., Zadrozny, B.: Learning character-level representations for part-of-
speech tagging. In: ICML (2014)

8. Feng, X., Qin, B., Liu, T.: A language-independent neural network for event detec-
tion. Sci. China Inf. Sci. 61(9), 1–12 (2018). https://doi.org/10.1007/s11432-017-
9359-x

9. Han, Z., Jiang, J., Qiao, L., Dou, Y., Xu, J., Kan, Z.: Accelerating event detection
with DGCNN and FPGAS. Electronics 9(10), 1666 (2020)

10. Kan, Z., Qiao, L., Yang, S., Liu, F., Huang, F.: Event arguments extraction via
dilate gated convolutional neural network with enhanced local features. IEEE
Access 8, 123483–123491 (2020)

11. Kiela, D., Wang, C., Cho, K.: Dynamic meta-embeddings for improved sentence
representations. In: EMNLP (2018)

12. Li, P., Zhou, G.: Employing morphological structures and sememes for Chinese
event extraction. In: COLING (2012)

13. Li, Y., Li, W., Sun, F., Li, S.: Component-enhanced Chinese character embeddings.
In: EMNLP (2015)

14. Lin, H., Lu, Y., Han, X., Sun, L.: Nugget proposal networks for Chinese event
detection. In: ACL (2018)

15. Liu, Y., et al.: Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

16. Meng, Y., et al.: Glyce: glyph-vectors for Chinese character representations. In:
NIPS (2019)

17. Nikolov, N.I., Hu, Y., Tan, M.X., Hahnloser, R.H.R.: Character-level Chinese-
English translation through ASCII encoding. In: Proceedings of the Third Confer-
ence on Machine Translation: Research Papers (2018)

18. Peters, M.E., et al.: Deep contextualized word representations. In: NAACL (2018)
19. Qin, B., Zhao, Y., Ding, X., Liu, T., Zhai, G.: Event type recognition based on

trigger expansion. Tsinghua Sci. Technol. 15(3), 251–258 (2010)

http://arxiv.org/abs/1906.08101
https://doi.org/10.1007/s11432-017-9359-x
https://doi.org/10.1007/s11432-017-9359-x
http://arxiv.org/abs/1907.11692

Chinese Event Detection via BGFN 307

20. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language
understanding by generative pre-training. Technical report, OpenAI (2018)

21. Santos, C.N.D., Guimaraes, V.: Boosting named entity recognition with neural
character embeddings. In: Proceedings of the Fifth Named Entity Workshop,
NEWS@ACL (2015)

22. Sun, Y., et al.: Ernie: enhanced representation through knowledge integration.
arXiv preprint arXiv:1904.09223 (2019)

23. Wu, Y., Zhang, J.: Chinese event extraction based on attention and semantic fea-
tures: a bidirectional circular neural network. Future Internet 10(10), 95 (2018)

24. Xia, Y., Liu, Y.: Chinese event extraction using deepneural network with word
embedding. arXiv preprint arXiv:1610.00842 (2016)

25. Xiangyu, X., Tong, Z., Wei, Y., Jinglei, Z., Rui, X., Shikun, Z.: A hybrid character
representation for Chinese event detection. In: IJCNN (2019)

26. Xie, Y., Hu, Y., Xing, L., Wei, X.: Dynamic task-specific factors for meta-
embedding. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds.) KSEM 2019.
LNCS (LNAI), vol. 11776, pp. 63–74. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-29563-9 7

27. Yang, S., Feng, D., Qiao, L., Kan, Z., Li, D.: Exploring pre-trained language models
for event extraction and generation. In: ACL (2019)

28. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: Xlnet:
generalized autoregressive pretraining for language understanding. In: NIPS (2019)

29. Zeng, Y., Yang, H., Feng, Y., Wang, Z., Zhao, D.: A convolution BiLSTM neural
network model for Chinese event extraction. In: Lin, C.-Y., Xue, N., Zhao, D.,
Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC -2016. LNCS (LNAI), vol. 10102, pp.
275–287. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50496-4 23

30. Zhang, W., Ding, X., Liu, T.: Learning target-dependent sentence representations
for chinese event detection. In: Zhang, S., Liu, T.-Y., Li, X., Guo, J., Li, C. (eds.)
CCIR 2018. LNCS, vol. 11168, pp. 251–262. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01012-6 20

http://arxiv.org/abs/1904.09223
http://arxiv.org/abs/1610.00842
https://doi.org/10.1007/978-3-030-29563-9_7
https://doi.org/10.1007/978-3-030-29563-9_7
https://doi.org/10.1007/978-3-319-50496-4_23
https://doi.org/10.1007/978-3-030-01012-6_20
https://doi.org/10.1007/978-3-030-01012-6_20

Learning Finite Automata with Shuffle

Xiaofan Wang1,2(B)

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing, China
wangxf@ios.ac.cn

Abstract. Learning finite automata has been a popular topic. Shuffle
has been applied in information systems. Since shuffle introduced into
finite automata makes the membership problem NP-hard, and there are
no learning algorithms for finite automata supporting shuffle so far, it is
an essential work to devise effective and precise algorithms for learning
finite automata supporting shuffle. In this paper, finite automata are
learned from sets of positive samples. First, we define finite automata
with shuffle (FA(&)s), for which both the uniform and the non-uniform
membership problem are decidable in polynomial time. Then, we learn
an FA(&) from a given finite sample step by step. Our algorithm can
ensure that the learned FA(&) is a precise representation of the given
finite sample. Experimental results demonstrate that, FA(&) is more
efficient in membership checking, and our algorithm can obtain a more
concise automaton.

1 Introduction

Automata are the fundamental computation models widely used in various appli-
cations, including information processing systems. Learning finite automata has
been a popular topic in machine learning, artificial intelligence and automated
verification. Learning finite automata from sets of positive samples also become
common works in information processing tasks, such as validating XML docu-
ments against schema languages [1], schemata inference [4,5], mining workflows
from business processes [13,15,16], etc. In this paper, we focus on the automata
supporting shuffle, and study the corresponding learning algorithms.

Shuffle (&) [11] has been applied in information systems, such as XML
database systems for schema definitions [8,10,17] and workflow management sys-
tems [13,14,16]. Shuffle applied to any two strings returns the set of all possible
interleavings of the symbols in the two strings. For example, the shuffle of ab and
cd is ab&cd={abcd, acbd, acdb, cdab, cadb, cabd}. There are some finite automata
supporting shuffle [2,3,7,10,12,19], which recognize the languages defined by
regular expressions with shuffle, and are also applied in XML database systems

Work supported by National Natural Science Foundation of China under Grant Nos.
61872339, 61472405.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 308–320, 2021.
https://doi.org/10.1007/978-3-030-75765-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_25

Learning Finite Automata with Shuffle 309

and workflow management systems. The above finite automata supporting shuf-
fle are as follows: parallel finite automaton (PFA) [19], shuffle automaton (SA)
[12], non-deterministic finite automaton supporting shuffle (NFA(&)) [10], con-
current finite-state automaton (CFSA) [2,3] and partial derivative automaton
(PDA) [7]. However, for each one of the following automata: PFAs, SAs, CFSAs
and PDAs, the uniform membership problem1 is NP-complete [2,3,7,12,19]. The
uniform membership problem for NFA(&)s is PSPACE-complete [10]. The non-
uniform membership problem for CFSAs is also NP-complete [2]. For PFAs, SAs,
NFA(&)s and PDAs, although the non-uniform membership problems for them
can be decided in polynomial time [7,10,12,19], for PFAs, SAs and NFA(&)s,
each one of them has many ε-transitions, which can lead to unnecessarily non-
deterministic recognitions, and a PDA is a plain deterministic finite automaton
(DFA), which can result in an exponential blow up of the size of automaton [7].
This results in some challenges to infer schema languages by learning automata
supporting shuffle or validate XML documents (against schema languages sup-
porting shuffle [8]) by membership checking. Additionally, for mining workflow
from interleaved traces [13,16], the workflow model mentioned in [13] is just
plain finite-state automaton. Although the workflow model proposed in [16] can
be respected as an automaton supporting shuffle, the workflow model is mined
from interleaved traces by using statistical inference, which leads to that the
obtained result is over-generalized [16], and so far, there are no learning algo-
rithms for the above finite automata supporting shuffle.

Therefore, for solving above problems, it is an essential work to devise more
effective and precise algorithms for learning finite automata supporting shuffle
from sets of positive samples. Different from existing works, we propose more
succinct and polynomial decidable (for membership problem) finite automata:
finite automata with shuffle (FA(&)s). For a given finite sample, an FA(&) is
learned from the given finite sample step by step. We can ensure that the learned
FA(&) is a precise representation (see Definition 4) of the given finite sample.

The main contributions of this paper are as follows.

– We introduce a new class of automata supporting shuffle: FA(&)s, for which
both the uniform and the non-uniform membership problem are decidable
in polynomial time. An FA(&) recognizes the language defined by a regular
expression with shuffle, where each alphabet symbol occurs at most once.

– We devise an algorithm for learning FA(&)s. Our algorithm can ensure that
the learned FA(&) is a precise representation of the given finite sample.

– We provide evaluations on FA(&)s in terms of conciseness and the time per-
formance for membership checking. Experimental results demonstrate that,
FA(&) is more efficient in membership checking, and our algorithm can obtain
a more concise automaton.

The rest of this paper is organized as follows. Section 2 gives the basic defini-
tions. Section 3 describes the FA(&) and provides an example of such an automa-
1 For membership problem, in the uniform version, both the string and a representa-

tion of the language are given as inputs. In the non-uniform version, the language is
fixed, only the string to be tested is considered as input.

310 X. Wang

ton. Section 4 presents the algorithm of learning an FA(&) from a given finite
sample. Section 5 presents experiments. Section 6 concludes the paper.

2 Preliminaries

Let Σ be a finite alphabet of symbols. A standard regular expression over Σ is
inductively defined as follows: ε and a∈Σ are regular expressions, for any regular
expressions r1, r2 and r3, the disjunction (r1|r2), the concatenation (r1·r2), and
the Kleene-star r∗

1 are also regular expressions. Usually, we omit writing the con-
catenation operator in examples. The regular expressions with shuffle, which are
denoted by RE(&)s, are extended from standard regular expressions by adding
the shuffle operator: r1&r2. Note that, r+ and r? are used as abbreviations of
rr∗ and r|ε, respectively. The language L(r) is defined in the following inductive
way: L(ε) = {ε}; L(a) = {a}; L(r1|r2) = L(r1) ∪ L(r2); L(r1r2) = L(r1)L(r2);
L(r∗

1) = L(r1)∗; L(r1&r2) = L(r1)&L(r2) =
⋃

s1∈L(r1),s2∈L(r2)
s1&s2. The shuffle

operation & is defined inductively as follows: u&ε = ε&u={u}, for u∈Σ∗; and
au&bv ={az|z ∈u&bv} ∪ {bz|z ∈au&v}, for u, v ∈Σ∗ and a, b∈Σ. & also obeys
the associative law, that is r1&(r2&r3)=(r1&r2)&r3 =r1&r2&r3.

For a finite sample S, N denotes the sum of the length of strings in S. Let
N = {1, 2, 3, · · · }. Let Σs (s ∈ S) denote the set of all symbols from Σ that
appear in s. A string s ∈ Σ+ is a shuffled string if s ∈ u&v for u, v ∈ Σ+. For a
directed graph (digraph) G(V,E), G.�(v) (v∈G.V) denotes the set of all direct
successors of v in G. G. ≺ (v) denotes the set of all direct predecessors of v in
G. For space consideration, all omitted proofs can be found at https://github.
com/GraceFun/LearnFAS.

2.1 SOA, Shuffle Unit and Precise Representation of Sample

SOA is defined as follows.

Definition 1 (single-occurrence automaton (SOA) [6,9]). Let Σ be a
finite alphabet, and let q0 and qf be distinct symbols that do not occur in Σ. A
single-occurrence automaton (SOA) over Σ is a finite directed graph G=(V,E)
such that (1) q0, qf ∈V , and V =Σ ∪{q0, qf}; (2) q0 has only outgoing edges, qf

has only incoming edges, and any string a1 · · · an (n≥1) is accepted by an SOA
G, if and only if there is a path q0 →a1 →· · ·→an →qf in G.

Let P (s, a, b)∈{0, 1} for s∈S and a, b∈Σ (a �=b). P (s, a, b)=1 if and only if a
symbol b occurs in s and there exists a symbol a (a∈Σs) occurring before b. a can
be interleaved with b if there exists s1, s2 ∈S such that P (s1, a, b)=P (s2, b, a)=1.
Let w, z, xi, yj ∈ Σ ∪ {ε}, where 1 ≤ i ≤ m, 1 ≤ j ≤ n and m,n ∈N. Let pattern
MutexStr(a, b)=wx1 · · · xmaky1 · · · ynz (w �= b, z �= b, xi �= b, yj �= b, k ≥2), where
a can be respectively interleaved with xi and yj (for each i, j) if xi, yj ∈Σ, but
neither w nor z can be interleaved with a if w, z ∈ Σ. A string described by
MutexStr(a, b) comprises a but not b.

https://github.com/GraceFun/LearnFAS
https://github.com/GraceFun/LearnFAS

Learning Finite Automata with Shuffle 311

Definition 2 (necessary interleaving). For a given finite sample S, a, b∈Σ
(a �=b), a is necessarily interleaved with b for S if and only if a can be interleaved
with b and there does not exist the two distinct strings or substrings s1 and s2

occurring in S such that s1 and s2 can be described by MutexStr(a, b) and
MutexStr(b, a), respectively.

Example 1. Let S = {cd, dc, cc, dd}, P (cd, c, d) = P (dc, d, c) = 1, c can be inter-
leaved with d, however, s1 =cc (d �∈Σs1) and s2 =dd (c �∈Σs2) are in S such that
s1 and s2 can be described by MutexStr(c, d) and MutexStr(d, c), respectively.
c is unnecessarily interleaved with d. Note that, L(c∗&d∗)⊃L((c|d)+)⊇S.

Shuffle unit is defined as follows.

Definition 3 (shuffle unit). For a given finite sample S, a shuffle unit is a
list [e1, e2, · · · , ek] (k ≥ 2), where ei ⊂ Σ and ei ∩ ej = ∅ (1 ≤ i, j ≤ k, i �= j). If
a symbol u ∈ ei, there is at least one symbol v ∈ ej such that u is necessarily
interleaved with v for S, and there is at least one symbol u′ ∈ ei (u′ �= u) such
that u is unnecessarily interleaved with u′ for S.

Example 2. For sample S = {abcd, dcab, cc, dd}, a is necessary interleaved with
c and d, respectively. b is also necessary interleaved with c and d, respectively.
But a (resp. c) is unnecessary interleaved with b (resp. d). Then, [{a, b}, {c, d}]
can be a shuffle unit.

A shuffle unit can be used to discover the substructure of an FA(&) recog-
nizing shuffled strings. Such as [{a, b}, {c, d}], the corresponding substructure is
just the FA(&) shown in Fig. 1(a), which recognizes the shuffled string acbd.

Definition 4 (Precise Representation of Sample [9]). Let D denote a class
of finite automata. α ∈ D is a precise representation of a finite sample S if
L(α)⊇S and there does not exist β∈D such that L(α)⊃L(β)⊇S.

3 Finite Automata with Shuffle

An FA(&) is defined to recognize the language defined by a regular expression
with shuffle, where each alphabet symbol occurs at most once. For a regular
expression r, if there is an FA(&) recognizing the language L(r), then for the
ith subexpression of the form ri =ri1&ri2& · · · &rik

(i∈N, k≥2) in r, there are
start marker &i and end marker &+

i in the FA(&) for recognizing the strings
derived by ri. For each subexpression rij

(1≤ j ≤k) in ri, there is a concurrent
marker ||ij in the FA(&) for recognizing the symbols or strings derived by rij

.
There are at most � |Σ|−1

2 � start markers (resp. end markers) in an FA(&), and
there are at most |Σ| concurrent markers in an FA(&) (see Theorem1). Let
DΣ = {1, 2, · · · , � |Σ|−1

2 �} and PΣ = {1, 2, · · · , |Σ|}. Then, the definition of an
FA(&) is as follows.

312 X. Wang

Definition 5 (Finite Automata with Shuffle). A finite automaton with
shuffle (FA(&)) is a tuple A = (V,Q,Σ, q0, qf ,H, δ). The members of the tuple
are described as follows:

– Σ is a finite and non-empty alphabet.
– q0 and qf : q0 is the initial state, qf is the unique final state.
– V is a finite set of nodes. V = Σ ∪ V ′, where V ′ ⊆ {&i,&+

i }i∈DΣ
∪{||ij |i ∈

DΣ , j ∈PΣ}.
– Q is a finite set of states. Q = Q′ ∪ {q0, qf}, Q′ ⊂ 2V . For a state q∈Q, q is

a set of the nodes in V if q �∈{q0, qf}.
– H(V,E,R) is a node transition graph (a directed graph), where H.V =A.V ∪

{q0, qf} and H.R: {&i|i ∈DΣ} �→ 2Σ. H.R(&i) is a set of alphabet symbols,
where a symbol is the first letter of the shuffled string that can be recognized
by an (FA(&)) starting from the state including the node $ampi. q0 has only
outgoing edges, qf has only incoming edges.

– δ is the state transition function. δ : Q1×(Σ∪{�}) �→2Q2 , where Q1 =Q\{qf},
Q2 =Q\{q0} and � denotes the end symbol of a string.
(1) q = q0 or q is a set, where q={a} or {&+

i } (a∈Σ, i∈DΣ):
• y ∈ Σ: δ(q, y) = {{y}|y ∈ H. � (x), x ∈ {q0, a,&+

i }} ∪ {{&j}|&j ∈ H. �
(x), y �∈H.�(x) ∧ y∈H.R(&j), x∈{q0, a,&+

i }, j ∈DΣ};
• y=�: δ(q, y)={p|p∈H.�(x) ∧ p=qf , x∈{q0, a,&+

i }}.
(2) q={&i} (i∈DΣ) and y∈Σ: δ(q, y)={H.�(&i)|y∈H.R(&i)}.
(3) q is a set and |q|≥2:

• y∈Σ: δ(q, y)=
⋃

1≤t≤3 δt(q, y), where:
∗ δ1(q, y) = {(q\{x}) ∪ {z}|z ∈ H. � (x), z = y ∨ y ∈ H.R(z), z ∈
{y,&i}, i∈DΣ , x∈q};
∗ δ2(q, y)={(q\{&i})∪H.�(&i)|∃i∈DΣ : &i ∈q∧y∈H.R(&i))};
∗ δ3(q, y)= {(q\W) ∪ {&+

i }|∃i∈DΣ∀x∈W : x∈H.≺ (&+
i) ∧ y �∈

H.�(x),W ⊆q ∧ |W |= |H.�(&i)|}.
• y =�: δ(q, y) = {(q\W)∪{&+

i }|∃i ∈DΣ∀x ∈ W : x ∈ H. ≺ (&+
i),W ⊆

q ∧ |W |= |H.�(&i)|}.
Since the digraph H is a parameter implied in the state transition function

δ of an FA(&), and a state (excluding q0 and qf) in an FA(&) is a set of the
nodes in H.V , an FA(&) can be intuitively denoted by the corresponding node
transition graph. Additionally, we can learn an FA(&) from a given finite sample
by constructing the node transition graph of the FA(&).

For recognizing a string s∈S in an FA(&), the current symbol y (y ∈Σs) is
consumed if and only if the state (a set of nodes) including node y is reached. � is
consumed if and only if the final state qf is reached. If y (resp. �) is not consumed,
then y (resp. �) will be still read as the current symbol to be recognized. The
next state p′ is specified by the state transition function of an FA(&) such that
the current state q transits to state p′, from which the state including node y
(resp. the final state qf) can be reached. A string is not recognized by an FA(&)
if there is a symbol occurring in the string that has not been consumed and the
next state is an empty set.

Learning Finite Automata with Shuffle 313

Example 3. Let V =Σ∪{&1,&+
1 , ||11, ||12}, where Σ ={a, b, c, d}. Let Q={q0, qf ,

{&1}, {||11, ||12}, {a, ||12}, {b, ||12}, {||11, c}, {||11, d}, {a, c},{a, d}, {b, c}, {b, d},
{&+

1 }}. Figure 1(a) shows the FA(&) A=(V,Q,Σ, q0, qf ,H, δ), where H.R(&1)=
{a, c, d}. A is denoted by the node transition graph (digraph H) and recognizes
the language L(((ab)?&(c|d)+)+). Figure 1(b) is a state transition table, which
demonstrates how the FA(&) A recognizes the string acbd.

Theorem 1. An FA(&) recognizes the language defined by a regular expres-
sion with shuffle, where each alphabet symbol occurs at most once. For a regular
expression r, if an FA(&) recognizes the language L(r), then the FA(&) has
at most � |Σ|−1

2 � start markers, at most � |Σ|−1
2 � end markers and at most |Σ|

concurrent markers.

Fig. 1. (a) is the FA(&) A for recognizing the language L(((ab)?&(c|d)+)+). (b) is the
state transition table for the FA(&) A recognizing the string acbd. q ∈ Q\{qf} is the
current state, y∈Σ∪{�} is the current symbol, p∈Q\{q0} is the next state.

Theorem 2. Both the uniform and the non-uniform membership problem for
FA(&)s are solvable in polynomial time.

4 Learning FA(&)

The learning algorithm is based on the learning style defined in Definition 4.

314 X. Wang

Algorithm 1. LearnFAS
Input: A finite sample S;
Output: An FA(&) A;
1: SOA G=2T-INF(S); P& =∅;
2: Compute U& from S;;
3: Construct undigraph F (V, E) : F.E =U&;
4: P& =UnorderUnits(F, P&);
5: FA(&) A=ConsFAS(G, P&);
6: return A;

For a given finite sample S, to learn
an FA(&), first, any two distinct sym-
bols u, v ∈Σ that u is necessarily inter-
leaved with v are identified from S. We
obtain the set U& of all such tuples (u, v)
from S (if (u, v) ∈ U&, then (v, u) �∈
U&). Then, we obtain the set P& of
shuffle units from the undirected graph
(undigraph) F (V,E), where F.E = U&.
Finally, we convert the SOA built for S to an FA(&) by traversing the shuf-
fle units in P&. Our algorithm can ensure that the learned FA(&) is a precise
representation of S (see Theorem 4).

Algorithm 1 is the framework for learning an FA(&). Algorithm 2T-INF [6]
builds an SOA for a given finite sample; algorithm UnorderUnits [20] is used to
obtain the set of shuffle units; algorithm ConsFAS is demonstrated to construct
an FA(&).

Computing Shuffle Units. According to the definition of a shuffle unit, a
shuffle unit can be used to discover the substructure of an FA(&) recognizing
shuffled strings. Then, to learn a precise FA(&), which can recognize all the shuf-
fled strings from a given finite sample S, for any two distinct alphabet symbols
u and v that u is necessarily interleaved with v (i.e., (u, v) ∈ U&), there must
exist a unique shuffle unit l such that u and v are in different sets in l.

Fig. 2. The undi-
graph F .

The set P& of shuffle units is obtained by recursively
extracting sets of nodes from the undigraph F (V,E),
where F.E = U&. We use algorithm UnorderUnits [20] to
extract shuffle units from F .

Example 4. For sample S = {abcd, dcab, abcacb, cc, dd},
the computed U& = {(a, c), (a, d), (b, c), (b, d)}. The undi-
graph F (V,E) (F.E = U&) is shown in Fig. 2. P& =
UnorderUnits(F, ∅), the obtained P& ={[{a, b}, {c, d}]}.

Theorem 3. Let P& =UnorderUnits(F (V,E), ∅) where F.E =U&, then for any
tuple (u, v)∈U&, there exists a unique shuffle unit l∈P& such that u and v are
in different sets in l.

Constructing FA(&). We construct an FA(&) by building the node transition
graph (a finite directed graph) of an FA(&). Since an SOA built for S is also a
precise representation of S [9], and a shuffle unit in P& can be used to discover
the substructure of an FA(&) recognizing the shuffled strings from S, we first
convert the SOA G built for S to the node transition graph of an FA(&) by
traversing the shuffle units in P&. The detailed descriptions of the FA(&) are
then presented.

Learning Finite Automata with Shuffle 315

Algorithm 2. ConsFAS
Input: A digraph G(V, E), a set P& of shuffle units;
Output: An FA(&) A;
1: for i = 1 to |P&| do
2: Delete edges {(v1, v2)|v1 ∈ e1, v2 ∈ e2, e1, e2 ∈

P&(i), e1 �=e2} in G;
3: for i=1 to |P&| do
4: Let T =

⋃
k P&(i)(k); G1 =G.extract(T);

5: G.addnode1(&i, G1.	(q0)); R(&i)=G.	(&i);

6: G.addnode2(&
+
i , G1.≺(qf));

7: if Loop(S, G, P&(i)) then add edge (&+
i , &i) in G;

8: for j =1 to |P&(i)| do
9: G1 =G.extract(P&(i)(j));
10: G.addnode1(||ij , G1.	(q0));
11: if NO(S, P&(i)(j), P&(i)) then

12: Add edge (||ij , &+
i) in G;

13: FA(&) A=(V ′, Q, Σ, G.q0, G.qf , H(G.V, G.E, R), δ);
14: return A;

Algorithm 2 is presented to
construct an FA(&). First, we
remove the directed edges in G,
where tails and heads are in two
disjoint sets of a shuffle unit in
P&, respectively (line 2). Then,
for the ith shuffle unit in P&

(P&(i)), we identify the corre-
sponding set of nodes from G
(by using extract) which is the
union of the all sets of nodes in
P&(i) to add the start marker
(&i) and the end marker (&+

i)
in G (lines 4 ∼ 6). Addition-
ally, for the jth set in P&(i)
(P&(i)(j), initially, i, j =1), we
identify the corresponding set of nodes from G (by using extract) to add concur-
rent marker ||ij in G (line 10). Note that, the edge (&+

i ,&i) (resp. edge (||ij ,&+
i))

is possibly added into G (lines 7,12). The finally obtained G is the node transi-
tion graph of an FA(&), then the FA(&) A is obtained (line 13). The constructed
FA(&) A is described as follows.

A=(V ′, Q,Σ,G.q0, G.qf ,H, δ), where V ′ =G.V \{q0, qf}, H.V =G.V , H.E =
G.E, Q=Q′ ∪{G.q0, G.qf} and Q′ =

⋃
q

⋃
y δ(q, y) (q∈{G.q0}∪Q′ and y∈Σ∪{�

}). δ can be derived from the node transition graph H, which is a parameter
implied in δ. Note that, R: {&i|i∈DΣ} �→2Σ , R(&i) (obtained in line 5) ensures
that, starting from the state including the node &i, an FA(&) can begin to
recognize the shuffled strings, where the first letters are in R(&i). Thus, H.R=R.
Theorem 4 illustrates that, for any given finite sample, the learned FA(&) is a
precise representation of the given finite sample.

Some subroutines in Algorithm 2 are described as follows.
extract on a digraph G takes a set of nodes U (of G) as input, it extracts a

new digraph G1 (G1.V ={q0, qf}∪U) from G, G1 reserves the directed edges (in
G) between any two nodes in U . All nodes in U , which have not incoming edges
or have incoming edges from outside of U in G, have incoming edges from q0 in
G1. Moreover, all nodes in U , which have not outgoing edges or have outgoing
edges to outside of U in G, have outgoing edges to qf in G1.

addnode1 and addnode2 work on a digraph G, both of them take a node v
and a set of nodes U (of G) as inputs. addnode1 works on G as follows. Add a
node v in G; add edges {(v1, v)|v1 ∈G.≺(v2), v2 ∈U}; remove edges {(v1, v2)|v1 ∈
G. ≺ (v2), v2 ∈ U}; add edges {(v, v2)|v2 ∈ U}. addnode2 works on G as follows.
Add a node v in G; add edges {(v, v1)|v1 ∈ G. � (v2), v2 ∈ U}; remove edges
{(v2, v1)|v1 ∈G.�(v2), v2 ∈U}; add edges {(v2, v)|v2 ∈U}.

Loop(S,G, P&(i)) and NO(S, P&(i)(j), P&(i)) are bool functions. Loop
returns true if there exists k (1 ≤ k ≤ |P&(i)|), l ∈ P&(i)(k) and a string s ∈ S
such that there are two nodes that are labelled by the symbols from P&(i)(k)

316 X. Wang

but not strongly connected in G, and l∈R(&i) occurs in s more than once but
does not consecutively appears in s. NO returns true if there exists the substring
sb of s∈S (which consists of at least one symbol from the set T =

⋃
k P&(i)(k).)

such that sb does not contain any symbols from P&(i)(j) and neither tsb nor sbt
(t∈T) are substrings of s.

The SOA G(V,E) and P& are as inputs of Algorithm 2. It takes O(|V |2) time
to delete the specified edges in G (line 2). For each shuffle unit l∈P&, the average
time complexity of extract in line 4 (resp. in line 9) is O(|V ||Σ|

|P&|) (resp. O(|V ||Σ|
|P&||l|)).

For addnode1 and addnode2, the time complexity of them are both O(|V |). Both
Loop (line 7) and NO (line 12) take O(|Σ|N) time for judgments. There are |Σ|
symbols at most that are used to form a shuffle unit, and P& includes � |Σ|−1

2 �
shuffle units at most. Thus, the average time complexity of algorithm ConsFAS
is O(|V ||Σ|+|Σ|� |Σ|−1

2 �N)=O(|Σ|2N) (|V |= |Σ|+2, N > |Σ|).
For a given finite sample S, it takes O(|Σ|N) time to compute U&. The time

complexity of algorithm UnorderUnits is O(|Σ|3) [20]. I.e., the set P& of shuffle
units can be obtained in O(|Σ|3) time. An SOA can be built for S in O(N) time.
Thus, the time complexity of algorithm LearnFAS is O(|Σ|2N).

Example 5. For S ={abcd, dcab, abcacb, cc, dd}, the SOA recognizing S is shown
in Fig. 3(a). The set of shuffle units P& ={[{a, b}, {c, d}]}. Figure 3 illustrates the
main steps to convert the SOA to the node transition graph H of the FA(&) A
by traversing shuffle units in P&. H.R(&1)={a, c, d}. The labels on the edges of
H can be seen in Fig. 1(a), which illustrates the finally obtained FA(&) A.

Fig. 3. The procedures converting the SOA (in (a)) to the node transition graph
(in (e)) of the FA(&) A by traversing shuffle units in {[{a, b}, {c, d}]}. For S =
{abcd, dcab, abcacb, cc, dd}, G′ is the digraph in (c), Loop(S, G′, [{a, b}, {c, d}]) = true,
for a and b are not strongly connected in G′ and a (a∈ R(&1)) does not consecutively
occur in string abcacb. NO(S, {a, b}, [{a, b}, {c, d}])= true, for neither a nor b occur in
string cc. In (d) (resp. in (e)), the edge (&+

1 , &1) (resp. (||11, &+
1)) is added.

Learning Finite Automata with Shuffle 317

Theorem 4. For any given finite sample S, let A=LearnFAS(S), then A is a
precise representation of S.

5 Evaluation

In this section, we provide evaluations on FA(&)s in terms of conciseness and
the time performance of membership checking. We evaluate our results on XML
data, which are collected from Maven2 and GitHub3.

We searched Relax NG files from above repositories, and then extracted
1000 diverse RE(&)s from Relax NG files with corresponding XML data for
each alphabet size (10, 20, · · · , 100). Let Q1 denote the set of the 1000 RE(&)s
of alphabet size 20. Let Q2 (Q2 ⊃ Q1) denote the set of 10000 RE(&)s of the
alphabet size ranging from 10 to 100. For each target expression (such as the
one in Q2), the random sample in experiments, which is a finite set of strings, is
extracted from the corresponding XML data. The size of sample is the number
of the strings in sample. FA(&)s are mainly compared with the other automata
supporting shuffle (excluding CFSA), which can be equivalently transformed
from the target expressions in Q2, and where states are also denoted by the sets
of nodes in the corresponding node transition graphs. Since a state in a CFSA
is not denoted by a set of nodes, CFSA is not considered.

Conciseness. Since the complexity of automata algorithms is usually more sen-
sitive to the number of states than the number of transitions [12,18,19], the
conciseness of the learned FA(&) can be measured by the corresponding number
of states. However, for the learned FA(&), which can be denoted by a directed
graph, a state (excluding q0 and qf) is denoted by a set of the nodes in the
directed graph. Figure 4(a) shows that how the alphabet size affects the number
of nodes (denoted by M). Figure 4(b) presents that how the number of nodes
affects the number of states (denoted by |Q|).

We evaluate the conciseness of the learned FA(&) by using the data in Q2 and
the corresponding XML data. For each expression in Q2, we randomly extracted
the corresponding sample, of which the size is 2000. We compute the number of
nodes for the corresponding learned FA(&). In Fig. 4(a), the value for a given
alphabet size is the logarithm of the average of the 1000 computed numbers of
nodes. In Fig. 4(b), for the learned FA(&)s, we partitioned them into 10 groups
according to the numbers of nodes ranging from 15 to 100 (listed in Fig. 4(b)).
For each group and each learned FA(&), we compute the corresponding number
of states. The value for a given number of nodes is the logarithm of the average
of the numbers of states computed for the corresponding group.

Figure 4(a) shows that, for a give alphabet size, although the numbers of
nodes are close for SA, NFA(&), PFA and FA(&), FA(&) has minimum number
of nodes4. Figure 4(b) illustrates that, as the number of nodes increases, only for
2 https://mvnrepository.com/.
3 https://github.com/topics/.
4 Note that, for the learned FA(&) in Sect. 4, the corresponding number of nodes is

no more than 3|Σ| (see Sect. 3).

https://mvnrepository.com/
https://github.com/topics/

318 X. Wang

the learned FA(&), the number of states does not grow exponentially. Especially,
the number of states is about 181 (≈ 27.5) when the number of nodes is 100. The
number of states for FA(&) is more less than that for each other automaton. In
general, a more concise FA(&) can be learned from a given finite sample.

Fig. 4. (a) is the logarithm of number of nodes as the function of alphabet size for
each automaton. (b) is the logarithm of number of states as the function of number of
nodes for each automaton.

Time Performance of Membership Checking. We provide the statistics
about running time in different length of strings and different size of alphabets
for membership checking. For each automaton recognizing each string, we record
the corresponding running time. For each one of 1000 target expressions in Q1,
we extracted the corresponding 1000 strings with fixed length, which ranges
from 103 to 104 such that all the strings can be recognized by each automaton.
In Fig. 5(a), the running time for a given length of string is the average of the
corresponding recorded 106 (1000∗1000) running times. For each alphabet size in
{10, 20, · · · , 100}, and for each one of 1000 target expressions with that alphabet
size in Q2, we also extracted the 1000 strings with fixed lengths of 5000 such that
all the strings can be recognized by each automaton. In Fig. 5(b), the running
time for a given alphabet size is the average of the corresponding recorded 106

running times. Note that, for each target expression r ∈Q1 or r ∈Q2, FA(&) is
equivalently transformed from r. We also evaluate the time performance of mem-
bership checking for brick automaton utilities5 (BAU), which can be extremely
fast to deal with shuffle currently.

Figure 5(a) presents that the running time for FA(&) is less than 0.15 s, when
the length of string is not over 104. Figure 5(b) illustrates that the running time
for FA(&) is less than 0.35 s, when the alphabet size is not over 100. Thus, the
time performance of membership checking for FA(&), which is compared with
that for other automata or utilities, demonstrates that FA(&) is more efficient
in membership checking.

5 https://www.brics.dk/automaton/.

https://www.brics.dk/automaton/

Learning Finite Automata with Shuffle 319

Fig. 5. (a) and (b) are running times in seconds for each automaton as the functions
of length of string and alphabet size, respectively.

6 Conclusion

This paper proposed automata model: FA(&)s, for which both the uniform and
non-uniform membership problem are decidable in polynomial time, and a learn-
ing algorithm for FA(&)s. We learn an FA(&) from a given finite sample step by
step, our algorithm can ensure that the learned FA(&) is a precise representa-
tion of the given finite sample. Experimental results demonstrate that, FA(&) is
efficient in membership checking, and our algorithm can obtain a concise automa-
ton. For future works, we focus on the applications of FA(&) and its learning
algorithm. Such as learning FA(&) from interleaved traces, which facilitates min-
ing precise workflows for efficient workflow management [14,16].

References

1. Balmin, A., Papakonstantinou, Y., Vianu, V.: Incremental validation of XML doc-
uments. ACM Trans. Database Syst. (TODS) 29(4), 710–751 (2004)

2. Berglund, M., Björklund, H., Björklund, J.: Shuffled languages representation and
recognition. Theor. Comput. Sci. 489, 1–20 (2013)

3. Berglund, M., Björklund, H., Högberg, J.: Recognizing shuffled languages. In:
Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp.
142–154. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21254-
3 10

4. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular
expressions for the inference of schemas from XML data. ACM Trans. Web 4(4),
1–32 (2010)

5. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from
XML data. In: International Conference on Very Large Data Bases, Seoul, Korea,
September, pp. 115–126 (2006)

6. Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of concise regular
expressions and DTDs. ACM Trans. Database Syst. 35(2), 1–47 (2010)

7. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Automata for regular expressions
with shuffle. Inf. Comput. 259, 162–173 (2018)

8. Clark, J., Makoto, M.: Relax NG Tutorial. OASIS Committee Specification (2001).
http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html

https://doi.org/10.1007/978-3-642-21254-3_10
https://doi.org/10.1007/978-3-642-21254-3_10
http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html

320 X. Wang

9. Freydenberger, D.D., Kötzing, T.: Fast learning of restricted regular expressions
and DTDs. Theor. Comput. Syst. 57(4), 1114–1158 (2015)

10. Gelade, W., Martens, W., Neven, F.: Optimizing schema languages for XML:
numerical constraints and interleaving. SIAM J. Comput. 38(5), 2021–2043 (2009)

11. Ginsburg, S., Spanier, E.H.: Mappings of languages by two-tape devices. J. ACM
(JACM) 12(3), 423–434 (1965)

12. Jedrzejowicz, J., Szepietowski, A.: Shuffle languages are in P. Theor. Comput. Sci.
250(1–2), 31–53 (2001)

13. Jones, J., Oates, T.: Learning deterministic finite automata from interleaved
strings. In: Sempere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339,
pp. 80–93. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15488-
1 8

14. Kougka, G., Gounaris, A., Simitsis, A.: The many faces of data-centric workflow
optimization: a survey. Int. J. Data Sci. Anal. 6(2), 81–107 (2018). https://doi.
org/10.1007/s41060-018-0107-0

15. Liu, X., Alshangiti, M., Ding, C., Yu, Q.: Log sequence clustering for workflow
mining in multi-workflow systems. Data Knowl. Eng. 117, 1–17 (2018)

16. Lou, J.G., Fu, Q., Yang, S., Li, J., Wu, B.: Mining program workflow from inter-
leaved traces. In: Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 613–622 (2010)

17. Martens, W., Neven, F., Niewerth, M., Schwentick, T.: Bonxai: combining the
simplicity of DTD with the expressiveness of XML schema. ACM Trans. Database
Syst. (TODS) 42(3), 15 (2017)

18. Pitt, L.: Inductive inference, DFAs, and computational complexity. In: Jantke, K.P.
(ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidelberg (1989). https://
doi.org/10.1007/3-540-51734-0 50

19. Stotts, P.D., Pugh, W.: Parallel finite automata for modeling concurrent software
systems. J. Syst. Softw. 27(1), 27–43 (1994)

20. Wang, X., Chen, H.: Inferring deterministic regular expression with unorder and
counting. In: International Conference on Database Systems for Advanced Appli-
cations. Springer, Cham (2021)

https://doi.org/10.1007/978-3-642-15488-1_8
https://doi.org/10.1007/978-3-642-15488-1_8
https://doi.org/10.1007/s41060-018-0107-0
https://doi.org/10.1007/s41060-018-0107-0
https://doi.org/10.1007/3-540-51734-0_50
https://doi.org/10.1007/3-540-51734-0_50

Active Learning Based Similarity
Filtering for Efficient and Effective

Record Linkage

Charini Nanayakkara(B), Peter Christen, and Thilina Ranbaduge

School of Computing, The Australian National University,
Canberra, ACT 2600, Australia

charini.nanayakkara@anu.edu.au

Abstract. The limited analytical value of using individual databases
on their own increasingly requires the integration of large and complex
databases for advanced data analytics. Linking personal medical records
with travel and immigration data, for example, will allow the effective
management of pandemics such as the current COVID-19 outbreak by
tracking potentially infected individuals and their contacts. One major
challenge for accurate linkage of large databases is the quadratic or even
higher computational complexities of many advanced linkage algorithms.
In this paper we present a novel approach that, based on the expected
number of true matches between two databases, applies active learning to
remove compared record pairs that are likely non-matches before a com-
putationally expensive classification or clustering algorithm is employed
to classify record pairs. Unlike blocking and indexing techniques that are
used to reduce the number of record pairs to be compared, using recur-
sive binning on a data dimension such as time or space, our approach
removes likely non-matching record pairs in each bin after their com-
parison. Experiments on two real-world databases show that similarity
filtering can substantially reduce run time and improve precision, at the
costs of a small reduction in recall, of the final linkage results.

Keywords: Entity resolution · Efficiency enhancement · Binning

1 Introduction

Record linkage, as outlined in Fig. 1, is the process of identifying pairs of records
that correspond to the same entity in one or across two or more databases [3].
Due to the quadratic time complexity of comparing every possible pair of records
across two databases to be linked, the comparison step in record linkage is often
preceded by a blocking or indexing step [16], where similar records are grouped
into blocks such that only pairs of records within a block are compared. Addi-
tional meta-blocking [7] methods can be applied to further reduce the number of
record pairs that need to be compared by analysing records within and across
blocks to prevent redundant and superfluous record pair comparisons [16].

This work was partially funded by the ARC under grant DP160101934.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 321–333, 2021.
https://doi.org/10.1007/978-3-030-75765-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_26&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_26

322 C. Nanayakkara et al.

Fig. 1. The steps of the record linkage process, with our contribution highlighted.

The pairwise comparison step of record linkage then consists of the calcula-
tion of similarities between two records, generally using string comparison func-
tions applied on attributes such as names and addresses [3]. A similarity graph
can then be generated where nodes correspond to records and edges to the cal-
culated similarities between them. However, even with blocking, indexing, and
meta-blocking applied, many of these similarities will be low, and furthermore
they do not correspond to true matches [3,16]. In the classification step all com-
pared record pairs are then classified as matches (records assumed to correspond
to the same entity) or non-matches (records assumed to correspond to different
entities) using a decision model that can be as simple as a similarity threshold,
that can take match and error probabilities into account, or that uses training
data to learn a supervised classification model [3]. Given training data are often
not available in real-world linkage applications, unsupervised techniques need to
be used that exploit the structure of a similarity graph [2,6,10,20].

While blocking, indexing, and meta-blocking can significantly reduce the
number of record pairs that need to be compared in the comparison step, the
similarity graph generated from pair-wise comparisons can still be very large.
For example, using a Min-hash LSH [13] based blocking on the data sets used in
the evaluation in Sect. 4 that contain 17,613 and 3,007,153 records, resulted in
similarity graphs containing over 4 and 34 million edges, respectively. Such large
graphs are commonly required to ensure that the vast majority of true matches
are included in order to obtain a high recall of the final linkage results [3].

Large similarity graphs can, however, challenge any algorithm used to clas-
sify record pairs because these graphs are likely very imbalanced and contain
many non-matching record pairs. The size of these graphs can also result in the
classification step to become the bottleneck of the record linkage process [6].

In our work we remove record pairs from a similarity graph that are unlikely
true matches before this graph is being used for clustering or classification. We
assume that for a given linkage problem an approximate number of expected
true matches can be obtained from a domain expert. For example, when linking
product databases from two online stores (where one-to-one links are expected),
then the number of true matches is limited by the number of records in the
smaller of two databases being linked. On the other hand, when linking birth
records of families, then the known distribution of family sizes in a population
can be used to estimate an expected number of true matches [19].

We develop an active learning process where we bin the record pairs in a
similarity graph according to a suitable data dimension, such as time or space.
For example, work on temporal linkage [11] has shown that people will move
over time and possibly even change their names, resulting in lower similarities

Active Learning Based Similarity Filtering 323

for true matches. Similarly, if people move longer distances then a larger number
of their address details will change (such as state or even country). Our approach
recursively splits a similarity graph into bins, where we then obtain, via active
learning, information from a domain expert about the distribution of matches
and non-matches in these bins. We finally select a desired number of record pairs
with the highest similarities from each bin, resulting in a much reduced similarity
graph that still has a high recall of true matches, and that facilitates accurate
clustering or classification with substantially reduced run times.

2 Related Work

The need for linking databases has ensured research for over fifty years and
led to a diverse range of methods being developed [4,5,14]. Research into how
to improve the scalability of record linkage has concentrated on blocking and
indexing, and more recently meta-blocking [16]. The former aim to limit com-
parisons to only record pairs that are likely true matches, while meta-blocking
aims to prevent redundant record pair comparisons, or superfluous comparisons
between pairs already classified as non-matches [7]. Any good blocking, indexing,
and meta-blocking method needs to be able to group true matches into the same
block while records of different entities are grouped into different blocks [3].

Even though blocking, indexing, and meta-blocking help to improve the effi-
ciency of the comparison step, the classification step may still be inefficient due
to the presence of a large number of record pairs where many of them are likely
not matches. Apart from the parallelisation of linkage algorithms [7], limited
research has so far investigated how to improve the efficiency of the classifica-
tion step without compromising the final linkage quality.

For many real-world record linkage applications, obtaining complete ground
truth data (all true matching record pairs) is challenging due to large database
sizes [3]. Even though crowdsourcing has been explored for record linkage [23]
to mitigate the lack of ground truth data, allowing the public to classify record
pairs is not applicable in many domains due to privacy concerns [4]. Active
learning approaches, where a small number of selected record pairs are manually
classified by trusted domain experts, have therefore been adopted for record
linkage to generate ground truth data suitable to train supervised classifiers [17,
18,24], or to generate high quality blocking results [21]. Active learning based on
domain expertise, while being able to generate high quality ground truth data,
can however only generate small numbers of labelled record pairs. Therefore,
approaches that consider a limited labelling budget are crucial [24]. To the best
of our knowledge, our approach is a first to explore how active learning can be
employed to conduct filtering of record pairs after their comparison to improve
the overall efficiency and effectiveness of the linkage process.

3 Active Learning Based Similarity Filtering

We now describe our record pair similarity filtering approach based on domain
knowledge. Domain experts often have a good understanding about what the

324 C. Nanayakkara et al.

number of true matches in their databases might be, depending upon the link-
age situation (such as one-to-one or many-to-many links) and application [3].
As shown in Fig. 1, similarity filtering is an additional step applied between the
comparison and classification steps in the record linkage process [3]. The aim
of filtering is to improve effectiveness and run time of the classification step by
reducing the number of non-matching record pairs (represented by their similar-
ities) that are given to a classification or clustering algorithm [2,6,10,20].

3.1 Problem Definition

Without loss of generality, we assume two databases, DA and DB , are to be
linked. A blocking method [16] has generated a set of candidate record pairs
(ri, rj), with ri ∈ DA and rj ∈ DB . These pairs have been compared using
comparison functions, such as approximate string comparators [3], applied on
a set of attributes, A, that generally includes names, addresses, and so on.
Each compared record pair is represented by a similarity vector, si,j , where
|si,j | corresponds to the number of compared attributes, |A|. Assuming all sim-
ilarities are in [0, 1] (with a similarity of 0 for totally different values and 1 for
an exact match), an overall normalised similarity for a pair can be calculated
as si,j =

∑|A|
k=1 si,j [k]/|A|. Each record pair is either a true match or a true

non-match, where we assume the true match status is unknown for all pairs. We
denote the sets of true matches and non-matches by M and N , respectively.

We also assume each record pair has a distance, di,j , in a specific data dimen-
sion, such as time and/or space. For example, records about people often contain
addresses, and using geocoding [12] these can be used to calculate geographical
distances between records. Similarly, for records that contain timestamps (such
as publication records, birth, marriage or death certificates, or census records)
temporal distances can be calculated between record pairs [11].

The set of compared record pairs can be represented as an undirected sim-
ilarity graph, G = (V,E), where each node (vertex) in V represents a record,
ri or rj , and an edge (ri, rj) ∈ E connects two records ri and rj if their overall
similarity si,j is at least a certain similarity threshold t, si,j ≥ t, with 0 ≤ t ≤ 1.
The problem we aim to solve can now be defined as follows.

Definition 1 (Similarity Graph Filtering). Given a similarity graph G =
(V,E), a budget βt of the number of manual classifications of record pairs that
can be conducted by an oracle, the expected number of true matches m in G, and
a multiplier ε for the number of links to select. The aim of similarity filtering is to
select a subset of record pairs (ri, rj) ∈ E into a similarity graph Gs = (Vs, Es),
with Vs ⊆ V and Es ⊂ E, based on manual classification of βt record pairs in
E, such that the number of matches in Es is maximised while |Es| = m · ε.

Our similarity filtering approach is based on the assumption that record pairs
that have a higher similarity are generally more likely to be true matches, i.e.
P ((ra, rb) ∈ M |sa,b) > P ((re, rf) ∈ M |se,f) if sa,b > se,f . While this assumption
does not necessarily hold for every record pair in G, it is a common assumption

Active Learning Based Similarity Filtering 325

Fig. 2. Filtering of record pairs (links) with the highest similarities. Compared to using
all 80 links, with m = 20 and ε = 1, the filtered similarity graph contains a much smaller
number of true non-matches at the cost of losing only few true matches. If the top 20
links are chosen globally (no binning), then the recall of the filtered graph is only 0.8
(4 out of 20 true matches are missed), whereas when links are chosen locally using bin
specific thresholds, then recall would be 0.9 (only 2 true matches are removed by the
filtering process). If we set ε = 1.5 and select 30 record pairs then recall will be 1.

used in record linkage [1,22]. We also assume that the distances, di,j , of record
pairs affect the values in their corresponding similarity vectors, si,j , as is illus-
trated in Fig. 2. For example, the further people move the more details in their
addresses will likely change. While a local move will result in a changed street
address only, a move further away can also lead to changed city, zipcode, and
even state values. As we discuss next, we employ a binning based active learn-
ing approach to identify different similarity thresholds for filtering on different
subsets (bins) of record pairs in E using the distances di,j of record pairs.

3.2 Binning Based Filtering

After initialising the main data structures, in line 3 of Algorithm 1 we gener-
ate the first bin b1 with the full similarity graph G, and set the level of this
bin to b1.l = 1. The budget β1, of how many record pairs are manually clas-
sified (labelled) by the human oracle in this first bin is calculated with the
CalcBudget() function. Due to the recursive process of splitting a bin into two
in each iteration, we allocate a labelling budget that depends on the level of
a bin. With a total budget of βt, for a bin at level l we allocate a budget of
βl = βt/(22l−1), such that a budget of βt/2l is allocated across all bins at level
l. For example, with βt = 1, 000, we will manually label β1 = 500 record pairs
in b1 (with level l = 1), β2 = 125 in each of the two bins at level l = 2, β3 = 31
in each of the four bins at level l = 3, and so on. Note that the set of manually
labelled (classified) record pairs in a bin b, denoted by b.c, is propagated from
a parent bin to its two child bins in the recursive bin splitting process.

In line 5 of Algorithm 1 we calculate the optimal similarity threshold b1.t
corresponding to the m · ε record pairs with the highest similarities in b1. In line
6 the oracle then manually classifies β1 record pairs in bin b1 as b1.c using the
GetOracleLabels() function. This function conducts labelling such that both the
child bins of b1 inherit labelled record pairs from b1 based on the binning method

326 C. Nanayakkara et al.

Algorithm 1: Binning based similarity graph filtering using active learning

Input:
- G: Pairwise similarity graph
- βt: Total budget (maximum number of record pairs the oracle can manually classify)
- βm: Minimum number of manual classifications a bin must contain
- m: Expected number of true matches
- ε: Multiplier for number of record pairs (links) to select
- γ: Binning method (either equal width or equal depth)

Output:
- Gs: Pairwise similarity graph containing m · ε selected links

1: B = [] // Initialise an empty list to store the final bins
2: Q = [] // Initialise a queue to hold bins to be processed further
3: b1 = InitBin(G); b1.l = 1 // Initialise first bin with all links in G and set bin level to 1
4: β1 = CalcBudget(βt, 1) // Get budget for the first bin
5: b1.t = GetTopPairsThresh(b1, m · ε) // Get the threshold for the top m · ε links
6: b1.c = GetOracleLabels(b1, β1, γ) // Manual Classification of β1 links in bin b1
7: b1.s = CalcScore(b1) // Calculate the score for bin b1
8: Q.add(b1) // Add the first bin to the queue

9: while (Q �= []) do: // Process queue sorted by bin scores
10: bp = Q.pop() // Get the next (parent) bin to process based on its score

11: bl,br = SplitBin(bp, γ) // Split parent bin into two based on binning method γ
12: βc = CalcBudget(βt,b

p.l + 1) // Get the budget for the two child bins

13: if ((|bl.c| + βc) ≥ βm) and ((|br.c| + βc) ≥ βm) then: // Enough labels in both bins

14: bl.c = bl.c ∪ GetOracleLabels(bl, βc, γ); br.c = br.c ∪ GetOracleLabels(br, βc, γ)

15: tl, tr = CalcBestThresh(bl,br) // Run Algorithm 2 to get optimal bin thresholds

16: if (tl == bp.t) and (tr == bp.t) then: // Best thresholds are same as for parent bin
17: B.add(bp); go to line 9 // Add parent bin to final bin list and process next bin

18: bl.t = tl; bl.s = CalcScore(bl); Q.add(bl) // Add both child bins to queue
19: br.t = tr ; br.s = CalcScore(br); Q.add(br)

20: else if (|bl.c| + βc) ≥ βm) then: // Only the left child bin has enough labels

21: bl.c = bl.c ∪ GetOracleLabels(bl, βc, γ); bl.s = CalcScore(bl); Q.add(bl)
22: B.add(br) // Add right child bin to final bin list
23: else if (|br.c| + βc) ≥ βm) then: // Only the right child bin has enough labels
24: br.c = br.c ∪ GetOracleLabels(br, βc, γ); br.s = CalcScore(br); Q.add(br)

25: B.add(bl) // Add left child bin to final bin list
26: else: B.add(bp) // Add parent bin to the final bin list
27: Gs = (Vs = ∅, Es = ∅) // Initialise empty similarity graph of selected links
28: for b ∈ B do: // Iterate through the bins in the final bin list
29: Gs.insert(GetLinks(b,b.t)) // Generate the final similarity graph with selected links
30: return Gs // Return the final similarity graph

γ (which we describe below). The function selects record pairs for labelling that
are close to the bin threshold b1.t, with β1/2 pairs selected above and β1/2 pairs
below the threshold. This helps to effectively shift the bin threshold depending
upon the manual labels obtained, as we discuss below. We then calculate the
score b1.s of bin b1 in line 7, where we describe four score functions in Sect. 3.4.
These scores are used to order the queue Q and determine which bin to process
next in the iterative phase of our approach.

We iteratively process bins in Q starting in line 9 as long as the queue is
not empty. In line 10 we select the next (parent) bin, bp, with the highest score,
which we then split into two child bins, bl and br, using the binning method γ.
The function SplitBin() performs either equal width or equal depth binning [8]
on the parent bin bp as specified by γ, using the distances di,j of each record pair
in bp. SplitBin() also increases the level of the child bins as bl.l = bp.l + 1 and
br.l = bp.l + 1, propagates the optimal threshold (bl.t = bp.t and br.t = bp.t),
and splits the set of manual classifications in bp according to the binning method
such that bl.c ∪ br.c = bp.c.

Active Learning Based Similarity Filtering 327

In line 12 we calculate the oracle budget βc for the child bins based on their
level, and in line 13 we check if both child bins will contain enough manual
classifications (based on their allocated budgets as well as the labels inherited
from their parent). The reason for checking if a bin can have at least βm labels is
to avoid underfitting (where not enough manual labels are available in a bin to
calculate an optional similarity threshold). If both bins can have βm labels, then
in line 14 we obtain new manual classifications (bl.c and br.c) for them, and in
line 15 we calculate the new optimal similarity thresholds for the child bins using
the function CalcBestThres(), as we describe in Sect. 3.3. If it turns out that the
optimal threshold of the parent, bp.t cannot be improved (in line 16) because
the distribution of the similarities of links in both child bins is homogeneous
(highly similar), then we add the parent bin bp to the final list of bins B in line
17, and go back to line 9 to process the next bin in Q.

Otherwise, in lines 18 and 19, for each child bin bl and br, the threshold is
set to its calculated optimal value, its bin score is calculated, and then both child
bins are added to the queue Q. On the other hand, if only one of the two child
bins can have at least βm labels, in lines 20 to 25 we obtain manual classifications
for that bin, update the remaining budget and the score of that bin, and add it
to Q, while the other child bin (the one not having enough labels) is added to
the final list of bins B. If neither child bin can have at least βm labels then in
line 26 we add the parent bin bp to the final list of bins B.

Subsequent to processing all bins in Q, we generate the filtered similarity
graph of selected links (record pairs), Gs, in lines 27 to 29 by looping over all
bins in b ∈ B, and adding all record pairs with a pairwise similarity of at least
the bin threshold b.t into the graph Gs.

3.3 Calculating Optimal Bin Similarity Thresholds

We now describe the functionality of the CalcBestThresh() function (used in
line 15 in Algorithm 1), as outlined in Algorithm 2. The input to Algorithm 2
is a bin pair bl and br, and the function calculates a pair of optimal thresholds,
tl and tr, which minimise the total number of false negatives across both bins.
The algorithm starts with obtaining the lists of false negatives, fnl and fnr, in
the two bins, where true matching records pairs (as manually classified by the
oracle) that have a similarity below the thresholds bl.t and br.t are considered
as false negatives. We assume that record pairs in a bin are sorted based on
their similarities. In lines 2 and 3, we then calculate the initial total number of
false negatives, ft, and initialise a list S with a tuple made of ft and the initial
thresholds.

The loop starting in line 4 (with ⊕ representing list concatenation) then
shifts thresholds for each false negative record pair fn in both child bins, where
the function ShiftThresh() sets the threshold of one of the bins (bl or br)
to the similarity value of fn. The threshold of the other child bin is adjusted
such that the total number of record pairs with a similarity greater than the
thresholds is unchanged. This ensures that we select m · ε links at any time,
despite the changing thresholds. The new thresholds tl and tr are returned by

328 C. Nanayakkara et al.

Algorithm 2: Calculate optimal bin similarity thresholds, function CalcBestThres()

Input: Output:

- bl,br: Left and right child bins - tl, tr: Optimal bin threshold pair

1: fnl = GetFalseNeg(bl,bl.t); fnr = GetFalseNeg(br,br.t) // Get list of false negatives
2: ft = |fnl| + |fnr| // Get the initial total false negative count

3: S = [(ft,b
l.t,br.t)] // Initialise a list with bin thresholds and total false negative count

4: for fn ∈ fnl ⊕ fnr do: // Iterate through list of all false negative record pairs

5: tl, tr = ShiftThresh(bl,br, fn) // Shift thresholds in child bins

6: fnl = GetFalseNeg(bl, tl); fnr = GetFalseNeg(br, tr) // Get new false negatives lists
7: if (|fnl| > ft) or (|fnr| > ft) then: // One bin exceeds the false negative total
8: break // Stop shifting threshold in a given direction

9: else: S.add((|fnl| + |fnr|, tl, tr)): // Add thresholds and total false negative count

10: tl, tr = GetMinFalseNegThres(S) // Get thresholds with minimum total false negatives

11: return tl, tr // Return the optimal thresholds

ShiftThresh(), and we then obtain the lists of false negatives fnl and fnr for
tl and tr. In lines 7 and 8 we check if at least one of the bins has more false
negatives than the original total false negative count, ft, and if so we end further
shifting of thresholds because no more improvement can be gained (a threshold
combination that results in one of the bins having more false negatives compared
to the original cannot be improved). If the condition in line 7 is not met, in line
9 we add the new total false negative count |fnl| + |fnr| together with the new
threshold pair tl and tr to the list S. In line 10, we finally obtain the optimal
bin threshold pair tl and tr that has a minimum total false negative count, and
in line 11 we return this threshold pair.

3.4 Bin Scoring Functions

An important aspect of our recursive binning approach is the ordering of the
queue Q based on the bin scores, b.s, which determine how bins are being
processed. Our aim is to calculate an optimal threshold for each bin such that
the total number of false negatives is minimised before the budget is used up.
We describe four variations of the function CalcScore(). In all variations we only
consider the record pairs manually classified by the oracle in a given bin, b.c.

1. False negative count (scorefn): With this approach we calculate the num-
ber of false negative record pairs contained in a bin b, where a false negative
is a pair that has been classified as a true match by the oracle and that has
a similarity below the bin threshold b.t. Using this scoring function means
bins that contain more false negatives will be at the top of the queue Q, and
processed first.

2. Bin recall (scorer): With this approach we calculate the recall of bin b as
the proportion of manually classified true matches with a similarity above
b.t over all manually classified true matches in b. With this scoring function
we process bins in Q such that those bin with lowest recall are processed
first. This allows us to further explore bins that have fewer true positives and
adjust their thresholds to improve their recall.

Active Learning Based Similarity Filtering 329

3. Normalised false negative count (scorenfn): This approach is similar to
the scorefn approach, except that we divide the score scorenfn by the bin
size |b|, to find the bins with the largest proportion of false negatives.

4. Adjusted bin recall (scorear): This approach is similar to the scorer func-
tion except that we adjust the original scorer value by dividing it by the bin
size |b|. With this approach, larger bins that have a lower bin recall value
will be processed first, whereas with the scorer approach we order bins inde-
pendent of their sizes.

We next evaluate our active learning based similarity filtering approach.

4 Experimental Evaluation

The aim of our experiments is to evaluate how applying similarity filtering before
classification, as shown in Fig. 1, can improve the overall record linkage process
by reducing run time and memory consumption, while at the same time improv-
ing or at least retaining linkage quality as obtained without filtering.

We evaluated our novel filtering technique using two real world data sets
for which ground truth data are available. The Isle of Skye (IoS) data set [19]
contains 17,614 birth records from Scotland from 1861 to 1901, where the aim
is to link (cluster) all birth records (siblings) by the same mother. The North
Carolina voter (NCVR) data set (see: https://dl.ncsbe.gov) contains records
with personal details (such as names and addresses) of US voters from the years
2011 to 2020, from where we selected around 3 million records of voters who were
represented by multiple records across several years and where at least one (likely
several) of their name and/or address values changed over time (as a voter moved
and/or changed their name). The number of true matches for IoS is m = 40,891
while for NCVR it is m = 6,978,001. For the data dimensions used for binning,
we calculated time distances as the number of days between two birth records
in IoS and the number of months between two voter records in NCVR, while we
calculated geographical (space) distances using address geocoding [12] for IoS
and the distances between zipcodes for NCVR, respectively. We will make our
programs and similarity graphs available to allow repeatability.

As evaluation metrics we use precision and recall as commonly used to eval-
uate record linkage algorithms [9], where recall is the proportion of true matches
that were correctly included in a filtered similarity graph, while precision is the
proportion of true matches in a filtered similarity graph. For the final clustering
results, recall measures the proportion of correctly classified true matches and
precision the proportion of true matches in the set of classified matches.

As illustrated in Fig. 2, as baseline we explore a simple filtering approach
using a global threshold for selecting the m record pairs (links) with the highest
similarity, assuming m was provided by a domain expert. We then investigate
our active learning based filtering approach, where we explore if the binning of
record pairs can help improve the quality of the filtered similarity graph.

In a set of initial experiments we found that equal depth binning [8] always
produced better results than equal width binning on both data dimensions time

https://dl.ncsbe.gov

330 C. Nanayakkara et al.

Fig. 3. Precision and recall results of the full similarity graph (unfiltered) compared
with the quality of the graph filtered with a global threshold (top m links), as well as
binwise thresholds for different total budgets and against different data dimensions.

and space, and that a value of βm = 25 for the minimum number of man-
ual classifications per bin always gave the best results. We therefore use these
parameter settings in all our experiments. We then set the total budget as
βt = [200, 500, 1000] (as well as to unlimited for the IoS data set), to investigate
how different budgets influence the quality of the generated filtered similarity
graphs. All of the four scoring functions discussed in Sect. 3.4 produced very
similar results, with the false negative count score function, scorefn, obtaining
slightly better results, and we therefore used this function in all our experiments.

In Fig. 3 we show the precision and recall results obtained for the original
full similarity graph, as compared with the filtered graphs for the global thresh-
old, as well as results for binning when using different total budgets. For all
filtered graphs, both precision and recall values are the same because we limit
the number of record pairs in the filtered graph to m, the number of true matches
as estimated by a domain expert. We can see that the precision of the filtered
graphs are far better compared to the original graph, since our filtering approach
was able to remove a large proportion of the true non-matching record pairs.

Our aim of capturing more true matches with binning, compared to using a
global threshold, has been successful mostly for the IoS data set with the time
data dimension with a 4.5% maximum improvement even with a limited budget.
The maximum recall improvement we can obtain with a fully supervised method
(unlimited budget) is nine percent and therefore obtaining an improvement of
4.5% with a limited total budget of βt ≤ 1000 shows that our approach of using
active learning can lead to improved similarity filtering. The fact that recall can
be improved using bin-wise thresholds indicates that linked records in different
bins do have different similarity distributions of true matching record pairs.

Our binning approach has worked well for the IoS data set on the time dimen-
sion, since for birth record pairs we find patterns such as no true matches between
zero to nine months (an impossible age gap for siblings). For experiments on the
space dimension on IoS, and time dimension on NCVR, the maximum recall
improvement obtained is less, which indicates less distinct differences in the bins
generated on these data dimensions. With NCVR in the space dimension, recall
drops with βt = 500. This indicates that certain numbers of manual classifica-
tions can lead to wrong binning due to incorrectly set classification thresholds
that result in wrong selection of record pairs in some bins. Therefore, clear pat-
terns across a data dimension are needed for our approach to work.

Active Learning Based Similarity Filtering 331

Table 1. Percentage changes for time (T), precision (P), and recall (R), of clustering
the filtered similarity graphs (using the time data dimension) compared to clustering
the full graphs. Significant reductions in time and graph sizes (|G|=4M and |Gs|= 41 K
for IoS, while |G|= 34.5 M and |Gs|= 6.9 M for NCVR) and improvements in precision
can be seen, at the costs of some reductions in recall.

Global threshold btot = 200 btot = 500 btot = 1, 000

T / P / R T / P / R T / P/ R T / P / R

Robust [15] −71/129/−12 −70/122/−10 −69/122/−9 −69/122/−9

IoS Star [6] −98/71/−17 −98/70/−16 −98/71/−15 −98/71/−15

Conn [6] −100/8154/−19 −99/6519/−17 −99/5996/−17 −99/5996/−17

NCVR Star [6] −65/12/−16 −65/12/−16 −63/16/−14 −66/13/−16

Conn [6] −97/1348/−7 −97/1302/−8 −97/1379/−8 −97/1155/−8

Table 1 shows the percentage difference in time, precision, and recall obtained
with three clustering algorithms on the full similarity graphs compared to run-
ning these algorithms on the filtered graphs. We used three algorithms that have
been used for record linkage; robust graph clustering [15], star clustering [6], and
simple connected components clustering [6]. Robust graph clustering results are
not shown for NCVR because we could not run this algorithm on the full NCVR
graph in reasonable time. This highlights the advantage of similarity filtering
to reduce the run times of computationally expensive algorithms used for link-
ing large databases. For most experiments, precision has improved considerably
with small losses in recall, while the time taken to run clustering was reduced
quite significantly as well. The reduction in recall is justifiable especially for the
IoS data set, where the results show the reduction in time and the improvement
in precision to be more than five fold the reduction in recall. The percentage
reductions in recall are slightly reduced when bin-wise thresholds are applied on
the IoS data set compared to using a global threshold. Such improvements were
obtained while reducing the similarity graph size from four million record pairs
to only around forty thousand pairs for IoS, and a reduction from over 34 million
to less than seven million record pairs for NCVR, as shown in the table.

5 Conclusions and Future Work

Record linkage is increasingly challenged by database sizes and the lack of ground
truth data available in linkage applications. While blocking, indexing, and more
recently meta-blocking, aim to reduce the number of record pairs that need to
be compared, here we have presented a novel similarity filtering approach that
removes compared pairs of records that have low similarities and are therefore
unlikely true matches. Combining recursive binning of record pairs with active
learning, we identify thresholds in bins that result in a substantially filtered set
of record pairs while maintaining high recall of these pairs. Experiments on two
real-world data sets have shown that even with a small manual labelling budget
we can obtain filtered record pairs of high quality. As future work we aim to

332 C. Nanayakkara et al.

improve our method of how to select suitable record pairs for manual labelling,
and we plan to incorporate the manually labelled matches and non-matches into
the final clustering process using constraint clustering approaches.

References

1. Arasu, A., Götz, M., Kaushik, R.: On active learning of record matching packages.
In: ACM SIGMOD. pp. 783–794. Indianapolis (2010)

2. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM
TKDD 1(1), 5-es (2007)

3. Christen, P.: Data Matching - Concepts and Rechniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31164-2

4. Christen, P., Ranbaduge, T., Schnell, R.: Linking Sensitive Data. Springer, Heidel-
berg (2020). https://doi.org/10.1007/978-3-030-59706-1

5. Dong, X.L., Srivastava, D.: Big Data Integration. Synthesis Lectures on Data Man-
agement, Morgan and Claypool Publishers, San Rafael (2015)

6. Draisbach, U., Christen, P., Naumann, F.: Transforming pairwise duplicates to
entity clusters for high-quality duplicate detection. ACM JDIQ 12(1), 1–30 (2019)

7. Efthymiou, V., Papadakis, G., Papastefanatos, G., Stefanidis, K., Palpanas, T.:
Parallel meta-blocking for scaling entity resolution over big heterogeneous data.
Inf. Syst. 65, 137–157 (2017)

8. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn.
Morgan Kaufmann, Burlington (2012)

9. Hand, D., Christen, P.: A note on using the F-measure for evaluating record linkage
algorithms. Stat. Comput. 28(3), 539–547 (2017). https://doi.org/10.1007/s11222-
017-9746-6

10. Hassanzadeh, O., Chiang, F., Lee, H., Miller, R.: Framework for evaluating clus-
tering algorithms in duplicate detection. VLDB 2(1), 1282–1293 (2009)

11. Hu, Y., Wang, Q., Vatsalan, D., Christen, P.: Improving temporal record linkage
using regression classification. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X.,
Moon, Y.-S. (eds.) PAKDD 2017, Part I. LNCS (LNAI), vol. 10234, pp. 561–573.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7 44

12. Kirielle, N., Christen, P., Ranbaduge, T.: Outlier detection based accurate geocod-
ing of historical addresses. In: Le, T.D., et al. (eds.) AusDM 2019. CCIS, vol. 1127,
pp. 41–53. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-1699-
3 4

13. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. CUP,
Cambridge (2014)

14. Mudgal, S., Li, H., Rekatsinas, T., Doan, A., et al.: Deep learning for entity match-
ing: a design space exploration. In: ACM SIGMOD, pp. 19–34. Houston (2018)

15. Nanayakkara, C., Christen, P., Ranbaduge, T.: Robust temporal graph clustering
for group record linkage. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang,
S.-J. (eds.) PAKDD 2019, Part II. LNCS (LNAI), vol. 11440, pp. 526–538. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-16145-3 41

16. Papadakis, G., Skoutas, D., Thanos, E., Palpanas, T.: Blocking and filtering tech-
niques for entity resolution: a survey. ACM Comput. Surv. 53(2), 1–42 (2020)

17. Primpeli, A., Bizer, C., Keuper, M.: Unsupervised bootstrapping of active learning
for entity resolution. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp.
215–231. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2 13

https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-030-59706-1
https://doi.org/10.1007/s11222-017-9746-6
https://doi.org/10.1007/s11222-017-9746-6
https://doi.org/10.1007/978-3-319-57454-7_44
https://doi.org/10.1007/978-981-15-1699-3_4
https://doi.org/10.1007/978-981-15-1699-3_4
https://doi.org/10.1007/978-3-030-16145-3_41
https://doi.org/10.1007/978-3-030-49461-2_13

Active Learning Based Similarity Filtering 333

18. Qian, K., Popa, L., Sen, P.: Active learning for large-scale entity resolution. In:
ACM CIKM, pp. 1379–1388. Singapore (2017)

19. Reid, A., Davies, R., Garrett, E.: Nineteenth-century Scottish demography from
linked censuses and civil registers: a ‘sets of related individuals’ approach. Hist.
Comput. 14(1–2), 61–86 (2002)

20. Saeedi, A., Peukert, E., Rahm, E.: Using link features for entity clustering in
knowledge graphs. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp.
576–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4 37

21. Shao, J., Wang, Q.: Active blocking scheme learning for entity resolution. In:
Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD
2018, Part II. LNCS (LNAI), vol. 10938, pp. 350–362. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93037-4 28

22. Tao, Y.: Entity matching with active monotone classification. In: ACM PODS, pp.
49–62. Houston (2018)

23. Vesdapunt, N., Bellare, K., Dalvi, N.: Crowdsourcing algorithms for entity resolu-
tion. PVLDB 7(12), 1071–1082 (2014)

24. Wang, Q., Vatsalan, D., Christen, P.: Efficient interactive training selection for
large-scale entity resolution. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Che-
ung, D., Motoda, H. (eds.) PAKDD 2015, Part II. LNCS (LNAI), vol. 9078, pp.
562–573. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18032-8 44

https://doi.org/10.1007/978-3-319-93417-4_37
https://doi.org/10.1007/978-3-319-93037-4_28
https://doi.org/10.1007/978-3-319-18032-8_44

Stratified Sampling for Extreme
Multi-label Data

Maximillian Merrillees and Lan Du(B)

Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia
lan.du@monash.edu

Abstract. Extreme multi-label classification (XML) is becoming
increasingly relevant in the era of big data. Yet, there is no method
for effectively generating stratified partitions of XML datasets. Instead,
researchers typically rely on provided test-train splits that, 1) aren’t
always representative of the entire dataset, and 2) are missing many of
the labels. This can lead to poor generalization ability and unreliable
performance estimates, as has been established in the binary and multi-
class settings. As such, this paper presents a new and simple algorithm
that can efficiently generate stratified partitions of XML datasets with
millions of unique labels. We also examine the label distributions of pre-
vailing benchmark splits, and investigate the issues that arise from using
unrepresentative subsets of data for model development. The results
highlight the difficulty of stratifying XML data, and demonstrate the
importance of using stratified partitions for training and evaluation.

Keywords: Extreme multi-label learning · XML · Stratified sampling

1 Introduction

The composition of data used for training and testing can have a big impact on
the model development process. It can influence choices regarding training strat-
egy and hyperparameter selection, and can also effect performance estimates. As
such, for classification tasks, stratified sampling is commonly used to generate
these subsets because they have been shown to result in performance estimates
with lower bias and variance compared to random sampling [4].

Performing stratified sampling on binary and multi-class datasets is straight-
forward. Each data point is only associated with one label, so generating strati-
fied splits can be achieved by simply sampling instances of each class based on
its prevalence in the dataset. On the other hand, generating stratified subsets of
multi-label data is more difficult because each instance can be associated with
one or more labels. Assigning an instance to a subset based on one of its labels
will impact all the other labels associated with that instance.

As such, to facilitate comparability between models, it’s common for XML
researchers to use benchmark datasets with provided test-train splits [7,8,13,16].
However, our investigation into these provided splits revealed that a number of
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 334–345, 2021.
https://doi.org/10.1007/978-3-030-75765-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_27

Stratified Sampling for Extreme Multi-label Data 335

them have sub-optimal characteristics. Specifically, there are subsets where the
distribution of labels is very dissimilar to that of the entire dataset. Also, there
are test sets where a significant proportion of rare labels are missing.

This can be problematic since using unrepresentative data can lead to biased
results or sub-optimal choices for a model’s hyperparameters. Also, excluding
a large proportion of rare labels from being evaluated implies that a model’s
performance on rare labels is not important. That’s not always the case. In fact,
the authors of PfastreXML argue that such situations are common [3]. They
provide the example of tagging Wikipedia articles, where there would be less
value in assigning a generic label like Poem than novel labels like Epic poems
in Italian or 14th century Christian texts. For another example, in the medical
domain, some diseases are rare. Therefore, the corresponding ICD labels might
not be observed as often as some other common diseases, like seasonal influenza.
However, less frequent diseases do not mean they are not important.

These issues have been known for some time in multi-label classification
(MLC) research. A paper from 2011 points out similar issues, and presented an
iterative algorithm to perform stratified partitioning of MLC datasets [9]. Since
then, one other method has been proposed [11]. A review of recent literature
suggests that the iterative algorithm from 2011 remains the preferred stratifi-
cation method [1,10,15]. However, our tests of the iterative algorithm revealed
that it was unable to effectively generate stratified splits of XML data. This
is possibly due to the difference in scale between MLC and XML data. In any
case, there is currently no method, to our knowledge, for efficiently generating
stratified test-train splits of XML datasets. Given the increasing prevalence of
XML research, this gap needs to be addressed.

In this paper, we propose a new stratified sampling algorithm for XML data,
which makes use of a simple sampling strategy that swaps instances between the
train and the test sets based on scores that measure the dissimilarity between
the current split state and the stratified state. Compared with random sampling
and iterative sampling, the proposed algorithm: 1) achieves lower KL divergence
between the label distribution of each test set against the distribution of their
respective data set, and 2) is much faster than the iterative sampling method that
is widely used in multi-label learning. Meanwhile, we also examine the label dis-
tributions of prevailing benchmark splits, and highlight the bias in performance
estimates that can arise from using unrepresentative subsets of data.

This paper is structured as follows: Sect. 2 provides a summary of related
works. Section 3 contains an overview of XML datasets. We present our algo-
rithm in Sect. 4, and the resulting partitions in Sect. 5. In Sect. 6, we highlight
the difference in performance estimates from using different splits. Finally, we
provide our concluding remarks in Sect. 7.

2 Related Works

The first method for generating stratified partitions of MLC data was presented
by Sechidis and Tsoumakas in 2011 [9]. Their iterative algorithm creates k-
subsets of data by allocating data points to subsets one-by-one based on the

336 M. Merrillees and L. Du

suitability of its labels. Prior to that algorithm, MLC researchers typically per-
formed random sampling or relied on the splits available through the MULAN
repository [14].

The authors were motivated to develop such an algorithm because it had
been established that using stratified partitions results in performance estimates
with lower bias and variance compared to estimates obtained using randomly
sampled data [4]. Yet, up to that point, no stratification method existed for MLC
data. In their paper, they demonstrated that using stratified subsets resulted in
more robust performance estimates. A python implementation of the algorithm
is available from the scikit-multilearn package [12].

Since then, one other stratification method has been proposed for MLC
datasets. In 2017, an extension of the iterative algorithm was presented that
takes into account second-order relationships between labels [11]. That is, an
algorithm that seeks to maintain the distribution of label-pairs during partition-
ing. In their paper, the authors demonstrated how doing so improves classifica-
tion performance as measured by label-pair oriented metrics. Despite this newer
method, a review of the recent literature suggests that the iterative algorithm
from 2011 remains the preferred stratified partitioning method. Perhaps this is
because second-order relationships are not typically considered in MLC research.

Despite the widespread use of the iterative algorithm, this study found it
unsuitable for large-scale XML datasets. The algorithm is slow, and does not
seem to be capable of generating well stratified partitions for XML datasets.
This is not surprising given the method was developed and tested on relatively
small MLC datasets. Indeed, the largest dataset they considered had just 983
labels and 16K data points - much smaller than XML data that can contain
millions of labels and data points.

3 Overview of XML Datasets

XML is defined by datasets that contain thousands to millions of labels - this is
what makes it extreme. Another notable characteristic is the high proportion of
labels with few associated instances - typically referred to as tail labels1. Also,
as with MLC datasets in general, each data point is associated with multiple
labels. Table 1 summarizes the basic statistics of four datasets that are often
used in XML research, the label size of which ranges from 4K to 670K, which
often follows a power-law distribution [5].

Together, these properties make it challenging to create stratified partitions.
Having multiple labels per data point means conventional stratification methods
cannot be applied, and the high proportion of rare labels makes random sampling
risky, since it’s possible to generate subsets with missing labels. Finally, the large
output space makes iterative partitioning slow. Currently, to our knowledge,
there does not exist a stratification method that can overcome these problems.

1 For this paper, tail labels are those with fewer than 10 instances in the dataset.

Stratified Sampling for Extreme Multi-label Data 337

Table 1. Statistics for a selection of XML datasets [2]

Num. labels Num. train Num. test Avg. labels

per sample

Avg. samples

per label

% Tail labels

EURLex-4K 3,993 15,539 3,809 5.31 25.73 59%

Wiki10-31K 30,938 14,146 6,616 18.64 8.52 83%

Delicious-200K 205,443 196,606 100,095 75.54 72.29 51%

Amazon-670K 670,091 490,449 153,025 5.45 3.99 89%

Table 2. Percentage of labels missing from the provided test set

EURLex-4K Wiki10-31K Delicious-200K Amazon-670K

32.4% 28.7% 10.4% 48.2%

Given the lack of a suitable sampling method, XML researchers typically use
test-train splits provided by the XML repository [2]. Doing so negates the need
to generate their own partitions, and ensures that performance estimates are
comparable between papers. However, our examination of these splits reveals
that they aren’t always representative of their datasets, particularly, there exist
many labels that do not have any testing instances. This is shown in Fig. 1, where
each chart shows the proportion of labels that fall in each of the 10 bins, where
each bin represents a range of the proportion of label instances that appears
in the test set. For example, for EURLex-4K, 36% of the labels have between
0% and 10% (first bin) of their instances present in the test set - the remaining
labels are spread out across the other 9 bins. The red vertical line represents the
test size as a proportion of the entire dataset. In a perfectly stratified test set, all
the labels would have this percentage of instances in the test set. Categorizing
the labels as either a head- or tail- label reveals that it’s mostly tail labels that
fall within the first and final bins.

A closer examination reveals that almost all labels that fall within the first
bin are actually completely missing from the test set. The proportion missing
labels is provided in Table 2. This is problematic because it means that models
trained on these splits aren’t being adequately evaluated on their performance
on rare labels. It is also known that models’ performance can be largely impacted
by those labels, known as few-shot learning [5]. This paper also points out the
following conundrum: why train for labels that never get tested?

4 Stratified Sampling Algorithm

In this Section, we present our stratified sampling algorithm. The inputs to the
algorithm are the set of documents, X, the set of associated labels, y, and the
target test size. It generates X train, X test, y train, and y test, much in the
same way as the train test split() function from scikit-learn [6]. Documentation
for the python implementation of the stratified sampling algorithm is available

338 M. Merrillees and L. Du

Fig. 1. Label distributions of provided splits from the XML repository

on GitHub2. The pseudo-code for the algorithm is outlined in Algorithm 1.
Essentially, it seeks to minimize a score that measures how far the current state
is from a well-stratified state. A high positive score indicates the partitions are
far from stratified. Scores close to 0 indicate that the partitions are well stratified.

The algorithm starts by randomly allocating each data point to the train
or test set so the target test size is achieved (line 1). Then, it performs strat-
ified sampling for a number of epochs. First, it counts the instances of each
label in each partition (lines 6 to 10) and calculates a score for each label
based on the extent to which a label’s actual test proportion diverges from the
target test size (lines 12 to 17). Scores are normalized to be within the range of
0 and ±1. A positive score means too much of the label is in the test set, while
a negative score means too much of the label is in the train set. For example, if
a the target test size is 20%, and 60% of a label’s instances are in the test set,
the label score would be 0.5, since 60% is half-way between 20% and 100%. If a
label’s actual test proportion is 5%, the label score would be −0.75, since 5% is
75% of the way between 0% and 20%.

After calculating a score for each label, it calculates a score for each data point
based on the scores of its labels (lines 19 to 27). A high data point score indicates
that many of its labels have too many instances in the data point’s current
partition, and the datapoint should be swapped to the alternate partition.

Finally, a proportion of the data points with the highest scores are swapped
from their current partition to the alternate partition (lines 32 to 36). At each

2 https://github.com/maxitron93/stratified sampling for XML.

https://github.com/maxitron93/stratified_sampling_for_XML

Stratified Sampling for Extreme Multi-label Data 339

Algorithm 1: Stratified sampling algorithm
1 // Start by randomly allocating each data point to either X train or X test so

the test size is equal to target test size
2

3 // Perform stratified sampling for 50 epochs
4 while epoch ≤ 50 do
5

6 // For each label, count the appearances in the train and test sets
7 for x in X do
8 for label in label set of x do
9 if x in X train then label train count += 1;

10 else label test count += 1;

11

12 // Calculate the score for each label
13 for label in y do
14 if actual test proportion ≥ target test size then

15 label score = actual test proportion−target test size
1−target test size

;

16 else

17 label score = actual test proportion−target test size
target test size

;

18

19 // Calculate the score for each data point
20 for x in X do
21 for label in label set of x do
22 if label score > 0 then
23 if x in test then data point score += label score;
24 else data point score -= label score;

25 else
26 if x in train then data point score -= label score;
27 else data point score += label score;

28

29 // Calculate threshold score for swapping
30 threshold score = percentile(scores, threshold proportion)
31

32 // Swap proportion of data points with high scores to the alternate partition
33 for x in X do
34 if data point score > threshold score then
35 if rand(0, 1) ≥ swap probability then
36 swap data point to alternate partition;

37

38 // Decay threshold proportion and swap probability for next epoch
39 threshold proportion, swap probability = 0.1

1.1epoch

40 epoch += 1

41

42 // Return stratified splits
43 return X train, X test, y train, y test

340 M. Merrillees and L. Du

epoch, only a proportion of the highest-scored instances get swapped. This pro-
portion is based on the threshold proportion and swap probability, which decays
with every epoch (lines 38 to 40). In our experiments, we found that constraining
the number of instances that gets swapped is import to mitigate ‘overshooting’.

The values for epochs, swap probability, threshold proportion, and decay
are key parameters for the provided python implementation of the algorithm.
During development, we found that the optimal values depended on the char-
acteristics of each dataset, but very good results were obtained using certain
default values. The default values were determined by testing different combi-
nations for all 18 datasets on the XML repository [2]. The default value is 10%
for the starting swap probability and threshold proportion. Higher values result
in more aggressive stratification, but can result in ‘overshoot’. swap probability
and threshold proportion are decayed at a default rate of 10% per epoch, and
the default number of epochs is 50. We found that these values worked well, and
either matched or came very close to the partitions that were generated using
tailored values. However, users of the algorithm can easily trial different values
by passing in the desired parameter values when calling the function.

One notable behaviour of the algorithm is that it increases the test size as
needed to achieve stratified partitions with few missing labels. It automatically
finds this test size by balancing two competing priorities: 1) generating par-
titions where the proportion of label instances in the test set is equal to the
target test size, and 2) reducing the number of missing labels from either set.
Initially, the algorithm swaps more instances into the test set since the decrease
in score achieved from reducing the number of missing labels is greater than
the increase in score caused by deviating from the target test size. At some
point, the respective changes to the score reaches equilibrium; this is the test
size that the algorithm settles on. We believe this to be a desirable trait, since
we consider generating stratified partitions with few missing labels to be more
important than maintaining an arbitrary test size. However, we acknowledge
that this may not be suitable for all applications.

5 Partitioning Results

In this section, we compare the test-train splits generated by random, itera-
tive [9], and stratified sampling against the splits provided on the XML reposi-
tory [2]. We generated splits for all 18 datasets and calculated two statistics for
each test set: 1) KL-Divergence, and 2) Percentage of labels missing. The results
are presented in Table 3. The lowest values for each dataset are bolded.

Following the work of Aguilar et al., we measured KL-Divergence of each
test set against their respective dataset [1]. Also known as relative entropy, this
metric measures the difference between two probability distributions. While not
typically used for this purpose, this metric succinctly conveys the extent to which
the label ratios are maintained after partitioning. A high number indicates that
the label distributions are highly divergent, while values close to zero indicate
they are very similar.

Stratified Sampling for Extreme Multi-label Data 341

T
a
b
le

3
.
L
a
b
el

d
is

tr
ib

u
ti

o
n

st
a
ti

st
ic

s
o
f
X

M
L

d
a
ta

se
ts

-
st

a
ti

st
ic

s
a
re

o
f
th

e
te

st
se

t.

P
ro

v
id

e
d

[2
]

R
a
n
d
o
m

sa
m

p
li
n
g

It
e
ra

ti
v
e
a
lg
o
ri
th

m
[9
]

S
tr
a
ti
fi
e
d

sa
m

p
li
n
g

K
L
-

D
iv
e
rg

e
n
c
e

%
la
b
e
ls

m
is
si
n
g

K
L
-

D
iv
e
rg

e
n
c
e

%
la
b
e
ls

m
is
si
n
g

K
L
-

D
iv
e
rg

e
n
c
e

%
la
b
e
ls

m
is
si
n
g

ti
m

e

(m
in

s)

K
L
-

D
iv
e
rg

e
n
c
e

%
la
b
e
ls

m
is
si
n
g

ti
m

e

(m
in

s)

M
e
d
ia
m

il
l

<
0
.0

0
1

0
.0

%

0
.0
0
1

0
.0

%

<
0
.0

0
1

0
.0

%
0
.8

<
0
.0

0
1

0
.0

%

0
.1

B
ib

te
x

0
.0
0
9

0
.0

%

0
.0
1

0
.0

%

<
0
.0

0
1

0
.0

%
0
.0
3

<
0
.0

0
1

0
.0

%

0
.0
2

D
e
li
c
io
u
s

0
.0
0
8

0
.0

%

0
.0
0
6

0
.0

%

0
.0
0
5

0
.0

%
2
.4

0
.0

0
1

0
.0

%

0
.1

R
C
V
1
-2

K
0
.0
2
3

2
.1
%

0
.0
0
3

0
.6
%

0
.0
0
3

0
.7
%

1
1
0
.7

<
0
.0

0
1

0
.0

%

1
.4

E
U
R
L
e
x
-4

K
0
.6
0
2

3
2
.4
%

0
.5
0
1

2
8
.8
%

0
.4
4
4

2
9
.2
%

2
.5

0
.1

0
3

1
2
.3

%

0
.0
3

E
U
R
L
e
x
-4

.3
K

0
.4
7
4

4
0
.0
%

0
.4

3
6
.5
%

0
.2
9

3
3
.5
%

5
.2

0
.0

6
6

1
3
.4

%

0
.1

A
m

a
z
o
n
C
a
t-
1
3
K

0
.0
0
4

0
.4
%

0
.0
2

1
0
.0
%

0
.0
0
7

6
.0
%

4
8
8
.6

0
.0

0
1

0
.2

%

3
.6

A
m

a
z
o
n
C
a
t-
1
4
K

0
.0
0
1

0
.0

%

0
.0
0
6

4
.7
%

−
−

>
2
4
H

<
0
.0

0
1

0
.1
%

1
1
.0

W
ik
i1
0
-3

1
K

1
.1
0
6

2
8
.7
%

0
.6
8
1

1
8
.0
%

0
.6
4
8

1
7
.3
%

1
1
7
.1

0
.2

6
4

7
.2

%

0
.2

D
e
li
c
io
u
s-
2
0
0
K

0
.0
6
7

1
1
.1
%

0
.0
6
5

1
0
.4
%

−
−

>
2
4
H

0
.0

2
3

3
.6

%
1
6
.1

W
ik
iL

S
H
T
C
-3

2
5
K

0
.1
5
7

1
2
.8
%

0
.5
6
3

2
3
.1
%

−
−

>
2
4
H

0
.1

0
3

9
.6

%

9
.2

W
ik
iS

e
e
A
ls
o
T
it
le
s-
3
5
0
K

0
.7
7
2

5
.5

%

2
.8
6
5

3
1
.6
%

−
−

>
2
4
H

0
.5

8
2

8
.5
%

2
.4

W
ik
iT

it
le
s-
5
0
0
K

0
.0
9

2
.0
%

0
.4
3

1
2
.7
%

−
−

>
2
4
H

0
.0

2
6

0
.9

%
1
2
.4

W
ik
ip

e
d
ia
-5

0
0
K

0
.0
3
6

0
.0

%

0
.3
9
9

1
1
.5
%

−
−

>
2
4
H

0
.0

1
8

0
.1
%

1
5
.6

A
m

a
z
o
n
T
it
le
s-
6
7
0
K

5
.7
5
7

4
8
.6
%

1
.9
8

1
8
.5
%

−
−

>
2
4
H

0
.1

9
8

1
.9

%

4
.7

A
m

a
z
o
n
-6

7
0
K

5
.7
1
4

4
8
.2
%

1
.9
6

1
8
.1
%

−
−

>
2
4
H

0
.1

8
2

1
.5

%

4
.8

A
m

a
z
o
n
T
it
le
s-
3
M

0
.0
3
3

0
.1

%

0
.2
1
5

7
.7
%

−
−

>
2
4
H

0
.0

3
1

0
.8
%

8
5
.4

A
m

a
z
o
n
-3

M
0
.0

3

0
.0

%

0
.2
1
5

7
.6
%

−
−

>
2
4
H

0
.0
3
1

0
.7
%

7
9
.1

342 M. Merrillees and L. Du

Fig. 2. Comparison of label distributions between provided and stratified splits.

Firstly, we observe that random sampling produced highly divergent parti-
tions for many of the datasets. This is most apparent for the EURLex, Wiki,
and very large Amazon datasets, where the KL-Divergences of their test sets
are comparatively high. They are also missing a large proportion of labels. This
highlights the risk of relying on random sampling for partitioning XML data -
it can result in splits that are highly unrepresentative of the dataset. Based on
the results, this risk appears to be greatest for very large datasets.

Interestingly, we see that the provided splits are sometimes more-, and some-
times less-, stratified than what was generated from random sampling. For
RCV1-2K, EURLex-4(.3)K, Wiki10-31K, and Amazon(Titles)-670K, the pro-
vided partitions are materially more divergent. Based on the results, it appears
that non-random partitioning methods were used to create the splits. It’s not
clear to us what they were, or the motivation behind them, since they pro-
duced splits with higher KL-Divergence and more missing labels. On the other
hand, the partitions for AmazonCat, very large Wiki, and Amazon(Titles)-3M
are materially more representative of their dataset than what was produced
through random sampling. In these cases, KL-Divergences are much lower, and
significantly fewer labels are missing. The authors of the XML repository [2] do
briefly mention that they used some method to ensure the test sets contain as
many labels as possible, but what that method is remains unclear.

In any case, the stratified sampling algorithm produced the best results over-
all. In all cases but one, it generated splits with the lowest KL-Divergence. It also
produced splits with the fewest missing labels from the test set in a majority of
cases. However, for the very large datasets, a number of the provided splits con-

Stratified Sampling for Extreme Multi-label Data 343

tain fewer missing labels. This suggests that the authors’ partitioning method
prioritised minimizing the amount of missing labels. Meanwhile, the stratified
sampling algorithm prioritizes generating representative splits.

Finally, we note that the stratified sampling algorithm outperforms the iter-
ative algorithm [9]. It produced better splits overall, and did so more efficiently.
For example, for AmazonCat-13K, stratified sampling was completed in 3.6 min,
while the iterative algorithm took over 8 h to generate a result. In fact, it was
unable to generate a result within 24 h for the largest datasets.

The label distributions of two datasets are plotted in Fig. 23. As in Sect. 3,
each chart shows the proportion of labels that fall in each of the 10 bins, and
the red line represents the test size. The charts show that the stratified sampling
algorithm produced splits with a greater concentration of labels around the ver-
tical red line, and fewer labels in the first and last bins. This provides visual
confirmation of their lower KL-Divergence scores.

6 Bias in Estimated Performance

Here, we compare the performance estimates of three XML models trained on
several provided and stratified splits. We selected Parabel [7], FastXML [8] and
AnnexML [13] for testing since they are commonly used as benchmark models.
Following prevailing literature, we used Precision@1 (P@1) to represent perfor-
mance. Training and evaluation was carried out on datasets with a large differ-
ence in the amount of missing labels between the provided and stratified splits.
We also included two datasets with very little difference between splits. The
results are presented in Table 4.

As we can see, there are material deltas in estimated performance for datasets
where there is a large difference between the provided and stratified data splits
(EURLex-4(.3)K, Wiki10-31K, Delicious-200K and Amazon-670K). For these
datasets, it appears that models trained and evaluated on the provided split
achieves higher P@1 than if the stratified split was used. On the other hand,
there is significantly less delta for RCV1-2K and AmazonCat-13K - datasets
where there is little difference between the provided and stratified partitions.

These results highlight how training and testing models using unrepresen-
tative splits can lead to biased performance estimates. It makes sense that
excluding tail labels during evaluation results in higher P@1, since they are the
hardest-to-train for labels. Conversely, including them would drag down overall
performance. This is most apparent for Amazon-670K, where P@1s of the mod-
els trained with stratified splits are as much has 22% lower. This coincides with
the very large proportion of labels missing from the provided test set: 48.2%.

In addition to generating biased performance estimates, using unrepresen-
tative splits could also results in sub-optimal choices for hyperparameters - it’s
plausible to think that what’s suitable for the specific split might not be the
best choice for the entire dataset. Overall, these results lend more support to
3 Remaining charts available at: https://github.com/maxitron93/stratified sampling

for XML/tree/master/label distribution charts.

https://github.com/maxitron93/stratified_sampling_for_XML/tree/master/label_distribution_charts
https://github.com/maxitron93/stratified_sampling_for_XML/tree/master/label_distribution_charts

344 M. Merrillees and L. Du

Table 4. Difference in P@1 between models trained and tested using different partitions

Parabel FastXML AnnexML

Provided Stratified %Δ Provided Stratified %Δ Provided Stratified %Δ

EURLex-4K 0.819 0.791 −3.5% 0.716 0.682 −4.8% 0.799 0.775 −3.0%

EURLex-4.3K 0.907 0.881 −2.9% 0.868 0.835 −3.8% 0.903 0.870 −3.7%

Wiki10-31K 0.842 0.830 −1.5% 0.828 0.815 −1.5% 0.865 0.857 −1.0%

Delicious-200K 0.466 0.425 −8.8% 0.432 0.390 −9.7% 0.465 0.429 −7.7%

Amazon-670K 0.447 0.373 −17% 0.370 0.288 −22% 0.420 0.336 −20%

RCV1-2K 0.904 0.911 +0.7% 0.912 0.916 +0.5% 0.906 0.911 +0.6%

AmazonCat-13K 0.934 0.933 −0.1% 0.931 0.932 +0.1% 0.935 0.935 0.0%

the already well established notion that using stratified splits during model devel-
opment helps with ensuring the derivation of robust performance estimates [4,9].
As such, stratified splits should be used where available.

7 Conclusion

In this paper, we examined the label distributions of test-train splits of XML
data, generated using different partitioning methods. We also studied their
impact on estimated performance. A summary of our findings is as follows:

– Many of the commonly used test-train splits provided by the XML repository
are not representative of the entire dataset. Random sampling is not a suitable
alternative since it produced partitions with label distributions that are highly
divergent from the entire dataset.

– Stratified sampling is commonly used in the binary and multi-class settings,
but those methods cannot be applied to multi-label data. Existing methods
for MLC don’t work well for XML-scale datasets: the commonly used iterative
algorithm [9] is slow, and cannot produce well stratified splits.

– Our proposed stratified sampling method is capable of efficiently generating
representative test-train splits of XML data that contain fewer missing labels
compared to random sampling and most of the provided splits.

– Training and testing models with unrepresentative data can lead to optimistic
performance estimates since, currently, many of the hardest-to-train-for tail
labels aren’t included in a number of the test sets.

Overall, our findings lend further support to the notion that it’s apt to use
stratified subsets of data during model development. As XML research becomes
increasingly prevalent in this era of big data, we hope that future researchers
will find our stratified sampling method useful in their endeavours.

References

1. Aguilar, G., Kar, S., Solorio, T.: LinCE: a centralized benchmark for linguistic
code-switching evaluation. In: Proceedings of the 12th Language Resources and
Evaluation Conference, pp. 1803–1813 (2020)

Stratified Sampling for Extreme Multi-label Data 345

2. Bhatia, K., Dahiya, K., Jain, H., Mittal, A., Prabhu, Y., Varma, M.: The extreme
classification repository: Multi-label datasets and code (2016). http://manikvarma.
org/downloads/XC/XMLRepository.html

3. Jain, H., Prabhu, Y., Varma, M.: Extreme multi-label loss functions for recom-
mendation, tagging, ranking; other missing label applications. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 935–944 (2016)

4. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. In: Proceedings of the 14th International Joint Conference on
Artificial Intelligence - Volume 2, pp. 1137–1143 (1995)

5. Lu, J., Du, L., Liu, M., Dipnall, J.: Multi-label few/zero-shot learning with knowl-
edge aggregated from multiple label graphs. In: Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing, pp. 2935–2943 (2020)

6. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

7. Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., Varma, M.: Parabel: partitioned
label trees for extreme classification with application to dynamic search advertising.
In: Proceedings of the 2018 World Wide Web Conference, pp. 993–1002 (2018)

8. Prabhu, Y., Varma, M.: FastXML: a fast, accurate and stable tree-classifier for
extreme multi-label learning. In: Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 263–272 (2014)

9. Sechidis, K., Tsoumakas, G., Vlahavas, I.: On the stratification of multi-label
data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML
PKDD 2011, Part III. LNCS (LNAI), vol. 6913, pp. 145–158. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23808-6 10

10. Shaheen, Z., Wohlgenannt, G., Filtz, E.: Large scale legal text classification using
transformer models. arXiv preprint arXiv:2010.12871 (2020)

11. Szymański, P., Kajdanowicz, T.: A network perspective on stratification of
multi-label data. In: First International Workshop on Learning with Imbalanced
Domains: Theory and Applications, pp. 22–35 (2017)

12. Szymanski, P., Kajdanowicz, T.: Scikit-multilearn: a scikit-based python environ-
ment for performing multi-label classification. J. Mach. Learn. Res. 20(1), 209–230
(2019)

13. Tagami, Y.: AnneXML: approximate nearest neighbor search for extreme multi-
label classification. In: Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 455–464 (2017)

14. Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: a Java
library for multi-label learning. J. Mach. Learn. Res. 12, 2411–2414 (2011)

15. Wagner, P., et al.: PTB-XL, a large publicly available electrocardiography dataset.
Sci. Data 7(1), 1–15 (2020)

16. You, R., Zhang, Z., Wang, Z., Dai, S., Mamitsuka, H., Zhu, S.: AttentionXML: label
tree-based attention-aware deep model for high-performance extreme multi-label
text classification. Adv. Neural Inf. Process. Syst. 32, 5820–5830 (2019)

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://doi.org/10.1007/978-3-642-23808-6_10
http://arxiv.org/abs/2010.12871

Vertical Federated Learning
for Higher-Order Factorization Machines

Kyohei Atarashi1(B) and Masakazu Ishihata2

1 Hokkaido University, Sapporo, Hokkaido, Japan
katarashi0305@gmail.com

2 NTT Communication Science Laboratories, Kyoto, Japan
masakazu.ishihata.ze@hco.ntt.co.jp

Abstract. In the real world, multiple parties sometimes have different
data of common instances, e.g., a customer of a supermarket can be a
patient of a hospital. In other words, datasets are sometimes vertically
partitioned into multiple parties. In such a situation, it is natural for
those parties to collaborate to obtain more accurate prediction models;
however, sharing their raw data should be prohibitive from the point of
view of privacy-preservation. Federated learning has recently attracted
the attention of machine learning researchers as a framework for effi-
ciently collaborative learning of predictive models among multiple parties
with privacy-preservation. In this paper, we propose a lossless vertical
federated learning (VFL) method for higher-order factorization machines
(HOFMs). HOFMs take into feature combinations efficiently and effec-
tively and have succeeded in many tasks, especially recommender sys-
tems, link predictions, and natural language processing. Although it is
intuitively difficult to evaluate and learn HOFMs without sharing raw
feature vectors, our generalized recursion of ANOVA kernels enables us
to do it. We also propose a more efficient and robust VFL method for
HOFMs based on anonymization by clustering. Experimental results on
three real-world datasets show the effectiveness of the proposed method.

1 Introduction

Machine learning techniques have become fundamental methods for the predic-
tion and analysis of data, and as a result, various communities collect various
types of data. Since the use of a larger dataset brings more accurate predic-
tive models in general, it is reasonable for such parties to collaborate. However,
sharing their raw data should be prohibitive for the following two reasons. The
first one is about computational cost: the size of the centralized dataset can be
too enormous to handle a single computer. The second one is about privacy-
preservation [1,14]: some features include personal information that should not
be shared with the different parties (e.g., a case history and a debt).

Federated learning (FL) [6,7,9,12,13,15,22,24–26] has attracted much atten-
tions of the machine learning community as a framework to learn models from
distributed datasets. FL can be categorized into horizontal FL (HFL), vertical
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 346–357, 2021.
https://doi.org/10.1007/978-3-030-75765-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_28

Vertical Federated Learning for Higher-Order Factorization Machines 347

FL (VFL), and federated transfer learning [24]. In HFL, instances are parti-
tioned into multiple parties, i.e., each party has the same features for different
instances. In VFL, features are partitioned into multiple parties, i.e., each party
has different features for the same instances. In federated transfer learning, both
instances and features are partitioned into multiple parties. HFL corresponds to
increasing the number of training instances and VFL corresponds to increasing
the number of features. Thus, for predictive models considering the combina-
torial effect of multiple features, introducing VFL exponentially increases the
number of possible feature combinations.

The key idea of VFL is to share limited statistics that contain useful informa-
tion for learning instead of sharing raw feature vectors. However, it sometimes
happens that the raw feature vectors can be reproduced or accurately predicted
from the limited statistics. To avoid such information leakage, techniques of
secure multi-party computations, homomorphic encryption, and/or garbled cir-
cuits are used to share statistics securely [9,16,17]. The goal of VFL is to design
secure statistics and constructing an efficient algorithm for learning predictive
models that only refer to the designed statistics of other parties.

Higher-order factorization machines (HOFMs) [3] are machine learning pre-
dictive models that take into higher-order feature combinations. L-th order
HOFMs consider from second to L-th order feature combinations and second-
order HOFMs are equivalent to (vanilla) factorization machines (FMs) [19].
HOFMs have succeeded in many tasks, especially recommender systems [19], link
predictions [3], and natural language processing [18]. The most important idea
of HOFMs is a factorization of weight tensors for feature combinations: HOFMs
can be regarded as polynomial models with low-rank (factorized) feature combi-
nation weight tensors. Due to this factorization, HOFMs can be represented as
the sum of ANOVA kernels [21], which can be efficiently evaluated by dynamic
programming [3]. Hence, HOFMs can be evaluated efficiently.

Increasing the number of features can make HOFMs more accurate because
HOFMs take into higher-order feature combinations. Therefore, the development
of a VFL method for HOFMs seems promising because the VFL setting is a
simple way to increase the number of features; however, at the same time, it
seems intuitively difficult to evaluate and learn HOFMs without sharing raw
feature vectors because of considering feature combinations. Unfortunately, no
VFL method for HOFMs has been proposed while Li et al. proposed a method
for learning FMs on horizontally distributed datasets [11] and there exists many
VFL methods for much simpler models [6,7,23,26].

In this paper, we propose two VFL methods for HOFMs:

– The first method only refers to the values of local ANOVA kernels of each
instance in each party and achieves the same results as fully collaborative
learning: the model learned from the centralized dataset. This method is
based on the generalized ANOVA kernel recursion derived in this paper.

– The second method is more robust than the first one from the point of view
of privacy-preservation. This method only refers to the anonymized values of
local ANOVA kernels that is the value of local ANOVA kernels for centroids

348 K. Atarashi and M. Ishihata

of clusters. As a result, the method no longer obtains the same model as fully
corroborated learning; however, its computation cost can be lower and can
achieve comparable or higher performance than the first method.

We also show the effectiveness of the proposed method on three multi-label
classification tasks that simulate VFL for HOFMs.

2 Preliminary

2.1 Vertical Federated Learning

In this paper, we consider the supervised learning of multiple parties on vertically
partitioned datasets, i.e., VFL.

The goal of single party supervised learning is finding an accurate model
f : X → Y that predicts the label y ∈ Y of the input x ∈ X from a labeled
training dataset D = {(xn, yn) | xn ∈ X , yn ∈ Y, n ∈ [N]}, where N ∈ N>0 is
the number of training instances.

The goal of M parties supervised learning is finding M predictive models
in the following situation: each feature vector xn is partitioned into M parties
and each party has its own target labels y

(m)
n ∈ Y(m) of xn, m ∈ [M]. We

use x
(m)
n ∈ X (m) to denote a part of xn stored by the m-th party and use

D(m) = {(x(m)
n , y

(m)
n) | n ∈ [N]} to denote the training dataset of the m-th party.

Furthermore, we assume that datasets are name sorted : the index of instances
n is shared by those parties, and that X = R

d and X (m) = R
dm (namely,

∑M
m=1 dm = d). Then, the objective of the m-th party is finding an accurate

predictive model f (m) for their task.
In M parties supervised learning, it is reasonable for the parties to collabo-

rate to obtain more accurate predictive models f (m) because they have different
information on the common instances. The types of collaboration can mainly be
categorized into the following three situations:

– Fully collaborative learning (FCL): The most straightforward and effec-
tive collaboration is integrating their datasets directly and learning their mod-
els using the integrated dataset. It is equivalent to performing single party
supervised learning on D for each task. In this setting, f (m) is a predictive
model from X to Y(m). However, in many cases, this FCL is prohibitive from
the point of view of privacy-preservation in the dataset, e.g., features include
personal information that cannot be shared with other parties.

– Fully independent learning (FIL): If the parties do not collaborate to
prevent leakage of personal information, they have to learn their own model
f (m) only from their own datasets independently, namely, each party solves
single party supervised learning problem independently on the partitioned
dataset D(m). In this case, f (m) is a predictive model from X (m) to Y(m).

– Partially collaborative learning (PCL): As a compromise of FCL and
FIL, the parties may agree to partially collaborate: they do not share their raw
data, but share some statistics that are useful for learning and do not violate

Vertical Federated Learning for Higher-Order Factorization Machines 349

their privacy policy. Thus, in PCL, the parties share the limited statistics
and learn their predictive models using their own datasets and the shared
statistics.

Constructing a PCL method corresponds to designing (i) effective statistics
that can be shared with other parties and (ii) an efficient learning algorithm
such that the parties only refer to shared statistics and their own datasets. The
goal of VFL is to construct PCL methods that can obtain (a) completely the
same model as FCL, or (b) more accurate models than FIL.

2.2 Higher-Order Factorization Machines

Factorization machines (FMs) [19] are predictive models based on second-order
feature combinations, and higher-order FMs (HOFMs) [3] are higher-order exten-
sion of FMs. The key insight for efficient evaluation and learning of HOFMs is the
representation of the sum of feature combinations by the ANOVA kernel [3,21].
For any parameter vector p ∈ R

d and instance x ∈ R
d, the L-th order ANOVA

kernel AL : Rd × R
d → R is defined as

AL(p,x) :=
∑

d≥j1>···>jL≥1

L∏

l=1

pjlxjl . (1)

Then, the L-th order HOFM is defined as

f(x;P) :=
k∑

s=1

L∑

l=2

Al(pl,s,x), (2)

where P := {Pl | Pl ∈ R
k×d, l = 2, . . . , L} are learnable parameters (we omit

linear term for convenience) and pl,s is the s-th row vector of Pl.
At first glance, the evaluation of L-th order HOFMs seems to require O(kdL)

computational cost. Fortunately, HOFMs can be evaluated in O(kL2nnz(x))
time and O(d) memory because the l-th order ANOVA kernel Al(p,x) can be
computed in O(l · nnz(x)) time and O(l) memory by dynamic programming
based on the following recursion [3,21]:

Al(p,x) = Al(p¬j ,x¬j) + pjxjAl−1(p¬j ,x¬j), (3)

where nnz(x) is the number of non-zero elements in x and p¬j and x¬j (j ∈ [d])
is the (d − 1)-dimensional vector with pj and xj removed, respectively.

The optimization problem of L-th order HOFMs is

min
P

N∑

n=1

�(yn, f(xn;P)) +
1
2

k∑

s=1

L∑

l=2

β‖pl,s‖22, (4)

where � : Y × Y → R≥0 is a μ-smooth (μ > 0) convex loss function and β > 0 is
a regularization hyper-parameter. Although HOFMs defined by Eq. (2) are non-
linear w.r.t pl,s, they are fortunately linear w.r.t each coordinate pl,s,j (s ∈ [k]

350 K. Atarashi and M. Ishihata

and j ∈ [d]). Thus, the optimization problem (4) is convex optimization problem
w.r.t each pl,s,j and it can be solved efficiently by using the coordinate descent
(CD) algorithm [3]. The update rule of the CD algorithm is

pl,s,j ← pl,s,j − η−1

(
N∑

n=1

�′(yn, f(xn))a′
n,l,s,j + βpl,s,j

)

, (5)

where a′
n,l,s,j = ∂Al(pl,s,xn)/∂pl,s,j and η = μ

∑N
n=1(a

′
n,l,s,j)

2 + β. Given the
values of ANOVA kernels A1(p,x), . . . ,AL(p,x), the gradient of the ANOVA
kernel ∂AL(p,x)/∂pj actually can be computed in O(L) time and memory by
the dynamic programming based on the following recursion [2]:

∂Al(p,x)
∂pj

= xjAl−1(p¬j ,x¬j) (6)

= xj(Al−1(p,x) − pjxjAl−2(p¬j ,x¬j)) (7)

= xj

(

Al−1(p,x) − pj
∂Al−1(p,x)

∂pj

)

. (8)

The j-th column of Pl is the parameter for the j-th feature. In the VFL setting,
we assume that Pl is also partitioned into M parties similarly for the datasets: if
the m-th party stores j-th feature xn,j , the party also stores the corresponding
parameters pl,s,j . We use P

(m)
l and p

(m)
l,s to denote a part of Pl and pl,s stored

by the m-th party, and let P (m) := {P (m)
l | l = 2, . . . , L}.

Strictly speaking, we need M HOFMs to solve M tasks of M parties: we have
to introduce M suits of parameters P (t) (t ∈ [M]) and we have to learn f(x;P (t))
for the t-th task at the same time. Of course, we can employ a multi-task learn-
ing method to learn those M HOFMs; however, for simplifying notation, we
hereinafter assume that we independently learn these M HOFMs and especially
focus on the t-th task: namely, we omit the task index t. We call the t-th party
target party and the c-th party (c ∈ [M] \ {t}) collaborating party.

3 Vertical Federated Learning for HOFMs

In this section, we propose two types of VFL methods for HOFMs (VFL-
HOFMs). We firstly generalize the well-known recursion of the ANOVA kernel
of Eq. (3). Next, we propose two VFL methods for HOFMs that do not share
their raw data. The first method only shares the values of local ANOVA kernels
but it can achieve the same learning results as FCL. The second method shares
anonymized local ANOVA kernels, which is the value of local ANOVA kernel
of centoroids of clusters, instead of raw feature vectors. Note that the second
method does NOT achieve the same learning results with FCL; however, this
method is robust from the point of view of privacy-preservation.

Vertical Federated Learning for Higher-Order Factorization Machines 351

3.1 VFL-HOFMs by Local ANOVA Kernel Aggregation

Local ANOVA Kernel Aggregation: We firstly generalize the recursion of
the ANOVA kernel of Eq. (3). For simplicity, we start by the case M = 2.

Corollary 1 (A generalized ANOVA kernel recursion). Let p(1) ∈ R
d1

and p(2) ∈ R
d2 be sub-vectors of p = (p(1);p(2)) ∈ R

d and similarly for x(1) ∈
R

d1 , x(2) ∈ R
d2 and x = (x(1);x(2)). Then, AL(p,x) can be written as the sum

of the product of ANOVA kernels:

AL(p,x) =
L∑

l=0

AL−l(p(1),x(1))Al(p(2),x(2)). (9)

Proof. Let al := Al(p,x) and a
(m)
l := Al(p(m),x(m)) (m ∈ [2]). By the defini-

tion of the ANOVA kernel, al and a
(m)
l are sum of all possible l-th order feature

combinations between {p,x} and {p(m),x(m)}, respectively. First, for each pos-
sible L-th order feature combination between {p,x}, there exists a unique l such
that (L − l) features out of L come from p(1) and x(1), and the rest l features
come from p(2) and x(2). Second, a product a

(1)
L−la

(2)
l is the sum of all possible

products of an (L − l)-th order feature combination between {p(1),x(1)} and an
L-th order feature combination between {p(2),x(2)}. From the above two facts,
∑L

l=0 a
(1)
L−la

(2)
l must be the sum of all possible L-th order feature combinations:

namely, aL =
∑L

l=0 a
(1)
L−la

(2)
l and this equation is certainly Eq. (9).

By recursively applying Eq. (9), we can easily extend the above corollary for
the case M > 2 and Eq. (9) is equivalent to Eq. (3) if d1 = 1 and/or d2 = 1.
Equation (9) deduces that the value of the full ANOVA kernel AL(p,x) can be
evaluated by integrating the values of local ANOVA kernels: Al(p(1),x(1)) and
Al(p(2),x(2)) for l ∈ [L]. In the same manner, when p and x are partitioned into
M parties, AL(p,x) can be evaluated by integrating the value of Al(p(m),x(m))
for m ∈ [M] and l ∈ [L].

Algorithm 1 shows the procedure of secure evaluation of the full ANOVA
kernel AL(p,x) by the target party. In Algorithm 1, each party computes the
values of its own local ANOVA kernels and the target party gathers and inte-
grates those values from the collaborating to obtain the value of its full ANOVA
kernel. We call this algorithm local ANOVA kernel aggregation (LAKA). Using
LAKA, the target party can evaluate HOFMs securely because f(xn;P) can
be computed by the sum of the full ANOVA kernel as shown in Eq. (2). The
complexity of LAKA is O(nnz(xn)L + L2M): each party firstly computes its
own local ANOVA kernels Al(p

(m)
l,s ,x

(m)
n) in O(nnz(x(m)

n)L) time, and then, the
target party aggregates them in O(L2M) time.

Secure Learning of HOFMs Using LAKA: We present a secure CD algo-
rithm for HOFMs on vertically partitioned datasets. Recall we assume that
parameters P are also vertically partitioned into M parties and sub-parameter
P (m) is updated by m-th party. From Eq. (5), (i) ∂Al(pl,s,xn)/∂pl,s,j and

352 K. Atarashi and M. Ishihata

Algorithm 1. LAKA: Secure evaluation of the full ANOVA kernel Al(pl,s,xn)
on vertically partitioned datasets

Input: p
(m)
l,s and x

(m)
n for only the m-th party.

Output: Al(pl,s,xn) for only the target party t.

1: Each party m ∈ [M] locally computes the values of local ANOVA kernels a
(m)
n,h,s =

Ah(p
(m)
l,s ,x

(m)
n) for each h ∈ [l] only using its own p

(m)
l,s and x

(m)
n .

2: Each collaborating party c ∈ [M] \ {t} sends the computed values {a
(c)
n,h,s | h ∈ [l]}

to the target party t.
3: for each h ∈ [l] and c ∈ [M] \ {t} do

4: The target party updates a
(t)
n,h,s by integrating collected values: a

(t)
n,h,s ←

∑h
h′=0 a

(t)

n,h−h′,sa
(c)

n,h′,s.
5: end for
6: a

(t)
n,l,s is the value of full ANOVA kernel Al(pl,s,xn).

(ii) �′(yn, f(xn;P)) are required for updating pl,s,j by the CD algorithm,
s ∈ [k], j ∈ [d]. Thus, a secure CD algorithm is accomplished if these values are
computed securely. From Eq. (8), given the values of the full ANOVA kernels
A1(pl,s,xn), . . . ,Al−1(pl,s,xn), the m-th party storing the j-th feature can com-
pute ∂Al(pl,s,xn)/∂pl,s,j in O(l) time. Using LAKA, the values of full ANOVA
kernels can be computed securely and thus ∂Al(p

(m)
l,s ,xn)/∂pl,s,j can also be

computed securely. Similarly, the target party can compute �′(yn, f(xn;P))
without violation of privacy. As a result, each party can update stored parame-
ters by the CD algorithm with privacy-preservation. Of course, we can employ
LAKA with homomorphic encryption instead of vanilla LAKA to enrich its secu-
rity. Algorithm 2 shows the procedure of a secure CD algorithm for HOFMs. In
Algorithm 2, the m-th party storing the j-th feature updates pl,s,j . We call
this algorithm CD-LAKA. Given the values of f(xn;P) and Al(pl,s,xn) for
n ∈ [N], l ∈ [L], and s ∈ [k], the complexity of CD-LAKA for updating pl,s,j is
O(nnz(X:,j)L), where X:,j is the j-th column vector of X, because the partial
gradients of ANOVA kernels can be computed in O(L).

Using CD-LAKA, the parties can evaluate and learn HOFMs without sharing
the raw feature vectors. However, someone might suspect that it is not secure
sufficiently to protect from the adversary. Unfortunately, in some cases, the tar-
get party can identify the value of the raw features of other parties. Assume
that the parameters {P (m)}m∈[M] are shared (leaked) among parties at each
CD-LAKA iteration and pl,s,j is updated as pl,s,j − δ at current iteration. Then,
the target party knows the values of δ (because pl,s,j and pl,s,j−δ are shared) and
first order ANOVA kernels 〈pl,s,xn〉 and 〈pl,s,xn〉 − δxn,j , so the target party
can identify xn,j for all n ∈ [N]. Fortunately, the parties can evaluate and learn
HOFMs more securely by employing LAKA/CD-LAKA with fully homomor-
phic encryption [10], which supports both multiplication and addition on cipher-
texts, for the values of local ANOVA kernels guarantees the privacy-preservation:
(1) the target party generates the public/private key of the fully homomorphic

Vertical Federated Learning for Higher-Order Factorization Machines 353

Algorithm 2. CD-LAKA: Secure CD update for HOFMs by LAKA

Input: x
(m)
n and P

(m)
l for only the m-th party, and yn for only the target party

Output: Updated pl,s,j for only the m-th party who stores the j-th feature
1: Each party obtains an,l,s = Al(pl,s,xn) by LAKA.
2: The target party computes fn := f(xn;P) by Eq. (2): fn =

∑k
s=1

∑L
l=2 an,l,s.

3: The target party evaluates �′(yn, fn) and sends them to the collaborating parties.
4: The m-th party computes ∂Al(pl,s,xn)/∂pl,s,j by Eq. (8) using an,l,s for each j-th

feature that it stores.
5: The m-th party updates pl,s,j by Eq. (5) using an,l,s and �′(yn, fn).

encryption and sends the public key to the collaborating parties, (2) the target
party encrypts the values of its local ANOVA kernels and sends them another
party as messages, (3) the collaborating party who receives the encrypted values
integrates messages and the encrypted values of its local ANOVA kernels, and
sends integrated values to another party who has not received them yet, and
(4) finally the target party receives the encrypted values of full ANOVA ker-
nels and decrypts them. However, its computational cost becomes large because
each party encrypts messages whose size is O(NL2). Mechanisms of differential
privacy [8] provide us strong and robust guarantees of privacy-preservation but
they might cause a decline in the performance of learned HOFMs. Therefore, we
propose a more secure and efficient extension of LAKA in the next subsection.

The following is the summary of the VFL-HOFM by LAKA. In the VFL-
HOFM by LAKA, the collaborating parties only share the values of local ANOVA
kernels, and the target party computes the exact values of the full ANOVA
kernels by integrating shared values and its own values, namely, the target party
can compute completely same values that are computed in the FCL setting.
However, if the parameters are leaked, CD-LAKA is not secure.

3.2 VFL-HOFMs by LAKA with Anonymization Using Clustering
Techniques

Here, we propose anonymized LAKA (ALAKA) being an extension of LAKA
based on anonymization using clustering techniques [4]. As preprocessing, each
party m ∈ [M] runs a clustering algorithm for its own dataset D(m). Here we
denote the cluster ID of x

(m)
n as r

(m)
n and the centroid of its r-th cluster as

µ
(m)
r , and use µ

(m)
n as a shorthand of µ

(m)

r
(m)
n

. The idea of ALAKA is to use

the µ
(c)
n instead of x(c)

n in LAKA: each collaborating party c ∈ [M] \ {t} com-
putes values of Ah(p(c)

l,s ,µ
(c)
n) instead of Ah(p(c)

l,s ,x
(c)
n) and sends these values as

anonymized values of local ANOVA kernels to the target party. Then, the target
party approximately evaluates the value of the full ANOVA kernel Al(pl,s,xn)
by integrating collected anonymized values. Algorithm 3 shows the procedure
of ALAKA. ALAKA is more secure than LAKA because x

(c)
n is never used in

ALAKA. In CD-ALAKA, even if the parameters are leaked at each iteration, the

354 K. Atarashi and M. Ishihata

Algorithm 3. ALAKA: LAKA with anonymization using clustering techniques

Input: p
(m)
l,s , x

(m)
n , and µ

(m)
n for only the m-th party.

Output: Anonymized Al(pl,s,xn) for only the target party.

1: The target party t locally computes the values of local ANOVA kernels a
(t)
n,h,s =

Ah(p
(t)
l,s ,x

(t)
n) for each h ∈ [l] only using its own p

(t)
l,s and x

(t)
n .

2: Each collaborating party c ∈ [M] \ {t} locally computes a
(c)
n,h,s = Ah(p

(c)
l,s ,µ

(c)
n) for

each h ∈ [l] only using its own p
(c)
l,s and µ

(c)
n .

3: Each collaborating party c ∈ [M] \ {t} sends the computed values {a
(c)
n,h,s | h ∈ [l]}

to the target party.
4: for each h ∈ [l] and c ∈ [M] \ {t} do

5: The target party updates a
(t)
n,h,s by integrating collected values: a

(t)
n,h,s ←

∑h
h′=0 a

(t)

n,h−h′,sa
(c)

n,h′,s.
6: end for
7: a

(t)
n,h,s is the anonymized value of the full ANOVA kernel Al(pl,s,xn).

Table 1. Datasets used in experiments.

Dataset #training #test #features #parties

Yeast 1,500 917 103 3

SIAM 21,519 7,077 30,438 7

RCV1 23,149 781,265 47,236 7

target party can identify only the values of centroids vectors, not raw feature vec-
tors. We call the CD algorithm with ALAKA as CD-ALAKA. The performance
of the VFL-HOFM with CD-ALAKA will be worse than that of the HOFM with
FCL (equivalent to VFL-HOFM with CD-LAKA) but better than that of the
HOFM with FIL because ALAKA does not use the raw feature vectors but uses
the centroids of clusters computed from raw feature vectors.

4 Experiments

In this section, we demonstrate the effectiveness of the proposed CD-ALAKA.

4.1 Settings

For simulating the learning problem on vertically partitioned datasets, we used
three datasets for the multi-label classification: Yeast, SIAM, and RCV1 that
are public and available in [5]. We assumed that each label corresponds to one
task, and each party has its own task (thus the number of parties is equal to
the number of tasks). Although there are 14, 22, and 101 multi-labels in the
Yeast, SIAM, and RCV1 dataset respectively, we did not use all multi-labels
because many of them are very imbalanced. We picked three, seven, and seven

Vertical Federated Learning for Higher-Order Factorization Machines 355

Table 2. Comparison of HOFMs with FCL, FIL, and ALAKA on three datasets.

(a) Yeast dataset

FCL FIL ALAKA

Task 1 0.660 0.655 0.653

Task 2 0.696 0.634 0.686

Task 3 0.728 0.670 0.687

(b) SIAM dataset

FCL FIL ALAKA

Task 1 0.844 0.708 0.778

Task 2 0.901 0.813 0.880

Task 3 0.945 0.886 0.933

Task 4 0.948 0.862 0.912

Task 5 0.908 0.820 0.866

Task 6 0.937 0.862 0.887

Task 7 0.826 0.713 0.737

(c) RCV1 dataset

FCL FIL ALAKA

Task 1 0.939 0.829 0.946

Task 2 0.968 0.897 0.970

Task 3 0.916 0.770 0.870

Task 4 0.955 0.830 0.940

Task 5 0.976 0.889 0.954

Task 6 0.979 0.923 0.961

Task 7 0.970 0.859 0.919

labels in the Yeast, SIAM, and RCV1 dataset respectively, which are top-three,
-seven, and -seven balanced labels. For all datasets, we set dm = floor(d/M) for
all m ∈ [M − 1] and dM = d − ∑M−1

m=1 dm, and we partitioned feature vectors
randomly. Table 1 shows a summary of these three datasets.

We compared the following three methods: HOFMs with (i) FCL (it is equiva-
lent to LAKA) using integrated full dataset D (FCL), (ii) FIL using only partial
(their own) datasets D(m) (FIL), and (iii) CD-ALAKA (ALAKA). We opti-
mized all methods by using the CD algorithm with 100 iterations. For the FCL
and FIL, we tuned hyper-parameters based on the validation datasets that are
split from training datasets. After determining hyper-parameters, we re-fit these
methods by using full training datasets including validation datasets used for
tuning hyper-parameters. We tuned L ∈ {2, 3} and β ∈ {0.01, 0.1, 1, 10}. For
the rank hyper-parameter, we followed Blondel et al. [3] and set it to 30 for all
methods. For the ALAKA, we used the same hyper-parameters as for the FIL.
We used the mini-batch k-means clustering algorithm [20] and set C = 5 for all
parties. We evaluated these methods by the area under the receiver operating
characteristic curve (ROC-AUC). Because the performance of HOFMs depends
on the initial parameters, we ran experiments five times with different random
seeds for all datasets. Moreover, we ran the experiments with different five par-
titions generated randomly because the performances of the FIL and ALAKA
depend on the partition. We report the average ROC-AUC on test datasets.

356 K. Atarashi and M. Ishihata

4.2 Results

The experimental results are shown in Table 2. The performances of the FCL
were always greater than those of the FIL. Thus, the collaboration among par-
ties who have different features is effective for HOFMs. We emphasize that the
HOFM learned by the proposed CD-LAKA is equivalent to that by FCL. Our
ALAKA outperformed FIL for all settings and sometimes achieved compara-
ble or higher predictive performance than FCL. The performance improvement
brought by ALAKA for the SIAM and RCV1 datasets (M = 7) was larger than
that for the Yeast dataset (M = 3). It seems reasonable because HOFMs use
higher-order feature combinations and hence increasing the number of features
was effective combinatorially. However, it is needed to investigate further when
ALAKA is effective, especially, when ALAKA is better than FCL.

5 Conclusion

We have proposed two VFL methods for HOFMs. The first method shares values
of local ANOVA kernels instead of raw feature vectors and achieves the same
evaluation and learning results of the FCL setting. On the other hand, in the
second method, the parties share the values of their ANOVA kernels of centroids
of clusters and parameters, that is, parties use centroids of clusters instead of
original feature vectors for other parties. Although this method is no longer
equivalent to FCL, the performances of HOFMs learned by this method can
outperform those of HOFMs with FIL and sometimes be comparable to those of
HOFMs with FCL. In our experiments, CD-ALAKA outperformed those with
FIL and was comparable to those with fully collaborative learning as expected.
Our future work includes a theoretical investigation of the proposed ALAKA.

Acknowledgements. K.A. was supported by JSPS KAKENHI Grant Number
JP20J13620 and by the Global Station for Big Data and Cybersecurity, a project of the
Global Institution for Collaborative Research and Education at Hokkaido University.

References

1. Anderson, J.G.: Security of the distributed electronic patient record: a case-based
approach to identifying policy issues. Int. J. Med. Inf. 60(2), 111–118 (2000)

2. Atarashi, K., Oyama, S., Kurihara, M.: Link prediction using higher-order feature
combinations across objects. IEICE Trans. Inf. Syst. 103(8), 1833–1842 (2020)

3. Blondel, M., Fujino, A., Ueda, N., Ishihata, M.: Higher-order factorization
machines. In: NeurIPS, pp. 3351–3359 (2016)

4. Byun, J.-W., Kamra, A., Bertino, E., Li, N.: Efficient k -anonymization using clus-
tering techniques. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat,
E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 188–200. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71703-4 18

5. Chang, C.C., Lin, C.J.: LIBSVM Data: Classification, Regression, and Multi-label.
https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

https://doi.org/10.1007/978-3-540-71703-4_18
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Vertical Federated Learning for Higher-Order Factorization Machines 357

6. Cheng, K., Fan, T., Jin, Y., Liu, Y., Chen, T., Yang, Q.: Secureboost: A lossless
federated learning framework. arXiv preprint arXiv:1901.08755 (2019)

7. Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis:
linear regression and classification. In: SDM, pp. 222–233 (2004)

8. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

9. Gascón, A., et al.: Privacy-preserving distributed linear regression on high-
dimensional data. PETS 2017(4), 345–364 (2017)

10. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

11. Li, M., Liu, Z., Smola, A.J., Wang, Y.X.: Difacto: distributed factorization
machines. In: WSDM, pp. 377–386 (2016)

12. Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., He, B.: A survey on federated learning
systems: vision, hype and reality for data privacy and protection. arXiv preprint
arXiv:1907.09693 (2019)

13. Liu, Y., et al.: A communication efficient vertical federated learning framework. In:
NeurIPS Workshop on Federated Learning for Data Privacy and Confidentiality
(2019)

14. Malin, B., Sweeney, L.: How (not) to protect genomic data privacy in a distributed
network: using trail re-identification to evaluate and design anonymity protection
systems. J. Biomed. Inf. 37(3), 179–192 (2004)

15. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
AISTATS, pp. 1273–1282 (2017)

16. Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving
machine learning. In: SP, pp. 19–38 (2017)

17. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: SP, pp. 334–348
(2013)

18. Petroni, F., Corro, L.D., Gemulla, R.: Core: context-aware open relation extraction
with factorization machines. In: EMNLP, pp. 1763–1773 (2015)

19. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000 (2010)
20. Sculley, D.: Web-scale k-means clustering. In: WWW, pp. 1177–1178 (2010)
21. Shawe-Taylor, J., Cristianini, N., et al.: Kernel Methods for Pattern Analysis.

Cambridge University Press, Cambridge (2004)
22. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: CCS, pp. 1310–

1321 (2015)
23. Slavkovic, A.B., Nardi, Y., Tibbits, M.M.: Secure logistic regression of horizontally

and vertically partitioned distributed databases. In: ICDM Workshops, pp. 723–
728 (2007)

24. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and
applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019)

25. Yu, H., Jiang, X., Vaidya, J.: Privacy-preserving SVM using nonlinear kernels on
horizontally partitioned data. In: SIGAPP SAC, pp. 603–610 (2006)

26. Yu, H., Vaidya, J., Jiang, X.: Privacy-preserving SVM classification on vertically
partitioned data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD
2006. LNCS (LNAI), vol. 3918, pp. 647–656. Springer, Heidelberg (2006). https://
doi.org/10.1007/11731139 74

http://arxiv.org/abs/1901.08755
http://arxiv.org/abs/1907.09693
https://doi.org/10.1007/11731139_74
https://doi.org/10.1007/11731139_74

dK-Projection: Publishing Graph Joint
Degree Distribution with Node

Differential Privacy

Masooma Iftikhar(B) and Qing Wang

The Australian National University, Canberra, Australia
{masooma.iftikhar,qing.wang}@anu.edu.au

Abstract. Network data has great significance for commercial and
research purposes. However, most networks contain sensitive informa-
tion about individuals, thereby requiring privacy-preserving mechanisms
to publish network data while preserving data utility. In this paper, we
study the problem of publishing higher-order network statistics, i.e., joint
degree distribution, under strong mathematical guarantees of node dif-
ferential privacy. This problem is known to be challenging, since even
simple network statistics (e.g., edge count) can be highly sensitive to
adding or removing a single node in a network. To address this chal-
lenge, we propose a general framework of publishing dK-distributions
under node differential privacy, and develop a novel graph projection
algorithm to transform graphs to θ-bounded graphs for controlled sensi-
tivity. We have conducted experiments to verify the utility enhancement
and privacy guarantee of our proposed framework on four real-world
networks. To the best of our knowledge, this is the first study to pub-
lish higher-order network statistics under node differential privacy, while
enhancing network data utility.

Keywords: Data publishing · Node differential privacy ·
dK-distributions

1 Introduction

Network analysis provides a rich source of insights for data science research and
business purposes [22]. However, many networks such as social networks often
contain sensitive relationships among individuals, (e.g., friendships and acquain-
tances) or sensitive attributes of individuals (e.g., age, location and race) [10].
Hence, releasing network data raises privacy concerns to individuals, requiring
privacy preserving mechanisms for network analysis.

In recent years, differential privacy (DP) [6] has received increasing atten-
tion, since it offers a robust privacy guarantee while making no assumptions
about the prior knowledge of an adversary. Early works [2,7,10,17,18,20,21]
on differentially private network data focused on edge-DP, aiming to hide the
presence and absence of a single edge in a network. A more desirable notion of
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 358–370, 2021.
https://doi.org/10.1007/978-3-030-75765-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_29

Publishing Graph Joint Degree Distribution with Node Differential Privacy 359

Fig. 1. A high-level overview of the proposed framework (dK-Projection).

privacy – the focus of this work – is node-DP, which aims to hide the presence
and absence of a single node and the set of edges incident to that node [11]. It
is acknowledged that, although node-DP can provide stronger privacy protec-
tion than edge-DP, it is more challenging to design and implement [1,3,11,19].
This is because changing a single node may potentially lead to changes on one
or more edges, particularly in real-world networks (e.g. Twitter) that are often
dense. Some recent studies [3,4,11,16] have attempted to tackle this challenge.
However, these studies are limited to publishing only simple network statistics
(e.g., edge count, triangle count, and degree distribution) in order to maintain
relatively low sensitivity under node-DP.

In this paper we aim to develop a framework for publishing higher-order
network statistics under node-DP. We observe that dK-distributions [13,14] can
serve as a good basis for representing higher-order network statistics. Informally,
dK-distributions [13,14] are a set of reproducible graph properties, which cap-
ture degree correlations within d-sized subgraphs of a network. As networks are
structures of connections between nodes, dK-distributions provide rich informa-
tion about network structures for analysis. To explore the sensitivity of higher-
order network statistics under node-DP, we theoretically analyze the sensitivity
of dK-distributions for d = 2, i.e., joint degree distribution [15]. It is known
that joint degree distribution contains useful information about connectivity in
a graph, i.e., given a joint degree distribution, one can always restore both the
degree distribution and average degree [5,15].

To alleviate the challenge posed by high sensitivity of higher-order network
statistics under node-DP, we further propose a “graph projection” technique that
can transform a graph G into a θ-bounded graph Gθ such that the maximum
degree in Gθ is no larger than a threshold θ. The motivation behind graph
projection is to bound the sensitivity of publishing network statistics through
a control on node degrees. In doing so, a query Q for higher-order network
statistics with high sensitivity on a graph G is transformed to an approximate
query Q ◦ P which has lower sensitivity than Q, where P refers to a graph
projection algorithm that transforms a graph G to a θ-bounded graph Gθ.

Figure 1 provides a high-level overview of our proposed framework. Given a
graph G, a graph projection algorithm transforms G into a θ-bounded graph
Gθ. Then higher-order network statistics such as dK-distributions [14] are
extracted from Gθ, and finally extracted dK-distributions are perturbed yielding
ε-differentially private dK-distributions.

360 M. Iftikhar and Q. Wang

Contributions. This work has the following contributions: (1) We present a
novel framework to publish higher-order network statistics under node-DP. (2)
We analyse the sensitivity of publishing joint degree distribution in the proposed
framework. (3) We introduce a new graph projection algorithm to reduce sensi-
tivity of publishing network statistics under node-DP. (4) We conduct compre-
hensive experiments over four real-world networks, and the results demonstrate
that our proposed framework can effectively enhance the utility of differentially
private network statistics.

2 Related Work

Privacy of network data has attracted much attention in recent years, due to
the growing popularity of social network sites such as Facebook and Twitter.
Recently, attention has shifted to applying more rigorous mathematical privacy
guarantees of differential privacy (DP) [6] to analyse network data in a private
manner. When applying DP to network data, there are two variants: edge-DP
and node-DP [7]. Node-DP is known to be more challenging to achieve and can
provide stronger privacy protection than edge-DP [3,11,19]. However, network
data is highly sensitive to structural changes under node-DP, which thus requires
a large amount of noise to be added into published network statistics and can
significantly degrade the utility of published network statistics.

Recently, several studies [3,4,11,16] have suggested “graph projection” tech-
niques which project an input graph to a graph whose maximum degree is below
a certain threshold θ, i.e., a θ-bounded graph, in order to bound the sensitivity.
The authors of [11] have proposed a graph project technique by truncating all
nodes whose degrees are larger than θ and proven that publishing a degree his-
togram after truncation has a sensitivity of 2θST , where ST is the smooth upper
bound on the number of nodes whose degrees may change because of truncation.
Another graph projection technique was introduced in [1], which traverses the
edges of a graph in a random order and removes all edges that are connected
to a node with degree greater than θ. The sensitivity for publishing subgraph
counting queries (i.e., number of triangles) after this edge-removal operation has
been shown to be p(2θ)p−1, where p is the number of nodes in subgraphs. In the
work [3], projection is performed by adding edges according to stable edge order-
ing. This edge-addition approach is similar to [1], except that it inserts edges
while [1] deletes edges. While this difference is minor but it is shown in [3] that
the edge-addition approach preserve more edges, and publishing a degree his-
togram of a projected graph has a sensitivity of 2θ+1. In [16] another projection
method was introduced by constructing a weighted graph, and publishing degree
histograms has the sensitivity of 6θ in their work. Despite considerable progress
being achieved in understanding node-DP, these works have only studied the
release of simple statistical data of networks (i.e., edge count [11,19], counts of
small subgraphs [1,4], and degree distribution [3,11,16]).

Different from existing work, we aim to release higher-order network statis-
tics, i.e., joint degree distribution, using dK-distributions which not only capture

Publishing Graph Joint Degree Distribution with Node Differential Privacy 361

Fig. 2. An illustrative example of dK-distribution and its maximum change on two
neighboring graphs G ∼ G′, when d = 2.

connectivity of a network, but also contain useful information about subgraph-
based and degree-based characteristics at multiple levels of granularity in a
network [13,14]. Further, in order to effectively control sensitivity under node-
DP, our work also presents a new graph projection technique which generates
θ-bounded graphs by applying a two-level ordering strategy.

3 Problem Formulation

We consider a network as an undirected graph G = (V,E), where V is the set
of nodes and E ⊆ V × V is the set of edges. Let NG(v) = {u ∈ V |(u, v) ∈ E}
denote the set of neighbors of a vertex v in G, deg(v) the degree of a node v,
and deg(G) = max{deg(v)|v ∈ V } the maximum degree of G. Below, we define
the notion of neighboring graphs under node-DP.

Definition 1. (Neighboring graphs) Two graphs G = (V,E) and G′ =
(V ′, E′) are said to be neighboring graphs, denoted as G ∼ G′, iff V ′ = V ∪{v+},
E′ = E ∪ E+, and E+ is the set of all edges incident to v+in G′.

Given a graph, we represent its topology properties as dK-distributions [14].

Definition 2. (dK-distribution) A dK-distribution over a graph G = (V,E),
denoted as dK(G), is a probability distribution p : Dd → N such that
p(a1, . . . , ad) refers to the total number of connected subgraphs of size d in G
with the nodes {v1, . . . , vd} and ai = deg(vi) for i = 1, . . . , d.

For a graph, 1K-distribution captures the degree distribution, 2K-
distribution captures the joint degree distribution, i.e. the number of edges
between nodes of different degrees, and 3K-distribution captures the cluster-
ing coefficient distribution, i.e. the number of triangles and wedges connecting
nodes of different degrees. When d = |V |, a dK-distribution specifies the entire
graph. To formulate queries on dK-distributions of a graph, we define the notion
of dK-function.

Definition 3. (dK-function) Let D be the set of all possible dK-distributions
over G. A dK function γdK : Gn → D mapping a graph G ∈ Gn to its dK-
distribution in D s.t. γdK(G) = dK(G).

362 M. Iftikhar and Q. Wang

γdK(G) queries the dK-distribution of G. When d = 2, γdK(G) returns the
joint degree distribution of G, i.e., p(i, j) is a frequency value, referring to the
number of edges connecting nodes of degrees i and j. Consider Fig. 2, which
depicts the 2K-distribution of a graph G. p(2, 4) = 3 because G contains 3 edges
between 2 degree nodes (i.e., A, D, and E) and 4 degree node (i.e., C).

To release dK-distribution under the guarantees of node-DP, we perturb dK-
distribution by adding controlled noise from Laplace stochastic process [6].

Definition 4. (Perturbed dK-distribution) Let ε > 0 be the privacy
parameter (smaller values provide stronger privacy guarantees). The following
Laplace mechanism is applied to produce a perturbed output of γdK :

K(G) = γdK(G) + Lap

(
Δγ

ε

)|V |d

where Δγ = max
G∼G′

(γdK(G) − γdK(G′)) and Pr[Lap(β) = x] = 1
2β e−|x|/β .

Δγ refers to the sensitivity of the dK-function γdK , which is the maxi-
mum variation in its output, i.e., dK-distribution, over two neighboring graphs
G ∼ G′. Below, the notion of ε-differentially private dK-distribution (i.e., an
anonymized version of γdK(G) satisfying differential privacy) is defined.

Definition 5. (Differentially Private dK-distribution) A randomized
mechanism K is ε-differentially private, if for each pair of neighboring graphs
G ∼ G′ and all possible perturbed dK-distributions D ⊆ range(K), we have:

Pr[K(G) ∈ D] ≤ eε × Pr[K(G′) ∈ D]. (1)

The challenge of releasing differentially private dK-distributions is to deter-
mine how much noise should be added to perturb dK-distributions. Adding more
noise can better guarantee node-DP; however, data utility deteriorates. When ε
is specified, the magnitude of noise depends on the sensitivity of dK-function.

4 Sensitivity Analysis

In this section, we analyze the sensitivity of dK-function γdK(G) for d = 2, to
publish joint degree distribution of a graph G. Our goal is to derive the minimum
amount of noise needed to achieve node-DP.

Suppose that a node v+ is added to G with a set E+ of edges, each edge
(v+, vi) ∈ E+ may cause at most 2 × deg(G) + 1 entries of γ2K(G) being
changed. Thus, for each vj ∈ N(vi), p(deg(vi), deg(vj)) may decrease by one
and p(deg(vi) + 1, deg(vj)) may increase by one, which amount to the number
2×deg(G) of entries being changed if each vj ∈ N(vi) has the maximum degree,
i.e., deg(vj) = deg(G). In addition to this, p(deg(v+), deg(vi)) increases by at
least one. Thus, the total number of entries of γ2K(G) being changed by all edges
in E+ is upper bounded by (2 × deg(G) + 1) × |E+|.

Publishing Graph Joint Degree Distribution with Node Differential Privacy 363

Fig. 3. An illustration of Stable-Edge-Removal with θ = 1.

Lemma 1. Let G ∼ G′ be two neighboring graphs. We have Δγ=(2 × deg(G) +
1) × |E+| entries, where |E+| is the set of all edges incident to v+.

Prior studies [12,17] have shown that, in large social networks, deg(G) is
upper bounded by O(

√|V |). Thus, for such networks, the sensitivity of 2K-
function is upper bounded by O(2 × |V |√|V | + |V |).

Consider Fig. 2 in which a node v+ and two edges {(v+, F), (v+, A)} are
added into a graph G, resulting in the graph G′. There are 7 entries of γ2K(G)
being changed: (1) (v+, F) leads to changing 3 entries, i.e., p(1, 4) decrease by
one, and p(2, 4) and p(2, 2) increase by one; (2) (v+, A) leads to changing 5
entries, i.e., p(1, 2) and p(2, 4) decrease by one, and p(1, 3), p(3, 4) and p(2, 3)
increase by one. Although p(2, 4) = 3 in both G and G′, it is changed twice by
increasing one and decreasing one. If G is a complete graph with deg(G) = 4
and |E+| = 2, 18 entries of γ2K(G) would be changed, which is the worst case.

5 Proposed Approach

In this section, we first introduce a novel graph projection technique and then
incorporate it into a node-DP releasing mechanism.

5.1 Stable-Edge-Removal Graph Projection

Existing graph projection techniques generally fall into two categories: (1) ver-
tex ordering methods such as truncation [11]; (2) edge ordering methods such as
edge-removal [1] and edge-addition [3]. However, these methods have some limi-
tations. Vertex ordering methods often truncate all nodes v ∈ V with deg(v) > θ
[11], which severely affects the topological structure of a graph. Indeed, up to θ
edges incident to these nodes may be preserved in a θ-bounded graph. For edge
ordering methods [1,3], they handle edges based on a random edge ordering,
which may cause an excessive number of edges to be lost from an original graph.

To alleviate these limitations, we propose Stable-Edge-Removal (SER) that
transform a graph G to a θ-bounded graph Gθ with θ < deg(G) based on a
two-level ordering strategy on G.

Definition 6. A two-level ordering over G = (V,E) is a pair Γ = (N ,	V)
where 	N is a local neighbour ordering such that, for each v ∈ V , there is a
bijection: NG(v) → {1, . . . , |NG(v)|}; 	V is a global node ordering such that
there is a bijection: V → {1, . . . , |V |}.

364 M. Iftikhar and Q. Wang

Algorithm 1: Stable-Edge-Removal (SER)
Input: A graph G = (V, E); a projection parameter θ; a stable ordering Γ
Output: A θ-bounded graph Gθ = (V, Eθ)

1 Eθ := E; d[v] ← deg(v), ∀v ∈ V
2 foreach (v, u) ∈ Seq(E, �Γ) do
3 if d[v] > θ then

4 Eθ ← Eθ \ {(u, v)}; d[u] ← d[u] − 1; d[v] ← d[v] − 1

5 Return Gθ = (V, Eθ)

The intuition behind such a two-level ordering is to provide the flexibility of
ranking nodes from two aspects: (i) global importance in a graph, and (ii) local
importance in neighbourhoods. Given a two-level ordering Γ , an edge ordering is
defined. Specifically, for a graph G = (V,E), there exists a total ordering 	Γ on
edges in E such that, for any two edges e1 = (v1, u1) and e2 = (v2, u2) (assume
vi 	V ui for simplicity), we have e1 	Γ e2 if and only if v1 	V v2, or u1 	N u2

when v1 = v2.
For two neighboring graphs G ∼ G′, one important property of a graph

projection algorithm P is to ensure that θ-bounded graphs P(G) and P(G′) are
also neighboring graphs, i.e., P(G) ∼ P(G′). To obtain this property, we require
Γ , upon which P depends, to be stable on two neighboring graphs G ∼ G′.

Definition 7. (Stable Ordering) Given two neighboring graphs G = (V,E)
and G′ = (V ′, E′), a two-level ordering Γ = (N ,	V) is stable if and only if,

– for any node v in V ∩ V ′, the relative orderings of their common neighbors
in (NG(v) ∩ NG′(v)) are the same in 	N (G) and 	N (G′), and

– for any two nodes in V ∩ V ′, their relative orderings are the same in 	V (G)
and 	V (G′).

Algorithm 1 describes the main steps of our SER algorithm. Given an input
graph G = (V,E), a projection parameter θ, and a stable ordering Γ , we initialize
Eθ with all edges in E and d with degrees of all nodes in V (Line 1). Let
Seq(E,	Γ) denote the sequence of edges from E according to the edge order
	Γ . Then for each edge (v, u) in this sequence, if the degree of v is greater than
θ, we remove (v, u) from Eθ and also decrease the degree count of v and u in d
by 1 (Lines 2–4). Finally, the algorithm returns a θ-bounded graph Gθ (Line 5).

Example 1. Assume that a two-level ordering Γ = (N ,	V) on a graph
G in Fig. 3 is obtained by sorting nodes based on degrees from highest to
lowest (V), and for each node v sorting their neighbours in NG(v) in a
similar manner (N). Thus, we have a sequence of edges ordered by 	Γ ,
i.e., 〈(C,A), (C,D), (C,E), (C,F), . . . , (F,C)〉. Then, following this sequence, by
checking whether deg(C) > θ, SER first removes edge (C,A) and decreases the
degree counts of nodes C and A by 1. Similarly, SER removes edges (C,D) and
then the other edges if their node degree counts is greater than θ until Gθ is
obtained.

Publishing Graph Joint Degree Distribution with Node Differential Privacy 365

SER generates θ-bounded graphs that are maximal in the sense that no edge
from E − Eθ can be added into such θ-bounded graphs without making their
maximal node degree be above θ. However, SER does not guarantee that these
θ-bounded graphs are optimal, i.e., keeping the largest possible number of edges,
because SER depends on the ordering Γ which may be locally optimal.

5.2 Releasing dK-Distribution via Projection

Algorithm 2: θ − dKε algorithm
Input: A graph G = (V,E);

a privacy parameter ε

Output: A perturbed d̂K
1 Gθ ← Project G by Algorithm 1
2 dKθ ← Query Gθ with γ2K

3 d̂K ← Perturb dKθ w.r.t. Def. 4
4 Return d̂K

Given a graph G, instead of
extracting a dK-distribution from
G directly, we extract a dK-
distribution from a θ-bounded
graph Gθ which is transformed
from G by a graph projection algo-
rithm P. In this work, P refers to
our SER algorithm. By Lemma 1
and the fact that the maximum
degree in Gθ is no larger than θ,
we have the following lemma about
the sensitivity of γdK ◦ P.

Lemma 2. Let G ∼ G′ be two neighboring graphs. Then the sensitivity of γdK ◦
P is upper bounded by (2θ + 1) × θ, where d = 2.

Based on the sensitivity of γdK ◦ P, the perturbation is performed over the
dK-distribution being extracted from Gθ to generate a ε-differentially private
joint degree distribution. A high-level description of this algorithm of releasing
differentially private joint degree distribution via projection, namely θ − dKε,
is presented in Algorithm 2. Since the perturbation in Algorithm2 is conducted
using the Laplace mechanism based on the sensitivity of γdK ◦ P, we have the
following lemma regarding the privacy guarantee of θ − dKε.

Lemma 3. θ − dKε generates ε-node-differential private dK-distribution.

6 Experiments

In this section, we conduct experiments to evaluate our proposed approach and
discuss the experimental results.

6.1 Experimental Setup

Datasets. We use four network datasets in the experiments from different
domains including social network and citation networks: (1) Facebook1 is a net-
work of social interactions and personal relationships, containing 4,039 nodes and

1 Network datasets are available at http://snap.stanford.edu/data/index.html.

http://snap.stanford.edu/data/index.html

366 M. Iftikhar and Q. Wang

88,234 edges. (2) Wiki-Vote1 is a voting network of Wikipedia users, containing
7,115 nodes and 103,689 edges.(3) Ca-HepPh1 is a scientific collaborative net-
works between authors and papers, containing 12,008 nodes and 118,521 edges.
(4) Email-Enron1 is a Email communication network from Enron, containing
36,692 nodes and 183,831 edges.

Table 1. Comparison on the preserved edge ratio |Eθ|/|E| of EAD and our proposed
SER graph projection approach under different values of θ.

Dataset θ = 16 θ = 32 θ = 64 θ = 128 θ = 256

EAD SER EAD SER EAD SER EAD SER EAD SER

Facebook 0.27 0.61 0.44 0.71 0.66 0.84 0.88 0.96 0.97 0.98

Wiki-Vote 0.19 0.59 0.32 0.66 0.50 0.76 0.71 0.87 0.88 0.96

Ca-HepPh 0.16 0.61 0.24 0.68 0.31 0.77 0.39 0.84 0.46 0.96

Email-Enron 0.17 0.52 0.22 0.61 0.29 0.71 0.36 0.80 0.43 0.89

Baseline Methods. We first compare our projection method, Stable-Edge-
Removal (SER), with the state-of-the art graph project method Edge-Addition
(EAD) [3]. Then, we compare the utility of the following methods for generating
differentially private dK-distributions: (1) SER − θ − dKε, which applies our
proposed θ −dKε algorithm on projected graphs generated by SER; (2) EAD −
θ − dKε, which applies our proposed θ − dKε algorithm on projected graphs
generated by EAD; (3) ε-DP, which is a standard ε-differential privacy algorithm
in which noise is added on an original graph using the Laplace mechanism [6].

Utility Metrics. Following [3,11,16], we use three utility metrics: (1) preserved
edge ratio |Eθ|/|E| measures the ratio of edges being preserved by graph projec-
tion, where |E| and |Eθ| denote the number of edges before and after applying
graph projection, respectively; (2) L1 distance (or L1 error) measures the net-
work structural error between an original dK-distribution p and its perturbed
dK-distribution p′, i.e., ‖p − p′‖1 =

∑deg(G)
j=1

∑deg(G)
i=1 |p(i, j) − p′(i, j)|, where we

pad entries for degree pairs (i, j) with 0 if such degree pairs do not exist in p or
p′; and (3) Kolmogorov-Smirnov distance (or KS distance) quantifies the close-
ness between an original dK-distribution p and its perturbed dK-distribution
p′, i.e., KS(p, p′) = maxi|CDFp(i,j) − CDFp′(i,j)|, where CDFp(i,j) is the value
of cumulative distribution function on degree pairs (i, j) from distribution p.

Parameter Settings and Others. For the privacy parameter ε, we choose
ε ∈ [0.01, 10.0] which cover the range of differential privacy levels widely used in
the literature [8,9]. For the projection parameter θ, we follow [3,4,16] to choose
θ ∈ {1, 2, 4, . . . , 2�2log2(|V |)�}. We use Orbis [13] to generate 2K-distributions.

Publishing Graph Joint Degree Distribution with Node Differential Privacy 367

6.2 Results and Discussion

Evaluating Graph Projection. We first compare our method SER with the
state-of-the-art graph projection method EAD [3].

(1) Preserved edge ratio. Table 1 shows the results for preserved edge ratio. For
every value of θ, SER outperforms EAD by preserving more edges over all four
datasets. This is consistent with the discussion in Sect. 5 that our two-level order-
ing can generally preserve more edges than a random edge ordering.

Fig. 4. Comparison of graph project methods under varying θ over four datasets: (a)–
(d) L1 distance and (e)–(h) KS distance.

(2) L1 distance. Figure 4(a)–(d) presents the results for L1 distance. For all
four datasets, our projection method SER leads to less network structural error
for every value of θ as compared to EAD. This verifies that SER can better
preserve topological structure of a graph than EAD and maintain the shape of
distribution after projection. Thus, the utility of projected dK-distribution by
SER is higher as compared to EAD.

(3) KS distance. Figure 4(e)–(h) presents the results for KS distance. We can see
that, for every value of θ, our projection method SER outperforms EAD with
smaller KS-distances over all four datasets. Thus, projected dK-distributions
generated by SER are more similar to their original dK-distributions.

Evaluating Differentially Private dK-Distributions. We compare the over-
all utility of differentially private dK-distributions generated by our method
SER − θ − dKε against the baseline methods. Figure 5 presents the results.

(1) L1 distance. For all four datasets, our method SER − θ − dKε yields less
network structural error than ε-DP for every value of ε and θ. Compared to ε-
DP, the results of SER − θ − dKε and EAD − θ − dKε are close and both much
less. This is because, by approximating γdK to γdK ◦P via a graph projection P,
two kinds of errors are introduced: one is random noise to guarantee node-DP
and the other one is due to projection. We notice that, the first kind of error,

368 M. Iftikhar and Q. Wang

Fig. 5. Comparison of differentially private dK-distributions under varying θ over four
datasets: (left) L1 distance and (right) KS distance.

which depends on the sensitivity of γdK ◦P, dominates the impact on the utility
of differentially private dK-distributions generated w.r.t. L1 distance. Thus, by
reducing the sensitivity of a dK function via projection, the amount of random
noise being added to achieve node-DP is reduced significantly and the L1 errors
of differentially private dK-distributions are thus also reduced significantly.

(2) KS distance. We observe that ε-DP outperforms SER−θ−dKε and EAD−
θ − dKε for smaller datasets, except for the largest network Email-Enron. This
is because, a projection method may change the topological structure of an
original graph. However, for large networks such as Email-Enron, due to their
high sensitivity, SER−θ−dKε and EAD−θ−dKε generally perform better than
ε-DP. In addition, for smaller values of θ, differentially private dK-distributions
generated by SER − θ − dKε are more similar to their original dK-distributions
than EAD−θ−dKε. However, for larger θ values, the results of SER−θ−dKε

and EAD − θ − dKε are close. This is because for larger θ values the amount of
noise injected to achieve DP is high, and the fact that SER − θ − dKε preserves

Publishing Graph Joint Degree Distribution with Node Differential Privacy 369

more edges leads to more noise being added to frequency values of degree pairs
in dK-distributions.

7 Conclusions and Future Work

In this paper, we have studied the problem of publishing higher-order network
statistics such as joint degree distribution under node-DP. We have theoretically
analyzed the sensitivity for publishing joint degree distribution and proposed a
novel projection-based method in order to enhance the utility of released network
statistics under node-DP. The effectiveness of our work has been empirically ver-
ified over four real-world networks. Future extensions to this work will consider
personalized differential privacy to release statistics about social networks while
protecting privacy of individuals based on individuals preferences.

References

1. Blocki, J., Blum, A., Datta, A., Sheffet, O.: Differentially private data analysis of
social networks via restricted sensitivity. In: ITCS, pp. 87–96 (2013)

2. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction
of missing links in networks. Nature 453(7191), 98 (2008)

3. Day, W.Y., Li, N., Lyu, M.: Publishing graph degree distribution with node differ-
ential privacy. In: SIGMOD, pp. 123–138 (2016)

4. Ding, X., Zhang, X., Bao, Z., Jin, H.: Privacy-preserving triangle counting in large
graphs. In: CIKM, pp. 1283–1292 (2018)

5. Dorogovtsev, S., Mendes, J., et al.: Evolution of Networks: From Biological Nets
to the Internet and www. OUP Catalogue, Oxford (2013)

6. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

7. Hay, M., Li, C., Miklau, G., Jensen, D.: Accurate estimation of the degree distri-
bution of private networks. In: ICDM, pp. 169–178 (2009)

8. Iftikhar, M., Wang, Q., Lin, Y.: Publishing differentially private datasets via stable
microaggregation. In: EDBT, pp. 662–665 (2019)

9. Iftikhar, M., Wang, Q., Lin, Yu.: dK-microaggregation: anonymizing graphs with
differential privacy guarantees. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim,
E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020, Part II. LNCS (LNAI), vol. 12085,
pp. 191–203. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47436-
2 15

10. Jorgensen, Z., Yu, T., Cormode, G.: Publishing attributed social graphs with formal
privacy guarantees. In: SIGMOD, pp. 107–122 (2016)

11. Kasiviswanathan, S.P., Nissim, K., Raskhodnikova, S., Smith, A.: Analyzing graphs
with node differential privacy. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
457–476. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-
2 26

12. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: WWW, pp. 591–600 (2010)

https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-030-47436-2_15
https://doi.org/10.1007/978-3-030-47436-2_15
https://doi.org/10.1007/978-3-642-36594-2_26
https://doi.org/10.1007/978-3-642-36594-2_26

370 M. Iftikhar and Q. Wang

13. Mahadevan, P., Hubble, C., Krioukov, D., Huffaker, B., Vahdat, A.: Orbis: rescaling
degree correlations to generate annotated internet topologies. In: SIGCOMM, vol.
37, pp. 325–336 (2007)

14. Mahadevan, P., Krioukov, D., Fall, K., Vahdat, A.: Systematic topology analysis
and generation using degree correlations. In: SIGCOMM, No. 4, pp. 135–146 (2006)

15. Mahadevan, P., Krioukov, D., Fomenkov, M., Dimitropoulos, X., Claffy, K., Vah-
dat, A.: The internet as-level topology: three data sources and one definitive metric.
ACM SIGCOMM Comput. Commun. Rev. 36(1), 17–26 (2006)

16. Raskhodnikova, S., Smith, A.: Efficient lipschitz extensions for high-dimensional
graph statistics and node private degree distributions. CoRR/1504.07912 (2015)

17. Sala, A., Zhao, X., Wilson, C., Zheng, H., Zhao, B.Y.: Sharing graphs using differ-
entially private graph models. In: SIGCOMM, pp. 81–98 (2011)

18. Shen, E., Yu, T.: Mining frequent graph patterns with differential privacy. In:
SIGKDD, pp. 545–553 (2013)

19. Ullman, J., Sealfon, A.: Efficiently estimating erdos-renyi graphs with node differ-
ential privacy. In: NeurIPS, pp. 3765–3775 (2019)

20. Wang, Y., Wu, X.: Preserving differential privacy in degree-correlation based graph
generation. Trans. Data Priv. 6(2), 127–145 (2013)

21. Xiao, Q., Chen, R., Tan, K.L.: Differentially private network data release via struc-
tural inference. In: SIGKDD, pp. 911–920 (2014)

22. Zheleva, E., Getoor, L.: Privacy in social networks: a survey. In: Aggarwal, C. (ed.)
Social Network Data Analytics, pp. 277–306. Springer, Boston (2011). https://doi.
org/10.1007/978-1-4419-8462-3 10

https://doi.org/10.1007/978-1-4419-8462-3_10
https://doi.org/10.1007/978-1-4419-8462-3_10

Recommender Systems

Improving Sequential Recommendation
with Attribute-Augmented Graph

Neural Networks

Xinzhou Dong1,2, Beihong Jin1,2(B), Wei Zhuo3, Beibei Li1,2,
and Taofeng Xue1,2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

Beihong@iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 MX Media Co., Ltd., Singapore, Singapore

Abstract. Many practical recommender systems provide item recom-
mendation for different users only via mining user-item interactions but
totally ignoring the rich attribute information of items that users inter-
act with. In this paper, we propose an attribute-augmented graph neu-
ral network model named Murzim. Murzim takes as input the graphs
constructed from the user-item interaction sequences and corresponding
item attribute sequences. By combining the GNNs with node aggregation
and an attention network, Murzim can capture user preference patterns,
generate embeddings for user-item interaction sequences, and then gen-
erate recommendations through next-item prediction. We conduct exten-
sive experiments on multiple datasets. Experimental results show that
Murzim outperforms several state-of-the-art methods in terms of recall
and MRR, which illustrates that Murzim can make use of item attribute
information to produce better recommendations. At present, Murzim has
been deployed in MX Player, one of India’s largest streaming platforms,
and is recommending videos for tens of thousands of users.

Keywords: Recommender system · Deep learning · Graph neural
network · Sequential recommendation

1 Introduction

Sequential recommendation is to predict the next item that a user is most likely
to interact with according to the user-item interaction sequence over a period of
time in the past and then recommend the predicted item to the user. The target
scenarios include but are not limited to e-commerce platforms where products
are recommended based on the user click records in the recent period, and video
streaming platforms where videos are recommended to users based on their his-
torical watching records.

Since the records in a user-item interaction sequence are sorted in chronologi-
cal order and the sequences are essentially time series, the early methods [1,4,16]
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 373–385, 2021.
https://doi.org/10.1007/978-3-030-75765-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_30&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_30

374 X. Dong et al.

model these sequences as Markov chains and predict the next actions for users
based on their previous actions, thereby generating recommendations. However,
these methods require strong dependency assumptions over user behaviors, and
in reality, for a user, his/her next action is likely to be unrelated to the previous
one but related to earlier actions. With the progress of deep learning methods,
RNNs (Recurrent Neural Networks) are adopted in recommender systems due to
their capabilities of modeling sequences. RNN-based methods [5,7] can capture
long-term dependencies in sequences, but they are also easy to generate fake
dependencies. Recently, Graph Neural Networks (GNNs), which combine the
flexible expressiveness of graph data and the strong learning capability of neural
networks, have emerged as a promising way to achieve recommender tasks.

On the other hand, we notice that in many recommendation scenarios, besides
user-item interaction sequences, the attribute information of the items is rela-
tively complete. Moreover, attributes of the item have been gradually used for
help modeling [7,18]. However, so far, there has been still a lack of in-depth
research on the modeling and mining of multiple attributes and multi-valued
attributes of the item.

To mine the potential of item attributes in learning the user preference pat-
terns, in this paper, we treat the discrete attribute value of an item as a node on
the graph. In this way, for a user-item interaction sequence, there are sequences
of attributes of the item being interacted with. Next, we describe these attribute
sequences with graphs, besides constructing an item graph from the user-item
interaction sequence. Then, we construct a GNN model to generate next-item
recommendations.

The main contributions of our work are summarized as follows.

1. We present a reasonable method to construct attribute sequences from user-
item interaction sequences and attribute graphs from attribute sequences.
Further, we propose a method to calculate attribute scores so as to quickly
determine which attributes are valuable for modeling user preferences.

2. We propose the sequential recommendation model Murzim. Based on gated
GNNs, Murzim adopts attention mechanisms to integrate information from
the node level and the sequence level, and fuses the influence of item attributes
on the semantics implied in user-item interaction sequences into the recom-
mendation results.

3. We conduct extensive experiments on open datasets and the MX Player
dataset. Murzim outperforms several methods in terms of Recall@20 and
MRR@20. Moreover, we apply Murzim to the MX Player, one of India’s
largest streaming platforms, and the resulting business indicators such as
CTR have been improved, which illustrates the effectiveness of Murzim.

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 gives the formulation of the problem to be solved. Section 4
describes the Murzim model in detail. Section 5 gives the experimental evalua-
tion. Finally, the paper is concluded in Sect. 6.

Improving Sequential Recommendation 375

2 Related Work

Conventional recommendation methods, such as item-based neighborhood meth-
ods [12,15] and matrix factorization methods [9,14], do not integrate with
the sequential information, thus for sequential recommendation scenarios, these
methods can work but perform far from the desired level.

Some existing sequence modeling methods can be adapted for the sequential
recommendation. For example, in [16], the recommendation task is regarded as
a sequence optimization problem and an MDP (Markov Decision Process) is
applied to solve it. In [4], a mixture variable memory Markov model is built
for web query recommendation. Further, in [1], a Markov chain model and a
matrix decomposition method are combined to build the personalized probability
transfer matrix for each user. However, most Markov chain based methods have
to face the problem brought by the strong assumption about dependency between
user behaviors.

With the rapid development of deep learning methods, RNNs demonstrate
their advantages in sequential data modeling. As a result, RNNs are also adopted
and then improved for the sequential recommendation [5,6,17]. Besides sequen-
tial data, item features have been integrated into the RNN based models in
[7,18], where the former employs 3D convolution operations to fuse item fea-
tures, and the latter employs multiple parallel RNNs with item’s image features,
text features, etc. as input and gives several fusion strategies. The attention
mechanisms are also applied in the sequential recommendation. For example,
NARM [10] is a recommendation model based on an encoder-decoder structure,
which designs an RNN with an attention mechanism in the encoder to capture
the user’s sequential behaviors and main purpose, and predicts the next item in
the decoder. STAMP [13] uses simple MLP cells and an attention network to
capture the user’s general and current interests to predict the next item. How-
ever, the RNN-based models have some intrinsic weaknesses since they encode
the interaction sequence into a hidden vector, and using only one vector may
lose information. As a remedy, some methods [2,8] encode user states through
the memory network, which has the larger capacity.

Recently, GNNs have received much attention, which are a kind of neural
networks running on graph structure data. We note that applying the idea of
CNN to the graph results in the GCN (Graph Convolution Network) methods.
For example, GraphSage [3] is an inductive GCN model, which aggregates node
neighbor information by training a set of aggregation functions and generate
the node embeddings. Applying the idea of RNN to the graph is also feasible.
GGS-NN [11] is such an example. Currently, there exist several GNN models
for sequential recommendations. For example, the SR-GNN model [20] and its
improved version [21] which borrows the self-attention structure from Trans-
former [19] and applies it to original SR-GNN.

Compared to the existing work, our work simultaneously models the user-
item sequence and the corresponding attribute information in the form of
directed graphs, and then build GNNs to generate the item sequence embed-
dings which capture the user preferences on items and attribute values.

376 X. Dong et al.

3 Problem Formulation

For the sequence recommendation task, given the user-item interaction sequence
set S, we use V = {v1, v2, . . . , v|V |} to denote the set consisting of all unique
items involved in all the sequences, P = (pij)|V |×K to denote the attribute
matrix of the items, where pij = fj(vi) ⊆ Aj denotes the set of values for the
j-th attribute of the i-th item, Aj = {aj

1, a
j
2, . . . , a

j
m} denotes the value set of

the j-th attribute, fj is the attribute mapping function which maps the item vi
into the value set Aj , j = 1, 2, . . . , K.

We use s0 = [vs,1, vs,2, . . . , vs,T] to denote the sequence of a user’s behav-
ior over a period of time, where vs,t ∈ V . At the same time, through
the attribute matrix, we can get K attribute sequences, that is, sj =
[fj(vs,1), fj(vs,2), . . . , fj(vs,T)]. Our goal is to generate next-item prediction
through the item sequence s0 and K attribute sequences s1, s2, . . . , sK , that
is to predict vs,T+1.

4 The Murzim Model

In Murzim, we first construct the attribute sequences according to the item
sequence and attribute mappings, and represent all the 1 + K sequences (i.e., a
item sequence and K attribute sequences) as directed graphs. Then, we use gated
GNN based on GRU to update the embeddings of nodes in the graphs. After
obtaining the embeddings of nodes, we aggregate them to get the embeddings of
the sequences. Finally, we gather all sequence embeddings through an attention
network to predict the next item. The basic structure is shown in Fig. 1.

Fig. 1. Structure of Murzim

4.1 Constructing Item and Attribute Graphs

We use the attribute mapping functions(a total of K) to map the items in
the user-item interaction sequence to their attribute values. In this way, we

Improving Sequential Recommendation 377

get K attribute sequences. Each sequence, i.e., sj , j = 0, 1, . . . ,K, is repre-
sented by a directed graph Gsj = (Vsj , Esj), Vs0 ⊆ V, Vsj ⊆ Aj , j > 0. If two
items (or attribute values) are adjacent in the sequence, we add a directed edge
between the corresponding nodes in the graph, that is 〈vs,t, vs,t+1〉 ∈ Es0 (or
〈fj(vs,t), fj(vs,t+1)〉 ∈ Esj , j > 0). If fj maps an item vs,t to multiple attributes
(for example, a movie to multiple actors), then we have a full connection between
fj(vs,t) and fj(vs,t+1), where there is a directed edge between each attribute
value in fj(vs,t) and each attribute value in fj(vs,t+1).

We use adjacency matrices to represent the item graph and attribute graphs.
Specifically, we distinguish the forward and reverse of the sequence, build incom-
ing matrix Min and outgoing matrix Mout respectively, and normalize each
row. An example is shown in Fig. 2.

Fig. 2. An attribute graph example and its corresponding matrices

Since items often contain multiple attributes, it is necessary to assess the
importance of these attributes in advance. We believe that a good attribute
should reflect the user’s preference on certain attribute values. To this end,
we define a method to calculate the score R(S,Aj) of the attribute Aj on the
sequence set S according to the attribute map fj :

R(S,Aj) =
1

|S|
∑

s∈S

(
1 − |⋃t fj(vs,t)|∑

t |fj(vs,t)|
)

(1)

In formula (1), fj(vs,t) denotes the value set of item vs,t in sequence s on
attribute j, |⋃t fj(vs,t)| denotes the number of values of all items in sequence s
on attribute j, and

∑
t |fj(vs,t)| denotes the sum of the number of values of each

item in sequence s on attribute j. The greater the number of attribute values
in a sequence, that is, the larger

∑
t |fj(vs,t)|, and the more concentrated these

attribute values, that is, the smaller |⋃t fj(vs,t)|, the higher the attribute score,
which means the user’s interest is focused on only a few attribute values. When
we apply Murzim in a specific scenario, we first calculate the scores and then
select the attributes with high scores for modeling.

4.2 Generating Node Embeddings

We get the initial item embeddings through the embedding look-up operations
from a trainable matrix with dimension d × |V |. The d-dimensional vector vi is

378 X. Dong et al.

used to represent the embedding of the i-th item. As for attribute, we treat it as
a partition of items, that is, different attribute values divide items into multiple
intersecting or disjoint sets. Therefore, we use item embeddings to generate the
initial embeddings of attribute values.

Let s0 = [vs,1, vs,2, . . . , vs,T] be the user-item interaction sequence, sj =
[fj(vs,1), fj(vs,2), . . . , fj(vs,T)] be the sequence corresponding to attribute j, and
As,j = ∪T

i=1fj(vs,i) be the value set of attribute j on the item sequence s0,
As,j ⊆ Aj . For any aj ∈ As,j , the calculation of its embedding aj is:

aj =
1

|Vs0 |
|Vs0 |∑

i=1

I(aj ∈ fj(vi))Wjvi (2)

In formula (2), Vs0 is the set of items contained in the user-item interaction
sequence s0, Wj ∈ R

d×d is a model parameter, I is an indicator function that
outputs 1 when its input is true, otherwise outputs 0.

After obtaining the initial embeddings of items and attribute values, we
update them through graphs. Let ei represent the embedding of node i on the
graph (item graph or attribute graph), and then we propagate the information
between nodes according to the matrices Min and Mout , as shown below.

mi = concat(M in
i∗ [e1, . . . ,en]T ,Mout

i∗ [e1, . . . ,en]T) (3)

In formula (3), [e1, . . . ,en] is a matrix of size d×n formed by the embeddings
of all n nodes in the graph, M in

i∗ ,Mout
i∗ ∈ R

1×n denote the i-th row of the
corresponding matrix. In the subsequent step, mi ∈ R

2d×1 is used as the input
of the GRU to updated the embedding of node i:

ei = GRU(ei ,mi) (4)

The above process is iterated multiple times, so that each node can obtain
information from nodes farther away.

4.3 Generating Sequence Embedding

The generation of sequence embeddings goes through two steps. We first aggre-
gate the embeddings of the nodes in different graphs to get the embeddings of
1+K sequences. There are many ways to aggregate, here we choose the method
similar to [20]: calculate the attention coefficient of each node embedding with
the last item embedding(or attribute value embedding) in the sequence, and sum
all node embeddings according to the coefficients:

αi = qTσ(W1eT + W2ei + c) (5)

τ =
n∑

i=1

αiei (6)

sj = W3concat(τ ;eT) (7)

Improving Sequential Recommendation 379

In formulas (5)-(7), W1,W2 ∈ R
d×d,W3 ∈ R

d×2d, q, c ∈ R
d are model

parameters, eT is the embedding of the last item(or attribute value) in the
sequence, the output sj is the embedding of the sequence(j = 0 for item
sequence, j = 1, . . . , K for attribute sequences).

Then we use an attention network to aggregate all sequence embeddings,
and finally get the embedding z containing both the user’s item preference and
attribute preference:

αj = σ(
s0WqsT

j√
d

), j = 0, 1, 2, . . . K (8)

z = s0 +
K∑

j=0

αjsj (9)

In formula (8), the item sequence embedding s0 is used as the query in the
attention mechanism, Wq ∈ R

d×d is a model parameter. We perform weighted
summation in formula (9) to get z that integrates all sequence information.

4.4 Generating Prediction and Model Loss

We use cosine similarity to score all items according to z:

ŷi = softmax

(
γ

zTvi

||z||2||vi ||2

)
(10)

In formula (10), γ is a trainable factor, and item embedding vi is obtained
in Sect. 4.2. We adopt the cross entropy loss for predicting the next item:

L = −
|V |∑

i=1

yi log ŷi + λ||θ||2 (11)

In formula (11), y ∈ R
|V | is the one-hot encoding vector corresponding to

the ground truth item. θ is the set of all trainable parameters of the model. We
train the model by optimizing L through the gradient descent method.

5 Experiments and Analyses

To evaluate the performance of Murzim, we conduct performance comparison
experiments on different datasets, comparing Murzim with several existing mod-
els. Next, we deploy Murzim to the MX player and observe its performance in
the actual production environment.

380 X. Dong et al.

5.1 Experimental Setup

Datasets: We adopt the Yoochoose dataset, the Diginetica dataset, and our
own MX Player dataset.

The Yoochoose dataset is from RecSys Challenge 20151. It provides the user
click sequence data of an e-commerce website, and contains the category infor-
mation for each item which is treated as an attribute in our model. In particular,
we fetch recent 1/64 and 1/4 sequences of the total Yoochoose dataset to form
two datasets. The Diginetica dataset is from CIKM Cup 20162, which provides
more item attribute information, including: category, priceLog2 (log-transformed
product price) and item name token (comma separated hashed product name
tokens). We only use its transactional data.

As for the pre-processing of the two datasets, we keep the same as [20].
Further, the training and testing sets are divided in the same way as [20]: data
in the last day in the Yoochoose dataset are used as the testing set, and data in
the last week of the Diginetica dataset are used as the testing set.

Besides, we construct a dataset named MXPlayer 1W 1M from the MX
Player log. We extract the interaction sequences on the movies from 2020-01-20
to 2020-01-26, and filter out items whose number of occurrences is less than
3 and sequences whose length is 1. We use the data in the first six days for
training and the last day for testing. Here, the items, i.e., movies, contain rich
attribute information. We select seven attributes of items: genre (G), publisher
(P), country(C), language(L), release year(R), director(D), and actor(A).

The details of the three datasets are shown in Table 1.

Table 1. Details of the three datasets.

Dataset #Item #Train #Test Avg. len. #Attribute values

Yoochoose 1/64 17745 369859 55898 6.16 Category

282

Yoochoose 1/4 30470 5917745 55898 5.71 Category

322

Diginetica 43097 719470 60858 4.85 Category priceLog2 Name token

1217 13 164774

MXPlayer 1W 1M 11386 1658463 69804 6.38 G P C L R D A

34 130 55 40 106 6806 16248

According to the attribute score calculation method defined previously, we
obtain attribute scores on the training sets of different datasets, as shown in
Table 2. For the Diginetica dataset, the category attribute has the highest score,
which indicates that most users seem to only pay attention to a few cate-
gories of items during browsing. For the MXPlayer 1W 1M dataset, the language

1 http://2015.recsyschallenge.com/challege.html.
2 http://cikm2016.cs.iupui.edu/cikm-cup.

http://2015.recsyschallenge.com/challege.html
http://cikm2016.cs.iupui.edu/cikm-cup

Improving Sequential Recommendation 381

attribute has the highest score, indicating that the values of language might play
more important roles in the sequence.

Metrics: We adopt Recall@20 and MRR(Mean Reciprocal Rank)@20 to evalu-
ate the recommendations. Recall@20 is the proportion of ground-truth items
among the top-20 recommended items, and here is equivalent to Hit@20.
MRR@20 is the average of the inverse of the ranking of ground truth in the
recommendation results. If the ground truth does not appear in the top-20 of
the recommendations, then MRR@20 is 0.

Implementation Details: In Murzim, the embedding dimension d is set to 64
and 128 on the public datasets and MXPlayer 1W 1M dataset, respectively, the
L2 penalty and batch size are set to 1e-5 and 512, respectively. We implement
Murzim with Tensorflow, using the Adam optimizer where the initial learning
rate is set to 0.004 and decays by 0.1 after every 2 epochs.

Table 2. Attribute scores on the three datasets

Dataset Attribute scores

Yoochoose 1/64 Category

0.5962

Yoochoose 1/4 Category

0.5974

Diginetica Category priceLog2 Name token

0.6450 0.4971 0.2498

MXPlayer 1W 1M G P C L R D A

0.4218 0.4155 0.5385 0.6271 0.2648 0.1719 0.1833

Table 3. Performance comparison

Yoochoose 1/64 Yoochoose 1/4 Diginetica MXPlayer 1W 1M

Recall@20 MRR@20 Recall@20 MRR@20 Recall@20 MRR@20 Recall@20 MRR@20

POP 6.71 1.65 1.33 0.30 0.89 0.20 14.78 3.95

S-POP 30.44 18.35 27.08 17.75 21.06 13.68 29.14 13.67

Item-KNN 51.60 21.81 52.31 21.70 35.75 11.57 50.03 19.33

GRU4Rec 60.64 22.89 59.53 22.60 29.45 8.33 53.54 20.71

NARM 68.32 28.63 69.73 29.23 49.70 16.17 53.97 20.43

STAMP 68.74 29.67 70.44 30.00 45.64 14.32 53.80 20.56

SR-GNN 70.57 30.94 71.36 31.89 50.73 17.59 55.05 21.52

Murzim 71.52 31.65 72.19 32.04 54.74 19.40 55.51 21.82

5.2 Performance Comparison

First, we conduct a comparative experiment, comparing our model with the
following six models:

382 X. Dong et al.

1. POP/S-POP: They recommend the top-N popular items in the entire train-
ing set or the current sequence. In S-POP, if the number of recommended
items is insufficient, we use top-N popular items in the entire training set for
completion.

2. Item-KNN [15]: It recommends the top-N items that are most similar to the
items in the sequence. The similarity between item i and item j is calculated
based on the number of co-occurrences in the sequence.

3. GRU4Rec [6]: It models sequences with RNN to predict the next item.
4. NARM [10]: It adds an attention mechanism to RNN to capture user’s

sequence behavior and main interaction purpose in the current sequence.
5. STAMP [13]: It uses a new attention mechanism to capture general interest

and short-term attention of users.
6. SR-GNN [20]: It uses a GNN to model sequences, while using an attention

mechanism to fuse users’ long-term and short-term interests in sequences.

The experimental results are shown in Table 3. We note that SR-GNN works
best among the comparison methods, which shows the effectiveness of graph-
based representation in the sequential recommendation. However, our model
(i.e., the Murzim version with the category attribute for public datasets and
language attribute for MX Player dataset) outperforms SR-GNN. The perfor-
mance gain over SR-GNN should originate from the fact that Murzim mines user
preferences implicit in the attributes of items that users interact with.

Table 4. Effects of different attribute combinations on the Diginetica dataset

Attribute Combination Recall@20 MRR@20

Category 54.74 19.40

Pricelog2 54.29 19.19

Name token 54.27 19.20

Category + pricelog2 54.60 19.36

Pricelog2 + name token 54.60 19.40

Category + name token 54.32 19.24

Category + pricelog2 + name token 54.66 19.39

Table 5. Effects of different attribute combinations on the MXPlayer 1W 1M dataset

G P C L R D A L+C L+G C+G

Recall@20 55.44 55.45 55.43 55.51 55.27 55.31 55.16 55.50 55.47 55.54

MRR@20 21.71 21.74 21.76 21.82 21.70 21.73 21.61 21.77 21.80 21.75

Next, we observe how and to what degree Murzim exploits the attribute
effects. Table 4 shows the performance of different versions of Murzim on the

Improving Sequential Recommendation 383

Diginetica dataset, where the different versions adopt different attributes or
attribute combinations. The results in the first three lines are consistent with
the attribute scores we calculate above: the higher the score is, the greater
the performance improvement is. The results in the subsequent lines show the
effect of adding multiple attributes. We find that except for the combination
of pricelog2+name token, the effects of other combinations are lower than just
adding one attribute. It indicates that attributes might influence each other
and the performance is not always improved with the increasing of attribute
information.

Table 5 shows the performance of different versions of Murzim on the
MXPlayer 1W 1M dataset. The experimental results in the first seven columns
are generally consistent with the scores of attributes of the MXPlayer 1W 1M
dataset in Table 2. For example, the language attribute score is the highest, and
the corresponding version of Murzim works best in comparison with the other
versions with a single attribute. This shows that our attribute score calculation
method can measure the importance of attributes to a certain extent. Then, we
select any two attributes from three attributes with the highest scores: language,
country, and genre, and form the corresponding version of Murzim to conduct
the experiment. The results are listed in the last three columns in Table 5. We
find that the combination of any two attributes does not get further improve-
ment on MRR@20. Meanwhile, although the combination of language and genre
achieves the best result on Recall@20, the results of the other groups are close to
that of adding a single attribute. This indicates again that attributes are useful
in improving the recommendation but it is not necessarily the case that more
attributes lead to better recommendations.

5.3 Online Test

We have deployed Murzim to the online production environment of the MX
Player and generate recommendation for users based on their viewing sequences.
In the online version of Murzim, we choose two attributes, i.e., language and
genre. We compare the click-through rates (CTRs) on a group of users before
and after using Murzim, as shown in Fig. 3. It can be seen that after Murzim
is deployed, the CTR gradually increases. Compared with the previous values,
it increases by about 60% on the average. This shows that Murzim generates
better recommendations than before.

Fig. 3. CTRs before and after using Murzim

384 X. Dong et al.

6 Conclusion

In this paper, we propose a GNN model Murzim for sequential recommendation.
Murzim describes the user-item interaction sequences and attribute sequences
by directed graphs, and then gathers information through node aggregation and
the attention network, which not only inherits the advantages of GNNs but
also excavates user preferences through attributes, thus improving the recom-
mendation performance. Currently, Murzim is running in the online production
environment of the MX player and mainly serving the people in India.

Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China under Grant No. 62072450 and the 2019 joint project with MX Media.

References

1. Factorizing personalized markov chains for next-basket recommendation (2010)
2. Chen, X., et al.: Sequential recommendation with user memory networks. In: Pro-

ceedings of the Eleventh ACM International Conference on Web Search and Data
Mining, pp. 108–116 (2018)

3. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034
(2017)

4. He, Q., et al.: Web query recommendation via sequential query prediction. In: 2009
IEEE 25th International Conference on Data Engineering, pp. 1443–1454. IEEE
(2009)

5. Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-
based recommendations. In: Proceedings of the 27th ACM International Confer-
ence on Information and Knowledge Management, pp. 843–852 (2018)

6. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

7. Hidasi, B., Quadrana, M., Karatzoglou, A., Tikk, D.: Parallel recurrent neural net-
work architectures for feature-rich session-based recommendations. In: Proceedings
of the 10th ACM Conference on Recommender Systems, pp. 241–248 (2016)

8. Huang, J., Zhao, W.X., Dou, H., Wen, J.R., Chang, E.Y.: Improving sequen-
tial recommendation with knowledge-enhanced memory networks. In: The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval, pp. 505–514 (2018)

9. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

10. Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based
recommendation. In: Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pp. 1419–1428 (2017)

11. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural
networks. In: 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, 2–4 May 2016, Conference Track Proceedings (2016)

12. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item col-
laborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

http://arxiv.org/abs/1511.06939

Improving Sequential Recommendation 385

13. Liu, Q., Zeng, Y., Mokhosi, R., Zhang, H.: STAMP: short-term attention/memory
priority model for session-based recommendation. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1831–1839 (2018)

14. Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: Advances in
Neural Information Processing Systems, pp. 1257–1264 (2008)

15. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295 (2001)

16. Shani, G., Heckerman, D., Brafman, R.I.: An mdp-based recommender system. J.
Mach. Learn. Res. 6(Sep), 1265–1295 (2005)

17. Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based
recommendations. In: Proceedings of the 1st Workshop on Deep Learning for Rec-
ommender Systems, pp. 17–22 (2016)

18. Tuan, T.X., Phuong, T.M.: 3d convolutional networks for session-based recommen-
dation with content features. In: Proceedings of the Eleventh ACM Conference on
Recommender Systems, pp. 138–146 (2017)

19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

20. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommen-
dation with graph neural networks. Proc. AAAI Conf. Artif. Intell. 33, 346–353
(2019)

21. Xu, C., et al.: Graph contextualized self-attention network for session-based rec-
ommendation. In: Proceedings of 28th International Joint Conference Artificial
Intelligence (IJCAI), pp. 3940–3946 (2019)

Exploring Implicit Relationships in Social
Network for Recommendation Systems

Yunhe Wei1, Huifang Ma1,2,3(B), Ruoyi Zhang1, Zhixin Li2, and Liang Chang3

1 College of Computer Science and Engineering, Northwest Normal University,
Lanzhou Gansu 730070, China

mahuifang@yeah.net
2 Guangxi Key Lab of Multi-source Information Mining and Security,

Guangxi Normal University, Guilin Guangxi 541004, China
3 Guangxi Key Lab of Trusted Software, Guilin University of Electronic Technology,

Guilin Guangxi 541004, China

Abstract. Online social platforms have provided a large amount of
available information to recommendation systems. With this intuition,
social recommendation systems emerged and have attracted increasing
attention over the past years. Most existing social recommendation meth-
ods only use explicit social relationships among users. However, implicit
social relationships can effectively improve the quality of recommenda-
tion when users only have few social relationships. To this end, the dis-
covery of implicit relations among users plays a central role in advancing
social recommendation. In this paper, we propose a novel approach to
fuse direct and indirect friends toward discovering more accurate social
recommendation method. We learn users’ preferences by carefully inte-
grating users’ direct and indirect friends. In particular, we construct item
rankings based on the feedback from users’ direct and indirect friends on
the item. Furthermore, to distinguish the impact of users’ direct friends
and indirect friends, we also extend the ranking assumption in item
domain to user domain, so that information from user rankings can be
leveraged to further improve the recommendation performance. Exten-
sive experiments on two real-world datasets demonstrate the effectiveness
of the proposed method.

Keywords: Social information · Indirect friends · Item ranking · User
ranking

1 Introduction

As an indispensable information filtering technique, recommendation system is
nowadays ubiquitous in various domains, such as e-commerce, online news, and

Supported by the National Natural Science Foundation of China (61762078, 61363058,
61966004), Research Fund of Guangxi Key Lab of Multisource Information Mining
and Security (MIMS1808), Northwest Normal University Young Teachers Research
Capacity Promotion Plan (NWNU-LKQN2019-2) and Research Fund of Guangxi Key
Laboratory of Trusted Software (kx202003).

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 386–397, 2021.
https://doi.org/10.1007/978-3-030-75765-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_31&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_31

Exploring Implicit Relationships in Social Network 387

social media. The most impactful theory behind recommendation system is to
propose items that are most likely to be of interest to the user based on the user’s
interests, preferences, needs, and behaviors. For decades, one of the most popular
ideas in recommendation research is the idea that the collaborative filtering.
Even though a lot of collaborative filtering methods have been proposed and
lead to promising results, they suffer from data sparsity and perform poorly on
cold-start users who have no or few past behavior data. The explicitly observed
additional information have been widely exploited to alleviate these problems
in recommendation systems. Due to the explosive development of online social
platforms, social relations provide the extra information about users.

To capture more information in the learned user embeddings, most social
recommendation systems simultaneously use user-user social networks and user-
item interaction information to thoroughly model user preferences. A user’s pref-
erence for one item should be similar to his friends, which motivates us to probe
into such social effect to improve recommendation performance. Existing meth-
ods for social recommendation attempt to exploit social information in various
ways, such as by trust propagation, regularization loss, matrix factorization,
network embedding, and causal inference. These methods have achieved certain
success, but there are still the following limitations. On one hand, they only
use the user’s direct social information. However, social information also con-
tains other complex relationships, such as heterogeneous relationships. As users
have diverse interests, they seek different suggestions in different communities.
On the other hand, they believe that users have the same level of trust in all
social friends. However, the impact of direct and indirect friends is different when
predicting user preferences.

To alleviate these problems, a social recommendation method EIRSN(short
for Explore Implicit Relationships in Social Network) is proposed in this paper.
First, we divide users into different communities according to their direct social
relationships to capture users’ indirect friends. Second, the item ranking is estab-
lished based on the interactive information of the user’s direct and indirect
friends. Third, we build user ranking based on users’ trust information. Finally,
the item ranking and user ranking are combined to predict the user’s preference
for non-interactive items. In addition, an effective sampling strategy is used in
the model training process to improve recommendation performance by reducing
the negative sampling space.

2 Related Work

Social recommendation task is based on the theories that users and their friends
often have similar preferences and influence each other in certain aspects, so
considering users’ social information can enhance recommendation performance.
Recently, researchers have demonstrated that recommendation models with the
aid of social relations can improve recommendation performance.

The social recommendation methods related to our work are divided into
three types. The first type of methods consider social information as a regu-
larization. TrustSVD [3] model proposed by Guo et al. , which treats users’

388 Y. Wei et al.

explicit trust relationships as implicit feedback information. They use different
penalty weights for different regularization parameters. Yang et al. propose a
TrustPMF [11] model, which decomposes the social matrix into a trustee fea-
ture matrix and a trustee feature matrix. Lin et al. propose a regularization term
for modeling variable social influence in CSR [5]. The second type of methods use
different information to integrate the user’s preferences. Tang et al. propose a
fine-grained method in the mTrust [8] model to capture the user’s multi-faceted
trust information. Liu et al. propose a community-based social recommendation
model InSRMF [6], which can fully explore the interdependence between social
information and user behavior. The third type of methods divides items into dif-
ferent sets based on social relationships and then defines the item ranking. For
example, Zhao et al. propose an SBPR model [14], assuming that each user’s
rating behavior should be at a certain level Similar to the scoring behavior of
his friends, the item set is divided into positive items, social items, and negative
items to build a ranking of items. Considering the different strengths of links in
social networks, Wang et al. proposed the TBPR model [10]. This model uses
Jaccard similarity to calculate the link strength in social networks and divides
the social relationship into strong and weak links. Yu et al. propose a method
IF-BPR [13], which uses the implicit friends for each user to find more reliable
relationships. In addition, with the development of deep neural networks, several
deep models are proposed to enhance social recommendation systems, such as
GraphRec [2]. GraphRec can aggregate information from user-item graph and
user social graph to learn better user representations.

Despite the success of these methods, most of them only consider explicitly
model the relationships of user’s direct friends. Besides, they do not model the
impact of different social relationships, which leads to a suboptimal prediction.

3 Preliminaries

3.1 Notations and Problem Statement

Let U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vm} be the sets of users and items
respectively, where n is the number of users, and m is the number of items. We
assume that Rn×m is the user-item feedback matrix, where Rij = 1 if ui gives a
feedback to vj and zero otherwise. We use Sn×n to denote the user-user social
matrix, where Sij = 1 if uj has a relation to ui and zero otherwise. Given the
social network G (U,E), we use overlapping community detection methods to
divide each user into different communities. Let the set of overlapping commu-
nities be C = {C1, C2, . . . , CD}, where Ci ∩ Cj �= ∅ and C1 ∪ · · · ∪ CD = U . Let
Vu

P ,Vu
D,Vu

I ,Vu
N denote the positive feedback items set, direct social feedback

items set, indirect social feedback items set and negative feedback items set of u.
Let Uu

D,Uu
I ,Uu

N respectively denote the direct social users set, indirect social
users set and negative social users set of u. We use an embedding vector U i to
denote a user ui and an embedding vector V j to represent an item vj . Given
the size ratio γ of reduced sampling space, we randomly assign each user γ × N

Exploring Implicit Relationships in Social Network 389

samples as the negative user sampling space R−
U and negative item sampling

space R−
V .

Given a user-item rating matrix Rn×m and a user-user social matrix Sn×n.
We aim to predict the likelihood of ui

′s preference for vj .

3.2 User Overlapping Community Detection Based on Social
Information

In social network, implicit social information provides extra information for pre-
dicting users’ preferences. A user can belong to multiple communities in a social
network, and users have similar preferences in the same community. Hence, we
can capture users’ indirect social relationships through overlapping community
detection method [12]. More specifically, let F be a nonnegative matrix where
Fik is a weight between user ui and community Ck. Given F , the overlapping
community detection method generates a graph G (U,E) by creating edge (i, h)
between a pair of nodes ui, uh ∈ U with probability P (i, h).

p (i, h) = 1 − exp
(
−F i · F T

h

)
(1)

The likelihood function l (F) = P (G|F) of G is calculated as follows:

l (F) =
∏

(i,h)∈E

(
1 − exp

(
−F iF

T
h

)) ∏
(i,h)/∈E

exp
(
−F uF

T
v

)
(2)

We detect D communities by maximizing the log-likelihood function of G

F̂ = arg max
F≥0

∑
(i,h)∈E

ln
(
1 − exp

(
−F iF

T
h

))
−

∑
(i,h)/∈E

F iF
T
h (3)

Whether ui belongs to the community Ck is determined by Fik.

4 Bayesian Personalized Recommendation Method
Fusing Social Information

4.1 Item Ranking Based on Social Feedback

To motivate this work, we first conduct a simple analysis of preference data from
two sources that we will consider in this paper: Ciao and Epinions. Table 1 shows
the detailed information of the used datasets, where Rdensity represents user-
item interaction data density and Sdensity represents user social relationship
density.

First, Fig. 1 shows the probability that an item selected by a user is also
selected by their direct and indirect friends. More specifically, we compare the
probability with the baseline setting: the probability that an item selected by a
user is also selected by randomly sampled users. It is clear that the first prob-
ability and the second probability are higher than the baseline. Besides, Fig. 2

390 Y. Wei et al.

Table 1. Summary of the datasets used in the experiments

Dataset Users Items Feedbacks Social relations Rdensity(%) Sdensity(%)

Ciao 1,705 12,252 22,839 47,842 0.1093 1.6467

Epinions 49,289 139,738 664,824 487,183 0.0097 0.0201

shows that the probability that a user selects an item increases monotonically as
a function of the number of direct friends and indirect friends who have selected
the item. Based on this result, we build a model based on a simple assumption
about item ranking:

(Rank of) items I’ve consumed � items my direct friends have consumed �
items my indirect friends have consumed � items neither me nor my friends have
consumed.

Ciao Epinions
Dataset

0.0001

0.001

0.01

0.1

C
ov

er
ag

e
pr

ob
ab

ilit
y

Direct friend selection
Indirect friend selection
Random user selection

Fig. 1. Coverage probability analysis

For each user, we divide the item set into the following four sets:
Positive feedback item set Vu

P : the set of items selected by user u.
Direct social feedback item set Vu

D: this item set is that user u has not
feedback but at least one of his direct friends has feedback.

Indirect social feedback item set Vu
I : this item set is that user u did not

choose but at least one of his indirect friends selected.
Negative feedback item set Vu

N : Vu
N is the set of items that neither user u

nor any of their friends selected.
One can easily find that Vu

P ∩ Vu
D ∩ Vu

I ∩ Vu
N = ∅ and Vu

P ∪ Vu
D ∪ Vu

I ∪
Vu

N = V .
The above assumption is stated as:

wui ≥ wuq, wuq ≥ wug, wug ≥ wuj , i ∈ V P
u , q ∈ V D

u , g ∈ V I
u , j ∈ V N

u

where wui, wuq, wug, wuj respectively represent the preference of user u on
positive feedback items, direct social feedback items, indirect social feedback
items and negative feedback items.

Exploring Implicit Relationships in Social Network 391

1 2 3 4 5 6 7 8
Number of direct friends who selected the item

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y
Ciao
Epinions

(a)

1 2 3 4 5 6 7 8
Number of indirect friends who selected the item

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y

Ciao
Epinions

(b)

Fig. 2. Influence of the number of friends on selection probability

Based on this assumption, the optimization likelihood of each user’s item
ranking can be expressed as:

∏
i∈V P

u ,q∈V D
u

P (wui ≥ wuq|θ)
∏

q∈V D
u ,g∈V I

u

P (wuq ≥ wug|θ)
∏

g∈V I
u ,j∈V N

u

P (wug ≥ wuj |θ)

(4)

4.2 User Ranking Based on Social Information

We can capture users’ direct friends and indirect friends from social networks.
We assume that users trust direct friends more than indirect friends. Hence, we
propose the following user ranking assumption:

User’s direct friends � User’s indirect friends � Other users
For each user, we divide the user set into the following three sets:
Direct friends Uu

D: the set of users who have a direct social relationship
with u.

Indirect friends Uu
I : the set of users who do not have a direct social relation-

ship with u but have an indirect social relationship.
Negative social user Uu

N : the set of users who have neither direct nor indirect
social relationships with u.

The above assumption is stated as:

xut ≥ xul, xul ≥ xuz, t ∈ UD
u , l ∈ U I

u , z ∈ UN
u

where xut, xul, xuz respectively represent the trust level of user u to direct
social users, indirect social users and other users.

Based on this assumption, the optimization likelihood of each user’s user
ranking can be expressed as:

∏
t∈UD

u ,l∈UI
u

P (xut ≥ xul|θ)
∏

l∈UI
u,z∈UN

u

P (xul ≥ xuz|θ) (5)

392 Y. Wei et al.

4.3 Personalized Ranking that Fuses Item Feedback and Social
Information

When predicting the final preference of user u, we use both item ranking based
on user feedback and user ranking based on social relationships. We combine the
optimization likelihood of item ranking and user ranking to construct the final
optimization likelihood function. We aim to minimize the following log likelihood
function:

J = − ∑
u

[
∑

i,q,g,j

[ln σ(wui − wuq)+ lnσ(wuq − wug)+ lnσ(wug − wuj)]

+αu

∑
t,l,z

[ln σ(xut − xul)+ lnσ(xul − xuz)]]+αθ ‖ θ ‖2F (6)

We use the matrix factorization method. let θ = (U, V), the loss function is
further rewritten as:

J = − ∑

u
[

∑

i,q,g,j
[lnσ(UuV

T
i − UuV

T
q)+ lnσ(UuV

T
q − UuV

T
g)+ lnσ(UuV

T
g − UuV

T
j)]

+αu
∑

t,l,z
[lnσ(UuU

T
t − UuU

T
l)+ lnσ(UuU

T
l − UuU

T
z)]] + αθ(‖ U ‖2F + ‖ V ‖2F)

(7)

where a regularization term αθ(‖ U ‖2F + ‖ V ‖2F) is used to avoid overfitting
in the learning process. We use stochastic gradient descent (SGD) algorithm to
optimize the above objective function.

4.4 Sampling Strategy

Since the negative sampling space is quite large for each user, it will not only lead
to low efficiency, but also reduce performance. In order to overcome this problem,
the sampling strategy proposed in [1] is used to sample negative items, and
design a negative user sampling strategy to further improve the recommendation
performance. The specific sampling plan is as follows.

P (V = v) =
1
n

∑
u/∈Uv

1
m − |Vu| (8)

P (U = u) =
1
n∗

∑
u′ /∈Su

1
n − 1 − |Su′ | (9)

n∗ = |{u| |Su| < n − 1}| (10)

Where Uv is the set of users who have interacted with item v. Vu is the set of items
that u has interacted with and Su is the set of users who have a social relationship
with u. According to the sample space reduction rate γ (the ratio of the size of
the reduced space to the original space) and the probability distributions P (V)
and P (U), candidate sets V − and U− with sizes R−

V (γ × m) and R−
U (γ × n)

can be obtained as negative sampling spaces. Thereby reducing the negative
sampling space.

Exploring Implicit Relationships in Social Network 393

Algorithm 1: Personalized ranking that fuses item feedback and social
information
Input: User-item feedback matrix Rn×m; User-user social matrix Sn×n

Output: User latent factor matrix Un×d; Item latent factor matrix Vm×d

Initialization:
Initialize for u = 1; u ≤ n do

split n − 1 users into three parts: Uu
D, Uu

I , Uu
N ;

split m items into four parts: Vu
P , Vu

D, Vu
I , Vu

N ;
end
Training:
for iterations do

for #training sample do
Sample a user u ∈ U ;
Sample an item i from Vu

P ;
Sample an item q from Vu

D;
Sample an item g from Vu

I ;
Sample an item j from Vu

N ;
Sample a user t from Uu

D;
Sample a user l from Uu

I ;
Sample a user z from Uu

N ;
Calculate ∂O(Θ)

Θ ;
Update Uu, U t, U l, Uz, V i, V q, V g, V j according to Eq.7;

end
end

5 Experiments and Results

In this section, We conduct experiments to answer the following research ques-
tions:

RQ1: How do different parameters in EIRSN impact social recommendation
performance?

RQ2: Are the key components in EIRSN, such as implicit information and
user rankings, necessary for improving performance?

RQ3: How does our proposed model EIRSN perform compared with state-
of-the-art methods on the social recommendation task?

5.1 Experimental Settings

Evaluation Metrics. Two metrics - Recall and the Normalized Discounted
Cumulative Gain (NDCG) are used to measure the recommendation performance
of our proposed model and various baseline methods.

Baseline Methods. To verify the performance of our proposed method, we
compare EIRSN with the most popular recommendation methods:BPR [7], NCF

394 Y. Wei et al.

[4], NGCF [9], SBPR[14], IF-BPR[13], TrustSVD [3], InSRMF [6], GraphRec [2].
Among these methods, BPR, NCF and NGCF do not use social information, and
all the remaining methods are social recommendation methods. NCF, NGCF and
GraphRec are all classic deep learning-based recommendation methods.

5.2 Recommendation Performance

Effect of Parameters. We investigate the influence of parameters on the per-
formance of EIRSN. Figure 4 and Fig. 5 show the effect of user ranking weight,
regularization parameter and the number of communities on two datasets in
term of Recall.

0.1 0.2 0.3 0.4 0.7 1.0

u

0

0.02

0.04

0.06

0.08

0.1

0.12

R
ec

al
l

Ciao
Epinions

Fig. 3. Impact of parameter αu

0.001 0.01 0.05 0.1 0.5 1.0
0

0.02

0.04

0.06

0.08

0.1

0.12

R
ec

al
l

Ciao
Epinions

Fig. 4. Impact of parameter αθ

As shown in Figs. 3 and 4, when αu and αθ become extremely small, the
importance of social user ranking and regularization terms will become ignorable.
To study their impacts, we test how different values of αu and αθ affect the
performance. From the results, we can conclude that the performance of EIRSN
first increases with the increasing αu and αθ, and then begins to decrease. Our
EIRSN achieves its best performances with αu = 0.2 and αθ = 0.05.

From Fig. 5, we observe that EIRSN behaves inconsistently on different
datasets when the number of user communities D is adjusted in 5,10,15,,45,50.
For each dataset, EIRSN performs better as D increases, reaches the best value
(around D = 20 for Ciao, and D = 45 for Epinions), and its performance is
destroyed as D become much larger.

Exploring Implicit Relationships in Social Network 395

5 10 15 20 25 30 35 40 45 50
Number of Communities(D)

0

0.02

0.04

0.06

0.08

0.1

0.12

R
ec

al
l

Ciao
Epinions

Fig. 5. Coverage probability analysis

Importance of Key Components. To understand the working of EIRSN, we
compare EIRSN with its two variants: EIRSN-IF, and EIRSN-UR. These two
variants are defined in the following:

EIRSN-IF: The user’s indirect friend information of EIRSN is removed .
This variant only uses the user’s direct friends information. EIRSN-UR: The
user ranking of EIRSN is removed . This variant only uses the item ranking.

EIRSN-IF EIRSN-UR EIRSN
0

0.02

0.04

0.06

0.08

0.1

0.12

R
ec

al
l

Ciao
Epinions

EIRSN-IF EIRSN-UR EIRSN
0.10

0.12

0.14

0.16

0.18

0.2

N
D

C
G

Ciao
Epinions

(a) (b)

Fig. 6. Performance of indirect friend and user ranking

The indirect social information of users can more accurately construct their
preferences. As shown in Fig. 6, EIRSN-IF performs worse than EIRSN. It verifies
that the user’s indirect friend information is important to learn user preferences
and improve the recommendation performance.

Users trust direct friends rather than indirect friends in social networks. We
can see that without user ranking, the performance of our model is deterio-
rated significantly. It justifies our assumption that user ranking can effectively
distinguish the different influences of direct friends and indirect friends on users.

396 Y. Wei et al.

Performance Comparison of Recommender Systems. Table 2 shows the
overall performance compared with different methods. One can draw the follow-
ing conclusions.

Table 2. Experimental results on epinions and Ciao

Method Epinions Ciao

K = 10 K = 20 K=10 K = 20

Recall NDCG Recall NDCG Recall NDCG Recall NDCG

BPR 0.0117 0.1391 0.0301 0.1426 0.0483 0.1857 0.0923 0.1885

NCF 0.0139 0.1407 0.0320 0.1438 0.0516 0.1879 0.0952 0.1902

NGCF 0.0153 0.1415 0.0355 0.1464 0.0532 0.1897 0.0985 0.1911

SBPR 0.0145 0.1412 0.0337 0.1451 0.0541 0.1904 0.1012 0.1938

IF-BPR 0.0157 0.1421 0.0350 0.1460 0.0557 0.1916 0.1036 0.1954

TrustSVD 0.0166 0.1426 0.0359 0.1468 0.0571 0.1925 0.1058 0.1971

InSRMF 0.0184 0.1439 0.0373 0.1474 0.0583 0.1936 0.1076 0.1985

GraphRec 0.0198 0.1453 0.0385 0.1483 0.0594 0.1949 0.1089 0.1990

EIRSN 0.0205 0.1461 0.0376 0.1476 0.0617 0.1957 0.1105 0.2003

Improv. 3.5% 0.6% −2.3% −0.5% 3.9% 0.4% 1.5% 0.7%

p-value 3.61e–4 4.81e–5 1.86e–5 4.98e–3 2.47e–6 6.16e–7 3.81e–4 5.76e–6

As can be observed, our proposed model EIRSN outperform all the compared
baseline methods in most cases. In general, we can see that social recommen-
dation methods shows significant improvement compared with other methods.
This indicates that the social information is useful for recommendations. In all
social recommendation methods, SBPR, TrustSVD, and GraphRec only use the
observed social information. EIRSN performs better than these methods, which
confirms that considering both direct and indirect social relations can improve
the recommendation performance. Even though IF-BPR and InSRMF make use
of observed social relations, they mine the indirect relations and then integrate
them to user latent factors. However, our proposed EIRSN further incorporates
the influence of different friends into user representation learning, which boosts
the performance of the recommendation system.

6 Conclusion

In this work, we explore indirect social information and social influence for col-
laborative filtering. We devise a novel social recommendation framework EIRSN,
which integrates the different social information of users to solve the data spar-
sity problem. The core of our model is to generate user embedding by perform-
ing embedding influence along direct and indirect social friends. Specifically, it

Exploring Implicit Relationships in Social Network 397

enables us to find the indirect friends that are not necessarily connected with
each other on the social network, and the obtained indirect friends are further
exploited for the recommendation via an social Bayesian personalized ranking
approach. We conduct extensive experiments on two real-world datasets, demon-
strating that our proposed EIRSN could boost the social recommendation per-
formance over existing methods.

References

1. Ding, J., Yu, G., He, X., Feng, F., Li, Y., Jin, D.: Sampler design for Bayesian
personalized ranking by leveraging view data. IEEE Trans. Knowl. Data Eng.
(2019)

2. Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., Yin, D.: Graph neural networks
for social recommendation. In: The World Wide Web Conference, pp. 417–426
(2019)

3. Guo, G., Zhang, J., Yorke-Smith, N., et al.: Trustsvd: collaborative filtering with
both the explicit and implicit influence of user trust and of item ratings. AAAI.
15, 123–125 (2015)

4. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 173–182 (2017)

5. Lin, T.H., Gao, C., Li, Y.: Recommender systems with characterized social regular-
ization. In: Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, pp. 1767–1770 (2018)

6. Liu, H., Jing, L., Yu, J., Ng, M.K.P.: Social recommendation with learning personal
and social latent factors. IEEE Trans. Knowl. Data Eng. (2019)

7. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

8. Tang, J., Gao, H., Liu, H.: mtrust: discerning multi-faceted trust in a connected
world. In: Proceedings of the Fifth ACM International Conference on Web Search
and Data Mining, pp. 93–102 (2012)

9. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative
filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 165–174 (2019)

10. Wang, X., Lu, W., Ester, M., Wang, C., Chen, C.: Social recommendation with
strong and weak ties. In: Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, pp. 5–14 (2016)

11. Yang, B., Lei, Y., Liu, J., Li, W.: Social collaborative filtering by trust. IEEE
Trans. Pattern Anal. Mach. Intell. 39(8), 1633–1647 (2016)

12. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative
matrix factorization approach. In: Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining, pp. 587–596 (2013)

13. Yu, J., Gao, M., Li, J., Yin, H., Liu, H.: Adaptive implicit friends identification
over heterogeneous network for social recommendation. In: Proceedings of the 27th
ACM International Conference on Information and Knowledge Management, pp.
357–366 (2018)

14. Zhao, T., McAuley, J., King, I.: Leveraging social connections to improve person-
alized ranking for collaborative filtering. In: Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information and Knowledge Management,
pp. 261–270 (2014)

http://arxiv.org/abs/1205.2618

Transferable Contextual Bandits with
Prior Observations

Kevin Labille , Wen Huang , and Xintao Wu(B)

University of Arkansas, Fayetteville, AR 72701, USA
{kclabill,wenhuang,xintaowu}@uark.edu

Abstract. Cross-domain recommendations have long been studied in
traditional recommender systems, especially to solve the cold-start prob-
lem. Although recent approaches to dynamic personalized recommenda-
tion have leveraged the power of contextual bandits to benefit from the
exploitation-exploration paradigm, very few works have been conducted
on cross-domain recommendation in this setting. We propose a novel
approach to solve the cold-start problem under the contextual bandit
setting through the cross-domain approach. Our developed algorithm,
T-LinUCB, takes advantage of prior recommendation observations from
multiple domains to initialize the new arms’ parameters so as to circum-
vent the lack of data arising from the cold-start problem. Our bandits
therefore possess knowledge upon starting which yields better recom-
mendation and faster convergence. We provide both a regret analysis
and an experimental evaluation. Our approach outperforms the base-
line, LinUCB, and experiment results demonstrate the benefits of our
model.

Keywords: Contextual bandits · Cross-domain recommendation ·
Personalized recommendation

1 Introduction

Personalized recommendation has long been studied through traditional
approaches such as content-based techniques and collaborative filtering tech-
niques. Yet, in recent years, it has been tackled through a new approach known as
the exploration-exploitation dilemma. Indeed, an efficient recommender system
should be able to recommend items that are both diverse and accurate. Naturally,
diversity can be achieved through the exploration of new horizon and unknown
interests while accurate predictions can be achieved through the exploitation of
historical and known user interests. The key factor of such an approach thus
becomes to properly balance exploration and exploitation in order to optimize
the recommendation. Early works to tackle this problem were formulated as the
multi-armed bandit (MAB) problem [2].

Although multi-armed bandits directly tackle the exploration-exploitation
dilemma, they would be ineffective to use for personalized recommendation pur-
poses, since they do not incorporate user-side information. To circumvent such
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 398–410, 2021.
https://doi.org/10.1007/978-3-030-75765-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_32&domain=pdf
http://orcid.org/0000-0001-8115-2353
http://orcid.org/0000-0002-8210-4676
http://orcid.org/0000-0002-2823-3063
https://doi.org/10.1007/978-3-030-75765-6_32

Transferable Contextual Bandits with Prior Observations 399

limitations, contextual multi-armed bandits (or CMAB) [12] were introduced.
Contextual bandits have the capability to observe, at each iteration, some fea-
tures related to both the arm and the user. As opposed to regular multi-armed
bandits which only use the rewards to update their model, contextual bandits use
the rewards along with the contextual feature vector to update the arm-picking
strategy. By exploring the relationship between the context and the observed
reward, contextual bandits are able to improve upon multi-armed bandits by
making personalized decisions.

Both the MAB and CMAB have been applied to recommendation systems
[4]. However, these approaches still suffer from the cold-start problem. A com-
mon method is to leverage observations from another domain and transfer them
to the new domain. We study the problem of cross-domain recommendations
under the linear contextual bandit setting. Specifically, we focus on the task
of using a bandit capable of recommending educational videos (i.e. the arms)
across various topics. We make the following assumptions: (1) the set of users
remain unchanged across topics, (2) the topic and the set of arms change over
time, and (3) the topics or domains are homogeneous, that is, they have the
same feature space. In such a setting, the challenge for the bandit is to main-
tain accurate recommendations across topics (or domains) without restarting
its learning strategy from scratch. To address this problem, we develop a new
algorithm, T-LinUCB, which leverages recommendation observations of similar
arms from prior topics. Consequently, the learning process is sped up and the
estimation of the true reward parameters is improved, which results in better
recommendations.

2 Related Work

There exist many approaches to solve the contextual bandits problem. Lang-
ford and Zhang [10] introduced an epoch-greedy approach, Li et al. [12] used
a UCB-based approach that assumes a linear payoff model, and Agrawal et al.
[1] tackled the problem using a Thompson sampling approach. Bandits have
been widely applied to recommendation systems. Zhou et al. [19] and Nguyen
& Kofod-Petersen [14] leveraged the context-free bandit to solve the widely-
known cold-start problem present in recommender systems. Li et al. [12] used a
contextual bandit based on the UCB algorithm while Chapeller & Li [5] investi-
gated a Thompson-sampling approach for news item recommendation purposes.
Bouneffouf et al. [3] used contextual bandits for recommendations in mobile envi-
ronments. Nguyen & Lauw [15] proposed to tackle recommendation with a large
population by dynamically clustering users into several clusters that are each
served by a contextual bandit. Huang et al. [9] studied how to achieve user-side
group fairness in contextual bandits. Tang et al. [17] explored ensemble strategies
of different contextual bandits to make a recommendation decision.

Cross-domain recommendation has long been studied and is still an active
research topic [8]. However, very few works take advantage of the powerful con-
textual bandit framework. Azar et al. [11] introduced the transfer-UCB Bandit

400 K. Labille et al.

algorithm that uses a transfer learning approach wherein they leverage prior
knowledge by transferring the estimated bandit parameters from one task to
another. Zhang & Bareinboim [18] tackled the offline transfer problem between
bandits using a causal inference approach named B-kl-UCB. Although these two
works are related, they focus on the context-free multi-armed bandit (MAB)
as opposed to the contextual bandit. More recently, Liu et al. [13] introduced
TCB where they tackled the cross-domain problem in contextual bandit using
a transfer learning approach. TCB relies on a source and a target domain, as
well as a matrix of correspondence data that captures the relatedness of the
source and the target observations. It uses a translation matrix to align feature
spaces between both domains and to translate the contexts. Their approach
successfully outperformed several single-domain bandits. However, their TCB
algorithm is set in the uniform contextual bandit model wherein there exists
a single unknown reward parameter vector shared between all arms. We con-
sider the more common disjoint contextual bandit model wherein each arm has
its own unknown reward parameter. Furthermore, their setting only considers
the problem of cross-domain recommendations from a single source domain. We
extend upon this limitation and consider the more general case of having mul-
tiple source domains. Indeed, in the event that the bandit has access to several
past topics or domains, their TCB algorithm would have to choose a single one
to be the source to learn from.

3 Background

Throughout this paper, we use bold letters to denote a vector, e.g., x, and capital
bold letters to denote a matrix, e.g., A. We use ||x||2 to define the �2-norm of a
vector x ∈ R

d. For a positive definite matrix A ∈ R
d×d, we define the weighted

�2-norm of x ∈ R
d to be ||x||A =

√
xTAx. We define the operation A⊕B as the

row concatenation of matrices A and B and a ⊕ b as the regular concatenation
of vectors a and b. The notation |x| represents the magnitude of a vector x.
Finally, we denote diag(v) the operation of making a square diagonal matrix
with the elements of vector v on the main diagonal.

We revisit the linear contextual bandit (LinUCB) [6]. Formally, there is a set
of users u also known as “bandit players” and a set of arms a ∈ A that are the
items to be recommended. At time t, a user u comes in with the set of arm A,
and the bandit observes the contextual feature vector xt,a ∈ R

d for arm a, that
represents the information of both the user and the arm. LinUCB assumes that
the expected reward for each action is linear in its d-dimensional features xt,a

with some unknown coefficient vector θ∗
a.

The algorithm chooses an arm at ∈ A to recommend, observes the reward
rt,a = 〈θ∗

a,xt,a〉+ εt where εt is the noise term, and then updates its arm recom-
mendation strategy with the new observation (xt,at

, at, rt,at
). LinUCB applies

ridge regression to estimate the true coefficients. Let Da ∈ R
ma×d denote the

context of the historical observations when arm a is selected and ba ∈ R
ma

denote the relative rewards. The regularised least-square estimator for θa could
be expressed as:

Transferable Contextual Bandits with Prior Observations 401

θ̂a = arg min
θ∈Rd

(
ma∑
i=1

(ri,a − 〈θ,Da(i, :)〉)2 + λ||θ||22
)

(1)

where λ is the penalty factor of the ridge regression. The solution to Eq. 1 is:

θ̂a = (DT
a Da + λId)−1DT

a ba (2)

Li et al. [12] derived a confidence interval that contains the true expected reward.
Following the rule of optimism in the face of uncertainty for linear bandits
(OFUL), this confidence bound leads to a reasonable arm-selection strategy:

at = argmaxa∈At

(
θ̂T
a xt,a + α

√
xT
t,aA

−1
a xt,a

)
(3)

where Aa = DT
a Da + λId.

Formally, the expected reward at time t with arm a is expressed as
E[rt,a|xt,a] = θ∗T

a xt,a. During the learning process, the algorithm only observes
the reward of the chosen arm. The total reward by round t is defined as

∑
t rt,at

while the optimal expected reward is defined as E[
∑

t rt,a∗], where a∗ indicates
the arm that can achieve the optimal reward at time t. We call T-trial regret
R(T), the difference between the optimal reward and the observed reward over
T rounds: R(T) = E[

∑
t rt,a∗] − E[

∑
t rt,at

]. The contextual bandit algorithm
balances exploration and exploitation to maximize the expected total reward.
Equivalently, the algorithm aims to minimize the total regret.

4 T-LinUCB

4.1 Problem Overview

Consider the problem of recommending educational videos to a class of students.
Formally, we model the personalized video recommendation as a contextual ban-
dit problem, where each student t is a bandit player and each video a ∈ A is an
arm. The videos are divided into L topics where each topic l ∈ L has a pool Al

of videos. Each video belongs to one single topic. We assume that the set of stu-
dents remain unchanged across the topics. Given a topic l ∈ L and a student t,
the goal of the bandit is to choose an arm a ∈ Al that maximizes the reward. We
further assume that each video a has a true unknown coefficient vector θ∗

a that
remains unchanged for the entirety of the topic. Thus, similarly to a typical con-
textual bandit problem, the goal is to estimate the unknown coefficient vector θ∗

a

for each video of the current topic l. However, unlike a typical contextual bandit
problem, the arm pool A changes from one topic to another, meaning that the
unknown coefficient vectors θ∗

a have to be re-estimated. LinUCB algorithm is not
designed to handle changing coefficient vectors θ∗

a. Indeed, for each individual
topic l ∈ L, a new LinUCB algorithm has to be re-started, where it would have
to learn the new estimates of θ∗

a from scratch again. Such an approach would
yield lower performances.

402 K. Labille et al.

We intend to tackle the problem of cross-domain recommendations and to
solve these limitations of LinUCB by utilizing observations acquired from past
topics to initialize the parameters of the new arms. The bandit therefore pos-
sesses knowledge upon the start of a new topic which results in better perfor-
mances and faster regret convergence when compared to a cold start situation.

4.2 Algorithm Design

Henceforth, we assume that we have L topics denoted by l (l = 1, 2, ...,L) where
each has a pool Al of videos (or arms). We assume that the contextual feature
vector of an arm a is denoted as xa ∈ R

n. The contextual bandit algorithm
runs in a sequential fashion for t = 1, 2, . . . , T given a particular topic l ∈ L. At
each time t, a student plays the bandit which reads the student’s information
and must choose an arm a ∈ Al that maximizes the reward. We thus have the
contextual feature vector xt,a ∈ R

d which encompasses both information from
the user and the arm. We assume that the dimension of the vectors remains the
same throughout and across all topics.

Algorithm 1. T-LinUCB
1: Input: α ∈ R

+, k ∈ N
+, l

2: for a ∈ Al do
3: Observe contextual features of arm a ∈ Al : xa ∈ R

n

4: Aa,ba ← INIT (xa, k)
5: end for
6: for t = 1,2,...,T do
7: for a ∈ Al do
8: Observe contextual features of arm a ∈ Al : xt,a = (xt,xa) ∈ R

d

9: θ̂a ← (Aa)−1ba

10: pt,a ← θ̂T
a xt,a + α

√
xT

t,a(Aa)−1xt,a

11: end for
12: Choose arm at = argmaxa∈Alpt,a with ties broken arbitrarily, and observe a

real-valued payoff rt,at

13: Aat ← Aat + xt,atx
T
t,at

14: bat ← bat + rt,atxt,at

15: end for

Algorithm 1 shows the main T-LinUCB algorithm. We first initialize all of the
arms’ parameters (A,b) of the current topic l using the historical observations
from k historical topics (line 4). Once the arms are initialized, the algorithm runs
as a traditional LinUCB. We show in Algorithm 2 the procedure that initializes
the parameters (A,b) of an arm using historical observations. Da represents a
matrix of observations from k previous topic(s), ca represents a vector of the
corresponding historical responses, and w represents a vector of weights. We
compute the similarity score between the current arm a of the current topic l

Transferable Contextual Bandits with Prior Observations 403

and every arms ah in the k previous topics using the Euclidean distance between
their respective contextual feature vector, i.e., xa and xah

(line 6). Because we
only make use of historical arms that share some degree of similarity in the
feature space, we compare the resulting similarity scores to a threshold τ . The
design matrix Dah

and the corresponding response vector cah
of the most similar

arms are then concatenated together to form the design matrix Da and response
vector ca of the current arm (line 9–10).

Similarly, a weight vector wah
with values ranging from 0 to 1 stores the

weight of all historical observations from arm ah. The weight vector of arm a,
wa, is the aggregation of the weight vector of all similar arms (line 11–12). We
consider that the more recent an observation is, the more valuable it is and
therefore the larger its weight should be. The impact of the observation in the
previous topics will thus decay with the time interval according to the following
formula (line 10) of Algorithm 2:

w = exp(−p||xa − xah
||2

2η2
)

where η is a parameter that controls the decaying speed. We then create a
diagonal matrix Wa with the elements of the vector wa on the main diagonal.
The weight matrix Wa along with the design matrix Da and the corresponding
response vector ca are then used to initialize the arm’s parameters Aa and
ba (line 17–18). Additionally, τ is computed from the average similarity scores
and their standard deviation as follows: τ = s̄ + γ σ where s̄ is the average
of the similarity scores and σ is their standard deviation. The threshold τ has
a parameter γ that controls the weight of the standard deviation. Specifically,
the higher it is, the more restrictive the threshold becomes, and the smaller the
number of similar arms we will make use of.

4.3 Regret Analysis

There are several works that give detailed regret analysis on the non-stationary
environments. Among them, [16] has the most similar setting as ours. It assigns
time-decaying weight to previous observations and obtains O(d2/3B1/3

T T 2/3)
regret bound, where d represents the feature dimension, T represents time hori-
zon, and BT =

∑T−1
s=1 ||θ∗

s − θ∗
s+1||2 denotes the variation budget of the coeffi-

cients.
In previous works, the change-points of the reward function are usually

unknown in advance. However, in the recommendation process discussed in our
paper each transformation of the topic will raise an abrupt change of the reward
function, which means that we are able to know each changing time point before-
hand. Thus T-LinUCB could be regarded as an oracle linear bandit algorithm
that restarts LinUCB algorithm with historical observations as side information
at each changing point. It helps us get rid of the variation budget of the coeffi-
cients and achieve a long-term regret bound of Õ(d1/2T 1/2). From the experiment
section we can see that in most cases the regret of T-LinUCB is significantly less

404 K. Labille et al.

Algorithm 2. Initialize - Get the initialized matrix related to each arm
1: INIT (xa, k)
2: Da ← 00×d, ca ← [],wa ← []
3: for p = 1, ..., k do
4: Observe contextual features of all arms ah ∈ Ap : xah ∈ R

n

5: for ah ∈ Al−p do
6: SIM(xa,xah) = ||xa − xah ||2
7: if SIM(xa,xah) ≥ τ then

8: Da = Da ⊕ Dah

9: ca = ca ⊕ cah

10: w = exp(− p||xa−xah
||2

2η2)

11: wah ← w|cah
|×1

12: wa = wa ⊕ wah

13: end if
14: end for
15: Wa ← diag(wa)
16: end for
17: Aa ← DT

a WaDa + λId

18: ba ← DT
a Waca

19: return Aa,ba

than LinUCB algorithm for each topic and enjoys a faster convergence speed.
One disadvantage for T-LinUCB is that the computational complexity might
be higher since it needs to incorporate historical information when initializing
observation matrices and conducting matrix multiplication.

5 Experimental Evaluation

5.1 Experiment Setup

Simulated Dataset. We evaluate the performances of our approach on a sim-
ulated dataset that fits our scenario and allows us to model a change of topic.
Our simulated environment combines both of the following publicly available
datasets.

– Adult dataset: The Adult dataset [7] is composed of 31,561 instances: 21,790
males and 10,771 females, each having 8 categorical variables (work class,
education, marital status, occupation, relationship, race, sex, native-country)
and 3 continuous variables (age, education number, hours per week), yielding
an overall of 107 features after one-hot encoding.

– YouTube dataset: The Statistics and Social Network of YouTube Videos1 is
composed of 4,522 instances separated into four categories: Comedy (1,580),

1 https://netsg.cs.sfu.ca/youtubedata/.

https://netsg.cs.sfu.ca/youtubedata/

Transferable Contextual Bandits with Prior Observations 405

Music (1,819), Sports (932), and Travel & Places (191). Each instance has
6 categorical features (age of video, length of video, number of views, rate,
ratings, number of comments), yielding a total of 25 features after one-hot
encoding.

Our users (bandit players) are represented using the Adult dataset. For our
experiments we use a subset of 10,000 instances drawn randomly and we assume
that the set of users remain unchanged across topics. Similarly, our videos (or
arms) are represented through the Youtube dataset. For our experiments we will
be using several topics which are each represented by a Youtube category. For
each topic we select a random subset as our pool of videos to recommend. In
particular, topic 1 uses 30 videos from the Comedy category, topic 2 uses 20
videos from the Music category, topic 3 uses 20 videos from the Sports category,
and topic 4 uses 30 videos from the Travel & Places category. We reduce the
dimensionality of both the user and video feature vectors through Principal
Component Analysis (PCA) by choosing a number of components that explains
80% of the variance. Thereafter, the dimensions of the user feature vectors are
reduced to 19 while the dimensions of the video feature vectors are reduced to 7.
Throughout the experiment, we use the concatenation of both the user feature
vector and the video feature vector as our contextual feature vector xt,a, yielding
a total of 26 features.

Reward Functions. The reward mechanism follows that of LinUCB where the
reward of an arm a is assumed to be the noisy linear combination of its context
vector and unknown coefficient vector (also called unknown reward parameters
vector) θ∗

a. Specifically rt,a = 〈xt,a,θ
∗
a〉 + ε where ε is a random Gaussian noise,

i.e., ε ∼ N (0, 0.01). For each arm within a topic, we generate the unknown
coefficient vectors θ∗

a by randomly drawing each of the 26 dimensions from a
Gaussian distribution, i.e., N (0.5, σ) where σ is drawn randomly from a normal
distribution, i.e., σ ∼ U(0, 1). We then normalize the reward parameters such
that the Manhattan norm of the vector is equal to 1. As a consequence, the
reward generated in our setting is bounded between 0 and 1.

Evaluation Metric. We use the regret to evaluate the performances of the algo-
rithms. Since the true reward function is known in our simulated environment, it
is possible to compute the regret over T rounds: R(T) = E[

∑
t rt,a∗]−E[

∑
t rt,at

]
where the first term is the optimal reward, and the second term is the observed
reward at time t.

5.2 Experimental Results

Our intuition is that using prior knowledge from multiple topics can help ini-
tializing the parameters of the bandit for a new topic thereby circumventing the
cold-start problem. To confirm our intuition, we compare the performances of
our T-LinUCB algorithm to the classic LinUCB algorithm.

406 K. Labille et al.

Impact of the Decaying Factor η. We first investigate the impact of the
decaying factor η introduced in Algorithm 2 (line 10) on our first two topics and
report the cumulative regret at topic 2 on Fig. 1. For this experiment, γ is set to
1 since we have not investigated its effect yet. As introduced in Sect. 4.2, η is a
decaying factor that allows to control the weight of the historical observations.
Specifically, the more recent the observations are, the larger the weights are.
Our intuition is that larger weights will speed up the learning process thereby
decreasing the regret. As Fig. 1 shows, the higher η is, the lower the regret is at
topic 2. Indeed, with an η close to 0, the weights of the historical observations
are almost nil, T-LinUCB will thus behave as a regular LinUCB, achieving a
regret of 362.45. The regret stabilizes when η reaches 2, with a regret oscillating
between 106.13 and 101.33. These empirical results confirm our intuition that
historical observations with larger weights provides the bandit with stronger
knowledge and therefore accelerates the learning of the unknown coefficients θ∗

a.

Impact of the Parameter γ. As introduced in Sect. 4.2, γ is used in the
computation of the threshold τ as a parameter to control the weight of the
standard deviation. A higher γ yields a higher value of τ , which translates into
making the algorithm more restrictive as to the inclusion of an arm into the
historical data. Therefore, γ has a direct impact on the number of similar arms
to consider. We aim at understanding the impact of γ on our algorithm. We run
T-LinUCB with the first two topics with various values of γ ranging from 0.0
to 3, and compare their performances. We report the cumulative regret at topic
2 for various γ on Fig. 2. For this experiment, η is set to 5 as per the results
achieved previously.

As shown on Fig. 2, a large regret is achieved when γ is either too small or
too large (313.74 for γ = 0, 319.5 for γ = 0.5, 252.58 for γ = 1.5, 361 for γ = 2
and 3). Indeed, in the former case a large number of arms satisfy the threshold
condition (Alg. 2 line 7), yielding too many arms to be deemed similar enough.
Considering a large number of arms will introduce noisy observations and neg-
atively impact the performances of T-LinUCB. Conversely, on the latter case,
very few arms satisfy the threshold condition, yielding a lower number of arms to
be considered. Consequently, T-LinUCB does not have sufficient information to
initialize the arms in the current topic, and will behave similarly to a traditional
LinUCB. Finally, the performances of T-LinUCB are drastically improved with
γ being close to 1. Indeed, when γ = 1.1 the regret at topic 2 drops to 100.4
In such a case the bandit collects sufficient historical observations that help it
initialize the parameters of the arms of the new topic by taking full advantage
of the past. This experiment shows that γ, which controls the number of sim-
ilar arms to use, plays an important role in the initialization process that can
severely affect the performances of T-LinUCB. While a low value of γ brings
noisy observations, a high value of γ allows not enough historical observations
to be used for initialization.

Robustness to the Change of the Unknown Coefficient Vectors. We
investigate the robustness of our T-LinUCB algorithm to the degree of change

Transferable Contextual Bandits with Prior Observations 407

Fig. 1. Regret for various values of η Fig. 2. Regret for various values of γ

Fig. 3. Regret for various value of σ Fig. 4. Regret with two topics

Fig. 5. Regret with three topics Fig. 6. Regret with various k size

408 K. Labille et al.

of the unknown coefficient vectors (or unknown reward parameters), θ∗
a, from one

topic to another. Particularly, in this setting, the unknown coefficient vectors of
the first topic remain unchanged whereas the unknown coefficient vectors of the
second topics are drawn randomly from a Gaussian distribution N (0.5, σ) with
increasing standard deviation σ. Based upon our previous empirical results, we
set the parameters η to 1.1 and γ to 5 as they achieved the best performances.
We compare and run LinUCB versus T-LinUCB ten times per value of σ and
report the averaged regret at topic 2 in Fig. 3. As depicted in Fig. 3, our T-
LinUCB algorithm is much more robust to the degree of change of the reward
parameters from one topic to another than LinUCB is. Indeed, our algorithm
consistently achieves a lower regret with an average of 126.99 against 307.916
for LinUCB, which has a decrease of 142.45%. Furthermore, T-LinUCB achieves
a much steadier regret that has a variance of 87.35 against 342.87 for LinUCB.
These results confirm that our T-LinUCB is robust to the change of reward
parameters and that it not only achieves a much lower regret than LinUCB but
also maintains a consistent regret.

T-LinUCB vs LinUCB with 2 Topics. We compare our algorithm to Lin-
UCB with two topics with k set to 1, that is, our algorithm only uses observa-
tions from 1 prior topic. Based upon our previous empirical results, we set the
parameters η to 1.1 and γ to 5 as they achieved the best performances. Figure 4
shows the regret over topic 2 for both LinUCB and our T-LinUCB. Since both
algorithms learn without a-priori knowledge during topic 1, they are expected
to achieve the same regret. In the second topic, however, the arm pool changes
along with new unknown reward parameters, θ∗

a. As Fig. 4 shows, our approach
outperforms LinUCB greatly and achieves a much lower regret of 359.29 for
LinUCB against 100.08 for T-LinUCB.

T-LinUCB Vs LinUCB with 3 Topics. We check the long-term benefit
of our approach by running the same experiment using three topics instead of
two. We report the regret at topic 3 for both LinUCB and our T-LinUCB on
Fig. 5. Similarly to the previous scenario, LinUCB will start learning from scratch
for all three topics while T-LinUCB will make use of historical observations
from topic 1 when switching to topic 2, and from topic 2 when switching to
topic 3. We notice on Fig. 5 that, as expected, T-LinUCB outperforms LinUCB.
Indeed, the former achieves a regret of 361.87 at topic 3 against 184.02 for the
latter. Moreover, we can see that LinUCB has not converged after T = 10, 000
rounds, which indicates that it is still learning, as opposed to T-LinUCB which
converges much faster, emphasizing yet another benefit of our approach. Our
experiments demonstrate the benefits of using prior knowledge to avoid the cold-
start problem. By initializing the parameters of the bandit in the new topic,
the bandit already possesses knowledge that speeds up the estimation of the
unknown reward parameters θ∗

a, yielding a much lower regret.

Transferable Contextual Bandits with Prior Observations 409

Impact of the Number of Historical Topic k. We investigate how k affects
our T-LinUCB. k controls the number of prior topics to learn from (Algorithm 2,
line 4). We run T-LinUCB with 4 topics with k = 0, 1, 2, 3. We report the cumu-
lative regret over all four topics on Fig. 6 wherein a vertical blue line indicates
the start of a new topic. Based upon our previous empirical results, we set the
parameters η to 1.1 and γ to 5 as they achieved the best performances. Figure 6
shows that all T-LinUCB instances that learn from prior knowledge outperform
the baseline LinUCB (i.e., T-LinUCB with k=0). A regular LinUCB learns from
scratch at each new topic, yielding a very high regret of 1567.98 at topic 4. When
k is set to 1, T-LinUCB achieves a regret of 1328.96 at topic 4. With a k set
to 2, T-LinUCB greatly outperforms both LinUCB and T-LinUCB k=1, with
a regret of 996.05 at topic 4. Surprisingly enough, with k set to 3, T-LinUCB
achieves a regret of 1229.96 at topic 4, which outperforms both LinUCB and
T-LinUCB k = 1, but performs slightly under T-LinUCB k = 2. This could be
due to the fact that historical observations that are too obsolete can introduce
noisy information. Figure 6 noticeably shows the advantage of using historical
knowledge from multiple topics to circumvent the cold-start problem and speed
up the learning of the bandit. Indeed, the regret difference between LinUCB and
T-LinUCB k = 2 is substantial at topic 4. The knowledge acquired from topics
1 and 2 by T-LinUCB allows it to estimate the unknown reward parameters
more rapidly, thereby decreasing the regret drastically. The experimental results
confirm our intuition that learning from multiple topics not only overcome the
cold-start problem, but also allows it to converge faster.

6 Conclusions

We have developed a new contextual bandit algorithm that leverages historical
observations from prior domain(s) to overcome the cold-start problem of per-
sonalized recommendation. Through the use of prior observations from multiple
source domain(s) for initalization of the new arm’s parameters, our T-LinUCB
algorithm speeds up the learning of the unknown reward parameters and greatly
improves the regret of the algorithm. Furthermore, our regret analysis showed
that our approach achieves the same regret bound as the oracle linear bandit
algorithm under the changing environment. Finally, our experimental results
showed that T-LinUCB achieves a much lower regret and benefit from a faster
convergence speed than the traditional LinUCB algorithm.

Acknowledgments. This work was supported in part by NSF 1937010 and 1940093.

References

1. Agrawal, S., Goyal, N.: Thompson sampling for contextual bandits with linear
payoffs. In: International Conference on Machine Learning, pp. 127–135 (2013)

2. Berry, D.A., Fristedt, B.: Bandit problems: sequential allocation of experiments
(monographs on statistics and applied probability), vol. 5(71–87), p. 7. Chapman
and Hall, London (1985)

410 K. Labille et al.

3. Bouneffouf, D., Bouzeghoub, A., Gançarski, A.L.: A contextual-bandit algorithm
for mobile context-aware recommender system. In: Huang, T., Zeng, Z., Li, C.,
Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7665, pp. 324–331. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-34487-9 40

4. Bouneffouf, D., Rish, I., Aggarwal, C.: Survey on applications of multi-armed and
contextual bandits. In: 2020 IEEE Congress on Evolutionary Computation (CEC),
pp. 1–8. IEEE (2020)

5. Chapelle, O., Li, L.: An empirical evaluation of thompson sampling. In: Advances
in Neural Information Processing Systems, pp. 2249–2257 (2011)

6. Chu, W., Li, L., Reyzin, L., Schapire, R.: Contextual bandits with linear payoff
functions. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics pp. 208–214 (2011)

7. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

8. Fernández-Tob́ıas, I., Cantador, I., Kaminskas, M., Ricci, F.: Cross-domain rec-
ommender systems: A survey of the state of the art. In: Spanish Conference on
Information Retrieval pp. 1–12. sn (2012)

9. Huang, W., Labille, K., Wu, X., Lee, D., Heffernan, N.: Achieving user-side fairness
in contextual bandits. CoRR abs/2010.12102 (2020), https://arxiv.org/abs/2010.
12102

10. Langford, J., Zhang, T.: The epoch-greedy algorithm for multi-armed bandits with
side information. In: Advances in Neural Information Processing Systems, pp. 817–
824 (2008)

11. Lazaric, A., Brunskill, E., et al.: Sequential transfer in multi-armed bandit with
finite set of models. In: Advances in Neural Information Processing Systems pp.
2220–2228 (2013)

12. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to per-
sonalized news article recommendation. In: Proceedings of the 19th International
Conference on World Wide Web, pp. 661–670 (2010)

13. Liu, B., Wei, Y., Zhang, Y., Yan, Z., Yang, Q.: Transferable contextual bandit for
cross-domain recommendation. In: AAAI (2018)

14. Nguyen, H.T., Kofod-Petersen, A.: Using multi-armed bandit to solve cold-start
problems in recommender systems at telco. In: Prasath, R., O’Reilly, P., Kathir-
valavakumar, T. (eds.) MIKE 2014. LNCS (LNAI), vol. 8891, pp. 21–30. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13817-6 3

15. Nguyen, T.T., Lauw, H.W.: Dynamic clustering of contextual multi-armed ban-
dits. In: Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management, pp. 1959–1962 (2014)

16. Russac, Y., Vernade, C., Cappé, O.: Weighted linear bandits for non-stationary
environments. In: Advances in Neural Information Processing Systems. pp, 12040–
12049 (2019)

17. Tang, L., Jiang, Y., Li, L., Li, T.: Ensemble contextual bandits for personalized
recommendation. In: Proceedings of the 8th ACM Conference on Recommender
Systems, pp. 73–80 (2014)

18. Zhang, J., Bareinboim, E.: Transfer learning in multi-armed bandit: a causal app-
roach. In: Proceedings of the 16th Conference on Autonomous Agents and Multi-
Agent Systems, pp. 1778–1780 (2017)

19. Zhou, Q., Zhang, X., Xu, J., Liang, B.: Large-scale bandit approaches for recom-
mender systems. In: International Conference on Neural Information Processing.
pp. 811–821. Springer (2017)

https://doi.org/10.1007/978-3-642-34487-9_40
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/2010.12102
https://arxiv.org/abs/2010.12102
https://doi.org/10.1007/978-3-319-13817-6_3

Modeling Hierarchical Intents and
Selective Current Interest for

Session-Based Recommendation

Mengfei Zhang1,2, Cheng Guo1,2, Jiaqi Jin1,2, Mao Pan1,2, and Jinyun Fang1(B)

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{zhangmengfei,guocheng18s,jinjiaqi19b,panmao17b,fangjy}@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Session-based recommendation is a challenging problem due
to the limited session data. In the real scene, there are two insights in
sessions: (1) Hierarchical intents: the implicit hierarchy in user pref-
erence is a common phenomenon, since users usually click a specific item
with a general intent. (2) The influence of the current interest: the
items that users click in order have sequence dependencies, and the next
item is affected by the current operation. However, recent approaches
are all inherently flat and neglect the hierarchical intents. Besides, they
neglect the truly related subsequence for modeling the current inter-
est. This can lead to inaccurate user intents, and fail when the user’s
next click tendency falls into the more general intent. In this paper, we
propose a method modeling from both Hierarchical Intents and Selective
Sequential Interests (HISSI). Methodologically, we design a general intent
abstractor to extract the common features and transmit general intents
through the hierarchy to form fine-to-coarse grained intents. In addition,
a selector-GRU is proposed to model the user’s subsequence behavior
that is related to the last click without noises. Extensive experiments on
three real-world datasets verify our model’s effectiveness.

Keywords: Recommender system · Session-based recommendation ·
Hierarchical intent · General intent learning · Sequential tendency

1 Introduction

Session-based Recommender Systems (SRS) are becoming increasingly
indispensable in helping anonymous users discover their interests. The SRS task
is to predict the next item that the user is probably interested in solely based on
the actions, i.e., clicks, of the current session. Existing studies have investigated
various factors that might influence SRS performances, e.g., sequential patterns
ch33hidasi2015session, item transitions/relations [19,20], local/global interests
[7,9], etc. Despite the success of these methods, predicting the next action from
the limited user behavior data is still a challenging task.

To illustrate, Fig. 1 depicts a session sequence from a real-world ecommence
system (e.g. Taobao), where two insights are revealed: (1) Hierarchical intent,
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 411–422, 2021.
https://doi.org/10.1007/978-3-030-75765-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_33&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_33

412 M. Zhang et al.

Fig. 1. A session sequence with several items sharing common features. For example,
the user first clicks three Nike sport coats, and then clicks black sport coats with similar
styles. We can model this implicit commonness, thus forming hierarchical preference.
Then the method can recommend the next items that the user prefer, such as Nike
sport coat in black and other styles coat.

in reality, the implicit hierarchy in user preference is a common phenomenon,
since users usually click on a specific item with a general intention. For example,
the overall goal of the user is to buy a sports coat, and the more fine-grained
intents are a certain brand or style of sport coats. Finally, these purposes are
reflected by several specific behaviors, which represent the user’s personalized
taste for items of different colors, styles or prices. (2) The influence of the
current interest, the items that users click in order have sequence dependen-
cies, and the next item is affected by the current operation. For instance, if the
user has the intent to buy a sport coat and the current action is to click an
Adidas coat in black, then the user is very likely to visit another brand or the
same style of sport coats at the next timestep. Based on the above insights, it
is important to learn both hierarchical intents and the accurate expression of
current interest for better recommendation performance.

However, recent works ignore the hierarchical intent modeling and haven’t
accurately capture the current interest: (1) Although recent successful GNN-
based methods [10,19,20] deploy multiple layers on the graph and capture com-
plex transitions of items, the graph structure only helps make the items in a ses-
sion tend to be homogeneous and smooth the item representations. CNN-based
models [14,15] use convolutional filters to model sequential patterns instead of
hierarchical intent. (2) STAMP [9] proposes to consider the last click as the cur-
rent interest. However, it is insufficient since it ignores other items related to the
last click in the sequence. RNN-based models [5,7] consider the last hidden state
as the current interest, which probably introduces noise items. In essence, GNN
and RNN based methods are all inherently flat in modeling SRS as they only
propagate information across the edges of the graph or the time order of the
sequence. These flat modeling methods can only recommend items with similar
details, while they will fail when the user’s next click falls into the second or
even the third layer of more general intent. In summary, all of these methods are

Modeling Hierarchical Intents and Selective Current Interest 413

inherently flat and ignore the hierarchical intent. Besides, the existing methods
are inaccurate to model the current interest and neglect the influence of other
items that are truly associated with the last click item.

To address these problems, in this paper, we propose a method modeling
from both Hierarchical Intents and Selective Sequential Interests (HISSI). The
hierarchical intention is reflected in the gradual generalization of user intention
from fine-grained to coarse-grained. Selective sequence interest carefully identi-
fies the subset related to the last item to remove the noise items and represent
the current interest more accurately. Specifically, we design a General Intent
Abstractor (GIA) to extract the common features among items and transmit
them through the hierarchy of layers. Furthermore, we propose a Selector Gated
Recurrent Unit (SGRU) to model the session’s current interest more accurately
by employing a subset selector before the items are input into the GRU. Finally,
HISSI fuses the output of GIA and SGRU to force the final session representa-
tion to consider both the intention of different granularities and the influence of
current sequence preference. We conduct experiments and verify the effectiveness
of our model, and make some detailed analysis.

To summarize, the major contributions of this paper are listed as follows:
(1) We propose a Hierarchical Intents and Selective Sequential Interests (HISSI)
modeling method for SRS. The method models the fine-to-coarse grained intents
representation from the bottom up and identifies the current interest from accu-
rate subsequence. (2) In HISSI, we design a general intent abstractor and a
selector-GRU to address the hierarchical intention and inaccurate modeling of
current interest problem, respectively. (3) Extensive experiments on three e-
commerce datasets show that our method outperforms state-of-the-art baselines.

2 Related Work

In this section, we illustrate some related works about the proposed model,
including conventional methods, deep learning-based methods.

Conventional studies on SRS can be classified into neighbor-based methods
[1,12] and Markov chains (MC) based methods [11]. For example, Item-KNN [12]
considers the item similarities to find the nearest neighbor. FPMC [11] combines
MC and Matrix Factorization (MF) to capture both sequential behaviors and
general interests.

In recent years, deep learning has achieved great success in many fields
including recommender systems. Recent researches focus on leveraging RNN
and consider the items as a sequence. GRU4Rec [5] firstly uses RNN to handle
this problem. Improved-GRU4Rec [13] introduces four optimization methods for
GRU4Rec, in which the data augmentation strategy has a great impact on later
works. Later, NARM [7] proposes to integrate attention mechanism into RNN
which can calculate the importance of each item and capture the main purpose.
After that, MLP and attention based method STAMP [9] emphasizes the long-
term interests and current interest. However, it simply takes the last click as
the current interest, which is insufficient for accurate recommendation. After-
ward, recent works highlight the item transitions and use graph neural networks

414 M. Zhang et al.

Fig. 2. The framework of HISSI.

(GNN) to learn the sessions [2,19,20]. For example, SR-GNN [19] proposes to
use a gated graph neural network [8] to learn the item transitions. GC-SAN [20]
extends the model by combining the self-attention network [16] and GNN to
enhance the performance. LESSR [2] handles the lossy encoding problem and
the ineffective long-range dependency capturing problem by preserving the edge-
order and adding shortcut connections of the graph. Furthermore, some studies
show neighborhood-based methods in neural networks can still provide compet-
itive results. CSRM [17] exploits collaborative information to better predict the
intent by investigating neighborhood sessions based on NARM.

3 Problem Formulation

Let I = {i1, i2, ..., i|N |} denote the set of all unique items and |N | be the total
number of items. For an anonymous click session, the clicked sequence X =
[x1, . . . , xt, . . . , xn] is ordered by timestamps, where xt ∈ I is an item that a
user clicks at timestep t. We build a model and output the probability ŷ of all
candidate items in I. The items with top-k scores are the final recommendations.

4 Method

The architecture of HISSI is illustrated in Fig. 2. HISSI contains three main parts:
(1) the GIA module which models the hierarchical session specific-to-general
intents, and each level of intent is extracted by a GIA layer. (2) the Selector
GRU (SGRU) models the current interest through selecting a subset of items
from the session and applying GRU to learn the subsequence. (3) the Preference
Generation (PG) aggregates the hierarchical intents, and takes current interest
into account when making recommendations.

These three main modules work together to make the model have the abil-
ity of learning hierarchical intents, and the user’s intents also benefit from the
influence of recent behavior tendency. Next, we introduce each part in detail.

Modeling Hierarchical Intents and Selective Current Interest 415

Fig. 3. The General Intent Abstractor (GIA) and the Selector-GRU (SGRU).

4.1 Embedding Layer

The embedding layer maps the item into low-dimensional dense vectors by matrix
E ∈ R

|N |×d, where d is the dimension. We first encode the item i (i ∈ I) as a one-
hot vector ei ∈ R

|N |, then the embedding vector of item i is denoted by xi = Eei.
Afterwards, the item sequence are represented as X = [x1, . . .xn] ∈ R

n×d.

4.2 General Intent Abstractor

The General Intent Abstractor (GIA) in Fig. 3 (left) module aims to identify the
fine-to-coarse grained intents successively. Technically, each GIA layer contains
a commonness gate and a convolution operation. The commonness gate controls
how many common features should be passed through the hierarchy of layers
to form high-level intent. To calculate the importance of each item, we need to
calculate the correlation between items. Inspired by the self-attention mechanism
[16], we first calculate the pairwise similarity between each item and other items.
Then we average the similarity matrix to get the distance between each item and
other items. Intuitively, if an item has a relatively small similarity with other
items, it indicates that the item is far from the main intent of the session. On
the contrary, the item may have more in commonness with others. We apply the
sigmoid function to get the commonness gate gt:

gt = sigmoid(
1

n − 1

n∑

j=1,j �=t

Mtj)

M = QsKT
s ,

(1)

where Qs ∈ R
n×d and Ks ∈ R

n×d are transformed from the session sequence X
by two weight matrices. M ∈ R

n×n indicates the similarity matrix.
To capture the effective common features among items that affect user behav-

iors. We generate the current candidate state representation as follows:

H̃l = tanh(Wf ∗ Zl−1 + b1), (2)

416 M. Zhang et al.

where ∗ is the convolution operation, and b1 is a constant bias. Wf is a 1D
convolutional filter with kernel size k. Zl−1 is the (l − 1)th layer’s item input,
and we make Z0 = X. We use a left (k − 1) zero-padding to make the sequence
Zl−1 fixed length and prevent the kernels from seeing future items. H̃l is the
extracted the common features of the items in each layer. We output the lth
layer by multiplying commonness gate with H̃l:

Zl = gt � H̃l, (3)

where � is element-wise multiply.
The user’s intent in a session is generally concentrated. Related fine-grained

intent will be further abstracted to more general intent. In the bottom layer of
GIA, only local specific interests which are reflected by continuous clicks are
captured within a small-scale span. With the layers upper, the receptive field is
enlarged and intents among more wide context windows are extracted.

To generate certain-grained intent representation, a self attentive-pooling
operation is performed by assigning different importance to each item. The atten-
tion score and the intent representation at layer l are defined as follows:

αi = softmax(q�tanh(Wlzl,t + b2)),

vl =
n∑

i=1

αizl,t,
(4)

where q,b2 ∈ R
d, and Wl ∈ R

d×d is a weight parameter. zl,t ∈ R
d is the item

representation at timestep t in the lth layer.

4.3 Selector-GRU

The Selector-GRU (SGRU) in Fig. 3 (right) aims to model current interest more
accurately by removing noise items. Inspired by the selective mechanism [3],
we implement a selector, which can select a subset of items related to the last
click item. On top of the selector, we conduct a GRU to learn the subsequence,
and generate the current interest representation. Technically, we calculate the
correlation score between each item and the last item, and derive a selection
action decision. The item will be selected as one element of the subset when
the decision is 1. Otherwise, if the decision is 0, the item will be discarded. The
similarity scores between the last item and other items are represented as An:

An = (XWq)(Wkxn), (5)

where Wq ∈ R
d×d and Wk ∈ R

d×d are transformation matrices. To get the two
cases of discrete 0 or 1 probability (π(An)) and address the non-differentiable
problem which is caused by discrete variables. Similarly to Gumbel-Softmax [6]
distribution, we adopt the Gumbel-Sigmoid to decide whether to select or discard
actions.

Gumbel-Sigmoid(An) = sigmoid((An + G1 − G2)/τ),

=
exp((An + G1)/τ)

exp((An + G1)/τ) + exp(G2/τ)
,

(6)

Modeling Hierarchical Intents and Selective Current Interest 417

where G1 ∈ R
n and G2 ∈ R

n are two independent Gumbel noises, τ is the
temperature parameter. Then we conduct a GRU to learn sequential behaviors
of the subset items:

SGRU(ht−1,xt) =

{
GRU(ht−1,xt) if π(An) = 1
ht−1 if π(An) = 0,

(7)

We regard the last hidden state as the current interest representation vcur.

4.4 Preference Generation

The different level of intent is represented as v1,v2 . . .vl. To make the recom-
mender decision considers both the hierarchical intents and the current interest.
We first perform a sum aggregation on the multi-granularity intents, then we
output the session preference vs by combining the hierarchical and sequential
vectors:

vhier =
L∑

l=1

vl, vs = Ws[vhier;vcur], (8)

where L is the total layer number, matrix Ws ∈ R
d×2d compresses two combined

embedding vectors into the latent space R
d.

4.5 Prediction Layer

We use a dot product operation to get the match score ĉi for each candidate
item x ∈ I between its embedding xi and the session representation vs. Then
we use a softmax function to compute the probabilities of all candidate items:

ŷ = softmax (ĉ) , ĉi = vs
�xi, (9)

where ĉ ∈ R
|N | and ŷ ∈ R

|N | denote the recommendation scores and proba-
bilities over all items, respectively. Finally, our model is trained by minimizing
the cross-entropy loss computed with the prediction and ground truth:

L(ŷ) = −
|N |∑

i=1

yi log (ŷi) + (1 − yi) log (1 − ŷi), (10)

where y denotes the one-hot encoding vector of the ground truth item and we
use the back-propagation through time (BPTT) algorithm to train our model.

5 Experiments

5.1 Evaluation Setup

We use three real-world benchmark datasets for evaluation, i.e. Diginetica1,
Taobao2, Yiwugo3. Diginetica and Taobao are two public datasets and Yiwugo
is a private dataset formed by the click behavior of wholesale users.
1 http://cikm2016.cs.iupui.edu/cikm-cup.
2 https://tianchi.aliyun.com/dataset/dataDetail?dataId=46.
3 https://www.yiwugo.com.

http://cikm2016.cs.iupui.edu/cikm-cup
https://tianchi.aliyun.com/dataset/dataDetail?dataId=46
https://www.yiwugo.com

418 M. Zhang et al.

After preprocessing operations the statistics of three datasets are shown
in Table 1. We follow the session and item filter preprocess rules in [18]. We
use 27 days for training and the rest 3 d for testing for Taobao and Yiwugo,
while the rest 7 d for testing for Diginetica. We generate sequences and cor-
responding labels by splitting the input of length n into n-1 partial sessions.
For example, given an session [x1, x2, . . . , xn], we generate the inputs and labels
([x1], x2), ([x1, x2], x3), ..., ([x1, x2, . . . , xn−1], xn), where xn refers the label.

Table 1. Statistic details of datasets used in the experiments.

Statistics Diginetica Taobao Yiwugo

Training sessions 719,470 2,396,322 4,478,158

Test sessions 60,858 376,234 636,740

All the items 43,097 60,834 69,914

Average length of sessions 4.85 12.48 8.08

Average categories of sessions 1.38 3.69 3.61

We compare and analyze our model with the following representative meth-
ods: (1) S-POP recommends the top-N popular items in the current session. (2)
Item-KNN [12] recommends items similar to the last item in the session. (3)
GRU4REC [5] applies RNN to model user sessions. (4) NARM [7] employs
GRU with an attention mechanism to encode the sessions’ sequential pattern
and main purpose. (5) CSRM [17] is a memory augmented approach which
applies collaborative neighborhood information to SRS. (6) SR-GNN [19] con-
siders the session as a graph and utilizes GGNN [8] to update item embeddings.
(7) LESSR [2] handles the lossy encoding problem by preserving the edge-order
and adding shortcut connections. (8) MCPRN [18] proposes to route each item
into a specific channel, then represent the multi-purpose of a session through
multiple RNNs. (9) HLN [4] proposes to model users’ multiple preferences with
subsequent group learning.

We evaluate our model with the classical Recall@k and MRR@k metrics for
recommendation accuracy evaluation. We employ k = 20 and train the model
three times to report the average test scores in terms of accuracy in Table 2.

For all baseline models, the parameters and initialization strategies are con-
sistent with the corresponding papers and then we optimize the models in our
datasets to obtain the best performance for fairness. For HISSI, we use Adam
optimizer with the initial learning rate of 0.001 and decays by 0.1 after every 3
epochs. Moreover, the batch size is 100. The hidden vector size and embedding
size d are both set to 100. We select other hyper-parameters on a validation set,
which is a 10% subset of the training set. We set the number of channels in GIA
to 100 and kernel size k to 3. We set the layer L to 3 and dropout p to 0.3. The
temperature τ is set to 0.01.

Modeling Hierarchical Intents and Selective Current Interest 419

Table 2. The performance (%) of HISSI with other baseline methods over three
datasets. The best results are highlighted in boldface and the best results among the
baselines are underlined.

Method Diginetica Taobao Yiwugo

Recall MRR Recall MRR Recall MRR

S-POP 19.24 12.73 21.55 11.82 23.08 16.75

Item-KNN 34.61 10.82 37. 14 15.89 32.77 21.70

GRU4Rec 29.75 8.49 46.57 27.69 46.53 32.60

NARM 49.66 16.87 51.04 31.01 58.11 46.54

CSRM 50.56 17.32 51.64 31.89 58.73 46.50

SR-GNN 50.73 17.59 51.42 32.36 59.21 46.28

LESSR 51.71 18.15 54.03 34.49 60.02 46.91

MCPRN 50.24 16.92 54.28 35.42 59.98 47.33

HLN 49.97 17.24 54.97 36.73 60.36 47.89

HISSI 53.62 18.78 61.24 39.05 63.14 48.75

5.2 Performance Comparison with Baselines

Table 2 presents the detailed performance among baseline methods and our
method on three datasets. Some observations can be made: (1) The neural
approaches outperform the conventional methods. (2) RNN-based methods prove
the effectiveness of RNN. GRU4Rec encodes the session ignoring the noise items.
Later NARM and CSRM solve this problem by incorporating the attention mech-
anism into RNN to focus on important items. However, they may easily generate
false dependencies, which can be avoided by SGRU’s selector. GNN-based meth-
ods (SR-GNN, LESSR) outperform the single layer RNN-based methods overall,
and prove the advantage of learning session graph. (3) The recent multi-interest
based models MCPRN and HLN perform well and benefit from distinguishing
different purposes. However, they manage purposes in a flat way and ignore
the hierarchical intents. (4) Overall, our method HISSI outperforms both con-
ventional methods and recent neural approaches and achieves state-of-the-art
performance. Particularly, HISSI obtains improvements over the best baseline
results of 3.69%, 11.41%, and 4.61% in Recall@20 on three datasets, respec-
tively. In terms of MRR@20, the relative improvements are 3.47%, 6.32%, and
1.80%, respectively. Besides, the absolute improvement on Taobao and Yiwugo
is more obvious than Diginetica. Since Taobao and Yiwugo datasets contain
more categories in a session as shown in Table 1, and we assume that more cate-
gories represent more extensive intents, which is naturally suitable for modeling
hierarchical interests than Diginetica (Table 3).

420 M. Zhang et al.

Table 3. The ablation analysis of HISSI on Diginetica and Taobao datasets. Best
performance (%) is boldfaced.

Method Diginetica Taobao

Recall@20 MRR@20 Recall@20 MRR@20

HISSI 53.62 18.78 61.24 39.05

HISSI w/o GIA 50.32 17.21 53.11 36.85

HISSI w/o gt 51.04 18.14 57.42 38.21

HISSI w/o SGRU 51.72 17.54 58.91 37.70

HISSI-GRU 52.12 17.92 59.22 38.64

5.3 Ablation Analysis

To investigate how different modules affect the performance, we consider the
variants of HISSI that calculate the metric score after removing or replace each
module. We introduce each module separately:

(1) Impact of GIA. Without GIA, HISSI ignores hierarchical modeling and
only use SGRU for prediction. This is similar to RNN-based methods that cap-
ture sequential behaviors. We observe that the variation slightly outperforms
NARM and CSRM, since it benefits from the accurate current interest mod-
eling. However, the performance decrease proves that the hierarchical intents
modeling plays a great role in our method. (2) Impact of common feature
gate. Without common feature gate gt, the input item sequence in each layer is
directly encoded by a convolution operation. Interestingly, we observe an obvious
decrease in model performance. This verifies the importance of gt. (3) Impact
of SGRU. Removing the current interest learning leading to obvious perfor-
mance degradation on all datasets, especially in MRR@20. Compared with the
removal of GIA module, it can be seen that GIA has a greater impact on per-
formance improvement in this model. In addition, we also replace the SGRU
with the original GRU to verify the advantage of our design SGRU, as shown in
HISSI-GRU, the performance decrease is smaller than HISSI w/o SGRU.

Fig. 4. Left: Visualization of attention weights from layer 1 to 3. The square scores
represent the average attention score of the items at each position. Right: Recall of
different layers.

Modeling Hierarchical Intents and Selective Current Interest 421

5.4 Case Study

Visualize the Attention Weights. We randomly select a session from the
Taobao dataset to visualize the attention distribution of each layer. From Fig. 4
(left) we have the following observations: (1) In the first layer, although the items
share common features, there are many differences in details, and the difference
of attention scores is relatively large. Besides, the last item is important for
prediction. (2) As the number of layers increases, the difference of the attention
scores becomes smaller, and the intents become more general, which proves our
model captures multi-level user preferences from fine-to-coarse grained.

Recall of Different Level of Intents. We use the vectors of each layer vl to
make predictions and calculate the percentage of matching items of each layer in
the total number of matching items in all layers to count the accuracy of different
intent levels. Note that we only calculate the sessions that can successfully hit
the target by multi-layer vectors. The result is shown in Fig. 4 (right). We can
see that not only the first layer, but also the high layers can hit target items.
The model increases the coverage of users’ interest, and enhance the item hit
probability, while other flat models may ignore the contribution of more general
intents for matching items.

6 Conclusion

This paper proposes a hierarchical intent and selective subsequential interests
learning model with general intent abstractor module extracting the coarse-
grained intent progressively, and a selector-GRU module helping model the user’s
accurate subset items that are related to the last click. Empirical experiments
show that our model achieves state-of-the-art performance on all datasets.

Acknowledgements. This work was supported by Beijing Municipal Science and
Technology Project Z201100001820003.

References

1. Bonnin, G., Jannach, D.: Music playlists: Survey and experiments. ACM Comput.
Surv. 47(2), 26:1–26:35 (2014). https://doi.org/10.1145/2652481, https://doi.org/
10.1145/2652481

2. Chen, T., Wong, R.C.W.: Handling information loss of graph neural networks
for session-based recommendation. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1172–1180
(2020)

3. Geng, X., Wang, L., Wang, X., Qin, B., Liu, T., Tu, Z.: How does selective mech-
anism improve self-attention networks? arXiv preprint arXiv:2005.00979 (2020)

4. Guo, C., Zhang, M., Fang, J., Jin, J., Pan, M.: Session-based recommendation
with hierarchical leaping networks. In: Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp.
1705–1708 (2020)

https://doi.org/10.1145/2652481
https://doi.org/10.1145/2652481
https://doi.org/10.1145/2652481
http://arxiv.org/abs/2005.00979

422 M. Zhang et al.

5. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

6. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144 (2016)

7. Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based
recommendation. In: Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pp. 1419–1428. ACM (2017)

8. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493 (2015)

9. Liu, Q., Zeng, Y., Mokhosi, R., Zhang, H.: Stamp: short-term attention/memory
priority model for session-based recommendation. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1831–1839. ACM (2018)

10. Qiu, R., Li, J., Huang, Z., Yin, H.: Rethinking the item order in session-based
recommendation with graph neural networks. In: Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, pp. 579–
588 (2019)

11. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
Markov chains for next-basket recommendation. In: Proceedings of the 19th Inter-
national Conference on World Wide Web, pp. 811–820. ACM (2010)

12. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295 (2001)

13. Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based
recommendations. In: Proceedings of the 1st Workshop on Deep Learning for Rec-
ommender Systems, pp. 17–22. ACM (2016)

14. Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolu-
tional sequence embedding. In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining pp. 565–573. ACM (2018)

15. Tuan, T.X., Phuong, T.M.: 3d convolutional networks for session-based recommen-
dation with content features. In: Proceedings of the Eleventh ACM Conference on
Recommender Systems, pp. 138–146 (2017)

16. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

17. Wang, M., Ren, P., Mei, L., Chen, Z., Ma, J., de Rijke, M.: A collaborative session-
based recommendation approach with parallel memory modules. In: Proceedings
of the 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 345–354 (2019)

18. Wang, S., Hu, L., Wang, Y., Sheng, Q.Z., Orgun, M., Cao, L.: Modeling multi-
purpose sessions for nextitem recommendations via mixture-channel purpose rout-
ing networks. In: Proceedings of the 28th International Joint Conference on Arti-
ficial Intelligence, pp. 1–7. AAAI Press (2019)

19. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommen-
dation with graph neural networks. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 346–353 (2019)

20. Xu, C., Zhao, P., Liu, Y., Sheng, V.S., Xu, J., Zhuang, F., Fang, J., Zhou, X.:
Graph contextualized self-attention network for session-based recommendation.
In: Proceedings of 28th International Joint Conferences on Artificial Intelligence
(IJCAI), pp. 3940–3946 (2019)

http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1511.05493

A Finetuned Language Model for
Recommending cQA-QAs for Enriching

Textbooks

Shobhan Kumar(B) and Arun Chauhan

IIIT Dharwad, Karnataka, India

Abstract. Textbooks play a vital role in any educational system,
despite their clarity and information, students tend to use community
question answers (cQA) forums to acquire more knowledge. Due to the
high data volume, the quality of Question-Answers (QA) of cQA forums
can differ greatly, so it takes additional effort to go through all possi-
ble QA pairs for a better insight. This paper proposes an “sentence-
level text enrichment system” where the fine-tuned BERT (Bidirectional
Encoder Representations from Transformers) summarizer understands
the given text, picks out the important sentence, and then rearranged
them to give the overall summary of the text document. For each impor-
tant sentence, we recommend the relevant QA pairs from cQA to make
the learning more effective. In this work, we fine-tuned the pre-trained
BERT model to extract the relevant QA sets that are most relevant for
enriching important sentences of the textbook. We notice that fine-tuning
the BERT model significantly improves the performance for QA selection
and find that it outperforms existing RNN-based models for such tasks.
We also investigate the effectiveness of our fine-tuned BERTLarge model
on three cQA datasets for the QA selection task and observed a maxi-
mum improvement of 19.72% compared to the previous models. Exper-
iments have been carried out on NCERT (Grade IX and X) Textbooks
from India and “Pattern Recognition and Machine Learning” Textbook.
The extensive evaluation methods demonstrate that the proposed model
offers more precise and relevant recommendations in comparison to the
state-of-the-art methods.

Keywords: cQA · BERT · QA · Precision · Text-enrichment

1 Introduction

The Community Question Answering (cQA) portals, including Quora1, and Red-
dit2 offers people to share their knowledge and learn from each other. In the
past decade, these cQA forums have attracted the attention of a large number
of users, it results in accumulating a massive amount of QA-comment threads
1 –https://www.quora.com/.
2 –https://www.reddit.com/.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 423–435, 2021.
https://doi.org/10.1007/978-3-030-75765-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_34&domain=pdf
http://orcid.org/0000-0003-0037-7951
http://orcid.org/0000-0002-0327-7254
https://www.quora.com/
https://www.reddit.com/
https://doi.org/10.1007/978-3-030-75765-6_34

424 S. Kumar and A. Chauhan

by these users. Despite the fact that there is a great substance in the available
textbooks, students prefer to use cQA forums to acquire more knowledge. There
will be several responses in cQA that are attached to the same question, so
it makes it difficult for any user to pick the right one. As a consequence, stu-
dents spend more time gathering the requisite data from the web to get a better
picture of a textbook concept. The productivity of students could be impaired
by this process. The conventional models of information retrieval [1,15,16,24]
can retrieve the QA sets from the old archived data. These existing methods
have not addressed issues like how to use these large volumes of QAs from cQA
forums to enrich textbook contents in a real-time manner to help the students
fraternity with minimal effort. Therefore it would be very essential to automate
the procedure of obtaining relevant QA from cQA for their textbooks for better
insight.

Our contributions in this work include the following:

– Text summary generation: For the given text document our fine-tuned BERT
summarizer select the important/informative sentence and rearranged them
to give the precise summary.

– Text enrichment using QA: For each informative sentences of the textbook
our fine-tuned BERTLarge model extracts the relevant QA pairs from Quora
(see Footnote 1) cQA forum.

– Experiments on cQA dataset: We conduct rigorous experiments in three cQA
datasets by fine-tuning the BERTLarge model for the QA selection task and
observe that the fine-tuned BERTLarge model outperforms state-of-the-art
methods where pre-trained language models have not been used.

The rest of this paper has the following sections. Section 2 highlights the related
work. Section 3 gives a detailed description of the proposed model. Section 4
reports the experimental results and discussion. Finally, we conclude the paper
in Sect. 5.

2 Related Work

An important part of education is the student’s learning. Good quality educa-
tion is based mainly on how well the student attains the knowledge. Few attempt
[9,10] has took place to enrich the textbook contents which makes the learning
process more effective and joyful. The selection of best matched QA is intimate
relation to the subjects such as semantic search (Jose et al.) [7], (Badri et al.)
[16], QA recommendation (Dirk et al.) [24], and retrieval from cQA. The engage-
ment of students in MOOCs absolutely relies upon the quality materials of the
educational cQA systems. (Macina et al.) [13] Assigning the weight to the experts
who can provide the quality answer for the asked questions can stabilized the
quality of QA in cQA. (Nakov et al.) [15] the Semeval 2017 task 3 competition
stresses the concepts like cosine distance that can be used to verify the lexical,
syntactic, semantic relations. Tay et al. [21] describes the neural network mod-
els which have been used for learning word illustrations to make a faster QA

A Finetuned Language Model for Recommending 425

system to retrieve the questions. The text enrichment model (Agrawal et al.) [1]
augments the text documents with QAs from Wikipedia archives. A sentence-
level text enrichment model(sk et al.)[8], fetches the relevant cQA-QA pairs for
the given text sentences. The textbook contains a large number of sentences
so identifying the important sentence and fetching the relevant cQA-QAs is a
tiresome process. Therefore in this work, we select the important sentences from
the textbook using the finetuned BERT summarizer and for these sentences, our
model retrieves the relevant QA pairs from cQA.

Different sentence similarity models based on the neural network (Qin et al.)
[4], (Chen et al.) [3], (Jinfeng et al.) [19] has been used in recent years to test
the similarity between the question and the candidate’s answer. At first, the
word embedding (GloVe (Pennington et al.) [17] or Word2Vec (Mikolov et al.)
[14]) representations of the question and the candidate’s answer have been used
as input to such neural models. Later on, the vector representations of these
sentences generated by the neural models are used for the similarity calculation
[3,4]. But, such word embedding can offer only a fixed representation of a word
and does not capture its context. In recent years, the language model has shown
to be effective for improving many natural language processing tasks. Pre-trained
language models can provide contextual representations of each word in different
sentences (Devlin et al.) [6], (Matthew et al.) [18]. Among the different pre-
trained language models, the (BERT) [6] is an empirically powerful one and
it performs a wide range of NLP tasks (Vaswani et al.) [23]. The pre-trained
BERT model can be fine-tuned with additional architectures to perform specific
tasks. However, the model is not deeply investigated for the answer selection task
yet (Tahmid et al.) [11]. In this work, we fine-tuned the pre-trained BERTLarge

model for the QA selection task.

Fig. 1. The overall architecture of the proposed “Sentence Level Text Enrichment”
system with cQA-QAs.

3 Methodology

In this section, we depict the working sequence of our text enrichment model
with relevant QA from Quora (see Footnote 1). Figure 1 describes the overall

426 S. Kumar and A. Chauhan

architecture of the proposed enrichment model where the model takes text as an
input and gives the required number of relevant QA pairs from Quora. The work
in this paper has the following phases. i) Data preprocessing ii) Summary gen-
eration iii) The term array generation for the informative sentence. iv) Finding
the relevant data for Text Enrichment.

3.1 Data Analysis and Preprocessing

The enrichment system will fetch the relevant QAs from Quora for a given text.
The input text document requires a preprocessing task since these textbook
copies may contain several special characters, HTML links, images, tables, etc.,
which is not relevant to the task. The enrichment method exploits various lexical
and structural features to provide clean text and it becomes the facts for the
succeeding information retrieval process.

3.2 Text Summary Generation

Text summarization keeps the relevant information from a large document while
retaining the most important information. The pre-trained BERT model [6] is
fine-tuned to perform the summarization tasks (ref. Fig. 2). For a set of sen-
tences {s1, s2, s3, ..., sn} we have two possibilities, that are, yi i = {0,1} which
denotes whether a particular sentence will be picked or not. The complete process
has multiple phases such as (i) Encoding-Multiple-Sentences. (ii) Embeddings.
The input text document is encoded in the Encoding-Multiple-Sentences phase.
Three types of embeddings are applied to the cleaned text prior to feeding it to
the BERT layer. The token embeddings convert the words into a fixed dimen-
sion vector, and the sentence is preceded by a CLS tag and succeeded by a SEP
tag, where the CLS tag aggregates the features of one or more sentences. The
Interval-Segment-Embeddings phase distinguishes the sentences in a document.
Sentences are assigned the labels such as Ex or Ey (senti = Ex or Ey based on
i. i.e. Ex for even i and Ey for odd i). Positional embedding is used because a
word’s position in a sentence may change the sentence’s contextual meaning.

BERT Architecture: The pre-trained BERT model has 12 transformer layers
along with 12 attention layers and 110 million parameters. In order to learn the
summarization specific features, in this work an LSTM layer is added with the
BERT model output. Where each LSTM cell is normalized. At time step i, the
input to the LSTM layer is the BERT output Ti.

Ci = σ(Ai).Di − 1 + σ(Bi).tanh(Hi − 1) (1)

Oi = σ(Ci).tanh(NPc(Ci)) (2)

where Ai, Bi, Ci are forget gates, input gates, output gates. Hi represents
the hidden vector and Di is the memory vector, Oi is the output vector and NPc

is the normalization operations. The output layer is again the sigmoid layer.

A Finetuned Language Model for Recommending 427

Fig. 2. The architecture of the BERT summarization model.

3.3 Term Array Generation

Algorithm 3 describes how the key phrases are selected for each important sen-
tence of a given text document. These key phrases are excellent means for pre-
senting a concise summary of a document. The key phrases with an added key-
word “Quora” is given to Google Search API (GSA) which returns the relevant
hyperlinks from which we fetch top N relevant hyperlinks.

Algorithm 1: Term array (key phrases) generation from text document
Input : A set of important/informative sentences S for a given text document
Output: Term array (key phrases)Si for each sentences

1 Identify the sentence list in the text document using sentence tokenizer
2 for each sentence i do
3 Use word tokeniser to compute the set Si of keyphrases (tokens)
4 Use predefined stop word list to remove non-keywords in Si

5 Prepare a final Si list
6 end for

3.4 Text Enrichment - Finding the Enriched Data

There are several cQA forums are available, for this work we focused on the
Quora cQA forum to retrieve relevant QA pairs. Relevant QA pairs help students
to understand and learn in a variety of ways, in turn, it promotes their learning
autonomy levels. Our sentence level enrichment process extracts the relevant
QAs, corresponding URLs from Quora, and then present the same to the user
in standard formats.

– 3https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=10.
– 4https://huggingface.co/transformers/pretrained models.html.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=10
https://huggingface.co/transformers/pretrained_models.html

428 S. Kumar and A. Chauhan

Fig. 3. Term (key-phrase) array generation for the informative sentences of the text.

3.4.1 Find Relevant QA from Quora
Figure 3 describes the sequence of operations that are required to generate the
best matched QA sets for the given text document as proposed. First, the system
generates a keyphrase array for the given input. Then each keyphrase array (W1

to Wn) is given to GSA to extract relevant URLs from Quora. For each extracted
URL there may be several answers for the question referred by URL which may
or may not be relevant for the input text. We used our fine-tuned the BERTLarge

model to select the relevant QAs from cQA.

Fine-tuning BERT for Relevant QA Selection: Figure 4 demonstrates the fine-
tuning phase of the pre-trained BERTLarge model for the relevant QA selection
task. For fine-tuning, parameters are added for the additional classification layer
F to the pre-trained BERT model. In order to maximize the log-probability of the
correct label, all parameters of the BERT model, and the additional parameters
for the classifier F are jointly fine-tuned. The probability of each label P ∈ Rj

is determined as follows (where j is the total number of classifier labels).

P = softmax(CFT) (3)

In the QA selection task, there are two classifier labels (label 0: candidate
answer is irrelevant to the question/term array, label 1: candidate answer is
relevant). In the pre-trained BERT model [6], the sentence pair classification

A Finetuned Language Model for Recommending 429

Fig. 4. BERT Fine Tuning: The term array X and the candidate answer Y are combined
to form an input to the BERT model (pre-trained) for fine-tuning.

task was carried out by determining the correct label. In this work, we alter the
final layer and only consider the predicted Pr score for the similarity label to rank
the available answers based on their similarities with the term array/question.
After the similarity checking operation we selected the top k QA pairs and
corresponding URLs

Pr = P (C = 1|X,Y) (4)

4 Experimental Results and Discussion

The proposed sentence-level text enrichment approach retrieves the relevant QAs
and URLs from the Quora cQA forum to enrich the given text sentence. We
verified our model with the following data sets.

Data Set 1 To validate the enrichment model, we have considered NCERT
textbook (Science Grade X, Computers and Communication Technology part
I&II, Grade XI) and graduate levels textbook Pattern Recognition and Machine
Learning by Christopher M. Bishop [2]. Textbook contains a number of images,
HTML links, etc. The data sets will be preprocessed as explained in Sect. 3.1. To
validate our proposed model, we randomly chosen 25 text documents (pages)from
the above-mentioned textbooks and then applied a preprocessing method to gen-
erate clean text. For this task, we processed approximately 625 sentences (25 *
25 = 625 sentences) from the above-mentioned textbook in which all sentences
may not be informative. For incomplete or ambiguous sentences the retrieval
model will not return any QA pairs from Quora, therefore we select the infor-
mative sentence using our fine-tuned BERT model as explained in Sect. 3.2. We
have selected 315 informative sentences and it becomes the input data for the
subsequent QA retrieval process.

Table 1 describes the statistics of the retrieved QA pairs from Quora for the
above mentioned textbook (data set1). Table 2 to Table 4 shows the retrieved
questions from Quora for important sentences of the sample text (heighlighted
part in Fig. 5).

In our experiments, we have also used three cQA datasets. The overall statis-
tics of the datasets are shown in Table 5.

430 S. Kumar and A. Chauhan

Fig. 5. Sample of test data 1, text data (Sect. 1.2), taken from the textbook “Pattern
Recognition and Machine Learning” by Christopher M Bishop [2]. (Chosen informative
sentences using fine-tuned BERT summarizer are highlighted).

Table 1. The statistics of the retrieved QA pairs from Quora for the data set 1.

Retrieved QA pairs for the Text documents

Threshold value K 01 02 03 04 05

QA pairs@text document 315 618 904 1217 1486

Table 2. The retrieved cQA-Questions from Quora (see Footnote 1) for the input
text (sentence 1 of the highlighted part in Fig. 5) (only questions from Quora cQA are
presented here)

Sentence: “A key concept in the field of pattern recognition is that of uncertainty”

Retrieved cQA-Questions, when k=03

Q1: What is pattern recognition?

Q2: Why is Pattern Recognition important?

Q3: What is the difference between pattern recognition and machine learning?

Table 3. The retrieved cQA-Questions from Quora (see Footnote 1) for sentence 2
(ref. Fig. 5)

Sentence: “It arises both through noise on measurements, as well as through the
finite size of data sets.”

Retrieved cQA-Questions, when k = 03

Q1: How can you quantify the amount of noise in a data set?

Q2: What is noise in data science/machine learning?

Q3: Why is it good to have large data sets?

A Finetuned Language Model for Recommending 431

Table 4. The retrieved questions from Quora (see Footnote 1) for the (3rd sentence
ref. Fig. 5)

Sentence: “Imagine we have
two boxes, one red and one
blue, and in the red box
we have 2 apples and 6
oranges, and in the blue box
we have 3 apples and 1
orange”

Q1: A blue box contains 30
oranges & 10 apples, and a red
box contains 10 oranges
and 20 apples. If I first choose
randomly one of the boxes,
and then randomly pick
one fruit from that box, what
is the probably that the fruit
will be an Apple?

Q2: If 1 apple and 1 orange
costs Rs. 2, how much will 3
apples and 2 oranges cost?

Q3: What is the number of
ways to distribute 8 identical
balls in 3 different boxes,
none being empty?

The YahooCQA3: In this dataset at most one correct answer and four
negative responses are associated with each question [22].
SemEval-2016CQA:. This dataset is developed by Qatar Living Forums. Some
labels such as “Good”, “Bad” or “Potentially Useful” is tagged for each candi-
date answers. In this work, we considered “Good” as positive and other tags as
negative [12,20].
SemEval-2017CQA: The training and validation data in this dataset is the
same as SemEval-2016CQA, but the test sets are different [15].

Table 5. An overview of the cQA dataset used in this work.

Dataset # Questions # Candidate Answers

Train Valid Test Train Valid Test

YahooCQA 50112 6289 6283 253440 31680 31680

SemEval-2016CQA 4879 244 327 36198 2440 3270

SemEval-2017CQA 4879 244 293 36198 2440 2930

Training Parameters and Evaluation Metrics: In this work, we have used
both the cased and uncased BERT4models (pre-trained) and fine-tuned them for
relevant QA selection task[6]. The BERTLarge model has 24 transformer layers
and 16 attention layers (hidden size = 1024, feed-forward layer size = 4096, and
340 million parameters). For smoother implementation, we used the Transformer
library of Huggingface [25]. For training the model, we used the cross-entropy
loss function to measure the loss and used Adam as the optimizer. The model

432 S. Kumar and A. Chauhan

was trained for 10 epochs with batch size 16 and learning rate being set to 2
× 10-5. We used the Mean Average Precision (MAP) and the Mean Reciprocal
Rank (MRR) as the evaluation metrics to assess our models.

Table 6. Performance comparison of our fine-tuned BERTLarge model with state-of-
the-art work.

Model cQA dataset

Yahoo cQA SemEval’16 SemEval’17

MAP MRR MAP MRR MAP MRR

Sha et al. [5] – – 0.801 0.872 – –

Tay et al. [21] - 0.801 – – – –

Nakov et al. [15] – – – – 0.884 0.928

Fine-tuned BERTLarge (cased) 0.949 0.951 0.853 0.899 0.908 0.946

Fine-tuned BERTrmLarge (uncased) 0.955 0.958 0.871 0.936 0.931 0.974

Table 6 describes the comparison results of our fine-tuned BERT model with
the state-of-the-art model. In the cQA datasets, we observe that the fine-tuned
BERT model (both cased and uncased) outperforms the state-of-the-art work. In
terms of MRR, we find that the BERTLarge (uncased) model outperforms prior
work [5,21], and [15] with an improvement of 19.72%, 7.34%, and 4.95% in the
YahooCQA, SemEval-2016CQA, and SemEval-2017CQA datasets respectively.

Evaluation Metrics for QA Retrieval Task: We have used precision as
an evaluation metric to validate the performance of our approach, where(P@k)
is defined as the proportion of the k results that are relevant. Where rQA is
the number of relevant QA pairs retrieved up to rank k. The P@k(QA) and
represents the computed precision scores for the retrieved QA pairs at different
values of k.

P@k(QA) =
∑n

i=1 rQAi

k
(5)

Table 7 shows the statistics of the obtained precision at different values of
k for QA. We asked 25 students who have taken “Machine Learning” courses
for their undergraduate studies for evaluation purposes. An evaluator is asked
to label the retrieved QAs with the flags like “relevant” or “irrelevant” based
on the relevance of the retrieved QA for the input data. We took one-third
of the total retrieved QA pairs corresponds to threshold values for a smoother
evaluation process. During the evaluation, the evaluators have presented both
text documents and retrieved QAs. The precision value reaches its peak rate
(when k = 03), i.e. on average, we can have 2–3 relevant QAs for each informative
sentence, in the rest of the case retrieval relevancy is quite less in manner.

We have conducted a quiz session to assess the effectiveness of our enrichment
model. The quiz were prepared from the same text documents, a total of 25
undergraduate students took part in the quiz session. In the first week, the

A Finetuned Language Model for Recommending 433

Table 7. The obtained precision scores.

Threshold value k 1 2 3 4 5

QA sets 105 206 300 406 497

Precision@k 0.467 0.512 0.603 0.364 0.322

Table 8. Quiz session results.

Week Quiz scores

max:10 points

Avg time spent

max:30min

Week 1 6.93 27:13

Week 2 8.57 24:05

students have read the text documents (Chap. 1-PRML) [2] and then answered
the first set of quiz questions. The students previewed both the retrieved QAs
and text documents (Chap. 2-PRML) [2] and then answered the second set of
quiz questions. Each week the average time spent by the students to answer
the given quiz questions and their obtained scores were noted and analyzed.
Table 8 describes the obtained results for short quiz questions and these results
revealed that students who previewed the enriched data (cQA-QAs) finished
quiz questions in a shorter time and obtained good scores compared to the first-
week performance. Importantly, this finding indicates that the proposed method
has a noticeable impact on the student’s ability to preview and understand the
material effectively.

5 Conclusion and Future Scope

The prime motive of this paper is to present a relevant QA pair from the cQA
forum that becomes the enriched information for the given text document. This
enrichment model is quite different from the general search engines, or retrieval
models rather than focusing on concepts we augment textbooks at the sen-
tence level for key concepts discussed in the section. We selected informative
sentences of the text using our fine-tuned BERT summarizer and then selected
important keywords in each sentence. Finally, we enriched the same by retrieving
the relevant QA pairs from cQA using our fine-tuned BERTLarge model for the
given inputs. We evaluated our enrichment model using NCERT(Grade X, XI)
& PRML textbook and infer that our model is effective in enriching textbooks
on different subjects by providing the quality reference materials from cQA in
real-time. The fine-tuned BERTLarge model efficiency is evaluated using three
cQA datasets, we compare its performance with different state-of-the-art models
[5,15,21] and the results demonstrate that our model is competitive. Presently
we are working on the development of a cross-language retrieval system using
Natural Language Understanding (NLU) methods i.e. presenting the question
in one language and obtaining the appropriate QAs from cross-language cQA
platforms and plan to extend our enrichment model accordingly.

References

1. Agrawal, R., Gollapudi, S., Kenthapadi, K., Srivastava, N., Velu, R.: Enriching
textbooks through data mining. In: Proceedings of the First ACM Symposium on
Computing for Development, ACM DEV 2010, pp. 19:1–19:9 (2010)

434 S. Kumar and A. Chauhan

2. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, Heidelberg (2006)

3. Chen, Q., Hu, Q., Huang, J.X., He, L.: Can: enhancing sentence similarity modeling
with collaborative and adversarial network. In: The 41st International ACM SIGIR
Conference on Research; Development in Information Retrieval. SIGIR 2018, pp.
815–824. NY, USA, New York (2018)

4. Chen, Q., Hu, Q., Huang, X., He, L.: Ca-rnn: using context-aligned recurrent neural
networks for modeling sentence similarity. In: AAAI (2018)

5. Yang, D.: Multi-task learning with multi-view attention for answer selection and
knowledge base question answering. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33(01), pp. 6318–6325, July 2019

6. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: re-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019
ACL: Human Language Technologies, vol. 1, pp. 4171–4186, Minneapolis, Min-
nesota, June 2019

7. Herrera, J., Poblete, B., Parra, D.: Learning to leverage microblog information for
QA retrieval. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR
2018. LNCS, vol. 10772, pp. 507–520. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-76941-7 38

8. Kumar, S., Chauhan, A.: Enriching textbooks by question-answers using CQA. In:
IEEE Region 10 Conference (TENCON), pp. 707–714 (2019)

9. Kumar, S., Chauhan, A.: Making kids learning joyful using artistic style transferred
youtube vcs. In: IEEE Region 10 Conference (TENCON), pp. 1106–1111 (2020)

10. Kumar, S., Chauhan, A.: Recommending question-answers for enriching textbooks.
In: Bellatreche, L., Goyal, V., Fujita, H., Mondal, A., Reddy, P.K. (eds.) BDA 2020.
LNCS, vol. 12581, pp. 308–328. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-66665-1 20

11. Laskar, Md.T.R., Hoque, E., Huang, J.X.: Utilizing bidirectional encoder repre-
sentations from transformers for answer selection (2020)

12. Laskar, Md.T.R., Huang, J.X., Hoque, E.: Contextualized embeddings based trans-
former encoder for sentence similarity modeling in answer selection task. In: Pro-
ceedings of the 12th Language Resources and Evaluation Conference, pp. 5505–
5514, May 2020

13. Macina, J., Srba, I., Williams, J.J., Bielikova, M.: Educational question routing in
online student communities. In: Proceedings of the Eleventh ACM Conference on
Recommender Systems, RecSys ’17, pp. 47–55 (2017)

14. Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word rep-
resentations in vector space (2013)

15. Nakov, P.: SemEval-2017 task 3: community question answering. In: Proceedings
of the 11th International Workshop on (SemEval-2017), pp. 27–48, Vancouver,
Canada, August 2017

16. Patro, B.N., Kurmi, V.K., Kumar, S., Namboodiri, V.P.: Learning semantic sen-
tence embeddings using pair-wise discriminator. CoRR, abs/1806.00807 (2018)

17. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on EMNLP, pp. 1532–1543, October
2014

18. Peters, M., et al.: Deep contextualized word representations. In: Proceedings of the
2018 Conference of ACL: Human Language Technologies, Volume 1 (Long Papers),
pp. 2227–2237, New Orleans, Louisiana, June 2018

https://doi.org/10.1007/978-3-319-76941-7_38
https://doi.org/10.1007/978-3-319-76941-7_38
https://doi.org/10.1007/978-3-030-66665-1_20
https://doi.org/10.1007/978-3-030-66665-1_20

A Finetuned Language Model for Recommending 435

19. Rao, J., Liu, L., Tay, Y., Yang, W., Shi, P., Lin, J.: Bridging the gap between
relevance matching and semantic matching for short text similarity modeling. In:
Proceedings of EMNLP-IJCNLP, pp. 5370–5381, November 2019

20. Sha, L., Zhang, X., Qian, F., Chang, B., Sui, Z.: A multi-view fusion neural network
for answer selection. In: AAAI (2018)

21. Tay, Y., Luu, A.T., Hui, S.: Hyperbolic representation learning for fast and efficient
neural question answering. In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining (2018)

22. Tay, Y., Phan, M.C., Tuan, L.A., Hui, S.C.: Learning to rank question answer pairs
with holographic dual lstm architecture. In: Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2017, pp. 695–704 (2017)

23. Ashish Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.)
Advances in Neural Information Processing Systems, vol. 30, pp. 5998–6008. Cur-
ran Associates Inc. (2017)

24. Weissenborn, D., Wiese, G., Seiffe, L.: Fastqa: a simple and efficient neural archi-
tecture for question answering. ArXiv, abs/1703.04816 (2017)

25. Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language pro-
cessing. CoRR, abs/1910.03771 (2019)

XCrossNet: Feature Structure-Oriented
Learning for Click-Through Rate

Prediction

Runlong Yu1, Yuyang Ye2, Qi Liu1(B), Zihan Wang3, Chunfeng Yang4,
Yucheng Hu4, and Enhong Chen1

1 Anhui Province Key Laboratory of Big Data Analysis and Application,
School of Computer Science and Technology,

University of Science and Technology of China, Hefei, China
yrunl@mail.ustc.edu.cn, {qiliuql,cheneh}@ustc.edu.cn

2 Management Science and Information Systems, Rutgers Business School,
Rutgers University, Newark, USA

yuyang.ye@rutgers.edu
3 MOE Key Laboratory of Computational Linguistics, School of Electronics

Engineering and Computer Science, Peking University, Beijing, China
wzh@stu.pku.edu.cn

4 Tencent Inc, Shenzhen, China
{yannisyang,nikohu}@tencent.com

Abstract. Click-Through Rate (CTR) prediction is a core task in nowa-
days commercial recommender systems. Feature crossing, as the main-
line of research on CTR prediction, has shown a promising way to
enhance predictive performance. Even though various models are able
to learn feature interactions without manual feature engineering, they
rarely attempt to individually learn representations for different feature
structures. In particular, they mainly focus on the modeling of cross
sparse features but neglect to specifically represent cross dense features.
Motivated by this, we propose a novel Extreme Cross Network, abbrevi-
ated XCrossNet, which aims at learning dense and sparse feature inter-
actions in an explicit manner. XCrossNet as a feature structure-oriented
model leads to a more expressive representation and a more precise CTR
prediction, which is not only explicit and interpretable, but also time-
efficient and easy to implement. Experimental studies on Criteo Kaggle
dataset show significant improvement of XCrossNet over state-of-the-art
models on both effectiveness and efficiency.

1 Introduction

Accurate targeting of commercial recommender systems is of great importance,
in which Click-Through Rate (CTR) prediction plays a key role. CTR prediction
aims to estimate the ratio of clicks to the impression of a recommended item for
a user. Therefore, we consider users have negative preferences instead of implicit
feedbacks on those un-clicked items [25,26]. In common display advertising sys-
tems, advertisers expect lower costs to achieve a higher return on investment.
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 436–447, 2021.
https://doi.org/10.1007/978-3-030-75765-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_35&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_35

XCrossNet: Feature Structure-Oriented Learning for CTR Prediction 437

The ad exchange platforms usually trade with advertisers and publishers
according to the generalized second price of the maximum effective Cost Per
Mille (eCPM). If CTR is overestimated, advertisers could waste campaign
budgets on the useless impression; On the other hand, if CTR is underesti-
mated, advertisers would lose some valuable impressions and the campaigns may
under deliver. With multi-billion dollar business on commercial recommendation
today, CTR prediction has received growing interest from communities of both
academia and industry [3,13,21].

In web-scale commercial recommender systems, the inputs of users’ charac-
teristics are in two kinds of structures. The first kind of structure is described by
numerical or dense parameters, e.g., “Age years=22, Height cm=165”. Each
of such characteristics is formalized as a value associated with a numerical
field, while the values are named as dense features. The second kind of struc-
ture is described by categorical or sparse parameters, e.g.,“Gender=Female,
Relationship=In love”. Each of such characteristics is formalized as a vec-
tor of one-hot encoding associated with a categorical field, while the vectors are
named as sparse features. Research shows an important property of recommen-
dation datasets for industrial use cases is the availability of both dense features
and sparse features [22]. Thus, Criteo Kaggle dataset1 is usually regarded as
representative of real production use cases. Moreover, the number of dense and
sparse features for industrial use cases are often 100s to 1000 with a 50:50 split2.

Data scientists usually spend much time on interactions of raw features to
generate better predictive models. Among these feature interactions, cross fea-
tures, previously focused more on the product of sparse features, show a promis-
ing way to enhance the performance of prediction [15]. Owing to the fact that
correct cross features are mostly task-specific and difficult to identify a priori,
the crucial challenge is in automatically extracting sophisticated cross features
hidden in high-dimensional data. Research on feature crossing as the mainline
of CTR prediction has attracted widespread attention in recent years. Shallow
models are simple, interpretable, and easy to scale, but limited in expressive
ability. Alternatively, deep learning has shown powerful expressive capabilities,
nevertheless, deep neural networks (DNNs) require many more parameters than
tensor factorization to approximate high-order cross features. Besides, almost
all deep models leverage multilayer perceptron (MLP) to learn high-order fea-
ture interactions, however, whether plain DNNs indeed effectively represent right
functions of cross features remains an open question [10,21].

In addition, most methods neglect to represent cross dense features. There
are three major patterns for handling dense features. First, dense features are
discarded when crossing features, that is, dense features only participate in the
linear part of the model [20]. Second, dense features are directly concatenated
with the embeddings of sparse features, which could cause an important feature
dimensionality imbalance problem [21]. Third, dense features are converted into

1 https://labs.criteo.com/2013/12/download-terabyte-click-logs/.
2 The statistics for the dense and sparse features and proportion are based on the

survey outcome conducted in December 2019 with the MLPerf Advisory Board.

https://labs.criteo.com/2013/12/download-terabyte-click-logs/

438 R. Yu et al.

sparse features through bucketing, which could introduce hyper-parameters and
loss information of dense features [12].

Based on all these observations, we propose a novel Extreme Cross Net-
work (XCrossNet), to represent feature structure-oriented interactions. Mod-
eling with XCrossNet consists of three stages. In the Feature Crossing stage, we
separately propose a cross layer for crossing dense features and a product layer
for crossing sparse features. In the Feature Concatenation stage, cross dense fea-
tures and cross sparse features interact through a concatenate layer and a cross
layer. Lastly, in the Feature Selection stage, we employ an MLP for capturing
non-linear interactions and their relative importance. Experimental results on
Criteo Kaggle dataset demonstrate the superior performance of XCrossNet over
the state-of-the-art baselines.

2 Related Work

Studies on CTR prediction can be categorized into five classes which will be
respectively introduced below.

Generalized Linear Models. Logistic Regression (LR) models such as FTRL
are widely used in CTR prediction for their simplicity and efficiency [9,16].
Ling Yan et al. argue that LR cannot capture nonlinear feature interactions
and propose Coupled Group Lasso (CGL) to solve it [24]. Human efforts are
usually needed for LR models. Gradient Boosting Decision Tree (GBDT) is a
method to automatically do feature engineering and search interactions [4], then
the transformed feature interactions can be fed into LR. In practice, tree-based
models are more suitable for dense features but not for sparse features.

Quadratic Polynomial Mappings and Factorization Machines. Poly2
enumerates all pairwise feature interactions to avoid feature engineering which
works well on dense features [2]. For sparse features, Factorization Machine (FM)
and its variants project each feature into a low-dimensional vector and model
cross features by inner product [20]. SFM introduces Laplace distribution to
model the parameters and better fit the sparse data with a higher ratio of zero
elements [17]. FFM enables each feature to have multiple latent vectors to inter-
act with features from different fields [8]. As FM and its variants can only model
order-2nd cross features. An efficient algorithm Higher-Order FM (HOFM) for
training arbitrary-order cross features was proposed by introducing the ANOVA
kernel [1]. As reported in [23], HOFM achieves marginal improvement over FM
whereas using many more parameters and only its low-order (usually less than
5) form can be practically used.

Implicit Deep Learning Models. As deep learning has shown promising rep-
resentation capabilities, several models use deep learning to improve FM. Atten-
tion FM (AFM) enhances the importance of different order-2nd cross features
via attention networks [23]. Neural FM (NFM) stacks deep neural networks on
top of the output of the order-2nd cross features to model higher-order cross
features [6]. FNN uses FM to pre-train low-order features and then feeds fea-

XCrossNet: Feature Structure-Oriented Learning for CTR Prediction 439

ture embeddings into an MLP [27]. In contrast, DSL uses MLP to pre-train
high-order non-linear features and then feeds them with basis features into an
FM layer [7]. Moreover, CCPM uses convolutional layers to explore local-global
dependencies of cross features [14]. IPNN (also known as PNN) feeds the inter-
action results of the FM layer and feature embeddings into an MLP [18]. PIN
introduces a micro-network for each pair of fields to model pairwise cross fea-
tures [19]. FGCNN combines a CNN and MLP to generate new features for
feature augmentation [11]. However, all these approaches learn the high-order
cross features in an implicit manner, therefore lack good model explainability.

Wide&Deep Based Models. Jianxun Lian et al. argue that implicit deep
learning models focus more on high-order cross features but capture little low-
order cross features [10]. To overcome this problem, there has been proposing a
hybrid network structure, namely Wide&Deep, which combines a shallow com-
ponent and a deep component with the purpose of learning both memorization
and generalization [3]. Wide&Deep framework revolutionizes the development of
CTR prediction, and attracts industry partners a lot from the beginning. As for
the first Wide&Deep model proposed by Google [3], it combines a linear model
(wide part) and DNN, while the input of the wide part still relies on feature engi-
neering. Later on, DeepFM uses an FM layer to replace the wide component.
Deep&Cross [21] and xDeepFM [10] take outer product of features at the bit-
and vector-wise level respectively. However, xDeepFM uses so many parameters
that great challenges are posed to identify important cross features in the huge
combination space.

AutoML Based Models. There exist some pre-trained approaches using
AutoML techniques to deal with cross features. AutoCross is proposed to search
over subsets of candidate features to identify effective interactions [15]. This
requires training the whole model to evaluate the selected feature interactions, but
the candidate sets are incredibly many. AutoGroup treats the selection process of
high-order feature interactions as a structural optimization problem, and solves it
with Neural Architecture Search [12]. It achieves state-of-the-art performance on
various datasets, but is too complex to be applied in industrial applications.

3 Extreme Cross Network (XCrossNet)

In this section, we will introduce the problem statement and describe the details
of Extreme Cross Network (XCrossNet) in the following three steps: Feature
Crossing, Feature Concatenation, and Feature Selection. The complete XCross-
Net model is depicted in Fig. 1.

3.1 Problem Statement

In web-scale commercial recommender systems, the inputs of users’ char-
acteristics are in two kinds of structures. The first kind of structure is
described by numerical or dense parameters, denoted as D. The second kind
of structure is described by categorical or sparse parameters, denoted as S.

440 R. Yu et al.

Fig. 1. The structure of XCrossNet.

Suppose that the dataset for training consists of n instances ([D;S], y), where
D = [D1,D2, · · · ,DM] indicates dense features including M numerical fields,
and S = [S1, S2, · · · , SN] indicates sparse features including N categorical fields,
and y ∈ {0, 1} indicates the user’s click behaviors (y = 1 means the user clicked
the item, and y = 0 otherwise). The task of CTR prediction is to build a predic-
tion model ŷ = pCTR Model([D;S]) to estimate the ratio of clicks to impres-
sions of a given feature context.

3.2 Feature Crossing

A cross feature is defined as a synthetic feature formed by multiplying (crossing)
two features. Crossing combinations of features can provide predictive abilities
beyond what those features can provide individually. Based on the definition,
cross features can be generalized to high-order cases. If we consider individual
features as order-1st features, an order-kth cross feature is formed by multiplying
k individual features.

Cross Layers on Dense Features. First we introduce a novel cross layer for
crossing dense features (see in Fig. 2). Cross layers have the following formula:

C1 = D · DT · WC,0 + bC,0, OC
1 = [D; C1],

Cl+1 = D · CT
l · WC,l + bC,l , OC

l+1 = [OC
l ; Cl+1],

(1)

where D ∈ R
M indicates the input dense features, and Cl ∈ R

M is a col-
umn vector denoting the order-(l + 1)th cross features. Later we prove how
Cl expresses multivariate polynomials of degree (l + 1) after weighted mapping.
WC,l , bC,l ∈ R

M are the weight and bias parameters respectively, and OC
l ,OC

l+1

denote the outputs from the l-th and the (l + 1)-th cross layers.
We denote α = [α1, · · · , αM]. If our proposed cross layer expresses any cross

features of order-(l+1)th, it could approximate to any multivariate polynomials

XCrossNet: Feature Structure-Oriented Learning for CTR Prediction 441

Fig. 2. The structure of cross layers.

of degree (l + 1), denoted as Pl+1(D):

Pl+1(D) =

{ ∑
α

Wα Dα1
1 Dα2

2 · · · DαM
M

∣∣∣∣ |α| = l + 1

}
, (2)

where |α| =
∑M

i=1 αi. For simplicity, here we use W i = [W i
1,W

i
2, · · · ,W i

M]
to denote the original subscript of WC,i . We study the coefficient Ŵα given by
CT

l ·W l from cross layers, since it constitutes the output OC
l+1 from the (l+1)-th

cross layer. Besides, the following derivations do not include bias terms. Then:

CT
l · W l =

(
CT

l−1 · W l−1
)

·
(
DT · W l

)
=

∏l
i=0 DT · W i

=
∏l

i=0[D1, D2, · · · , DM]T · [W i
1 , W

i
2 , · · · , W i

M].
(3)

Afterwards, let I denotes the multi-index vectors of orders [0, 1, · · · , l], and Ij
denotes the order of field j. Clearly CT

l · W l from cross layers approaches the
coefficient Ŵα as:

Ŵα =
M∑

k=1

∑
|I |=αk

M∏
j=1

W
Ij
j . (4)

With CT
l · W l approximate to multivariate polynomials of degree (l + 1), the

output OC
l+1 from the (l + 1)-th cross layer that includes all cross features to

order-(l + 1)th could approximate polynomials in the following class:

Pl+1(D) =

{ ∑
α

Wα Dα1
1 Dα2

2 · · · DαM
M

∣∣∣∣ 0 ≤ |α| ≤ l + 1

}
. (5)

Embedding and Product Layers on Sparse Features. Here we introduce
the embedding layer and product layer for crossing sparse features (see in Fig. 3).
As sparse features S are represented as vectors of one-hot encoding of high-
dimensional spaces, we employ an embedding layer to transform these one-hot
encoding vectors into dense vectors E as:

E = [E1, · · · , Ei , · · · , EN],

Ei = embed(Si),
(
Ei ∈ R

K , i = 1, · · · , N
) (6)

where Si indicates the input sparse feature of field i, K denotes the embedding
size, and Ei denotes the feature embedding of field i.

442 R. Yu et al.

Fig. 3. The structure of embedding layer and product layer.

Afterwards, we can propose a product layer for cross sparse features. First,
we donate order-2nd cross sparse features as P2, and order-1st sparse features
as P1, thus the output of product layer is OP = [P1;P2].

The cross feature of two sparse features of field i and field j equals the
inner product of two embedding vectors as 〈Ei ,Ej 〉. Intuitively, we expect cross
features to be vectors, so we concatenate the weighted sums of inner products
to formulate order-2nd cross features as:

P2 = [P 1
2 , · · · , P t

2 , · · · , P T
2], (7)

where T is the size of product layer, and P2 is a T dimensional vector, of each
dimension P t

2 denotes a weighted sum of inner products of two sparse features.
Thus, we have P t

2 =
∑N

i=1

∑N
j=1 W 2,t

i,j 〈Ei ,Ej 〉. We assume that the weighted
parameter W 2,t

i,j = Θt
i · Θt

j for reduction, so P t
2 can be given as:

P t
2 =

N∑
i=1

N∑
j=1

Θt
i · Θt

j〈Ei , Ej 〉 =

〈 N∑
i=1

Θt
i · Ei ,

N∑
j=1

Θt
j · Ej

〉
. (8)

The feature vector of order-1st features has a similar formula as follows:

P1 = [P 1
1 , · · · , P t

1 , · · · , P T
1], (9)

where P1 is a T dimensional vector, of each dimension P t
1 denotes a weighted

sum of sparse features. The weighted feature can be expressed as inner product
〈W 1,t

i ,Ei〉. Thus, we have P t
1 =

∑N
i=1〈W 1,t

i ,Ei〉.

3.3 Feature Concatenation

In the Feature Concatenation stage, in order to learn feature interactions of
different structures, cross dense features OC and cross sparse features OP are
concatenated as a vector through a concatenate layer, then the concatenated
feature vector is fed into a cross layer, which can be expressed as:

X0 = [OC ; OP],

X1 = X0 · XT
0 · WX ,0 + bX ,0, H0 = [X0; X1],

(10)

where X0 denotes the concatenated feature of cross dense features and cross
sparse features, X1 denotes the cross features between two kinds of feature

XCrossNet: Feature Structure-Oriented Learning for CTR Prediction 443

structures, H0 denotes the output from this cross layer, and WX,0, bX,0 are the
weight and bias parameters of this cross layer.

3.4 Feature Selection

In the Feature Selection stage, we employ an MLP to capture non-linear inter-
actions and the relative importance of cross features. The deep layers and the
output layer respectively have the following formula:

Hi = ReLU(WH ,i−1 · Hi−1 + bH ,i−1),

OG = Sigmoid(WH ,i · Hi + bH ,i),
(11)

where Hi ,Hi−1 are hidden layers, ReLU(·) and Sigmoid(·) are activation func-
tions, WH,i ,WH,i−1 are weights, and bH,i , bH,i−1 are biases, and OG is the
output result.

For CTR prediction, the loss function is the Logloss as follows:

L = − 1
n

n∑

i=1

yi log(OG) + (1 − yi) log(1 − OG), (12)

where n is the total number of training instances. The optimization process is
to minimize the following objective function:

J = L + λ||Θ||, (13)

where λ denotes the regularization term, and Θ denotes the set of learning
parameters, including cross layers, embedding layer, product layer, deep layers
and output layer.

4 Experiments

In this section, extensive experiments are conducted to answer the following
research questions3:

RQ1: How does XCrossNet perform compared with the state-of-the-art CTR
prediction models?

RQ2: How does the feature dimensionality imbalance impact CTR prediction?
RQ3: How do hyper-parameter settings impact the performance of XCrossNet?

4.1 Experimental Setup

Dataset. Experiments are conducted on Criteo Kaggle dataset, which is from a
world-wide famous Demand-Side Platforms. Criteo Kaggle dataset contains one
month of 45, 840, 617 ad click instances. It has 13 integer feature fields and 26
categorical feature fields. We select 7 consecutive days of samples as the training
set while the next one day for evaluation.
3 We release the source code at https://github.com/bigdata-ustc/XCrossNet/.

https://github.com/bigdata-ustc/XCrossNet/

444 R. Yu et al.

Table 1. Performance comparison of
different CTR prediction models.

Model AUC(%) Logloss

LR 78.00 0.5631
GBDT 78.62 0.5560
FM 79.09 0.5500
AFM 79.13 0.5517
FFM 79.80 0.5438
CCPM 79.55 0.5469
Wide& Deep 79.77 0.5446
Cross 78.70 0.5550
Deep& Cross 79.76 0.5445
FNN 79.87 0.5428
DeepFM 79.91 0.5423
IPNN 80.13 0.5399
PIN 80.18 0.5394
CIN 78.81 0.5538
xDeepFM 80.06 0.5408
FGCNN 80.22 0.5389
AutoGroup 80.28 0.5384

XCrossNet 80.68 0.5339

Fig. 4. Training time comparison of differ-
ent CTR prediction models.

dim(OC)

Fig. 5. Impact of feature dimensionality
imbalance.

Baselines. As aforementioned, we use following highly related state-of-the-
art models as baselines: LR [9], GBDT [4], FM [20], AFM [23], FFM [8],
CCPM [14], Wide&Deep [3], Deep&Cross [21] and its shallow part Cross
network, FNN [27], DeepFM [5], IPNN [18], PIN [19], xDeepFM [10] and
its shallow part CIN, FGCNN [11], and AutoGroup [12].

Hyper-parameter Settings. For model optimization, we use Adam with a
mini-batch size of 4096, and the learning rate is set as 0.001. We use the L2
regularization with λ = 0.0001 for all neural network models. For Wide&Deep,
Deep&Cross, FNN, DeepFM, IPNN, PIN, xDeepFM, and XCrossNet, the num-
bers of neurons per deep layer are 400, and the depths of deep layers are set as 2.
For our XCrossNet, the number of cross layers on dense features is set as l=4. In
the main experiments, we set the embedding size for all models be a fixed value
of 20.

4.2 Overall Performance (RQ1)

Table 1 summarizes the performance of all compared methods on Criteo Kaggle
datasets, while the training time on Tesla K80 GPUs is shown in Fig. 4 for com-
parison of efficiency. From the experimental results, we have the following key
observations: Firstly, most neural network models outperform linear models (i.e.,

XCrossNet: Feature Structure-Oriented Learning for CTR Prediction 445

A
U

C

0.7900

0.7933

0.7967

0.8000

0.8033

0.8067

0.8100

Embedding size
4 6 8 10 12 14 16 18 20

(a)

A
U

C

0.8048

0.8054

0.8059

0.8065

0.8070

Number of deep layers

1 2 3 4

(b)

A
U

C

0.7600

0.7720

0.7840

0.7960

0.8080

0.8200

Activation functions

Sigmoid tanh ReLU Identity

(c)

A
U

C

0.8025

0.8039

0.8053

0.8066

0.8080

Neurons per layer
300 400 500 600 700

(d)

Fig. 6. Impact of network hyper-parameters on AUC performance.

Lo
gl

os
s

0.5320

0.5358

0.5397

0.5435

0.5473

0.5512

0.5550

Embedding size
4 6 8 10 12 14 16 18 20

(a)

L
o

g
lo

ss

0.5333

0.5343

0.5353

0.5363

0.5373

Number of deep layers

1 2 3 4

(b)
L
o

g
lo

s
s

0.5200

0.5330

0.5460

0.5590

0.5720

0.5850

Activation functions

Sigmoid tanh ReLU Identity

(c)

L
o

g
lo

ss

0.5330

0.5335

0.5340

0.5345

0.5350

Neurons per layer
300 400 500 600 700

(d)

Fig. 7. Impact of network hyper-parameters on Logloss performance.

LR), tree-based models (i.e., GBDT), and FM variants (i.e., FM, FFM, AFM),
which indicates MLP can learn non-linear feature interactions and endow bet-
ter expressive ability. Meanwhile, comparing IPNN, PIN with FNN, Wide&Deep
based models, we find that explicitly modeling low-order feature interactions can
simplify the training of MLP and boost the performance. Secondly, XCrossNet
achieves the best performance. Statistically, XCrossNet significantly outperforms
the best baseline in terms of AUC and Logloss on p-value < 0.05 level, which
indicates feature structure-oriented learning can provide better predictive abil-
ities. Thirdly, from the training time comparison, we can observe XCrossNet is
very efficient, especially compared to field-aware models, mainly because these
models further allow each feature to learn several vectors where each vector is
associated with a field, which leads to huge parameter consumption and time
consumption.

4.3 Feature Dimensionality Imbalance Study (RQ2)

In XCrossNet, we denote dim(OC)
dim(OP)

/
M
N as the balance index of dimensions of

dense and sparse features. Noted that, the dimension of cross dense features
OC equals M · l, increasing with the depth of cross layers. As for Criteo Kag-
gle dataset, M = 13 and N = 26, we set the depths of cross layers from 1 to
8, while the corresponding dimensions of cross dense features are from 13 to
104. Experimental results are shown in Fig. 5 in terms of AUC. We can observe
that increasing the depth of cross layers benefits XCrossNet to achieve stable
improvements on AUC performance, mainly because the higher dimensions of
cross dense features are able to boost the balance index, which results in rela-
tively balanced impacts of dense and sparse features on prediction.

446 R. Yu et al.

4.4 Hyper-parameter Study (RQ3)

We study the impact of hyper-parameters of XCrossNet, including (1) embedding
size; (2) number of deep layers; (3) activation function; (4) neurons per layer.
Figures 6a and 7a demonstrate the impact of embedding size. We can observe
that model performance boosts steadily when the embedding size increase from
4 to 20. Even with very low embedding sizes, XCrossNet still has comparable
performance to some popular Wide&Deep based models with high embedding
size. Specifically, XCrossNet achieves AUC> 0.800 and Logloss< 0.541 with
embedding size set as 10, which is even better than DeepFM with embedding
size set as 20. Figures 6b and 7b demonstrate the impact of the number of deep
layers. The model performance boosts with the depth of MLP at the beginning.
However, it starts to degrade when the depth of MLP is set to greater than 3. As
shown in Figs. 6c and 7c, ReLU is indeed more appropriate for hidden neurons
of deep layers compared with different activation functions. As shown in Figs. 6d
and 7d, model performance barely boosts as the number of neurons per layer
increasing from 300 to 700. We consider 400 is a more suitable setting to avoid
the model being overfitting.

5 Conclusion

Due to the fact that previous work rarely attempts to individually learn repre-
sentations for different feature structures, this paper presented a novel feature
structure-oriented learning model, namely Extreme Cross Network (XCrossNet),
for improving CTR prediction in recommender systems. A XCrossNet model
starts with a Feature Crossing stage, followed by a Feature Concatenation stage
and a Feature Selection stage. The main contribution of our approach is to
represent dense and sparse feature interactions in an explicit and efficient way.
Empirical studies verified the effectiveness of our model on Criteo Kaggle dataset.

Acknowledgements. This research was partially supported by grants from the
National Key Research and Development Program of China (No. 2018YFC0832101),
and the National Natural Science Foundation of China (Grants No. 61922073 and
U20A20229). Qi Liu acknowledges the support of the Youth Innovation Promotion
Association of CAS (No. 2014299).

References

1. Blondel, M., et al.: Higher-order factorization machines. In: NeurIPS, pp. 3351–
3359 (2016)

2. Chang, Y., et al.: Training and testing low-degree polynomial data mappings via
linear SVM. J. Mach. Learn. Res. (JMLR) 11, 1471–1490 (2010)

3. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: 1st Work-
shop on Deep Learning for Recommender Systems, pp. 7–10 (2016)

4. Friedman, J.H.: Greedy function approximation: a gradient boosting machine.
Annals of Statistics, pp. 1189–1232 (2001)

XCrossNet: Feature Structure-Oriented Learning for CTR Prediction 447

5. Guo, H., et al.: DeepFM: a factorization-machine based neural network for CTR
prediction. In: IJCAI, pp. 1725–1731 (2017)

6. He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics.
In: SIGIR, pp. 355–364 (2017)

7. Huang, Z., et al.: An ad CTR prediction method based on feature learning of deep
and shallow layers. In: CIKM, pp. 2119–2122 (2017)

8. Juan, Y., et al.: Field-aware factorization machines for CTR prediction. In: RecSys,
pp. 43–50 (2016)

9. Lee, K., et al.: Estimating conversion rate in display advertising from past perfor-
mance data. In: SIGKDD pp. 768–776. ACM (2012)

10. Lian, J., et al.: XDeepFM: combining explicit and implicit feature interactions for
recommender systems. In: SIGKDD, pp. 1754–1763 (2018)

11. Liu, B., et al.: Feature generation by convolutional neural network for click-through
rate prediction. In: WWW, pp. 1119–1129 (2019)

12. Liu, B., et al.: Autogroup: automatic feature grouping for modelling explicit high-
order feature interactions in CTR prediction. In: SIGIR, pp. 199–208. ACM (2020)

13. Liu, Q., et al.: Personalized travel package recommendation. In: ICDM, pp. 407–
416. IEEE (2011)

14. Liu, Q., et al.: A convolutional click prediction model. In: CIKM, pp. 1743–1746
(2015)

15. Luo, Y., et al.: Autocross: automatic feature crossing for tabular data in real-world
applications. In: SIGKDD, pp. 1936–1945 (2019)

16. McMahan, H.B., et al.: Ad click prediction: a view from the trenches. In: SIGKDD,
pp. 1222–1230. ACM (2013)

17. Pan, Z., et al.: Sparse factorization machines for click-through rate prediction. In:
ICDM, pp. 400–409. IEEE (2016)

18. Qu, Y., et al.: Product-based neural networks for user response prediction. In:
ICDM pp. 1149–1154. IEEE (2016)

19. Qu, Y., et al.: Product-based neural networks for user response prediction over
multi-field categorical data. ACM Trans. Inf. Syst. (ACM TOIS) 37(1), 1–35 (2018)

20. Rendle, S.: Factorization machines. In: ICDM pp. 995–1000. IEEE (2010)
21. Wang, R., et al.: Deep & cross network for ad click predictions. In: ADKDD, pp.

1–7 (2017)
22. Wu, C.J., et al.: Developing a recommendation benchmark for MLPerf training

and inference. arXiv preprint arXiv:2003.07336 (2020)
23. Xiao, J., et al.: Attentional factorization machines: learning the weight of feature

interactions via attention networks. In: IJCAI, pp. 3119–3125 (2017)
24. Yan, L., et al.: Coupled group lasso for web-scale CTR prediction in display adver-

tising. ICML 32, 802–810 (2014)
25. Yu, R., et al.: Collaborative list-and-pairwise filtering from implicit feedback.

IEEE Trans. Know. Data Eng. (IEEE TKDE). https://doi.org/10.1109/TKDE.
2020.3016732

26. Yu, R., et al.: Multiple pairwise ranking with implicit feedback. In: CIKM, pp.
1727–1730. ACM (2018)

27. Zhang, W., Du, T., Wang, J.: Deep learning over multi-field categorical data. In:
Ferro, N., Crestani, F., Moens, M.-F., Mothe, J., Silvestri, F., Di Nunzio, G.M.,
Hauff, C., Silvello, G. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 45–57. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30671-1 4

http://arxiv.org/abs/2003.07336
https://doi.org/10.1109/TKDE.2020.3016732
https://doi.org/10.1109/TKDE.2020.3016732
https://doi.org/10.1007/978-3-319-30671-1_4

Learning Multiclass Classifier Under
Noisy Bandit Feedback

Mudit Agarwal(B) and Naresh Manwani

Machine Learning Lab, KCIS, International Institute of Information Technology
Hyderabad, Hyderabad, India

mudit.agarwal@research.iiit.ac.in, naresh.manwani@iiit.ac.in

Abstract. This paper addresses the problem of multiclass classification
with corrupted or noisy bandit feedback. In this setting, the learner may
not receive true feedback. Instead, it receives feedback that has been
flipped with some non-zero probability. We propose a novel approach to
deal with noisy bandit feedback based on the unbiased estimator tech-
nique. We further offer a method that can efficiently estimate the noise
rates, thus providing an end-to-end framework. The proposed algorithm
enjoys a mistake bound of the order of O(

√
T) in the high noise case

and of the order of O(T
2/3) in the worst case. We show our approach’s

effectiveness using extensive experiments on several benchmark datasets.

Keywords: Online learning · Recommender system · Classification

1 Introduction

In machine learning, multiclass classification is of particular interest due to its
widespread application in several domains such as digit-recognition [17], text
classification [18] and recommender systems [14]. Some of the well-known batch
learning approaches for multiclass classification are discussed in [1,5,13,21]. An
extension of Perceptron [23] to the multiclass setting was first proposed in [11],
which was later modified by [14] to deal with bandit feedback setting. Unlike
the full information setting, the bandit setting’s learner receives only partial
feedback, indicating whether the predicted label is correct or incorrect, popularly
known as bandit feedback. The learner’s ability to learn a correct hypothesis
under bandit feedback finds several web-based applications, such as sponsored
advertising on web pages and recommender systems as mentioned by [14]. In the
typical setting of the recommender system, when a user makes a query to the
system, then the user is presented with a suggestion based on the past browsing
history; finally, the user responds to the suggestion, either positively (clicking it)

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-75765-6 36) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 448–460, 2021.
https://doi.org/10.1007/978-3-030-75765-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_36&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_36
https://doi.org/10.1007/978-3-030-75765-6_36
https://doi.org/10.1007/978-3-030-75765-6_36

Learning Multiclass Classifier Under Noisy Bandit Feedback 449

Fig. 1. Three kinds of supervised learning (a) Full Information Setting: In this setting,
the learner receives the actual class label. (b) Bandit Feedback Setting: A bandit feed-
back is revealed to the learner, indicating whether the predicted label is correct or not.
(c) Noisy Bandit Setting: The learner receives noisy bandit feedback (noisy feedback
is received by flipping the correct feedback with some small probability).

or negatively (not clicking it). However, the system does not know the behavior
of the user if presented with other suggestions.

Banditron [14] uses an exploitation-exploration scheme proposed in [3]. When
it updates, it replaces the gradient of the loss function with an unbiased estima-
tor of the gradient. When the data is linearly separable, the expected number
of mistakes made by Banditron is shown to be O(

√
T). In the general case, the

expected number of mistakes of Banditron is O
(
T 2/3

)
. Another bandit algorithm,

named Newtron [12], is based on the online Newton method. It uses a strongly
convex objective function (adding regularization term with the loss function)
and Follow-The-Regularized-Leader (FTRL) strategy to achieve O(log T) regret
bound in the best case and O

(
T 2/3

)
regret bound in the worst case. Second-

order Perceptron is also extended in bandit feedback setting by Crammer, and
Gentile [6]. It uses upper-confidence bounds (UCB) [2] based approach to handle
exploration-exploitation and achieves regret bound of O

(√
T log(T)

)
Beygelz-

imer et al. [4] proposed efficient algorithms under bandit feedback when the data
is linearly separable by a margin of γ. They show that their algorithm achieves
a near-optimal bound of O (K/γ) under strong linear separability condition [4].

In all the above approaches, it is assumed that the user has provided correct
bandit feedback. There are many practical situations where the bandit feedback
can become noisy too. In such a scenario, this means that the feedback that
indicates that the predicted label is identical to the actual label may be incorrect
with some non-zero probability. Consider the following examples of noisy bandit
feedback. In the recommendation system, there are few cases in which a user
may accidentally click (positive feedback) the recommended ad. In this case,
the true feedback should be negative (no clicks). However, instead of negative,
the recommender system receives positive feedback. Fake reviews and ratings
are also posted using automated bots, which can boost the visibility of those
products on recommendation platforms [15] (Fig. 1).

450 M. Agarwal and N. Manwani

In this paper, we model the noisy bandit feedback by assuming an adversary
between the learner and the environment. Whenever the learner asks a binary
query, the environment releases the actual feedback. Then, the adversary flips the
actual feedback with probability ρ and releases it to the learner. The problem of
multiclass classification under noisy bandit feedback is as follows: on each round,
the learner is given an instance vector x; the learner predicts a label ŷ; then the
learner receives the corrupted feedback fρ. The noisy version of this problem is
more challenging because, besides bandit feedback, the learner also has to deal
with noise or corruption present in the feedback. To learn a robust classifier in
the presence of noisy bandit feedback, we propose an unbiased estimator h(fρ)
of the actual feedback f . The goal is to maximize the sum of h(f t

ρ), which in
expectation, turns out to be the maximizing sum of actual feedbacks. Similar
ideas have been explored to handle label noise in classification problems [20]
under full information setting. This is the first work proposing a robust multiclass
classifier under noisy bandit feedback to the best of our knowledge.

Key Contribution of The Paper:

1. We propose a robust algorithm for learning multiclass classifiers under noisy
bandit feedbacks. The proposed algorithm enjoys a mistake bound of O(

√
T)

in the high noise case and O(T 2/3) in the worst case.
2. We also propose an algorithm for noise rate estimation.
3. We validate our algorithms through experiments on benchmark datasets.

2 Multiclass Classification

In the multiclass classification, the goal is to learn a function which maps each
example to one of the K categories. Let g : X → [K] be the multiclass classifier
where X ⊆ R

d and [K] = {1, . . . , K}. A multiclass classifier can be modeled
using a weight matrix W ∈ R

K×d as g(x) = arg maxj∈[K] wj ·x, where wj is the
jth row of matrix W and x ∈ X . We need to identify the weight matrix W to find
the classifier. In order to identify the parameters in W of the underlying classifier,
we use training data of the form {(x1, y1), . . . , (xT , yT)} where (xt, yt) ∈ X ×
{1, . . . , K}, ∀t ∈ [T]. The performance of the classifier f described by parameters
W on example xt is measured using 0–1 loss as L0−1(g(xt), yt) = I[g(xt) �= yt].1

L0−1 is difficult to optimize. In practice, we use convex surrogates of L0−1. LH

is one such surrogate [7] described as follows.

LH(W, (xt, yt)) = max
j �=yt

[1 − wyt · xt + wj · xt]+ (1)

Here [a]+ = max(0, a). Loss LH becomes 0 when wyt ·xt −wj ·xt ≥ 1, ∀j �= yt.

1 Here, I[A] = 1 when the predicate A is true and 0 otherwise.

Learning Multiclass Classifier Under Noisy Bandit Feedback 451

Online Multiclass Classification: Full Information Case
In the full information case, the learner receives the actual class label of examples
in every trial. A large margin Perceptron algorithm for multiclass classification
using LH is proposed in [8]. The algorithm works as follows. The algorithm starts
with W 1 as a zero matrix. Let W t be the weight matrix, and xt be the example
presented at trial t, to algorithm. Then the algorithm predicts the labels ŷt as
ŷt = arg maxj∈[K] w

t
j ·xt. Now it receives the true class label yt of xt. Algorithm

incurs a loss LH(W t, (xt, yt)) and updates the parameters as W t+1 = W t + U t.

U t
r,j =

[
I[yt = r] − I[ŷt = r]

]
xt,j . (2)

This algorithm converges in finite iterations if the data is linearly separable [8].

Online Multiclass Classification: Bandit Feedback Case

In the bandit feedback setting [14], the learner can only know whether the pre-
dicted label is correct or not. Banditron [14] modifies the Perceptron algorithm
to deal with the bandit feedback. Let W t be the weight matrix in the beginning
of trial t and xt be the example presented at trial t. Let ŷt = arg maxj∈[K] w

t
j ·xt.

Banditron defines a probability distribution pt on class labels as follows.

pt(i) = (1 − γ)I [i = ŷt] +
γ

K
(3)

Here, γ ∈ [0, 1) is the probability of exploration. The algorithm predicts the
label ỹt, which is randomly drawn from the distribution pt. The algorithm then
receives a feedback f t = I[ỹt = yt]. Banditron updates the weight matrix as

W t+1 = W t + Ũ t where Ũ t
r,j = xt,j

(
I[yt = ỹt]I[ỹt = r]

pt(r)
− I[ŷt = r]

)
.

3 Learning Using Noisy Bandit Feedback

In the noisy feedback setting, an adversary is present between the learner and
the feedback, which manipulates the feedback to confuse the learner. It is hypo-
thetical to assume noise-free data [15] in the real world. So, one can find many
real-world applications which are more appropriately modeled using a noisy feed-
back setting. For example, in a click-based recommendation system, we try to
model the user behavior based on the clicks. These clicks are nothing but the
bandit feedbacks, which are assumed to describe whether the user liked the rec-
ommended ad/product. Indeed, a user clicking the ad (or like the product) and
likes it are two correlated events. However, the user may like the ad and does
not click on it. On the other hand, the user may not like the ad but clicks on it
(accidentally or in the absence of other exciting ads). These clicks are noisy as
each user click does not necessarily mean that they agree with the recommended
ad/product.

In this paper, we model the noisy bandit feedback as follows. Let there be
an adversary which flips the true feedback, f , with a non-zero probability and

452 M. Agarwal and N. Manwani

generates noisy feedback. We denote the noisy bandit feedback by fρ. Let P (fρ =
1|f = 0) = ρ0, P (fρ = 0|f = 1) = ρ1 be the noise rates (ρ1 + ρ0 < 1).

Proposed Approach

Here, we propose a robust algorithm that can learn the true underlying clas-
sifier given noisy bandit feedback. To deal with the noisy or corrupted feedback,
we propose a modified or proxy feedback h(fρ), which is an unbiased estimator
of true feedback f , as follows. Given the noisy feedback fρ, Lemma 1 shows how
to construct an unbiased estimator of the true feedback f .2

Lemma 1. Let f t = I[ỹt = yt] be the true feedback. Let h(f t
ρ) be defined as,

h(fρ) =
(1 − ρf ′

ρ
)fρ − ρfρ

f
′
ρ

1 − ρ0 − ρ1
(4)

where f
′
ρ = 1 − fρ. Then, Eft

ρ
[h(f t

ρ)] = I[ỹt = yt] = f t.

Instead of noisy feedback fρ, we use h(fρ) (see Eq. (4)) which is an unbiased
estimator of the true feedback f (Lemma 1). Similar ideas have been used to
deal with the label noise in full information case [20]. We are now in a position to
state a robust classifier for noisy bandit feedback. When there is no noise (i.e.,
ρ0 = ρ1 = 0), we see that h(fρ) = fρ = f . Thus, under noise-free case, h(fρ)
becomes same as the noise-free bandit feedback f . At each round, the learner
finds ŷt = arg maxj∈[K] (wt

jx
t) and defines a distribution P t over the class labels

as described in Eq. (3). Now, it samples a label ỹt randomly from P t. It receives
noisy bandit feedback f t

ρ. We find h(f t
ρ) and update as W t+1 = W t +Ht, where

Ht
r,j = xt

j

(
h(f t

ρ)I[ỹ
t = r]

P t(r)
− I[ŷt = r]

)
. (5)

Ht has two sources of randomness, namely, ỹt (randomness used in the RCNBF
algorithm) and f t

ρ (randomness due to noise). Lemma 2 shows that the update
matrix Ht used in RCNBF is an unbiased estimator of the matrix U t (used in
multiclass Perceptron), described in Eq. (2).

Lemma 2. Suppose Ht be the update matrix as defined in Eq. (5) and let U t

be the matrix as defined in Eq. (2). Then, Eỹt,ft
ρ
[Ht] = U t, where Eỹt,ft

ρ
[Ht] is

the expected value conditioned on y1, · · · , yt−1.

We keep repeating these steps for T trials. Complete details of the approach are
given in Algorithm 1.

2 All the omitted proofs can be found in the supplementary material.

Learning Multiclass Classifier Under Noisy Bandit Feedback 453

Algorithm 1 . Robust Classifier for
Noisy Bandit Feedback (RCNBF)
Input: γ ∈ (0, 0.5), ρ0, ρ1 : ρ0 + ρ1 < 1
Initialize: Set W 1 = 0 ∈
R

K×d

for t = 1, 2, · · · , T do
Receive xt ∈ R

d.
Set ŷt = arg maxr∈[K](w

t
r · xt)

Set P t(r) = (1 − γ)I[r = ŷt] + γ
K

, ∀r

Randomly sample ỹt according to
P t.
Predict ỹt and receive feedback f t

ρ

Calculate h(f t
ρ) using

h(f t
ρ) =

(1−ρ
ft′

ρ
)ft

ρ−ρft
ρ

ft′
ρ

1−ρ0−ρ1

Compute Ht ∈ R
K×d such that

Ht
r,j = xt

j

(
h(ft

ρ)I[ỹ
t=r]

P t(r)
− I[ŷt = r]

)

Update: W t+1 = W t + Ht

end for

Algorithm 2 . RCNBF with Implicit
Noise Estimation (RCINE)
Input: γ ∈ (0, 0.5), Ns

Initialize: W 1 = 0 ∈ R
K×d, ρ̂0 = ρ̂1 =

0, S
for t = 1, 2, · · · , T do

Receive xt ∈ R
d.

Set ŷt = arg maxr∈[K](w
t
r · xt)

Set P t(r) = (1 − γ)I[r = ŷt] + γ
K

, ∀r
Randomly sample ỹt according to P t.
Predict ỹt and receive feedback f t

ρ

Calulate h(f t
ρ) using

h(f t
ρ) =

(1−ρ̂
ft′

ρ
)ft

ρ−ρ̂ft
ρ

ft′
ρ

1−ρ̂0−ρ̂1

Define Ht ∈ R
K×d such that

Ht
r,j = xt

j

(
h(ft

ρ)I[ỹ
t=r]

P t(r)
− I[ŷt = r]

)

Update: W t+1 = W t + Ht

Data: Push {(xt, ỹt), f t
ρ} in S

if t%Ns == 0 then
ρ̂0, ρ̂1 = NREst(S), Clear S

end if
end for

Mistake Bound Analysis of RCNBF

In this section, we derive the mistake bound for the RCNBF (Algorithm 1). To
do that, we first show that the expected value of the norm of Ht is bounded.

Lemma 3. Let Ht be defined as in Eq. (5) and β = 1 − ρ0 − ρ1. Then,

Eỹt,ft
ρ
[
∥
∥Ht

∥
∥2] ≤ ∥

∥xt
∥
∥2

(
A1I[yt �= ŷt] + A2I[yt = ŷt]

)

where A1 = 2K
γ + 2ρ0(1−ρ0)K

βγ + Kρ1
β2γ + ρ0(1−ρ0)K

2

β2γ2 , A2 = 2γ+ ρ1
β2(1−γ) + ρ0(1−ρ0)K

2

β2γ .

Note that the norm of the matrix Ht is inversely proportional to β = 1 −
ρ0−ρ1. Thus, if the noise rate increases, the upper bound on the norm of Ht will
increase. We now find the expected mistake bound of the RCNBF algorithm.

Theorem 1 (Mistake Bound). Let x1, · · · ,xT be the sequence of examples
presented to the RCNBF in T trials. Let, ‖xt‖ ≤ 1,∀t ∈ [T] and yt ∈ [K].
Let RH =

∑T
t=1 LH(W ∗; (xt, yt)) and D = ‖W ∗‖2F =

∑K
r=1

∑d
j=1(W

∗
i,j)

2 be the

454 M. Agarwal and N. Manwani

Algorithm 3. Noise Rate Estimator (NREst)
Input: S = {(

xt, ỹt), f t
ρ

)
: t = 1 . . . T}

Train a network using S which approximates q(x, ỹ) = p̂(fρ = 1|x, ỹ)
Find xj = arg maxx∈X p̂(fρ = 1|x, ỹ = j), j ∈ [K]
Set 1 − ρ1 = p̂(fρ = 1|xl, ỹ = l) and ρ0 = p̂(fρ = 1|xk, ỹ = l)

Output: ρ0, ρ1

cumulative hinge loss and the complexity of any matrix, W ∗. Let ρ0 and ρ1 be
the noise parameters. Then the expected number of mistakes made by RCNBF is
upper bounded as E[M] ≤ RH +

√
A1DRH +3max

{
A1D,

√
A2DT

}
+γT . Here,

expectation is with respect to all the randomness of the algorithm.

Before moving, let us find the optimal value for the exploration-exploitation
parameter γ and the corresponding mistake bound.

Corollary 1. (Zero Noise Case, ρ0 = ρ1 = 0) In this case the mistake bound of
RCNBF is of the order O(

√
T) which can be obtained by setting γ = O(T −1/2).

Corollary 2. (High Noise Case, ρ0, ρ1 ≤ min
{
0.5, O(

√
D
T)

}
) In this case, we

obtain the bound E[M] ≤ O(
√

DTβ−1) for γ = O(
√

D
β2T).

Corollary 3. (Very High Noise Case, ρ0, ρ1 ≤ 1) In this case the mistake bound
of is O(T 2/3β−1) for γ = O(T −1/3β−1).

We see that the above mistake bound is inversely proportional to β, i.e., as
we increase the noise rate, the mistake bound will increase, which is as expected
and also aligns with the batch mode algorithm in the presence of label noise [20].

Noise Rate Estimation
Here, we propose an approach for estimating ρ0 and ρ1 which uses ideas presented
in [16,22]. The proposed approach is based on the following Theorem.

Theorem 2. Assume that

1. There exist at least one “perfect example” for every class j ∈ [K]. Which
means, there exists x∗

j ∈ X (prefect example for class j) such that p(x∗
j) > 0

and p(y = ỹ|x∗
j , ỹ = j) = p(y = j|x∗

j) = 1.
2. There exist sufficient corrupted examples to estimate p(fρ|x, ỹ = l) accurately.

Then it follows that 1 − ρ1 = p(fρ = 1|x∗
l , ỹ = l), l ∈ [K] and ρ0 = p(fρ =

1|x∗
k, ỹ = l), l �= k, where x∗

l and x∗
k are perfect examples of class l and k.

Theorem 2 assumes that for every class j ∈ [K], there exists a perfect example
x∗

j such that p(f = 1|x∗
j , ỹ = j) = p(y = j|x∗

j) = 1. We use this idea to estimate
the noise rates as follows. We use the data generated by RCNBF under noisy
bandit feedback setting. Using this, we create a training set S with following
sequence of examples {(xt, ỹt), f t

ρ} for t = 1 . . . Ns. Note that the input to the

Learning Multiclass Classifier Under Noisy Bandit Feedback 455

Table 1. Estimated noise rates (rounded to 3 decimal digits)

Actual noise rates Estimated noise rates

MNIST USPS Fashion-MNIST

ρ0 ρ1 ρ̂0 ρ̂1 ρ̂0 ρ̂1 ρ̂0 ρ̂1

0.000 0.000 0.063 0.029 0.017 0.000 0.090 0.004

0.150 0.150 0.172 0.147 0.181 0.153 0.189 0.140

0.250 0.250 0.248 0.264 0.258 0.257 0.264 0.259

0.200 0.400 0.211 0.439 0.194 0.419 0.215 0.393

0.400 0.200 0.400 0.260 0.393 0.229 0.404 0.222

0.400 0.400 0.403 0.508 0.402 0.515 0.397 0.502

network is xt concatenated with ỹt. This is the major difference with the noise
rate estimation presented in [22]. We use S to train a neural network with a
output layer of size 2 and softmax as the activation function of the output layer.
Our classification problem is binary however following [24], we prefer to use
softmax with one-hot output instead of sigmoid as it allows the network to learn
non-convex boundaries. This network approximates q(x, ỹ) = p̂(fρ = 1|x, ỹ).
Now we find perfect example for each class. A perfect example x∗

j for class j is
the one for which p̂(y = j|x∗

j) = p̂(fρ = 1|x∗
j , ỹ = j) = 1. We can find x∗

j as

x∗
j = arg max

x∈S
p̂(fρ = 1|x, ỹ = j), j ∈ [K] (6)

Now, we can approximate ρ̂0 and ρ̂1 as 1 − ρ̂1 = p̂(fρ = 1|x∗
l , ỹ = l) and ρ̂0 =

p̂(fρ = 1|x∗
k, ỹ = l). The noise estimation approach is described in Algorithm 3.

Learning Using Noisy Bandit Feedback with Implicit Noise Rate Esti-
mation

RCNBF (Algorithm 1) runs under the online setting while NREst (Algorithm 3)
is a batch algorithm. With the help of the above two algorithms, we are propos-
ing a pseudo online mode algorithm, RCNBF with Implicit Noise Estima-
tion(Algorithm 2), which runs under the online setting. The RCINE Algorithm3

uses RCNBF to make predictions and generate dataset S for Noise Estimation.
After every Ns trails, the algorithm updates the estimated noise rate parameters
by running the NREst algorithm on the collected dataset S. The crux of this
setup is that the RCNBF will run in the online mode, while NREst, which is
running parallelly at the same time, will estimate the noise rates parameter ρ̂0
and ρ̂1 and update them repetitively after a small interval of time.

4 Experimentation

We do experiments on various real-world as well as synthetic datasets. The
synthetic dataset is called SynSep. SynSep is a 9-class, 400-dimensional synthetic
3 The complete code for all the experiments can be found here.

https://github.com/Mudit-1999/Learning-Multiclass-Classifier-Under-Noisy-Bandit-Feedback-Code

456 M. Agarwal and N. Manwani

Fig. 2. Average error rates of RCNBF, RCINE and other benchmarking algorithms
under noise-free case (first row; ρ0 = ρ1 = 0), low noise case (second row; ρ0 = ρ1 =
0.15), high noise case (third row; ρ0 = ρ1 = 0.40) and mixed noise case (fourth row;
ρ0 = 0.2, ρ1 = 0.4 and fifth row; ρ0 = 0.4, ρ1 = 0.2). Three datasets are used (left to
right): MNIST, USPS and Fashion-MNIST.

Learning Multiclass Classifier Under Noisy Bandit Feedback 457

Fig. 3. Average error rates of RCINE against parameter’s value γ under different noise
rate setting on MNIST.

data set of size 105. While constructing SynSep, we ensure that the dataset is
linearly separable. For more detail about the dataset, one can refer to [14]. We
also perform experiments on MNIST and Iris datasets from UCI repository [9],
USPS dataset4 and Fashion-MNIST for image classification [25]5.

Feature Extraction for Fashion-MNIST Dataset: We first randomly sam-
pled 35, 000 images from the dataset for feature extraction and trained a four-
layer convolutional neural network. The first layer is a convolutional layer with
32 feature maps having a size of 3× 3 and a stride of 1. It takes an input of
28 × 28 grayscale images. The convolutional layer is followed by a max-pooling
layer having 2× 2 as pool size. The next layer is a fully-connected layer with 100
units and a dropout of the probability of 0.2. The last layer is a fully connected
softmax layer. To extract features, we took the output of the fully connected
layer of size 100. By experimenting on this dataset, we show that our approach
can also be used for learning classifiers for complex datasets.

Benchmark Algorithms and Noise Rate Setting: We present experimental
comparisons of our proposed algorithms (RCNBF and RCINE) with Banditron
[14], Bandit Passive Aggressive [26] and Second Order Banditron Algorithm [4].
Five different settings of noise rate are used. These are (a) ρ0 = ρ1 = 0.0, (b) ρ0 =
ρ1 = 0.15, (c) ρ0 = ρ1 = 0.4, (d) ρ0 = 0.2, ρ1 = 0.4 and (e) ρ0 = 0.4, ρ1 = 0.2. On
each of the different noise setting, we ran our proposed algorithm, RCNBF (using
original noise rates) and RCINE (with initial value of ρ̂0 = ρ̂1 = 0). For updating
the noise rates parameter, the RCINE algorithm, runs the NREst algorithm after
Ns trails on the collected dataset S. NREst algorithm uses a neural network to
estimate the noise rates. Table 1 shows the results of estimation of noise rates at
an intermediate instance of RCINE algorithm.

In NREst algorithm, train-test ratio of 90:10 is taken. Cross-entropy loss is
chosen for comparison. 10% of the training set is used for validation. The mini-
batch size used for training is 128. The activation function for all the network is
ReLU and optimizer is AdaGrad [10] with initial learning rate 0.01 and δ = 10−6.
After training, we apply the estimator to find ρ̂0, 1− ρ̂0, ρ̂1 and 1− ρ̂1 on S. Then
we normalize the values of ρ̂0, 1 − ρ̂0 and ρ̂1, 1 − ρ̂1 such that they sum up to 1.

4 https://www.kaggle.com/bistaumanga/usps-dataset.
5 The results and further discussion for SynSep and IRIS dataset are included in the

supplementary file due to the space restrictions.

https://www.kaggle.com/bistaumanga/usps-dataset

458 M. Agarwal and N. Manwani

From [19,22] we know that the sample maximum is susceptible to the outliers,
so instead of argmax Eq. (6), we take 89%-percentile.

For MNIST dataset, the architecture consists of two dense hidden layers of
size 128 with a dropout of the probability of 0.2. We train the network for 70
epochs. For the next set of experiments, we consider the USPS dataset. We
trained an architecture with three dense hidden layers of 32, 256, and 32 respec-
tively, with a dropout of probability 0.2 for 70 epochs. Lastly, for Fashion-MNIST
dataset, the architecture consists of three dense layers of size 32, 128 and 32
respectively with a dropout of probability 0.2 and is trained for 70 epochs.

Parameter Selection: For each dataset and each different noise setting, simula-
tions for RCINE are run for a wide range of values of the exploration parameter,
γ.6 For MNIST dataset, γ exploration results are shown in Fig. 3. We choose the
γ value for which the minimum error rate is achieved.

Results: We ran our proposed algorithms (RCNBF and RCINE) and compared
the average7 error rate with other benchmark algorithms as shown in Fig. 2. For
better visualization of the asymptotic bounds, we plotted the result on a log-log
scale. It shows that in the presence of noise, the final error rate of RCINE and
RCNBF is significantly better than SOBA, BPA, and Banditron. While all other
algorithms converge, RCNBF and RCINE are still learning and yet to converge.

Analysis of Fig. 2 shows that as the number of examples grows, the slope of
the error rate of RCNBF and RCINE under all different settings of noise rate
is comparable to that of SOBA, BPA, and Banditron for the noise-free (0%)
setting. The final error rate of RCNBF and RCINE under all different noise rate
settings is also close to SOBA, BPA, and Banditron under the noise-free setting.
RCINE performs comparably to RCNBF for all the datasets and noise settings.
This happens as we can efficiently estimate the noise rates.

5 Conclusion and Future Work

In this paper, we proposed a noisy bandit feedback setting in online multiclass
classification, which can effectively incorporate the noise present in real-world
data. We proposed a novel algorithm based on the unbiased estimation technique,
which enjoys a favorable bound (both theoretically and practically) under the
proposed noisy bandit feedback setting. The proposed algorithm is robust to
the noisy bandit feedback and can learn the true hypothesis in the presence of
noise. We also propose a technique to estimate the noise rate, thus providing
an end-to-end framework. Experimental comparisons on various datasets with
benchmarking algorithms show that RCNBF and RCINE are comparable to
other algorithms under noise-free bandit feedback settings but far better than
others under noisy bandit feedback settings.

6 The value of γ as shown in the figure are for RCINE. For other algorithms, the
optimal value of γ is chosen.

7 Note that here averaging is done over ten independent simulations of the algorithm.

Learning Multiclass Classifier Under Noisy Bandit Feedback 459

References

1. Anthony, M., Bartlett, P.L.: Neural network learning: Theoretical foundations.
Cambridge University Press (2009)

2. Auer, P.: Cesa-Bianchi, Nicolò, Fischer, Paul: Finite-time analysis of the multi-
armed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

3. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM J. Comput. 32(1), 48–77 (2003)

4. Beygelzimer, A., Pal, D., Szorenyi, B., Thiruvenkatachari, D., Wei, C.-Y., Zhang,
C., (eds.) Bandit Multiclass Linear Classification: Efficient Algorithms for the Sep-
arable Case, Proceedings of the 36th International Conference on Machine Learning
ICML, February 2019

5. Bishop, C.M., et al.: Neural networks for pattern recognition. Oxford University
Press (1995)

6. Crammer, K., Gentile, C.: Multiclass classification with bandit feedback using
adaptive regularization 90, 273–280 (2011)

7. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. J. Mach. Learn. Res. 2, 265–292 (2002)

8. Crammer, K., Singer, Y.: Ultraconservative online algorithms for multiclass prob-
lems. J. Mach. Learn. Res. 3, 951–991 (2003)

9. Dua, D., Graff, C.: UCI machine learning repository (2017)
10. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning

and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)
11. Duda, R.O., Hart, P.E., et al.: Pattern classification and scene analysis, vol. 3.

Wiley, New York (1973)
12. Hazan, E., Kale, S.: Newtron: an efficient bandit algorithm for online multiclass

prediction. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 24, pp. 891–
899. Curran Associates Inc. (2011)

13. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector
machines. IEEE Trans. Neural Networks 13(2), 415–425 (2002)

14. Kakade, S.M., Shalev-Shwartz, S., Tewari, A.: Efficient bandit algorithms for online
multiclass prediction. In: Proceedings of the 25th International Conference on
Machine Learning, pp. 440–447 (2008)

15. Kapoor, S., Patel, K.K., Kar, P.: Corruption-tolerant bandit learning. Machine
Learning 108(4), 687–715 (2018). https://doi.org/10.1007/s10994-018-5758-5

16. Liu, T., Tao, D.: Classification with noisy labels by importance reweighting. IEEE
Trans. Pattern Anal. Mach. Intell. 38(3), 447–461 (2015)

17. Ma, C., Zhang, H.: Effective handwritten digit recognition based on multi-feature
extraction and deep analysis. In: 2015 12th International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), pp. 297–301. IEEE (2015)

18. McCallum, A.: Multi-label text classification with a mixture model trained by em.
In: AAAI Workshop on Text Learning, pp. 1–7 (1999)

19. Menon, A., Van Rooyen, B., Ong, C.S., Williamson, B.: Learning from corrupted
binary labels via class-probability estimation. In: International Conference on
Machine Learning, pp. 125–134 (2015)

20. Natarajan, N., Dhillon, I.S., Ravikumar, P.K., Tewari, A.: Learning with noisy
labels. In: Advances in Neural Information Processing Systems, pp. 1196–1204
(2013)

https://doi.org/10.1007/s10994-018-5758-5

460 M. Agarwal and N. Manwani

21. Ou, G., Murphey, Y.L.: Multi-class pattern classification using neural networks.
Pattern Recogn. 40(1), 4–18 (2007)

22. Patrini, G., Rozza, A., Menon, A.K., Nock, R., Qu, L.: Making deep neural net-
works robust to label noise: a loss correction approach. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1944–195 (2017)

23. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65(6), 386 (1958)

24. Sivaprasad, S., Manwani, N., Gandhi, V.: The curious case of convex networks.
arXiv preprint arXiv:2006.05103 (2020)

25. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

26. Zhong, H., Daucé, E.: Passive-aggressive bounds in bandit feedback classification.
In: Proceedings of the ECMLPKDD, pp. 255–264 (2015)

http://arxiv.org/abs/2006.05103
http://arxiv.org/abs/1708.07747

Diversify or Not: Dynamic Diversification
for Personalized Recommendation

Bin Hao, Min Zhang(B), Cheng Guo, Weizhi Ma, Yiqun Liu, and Shaoping Ma

Department of Computer Science and Technology, Institute for Artificial Intelligence,
Beijing National Research Center for Information Science and Technology,

Tsinghua University, Beijing 100084, China
haob15@mails.tsinghua.edu.cn, z-m@tsinghua.edu.cn

Abstract. Diversity is believed to be an essential factor in improving
user satisfaction in recommender systems, while how to take advantage
of it has long been a problem worth exploring. Existing work either
ignores the influence of diversity or overlooks users’ different diversity
demands in recommendations. In this study, we analyze users’ behaviors
on a real-world dataset collected from an e-commerce website and find
that the demand for diversity changes among different users, even the
same user’s demand varies among different shopping scenarios. There
is also evidence that users’ behaviors are affected by the diversity of
impressions, which has been often ignored by traditional session-based
recommendation models. Then, we propose a Dynamic Diversification
Recommendation Model (DDRM) with the integration of both click and
impression diversities to better make use of diversity for recommenda-
tions. Extensive experimental results demonstrate that DDRM outper-
forms all baseline methods significantly. Further studies show our model
can provide more precise and reasonable recommendations.

Keywords: Recommender systems · Diversity · Recurrent neural
networks

1 Introduction

Since the concept of “diversity in recommendation” was raised in2000 s [8,16],
more and more researchers have realized that diversity is one of the fundamental
metrics in recommender systems. From the user perspective, diversity provides
opportunities for users to find his/her preference among a great extent of uncer-
tainty; it is also a source of satisfaction by browsing rich and colorful products.
Consequently, customer satisfaction indirectly benefits the business in increased
activities, revenues, and customer loyalty.

This work is supported by the National Key Research and Development Program of
China (2018YFC0831900), Natural Science Foundation of China (Grant No. 62002191,
61672311, 61532011) and Tsinghua University Guoqiang Research Institute. This
project is also funded by China Postdoctoral Science Foundation (2020M670339) and
Dr. Weizhi Ma has been supported by Shuimu Tsinghua Scholar Program.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 461–472, 2021.
https://doi.org/10.1007/978-3-030-75765-6_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_37&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_37

462 B. Hao et al.

What makes the idea of diversity attractive is the primary hypothesis: users’
behaviors are affected not only by an individual item but also by the impression
list presented. Diversity is defined as “relates to the internal difference within
parts of an experience” [2], and previous studies have addressed the importance
of diversity in recommendation. In this study, we focus on category-based diver-
sity to measure user diversity as mentioned in [6], in which both click diversity
and impression diversity are taken into consideration.

Low Diversity Demand

High Diversity Demand

Fig. 1. Users’ diversity demands vary in different scenarios.

Users may hold different demands of diversity. By analyzing real-world
data, results show that user’s requirements of diversity vary in different brows-
ing/shopping scenarios. Figure 1 shows an example: a boy with the intention of
“buying a cellphone for myself” may require a more straightforward recommen-
dation. While the girl may get happier if the impression list is more diverse when
thinking about what to buy for the summer holiday.

Besides users’ different diversity demands, the other question is how to mea-
sure them and give further recommendations. It is widely recognized that a
user’s click/purchasing history could indicate his/her preference [10]. The “his-
tory” is limited to a relatively short period (when the user’s intent is supposed
to remain the same) in session-based recommendations [18], where the previous
part of a click sequence is used to predict the rear one. The concept of context
here includes two aspects: Firstly, the diversity of items clicked by a user could
reflect his/her diversity demand to some extent. Click diversity is a dynamic
factor: it changes as the user clicks on a new item. Secondly, user’s behaviors
(clicks) are affected not only by his/her preference but also by impressions [3].
Therefore, impression diversity is another context information that could be
used to infer user preference.

To tackle the above problem, we propose a novel neural networks framework,
named Dynamic Diversification Recommendation Model (DDRM), aiming at
giving diversified recommendations based on both users’ click and impression
history. We first build a Recurrent Neural Network (RNN) to learn the encoding
of the click sequence. Then two lists of clicked items and impression items are
individually updated to calculate diversity at each time node. The two diver-
sity sequences are further used for constraining the generation of sequential
embeddings. For individual items, we train a Word2Vec model for item encoding.

Diversify or Not: Dynamic Diversification for Personalized Recommendation 463

In the last step, after a similarity layer and softmax layer, the model outputs
the prediction scores of each item in the candidate list.

The main contributions of this work are summarized as follows:

– We make data analysis on a real-world dataset collected from the online-
shopping website to explore how diversity affects users’ behaviors. Results
show that firstly diversity does affect users’ click behavior. Secondly, there
are significant differences between different user groups.

– We propose a model named DDRM to take into account both the click diver-
sity and impression diversity and compute recommendation scores to give
recommendations.

– Extensive experiments on a real-world dataset show that DDRM outperforms
baseline methods in terms of main evaluation metrics. Moreover, real cases
show how our model gives appropriate recommendations based on different
diversity demands.

2 Related Work

Diversity Metric. Evaluation metric is one of the most important research
questions of diversity. The intra-list diversity (ILD) has been used in a number
of works [13,17,19], with the consideration of the influence of recommendation
lists. The computation of ILD requires a distance measure between each item,
which can be defined differently for specific problems. The distance is generally
a function of item features or a function in terms of user interaction patterns.
However, few previous studies compare different types of diversities, nor do they
validate whether the diversities designed are consistent with the diversity per-
ceived by users.

Diversity Enhancement. Re-ranking is the most straight-forward group of
approaches for diversity enhancement, which exploits specific diversity measures
to re-rank a recommendation result from a recommender system. Belém et al.
[1] re-ranks the recommendations provided by any tag recommender in order to
jointly promote relevance, novelty, and topic diversity, where topics are generated
by Latent Dirichlet Allocation (LDA). Other groups of diversity enhancement
approaches are cluster-based methods. Li et al. [7] propose a nearest-neighbor
algorithm to improve aggregate diversity. Sar et al. [14] use Gradient Boosted
Trees with item diversity features to predict CTR of the recommendation lists.

Deficiently, these methods are proposed to diversify recommendations for all
users to the same degree, regardless of users’ different requirements or diversity
tolerance. They fail to consider the diversity demand varies in different scenarios
even with the same user.

Sequence-based Recommendation. Sequence-based recommendation, or
session-based recommendation [15] is proposed based on the assumption that the
user’s next behavior could be inferred from his/her previous behavior sequence.
The sequence is believed to depict the user’s preference within a certain time
interval. Recurrent Neural Networks (RNN) have been successfully applied in

464 B. Hao et al.

sequential recommmendation recently. Hidasi et al. [5] first apply RNN to
session-based recommendation and achieve significant improvement over tra-
ditional methods. Besides considering users’ historical behaviors, Rakkappan
et al. [11] propose a context-aware sequential recommendation, based on Stacked
Recurrent Neural Networks, that model the dynamics of contexts and temporal
gaps.

It’s an interesting phenomenon that both diversity enhancement methods and
sequence-based methods attempt to make use of context information to provide
better recommendations. We design and implement a dynamic diversification
recommender system, which to the best of our knowledge, is the first work to
combine the two types of information in recommendation.

3 Diversity Measurement

As mentioned in Sect. 2, since we are trying to measure user perceived diversity
by contextual information, we adopt the popular diversity metric, average intra-
list distance (ILD):

ILD =
1

|R|(|R| − 1)

∑

i∈R

∑

j∈R,i!=j

d(i, j) (1)

Where R is the recommendation list given to a user during a period of time, i
and j are both items in it. The computation of ILD requires defining a distance
measure d(i, j). The concept of “category” is often considered in modern e-
commerce as evidence to give recommendations. We adopt “category diversity”
in this work.

Category Diversity. When a user views a list of recommended items, one of
the most prominent factors is the category distribution of the list. Most people
would find that a list with “dress, potato chips, earphones, computer chair, etc.”
is more diverse than another list of “shirt, jeans, polo, T-shirt, etc.”, due to
the number of categories included in the list. In many e-commerce websites,
the category of items is a multi-level tree structure. Let icm be the m-level
subcategory of item i, and Pk be a logical proposition that “ick == jck”, then
the category diversity is measured by the distance between items i and j, it is
calculated by:

d(i, j) =
m∑

k=1

φk(
2m − 2(k − 1)

2m
) =

m∑

k=1

φk(
m − k + 1

m
) (2)

where

φk =

{
1, if P1 ∧ P2 ∧ · · · ∧ Pk−1 ∧ ¬Pk

0, otherwise

Here P0 ≡ true and m is the category levels. The molecules (2m − 2(k − 1)) are
the shortest path length on a tree between two subcategories of the same level.
Besides, 2m is the longest path length if the two items are with different 1-level
category, used as normalization.

Diversify or Not: Dynamic Diversification for Personalized Recommendation 465

4 Large-Scale Log Based Diversity Analysis

4.1 Data Preparation

We collect data from an online-shopping website (www.jd.com), which has more
than 360 million active users each year. Moreover, we sampled users whose pur-
chase order is between 100 and 1, 000 within a year and their behaviors recorded
within one week (from 1st, AUG, 2017 to 7th, AUG, 2017). The sampled dataset
consists of 90, 331 users, 5, 662, 595 items, and 6, 657, 048 impressions.

In this paper, we focus on analyzing users’ click behaviors due to the following
reasons: first, “click” is a relatively frequent action, since a user may click more
than 20 times before he/she buys a product. Second, click-through-rate (CTR)
has long been an effective metric in information retrieval, which is also a vital
recommendation metric in the industry. Thirdly, “click” is a direct reaction after
shown impression lists, which reflects users’ choices and preferences.

4.2 Analysis on Impression-Level Behaviors

Firstly, we want to verify whether there is a relation between users’ click behavior
and diversity within an impression. Heat maps in Fig. 2 show the correlation
between CTR and impression-list level diversity.

We investigate CTR vs. diversity on different gender groups to see if there
exists divergence between different people. Figure 2(a) and Fig. 2(b) show a com-
parison between different genders. We can see that more male users are attracted
by diverse lists, for the CTR is relatively higher when diversity is high (0.6 ∼ 1.0).
In contrast the distribution of female users goes more dispersed. Next, Fig. 2(c)
and Fig. 2(d) show the distributions on two age groups. High diversity (0.6 ∼ 1.0)
usually leads to a higher CTR (0.10 ∼ 0.18) for young users (age 21− 25), while
diversity seems not that attractive for middle-aged users (age 41 − 45).

Conclusions can be drawn from the above analysis: firstly, diversity does
affect a user’s click behavior, indicating that diversity is an essential factor that
should be considered in recommendation. Secondly, there are significant differ-
ences between different user groups. It indicates that diversification is a per-
sonalized task more than a generalized one: the decision of whether to diversify
belongs to the user himself/herself. Due to it is not easy to get user personal
information, we focus on adequately introducing diversity into recommendation
methods in this study.

(a) male (b) female (c) age 21-25 (d) age 41-45

Fig. 2. Heat map of CTR and impression diversity of different gender and age groups.

www.jd.com

466 B. Hao et al.

Fig. 3. Overview of the structure of DDRM

5 Dynamic Diversification Recommendation Model

5.1 Problem Formulation

We define the session-based recommendation task as follow. Given a time win-
dow size Δt, let L = {(l1, t1), (l2, t2), ..., (ln, tn)} be the set of impression lists
presented to the user, let X = [(x1, t1), (x2, t2), ..., (xn, tn)] be a click session,
where tn − t1 ≤ Δt, xi ∈ li, 1 ≤ i ≤ n. For any given prefix of the click
sequence in the session, x = [x1, x2, ..., xt−1, xt], l = [l1, l2, ..., lt−1, lt], 1 ≤ t ≤ n,
a session-based recommender system RS should output y = RS(x), where
y = [y1, y2, ..., yd−1, yd] and yj(1 ≤ j ≤ d) corresponds to the recommenda-
tion score of item j. In the task of top-k(1 ≤ k ≤ d) recommendation, k items
with the highest scores in y are recommended.

5.2 Model Overview

Figure 3 gives an overview of the structure of Dynamic Diversification Recom-
mendation Model (DDRM). The model mainly includes five parts: diversity
integrated sequence modeling part, time gap integrated sequence modeling part,
sequence embedding part, individual item embedding part, and dynamic diversi-
fication prediction part.

Diversity integrated sequence modeling part integrates click diversity and
impression diversity into input embedding; the detail will be introduced in
Sect. 5.3. Time gap integrated sequence modeling part takes the time gaps
between items into input embedding into modeling, which is depicted in Sect. 5.4.
In Sequence embedding part, we use Gated Recurrent Units (GRU) [5] to model
the sequence embeddings based on the previous two parts (Sect. 5.5). In Individ-
ual item embedding part, Word2Vec [9] is used for individual item embedding.
For each item that occurred (whether exposed or clicked), its categories (3 lev-
els), title, and detailed descriptions are joint to form an item-level “document”.
The average word embedding of the “document” is represented as the embed-
ding of each item. At last, Dynamic diversification prediction part is used to

Diversify or Not: Dynamic Diversification for Personalized Recommendation 467

make predictions for each candidate item and give the final recommendation.
The detail is introduced in Sect. 5.6.

5.3 Diversity Integrated Sequence Modeling Part

Click Diversity Integration. The diversity of clicked item list in a session is a
variable, which changes with the user’s click action as new items are added into
the list. xi(1 ≤ i ≤ n) is the item clicked at time ti, and lci is the clicked item
set until time ti. Then, if a user clicks item xi+1, this process is linear according
to chronological order:

lci+1 = lci ∪ {xi+1} (3)

and the value of “click diversity” dci(1 ≤ i ≤ n), which is calculated by Eq. 1,
updates when a new item is added. We assume that part of the embeddings from
the temporal sequence should be constrained (or presented) by the corresponding
“click diversity”, as a result, the input of a GRU unit at time n is given by:

vInn = vxn � vcn (4)

where vxn ∈ R1∗d1 , � denotes concatenation.

Impression Diversity Integration. Similar to “click diversity”, lImi indicates
the impression list presented to the user before time ti, which is also expanded
with time order:

lImi+1 = lImi ∪ li (5)

Correspondingly, the impression diversity dImi (which is also calculated by
Eq. 1), together with the click diversity, form the embedding layer:

vInn = vxn � vcn � vImn (6)

where vxn ∈ R1∗d1 , vcn ∈ R1∗d2 , vImn ∈ R1∗d3 .

5.4 Time Gap Integrated Sequence Modeling Part

Time gap between two clicks can capture the duration of each click behavior.
Xti indicates the time gap between ti and ti−1.

{
Xti = ti − ti−1

Xt1 = 0
(7)

the time gap Xti, together with the click diversity and impression diversity,
form the embedding layer:

vInn = vxn � vcn � vImn � vtn (8)

where vxn ∈ R1∗d1 , vcn ∈ R1∗d2 , vImn ∈ R1∗d3 ,vtn ∈ R1∗d4 .

468 B. Hao et al.

5.5 Sequence Modeling Part

Gated Recurrent Units (GRU) [5] is used for sequence modeling.

hn = GRU (vInn, hn−1) (9)

Besides the final GRU output, we also adopt attention to combine the whole
sequence and each hidden state to enhance the sequence embedding :

hatt =
n∑

i=1

aihi (10)

where ai is the attention weight of hi calculated in [4]. The final representation
of the sequence ct is given by:

ct = hn + hatt (11)

5.6 Dynamic Diversification Prediction Part

As depicted in Fig. 3, ct is the embedding of the sessional sequence with diver-
sity integration, and embi is the embedding of item i in the candidate list. For
most previous work in top-k recommendation, the candidate list is exactly I
itself. However, the method ignores the real situation perceived by the user; in
other words, item impressions exposed to a user may affect his/her decisions
and behaviors. More importantly, diversity is a list-level concept that calls for
consideration of how a recommendation list is presented. The impression lists
“pushed” to the user at every time point are made use of as candidate lists.
Similarity between ct and embi is calculated as:

Si = ctBembTi (12)

where B is a parameter matrix. The prediction score of item i is the output of
a softmax layer:

yi = σ(Si) (13)

The model is trained by using a mini-batch gradient descent on cross-entropy
loss, where q is the prediction distribution and p is the true one:

L(p, q) = −
d∑

i=1

pilog(qi) (14)

For negative cases, we randomly sample items exposed while not clicked by users
with a ratio 5 : 1 of negative and positive ones.

Diversify or Not: Dynamic Diversification for Personalized Recommendation 469

6 Experiment

6.1 Experimental Settings

Dataset. The dataset we use is the same as in Sect. 4.1. Since some of the users’
behaviors are extremely sparse, we filter some active users as follows: based on
the task definition and general meaning of “diversity”. As there should be at
least 3 items to talk about “diversity”, users who perform 4 clicks during a
period of time are selected. Table 1 gives some statistics. We randomly sampled
70% of the dataset for training, 10% for validation, and the rest for test.

Table 1. Statistics of the experiment dataset

Users Items Impressions

Meta-data 90,331 5,662,595 6,657,048

≥ 1 click 33,347 943,817 132,498

≥ 4 clicks 9,994 750,513 95,315

Table 2. Performance comparison of DDRM with baseline methods

Type Methods Recall@5 Recall@10 MRR@5 MRR@10 NDCG@5 NDCG@10

Without diversity POP 0.1094 0.1113 0.0856 0.0859 0.0917 0.0924

BPRMF 0.0996 0.0996 0.0685 0.0685 0.0764 0.0764

GRU-Rec 0.2051 0.4609 0.0899 0.1239 0.1180 0.2006

With diversity XTReD 0.2188 0.4656 0.0922 0.1249 0.1231 0.2047

Our model DDRM-noD 0.2246 0.4670 0.0944 0.1272 0.1285 0.2024

DDRM-clkDo 0.2311 0.4720 0.0973 0.1298 0.1309 0.2046

DDRM 0.2383** 0.4767** 0.0996** 0.1325** 0.1328** 0.2071**

**. Significantly better than the best baseline with p < 0.05

Baselines. The methods used as baselines in the recommendation task are as
follows. POP always recommends the most popular items (clicked by users) in
the training set. BPRMF [12], which optimizes a pairwise ranking objective
function via stochastic gradient descent. GRU-Rec [5], which utilizes session-
parallel mini-batch training process and employing ranking-based loss functions
for learning. xTReD is short for “Explicit Tag Recommendation Diversifier”
[1]. This baseline seeks to explicitly maximize the set of categories covered by
the recommended tags as well as relevance.

All these methods above are widely used in modern e-commerce scenarios.
GRU-Rec is the main comparison partner as an effective RNN-based recom-
mendation method. xTReD is another main competitor as the state-of-the-art
diversification methods.

470 B. Hao et al.

Evaluation Metrics. Recall@K, MRR (Mean Reciprocal Rank)@K, and
NDCG (Normalized Discounted Cumulative Gain)@K are chosen as the evalua-
tion metrics in our task. K is set to 5, 10 respectively for each metric listed above.
The reason we set K no more than 10 is that the length of most impression lists
is less than 10.

6.2 Results and Analysis.

Table 2 gives a performance overview of all the models considered. We split each
session with time window of 6 hours. DDRM-noD is the model without any
diversity information, DDRM-CDo is the model with click diversity only, and
DDRM is the final model with both impression diversity and click diversity.
The parameters of different models are as follows. For BPRMF, the dimension
of latent factors is set to 50. Models based on RNN, including Gru-Rec, DRRM-
noD, DRRM-CDo and DRRM all use one GRU layer, which is set at 100 hidden
units. The embedding dimensions input to GRU layer are 128 (Gru-Rec and
DRRM-noD), 128 + 32 (DRRM-CDo) and 128 + 32 + 32 (DRRM) respectively.
We use 100−dimensional embeddings for the presentation of both sequences and
items. For all methods, we select the best hyper-parameters using the validation
set and report the corresponding performance on the test set.

We have the following observations from the results:
For baseline models, BPRMF gives the worst performance and the reasons

are as follows: the data is very sparse for Matrix Factorization, and there are
too many “cold” items that are incapable for CF methods to handle. Besides,
POP also gives a poor performance as it does not provide personalization results.
Methods based on neural networks consistently outperform the traditional base-
lines, demonstrating that RNN-based models are good at dealing with sequence
information. At last, as a diversification method that jointly optimizes relevance
and diversity, xTReD shows a better performance.

For the proposed DDRM, DDRM-noD shows a little promotion over xTReD
and GRU-Rec, indicating that embeddings from Word2Vec could better describe
item features than CF methods. DDRM-CDo further improves from DDRM-
noD. It indicates that click diversity can help model users’ diversity demand
within a session. With the further integration of impression diversity, DDRM
significantly outperforms all the methods above (p < 0.05). It indicates that
the joint action of impression diversity and click diversity can model users’
preference more precisely.

6.3 Influence of Time Window

Figure 4 (a) and (b) shows Recall@5 and NDCG@5 of xTReD and DDRM as
the time window changes. We have the following observations from the results:
Firstly, DDRM outperforms XTReD in all time windows Then, the performance
of both DDRM and XTReD improves from 3hs to 6hs. Besides, the performance
of DDRM begins to decline after 6hs; we consider this the result of the change
of user’s diversity demand if the time duration is too long.

Diversify or Not: Dynamic Diversification for Personalized Recommendation 471

(a) (b) (c)

Fig. 4. Comparison between DDRM and GRU-rec (a) Recall@5 and (b) MRR@5 with
the change of the time window size, (c) Click diversity with sequence length 8

6.4 Case Study

This section shows some representative cases of how DDRM gives recommen-
dations based on dynamic diversification. Figure 4 (c) shows the change of click
diversity of 8 users with a sequence length of 8, where a darker color square
means a higher diversity. Note that the previous 7 squares are the user click-
ing history, and the last one is the recommendation put forward by DDRM.
As shown in Fig. 4, there are 4 types of users: (1) For user 1 and user 2, the
click diversity gradually declines as they clicked on more items. For most users,
online-shopping is a process to find what they really want. They may click on
diverse items but finally become concentrated after they made a decision. (2)
For user 3 and user 4, the diversity performs a slow rise. The two users might
be those who “click for fun” and find satisfaction in diverse recommendations.
(3) User 5 and user 6 shows a fluctuation of diversity but finally converge to
a stable value. (4) User 7 and user 8 are “firm” users on the issue of diversity,
where diversity keeps almost a constant value. However types of these users,
DDRM recommends items similar to users’ past preferences.

7 Conclusion and Future Work

In this paper, first, we collect user logs from a real-world e-commerce website,
finding that users from different groups are with different diversity demands,
and the demands vary in different scenarios. Real cases indicate that it is not
enough to infer users’ diversity demands only by items clicked, where impres-
sions should also be considered. Second, we propose a Dynamic Diversification
Recommendation Model (DDRM), integrating both click diversity and impres-
sion diversity with recurrent networks. Third, we conduct extensive experiments
on the real-world dataset in terms of different evaluation metrics. Comparisons
between our models and baseline methods demonstrate that DDRM outperforms
all these baseline methods on providing accurate recommendations. Furthermore,
we visualize the change of diversities to show in detail how DDRM gives recom-
mendations.

472 B. Hao et al.

The work initiated is a first step towards integrating diversity in recommen-
dation. There is still much work to do: first, the user’s personal profile infor-
mation might be a vital source to infer his/her acceptance of diversity. Second,
researches have shown that user’s attention on items at different positions of
the list varies, which inspires us to improve the calculation method of list-level
diversity. All these factors should be taken into consideration in future work.

References

1. Belém, F.M., Batista, C.S., et al.: Beyond relevance: explicitly promoting novelty
and diversity in tag recommendation. TIST 7(3), 26 (2016)

2. Castells, P., Hurley, N.J., Vargas, S.: Novelty and diversity in recommender sys-
tems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Hand-
book, pp. 881–918. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-
4899-7637-6 26

3. Cen, R., Liu, Y., Zhang, M., Ru, L., Ma, S.: Study on the Click Context of Web
Search Users for Reliability Analysis. Springer, Berlin (2009)

4. Chaudhari, S., Polatkan, G., Ramanath, R., Mithal, V.: An attentive survey of
attention models. arXiv preprint arXiv:1904.02874 (2019)

5. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

6. Hu, R., Pu, P.: Enhancing recommendation diversity with organization interfaces.
In: IUI, pp. 347–350. ACM (2011)

7. Li, X., Murata, T.: Multidimensional clustering based collaborative filtering app-
roach for diversified recommendation. In: ICCSE, pp. 905–910. IEEE (2012)

8. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accu-
racy metrics have hurt recommender systems. In: Proceeding CHI 2006 Extended
Abstracts on Human Factors in Computing Systems, pp. 1097–1101. ACM (2006)

9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

10. Oard, D.W., Kim, J., et al.: Implicit feedback for recommender systems. In: AAAI,
pp. 81–83. AAAI Press (1998)

11. Rakkappan, L., Rajan, V.: Context-aware sequential recommendations withstacked
recurrent neural networks. In: WWW, pp. 3172–3178 (2019)

12. Rendle, S., Freudenthaler, C., et al.: BPR: Bayesian personalized ranking from
implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence, pp. 452–461. AUAI Press (2009)

13. Ribeiro, M.T., Ziviani, N., Moura, E.S.D., Hata, I., Lacerda, A., Veloso, A.: Multi-
objective pareto-efficient approaches for recommender systems. ACM Trans. Intell.
Syst. Technol. (TIST) 5(4), 53 (2015)

14. Sar Shalom, O., Koenigstein, N., Paquet, U., Vanchinathan, H.P.: Beyond collab-
orative filtering: the list recommendation problem. In: WWW, pp. 63–72 (2016)

15. Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: Pro-
ceedings of ACM Conference on Electronic Commerce, pp. 158–166. ACM (1999)

16. Smyth, B., McClave, P.: Similarity vs. diversity. In: ICCBR, pp. 347–361 (2001)
17. Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for

recommender systems. In: Recsys, pp. 109–116. ACM (2011)
18. Wang, S., Cao, L., Wang, Y.: A survey on session-based recommender systems.

arXiv preprint arXiv:1902.04864 (2019)
19. Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recommen-

dation lists. In: Recsys, pp. 123–130. ACM (2008)

https://doi.org/10.1007/978-1-4899-7637-6_26
https://doi.org/10.1007/978-1-4899-7637-6_26
http://arxiv.org/abs/1904.02874
http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1902.04864

Multi-criteria and Review-Based Overall
Rating Prediction

Edgar Ceh-Varela(B) , Huiping Cao , and Tuan Le

Department of Computer Science, New Mexico State University, Las Cruces, USA
{eceh,tuanle}@nmsu.edu, hcao@cs.nmsu.edu

Abstract. An overall rating cannot reveal the details of user’s pref-
erences toward each feature of a product. One widespread practice of
e-commerce websites is to provide ratings on predefined aspects of the
product and user-generated reviews. Most recent multi-criteria works
employ aspect preferences of users or user reviews to understand the
opinions and behavior of users. However, these works fail to learn how
users correlate these information sources when users express their opin-
ion about an item. In this work, we present Multi-task & Multi-Criteria
Review-based Rating (MMCRR), a framework to predict the over-
all ratings of items by learning how users represent their preferences
when using multi-criteria ratings and text reviews. We conduct exten-
sive experiments with three real-life datasets and six baseline models.
The results show that MMCRR can reduce prediction errors while learn-
ing features better from the data.

Keywords: Multi-criteria · Multi-task · Rating prediction

1 Introduction

Multi-criteria recommender systems (MCRS) have been developed to increase
the recommender systems (RS) performance. Most recent multi-criteria works
employ user prefernces [14,20] or reviews [2,11] to understand users’opinions
and analyze their behaviors. However, these works fail to consider the analytical
tasks users need to follow to express their opinion about an item in different
forms and how these tasks are related (i.e., summarizing the textual reviews
into criteria, and finally into an overall rating). This process is challenging, as
users have different scales for their ratings and for the intensity of some of the
opinion words used in their reviews [18]. For example, a user could write the
sentence “This is a good hotel” and rate the hotel with five stars, while another
user for the same sentence could use four stars.

Considering that these forms for expressing user preferences are related,
this study proposes a new Multi-task & Multi-Criteria Review-based Rating
(MMCRR) framework to predict the overall rating that a user would give
to a new item. MMCRR uses a multi-task learning (MTL) approach to learn
how users represent their preferences when using multi-criteria ratings and text
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 473–484, 2021.
https://doi.org/10.1007/978-3-030-75765-6_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_38&domain=pdf
http://orcid.org/0000-0001-6277-2741
http://orcid.org/0000-0002-1350-1846
http://orcid.org/0000-0003-0667-9184
https://doi.org/10.1007/978-3-030-75765-6_38

474 E. Ceh-Varela et al.

reviews and the relationship between these two. Furthermore, it can also predict
each criterion rating because of the multi-task process, which can be presented
to explain why a given overall rating.

This paper’s contributions are as follows: (i) we present a model that takes
advantage of MTL to use multi-criteria ratings and text reviews to learn the
relationship between these types of evaluations. (ii) our approach can predict
the overall and criterion ratings that a user would give to an item. Moreover,
the model does not need the item’s multi-criteria or individual review during
the prediction phase. (iii) we evaluate the model’s performance on three real-life
datasets against baseline models from the most utilized types of MCRS.

The remainder of this paper is organized as follows: Sect. 2 presents the
related literature. Section 3 details the proposed methodology. Section 4 outlines
the experimental settings used to test our proposed model. The results showing
the validity of our proposed method and its effectiveness are in Sect. 5. Finally,
our conclusions are in Sect. 6.

2 Related Work

2.1 MCRS with User Preferences

Models in this category try to learn the relationships between the criteria rat-
ings and the overall rating. User preferences are known directly from the user’s
explicit ratings on the items’ features. Different works have extended exist-
ing single-criteria Collaborative Filtering (CF) techniques to work with multi-
criteria ratings [1]. A method to learn and rank user preferences over each cri-
terion and find each item’s dominant criterion is presented in [14]. These ranks
are used to predict the overall rating using CF techniques. In [10], multi-criteria
ratings are decomposed into k separate single rating problems using matrix fac-
torization techniques (e.g., SVD). An aggregation function is then extracted
using different machine learning approaches. These works only exploit the user’s
preference from multi-criteria ratings, which can fail short on representing the
user’s whole opinion towards an item.

2.2 Multi-criteria Review-Based RS

Works from this category consider an implicit relationship between the user’s
overall rating and her expressed comment. The most widely used method is the
extraction of aspects and their polarity scores (i.e., positive or negative sen-
timents) [11,12]. Aspects are extracted using different Natural Language Pro-
cessing (NLP) techniques. Similarly, other works [2,17] generate latent feature
representations from reviews. These representations are then used as an input
for the overall rating prediction. These works only analyze user reviews without
considering the explicit multi-criteria ratings.

Moreover, some MCRS works [5,7,9] jointly use reviews and ratings for the
target item as additional input for the prediction. However, in real-life recom-
mendations, we do not know at recommendation time what the user would write

Multi-criteria and Review-Based Overall Rating Prediction 475

or how the user would rate the criteria. Our proposed solution does not have
this problem as it uses historical reviews, and criteria ratings only for training.

2.3 Multi-Task Learning (MTL)

In many situations, we may have a task composed of related sub-tasks, and where
each of them shares some features. MTL [3] allows solving all these sub-tasks,
and consequently, the overall task, in an end-to-end learning model. In MTL,
each task provides regularization to the other tasks, which is especially useful in
scenarios where part of the data is not available at test time. Recently, different
works [2,19] have started to use MTL in recommendation problems.

In this work, we exploit the multi-task learning paradigm. We consider two
related tasks: (i) an associated task, used during training, which predicts the
overall rating given the multi-criteria ratings, and (ii) a main task, composed of
two subtasks, to predict the multi-criteria and overall ratings based on historical
user and item reviews.

3 Proposed Approach

3.1 Problem Definitions

Let U = {u1, · · · , uM} and I = {i1, · · · , iN} be the set of users and set of items
that users have rated respectively. We denote HUI the set of reviews written by
U about I.

Definition 1 (Reviews document). A reviews document Hu ⊂ HUI is the
set of reviews written by a user u ∈ U . Similarly, Hi ⊂ HUI is the set of reviews
about an item i ∈ I.

Each item i ∈ I is described by a set of aspects (i.e., criteria) K =
{k0, k1, · · · , kK}. A user u ∈ U can rate a criterion k with a rating ru,i,k, a non-
negative real number. We consider the overall rating as one particular aspect,
denoted as ru,i,0.

Definition 2 (Multi-criteria ratings). Is the set of ratings following the
function R : U × I → R0 × R1 × · · · × Rk.

Where R0 represents the overall ratings, and R1 to Rk is the rating values for
each criterion. For the rest of the paper, when we mention the multi-criteria
ratings, we will not consider R0.

Definition 3 (Problem statement). Having the set of reviews HUI , the set
of users U , the set of items I, and the set of multi-criteria ratings from R, the
problem is to find a function ru,i,0 = f(U, I), where ru,i,0 is the overall rating
that a user u ∈ U would give to an item i ∈ I which he/she has not interacted
with before.

476 E. Ceh-Varela et al.

3.2 MMCRR Model

Figure 1 shows the general architecture of the MMCRR model. It consists of two
parts, one for each task of our MTL approach. During training, MMCRR uses
the multi-criteria representation from the associated task to adjust the feature
representation and to improve the accuracy in the main task. Moreover, user
and item embeddings are shared between the two tasks allowing them to create
better representations of users and items. For clarity, we use bold lowercase for
vectors and bold uppercase for matrices.

Fig. 1. MMCRR model components

3.3 Associated Task

This task is only used during the model training, given that the criteria rat-
ings are not available for the final overall rating predictions. It aims to learn a
representation of the user’s preferences for each item’s criterion. Figure 1 shows
in blue the architecture of this task. The inputs for this task are the user u
and item i IDs, and the ratings given by u to each of i’s criterion. Each user
u and item i is represented with an embedding vector. These vectors represent
the intrinsic properties of u and i learned from the data. We use two embedding
layers EmbeddingU ∈ R

U×DU and EmbeddingI ∈ R
I×DI , where DU and DI are

the vectors’ dimensionalities. Then, u ∈ R
DU and i ∈ R

DI are the embedding
vectors for each user and item, respectively.

Similarly, let ru,i,k be the rating of user u to item i in criterion k. We represent
the criteria ratings given by a user u to an item i as r. The interaction of
embedding vectors u and i is obtained using an element-wise product, which has

Multi-criteria and Review-Based Overall Rating Prediction 477

been demonstrated to be highly effective [6]. Finally, this interaction and r, are
passed to a neural network (ReprM) to obtain the features representation as

zu,i,r = σ(Wr [u × i, r] + br) (1)

where Wr and br denote the weight matrix and bias vector, respectively. σ is the
activation function and zu,i,r is the features representation. The representation
is used to predict the overall rating as:

r̂u,i,0 = wr
�(σ(Wozu,i,r + bo)) (2)

where wr denotes the weights of the prediction layer, Wo and bo are the param-
eters, σ is the activation function, and r̂u,i,0 is the overall rating prediction for
a user u and item i.

3.4 Main Task

This task aims to predict the overall rating and, in an auxiliary way, the multi-
criteria ratings that a user u would give to an item i. This task consists of several
steps: (i) word sequence encoding, (ii) word-level attention, (iii) multi-criteria
rating prediction, and (iv) overall rating prediction. Figure 1 presents in green
the architecture of this task. We detail this task in the following sections.

Word Sequence Encoding. We rely on the GRU [4] gating mechanism.
Assume that a document (i.e., Hu or Hi) contains T words. The words in this
document are represented as wt with t ∈ [1, T]. The main task transforms the
raw document into a vector representation, on which we build a multi-criteria
rating predictor. Without loss of generality, we present how we build the docu-
ment level vector for Hu, the steps for Hi are similar. Each word is embedded
as a vector w ∈ R

WU , using an embedding layer EmbeddingHU
∈ R

WU×DW ,
where WU is the size of the vocabulary for the users’ documents, and DW is the
dimensionality of the embedding vector. The sequence of words embeddings wt

for each document is the GRU input to get the contextual information of each
word. This step is represented as ou = GRU (wt) , t ∈ [1, T] , where ou contains
the output features ht for each t.

Word-Level Attention. The same words may have a different intention for
different users. Hence, we introduce an attention mechanism to extract those
words that are important to the document’s meaning, considering the user who
wrote it. Then, we aggregate those informative words to form a document vector.
Concretely,

et = tanh (Ww[ou,u] + bw) (3)

αt =
exp (et)∑
t exp (et)

(4)

478 E. Ceh-Varela et al.

du =
∑

t

αtou (5)

where et is a hidden representation of ou and u, αt is the normalized importance
weight. Finally, we compute a user document vector du as a weighted sum of
the weights αt and ou.

Multi-criteria Rating Prediction. After obtaining the document represen-
tations du and di (di is the item’s document vector), we proceed to predict each
criterion’s rating. The embedding vectors u and i, along with du and di, are
passed to a two-layer neural network to obtain the features representation.

zu,i,k = σ(Wk1(σ(Wk0 [u, i,du,di] + bk0)) + bk1) (6)

where Wk0, Wk1, bk0, and bk1 denote the weight matrices and bias vectors,
respectively. σ is the activation function, and zu,i,k is the feature representation.
This representation is used to predict a vector with the multi-criteria ratings as
follows:

r̂u,i,k = wk
�zu,i,k (7)

where wk denotes the weights of the prediction layer, and r̂u,i,k is a vector with
the multi-criteria rating predictions for a user u and an item i.

Overall Rating Prediction. To predict the overall rating, the interaction
of u and i, along with r̂u,i,k, are passed to a simple neural network to get the
features representation (ReprMT).

zu,i,t = σ(Wt [u × i, r̂u,i,k] + bt) (8)

where Wt and bt denote the weight matrix and bias vector, respectively. σ is
the activation function, and zu,i,t is the features representation. Then, we get
the overall rating as:

r̂u,i,0 = wt
�(σ(Wtzu,i,t + bt)) (9)

where wt denotes the weights of the prediction layer, Wt and bt are the param-
eters, σ is the activation function, and r̂u,i,0 is the overall rating prediction for
a user u and item i.

3.5 Model Optimization

First, for the associated task, given the ground-truth overall rating of user u on
item i, and the predicted overall rating calculated using Eq. 2, the loss of this
rating prediction is defined as follows:

LossAT = (ru,i,0 − r̂u,i,0)2 (10)

Multi-criteria and Review-Based Overall Rating Prediction 479

Second, the main task performs two additional tasks: predicting the aspect
ratings and predicting the overall rating. First, given the ground-truth aspect
ratings of user u on item i and the aspect rating predictions using Eq. 7, the loss
of rating predictions is defined as:

LossA =
k∑

j=1

(ru,i,j − r̂u,i,j)2 (11)

Then, for the ground-truth overall rating and the predicted rating from Eq. 9,
we have:

LossMT = (ru,i,0 − r̂u,i,0)2 (12)

The associated and main tasks are closely related; therefore, their representations
need to be close to each other. Hence, we add a representation loss as:

LossR = ‖zu,i,r − zu,i,t‖2 (13)

Finally, to optimize all model parameters, we try to minimize the following loss
function:

Loss =
1

|N |
∑

rui∈N

(λ(LossMT +LossA +LossR)+(1−λ)LossAT)+αθ|θ|2F (14)

where N is the training set and λ determines the relative importance of the
tasks. This optimization function considers LossR when both tasks are trained
(i.e., 0 < λ < 1). We use the Frobenius norm regularization term |θ|2F =

∑
i θ2i ,

where θ stands for the parameters to optimize, and αθ is the penalty term.

4 Experimental Settings

4.1 Datasets

We use three real-life datasets to test our model. These datasets have rating val-
ues and written reviews for the items. The first two correspond to non-alcoholic
(NALC) and regular beer (BEER) reviews collected from the BeerAdvocate
website by [11]. They have ratings on four beer aspects (i.e., feel, look, smell, and
taste) and an overall rating. The third dataset has hotel reviews from TripAdvi-
sor (TRIP) collected by [16]. This dataset includes ratings on seven aspects in
each review (i.e., value, room, location, cleanliness, check-in/front desk, service,
business service), and an overall rating. For the three datasets, the rating range
is from 1 to 5 stars. Table 1 shows the description of these datasets. We remove
instances considered outliers. For example, an instance having all its aspects
with ratings of 5 stars, but an overall rating of 1. Further, we remove users with
less than five reviews. We transform each review to lowercase and remove all
numbers and special characters. For BEER and TRIP, we randomly get a sam-
ple of 50,000 instances. We randomly split each dataset into 80% for training,
10% for evaluation, and 10% for testing. For each user, we concatenate the text
from her reviews. We do the same for the reviews about each item. We specify a
maximum text size of 10,000 words. We use “<UNK>” to replace those words
with a frequency below 10.

480 E. Ceh-Varela et al.

Table 1. Dataset descriptions

NALC BEER TRIP

Instances 1,201 1,585,887 67,155

Users 582 33,372 60,107

Items 162 66,051 1,850

Avg. words per review 110.24 123.84 177.70

Aspects 4 4 7

Avg. overall rating 2.58 3.82 4.07

Std. overall rating 1.01 0.72 1.16

Aut. Read. Index 8.06 9.09 11.73

Sparsity ∼ 0.91 ∼ 0.99 ∼ 0.97

4.2 Baselines

We choose baselines that only use user and item IDs as input for the prediction
phase, given that additional input information (i.e., multi-criteria ratings and
user’s review) is not present in such a phase. We compare our proposed model
with the following baselines:

1. Multi-criteria rating-based models:

MultiDim [1]: This method extends the standard CF approach. It calculates
similarity using multi-dimensional distance metrics to reflect multi-criteria
information.
PrefLearn [14]: This algorithm learns and ranks the user’s preferences over
different criteria. Similarly, it finds and ranks the dominant criterion of each
item. Then, it uses these rankings with modified versions of UBCF and IBCF
algorithms. The results of these algorithms are unified to obtain the final
overall rating.
AggFunc [10]: This model assumes that the overall rating and the multi-
criteria ratings have a relationship. It decomposes the multi-criteria rating
space into k single-rating recommendation problems. It uses SVD to predict
each criterion’s missing ratings and a two-layer Neural Network to learn an
aggregation function for predicting the overall rating based on the known
multi-criteria ratings.

2. Multi-criteria review-based models:

AspectBased [12]: This model extracts relevant aspects and sentiment scores
from the user’s reviews. The sentiment scores associated with each extracted
aspect are used as ratings. Then it uses a Multi-criteria User-to-User algo-
rithm to predict the overall rating.
GRURec: We implemented this baseline based on [2,8]; this model uses
two bidirectional GRU RNN to get latent preference factors for Hu and Hi.
Both vectors are then concatenated with the user and item embeddings. The
resulting vector is then used as input for an MLP neural network to predict
the overall rating.

Multi-criteria and Review-Based Overall Rating Prediction 481

3. Multi-criteria rating- & review-based models:

AggFunc+GRURec: We use an ensemble method to combine Multi-criteria
rating-based models and Multi-criteria review-based models. This model cal-
culates the overall rating using the average of the ratings predicted by Agg-
Func and GRURec.

4.3 Hyperparameters

We use Pytorch on a Tesla P100 GPU with 16 GB of RAM. We use a hidden
layer size of 128, an embedding dimension of 256 for users and items, a learning
rate of 0.001 with a learning scheduler. The word embedding dimensions are set
to 100 and initialize with pre-trained GloVe embeddings. The activation function
is LeakyReLU. The model is trained with a batch size of 256 for NALC and 128
for BEER and TRIP. We use Adam as the optimizer. On the embedding layers,
we use a dropout percentage of 0.2. For the loss, we initially set λ = 0.5, for
the regularization, αθ is set to 0.01, and for epochs, we use an early stopping
strategy based on the validation loss.

5 Experimental Results

5.1 Model Performance

We use the standard metric, Root Mean Square Error (RMSE). A smaller RMSE
value indicates better performance. Table 2 shows the average performance of
the six baselines and MMCRR after running the tests three times. From these
results, we observe the following:

(1) For methods using criteria ratings, the AggFunc method has the best
results for all datasets, indicating that using the preferences for each criterion
is useful. (2) For methods using reviews, the AspectBased method results show
that using only the sentiment of latent aspects extracted from the reviews as the
multi-criteria ratings do not provide good results. These results happen because
different user’s words can have different sentiment strengths, which implies a
different rating scale [15]. The results of GRURec are better, showing that it
can find more useful representations of users and items based on the reviews.
(3) Combining models for criteria ratings and reviews improves those models’
results just using text.

We can see that MMCRR outperforms all baselines, which indicates that it
can learn the analytical tasks that a user makes when expressing preferences
about an item.

5.2 Effect of Parameter λ

Figure 2 shows the results of varying the parameter λ from Eq. 14. When λ
increases, the contribution from the associated task decreases. For the NALC

482 E. Ceh-Varela et al.

Table 2. Performance results for all
datasets (λ = 0.5)

Method NALC BEER TRIP

MultiDim 1.0251 0.6059 1.171

PrefLearn 0.932 0.6045 1.1235

AggFunc 0.9314 0.5939 1.073

AspectBased 1.2958 0.8856 1.4238

GRURec 0.9726 0.6473 1.164

AggFunc+GRURec 0.9349 0.6974 1.081

MMCRR 0.873 0.579 0.9751

Table 3. Comparing different losses

Method NALC BEER TRIP

MMCRR NA 1.0346 0.6374 1.2314

MMCRR NR 0.9003 0.5778 0.9881

MMCRR NRA 1.0130 0.6398 1.2869

MMCRR 0.873 0.579 0.9751

Fig. 2. MMCRR varying λ for each dataset (considering LossR)

and TRIP datasets, RMSE error is lower around the middle, meaning that there
is a contribution from both tasks. RMSE starts with high values in the BEER
dataset, and as λ increases, these values decrease and stabilize. The results
obtained by these metrics are coherent with our definition of MMCRR.

5.3 Effect of Loss Functions

We create three different variations of Eq. 14. First, MMCRR NA, which does not
consider the loss from Eq. 11. Second, MMCRR NR, which does not consider the
loss from Eq. 13. Finally, MMCRR NRA does not consider both losses. Table 3
shows the results. MMCRR NRA has higher error values than MMCRR, showing
that these losses allow the model to minimize the prediction errors and fit the
data better. Only for BEER, MMCRR NR has a lower value; we attribute it to
the dataset sparsity (i.e., ∼ 99%).

5.4 Performance of the Main Task

We test the performance of using only the Main task (Sect. 3.4). Table 4 shows
the results. The λ values are the ones where we get better results for MMCRR.

Multi-criteria and Review-Based Overall Rating Prediction 483

Table 4. Comparing performance of the Main
task

Method NALC λ = 0.4 BEER λ = 0.9 TRIP λ = 0.5

MMCRR Main 0.8829 0.5717 0.9907

MMCRR 0.8731 0.5702 0.977

Table 5. RMSE median for
the aspect predictions

Method NALC BEER TRIP

AggFunc 0.7950 0.5382 1.0015

MMCRR 0.7377 0.4027 1.4372

We can see that MMCRR has better performance overall, as it uses the Asso-
ciated task to learn the multi-criteria preference representations for the users.
These representations, along with the shared user and item representations, help
the Main task to improve its learning.

5.5 Metrics for Aspect Ratings

Although not the primary goal of MMCRR, we analyze how it predicts the
aspect ratings. Only the AggFunc baseline predicts individual aspect ratings.
Table 5 shows the RMSE medians for all item aspects. Only for TRIP does not
show a better performance. Recall that these ratings are predicted based on
item reviews and the user and item representations. Therefore, given that the
TRIP dataset has seven aspects to predict and it has more complex text (i.e.,
Automatic Reading Index [13] is higher, see Table 1) than the other datasets,
the model’s job is more challenging.

6 Conclusions

We proposed MMCRR, a framework leveraging multi-task learning to address
the problem of predicting at the same time the ratings for each item’s criterion
and its overall rating. We use three real-life datasets with six baseline models.
Our results show that MMCRR makes predictions with a lower prediction error
than these baselines. Moreover, our model can learn the users’ rating profiles and
predict ratings considering how users write their reviews. Similarly, we show how
our approach also reduces the prediction error for the criteria ratings.

Acknowledgements. This work has been supported by the National Council of Sci-
ence and Technology of Mexico (CONACYT) #602434/440684, and National Science
Foundation of USA (NSF) #1633330, #1757207, and #1914635.

References

1. Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rat-
ing systems. IEEE Intell. Syst. 22(3), 48–55 (2007)

2. Bansal, T., Belanger, D., McCallum, A.: Ask the GRU: multi-task learning for
deep text recommendations. In: Proceedings of the 10th ACM Conference on Rec-
ommender Systems, pp. 107–114 (2016)

484 E. Ceh-Varela et al.

3. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
4. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for

statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
5. Ding, Y., Li, S., Yu, W., Wang, J., Liu, M.: A unified neural model for review-

based rating prediction by leveraging multi-criteria ratings and review text. Cluster
Comput. 22(4), 9177–9185 (2019)

6. He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics.
In: Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 355–364 (2017)

7. Jin, Z., et al.: Jointly modeling review content and aspect ratings for review rating
prediction. In: Proceedings of the 39th International ACM SIGIR conference on
Research and Development in Information Retrieval, pp. 893–896 (2016)

8. Li, P., Tuzhilin, A.: Latent multi-criteria ratings for recommendations. In: Pro-
ceedings of the 13th ACM Conference on Recommender Systems, pp. 428–431
(2019)

9. Li, P., Tuzhilin, A.: Learning latent multi-criteria ratings from user reviews for
recommendations. IEEE Trans. Knowl. Data Eng. (2020)

10. Majumder, G.S., Dwivedi, P., Kant, V.: Matrix factorization and regression-based
approach for multi-criteria recommender system. In: Satapathy, S.C., Joshi, A.
(eds.) ICTIS 2017. SIST, vol. 83, pp. 103–110. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-63673-3 13

11. McAuley, J., Leskovec, J., Jurafsky, D.: Learning attitudes and attributes from
multi-aspect reviews. In: 2012 IEEE 12th International Conference on Data Mining,
pp. 1020–1025. IEEE (2012)

12. Musto, C., de Gemmis, M., Semeraro, G., Lops, P.: A multi-criteria recommender
system exploiting aspect-based sentiment analysis of users’ reviews. In: Proceedings
of the Eleventh ACM Conference on Recommender Systems, pp. 321–325 (2017)

13. Senter, R., Smith, E.A.: Automated readability index. CINCINNATI UNIV OH,
Technical Report (1967)

14. Sreepada, R.S., Patra, B.K., Hernando, A.: Multi-criteria recommendations
through preference learning. In: Proceedings of the Fourth ACM IKDD Confer-
ences on Data Sciences, pp. 1–11 (2017)

15. Tang, D., Qin, B., Liu, T., Yang, Y.: User modeling with neural network for review
rating prediction. In: Twenty-Fourth International Joint Conference on Artificial
Intelligence (2015)

16. Wang, H., Lu, Y., Zhai, C.: Latent aspect rating analysis on review text data: a rat-
ing regression approach. In: Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 783–792 (2010)

17. Wang, H., Lu, Y., Zhai, C.: Latent aspect rating analysis without aspect keyword
supervision. In: Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 618–626 (2011)

18. Wang, J., De Vries, A.P., Reinders, M.J.: Unifying user-based and item-based col-
laborative filtering approaches by similarity fusion. In: Proceedings of the 29th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 501–508 (2006)

19. Wang, N., Wang, H., Jia, Y., Yin, Y.: Explainable recommendation via multi-
task learning in opinionated text data. In: The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, pp. 165–174
(2018)

20. Zheng, Y.: Utility-based multi-criteria recommender systems. In: Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 2529–2531 (2019)

http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/978-3-319-63673-3_13
https://doi.org/10.1007/978-3-319-63673-3_13

W2FM: The Doubly-Warped
Factorization Machine

Mao-Lin Li(B) and K. Selçuk Candan

Arizona State University, Tempe, AZ 85281, USA
{maolinli,candan}@asu.edu

Abstract. Factorization Machines (FMs) enhance an underlying lin-
ear regression or classification model by capturing feature interactions.
Intuitively, FMs warp the feature space to help capture the underly-
ing non-linear structure of the machine learning task. In this paper, we
propose novel Doubly-Warped Factorization Machines (or W2FMs) that
leverage multiple complementary space warping strategies to improve
the representational ability of FMs. Our approach abstracts the feature
interaction in FMs as additional affine transformations (thus warping
the space), which can be learned efficiently without introducing large
numbers of model parameters. We also explore alternative W2FM based
approaches and conduct extensive experiments on real world data sets.
These experiments show that W2FM achieves better performance in col-
laborative filtering task not only relative to vanilla FMs, but also against
other state-of-the-art competitors, such as Attention FM (AFM), Holo-
graphic FM (HFM), and Neural FM (NFM).

Keywords: Factorization machine · Collaborative filtering

1 Introduction

The prediction task can be formulated as the problem of estimating a function
that takes values for a set of input variables (features) and returns a target value
(real value for regression and categorical value for classification).

1.1 Space Warping and Kernels

Linear models (such as linear regression [18] or support vector machines,
SVMs [10]) make the assumption that features are independent (Fig. 1(a)) –
and consequently, these may fail to learn when there are significant interactions
among feature-value pairs. Another technique to warp space to obtain better

This work is supported by NSF (#1610282, #1633381, #1909555, #2026860,
#1827757, #1629888), and EUH2020 Marie Sklodowska-Curie grant agreement
#690817. Results were obtained using the ChameleonCloud resources supported by
the NSF.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 485–497, 2021.
https://doi.org/10.1007/978-3-030-75765-6_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_39&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_39

486 M.-L. Li and K. S. Candan

(a) linear model (b) FMs (c) doubly-warped

Fig. 1. While (a) regular SVMs learn a linear separator, FMs (b) warp the space
through a polynomial kernel (itself represented using a low-rank linear transformation);
(c) the proposed W2FM technique, on the other hand, doubly-warps the space (using low-
rank linear transformations) to learn a more effective separator.

data representation has been studied to tackle crucial machine learning prob-
lems. [1,20], for example, authors have presented methodologies for automat-
ically learning warping of the input space, using a beta distribution function,
to help in Bayesian optimization. One commonly used mechanism to take into
account feature interactions is to leverage the so-called kernel trick [10], for
instance, by relying on a polynomial kernel. Intuitively, the kernel trick warps
the vector space to capture the underlying non-linear structure of the machine
learning model, without having to explicitly fit an expensive non-linear model
(Fig. 1(b)).

1.2 Factorization Machines with Polynomial Kernels

One difficulty with the use of polynomial kernels is the increased number of
parameters that need to be learned. In addition, to add to the overall com-
putational cost, larger number of model parameters also make it difficult to
accurately estimate these parameters in the presence of sparse data – which is a
very common occurrence in collaborative filtering and recommendation tasks [8].
Factorization Machines (FMs) [16] address this challenge by assuming that the
(linear) transformation needed to describe the necessary warping is low-rank
and, thus, can be represented by a smaller number of latent parameters. Thus,
FMs parameterize the weight of the cross feature interactions as the inner prod-
uct of the embedding vectors of the corresponding features. Despite FMs success
in model learning in various application domains, recent research [11] has shown
that FMs’ performance in capturing complex and non-linear structures in many
real-world data sets may be hampered due to the limited expressive power of the
kernel used for warping the space. Recent solutions proposed to alleviate this
issue include Attentional FMs [24], Neural FMs [11], and Holographic FMs [23],
many of which rely on neural network based non-linear learning.

1.3 Our Contributions: Doubly-Warped FMs

In this paper, we note that, recent techniques, such as AFM, NFM, and HFM,
capture additional non-linearities to improve upon the conventional FMs, they
primarily focus on space transformations that shift decision boundaries. How-
ever, we note that these lack sufficient input warping capabilities to discover

W2FM: The Doubly-Warped Factorization Machine 487

additional types of non-linearities in the model structure. To tackle this chal-
lenge, we propose a novel Doubly-Warped Factorization Machine (or W2FM) that
leverages input warping along with boundary warping to improve the representa-
tional ability of FMs. In addition to using the kernel trick to warp the decision
boundary, W2FM abstracts additional feature interactions in terms of low-rank
linear transformations of the input space (Fig. 1(c)).

2 Related Works

2.1 Factorization Machines and Variants

Recent researchers [6,19], proposed to leverage the feature interactions that
explicitly augment a feature vector (cross features) with products of features.
However, data sets in some critical machine learning applications (such as rec-
ommender systems) are very sparse, which negatively impacts these approaches
since only few cross features can be observed in practice. To resolve this spar-
sity issue, factorization machines (FMs) combine search for feature interac-
tions with matrix factorization [13,17] to eliminate the need to rely on detailed
pair-wise feature interactions. Consequently, several variants to FMs have been
proposed. SeqFM [4], which considers sequential dependencies within higher-
order feature interactions, is applicable in temporal predictive analytics appli-
cations. RaFM [5] adopts pairwise interactions from embeddings with differ-
ent ranks. Neural FM [11], which deepens FMs under the neural framework
to learn high-order feature interactions, and field-aware FM [12], which asso-
ciates multiple embedding vectors for each feature to differentiate its interaction
with other features of different fields. [3] recovers polynomial networks [14] and
FMs to obtain higher order feature interactions. For efficient training high-order
FMs, HOFM [2] leverages a dynamic programming algorithm for evaluating the
ANOVA kernel and computing its gradient. To further discriminate the impor-
tance of different feature interactions, attentional FM (AFM) [24] method uti-
lizes a neural attention network to learn the importance of each feature inter-
action. The recent Holographic FM (HFM) [23] approach replaces the inner
product in FMs with a holographic reduced representation.

2.2 Input Warping in Other Domains

Recent Bayesian optimization works adapt Gaussian processes (GPs) [15] to
express flexible prior distribution over the objective function. However, a limi-
tation from GPs is the assumption of stationarity [20], which reduces the ability
of the GPs to model non-stationary functions and brings challenge for Bayesian
optimization. Hence, several works [1,20] leverage input warping that transform-
ing input space to remove major non-stationary effects.

488 M.-L. Li and K. S. Candan

3 Preliminaries

3.1 Domain Warping

Warping simply means that one distorts the domain of a given function with
another function [1,20]. Formally, given an input x, instead of mapping x with
a function f(x), we replace f(x) with f(w(x)). Note that this transformation
w(x) may or may not include local or torsion type distortions. As we describe
in this section, vanilla FMs introduce a regularization term to warp the optimal
separator and, as shown in [16], this is equivalent to a polynomial kernel (PK)
transformation (or warping) of the input domain.

3.2 Factorization Machines

(a) original data (b) shifted/warped data

Fig. 2. Domain warping in FMs: Adding
a shifting term to the model can poten-
tially account for non-linear separators by
selectively shifting the effective position of
the data relative to the linear separator.

Fig. 3. (a,b) Identity initialization: the
initial configuration of the B matrix
(i.e., B0) is block diagonal and approx-
imates the identity matrix, I.

Capturing Pairwise Interactions Through Domain Warping. Factoriza-
tion Machines (FMs [16]) enhance a linear model learning by capturing pairwise
interactions among features1. In this respect, they are similar to polynomial
kernels (PKs):

F̂PK(X) = ρ0 + wXT

︸ ︷︷ ︸

lin. predictor

+ diag(XAXT)
︸ ︷︷ ︸

interaction term

, (1)

where X ∈ R
n×m is a data matrix where the n rows are the (transpose of) m-

dimensional data vectors, ρ0 ∈ R
n is global bias where all entries have the same

value, w0 ∈ R, w ∈ R
m is a weight vector, and A ∈ R

m×m is a (symmetric)

1 Note that FMs can be generalized to higher degrees of feature interactions. In this
paper, without loss of generality, we focus on pairwise FMs, which have been shown
to be generally effective and, thus, make up the most commonly used approach for
FMs – details can be found in [16].

W2FM: The Doubly-Warped Factorization Machine 489

matrix that describes the degree of feature interaction, and diag(X) ∈ R
n rep-

resents the diagonal elements in matrix X: the first half of the model represents
a linear predictor (Fig. 1(a)), consisting of a global bias and a linear transforma-
tion of the input data; the second term shifts the prediction for each individual
data point by an amount representing the interactions between its features – the
effective result is that the decision boundary gets warped in a non-linear manner
as in Fig. 1(b). Figure 2 provides an example: adding a shifting term to the model
can alter the effective positions of the data with respect to a linear separator
(Fig. 2 (b)) enabling accurate classification. Note that, when considering each
data vector individually, the above model can be written as

F̂PK(x) = w0 +
m

∑

i=1

wixi

︸ ︷︷ ︸

lin. predictor

+
m

∑

i=1

m
∑

j=i+1

A(i,j)xixj

︸ ︷︷ ︸

warping term

. (2)

Here xi are the individual components of a real-valued input vector, x ∈ R
m;

xi = 0 when the i-th feature does not exist in the observation. The notation 〈., .〉
denotes the dot product operation. w0 is global bias and wi is the weight for i-th
feature. The output of F̂PK(x) is a scalar, representing the estimated target.

Low-Rank Assumption. As we see in Eq. 2, the numbers of model parameters
are quadratic in the number of dimensions of the feature space and, consequently,
PK models may be ineffective when the data is sparse – in particular, when the
data is sparse, only few cross feature observations may exist in the data. To
address this sparsity issue, FMs assume that the m×m feature interaction matrix
A is low-rank and can be decomposed into A � V V T , where V ∈ R

m×k. Relying
on this assumption, factorize pair-wise feature interaction matrix to capture
hidden interactions within features. This means that instead of representing the
feature interactions as a single monolithic m × m matrix, FMs associate a k-
dimensional vector vi ∈ R

k (where k � m) to each component i, such that
A(i,j) � 〈vi,vj〉. In other words, each feature will be represented as a vector
instead of a scalar value. This factorized feature vector allows FMs avoid the
effect from sparse data. Hence, we can consider FMs provide the ability to curve
separator to achieve better classification without side effect from sparse data.

F̂FM (x) = w0 +
m

∑

i=1

wixi

︸ ︷︷ ︸

lin. predictor

+
m

∑

i=1

m
∑

j=i+1

〈vi,vj〉xixj

︸ ︷︷ ︸

low rank warping

. (3)

As we see in Eq. 3, this significantly reduces the number of model parameters
from quadratic to linear in the number of dimensions of the feature space and,
thus, supports more effective learning when the data is sparse. Hence, existing
FMs leverage domain warping in the form of a regularization term that alters
the effective positions of the data with respect to a linear separator (Fig. 2). FMs
couple this with a low-rank assumption to reduce cost and improve accuracy.

490 M.-L. Li and K. S. Candan

4 Doubly-Warped Factorization Machines

In this section, we introduce the proposed Doubly-Warped Factorization
Machines (W2FM) model. We argue that through carefully constructed warp-
ing transformations that help change the way the model views the input data,
we can significantly increase the expressive ability of the model to enhance the
performance of factorization machines, especially in sparse settings.

4.1 Double Warping

The key strength of polynomial kernels and factorization machines comes from
the term, diag(XAXT), where the prediction for each data point, x, is shifted
by an additive term xTAx; i.e., the dot product of the vector x by itself in a
space warped through an affine transformation, A, which can rotate scale, and
shear the underling space.

While, as we have seen earlier, this warping can help uncover some of the
non-linear structures in the underlying model, in this section, we note that this
formulation misses more general (and potentially critical) warpings of the space
that may uncover richer non-linear structures in the data.

Let us remember from Eq. 1 through 3 that, for a given data matrix X,
factorization machines can be formulated as

F̂FM (X) = ρ0 + wXT

︸ ︷︷ ︸

lin. predictor

+ diag(XAXT)
︸ ︷︷ ︸

low rank warping

, (4)

where ρ0 ∈ R
n is a vector where all entries have the same value w0, w ∈ R

m is a
weight vector, and A = R

m×m is a low-rank matrix that describes the degree of
interaction among features (i.e., A � V V T , for some V ∈ R

m×k, where k � m).
In this paper, we argue that a doubly warped FM, formulated as

F̂W2FM(X) = ρ0 + w(XB)T
︸ ︷︷ ︸

warped lin. pred.

+ diag((XB)A(XB)T)
︸ ︷︷ ︸

low rank warping

, (5)

has the potential to uncover richer non-linear structures in the data. In partic-
ular, since the space is warped not only for the second term that recovers the
amount of shifts in the predictions for the individual data elements (curve sepa-
rator in Fig. 1(b)), but the entire feature space (i.e., the entire data set) is warped
using the transformation B before the model learning step, this has the potential
to emphasize distances between points along certain pairs of dimensions, while
de-emphasizing distances along other pairs (as in Fig. 1(c)).

4.2 Low Rank Approximation

If we again make the assumption that the transformation B is low rank (i.e.,
B = V1V

T
1 , for some V1 ∈ R

m×k, where k � m), we can rewrite the above
equation as

W2FM: The Doubly-Warped Factorization Machine 491

F̂W2FM(X) = ρ0 + w(V1V
T
1)XT

︸ ︷︷ ︸

warped lin. pred.

+ diag(X(V1V
T
1)T (V V T)(V1V

T
1)XT)

︸ ︷︷ ︸

low rank warping

, (6)

which can be further simplified as

F̂W2FM(X) = ρ0 + w(V1V
T
1)XT

︸ ︷︷ ︸

warped lin. pred.

+ diag(X(V2V
T
2)XT)

︸ ︷︷ ︸

low rank warping

. (7)

Considering an individual data vector x, instead of the entire data set, we can
restate this doubly-warped model as

F̂W2FM(x) = w0 +
m

∑

i=1

〈v1,i,v1,j〉wixi

︸ ︷︷ ︸

warped lin. pred.

+
m

∑

i=1

m
∑

j=i+1

〈v2,i,v2,j〉xixj

︸ ︷︷ ︸

low rank warping

, (8)

where V1,(i,j) = 〈v1,i,v1,j〉 and V2,(i,j) = 〈v2,i,v2,j〉.

4.3 Model Parameters and the Learning Process

In W2FM, the machine learning process needs to recover the values of w0, an m
dimensional weight vector w, m × k matrix V1, and m × k matrix V2; therefore,
the number of model parameters that need to be recovered is 1 + (2k + 1) × m;
i.e., linear in the data dimensionality, as in the original FM formulation.

To estimate these model parameters for a regression problem2, we adopt
a squared loss term L = (F̂W2FM(x) − y)2, where x is an observation and y
is the corresponding ground truth target. To prevent overfitting, we further
adopt L2 regularization on the parameters: L = (F̂W2FM(x) − y)2 + λW ‖w‖2 +
λV

(‖V1‖2 + ‖V2‖2
)

, where λW and λV control the regularization strength of
different components of the model. In our implementation, we train this model
using stochastic gradient descent, starting with a random configuration (param-
eters selected from a normal distribution) using Adam optimizer [7].

4.4 Summary: Double Warping in W2FM

The proposed W2FM algorithm introduces double warping, in the form of a second
layer of warping to transform the input domain. This transformation is linear,
but not orthonormal, thereby “stretching” the space as visualized in Fig. 1. Note
that if this second warping matrix B is identity matrix, the result would be
identical to the existing FM formulation. The proposed extension lets the model
learn a low rank matrix B = V1V

T
1 different from the identify matrix, which

provides accuracy gains as shown in the experiments.

2 For other machine learning tasks, e.g. classification, log loss may be used.

492 M.-L. Li and K. S. Candan

5 Variants of W2FM

5.1 Identity Initialization (W2FMI)

As we see in Eq. 7, the newly introduced warped linear predictor term involves
a complex interaction, W (V1V

T
1), between unknown parameters captured by W

and V1. This, however, may imply that the learning process for this term may
get stuck at an undesirable local optimum, especially if the search starts from
a random initial point. To avoid this, in the first W2FM variant, W2FMB0∼I (or
simply W2FMI) we start training from a configuration where the initial values for
V1 are set such that B0 = V1V

T
1 � I.

As illustrated in Fig. 3, this is achieved by setting the initial configuration of
V1 to a matrix, where3 in the ith column, the entries ai = (i− 1)�m

k 	+1 to bi =
i�m

k 	 are set to αi = ((bi − ai) + 1)−1/2
. This ensures that the resulting V1V

T
1

matrix is block-diagonal, with block entries equal to α2 = ((bi − ai) + 1)−1; i.e.,
the initial configuration of the B matrix approximates the identity matrix, I.
Note that, since V1V

T
1 � I, in its first epoch, W2FMI works similarly to vanilla

FM, but V1V
T
1 is allowed to diverge from I from that point on.

5.2 Shared Warping (W2FMSW ,W2FMISW)

As discussed earlier, W2FM needs to recover roughly twice as many model param-
eters as vanilla FM. In the second variant, W2FMSW , we reduce the number of
model parameters through a parameter sharing constraint, V1 = V2 = Vs, which
reflects the assumption that the same transformation can capture the warping
needed by both terms of the model:

F̂W2FMSW
(X) = ρ0 + w(VsV

T
s)XT

︸ ︷︷ ︸

warped lin. pred.

+ diag(X(VsV
T
s)XT)

︸ ︷︷ ︸

low rank warping

. (9)

Fig. 4. Neural warping (a): the early unification replaces the bi-interaction pooling
layer in [11] with a unification layer (b) the late unification delays the unification step
until before score estimation. (the term w0 for global bias is not shown for clarity)

3 Note that for the very last column of V1, we have ak = (k − 1)�m
k

� + 1 to bk = m.

W2FM: The Doubly-Warped Factorization Machine 493

5.3 Term Reduction (W2FMT R , W2FMIT R)

In the next variant, we reduce the number of model parameters by solely relying
on space warping ability of the warped linear predictor. In other words, we
reduce the number of terms of the model from two to one, by dropping the
regularization term:

F̂W2FMTR
(X) = ρ0 + w(V1V

T
1)XT

︸ ︷︷ ︸

warped lin. pred.

. (10)

5.4 Neural Warping

In NFM [11], authors have argued that the feature interactions (which lead to
non-linear models) can be learned by extending the original FM model with a
neural network that help recover higher-order feature interactions:

F̂NFM (x) = w0 +
m

∑

i=1

wixi

︸ ︷︷ ︸

lin. predictor

+ N(x)
︸ ︷︷ ︸

neural shift

. (11)

Although NFM can extract certain non-linear structures, the data source of
this process is the unwarped input space. We therefore, argue that NFM can
potentially miss critical interactions. Hence, we further introduce warping into
NFM-based architectures. Formally speaking, in this case, the warped linear
predictor term in W2FM is expressed within a neural framework4:

F̂W2FMNW
(x) = w0 + N1(x)

︸ ︷︷ ︸

neural. warped pred.

(12)

where N1(x) represents a multi-layer feed-forward neural network visualized in
Fig. 4 and described below. Here we propose two alternative ways to enhance
NFM by merging warping ability.

Early-Unification (W2FMNW−Early). In early unification, we replace the bi-
interaction pooling layer in [11] with a unification layer that combines the embed-
ding with the predictor and then apply the hidden layers after that (Fig. 4 (a)).
Intuitively, this approach warps the space once and then finds a neurally-based
complex (non-linear) separator on this warped space.

Embedding Layer. Given a sparse input feature vector with one-hot-encoding,
the embedding layer projects each feature to a dense vector representation. Let
V1 = 〈vi〉, i ≤ m, where vi ∈ R

k is the embedding vector for the i-th fea-
ture. Given a data vector x = 〈xi〉, i ≤ m, the corresponding embedding can
be computed as V(x) = {x1v1, . . . , xmvm}. And we only need to consider the
embedding vector for non-zero features, which means V(x) = {xivi}, where
xi �= 0.
4 Here we use W2FMTR for clarity, other W2FM variants can be seamlessly integrated.

494 M.-L. Li and K. S. Candan

Unification Layer. Intuitively, in the embedding layer computes the term V T
1 XT

in Eq. 10; in the subsequent (so called “unification”) layer, we further compute
F̂Unify(V(x)) = wV1 (V(x)).

Hidden Layers. The unification layer, then, is connected to a stack of fully
connected layers zl(x) = σl(Wlzl−1(x)+ bl), learning more complex interactions
between features [19]: where l denotes the number of hidden layers and z1(x) =
σ1(W1F̂Unify(V(x)) + b1). Wj , σj and bj denote the weight matrix, bias vector,
and the activation function for the j-th hidden layer, respectively.

Prediction Layer. Finally, the output vector from zl is transformed to compute
estimated score: N1(x) = hT zl(x), where vector h ∈ R

m denotes the neuron
weights of the prediction layer.

Late-Unification (W2FMNW−Late). In late unification, on the other hand, we
first apply hidden layers that recover higher order interactions among the fea-
tures, and apply the unification layer at the end, before the predictions are
generated (Fig. 4 (b)). Intuitively, this approach warps the space using a neural
network and then finds a linear separator in the warped space.

6 Experiments

We compare W2FM and its variants as we introduced in Sect. 5 against the com-
petitors5. With four publicly accessible data sets6 , and we assume the feature
interactions are row-rank and consider values of k ∈ {32, 64, 128}. For training,
we randomly split each data set into three parts: 60% is used for training, 20%
for validation, and 20% for testing. The batch size is set to 4096. The valida-
tion set was used for hyper-parameter tuning and the performance evaluation
was conducted on the test data set. In particular, as in prior FM works [11,24],
we train all methods for up to 100 epochs, but stop the training process if the
RMSE for the validation data increases for 5 consecutive epochs. We then select
the hyper-parameters of the best model identified up to that point for testing.
All models are learned by optimizing the squared loss with L2-regularization and
learned by mini-batch Adagrad [7].

5 Support Vector Machine (SVM) with linear kernel [10], Factorization Machine (FM,
single warping baseline) [16], Attention FM (the attention factor: 256, activation
function: ReLU, drop out rate: 0.5, the valid dimension:2 (user id and item id)) [24],
Neural FM (drop out rate for bi-interaction layer: 0.5, 1 hidden layer with 64 neuron
and drop out rate: 0.8, activation function: ReLU) [11] and Holographic FM [23].

6 Ciao (# of instances: 284K, # of features: 107K, density: 0.0003) [21], Epinions (#
of instances: 922K, # of features: 141K, density: 0.0003) [22], MovieLens-100K (#
of instances: 100K, # of features: 2273, density: 0.041) [9] and MovieLens-1M (# of
instances: 1M, # of features: 9746, density: 0.059) [9].

W2FM: The Doubly-Warped Factorization Machine 495

Table 1. RMSE for test data, and Per epoch training time (seconds) - each row is
individually colored from the best/fastest (green) to the worst/slowest (red) accu-
racy/training times.

Table 2. Convergence patterns; each cell is of the form X/Y , where X is the index of
the epoch with the lowest validation error, whereas Y is the number of training epochs
– as in prior works [11,24], we train all methods for up to 100 epochs, but stop the
training process if the RMSE for the validation data increases for 5 consecutive epochs.

6.1 Results and Analysis

Accuracy. In Table 1, we report the testing RMSE for the various models
trained on the four data sets we considered in this paper. The models are cate-
gorized into variants of FM and W2FM; we also present SVM baseline and neural
FM variants (NFM and W2FMnw). Each row is colored from the best (green) to
the worst (red) accuracy. The proposed W2FM variants, overall, perform better
than SVM and the FM variants – in fact, this is true both for non-neural and
neural strategies. This is because, as also noted in [11], a more informative trans-
formation at low-level layers (as W2FM is able to perform) has the potential to

496 M.-L. Li and K. S. Candan

ease the burden of high-level layers in trying to extract useful information. And,
the identity initialized, term reduced approach, W2FMITR, proves to be the most
robust technique.

Per Epoch Training Time. Table 1 also presents per epoch training times
(as before, each row is individually colored from fastest, green, to the slowest,
red): For the sparser Ciao and Epinions data sets, aside from the naive SVM,
AFM and NFM have the overall fastest per epoch training times and HFM trains
very slowly. For the two relatively denser MovieLens data sets, on the other hand,
the W2FM variants train (per epoch) faster than the all FM variants.

Convergence Patterns. In Table 2, we study the convergence patterns of the
various models. As stated earlier, we train all methods for up to 100 epochs,
but as in [11,24], we stop the training process if the RMSE for the validation
data increases for 5 consecutive epochs. In Table 2, each cell is of the form X/Y ,
where (a) X is the index of the epoch with the best validation accuracy and
(b) Y is the number of training epochs. As we can see, conventional FM stops
very early, in 6–8 epochs, while it often returns its best results in the very first
epoch. This indicates that the learning process gets stuck at an early solution
(often the very first one) and is not able to improve on it. Unlike FM, the
SVM, AFM, and NFM models require many more epochs (often 100) to converge
and the training epoch with the best accuracy is or close to the maximum number
of epochs ran. These together indicate that these models tend to converge slowly.
In contrast, we see that base W2FM and W2FMI are able to improve on their initial
solutions, but nevertheless are able to locate their best solutions relatively early,
indicating a faster convergence rate. In particular, the W2FMI variant provide the
best trade-off: (1) it is able to improve over the solution identified in the first
few epochs (X �∼ 1), (2) it converges relatively quickly to its best solution (X
tends to be � 100), and (3) it is able to benefit from early stopping (Y tends to
be � 100). The weight sharing and term reducing variants of W2FM and W2FMI
converge relatively slowly; however, considering the accuracy gains they are able
to provide (Table 1) this is generally worthwhile.

7 Conclusions

In this paper, we presented a novel Doubly-Warped Factorization Machines
(W2FM) model for enhancing factorization machines (FM) by leveraging addi-
tional low-rank affine linear transformations that warp the space to improve the
expressiveness of the model. We further presented several variants which pro-
vide various trade-offs in terms of starting configuration and number of model
parameters. We have also shown that W2FM can accommodate neural-based mod-
els. Experiments have shown that W2FM provides accuracy gains over competitors,
including basic FM, AFM, HFM, and NFM, and that the identity initialization
variant, W2FMI , provides the overall best accuracy, and convergence trade-offs.

W2FM: The Doubly-Warped Factorization Machine 497

References

1. Binois, M., Ginsbourger, D., Roustant, O.: A warped kernel improving robustness
in Bayesian optimization via random embeddings. In: International Conference on
Learning and Intelligent Optimization (2015)

2. Blondel, M., Fujino, A., Ueda, N., Ishihata, M.: Higher-order factorization
machines. In: NIPS 2016 (2016)

3. Blondel, M., Ishihata, M., Fujino, A., Ueda, N.: Polynomial networks and factor-
ization machines: New insights and efficient training algorithms. In: PMLR (2016)

4. Chen, T., Yin, H., Nguyen, Q.V.H., Peng, W., Li, X., Zhou, X.: Sequence-aware
factorization machines for temporal predictive analytics. In: ICDE 2020 (2020)

5. Chen, X., Zheng, Y., Wang, J., Ma, W., Huang, J.: RaFM: Rank-aware factoriza-
tion machines. In: PMLR (2019)

6. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: DLRS,
vol. 2016, (2016)

7. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

8. Grčar, M., Mladenič, D., Fortuna, B., Grobelnik, M.: Data sparsity issues in the
collaborative filtering framework. In: Advances in Web Mining and Web Usage
Analysis (2006)

9. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst. 5(4), 1–19 (Dec 2015)

10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer, New York (2009)

11. He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics.
In: SIGIR 2017 (2017)

12. Juan, Y., Zhuang, Y., Chin, W.S., Lin, C.J.: Field-aware factorization machines
for CTR prediction. In: RecSys 2016 (2016)

13. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: KDD 2008 (2008)

14. Livni, R., Shalev-Shwartz, S., Shamir, O.: On the computational efficiency of train-
ing neural networks. In: NIPS (2014)

15. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press (2005)

16. Rendle, S.: Factorization machines. In: ICDM 2010, IEEE Computer Society (2010)
17. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS 2007

(2007)
18. Seal, H.L.: Studies in the history of probability and statistics. xv: The historical

development of the gauss linear model. Biometrika 54(1–2), 1–24 (1967)
19. Shan, Y., Hoens, T.R., Jiao, J., Wang, H., Yu, D., Mao, J.: Deep crossing: web-scale

modeling without manually crafted combinatorial features. In: KDD 2016 (2016)
20. Snoek, J., Swersky, K., Zemel, R., Adams, R.P.: Input warping for Bayesian opti-

mization of non-stationary functions. In: ICML 2014 (2014)
21. Tang, J., Gao, H., Liu, H., Sarma, A.D.: eTrust: Understanding trust evolution in

an online world. In: KDD (2012)
22. Tang, J., Hu, X., Gao, H., Liu, H.: Exploiting local and global social context for

recommendation. In: IJCAI (2013)
23. Tay, Y., Zhang, S., Luu, A.T., Hui, S.C., Yao, L., Vinh, T.D.Q.: Holographic

factorization machines for recommendation. In: AAAI (2019)
24. Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., Chua, T.S.: Attentional factorization

machines: Learning the weight of feature interactions via attention networks. In:
IJCAI 2017 (2017)

Causal Combinatorial Factorization
Machines for Set-Wise Recommendation

Akira Tanimoto1,2,3(B) , Tomoya Sakai1,3, Takashi Takenouchi3,4,
and Hisashi Kashima2

1 NEC Corporation, Kawasaki, Japan
{a.tanimoto,tomoya sakai}@nec.com

2 Kyoto University, Kyoto, Japan
kashima@i.kyoto-u.ac.jp
3 RIKEN, Tokyo, Japan
ttakashi@fun.ac.jp

4 Future University Hakodate, Hakodate, Japan

Abstract. With set-wise (exact-k, slate, combinatorial) recommenda-
tion, we aim to optimize the whole set of items to recommend while
taking the dependency among items into consideration. This enables us
to model, for example, the substitution relationship of items, i.e., a cus-
tomer tends to purchase only one item in the same category, in con-
trast to the top-k recommendation in which the independency of items
is assumed. Recent efforts in this context have focused on the computa-
tional aspects of optimizing the set of items to recommend. However, they
have not taken into account sample selection bias in datasets. Real-world
datasets for recommendation have missing entries not completely at ran-
dom due to biased exposure or user preferences. Addressing the selection
bias is important for the set-wise recommendation since methods with
larger hypothesis spaces are more likely to overfit biased training data.
In light of recent top-k recommendation research that has addressed this
issue by using causal inference techniques, we therefore propose a set-
wise recommendation model with debiased training methods based on
recent causal inference techniques. We demonstrate the advantage of our
method using real-world recommendation datasets consisting of biased
training sets and randomized test sets.

Keywords: Set-wise recommendation · Causal inference

1 Introduction

Recently, the importance of optimizing the combinations of items, i.e., set-wise
(exact-k, slate, combinatorial) modeling, has received attention in the recom-
mendation context [5,7,8,22]. Set-wise modeling aims to overcome the limitation
inherent in the greedy top-k recommendations [4], such as the lack of diversity
in the recommended items [23,27]. For example, recommending multiple TVs at

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 498–509, 2021.
https://doi.org/10.1007/978-3-030-75765-6_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_40&domain=pdf
http://orcid.org/0000-0003-0459-3993
http://orcid.org/0000-0002-2770-0184
https://doi.org/10.1007/978-3-030-75765-6_40

Causal Combinatorial Factorization Machines for Set-Wise Recommendation 499

Fig. 1. Example data tables for existing and our problem settings. Potential outcome
framework for CATE estimation (a) assumes two random variables of outcomes for
each treatment T ∈ {0, 1} and treats the counterfactual potential outcome as missing.
Thus, potential outcome estimation and matrix completion for recommendation are
both missing value completion under biased observations.

the same time is unlikely to result in the purchase conversion of both, while rec-
ommending a TV and a DVD player may increase the probability that both will
be purchased. The former is called the substitute relation and the latter is called
the complementary relation [12]. In this work, we train a set-wise model that
captures such relationships to evaluate the whole set of items to recommend.

We should note here the difference between causation and association. Just
because some items are often purchased at the same time does not necessarily
mean that the probability of being purchased increases if they are recommended
at the same time [12,14]. We want to recommend a set of items that results in a
larger expected total outcome (e.g., purchase conversion) through recommending
simultaneously. That is, we have to consider the prediction under interventions
(aka actions or treatments) by a recommender system, which is known as the
causal effect inference problem [17]. As shown in Fig. 1, conditional average treat-
ment effect (CATE) estimation in causal inference, as well as recommendation
problems, can be viewed as learning from a biasedly missing dataset (missing
not completely at random) [13,17], as we see in Sect. 3.

Recently, in the context of the top-k recommendation, several methods have
been proposed that address the missing entries not completely at random by
using debiasing techniques in causal inference [19,24]. As shown in Fig. 1(c), a
dataset for the set-wise recommendation would be severely sparse, and thus it
is quite important to avoid overfitting for biased training data. We therefore
consider the problem of debiased inference for the set-wise recommendation.

In our approach, we train a set-wise evaluation (rate/click prediction) model
for the recommendation. Considering that the final goal is to choose the action
that is expected to maximize the outcome, a straightforward approach would be
learning a policy that outputs the recommended set (as in [5,7,8,22]) instead of
making a prediction of outcomes. Even so, it is reasonable to make a prediction of
the outcome when the predicted value itself is needed. In assortment optimization
in retail stores, for example, store owners should also determine the ordering
quantity on the basis of the demand forecast [12]. In such cases, the prediction
of the outcome itself is essential for the decision-makers. We discuss how to
optimize the set of items to recommend using a prediction model in Sect. 4.3.

500 A. Tanimoto et al.

2 Problem Setting

Our goal is to build an outcome (rate/click) prediction model under the feature
x (typically the customer ID) and the action a (the set of recommended items)
from biased data. Our training instance is

(
x, a, y(a)

)
∼ p

(
y(a)|x

)
μ(a|x)p(x),

where x ∈ X is the feature of a user (typically the one-hot encoding of the user
ID), a ∈ A ⊂ {0, 1}|I| is the action (the recommended set) in a combinatorial
action space A with the candidate set of items I, μ(a|x) is the propensity (the
policy of the past decision-makers or logging policy), and y(a) =

(
y
(a)
t

)

t∈a
=

(
y
(a)
t1 , . . . , y

(a)
t|an|

)
∈ R

|a| is the outcome vector that consists of outcomes for each
recommended item. Then, we train a model f(x, a) to predict the outcomes(
y
(a)
t

)

t∈a
.

The overall outcome of a set-wise recommendation a for a user can be
evaluated by the summation of the rates of the recommended items, i.e.,
ya =

∑
t∈a y

(a)
t . In that case, the difference from the simple outcome predic-

tion on a combinatorial action space [21,28] is that we observe not only the
overall outcome ya ∈ R but all the rates for each recommended item

{
y
(a)
t

}

t∈a
.

The challenge in this paper is how to obtain an outcome prediction model f
sample-efficiently from observational data collected by a biased and possibly
unknown policy (propensity) μ(a|x). Formally, we pursue the prediction accu-
racy on unbiased distribution as

Lu(f) := E
p(ya|x)pu(a)p(x)

[�(ya, f(x, a))], (1)

where ya denotes the overall potential outcome, pu(a) = Unif(A) is the discrete
uniform distribution on the action space A, and � is the instance-wise loss. To
evaluate (1) unbiasedly, we use unbiased datasets for testing. In addition to the
prediction accuracy, we also evaluate the value of the recommendation, i.e., the
estimated average clicks when we optimize the item set to recommend with the
model. We will discuss this metric in Sect. 5.2.

3 Related Work

Treatment Effect Estimation. The goal of conditional average treatment
effect (CATE) estimation is to estimate the average causal effect τ under the
feature x specified. CATE is defined as τ(x) = E[y(1) − y(0)|x], where y(1), y(0) ∈
Y ⊂ R are the potential outcomes for each action, namely, if we take an action
a = 1, then we observe y(1), and if a = 0, we observe y(0). The challenges here
are the missing values and the selection bias, i.e., true τ is never observed but
either y(0) or y(1) is observed, and the logging policy μ(a|x) is not constant
(biased) in x. A typical approach is to train a potential outcome prediction
model f : X × {0, 1} → Y and estimate CATE by τ̂(x) = f(x, a = 1) − f(x, a =
0). A typical performance measure is the expected precision in estimation of

Causal Combinatorial Factorization Machines for Set-Wise Recommendation 501

heterogeneous effect (PEHE) [6] εPEHE(τ) := Ex[(τ(x)− τ̂(x))2], or the MSE on
the joint distribution with the uniform policy.

A well-known workaround called inverse probability weighting using the
propensity score (IPW) [1] aims to debias by means of instance weighting using
the propensity μ(a|x) as LIPW(f) := Ex,a

[
1

2μ(a|x) (ya(x) − f(x, a))2
]
. Since the

expected IPW risk matches the expected risk on the randomized controlled tri-
als (RCTs), a good performance can be expected asymptotically. When the true
propensity is not recorded, however, we have to estimate the propensity score and
plug-in with a finite sample size, and then its performance might degrade [11].
A recent trend to improve non-asymptotic performance is to extract balanced
representation by means of adversarial domain adaptation techniques [9,20,21].
We combine these two approaches as described in Sect. 4.2.

Modeling for Recommendation. In real-world recommendation systems, the
sampling distribution for items is not uniform because popular items tend to be
frequently recommended, among other reasons. To reduce such sample selection
bias, treatment effects have been actively considered recently. [19] proposed a
simple approach of utilizing propensity scores to weight the error of the matrix
factorization method. A similar approach in [2] aims at debiasing by means of
multi-task learning of a large (biased) observational dataset and a small ran-
domized dataset. At the same time, the importance of selecting the combina-
tions of items, i.e., set-wise modeling, has also received attention recently in the
recommendation context [5,7,8,22]. [5] considered the exact-k recommendation
problem, in which the task is to select k items to show to users in a limited
area of a screen. In [5], the item interaction is expressed as a graph, and then a
neural network with an attention mechanism learns a policy for selecting items
one by one. While these methods [5,7,8] focus on generating the recommended
set of items in a computationally efficient manner, the selection bias is not con-
sidered, and there is a risk of performance decay under strong selection biases
in real-world problems. Therefore, we investigate the debiased modeling of the
evaluator for set-wise modeling utilizing recent techniques in causal inference.

4 Causal Combinatorial Factorization Machines for
Set-Wise Recommendation

4.1 Model: Combinatorial Factorization Machines

In recommendation tasks, the outcome, which we aim to maximize, would typi-
cally be the sum of the rates of recommended items to users. However, we can
observe not only the sum but also the rates for each item. Therefore, we use
the rates for each item as the supervision, with consideration of the other items
recommended to (or rated by) each customer user. That is, our data consists of

D = {yn, xn, ai
n, a¬i

n }N
n=1,

502 A. Tanimoto et al.

Fig. 2. Combinatorial FM structure.

where n is the sample index, xn and ai
n are the one-hot encoded user ID and the

target item ID associated with the rate yn, respectively, and a¬i
n = (0, 1, 1, 0, . . .)

is the other items recommended to the user at the same time, where 1s corre-
spond to the IDs of other recommended items. The final set-wise outcome for a
user identified by x′ is the summation of the outcomes of recommended items∑

n:xn=x′ yn and the corresponding action is denoted as a = ai
n + a¬i

n .
Factorization machines [16] enable us to learn the matrix factorization model

by means of SGD with one-hot encoding of the user IDs and the item IDs. We
extend the factorization machines to take the second-order interactions between
the recommended items into account for the set-wise modeling. Specifically, we
include the second-order interaction term of the target item and the other rec-
ommended items (or other items rated by the same user), as

f(x, a) = w0 +
∑

j

wu
j xj +

∑

j

wa
j ai

j +
∑

j,j′
〈zui

j , ziu
j′ 〉xja

i
j′ +

∑

j,j′
〈zia

j , zai
j′ 〉ai

ja
¬i
j′ ,

(2)

where w0, w
u, wa, zui, ziu, zia, and zai are the model parameters. The resulting

network structure is shown in Fig. 2. Let 1j be the one-hot encoding of an integer
j. When one recommends the t-th item to the s-th user, and at the same time
the other item set recommended is T ′, prediction (2) is written as

f

(

x = 1s, a =

(

1t,
∑

t′∈T ′
1t′

))

= w0 + wu
s + wa

t + 〈zui
s , ziu

t 〉 +

〈

zia
t ,

∑

t′∈T ′
zai
t′

〉

.

The final term handles the interaction between the target item t and other
recommended items T ′, which represents the substitution or complementary
relation between recommended items. A positive inner product value 〈zia

j , zai
j′ 〉 >

0 means that the j-th target item has a complementary relation with respect to
the j′-th item and the rate would be higher when recommended with the j′-th
item. Since the interaction is considered to be invariant to the permutation of
other recommended items, we utilize the sum-pooling as proposed in deep sets
for permutation-invariant functions [25].

Causal Combinatorial Factorization Machines for Set-Wise Recommendation 503

4.2 Debiased Loss with Causal Inference Techniques

To train our model (2) in a debiased manner from the biased observational data,
we introduce two debiasing techniques: the weighting technique proposed in the
top-k recommendation and the representation balancing technique proposed in
causal inference for large treatment spaces.

Although the representation balancing approach in [21] is scalable to a huge
set-wise action space both statistically and computationally, a limitation is that
the balanced representation of inputs cannot capture the difference in the output
distributions (i.e., when p(y) �= pu(y)), as shown in [10,26]. Especially in recom-
mendation datasets with explicit-feedbacks, the rate prior shift is often observed
because the users are likely to rate their favorite items among others. This differ-
ence is exactly what previous IPW-based methods for recommendation address
(called naive-Bayes IPW) [19,24]. Therefore, we combine this weighting with the
representation balancing approach.

Let us define the integral probability metric (the representation balancing
regularizer) as

DIPM(p1, p2) := sup
g∈G

∣
∣
∣
∣

∫

Z
g(z)(p1(z) − p2(z))dz

∣
∣
∣
∣ (3)

with a function class G. We utilize the 1-Lipschitz function class for G as in
[20,21], after which DIPM would be the Wasserstein distance Dwass. With any
weighting function β(z), assuming that the representation extractor z = φ(x, a)
is invertible and 1

B �(z) is in the function class G for some B > 0 with respect to
z, our target loss on the randomized distribution (1) can be bounded as

Lu(f) ≤ L(f ;β) + B · DIPM (p(z)β(z), pu(z)) ,

where L(f ;β) is the weighted loss on the observational data. This bound justifies
minimizing the empirical estimate of r.h.s. as a proxy of unobservable unbiased
loss Lu(f). The proof is given by replacing the source distribution p(z) in the non-
weighted version of the bound in [21] with the weighted distribution p(z)β(z).
Note that the weighted distribution must satisfy

∫
p(z)β(z)dz = 1, otherwise a

constant critic g(z) = c for c > 0 gives a non-zero IPM value and the supremum
in (3) does not exist when G is the 1-Lipschitz function class.

For the weights β, we can utilize the information obtained in each prob-
lem setting. Assuming there exists a true rating function y = h∗(z), the naive-
Bayes weighting can be reproduced as β(z) := Epu(z)[h∗(z)]

/
Ep(z)[h∗(z)] =

pu(y)/p(y) =: β(y). Thus, when we have no access to the true propensity μ but
do have access to the rate prior shift pu(y)/p(y), as assumed in [19,24], we can
utilize this weighting. If we have access to the true propensity, we can utilize
it as β(z = φ(x, a)) = pu(a)/μ(a|x), after which DIPM would be zero, which
recovers the full IPW method.

Our resulting objective function is

min
f

1
N

N∑

n=1

βn�(f(xn, an), yn) + R(f) + α · D̂wass

(
{zn, zu

n, βn}N
n=1

)
, (4)

504 A. Tanimoto et al.

where βn = β(yn) = pu(yn)
/
p(yn) if available, �(y′, y) is the instance-wise loss,

namely, the weighted MSE or cross-entropy for rate and click prediction, respec-
tively, R is a regularizer, zn = φ(xn, an), zu

n = φ(xn, au
n), au

n is random actions
sampled from Unif(A), α ≥ 0 is the regularization strength, and D̂wass is the
balancing regularizer with weights, as

D̂wass({zn, zu
n, βn}N

n=1) := sup
g∈G

∣
∣
∣
∣
∣

1
∑N

n=1 βn

N∑

n=1

βng(zn) − 1
N

N∑

n=1

g(zu
n)

∣
∣
∣
∣
∣
, (5)

where G is the 1-Lipschitz function class.

4.3 Optimizing the Item Set to Recommend Using a Model

We here explain how to obtain a set-wise recommendation from our predic-
tion model. Recall that k is the number of items that we present to customers
from |I| candidate items. One approach to finding a promising set-wise rec-
ommendation is to first prepare |A| = |I|Ck candidates of a set-wise recom-
mendation and then choose the one that achieves the highest estimated out-
come. Specifically, for a customer whose feature vector is x, we prepare a set
of item-set vectors {aj}|I|Ck

j=1 with |a| = k and then choose the combination
by argmaxj f̂(x, aj), where f̂ is the learned predictor. This approach is accu-
rate, but it is intractable when |I|Ck is large. When the number of item-sets
is large, one can adopt a greedy approach to a set-wise recommendation. That
is, we iteratively select one item to construct a set-wise recommendation. We
initialize the selected item-set vector a′ with zero vector. For a customer x, we
select an item by j′ = argmaxj f̂

(
x, (ai = 1j , a

¬i = a′)
)
. Let a′′ be the vector

of the current selected item-set, as a′′ = a′ + 1j′ . We again select an item by
j′′ = argmaxj f̂

(
x, (ai = 1j , a

¬i = a′′)
)
. We repeat the above procedure until

the number of selected items becomes k. Since |I|Ck increases quickly even for
a small k, this greedy approach is effective in terms of computation.

5 Experiments

5.1 Sequential Display Setting

Datasets. As in [19], we first evaluated on two real-world datasets with explicit
feedbacks, Yahoo!R3 [15] and Coat [19], to compare with existing causal-aware
top-k recommendation methods [19,24]. Yahoo!R3 had 15,300 user IDs and 1,000
song IDs, and Coat had 290 user IDs and 300 item IDs, both of which contain
missing not at random (MNAR) data for training and missing completely at
random (MCAR) data for testing. For the combi-FM-based methods, we used
the set of rated items for each user as a in each of the training and testing
datasets without overlap, i.e., a in the test data did not contain the rated items
in the training. We cannot completely reproduce the situation in which a user
examines each item and rates it sequentially due to the lack of the order of items
that the user rated, though the set of rated items contains the set of previously
exposed items to the user, which can be captured by our set-wise modeling.

Causal Combinatorial Factorization Machines for Set-Wise Recommendation 505

Table 1. Test MAE and MSE on the Yahoo and Coat datasets. (*) reported in [24].
The top methods for each metric are in bold and the second places are italicized and
underlined.

Method YAHOO COAT

MAE MSE MAE MSE

MF (*) 1.154 1.891 0.920 1.257

MF-IPS (*) 0.810 0.989 0.860 1.093

MF-DR-JL (*) 0.747 0.966 0.778 0.990

FM 0.803 1.170 1.187 2.534

FM-IPW 0.736 1.031 1.148 2.398

Combi-FM 0.959 1.259 0.930 1.290

Combi-FM-IPWnb 0.821 1.050 0.945 1.281

Combi-FM-Wass (proposed) 0.781 0.958 0.966 1.287

Compared Methods. We compared our proposed method with several existing
methods and straightforward combinations of our model and existing training
methods, namely, factorization machines (FM) [16], FM with IPW with weights
estimated by naive Bayes (FM-IPW), combinatorial FM (2) without IPM regu-
larization or IPW (Combi-FM), Combi-FM with naive-Bayes IPW (Combi-FM-
IPWnb), Combi-FM with the Wasserstein with weights by naive-Bayes IPW
(Combi-FM-Wass), and existing matrix factorization (MF) and its causal-aware
extensions based on naive-Bayes IPW reported in [24]. For the FM-based meth-
ods, we used the width of 10 for the representation φ. For the combi-CFR (pro-
posed), α in (4) was fixed to 0.5.

Results. Table 1 lists the overall results. The proposed method outperformed
all other methods with respect to MSE on the Yahoo!R3 dataset. In contrast,
an existing method (MF-DR-JL) performed best on the Coat dataset. The
Coat dataset is relatively small, which might be why the SGD-based meth-
ods (FM-based and Combi-FM-based) did not achieve a good performance. On
the Yahoo!R3 dataset, in contrast, the Combi-FM model worked well, which
implies that the set of items rated by the user affected the user’s rating to
the target item and our model effectively extracted that information. Combi-
FM-based methods suffered from their model complexity and tended to overfit
the biased observational training data (e.g., vanilla Combi-FM performed worse
than FM); however, with a proper regularization, as proposed (IPW and the
Wasserstein-based), the generalization improved. This indicates that the combi-
nation of set-wise modeling and debiased training is important.

5.2 Simultaneous Display Setting

We investigated a CTR prediction for situations in which more realistic set-
wise recommendations are made. In this scenario, a customer sees three items

506 A. Tanimoto et al.

simultaneously in an impression and clicks for each item are recorded. Here,
we evaluated not only the accuracy of the predictions but also the value of the
recommendations made.

Dataset. We used Open Bandit Dataset (OBD) [18] taken from a fashion
e-commerce platform (ZOZOTOWN). OBD contains two datasets taken with
two (recorded) logging policies μ, namely, a random policy and a biased policy
(Bernoulli Thompson sampling, BTS). We used the dataset with BTS for train-
ing and validation, and used the dataset with the random policy for testing. Half
of the BTS dataset was used for validation. OBD contains three “campaigns”,
namely, “men’s”, “women’s”, and “all”. We used only the dataset of the “all”
campaign. The size of the candidate set of items was |I| = 80, and the size of
the action space would be |A| = 80C3 = 82, 160.

We preprocessed the datasets as follows. OBD is anonymized, i.e., the cus-
tomer ID is deleted, so we constructed pseudo-user IDs (PUIDs) from four hashed
customer features. Only records tied to PUIDs that appeared in both training
and test datasets were used, after which we had 397 unique PUIDs in total.
The original data was not intended for set-wise recommendation, and the three
items displayed at the same impression were divided into three (mostly con-
secutive) records, so we processed to combine them. Consecutive records with
the same pseudo-user ID and with different display positions were treated as
an impression. After these processes, we had 2, 549, 288 combined records in the
BTS training/validation set and had 293, 871 records in the random test set.

Compared Methods. We compared FM and our Combi-FM models with
three losses, namely, the naive loss, weighted loss with the true propensity score,
and the Wasserstein regularized loss without weights (βn = 1). The regulariza-
tion strength of the balancing regularizer was chosen from {0.1, 0.3, 1., 3.} by
validation.

Evaluation. We evaluated our method and baselines with two metrics. The first
one is a conventional ranking-based metric for imbalanced classification, average
precision (AP), which is the area under the precision-recall curve. While AP (or
AUC, discounted cumulative gain, etc.) is a popular metric in recommendation
and information retrieval, these global ranking-based metrics do not fit well with
the recommendation problem on e-commerce platforms. A platform needs to
choose a recommendation action for a customer rather than choosing a customer
to recommend, and therefore it is preferable to use metrics based on local ranking
of candidate actions for each customer. For this reason, the other metric we
evaluated was the value of the policy with predictions V (πf), i.e., the expected
clicks when determining the action using the model:

V (πf) = Eπf ,p(x) [ya] = Eμ(a|x),p(x)

[
πf (a|x)
μ(a|x)

ya

]
, (6)

Causal Combinatorial Factorization Machines for Set-Wise Recommendation 507

Table 2. Test policy value V (πk=1%
f) and average precision (AP) on the ZOZO dataset.

The top methods for each metric are in bold. Mean and standard deviation under three
runs with different training/validation splits are reported.

Method ZOZOTOWN

Policy value (k = 1%) (×10−2) AP (×10−3)

FM 1.18 ± 0.05 4.05 ± 0.06

FM-IPW 0.93 ± 0.02 4.64 ± 0.09

FM-Wass 1.23 ± 0.07 3.81 ± 0.16

Combi-FM 1.18 ± 0.05 4.05 ± 0.06

Combi-FM-IPW (proposed) 1.47 ± 0.02 4.51 ± 0.08

Combi-FM-Wass (proposed) 1.43 ± 0.09 4.58 ± 0.42

where πf is a plug-in policy distribution with a model f (defined below), μ is
the propensity (logging policy) of the dataset, and ya is the summation of clicks
for each item shown at the same time. We use a policy of randomly performing
an action from among the top k%-predicted actions for evaluation:

πk
f (a|x) =

{
k/100 (rank(f̃(x, a); {f̃(x, a′)}a′∈A) ≤ |A|k/100)
0 (otherwise),

(7)

where rank(v;S) denotes the ranking of a value v among a set of values S,
f̃(x, a) =

∑
t∈Ta

f(x, (ai = 1t, a
¬i =

∑
t′∈Ta\t 1t′)) is the total predicted clicks,

and Ta is the set of recommended items. Since the expectation in (6) is taken
over the same distribution with the dataset, we can empirically estimate (6)
with the test set, which is known as the inverse propensity score estimate [3].
This metric (with the plug-in policy (7)) is similar to the cumulative gain, where
the outcomes of the top-k best-predicted items are counted, but the difference
is that the ranking takes place for all candidate actions for each customer. To
avoid heavy computation of {f(x, a′)}a′∈|A| for each customer, we subsampled
A′ ⊂ A of cardinality 1, 000 to evaluate πk=1%

f .
In terms of off-line evaluation, it is difficult to evaluate only with respect to

the best-predicted action (as described in Sect. 4.3) because it is very rare that
a single action chosen among the |I|Ck candidates matches exactly the recorded
action, and the estimation variance of the metric would be too large. Therefore,
we adopted a stochastic policy rather than the deterministic policy of performing
the best-predicted action.

Results. As shown in Table 2, our proposed Combinatorial FM model with
debiasing techniques achieved the best performances in policy value and compa-
rable performances in AP. Notably, Combi-FM-Wass (without weights β) per-
formed almost the best in both scores despite not using propensity score infor-
mation. The chance rate that calculated from the click rate was V (Unif(A)) =
1.05×10−2. Thus, the proposed method achieved approximately 1.4 times more
clicks compared to random, even though the action was not optimized but ran-
domly chosen from the top 1% predicted actions.

508 A. Tanimoto et al.

6 Summary

In this paper, we have proposed an extended FM model to take into account the
second-order interactions between recommended items and debiased learning
method for set-wise recommendation. We utilize weighting and the representa-
tion balancing regularizer to alleviate the bias in observations and to achieve a
better performance in terms of decision-making. Experiments on real-world rec-
ommendation datasets demonstrated the superior performance of the proposed
methods, especially for large-scale datasets.

Acknowledgements. TT was partially supported by JSPS KAKENHI Grant Num-
bers 20K03753 and 19H04071. HK was supported by the JSPS KAKENHI Grant Num-
ber 20H04244.

References

1. Austin, P.C.: An introduction to propensity score methods for reducing the effects
of confounding in observational studies. Multivar. Behav. Res. 46(3), 399–424
(2011)

2. Bonner, S., Vasile, F.: Causal embeddings for recommendation. In: Proceedings of
the 12th ACM Conference on Recommender Systems, RecSys 2018, pp. 104–112.
ACM, New York (2018)

3. Bottou, L., et al.: Counterfactual reasoning and learning systems: the example of
computational advertising. J. Mach. Learn. Res. 14(1), 3207–3260 (2013)

4. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on
top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on
Recommender Systems, pp. 39–46. ACM (2010)

5. Gong, Y., et al.: Exact-k recommendation via maximal clique optimization. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, pp. 617–626. ACM, New York (2019)

6. Hill, J.L.: Bayesian nonparametric modeling for causal inference. J. Comput.
Graph. Stat. 20(1), 217–240 (2011)

7. Ie, E., et al.: Slateq: A tractable decomposition for reinforcement learning with
recommendation sets. In: IJCAI (2019)

8. Jiang, R., Gowal, S., Qian, Y., Mann, T.A., Rezende, D.J.: Beyond greedy ranking:
Slate optimization via list-cvae. In: ICLR (2019)

9. Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual
inference. In: International Conference on Machine Learning, pp. 3020–3029 (2016)

10. Johansson, F.D., Sontag, D., Ranganath, R.: Support and invertibility in domain-
invariant representations. In: The 22nd International Conference on Artificial Intel-
ligence and Statistics, pp. 527–536 (2019)

11. Kang, J.D., Schafer, J.L., et al.: Demystifying double robustness: a comparison
of alternative strategies for estimating a population mean from incomplete data.
Stat. Sci. 22(4), 523–539 (2007)

12. Kök, A.G., Fisher, M.L., Vaidyanathan, R.: Assortment planning: Review of liter-
ature and industry practice. In: Agrawal, N., Smith, S. (eds.) Retail Supply Chain
Management. International Series in Operations Research & Management Science,
vol. 122, pp. 99–153. Springer, Boston (2008) https://doi.org/10.1007/978-0-387-
78902-6 6

https://doi.org/10.1007/978-0-387-78902-6_6
https://doi.org/10.1007/978-0-387-78902-6_6

Causal Combinatorial Factorization Machines for Set-Wise Recommendation 509

13. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data, vol. 793. Wiley,
Hoboken (2019)

14. Manchanda, P., Ansari, A., Gupta, S.: The “shopping basket”: a model for multi-
category purchase incidence decisions. Mark. Sci. 18(2), 95–114 (1999)

15. Marlin, B.M., Zemel, R.S., Roweis, S., Slaney, M.: Collaborative filtering and the
missing at random assumption. In: Proceedings of the Twenty-Third Conference
on Uncertainty in Artificial Intelligence, pp. 267–275. AUAI Press (2007)

16. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on
Data Mining. pp. 995–1000. IEEE (2010)

17. Rubin, D.B.: Causal inference using potential outcomes: design, modeling, deci-
sions. J. Am. Stat. Assoc. 100(469), 322–331 (2005)

18. Saito, Y., Aihara, S., Matsutani, M., Narita, Y.: A large-scale open dataset for
bandit algorithms. arXiv preprint arXiv:2008.07146 (2020)

19. Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., Joachims, T.: Recom-
mendations as treatments: Debiasing learning and evaluation. In: Balcan, M.F.,
Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 1670–
1679. PMLR, New York, USA (20–22 June 2016)

20. Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect:
generalization bounds and algorithms. In: Proceedings of the 34th International
Conference on Machine Learning, vol. 70. pp. 3076–3085. JMLR. org (2017)

21. Tanimoto, A., Sakai, T., Takenouchi, T., Kashima, H.: Regret minimization for
causal inference on large treatment space. In: AISTATS (2021)

22. Wang, F., et al.: Sequential evaluation and generation framework for combinatorial
recommender system. arXiv preprint arXiv:1902.00245 (2019)

23. Wang, X., Qi, J., Ramamohanarao, K., Sun, Yu., Li, B., Zhang, R.: A joint opti-
mization approach for personalized recommendation diversification. In: Phung, D.,
Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS
(LNAI), vol. 10939, pp. 597–609. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93040-4 47

24. Wang, X., Zhang, R., Sun, Y., Qi, J.: Doubly robust joint learning for recommen-
dation on data missing not at random. In: International Conference on Machine
Learning, pp. 6638–6647 (2019)

25. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola,
A.J.: Deep sets. In: Advances in Neural Information Processing Systems, pp. 3391–
3401 (2017)

26. Zhao, H., Combes, R.T.D., Zhang, K., Gordon, G.: On learning invariant rep-
resentations for domain adaptation. In: Chaudhuri, K., Salakhutdinov, R. (eds.)
Proceedings of the 36th International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 97, pp. 7523–7532. PMLR, Long Beach,
California, USA (09–15 June 2019)

27. Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommenda-
tion lists through topic diversification. In: Proceedings of the 14th International
Conference on World Wide Web, pp. 22–32. ACM (2005)

28. Zou, H., et al.: Counterfactual prediction for bundle treatment. In: Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural
Information Processing Systems, vol. 33, pp. 19705–19715. Curran Associates, Inc.
(2020)

http://arxiv.org/abs/2008.07146
http://arxiv.org/abs/1902.00245
https://doi.org/10.1007/978-3-319-93040-4_47
https://doi.org/10.1007/978-3-319-93040-4_47

Transformer-Based Multi-task Learning
for Queuing Time Aware Next POI

Recommendation

Sajal Halder1(B), Kwan Hui Lim2, Jeffrey Chan1, and Xiuzhen Zhang1

1 School of Computing Technologies, RMIT University, Melbourne, Australia
{sajal.halder,jeffrey.chan,xiuzhen.zhang}@rmit.edu.au

2 Singapore University of Technology and Design, Singapore, Singapore
kwanhui lim@sutd.edu.sg

Abstract. Next point-of-interest (POI) recommendation is an important
and challenging problem due to different contextual information and wide
variety in human mobility patterns. Most of the prior studies incorporated
user travel spatiotemporal andsequential patterns to recommend next
POIs. However, few of these previous approaches considered the queuing
time at POIs and its influence on user’s mobility. The queuing time plays a
significant role in affecting user mobility behaviour, e.g., having to queue
a long time to enter a POI might reduce visitor’s enjoyment. Recently,
attention based recurrent neural networks-based approaches show promis-
ing performance in next POI recommendation but they are limited to sin-
gle head attention which can have difficulty finding the appropriate com-
plex connections between users, previous travel history and POI informa-
tion. In this research, we present a problem of queuing time aware next
POI recommendation and demonstrate how it is non-trivial to both rec-
ommend a next POI and simultaneously predict its queuing time. To solve
this problem, we propose a multi-task, multi head attention transformer
model called TLR-M. The model recommends next POIs to the target
users and predicts queuing time to access the POIs simultaneously. By
utilizing multi-head attention, the TLR-M model can integrate long range
dependencies between any two POI visit efficiently and evaluate their con-
tribution to select next POIs and to predict queuing time. Extensive exper-
iments on eight real datasets show that the proposed model outperforms
than the state-of-the-art baseline approaches in terms of precision, recall
and F1 score evaluation metrics. The model also predicts and minimizes
the queuing time effectively.

Keywords: Points of Interest (POI) · POI Recommendation ·
Transformer · Multi-tasking · Multi-head attention · Queuing time

1 Introduction

Travel and tourism are popular leisure activities and a trillion-dollar industry
across the world. To improve the travel and tourism experience, appropriate next
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 510–523, 2021.
https://doi.org/10.1007/978-3-030-75765-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_41&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_41

TLR-M for Queuing Time Aware Next POI Recommendation 511

point-of-interest (POI) recommendation based on tourist personalized interest
has attracted much attention from the researchers in recent years [2,7,21]. These
personalized next POI recommendations can be challenging because visitors can
have multiple criteria and different preferences when choosing a POI to visit
next. Some visitors may prefer the nearest available POI that they are mildly
interested in, while other visitors might prefer one that they are very interested
in despite travelling a longer distance. Others may have dynamic preferences and
their previous visit history is not that important to consider. Most of the deep
learning technique cannot handle multiple conflicting of near and long-distance
preferences as well as recent and past visit influence simultaneously. LSTM or
RNN based approaches focus on recent visits and nearest preferences based on
spatiotemporal dependencies. Thus, learning spatiotemporal dependencies can
be challenging. In addition, another factor that affects visitor’s satisfaction is
the length of queuing time. Figure 1 depicts an example showing the significance
of queuing time. Assume at lunch time (1:00 PM), a visitor wants to go to a
restaurant for lunch. If the next POI recommendation model does not consider
queuing time of these POIs, it may recommend nearby restaurant A or B accord-
ing to the distance and other users’ sequential patterns. However, these two are
crowded places and users have to wait a long time having their lunch which is
generally undesirable. Thus, a queuing time aware next POI recommendation
model, which takes POIs queuing information along with spatiotemporal depen-
dencies and personalized interest is more likely to recommend restaurant C tothe
user as next move. These kinds of queuing related activities are significant in
many other real-life applications, e.g., theme park and popular tourist attracts,
restaurants, concerts and festivals. In addition, with the COVID-19 pandemic,
there is a need to keep physical distance and queuing takes on a health dimension,
making queuing influence even more significant. To the best of our knowledge,
this is the first work to consider queuing time and its prediction for the next
POI recommendation.

These challenges inspired us to build a model that can capture complex
spatiotemporal dependencies along with queuing time influence in next POIs
recommendation. The problems of POI recommendation and queue time predic-

Fig. 1. Influence of queuing time along with spatiotemporal features in POI recom-
mendation.

512 S. Halder et al.

tion are inter-dependent. Thus, one single model that jointly recommends top-k
POIs and predict queuing time simultaneously is necessary.

Existing studies on next POI recommendation have considered spatiotempo-
ral preferences [11] but did not consider user preferences. In another group of
prior research, user identification is considered and attention-based spatiotem-
poral influence based ATST-LSTM [7] and self-attentive network SANST [6]
have been proposed. All these works are appropriate for next POI recommen-
dation, but they are not capable of multi-tasking (recommend POIs and predict
queuing time) simultaneously. Recently, attention-based transformer shows sig-
nificant improvement to capture all dependencies at once using non-recurrent
encoder-decoder model in volatility prediction [17,20] and natural language pro-
cessing [4]. Transformer allows multi-tasking which uses an attention mechanism
to compute the dependencies of its input and output. Therefore, in this work, we
propose multi-attention layers-based transformer network leverages to complex
spatiotemporal dependencies. After that, we use a multi-tasking approach to rec-
ommend POIs and predict queuing time simultaneously. The main contributions
of the paper can be summarized as follows:

– This work discusses the significance of queuing time aware next POI recom-
mendation model in which queuing time affects POI selection. More specifi-
cally, the model captures user behaviour along with spatiotemporal and queu-
ing time influences.

– We develop a multi attention transformer-based multi-task learning model for
next top-k POI recommendation and queue time prediction, simultaneously.
The model can recommend appropriate next POIs because of the advantages
of two parallel joint learning processes.

– Experiment results using eight real-life datasets show our proposed trans-
former model outperforms the state-of-the-art next personalized POI recom-
mendation based on precision, recall, F1-score and is able to predict queuing
time effectively.

2 Related Works

This research focuses on next top-k POI recommendation and queuing time
prediction. In this section, we briefly describe state-of-the-art research related
to these areas.

POI recommendation has attracted significant attention because of its impor-
tance in both academy and industry. POI recommendation accuracy depends on
multiple factors. The previous study LORE [22] incorporates geographical influ-
ence and social influence into a unified recommendation framework for check-in
data. To solve temporal and spatial dependencies simultaneously convolutional
LSTM [18] network has been proposed. Moreover, some recent works [16,19]
have employed convolutional neural network and multi-layer preceptors to POI
recommendation. Huang et al. [7] proposed an attention-based spatiotemporal
long and short-term memory (ATST-LSTM) network for the next POI recom-
mendation. Zhou et al. [23] proposed generative and discriminator based POI

TLR-M for Queuing Time Aware Next POI Recommendation 513

recommendation model that maximize the learned probabilities distributions
and optimize the differences between recommend POIs and true check-ins. Lim
et al. [9] introduced queuing time as an important factor in itinerary recommen-
dation. Therefore, in this work, we introduce the queuing time aware of top-k
POI recommendation.

Transformer network-based model improves accuracy across a variety of NLP
tasks. The model can capture all words dependencies in a sentence to predict
next word. Recently, some research works in transformer-based model [17,20]
show the significant improvements in volatility prediction and event forecast-
ing using multi-head attention technique. It has been shown that the trans-
former model is faster than the recurrent and convolutional layers-based models
and improved performance using the multi-headed self-attention technique [14].
Multi-task learning approach has been used for a variety of research areas i.e.,
sentence classification and tagging [15], entity recognition and semantic labelling
[1], and two different financial forecasting [20]. Inspired by transformer multi-
task learning, we use multi-head attention-based transformer model for next
top-k POI recommendation and predict queue time simultaneously. The multi-
head attention model can capture POIs relationships among other POIs in mul-
tiple ways and it is effective to handle users’ dynamic behaviours. Our proposed
TLR-M model differs from the state-of-the-art POI recommenders in various
aspects. First, we introduce complex spatiotemporal dependencies along with
POI sequence in transformer model. Second, we present multi-task learning
in POI recommendation that can recommend top-k POI and predict queuing
time simultaneously. Most importantly, the approach can set up the relationship
among heterogeneous features (i.e. geographical, time and user identity features
etc.) automatically using multi-head attention mechanism.

3 Preliminary and Problem Statement

In this section, we first describe key preliminary definitions and then describe
the problem statement.

Definition 1. Point of Interest (POI): A POI p is defined as a uniquely identi-
fied location (e.g., roller coaster, museum, hotel and etc.) that has longitude and
latitude values. A sequence represents a set of POIs, P = {p1, p2, · · · , pn} that
user visits sequentially.

Definition 2. Visit Activity: User visit activity is a quadri-tuple vu
tk

=
(putk , lutk , tk, u) which represents the user u visits POI putk with location lutk at
timestamp tk.

Definition 3. Visit Sequence: A user visit sequence is a set of visit activities
of the user, represented by Vu =

{
vu
t1 , v

u
t2 , · · · , vu

ti

}
. All users historical visit

sequences in a dataset are defined by V U =
{
Vu1 , Vu2 , · · · , Vu|U|

}
, here |U | is the

number of all users.

514 S. Halder et al.

Definition 4. Visit Trajectory: A user’s visit trajectory is a subset of user’s
visit sequence i.e. Vu = ∪iS

u
i , represented by Su

i =
{

vu
tk

, vu
tk+1

, · · · , vu
tk+n−1

}
,

where sequence length is n. In the sequence if the time difference between two
consecutive POI visits is more than six hours, we divided it into different trajec-
tories, all the isolated POI visits are ignored.

Definition 5. Queuing Time Trajectory: The queuing time is a triplet qpTk
=

(puTk
, Tk, qi) represents the user u need to wait qi time to access the POI puTk

at timestamps Tk. The queuing time sequence is a set of queuing time triplet
Sui
q =

{
qpTk

, qpTk+1
, · · · , qpTk+n−1

}
. All database queuing time trajectory indicates

by QU = ∪iS
ui
q , where ui ∈ U . The length of visit sequence and queuing time

sequence will be same. The timestamps Tk may be hour based or half hour based
time interval.

Problem Statement: Given the input of all users’ visit trajectories V U

and queuing time trajectories QU during past T timestamp, the output of our
proposed multi-task learning model is to recommend next top-k POIs to the users
and predict the prospective queuing time of recommended POIs, simultaneously.
The model can recommend a fixed set of POIs (top-5 or top-10) and can optimize
queuing time between original time and predicted queuing time.

4 Proposed TLR-M Model

In this section, we describe our proposed Transformer based Learning Recomm-
endation using Multi-tasking TLR-M model. We capture the global dependen-
cies between users visit trajectories and POIs queuing influences using multi-
head self-attention mechanism. The self-attention mechanism overcomes two lim-
itations of RNN based top-k prediction tasks. Firstly, the RNN model is hard
to support parallel work because of its recursive nature. Secondly, RNN can
not capture the whole sequence information directly. The purpose of using self-
attention is two-folds. It captures the whole sequence information flow directly
and it permits parallel operations that join multiple learning objectives effec-
tively.

Our proposed model uses multi-head self-attention based on two pairs of
encoder and decoder. Figure 2(a) illustrates the architecture of TLR-M model.
Some transformer based classifier used encoder only rather than encoder and
decoder. Encoder based model can generate global attention based transition
matrix but can not generate personalized attention based different recommenda-
tion appropriately. However, we use encoder and decoder together to capture per-
sonalize correlation between POIs visits whole sequence directly without sequen-
tial propagation. Here, the spatial, the temporal,user inter-dependencies among
the time and geographical locations and queuing time influence are jointly con-
sidered which performed by the attentive learning. The model takes POIs visit
trajectories as quadruplet (puti , l

u
ti , ti, uti) input in transformer Encoder-1 and

TLR-M for Queuing Time Aware Next POI Recommendation 515

queuing time trajectories as triplet (puti , Ti, qi) input in transformer Encoder-2.
Thus, the inputs (x1

t and x2
t) of the two transformer encoders are as follows:

x1
t = Wpp

u
ti + Wll

u
ti + Wtt

u
i + Wuuti and x2

t = Wpp
u
ti + WTTi + Wqqti (1)

where puti , luti , tui and uti represent POI IDs, spatial, temporal context and user
vector respectively. Wp, Wl, Wt and Wu are transition matrices. Besides this, qti
is the queuing time and Ti is timestamps. WT and Wq are transition matrices.

Unlike recurrent networks (LSTMs and GRUs), the transformer network can
process the input sequentially, POI after POI (as token after token). The trans-
former uses positional encoding to keep a separate embedding table with input
vectors. The model use POI position in the trajectory instead of POI index
in the table. Thus, the positional embedding table is much smaller than the
one-hot encoding table. Positional embeddings may train with the rest of the
deep network or pre-computed by the following sinusoidal formula. Here, we use
pre-computed positional embedding sinusoidal signal manner [14].

PEpos,2i = sin (
pos

100002i/Esize
) and PEpos,2i+1 = cos (

pos

100002i/Esize
) (2)

where Esize and pos denotes the embedding size and relative position of POIs
in trajectories, respectively. We define 2i and 2i + 1 to indicate the embedding
element index with the even and odd position, respectively.

Fig. 2. The architecture of TLR-M model.

Encoder consists of N layers and each layer are composed of multi head
self-attention, fully connected feed forward followed by layers normalization [14]

516 S. Halder et al.

depicts in Fig. 2(b). In our model Fig. 2(a), the inputs of first encoder layers in
Encoder-1 and Encoder-2 come from the element wise addition between inputs
embedding latent vector and positional encoding represent by x1

e = x1
t + PE

and x2
e = x2

t + PE. The output of first encoder layer feeds as input embedding
in the next layer. Thus, the Nth layer outputs of two encoders (Encoder-1 and
Encoder-2) are oe1 and oe2 .

oe1 = lNo(x1
e + FFN(lNo(x1

e + MulH(Q,K, V))))

oe2 = lNo(x2
e + FFN(lNo(x2

e + MulH(Q,K, V))))
(3)

where lNo(.) is layer normalization, FFN(.) is fully connected feed-forward net-
work and MulH(.) is multi-head attention mechanism.

These two encoder outputs are concatenated (oe = oe1 + oe2) and fed
into the decoders that share the impact of top-k and queuing time together.
The decoder unit in Fig. 2(b) consists of six layers, among them masked multi
head attention uses to avoid the significance of padding token. We use padding
token to construct the same length of visit trajectories and queuing time trajec-
tories. Decoder takes same input as encoder input but in this case, information
is shifted one position right, ensure that the prediction output of position ti+1

only depends on known outputs up to time ti. Then, these embeddings added
with positional embeddings and construct x1

d = x1
t−1 +PE and x2

d = x1
t−1 +PE.

This output embedding transforms through the mask layer, multi head atten-
tion and feed forward sub-layers using add and normalization functions. Each
output of decoder repeatedly uses as input in the decoder and transformed until
N repetition. Then, the output of N th decoder feeds into soft-max layer or fully
connected layer based on the target output. Decoder-1 and Decoder-2 performed
based on following equation.

od1 = lNo(x1
d + FFN(lNo(x1

d + MulH(oe, oe,MulHM(Q,K, V))))

od2 = lNo(x2
d + FFN(lNo(x2

d + MulH(oe, oe,MulHM(Q,K, V))))
(4)

These two decoder outputs are updated during the training phase using two
different loss functions. We have used soft parameter sharing architecture in
which each task has its own parameter setting based model. The parameters of
these two models are then regularized to reduce the difference among them and
encourage the parameters to be similar. In the training phase, we integrate multi-
layer perceptron dropout technique to prevent over-fitting. To recommend top-K
POIs with higher probabilities, the outputs of Decoder-1 feeds into softmax layer
and the queuing prediction component, we use ReLU as the activation function
for the fully connected layer defined by ŷ = softmax(od1) and ŷq

i = ReLU(od2).
The proposed model uses two objective functions for best top-K POI recom-

mendation and appropriate queuing time prediction. Thus, the first objective
function uses sparse-cross-entropy as a loss function for accurate top-k recom-
mendation as follows.

lossr = − 1
N

∑N

i=1
[yilog(ŷi) + (1 − yi)log(1 − ŷi)] (5)

TLR-M for Queuing Time Aware Next POI Recommendation 517

where yi is the original output and ŷi is the predicted output.
In the Decoder-2 output, we find the queuing probability corresponding POI

distributions. Then, to reduce the difference between predicted probability and
likelihood probability we use mean square error loss function as follows.

lossp = −
∑N

i=1
[(yq

i − ŷq
i)

2] (6)

where yq
i and ŷq

i represent original queuing time and predicted queuing time
respectively. Therefore, our objective function is a weighted average of these two
loss functions using weight parameter α ∈ [0, 1].

loss = α × lossr + (1 − α) × lossp (7)

We use Adam-optimizer and applied the trick of decay learning rate with the
steps until it reaches convergence. Finally, the TLR-M extract our two desire
goals simultaneously that are to recommend top-k POIs and predict proceeding
queuing time.

4.1 Algorithm

Algorithm 1 depicts an overview of our proposed TLR-M model. It takes two
sets of inputs including POI sequence, spatiotemporal, users, and queue time
features. First, we initialize all parameters in line 1. Then based on two minibatch
inputs x1

b and x2
b we train our proposed model in lines 2–10. These inputs feed

into the encoders and generate outputs using multi attention-based feed-forward
network using Eq. 3 in line 4. The two encoder outputs fed as input into the
decoders with right-shifted encoder inputs in line 5. After that, the output of

Algorithm 1: TLR-M Model
Data: (x1, x2)= Model inputs, PE = positional embedding, bsize: batch size
Result: TLR-M model {M}u: [top-k POIs], [Queue time]

1 TRAIN MODEL: Initialize all parameters
2 for (x1

b , x
2
b) ← sample(x1, x2, bsize) do

3 x1
e, x

2
e = x1

b + PE, x2
b + PE

4 Using equation 3 find o1e and o2e
5 x1

d, x
2
d = Input(RightShift(x1

e, x
2
e), o

1
e, o

2
e)

6 Using equation 4 fund decoder output o1d and o2d
7 ŷ = softmax(o1d) and ŷq = Relu(o2d)
8 Calculate loss J using equations 5, 6, 7
9 Build the learned TLR-M Model {M}u

10 Update the parameters.

11 end
12 TEST MODEL : ŷtest, ŷ

q
test = Predict output based on Model {M}u and test

data.
13 Return ŷtest, ŷ

q
test;

518 S. Halder et al.

the multi-head attention layer is normalized and passed fully connected feed-
forward network. It generates two probabilities distributions as outputs in line
6. The outputs are passed with softmax and rectified linear unit to find top-k
POIs recommendation and queuing time prediction probabilities in line 7. Using
this probability, we applied two loss functions and achieved our goal in line 8.
Furthermore, using the loss functions of Eqs. 5, 6 and 7 we train our proposed
model {M}u and update all parameters in lines 10. After constructing the model,
we predict the next top-k potential POIs ŷtest using our test data and predict
queuing time ŷq

test in line 12. Finally, we measure our evaluation matrices based
on output ŷtest and ŷq

test compare to original POI and queuing time.

5 Experiments

In this section, we present experimental setup, datasets, baseline algorithms and
evaluation metrics. For these comparisons, our proposed TLR-M and the exist-
ing baseline methods are implemented in the Python language. Training and
testing sets selection are important factors in the deep learning model. At first,
we construct itinerary based on visiting POI where the first t steps used as a
model design and t + 1 step is used as a next target POI. Thus, we construct
all the prefixes of the input trajectories and make sub-trajectories as per stan-
dard practice [13]. Then, among these itineraries, we select training set using
70% random itineraries and the testing set using remaining 30% itineraries. For
baseline models, we used authors’ publicly shared codes.

To analyse the significance of the proposed models, we have used t-test statis-
tical method. Experimental results show that TLR-M significantly out-performs
all baseline with at least 96.5% confidence interval (p ≤ 0.035), based on t-test.

Table 1. Parameters description of various datasets.

Dataset # Photos POI Visits # Users # POIs Dataset # Chick-ins/ POI Visits # Users # POIs

Epcot 90,435 38,950 2,725 17 Edinburgh 82,060 33,944 1,454 29

Magic kingdom 133,221 73,994 3,342 27 Melbourne 17,087 5,871 911 242

California Adv 193,069 57,177 2,593 25 Foursquare 315,084 315,084 7,642 6,202

Budapest 36,000 18,513 935 39 Gowalla 407,894 407,894 5,628 7,283

5.1 Datasets and Baseline Algorithms

For our experiments, we use various datasets comprising three theme parks,
three cities and two social networks [9,10,12]. The visit sequences of POIs are
constructed based on photos taken or check-in times to these POIs. If the time
gap between two consecutive photos taken time or check-in time is greater than
6 h, it is considered as a new visit sequence. Among these datasets Foursquare
and Gowalla do not hold queuing time information, thus we describe the results

TLR-M for Queuing Time Aware Next POI Recommendation 519

differently. Foursquare and Gowalla datasets are sparse. Hence, we consider the
users who have at least 20 records and the POIs that has been visited at least
20 times. All other datasets, we filter out those users and POIs with fewer than
3 visits and 3 visitors, respectively. The variation of eight datasets is shown in
Table 1.

Several baselines are described to compare the performance of our proposed
TLR-M model that plays a significant role in the next POI recommendation.
Among a large number of existing works, we have considered several recent works
as baselines that outperform than the other baselines [3,5,8]. To best evaluate the
performance of our proposed TLR-M model, we compare our proposed models
with four recent baselines which are ST-RNN [11], STACP [12], APOIR [23] and
ATST-LSTM [7]. Queuing time information are not always present in dataset i.e.
Gowalla and Foursquare datasets contain only check-in time. If there are check-
out times information, we can define queuing time as the time difference between
one check-in and previous check-out time. However, to show the transformer-
based POI recommendation efficiency, we develop a single-tasking TLR model.
It takes only visit trajectories information as input and uses single encoder and
decoder instead of pair encoders and decoders. All parameters are same, and
the objective function is lossr in Eq. 5. To predict queuing time prediction, we
develop a single-tasking TLRq model using queuing trajectories and lossp loss
function.

5.2 Performance Evaluation

To compare the performance of our model against the various baselines, we
use Precision@k, Recall@k, F1-Score@k and root mean square error (RMSE)
metrics [11]. Theme parks and cites datasets are dense, thus we evaluate the
sub-trajectories based recommendation accuracies. On the other hand, Gowalla
and Foursquare datasets are very sparse datasets that case we consider users
based accuracies. We combine test sub-trajectories target and predicted top-K
POIs and find accuracy metrics as per research paper [7].

Fig. 3. Results comparison among proposed TLR, TLR-M and various baselines, in
terms of Precision@5, Recall@5 and F1-Score@5 for six datasets.

520 S. Halder et al.

5.3 Results and Discussion

The performance of TLR and TLR-M models with state-of-the-art POI rec-
ommendations are evaluated based on several experiments. The main evaluation
process of POI recommendation is how accurately the recommended POIs reflect
visitors real visit POIs. Figure 3 shows the results of proposed models against
the various baselines for the datasets against the various evaluation metrics. The
proposed TLR model performance against the existing POIs recommendation is
the best in terms of all evaluation metrics. Three sub-figures in Fig. 3 show the
precision@5, recall@5 and F1-score@5 results based on the six datasets.

It shows that our proposed multi-tasking model TLR-M outperforms all the
baselines as well as our proposed single task TLR model. Because we have used
multi-head attention-based transformer that can capture POI visit full trajec-
tories relationship more efficiently than the RNN or CNN based approach. The
transformer architecture can capture all inputs and outputs dependent relations
efficiently. On the other hand, queuing time impact has been added at train-
ing time that also increases next POI recommendation efficiency. The results
of evaluation metrics differ dataset to dataset because we consider top 5 POIs
among all POIs. Thus, Melbourne dataset results show a lower score than the
other datasets because of a comparatively larger number of POIs. Our results
show the same output pattern for k values 3 and 10. In this experiment, we run
each model 10 times and reported average values as a metric value.

The proposed TLR-M model not only outperforms in top-k POI recommen-
dation but also predicts queuing time very well. To compare TLR-M model
with single queuing time prediction model, we use single TLRq model in which
predicts target POIs queuing time as output. In this case, root mean square
error loss function has been used. We have developed ATSTq model applying
the same input (queuing time and POI sequence) in ATST LSTM model. The
ATSTq model is unable to predict the queuing time effectively, as shown by
RMSE value that is at least 10 times higher than the TLR-M model. The table
2 shows that our multi-task model TLR-M outperforms single task LTRq and
ATSTq models.

Performance Analysis for Larger Datasets. The results in three theme
park and three city datasets show that our models outperform the state-of-the-
art baselines, and we proceed to evaluate the performance of our proposed model
on large-scale datasets. To show the performance, we use two large check-in
datasets Foursquare and Gowalla datasets with the increasing number of POIs.
Figure 4 shows the proposed TLR model outperforms than the baselines in terms
of Recall@10 value. These data sets are very sparse, thus we consider a various
number of POIs to evaluate performance comparison. Here, we did not compare
our multi-tasking model TLR-M because the queuing time information is missing
in these datasets. The results show that all algorithms values decrease with
the increase of POIs number. Our proposed TLR model shows the best results
because it can capture POI trajectories inter dependencies efficiently. Based
on these results, it is obvious that our model outperforms on small and large
datasets than the baselines.

TLR-M for Queuing Time Aware Next POI Recommendation 521

Table 2. RMSE results between
single and multi-task. Small value
are better.

Dataset ATSTq TLRq TLR-M

Epcot 1319.9 173.1 102.5

MagicK 925.6 90.5 84.7

CaliAdv 1834.2 108.7 101.5

Buda 2157.5 147.3 129.2

Edin 1755.3 136.7 113.2

Melb 2602.5 132.4 88.8

Fig. 4. Performance comparison based on two
sparse datasets.

Effects of Parameters: We explore the effect of batch size and multi loss
functions balancing factor (α). We consider learning rate = 0.001, dropout rate
= 0.5, number of head = 4, training step = 200 and hidden size = 128. Our
results show that the effect of batch size increases first then decreases with the
value increases (due to page limit we could not show the figures). We find that
batch size 32 is best for these algorithms. Besides this, we explore the effect
of balancing factor α. We observe that the best value for the balance factor
fluctuates between 0.50 to 0.75 in different datasets. Therefore, we set default
value 0.5 to provide the equal significance of two-loss functions.

6 Conclusion

In this paper, we study the new research topic, queuing time aware next POI rec-
ommendation. By incorporating sequential, spatial, temporal and queuing time
influences, we have proposed multi-head transformer-based multi-task learning
recommendation model TLR-M that recommends top-k POIs and predicts queu-
ing time simultaneously. By leveraging the attention technique instead of RNN
architecture, the model can capture whole trajectory dependencies directly and
efficiently. Experiment results based on eight datasets show that our proposed
TLR-M model significantly outperforms the various state-of-the-art models.

In this work, we have studied the queuing time aware top-k POI recom-
mendation problem. Our future research direction is to construct a full itinerary
considering the budget time and social relationship influence that users get max-
imum entertainment.

References

1. Alonso, H.M., Plank, B.: When is multitask learning effective? Semantic sequence
prediction under varying data conditions. In: EACL, pp. 1–10 (2017)

2. Chang, B., Park, Y., Park, D., Kim, S., Kang, J.: Content-aware hierarchical point-
of-interest embedding model for successive poi recommendation. In: IJCAI, pp.
3301–3307 (2018)

522 S. Halder et al.

3. Chen, X., et al.: Sequential recommendation with user memory networks. In:
WSDM, pp. 108–116 (2018)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

5. Feng, S., Li, X., Zeng, Y., Cong, G., Chee, Y.M., Yuan, Q.: Personalized ranking
metric embedding for next new poi recommendation. In: IJCAI (2015)

6. Guo, Q., Qi, J.: SANST: a self-attentive network for next point-of-interest recom-
mendation. arXiv preprint arXiv:2001.10379 (2020)

7. Huang, L., Ma, Y., Wang, S., Liu, Y.: An attention-based spatiotemporal LSTM
network for next poi recommendation. IEEE Trans. Serv. Comput. (2019)

8. Li, X., Cong, G., Li, X.L., Pham, T.A.N., Krishnaswamy, S.: Rank-GeoFM: a rank-
ing based geographical factorization method for point of interest recommendation.
In: SIGIR, pp. 433–442. ACM (2015)

9. Lim, K.H., Chan, J., Karunasekera, S., Leckie, C.: Personalized itinerary recom-
mendation with queuing time awareness. In: SIGIR, pp. 325–334. ACM (2017)

10. Lim, K.H., Chan, J., Leckie, C., Karunasekera, S.: Personalized trip recommenda-
tion for tourists based on user interests, points of interest visit durations and visit
recency. Knowl. Inf. Syst. 54(2), 375–406 (2017). https://doi.org/10.1007/s10115-
017-1056-y

11. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model
with spatial and temporal contexts. In: AAAI (2016)

12. Rahmani, H.A., Aliannejadi, M., Baratchi, M., Crestani, F.: Joint geographical
and temporal modeling based on matrix factorization for point-of-interest recom-
mendation. In: Jose, J.M., Yilmaz, E., Magalhães, J., Castells, P., Ferro, N., Silva,
M.J., Martins, F. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 205–219. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45439-5 14

13. Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based
recommendations. In: Proceedings of the 1st Workshop on Deep Learning for Rec-
ommender Systems, pp. 17–22 (2016)

14. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
15. Wang, S., Che, W., Liu, Q., Qin, P., Liu, T., Wang, W.Y.: Multi-task self-

supervised learning for disfluency detection. arXiv preprint arXiv:1908.05378
(2019)

16. Wang, S., Wang, Y., Tang, J., Shu, K., Ranganath, S., Liu, H.: What your images
reveal: exploiting visual contents for point-of-interest recommendation. In: WWW,
pp. 391–400 (2017)

17. Wu, X., Huang, C., Zhang, C., Chawla, N.V.: Hierarchically structured transformer
networks for fine-grained spatial event forecasting. In: The Web Conference 2020,
pp. 2320–2330. ACM (2020)

18. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolu-
tional LSTM network: a machine learning approach for precipitation nowcasting.
In: NIPS, pp. 802–810 (2015)

19. Yang, C., Bai, L., Zhang, C., Yuan, Q., Han, J.: Bridging collaborative filtering and
semi-supervised learning: a neural approach for poi recommendation. In: SIGKDD,
pp. 1245–1254 (2017)

20. Yang, L., Ng, T.L.J., Smyth, B., Dong, R.: Html: Hierarchical transformer-based
multi-task learning for volatility prediction. In: The Web Conference 2020, pp.
441–451 (2020)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2001.10379
https://doi.org/10.1007/s10115-017-1056-y
https://doi.org/10.1007/s10115-017-1056-y
https://doi.org/10.1007/978-3-030-45439-5_14
http://arxiv.org/abs/1908.05378

TLR-M for Queuing Time Aware Next POI Recommendation 523

21. Yin, H., Wang, W., Wang, H., Chen, L., Zhou, X.: Spatial-aware hierarchical col-
laborative deep learning for poi recommendation. TKDE 29(11), 2537–2551 (2017)

22. Zhang, J.D., Chow, C.Y., Li, Y.: LORE: exploiting sequential influence for location
recommendations. In: SIGSPATIAL, pp. 103–112. ACM (2014)

23. Zhou, F., Yin, R., Zhang, K., Trajcevski, G., Zhong, T., Wu, J.: Adversarial point-
of-interest recommendation. In: WWW, pp. 3462–34618 (2019)

Joint Modeling Dynamic Preferences
of Users and Items Using Reviews
for Sequential Recommendation

Tianqi Shang1, Xinxin Li2, Xiaoyu Shi3(B), and Qingxian Wang2

1 College of Computer Science, Sichuan University, Chengdu 610207, China
2 School of Information and Software Engineering, University of Electronic Science

and Technology of China, Chengdu 610054, China
201921090312@std.uestc.edu.cn, qxwang@uestc.edu.cn

3 Chongqing Key Laboratory of Big Data and Intelligent Computing,
Chongqing Institute of Green and Intelligent Technology,
Chinese Academy of Sciences, Chongqing 400714, China

xiaoyushi@cigit.ac.cn

Abstract. The emerging of sequential recommender (SR) has attracted
increasing attention in recent years, which focuses on understanding and
modeling the temporal dynamic of user behaviors hidden in the sequence
of user-item interactions. However, with the tremendous increase of users
and items, SR still faces several challenges: (1) the hardness of modeling
user interests from spare explicit feedback; (2) the time and semantic
irregularities hidden in the user’s successive actions. In this study, we
present a neural network-based sequential recommender model to learn
the temporal-aware user preferences and item popularity jointly from
reviews. The proposed model consists of the semantic extracting layer
and the dynamic feature learning layer, besides the embedding layer and
the output layer. To alleviate the data sparse issue, the semantic extract-
ing layer focuses on exploiting the enriched semantic information hidden
in reviews. To address the time and semantic irregularities hidden in user
behaviors, the dynamic feature learning layer leverages convolutional fit-
ters with varying size, integrating with a time-ware controller to capture
the temporal dynamic of user and item features from multiple tempo-
ral dimensions. The experimental results demonstrate that our proposed
model outperforms several state-of-art methods consistently.

Keywords: Sequential recommendation · Preference modeling ·
Temporal dynamic · Semantic extracting · Deep learning

1 Introduction

In the era of information explosion, recommender systems (RS) are the essen-
tial enabler for online services and widely applied in a variety of fields, e.g.,
music/video recommendation, news push-delivery, online shopping. Up to now,

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 524–536, 2021.
https://doi.org/10.1007/978-3-030-75765-6_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_42&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_42

Joint Modeling Dynamic Preferences of Users and Items 525

RS can be divided into two categories: general recommender system and sequen-
tial recommender system. The general recommender systems with representation
of the content-based and collaborative filter (CF)-based solutions seek to capture
users’ long-term preference, presuming that the user-item interactions in a static
way or change slowly over time. Among them, Factorization-based CF methods
[5] are the most popular techniques in this era. However, the user preferences
are drifting over time, rather than fixed. Different with the general recommender
systems heavily focus on modeling users’ long-term preference, sequential recom-
mender system can capture the users’ short-term preference for more accurate
recommendation, with consideration of the sequential dependencies in the user-
item interactions [6,11,16]. Hence, SR receives considerable attention due to its
superiority in capturing item-to-item sequential relations.

Following this line, several solutions based on neural networks have been
proposed to learn the users’ short-term preferences. They can be divided into
convolutional neural network (CNN)-based and recurrent neural network (RNN)-
based methods. CNN-based methods [12] utilize the convolutional filters with
different kernel sizes to learn the short-term contexts for recommendation. RNN-
based methods include long short-term memory network (LSTM) [15,17] and
gated recurrent network (GRU) [2]. They capture the short-term user preference
via hidden state of RNN.

Although the previous solutions have achieved satisfactory results, there are
still some challenges for sequential recommenders: (1) the hardness of modeling
the user interests from spare explicit feedback. In most past studies, ratings are
used as the only criterion of feedback information to measure the degree of user
preference for the specified item. User reviews as another source of data usually
contain more information than ratings. For example, “I really like the style of this
skirt and its length is just right. Although the white one is out of stock, I am also
satisfied to buy the pink.” Through the above review, we find out the customer
is satisfied with the style rather than the color. Meanwhile, we can also infer
that the user is interested in white. However, the rating of “5” cannot show such
plentiful information. Therefore, a review-based recommender system can cap-
ture more information about user preferences. (2) the time and semantic irregu-
larities are hidden in the user’s successive actions. The existing temporal-aware
recommenders [6,16] always assume that the items in sequence can be considered
as evenly spaced and semantically consistent when designing recommender. In
practical, the sequence of user behavior is complex, the time intervals between
two adjacent interactions can be various. For example, the historical interac-
tion sequence of a user is: H = {(i1, Apr 1st), (i2, Apr 2nd), (i3,May 2nd)}.
It is more reasonable that the information hidden between (i1, i2) more than
(i2, i3), because the user behaviors happen on (i1, i2) is just one day, while for
the (i2, i3) is one month. Furthermore, the sequence of user behavior on items
may not share the same semantic topic. For example, the items set of a user
interaction is {iPhone, iPad, umbrella, dress}, the first two items indicate that
the user is happy to buy electronic products, while the second two items have
no such signal.

526 T. Shang et al.

To track the above challenges, we present a novel neural network-based
sequential recommendation model to learn both long- and short-term user pref-
erences and item popularity jointly from reviews. To evaluate the performance
of our proposed model, we conducted a large number of experiments on three
datasets from Amazon. Experimental results show that our model is significantly
better than the state-of-the-art methods. In summary, our contributions in this
paper are as follows:

– We propose a neural network-based model sequential recommender to model
the temporal dynamic of user preference and item popularity, which can learn
the enrich semantic and temporal information hidden in users’ reviews jointly;

– We introduce the dynamic feature learning layer with integrate of time-aware
controller to solve the time and semantic irregularities hidden in the user
behaviors. It leverages a couple of convolutional fitters with varying sizes to
effectively learn the user and item features from multiple temporal dimen-
sions;

– We implement our proposed model on the three datasets from Amazon, and
experimental results show that our model is significantly better than state-
of-the-art methods.

The remainder of this paper is organized as follows. Section 2 summaries the
related work on related recommender methods. Section 3 describes the proposed
neural network-based model in detail. The experimental setting and results are
given in Sect. 4. In Sect. 5, we conclude our paper.

2 Related Work

2.1 Review-Based Recommender

User reviews, can potentially alleviate the data sparsity problem caused by
rating-based methods. Bao et al. [1] proposed a novel matrix factorization model
(called TopicMF) that simultaneously considers the ratings and accompanied
review texts. Wu et al. [15] proposed a cyclic recommendation network to learn
the implicit representation of users and items via traditional matrix factoriza-
tion methods. Then these static hidden features are input into the RNN model
to learn dynamic hidden features according to the order of time. Zheng et al.
[19] presented a deep model to learn item properties and user behaviors from
reviews. One of the networks is used to learn user behaviors, and the other one
learns item properties. Lu et al. [7] proposes a multitasking learning framework
that combines the probability matrix to decompose the PMF and the confronta-
tional Seq2Seq model. Tay et al. [13] propose a review-by-review pointer-based
learning scheme, named MPCN, to extract important reviews and match them
in a word-by-word fashion. It enables the most informative reviews to be utilized
for prediction and deeper word-level interaction. By introducing review informa-
tion, these methods alleviate the data sparsity problem. However, they ignored
the dynamic change of user preference and item properties over time.

Joint Modeling Dynamic Preferences of Users and Items 527

2.2 Sequential Recommender

Sequential recommender considers the order of user interactions, which utilizes
the previous interactions to predict the next one. Redle et al. [10] combines the
Matrix Factorization and Markov Chains to learn a transition metric over time
to predict the next action for a user. Hidasi et al. [3] employs the RNN-based
model for sequential recommendation and proposes the session-based model.
Pei et al. [8] and Wang et al. [4]. introduce attention mechanism into neural
networks for the recommender. Based on [4], Li et al. [6] considers the times-
tamps of interactions to explore the influence of different time intervals on the
next item prediction. Ying et al. [16] models the previous item and the long
history item list of a user by the attention network to obtain the long and short-
term preferences of the user. Usually, RNNs-based models perform well on dense
datasets, but show poor performance on sparse datasets. The above sequential
recommendation methods only focused on the combination of user long and
short-term preferences without considering the time and semantic irregularities
in user behavior.

3 Proposed Model

In this section, we first overview the architecture of our proposed model at a
high-level. Then, we explain the implementation details of each layer and how
the time-aware controller works in our model.

3.1 The Overview Architecture

Our proposed model consists of three important components: two parallel hybrid
neural networks, and the Factorization Machine (FM)-based fusion module. One
of the networks focuses on modeling user preferences, the other one captures item
popularity. Specifically, the proposed neural network consists of four layers: the
embedding layer, the semantic extracting layer, the dynamic feature learning
layer, and the output layer. For the embedding layer, it encodes the review and
time information into one-hot vectors. Then the semantic extracting layer focuses
on exploiting the obtain plentiful sentiment with sequential dependencies infor-
mation, by leveraging the Bi-directional Long Short-Term Memory (BiLSTM)
network. After that the dynamic feature learning layer, integrating with a time-
aware controller, utilizes several convolutional fitters with varying sizes, to cap-
ture the temporal dynamic of user preferences and item popularity from multiple
temporal dimensions. In the output layer, the factorization machine technique
is utilized to enable the user and item latent factors to interact with each other
and obtain predictions. The overall architecture of the proposed model is shown
in Fig. 1.

528 T. Shang et al.

Fig. 1. Illustration of our proposed model.

3.2 The Embedding Layer

In our method, we consider reviews with time information as a strong supplemen-
tary to understand the user behavior. Therefore, review text and time from the
input of the network are encoded in this layer. Let R = {r1, r2, . . . , rn} denotes
the set of n reviews of a user or an item. The ith review is in the set represented
as ri = {w1, w2, . . . , wm}, where wi represents the ith word in review, and m
is the number of words in this review. We type all reviews from a user or item
into the embedding layer. Each review is converted into a word vector matrix
through a table lookup operation from the pre-trained word matrix We. We use
w

′
i ∈ R

d to represent the low-dimensional dense vectors of ith word, where d

is the dimension of the word vector in We. As a result, the r
′
i ∈ R

m×d can be
expressed as:

r
′
i = w

′
1 ⊕ w

′
2 ⊕ · · · ⊕ w

′
m, (1)

where ⊕ denotes the concatenation operator. Therefore, the review set R is
encoded as R

′
= [r

′
1, r

′
2, . . . , r

′
n].

3.3 The Semantic Extracting Layer

In extraction layer, to obtain user preferences and item properties, user reviews
set Ru and item reviews set Ri are input into two parallel neural networks
respectively. Firstly, the words in each review are treated as sequential data.
In recent, some studies have shown that Long Short-Term Memory (LSTM)

Joint Modeling Dynamic Preferences of Users and Items 529

performs well in processing text information. In particular, the Bi-directional
LSTM (BiLSTM), an improved variant of LSTM, can capture both forward and
backward contextual information. Motivated by it, we leverage the BiLSTM to
obtain the sentiment information hidden in reviews.

The LSTM can change the flow of information through some gates: forgetting
gate zf , input gate zi and output gate zo, the equations of LSTM are as follows:

zi = σ (Wi × [hk−1, xk] + bi) , (2)

zf = σ (Wf × [hk−1, xk] + bf) , (3)

Ck = zf � Ck−1 + zi � φ (Wc × [hk−1, xk] + bc) , (4)

where Ck is the cell status of the kth LSTM unit, hk−1 and xk represent the
previous hidden state and the current input respectively. Then, the output con-
tent zo is determined based on the content saved by the cell state Ck, and the
content stored in the cell state is selectively output:

zo = σ (Wo × [hk−1, xk] + bo) . (5)

The hidden state of the kth step is:

hk = zo � φ(Ck), (6)

where Wi,Wf ,Wo ∈ R
D×D are trainable parameters, and D is the dimension

of input embedding and hidden layer in LSTM. In the above formulas, σ and φ
represent the sigmoid function and tanh function, and � denotes the elementwise
product operation.

The BiLSTM contains forward and backward LSTM, which can capture the
syntax and meaning of words respectively. The forward calculation of the forward
layer and the inverse calculation of the backward layer are combined to obtain zok:

−→
h k = f(w1xk + w2

−→
h k−1), (7)

←−
h k = f(w3xk + w4

←−
h k−1), (8)

zok = g(w5
−→
h k + w6

←−
h k), (9)

where
−→
h k and

←−
h k represent the hidden state of forward LSTM and backward

LSTM at the kth step, respectively. In the BiLSTM, the hidden state of the time
step k is updated as:

hk =
[−→

h k,
←−
h k

]
. (10)

After the BiLSTM treatment, the massive reviews in R are turned into plen-
tiful sentiment information set, denoted as Y = [y1, y2, . . . , yn], Y ∈ R

g×p, where
g is the length of the input review sequence from a user or item, p is the size
of a review embedding. Then, we further extract the user preferences and item
popularity from Y by leveraging CNN, which consists of a convolution layer and
a pooling layer.

530 T. Shang et al.

3.4 The Dynamic Feature Learning Layer

To address the time irregularity hidden in the sequence of user behaviors, we
introduce the time-aware controller to make our model sensitive to time changes.
We assume that the information hidden in two adjacent interactions with a short
time interval is greater than two adjacent interactions with a large time interval.
Hence, we employ time interval information to perceive dynamic changes in user
and item characteristics. Let T = {t1, t2, . . . , tn} denotes the set of review time
in R. Furthermore, we also normalized the time interval between ith review and
(i + 1)th review. Therefore, the time information of the ith review is encoded as
follows:

t̃i = ti+1 − ti, (i ∈ [1, n)) , (11)

t
′
i =

t̃i − min(T̃)
max(T̃) − min(T̃)

, (12)

where T̃ is the set of intervals between two adjacent reviews, so min(T̃) and
max(T̃) denote the minimum and maximum value of interaction time interval
respectively.

Meanwhile, the review with longer time intervals is given less weight in our
model. Hence, the yi with time information can be represented as:

y
′
i = yi × 1

t
′
i

. (13)

To address the semantic irregularity issue, we introduce several convolution
kernels k∗ to obtain user and item features from multiple temporal dimensions.
Let Xi denotes the ith review, and the result of the jth convolution kernel oper-
ation for Xi is as:

li = φ (kj ∗ Xi + bj) , (14)

where kj is a convolution kernel, bj is a bias term, the ∗ represents the convolution
operation, and φ is an activation function. For the ith review, we can get a
feature set Lj = [l1, l2, . . . , lh] by kj , where h is the count of a convolution kernel
operation result. In our method, we employ multiple different sized kernels for
feature acquisition. After the convolution operations, the max pooling layer is
introduced to get the most meaningful feature. We can formalize it as follows:

zj = max (Lj) , (15)
Zi = [z1, z2, ..., zs] , (16)

where zj is the result of max pooling from Lj , s is the number of convolutional
kernels, and Zi is the set of one review features. Multiple review feature vectors
are connected to model the user or item, expressed as:

Υ = Z1 ⊕ Z2 ⊕ ... ⊕ Zq. (17)

Joint Modeling Dynamic Preferences of Users and Items 531

Finally, we put the result of max pooling operation into a fully connected
layer.

χ = δ (W × Υ + b) , (18)

where δ represents the ReLU function, W is a weight matrix, b is a bias term,
and χ ∈ R

o×1 is a one-dimensional feature vector for a user or item. For easily
distinguishing, the feature representation of a user and an item are identified as
χu and χi respectively.

3.5 The Output Layer

We obtain user representation and item representation from the two above par-
allel neural networks. Motivated by the excellent performance of FM, we connect
χu and χi into FM to obtain the corresponding prediction rating. Then, we select
the top N as a list of recommendations for user. We formulate the process as
follows:

Ψ = χu ⊕ χi, (19)

〈vn, vm〉 :=
K∑

f=1

vn,f · vm,f , (20)

ŷ := ω0 +
N∑

n=1

ωnΨn +
N∑

n=1

N∑
m=n+1

〈vn, vm〉ΨnΨm, (21)

where ω0 is the global bias, ωn represents the nth variable strength, 〈vn, vm〉
represents the interaction between the nth and mth variables. During the training
process, we utilize the loss function as follows:

ζ = γ + η ‖ Θ ‖2, (22)

γ =
1
2

N∑
i=1

(ŷi − yi)
2 + ξ, (23)

where ξ is the regularization term to prevent over-fitting, η and Θ is the penalty
coefficient and the set of trainable parameters, respectively. In (23) , N is the
number of samples, ŷi is the prediction and yi is the truth.

4 Experiments

4.1 Experimental Settings

Datasets. In our experiments, we utilize the Amazon dataset for experimental
analysis. Specifically, we select three different subcategories from Amazon as
subset for experiment, i.e., Musical Instruments (MIs), Automotive (Auto) and
Luxury Beauty (LB). The statistics of three datasets are shown in Table 1.

532 T. Shang et al.

Table 1. The statistics of Amazon datasets.

Datasets #users #items #reviews Density

LB 19947 1798 23799 0.07%

Auto 2928 1835 20473 0.38%

MIs 1429 900 10261 0.80%

Baseline Models. To demonstrate the superiority in our proposed model, we
compare it with the following baseline models:

– BPR [9]: The model optimizes for a pairwise ranking objective function.
Matrix factorization is introduced as a recommender.

– GRU4Rec [3]: This model is a session-based recommendation and RNNs are
introduced to model user interaction sequences.

– CFKG [18]: It considers various item relations and views interaction as
another relation between users and items.

– TiSASRec [6]: Based on the SASRec, it considers the temporal information
and the relative position of the interactions.

– SLRC [14]: It introduces Hawkes Process into Collaborative Filtering (CF),
explicitly addresses two item-specific temporal dynamics: short-term effect
and life-time effect.

Evaluation Metrics. To evaluate the performance of different methods, we
adopted two well-known metrics in Top-N recommendation: Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG). In our experiments, we trun-
cate the ranked list at 10 for two metrics. HR@10 counts the rates of the ground-
truth items among the top 10 prediction items and NDCG@10 also considers the
position. We select the latest interaction as the test set, the penultimate interac-
tion as the validation set, and the remaining interactions are used for training.
For each user, we randomly sample 100 negative items that are not interacted
with by the user.

4.2 Results

Parameters Analysis. There are two deterministic parameters in our model
worth exploring for optimal values: the size of latent factors ζ and the depth size d
of the convolution layer. The performance of different values for two deterministic
parameters is shown in Fig. 2. As we can see, the optimal values of ζ and d
should be assigned to 50 and 3 respectively. We also test the dimension of word
embedding κ with the range of [100, 200, 300, 400, 500], the batch size b in [32,
64, 128, 256], the learning rate λ in [0.0001, 0.0005, 0.001, 0.005]. According to
the performance and efficiency of our proposed model, the κ, b and λ are set
as 300, 128 and 0.001. The performance decreases when the batch size is below
this optimal value because too little data does not have the characteristics of the

Joint Modeling Dynamic Preferences of Users and Items 533

overall sample. However, the batch size value is too large to increase memory
usage and reduce efficiency. The value of learning rate mainly depends on the
stability and time consuming of the model. We implement our proposed model
with PyTorch.

Effectiveness of Time-Aware Controller. To verify the effect of time-aware
controller on modeling user and item, we then conduct several experiments with
three variants of our model:

Fig. 2. Performance as a result of varying ζ shown in (a) and (b), and performance as
a result of varying d shown in (c) and (d).

– Ours-NoT: Both timestamp information and time-aware controller are not
used in this variant.

– Ours-UT: We introduce the time-aware controller in the users preferences
net, which is equivalent to only considering the dynamic preferences of the
user.

– Ours-IT: Similar to Ours-UT, instead of introducing a time-aware controller
for item p, the variant utilizes it for modeling items to explore the dynamic
properties over time.

The performance of our model and its three variants are shown in Table 2.
As shown, the proposed model delivers the best results, and the Ours-UT and
Ours-IT perform better than the Ours-NoT, which demonstrates the efficiency
of time-aware controller for capturing dynamic preferences of users and items.

Comparison to Baselines. The performance of our model and all baselines are
shown in Table 3. As shown, SLRC performs better compared with other base-
lines. Our model performs best on three datasets among all the recommendation
models in our experiments, which indicates the proposed model can better cap-
ture dynamic characteristics of users and items. We can summarize the reasons
as follows: (1) user reviews, as the complementary data source, contain more
information than ratings. From all the historic reviews, we can extract user
long-term preferences and static inherent properties of items. (2) we combine

534 T. Shang et al.

Table 2. The performance of our proposed model and its variants.

Models Ours-NoT Ours-UT Ours-IT Ours

Luxury beauty

HR@10 0.5331 0.5601 0.5877 0.6075

NDCG@10 0.3699 0.3720 0.4261 0.4251

Automotive

HR@10 0.5964 0.6981 0.6653 0.7039

NDCG@10 0.4021 0.4762 0.4770 0.4833

Musical instruments

HR@10 0.6003 0.6713 0.6621 0.6874

NDCG@10 0.3913 0.4231 0.4356 0.4569

BiLSTM and CNN in the two parallel networks. BiLSTM is capable of obtain-
ing the sentiment information existing in review texts, and CNN can further
extract the features of user and item. (3), we employ a time-aware controller to
capture the short-term preferences of the user and item features.

Table 3. Models performance. The best result in each row is boldfaced, and the second
best one in each row is underlined.

Models Luxury beauty Automotive Musical instruments

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

BPR 0.4620 0.2917 0.4668 0.3102 0.4551 0.3007

GRU4Rec 0.4857 0.2811 0.4630 0.3095 0.4989 0.3336

CFKG 0.5021 0.3383 0.5945 0.3915 0.5548 0.3890

TiSASRec 0.5185 0.3318 0.5023 0.4137 0.5240 0.3906

SLRC 0.5243 0.3907 0.5662 0.3871 0.5891 0.4038

Ours 0.6075 0.4251 0.7039 0.4833 0.6874 0.4569

5 Conclusion

In this paper, we propose a novel neural network-based model for sequential rec-
ommendation, which can capture the dynamic preferences of users and items in
the sequence of user-item interactions. We notice that the hardness of modeling
user interests from the spare implicit feedback, thus we focus on exploiting plen-
tiful semantic information from reviews via leveraging BiLSTM. Furthermore,
we observe that user’s behaviors are more complex in the field of recommender
system than the sequences in NLP domain, thus we further propose the time-
aware controller and integrate into the CNN-based dynamic feature learning

Joint Modeling Dynamic Preferences of Users and Items 535

layer, which learns the user and item feature from multiple temporal dimen-
sions. Based on these methods, it makes the proposed model more suitable for
modeling user behavior. Finally, we conduct a large number of experiments on
the industrial dataset to explore the performance of our proposed model, the
results demonstrate that our proposed model outperforms state-of-the-art mod-
els consistently.

Acknowledgments. This research is supported in part by the Chongqing Sci-
ence and Technology Bureau under grant cstc2019jscx-zdztzxX0019 and cstc2018jszx-
cyzdX0041, in supported by the National Natural Science Foundation of China (No.
61902370).

References

1. Bao, Y., Fang, H., Zhang, J.: TopicMF: simultaneously exploiting ratings and
reviews for recommendation. In: Proceedings of the Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence, p. 2C8. AAAI 2014, AAAI Press (2014)

2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. Comput. Sci. (2014)

3. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks (2015)

4. Kang, W.C., McAuley, J.: Self-attentive sequential recommendation, pp. 197–206
(2018)

5. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

6. Li, J., Wang, Y., Mcauley, J.: Time interval aware self-attention for sequential
recommendation. In: WSDM 2020: The Thirteenth ACM International Conference
on Web Search and Data Mining (2020)

7. Lu, Y., Dong, R., Smyth, B.: Why I like it: multi-task learning for recommendation
and explanation. In: the 12th ACM Conference (2018)

8. Pei, W., Yang, J., Sun, Z., Zhang, J., Bozzon, A., Tax, D.: Interacting attention-
gated recurrent networks for recommendation, pp. 1459–1468 (2017)

9. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence, UAI 2009 (2012)

10. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
Markov chains for next-basket recommendation, pp. 811–820 (2010)

11. Shi, X., Luo, X., Shang, M., Gu, L.: Long-term performance of collaborative fil-
tering based recommenders in temporally evolving systems. Neurocomputing 267,
635–643 (2017)

12. Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolu-
tional sequence embedding (2018)

13. Tay, Y., Tuan, L., Hui, S.: Multi-pointer co-attention networks for recommendation
(2018)

14. Wang, C., Zhang, M., Ma, W., Liu, Y., Ma, S.: Modeling item-specific temporal
dynamics of repeat consumption for recommender systems. In: The World Wide
Web Conference (2019)

15. Wu, C.Y., Ahmed, A., Beutel, A., Smola, A., Jing, H.: Recurrent recommender
networks, pp. 495–503 (2017)

536 T. Shang et al.

16. Ying, H., Zhuang, F., Zhang, F., Liu, Y., Wu, J.: Sequential recommender system
based on hierarchical attention networks. In: Twenty-Seventh International Joint
Conference on Artificial Intelligence IJCAI-18 (2018)

17. Yu, Z., Lian, J., Mahmoody, A., Liu, G., Xie, X.: Adaptive user modeling with long
and short-term preferences for personalized recommendation. In: Twenty-Eighth
International Joint Conference on Artificial Intelligence IJCAI-19 (2019)

18. Zhang, Y., Ai, Q., Chen, X., Wang, P.: Learning over knowledge-base embeddings
for recommendation (2018)

19. Zheng, L., Noroozi, V., Yu, P.S.: Joint deep modeling of users and items using
reviews for recommendation. In: The Tenth ACM International Conference (2017)

Box4Rec: Box Embedding for Sequential
Recommendation

Kai Deng1, Jiajin Huang2(B), and Jin Qin1

1 Guizhou University, Guizhou, China
2 Beijing University of Technology, Beijing, China

jhuang@bjut.edu.cn

Abstract. Sequential recommendation aims to predict a user’s next
behavior in near future by using the user’s most recent behaviors. Most of
the existing methods always embed a user or an item as a point in a vec-
tor space, and then model the user’s recent behaviors as a sequence with
a strict order to generate recommendations. However, both the point rep-
resentation and strict order rule limit the capacity of sequential recom-
mendation models as the diversity and uncertainty of a user’s interests. In
this paper, by relaxing the condition that a sequence must follow a strict
order, we introduce the box embedding into the sequential recommenda-
tion and present a novel model called Box4Rec. Box4Rec embeds a user
and the user’s historical items as boxes instead of points to model the
user’s general preference and short-term preference, and then integrates
the conjunction and disjunction operations on items to generate flexible
recommendation strategies. Experiments on five real-world datasets show
the proposed Box4Rec model outperforms the state-of-the-art methods
consistently.

Keywords: Flexible order · Box embedding · Sequential
recommendation

1 Introduction

The goal of sequential recommender systems is to predict sequential user actions
based on users’ historical activities, for example what items a user will consume
in the next time [14]. Recently, some well-known models such as the markovchain
(MC) recurrent neural network (RNN), self-attention mechanism-based trans-
former model, and convolutional Neural Networks (CNNs) have been used for
sequential recommendations [4,11,13,15].

The above methods are essentially latent representation models. Specially,
users and items are modeled points in the vector space in forms of fixed dimen-
sional vectors. Items similar to a user’s preference are embedded close (or similar)
to the user vector. However, only modeling a user as a point in thevector space

Supported by organization Program of Guizhou Provincial Science and Technology
Department (No. [2019]2502).

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 537–548, 2021.
https://doi.org/10.1007/978-3-030-75765-6_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_43&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_43

538 K. Deng et al.

limits the capacities of existing methods because of the diversity and uncertainty
of the user’s preference.

In addition, to solve the flexible order problem for sequential recommendation
[13,14], the existing methods also embed a historical item of a user into a single
point in the vector space. The pooling operation (e.g. mean or sum) on historical
item vectors is used to model the behavior. These pooling operations belong to
a kind of direct methods of relaxing the condition that a sequence must be
processed in order. However, such simple and crude pooling operations may
bring more noises or lose information [6]. In fact, we need to refine common
latent features of the items purchased together. These common information may
determine items a user will consume in the next time. If we center on the point
of the historical item to extend its range to a set, the intersection operation on
these items could be naturally used to mine their common latent features.

Finally, items in the flexible order may lead to the user’s next action with
different rules. For example, there are three items p1, p2, and p3 in a user’s
sequential action. We assume the user bought item v in the next time. This
reason be the user bought all the three items, or the user bought p1 or both
p2 and p3, and so on. Due to the uncertainty of user actions, we need to use
different recommendation rules to generate recommendations.

In order to satisfy the above requirements, inspired by the box model [9],
this paper uses an axis-aligned rectangle structure to efficiently model users
and historical items in the vector space. Essentially, the model, referred to as
Box4Rec, assumes that users’ actions are determined by their preferences and
recent activities. Each user preference or each historical item is modeled as a box-
like shape, instead of a point in the vector space. As a result, on the one hand,
the target item whose embedding vector is a point inside the user preference box
will have a higher probability of being recommended to the user; on the other
hand, the learned box embeddings of historical items can also be combined in
different ways according to different recommendation rules. For example, the
intersection of historical item-boxes will be a smaller box which represents the
common latent features of these historical items.

2 Related Work

2.1 Sequential Recommendation

The widely used recommendation methods usually embed users and items into
a low-dimensional vector space. The well-known Matrix Factorization (MF)
method [5] used the inner product of a user and an item’s latent vector to
generate recommendations. In the low-dimensional vector space, there are two
kind of sequential recommendation methods.

One is based on Markov Chain (MC) assumption. The classical method is
Factorized Personalized Markov Chains (FPMC) [11]. FPMC fused the MF and
first-order MC for modeling global user preference and short-term interests. Fur-
thermore, TransRec [1] learned a translation vector on the transition from an

Box4Rec: Box Embedding for Sequential Recommendation 539

item to the next item. Fossil [2] adopted high-order MC that considers more
previous items to predict the next item a user will consume.

The other is based on the neural network. GRU4REC [3] firstly introduced
Gated Recurrent Units (GRU) to the session-based recommendation. Besides
RNN, SASRec [4] applied the self-attention mechanism to the sequential recom-
mendation problem. Caser [13] employed Convolutional Neural Networks (CNN)
to explore flexible order problem of sequential recommendation.

2.2 Deep Set Learning

It is well known that the typical machine learning methods mainly process fixed
dimensional data instances, while the machine learning methods defined on
sets [16] focus on processing the permutation invariant problem. The permu-
tation invariant problem means any permutation of the input can not change
the output value of a model. [16] established the universal model of invariant
networks named DeepSets. By using DeepSets, [9] extended query embedding
vectors in knowledge graph (KG) to boxes. Using such box structure, conjunc-
tions can be naturally represented as intersections of boxes. Inspired by the
work of [9], we seek to build a new sequential recommendation model based
upon the box structure. As the problem of sequential recommendation is quite
different from the knowledge graph, this paper designs special model to use the
box structure for improving the sequential recommendation performance.

3 Model

3.1 FPMC: A Basic Model

Let U and I represent the user and item set, respectively. The previous n items
of user u at timestep t consist of a set Su

t which can be modeled a list of d-
dimensional item vectors {p1,p2, · · · ,pn} where pi ∈ R

d. We aim to predict
which items the user will consume in next time t+1. In FPMC [11], given a user
u and her previous n items Su

t , the probability that u may like another item v
in the next time is proportional to

xu,v = u · v + f({pi|ni=1}) · v′ (1)

where u is a user embedding, v and v′ are target item embeddings for the MF in
the user preference space and Factorized MC in the sequential space, respectively.
f({pi|ni=1}) models the previous n items of user u at timestep t. For example, f
could be an average pooling on {pi|ni=1}. Specially, the FPMC model sets n = 1
which means it mainly uses the latent representation of last item of user u to
generate recommendations.

Obviously, in FPMC, a user is represented by the single point (e.g. u), and an
item is represented by three single points according to its different role (e.g. the
role of target item as v and v′, the role of historical item as pi,). In this paper,
we build our model on the top of FPMC by extending embeddings of users and
items from the view of points to boxes. Next, we will introduce the details of
such box’s embedding style in context of the sequential recommendation task.

540 K. Deng et al.

3.2 Box Block: A Basic Component

As shown in [9], let qc ∈ R
d be the center of the box, and qo ∈ R

d be the positive
offset of the box, an embedding box q = (qc,qo) ∈ R

2d models the box as:

Boxq = {v ∈ R
d : qmin � v � qmax} (2)

where � is dimension-wise inequality, and qmin = qc − qo, qmax = qc + qo

which can be used to model the size of the box. Each item v in the item pool I
is assigned a single vector v ∈ R

d, and the box embedding q essentially models
{v ∈ I : v ∈ Boxq}, i.e. a set of items whose vectors are inside the box. For the
rest of the paper, we use the bold face to denote the embedding, e.g., embedding
of v is denoted by v, the superscript c is the center part, and o is the offset part.

Given a query box q ∈ R
2d and a target item vector v ∈ R

d, how to calculate
the distance between the box and the target item depends on the target item is
inside the box or not. Specially, if the target item is inside the box, the distance
can be measured between the center of the box and the target item; If the target
item is outside the box, the distance can be obtained by the distance between
the target item and the box’s corner which is closest to the target item plus the
distance between this corner and the center of the box. Let diso be the distance
between the target item and the box’s corner which is closest to the target item,
and disi be the distance between the center of the box and the box’s corner
which is closest to the target item. We have the distance as

disbox(v;q) = diso(v;q) + β · disi(v;q) (3)

where
diso(v;q) = ||Max(v − qmax, 0) + Max(qmin − v, 0)||1
disi(v;q) = ||qc − Min(qmax,Max(qmin,v))||1

(4)

In Eq. 4, ||·||1 is the L1 distance. Max and Min are the dimension-wise maximum
and minimum operator, respectively. For a target item vector which is inside the
box, we can see that disto is 0 and disi becomes the distance between the center
of the box and the target item. Submitting them to Eq. 3, the contribution of
disi is scaled by β ∈ [0, 1]. Obviously, β can be set to 0 if we consider that all
target items inside the box should be recommended to the user, while β can also
be set to 1 if we emphasize that a target item inside the box should be closer
to the center of the box when the user is more interested in the target item.
Furthermore, when disto is not 0, as shown in Eq. 3, adding diso to disi is used
to measure the distance between the box and the target item vectors which are
outside the box.

3.3 Box4Rec: Prediction Method

Overall Structure. When we have the Box component, following the FPMC
model as shown in Eq. 1, we need to calculate a score from both the user pref-
erence space and sequential space.

Box4Rec: Box Embedding for Sequential Recommendation 541

On the one hand, Box4Rec models the user preference as a box embedding
u = (uc,uo). And then, Box4Rec captures the user’s inherent preference by
disbox(v;u) which measures the distance between the user preference box and
the target item in the user preference space.

On the other hand, Box4Rec needs to capture the short preference by mod-
eling sequential dynamic behaviors of users. The previous n items of user u
at timestep t can also be modeled as a set of box embeddings {p1,p2, · · · ,pn}
where pj = (pc

j ,p
o
j). In order to extract the common latent features among these

box embeddings, it is nature to model the intersection operation over these box
embeddings. The intersection operation provides two important benefits:

– The output of the intersection operation can not change under any permuta-
tion of {p1,p2, · · · ,pn}, which has the benefit of handling a user-item inter-
action sequence with a flexible order.

– The intersection operation over these box embeddings is closed [9], which
means we can generate a new box p = (pc,po) by the intersection opera-
tion. Benefiting from the closed property, we can use disbox(v′;p) to capture
sequential dynamic by measuring the distance between the intersection box
of the recent n historical items and the target item in the sequential space.

Finally, by combining the above two boxes u and p, we have the score of user
u on the target item v as

xu,v = α · disbox(v;u) + (1 − α) · disbox(v′;p) (5)

where α is a trade-off parameter to balance the contributions of the two parts.
Obviously, if the target item is enough close to the two boxes, xu,v has an enough
small value to show that the user may like the item.

Fig. 1. An illustration of Box4Rec model (Color figure online)

Figure 1 gives an illustration example of Box4Rec model. The top of Fig. 1
is the part of general preference of Box4Rec. We take the target item v which

542 K. Deng et al.

is inside the user preference box u as the example. In such case, disbox(v;u)
depends on the disi(v;u) corresponding the distance between the center of the
user preference box and the target item. The bottom of Fig. 1 is the part of
sequential preference of Box4Rec. The previous three items of user u at timestep
t are modeled three boxes, respectively. The shaded region represents the inter-
section of the three boxes as a new box p. We take the target item which is
outside the intersection box as the example. In such case, disbox(v′;p) is the
distance between the target item and the box’s corner which is closest to the
target item plus the distance between this corner and the center of the box. In
Fig. 1, a red line represents the L1 distance. Finally, the weighted sum of the
two distances represents the score of user u on item v.

Totally, disbox(v;u) can be directly obtained by substituting q with u in
Eq. 3, where disbox(v′;p) needs an additional embedding operation to generate
p. The next section will introduce intersection operation in the sequential part
of Box4Rec.

Sequential Model. In the sequential part, we aim to model the intersection of
a set of box embeddings {p1,p2, · · · ,pn} as p = (pc,po). As the system cost
increases approximately linearly with the length of user behavior sequence and
a longer sequential user behaviors may introduce more irrelevant noise data,
there are more difficulties to deal with long sequential user behavior data [8].
So, usually in recommendation scenarios, three recent behaviors (n = 3) are
preferable [11,12]. The average operation on the centers of historical item boxes
can be considered as a simple operation of obtaining the common latent features
of items purchased together. However, to represent the different contribution of
historical item, we follow [9,16] to perform attention over the box centers as

fi = Hc(· · · σ′(Wc
2(σ

′(Wc
1p

c
i))) · · ·), ai =

exp(fi)∑
j exp(fj)

, pc =
∑

i

aipc
i (6)

where σ′ is an activation function (e.g. Relu), Wc
x denotes the weight matrix for

the x-th layer’s perceptron, and Hc is the vector that projects the hidden layer
into an 1-dimensional output fi. The attention score ai is a softmax over fi to
decide the importance of a historical item i to the center of the intersection box.
Without confusion, we omit the bias term in a fully-connected neural network
for notational convenience. The final center pc is a sum of all pc

i weighted by ai.
Obviously, pc is permutation invariant.

In addition, the box offset is calculated by

gi = Ho(· · · σ′(Wo
2(σ

′(Wo
1p

o
i))) · · ·)

D(gi|ni=1) = WL′′(· · · (W1(
1
n

n∑

i=1

gi)) · · ·)

po = Min({po
1, · · · ,po

n}) � σ(D(gi|ni=1))

(7)

In Eq. 7, po
i passes a fully-connected neural network where Wo

x denotes the
weight matrix for the x-th layer’s perceptron activated by function σ′ (e.g.

Box4Rec: Box Embedding for Sequential Recommendation 543

Relu). Ho is the vector that projects the hidden layer into a d-dimensional
output embedding vector gi. Then these vectors are aggregated by a sum oper-
ation. Following [9,16], the aggregated embedding vector is also transformed to
a d-dimensional output by a fully connected neural network D stacked by L′′

weight matrices. For simplification, we use the identity-function as the activa-
tion function in D. Obviously, the output value of D(·) is same for any permu-
tation of the input. Finally, to generate a smaller box p that lies inside a set of
boxes {p1, · · · ,pn}, the operation Min(·) not having strong order assumption
is applied to get the minimization value in a dimension-wise manner of the off-
set parts of {p1, · · · ,pn}. The dimension-wise product � combines Min(·) and
D(·) activated by a sigmoid function σ, which means σ(D(·)) is taken as the
dimension-wise weight.

Training. To effectively learn the parameters of the proposed model, we define
a pairwise ranking loss based on the assumption that an item which this user
really visited at time t + 1 will have a relative smaller value than other items
not in Su

t+1 that he/she has no interest in. We can get the parameters of the
proposed model by minimizing the following BPR loss function [10]:

L(Θ) = −
∑

u

∑

i∈Su
t+1−Su

t

∑

j /∈Su
t+1

ln σ(yu,i,j) + λΩ (8)

where σ is a sigmoid function, yu,i,j = xu,j−xu,i and Ω is an L2 regularizer scaled
by λ. According to Eq. 5, smaller score means that the user like the item better.
Following [10], we can minimize Eq. 8 to obtain xu,i < xu,j for i ∈ Su

t+1 −Su
t , j /∈

Su
t+1, which is consistent with Eq. 5.

4 Recommendation Strategies

In the previous sections, we learn the box representations of users, historical
items and target items. Then we need to use the learned box representations
to make recommendations. Specially, in the sequential space, we can take each
user’s behavior record as a logical implication rule. For example, when a user
likes item v given the user’s previous three items p1, p2, p3, we can conclude a
logical implication rule denoted by p1 ∧ p2 ∧ p3 → v which means a user will like
item v if the user bought p1, p2, p3. In Box4Rex, the conjunction operation can be
modeled by the the intersection of the box representation of historical items. In
practice, we can also use other logical implication rule to make recommendations.
These rules are summarized as follows:

– p1 ∧ p2 ∧ p3 → v could be measured by disbox(v′;p) as shown before. We
can rank items in ascending order according to Eq. 5 to select top-K items to
make recommendations.

– p1∨p2∨p3 → v means a user likes item v because the user bought p1, p2, or p3
before. In the previous section, we focus on how to learn the box embedding
based on the conjunction operation ∧ on historical items. Now we need to

544 K. Deng et al.

handle the new disjunction operation ∨ on historical items. Fortunately, we do
not need to learn new box embeddings for the operation ∨ as the target item
v only needs to locate in one of boxes under the ∨-based rule. So in Eq. 5, let
disbox(v′;p) be Min(disbox(v′;p1), disbox(v′;p2), disbox(v′;p3)), which can
satisfy the rule p1 ∨ p2 ∨ p3 → v.

– (p1 ∧p2)∨p3 → v means a user likes item v because the user brought both p1
and p2, or the user bought p3. We can measure this rule by the minimum value
between disbox(v′;p′) and disbox(v′;p3) where p′ represents the intersection
of a set of box embeddings {p1,p2}. As a result, disbox(v′;p) of Eq. 5 can be
replaced by Min(disbox(v′;p′), disbox(v′;p3)). Moreover, p1 ∨ (p2 ∧ p3) → v
and p2 ∨ (p1 ∧ p3) → v could be measured by the similar method.

– p1 ∧ (p2 ∨ p3) → v means a user likes item v because the user bought either
p2 or p3, but the user bought p1 before. According to the disjunctive normal
form that p1 ∧ (p2 ∨ p3)) is equivalent to (p1 ∧ p2) ∨ (p1 ∧ p3), this rule could
be measured by the minimum value between disbox(v′;p′) and disbox(v′;p′′)
where p′ represents the intersection of a set of box embeddings {p1,p2} and
p′′ represents the intersection of a set of box embeddings {p1,p3}. As a result,
we have disbox(v′;p) = Min(disbox(v′;p′), disbox(v′;p′′)) in Eq. 5. Of course,
so do (p1 ∨ p2) ∧ p3 → v and p2 ∧ (p1 ∨ p3) → v.

In one word, we can use the learned box representations of historical items
to model the above logical implication rules in the sequential space. The final
recommendations can be generated by using Eq. 5 which combines the user pref-
erence space and sequential space.

5 Experiments

5.1 Experimental Details

Datasets: We evaluate our methods on five datasets from four real-world appli-
cations. The Amazon1 dataset is crawled from Amazon.com which comprises
reviews and ratings of products in the ‘Beauty’ category. The Douban2 dataset is
crawled from the Douban site on which users can review ‘Book’ and ‘Movie’ they
previous consume. The Gowalla3 dataset records locations which users checked
in. Ml-1m4 is a widely used benchmark dataset of MovieLens including users’
ratings on movies.

For all datasets, we treat the presence of a review or rating as the interaction
of a user with an item, and use timestamps to determine the sequence order of
actions. We discard users and items with fewer than 10 interactions. Finally in
the Beauty dataset, there are 29,215 interactions of 1,851 users on 2,434 items.
In the Book dataset, there are 1,428,679 interactions of 23,986 users on 20,727

1 https://jmcauley.ucsd.edu/data/amazon/.
2 https://www.dropbox.com/s/u2ejjezjk08lz1o/Douban.tar.gz?dl=0.
3 https://snap.stanford.edu/data/loc-gowalla.html.
4 https://grouplens.org/datasets/movielens/.

https://jmcauley.ucsd.edu/data/amazon/
https://www.dropbox.com/s/u2ejjezjk08lz1o/Douban.tar.gz?dl=0
https://snap.stanford.edu/data/loc-gowalla.html
https://grouplens.org/datasets/movielens/

Box4Rec: Box Embedding for Sequential Recommendation 545

items. In the Movie dataset, there are 11,071,957 interactions of 58,304 users on
28,789 items. In the Gowalla dataset, there are 2,985,833 interactions of 42,992
users on 122,694 items. In the Ml-1m dataset, there are 998,231 interactions of
6,309 users on 3,260 items.

For partitioning, we split the historical sequence for each user into three parts:
we hold the first 90% of actions in each user’s sequence as the training set and
use the next 5% actions as the validation set. The remaining 5% actions in each
user’s sequence are used as the test set. Using the validation set, we search the
optimal hyperparameter settings for all models, and terminate training process
if the performance on the validation set does not improve for three successive
epoches. At last, we evaluate a model’s performance on the test set.

Metrics: We adopt two common Top-K metrics, Recall@K and NDCG@K [4],
to evaluate the recommendation performance. The higher both metrics are, the
better the recommendation performance is. By default, we set K = 20. For each
user in the test set, we rank all items and then evaluate the Recall and NDCG
with the ground-truth items. Finally, we report the average metrics for all users
in the test set.

Implement Details: We use the Adam optimizer to optimize all models in
which the batch size is 100 and the embedding size is 64. The learning rate is
tuned amongst {0.0001, 0.0005, 0.001, 0.005}, the coefficient λ of L2 normaliza-
tion is searched in {0, 0.0001, 0.001, 0.01}. As for the initialization of deep neural
networks, we use the default Xavier initializer to initialize the neural parame-
ters. As for our model Box4Rec, without specification, we show the results of
Box4Rec with the recommendation strategy just like the p1 ∧ p2 ∧ p3 → v style.
By fault, we use the Box4Rec with three layers, α of 0.8, and β of 0.3.

5.2 Performance Comparison

We compare our method Box4Rec with various state-of-the-art sequential recom-
mendation methods, including two Markov chains-based models: FPMC [11] and
Fossil [2], one translation-based model: TransRec [1], two neural network-based
models: GRU4REC [3] and Caser [13], one self-attention based model: SAS-
Rec [4]. We exclude baselines utilizing additional information besides user-item
sequential interaction information, and baselines not incorporating the sequen-
tial patterns (e.g. BPRMF [10]) because the existing research has shown that
sequential patterns can improve upon methods which only use the user general
interests. For fair comparison, all models are based on a public library of recom-
mender systems5 implemented by Python and TensorFlow, and run on a GPU
with an NVIDIA Tesla P40 GPU and 20 GB GPU memory.

Table 1 shows results of Box4Rec on five datasets along with the baselines
for Recall and NDCG. We use the bold face and underlines to denote results
of the best and second best method, respectively. From Table 1, we can see that
the proposed model, Box4Rec, achieves the best performance on all five datasets

5 https://github.com/DeepGraphLearning/RecommenderSystems.

https://github.com/DeepGraphLearning/RecommenderSystems

546 K. Deng et al.

Table 1. Comparison results

Method Beauty Book Movie Gowalla Ml-1m

Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

FPMC 0.0642 0.0282 0.0644 0.0284 0.0356 0.0139 0.3452 0.1911 0.0677 0.0275

Fossil 0.1169 0.0450 0.1056 0.0420 0.0397 0.0157 0.2769 0.1563 0.0947 0.0337

TransRec 0.0703 0.0266 0.0530 0.0229 0.0340 0.0140 0.3040 0.1888 0.0650 0.0245

GRU4REC 0.0688 0.0286 0.0947 0.0407 0.0546 0.0209 0.1189 0.0539 0.1011 0.0393

Caser 0.0665 0.0367 0.0912 0.0398 0.0448 0.0173 0.1176 0.0595 0.1101 0.0365

SASRec 0.1246 0.0471 0.1135 0.0420 0.0585 0.0267 0.3014 0.1772 0.1102 0.0397

Box4Rec 0.1330 0.0496 0.1224 0.0465 0.0755 0.0276 0.3867 0.2473 0.1219 0.0427

Improvement 6.7% 5.3% 7.8% 10.7% 29.1% 3.37% 12.0% 29.4% 10.6% 7.6%

with all evaluation metrics, which illustrates the superiority of modeling users
and historical items as boxes instead of points in the latent space.

Furthermore, FPMC, Fossil and TransRec also show competitive performance
by using short sequential user behavior data. On the Gowalla data set, FPMC
shows the most powerful performance among baselines. This is the reason that we
select it as the basic model. Compared with the three methods, the L1 distance
between boxes makes Box4Rec satisfy the triangle inequality, and the intersec-
tion of boxes makes Box4Rec consider more historical user behaviors. With the
above two important benefits, Box4Rec beats FPMC, Fossil and TransRec.

Box4Rec obtains better results than GRU4Rec and Caser. One possible rea-
son is that Box4Rec explicitly defines the user general interests and the intersec-
tion operation on box embedding vectors to avoid the information loss problem
caused by the simple pooling operation in GRU4Rec and Caser.

At last, in our experiments, SASRec obtains the best performances on all
datasets but Gowalla. Although SASRec adopts the attention model to distin-
guish the items that users have visited, it neglects the common latent features
among items, which is captured by Box4Rec’s intersection operation on boxes.

5.3 Studies of Box4Rec

Effect of α and β. Figure 2 shows the parameter sensitivities of two crucial
hyper-parameters in Rec4Box with respect to Recall and NDCG. α aims to
balance the contributions of user preference and sequential preference in Eq. 5.
From Fig. 2, we observe that the performance is not optimal if we only use one
of the two preferences. The optimal results can be found when α is in [0.4,
0.8]. Hence, we set α = 0.8 in our experiments. Furthermore, we observe that
Box4Rec is insensitivity of β, which makes it be easily trained in practice.

Effect of the Different Rules. Using the ∨ and ∧ operation on the learned
box embedding vectors of the recent three items, we can have eight different
recommendation rules. Figure 3 depicts the recommendation performance of the
eight rules. We can see that p1 ∧ p2 ∧ p3 achieves the best overall performance,
while p1 ∨ p2 ∨ p3 is worse. This may be due to the intersection operation. We
observe that (p1∨p2)∧p3 achieves the second best results on Beauty and Movie.

Box4Rec: Box Embedding for Sequential Recommendation 547

Fig. 2. Impact of α and β

As (p1 ∨ p2) ∧ p3 emphasizes the contribution of the last recent item, the obser-
vation is consistent with the assumption of other methods (e.g. TransRec).
However, on Gowalla, the second best result is observed in p2 ∧ (p1 ∨ p3) and
p2∨(p1∧p3) which emphasizes the contribution of the middle item. The observa-
tion suggests us that it may be insufficient to only consider the last recent item.
Totally, these results show that we can use Box4Rec to drive some new rules
which are unseen during training. Most of these new rules can achieve competi-
tive recommendation performance. The problem arising from these rules is how
to select appropriate rules to make recommendation be varied by users’ different
tastes. We leave this exploration as future work.

Fig. 3. Impact of the different rules

6 Conclusions

In this paper, we proposed the Box4Rec model to embed a user and items as
a box instead of a point to model the user’s general preference and short-term

548 K. Deng et al.

preference. By combining the box embedding with the conjunction and disjunc-
tion operations on items, different recommendation strategies have been used for
the sequential recommendation task. The experimental results on five real-world
datasets showed the superiority of our model.

In future, we will apply more permutation-invariant neural networks to
enhance the box embedding method by considering more factors (e.g. the rele-
vance among historical items). Furthermore, we will also extend the box embed-
ding to more sequential recommendation models to improve their performance.

References

1. He, R., Kang, W.C., Mcauley, J.: Translation-based recommendation. In: RecSys,
pp. 161–169 (2017)

2. He, R., Mcauley, J.: Fusing similarity models with Markov chains for sparse sequen-
tial recommendation. In: ICDM, pp. 191–200 (2016)

3. Hidasi, B, Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. In: ICLR (2016)

4. Kang, W., McAuley, J.J.: Self-attentive sequential recommendation. In: ICDM, pp.
197–206 (2018)

5. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. IEEE Comput. 42(8), 30–37 (2009)

6. Krizhevsky, A., Sutskever, I., Hinton.: ImageNet classification with deep convolu-
tional neural networks. In: NIPS (2012)

7. Li, C., Niu, X., Luo, X., Chen, Z.: A review-driven neural model for sequential
recommendation. In: IJCAI, pp. 2866–2872 (2019)

8. Pi, Q., Bian, W., Zhou, G., Zhu, X., Gai, K.: Practice on long sequential user
behavior modeling for click-through rate prediction. In: KDD, pp. 2671–2679 (2019)

9. Ren, H., Hu, W., Leskovec, J.: Query2box: reasoning over knowledge graphs in
vector space using box embeddings. In: ICLR, pp. 3391–3401 (2020)

10. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)

11. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
Markov chains for next-basket recommendation. In: WWW, pp. 811–820 (2010)

12. Shani, G., Heckerman, D., Brafman, R.I.: An MDP-based recommender system. J.
Mach. Learn. Res. 6, 1265–1295 (2005)

13. Tang, J., Wang, k.: Personalized top-N sequential recommendation via convolu-
tional sequence embedding. In: WSDM, pp. 565–573 (2018)

14. Wang, S., Hu, L., Wang, Y., Cao, L.L., Sheng, Q.Z., Orgun, M.A.: Sequential
Recommender Systems: Challenges, Progress and Prospects, CoRRabs/2001.04830
(2020)

15. Wu, C., Ahmed, A., Beutel, A., Smoda, A.J., Jing, H.: Recurrent recommender
networks. In: WSDM, pp. 495–503 (2017)

16. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., Smola,
A.J.: Deep sets. In: NeurIPS, pp. 3391–3401 (2017)

UKIRF: An Item Rejection Framework
for Improving Negative Items Sampling
in One-Class Collaborative Filtering

Antônio David Viniski(B), Jean Paul Barddal, and Alceu de Souza Britto Jr.

Graduate Program in Informatics (PPGIa), Pontif́ıcia Universidade Católica do
Paraná (PUCPR), Rua Imaculada Conceição, 1155 Curitiba, Paraná, Brazil

{adviniski,jean.barddal,alceu}@ppgia.pucpr.br

Abstract. Collaborative Filtering (CF) is one of the most successful
techniques in recommender systems. Most CF scenarios depict positive-
only implicit feedback, which means that negative feedback is unavail-
able. Therefore, One-Class Collaborative Filtering (OCCF)techniques
have been tailored to tackling these scenarios. Nonetheless, several OCCF
models still require negative observations during training, and thus, a
popular approach is to consider randomly selected unknown relation-
ships as negative. This work brings forward a novel and non-random
approach for selecting negative items called Unknown Item Rejection
Framework (UKIRF). More specifically, we instantiate UKIRF using sim-
ilarity approaches, i.e., TF-IDF and Cosine, to reject items similar to
those a user interacted with. We apply UKIRF to different OCCF mod-
els in different datasets and show that it improves the recall rates up to
24% when compared to random sampling.

Keywords: Collaborative recommendations systems · Implicit
feedback · Negative sampling · Similarity metrics

1 Introduction

In recent years, recommendation systems have become widely used by compa-
nies like Amazon, Netflix, and Spotify are have been proven to be effective in
recommending personalized items to users, boosting businesses, and facilitating
decision-making processes [5,17]. Collaborative filtering, which aims at predict-
ing users’ preferences towards items based on historical user feedback, is con-
sidered a central technique in recommender systems [13]. The users’ feedback
is expressed explicitly or implicitly to reflect the user’s preferences for items.
Explicit feedback is often represented by a numerical grade that describes differ-
ent preference levels (such as a 1–5 scale) [6,7]. Nonetheless, collecting explicit
feedback from users is difficult, complex, costly, and even unfeasible, depend-
ing on the scenario. Therefore, in many real situations, the feedback implicitly
expressed by users’ behavior (like clicks, bookmarks, and purchases) is easier to

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 549–560, 2021.
https://doi.org/10.1007/978-3-030-75765-6_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_44&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_44

550 A. D. Viniski et al.

obtain and attracted increasing interest from researchers and practitioners [7].
Despite the easiness of data acquisition, implicit feedback scenarios have specific
problems, such as negative feedback’s unavailability. The absence of user neg-
ative feedback is referred to as One-Class Collaborative Filtering (OCCF), or
positive-only feedback [6]. Despite the lack of negative feedback, algorithms tai-
lored for OCCF require strategies to assume the unknown relations between users
and items as negative [15]. There are two ways to incorporate unknown inputs
into the model’s training: (i) consider that all missing interactions between users
and items are negatives, or (ii) select a sub-sample of these missing interactions
as negative. Following the former strategy is computationally prohibitive, and
thus, several proposals follow the latter approach as interactions are randomly
sampled and assumed as negative. We argue that there is a need for methods
that perform negative interaction sampling, considering the data characteristics
instead of randomly.

In this work, we propose two methods for rejection, i.e., removing items
from the missing entries per user by calculating similarity measures between
items in the training interactions. These methods use positive interactions to
find patterns in user behavior and reject unlabeled interactions that are likely
to be relevant. The first method uses Cosine similarity [4,14] in the interaction
matrix, while the second combines Cosine similarity with a TF-IDF variant [1].

The paper is organized as follows. Section 2.1 introduces the one-class collab-
orative filtering task. Section 2.2 introduces related works that target improving
the results obtained in OCCF scenarios. Section 3 presents the proposed frame-
work for negative items rejection. Section 4 discusses the experiments performed
alongside their analysis. Finally, Sect. 6 concludes this paper and states envi-
sioned future works.

2 Related Work

This section introduces the research problem and reviews popular approaches
designed for implicit positive-only scenarios that sample negative examples for
training recommender models. In Sect. 2.1 we present the One-class collabora-
tive filtering (OCCF) challenge and formalize the problem definition. Section 2.2
shows four popular recommender models that treat the unobserved interactions
as negative ones.

2.1 One-Class Collaborative Filtering

One-class collaborative filtering (OCCF) predicts users’ preferences given past
positive feedback available in a dataset [5]. OCCF has characteristics that differ-
entiate it from other tasks in recommendation systems. First, negative feedback
lacks, as it is cumbersome to state with certainty which items a user dislikes. For
instance, the lack of interaction is ambiguous as the user may indeed dislike an
item or be unaware of it. Next, implicit datasets are highly sparse as few inter-
actions are known, and most of the user-item relationship matrix corresponds to

UKIRF: An Item Rejection Framework for Collaborative Filtering 551

missing data. Furthermore, OCCF scenarios are noisy, as an interaction between
a user and an item does not mean that the user prefers it. There is no explicit
feedback from the user w.r.t. one’s satisfaction after such interaction. Finally,
implicit ratings expressed numerically indicate confidence and do not represent
users’ preferences as with explicit ratings, yet, it describes the frequency of inter-
action, e.g., how many times a user listens to a song, how frequently a user
purchases an item, and so forth.

Existing solutions for OCCF differ in how they handle unobserved data.
Although the one-class collaborative filtering is less visited than the multi-class
setting, some approaches have been proposed in the literature to deal with miss-
ing (unknown) items [11]. According to how the unlabeled data is used, exist-
ing methods to OCCF can be classified into two categories [11], i.e., whole-
data based approaches [6,15]; and sampling based approaches [3,8,15,18]. Both
approaches share challenges. When considering all the missing entries as nega-
tive, two constraints are relevant. First, as most of the training instances are neg-
ative, the class imbalance problem reduces the positive class’s predictive ability.
Second, one must deal with the possibility of introducing false negative examples.
Besides, suppose we randomly sample unobserved interactions. Consequently, it
is challenging to identify representative negative examples as all of the nega-
tive and missing positive interactions are mixed and cannot be distinguished [6].
Conversely, if the sampling method considers the dataset characteristics during
negative sampling, we have a smaller probability of selecting false negatives.

Notation-wise, we denote Rm×n to be an interaction matrix, where m and n
represent the number of users and items, respectively. Therefore, OCCF methods
assign a score r̂ui for each u-th and i-th user-item pair in Rm×n, such that
u ∈ U and i ∈ I. The value of rui ∈ {0, 1} denotes the positive or unobserved
interaction of the u-th user on i-th, where rui is an element of R. Consequently,
ω+
u = {i ∈ I | rui = 1} and ω−

u = {i ∈ I | rui = 0} denote the sets of positive
and unobserved items for the u-th user. Our goal is to perform negative item
sampling from ω−

u so that items that tend to be irrelevant for the u-th user given
the characteristics of the positive items ω+

u are dropped.

2.2 OCCF Techniques

We can categorize the approaches designed for OCCF scenarios according to
how they learn the relevance order. Most algorithms exploiting OCCF focus on
homogeneous positive feedback with point-wise [3], pair-wise [8], and list-wise [9]
preference assumptions. Point-wise approaches regard user ratings as categorical
labels or numerical values and learn the relevance scores of missing data directly
[11]. The pair-wise approaches try to capture the preference order between miss-
ing data, correctly identifying the positive/negative item in each pair [11,18].
On the other hand, an individual training example is an entire list of items in a
list-wise approach, rather than individual items or item pairs. However, due to
their difficulty modeling the inter-list loss and inefficiency on large-scale datasets,
list-wise CF approaches are not widely used compared to point-wise and pair-
wise in ranking-oriented collaborative filtering [18]. Consequently, for further

552 A. D. Viniski et al.

experimentation, we select the pair-wise model Bayesian Personalized Ranking
for Matrix Factorization (BPRMF) [8], and the point-wise models proposed in
the Neural Collaborative Framework (NCF): Generalized Matrix Factorization
(GMF), Multi-layer Perceptron recommender (MLP) and Neural Matrix Factor-
ization (NeuMF) [3].

Bayesian Personalized Ranking for Matrix Factorization (BPRMF).
BPRMF [8] is a popular familiar pair-wise method. Instead of only using the
user-item interactions, for each interaction (u; i), BPRMF selects a number of
randomly selected items (j) to be used as negative items. BPR optimization
decomposes triplets in the (u; i; j) format using the difference of the predictions
for the u-th user w.r.t. items i (R̂ui = Au ·BT

i) and j (R̂uj = Au ·BT
j), obtaining

the instance prediction: R̂uij = R̂ui − R̂uj . The prediction error e = |1 − R̂uij |
is then used to update the u-th user (Au), the i-th and j-th item (Bi and Bj)
latent factors.

Neural Collaborative Framework (NCF). NCF is a deep neural network
recommender framework composed of three recommender models: GMF, MLP,
and NeuMF [3]. The NCF framework presents a probabilistic approach for learn-
ing the point-wise models that pay special attention to implicit data’s binary
property, i.e., training models using positive and negative examples. To endow
the probabilistic explanation, NCF models constrain the output r̂ui in the range
of [0, 1] using a probabilistic function in the output layer. Regarding negative
instances, the authors suggest uniformly sampling them from unobserved inter-
actions in each iteration.

Generalized Matrix Factorization (GMF). To represent the latent features
of users and items, GMF uses embedding layers. Each embedding layer is a fully
connected layer that projects users’ sparse representation and items in a dense
vector. Thus, projecting the vector to the output layer we obtained the proba-
bility prediction of user u interact with the item i: r̂ui = aout

(
hT (Au � Bi)

)
,

where aout and h denote the output activation function and edge weights of the
output layer, respectively.

Multi-layer Perceptron (MLP). Instead of the element-wise dot product
between latent factors like in GMF, MLP concatenates the user and item latent
features. The concatenated vector is fully connected with hidden layers to model
the collaborative filtering effect and learn the interaction between latent features
Au and Bu. Therefore, the item prediction is achieved by r̂ui = σ

(
hTφL (zL−1)

)
,

where σ, zL−1, and hTφL denote the activation function, the last hidden layer,
and the edge weights of the output layer, respectively.

Neural Matrix Factorization (NeuMF). NeuMF combines GMF and MLP
architectures. More specifically, it combines the linear and non-linear kernels
from GMF and MLP. Internally, NeuMF trains GMF and MLP with random
initializers until convergence. To provide more flexibility to the combined model,
NeuMF allows GMF and MLP to learn separated embedding and connects them
by concatenating their last hidden layer.

UKIRF: An Item Rejection Framework for Collaborative Filtering 553

3 Unknown Items Rejection Framework (UKIRF)

This section introduces the Unknown Items Rejection Framework (UKIRF) to
improve OCCF models’ performance. Our goal with this framework is to provide
a pre-processing step of a collaborative filtering recommendation process, thus
not requiring modifications in the recommender models.

Algorithm 1 describes UKIRF. To generate the items rejection, UKIRF uses
the interaction matrix R, the set of all users U and items I. As input, UKIRF
requires the number of items (Nr) for rejection per user. Line 1 denotes the
rejection method function call, which identifies item-item relationships using
the interaction matrix R and stores these relationship data into the S similarity
matrix. Details on the rejection methods proposed are given in Sect. 3.1. Line 2
instantiates ω−

f as an empty dictionary-like structure responsible for storing the
negative options for all users. The loop in lines 3 to 10 iterates over all users
u ∈ U , in which the positive items ω+

u (line 4) are recovered, followed by the
unobserved ω−

u items per user. According to the number of positive observations
to the u-th user, the framework decides (line 6) whether to apply the unobserved
item rejection strategy or not. If |ω+

u | = 0 holds, i.e., the u-th user has no positive
interactions yet; the set of unobserved items (ω−

u) is maintained. On the other
hand, if |ω+

u | > 0, UKIRF uses the apply rejection function (line 7) to return
the list of items (ωr

u) that are the most similar w.r.t. to the items for which the
u-th user interacted with. The apply rejection has as parameters the positive
items of user u-th (ω+

u), the rejection data returned by the rejection method
function, and an integer Nr that denotes the number of items that shall be
rejected. Thus, the UKIRF removes from ω−

u the items stored in ωr
u (line 8).

Next, regardless of the rejection strategy chosen, the resulting ω−
u is stored in

ω−
f (ω−

f [u] = ω−
u), which corresponds to the negative options for all users (line 9).

Algorithm 1: Unknown Items Rejection Framework (UKIRF)
Data: Interaction Matrix R, set of all users U , set of all items I
Input: Nr: number of items to be rejected
Output: ω−

f

1 S ←rejection method(R) � Generating the item-item similarity data

2 ω−
f ← {} � Instantiate the dictionary to stores the negative options

3 foreach u ∈ U do
4 ω+

u ← {i ∈ I | rui = 1} � Recover all u-th user positive items
5 ω−

u ← {i ∈ I | rui = 0} � Recover all u-th user unobserved items
6 if |ω+

u | �= 0 then
7 Ωr

u ← apply rejection(ω+
u , S, Nr) � Return the Nr most similar items

8 ω−
u ← ω−

u \ Ωr
u � Remove Nr items from ω−

u

9 ω−
f [u] ← ω−

u

10 end

11 return ω−
f

554 A. D. Viniski et al.

After rejecting unobserved items from the system’s active users, the framework
returns the dictionary containing all negative options per user in U (line 11).

3.1 Similarity-Based Rejection Strategies

This section presents two rejection strategies that can be used in UKIRF: Cosine-
based rejection and UF-IIF rejection. These reflect the rejection method func-
tion in UKIRF, which receives as input the interaction matrix R.

Cosine Similarity Approach: Among the existing similarity measures, the
cosine function, which is defined as the inner product of two vectors divided
by the product of their lengths [14], is the most popular and is widely used
similarity measure. Its calculation is efficient, especially for sparse vectors, as
only the non-zero dimensions are considered [4]. This characteristic is significant
in the OCCF scenarios given the sparsity present in the interaction matrix R.
Given two m-dimensional vectors �v and �w, where m is the number of users, the
Cosine similarity between them is calculated as follows:

Cosine(�v, �w) =
�v • �w

‖�v‖ ‖�w‖ =
∑n

i=0 �vi × �wi√∑n
i=0 �vi

2
√∑n

i=0 �wi
2

(1)

The Cosine approach applies the Cosine similarity function to all item-item (�v,
�w) pairs. As a result, the rejection method function returns the similarity
matrix Sn×n, where n is the number of items.

User Frequency-Inverse Item Frequency Approach (UF-IIF). The User
frequency-inverse item frequency is a specialization of ‘Term frequency-inverse
document frequency’ (TF-IDF), one of the most commonly used term weighting
schemes in the information retrieval systems [1]. TF-IDF is a metric that mul-
tiplies the two quantities TF and IDF. TF provides the frequency of each term
in the document from the document collection. On the other hand, IDF can be
interpreted as the amount of information representing each term’s weight in the
document collection. Less frequent terms have higher IDF values. In this work,
we use TF-IDF to calculate the similarity between items. First, we assume that
the user is a “term” (UF), and the item is a “document” (IIF). Thus, instead
of calculating the similarity between documents, we obtain the similarity of the
items. In this sense, the formulation of UF and IIF measures are as follows:

uf =
fu,i∑
m fu,i

, iif = log

(
n

ifu

)
, uf-iif = uf × iif

where fu,i is the number of times the u-th user interacted with the i-th item,∑
m fu,i is the total number of users who interacted with the i-item, n is the

number of items present in the dataset, and ifu is the number of items the u-th
user interacted with. As the UF-IIFm×n matrix stores the weights of each user-
item pair, we use the Cosine function (Eq. 1) to calculate the similarity matrix
S between all items.

UKIRF: An Item Rejection Framework for Collaborative Filtering 555

Algorithm 2: Get a list of Nr similar items to items in ω+
u

Input: ω+
u : positive items for an user u, S: similarity matrix between items, Nr:

number of items to be rejected
Output: ωr

u: a list of Nr most similar items to items in ω+
u

1 Function apply rejection(ω+
u ,S,Nr):

2 P ← Da×b, such that a ∈ ω+
u and b ∈ I, and da,b = Sa,b � get a partial

similarity matrix with the weight vectors of items in ω+
u

3 V ← ∑a
k=0 Pk,b � sum of similarities considering items in ω+

u

4 Sort V in ascending order
5 ωr

u ← Vk, such that (|V | − Nr ≤ k ≤ |V |)
6 return ωr

u

7 End Function

Both Cosine and UF-IIF techniques result in a similarity matrix S that stores
the similarity between items in the recommender system. Therefore, both are
used in the apply rejection function given in Algorithm 2. It receives as input
all the positive observations of the u-th user (ω+

u), the S matrix returned by the
rejection method function, and the number of items Nr the rejection approach
must reject. The first step (line 2) selects from the similarity matrix (S) a partial
matrix P that denotes the similarity values sa,b = Sa,b, such that a ∈ ω+

u and
b ∈ I. Next, line 3 generates a similarity vector V , which denotes the sum of
rows (a) weights for all items in the columns (b) of the partial similarity matrix∑a

k=0 ← Pk,b. Line 4 sorts the similarity vector V in ascending order. Finally,
line 5 stores in ωr

u such items with the highest similarity values (ωr
u represents

the return of the function apply rejection).

4 Experimental Setup

4.1 Datasets

We test our proposed framework in three supermarket datasets (SMDI original,
SMDI 500E and SMDI 200UE) and in the Movie Lens 100k dataset [2], such that
the last has been converted so that only ratings above 3.5 were considered pos-
itive. Table 1 presents the datasets characteristics. In this experimental setting,
we also propose approaches to define the number of rejected items (Nr). Regard-
ing that most real-world datasets have repeated interactions, we use the third
quartile (Q3) and the superior limit (SL) on the number of interactions and
on the number of unique interactions per user to obtain Nr values. Thus, we
have four alternatives to define the Nr for each dataset, considering the unique
interactions (SLU and Q3U) and repeated interactions (SLT and Q3T). Table 1
also shows the number of rejections (Nr) in each scenario.

4.2 Baselines

We compare our proposed rejection strategies with the most often used uniform
random sampling and test the generated sets of unobserved items in four rec-

556 A. D. Viniski et al.

Table 1. Overview of the datasets used during experimentation.

Datasets Interactions Users Items Sparsity Nr

SLT SLU Q3T Q3U

SMDI original 737893 9531 7141 99.57% 212 108 92 48

SMDI 500E 448791 9480 6933 99.59% 204 103 89 46

SMDI 200UE 447391 9472 6924 99.59% 204 103 89 46

Movie Lens 100k 21201 928 1172 98.05% 64 64 30 30

ommender models: BPRMF, GMF, MLP, and NeuMF. For the recommender
algorithms, we tested the following hyper-parameter values: learning rate ∈
[0.001,0.005,0.0001,0.0005], regularization rate ∈ [0.01, 0.001, 0], latent factors ∈
[5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]. After
applying the rejection method, for each positive {u, i} user-item interaction, we
randomly sampled a number (from 1 to 10) of items from the previously filtered
subset of unknown items to serve as negative ones.

4.3 Assessment

For each dataset, we made a temporal split, i.e., the first 50% of the time period
were selected for training and the remaining 50% for testing. This temporal split
is relevant as the dataset exhibits timestamps. From the training set, 20% of
the instances were used for model validation. Thus, we use the validation loss to
monitor the convergence of the models [10].

Following the protocol proposed in [12], we express the accuracy of the models
using Recall@K, with K ∈ {1, 10}. The score, shown in Eq. 2, measures the
average (on all users) of the proportion of recommended items that appear among
the top K of the ranked list [16], where |T | is the test set size.

Recall@K =
1

|T |
∑

u,i∈T

(hit@K(u, i)) (2)

For each instance ((u, i)) in the test set, we select a candidate list of 100
unknown items to user u, and the known item i is appended to this candidate
list. The candidate list is randomly sampled from the set of unknown items of
user u or from the optimized set of unknown items when considering the unknown
items’ rejection approaches. According to the recommender models’ scores, we
ranked and sorted the candidates in descending order. For each instance (u, i),
hit@K(u, i) = 1 is said to happen when i is ranked amidst the top K items, and
hit@K(u, i) = 0, otherwise.

We replicate each experiment 5 times in this work, so the results show the
average and standard deviation of recall values. The source code and datasets
used during experimentation are available at https://github.com/adviniski/
UKIRF.

https://github.com/adviniski/UKIRF
https://github.com/adviniski/UKIRF

UKIRF: An Item Rejection Framework for Collaborative Filtering 557

5 Results and Analysis

Table 2 depicts the results obtained in the supermarket and Movie-Lens 100k
datasets. We report the Recall@K (with K = [1, 10]) obtained by each model
alongside the Ng and Nr values that achieved the best results, such that the
former is the number of negative items per positive interaction, and the latter
represents the strategy for rejecting items.

For BPRMF, which selects (positive, negative) pairs per positive instance,
in the SDMI original dataset (Table 2), the best results in comparison with
the random sampling were obtained by the Cosine removal method, with ten
negatives and SLT number of removals. We have an increase of 10.90% and 3.10%
to the Recall@1 and Recall@10 values, respectively. Considering the Recall@10,
the MLP model had superior performance, with a recall value of 73.4%, with
ten negatives items per positive item in the training phase. The results with
MLP increased 4.50% for Recall@10 in comparison to random sampling. The
MLP and NeuMF models presented the best results for Recall@1 values in the
original dataset, with an increase of 19.90% compared with the random sampling
(from 32.9% to 52.8%), both with ten negative items. On the other hand, GMF
presented inferior results when compared to MLP and NeuMF. GMF acquired
results close to BPRMF, however, with lower recall values.

Despite being more straightforward than UF-IIF, the Cosine function
obtained better results in all methods in the SDMI original dataset, while the
UF-IIF acquired close results to those obtained with random sampling. As UF-
IIF also uses the Cosine similarity function, we expected close results to those
obtained when using only the Cosine function in the interaction matrix. These
results confirm the need for preprocessing approaches in the original supermar-
ket dataset, showing that the datasets’ noisy traits influence the models’ results.
Since UF-IIF generates weights to all user-item interactions before using the Con-
sine function, we expected close or better results to those obtained by Cosine.
The SLT approach rejects more items and provided the best results with the
Cosine function.

In opposition to the previous dataset, in SDMI 500E, in which users with more
than 500 interactions are removed, the model GMF outperformed BPRMF. How-
ever, the increase in recall values obtained by the Cosine removal compared to
Random sampling for both methods was greater than those observed above. Here
the Recall@1 and Recall@10 increased 16.70% and 3.80% for GMF and 14.30%
and 2.10% for BPRMF. Besides, the MLP model presented better results for both
recall measures. In this dataset, the UF-IIF rejection approach obtained close
results to those presented by the Cosine method. Considering Recall@1, UF-IIF
outperformed Cosine with recall values of 54.4% and 53.8%, respectively. Com-
paring the MLP with random sampling, the UF-IIF negative rejection approach
provides an increase of 24.1% in the Recall@1 values (from 30.3% to 54.4%).
Considering the number of negative items selected in the training phase, for UF-
IIF, the best results were obtained with ten negative items in Recall@1, while
for Cosine were eight negative items. On the other hand, for the Recall@10, the
best results were found with 7 and 8 for Cosine and 6 and 5 for UF-IIF. For both

558 A. D. Viniski et al.

Table 2. Recall@K (%) values obtained by the recommender models with the differ-
ent sampling strategies in the all tested datasets. Ng represents the number of negative
items that yielded the best results, and Nr denotes the number of rejected items con-
sidering the approaches (SLT, SLU, Q3T, Q3U).

Model Recall@K Random Cosine UF-IIF

Recall (%) Ng Recall (%) Ng Nr Recall (%) Ng Nr

Dataset: SMDI original

BPRMF 1 24.4 ± 0.0027 10 35.3 ± 0.0020 10 SLT 27.0 ± 0.0034 9 SLT

10 48.6 ± 0.0055 10 51.7 ± 0.0027 10 SLT 48.6 ± 0.0030 10 SLU

GMF 1 22.5 ± 0.0030 3 36.4 ± 0.0057 1 SLT 25.9 ± 0.0034 2 SLT

10 46.5 ± 0.0028 3 50.4 ± 0.0060 2 SLT 47.4 ± 0.0056 2 SLT

MLP 1 32.9 ± 0.0023 3 52.8 ± 0.0004 10 SLT 35.7 ± 0.0027 7 SLT

10 68.9 ± 0.0021 10 73.4 ± 0.0005 10 SLT 69.0 ± 0.0029 10 Q3T

NeuMF 1 32.9 ± 0.0035 2 52.8 ± 0.0004 10 SLT 35.5 ± 0.0024 2 SLU

10 68.6 ± 0.0037 10 72.6 ± 0.0013 4 SLT 68.7 ± 0.0048 9 SLU

Dataset: SMDI 500E

BPRMF 1 21.5 ± 0.0038 10 35.8 ± 0.0028 9 SLT 35.9 ± 0.0034 8 SLT

10 45.7 ± 0.0040 10 48.6 ± 0.0034 9 SLT 48.5 ± 0.0036 8 SLT

GMF 1 20.8 ± 0.0030 2 37.5 ± 0.0027 10 SLT 37.2 ± 0.0022 8 SLT

10 46.6 ± 0.0026 6 50.4 ± 0.0034 10 SLT 50.2 ± 0.0033 8 SLT

MLP 1 30.3 ± 0.0033 10 53.8 ± 0.0023 8 SLT 54.4 ± 0.0024 10 SLT

10 67.8 ± 0.0011 9 72.2 ± 0.0015 7 SLT 72.2 ± 0.0008 6 SLT

NeuMF 1 30.0 ± 0.0021 10 52.6 ± 0.0008 7 SLT 52.8 ± 0.0008 10 SLT

10 67.1 ± 0.0018 10 71.9 ± 0.0017 8 SLT 71.9 ± 0.0026 10 SLT

Dataset: SMDI 200UE

BPRMF 1 21.6 ± 0.0022 10 36.3 ± 0.0030 10 SLT 36.0 ± 0.0018 9 SLT

10 46.0 ± 0.0051 9 49.4 ± 0.0036 10 SLT 48.9 ± 0.0023 9 SLT

GMF 1 20.8 ± 0.0037 10 37.1 ± 0.0020 10 SLT 37.1 ± 0.0021 10 SLT

10 46.7 ± 0.0046 6 50.3 ± 0.0073 9 SLT 49.9 ± 0.0061 7 SLT

MLP 1 30.3 ± 0.0019 9 53.9 ± 0.0011 9 SLT 54.3 ± 0.0016 10 SLT

10 67.8 ± 0.0013 10 72.3 ± 0.0011 5 SLT 72.3 ± 0.0007 6 SLT

NeuMF 1 30.2 ± 0.0022 3 53.9 ± 0.0016 10 SLT 54.2 ± 0.0022 10 SLT

10 67.8 ± 0.0011 9 72.3 ± 0.0008 9 SLT 72.3 ± 0.0012 5 SLT

Dataset: Movie-Lens 100k

BPRMF 1 2.6 ± 0.0066 10 3.6 ± 0.0070 8 SLU 3.7 ± 0.0084 8 SLU

10 14.7 ± 0.0110 10 15.5 ± 0.0130 8 Q3T 15.4 ± 0.0128 8 SLU

GMF 1 5.0 ± 0.0000 10 16.8 ± 0.0000 10 SLU 16.2 ± 0.0068 9 SLT

10 26.3 ± 0.0104 8 33.7 ± 0.0000 10 SLU 33.7 ± 0.0134 9 SLT

MLP 1 7.8 ± 0.0061 8 27.4 ± 0.0058 8 SLU 28.2 ± 0.0054 9 SLU

10 43.3 ± 0.0022 9 55.5 ± 0.0031 8 SLT 55.5 ± 0.0038 10 SLT

NeuMF 1 6.8 ± 0.0079 7 20.7 ± 0.0965 10 SLT 19.2 ± 0.1171 10 SLU

10 39.7 ± 0.0157 9 53.7 ± 0.0051 10 SLT 54.2 ± 0.0039 10 SLT

Cosine and UF-IIF, the SLT approach to select the number of rejected items was
better than others in SDMI 500E.

The results of the two preprocessed datasets are very close. Still, if we had to
choose one of the preprocessing approaches, we could see in the results Table 2
that for most of the recommender models, the SDMI 200UE dataset provided
better results. In this dataset, we removed users with more than 200 unique
(distinct items) interactions, which represented supermarket cashier operators.

UKIRF: An Item Rejection Framework for Collaborative Filtering 559

In the three datasets analyzed, we found the most significant differences
between the results of the rejection methods and the random sampling in the
first top position (Recall@1). This means that the test dataset items were ranked
in the top 1 position more effectively using the rejection methods than using
random sampling without any rejection of unknown items. The MLP model
presents the best increase in the Recall@1 value (24.1%) from the Random to
the UF-IIF approach, considering the SDMI 500E dataset. For the SDMI 200UE
dataset, both MLP and NeuMF increased Recall@1 values by 24% using the
UF-IIF rejection method.

Finally, the results of the recommendation models obtained in the Movie
Lens 100k dataset, also presented in Table 2, showed similar behavior to those
obtained in supermarket datasets. We can see the effectiveness of the Cosine and
UF-IIF methods compared to the Random approach, which showed an increase
of 19.60% and 20.40% in Recall@1 values, respectively, for the MLP model.

6 Conclusion

This paper has shown how to increase the goodness of implicit recommenda-
tion models via the appropriate selection of negative items during the training
phase. The motivation is that random sampling is insufficient and results in
non-informative updates in the model’s parameters. We propose a framework
for rejecting potentially relevant items to users so that these are not assumed as
negative. We used Cosine similarity to find similarity between items with that
user interacted with either in the interaction matrix or in the user frequency-
inverse item frequency (UF-IIF) matrix. We test our approaches in real-world
datasets and provide the results obtained when it is coupled with four recom-
mendation models (BPRMF, GMF, NeuMF, and MLP). Among the negative
item rejection strategies, Cosine and UF-IIF obtained better results than ran-
dom sampling, increasing Recall@1 values by up to 24.00%.

In future works, we plan to investigate other similarity metrics to quantify
the relationship between items. Furthermore, we envision testing recommender
models that are not built on matrix factorization to check how negative sampling
affects their efficiency.

References

1. Aizawa, A.N.: An information-theoretic perspective of tf-idf measures. Inf. Process.
Manage. 39(1), 45–65 (2003)

2. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. TiiS
5(4), 19:1–19:19 (2016)

3. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering.
In: Proceedings of the 26th International Conference on World Wide Web, WWW
2017, 3–7 April 2017, Perth, Australia, pp. 173–182. ACM (2017)

4. Li, B., Han, L.: Distance weighted cosine similarity measure for text classification.
In: Yin, H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., Yao, X.
(eds.) IDEAL 2013. LNCS, vol. 8206, pp. 611–618. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41278-3 74

https://doi.org/10.1007/978-3-642-41278-3_74

560 A. D. Viniski et al.

5. Li, G., Zhang, Z., Wang, L., Chen, Q., Pan, J.: One-class collaborative filtering
based on rating prediction and ranking prediction. Knowl. Based Syst. 124, 46–54
(2017)

6. Pan, R., et al: One-class collaborative filtering. In: Proceedings of the 8th IEEE
International Conference on Data Mining (ICDM 2008), 15–19 December 2008,
Pisa, Italy, pp. 502–511. IEEE Computer Society (2008)

7. Pan, W., Liu, M., Ming, Z.: Transfer learning for heterogeneous one-class collabo-
rative filtering. IEEE Intell. Syst. 31(4), 43–49 (2016)

8. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. CoRR abs/1205.2618 (2012)

9. Shi, Y., Larson, M.A., Hanjalic, A.: List-wise learning to rank with matrix fac-
torization for collaborative filtering. In: Proceedings of the 2010 ACM Conference
on Recommender Systems, RecSys 2010, 26–30 September 2010, Barcelona, Spain,
pp. 269–272. ACM (2010)

10. Sidana, S., Laclau, C., Amini, M., Vandelle, G., Bois-Crettez, A.: KASANDR: a
large-scale dataset with implicit feedback for recommendation. In: Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 7–11 August 2017, Shinjuku, Tokyo, Japan, pp. 1245–1248.
ACM (2017)

11. Song, B., Yang, X., Cao, Y., Xu, C.: Neural collaborative ranking. In: Proceedings
of the 27th ACM International Conference on Information and Knowledge Man-
agement, CIKM 2018, 22–26 October 2018, Torino, Italy, pp. 1353–1362. ACM
(2018)

12. Vinagre, J., Jorge, A.M., Gama, J.: Fast incremental matrix factorization for rec-
ommendation with positive-only feedback. In: Dimitrova, V., Kuflik, T., Chin, D.,
Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 459–
470. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08786-3 41

13. Volkovs, M., Yu, G.W.: Effective latent models for binary feedback in recommender
systems. In: Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 9–13 August 2015, Santiago,
Chile, pp. 313–322. ACM (2015)

14. Ye, J.: Cosine similarity measures for intuitionistic fuzzy sets and their applications.
Math. Comput. Model. 53(1–2), 91–97 (2011)

15. Yu, H., Bilenko, M., Lin, C.: Selection of negative samples for one-class matrix
factorization. In: Proceedings of the 2017 SIAM International Conference on Data
Mining, 27–29 April 2017, Houston, Texas, USA, pp. 363–371. SIAM (2017)

16. Yuan, Q., Chen, L., Zhao, S.: Factorization vs. regularization: fusing heterogeneous
social relationships in top-n recommendation. In: Proceedings of the 2011 ACM
Conference on Recommender Systems, RecSys 2011, 23–27 October 2011, Chicago,
IL, USA, pp. 245–252. ACM (2011)

17. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a
survey and new perspectives. ACM Comput. Surv. 52(1), 5:1–5:38 (2019)

18. Zhang, W., Chen, T., Wang, J., Yu, Y.: Optimizing top-n collaborative filtering
via dynamic negative item sampling. In: The 36th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR 2013, 28
July–01 August 2013, Dublin, Ireland, pp. 785–788. ACM (2013)

https://doi.org/10.1007/978-3-319-08786-3_41

IACN: Influence-Aware
and Attention-Based Co-evolutionary

Network for Recommendation

Shalini Pandey(B), George Karypis, and Jaideep Srivasatava

Department of Computer Science and Engineering, University of Minnesota,
Twin Cities, MN, USA

{pande103,karypis,srivasta}@umn.edu

Abstract. Recommending relevant items to users is a crucial task on
online communities such as Reddit and Twitter. For recommendation
system, representation learning presents a powerful technique that learns
embeddings to represent user behaviors and capture item properties.
However, learning embeddings on online communities is a challenging
task because the user interest keep evolving. This evolution can be cap-
tured from 1) interaction between user and item, 2) influence from other
users in the community. The existing dynamic embedding models only
consider either of the factors to update user embeddings. However, at
a given time, user interest evolves due to a combination of the two
factors. To this end, we propose Influence-aware and Attention-based
Co-evolutionary Network (IACN). Essentially, IACN consists of two key
components: interaction modeling and influence modeling layer. The
interaction modeling layer is responsible for updating the embedding
of a user and an item when the user interacts with the item. The influ-
ence modeling layer captures the temporal excitation caused by interac-
tions of other users. To integrate the signals obtained from the two lay-
ers, we design a novel fusion layer that effectively combines interaction-
based and influence-based embeddings to predict final user embedding.
Our model outperforms the existing state-of-the-art models from various
domains.

Keywords: Co-evolutionary networks · Graph attention network ·
Recommendation system · Temporal embeddings

1 Introduction

Online communities such as Facebook, Twitter, and Reddit are a crucial part
of today’s online world. Recommendation of relevant information is essential
for these platforms to improve users’ experience and maintain their long-term
engagement. However, the recommendation task involves various challenges.
First, when a user interacts with an item both the user and item features are
updated. Second, since users share information on online communities, they are

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 561–574, 2021.
https://doi.org/10.1007/978-3-030-75765-6_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_45&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_45

562 S. Pandey et al.

likely to influence each other. For instance, when a user posts a comment on a
thread in Reddit, she influences other users to post comments on the thread. Fur-
ther, the degree of influence of interaction is dependent on the relation between
the users and the time elapsed since the interaction. Naturally, as more time
elapses the degree of influence reduces [7]. Third, even when a user does not
take any action, her interest keeps evolving [8]. It is important to determine user
interest at any query time which can be predicted by the information from both
her interactions and the influence of other users.

(a) Interaction modeling
layer (b) Influence modeling layer

(c) Contribution of inter-
action model and influence
model towards user embed-
ding with time

Fig. 1. A simplified diagram showing the main components of IACN.

The existing research has individually addressed either of the above-
mentioned challenges. To capture the co-evolving nature of item properties and
user interests, co-evolutionary models were proposed in [3,9]. These models
update user embedding only when the user interacts with an item even when user
interest keeps evolving with time. To capture the change in user’s interest over
time, JODIE [8] employs a projection operation that takes the user embeddings
and time elapsed since the last user interaction to predict the user’s embedding
at any query time. Our model, instead, relies on the idea that users’ interests
at any future time can be predicted by the influence of other users on the user.
To this front, several works have been done to augment the information from
the influence of other users for predicting user interest [4,12]. However, in these
methods the influence of other users is static [4] or context-dependent [12]. Fur-
thermore, they generate static embeddings of items; thus, ignoring their evolving
properties.

In this paper, we exploit both interaction and influence information for pre-
dicting temporal embeddings of users and items given the interaction sequence.
The motivation is that when a user interacts with an item her interest at that
time can be determined from the interaction features. However, as time elapses,
the interest of the user drifts and tends to be more driven by the influence of
other users. The key components in the IACN model are:

Interaction Modeling Layer: The interaction modeling layer is responsible
for updating the embedding of corresponding users and items when they interact

IACN: Influence-Aware and Attention-Based Co-evolutionary Network 563

with each other. We leverage the attention mechanism to identify which inter-
actions are important for determining the updated embedding of entities (users
and items) involved in the interaction. As shown in Fig. 1a, when a user interacts
with an item, ATTU updates the embedding of the user by adaptively assigning
weights to its previous interactions. Similarly, ATTI updates the embedding of
the item based on its past interaction.

Influence Modeling Layer: We design a “relation revealing” attention-based
operation to capture the relation between users and then update the embedding
of a user when any user who influences the user interacts with an item. As shown
in Fig. 1b, when a user interacts with an item, it triggers a drift of interest of
other users towards the item.

Fusion Layer: To learn future embedding of a user, we design a novel fusion
layer that integrates the embedding from interaction and influence modeling
layer. When an interaction occurs, the user embedding is determined solely by
the interaction modeling layer because user interaction reveals the user’s cur-
rent interest [8]. As time progresses user embedding drifts further apart from
the interaction embeddings. As shown in Fig. 1c, the future user embedding
is computed by additively combining the influence-based embedding and the
interaction-based embedding where the contribution of the interaction model
decays while that of the influence model increases with time.

To recommend the next item which the user will interact with, IACN predicts
an embedding for the next item and uses Locality Sensitive Hashing [5] to find
the item whose embedding is most similar to the predicted item embedding.
Extensive experimentation on real-world datasets shows that IACN outperforms
six state-of-the-art models for the next item prediction task. Also, we conduct a
comprehensive ablation study to show the effect of key components. Summary
of our paper major contributions are:

– We study the contribution of both the interaction model and the influence
model in predicting embeddings for the recommendation.

– We design a co-evolutionary network using two attention layers to update
the embeddings of users and items. The attention layers help in improving
the performance of our model along with providing insight into different user
behaviors.

– We introduce a novel method to model the influence of other users on a user
and integrate it with the interaction model to obtain the user embedding at
query time

– We conduct experimentation on the real-world dataset and demonstrate the
superiority of our model over state-of-the-art baselines over various domains.

564 S. Pandey et al.

2 Related Work

Dynamic Co-evolutionary Models. Joint modeling of users and items has
been explored in recommendation systems. Models that concurrently learn both
user and item embeddings have been developed in work such as [3,8,14]. Methods
such as [3,14] use Recurrent Neural Nets (RNNs) to model the evolving features
of items and users. They jointly learn representations of users and items with the
idea that user and item embeddings influence each other whenever they interact.
However, a user’s interest changes with time even when he/she is not interacting
with any item. JODIE [8] attempts to take into account the dynamic interest of
users and update users’ embedding by scaling their past embedding with a time
context vector. Compared to other co-evolutionary models, we attempt to utilize
self-attention mechanism to generate new embeddings since self-attention mech-
anism are more interpretable and have shown better performance at sequence
modeling task [13] compared to the RNN-based method. In addition, we take
into account the social influence of interaction by a user in evolving the interest
of other users. This helps in predicting future embedding trajectory of users.

Recurrent Neural Networks Based Models. Several models employ recur-
rent neural networks (RNNs) or their variants (LSTMs and GRUs) to build rec-
ommender systems [6,14]. Models such as LSTM [6] consider item embedding
to be static which does not change with time. Unlike these models, RRN [14]
uses two RNN layers to generate dynamic user and item embeddings from rat-
ings data. However RRN only considers static embedding of items and users as
inputs. IACN, on the other hand, assigns each user and item both dynamic and
static embedding. Also, IACN considers both the update of embedding caused
by interactions between user and item and influence between users.

Social Recommendation Model. User’s interest is affected by the neighbor-
ing members in social community. Some work [2,12] in social recommendation
need information of social network structures to predict the social influence.
However, such structural information is not always available. Even if the social
structure exist, the degree of influence of a user on another is rarely explicitly
declared. As a result, we can rely only on estimating influences and relations
among users from their activities. These interactions are implicit in the sense
that users interact with one another by expressing their preferences on shared
items [15]. Modeling influence between users in the absence of knowledge of topol-
ogy structure has been done in [7]. To incorporate dynamic user interaction, [7]
uses a Poisson process for modeling the influence of one user over the other
where the influence has an exponential time decaying factor. They model the
social influence as a combination of features extracted from the users’ behavior
and features associated with their interactions with items. Finally, GraphRec [4]
is a state-of-the-art model that utilizes both the interaction network and social
network to predict user interest. Our model, however, differs from GraphRec as
we consider the temporal dynamics involved in predicting embeddings of users
by taking interactions of users and the influence from social network.

IACN: Influence-Aware and Attention-Based Co-evolutionary Network 565

Temporal Network Embedding. Several models have recently been devel-
oped that generate embeddings for the nodes in temporal networks where nodes
are continuously added and links between nodes keep changing. Such models have
been employed for recommendation task as well constituting the time-aware rec-
ommendation models where the nodes comprise of users and items. Continuous-
Time Dynamic Network Embeddings (CTDNE) [10] generates embeddings using
temporally evolving random walks, but it generates one final static embedding
of the nodes. HTNE [16] is the state-of-the-art model for generating the embed-
dings of nodes in temporal networks. It utilizes Hawkes Process and attention
mechanism to predict future interaction. They model the likelihood of interac-
tion between two nodes using Hawkes process to capture the influence of their
historical neighbors on each other. IACN, also models the temporally evolving
network and generates embeddings to represent the feature of nodes that evolves
with time. However, IACN considers both the interaction and social network for
predicting embeddings of entities.

3 Notations, Definitions, and Preliminaries

Notations. Given m users and n items, we denote the temporal list of N
observed interactions as O = {oj = (uj , ij , tj , qj)∀j ∈ N}, where uj ∈
{1, . . . , m}, ij ∈ {1, . . . , n}, tj ∈ R

+ and qj ∈ R
F represent the interaction fea-

tures. For simplicity, we define Ou = {ou
j = (ij , tj , qj)} as the ordered listed of

all interactions related to user u, and Oi = {oi
j = (uj , tj , qj)} as the ordered list

of all interactions related to item i.
In addition, users are influenced by other users in the social network. When

we arrange different user’s interaction with items as a sequence according to
ascending time, we can find which users influence other users to interact with
the item. These users form local user neighborhood for the user in consideration.
As the user interacts with more items, its neighborhood keeps evolving. We can
formally define the local user neighborhood of a user as follows:

Definition 1. Local user neighborhood. Given a temporal interaction net-
work G =< V,E;O > representing the observed user-item interactions, the local
user neighborhood, Nu(t) of a user u are all those users v ∈ U which are associ-
ated with at least one item before u interacted with it. Mathematically, when an
interaction oj = (uj , ij , tj , qj) is observed the local user neighborhood is updated
as, Nu(tj) = Nu(t−j) ∪ U i(t−j), where U i(t−j) is the set of user who interacted
with item i before time tj and Nu(t−j) is the local neighborhood of user u right
before time tj.

4 Proposed Method

In this section, we introduce our proposed model, Influence-aware and Attention-
based Co-evolutionary Network (IACN), see Fig. 2 for a visual depiction of the

566 S. Pandey et al.

architecture. To model the evolution of embeddings, IACN employs two layers to
model the embedding update caused by interaction and influence and one layer
to integrate the embeddings obtained from the modeling layers.

Interaction Modeling Layer: The interaction modeling layer consists of two
attention functions, one to update user embedding (ATTU) and the other to
update item embedding (ATTI). When an interaction o = (u, i, t,q) is observed,
ATTU (resp., ATTI) updates the embedding of u (resp., i).

Influence Modeling Layer: The influence modeling layer uses the local user
neighborhood for predicting user future interest. When one of local user neighbor
interacts with an item, it triggers the user to interact with the item. This results
in update of the user embedding. The degree of influence is determined by the
relation between the users and the time elapsed since the interaction.

Fusion Layer: This layer predicts the user embedding at a future time since
its last interaction by integrating both its interaction-based embedding and
influence-based embedding.

4.1 Model Details

We will now describe each layer in IACN in detail.

Fig. 2. Model Illustration: Temporal Interaction Network at different timestamps.
Green dashed arrows and blue dashed arrows indicate the attention of items in com-
puting user embedding and users in computing item embedding, respectively. Black
dashed line refers to a new interaction and red arrow indicates the update in girl’s
embedding caused by an interaction by a user in her neighborhood at time t3. (Color
figure online)

IACN: Influence-Aware and Attention-Based Co-evolutionary Network 567

Embedding Layer. We assign each user and item two embeddings: a static and
a dynamic embedding. The static embedding encodes the long-term stationary
properties while the dynamic embedding encodes the dynamic properties. This
decision is made by following the setting in [8] such that static embeddings, for
a user, u, ū ∈ R

m and item i, ī ∈ R
n represent the long-term properties of

the entities. While dynamic embeddings u(t) ∈ R
d and i(t) ∈ R

d at time t,
respectively model the time-varying behavior and features.

Interaction Modeling Layer. The interaction modeling layer updates the
embedding of a user and an item when the user interacts with the item. In par-
ticular, when an interaction oj = (uj , ij , tj ,qj) is observed, the dynamic embed-
ding of the involved user u and item i is updated. For simplicity of notations we
drop the j subscript in the following section to represent static embeddings as
ū and ī and dynamic embedding as u(t) and i(t).

To obtain interaction-based embedding of u and i, we consider their past
interactions till time t Ou(t) = {ou

1 , ou
2 , . . . ou

p} such that tp ≤ t and Oi(t) =
{oi

1, o
i
2, . . . o

i
q} such that tq ≤ t, respectively. We use attention mechanism to

compute the importance of past interactions in determining the updated embed-
ding of u as:

eu
k(t) = a(W iik(t−k),W uu(t−)) + a(W qqk,W uu(t−)) (1)

where ik(tk) represents the dynamic embedding of item occurring at kth inter-
action in Ou(t), t− represents the time right before the time t, W u,W i ∈ R

d×d,
W q ∈ R

d×F are the weight matrices and d and F are the embedding size and
the number of features associated with an interaction, respectively. The intu-
ition is as follows, the first term computes importance of i’s features at the time
of interaction to predict u’s future embedding. The second term introduces the
level of contribution the interaction features have towards the evolution of u. In
our experiments, we used a as the dot product between the two vectors (Fig. 3).

Having computed the attention coefficients, eu(t), corresponding to all his-
torical interactions involving u, we compute the new embedding of u as:

u(t) =σ

(∑
j,oj∈Ou(t)

αu
j (t)W iij(tj)

)
, αu

j (t) =
exp(eu

j (t))∑
k,ok∈Ou(t) exp(eu

k(t))
, (2)

where σ is introduced for non-linearity. Here we have described an attention
layer to update the embedding of user u. To update the embedding of i, we
employ the same two operations with iteractions associated with the item.

Influence Modeling Layer. One of the major novelty of our method is that
we introduce a time-varying self-attention based influence model for predicting
user’s future interest. The idea is to leverage the knowledge of evolution of a
user’s neighbors to predict future embedding of the user. Modeling neighborhood
influence in temporal interaction network poses specific challenge as the influence

568 S. Pandey et al.

Fig. 3. The IACN model: After an interaction (u, i, t,q), the dynamic embeddings of
u and i are updated in the Interaction modeling layer. The Influence modeling layer
predicts the user embedding at time t+Δ, u(t+Δ) by taking influence vector Iu(t+Δ)
into consideration. The figure on the right side shows how influence modeling layer
updates user embedding. As more time elapses, (Δ2 > Δ1), the user embedding tends
to be closer to Iu(t).

of an interaction on a user is driven by both the relation between users and time
elapsed since the interaction.

Our model captures the influence of u’s local neighborhood on u’s embedding
by modeling a function that outputs a representation vector, influence embed-
ding, Iu(t). This influence embedding is governed by an aggregation function
parameterized by the temporal interaction sequence involving user neighbor-
hood. Influence-based embedding at time t + Δ is computed as:

Iu(t + Δ) =
∑

v∈Nu(t)t<tv<t+Δ

θv,uexp(−δu(t + Δ − tv))v(tv), (3)

where θv,u models the influence user v has on u and exp(−δu(t+Δ− tv)) models
decay of the influence over time with user-specific parameter δu and Nu(t) is the
local user neighborhood of u. To model the level of influence a user v has on the
other u, we again utilize the attention mechanism, i.e.,

θv,u =

{
a(W l

1v(tv),W l
2u(t)) if v ∈ Nu(t),

0 otherwise
, (4)

where W l
1 and W l

2 are the weight parameters of the attention mechanism. Due
to peer engagement and affinity between users, θ is sparse as users tend to indulge
in discussions with users of their community. For validating this, we computed
the average length of local user neighborhood in ‘Wikipedia’ dataset (described
in Sect. 5.1). We find that with 8227 users, the number of non-zero values in θ
is 191,307. The average length of local user neighborhood is only 23.2.

IACN: Influence-Aware and Attention-Based Co-evolutionary Network 569

Fusion Layer. To integrate the signals from interaction layer and influence
layer, we introduce a fusion layer. This layer predicts embeddings of user at time
t by taking into account the user embedding, the influence embedding, and the
time elapsed since u’s last interaction, Δ. The motivation behind constructing
this layer is that a user interest keeps evolving even when it is not interacting
with any item and as more time elapses the future embedding is farther from
the user embedding. Furthermore, the interactions from the user local neighbor-
hood influences the user interest which becomes more pronounced as more time
elapses. To model this, we employ a kernel function such that the user embed-
ding u(t + Δ) will continue to deterministically decay (at different rates for
different users) from interaction-based embedding u(t) towards influence-based
embedding Iu(t + Δ). Thus, we extrapolate a user embedding at a future time
as:

u(t + Δ) = u(t) + (Iu(t + Δ) − u(t))(1 − exp(−βuΔ)), (5)

where βu is a parameter learned while training the model. On the interval [t, t+
Δ), the u’s embedding follows an exponential curve that begins at u(t), when
Δ → 0 and decays towards Iu(t) (as t → ∞, if extrapolated).

Recommendation Layer. Once we predict users’ embeddings at time t + Δ,
we predict the embedding of the next item. For this we use the updated user
embedding u(t + Δ) and the embedding of item that u last interacted with at
time t, i(t). The predicted item embedding is:

î(t + Δ) = W [u(t + Δ), ū, i(t), ī] + B, (6)

where W is the weight matrix and B bias vector which make the linear layer.
Then we recommend the items with the closest embedding with the predicted
embedding. This step can be done in near-constant time by using LSH [5].

4.2 Network Training
We train our model to minimize the Euclidean distance between the predicted
item embedding and the actual item embedding everytime a user interacts with
an item. We calculate the total loss as,

L =
∑

(u,i,t,q)∈O
||̂i(t) − [̄i, i(t)]||2 + λU ||u(t) − u(t−)||2 + λI ||i(t) − i(t−)||2,

where λU and λI are regularization parameters for temporal smoothness of user
and item embeddings, respectively.

5 Experimental Settings

To comprehensively evaluate the performance of our proposed IACN model,
we design different strategies to evaluate the effectiveness of the model. Our
experiments are designed to answer the following research questions:

570 S. Pandey et al.

1. RQ1: How does IACN perform compared with other state-of-the-art recom-
mendation models?

2. RQ2: What is the influence of various components in the IACN architecture?

Datasets. We used 4 public datasets and followed the same preprocessing steps
as used in [8]. Thus, we selected 1000 most active items in each dataset.

– Wikipedia dataset: Public dataset consisting of one month of edits made
on Wikipedia pages1 obtained from [8]. This dataset contains 1000 items,
10, 000 most active users, resulting in 672, 447 interactions.

– Reddit post dataset: We processed reddit2 forum dataset, which consists of
one month of posts made by users. We first samples 1000 most active reddit
post and the users who made at least 5 posts on the selected posts. This
resulted in 13, 840 users and a total of 121, 258 interactions.

– Yelp review dataset: We obtained this dataset from the yelp dataset chal-
lenge3. We first selected top 1000 businesses with most number of reviews and
users who made at least 5 reviews on the selected businesses. This resulted
in 5325 users and 110, 839 interactions.

– StackOverFlow dataset: We also gathered data from the popular question-
answering website, StackOverFlow4. For this dataset also, we extracted users
who made at least 5 posts. There are 4, 125 users and 20, 719 posts in this
dataset.

These datasets, in addition to varying in size of users and density of inter-
actions, also comprise of different users’ behavior in terms of repetitive item
consumption. In Wikipedia, Reddit, and StackOverFlow a user interacts with
the same item consecutively in 79%, 77% and 62% interactions, respectively,
while in Yelp it occurs only in 0.004% of interactions. Naturally, we expect that
the Yelp dataset is the most challenging one to model.

Code available at https://github.com/shalini1194/IACN.

Metrics. We evaluate forum recommendation performance using the mean
reciprocal rank (MRR) and recall@10. MRR is a standard ranking metric for-
mulated as: MRR = 1

rankpos
, where rankpos denotes the rank of positive item.

Recall@10 is the fraction of ground truth items ranked in the top 10 recom-
mended items.

Comparison Approaches. To verify the performance gain of IACN, we com-
pare its performance with various state-of-the-art models which can be catego-
rized into four classes:

1 https://meta.wikimedia.org/wiki/Data dumps.
2 http://files.pushshift.io/reddit/.
3 https://www.kaggle.com/yelp-dataset/yelp-dataset.
4 https://archive.org/details/stackexchange.

https://github.com/shalini1194/IACN
https://meta.wikimedia.org/wiki/Data_dumps
http://files.pushshift.io/reddit/
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://archive.org/details/stackexchange

IACN: Influence-Aware and Attention-Based Co-evolutionary Network 571

Table 1. Performance comparison on four datasets for all methods. The best and the
second best results are highlighted by boldface and underlined respectively. Gain%
denotes the performance improvement of IACN over the best baseline.

Methods Wikipedia Reddit Yelp StackOverFlow

MRR Recall@10 MRR Recall@10 MRR Recall@10 MRR Recall@10

LSTM [6] 0.329 0.455 0.205 0.251 0.007 0.009 0.014 0.017

RRN [14] 0.522 0.617 0.290 0.312 0.013 0.020 0.019 0.019

HTNE [16] 0.500 0.624 0.211 0.313 0.012 0.014 0.100 0.178

GrapRec [4] 0.634 0.823 0.621 0.815 0.006 0.009 0.012 0.041

DeepCo-evolve [3] 0.515 0.563 0.271 0.405 0.006 0.008 0.017 0.019

JODIE [8] 0.746 0.822 0.755 0.919 0.014 0.020 0.058 0.063

IACN 0.796 0.861 0.869 0.922 0.015 0.026 0.106 0.280

Gain % 6.702 4.617 15.099 0.326 7.143 30.000 6.000 57.303

1. RNN based models: This category comprises of RNN based models such as
LSTM [6], RRN [14] among others. RNN uses only static embeddings to rep-
resent items and predicts users’ embedding based on the items they have
interacted with. RRN is widely used method and generates dynamic user and
item embeddings based on the item and user interaction sequence indepen-
dently. Both these models take one-hot vector of items as inputs.

2. Co-evolutionary models: These models update both user and item embedding
when a user interacts with an item. We compare our model with JODIE [8]
and Deep Co-evolve [3]. Both the models use RNN to learn representations
of users and items. Deep-Coevolve uses the point process technique to pre-
dict the intensity of interaction between user and item, while JODIE uses
Euclidean distance between the learned representation to predict the next
item to recommend.

3. Temporal Network Embedding: Temporal Network Embedding models are
used to generate embedding of nodes of a temporal network. HTNE [16] is
a state-of-the-art model for temporal network embedding which integrates
the Hawkes process into network embedding so as to capture the influence of
historical neighbors on the current neighbors

4. Social Network: We compare our method with GraphRec [4] that combines
the information from social network and interaction network to predict user
embedding. However, it does not consider the temporal nature of the setting.

5.1 Performance Comparison (RQ1)

Table 1 compares the performance of IACN with the six state-of-the-art meth-
ods. We make the following observations from the results. IACN significantly
outperforms all baselines in all datasets across both the metrics. GraphRec per-
forms better than HTNE for Reddit and Wikipedia dataset. We believe that
one of the reasons is the high volume of interactions in less timespan for these
datasets. Due to this, the effect of time intervals between interactions is not
observed here. HTNE models the impact of time intervals between interactions,

572 S. Pandey et al.

which results in its better performance for Yelp and StackOverFlow compared to
GraphRec. We find that for StackOverFlow dataset HTNE performs better than
JODIE. This can be attributed to the idea that user-user affinity is more pro-
nounced due to peer-engagement and depth of discussion on these platforms [11].
The fact that IACN outperforms co-evolutionary models confirms our hypoth-
esis that it is important to consider both influence-based and interaction-based
signals to predict embedding of user.

Table 2. Ablation analysis on four datasets.

Methods Wikipedia Reddit Yelp StackOverFlow

MRR Recall@10 MRR Recall@10 MRR Recall@10 MRR Recall@10

IACN - Influence 0.776 0.833 0.717 0.919 0.009 0.014 0.050 0.059

IACN-Attention+RNN 0.786 0.848 0.717 0.920 0.008 0.011 0.056 0.059

IACN-Fusion+LatentCross 0.612 0.776 0.702 0.918 0.011 0.018 0.072 0.012

IACN 0.796 0.861 0.869 0.922 0.015 0.026 0.106 0.280

5.2 Analysis of IACN (RQ2)

Table 2 shows the performance comparison of variation of IACN. We describe
the variants and discuss the result drop caused by them:

IACN-Influence: Removing the influence modeling layer results in a co-
evolutionary model with attention mechanism to update the embedding. We
find that removing the influence modeling layer results in drop of IACN perfor-
mance, revealing that it is useful to model the influence of other users on user
interest evolution.

IACN-Attention+RNN: In this variant, we replace the attention in the inter-
action modeling layer with RNN. The drop in performance indicates that atten-
tion mechanism is better able to predict the embedding of user and item by
adaptively assigning weights to the past interactions.

IACN-Fusion+LatentCross: In this variant of IACN, we replace our Fusion
layer with LatentCross [1]. Essentially, we take an element-wise product of
user embedding u(t) and the time context vector, wt = w ∗ Δ, where, w is
initialized by 0-mean Gaussian function and Δ is the elapsed time since user’s
last interaction. Then, we add the influence-based embedding to the resultant
vector.

u(t + Δ) = (1 + wt) ∗ u(t) + Iu(t + Δ)

Using LatentCross instead of our fusion layer degrades performance of IACN
showing that fusions layer is better then LatentCross.

IACN: Influence-Aware and Attention-Based Co-evolutionary Network 573

6 Conclusion and Future Work

In this paper, we proposed a novel model to predict dynamic embedding of user
and item which takes into account both reasons of evolution of user interest,
namely, interaction with an item and influence from other users. IACN utilizes
attention mechanism to update embedding of users and items when they interact.
It also models the influence of activities by local user neighborhood on the user
interest. For future work, instead of modeling the relation between each pair of
users, one can model the group the users and use the embedding of local user
group to predict the evolution of local neighborhood of user.

References

1. Beutel, A., et al.: Latent cross: making use of context in recurrent recommender
systems. In: Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, pp. 46–54. ACM (2018)

2. Chen, C., Zhang, M., Liu, Y., Ma, S.: Social attentional memory network: model-
ing aspect-and friend-level differences in recommendation. In: Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining, pp. 177–
185. ACM (2019)

3. Dai, H., Wang, Y., Trivedi, R., Song, L.: Deep coevolutionary network: embed-
ding user and item features for recommendation. arXiv preprint arXiv:1609.03675
(2016)

4. Fan, W., et al.: Graph neural networks for social recommendation. In: The World
Wide Web Conference, pp. 417–426. ACM (2019)

5. Gionis, A., et al.: Similarity search in high dimensions via hashing
6. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-

tions with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)
7. Iwata, T., Shah, A., Ghahramani, Z.: Discovering latent influence in online social

activities via shared cascade Poisson processes. In: Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
266–274. ACM (2013)

8. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in
temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 1269–1278 (2019)

9. Lu, Y., Dong, R., Smyth, B.: Coevolutionary recommendation model: mutual learn-
ing between ratings and reviews. In: Proceedings of the 2018 World Wide Web
Conference, pp. 773–782 (2018)

10. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-
time dynamic network embeddings. In: Companion Proceedings of the The Web
Conference 2018, pp. 969–976 (2018)

11. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Pro-
ceedings of the Tenth ACM International Conference on Web Search and Data
Mining, pp. 601–610 (2017)

12. Song, W., Xiao, Z., Wang, Y., Charlin, L., Zhang, M., Tang, J.: Session-based
social recommendation via dynamic graph attention networks. In: Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining, pp.
555–563. ACM (2019)

http://arxiv.org/abs/1609.03675
http://arxiv.org/abs/1511.06939

574 S. Pandey et al.

13. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

14. Wu, C.Y., Ahmed, A., Beutel, A., Smola, A.J., Jing, H.: Recurrent recommender
networks. In: Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, pp. 495–503. ACM (2017)

15. Xia, M., Huang, Y., Duan, W., Whinston, A.B.: Ballot box communication in
online communities. Commun. ACM 52(9), 138–142 (2009)

16. Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., Wu, J.: Embedding temporal network via
neighborhood formation. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2857–2866. ACM (2018)

Nonlinear Matrix Factorization via
Neighbor Embedding

Xuan Li, Yunfeng Wu, and Li Zhang(B)

School of Software, Tsinghua University, Beijing 100084, China
{xuan-li15,wu-yf15}@mails.tsinghua.edu.cn, lizhang@tsinghua.edu.cn

Abstract. Matrix factorization plays a fundamental role in collabora-
tive filtering. There are two basic disciplines among collaborative fil-
tering approaches: neighborhood-based methods and latent factor mod-
els. Based on the neighbor-entity spatial relationships, neighborhood-
based methods capture the local structure of the user-item rating matrix.
Latent factor models capture the global structure of the matrix. Neither
neighborhood-based methods nor latent factor models can capture both
of them. The recently developed capsule network can capture the part-
whole spatial relationships in the images. The basic matrix factorization
model and its extensions are among the most successful latent factor
models. Motivated by the need for capturing both the local structure and
the global structure of the matrix, and inspired by the recently developed
capsule network, we propose a new matrix factorization model called cap-
sule matrix factorization, which attempts to capture the two structure
of the matrix by propagating the neighbor-entity spatial relationships in
the rating matrix into the latent factor vectors. Experimental results on
real datasets demonstrate that the capsule matrix factorization model
improves the basic matrix model in terms of recommendation accuracy
greatly.

1 Introduction

Matrix factorization plays a basic role in collaborative filtering. Collaborative
filtering is a common tool in recommender systems, which uncovers the pat-
terns of the observed entries in the user-item rating matrix to approximate
the unobserved entries. There are two basic strategies of collaborative filter-
ing: neighborhood-based methods and latent factor models. With the assump-
tion that similar users rate items similarly, or similar items are rated by users
similarly, neighborhood-based methods are centering on capturing the neighbor-
entity spatial relationships for users or, alternatively, items, which can capture
the local structure of the rating matrix. With the assumption that there are
only a small number of factors influencing the preferences, latent factor models
map both users and items into a joint latent factor space, which can capture the
global structure of the rating matrix. The basic matrix factorization model and

Supported by National Science and Technology Supporting Plan No. 2017YFC0804307.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 575–587, 2021.
https://doi.org/10.1007/978-3-030-75765-6_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_46&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_46

576 X. Li et al.

its extensions are among the most successful latent factor models. However, nei-
ther neighborhood-based methods nor latent factor models can capture both the
local structure and the global structure of the rating matrix [9]. It is important
for better recommendation to capture both of them.

How to link neighborhood-based methods with latent factor models to cap-
ture both the local structure and the global structure of the rating matrix? A
capsule is a group of neurons, which represents different properties of an entity.
A capsule network consists of several layers. Each layer contains many cap-
sules. Motivated by the need for routing between capsules in different layers,
a dynamic routing algorithm is proposed in [21]: the higher-layer capsules can
be represented by the weighed sum of many lower-layer capsules. The capsule
network can capture part-whole spatial relationships in images. Therefore, the
capsule architecture can be employed to link neighborhood-based methods to
latent factor models.

In this paper, inspired by the capsule network (CapsNet) [21] and the lad-
der capsule network (L-CapsNet) [8], we propose a new matrix factorization
model called Capsule Matrix Factorization (CapsMF). Based on the neighbor-
entity spatial relationships propagated into the latent factors, the CapsMF model
improves the basic matrix factorization model through capturing both the local
structure and the global structure of the matrix. Our contribution can be divided
into the following three parts:

– We introduce the neighborhood layer and weight construction layer, and
propose a modified dynamic routing algorithm. Based on these, our model
can capture the neighbor-entity spatial relationships, which uncover the local
structure of the user-item rating matrix.

– We introduce the propagation layer, which propagates the information of the
local structure of the matrix into the latent factor vectors.

– Unlike the capsule network with reconstruction as a regularization, we incor-
porate the embedding cost function for latent factors into the basic matrix
factorization model as a regularization, which makes that our model can cap-
ture both the local and the global structure of the user-item rating matrix.

Experimental results on real datasets show that CapsMF improves the basic
matrix factorization model dramatically.

2 Related Work

2.1 Dynamic Routing of CapsNet

To compute the vector inputs and outputs of a capsule, a dynamic routing
algorithm is proposed in [21], as shown in Algorithm 1.

Given the collection of output vectors of {ui|i = 1, 2, ...Nl} of capsule i in
layer l. Let vj be the output vector of capsule j in layer (l + 1). To construct vj ,
the collection of prediction vectors {ûj|i = Wijui, i = 1, 2, ...Nl} of capsule i in
layer l are computed first, where Wij is a transformation matrix that connects

Nonlinear Matrix Factorization via Neighbor Embedding 577

the capsule i in layer l to the capsule j in layer (l+1). Let sj be a weighted sum
of prediction vectors {ûj|i = Wijui, i = 1, 2, ...Nl}: sj =

∑

i

cij ûj|i, where cij is

the weight coefficients between capsule i in layer l and capsule j in layer (l + 1),
which is determined through Algorithm 1. The squashing function is applied to

compute the vector output of capsule j in layer l + 1: ljvj =
||sj ||2

||sj ||2 + 1
sj

||sj || ,

where lj =
||sj ||2

||sj ||2 + 1
, vj =

sj
||sj || . The length of the vector output lj represents

the probability of existence of the entity represented by capsule j in the current
layer.

Algorithm 1 . Dynamic Routing Algorithm
1: for all capsule i in layer l and capsule j in layer (l + 1): bij = 0
2: for iteration r do

3: for all capsule i in l: cij =
exp(bij)∑

k

exp(bik)

4: for all capsule j in (l + 1): sj =
∑

i

cij ûj|i, vj =
sj

||sj ||
5: for all capsule i in layer l and capsule j in layer (l + 1): bij = bij + lj ûj|i · vj ,

where lj =
||sj ||2

||sj ||2 + 1
6: end for
7: return ljvj

Although the dynamic routing algorithm can capture the part-whole spatial
relationships, too many unnecessary capsules in lower-level layer contribute to
the constructions of the higher-level capsules [8]. Different from the dynamic
routing algorithm in the CapsNet, L-CapsNet is proposed by introducing the
pruning layer to remove irrelevant capsules and the ladder layer to capture
the part-whole spatial relationships in images. It reconstructs the output of the
lower-level capsules from the capsules in the higher-level layer with backpropa-
gation from a loss function.

Our model introduces the neighborhood layer to search the nearest neighbors
and uses the dynamic routing algorithm to capture the neighbor-entity spatial
relationships in the rating matrix.

2.2 Collaborative Filtering

This paper develops a new architecture called capsule matrix factorization, which
bridges the gap between the two primary areas of collaborative filtering: neigh-
borhood methods and latent factor models.

There are two basic methods for neighborhood methods: user-based methods
and item-based methods. We center on item-based methods, to which user-based

578 X. Li et al.

methods are similar. Item-based methods rely on the ratings of similar items to
approximate the unobserved ratings:

r̂i,j =

∑

k∈Ni(j)

wjkrik

∑

j∈Ni(j)

|wjk| (1)

where Ni(j) represents the items that are the nearest neighbors of item j and
rated by user i; rij is the rating given by user i on item j; wij represents the simi-
larity between item i and item j. There are many ways to compute this similarity
[16]. Item-based methods can capture the neighbor-entity spatial relationships
for items.

Some of the most successful latent factor models are the basic matrix factor-
ization model and its extension. With the assumption that the matrix is low-
rank, the basic matrix factorization model factorizes the user-item rating matrix
R into the user latent factor matrix P = [p1, p2, ...pM] and the item latent factor
matrix Q = [q1, q2, ...qN]: R ≈ PQT . It uses the inner product of the latent
factor vector of user i and the latent factor vector of item j to approximate the
unobserved ratings:

r̂ij = piq
T
j . (2)

Transforming users and items into a joint low-dimensional latent factor space
is a challenging problem in collaborative filtering setting. There are too many
unobserved ratings in the rating matrix. The result of factorizing the sparse
matrix by the conventional SVD is undefined. Moreover, approximating the rel-
atively few observed entries is highly prone to overfitting. The basic matrix
factorization model [19] was proposed, which fits the observed rating directly
and avoids overfitting through the regularizations

min
p∗,q∗

∑

(i,j)∈K
[(rij − piq

T
j)2 + λ(||pi||2 + ||qj ||2)], (3)

where K is the set of the (i, j) pairs that the rating on item j is given by user i
in the training set. The magnitudes of latent factor vectors are penalized by reg-
ularization. The hyperparameter λ can be determined through cross-validation.
The minimum problem can be solved by gradient descent methods. The basic
matrix factorization model can uncover the global structure of the user-item
rating matrix.

Adopting the advantages of both item-based methods and the basic matrix
factorization model, the CapsMF model attempts to approximate the unobserved
ratings by capturing both the local structure and the global structure of the
rating matrix.

3 Capsule Matrix Factorization

As shown in Fig. 1, the CapsMF model consists of five components: input layer,
neighborhood layer, weight construction layer, propagation layer, and embedding
loss for latent factor.

Nonlinear Matrix Factorization via Neighbor Embedding 579

Fig. 1. Illustration of the CapsMF Layers.

3.1 Input Layer

In collaborative filtering, the observed ratings are very sparse. Given the user-
item rating matrix R, we first construct the modified rating matrix X: xij = rij
if user i has rated item j, and 0 otherwise [16,17]. Note that [R]ij = rij and
[X]ij = xij . Subsequently, we construct item input matrix V = [V1, V2, ..., VN],
where Vj is the jth column of X and represents the input vector of item j.

3.2 Neighborhood Layer

To capture the neighbor-entity spatial relationships in the item input matrix,
we first need to find the neighborhood set for each item. Motivated by this need,
we introduce the neighborhood layer, which uses the BallTree algorithm [18] to
search nearest neighbors for items efficiently.

There are two basic ways to search nearest neighbors for each item: r-
neighborhoods and K nearest neighbors [1]. According to r-neighborhoods, one
can search all items k within the ball centered at item j of r radius, where
r ∈ R+. According to K nearest neighbors, one can search the K nearest neigh-
bors k for item j. Although the r-neighborhoods approach has the geometric
intuitions that the relationship between items is symmetric, the radius r is more
difficult to determine than the neighbor number K. In this paper, we choose K
nearest neighbors method to build the neighborhood set for each item.

One can search the K nearest neighbors for each user as measured by Cosine
similarity or Euclidean distance. Empirically, Cosine similarity is better than
Euclidean distance in collaborative filtering setting. We find the neighborhood
set Nj for each item j as measured by Cosine similarity [16]. The similarity
between two item j and item k can be calculated as

Cosine(j, k) =
VjV

T
k

||Vj || · ||Vk|| =

∑

i∈Ijk

rijrik

√ ∑

i∈Ij

r2ij
∑

n∈Ik

r2nk

. (4)

where Ijk represents the users rating on both item j and item k, Ij denotes the
users rating on item j, and Ik denotes the users rating on item k.

580 X. Li et al.

3.3 Weight Construction Layer

Based on the neighborhood set Nj found in the neighborhood layer for each item
j, we introduce a new layer called weight construction layer, which captures the
neighbor-entity spatial relationships through the dynamic routing algorithm as
show in Algorithm 2.

The weight construction layer capsules j can be constructed as a linear com-
bination of the selected capsules k, k ∈ Nj , from the neighborhood layer:

V̂j =
∑

k∈Nj

wjkVk, (5)

where Nj represents the neighborhood set produced from the neighborhood layer
for the capsule j in the current layer, the weight coefficient wik determined by
our routing algorithm represents the contribution to the construction of capsule
j in current layer by the capsule k in the neighborhood layer, and Vk is the vector
output of the capsule k in the neighborhood layer. The coupling coefficients wik

between the weight construction layer capsule i and all the capsules k in the
neighborhood layer sum to 1 and are calculated by a “routing softmax”.

wjk =
exp(bjk)∑

n∈Nj

exp(bjn)
, k ∈ Nj , otherwise, wjk = 0 (6)

where the initial logits bjk represent the log prior probabilities that capsule k in
the neighborhood layer should connect to capsule j in the weight construction
layer. The initial weight coefficients are adjusted by measuring the agreement
between capsule j in the weight construction layer and capsule k in the neigh-
borhood layer iteratively. In this paper, we treat the Cosine distance, instead of
Cosine similarity, between capsule j and capsule k as this agreement and add
it to the initial logits bik before calculating the new values for all the weight
coefficients connecting the neighbors represented by capsule k to the entity rep-
resented by capsule j. Experimental results demonstrate that Cosine distance
(1−cos(V̂j , Vk))is more effective than Cosine similarity cos(V̂j , Vk) which can be
interpreted as the scaler product V̂j · Vk [21] when ||V̂j || = 1 and ||Vk|| = 1.

The weight coefficient vector wj returned by our routing algorithm capture
the neighbor-entity spatial relationships in the item input matrix.

3.4 Propagation Layer

To propagate the neighbor-entity spatial relationships captured by weight coef-
ficient vector wj into the latent factor vectors, we introduce the propagation
layer, which constructs the vector outputs q̂j of the capsules j representing the
latent factor vector for item j in the current layer by the weighted sum of the
latent factor vectors qk with the weight coefficient vector wj :

q̂j =
∑

k

wjkqk, (7)

Nonlinear Matrix Factorization via Neighbor Embedding 581

Algorithm 2 . Our Routing Algorithm
1: procedure UROUTING (Vk, t, l)
2: for all capsule k in layer l and capsule j in layer (l + 1): bjk = 0, where k ∈ Nj

3: for all capsule k in layer l and capsule j in layer (l + 1): wjk = 0
4: for t iterations do

5: for all capsule k in layer l: wjk =
exp(bjk)∑

n∈Nj

exp(bjn)
, where k ∈ Nj

6: for all capsule j in (l + 1): V̂j =
∑

k

wjkVk

7: for all capsule k in layer l and capsule j in layer (l+1): bjk = bjk+(1−cos(V̂j , Vk)),
where k ∈ Nj

8: end for
9: return wj

where the vector outputs q̂j contain the neighbor-entity spatial relationships in
the item input matrix.

3.5 Embedding Loss for Latent Factor

Like the margin loss for classification[2, 4], we use a separate embedding loss,
Lj for each item latent factor capsule j:

Lj = ||q̂j − qj ||2, (8)

where qj is the latent factor vector for item j, and the vector output q̂j of the
propagation layer capsule j.

To capture both the local structure and the global structure of the rating
matrix, the CapsMF model adds the embedding cost function for latent factors,
L =

∑

j

Lj , as regularization to the basic matrix factorization model to encourage

the item latent factor vectors to preserve the neighborhood embedding of the
matrix:

min
p∗,q∗

∑

(i,j)∈K
(rij − piq

T
j)2 + λ(||pi||2 + ||qj ||2) + λIL (9)

where K is the set of the (i, j) pairs that the rating on item j is given by user i
in the training set.

4 Experiment

We conduct experiments on real-world recommendation systems data to evaluate
the performance of CapsMF. We first compare the recommendation accuracy of
CapsMF with the state-of-the-art methods. Then we analyze the sensitivity of
our model from three aspects:the number of routing iterations, the neighborhood
size and the latent factor rank.

582 X. Li et al.

4.1 Experiment Setup

We investigate our model on three popular datasets: MovieLens 100K, 1M and
10M. All of the three datasets are obtained from the MovieLens1 research project
which contains 105, 106 and 107 rating observations respectively. We treat ML-
100K and ML-1M as smaller datasets and ML-10M as the larger dataset. We
then split the data into random 9:1 train-test sets on ML-1M and ML-10M and
8:2 train-test sets on ML-100K for the fair comparison. For each of the three
datasets, 5% of the training set are held out for validation.

We adopt the most popular metric—Root Mean Square Error (RMSE) to
measure the quality of rating prediction in recommendation, which is defined as:

RMSE =

√
∑T

i=1 (ri − r̂i)2

T
(10)

where ri is the true rating, r̂i is the predicted one and T is the total number of
observed ratings in test set. All the results are reported by the average of RMSE
over 5 different random splits.

We compare our model on the two small datasets with the following baseline
methods: 1) RSVD [19]: a basic matrix factorization model [10]; 2) NNMF [6]:
captures the interactions between users and items by multi-layer feed-forward
neural network instead of inner product; 3) CF-NADE [24]: a neural autoregres-
sive architecture which is inspired by the Neural Autoregressive Distribution
Estimator (NADE); 4) GC-MC [2]: a graph auto-encoder framework based on
a bipartite user-item graph; 5) Factorized-EAE [7]: a deep learning method; 6)
STAR-GCN [23]: a stacked and reconstructed graph convolutional networks.

For the ML-10M dataset, we compare with all the newly proposed methods
mentioned and two fundamental matrix factorization model in [20]: 1) LLORMA
[11]: assumes the matrix is locally of low-rank; 2) WEMAREC [5]: a weighted
and ensemble matrix approximation method for accurate and scalable recom-
mendation; 3) MPMA [3]: a mixture models by weighting different base models
across different user/items; 4) SMA [15]: a stable matrix approximation that
can achieve better generalization performance; 5) GLOMA [4]: employs cluster-
ing techniques to capture global associations and local associations among users
or items; 6) ERMMA [14]: gets better tradeoff between generalization error and
optimization error; 7) AdaError [13]: an adaptive learning rate method by the
proper learning rates; 8) MRMA [12]: a mixture of low-rank matrix approxima-
tion models with different ranks; 9) SGD MF [20]: same method as RSVD; 10)
Bayesian MF [20]: same method as BPMF [22].

We implement our CapsMF model with TensorFlow. The models are trained
by mini-batch gradient decent method with learning rate lr = 0.001. The training
batch size is fixed to be 10K for ML-100K, 20K for ML-1M and ML-10M. The
L2 regularization parameter is set to 0.05 for ML-100K and 0.02 for ML-1M and
ML-10M. The embedding regularization parameter is set to 5, 1, 0.1 respectively
on 100K, 1M and 10M datasets.

Nonlinear Matrix Factorization via Neighbor Embedding 583

Table 1. Performance comparison between CapsMF and six matrix approximation-
based methods on two small datasets. Following NNMF, the number of latent factors
is set to 60. In the neighborhood layer, the proposed CapsMF use 15 nearest neigh-
bors by default. In the weight construction layer, the number of routing iterations
is set to 5.

Method ML-100K ML-1M

RSVD 0.916 0.841

NNMF∗ 0.907 0.843

CF-NADE∗ – 0.829

GC-MC∗ 0.910 0.832

Factorized EAE∗ 0.910 0.860

STAR-GCN∗ 0.895 0.832

CapsMF 0.890 0.827
∗Taken from [23].

Table 2. Performance comparison between CapsMF and 11 matrix approximation-
based methods on ML-10M dataset. Following SGD MF, the number of latent factors
is set to 512. We set K = 10 and T = 4.

Method RMSE

LLORMA 0.7815

WEMAREC 0.7769±0.0004

MPMA 0.7712±0.0002

STAR-GCN 0.777

SMA 0.7682±0.0003

GLOMA 0.7672±0.0001

ERMMA 0.7670±0.0007

AdaError 0.7644±0.0003

MRMA 0.7634±0.0009

SGD MF∗ 0.7720

Bayesian MF∗ 0.7633

CapsMF 0.7627±0.0007
∗Taken from [20].

4.2 Rate Prediction Accuracy

The rating prediction accuracy measured by RMSE on small and large datasets
are reported in Table 1 and 2 respectively. The best results are highlighted in
boldface. Except RSVD and the marked ones, other baseline results are all taken
from the original papers.

We have the following observations: First, CapsMF improves the performance
of RSVD by 2.8%, 1.7% and 1.2% on ML-100K, ML-1M and ML-10M. It shows
that putting the neighbor-entity spatial relationships captured by capsules into

584 X. Li et al.

Fig. 2. Impact of neighborhood size for each routing iteration on ML-100K.

Fig. 3. Impact of neighborhood size for each routing iteration on ML-1M.

latent factors can improve the rating prediction accuracy of the basic matrix fac-
torization model. Second, CapsMF outperforms all the state-of-the-art methods
on all three datasets. Unlike the ensemble models like LLORMA or WEMAREC,
our model is a single model that can achieve best performance. It has the room to
improve when applying ensemble techniques to it. Third, SGD MF and Bayesian
MF is newly reran by [20]. It shows that the basic matrix factorization has excel-
lent performance. Our method adds the neighborhood regularization and then
get more excellent results.

4.3 Parameter Analysis

In this set of experiments, we first evaluate the impact of three importance
parameters: the neighborhood size K, the latent factor rank r, the number of
maximum routing iterations T . Then, we compare the performance of cosine
similarity and cosine distance as we mentioned in Sect. 3.3.

We first conduct experiments on varying the neighborhood size and keep
records of each routing iteration. Figure 2 and 3 plot the RMSE of the CapsMF
by varying the neighborhood size K ∈ {5, 10, 15, 20, 30, 40, 50} for each routing
iteration (up to 10) on ML-100K and ML-1M respectively.

The following observations can be seen from these figures: First, the neigh-
borhood size K has a significant impact on the model. It should not be too
small or too large and can get the best results when it is set to around 20–30.
It can be explained that keeping smaller number of neighbors may lose some

Nonlinear Matrix Factorization via Neighbor Embedding 585

relevancy information while larger number can introduce noise information that
harms the performance of matrix factorization. Second, the number of rout-
ing iterations has different impact on different datasets when the neighborhood
size K is different. When K is set to be small, more routing iterations do not
work on ML-100K and ML-1M. With K increasing, more routing iterations can
improve the prediction quality. When K exceeds certain numbers such as 5 on
ML-100k, it will in turn harm the prediction performance. This observation is
similar to [21].

Fig. 4. mpact of latent rank on ML-10M.

Fig. 5. Performance of cosine similarity vs cosine distance on ML-100K and ML-1M.

We then conduct experiments by varying latent factor rank r on ML-10M.
The parameters are set as follows: K = 10 and T = 1. Results with rank varying
in {50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550} are shown in Fig. 4.
As we can see from it, latent factor rank r has significantly impact on the per-
formance of rating prediction. Larger r leads to better RMSE results. However,
time consuming will increase at the same time. It is a tradeoff to determine the
right rank between the time complexity and result accuracy.

Lastly, we compare the performance of Cosine Similarity and Cosine Distance
in the weight construction layer. The parameters are set as follows: K = 10 and
T = 1. Figure 5 shows that Cosine Distance outperforms Cosine Similarity on two
datasets. With the iterative number increasing, the RMSE of Cosine Similarity
increases gradually and forms a growing gap with Cosine Distance.

586 X. Li et al.

5 Conclusion

In this paper, we propose a novel matrix factorization model called Capsule
Matrix Factorization (CapsMF), which is inspired by the recently developed
capsule network. It can capture the very localized structure of a original rating
matrix based on the neighbor-entity spatial relationships propagated into the
latent factors. Experimental results confirm that CapsMF can indeed achieve
better performance than such newly proposed clustering-based CF methods.

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Comput. 15, 1373–1396 (2002)

2. van den Berg, R., Kipf, T.N., Welling, M.: Graph convolutional matrix completion.
arXiv abs/1706.02263 (2017)

3. Chen, C., Li, D., Lv, Q., Yan, J., Chu, S.M., Shang, L.: MPMA: mixture proba-
bilistic matrix approximation for collaborative filtering. In: IJCAI (2016)

4. Chen, C., Li, D., Lv, Q., Yan, J., Shang, L., Chu, S.M.: GLOMA: embedding global
information in local matrix approximation models for collaborative filtering. In:
AAAI (2017)

5. Chen, C., Li, D., Zhao, Y., Lv, Q., Shang, L.: WEMAREC: accurate and scalable
recommendation through weighted and ensemble matrix approximation. In: SIGIR
(2015)

6. Dziugaite, G.K., Roy, D.M.: Neural network matrix factorization. arXiv preprint
arXiv:1511.06443 (2015)

7. Hartford, J.S., Graham, D.R., Leyton-Brown, K., Ravanbakhsh, S.: Deep models
of interactions across sets. In: ICML (2018)

8. Jeong, T., Lee, Y., Kim, H.: Ladder capsule network. In: ICML (2019)
9. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-

tering model. In: KDD (2008)
10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender

systems. Computer 42(8), 30–37 (2009)
11. Lee, J., Kim, S., Lebanon, G., Singer, Y.: Local low-rank matrix approximation.

In: International Conference on Machine Learning, pp. 82–90 (2013)
12. sheng Li, D., Chen, C., Liu, W., Lu, T., Gu, N., Chu, S.M.: Mixture-rank matrix

approximation for collaborative filtering. In: NIPS (2017)
13. sheng Li, D., et al.: AdaError: an adaptive learning rate method for matrix

approximation-based collaborative filtering. In: WWW (2018)
14. sheng Li, D., Chen, C., Lv, Q., Shang, L., Chu, S.M., Zha, H.: ERMMA: expected

risk minimization for matrix approximation-based recommender systems. In: AAAI
(2017)

15. sheng Li, D., Chen, C., Lv, Q., Yan, J., Shang, L., Chu, S.M.: Low-rank matrix
approximation with stability. In: ICML (2016)

16. Ning, X., Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-
based recommendation methods. In: Recommender Systems Handbook (2015)

17. Ning, X., Karypis, G.: SLIM: sparse linear methods for top-n recommender sys-
tems. In: 2011 IEEE 11th International Conference on Data Mining, pp. 497–506
(2011)

http://arxiv.org/abs/1511.06443

Nonlinear Matrix Factorization via Neighbor Embedding 587

18. Omohundro, S.M.: Five balltree construction algorithms (1989)
19. Paterek, A.: Improving regularized singular value decomposition for collaborative

filtering (2007)
20. Rendle, S., Zhang, L., Koren, Y.: On the difficulty of evaluating baselines: a study

on recommender systems. arXiv abs/1905.01395 (2019)
21. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. arXiv

abs/1710.09829 (2017)
22. Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using

Markov chain Monte Carlo. In: ICML 2008 (2008)
23. Zhang, J., Shi, X., Zhao, S., King, I.: STAR-GCN: stacked and reconstructed

graph convolutional networks for recommender systems. In: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, 10–16 August 2019 (2019)

24. Zheng, Y., Tang, B., Ding, W., Zhou, H.: A neural autoregressive approach to
collaborative filtering. In: Proceedings of the 33nd International Conference on
Machine Learning, ICML (2016)

Deconfounding Representation Learning
Based on User Interactions
in Recommendation Systems

Junruo Gao1,2, Mengyue Yang3, Yuyang Liu1,2, and Jun Li1,2(B)

1 Computer Network Information Center, Chinese Academy of Sciences,
Beijing 100190, China

{gaojunruo,liuyuyang}@cnic.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

jlee@cstnet.cn
3 University College London, London, UK

mengyue.yang.20@ucl.ac.uk

Abstract. Representation learning provides an attractive solution to
capture users’ real intents by modeling user interactions in recommenda-
tion systems. However, there exist influencing factors called confounders
in the process of user interactions. Most traditional methods might ignore
these confounders, resulting in learning inaccurate users’ intents. To
address the issue, we take a new perspective to develop a deconfound-
ing representation learning model named DRL. Concretely, we infer the
unobserved confounders existing in the user-item interactions with an
inference network. Then we leverage a generative network to generate
users’ personalized intents that contain no unobserved confounders. In
order to learn comprehensive users’ intents, we model the user-user inter-
actions by adopting state-of-the-art GNN with a new aggregating strat-
egy. Thus, the users’ real intents we learn not only have their own per-
sonalized information but also imply the influence of their friends. The
results of two real-world experiments demonstrate that our model can
learn accurate and comprehensive representations.

Keywords: Representation learning · Causal inference · Graph neural
networks

1 Introduction

Due to the rapid development of online services, including E-commerce plat-
forms, online news, and social media sites, recommendation systems are widely
used to facilitate the decision-making process and boost business [1]. For an effi-
cient recommendation system, it is vital to mine users’ real intents, and in turn
to enhance user experience.

With the prevalence of representation learning, researchers pay attention to
modeling user interactions that can reflect users’ intents [2,3]. Due to the ability
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 588–599, 2021.
https://doi.org/10.1007/978-3-030-75765-6_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_47&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_47

Deconfounding Representation Learning Based on User Interactions 589

Fig. 1. Examples of buying behavior. The dotted lines demonstrate ’unkown’ and the
solid lines demonstrate ’known’. (a) buying behavior with confounders. (b) buying
behavior without unobserved confounders. (c) buying behavior influenced by observed
social influence

of modeling complex interactions of users, deep learning methods [4,5] allow
incorporating more information into the learning process and generate more
effective and expressive representations. Recently, graph-based approaches [6–8]
achieve great success in recommendation systems, which can further model user
interactions on the graph. The above methods have made substantial advances
in representation learning for recommendation systems.

However, most of these methods fail to learn users’ real intents because there
exist observable and unobservable confounders that are behind user-item inter-
actions when considering the concept of causality, which will lead Simpson’s
Paradox [9] and mislead model inference. For example, consider the example in
Fig. 1(b) where we refer to the “follows” behaviors as the user-user interactions
and the “buys” behaviors as user-item interactions. We can see that user A buys
a Men’s tie. Maybe she likes it or she just wants to give it to her new neighbor
as a gift. We have no idea about the situation she is in when buying it, so we
can not figure out user A’s real intents. Such hidden factors are considered as
unobserved confounders, which will influence user A’s intent. Additionally, users’
intents are also easily influenced by other users. This influence often happens
among user-user interactions, such as social relationship. As Fig. 1(c) shows, user
B is user A’s friend, and thus, user B tends to buy the same high heels as user
A does.

To this end, in order to capture users’ real intents, we propose a deconfound-
ing representation learning method(DGL) which can not only model user-item
interactions and user-user interactions but also take into account the confounders
among these interactions. Firstly, we take advantage of an inference network to
infer the unobserved confounders behind the user-item interactions and identify
the causal model. Based on the identified causal relationship between users and
items, we design a generative network to generate users’ personalized intents rep-
resentations. Then, we will use the graph neural network (GNN) [10] to model
the observed user-user interactions (manifested as “follows” interactions), which
will help us to capture social influence on users’ intents. Additionally, we propose

590 J. Gao et al.

a new aggregating strategy for GNN, which can incorporate social influence and
prevent users’ personalized intents from being indistinguishable because of the
influence diffusion on the graph. Finally, we can learn deconfounding represen-
tations of users’ real intents.

The major contributions of the paper can be summarized as follows:

– To our best knowledge, we are the first to consider the confounders when
modeling user interactions. We not only infer the unobserved confounders
but also consider the observed confounders.

– We propose a new random aggregating strategy for GNN, which can cap-
ture social influence on users meanwhile avoiding users’ personal intents from
converging to the same to a certain extent.

– We conduct empirical studies on two real-world datasets. And ablation studies
are designed to demonstrate the effectiveness of our model.

2 Related Work

Unobserved Confounders Inference. Traditional causal inference requires
strong assumptions, one of which is that all data is observable. However, there
exist unobserved confounders that affect both the causes and the effect inevitably
[11]. In order to infer the unobserved confounders, many notable methods have
been proposed. In [12], Rajesh et al. develop an estimator to estimate the unob-
served confounders, which works via information-based regularization and cross-
validation. Mooij et al. [13] explicitly treat the “noise” as unobserved causes and
depict it as a latent variable. They propose a Bayesian approach that can be
used for inferring the latent variable. Louizos et al. [14] use variational autoen-
coders to infer unobserved confounders, and achieve great success. We will take
advantage of this idea to infer the unobserved confounders behind the user-item
interactions.

Graph-Based Recommendation. Generally speaking, graph-based methods
for recommendation systems can achieve better performance than traditional
methods, because they can incorporate both the topological structures of graph
and node information into the learning process, which can alleviate the sparsity
issue and learn rich representations. For example, GCMC [8] is a new attempt
to complete the user-item rating matrix, which considers both side informa-
tion and graph structure. Pinsage [7] is an inductive learning method based
on GraphSAGE [15], which can be generalized to unseen nodes. Wu et al. [16]
and Wang et al. [6] consider social influence between users, while they ignore
the unobserved confounders behind user-item interactions, which may aggregate
inaccurate users’ intents representations during the propagation.

3 Method

3.1 Problem Formulation

We first build a heterogeneous graph G = {V, E} to describe user interactions in
recommendation systems, where Nodes V are composed of users u and items i.

Deconfounding Representation Learning Based on User Interactions 591

Fig. 2. The architecture of DGL. It contains three parts including Inference Network,
Generative Network and Social Influence Model

Edge E represent all the interactions of users, including user-item interactions
and user-user interactions. We denote the user and item attribute features by
e(u) ∈ R

D1 and e(i) ∈ R
D2 correspondingly. The k-th user-item interaction can

be represented as a tuple Sk = (ua, im), where k ∈ {1, 2, · · · ,K}, and K is
the total number of interactions between users and interacted items. Our goal
is to learn deconfounding representations E(u) of users’ intents by considering
the confounders existing in the process of user interactions. The architecture of
the learning process is shown as Fig. 2. Analogously, the learning process of item
representations E(i) is related to the users who have bought them. We won’t
introduce this part specifically.

3.2 User Intent Representation Generating

Unobserved Confounders Behind User-Item Interactions. The causal
relationship between users and interacted items is formulated as a directed
acyclic graph (DAG). In order to estimate the causal effect of interacted items
on users’ intents representations, we apply the rule of do-calculus [9] to the
DAG, which can be considered as ‘intervention’. In our case, buying behavior
can be considered as an intervention on items, which will influence the genera-
tion of users’ intents representations. Moreover, the unobserved confounders Z
influence both the interacted items and users’ intents representations genera-
tion process simultaneously, shown as Fig. 3(a). Pearl’s back-door criterion [9] is
introduced to identify the effect of interventions:

P (I(u) | do(e(i))) =
∑

Zk

pθ(I
(u)
k | e(i)k ,Zk)pθ(Zk | e(i)k) (1)

592 J. Gao et al.

Fig. 3. Unobserved confounders inference. (a). causal model of user and interacted
item. (b). the inference process of unobserved confounders.

where I(u)k , e(i)k and Zk are the user’s personalized intent representation, inter-
acted item representation and unobserved confounder in the k-th interaction
separately. Our goal is to maximize Eq. 1 to generate users’ intents I(u) under
the inferred unobserved confounders. For the generation process, we are sup-
posed to sample Z from the prior network pθ(Z | e(i)) and then generate users’
intents representations through the generation network pθ

(
I(u) | e(i),Z)

.
However, there exists an intractable marginalization over the unobserved

confounders Z. In order to infer unobserved confounders Z, we resort to CVAE
model [17] which can parametrize the causal effect as a latent variable model
with neural net functions conditioned on observed information, like attribute
features and buying behavior. The prior network is an approximate Gaussian
with a mean and a diagonal covariance, written as:

pθ(Z | e(i)) ∼ N (
μ = μ̂0, σ

2 = σ̂0

)
(2)

We model μ̂0 and σ̂0 with neural networks of item attribute features. The vari-
ational parameter of neural networks is θ. We refer to posterior qφ(Z | e(u), e(i))
as an inference network which is dependent on the observed user and item
attribute features. The variational approximate posterior qφ is also assumed to
follow multivariate Gaussian distribution with a mean and a diagonal covariance
structure:

qφ

(
Z | e(i), e(u)

)
= N (

μ = μ̂1, σ
2 = σ̂1

)
(3)

where μ̂1 and σ̂1 can be modeled by neural networks with variational parameter
φ. Finally, we can rewrite the objective function for the inference and generation
networks which is also called variational lower bound:

log P (I(u)|e(i)) ≥ Luser

(
e(i), e(u); θ, φ

)

= Eqφ(z|e(i),e(u))
[
log pθ

(
I(u)|e(i),Z

)]

− KL
(
qφ

(
Z|e(u), e(i)

)
‖pθ

(
Z|e(i)

))
(4)

where the first term is a reconstruction term and the KL-divergence term can
be considered as a penalty term that ensures approximated density is close to
the prior density. By maximizing Eq. 4, we can infer the unobserved confounders
and generate users’ personalized intents representations.

Deconfounding Representation Learning Based on User Interactions 593

Fig. 4. observed social influence modeling. (a). causal model of user and friends. (b).
aggregating and propagating information on the graph.

Observed Confounders Between User-User Interactions. In this subsec-
tion, we will consider the observed confounders between user-user interactions,
aiming to generate users’ real intents representations. We know that users’ buy-
ing decisions will be easily influenced by their friends (such as mentioned in
Section.1). In order to model such influence between users, we appeal to the
Graph Neural Network [10] which can learn node representations as well as pre-
serve the structural information of the graph. Traditional Graph Neural networks
commonly aggregate and deliver the same information to different neighbors,
which may make all the nodes on the graph indistinguishable. In our case, we
would like to aggregate various personalized intents for each user randomly and
generate various node representations for each user. Then, users can deliver dif-
ferent information to different neighbors, such as Fig. 4(b) shown. Suppose that
we have generated user a’s personalized intents representations {I(u)a,1, I

(u)
a,2 · · · }

conditioned on her interacted items. We then choose j of them randomly to
aggregate during every layer-wise propagation. The intents representations of
user a delivering to her l-th order neighbors can be written as follows:

Ql
a = AGGREGATE{randj(I

(u)
a,1, I

(u)
a,2, · · ·)} (5)

where AGGREGATE can be add or concatenation operation. Different person-
alized intents of user a will be delivered to her different-order neighbors during
the layer-wise propagation. In the 0-th layer, the representation of user a is
initialized by her personalized intents:

H0
a = Q0

a (6)

During the propagation process, neighbors’ intents will be aggregated as this
process iterates. We denote user a’s neighbors by set N (u)

a . The aggregation of
neighbors’ intents in the l − 1-th layer can be formulated as:

H(l−1)

N (u)
a

= MEAN
(
H(l−1)

n ,∀n ∈ N (u)
a

)
(7)

where MEAN refers to mean operation on neighbors’ influence. Then we would
like to combine neighbors’ influence with user a’s intents. We can obtain user
a’s representation in the l-th layer, as follows:

H(l)
a = f

(
W ·

[
Hl−1

N (u)
a

;Ql
a

])
(8)

594 J. Gao et al.

where f is an activate function, such as RELU, W is a weight matrix, [;] signifies
concatenation. The representation of user a in the last layer is considered as the
user a’s real intent representation E(u)

a .

3.3 Item Representation Generating

Item Representation Inference. For an item, we would like to explore which
kind of users prefer to buy it. Hence, we also need to identify the relationship
between users and interacted items and infer the unobserved confounders behind
every pair of user-item interaction by using an inference network. Similar to
the learning process of users’ personalized representations, we can learn item
representations I(i) for each user-item interaction by maximizing EBLO:

log P (I(i)|e(u)) ≥ Litem

(
e(u), e(i); η, γ

)

= Eqγ(z|e(u),e(i))
[
log pη

(
I(i)|e(u),Z

)]

− KL
(
qγ

(
Z|e(u), e(i)

)
‖pη

(
Z|e(u)

))
(9)

where pη and qγ are neural networks with variational parameter η and γ respec-
tively.

Item Representation Aggregation. We denote the item m’s representation
after the k-th interaction by I(i)m,k. We aggregate all the representations that are
generated for item m. The the final representation of item m can be written as:

E(i)
m = AGGREGATE{I(i)m,1, · · · , I(i)m,k, · · · } (10)

3.4 Learning Strategy

By considering the unobserved and observed confounders when modeling user
interactions, we obtain the deconfounding representations for users and items.
The deconfounding user representations contain user intents behind every inter-
action and the deconfounding item representations indicate that which kind of
user prefer to buy them. We can then predict the preference score for a pair of
user and item. The predicted rating is measured by the inner product between
representations of user a and item m, which can be written as follows:

r̂a,m = E(u)
a

�
E(i)

m (11)

Finally, similar to most ranking based methods [18,19], we use pair-wise loss
function for optimization. The loss function of recommendation is designed as
follows:

Lpair = −
N∑

a=1

∑

m∈Ma

∑

n/∈Ma

ln σ (r̂a,m − r̂a,n) + λ(
∥∥∥E(u)

∥∥∥
2

+
∥∥∥E(i)

∥∥∥
2

) (12)

Deconfounding Representation Learning Based on User Interactions 595

where σ is a sigmoid function, Ma is the positive instance set. The first
term denotes that the probability of positive case is higher than negative ones.
The second term is L2-regularizer and λ controls strength of regularization.
Additionally, the EBLO of user and item representation learning process will
be added to the final loss. We will minimize our following objective function for
optimization:

L = δLpair − αLuser − βLitem (13)

4 Experiments

4.1 Experimental Settings

Datasets. In our evaluation experiments, we choose two famous datasets Yelp
and Flickr, which both have buying behavior and social relationship of users.
The dataset statistics after reprocessing is shown as table.1. We can get user
and item embedding for Yelp with Word2vec [20], and for Flickr with a VGG16
convolutional neural network [21] following the work in [16]. For each dataset,
we randomly select 80% of historical buying behavior of each user to constitute
the training set, 10% as the validation set, and treat the remaining interactions
as the test set. Since there are too many unrated items, in order to reduce the
computational cost, we design our negative sampling strategy like the method
in [16].

Table 1. The statistics of the two datasets.

Datasets #Users #Items #Interaction Sparsity

Yelp 17,237 3,8342 204,448 99.97%

Flickr 83587 82120 3148098 99.95%

Evaluation Metrics. For our top-N recommendation task, we adopt two met-
rics widely used in previous works: Normalized Discounted Cumulative Gain and
Recall. NDCG@N denotes that the hit position by assigning higher scores should
be at top-N ranks. Recall@N refers to the proportion of relevant items found in
the top-N predictions. The higher the two values, the better performance we
achieve.

Parameter Setting. Our model is trained with the RMSprop optimizer [22].
We empirically set the learning rate to 10−4 and batch size to 512. The depth
of GNN layer is set to 4, since we consider that 4-order neighbors are enough to
characterize the influence of neighbors for users. During the layer-wise propaga-
tion, we sample 20 neighbors and allow duplication in the samples for calculation
convenience. The balance coefficients in the loss function Eq. 13 is set to 0.1 for
α, 0.1 for β and 0.8 for δ. Additionally, L2-regularization coefficient λ in BPR

596 J. Gao et al.

loss set to 0.001, which can achieve the best performance. For comparison, the
other hyper-parameters we use are mostly the same as the baseline methods.
Our model has been implemented in PyTorch and trained on a single Tesla
V100 GPU.

Baselines. We compare our method with various state-of-the-art baselines:

– BPR [23]: BPR is a classic pair-wise based personalized ranking model. It
proposes a generic optimization which is the maximum posterior estimator
derived from a Bayesian analysis of the problem. This optimization method
is widely used in ranking based models as well as in our model.

– NCF [4]: Neural Collaborative Filtering (NCF) generalizes matrix factoriza-
tion to a non-linear setting, where preferences are modeled through a simple
multi-layer perception network that exploits latent factor transformations.

– DiffNet [16]: DiffNet leverages deep propagation model to stimulate the influ-
ence between users. The method can capture user behavior preference and
user neighbor behavior preference at the same time for social recommenda-
tion.

– NGCF [6]:NGCF is a state-of-the-art graph-based model which exploits the
user-item graph structure by propagating embeddings on it. It incorporates
explicit user-item interaction into the embedding learning process and proves
the rationality and effectiveness of the method.

Table 2. Top-N recommendation performance of different methods on two datasets

Model NDCG@10 Recall@10 NDCG@20 Recall@20

Yelp BPR 0.1532 0.1829 0.1941 0.2104

NCF 0.1421 0.1943 0.2067 0.2118

NGCF 0.2023 0.2344 0.2395 0.2415

Diffnet 0.2323 0.2491 0.2511 0.2673

DGL 0.2553 0.2623 0.2605 0.2808

Flickr BPR 0.0781 0.0812 0.0921 0.0911

NCF 0.0823 0.0903 0.1021 0.1271

NGCF 0.1114 0.1159 0.1239 0.1376

Diffnet 0.1298 0.1379 0.1397 0.1589

DGL 0.1368 0.1384 0.1448 0.1667

4.2 Overall Comparison

We represent all the experimental results on the two datasets in the table.2. We
have the following observations:

Deconfounding Representation Learning Based on User Interactions 597

– We note that BPR achieves poor performance on both of two datasets. This
indicates that shallow model with only user-item rating information is not
enough for recommendation.

– Though NCF applies deep learning method, it is still not enough for a complex
recommendation scenario. It performs even worse than BPR on NDCG@10
in dataset Yelp.

– DiffNet and NGCF achieve good performance on the both datasets. Maybe
aggregating node information, as well as graph structure, is helpful to the
representation learning process.

– DGL(Ours) consistently outperforms all the baseline methods on the both
two datasets. Our model performs better than the other two graph-based
models, which demonstrates that the significance of identifying the causal
relationship behind user-item interactions.

Fig. 5. Performances of different variants of DGL.

4.3 Ablation Study

We would like to demonstrate that it’s essential to consider the unobserved
confounders and observed confounders in the user interactions when learning
users’ real intents representations. Furthermore, we also want to prove that our
new aggregating strategy can keep nodes distinguishable during the propagation
process. For the two purposes, we compare our model with the following three
variant:

– DGL-ALL: This variant uses the traditional aggregating strategy which aggre-
gates all of the intents of a user as her fixed intent.

– DGL-without-U: Unobserved confounders are not considered in this variant.
Users’ intents are calculated as the concatenation of user and item features
directly.

– DGL-without-O: Observed confounders are not considered in this variant.
Only the user’s personalized intents are used to predict.

Figure 5 illustrates the performances of all variants and our proposed method
on the two datasets w.r.t. NDCG@10 and Recall @10. DGL-ALL performs a little
bit worse than our DGL. The rationale behind may be that DGL-ALL aggre-
gates and propagates the same information of nodes and lead to over-smoothing

598 J. Gao et al.

after several iterates. Both DGL-without-U and DGL-without-O perform poorly,
which can prove that it’s essential to consider the unobserved confounders and
observed confounders in the meantime when modeling the user interactions. DGL
consistently outperforms the other three variants, which further verifies that the
effectiveness of our model.

5 Conclusions

In this paper, we propose a deconfounding representation learning method
named DGL for recommendation systems. Concretely, we consider the unob-
served and observed confounders at the same time when modeling user interac-
tions. We introduce an inference network to identify the unobserved confounders
and a generative network to generate users’ personalized intents. Furthermore,
we incorporate social influence into the learning process to learn users’ real
intents which contain no confounders. Experimental results on two real-world
datasets show that our model outperforms all the other baselines. In the future,
we would like to consider the temporal information when modeling user interac-
tions.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (No.61672490) and International Partnership Program of Chinese
Academy of Sciences with Grant (No.241711KYSB20180002).

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

2. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv.
Artif. Intell. 2009(12) 4 (2012)

3. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

4. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 173–182 (2017)

5. Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders
for top-n recommender systems. In: Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining, pp. 153–162 (2016)

6. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative
filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 165–174 (2019)

7. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 974–983 (2018)

8. Wu, Y., Liu, H., Yang, Y.: Graph convolutional matrix completion for bipartite
edge prediction. In: KDIR, pp. 49–58 (2018)

Deconfounding Representation Learning Based on User Interactions 599

9. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
10. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally

connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)
11. Wang, Y., Blei, D.M.: The blessings of multiple causes. J. Am. Stat. Assoc.

114(528), 1574–1596 (2019)
12. Ranganath, R., Perotte, A.: Multiple causal inference with latent confounding.

arXiv preprint arXiv:1805.08273 (2018)
13. Stegle, O., Janzing, D., Zhang, K., Mooij, J.M., Schölkopf, B.: Probabilistic latent

variable models for distinguishing between cause and effect. In: Advances in Neural
Information Processing Systems, pp. 1687–1695 (2010)

14. Louizos, C., Shalit, U., Mooij, J., Sontag, D., Zemel, R., Welling, M.: Causal effect
inference with deep latent-variable models. In: Advances in Neural Information
Processing Systems, pp. 6446–6456 (2017)

15. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034
(2017)

16. Wu, L., Sun, P., Fu, Y., Hong, R., Wang, X., Wang, M.: A neural influence diffusion
model for social recommendation. In: Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp.
235–244 (2019)

17. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep
conditional generative models. In: Advances in Neural Information Processing Sys-
tems, pp. 3483–3491 (2015)

18. Feng, S., Li, X., Zeng, Y., Cong, G., Chee, Y.M.: Personalized ranking metric
embedding for next new poi recommendation. In: IJCAI 2015 Proceedings of
the 24th International Conference on Artificial Intelligence, pp. 2069–2075. ACM
(2015)

19. Huq, Z., Huq, F., Cutright, K.: BPR through ERP: avoiding change management
pitfalls. J. Change Manage. 6(1), 67–85 (2006)

20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

21. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: European Conference on Computer Vision (2014)

22. McMahan, B., Streeter, M.: Delay-tolerant algorithms for asynchronous distributed
online learning. In: Advances in Neural Information Processing Systems, pp. 2915–
2923 (2014)

23. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1805.08273
http://arxiv.org/abs/1205.2618

Personalized Regularization Learning for
Fairer Matrix Factorization

Sirui Yao1(B) and Bert Huang2

1 Virginia Tech, Blacksburg, VA 24060, USA
ysirui@vt.edu

2 Tufts University, Medford, MA 02155, USA
bert@cs.tufts.edu

Abstract. Matrix factorization is a canonical method for modeling user
preferences for items. Regularization of matrix factorization models often
uses a single hyperparameter tuned globally based on metrics evaluated
on all data. However, due to the differences in the structure of per-user
data, a globally optimal value may not be locally optimal for each indi-
vidual user, leading to an unfair disparity in performance. Therefore, we
propose to tune individual regularization parameters for each user. Our
approach, personalized regularization learning (PRL), solves a secondary
learning problem of finding the per-user regularization parameters by
back-propagating through alternating least squares. Experiments on a
benchmark dataset with different user group splits show that PRL out-
performs existing methods in improving model performance for disadvan-
taged groups. We also analyze the learned parameters, finding insights
into the effect of regularization on subpopulations with varying proper-
ties.

Keywords: Matrix factorization · Fairness · Error disparity ·
Personalized regularization

1 Introduction

Matrix factorization is an important and widely adapted collaborative filter-
ing technique for training recommender systems to predict ratings. However,
MF has been found to be easily influenced by data biases and becomes unfair
[10,15]. For example, demographic groups for whom training data is less fre-
quently available can suffer less accurate predictions of their preferences [15].
This phenomenon is a form of error-based unfairness where users may receive
lower quality service because of a demographic attribute that ideally should not
affect their experience. To make it worse, the group of users who receive less
accurate recommendations are more likely to abandon the service, leading to an
even more biased environment and more unfair models in the future [9].

Collecting more and better quality data for the disadvantaged groups will
help a model better learn these users’ preferences. However, this approach is usu-
ally expensive or even infeasible. For example, a recommender service provider
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 600–611, 2021.
https://doi.org/10.1007/978-3-030-75765-6_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_48&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_48

Personalized Regularization Learning for Fairer Matrix Factorization 601

cannot request users to change how they interact with the service. Therefore, the
more important questions is, can we handle these biases more appropriately to
make better use of the available data, and build a model with improved accuracy
for the ill-served users?

In this work, we first consider different types of data biases, which all refer to a
certain form of divergence in the structure of per-user or per-group data. We ver-
ify on synthetic datasets that these biases can lead to one subgroup experiencing
higher error than the others. We then consider the connection between prediction
error and the role of regularization. If we acknowledge the difference in per-user
data, then instead of tuning a global hyperparameter, a matrix factorization
could benefit from personalized regularization, which better accommodates each
individual user. This strategy not only directly addresses the cause of error dis-
parity, but also provides more interpretability compared to directly manipulate
the latent features since regularization is a comparatively well-understood con-
cept.

Since personalized regularization drastically increases the number of hyper-
parameters, commonly used hyperparameter searching procedures—such as grid
search and random search—become prohibitively expensive. It is also challenging
to derive the parameters from heuristic because, in joint embedding models like
matrix factorization, the effect of personalized regularization parameters are not
independent of each other. Therefore, we propose a learning problem, personal-
ized regularization learning (PRL), to learn the optimal set of hyperparameters
that minimizes a secondary objective, in our case, the error of the disadvantage
groups. We consider the secondary objective as a function of the personalized
regularization parameters. To enable direct back-propagation and facilitate effi-
cient learning, we leverage the closed-form solutions of alternating least squares
(ALS) to solve MF.

The main contributions of this paper are as follows:

1. We identify the insufficiency of global regularization for matrix factorization
in dealing with complexity or sparsity imbalance across users, and conduct
validation on synthetic data with explicitly injected biases;

2. We propose personalized regularization learning (PRL), an interpretable algo-
rithm for learning personalized regularization by back-propagating through
the closed-form computation of ALS;

3. We demonstrate the effectiveness of the proposed approach with experiments
on a benchmark dataset with different user group splits, comparing against
three baseline models.

2 Related Work

In this section, we review literature related to the problem we aim to solve and
our proposed approach.

602 S. Yao and B. Huang

Error Disparity. Error disparity is a form of error-based unfairness. Yao and
Huang [15] discuss four variants of unfairness metrics computed based on the
divergence between prediction and labels. [15] propose to reduce error disparity
by adding the optimized metrics to the standard matrix factorization objective
such that the model is incentivized to reduce disparity. Both [9] and [11] solve
the error disparity problem by minimizing the maximum subgroup error, which
is an upper bound on error disparity. In recommender systems, this phenomenon
is also related to the cold-start problem [5,6], where the cause of high error is
limited to insufficient data. Other notions of fairness such as statistical parity
[16] is also studied in recommender systems but is not the focus of this paper.

Differentiated Regularization. Besides separating the regularization parameter
of users and items, Beutel et al. [2] proposes to assign the advantaged and disad-
vantaged subpopulation to different sets, and regularize them differently. Chen
et al. [5] take a step further by computing a set of per-user regularization param-
eter by linear or logarithm functions of user sparsity. Our work is closely related
to [2] and [5] because we also seek to differentiate regularization but through an
optimization-based approach.

Hyperparameter Search. In practice, grid search is often used when the space of
hyperparameters is small. Random search [1] can be more efficient because it ran-
domly samples hyperparameter values instead of trying all combinations of the
candidate hyperparameters. Bayesian hyperparameter optimization [13] speeds
up random search by taking into consideration the past evaluations to decide
what areas of hyperparameter space to search next. For the task of optimiz-
ing a large number of hyperparameters, [12] devise a reversible learning method
to compute hyperparameter gradients by reversing the dynamics of gradient
descent. Our approach also uses gradient-based hyperparameter tuning, but we
leverage the differentiability of closed-form updates in alternating least squares
for matrix factorization to directly back-propagate to the hyperparameters.

3 Problem Definition

Given a dataset D that contains ratings by M users on N items. which can
be represented as an M × N sparse matrix R where each observed entry rui

represents the rating user u gives to item i. Suppose each user is associated with
a set of properties S, based on one or more such properties s ∈ S, we can split
users into a set of subgroups G.

A rating prediction model predicts the missing values in the sparse rating
matrix. We randomly split all observed ratings into RTrain and RTest. We train a
model on RTrain, and use root mean squared error (RMSE) to measure prediction
error on RTest as

RMSE =
√

1
|RTest|

∑
rui∈RTest

(rui − r̂ui)2) (1)

Personalized Regularization Learning for Fairer Matrix Factorization 603

where r̂ui is the predicted value of rui. With a matrix factorization model, users
and items are projected as matrices P ∈ R

M×d and Q ∈ R
N×d. The uth row of

P , denoted as pu, is the latent feature of user u; the ith row of Q, denoted as qi,
is the latent feature of item i. The ratings are predicted as r̂ui = puqᵀ

i .

Problem Formulation. Given a user subgroup of concern ĝ ∈ G, which has higher
prediction error and is considered to be the disadvantage population. The goal
is to find a model that reduces error for this subgroup. The error of a subgroup
ĝ ∈ G is denoted and measured as

RMSEĝ =

√√√√ 1
|RTest

ĝ |
∑

rui∈RTest
ĝ

(rui − r̂ui)2) (2)

where RTrain
ĝ and RTest

ĝ denote the training and test data of ĝ respectively.

4 Data Biases and Regularization

In this section, we discuss four types of data biases that contribute to higher pre-
diction error in disadvantaged subgroups, and empirically show the consequences
of these biases with synthetic datasets. We also discuss how these data biases
are related to regularization and imply the need for personalized regularization.

4.1 Data Biases

We first consider a group-level bias called population bias, which refers to the dis-
crepancy among the size of subgroups. The subgroups with smaller populations
are more likely to be compromised in modeling, especially when the data of these
minority groups have a very different structure from the other groups. We also
consider three individual-level biases. The first one is sparsity bias, which refers
to the difference in per-user data sparsity. A model with a particular complexity
requires a corresponding amount of data to overcome the curse of dimensionality,
which creates a disadvantage for users who are new or less active. The second
one is rank bias, it refers to the situation that some users’ preferences are more
complicated than others. Therefore, a higher-dimensional model is required to
capture their preferences. The third one is noise bias, which suggests different
levels of data quality and the situation where some users’ data is more noisy
than the others. We believe these four types of data biases lead to increased
prediction error for the subgroups that are being biased against.

4.2 Validation

We validate our heuristics on the effect of data bias on synthetic datasets where
we explicitly inject two types of data bias among users. We create the synthetic
data by first generating a twenty-dimensional user and item feature matrices

604 S. Yao and B. Huang

for 100 users and 600 items. Then we compute the rating matrix as their dot
product. To make the datasets more realistic, we also add Gaussian noise to
these ratings and clamp them within the range of 1.0 to 5.0.

We assign users to two subgroups A and B. To inject data biases, without
loss of generosity, we choose group B to be the disadvantaged group and the
users from group B to be the disadvantaged users. For population bias, we lower
the population of group B to be the minority group; for rank bias, we force some
columns of the latent features of users from group A to be zero, so that group
B has higher dimension than group A; for sparsity bias, we mask more ratings
from group B than group A; for noise bias, we add a higher level of Gaussian
noise to the rating of group B. Specifically, to create the biased settings, we set
|B| = 30, |A| = 70; dA = 5, dB = 20; 5× amount of ratings are observed from
group A than group B; 2× amount of noise is added to the ratings of group B1.

We train matrix factorization models on these datasets and measure
RMSEB, the error of group B. The results are shown in Fig. 1. The blue bar
represents a bias-free dataset; the orange bars represent datasets with each indi-
vidual type of bias; the green, red, and purple bars represent datasets with 2,
3, and 4 types of biases respectively. R, N, P, S are short for rank bias, noise
bias, population bias, and sparsity bias respectively. First, by comparing the fair
setting (the blue bar) and the settings with each individual biases (the orange
bars), we observe that, except population bias, each of the discussed biases alone
directly leads to higher RMSEB. Population bias is the exception because when
the other three biases are not present, the two subpopulations have exactly the
same data structure. Second, in general, RMSEB increases as more types of
biases are injected, suggesting a compound impact of data biases. Third, the
effect of these data biases are not independent but can enhance each other. For
example, we observe a noticeable increase in RMSEB from setting “R, S, N” to
“R, S, N, P” when population bias is added, which by itself does not have the
same effect.

4.3 Relation to Regularization

The data biases discussed above are directly related to data properties that, if not
carefully handled when building a model, will lead to overfitting or underfitting.
Overfitting or underfitting are two forms of mistakes that a model could make to
mishandle training data and increase error. Overfitting happens when a model
attends to too much detail and noise, and is more likely to occur when data is
insufficient due to increase variance; underfitting, on the other hand, happens
when a model oversimplifies and fail to capture the underlying structure of the
data.

An important component for balancing underfitting and overfitting in
machine learning models is regularization. The strength of regularization needs
1 Note that to avoid the effect of irrelevant factors, we normalize the ratings so that

the ratings of group A and B follow the same distribution. We also keep the overall
level of sparsity and noise unchanged by rescaling the configuration within each
subgroup.

Personalized Regularization Learning for Fairer Matrix Factorization 605

Fig. 1. The measured RMSEB of models trained on synthetic datasets with different
data biases injected. Here we use R, N, P, S to indicate rank bias, noise bias, population
bias, and sparsity bias respectively. The models are grouped based on the number of
injected data biases and are presented in different colors. (Color figure online)

to be tuned to best fit the learning task and the data. Since we discussed that
data properties such as quality, sparsity, and complexity may not be univer-
sal across all users, tuning a global regularization parameter λ∗, as is done in
standard matrix factorization models, becomes insufficient to accommodate the
important differences in per-user data, leading to poor model performance on
certain user subgroups.

5 Personalized Regularization Learning

We have discussed that a globally tuned regularization parameter λ∗ neglects
the differences in per-user data. Therefore, we believe a model could benefit
from a set of personalized regularization parameters. With this expanded set of
hyperparameters, the objective function of training a matrix factorization model
is modified by replacing the globally tuned regularization hyperparameter λ∗

with user-personalized regularization parameters Λ = {λu}M
u=1. The user and

item latent features are learned as

P ∗, Q∗ = min
P,Q

∑
rui∈RTrain

(rui − PuQᵀ
i)2 +

1
2

(
M∑

u=1

λu (PuP ᵀ
u) +

N∑
i=1

λ∗(QiQ
ᵀ
i)

)

(3)
Since personalized regularization grows the space of hyperparameters from

R to R
M , traditional tuning procedures such as grid search become insufficient

in such a high-dimensional space. Also, in joint embedding models like matrix
factorization, the personalized regularization parameters are not independent of
each other, therefore, it is challenging to derive the parameters from heuristics.

606 S. Yao and B. Huang

5.1 Personalized Regularization Learning

To efficiently search for the optimal personalized hyperparameters, we propose
personalized regularization learning (PRL), which poses the hyperparameter
search problem as a secondary learning task. We denote the primary learning
problem in Eq. 3 as L, which returns the learned P , Q for a given hyperparameter
set Λ

P,Q = L(Λ) (4)
We then make predictions using the learned latent features P and Q through a
predictor function H,

R̂ = H(P,Q) (5)
and evaluate a secondary objective, which in our running example, is the sub-
group error RMSEĝ through function E,

RMSEĝ = E(R̂) (6)

Combining equation Eqs. (4) to (6), we get RMSEĝ = E(H(L(Λ))) = F (Λ)
where F = E(H(L)). The secondary learning problem is formulated as

Λ∗ = min
Λ∈RM

F (Λ) (7)

F is a differentiable function if E, H, and L are all differentiable. Then we
can directly backpropagate through F to compute gradients of the secondary
objective with respect to Λ.

5.2 Leveraging ALS

Solving the factorization problem L involves minimizing a non-convex regular-
ized squared reconstruction error. One approach for optimizing this objective is
through gradient descent [3], which has been made especially convenient with the
advance of automatic differentiation tools [4]. However, the gradient of hyperpa-
rameters are usually unavailable [12]. Therefore, we instead use alternating least
squares (ALS) [14] to solve L, which alternates between optimizing P and Q by
iteratively applying a closed-form solution

Pu ←
(∑

i:(u,i)∈D
q̃iq̃i

T + λ∗Id

)−1 ∑
i:(u,i)∈D

ruiq̃i

Qi ←
(∑

u:(u,i)∈D
p̃up̃u

T + λ∗Id

)−1 ∑
u:(u,i)∈D

(rui − bu)p̃u

(8)

The closed-form updates are differentiable, so we can conveniently back-
propagate through F to compute gradients of the secondary objective with
respect to Λ and learn Λ with a standard gradient-based optimizer. Since the
time complexity of computing partial derivative is the same as forward passing
[7], the time it takes to back-propagate to Λ is the same as forward ALS, thus the
time complexity of PRL is O(T), where T is the number of epochs ALS takes to
converge. This is on par with the state-of-the-art hyperparameter optimization
techniques [12].

Personalized Regularization Learning for Fairer Matrix Factorization 607

5.3 Data Split

During learning, we must use different datasets for training the MF model and
measuring subpopulation error. This is because our goal is to decrease gener-
alization error, which needs to be evaluated on data unseen by the training
algorithm. If we measure subpopulation error on the same data that the MF
model is trained on, we may simply incentivize the learning optimization to
overfit the data as much as possible.

Therefore, after we split data R into RTrain and RTest, we further split
RTrain into RTrain−Primary and RTrain−Secondary. In each PRL iteration, we
train a matrix factorization model on RTrain−Primary and compute RMSEĝ on
RTrain−Secondary, which is used to update Λ. After we obtained Λ∗, we apply it
to train a final matrix factorization model on the full training set RTrain. We
then evaluate RMSEĝ on RTest. The full algorithm is listed as Algorithm 1. In
practice, we recommend creating multiple primary-secondary splits of RTrain so
that the learned Λ∗ is not overfitted to one particular split.

Algorithm 1: Personalized Regularization Learning
Given dataset R, global optimal lambda λ∗, MF model L, error metric E,
disadvantaged subpopulation ĝ. Split R into RTrain and RTest, further split
RTrain into RTrain−Primary and RTrain−Secondary.
Initialize Λ ← {λi = λ∗}N

i=1, randomly initialize P and Q
while not converged do

P ∗, Q∗ RTrain−Primary←−−−−−−−−−− L(Λ)

R̂
RTrain−Secondary←−−−−−−−−−−− H(P ∗, Q∗)

RMSEĝ
RTrain−Secondary←−−−−−−−−−−− E(R̂ĝ)

compute gradient ∇ΛRMSEĝ through backpropagation
update Λ with ∇ΛRMSEĝ

end
Re-initialize P and Q

P ∗, Q∗ RTrain←−−−− L(Λ∗)

5.4 Interpretability

A key advantage of PRL is that it provides interpretable feedback in the
magnitude of the learned per-user regularization parameters. Compared to
regularization-based methods that directly manipulate user and item latent rep-
resentations, PRL’s learned parameters indicate the level of regularization, which
is comparatively well-understood and can help us understand how the model is
improved. We can interpret them by comparing their values against the globally
tuned value. If a user’s parameter increases, it suggests that this user would have
been overfitted. Conversely, if a user receives lower regularization from PRL, they
were prone to underfit and needed a more complex model.

608 S. Yao and B. Huang

6 Experiments

6.1 Datasets

The choice of public real datasets that provide user demographic information is
very limited. We use the benchmark MovieLens 100k dataset [8], which contains
100,000 ratings from 1,000 users on 1,700 movies, and conveniently provides
multiple user demographic features. Specifically, we consider demographic infor-
mation such as gender, age, zip code; we also consider user degree–the number
of ratings each user has, and user error–the error of each user with a vanilla
matrix factorization model. For gender, we split users by category and create
two subgroups (female and male users); for zipcode, we split by the first digit
of zip code and create 10 subgroups, representing users from different regions in
the US; for age, degree, and error, we split by percentile and each split creates
10 equal size subgroups.

We randomly sample 10% of data as holdout set for testing and use the rest
as training set. Then we do 10-fold cross-validation on the training set to select
the best global regularization weight λ and the rank d. The optimal combination
we found is d∗ = 30 and λ∗ = 20.0. We train a standard matrix factorization
model and measure the subgroup errors under all user splits. For each split, we
pick the subgroup with the highest error as the disadvantaged group, denoted
as ĝ and seek to reduce RMSEĝ. The disadvantaged subgroups are listed in the
second row of Table 1.

6.2 Baselines

Focused Learning (FL). FL [2] assigns users to only two subgroups, a focused set,
and an unfocused set. The two sets of users are regularized differently to optimize
the model performance on the focused set of users. The optimal hyperparameter
pair is searched via grid search.

Differentiated regularization (DR) DR [5] is motivated to alleviate the cold-start
problem and regularize every user differently. The regularization parameters are
computed from three functions (one linear and two logarithmic) of user degree.
We denote the three formulas as DR-linear, DR-Log-1, and DR-Log-2.

Unfairness-Regularized Matrix Factorization (URMF). URMF [15] is designed
to optimize a secondary fairness in matrix factorization models. The strategy
is to add the optimized secondary objective as a penalty term to the standard
matrix factorization objective, weighted by a weight parameter. URMF directly
manipulates the fitted latent embeddings instead of through regularization.

6.3 Specifications and Results

For DR, we directly apply the three formula (Equation 5 in [5]) to compute
personalized regularization parameters. For FL, we follow the same procedure

Personalized Regularization Learning for Fairer Matrix Factorization 609

as proposed by the authors and try a range of regularization values on the
focused and unfocused set, {0.001, 0.01, 0.1, 1, 1, 10, 20, 30, 50, 100}, which gives
100 combinations. For URMF, we try 10 different unfairness penalty weights
{1e − 6, 1e − 5, 1e − 4, 1e − 3, 1e − 2, 1e − 1, 1, 5, 10, 20}. For FL and UR, we
identify the optimal setting or weight via cross-validation, then apply the same
setting or weight to train a final model on the full training set. For all trained
models, we measure RMSEĝ on the holdout test set.

We show the results of all compared models on different user splits in Table 1.
We first compare the performance of PRL against the standard matrix factor-
ization model. We observed that PRL successfully reduces RMSEĝ on all user
splits, and achieves more than 10% improvement on subgroups split by Zip
Code and Error. We also observe that PRL outperforms all baseline models by
a convincing margin. Focused learning is the second-best method, this further
suggests that fitting different regularization is effective in optimizing subpopula-
tion error. We believe PRL wins over Focused learning due to the expanded set
of hyperparameters and smart search through optimization. We observe a big
fluctuation in the performance of URMF, it is possibly because URMF still can
easily overfit to the training data since it measures both primary and secondary
objectives on the same data. Lastly, DR performs the worst. It rarely reduces
RMSEĝ and even when it does, the improvements are trivial. This pattern aligns
with the results and conclusion in the original paper that DR sometimes makes
things worse and especially so on the MovieLens dataset. The poor performance
of DR suggests it is challenging to find a one-fits-all heuristic for setting the
personalized regularizations.

Table 1. Comparison of all model performance in reducing RMSEĝ. The rows are
the RMSEĝ of a standard matrix factorization model and all compared models, the
lower the better. The columns are different user group splits. Bold values are the most
significant improvement in each column.

User Split Gender Age Zip Code Degree Error

ĝ F 52–59 0 0%–10% 90%–100%

MF 1.029 1.045 1.062 1.118 1.612

PRL 0.967 (−6.0%) 0.983 (−5.9%) 0.952 (−10.4%) 1.043 (−6.7%) 1.367 (−15.2%)

FL 0.998 (−3.0%) 1.001 (−4.2%) 0.989 (−6.9%) 1.094 (−2.1%) 1.479 (−8.2%)

URMF 1.013 (−1.6%) 1.089 (+4.2%) 0.956 (−10.0%) 1.102 (−1.4%) 1.579 (−2.0%)

DR-Linear 1.041 (+1.2%) 1.127 (+7.8%) 1.047 (−1.4%) 1.114 (−0.4%) 1.601 (−0.7%)

DR-Log-1 1.067 (+3.7%) 1.113 (+6.5%) 1.082 (+1.9%) 1.109 (−0.8%) 1.641 (+1.7%)

DR-Log-2 1.059 (+2.9%) 1.114 (+6.6%) 1.098 (+3.9%) 1.112 (−0.5%) 1.632 (+1.2%)

We next examine the personalized regularization parameter fitted through
PRL to understand how it reduces RMSEĝ. We compute the mean and stan-
dard deviation of the regularization parameters in each subgroup throughout
PRL optimization. We show the plot in gender subgroups as an example in
Fig. 2. In this case, female users is the disadvantaged subgroup. We observe that
female users, on average, have been assigned lower regularization, and male users’

610 S. Yao and B. Huang

regularization has been increased. This provides an interesting insight that the
complexity of the originally tuned global model was lower than what is need for
the disadvantaged group. PRL allows these users to enjoy a more complex model
that better captures their preferences. We also noticed an increased variance in
the regularization parameter, and surprisingly even more so in the advantaged
group. As we discussed in Sect. 5, the personalized regularization parameters are
not independent of each other in joint embedding models, therefore, the regular-
ization of all users are shifted even though the objective is to only optimize the
prediction error of the disadvantaged group. Further, we found the same direc-
tion of change in the pair of regularization parameters identified via focused
learning (λF = 10 and λM = 30). This suggests an alignment between the two
methods in reducing high subpopulation error through adjusted regularization.

Fig. 2. The curve of mean and standard deviation of personalized regularization values
during PRL. F means female users and M means male users.

7 Discussion

In this work, we address the problem of error disparity in matrix factorization
models. We discuss four types of biases that contribute to higher subpopula-
tion error and validate their effect on synthetic datasets. We presented person-
alized regularization learning (PRL), a method that learns to regularize users
differently to improve prediction performance for disadvantaged subgroups of
users. PRL solves a secondary learning problem to minimize validation unfair-
ness by back-propagating through alternating least squares. In experiments, PRL
outperforms existing methods for reducing error disparity in recommendations.
Moreover, the learned per-user regularization parameters are interpretable and
provide insight into how fairness is improved. For future work, we are interested
in investigating the effectiveness of PRL in other variants of matrix factorization,
such as SVD++, factorization machine. We are also interested in further explor-
ing the learned regularization parameters to uncover richer group structures.

Personalized Regularization Learning for Fairer Matrix Factorization 611

Acknowledgement. This work was partially supported by a Deloitte Data Analytics
Fellowship and an Amazon Research Award.

References

1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

2. Beutel, A., Chi, E.H., Cheng, Z., Pham, H., Anderson, J.: Beyond globally opti-
mal: focused learning for improved recommendations. In: Proceedings of the 26th
International Conference on World Wide Web, pp. 203–212 (2017)

3. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In:
Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–
186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3 16

4. Bücker, H.M., Corliss, G., Hovland, P., Naumann, U., Norris, B.: Automatic dif-
ferentiation: applications, theory, and implementations. LNCSE, vol. 50. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-28438-9

5. Chen, H.H., Chen, P.: Differentiating regularization weights-a simple mechanism
to alleviate cold start in recommender systems. ACM Trans. Knowl. Discov. Data
(TKDD) 13(1), 1–22 (2019)

6. Ferraro, A.: Music cold-start and long-tail recommendation: bias in deep represen-
tations. In: Proceedings of the 13th ACM Conference on Recommender Systems,
pp. 586–590 (2019)

7. Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of
algorithmic differentiation. SIAM (2008)

8. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM
Trans. Interact. Intell. Syst. 5(4), 1–19 (2015)

9. Hashimoto, T.B., Srivastava, M., Namkoong, H., Liang, P.: Fairness without demo-
graphics in repeated loss minimization. arXiv preprint arXiv:1806.08010 (2018)

10. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Recommendation independence.
In: Conference on Fairness, Accountability and Transparency, pp. 187–201 (2018)

11. Kim, M.P., Ghorbani, A., Zou, J.: Multiaccuracy: black-box post-processing for
fairness in classification. In: Proceedings of the 2019 AAAI/ACM Conference on
AI, Ethics, and Society, pp. 247–254 (2019)

12. Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparameter opti-
mization through reversible learning. In: International Conference on Machine
Learning, pp. 2113–2122 (2015)

13. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems, pp.
2951–2959 (2012)

14. Takács, G., Tikk, D.: Alternating least squares for personalized ranking. In: Pro-
ceedings of the ACM Conference on Recommender Systems, pp. 83–90 (2012)

15. Yao, S., Huang, B.: Beyond parity: fairness objectives for collaborative filtering.
In: Advances in Neural Information Processing Systems, pp. 2921–2930 (2017)

16. Zhu, Z., Hu, X., Caverlee, J.: Fairness-aware tensor-based recommendation. In:
Proceedings of the 27th ACM International Conference on Information and Knowl-
edge Management, pp. 1153–1162 (2018)

https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/3-540-28438-9
http://arxiv.org/abs/1806.08010

Instance Selection for Online Updating
in Dynamic Recommender Environments

Thilina Thanthriwatta1(B) and David S. Rosenblum1,2

1 Department of Computer Science, National University of Singapore,
Singapore, Singapore
e0001932@u.nus.edu

2 Department of Computer Science, George Mason University, Fairfax, VA, USA
dsr@gmu.edu

Abstract. Online recommender systems continuously learn from user
interactions that occur in a streaming manner. A fundamental challenge
of online recommendation is to select important instances (i.e., user inter-
actions) for model updates to achieve higher prediction accuracy while
omitting noisy instances. In this paper, we study (1) how to select the
best instances and (2) how to effectively utilize the selected instances in
dynamic recommender environments. We present two instance selection
strategies based on Self-Paced Learning and rating profiles. We integrate
them with Factorization Machines to perform online updates. Moreover,
we study the impact of contextual information in online updating. We
conducted experiments on a real-world check-in dataset, which contains
temporal contextual features. Empirical results demonstrate that ox ur
instance selection strategies effectively balance the trade-off between pre-
diction accuracy and efficiency.

Keywords: Instance selection · Context-aware recommender systems ·
Online recommender systems

1 Introduction

Context-Aware Recommender Systems (CARSs) have gained significant interest
with the rise of smart devices such as smartphones that employ physical sensors
and applications to capture contextual information (e.g., location and time).
Contrary to conventional Recommender Systems (RSs), which utilize informa-
tion about users and items only, CARSs incorporate contextual information and
make the recommendation problem multi-dimensional. In the real world, CARSs
should be able to adapt to the dynamic nature of a recommender environment
where a stream of user interactions (i.e., instances) happens over time. Note that
an event of a user loggin in and searching for items is considered as a user inter-
action, and CARSs should provide recommendations for each incoming user. We
assume that at a given moment of time only one user interaction occurs. Most
of the developed CARSs rely on typical batch learning and evaluation (batch
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 612–624, 2021.
https://doi.org/10.1007/978-3-030-75765-6_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_49&domain=pdf
http://orcid.org/0000-0002-4445-8721
http://orcid.org/0000-0003-1685-4206
https://doi.org/10.1007/978-3-030-75765-6_49

Instance Selection for Online Updating in Dynamic Recommender 613

setting). These models should be updated from scratch (re-trained) to provide
quality recommendations over time. This introduces a significantly large compu-
tational overhead and makes these models impossible to use with a high-velocity
stream of interactions.

An online RS should be able to provide recommendations to the incoming
users and update the necessary model parameters based on user feedback without
re-training the whole model. To satisfy these conditions, the online RS should
be equipped with a minimal and efficient online updating mechanism. There
are two questions to answer when devising an online updating mechanism: (1)
how to select the best instances for online updating instead of using all the
incoming instances? and (2) what is the best strategy that can be employed
for online updating while minimizing the information loss that stems from the
under-utilization of the incoming instances?

Forgetting obsolete instances has been commonly used to improve efficiency
in dynamic recommender environments [11,14,18]. Al-Ghossein et al. proposed
to use local models to track the changes in user preference over time [1], instead
of using fixed parameters such as the size of a sliding window. Matuszyka
et al. [13] presented a set of forgetting methods such as forgetting unpopular
items and user factor fading.

However, the existing approaches do not study how the instance selection
strategies affect the context-aware recommender task. Moreover, these methods
identify the “best” instances either by the changes of components (e.g., latent
vectors [13], local models [1], etc.) of users and items or by comparing a set of
stored ratings [18]. In contrast to these methods, we use the loss that is incurred
by an instance to determine its suitability for online updating. Accordingly, we
use Self-Paced Learning (SPL) to devise a curriculum that gradually feeds “easy”
to “hard” (“complex”) instances to the learning process.

Existing studies suggest that biasing towards the users and items with small
rating profiles is sufficient to achieve satisfactory performance while speeding
up online updating [17]. In line with this observation, we present an instance
selection method named as Profile-based Selection (PS) that selects incoming
instances with the users, items, and contextual feature values that have small
rating profiles. On the other hand, the practitioners in machine learning advocate
not to introduce “complex” instances to a training process at its initial phase
since those instances do not fit well with the existing model [10]. Usually, RSs
incur relatively large losses when incorporating the users and items with small
rating profiles since these RSs have not been sufficiently learned based on those
user behaviors and item characteristics. We use the notion of SPL for online
updates by changing its pace at regular intervals. Note that the SPL concept
has been introduced for strategizing batch learning, which trains the model over
a large number of epochs. However, in the online recommender task, a model
is updated by each incoming instance over a small number of epochs (usually
one or two epochs). Thus, it is not possible to employ SPL directly for online
updating. We use it as a scoring function that determines the weight of an

614 T. Thanthriwatta and D. S. Rosenblum

incoming instance, and this strategy is named as SPL-based Selection (SPS). In
summary, the contributions of this study are as follows:

– We present two strategies, which are integrated with Factorization Machines
(FMs), to select incoming instances for online updates based on the notion
of SPL and the rating profiles of users, items, and contexts.

– To the best of our knowledge, this is the first study on how to use SPL
with the online recommender task, which is evaluated by the test-then-learn
method [1,19].

– We perform a comparative analysis of how different instance selection meth-
ods behave in the presence of contextual information. Moreover, the use
of selected instances for online updating leads to information loss, and our
instance selection strategies especially SPS balance the trade-off between pre-
diction accuracy and efficiency while minimizing the impact of information
loss.

2 Instance Selection in Online Recommendation

As prior work [17] highlighted, it is essential to perform online updating for an
instance that relates to a new user and/or new item since the existing model
does not have any (or limited) information of new users and new items. This
approach makes the online updating of a recommender model biased towards
new users (items). However, this leads to suboptimal performance due to the
complete removal of the users and the items that have relatively large rating
profiles. Furthermore, it is possible that the incorporation of new users (items)
significantly changes the existing model. On the other hand, the SPL-based
training process initiates training using easy instances, which do not lead to
large errors, and gradually feeds more complex instances.

2.1 Profile-Based Selection

We begin by defining the Profile-based Selection (PS) which is based on the
degree of newness. Assume that an incoming instance ρ consists of user u, item
i and M number of contextual feature values {cm′}M

1 (e.g., “rainy”, “weekend”,
“morning”). The selection of ρ is defined by the following indicator function:

Dρ := I

⎡
⎣

(
δ(|u| + |i|) + (1 − δ)

M ′∑
m′=1

|cm′ |
)

< θ

⎤
⎦ , (1)

where |u| and |i| represent the number of ratings given by user u and received by
item i before the arrival of ρ, respectively. |cm′ | denotes the number of ratings
in which cm′ had already appeared. In other words, |u|, |i| and |cm′ | correspond
to the sizes of the rating profiles of u, i and cm′ , respectively. If the weighted
combination of the rating profiles of ρ is less than θ, then it can be used to
update the model in the online setting. We use δ to balance the rating profiles of

Instance Selection for Online Updating in Dynamic Recommender 615

users and items with the rating profiles of contextual values. Because they tend
to be drastically different. In a real-world context-aware recommender setting,
we can observe that the number of users and items are significantly larger than
the number of contextual values. Due to this imbalance, the rating profile size
of a user (an item) grow slowly compared to that of a contextual feature value
over time.

2.2 SPL-Based Selection

The aim of SPL is to select easy to complex training instances for robust model
learning [10]. In contrast to curriculum learning [3], where the model learning
is regulated by gradually including easy to complex samples based on different
types of heuristics, SPL incorporates parameters into model learning to support
the selection process. Zhang et al. [20] used the notion of SPL with the recom-
mender task to improve the optimization by avoiding bad local minima. Their
evaluation method is similar to the evaluation in the batch learning setting.
Moreover, they used the SPL concept to improve the overall optimization while
we use it to select “best” instances for online updates. Hence, the problem that
was addressed by them is different from ours.

Let ruic be the actual rating given by user u for item i under context c.
Assume that context c corresponds to d number of contextual feature values,
and j-th contextual feature value is denoted by cj . The dataset Ω contains
instances (e.g., < u, i, c1, ..., cd >), for which ratings are known. We represent
feature vectors using the one-hot encoding [16]. The SPL-integrated optimization
function is defined as follows:

min
w,V,p

∑
(u,i,c)∈Ω

puic�uic + λR(.) +
∑

(u,i,c)∈Ω

f(puic, α) s.t. p ∈ [0, 1]|Ω|. (2)

We use the log loss to compute the error �uic between the predicted rating
r̂uic and the actual rating ruic. It is defined as �uic = −(ruic log(r̂uic) + (1 −
ruic) log(1 − r̂uic)). Based on FMs, r̂uic is computed as follows:

r̂uic =
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

〈vi,vj〉xixj , (3)

where wi models the weight of xi, the i-th variable of the one-hot encoded feature
vector that corresponds to instance uic. The weight of the pairwise interaction
of i-th and j-th variables is modeled by the dot product of vi and vj . The
k-dimensional vector that corresponds to variable i is denoted as vi. λ is a non-
negative regularization parameter, and p is used to store the weights assigned
to the instances in Ω. In order to prevent over-fitting, L2 regularization func-
tion R(.) is used. Self-paced function or self-paced regularizer f(p, α) is used to
select instances based on weights. Kumar et al. [10] proposed a simple self-paced
regularizer f(p, α) = − 1

αp. When all model parameters except p are fixed, the
optimal puic value which is denoted by p∗

uic, is calculated as follows:

616 T. Thanthriwatta and D. S. Rosenblum

p∗
uic(α, �uic) =

{
1 if �uic < 1/α

0 otherwise.
(4)

For the sake of simplicity, we denote an instance by uic. Instance uic is considered
as easy and selected if p∗

uic = 1. The parameter α regulates the pace at which
the model learns from new instances. As 1

α increases gradually, more complex
instances will be used for model learning. SPL regularizer can be seen as a scoring
function for training instances. Usually in the use of SPL with batch learning,
the model is trained over a large number of epochs, and in each epoch, only a
few selected instances are used for training. At the end of an epoch, 1

α value
is increased, and it allows the training process to use another set of complex
instances for the training along with the used easy instances. Subsequently, all
the instances are fed to the model as the number of epochs grows. In other words,
during the first few epochs, an immature predictive model will be trained using
easy instances, and it is gradually exposed to complex instances as the model
becomes mature.

It may not be possible to directly use the concept of SPL for online updating
of the recommender task since SPL is defined for batch learning. However, it
is possible to conceptually consider performing online updates for all incoming
instances as a training process. The main difference is that in the traditional
use of SPL each instance is used for training a model in multiple epochs. How-
ever, in the online recommender task, we use each incoming instance for model
updating with one epoch. We thus use the SPL regularizer as a scoring function
to determine whether an incoming instance is suitable for online updating based
on its fit to the existing recommender model.

In contrast to the use of rating profiles, the loss that is incurred by an incom-
ing instance is used to define how suitable the instance is. We use two SPL reg-
ularizers to devise an easy-to-hard curriculum. In this case, more easy instances,
which do not incur a large error, are fed to the model and hard (complex)
instances will be fed gradually over time. The SPL regularizers are defined as
follows [9,10]:

f(p, α) = − 1
α
p (5)

f(p, α) =
1
α

(
1
2
‖p‖2 − p) (6)

Equation 6 leads to the following closed-form solution for the optimal p∗
uic.

p∗
uic(α, �uic) =

{
−α�uic + 1 if �uic < 1/α

0 if �uic ≥ 1/α .
(7)

Optimizing p with other variables (w, V) fixed. This can be easily
achieved by

min
p∈[0,1]Ω

∑
(u,i,c)∈Ω

puic�uic − 1
α

puic . (8)

Note that here we choose the SPL regularizer defined in Eq. 5 for clarity.

Instance Selection for Online Updating in Dynamic Recommender 617

Optimizing (w, V) with p fixed. In this case, the optimization problem
in Eq. (2) for solving these variables becomes

min
w,V

∑
(u,i,c)∈Ω

puic�uic + λR(.) . (9)

Based on previous work [10], we use an alternating strategy for the opti-
mization. Once an incoming instance uic arrives, the RS determines the weight
puic by minimizing Eq. 8. The closed-form solution for puic can be computed by
either Eq. 4 or Eq. 7. Recall that Eq. 8 is formulated based on the SPL regu-
larizer defined in Eq. 5, and it should be changed accordingly when other SPL
regularizers are used. Based on puic, the optimization Eq. 9 is done using Ada-
grad optimizer [6]. We monotonically decrease α value by μ > 1 (i.e., α ← α/μ)
in regular time interval (e.g., after observing 10,000 instances in the dynamic
setting). Note that μ is set to 1.1. When using PS, the model is updated by min-
imizing the optimization function defined in Eq. 9 by ignoring puic (i.e., setting
puic = 1).

3 Experiments

We conducted experiments with a real-world dataset—Gowalla [5]. We extracted
check-ins made in the New York City area (40.5 ≤ latitude ≤ 41.0, −74.5 ≤ longi-
tude ≤ −73.5) between 2009-04-23 and 2010-04-02 (inclusive). Based on check-in
timestamps, three temporal contextual features were extracted as follows: Times
of the day contains five values-Wee hours (00.00–05.59), Morning (6.00–10.59),
Noon (11.00–13.59), Afternoon (14.00–17.59) and Evening (18.00–23.59). The
contextual factor Days of the week contains seven days as values. WorkdayEnd
indicates whether check-ins are made during a weekend or not. Since the Gowalla
dataset contains only positive implicit ratings (i.e. a user checked-in to a point-of-
interest (POI)), a uniform negative sampling method was used to ensure robust
model training. We leave the study of the Effects of sampling approaches to the
online recommender task as a future work.

For each positive instance with the target value as 1, we randomly created
two negative instances with POIs which had not been checked-in by the user
and assigned 0 as target values. In total, the Gowalla dataset contains 121,299
positive and negative ratings given by 2,482 users for 10,919 POIs. A one-hot
encoded feature vector of the Gowalla dataset contains 13,415 feature values.

As per the common practices in online recommendations [1], the model is ini-
tialized using a small dataset. Note that the Gowalla dataset is chronologically
ordered. We first split our dataset into train and test subsets. We used the first
30,000 ratings as the train set, and the rest of the data is used as a stream of
incoming instances for testing. A validation set with 5000 ratings is also extracted
from the train set for tuning hyperparameters. A large test set (≈ 75% of the
dataset) has been used to simulate real-world dynamic recommender environ-
ments. For this simulation, we adopt the test-then-learn evaluation method.

618 T. Thanthriwatta and D. S. Rosenblum

The recommender models have to first provide recommendations for each
incoming instance (i.e., user interaction). Based on user feedback (i.e., test) on
the produced recommendations, the models are updated (i.e., learn) to keep
parameters refreshed. Note that we produce recommendations only for the
incoming positive instances since the negative instances do not represent an
actual user interaction. However, the negative instances in the test set are used
for the online updating process to avoid the learning bias towards the positive
instances.

On the arrival of an incoming instance, we truncate a rank list at 100 items
by following the work of He et al. [8]. The rank list includes the item that
appeared in the instance and 99 items that had not been rated/checked-in by the
user (i.e., the user of the instance) previously. Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG) [7] are used as the evaluation metrics.
For both metrics, we report the average result considering all the positive test
instances. Both are positive-oriented metrics, meaning that higher values for
these metrics indicate better performance.

Baselines. PS and SPS are compared against the following baselines. Note that,
for SPS, we use the SPL regularizer defined in Eq. 5: (a) RKMF: This is an online
update mechanism integrated with Matrix Factorization (MF) [17]. Incoming
instances were selected based on the profile sizes of users and items by favoring
new users and new items for online updating. We use the linear kernel and set m
of RKMF to the default value of 50; (b) ISGD: ISGD is an incremental MF approach
that uses only positive feedback (instances) to update the model [19]; (c) UFF:
User factor fading is one of the latent factor forgetting methods proposed by [13].
A constant has been used to regulate the effect of forgetting. As the name implies,
latent vectors of users are penalized over time; (d) UnPOP: In this baseline, the
latent vectors of unpopular items are penalized [13]; (e) POP: This strategy is the
contradiction of UnPOP [13]. The popularity of an item is determined based on
the number of ratings that the item had received; and (f) OD: Outlier discarding
filters “outlier” of instances based on error values [4]. The authors used this idea
to filter out historical ratings in the training, and we adopt this method in the
recommender task where each instance is utilized for online updating only if the
following condition holds: |r̂uic − ruic| > β.sdU (u), where r̂uic and ruic denote
the predicted rating and the ground truth of the instance, and sdU (U) is the
standard deviation of the prediction errors for all previous ratings given by u,
and β is the controlling parameter of the forgetting method.

Parameter Setting. For all baselines, we set the learning rate and L2 regular-
ization parameter to 0.001 and 0.1, respectively. The hyperparameter embedding
size k was searched in {16, 32, 64, 128}, and k was set to 16 and 32 in PS and SPS,
respectively. As presented by the authors, the forgetting factors of UFF, UnPOP
and POP were set as 0.5, 2 and 1.00001, respectively. β of OD was set to 1.5.
We empirically set α to 1.8, δ to 0.98, and θ to 1600. During the initial batch
training, all models, except ISGD, were trained for 10 epochs, and PS and SPS

Instance Selection for Online Updating in Dynamic Recommender 619

used mini-batches (size of 512). Note that, in online updating, we considered the
test instances individually and updated all the model using a single epoch.

(a) HR@5 (b) NDCG@5

Fig. 1. Prediction accuracy.

3.1 Performance Comparison

Figure 1a and 1b show the comparisons between all methods when generating
top-5 recommendations. SPS outperforms all methods by achieving 23.6% and
27.1% relative improvements over the best competitor PS w.r.t. HR and NDCG
values, respectively. The improvements over the best competitor are statistically
significant with p < 0.05 (two-tailed paired t-test). Compared to the MF-based
methods which do not use contextual information, the FM-based methods (SPS
and PS) show superior performance on the sparse Gowalla dataset. We argue that
this improvement is attributed to (1) the use of temporal contextual information
and (2) the ability to lead to a better model within a limited number of epochs
during the initial training.

Out of all MF-based models, UFF shows better performance. In UFF, during
the online update of a user latent vector, the current user vector is computed
by multiplying the previous vector by a forgetting factor. Note that UFF does
not completely ignore user interactions as proposed in RKMF. The performance
improvement of UFF over RKMF indicates the adverse effect of neglecting the inter-
actions of users who have higher rating profiles in online updates. We believe that
the performance decline of PS against SPS is also caused by significant informa-
tion loss that happens especially due to the disregard of short-term preferences
of the users who have large rating profiles. On the contrary, SPS assigns 0 weights
for the interactions that induce higher losses to the already learned model. The
decision to incorporate a user interaction does not depend on the rating profile
of the user (or the item or the contextual feature values). Irrespective of the size
of a user’s rating profile, SPS utilizes an interaction made by that specific user
for online updating if it does not deteriorate the already learned model.

Impact of Testing Data. The performance of SPS boosts when the test data
size decreases (or the train data size increases). This is an expected observation
because the use of more data for initial training improves prediction accuracy.

620 T. Thanthriwatta and D. S. Rosenblum

(a) Effects of α. (b) Effects of δ.

Fig. 2. Sensitivity of parameters.

Decreasing the train set drastically leads to suboptimal performance in general,
mainly due to the poorly trained models that are highly sensitive to the users,
items, and contextual feature values with small rating profiles. We thus highlight
the importance of utilizing a sufficient amount of train data, without overly
reducing.

Efficiency. Ignoring instances in PS and SPS is the main reason for the improve-
ments of efficiency. In FMs, the time complexity for updating an instance is
O(km̄) [16], where k is the dimension of a latent vector which corresponds to a
feature value, and m̄ is the number of non-zero feature values (i.e., variables) pre-
sented in the instance. Let F be the number of test instances in a recommender
environment. Thus, updating all instances takes O(km̄F) time.

However, due to the instance selection in online updating, we deliberately
reduce F , and it leads to gaining efficiency. For example, F can be approximately
reduced to F

2 by setting δ to 0.98 and θ to 1600 in PS or by setting α to 2.1
in SPS. We thus define the time of complexity of the online updating process
integrated with our instance selection strategies as O(km̄F ′), where F ′ < F .

3.2 Sensitivity of Parameters

As can be seen in Fig. 2a, the performance of SPS slightly decreases with the
increase of α. We conducted a micro-level analysis on this phenomenon. We
observe that the increase of α discourages online updating especially at the
initial stage of the testing process. For example, when α is set to 2.4, the RS
does not update the model during the arrivals of the first 50,000 test instances
since the instances are set p∗

uic (of Eq. 4) to 0. Moreover, in that setting, the
model disregards 61% of instances in total. Omitting a high percentage of testing
instances hinders prediction accuracy.

On the contrary, we observe that all the test instances, without selecting, were
utilized when α is 1.2; however, this setting is computationally inefficient. Setting
α to 1.8 shows a better balance between prediction accuracy and efficiency. If
we compare the two settings where α is set to 1.2 and 1.8, when α is 1.8, the
online updating declines accuracy only by 2.5% while utilizing 71.8% of testing
instances. When α is 2.1, only 52.6% of testing instances are used, and the

Instance Selection for Online Updating in Dynamic Recommender 621

performance declines against the setting where α is 1.2 just by 3.4%. We thus
argue that the use of SPL is important to improve the overall efficiency of the
online updating process while achieving comparable prediction accuracy.

Figure 2b plots how NDCG@5 values obtained by PS change with different
settings of δ. It is clearly visible that the use of higher values of δ improves the
prediction accuracy. In fact, setting δ to 0.8, 0.85, and 0.9 shows similar per-
formance since those settings ignore testing instances similarly. We can observe
that setting δ to 1 (i.e., disregard the impact of the profile ratings of contextual
feature values) slightly increases the performance. However, the setting where
δ to 0.98 declines performance by 12.1% while utilizing only 46.3% of testing
instances. Note that the setting where δ is 1 utilizes 93.7% of testing instances.

Based on this effect, we can conclude that the use of contextual information
with PS filters out a large number of testing instances, which makes the online
updating method efficient, with a decline of prediction accuracy. These obser-
vations along with the performance comparison illustrated in Fig. 1b show the
superior performance of SPS in the online updating process in terms of balancing
the trade-off between prediction accuracy and efficiency compared to PS.

3.3 Case Study

Baltrunas et al. released the Frappe dataset1 that consists of 96,203 usage logs
as implicit ratings of 957 users on 4,082 mobile applications under different con-
texts [2]. We use seven contextual factors (e.g., weather) excluding the attribute
“cost”. If a user has used an app less than 5 times under a context, we consid-
ered those events (i.e., app usages) as negative instances and assigned 0 as their
target values. The remaining instances are assigned 1. Due to the unavailability
of timestamps in the Frappe dataset, the default order of ratings is used for split
data, and the split ratio is similar to that of the Gowalla dataset. It is evident
that the use of contextual features generally improves prediction accuracy as
shown in Fig. 1a and 1b.

We further analyse this phenomenon by comparing SPS, with SPS\C. SPS\C,
which is a variant of SPS, considers users and items to construct feature vectors
by ignoring contextual feature values. Both approaches show comparable perfor-
mance on the Gowalla dataset. However, on the Frappe dataset, SPS outperforms
SPS\C by 1.2% and 3.3% in terms of HR@5 and NDCG@5 values, respectively.
This result indicates that the effectiveness of SPL for instance selection in the
presence of a large number of contextual feature values.

4 Related Work

Most of the early attempts of handling streams of user interactions and updat-
ing user-user similarities are based on neighborhood models [15,18]. Vinagre and

1 http://web.archive.org/web/20180422190150/http://baltrunas.info/research-
menu/frappe.

http://web.archive.org/web/20180422190150/http://baltrunas.info/research-menu/frappe
http://web.archive.org/web/20180422190150/http://baltrunas.info/research-menu/frappe

622 T. Thanthriwatta and D. S. Rosenblum

Jorge presented a forgetting approach to gradually forget older instances using
sliding windows and “fading factors” [18]. In 2014, Matuszyk and Spiliopoulou
proposed two forgetting techniques and integrated those with MF [11]. They
kept ratings of each user as a list, and once a new rating is provided by a user,
the outdated rating was removed from her list of ratings while adding the newly
arrived rating. After that, following the test-then-learn approach, the latent vec-
tor of the incoming user is updated by utilizing the ratings in the incoming user’s
list. Matuszyka et al. proposed a novel forgetting method in which they obtained
a new latent vector of an incoming user by incremental training and compared it
with the previously learned user vector [12,13]. Furthermore, the authors have
discussed several other forgetting strategies based on item popularity and change
detection.

Rendle and Schmidt-Thieme [17] proposed a filtering mechanism to select
incoming user instances based on their profile sizes. If a user (item) of an incom-
ing instance has a small profile, then the model incorporates such instances for
online updating. Moreover, they proposed to consider the error between the
predicted and true values of a user interaction. Devooght et al. also utilized
Rendle’s work [17] for online updating. Al-Ghossein et al. used local models to
track changes in user preferences over time [1]. They argued that changes in user
preferences do not occur uniformly. Their approach is based on the Item-based
KNN method, and for each incoming instance, their model compares a set of
local models to detect changes.

5 Conclusion

We provide an exploratory study on how instance selection mechanisms affect
online updating, which is an essential component of the online recommender
task. In addition to defining rating profile-based instance selection with the use
of contextual feature values, we show how to utilize Self-Paced Learning, which
has been traditionally used in the batch-learning setting, with online updating.
To the best of our knowledge, this is the first attempt to integrate the notion of
SPL with online recommendations. Our results indicate the impact of contexts
on balancing the trade-off between prediction accuracy and efficiency. Moreover,
we discuss how different usages of SPL affect overall performance. In the future,
we believe that it is important to study different types of data manipulation
mechanisms with online updating to further minimize the impact of information
loss that is caused due to the disregard of instances, while improving efficiency.

References

1. Al-Ghossein, M., Abdessalem, T., Barré, A.: Dynamic local models for online rec-
ommendation. In: Companion Proceedings of the the Web Conference 2018, pp.
1419–1423 (2018)

2. Baltrunas, L., Church, K., Karatzoglou, A., Oliver, N.: Frappe: understanding
the usage and perception of mobile app recommendations in-the-wild. CoRR
abs/1505.03014 (2015). http://arxiv.org/abs/1505.03014

http://arxiv.org/abs/1505.03014

Instance Selection for Online Updating in Dynamic Recommender 623

3. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pp.
41–48 (2009)

4. Chen, J., Li, H., Xie, Q., Li, L., Liu, Y.: Streaming recommendation algorithm
with user interest drift analysis. In: Shao, J., Yiu, M.L., Toyoda, M., Zhang, D.,
Wang, W., Cui, B. (eds.) APWeb-WAIM 2019. LNCS, vol. 11642, pp. 121–136.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26075-0 10

5. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1082–1090
(2011)

6. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

7. He, X., Chen, T., Kan, M.Y., Chen, X.: TriRank: review-aware explainable recom-
mendation by modeling aspects. In: Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, pp. 1661–1670. ACM
(2015)

8. He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online
recommendation with implicit feedback. In: Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 549–558 (2016)

9. Jiang, L., Meng, D., Mitamura, T., Hauptmann, A.G.: Easy samples first: self-
paced reranking for zero-example multimedia search. In: Proceedings of the 22nd
ACM International Conference on Multimedia, pp. 547–556 (2014)

10. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models.
In: Advances in Neural Information Processing Systems, pp. 1189–1197 (2010)

11. Matuszyk, P., Spiliopoulou, M.: Selective forgetting for incremental matrix factor-
ization in recommender systems. In: Džeroski, S., Panov, P., Kocev, D., Todorovski,
L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 204–215. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11812-3 18

12. Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A.M., Gama, J.: Forgetting
methods for incremental matrix factorization in recommender systems. In: Pro-
ceedings of the 30th Annual ACM Symposium on Applied Computing, pp. 947–953
(2015)

13. Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A.M., Gama, J.: Forgetting
techniques for stream-based matrix factorization in recommender systems. Knowl.
Inf. Syst. 55(2), 275–304 (2018)

14. Nasraoui, O., Cerwinske, J., Rojas, C., Gonzalez, F.: Performance of recommen-
dation systems in dynamic streaming environments. In: Proceedings of the 2007
SIAM International Conference on Data Mining, pp. 569–574. SIAM (2007)

15. Papagelis, M., Rousidis, I., Plexousakis, D., Theoharopoulos, E.: Incremental col-
laborative filtering for highly-scalable recommendation algorithms. In: Hacid, M.-
S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI),
vol. 3488, pp. 553–561. Springer, Heidelberg (2005). https://doi.org/10.1007/
11425274 57

16. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on
Data Mining, pp. 995–1000. IEEE (2010)

17. Rendle, S., Schmidt-Thieme, L.: Online-updating regularized kernel matrix factor-
ization models for large-scale recommender systems. In: Proceedings of the 2008
ACM Conference on Recommender Systems, pp. 251–258 (2008)

https://doi.org/10.1007/978-3-030-26075-0_10
https://doi.org/10.1007/978-3-319-11812-3_18
https://doi.org/10.1007/11425274_57
https://doi.org/10.1007/11425274_57

624 T. Thanthriwatta and D. S. Rosenblum

18. Vinagre, J., Jorge, A.M.: Forgetting mechanisms for scalable collaborative filtering.
J. Braz. Comput. Soc. 18(4), 271–282 (2012)

19. Vinagre, J., Jorge, A.M., Gama, J.: Fast incremental matrix factorization for rec-
ommendation with positive-only feedback. In: Dimitrova, V., Kuflik, T., Chin, D.,
Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 459–
470. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08786-3 41

20. Zhang, Y., Wang, H., Lian, D., Tsang, I.W., Yin, H., Yang, G.: Discrete ranking-
based matrix factorization with self-paced learning. In: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2758–2767 (2018)

https://doi.org/10.1007/978-3-319-08786-3_41

Text Analytics

Fusing Essential Knowledge
for Text-Based Open-Domain

Question Answering

Xiao Su1 , Ying Li2(B), and Zhonghai Wu2

1 Center for Data Science, Peking University, Beijing, China
sugarshaw951018@pku.edu.cn

2 National Engineering Research Center of Software Engineering,
Peking University, Beijing, China
{li.ying,wuzh}@pku.edu.cn

Abstract. Question answering (QA) systems can be classified as either
text-based QA systems or knowledge base QA (KBQA) systems, depend-
ing on the used knowledge source. KBQA systems are generally domain-
specific and can’t deal with a variety of questions in the open-domain
QA setting, while text-based systems can. However, text-based systems’
performance is far from satisfactory. This paper focuses on the text-
based open-domain QA setting. We argue that text-based approaches’
poor performance is largely caused by the lack of knowledge, which is
often essential for answering the question and can be easily found in
knowledge base (KB), in plain text. So in this paper, we propose a new
text-based open-domain QA system called KF (Knowledge Fusion)-QA,
which uses KB as a second knowledge source to incorporate essential
knowledge into text to help answer the question. Our system has a
Knowledge-Aware Encoder which extracts essential knowledge from KB
and performs knowledge fusion to output knowledge-aware (KA) text
representations. With this KA representations, the system first re-rank
the retrieved documents, then read the re-ranked top-N documents to
give the answer. Our system significantly outperforms existing text-based
QA systems on multiple open-domain QA datasets, demonstrating the
effectiveness of fusing essential knowledge.

Keywords: Question answering · Knowledge base · Document
retrieval · Graph attention neural network

1 Introduction

Open-domain question answering (QA) has broad application prospects. Open-
domain literally means the questions can be of any type, and an ideal open-
domain QA system should be able to answer any question. Depending on the
main knowledge source used to answer the questions, there are two kinds of
QA systems: text-based QA and Knowledge Base QA (KBQA). Using text can
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 627–639, 2021.
https://doi.org/10.1007/978-3-030-75765-6_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_50&domain=pdf
http://orcid.org/0000-0002-0666-7741
https://doi.org/10.1007/978-3-030-75765-6_50

628 X. Su et al.

handle most types of questions by extracting text spans as answers from a large-
scale corpus such as Wikipedia, which covers various domains. KBs more directly
support inferences, which is often needed in answering a question, hence KBQA
generally performs better on questions whose answers can be found in KBs.
However, KBQA systems can’t deal with descriptive questions like “How to
correctly wear a mask?” or “What is COVID-19?”, and under the open-domain
QA setting, questions can be of any type. For open-domain QA, text-based QA is
a better choice. But text-based QA systems’ performance is far from satisfactory,
an effective way for improving text-based QA systems is needed.

Existing text-based open-domain QA systems generally follow a 2-stage
framework proposed by DrQA [5], which consists of a Retriever that retrieves
relevant documents from a large-scale corpus and a Reader which reads the
retrieved documents to give the answer. This process is quite similar to how
human answer an unfamiliar question, we will also look for documents in the
library or on the web, then read them to find the answer. However the difference
is, human is aware of a large amount of knowledge in this whole process, while
machine is not. This difference greatly limits the performance of existing sys-
tems, as knowledge is often quite essential for answering the question. Moreover,
due to time efficiency and computational complexity considerations, retrievers
in previous works are designed too simple, thus can’t accurately find the relevant
documents of the question.

Fig. 1. An example of questions that are hard to answer only using surface text, but
much easier with common sense knowledge in KB. In this example, it’s hard to conclude
that “sign with” means signing with a team, and “Dirk” means Dirk Nowitzki only
reading the document. But with the knowledge that KB provides, it’s easy to draw
such conclusions and get the answer.

Knowledge bases (KBs) contain rich knowledge information which is helpful
for QA, as shown in Fig. 1. Also, they are specially designed for machines to
read and have been widely applied in NLP research in the recent years. Thus

Fusing Essential Knowledge for Text-Based Open-Domain QA 629

we believe KB can be a second knowledge source for text-based QA system. We
argue that the problems mentioned before can be solved by introducing KB.
By adding knowledge into text and getting the knowledge-aware text represen-
tations, it’s certainly easier to understand the document and find the answer.
In addition, with the text representations that contain not only semantic infor-
mation, but also useful knowledge, we can more accurately find the relevant
documents by re-ranking.

In this paper, we present a new text-based open-domain QA system that is
capable of selectively extracting knowledge that is essential for QA and incor-
porating it into text. With the enhanced knowledge-aware text representations,
our system first re-ranks the documents, then reads the selected documents to
give the answer. Compared to several other famous text-based open-domain QA
systems, ours achieves consistent improvements on 4 popular open-domain QA
datasets. We name our system KF (Knowledge Fusion)-QA.

2 Related Work

2.1 Text-Based Question Answering

Text-based open-domain QA is a long studied problem. Recent work has focused
on a “Retriever-Reader” 2-stage framework that combines information retrieval
with machine reading comprehension (MRC) [5]. A lot of efforts have been made
to improve this 2-stage framework. For example, R3 [17] uses a Ranker-Reader
framework, in which Ranker and Reader shares an encoder, and uses reinforce-
ment learning to train the Ranker, hoping to improve the retrieval accuracy by
re-ranking. Multi-step reasoner [6] is also a new framework aiming at improving
retrieval accuracy, but does it by training the Retriever with Retriever-Reader
interactions. As pre-trained language models are widely used in NLP, there are
also works that apply BERT-based dense retriever like ORQA [11] and DPR [10].

However, these works still only use the surface text, hence they have not
achieved a notable performance improvement. Our system also has an encoder
that provides inputs for both ranker and reader. However, unlike R3, our encoder
is knowledge-aware, which means we can incorporate knowledge into the text
representations, thus achieving a much better performance.

2.2 Knowledge Base Question Answering

Early works on question answering over knowledge bases do not use any external
text, however recently, several works have succeeded in combining KBs with text
from a large-scale corpus to increase factual coverage. These works can be clas-
sified as either early-fusion approaches or late-fusion approaches. Early-fusion
approaches like Graft-Net [15] take text as special graph nodes to construct a
heterogeneous graph containing both text and KB facts in the early stage. While
late-fusion approaches [18] will get text-related representations and KB-related
representations for entities, then aggregate them in the final answer prediction

630 X. Su et al.

stage. Our goal is to incorporate knowledge into text, not text into KB. However
late fusion approaches can still be inspiring to our work, as it combine KB and
knowledge in the form of embedding rather than graph data.

3 Our System: KF-QA

3.1 Overview

Fig. 2. Overview of our open-domain QA system KF-QA.

KF-QA follows the classic “Retriever-Reader” 2-stage framework, as shown in
Fig. 2.

In the information retrieval stage, we use the same TF-IDF based Retriever
of DrQA to find top-M relevant documents from a large corpus. As we introduce
KB into the system, we have to annotate entities in the questions and documents
with an entity linking tool, we use tagme [8] in practice.

In the reading comprehension stage, we incorporate knowledge into text and
encode text using Knowledge-Aware Encoder, the core component of our system,
which will be explained in detail later in Sect. 3.2, and get the question represen-
tation qka and document representations {p1, p2...pn}. With the enhanced text
representations, we first re-rank the top-M documents using a Ranker to select
the final top-N documents as evidence. Then the Reader will read the selected
documents and output the final answer. Details about Ranker and Reader will
be explained in Sect. 3.3.

3.2 Knowledge-Aware Encoder

As shown in Fig. 3, the Knowledge-Aware (KA) Encoder consists of a SubGraph
Encoder, which extracts KB entity knowledge by encoding the entities on a
question-related KB subgraph, and a text Encoder which encodes text and incor-
porates knowledge extracted by SubGraph Encoder in the encoding process.

Fusing Essential Knowledge for Text-Based Open-Domain QA 631

Fig. 3. Architecture of KA Encoder. a) shows part of the KB subgraph related to ques-
tion “Who does Joakim Noah play for?”, the entity encodings in SubGraph Encoder
are passed to Text Encoder for knowledge fusion.

SubGraph Encoder. The SubGraph Encoder aims at extracting KB entity
knowledge that is essential for answering the questions, and does it by encoding
the entities. To make sure the knowledge we extract is useful for answering the
question, we first retrieve a small question-related KB subgraph using the topic
entities in the question as seed nodes, and only consider this subgraph. Also, we
need to pay more attention to important entities, so we apply graph-attention
technique (GAT) [16] to encode the entities. Instead of using standard GAT,
we specifically modify it for the QA task setting. Under the QA task setting,
important entities are defined like this: they are either mentioned in the ques-
tion, or their neighbor relations are relevant to the question. The first factor
can be simply described by a binary feature, while for the second, we have to
evaluate how relevant a relation is to the question. To do this, we first tokenize
the relations, then encode questions and relations to calculate a matching score
sr for relation r. This is similar to measuring semantic similarity, so we apply
a fixed Universal Sentence Encoder (USE) [3], which is trained on a large cor-
pus including semantic similarity corpus, and calculate the score by simple dot
product.

For central entity e and neighbor (ri, ei), with the the binary feature I[ei ∈ εq]
(εq is the set of topic entities of the question) and matching score sri

, we combine
them with the original GAT attention coefficient coe,ei

(with sigmoid to align with
the first two factors) to calculate the attention score as:

αe,ei
∝ exp(I[ei ∈ εq] + sri

+ sigmoid(coe,ei
))

632 X. Su et al.

This modified GAT is partly inspired by [18], however [18] calculates the match-
ing score with a simple LSTM and does not consider the original GAT attention
coefficient, thus the attention score is actually fixed. According to our experi-
ment, this fixed attention performs worse than our dynamic one.

Then the entity representation is updated as:

é = γee + (1 − γe)
∑

(ei,ri)∈Ne

αe,ei
σ(Weei)

γe = g(e,
∑

(ei,ri)∈Ne

αe,ei
σ(Weei)), g(x, y) = sigmoid(W[x; y])

where e and é is the entity embedding before and after the update, σ is an
activation function. γe is a trade-off parameter calculated by a linear gate func-
tion, which controls how much information in the original entity representation
should be retained.

Text Encoder. For the text encoder, we use the Attentive Reader [4], which
is also used in DrQA, and improve it by knowledge fusion. BERT-based model
is not used because we believe pre-trained models already contain some type of
knowledge in the pre-training process, using it may not be convincing enough
to show the effectiveness of bringing in KB knowledge. We explain question
encoding and document encoding separately, as the encoding strategy is different.

Question Encoding
For question encoding, we encode the question as a single vector. First we apply a
Bi-LSTM to encode each token and get {q1, ..., qn} for each question token. Then
encode the whole question with a self-attentive encoder as: q =

∑
i αiqi , αi ∝

w · qi
However, this representation we get does not contain knowledge yet. We need

to reformulate the question with knowledge of its topic entities. Here we apply a
gating mechanism to do this reformulation as follows and get the final question
representation qka :

qka = βqq + (1 − βq) tanh(W[q;eq ; q − eq]),eq = (
∑

e∈εq

e)/|εq|

εq is the set of topic entities of the question, and βq is a linear gate: βq =
σ(Wgate[q;eq ; q − eq]).

Document Encoding
For document encoding, since we need to get each token’s knowledge-aware rep-
resentation, knowledge fusion has to be done in a more fine-grained way. Specif-
ically, we first add knowledge into each token’s feature, then feed token features
that contain knowledge into the Packed Bi-LSTM encoder to get the knowledge-
aware representations. With the KB entity annotations, we fuse entity knowledge
and the original token features in a similar gating mechanism to the question
reformulation:

fka
i = βfi + (1 − β)efi

Fusing Essential Knowledge for Text-Based Open-Domain QA 633

β = σ(Wgate[fi ;efi
])

where fi is the original token-level feature, and efi
is the embedding of the

entity linked to token i. While for those tokens who don’t link to any KB entity,
we just keep their feature the way it is. Finally, we get the output token-level
encodings {p1, p2...pn} as the document representations.

3.3 Ranker and Reader

Ranker. The Ranker re-ranks the top-M documents with the knowledge-
aware representations of document tokens {p1, p2...pn} and question qka . We
first compute the representation of the whole document as: d =

∑
i αipi ,

the importance of each token αi is computed by question-document attention:
αi ∝ exp(qka · pi). Then we compute the probability of the current document
being relevant to the question with a bilinear classifier as:

P = sigmoid(dWqka)

and selects top-N (N � M) documents with the highest probabilities.

Reader. Our Reader takes the representations from the Knowledge-Aware
Encoder as inputs, and computes the probability of each token being the start
and end of the answer span in a way similar to the Ranker:

Pstart = Softmax(piWstartqka), Pend = Softmax(piWendqka)

During prediction, we set a length limit of the answer span and choose the span
that maximizes Pstart ∗ Pend.

3.4 Training

We train the whole system using multi-task learning. We regard Ranker and
Reader as two models sharing the same Encoder, which is the KA-Encoder.
Ranker’s task is a binary classification task that decides whether the given doc-
ument contains answer of the question. Loss for Ranker is defined as:

Lranker = BCE(Pranker, Ptruth)

Pranker is the probabilities returned by Ranker, Ptruth is the ground truth, and
BCE is the Binary Cross Entropy loss function.

Reader’s task is to find the answer’s start and end positions in the given
document. Its loss is defined as:

Lreader = CE(startpredict, starttruth) + CE(endpredict, endtruth)

startpredict and starttruth is the prediction and ground truth of start indexs, the
same for endpredict and endtruth. CE is the Cross Entropy loss function.

634 X. Su et al.

Loss of the entire system is defined as:

L = Lranker + βLreader

β is a balancing parameter, we set it to 1.0 in our experiments .
Training data is provided by the Pre-Retriever. For one question, we retrieve

top-M documents, all M documents will be used to train the Ranker, while only
those who contain answers will be used to train the Reader.

4 Experiments

4.1 Setup

Datasets
We conduct experiments on 4 public open-domain QA datasets:

WebQuestions [1] is created to answer questions from the Freebase KB. It was
built by crawling questions through the Google Suggest API, and then obtaining
answers using Amazon Mechanical Turk.

WikiMovies [13] is originally built from the OMDb and MovieLens databases.
The questions are all movie-related, and can be answered using a subset
of Wikipedia. A small corpus and a movie-specific KB is constructed from
Wikipedia and released with the dataset, so we use the given corpus and KB in
the experiments.

SquAD [14] is the Stanford QA dataset. In the original dataset, relevant
documents are already given for each question. So we take only the question-
answer pairs and discard the given documents to form an open-domain QA
setting.

Quasar-T [7] contains question-answer pairs from various Internet sources.
For each QA pair, documents retrieved by their IR model from the ClueWeb09
data source is also given (100 short documents and 5 long documents). So instead
of using our Pre-Retriever to retrieve from a corpus, we use the given documents.

The first two datasets are KBQA datasets, which means their answers are all
KB entities, and we convert them to text form. While for the rest two, answer
form is originally text. The question related KB subgraphs are retrieved by
running Personalized PageRank (PPR) [9] around the topic entities annotated
by tagme [8]. We choose Wikipedia as corpus for WebQuestions and SquAD
as the rest two have their own corpus. And Freebase [2] is used as KB for all
datasets except WikiMovies.

Evaluation Metrics
For evaluating the system’s overall performance, Exact Match (EM) is certainly
used, F1 score is also considered as there are situations where the predicted
answer and the ground truth are partly overlapped. We also conduct experiments
on Ranker, and retrieval precision is used for evaluating Ranker’s performance.

Fusing Essential Knowledge for Text-Based Open-Domain QA 635

Baselines
We compare our system with 6 text-based systems: DrQA [5], R3 [17], DS-QA
[12], Multi-Step Reasoner [6], ORQA [11] and DPR [10]. We also use GraftNet
[15], a state-of-the-art KBQA system, as a baseline on the first 2 datasets to see
how close our system can get to KBQA systems.

4.2 Overall Performance

Table 1. Overall performance results.

Dataset WebQuestions Wikimovies SquAD Quasar-T

F1 EM F1 EM F1 EM F1 EM

KF-QA (Ours) 43.4 41.9 80.5 79.6 43.2 38.2 51.2 43.6

DrQA [5] – 19.5 – 34.3 – 28.4 – –

R3 [17] 24.6 17.1 39.9 38.8 37.5 29.1 40.9 34.2

Multi-step reasoner [6] – – – – 39.2 31.9 46.7 35.9

DS-QA [12] 25.6 18.5 – – – – 49.3 42.2

ORQA [11] – 36.4 – – – 20.2 – –

DPR [10] – 34.6∗ – – – 29.8 – –

GraftNet [15] 62.3 68.7 97.3 96.8 – – – –

* DPR achieves 42.4 EM on WebQuestions when jointly trained with other
datasets. For fair comparison, we show the result when trained with only
WebQuestions itself.

We use F1 score and Exact Match (EM) to evaluate the system’s overall perfor-
mance. In practice, we retrieve 50 documents with the Retriever (M = 50), and
for fair comparison, only read top-1 document to give the answer (N = 1).

The overall performance results are shown in Table 1. As we can see, our sys-
tem significantly outperforms other text-based systems on all datasets. Among
the four datasets, improvement on the first two datasets is more significant com-
pared to the rest two. As the first two datasets are KBQA datasets, whose
questions are all KB-related, and our system mainly improves the performance
by bringing in KB knowledge, this actually makes sense.

Although our system performs best among all text-based QA systems, there
is still a certain gap compared to KBQA systems on KBQA datasets. But as
mentioned before, KBQA can’t handle various types of questions under the open-
domain QA setting, while our system can. We believe this gap is partly due to the
different task setting: KBQA’s answer search space is much smaller than text-
based QA . However this gap still indicates that there’s much room for improve-
ment, and we plan to work on finding a more subtle way of fusing knowledge to
further improve our system in the future.

636 X. Su et al.

4.3 Ablation Study: Ranker Performance

We also investigate the performance of our Ranker to validate our hypothe-
sis that re-ranking does help. We compare the retrieval precision with/without
Ranker’s re-ranking. In practice, we retrieve 50 documents for a single question
in the pre-retrieving step, and evaluate precision of top-K ranked documents for
K = 1,3,5.

Table 2. Ranker performance results.

Dataset WebQuestions Wikimovies

P@1 P@3 P@5 P@1 P@3 P@5

Without re-ranking 10.43 22.45 28.37 42.38 62.32 69.6

After re-ranking 42.77 50.88 53.93 85.31 88.49 89.04

Since this is just for qualitative analysis, we only conduct experiments on
2 datasets. From the results in Table 2, we can tell that re-ranking can largely
improve retrieval precision, which demonstrates its effectiveness as a mechanism.
We can also tell that this improvement, in terms of P@K, is more significant when
K is smaller, which is quite satisfying because in practice, K is normally 1.

4.4 Case Study

Table 3 shows two examples of our system. For comparison, we also show the
retrieved document and predicted answer of DrQA. From the table we find that:

(1) For question “What jersey did the Broncos wear for Super Bowl 50?”, DrQA
retrieves a document about “Super Bowl”, which actually does not contain
the right answer. So it gives a random answer like “Los Angeles Rams”.
While KF-QA correctly returns a document about “Super Bowl 50” and
gives the right answer. That’s because “Super Bowl 50” as a whole, is an
entity in the KB. Knowing this knowledge, it’s easy to retrieve documents
about it. But DrQA is not aware of it, hence retrieves a document in which
the word “Super Bowl” appears a lot.

(2) For question “Who does Jordan Palmer play for?”, the 2 systems retrieve
the same document about “Jordan Palmer”, which contains the right answer
“Jacksonville Jaguars”, but DrQA mistakenly take the first team name
appeared in this document, “UTEP”, which is Jordan Palmer’s college team,
as the answer. With the help of KB, KF-QA is aware that Jordan Palmer
is a professional player, and “UTEP” is a college team, thus can easily dis-
tinguish it from the right answer.

Fusing Essential Knowledge for Text-Based Open-Domain QA 637

Table 3. Case study examples. Doc-topic means topic of the document. The first
example illustrates that our system can find more relevant document. The second one
shows that with the same document, our system can easily find the right answer with
KB’s help.

Question What jersey did the Broncos wear for Super Bowl 50?

Answer “road white jerseys”,“matching white”, “white”

KF-QA Doc: Super Bowl 50
content: As the designated home team in the annual rotation between
AFC and NFC teams, the Broncos elected to wear their road white
jerseys with matching white pants. Elway stated,“We’ve had Super
Bowl success in our white uniforms.” The Broncos last wore matching
white jerseys and pants in the Super Bowl in Super Bowl XXXIII, ...

DrQA Doc: Super Bowl
content: No team has ever played the Super Bowl in its home
stadium. Two teams have played the Super Bowl in their home
market: the San Francisco 49ers, who played Super Bowl XIX in
Stanford Stadium instead of Candlestick Park; and the Los Angeles
Rams, who played Super Bowl XIV in the Rose Bowl ... Besides those
two, the only other Super Bowl venue that was not the home stadium
to an NFL team at the time was Rice Stadium in Houston: the
Houston Oilers had played there previously, but moved to the
Astrodome several years prior to Super Bowl VIII. ...

Question Who does Jordan Palmer play for?

Answer “Jacksonville Jaguars”

KF-QA Doc: Jordan Palmer
content: ... During his freshman year at UTEP, Palmer threw seven
touchdowns and 13 interceptions while completing 49.5% of his passes
for 1,168 yards ... He was drafted by the Washington Redskins in the
sixth round of the 2007 NFL Draft. He is the younger brother of the
Arizona Cardinals quarterback Carson Palmer, who was the first
overall pick in the 2003 NFL Draft by the Cincinnati Bengals. ...
Palmer signed with the Jacksonville Jaguars on May 7, 2012. ...

DrQA Doc: Jordan Palmer
content: ... During his freshman year at UTEP, Palmer threw seven
touchdowns and 13 interceptions while completing 49.5% of his passes
for 1,168 yards ... He was drafted by the Washington Redskins in the
sixth round of the 2007 NFL Draft. He is the younger brother of the
Arizona Cardinals quarterback Carson Palmer, who was the first
overall pick in the 2003 NFL Draft by the Cincinnati Bengals. ...
Palmer signed with the Jacksonville Jaguars on May 7, 2012. ...

638 X. Su et al.

5 Conclusion

We propose a new text-based QA system that uses knowledge base (KB) as a
second knowledge source, namely KF-QA. KF-QA first incorporates knowledge
that is essential for QA into text representations with the KA-Encoder, then re-
ranks the documents with a Ranker, finally outputs the answer by reading the
documents selected by the Ranker. KF-QA significantly outperforms previous
text-based QA systems on several QA datasets, demonstrating the effectiveness
of introducing KB into text-based QA. Our ablation study on Ranker perfor-
mance also demonstrates the effectiveness of re-ranking mechanism. However,
we believe there is still much room for improvement, our future work will aim at
finding a more subtle way for knowledge fusion, as the current way is still kind
of rough.

References

1. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from
question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1533–1544 (2013)

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, pp.
1247–1250 (2008)

3. Cer, D., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)
4. Chen, D., Bolton, J., Manning, C.D.: A thorough examination of the CNN/daily

mail reading comprehension task. arXiv preprint arXiv:1606.02858 (2016)
5. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading Wikipedia to answer open-

domain questions. arXiv preprint arXiv:1704.00051 (2017)
6. Das, R., Dhuliawala, S., Zaheer, M., McCallum, A.: Multi-step retriever-

reader interaction for scalable open-domain question answering. arXiv preprint
arXiv:1905.05733 (2019)

7. Dhingra, B., Mazaitis, K., Cohen, W.W.: Quasar: datasets for question answering
by search and reading. arXiv preprint arXiv:1707.03904 (2017)

8. Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short text fragments
(by Wikipedia entities). In: Proceedings of the 19th ACM International Conference
on Information and Knowledge Management, pp. 1625–1628 (2010)

9. Haveliwala, T.H.: Topic-sensitive PageRank: a context-sensitive ranking algorithm
for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)

10. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering.
arXiv preprint arXiv:2004.04906 (2020)

11. Lee, K., Chang, M.W., Toutanova, K.: Latent retrieval for weakly supervised open
domain question answering. arXiv preprint arXiv:1906.00300 (2019)

12. Lin, Y., Ji, H., Liu, Z., Sun, M.: Denoising distantly supervised open-domain ques-
tion answering. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Long Papers), vol. 1, pp. 1736–1745 (2018)

13. Miller, A., Fisch, A., Dodge, J., Karimi, A.H., Bordes, A., Weston, J.: Key-value
memory networks for directly reading documents. arXiv preprint arXiv:1606.03126
(2016)

http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1606.02858
http://arxiv.org/abs/1704.00051
http://arxiv.org/abs/1905.05733
http://arxiv.org/abs/1707.03904
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/1906.00300
http://arxiv.org/abs/1606.03126

Fusing Essential Knowledge for Text-Based Open-Domain QA 639

14. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

15. Sun, H., Dhingra, B., Zaheer, M., Mazaitis, K., Salakhutdinov, R., Cohen, W.W.:
Open domain question answering using early fusion of knowledge bases and text.
arXiv preprint arXiv:1809.00782 (2018)

16. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

17. Wang, S., et al.: R 3: Reinforced ranker-reader for open-domain question answering.
In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

18. Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: Improving question
answering over incomplete KBs with knowledge-aware reader. arXiv preprint
arXiv:1905.07098 (2019)

http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1809.00782
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1905.07098

TSSE-DMM: Topic Modeling for Short
Texts Based on Topic Subdivision

and Semantic Enhancement

Chengcheng Mai, Xueming Qiu, Kaiwen Luo, Min Chen, Bo Zhao,
and Yihua Huang(B)

Department of Computer Science and Technology, State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing, China

{maicc,xuemingqiu,mf1933070}@smail.nju.edu.cn, yhuang@nju.edu.cn

Abstract. Short texts have been prevalent in Web sites and the emerg-
ing social media for several years, which makes it a critical task to identify
intelligible topics from online data sources. However, the existing topic
models over short texts cannot analyze the internal components of the
learned topics, which is significant for improving the coherence and inter-
pretability of topics. In this paper, we propose a novel topic model for
short texts, named TSSE-DMM, for improving the coherence and inter-
pretability of topics by the topic subdivision and alleviating the problem
of text sparsity by the semantic enhancement strategy. Firstly, we sub-
divide each topic into 4 detailed aspects, namely the location aspect, the
people & organization aspect, the core word aspect, and the background
word aspect, to obtain the different and interpretable components of top-
ics. Then, we combine the Generalized Polya Urn model and the joint
word embedding to solve the problem of data sparsity. The extensive
experimental results carried on three real-world text collections in two
languages show that our model achieves better topic representations than
the baseline methods. Moreover, our method has been adopted by the
public service hotline platform of Jiangsu province in China.

Keywords: Topic model · Topic subdivision · Semantic enhancement

1 Introduction

Short texts have become a fashionable form of Information on social media.
Effective models to generate topics become critical to support downstream appli-
cations, such as bursty event detection [17], knowledge graph constructing [15],
and information summarization [6].

Suffering from the severe data sparsity problem, conventional topic models,
like pLSA [3] and LDA [1] experience a large performance degradation when
directly applied to short texts. To solve the problem, Quan et al. [13] aggregate
short texts into lengthy pseudo-documents before training a conventional topic
model. Another solution is to enhance the word co-occurrence patterns by the
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 640–651, 2021.
https://doi.org/10.1007/978-3-030-75765-6_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_51&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_51

TSSE-DMM: Topic Modeling for Short Texts 641

Generalized Poly Urn (GPU) model [4]. The overall idea of the GPU model is
that we not only increase the counts of word w assigned to topic k but also
increase the counts of other words with similar semantics to word w.

In addition, these above methods are unable to analyze the internal compo-
nents of the topics because they do not exploit the following important obser-
vation: A topic is composed of many different aspects, like the related location,
people’s name, organization, core words, and background words. For example,
as shown in Fig. 1, this record is a real complaint sample from the public service
hotline platform of Jiangsu province in China that highly related to the topic
of ‘Noise during the College Entrance Examination ’. The word ‘Gulou
District ’ can be recognized as named entities about the related locations. Like-
wise, the word ‘examination venues’ can be considered as the core words of
topic. The topic subdivision method is feasible for improving the coherence and
interpretability of this topic because these core words are highly related to one
certain topic.

Fig. 1. A complaint record about the prohibition of illegal construction during the col-
lege entrance examination. The square denotes the related location, the wavy underline
denotes the organization, the double underline denotes the core words of the record,
and the dotted underline denotes the background words (i.e. the noisy data).

Based on the analysis above, we propose a novel TSSM-DMM model. Firstly,
we subdivide each topic into 4 topic aspects, namely the location aspect, people &
organization aspect, core words aspect, and background word aspect. Each word
in the corpus would be generated by its related topic-aspect-word distribution.
Then, we propose a semantic enhancement strategy to alleviate the problem
of data sparsity and Out-Of-Vocabulary (OOV). Compared with other baseline
methods, significant improvements are achieved in the experiments. The code
for our method is available online: https://github.com/PasaLab/TSSE.

The paper is organized as follows. Section 2 describes our model. Section 3
gives the experimental results and analyses. Section 4 introduces the related
work. Conclusions are given in Sect. 5.

2 Our TSSE-DMM Model

2.1 Topic Subdivision

The Conception of the Topic Subdivision. Intuitively, the short texts from
websites or social media consist of many named entities, like people’s names,

https://github.com/PasaLab/TSSE

642 C. Mai et al.

locations, and organizations. The existing topic models do not consider this
characteristic and all the words belonging to different named entities are mixed
up, which brings a huge challenge for improving the coherence of topics. There-
fore, we propose a topic model for short texts named TSSE-DMM that could
further subdivide each topic into 4 aspects, namely the location aspect, peo-
ple & organization aspect, core word aspect and the background word aspect,
according to the POS tags of the words in document d. As its name suggests,
the TSSE-DMM model is built upon the Dirichlet Mixture Model (DMM) model
that assumes that each document d is generated from a single topic k [9,12].

Table 1. The 863 POS tag set

POS Meaning Example POS Meaning Example

a Adjective Beautiful ni Organization name WTO

i Idiom A hundred flowers blossom nl Position Suburb

j Abbreviation U.S.A. ns Place name Shanghai

n The common noun Apple nz Proper noun The Noble prize

nh People’s name Tom v Verb Run

As shown in Table 1, we select some named entities according to the POS tags
in the 863 POS tag set1 for the topic subdivision based on the expert knowledge
and the practical requirements from the real applications. The aspect set of the
topic can be denoted as Q = {q|q = 0, 1, 2}. The symbol q is used to denote
the different aspects of the topic. For the word w with the POS tag in {ns, nl},
it would be identified as the location aspect of the topic, denoted as qw = 0;
The word w with the POS tag in {ni, nh, j} would be identified as people &
organization aspect of the topic, denoted as qw = 1. For the word w with the
POS tag in {n, nz, v, a, i}, we additionally need to introduce another switch
variable sw to determine whether the word w is the core word or background
word of the topic. If sw = 1, the word w would be identified as the core word
aspect of the topic, also denoted as qw = 2. If sw = 0, the word would be
considered as the background word aspect of the topic. The switch variable sw ∈
{0, 1} is sampled from the Bernoulli(λw, k) distribution. The λw, k represents the
similarity between word w and its topic k and its formula is given in Eq. 1.

The Generative Process of TSSE-DMM. Given a short text corpus of D
documents, with K pre-defined topics and a vocabulary of size V , we assume
that each document d only belongs to one specific topic k. For Nd words,
{wd1 , wd2 , . . . , wdNd

}, in document d, we recognize their POS tags, and then
these words are generated by the topic-aspect-word multinomial distribution
p(w|z = k, q) = φk,q. The symbols are explained as follows: θ indicates the
global topic distribution, φk, q denotes the word distribution under topic k in
aspect q, and η is the global background word distribution. α, βα and σ are the

1 http://corpus.zhonghuayuwen.org/.

http://corpus.zhonghuayuwen.org/

TSSE-DMM: Topic Modeling for Short Texts 643

prior parameters of θ, φk, q and η. zd represents the topic in document d. The
definition of the generative process is described as follows:

Process 1: Generative process of TSSE-DMM

1: Sample θ ∼ Dirichlet(α);
2: For each topic k ∈ [1, K]:
3: For each aspect q ∈ {0, 1, 2}:
4: Draw φk,q ∼ Dirichlet(βq);

5: Sample η ∼ Dirichlet(σ);
6: For each document d ∈ [1, D]:
7: Sample a topic zd ∼ Multinomial(θ);
8: For each word w ∈ {wd1 , wd2 , . . . , wdNd

} :

9: if qw ∈ {0, 1} then
10: Sample w ∼ Multinomial(φk=zd,q=qw

);

11: else
12: Sample sw ∼ Bernoulli(λw,k); /* determine the switch variable sw */
13: if sw == 1 then
14: Sample w ∼ Multinomial(φk=zd,qw=2);

15: else
16: Sample w ∼ Multinomial(η);

For word w whose qw /∈ {0, 1}, the calculating formula of λw,k is given as:

λw,k =
v(w) · v(k)

‖v(w)‖ · ‖v(k)‖ (1)

where v(w) is the word embedding of word w, v(k) is the average value of the
word embeddings of the top N words with the highest probability in the topic-
aspect-word distribution of topic k.

2.2 Semantic Enhancement

According to [9], the words with a high semantic relevance should appear under
the same topic. On this basis, our semantic enhancement strategy increases the
counts of core word w assigned to topic k and the words with similar semantics to
core word w appearing in topic k at the same time while sampling. The similarity
between each word is calculated based on the joint word embedding.

The joint word embedding, denoted as u(w) in Eq. 2, is defined as the
weighted average of the external word embeddings, denoted as g(w), and the
local word embeddings denoted as l(w):

u(w) = γg(w) + (1 − γ)l(w) (2)

where the weight ratio of the external word embedding is denoted as γ. The
semantic similarity sim(w,w′) between w and w′ is calculated by the cosine
distance of the two word embeddings.

For each word pair (w,w
′
), we consider the word pair is semantically related

only when the threshold of it is greater than τ . The semantic similarity matrix
Mw of word w is:

644 C. Mai et al.

Mw = {mww′ |w,w′ ∈ V } ;mww′ =
{

sim (w,w′) , sim (w,w′) > τ
0, other (3)

We also set the threshold χ in this paper. If the number of words that are
semantically related to word w is greater than χ, the values of the rows and
columns in M where word w is located are all set to 0.

2.3 Model Inference

In TSSE-DMM, the latent variables that we need to sample are z,θ,φk,q and
η. With the help of collapsed Gibbs sampling, we only have to sample the topic
assignment and the aspect of them for each word from the conditional distri-
bution p(zd = k|z¬d,d,α,βq,σ). The symbol ¬d means that document d is
excluded from the counting. The full conditional probability is given as:

p(zd = k|z¬d,d,α,βq,σ) ∝ p(d|z,βq,σ)p(z|α)
p(d¬d,z¬d|α,βq,σ)

(4)

For the numerator in the Eq. 4, by integrating out φk,q, η, and θ, we obtain:

p(d|z,βq,σ) =
∫

p(w|z,φ)p(φ|βq)dφ

︸ ︷︷ ︸
sw=1

·
∫

p(w|η)p(η|σ)dη

︸ ︷︷ ︸
sw=0

∫
p(z|θ)p(θ|α)dθ

=
Δ(m + α)

Δ(α)
·

K∏
k=1

|Q|−1∏
q=0

Δ(nk,q + βq)
Δ(βq)

· Δ(nb + σ)
Δ(σ)

(5)
where nk,q is the number of words assigned to topic k in aspect q. The denomi-
nator of the Eq. 4 can be worked out in the same way:

p
(
d¬d,z¬d|α,βq,σ

)
=

Δ(m¬d + α)
Δ(α)

·
K∏

k=1

|Q|−1∏
q=0

Δ(nk,q,¬d + βq)
Δ(βq)

· Δ (nb,¬d + σ)
Δ(σ)

(6)
By replacing terms in Eq. 4 with those in Eq. 5 and 6, we would have the

conditional distribution probability in each iteration of Gibbs sampling:

p(zd = k|z¬d, d, α, βq , σ) ∝ mk,¬d + α

D − 1 + Kα
·

|Q|−1∏

q=0

∏
w∈d

∏Nk,q,d

i=1 (nw
k,q,¬d + βq + i − 1)

∏Nk,q,d

i=1 (nk,q,¬d + V βq + i − 1)

·
∏

w∈d

∏Nb,d

i=1 (nw
b,¬d + σ + i − 1)

∏Nb,d

i=1 (nb,¬d + V σ + i − 1)

(7)

where mk is the number of documents associated with topic k, ñw
k,q,¬d is the

number of word w and other semantically related words that are identified as
aspect q and associated with topic k, ñk,q,¬d is the number of words associated
with topic k, nb,¬d is the number of words that sampled as the background

TSSE-DMM: Topic Modeling for Short Texts 645

words, and nw
b,¬d is the number of the word w that sampled as the background

word. With the counters of the topic assignments of documents and semantically
related words, we can estimate θ, φk,q, and η as:

θk =
mk + α∑K

k=1 mk + Kα
, φk,q,w =

ñw
k,q + βq∑V

w=1 ñw
k,q + V βq

, ηw =
nw
b + σ∑V

w=1 nw
b + V σ

(8)

3 Experiments

3.1 Datasets and Experiment Setup

Datasets. We use three datasets in the experiments to demonstrate the effec-
tiveness and generality of our proposed approach. ServiceRecord dataset is a
real-world data set from the public service hotline platform of Jiangsu province in
China, which contains 19,411 Chinese records of public complaints. SogouCA
dataset is a collection of 30,000 Chinese news crawled from popular websites.
Each news is annotated with a category label and the whole dataset is divided
into 10 categories. SearchSnippet dataset contains 12,340 English Web search
snippets and each snippet belongs to 1 of 8 categories. The dataset is previously
used in a few studies [2,14].

Data Preprocessing. We perform the following preprocessing on the dataset:
(1) segmenting Chinese texts into words; (2) removing stop words, and the punc-
tuation. (3) retaining some certain words according to their POS tags. We use
the NLTK toolkit2 to identify the POS tags of the words.

Methods and Parameters Setting. We compare our TSSE-DMM model
against the following five state-of-the-art topic models specific to short texts,
namely SATM, BTM, DMM, LF-DMM, and GPU-DMM. The hyper-parameters
of each model are set to the recommended values in their papers. The param-
eter γ, τ , and χ are set to 0.5, 0.5, and 20 respectively in our TSSE-DMM.
The Chinese and English external word embeddings are provided by [5] and [8],
respectively. The local word embedding is learned from the local dataset by the
word2vec3 tool. The dimensions of the above word embeddings are all set to 300.

3.2 Qualitative Analysis

To investigate the quality of topics generated by all the models, we sample a
topic about China’s Shenzhou Manned Space Program for visualization
from the SogouCA dataset. The result is given in Fig. 2.

2 http://www.nltk.org/.
3 https://code.google.com/archive/p/word2vec.

http://www.nltk.org/
https://code.google.com/archive/p/word2vec

646 C. Mai et al.

Fig. 2. Qualitative analysis of the learned topic related to the Shenzhou spacecraft

In Fig. 2, we can see that all the top 10 words in the core word aspect of
TSSE-DMM are highly related to the topic. However, in SATM and LF-DMM,
some other words, like ‘private photos’, and ‘lotus’ are completely irrelevant
to the topic of the Shenzhou spacecraft. The results in BTM, DMM, and GPU-
DMM seem better than SATM and LF-DMM, but still include a few words
about locations, like ‘China ’ and ‘Beijing ’, which has been subdivided into
the location aspect in our TSSE-DMM model. The words in the background
word aspect are of low relevance to the topic and can be filtered out as noisy
data. The visualization result demonstrated that the topic discovered by our
method is more coherent than other compared methods, which benefits from
our strategy of subdividing topics into multiple aspects.

3.3 Quantitative Analysis

In the following experiments, we use only the words in the core word aspect
of the topic to represent documents, for filtering out noisy data based on the
subdivided topic aspects.

Evaluation by Topic Coherence. Following [10], we use the PMI-Score to
calculate topic coherence, which has been proved to be a better metric to assess
topic quality by [9]. Given a topic k and its top T words, {w1, w2, . . . , wT }, with
highest probabilities, the definition of the PMI score of topic k is:

PMI(k) =
2

T · (T − 1)
·

∑
1≤i<j≤T

log
p(wi, wj)

p(wi)p(wj)
(9)

where p(wi) denotes the probability of word wi that appears in a document, and
p(wi, wj) is the probability that word wi and wj appear in the same document.
A higher PMI score indicates a better topic. Also, we use the news dataset
crawled from the Sohu Network4 and Wikepedia5 as the external corpora which
are necessary for calculating the PMI-Score in Eq. 9.
4 http://www.sohu.com/.
5 https://www.wikipedia.org/.

http://www.sohu.com/
https://www.wikipedia.org/

TSSE-DMM: Topic Modeling for Short Texts 647

Table 2. Topic coherence comparison when T = 10

Dataset ServiceRecord SogouCA SearchSnippet

K 40 60 80 40 60 80 40 60 80

SATM 0.73 0.63 0.57 −0.15 −0.04 0.04 0.33 0.25 0.26

BTM 1.14 1.06 1.16 1.18 1.16 1.23 1.04 1.02 1.09

DMM 1.17 1.18 1.13 0.97 0.93 0.80 1.03 1.12 1.09

LF-DMM 0.64 0.65 0.63 0.31 0.26 0.25 0.57 0.62 0.71

GPU-DMM 1.25 1.22 1.19 1.16 1.08 1.05 1.13 1.09 1.15

TSSE-DMM 2.17 2.06 2.03 1.78 1.50 1.77 1.14 1.20 1.17

Table 3. Topic coherence comparison when T = 20

Dataset ServiceRecord SogouCA SearchSnippet

K 40 60 80 40 60 80 40 60 80

SATM 0.44 0.36 0.31 −0.20 −0.21 −0.18 0.15 0.09 0.08

BTM 0.75 0.73 0.78 0.84 0.76 0.82 0.72 0.74 0.78

DMM 0.80 0.79 0.77 0.57 0.46 0.38 0.79 0.77 0.79

LF-DMM 0.36 0.38 0.33 0.06 0.02 0.05 0.42 0.40 0.43

GPU-DMM 0.91 0.86 0.83 0.74 0.71 0.62 0.83 0.84 0.83

TSSE-DMM 1.54 1.38 1.41 1.27 1.07 1.25 0.83 0.84 0.83

Table 2 and 3 display the topic coherence of all compared models on the three
datasets with the number of top words per topic T = {10, 20} and the number
of topics K = {40, 60, 80}, respectively.

On the ServiceRecord dataset, our TSSE-DMM method achieves the best
performance. On the SogouCA dataset, the TSSE-DMM model also achieves
the best coherence score in all the settings. BTM receives the second-best per-
formance. On the SearchSnippet dataset, when T = 10, TSSE-DMM is the best
model compared to other baseline methods and GPU-DMM becomes the second-
best model. When T = 20, TSSE-DMM, and GPU-DMM tied for first place in
coherence scores. This phenomenon can be explained by two facts. Firstly, we
only keep the words from the core word aspect from the refined aspects of the
learned topics to evaluate the topic coherence, which can better reflect the con-
cepts closely related to the topics. Secondly, the SearchSnippets dataset is not a
raw corpus, which reduces the accuracy of recognizing the POS tags for each word
and results in the performance degradation of TSSE-DMM. This phenomenon
also further indicates that our TSSE-DMM model could still outperforms other
existing methods, even if these are not sufficient named entities in the corpus.

Evaluation by Short Text Classification. Considering topic models as a
dimension reduction method, we can present each document with posterior topic
distribution p(z|d). Based on the conclusions of [4], the way to infer p(z|d) is:

648 C. Mai et al.

p(z|d) ∝
∑
w

p(z|w)p(w|d); p(z|w) =
p(z)p(w|z)∑
z p(z)p(w|z)

(10)

where p(z|d) denotes the frequency of word w appears in document d. we
employ an SVM classifier in scikit-learn6 to evaluate the classification accu-
racy through 5-fold cross validation on both datasets with the number of topics
K = {40, 60, 80} respectively.

(a) the SogouCA dataset (b) the SearchSnippet dataset

Fig. 3. Classification accuracy on two datasets

From Fig. 3, it can be observed that TSSE-DMM, as a form of document
representation, outperforms other compared methods on both datasets across
all the settings. This demonstrates that the words subdivided into the core word
aspect by the TSSE-DMM model can effectively achieve more coherent and dis-
criminative topic representations of documents and the joint word embeddings
also alleviate the problem of data sparsity. The GPU-DMM model outperforms
other DMM-based methods that further verified that the word embedding tech-
nology is more appropriate for topic-focused downstream applications like text
classification over short texts.

Evaluation by Short Text Clustering. To further evaluate the clustering
performance of TSSE-DMM, we regard each topic as a category label and assign
each document d to topic k which has the highest value of p(z|d) to form different
clusters. Purity and Normalized Mutual Information (herein after called the
NMI) are used to evaluate the clustering results.

Purity. Supposing the set L = {L1, L2, . . . , L|K|} represents the clusters labeled
by the topic model and set C = {C1, C2, . . . , C|P |} is the P labeled classes of the
documents, Purity is defined as the ratio of the number of documents allocated
correctly to the number of documents in the dataset. Purity ranges from 0 to 1,
and a higher Purity indicates a better clustering result.

6 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/

TSSE-DMM: Topic Modeling for Short Texts 649

Purity(L,C) =
1

|K| ·
∑

i∈{1,··· ,|K|}
max

j∈{1,...,P}
|Li ∩ Cj | (11)

NMI. The calculation formula of NMI is: NMI(L,C) = 2·I(L,C)
H(L)+H(C) , where

H(L) and H(C) represent the entropy of set L and set C, respectively, and
I(L,C) denotes the mutual information between the two sets. Similarly, NMI
ranges from 0 to 1, and a higher Purity indicates better a clustering result.

(a) the SogouCA dataset (b) the SearchSnippet dataset

Fig. 4. Clustering results measured by Purity on two datasets

(a) the SogouCA dataset (b) the SearchSnippet dataset

Fig. 5. Clustering results measured by NMI on two datasets

Figure 4 and Fig. 5 show the clustering results measured by Purity and NMI
with the number of topics K = {40, 60, 80}, respectively. Our TSSE-DMM
achieves the best performance on both the two datasets in all the settings, which
is because that the joint word embeddings can capture more semantic related-
ness in the dataset. On the SogouCA dataset, BTM is the second best model
on both evaluation indexes. On the SearchSnippet dataset, GPU-DMM is the
second best model in most cases and has a similar performance with DMM in
Purity and NMI. The relative performance between these models in this exper-
iment is basically consistent with the experimental results in the two previous
experimental results that verified the effectiveness and stability of our method.

650 C. Mai et al.

4 Related Work

The existing topic models for short texts can be divided into 3 categories:
aggregation-based, window-based, and word-embedding-based methods.

In aggregation-based methods, Mehrotra et al. [7] used some auxiliary meta
information to aggregate the tweets before applying conventional topic models.
Zuo et al. [20] proposed PTM that sampled words from topic distribution of the
aggregated long pseudo-text. Yan et al. [16] proposed the BTM model, which
directly model the word co-occurrence patterns based on the biterms over the
whole corpus.

In window-based methods, Yin et al. [18] proposed DMM, which assumes
that each short text contains only one topic, and the words in each document
are sampled from the same topic distribution. Similarly, Zhao et al. [19] proposed
Twitter-LDA which assumed that a single tweet is usually about a single topic.
Zuo et al. [21] modelled the distribution over topics for each word instead of
learning topics from each document.

In word-embedding-based methods, Nguyen et al. [11] proposed LF-DMM,
which combines the word embedding with the conventional topic-word distribu-
tion. Li et al. [4] proposed GPU-DMM, which calculates the semantic related-
ness between words by the word embeddings trained on the external corpus for
semantic enhancement.

5 Conclusions

In this paper, we propose a novel topic model for short texts based on the
subdivided aspects of topics and semantic enhancement. Firstly, we subdivide
each topic into 4 aspects to reveal the internal structure of topics to improve
the coherence. Then, we propose a semantic enhancement strategy to solve the
problem of data sparsity. The experiment results demonstrate that our method
can discover more coherent and fine-grained topics than the baseline methods.

Acknowledgments. This work is support by the National Key R&D Program of
China (2019YFC1711000), the National Natural Science Foundation of China (NO.
U1811461, 61572250,) the Jiangsu Province Science & Technology Research Grant
(BE2017155), and the Collaborative Innovation Center of Novel Software Technology
and Industrialization, Jiangsu, China.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. In: JMLR pp. 993–
1022 (2003)

2. Chen, M., Jin, X., Shen, D.: Short text classification improved by learning multi-
granularity topics. In: IJCAI, pp. 1776–1781 (2011)

3. Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR, pp. 50–57 (1999)
4. Li, C., Wang, H., Zhang, Z., Sun, A., Ma, Z.: Topic modeling for short texts with

auxiliary word embeddings. In: SIGIR, pp. 165–174 (2016)

TSSE-DMM: Topic Modeling for Short Texts 651

5. Li, S., Zhao, Z., Hu, R., Li, W., Liu, T., Du, X.: Analogical reasoning on Chinese
morphological and semantic relations. In: ACL, pp. 138–143 (2018)

6. Liu, H., Zheng, H.T., Wang, W.: Topic attentional neural network for abstractive
document summarization. In: PAKDD, pp. 70–81 (2019)

7. Mehrotra, R., Sanner, S., Buntine, W., Xie, L.: Improving lda topic models for
microblogs via tweet pooling and automatic labeling. In: SIGIR, pp. 889–892 (2013)

8. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-
training distributed word representations. In: LREC, pp. 52–55 (2017)

9. Mimno, D., Wallach, H., Talley, E., Leenders, M., McCallum, A.: Optimizing
semantic coherence in topic models. In: EMNLP, pp. 262–272 (2011)

10. Newman, D., Lau, J.H., Grieser, K., Baldwin, T.: Automatic evaluation of topic
coherence. In: NAACL, pp. 100–108 (2010)

11. Nguyen, D.Q., Billingsley, R., Du, L., Johnson, M.: Improving topic models with
latent feature word representations. In: TACL, pp. 299–313 (2015)

12. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from
labeled and unlabeled documents using EM. Mach. Learn. 39, 103–134 (2000).
https://doi.org/10.1023/A:1007692713085

13. Quan, X., Kit, C., Ge, Y., Pan, S.J.: Short and sparse text topic modeling via
self-aggregation. In: IJCAI, pp. 2270–2276 (2015)

14. Sun, A.: Short text classification using very few words. In: SIGIR, pp. 1145–1146
(2012)

15. Wang, X., Zhang, Y., Wang, X., Chen, J.: A knowledge graph enhanced topic mod-
eling approach for herb recommendation. In: Li, G., Yang, J., Gama, J., Natwichai,
J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11446, pp. 709–724. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-18576-3 42

16. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In:
WWW, pp. 1445–1456 (2013)

17. Yang, Z., Li, Q., Liu, W., Lv, J.: Shared multi-view data representation for multi-
domain event detection. In: TPAMI, pp. 1243–1256 (2019)

18. Yin, J., Wang, J.: A dirichlet multinomial mixture model-based approach for short
text clustering. In: SIGKDD, pp. 233–242 (2014)

19. Zhao, W.X., et al.: Comparing Twitter and traditional media using topic models.
In: Clough, P., et al. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20161-5 34

20. Zuo, Y., et al.: Topic modeling of short texts: a pseudo-document view. In:
SIGKDD, pp. 2105–2114 (2016)

21. Zuo, Y., Zhao, J., Xu, K.: Word network topic model: a simple but general solution
for short and imbalanced texts. Knowl. Inf. Syst. 48(2), 379–398 (2015). https://
doi.org/10.1007/s10115-015-0882-z

https://doi.org/10.1023/A:1007692713085
https://doi.org/10.1007/978-3-030-18576-3_42
https://doi.org/10.1007/978-3-642-20161-5_34
https://doi.org/10.1007/s10115-015-0882-z
https://doi.org/10.1007/s10115-015-0882-z

SILVER: Generating Persuasive Chinese
Product Pitch

Yunsen Hong1, Hui Li1, Yanghua Xiao2, Ryan McBride3, and Chen Lin1(B)

1 School of Informatics, Xiamen University, Xiamen, China
chenlin@xmu.edu.cn

2 School of Computer Science, Fudan University, Shanghai, China
3 School of Computing, Simon Fraser University, Burnaby, BC, Canada

Abstract. Building a silver-tongued salesbot is attractive and prof-
itable. The first and pivotal step is to generate a product pitch, which is
a short piece of persuasive text which both convey product information
and deliver persuasive explanations related to customer demand. Recent
advances in deep neural networks have empowered text generation sys-
tems to produce natural language descriptions of products. However, to
produce persuasive product pitches, deep neural networks need to be fed
with massive amounts of persuasive samples, which are not available due
to huge labelling cost. This paper proposes SILVER, a persuasive Chi-
nese product pitch generator, which addresses the issue of insufficient
labeled data with data-level, knowledge-level and model-level solutions.
At the data level, SILVER employs statistic analysis to automatically
derive weak supervision rules that correlate with persuasive texts. At
the model level, SILVER apply the weak supervision rules to re-rank
outputs from an ensemble of models to enhance pitch generation perfor-
mance. Finally, at the knowledge level, SILVER incorporates attribute
hierarchy to embed product information in the pitch. Both automatic
and human-involved evaluations on real data demonstrate that SILVER
is able to produce more fluent, catchy and informative snippets than
state-of-the-art text generation approaches.

Keywords: Persuasive product pitch · Text generation · Creative text
generation

1 Introduction

No behavior is more human than selling. The statement comes from the fact
that selling is not only unique to the human species but also a very common
social behavior. According to [14], an incredible 40% of our daily time is spent
on selling, not only objects, but also ideas and techniques. When we are taking
efforts to make machines more human, the large expenditure of selling time we
spend and the human nature of the selling behavior bring us an interesting yet
challenging question: Can a machine function like a salesperson?

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 652–663, 2021.
https://doi.org/10.1007/978-3-030-75765-6_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_52&domain=pdf
http://orcid.org/0000-0002-2275-997X
https://doi.org/10.1007/978-3-030-75765-6_52

SILVER: Generating Persuasive Chinese Product Pitch 653

Table 1. An example of persuasive snippets for a bookcase under different consumption
contexts.

Successful selling is complex. In selling technique, a sales pitch (i.e. a product
snippet) is the most important step that initiates a sale. To help our industrial
partner (i.e., an online E-commerce platform in China) to build a salesbot, we
study the problem of generating persuasive Chinese product pitches. Planning
the pitch requires powerful insights into the customer needs, great wisdom to
connect client demands with product attributes, and conversational talents to
convince the customer. Thus, we formalize the problem of persuasive pitch gen-
erator as follows: Given a consumption context keyword that describes the cus-
tomer needs, a set of product attributes, generate a persuasive snippet in natural
language that relates the consumption context to the product. Table 1 illustrates
the difference between a regular pitch and a persuasive pitch. In general, the
desirable pitch must be (1) informative: the product attributes are selected from
the input to convey product information; (2) relevant: product attributes are
expressed in a manner that achieves maximal relevance to the consumption con-
text; (3) persuasive: the power of persuasion is enhanced by a catchy sentence
that is enjoyable to read.

The problem falls in the broad class of language generation. Recently, end-
to-end deep neural frameworks (DNN) [6,8,23,24], i.e., models that directly
transform input of product attributes and consumption context to output of
product pitch, have shown promising progress in this field. End-to-end frame-
works have the advantage that errors do not accumulate across separate stages,
i.e., in choosing the appropriate attributes and expressing the attributes. How-
ever, the success of neural frameworks is based on massive training data. In
the problem of product pitch generation, it is difficult to obtain large amounts
of training samples that pair the input of product attributes and consumption
context with the output of informative, relevant and persuasive product pitch.
The challenges include (1) human labeling is not only labor-costly but also sub-
jective. Different people may have inconsistent opinions about which product
snippets are persuasive. (2) the almost infinite space of product attributes lead
to many out-of-vocabulary tokens which will affect the quality of the gener-
ated snippets. This problem is more severe for cold start products, i.e., products
without enough training samples.

654 Y. Hong et al.

In this paper, we propose a persuasive product snippet generator SILVER
(snippet loading via interest relevance) which functions as the pivotal compo-
nent in a silver-tongued salesbot. SILVER addresses the challenges by data-level,
model-level and knowledge-level solutions. As it is easy to obtain conventional
product description data set (which is not persuasive) either publicly or from
our industry partner, a practical and easy-to-implement alternative is to train
DNNs on the conventional data set and post-process the outputs based on some
persuasion rules. The contributions of our work are as follows:

– At the data level (Sect. 2), SILVER proposes a strategy to derive weak
persuasion rules and avoid bias and subjectivity. The rules are automati-
cally derived from comparative statistic analysis on two different data source
regarding rhetoric, syntactic and vocabulary features.

– At the model level (Sect. 3), SILVER presents an ensemble-rerank frame-
work to apply the automatically derived rules to enhance snippet generation
performance.

– At the knowledge level (Sect. 3), SILVER incorporates knowledge of prod-
uct attribute hierarchy to understand structural associations among product
attributes and tackle the out-of-vocabulary product attributes.

Experiments on real data demonstrate the competency of SILVER. Our work
not only brings economic benefits but also sheds insights on other efforts that
make machines more human, e.g., creative text generation. Furthermore, the
solutions we provide are practical to solve data scarcity problems that many
other AI systems face.

The organization of this paper is as follows: Section 2 illustrates the method
used for persuasion rule derivation in SILVER. Section 3 depicts the ensemble-
rerank architecture used in SILVER. Section 4 presents the experimental study
which shows the competency of our method. Section 5 briefly surveys related
work and Sect. 6 concludes our work.

2 Persuasion Rule Derivation

Though our understanding of the art of persuasion in Chinese goes back at least
as far as the Ming school (, 250 BCE) [7], we have not seen a fair and
objective study of what linguistic factors contribute to successful persuasion in
E-commerce. Toward this end, SILVER performs a comparative study on per-
suasive and non-persuasive product snippets and derives several labeling rules.

Persuasive Product Snippets: The PH Data Set. We crawl 48, 320 head-
lines from blogs in the “shopaholic’s choice” section on the largest E-commerce
platform in China. This section collects purchase recommendations from the
leading bloggers on the platform. It is reported1 that bloggers in this section
are regularly accessed based on content quality, numbers of views/followers/ hot
blogs, Click-Through-Rates, trending topics and numerous other metrics. There-
fore, its persuasiveness is verified to be effective in marketing. Product snippet
1 http://news.mydrivers.com/1/596/596411.htm.

http://news.mydrivers.com/1/596/596411.htm

SILVER: Generating Persuasive Chinese Product Pitch 655

can be extracted from the body and the headlines of these blogs. Compared
to the body of blogs, headlines tend to be more catchy and convey the most
important information. Furthermore, the body usually consists of multimedia
elements such as pictures while our focus in this work is purely textual. Con-
sequently, we extract the headlines to learn essential language patterns. This
collection is called Persuasive Headline (PH) data set hereafter.

Non-Persuasive Product Snippets: The Review Data Set. We compare
the PH data set with regular product descriptions (i.e., they are not persuasive)
obtained from a public Chinese online review data set2. As these reviews are not
intended for advertising, we consider them as non-persuasive. This collection is
called the review data set.

2.1 Features

Table 2. Binary (B) and numerical (N) features. Significant features that pass Bon-
ferroni correction and their derived rules are highlighted.

Inspired by [16], we firstly pair the PH headlines with regular reviews under sim-
ilar products. We filter trivial cases, i.e., products that have less than 300 snip-
2 https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/yf

amazon/intro.ipynb.

https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/yf_amazon/intro.ipynb
https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/yf_amazon/intro.ipynb

656 Y. Hong et al.

pets in any data set. We then explore 33 linguistic features, including rhetoric,
syntactic and vocabulary features.

Many think that effective persuasion involves rhetorical skills, hence, we con-
duct a comprehensive study on traditional Chinese rhetorical skills according
to [7], such as Simile (), Antithesis (), Repetition (), Rhetoric
Question (), Answer a question with a question (), Regression (),
Rhetorical Exchanging (), etc. For syntactic features, we include normalized
syntax tree depth, sentence entropy, distribution of the word TFIDF, and so on.
For vocabulary features, we use binary and numerical measures of the appear-
ance of different POS tags in a snippet. We use a Chinese processing tool3 for
POS tagging. The features and their definitions are provided in Table 2.

2.2 Labeling Rules

We first compute the feature value f(s) for each snippet s under each product,
as defined in Table 2. Then, for binary features, we perform a two-tailed test of
population proportion under each product. For numerical features, we perform
Welch’s t-test under each product, as it is more reliable when the numbers of
headlines and reviews are generally not equivalent. Finally, for each feature, we
perform Bonferroni correction to adjust significance level among all products. In
this manner, we identify ten features that are statistically different in headlines
and reviews with p-value less than 0.05.

Based on the statistic analysis, we derive a set L = {l} of ten labeling rules,
each of which consists of a precedent conditioned on a feature that passes Bonfer-
roni corrected significance test, and a labeling rule l(s) ∈ {0, 1}. The precedent
condition of the labeling rule is related to the feature value. For binary features,
the precedent condition is f(s) = 1. For numeral features, we make the feature
value fall in the range of [μ(f) ± σ(f)], where μ(f) and σ(f) are the mean value
and variance of the feature on PH. A labeling rules l(s) assigns either a positive
label 1 to a persuasive snippet s, or a negative label 0 to a non-persuasive snip-
pet. The sign of the label is determined by the z-score of the hypothesis test,
i.e., more f(s) = 1 for binary feature or higher f(s) for numerical feature in PH
results in a positive labeling rule.

3 SILVER: Ensemble-Rerank

The overall architecture of SILVER, which is shown in Fig. 1, follows an encoder-
decoder framework [2].
Input. Each training sample 〈xi, yi〉, where i indicates the index of the sample,
contains a set of input segments xi = {xi

1, · · · , xi
J} and an output sequence

yi = 〈yi
1, · · · , yi

T 〉. Let 1 ≤ j ≤ J and 1 ≤ t ≤ T . Each xi
j of the the input

segments represents a consumption context or a product attribute. All tokens in
the input and output are from the vocabulary V, i.e., xi

j , y
i
t ∈ V.

3 https://github.com/fxsjy/jieba.

https://github.com/fxsjy/jieba.

SILVER: Generating Persuasive Chinese Product Pitch 657

Fig. 1. Framework of SILVER

Knowledge. We construct a four-layer attribute hierarchy for each consump-
tion, which we call “knowledge”, using users’ search logs on our industrial part-
ner’s E-commerce platform. The node in the first layer of each hierarchy is the
consumption context, the nodes of the second layer are products, the nodes of
the third layer are product attributes associated with each product in the second
layer, and the leaf nodes in the forth layer indicate the attribute values of the
corresponding product attribute in the third layer. Different consumption con-
texts have their own hierarchical structure, but some nodes are shared among
different hierarchies as the same products, attribute names and attribute values
may exist in multiple consumption contexts. Therefore, all the hierarchies can
be globally viewed as a graph.

To leverage the knowledge, we use DeepWalk [13], a graph embed-
ding method, to learn the representations (i.e., embeddings) of each
word for context (e.g., “ ”/“Scandinavian house decor”), product
(e.g., “ ”/“bookcase”), attribute, (e.g., “ ”/“style”) or attribute value
(e.g., “ ”/“modern”) from the structural associations contained in the
graph. Then, SILVER used the learned word embedding as the knowledge
enhanced input embedding. Note that many other graph embedding learning
approaches [3] can be employed for this step. We choose DeepWalk, since its
robust performance makes it a standard method used in many tasks [3].
Ensemble and Rerank. The overall architecture of SILVER follows an
encoder-decoder framework [23,24] and the idea of ensemble-rerank. We create

658 Y. Hong et al.

Table 3. Statistics of data

Context Modern Luxury Scandinavian

#snippets 15,294 6,306 12,725

#product categories 66 24 6

#attributes 168 158 168

#unique tokens (segmented words) 17,014 10,154 15,237

several neural networks with different encoder blocks including Multi-Layer
Perception (MLP), CNN and Transformer [19], and identical Transformer [19]
decoder blocks. We train each model individually with early stopping, i.e., a
network stops when the loss does not decrease on a validation set. We accumu-
late the top-k predicted candidates from each model and assign each candidate

a persuasive score g(i) =
∑

l∈L l(yi)

|L| +
∑

j I(xi
j=yi

j)

|xi| where l(yi) is the output of
each labeling rule, |L| is the number of rules,

∑
j I(xi

j = yi
j) is the number of

attributes in input xi which appear in the output snippet yi, |xi| is the number
of input attributes. We then rerank all candidates together by g(i) and return
the global top-k candidates as the output.

4 Experiments

In this section, we provide an experimental study to demonstrate the effective-
ness of SILVER.

4.1 Experimental Setup

The data we use contains a set of product descriptions collected from online house
decoration stores on the E-commerce platform of our industrial partner. Before
weak-supervised labeling, it contains approximately 0.2 million descriptions for
91 different products. After labeling, 82% positive descriptions remain and each
description is associated with 1 product and 3.52 product attributes on average.
The average length of description before and after labeling is 103 tokens and 76
tokens, respectively. After labeling, 94.65% of the remaining descriptions do not
contain any consumption context keywords. Statistics of the data are shown in
Table 3.

We focus on four consumption contexts: modern house decor, luxury house
decor, Chinese house decor, and Scandinavian house decor. For each consumption
context, we randomly select approximate 80% descriptions (including instances
without any context keyword) as the training set, the remaining 20% is used for
testing.

4.2 Competitors

We compare SILVER with several state-of-the-art methods:

SILVER: Generating Persuasive Chinese Product Pitch 659

Table 4. Objective evaluations of all methods with best results shown in bold

Context Model BLEU-1 BLEU-2 BLEU-3 ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-L ROUGE-S CRF

Modern NPLM 0.0528 0.0232 0.0087 0.1188 0.0209 0.0020 0.1077 0.0338 39.9970
SC-LSTM 0.2344 0.1370 0.0676 0.2232 0.0395 0.0064 0.1770 0.0609 76.1197
MLP 0.2299 0.1737 0.1063 0.3232 0.0618 0.0106 0.2383 0.0839 75.3715
MLP+K 0.1926 0.1480 0.0978 0.2867 0.0709 0.0144 0.2262 0.0839 77.1888
ResCNN 0.2055 0.1524 0.0967 0.2605 0.0584 0.0090 0.1940 0.0565 73.0549
Transformer 0.1024 0.0759 0.0380 0.1741 0.0255 0.0036 0.1315 0.0314 75.4345
Transformer+K 0.1714 0.1215 0.0566 0.2606 0.0287 0.0033 0.1886 0.0459 75.5515
SILVER-1 0.2550 0.1917 0.1245 0.3482 0.0798 0.0155 0.2565 0.0950 77.2031
SILVER-2 0.2412 0.1813 0.1171 0.3326 0.0758 0.0145 0.2477 0.0899 76.9532

Luxury NPLM 0.0622 0.0283 0.0105 0.1068 0.0182 0.0006 0.0963 0.0264 31.3454
SC-LSTM 0.2208 0.1245 0.0584 0.2117 0.0344 0.0055 0.1686 0.0561 76.0965
MLP 0.2239 0.1688 0.1020 0.3266 0.0640 0.0133 0.2455 0.0827 73.7697
MLP+K 0.1853 0.1407 0.0882 0.2768 0.0594 0.0122 0.2214 0.0758 76.2510
ResCNN 0.1967 0.1435 0.0833 0.2622 0.0499 0.0069 0.2050 0.0543 72.4910
Transformer 0.0977 0.0725 0.0358 0.1642 0.0217 0.0036 0.1283 0.0292 74.9017
Transformer+K 0.1633 0.1148 0.0487 0.2529 0.0252 0.0028 0.1847 0.0421 74.9978
SILVER-1 0.2515 0.1885 0.1174 0.3521 0.0767 0.0164 0.2641 0.0939 75.6342
SILVER-2 0.2382 0.1783 0.1099 0.3326 0.0723 0.0154 0.2523 0.0876 75.5868

Scandinavian NPLM 0.0608 0.0284 0.0110 0.1004 0.0162 0.0010 0.0901 0.0244 29.7617
SC-LSTM 0.2208 0.1257 0.0646 0.2018 0.0358 0.0055 0.1598 0.0557 75.6598
MLP 0.2000 0.1510 0.0927 0.2952 0.0572 0.0106 0.2191 0.0691 73.9286
MLP+K 0.1633 0.1239 0.0786 0.2591 0.0551 0.0113 0.2028 0.0635 76.3754
ResCNN 0.2090 0.1497 0.0916 0.2663 0.0566 0.0085 0.2013 0.0611 72.2239
Transformer 0.0712 0.0528 0.0286 0.1488 0.0201 0.0026 0.1145 0.0233 75.3881
Transformer+K 0.1497 0.1066 0.0531 0.2428 0.0243 0.0027 0.1750 0.0395 74.8781
SILVER-1 0.2454 0.1818 0.1161 0.3291 0.0729 0.0140 0.2428 0.0841 75.6040
SILVER-2 0.2283 0.1683 0.1059 0.3127 0.0656 0.0117 0.2336 0.0772 75.5444

1. NPLM [10]: an unsupervised framework that expands a set of keywords to
creative product descriptions.

2. SC-LSTM [22]: a supervised framework which is based on a semantically
controlled LSTM structure. SC-LSTM has the advantage of scaling sentence
generation to cover multiple domains (e.g.,, the consumption contexts in our
problem).

3. Transformer [19]: a supervised text generation framework which is purely
based on attention mechanism.

4. ResCNN [5]: text generation framework consists of CNN encoder with residual
learning and transformer decoder.

5. MLP: text generation framework with MLP encoder and transformer decoder.

For transformer and MLP, we also test their performance with knowledge
(denoted as K) incorporated. If knowledge is not leveraged, the input embedding
will be randomly initialized.

We set the dimensions of the embedding and hidden units to be 128. The size
of mini-batch is set to be 32. We use 1000 descriptions as validation for early
stopping. Codes and data are available at https://shorturl.at/suvxI.

4.3 Objective Evaluation

We evaluate the snippets generated by the best result output by competitors
and the top-2 results output by SILVER. We use two metrics for objective eval-
uation, i.e., BLEU [12] and ROUGE [9]. BLEU is a standard metric for machine

https://shorturl.at/suvxI

660 Y. Hong et al.

translation task. ROUGE is a commonly adopted metric for multi-document
summarization task. For each training instance (i.e., a pair of input and output
〈xi, yi〉), BLEU and ROUGE calculate a score based on how close the system
output is to the ground truth. We exclude BLEU-4, because BLEU-4 is based
on 4-gram match and is only meaningful in the corpus level. We also adopt a
Chinese Readability Formula (CRF) [20] as a compensatory evaluation metric.

We report the evaluations on the first candidate and the second candidate
from the top-2 results of SILVER as SILVER-1 and SILVER-2, respectively.
From the results in Table 4, we can observe that:

1. Supervised methods are better than the unsupervised method.
2. SILVER constantly produces the best performances in terms of all BLEU

and ROUGE measures. Furthermore, the second result output by SILVER
achieves the second best performances. This shows that, the labeling rules
and the rerank scoring functions which are based on them, are effective.

3. SILVER produces comparable results in CRF. In fact, the CRF values are
close to each other, indicating that the results output by different methods
are of the same difficulty level.

4.4 Evaluation by Human

Previous study has acknowledged that automatic metrics do not consistently
agree with human perceptions [22], especially when they are not designed for
assessing the persuasiveness. To gain better insights into how and why SILVER
produces more persuasive snippets, we conduct an evaluation involving human
participants to assess the performance of SILVER.
Evaluation Protocol. Five judges are recruited to evaluate the quality of 30
randomly selected snippets generated by different methods on five metrics. For
a fair evaluation, the method name (i.e., the instance is generated by which
approach) is invisible to judges. Furthermore, the judges do not directly give an
overall score of the corresponding method. Instead, they are asked to score on
three aspects of each method. The range of the score is between 0 and 5. The
three criteria are as follows:

– Fluency [21] measures whether the snippet is smooth. The judge is asked to
focus on repeated terms and grammar mistakes. A score of 5 stands for zero
mistakes, while 0 will be given if there are more than five mistakes.

– Catchyness [10] measures whether the snippet is attractive. The judge is
asked to find attractive words. The score is given based on the ratio of attrac-
tive words, i.e., the number of attractive words divided by the number of total
tokens.

– Informative measures whether the snippet is informative. The judge is asked
to look at product attributes which are distinguishing. The score is given
based on the number of distinguishing attributes. A score of 5 will be given if
more than five distinguishing attributes exist. If the product is not mentioned,
the snippet is assigned with a score of zero.

SILVER: Generating Persuasive Chinese Product Pitch 661

Table 5. Evaluation results from human judges. “Trans” indicates Transformer. Best
results are shown in bold.

Metrics MLP MLP+K ResCNN Trans Trans+K SILVER

Fluency 1.96 2.79 1.37 3.02 3.03 3.05

Catchyness 2.20 2.71 1.55 2.66 2.72 2.76

Informative 4.07 4.11 3.89 2.18 3.11 4.33

Results. We report the evaluation results, which are average scores from all
judges, for the basic SILVER and three other supervised methods in Table 5.
From Table 5, we can conclude that SILVER produces more fluent, catchy, and
informative snippets than state-of-the-art text generation approaches.

5 Related Work

We briefly survey two lines of research related to our work, i.e., language gener-
ation and learning with weak supervision.

Natural Language Generation (NLG) task is one of the most widely studied
problems in the area of natural language processing. We identify two types of
NLG tasks: data-to-document generation and creative text generation.

Data-to-document generation (DDG) is a classic NLG task. Given some
structured data (e.g., a table), DDG produces text, such as a sentence or a para-
graph, that adequately and fluently describes the input data. Early DDG sys-
tems typically consist of two separate stages: a content selection stage to decide
“what to say”, and a surface realization stage to decide “how to say”. The recent
success of Deep Neural Network (DNN) models [15] has motivated research on
end-to-end systems that blur the distinction between the two stages. Most of the
DNN-based systems employ an encoder-decoder framework. Frequently adopted
encoders include Multi-Level Perception (MLP) [1,23] or a hierarchical form of
LSTM [24]. In the decoder layers, RNN [23] and LSTM [24] are common choices.

Creative text generation (CTG) has received considerably more attention,
from a commercial point of view. In CTG, the generated text must reveal more
human characteristics. DNN-based methods are also appealing in CTG when
supervision is accessible. For example, most state-of-the-art research on poetry
generation is based on the encoder-decoder framework [4,21,25]. However, train-
ing collections are difficult to obtain for other types of creative text, due to the
inherent complexity of the cognitive process. In this case, unsupervised methods
are the mainstream solution. Most of them are heavily dependent on syntac-
tic templates, e.g., word substitution [11,17,18], and can only generate short
headline style sentences or slogans. A recent work [10] explores the possibility of
generating a complete persuasive sentence by an unsupervised approach.

Our work is different from existing NLG work on the following two aspects:
(1) While most NLG tasks focus on the output’s fluency and fidelity to references,

662 Y. Hong et al.

we emphasize on the persuasiveness and relevance of the output. (2) End-to-
end DNN-based models require a tremendous amount of training data in order
to obtain promising results. When it is impossible to generate labeled corpus,
CTG systems often resort to unsupervised approaches. On the contrary, our
work attempts to exploit the superior learning power of DNNs by utilizing weak
supervisions.

Recently, a surge of works has been proposed that aims to address the data
scarcity issue using weak supervision [26], which is the opposite of strong super-
vision [26]. The collection of weak supervision can be obtained by either an
unsupervised model (with possibly worse performance) or a set of manually con-
structed heuristics. As weak supervisions are often incomplete (i.e., only a small
fraction of training set is labeled), inaccurate (i.e., only coarse-grained labels
are given) and/or inexact (i.e., given labels are not always correct), an adap-
tion of the model is necessary for optimizing performance. However, this is not
fully explored in the literature of DNN, especially for NLG. Most previous works
simply treat weak supervision signals as normal labels.

6 Conclusion

In this paper, we propose a persuasive product snippet generator SILVER. SIL-
VER leverages data-level, model-level and knowledge-level solutions to overcome
the data scarcity problem and generate persuasive product snippets. The eval-
uations on real data from our industrial partner demonstrate that SILVER is
able to produce persuasive snippets like a persuasive salesman. In the future,
we plan to employ more sophisticated graph embedding approaches to improve
SILVER.

Acknowledgment. Chen Lin is supported by the Natural Science Foundation of
China (No. 61972328), Joint Innovation Research Program of Fujian Province China
(No. 2020R0130). Hui Li is supported by the Natural Science Foundation of China (No.
62002303), Natural Science Foundation of Fujian Province China (No. 2020J05001).
Yanghua Xiao is supported by NSFC (No. 61732004, No. 61472085, No. U1509213,
No. U1636207), National Key R&D Program of China (No. 2017YFC0803700,
No. 2017YFC1201200), Shanghai Municipal Science and Technology project (No.
16JC1420401), Shanghai STCSMs R&D Program (No. 16JC1420400).

References

1. Bao, J., Tang, D., Duan, N., Yan, Z., Zhou, M., Zhao, T.: Text generation from
tables. IEEE/ACM Trans. Audio Speech Lang. Process. 27(2), 311–320 (2019)

2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP, pp. 1724–1734 (2014)

3. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans.
Knowl. Data Eng. 31(5), 833–852 (2019)

4. Ghazvininejad, M., Shi, X., Choi, Y., Knight, K.: Generating topical poetry. In:
EMNLP, pp. 1183–1191 (2016)

SILVER: Generating Persuasive Chinese Product Pitch 663

5. Huang, Y.Y., Wang, W.Y.: Deep residual learning for weakly-supervised relation
extraction. In: EMNLP, pp. 1803–1807 (2017)

6. Karpathy, A., Li, F.: Deep visual-semantic alignments for generating image descrip-
tions. In: CVPR, pp. 3128–3137 (2015)

7. Kirapatrick, A., Xu, Z.: Chinese Rhetoric and Writing: An Introduction for Lan-
guage Teachers. Parlor Press, South Carolina (2012)

8. Lebret, R., Grangier, D., Auli, M.: Neural text generation from structured data
with application to the biography domain. In: EMNLP, pp. 1203–1213 (2016)

9. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Sum-
marization Branches Out (2004)

10. Munigala, V., Mishra, A., Tamilselvam, S.G., Khare, S., Dasgupta, R., Sankaran,
A.: Persuaide! an adaptive persuasive text generation system for fashion domain.
In: WWW, pp. 335–342 (2018)

11. Özbal, G., Pighin, D., Strapparava, C.: BRAINSUP: brainstorming support for
creative sentence generation. In: ACL (1), pp. 1446–1455 (2013)

12. Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for automatic eval-
uation of machine translation. In: ACL, pp. 311–318 (2002)

13. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: KDD, pp. 701–710 (2014)

14. Pink, D.H.: To Sell is Human: The Surprising Truth About Persuading, Convincing,
and Influencing Others. Canongate Books, New York (2013)

15. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural
networks. In: ICML, pp. 1017–1024 (2011)

16. Tan, C., Niculae, V., Danescu-Niculescu-Mizil, C., Lee, L.: Winning arguments:
interaction dynamics and persuasion strategies in good-faith online discussions.
In: WWW, pp. 613–624 (2016)

17. Thomaidou, S., Lourentzou, I., Katsivelis-Perakis, P., Vazirgiannis, M.: Automated
snippet generation for online advertising. In: CIKM, pp. 1841–1844 (2013)

18. Valitutti, A., Toivonen, H., Doucet, A., Toivanen, J.M.: Let everything turn well
in your wife: generation of adult humor using lexical constraints. In: ACL (2), pp.
243–248 (2013)

19. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 6000–6010 (2017)
20. Wang, L.: Research on Chinese readability formula of texts for elementary and

intermediate South Korean and Japanese learners. Lang. Teach. Linguist. Stud.
5(2017), 15–25 (2017)

21. Wang, Z., et al.: Chinese poetry generation with planning based neural network.
In: COLING, pp. 1051–1060 (2016)

22. Wen, T., Gasic, M., Mrksic, N., Su, P., Vandyke, D., Young, S.J.: Semantically
conditioned LSTM-based natural language generation for spoken dialogue systems.
In: EMNLP, pp. 1711–1721 (2015)

23. Wiseman, S., Shieber, S.M., Rush, A.M.: Challenges in data-to-document genera-
tion. In: EMNLP, pp. 2253–2263 (2017)

24. Yang, Z., Blunsom, P., Dyer, C., Ling, W.: Reference-aware language models. In:
EMNLP, pp. 1850–1859 (2017)

25. Zhang, X., Lapata, M.: Chinese poetry generation with recurrent neural networks.
In: EMNLP, pp. 670–680 (2014)

26. Zhou, Z.H.: A brief introduction to weakly supervised learning. Nat. Sci. Rev. 5(1),
44–53 (2017)

Capturing SQL Query Overlapping via
Subtree Copy for Cross-Domain

Context-Dependent SQL Generation

Ruizhuo Zhao1,2, Jinhua Gao1(B), Huawei Shen1,2, and Xueqi Cheng1,2

1 CAS Key Lab of Network Data Science and Technology, Institute of Computing
Technology, Chinese Academy of Sciences, Beijing 100190, China

{zhaoruizhuo,gaojinhua,shenhuawei,cxq}@ict.ac.cn
2 School of Computer and Control Engineering, University of Chinese Academy

of Sciences, Beijing 100049, China

Abstract. The key challenge of cross-domain context-dependent text-
to-SQL generation tasks lies in capturing the relation of natural language
utterance and SQL queries in different turns. A line of works attempt
to combat this challenge by capturing the overlaps among consecutively
generated SQL queries. Existing models sequentially generate the SQL
query for a single turn and model the SQL overlaps via copying tokens
or segments generated in previous turns. However, they are not flexible
enough to capture various overlapping granularities, e.g., columns, filters,
or even the whole query, as they neglect the intrinsic structures inhabited
in SQL queries. In this paper, we employ tree-structured intermediate
representations of SQL queries, i.e., SemQL, for SQL generation and
propose a novel subtree-copy mechanism to characterize the SQL over-
laps. At each turn, we encode the interaction questions and previously
generated trees as context and decode the SemQL tree in a top-down
fashion. Each node is either generated according to SemQL grammar
or copied from previously generated SemQL subtrees. Our model can
capture various overlapping granularities by copying nodes at different
levels of SemQL trees. We evaluate our approach on the SParC dataset
and the experimental results show the superior performance of our model
compared with state-of-the-art baselines.

Keywords: Context-dependent · Text-to-SQL · Subtree-copy

1 Introduction

SQL query generation aims to map natural language utterances into executable
SQL queries, which can ease information acquisition from databases. In the real-
world scenario, users tend to interact with database in a multi-turn manner, i.e.,
asking a series of related questions to achieve their goals, making the interac-
tion strongly context-dependent. The context-dependency comes at two-folds.
Firstly, natural language questions are linguistically dependent, as users might
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 664–675, 2021.
https://doi.org/10.1007/978-3-030-75765-6_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_53&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_53

Subtree Copy Model for Context-Dependent SQL Generation 665

Fig. 1. An example of user interaction which consists of three turns. The bottom is
the SemQL tree of each SQL query in the above turns. The subtrees in the same color
dashed line are shared across different turns.

omit previously mentioned constraints and entities. Considering the example
shown in Fig. 1, the user adopts “those” to refer to the document sets selected
in the previous turns. Secondly, the generated SQL queries tend to overlap. As
shown in Fig. 1, most parts of SQL queries of different turns are shared. Such
context-dependency poses a great challenge for SQL query generation. More-
over, practical systems need to accommodate queries towards different domains,
making this task even more challenging.

Existing models for context-dependent SQL query generation usually adopt
the encoder-decoder framework. The encoder typically encodes the entire history
of interaction to capture linguistical dependency. To characterize the overlaps
of SQL queries, the decoder usually works in a copy manner. Suhr et al. [18]
proposes to copy predefined segments extracted by rules, while Zhang et al. [30]
proposes a sequence editing mechanism to model token-level changes between
consecutively generated SQL queries. However, both methods are not flexible
enough to capture various overlapping granularities. SQL queries tend to overlap
at different levels, e.g., querying the same column, sharing the same filters, or
reusing the whole query, making either token-level or segment-level copy less
effective.

In this paper, we argue that different overlapping granularities of SQL queries
are highly correlated to the intrinsic structures of SQL queries and empoly a

666 R. Zhao et al.

tree-structured intermediate representation of SQL queries, i.e., SemQL in [8],
for context-dependent SQL query generation. As shown in Fig. 1, the overlaps
between SQL queries usually correspond to shared subtrees in SemQL represen-
tations. Inspired by this observation, we propose a novel subtree-copy mecha-
nism to characterize the overlaps of generated SQL queries. To this end, we first
encode the generated SemQL queries in previous turns in a bottom-up way and
generate the SemQL tree in a top-down fashion in the decoder. When expand-
ing a non-terminal node, our subtree-copy mechanism will decide whether to
generate a new node based on SemQL grammars or to copy a generated node
in previous turns. Our subtree-copy mechanism can capture various overlapping
granularities by copying nodes at different levels of SemQL trees.

We evaluate our model on SParC [26], a dataset for cross-domain seman-
tic parsing in context. Experiment results show that by copying subtrees from
previously generated queries, our model outperforms baseline.

2 Related Work

Semantic parsing aims at mapping natural language utterances into machine-
interpretable languages, enabling easier interactions between humans and com-
puters. To accommodate the needs of different applications, a variety of lan-
guages have also been explored, including logical forms [5,27], lambda calcu-
lus [14,29], dependency-based compositional semantics [1], SQL queries [24,31]
and other general-purpose programming languages [11,22]. Among them, SQL
queries generation has attracted a lot of attention due to the large text-to-
SQL dataset such as WikiSQL [31] and Spider [25]. Most of the methods adopt
encoder-decoder model and perform well on WikiSQL [4,6,19,21,23]. Recently,
some methods [2,20] are proposed for the cross-domain dataset Spider. IRNet [8]
proposes to use SemQL as an intermediate representation to tackle the mismatch
problem and the lexical problem of dataset Spider. In our work, we also use
SemQL as intermediate representation because of its tree-structured form.

Recently, recovering context-dependent representations has been receiv-
ing increasing attention. Recovering context-dependent meaning was studied
by methods [16,18,28] focusing on context-dependent semantic parsing with
datasets such as ATIS [3,9], SCONE [7,10,15,17], SequentialQA [12] and
SParC [30]. The ATIS and SParC are text-to-SQL datasets and the neural meth-
ods [18,30] on them are most related to our work. Suhr et al. [18] incorporates
history turn with an interaction-level encoder and copying segments from pre-
vious SQL queries. Zhang et al. [30] propose query generation by editing the
query in the previous turn on token-level. Both of them focus on what part of
interaction history is useful and how history is used.

Subtree Copy Model for Context-Dependent SQL Generation 667

3 Task Formulation

Let I be an interaction and it has a sequence of n utterance-query pairs. A
user utterance X is a sequence 〈x1, . . . , x|X|〉 and each xi is a natural language
token. A SQL query is denoted as Y and its SemQL S is tree-structured. So an
interaction I consisting of n turns is denoted as I = [(Xi, Yi, Si)]

n
i=1. At turn i, we

denote the interaction history as I[: i−1] = 〈(X1, Y1, S1), . . . , (Xi−1, Yi−1, Si−1)〉.
All types of nodes in SemQL except columns and tables (e.g., Z, R, Select, ...)
make up a set N and we denote node type as N . Given I[: i − 1] and utterance
Xi, our goal is to generate Si and convert it to Yi.

The database schema is also given to the model as input. Let D = (C, T) be
a database schema, where T is the set of multiple tables and each table T ∈ T
has a sequence of words 〈t1, . . . , t|T |〉. The C is the set of columns and each table
T contain multiple column names:

T = 〈C1, . . . , C|m|〉

where m is the number of column numbers and Ci ∈ C. Each C has a sequence
of words 〈c1, . . . , c|C|〉.

4 Model

4.1 Model Architecture

We use the encoder-decoder architecture and the decoder is designed as tree-
structured. The framework is illustrated in Fig. 2, it consists of: (1) an utter-
ance encoder and an interaction encoder to encode the interaction history, (2) a
schema encoder to incorporate database schema, (3) a bottom-up tree-structured
encoder to encode previously generated SemQL trees, (4) a top-down tree-
structured decoder which generates tokens by either choosing from the SemQL
grammar or copying nodes from previously generated trees.

The tree encoder and decoder lie at the core of our model. Our tree encoder
works bottom-up to encode the generated SemQL trees at different granularities.
Accordingly, our tree decoder works top-down and can copy nodes from different
levels of generated trees, thus capturing various overlapping granularities of the
SQL queries.

4.2 Utterance and Interaction Encoder

Utterance Encoder. Each word xi,j of utterance Xi = 〈xi,1, . . . , xi,|Xi|〉 is
converted into its embedding vector .Then the encoder use a bi-LSTM to encode
the user utterance embedding vector and the hidden state for each token xi,j is
hU
i,j = [h

−→
U
i,j , h

←−
U
i,j] where h

−→
U
i,j is the forward embedding and h

←−
U
i,j is the backward

embedding.

668 R. Zhao et al.

Fig. 2. The overall framework of our model.

Interaction Encoder. The interaction encoder aggregates the interaction his-
tory up to the current turn for SQL generation and is implemented via a uni-
directional LSTM. The i-th input of LSTM is the hidden state at the last time
step of the i-th turn utterance-encoder, i.e.,

hI
i+1, c

I
i+1 = LSTMI(hU

i,|Xi|, (h
I
i , c

I
i)) (1)

where hU
i,|Xi| is the hidden state of the last time step of the i-th turn. The

obtained hidden state hI
i is fed into the decoder to predict the SemQL of i-th

turn.

4.3 Schema Embedding

We use the pre-trained Glove word embedding and each column name embed-
ding eCi is obtained by averaging the embeddings of words that appear in the
column name. Besides the pre-trained Glove word embedding, we also adopt
the contextualized word embedding based on BERT. Considering the linguistic
dependency within multi-turn utterances and the connection between utterances
and schemas, we concatenate the user utterances in I[: i − 1] together with Xi

and all the column names as the input of BERT at the i-th turn. The input
sequence for Ii is as follows:

[CLS],X1, . . . , Xi, [SEP], C1, . . . , Cm, [SEP]

The generated word embeddings in each Xi serve as the inputs for the utterance
encoder. We take the average embeddings of words in Ci’s name as its column
representation. The construction of table representations follows the same way.

4.4 SemQL Tree Encoder

We propose two principles for designing the SemQL tree encoder: (1) the embed-
ding of a node should represent the entire subtree rooted at it; (2) the embeddings

Subtree Copy Model for Context-Dependent SQL Generation 669

for nodes at the same level should be independent to each other. Considering the
hierarchical structure of SQL queries, we treat each subtree rooted at a nonter-
minal node as our copying block. When copying a nonterminal node, we need to
copy the entire subtree rooted at that node. The first principle can guarantees
that the learned representations of each non-terminal node can well represent
the subtree, while the second principle keeps the representation of a node inde-
pendent from its sibling nodes, allowing our model to capture SQL overlaps at
different granularities.

Following the principles, we propose to encode the entire SemQL bottom-up
with two LSTMs, i.e., the parent LSTM(P-LSTM) and the children LSTM(C-
LSTM). For each node, the C-LSTM aggregates the representations of its direct
children, while the P-LSTM generates its own representation based on the output
of the C-LSTM. The C-LSTM satisfies the first principle while the P-LSTM
guarantees the second.

To get the node embedding hPL
j,i of the i-th node at the j-th level of the

SemQL tree, the C-LSTM first aggregates the representations of all its children
nodes at the (j + 1)-th level. Assuming it has K children nodes numbered 1 to
K from left to right, the k-th time step of the C-LSTM is calculated as follows:

hCL
j+1,k = LSTMC(hPL

j+1,k,h
CL
j+1,k−1) (2)

After aggregating its children nodes, the P-LSTM generates its node embed-
ding hPL

j,i based on its node type (e.g., Z, R, intersect, ...) and the output of
the last time step of the C-LSTM, i.e., hCL

j+1,K. The node type is converted into
its embedding eNj,i to serve as the input. If the node corresponds to a table or a
column, we adopt the corresponding table embedding eTj,i or column embedding
eCj,i instead. Finally, the P-LSTM generates the node embedding hPL

j,i as follows:

hPL
j,i = LSTMP(eNj,i, (h

CL
j+1,K, cCL

j+1,K)) (3)

This encoding process works bottom-up until the entire SemQL tree is
encoded.

4.5 SemQL Tree Decoder

Our SemQL tree decoder works in a top-down manner. At the i-th turn, the
output of the interaction encoder for the current turn, i.e., (hI

i , c
I
i), is fed into the

decoder. We append an auxiliary root node to denote the start of the decoding
process. A queue is adopted to store the nonterminal nodes to be expanded,
which is initialized with the root node. Our decoder loops the queue and pops
one node each time to expand it by generating its children nodes. The decoding
process ends when the queue is empty.

To expand a nonterminal node, we adopt a list to record its generated children
nodes, which is initialized empty. The expanding process works as follows:

670 R. Zhao et al.

(1) Candidate generation: We first restrict the candidate set based on SemQL
grammar and its generated children nodes list. Take the expansion of the
node with type Z as an example. The allowed expanding grammar is:

{intersect R R | union R R | except R R | R}

If the children node list is empty, the next possible node will be: {intersect,
union, except, R}, which makes up the candidate set; If the child node
intersect is already selected in the previous step, the candidate set will be
restricted to R. To allow for copy, for each nonterminal node N in the
candidate set, previously generated nodes with the same node type as node
N will be appended to the candidate set.

(2) Node generation: We compute the generation likelihood for each candidate
node and pick the most likely node as our generated node. If the picked
node is a previously generated node, the corresponding subtree rooted at
this node will be copied to the final SemQL tree of the current turn.

(3) Decoder queue update: If the generated node in step (2) is a newly generated
nonterminal node, we will append to the decoder queue. Otherwise, the
queue remains unchanged.

(4) Children node list update: The generated node, either copied or newly gen-
erated, will be appended to the children node list of the current expanding
node. Then the expanding process will go back to step (1). This process of
expanding a node iterates until the candidate set is empty or a node with
type <eos> is generated in step (2).

The core part of our decoder lies at node generation. Node generation first
computes the node representation and then calculates the generation probability
for each candidate. We provide the detailed implementation of node generation
module as follows.

We adopt the LSTM to expand a given node. When expanding the k-th
child of node N , the input of the LSTM unit consists of two parts: the node
embedding eNk−1 of the generated (k−1)-th child, and the hidden state hD

ep when
output the current expanding node N , which is also known as the parent-feeding
mechanism. The node embedding of the generated (k − 1)-th child depends on
whether it is copied or generated. If it is copied from previously generated trees,
we take its embedding obtained by the SemQL tree encoder; Otherwise, it is
node type embedding at (k− 1)-th time step. Finally, the output of the decoder
for expanding the k-th child is:

hD
k = LSTMD([eNk−1;hD

ep],hD
k−1) (4)

We use softmax to calculate the generation probability of the nodes in the can-
didate set. For each node in the candidate set, its embedding depends on its
node type. If it is a symbol in SemQL grammar, its embedding is taken from
an embedding matrix; If it is a column or a table, its embedding is taken from
column embedding matrix or table embedding matrix; If it is a copied node, its
embedding is denoted by the hidden state generated by the SemQL tree encoder.

Subtree Copy Model for Context-Dependent SQL Generation 671

We denote the embedding matrix for the candidate set as eCan and calculate
the generation probability as follows:

ok = tanh(hD
k Wo)

sk = okeCan

Ptypes
⋃

subtrees = softmax(sk)

(5)

where Wo is the parameter matrix. Our scores are distributed on the candidate
node types and candidate subtrees.

4.6 Model Learning

Ground Truth Generation. The subtrees are deterministically extracted from
SemQL that are coverted by the annotated SQL queries. But the dataset doesn’t
indicate what parts of SemQL subtrees are copied from previous turn. To gener-
ate ground truth copied subtrees for training, we use a subtree match approach
to identify subtrees. The subtrees generated in previous turns make up a can-
didate set. For a SemQL tree in training data, we check whether its subtree
matches a subtree in the candidate set from top to down. Once a subtrees match
is identified, we replace the whole subtree with a placeholder and skip checking
subtree match for all its descendant nodes. The copying subtrees appear to the
learning algorithm as a single generation decision. We adopt the recursive algo-
rithm to realize our subtree match approach. We check if the roots node of the
subtrees are equal and then check their children recursively. Two nodes are equal
if they have the same node type and their children are equal. Two subtrees are
equal if their root nodes are equal and the children nodes of the two root nodes
are equal too.

Training Objective. The training set of N interactions is denoted as {Il}Nl=1.
Given an interaction Il, each utterance X l

i where i ≤ |Il| is paired with an
annotated query Y l

i and the SemQL tree Sl
i. Given the subtree copy decisions,

we minimize the interaction cross-entropy loss:

L =
|Il|∑

i=1

|Sl
i|∑

k=1

− logP (Sl
i,k|X l

i , S
l
i,1:k−1, Il[: i − 1])

where l is the index of the interaction, i is the index of turn and k is the index
of the token or copied the subtree. The P (Sl

i,k|X l
i , S

l
i,1:k−1, Il[: i − 1]) is the

probability of generating the token or copying the subtree. We update the model
parameters for each interaction.

5 Experiment

5.1 Dataset and Experimental Settings

We use SParC [26] which is a large-scale cross-domain context-dependent seman-
tic parsing dataset with SQL labels as our evaluation benchmark. It consists of

672 R. Zhao et al.

Table 1. The results on SParC dataset without BERT.

Methods without BERT Question match Interaction match

Dev Test Dev Test

SyntaxSQL-con [26] 18.5 20.2 4.3 5.2

CD-Seq2Seq [26] 21.9 23.2 8.1 7.5

EditSQL [30] 33.0 – 16.4 –

EditSQL(w/gold query) [30] 40.6 – 17.3 –

Ours(w/o subtree copy) 36.3 – 17.6 –

Ours(w/predicted tree) 38.7 – 21.4 –

Ours(w/gold tree) 47.8 – 22.1 –

Table 2. The results on SParC dataset with BERT.

Methods with BERT Question match Interaction match

Dev Test Dev Test

EditSQL+BERT [30] 47.2 47.9 29.5 25.3

EditSQL+BERT(w/gold query) [30] 53.4 54.5 29.2 25.0

Ours+BERT(w/o subtree copy) 48.3 – 29.5 –

Ours+BERT(w/predicted tree) 49.5 47.4 32.5 25.5

Ours+BERT(w/gold tree) 56.4 – 32.8 –

4,298 coherent question sequences over 200 databases and each database appears
only in one of train, dev and test sets.

We implement our model with PyTorch. Word embeddings, node type embed-
dings, and hidden vector are set to 300. Word embeddings are initialized with
Glove and shared among the utterance encoder, schema encoder, and SemQL
tree encoder. They are fixed during training. Model parameters are randomly
initialized from a uniform distribution U [−0.1, 0.1]. We use Adam optimizer [13]
to minimize the cross-entropy loss with the batch size 1. The learning rate of
the model is 0.001. We use the pre-trained small uncased BERT model with 768
hidden size and we fine-tune it with a learning rate of 0.00001.

5.2 Baselines

We compare our model with the three baseline models: (1) CD-Seq2Seq: This
model is originated from [18] and [26] use it on context-dependent SQL gener-
ation in multiple domains; (2) SyntaxSQL-con: This model is originated from
[24] by using bi-LSTMs to encode the interaction history; (3) EditSQL: This
model is proposed by [30] and they use sequence editing mechanism to model
token-level changes.

Subtree Copy Model for Context-Dependent SQL Generation 673

Table 3. The results of token copy and ours

Methods Question Interaction

EditSemQL 37.2 19.4

Ours 38.7 21.4

EditSemQL+BERT 48.5 30.0

Ours+BERT 49.5 32.5

Fig. 3. Turn accuracy

5.3 Main Results

Metrics. We adopt the exact set match accuracy between the gold and the
predicted queries as our evaluaton metric, which is proposed by [25]. The pre-
dicted queries are decomposed into different SQL clauses such as SELECT, WHERE,
GROUP BY, and ORDER BY and the scores are calculated for each clause using set
matching separately in case of ordering issues.

Overall Accuracy. Table 1 and Table 2 presents the question match accuracy
and interaction match accuracy of our model and various baselines on the devel-
opment set and the test set. Our model outperforms all the baselines without
BERT by a large margin on the dev set. The performance is obviously improved
when incorporating BERT. We compared our model and EditSQL with BERT
and the interaction accuracy of our model exceed EditSQL both on dev set and
test.

Turn Accuracy. To further show the effectiveness of our model, we show the
performance split by turns on the dev set with BERT in Fig. 3. The SQL queries
in later turns are more difficult to generate due to the complex context history.
As is shown in Fig. 3, our model outperforms baseline after the first turn though
our accuracy of the first turn is slightly lower. This further demonstrates that
our subtree copy mechanism is more effective than edit mechanism for the later
turns despite its hardness.

5.4 Ablation Study

Effects of Subtree Copy. We conduct ablation studies on our model to analyze
the contribution of the subtree copy mechanism. As shown in Table 1, our model
improves largely on interaction match accuracy with the use of subtree copying
with or without the utterance-table BERT embedding. To eliminate the effect
of employing SemQL grammar, the token copying proposed in EditSQL is also
implemented with SemQL grammar by copying generated nodes in previous
turns and the embedding of the nodes are obtained by SemQL tree encoder. As
shown in Table 3, our model still outperforms EditSemQL when both of them
use SemQL grammar.

674 R. Zhao et al.

Copying Gold Subtrees. And with copying gold subtrees, our model improves
both question match accuracy and interaction match accuracy on dev set. Our
model with gold subtree performs much better than EditSQL with the gold
query. This indicates that our model can improve generation performance more
when the quality of previous query is better and the oracle query is the extreme
circumstance.

6 Conclusion

We propose a subtree copy mechanism for context-dependent cross-domain text-
to-SQL. Our subtree-copy mechanism can capture various overlapping granular-
ities by copying nodes at different levels of SemQL trees. Experimental results
demonstrate the benefits of our subtree copy mechanism.

Acknowledgments. This paper is funded by the National Natural Science Founda-
tion of China under Grant Nos. 91746301, 62002347 and 61902380. Huawei Shen is also
funded by Beijing Academy of Artificial Intelligence (BAAI) and K.C. Wong Education
Foundation.

References

1. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from
question-answer pairs. In: Proceedings of EMNLP 2013

2. Bogin, B., Gardner, M., Berant, J.: Global reasoning over database structures for
text-to-sql parsing. In: Proceedings of EMNLP-IJCNLP (2019)

3. Dahl, D.A., et al.: Expanding the scope of the ATIS task: The ATIS-3 corpus. In:
Proceedings of Human Language Technology (1994)

4. Dong, L., Lapata, M.: Coarse-to-fine decoding for neural semantic parsing. In:
Proceedings of ACL (2018)

5. Dong, L., Lapata, M.: Language to logical form with neural attention. In: Proceed-
ings of ACL (2016)

6. Finegan-Dollak, C., et al.: Improving text-to-SQL evaluation methodology. In: Pro-
ceedings of the ACL (2018)

7. Fried, D., Andreas, J., Klein, D.: Unified pragmatic models for generating and
following instructions. In: Proceedings of NAACL-HLT (2018)

8. Guo, J., et al.: Towards complex text-to-sql in cross-domain database with inter-
mediate representation. In: Proceedings of ACL (2019)

9. Hemphill, C.T., Godfrey, J.J., Doddington, G.R.: The ATIS spoken language sys-
tems pilot corpus. In: Proceedings of Speech and Natural Language (1990)

10. Huang, H., Choi, E., Yih, W.: Flowqa: grasping flow in history for conversational
machine comprehension. In: Proceedings of ICLR (2019)

11. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Mapping language to code in
programmatic context. In: Proceedings of EMNLP (2018)

12. Iyyer, M., Yih, W., Chang, M.: Search-based neural structured learning for sequen-
tial question answering. In: Proceedings of ACL (2017)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings
of ICLR (2015)

Subtree Copy Model for Context-Dependent SQL Generation 675

14. Kwiatkowski, T., Zettlemoyer, L.S., Goldwater, S., Steedman, M.: Lexical gen-
eralization in CCG grammar induction for semantic parsing. In: Proceedings of
EMNLP (2011)

15. Long, R., Pasupat, P., Liang, P.: Simpler context-dependent logical forms via model
projections. In: Proceedings of ACL (2016)

16. Miller, S., Stallard, D., Bobrow, R.J., Schwartz, R.M.: A fully statistical approach
to natural language interfaces. In: Proceedings of ACL (1996)

17. Suhr, A., Artzi, Y.: Situated mapping of sequential instructions to actions with
single-step reward observation. In: Proceedings of ACL (2018)

18. Suhr, A., Iyer, S., Artzi, Y.: Learning to map context-dependent sentences to exe-
cutable formal queries. In: Proceedings of NAACL-HLT (2018)

19. Sun, Y., et al.: Semantic parsing with syntax- and table-aware SQL generation. In:
Proceedings of ACL (2018)

20. Wang, B., Shin, R., Liu, X., Polozov, O., Richardson, M.: RAT-SQL: relation-aware
schema encoding and linking for text-to-sql parsers. CoRR abs/1911.04942

21. Yavuz, S., Gur, I., Su, Y., Yan, X.: What it takes to achieve 100 percent condition
accuracy on wikisql. In: Proceedings of EMNLP (2018)

22. Yin, P., Neubig, G.: A syntactic neural model for general-purpose code generation.
In: Proceedings of ACL (2017)

23. Yu, T., Li, Z., Zhang, Z., Zhang, R., Radev, D.: TypeSQL: Knowledge-based type-
aware neural text-to-SQL generation. In: Proceedings of NAACL (2018)

24. Yu, T., et al.: SyntaxSQLNet: Syntax tree networks for complex and cross-domain
text-to-SQL task. In: Proceedings of EMNLP (2018)

25. Yu, T., et al.: Spider: A large-scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In: Proceedings of EMNLP (2018)

26. Yu, T., et al.: Sparc: Cross-domain semantic parsing in context. In: Proceedings of
ACL (2019)

27. Zelle, J.M., Mooney, R.J.: Learning to parse database queries using inductive logic
programming. In: Proceedings of AAAI (1996)

28. Zettlemoyer, L.S., Collins, M.: Learning context-dependent mappings from sen-
tences to logical form. In: Proceedings of ACL (2009)

29. Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial grammars. In: Proceedings of UAI
(2005)

30. Zhang, R., et al.: Editing-based SQL query generation for cross-domain context-
dependent questions. In: Proceedings of EMNLP-IJCNLP (2019)

31. Zhong, V., Xiong, C., Socher, R.: Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR abs/1709.00103 (2017)

HScodeNet: Combining Hierarchical
Sequential and Global Spatial

Information of Text for Commodity
HS Code Classification

Shaohua Du1,2, Zhihao Wu1,2,3, Huaiyu Wan1,2,3(B), and YouFang Lin1,2,3

1 School of Computer and Information Technology, Beijing Jiaotong University,
Beijing, China

{shaohua du,zhwu,hywan,yflin}@bjtu.edu.cn
2 Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing, China

3 CAAC Key Laboratory of Intelligent Passenger Service of Civil Aviation,
Beijing, China

Abstract. Commodity Harmonization System (HS) code classification
is an important customs procedure in cross-border trade. HS code classifi-
cation is to identify the category (i.e., HS code) of a commodity according
to its description information. In fact, HS code classification is essentially
a text classification task. However, compared with general text classifi-
cation, the challenge of this task is that commodity description texts are
organized in special hierarchical structures and contain multiple inde-
pendent semantic segments. What’s more, the label space (i.e., the HS
code system) has hierarchical correlation. In this paper, we propose a
HS code classification neural network (HScodeNet) by incorporating the
hierarchical sequential and global spatial information of texts, in which a
hierarchical sequence learning module is designed to capture the sequen-
tial information and a text graph learning module is designed to capture
the spatial information of commodity description texts. In addition, a
label correlation loss function is presented to train the model. Extensive
experiments on several real-world customs commodity datasets show the
superiority of our HScodeNet model.

Keywords: HS code · Text classification · Hierarchical · Text graph

1 Introduction

The global daily import and export trade has exceeded 100 billion dollars in
2019. All cross-border commodities are subject to customs duties, which are
determined by the categorization of commodities. So, it is crucial for enterprises
and customs that commodities are efficiently classified into accurate categories.
The World Customs Organization (WCO) has established the Harmonization
System (HS) Codes to represent the categories of cross-border trade commodi-
ties in the form of 6-digit codes. China has appended extra 4 digits to form a
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 676–689, 2021.
https://doi.org/10.1007/978-3-030-75765-6_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_54&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_54

HScodeNet for Commodity HS Code Classification 677

Fig. 1. An example of commodity
description.

Fig. 2. Hierarchical structure of HS.

10-digit HS code system. Thus, HS code classification is to find the most proper
10-digit HS code for a commodity according to its description information. The
description information is usually a text composed of a series of elements, called
declaration elements. As shown in Fig. 1, the commodity description text con-
sists of a series of declaration elements, such as commodity name, adaptable
automobile mode and principle. And the corresponding HS code is 8708409199,
which means the commodity is an automatic gearshift part for saloon cars.

HS code classification can be regarded as a text classification task. However,
compared with general text classification, it faces the following challenges:

1) Commodity description texts are organized in special hierarchical structures.
As shown in Fig. 1, a commodity description text is composed of several
declaration elements, and a declaration element consists of many words.

2) A commodity description text contains several independent semantic seg-
ments (i.e., declaration elements) rather than one uniform semantic topic.
Each declaration element has its own local short-range word-level sequential
semantics, while in the element-level there is an order information defined
by industry regulations. This is very different from the global continuous
semantics in common texts such as news and comments.

3) The label space of HS codes is represented by a large 5-layer tree structure. As
shown in Fig. 2, the labels (codes) are not independent, but have a hierarchical
correlation. For example, “8708409191” and “8708409199” in the figure both
belong to “870840”, and the difference between them is if a commodity is a
transmission or just a part, so they are highly correlated.

Recently, a surge of methods have been developed for text classification,
which can be broadly divided into two categories: Sequence-based Methods are
able to capture continuous context dependencies, but lose the global word co-
occurrence information in the entire corpus and ignore the correlations between
non-adjacent words in sentences; while, Graph-based Methods can effectively
exploit the global word co-occurrence information to capture the correlations
between non-adjacent words. However, to solve HS code classification task, these
general methods will face the following problems: 1) they do not simultane-
ously consider the local sequential and global spatial information of the texts; 2)

678 S. Du et al.

they cannot effectively deal with the unique hierarchical structure of commodity
description texts; 3) they ignore the hierarchical correlation in the label space.

To address the above challenges, we propose a novel HS code classification
neural network (HScodeNet) model by incorporating the hierarchical sequential
and global spatial information of commodity description texts. First, a hierar-
chical sequence learning (HSL) module is designed to capture the multi-level
sequential information. Then, we construct a global corpus-level graph based on
the word co-occurrence information of the entire corpus and extract a subgraph
for each commodity, and then design a text graph learning (TGL) module to
capture the spatial information among non-adjacent words. Besides, a label cor-
relation loss (LCL) function is proposed to capture the hierarchical correlations
in the label space to further improve the classification accuracy.

The main contributions of this paper can be summarized as follows:

1) We have an insight into the commodity HS code classification problem and
thoroughly analyze its differences and challenges compared with the widely
studied text classification problem.

2) We propose a novel HScodeNet model for HS code classification, in which a
hierarchical sequence learning module and a text graph learning module are
designed to capture the multi-level sequential and global spatial information.

3) A label correlation loss function is proposed to utilize the hierarchical struc-
ture of the label space to improve the classification performance.

4) Extensive experiments are conducted on four real-world customs datasets,
which verify the superiority of our proposed model.

2 Related Work

HS code classification is usually performed manually by domain experts. Machine
learning methods are currently being integrated into this field [1,3]. However,
traditional methods have limited modeling abilities, and deep learning meth-
ods have not yet been well explored in this field. In fact, HS code classifica-
tion is essentially a text classification task with special text structure and label
hierarchy, so we can refer to techniques on text classification and hierarchical
classification.

Text Classification. Text classification methods can be divided into sequence-
based models and graph-based models. Sequence-based models mainly capture
text sequence features for classification. The most commonly used sequence-
based models include convolutional neural networks (CNN) [2,7,19] which cap-
ture local n-gram semantics and recurrent neural networks (RNN) [9,20] which
learn sequential information and context dependence in text. [4,17] employed
attention mechanism to improve the model’s ability to learn the representations
of documents. [16] used capsule networks based on dynamic routing to explore
text classification. Graph-based text classification models exploit the spatial fea-
tures of texts from the constructed graphs by using the global co-occurrence

HScodeNet for Commodity HS Code Classification 679

information of corpus. [18] used a heterogeneous text graph to describe the local
co-occurring constraint, and then used graph convolution networks (GCN) [8]
to learn on the graph. [10] constructed a text graph tensor and then performed
the jointly learning of multi-graphs.

Hierarchical Classification. Hierarchical classification methods are mainly
divided into local classification methods and global classification methods. Local
methods train a classifier for each local module [12], so they are much more
computationally expensive. Global methods are usually cheaper because they
consider the overall label hierarchy and train a unified classifier [5], but they are
less likely to capture local information from the hierarchy. Recently, [15] used
a cascaded neural network to simultaneously optimize the local and global loss.
However, such special network structure can’t consider the fact that the number
of categories at different levels are very different, which limits its application.

3 Preliminaries

Definition 1. Declaration Element. A declare element is a piece of text that
reflects some aspect of a commodity’s objective attributes. Em

n denotes the m-th
declaration element of commodity n, which consists of a sequence of T words:

Em
n =

{
w1

n,m, w2
n,m, . . . , wt

n,m, . . . , wT
n,m

}
. (1)

Definition 2. Commodity Description. A commodity description is a
sequence of declaration elements used for the HS code classification of a com-
modity n, denoted as Dn, in which the declaration elements are separated by
“|”:

Dn =
{
E1

n|E2
n| . . . |Em

n | . . . |EM
n

}
. (2)

Definition 3. HS Code. A HS code is a 10-digit code that can represent the
class label of a commodity. Let Y = {y(1), y(2), . . . , y(C)} be a set of HS codes, i.e.,
label space, where C is the total number of labels. Y is organized as a hierarchical
tree structure like Fig. 2, in which each yi is a leaf node, and an inner node is
an ancestor (i.e., prefix) of the corresponding 10-digit code.

Definition 4. Commodity HS Code Classification. Given the commodity
description Dn of a certain commodity n, the goal is to identify the correct code
(label) of n from the label space Y .

4 The HScodeNet Model

Figure 3 illustrates the architecture of our HScodeNet model. It is mainly com-
posed of two modules: Hierarchical Sequence Learning (HSL) module, which
captures multi-level sequential features; and Text Graph Learning (TGL) mod-
ule, which captures global spatial features. Finally, we fuse these two features
and use a label correlation loss function to optimize the model.

680 S. Du et al.

Word Embedding

GAT (8-head)

GAT (1-head)

Self-Attention

LSTM (word level)

LSTM (element level)

Feature Fusion

FC 2

Aggregation

Aggregation Mean Pool Global
Max
Pool

Label Fusion

Text Graph Text Word Matrix

Softmax

KL Divergence

Fig. 3. Overall architecture of HScodeNet.

4.1 Hierarchical Sequence Learning (HSL) Module

The commodity description texts exhibit sequential features at two levels: 1)
words within one declaration element are semantically positioned in order; 2)
multiple declaration elements of one commodity description text are positioned
in order of industry regulations. So, we use a hierarchical LSTM network to
capture the two-level sequential information.

We first organize the description text of commodity n into a word matrix
Sn = {Em

n }M
m=1 ∈ R

M×T , where M is the number of declaration elements
and T is the number of words in each declaration element. Then we use an
embedding layer to fine-tune the pre-trained vector of each word, and a 3-
dimensional word embedding tensor Xn

S ∈ R
M×T×d is obtained. As shown in

Fig. 4, matrix Xn
S is spliced by M word embedding matrices {Xn,m

S }M
m=1, where

Xn,m
S =

[
x1

n,m, . . . ,xt
n,m, . . . ,xT

n,m

] ∈ R
T×d is the word embedding matrix

obtained after declaration element Em
n is transformed through the embedding

layer.
As shown in Fig. 4, each word embedding matrix Xn,m

S in Xn
S is treated

as a word sequence and fed to the first LSTM layer to capture the word-level
sequential semantics, then we obtain the new representation of each word:

ht
n,m= LSTM

(
xt

n,m,ht−1
n,m

)
. (3)

Then we aggregate the new embeddings of all the words in Xn,m
S to get the

initial embedding of declaration element m:

ηm
n = concat

(
avg

t∈[1,T]

(ht
n,m), max

t∈[1,T]
(ht

n,m)
)
. (4)

Then, ηm
n obtained from the first LSTM layer is used to form a declaration

element embedding matrix Hn =
[
η1

n, . . . ,ηm
n , . . . ,ηM

n

]
. And we feed Hn to the

HScodeNet for Commodity HS Code Classification 681

Fig. 4. Hierarchical sequence learning (HSL) module.

second LSTM layer to capture element-level sequential information, and obtain
a deep-level representation of each declaration element:

μm
n = LSTM

(
ηm

n ,μm−1
n

)
, (5)

where μm−1
n is the hidden state of the previous time step.

Finally, we aggregate the embeddings of all the declaration elements to obtain
the hierarchical sequential feature vector of commodity description Dn:

cn
S= concat

(
avg

m∈[1,M]

(μm
n), max

m∈[1,M]
(μm

n)
)
. (6)

4.2 Text Graph Learning (TGL) Module

In this module, we first construct a text graph for each commodity description,
and then learn the spatial information from the graph.

Text Graph Construction. The structure of text graph will greatly affect
the learning performance. In text graph construction, different co-occurrence
window choices and edge-weight calculation methods result in completely differ-
ent text graph structures. In this work we combine the hierarchical structure of
texts to build text graphs, mainly containing two steps: first construct a global
corpus graph based on the word co-occurrence information in the entire corpus,
and then extract a subgraph for each commodity from the global corpus graph.
With regard to the edge-weights, we use graph attention networks (GAT) [14]
to adaptively learn them.

1) Global Corpus Graph Construction: Let G= (V,E) be the constructed
global corpus text graph, where V is the vocabulary of the entire corpus, each
node vi ∈ V corresponds to a word. We use declaration elements {Em

n } as
windows to generate the word co-occurrence relations set E. Specifically, for any
two words vi, vj ∈ V , if they co-occur in the same window, we add an edge ei,j

into E. In addition, we agree that for any vi, ei,i ∈ E is satisfied.
2) Commodity Text Graph Extraction: Let Gn= (Vn, En) be the text graph

of commodity n extracted from G, where Vn ⊂ V and En ⊂ E. Specifically, we
first extract all the words contained in Dn from V to form Vn and then extract
all the edges between Vn from E to form En.

682 S. Du et al.

After constructing commodity text graph based on the global co-occurrence
information, the spatial correlations between non-adjacent words are con-
structed, then we can use the following network to capture the spatial infor-
mation.

Text Graph Learning. Before the TGL module, we also first use the embed-
ding layer mentioned above to fine-tune the pre-trained word vectors of Vn to
get a word vector set Xn

G =
{

xi
n

∣
∣ xi

n ∈ R
d, 1 ≤ i ≤ |Vn|}.

The structure of the TGL module is shown in Fig. 5. In this module, we first
use GAT to learn the edge-weights in Gn to capture local spatial information
(i.e., correlations between neighboring nodes), then we employ self-attention
mechanism to capture long-range spatial information all over the graph.

Mean Pooling

GAT

Self-Attention

Feature Fusion

1nx 2nx inx | |nn
VxnE

Global Max Pooling

i
nf1

nf 2
nf

| |nVnf

Concatenation

Fig. 5. Text graph learning (TGL) module.

The GAT layer first performs a learnable linear transformation zi
n = ωxi

n on
every node, where ω ∈ R

d′×d is the weight matrix shared by each node. Then,
it performs a shared attention mechanism a : R2d′ × R

2d′ → R and applies the
LeakyReLU nonlinearity to compute the attention coefficient for each edge ei,j :

γi,j
n = LeakyReLU

(
aT

[
zi

n||zj
n

])
, (7)

where || is the concatenation operation. Then, we normalize these coefficients:

αi,j
n =

exp
(
γi,j

n

)

∑|Γ i
n|

k=1 exp
(
γi,k

n

) , (8)

where Γ i
n is the set of neighbors of node vi in graph Gn. Finally, we update

the features of each node vi by using the normalized attention coefficients to
compute a linear combination of its neighbors’ features:

xi′
n =

∑|Γ i
n|

j=1
αi,j

n zj
n. (9)

HScodeNet for Commodity HS Code Classification 683

We use multi-head attention in the GAT layer, and the feature vector of a
node obtained by using K-head attention is:

xi′
n=ELU

(
||

k∈[1,K]

(
xi′

n,k

)
+ b

)
, (10)

where b ∈ R
(K×d′) is a learnable bias vector, || is the concatenation operation,

and K is a hyperparameter.
After the GAT layer captures the local spatial features in the commodity

text graph, we further employ a self-attention layer to model the long-range
spatial information. Suppose Fn=(f1

n,f2
n, . . . ,f i

n, . . . ,f
|Vn|
n) ∈ R

|Vn|×d′
is the

word embedding matrix after the GAT layer, where f i
n ∈ R

d′
is the feature

vector of word node vi, we calculate the normalized attention coefficient vector
of vi with all other word nodes in the graph as follows:

βi
n= softmax

(
f i

nWFT
n

)
, (11)

where W ∈ R
d′×d′

, βi
n ∈ R

|Vn|, and the j-th element in βi
n indicates the impor-

tance of word vj ’s features to word vi. Finally, the attention coefficient vector
is used to compute a linear combination of all other nodes’ features, to serve as
the final output features of the TGL module for word vi:

f i′
n = βi

nFn. (12)

Here f i′
n represents one word vi’s spatial features in text graph Gn, and

F ′
n = (f1′

n ,f2′
n , . . . ,f i′

n , . . . ,f
|Vn|
n ′) ∈ R

|Vn|×d′
. Then we need to aggregate the

spatial features of all the words to obtain an embedding of the whole graph.
We perform a max-k (k is a hyperparameter) pooling operation on all the word
vectors in the graph, and then use an average pooling to aggregate them into
one vector cn,a

G . At the same time, after the GAT layer, a global max pooling is
adopted to pool all the word features into a vector cn,b

G . Then a residual structure
is used to concatenate cn,a

G and cn,b
G into the final text graph embedding cn

G.

4.3 Feature Fusion and Classification

We fuse the local sequential features cn
S obtained from the HSL module and

the global spatial features cn
G obtained from the TGL module to form the final

feature representation of commodity description Dn:

cn = WS ◦ cn
S + WG ◦ cn

G, (13)

where WS and WG are learnable parameters, and ◦ is the Hadamard product.
Then the final representation cn is fed into two fully connected layers and a

softmax layer to predict the normalized label probability distribution ŷn of Dn:

ŷn = softmax(W2(ELU(W1cn + b1))+b2), (14)

where W1, W2, b1 and b2 are learnable parameters.

684 S. Du et al.

4.4 Label Correlation Loss (LCL) Function

In the multi-class classification problem, for a sample n, we usually use its
true label distribution yn = [y(1)

n , y
(2)
n , . . . , y

(C)
n] for model training, where y

(i)
n

represents the probability of label y(i) on sample n,
∑C

i=1 y
(i)
n = 1, and C is

the total number of labels. We assume that the true label of sample n is y∗
n.

In the situation that the labels are independent with each other, we can use
δn = [δ(1)n , δ

(2)
n , . . . , δ

(C)
n] to be the true label distribution of sample n, where

δ(i)n =
{

1, y∗
n = y(i),

0, otherwise.
(15)

However, in the HS code classification scenario, as analyzed before and shown
in Fig. 2, the labels are not independent but have a hierarchical correlation, so
we cannot directly use δn for model training. Therefore, based on the hierarchi-
cal structure of HS codes, we propose a method for calculating the correlation
between any label y(i) and sample n when the true label of n is y∗

n:

r(i)n = ecount(Ancestor(y∗
n)∩Ancestor(y(i))), (16)

where count is the counting operation and Ancestor(y(i)) represents the set of
ancestor labels of label y(i) in the entire label space Y . Then we normalize r

(i)
n

to get a new correlation-based label distribution ξn = [ξ(1)n , ξ
(2)
n , . . . , ξ

(C)
n], where

ξ(i)n = r(i)n

/ C∑

i=1

r(i)n . (17)

According to Eq. 16, the greater the number of common ancestors between
label y(i) and true label y∗

n, the stronger correlation between label y(i) and sample
n, and thus the higher the probability of label y(i) on sample n.

Then, we perform a weighted summation operation on the above two kinds
of label distributions to obtain the final true label distribution of sample n:

yn = λδn + (1 − λ)ξn, (18)

where λ is a hyperparameter.
Finally, we use KL divergence to measure the distance between the true

label distribution yn and the predicted label distribution ŷn, and minimize the
following loss function:

DKL (yn, ŷn) =
∑C

i=1
y(i)

n log
(
y(i)

n /ŷ(i)
n

)
. (19)

5 Experiments

5.1 Datasets

We collected four real-world customs datasets from a customs agency in China.
The datasets are all in Chinese and belong to vehicle industry, chemical industry,

HScodeNet for Commodity HS Code Classification 685

textile manufacturing and electrical industry, respectively. Specifically, the vehi-
cle industry dataset (VID) contains commodities such as vehicles, aircrafts, ships
and other transportation equipment; the chemical industry dataset (CID) con-
tains commodities such as chemical products, plastic products and rubber prod-
ucts; the textile manufacturing dataset (TMD) contains commodities such as
textile raw materials and textile products; and the mechanical electrical dataset
(MED) contains commodities such as machinery appliances and electrical equip-
ment. All commodities in the datasets are labeled by domain experts and have
been verified by the customs agency. Table 1 shows the statistics of the datasets.

5.2 Settings

We set the dimension of the initial word embeddings to be 300 and use Word2Vec
[11] for pre-training. Each layer in the HSL module adopts a 2-layer unidirec-
tional LSTM. In the TGL module, the GAT layer includes two graph attention
layers in which the first layer adopts an 8-head attention and the second layer a
single-head attention, the self-attention layer adopts an 8-head attention. When
generating the graph embedding, we use a max-10 pooling operation. The hyper-
parameter λ in Eq. 18 is set to 0.9. The batch-size is set to 64. The initial learning
rate is 0.0004, which decays according to the step interval [2, 10, 30, 50] and the
decay rate is 0.5. Accuracy and macro-F1 score are used to evaluate.

5.3 Baselines

We compare our proposed model with classic classifiers, transformer, hierar-
chical classifiers, and state-of-the-art text classifiers. ①TF+LR, ②TF+DT and
③TF+XGBoost are the logistic regression, decision tree and ensemble methods
based on term frequency. ④Transformer [13] uses a multi-head self-attention to
generate embeddings for words in sequence. We use the encoder structure in it.
⑤TextCNN [7] uses CNN and max-pooling to capture local semantics features.
⑥TextRNN [9] uses the last hidden state of RNN as the representation of the
whole text. ⑦DeepMoji [4] is a hybrid neural network combining bidirectional
LSTM and attention and performs well in text classification tasks. ⑧fastText [6]
uses a position-independent fully connected neural network to learn document
embeddings. We evaluate it with and without bigrams respectively. ⑨HMCN-F
[15] is a hierarchical classifiers which fits the neural network layers to the label
hierarchy. ⑩TextGCN [18] models the whole corpus as a heterogeneous graph
and learns word and document embeddings with graph neural networks jointly.

Table 1. Statistics of datasets.

Dataset #Samples #Train #Validation #Test #Words Average length Declare elements Labels (HS codes)

VID 31,600 22,752 2,528 6,320 40,282 30 82 158

CID 165,600 119,232 13,248 33,120 115,920 31 200 828

TMD 179,800 129,456 14,384 35,960 98,823 22 228 899

MED 117,000 84,240 9,360 23,400 154,163 24 119 585

686 S. Du et al.

5.4 Experimental Results and Analyses

Classification Performance Comparison. Table 2 gives the comparison
result of each model. HScodeNet achieves the best performance on all the four
datasets. For more in-depth analysis, we note that the results of traditional
machine learning methods are usually not good, demonstrating those meth-
ods’ limited abilities of modeling complex data. By comparison, the methods
which focus on sequential information, such as TextCNN and TextRNN perform
much better. This is because word orders are important in text classification.
We notice that the strong baseline TextGCN which focuses on the global co-
occurrence information does not perform a significant advantage over CNN and
LSTM-based models. This is because GCN ignores the sequential information
in texts, while CNN and LSTM model consecutive word sequences explicitly.
Another reason is that the edge-weights in TextGCN are calculated based on
static statistics information, which limits the message passing among the nodes.
Besides, the result of hierarchical classification method HMCN-F performs well,
which showcases the effectiveness of capturing hierarchical information in label
space.

Our model captures the special sequential and spatial information in the
commodity description texts simultaneously, and designs a label correlation loss
function to utilize the label hierarchy. Therefore, our HScodeNet achieves the
best results against all the baselines, which demonstrates its advantages in rep-
resenting sequential and spatial features of commodity description texts.

Ablation Study. We prove the effectiveness of each component of our HSco-
deNet model, and the results are shown in Fig. 6. “-HSL” means removing the
HSL module, “-TGL” means removing the TGL module, and “-LCL” indicates
using the common cross entropy loss to replace LCL function.

From the Fig. 6 we can find that removing any of the three components
will make the classification accuracy drop obviously, which demonstrates the
effectiveness of each component. And we can further observe that, among the
three components, the TGL module has the greatest impact on the classification
performance, the HSL module takes the second place, and the LCL function has

Table 2. Classification performance of different methods.

Model VID CID TMD MED

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

TF+LR 74.35± 2.01 75.63± 1.26 38.18± 1.60 40.50± 1.29 27.06± 1.53 25.10± 1.31 58.99± 2.65 57.86± 1.15

TF+DT 79.66± 0.28 79.64± 0.31 71.11± 0.08 71.45± 0.05 60.33± 0.14 59.32± 0.16 64.54± 0.10 64.89± 0.07

TF+XGBoost 84.95± 0.00 83.10± 0.00 74.05± 0.00 74.24± 0.00 65.36± 0.00 63.30± 0.00 67.88± 0.00 68.14± 0.00

Transformer 89.68± 0.27 87.45± 0.22 85.63± 0.35 84.53± 0.41 70.73± 0.12 69.76± 0.29 77.48± 0.37 75.39± 0.59

TextCNN 89.51± 0.37 88.08± 0.39 86.38± 0.35 86.69± 0.29 70.68± 0.54 67.79± 0.61 77.94± 0.97 74.26± 0.83

TextRNN 84.88± 0.14 81.72± 0.29 83.72± 0.38 83.30± 0.41 68.25± 0.26 65.83± 0.33 69.81± 0.14 65.64± 0.04

DeepMoji 86.00± 0.21 83.99± 0.19 84.03± 0.38 83.61± 0.35 68.63± 0.34 66.17± 0.42 71.64± 0.50 68.97± 0.47

fastText 89.52± 0.62 87.12± 0.75 86.32± 0.33 85.54± 0.27 67.70± 0.48 65.35± 0.46 77.50± 0.31 74.01± 0.36

fastText (bigram) 89.88± 0.55 88.03± 0.67 87.10± 0.60 86.94± 0.36 71.15± 1.07 69.49± 0.95 79.08± 0.43 76.47± 0.57

HMCN-F 88.13± 0.12 86.94± 0.16 86.02± 0.13 85.70± 0.10 71.33± 0.05 70.14± 0.09 77.38± 0.21 75.72± 0.29

TextGCN 88.80± 0.07 87.09± 0.11 86.11± 0.13 85.97± 0.19 70.87± 0.06 69.24± 0.08 78.72± 0.17 76.14± 0.24

HScodeNet (ours) 93.10± 0.15 91.78± 0.23 90.89± 0.07 89.62± 0.09 77.18± 0.22 75.82± 0.19 85.12± 0.08 82.98± 0.14

HScodeNet for Commodity HS Code Classification 687

Fig. 6. Ablation experiments of each component.

the lowest influence. Even so, removing LCL causes the accuracy decrease by
0.92%, 0.66%, 1.03% and 1.09% on the four datasets respectively, which proves
the effectiveness of modeling the hierarchical information in the label space.

Comparison of Text Graph Construction Methods. We compare the
performances of the following text graph construction methods by experiments:

1) DOC-PMI : Each document (DOC) is taken as a co-occurrence window, and
point-wise mutual information (PMI) is used to calculate edge-weight ewi,j :

ewi,j = max
(
log

(
p(vi, vj)/

(
p(vi)p(vj)

))
, 0

)
, (20)

where p(vi, vj) is the probability that a window contains both words vi and
vj in the corpus, and p(vi) is the probability that a window contains vi.

2) DOC-CP : Each document is treated as a co-occurrence window, and condi-
tional probability (CP) is employed to calculate the edge-weight ew′

i,j :

ew′
i,j = (p(vi|vj) + p(vj |vi))/2. (21)

3) SLI-CP : A sliding (SLI) window with a fixed size of 10 is utilized on all
documents in the corpus, and the edge-weight calculation method is CP.

4) DE-CP : Each declaration element (DE) is taken as a co-occurrence window,
and the edge-weight calculation method is CP.

5) DE-GAT (used in our model): Each declaration element is taken as a co-
occurrence window, and edge-weights are adaptively learned by GAT.

The first four methods adopt word co-occurrence statistics information to
calculate the edge-weights of text graphs, and then use a 2-layer GCN to aggre-
gate information. Differently, the DE-GAT method employs GAT to learn the
edge-weights adaptively. For fair comparison, we use 2-layer single-head GAT
in experiments. As Table 3 shows, both the choice of co-occurrence window and
the edge-weight calculation methods have an obvious influence on the results.
Specifically, SLI window is better than DOC window, and DE window is the best,
which demonstrates that taking declaration elements as co-occurrence windows
conform the structure characteristics of commodity description texts. Similarly,
the GAT method is far better than the CP and PMI method, which demonstrates
the superiority of adaptively learning the edge-weights against using static statis-
tics information. Therefore, DE-GAT achieves the best performance.

688 S. Du et al.

Table 3. Experiments of text graph construction methods on VID dataset.

Method DOC-PMI DOC-CP SLI-CP DE-CP DE-GAT (ours)

Accuracy (%) 86.43± 0.14 87.32± 0.13 87.60± 0.09 88.84± 0.05 90.30± 0.06

6 Conclusion

In this paper, we present the HS code classification problem and propose HSco-
deNet model to incorporate the hierarchical sequential and global spatial infor-
mation of texts. Besides, a label correlation loss function is designed to utilize
the label hierarchy. The experimental results prove the superiority of our model.

References

1. Altaheri, F., Shaalan, K.: Exploring machine learning models to predict harmo-
nized system code. In: EMCIS, pp. 291–303 (2019)

2. Conneau, A., Schwenk, H., Barrault, L., LeCun, Y.: Very deep convolutional net-
works for text classification. In: EACL, pp. 1107–1116 (2017)

3. Ding, L., Fan, Z., Chen, D.: Auto-categorization of HS code using background net
approach. In: KES, pp. 1462–1471 (2015)

4. Felbo, B., Mislove, A., Søgaard, A., Rahwan, I., Lehmann, S.: Using millions of
emoji occurrences to learn any-domain representations for detecting sentiment,
emotion and sarcasm. In: EMNLP, pp. 1615–1625 (2017)

5. Gopal, S., Yang, Y.: Recursive regularization for large-scale classification with hier-
archical and graphical dependencies. In: KDD, pp. 257–265 (2013)

6. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. In: EACL, pp. 427–431 (2017)

7. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP,
pp. 1746–1751 (2014)

8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

9. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with
multi-task learning. In: IJCAI, pp. 2873–2879 (2016)

10. Liu, X., You, X., Zhang, X., Wu, J., Lv, P.: Tensor graph convolutional networks
for text classification. In: AAAI, pp. 8409–8416 (2020)

11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: ICLR (2013)

12. Sun, Z., Zhao, Y., Cao, D., Hao, H.: Hierarchical multilabel classification with
optimal path prediction. Neural Process. Lett. 45(1), 263–277 (2017)

13. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)
14. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph

attention networks. In: ICLR (2018)
15. Wehrmann, J., Cerri, R., Barros, R.C.: Hierarchical multi-label classification net-

works. In: ICML, pp. 5225–5234 (2018)
16. Yang, M., Zhao, W., Ye, J., Lei, Z., Zhao, Z., Zhang, S.: Investigating capsule

networks with dynamic routing for text classification. In: EMNLP, pp. 3110–3119
(2018)

HScodeNet for Commodity HS Code Classification 689

17. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A.J., Hovy, E.H.: Hierarchical atten-
tion networks for document classification. In: NAACL, pp. 1480–1489 (2016)

18. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In:
AAAI, pp. 7370–7377 (2019)

19. Zhang, X., Zhao, J.J., LeCun, Y.: Character-level convolutional networks for text
classification. In: NeurIPS, pp. 649–657 (2015)

20. Zhang, Y., Liu, Q., Song, L.: Sentence-state LSTM for text representation. In:
ACL, pp. 317–327 (2018)

PLVCG: A Pretraining Based Model
for Live Video Comment Generation

Zehua Zeng1,2,3(B), Neng Gao1,3, Cong Xue3, and Chenyang Tu1,3

1 State Key Laboratory of Information Security, Institute of Information
Engineering, CAS, Beijing, China

cengzehua@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

Abstract. Live video comment generating task aims to automatically
generate real-time viewer comments on videos like real viewers do. Like
providing search suggestions by search engines, this task can help viewers
find comments they want to post by providing generated comments. Pre-
vious works ignore the interactivity and diversity of comments and can
only generate general and popular comments. In this paper, we incor-
porate post time of the comments to deal with the real-time related
comment interactions. We also take the video type labels into consid-
eration to handle the diversity of comments and generate more related
and informative comments. To this end, we propose a pre-training based
encoder-decoder joint model called PLVCG model. This model is com-
posed of a bidirectional encoder to encode context comments and visual
frames jointly as well as an auto-regressive decoder to generate real-time
comments and classify the type of the video. We evaluate our model in
a large-scale real-world live comment dataset. The experiment results
present that our model outperforms the state-of-the-art on live video
comment ranking and generating task significantly.

Keywords: Live video comment · Natural Language Generation ·
Auto-regressive generation

1 Introduction

Live comment video, which is also called time-sync comment video, is a new type
of video that viewers can interact with each other by commenting on videos [2].
When a video is playing, the comments are shown at the right side of the video
or fly crossing the video. Thus viewers can comment what they are watching in
real-time, and even reply others comments. Like search suggestions provided by

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-75765-6 55) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 690–702, 2021.
https://doi.org/10.1007/978-3-030-75765-6_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_55&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_55
https://doi.org/10.1007/978-3-030-75765-6_55
https://doi.org/10.1007/978-3-030-75765-6_55

PLVCG: A Pretraining Based Model for Live Video Comment Generation 691

search engines, some viewers want to select comments from automatically gen-
erated comments. To promote the user experiences, there have been some live
comment video service providers use random candidate comments for users to
select. However, these comments are too common and uninformative for users
to post. As a result, a new challenging task called live video comment generat-
ing is proposed [9]. This task aims to automatically generate natural language
comments of videos like real viewers do. Therefore, the model is required to
comprehend not only multi-modality, but also the interactions between viewers
and videos.

Table 1. Different comments posted at different time. All comments are translated
from Chinese into English by the authors.

Posted time Comment

2016.04.16 I’m supervised that you upload this video!

2016.04.16 The uploader comes back.

2016.04.16 I’m the top 1000 watching this video.

2020.04.30 Archaeological study on this video from 2020.

2020.07.22 Episode 22 still hasn’t been uploaded today

To deal with the multi-modality property, the proposed models need to con-
sider not only visual information, but also natural language comments. This
kind of challenge have been learned in field such as image captioning [18], video
captioning [11,15] and visual question answering [7]. Some works [4,9]? have
been proposed to solve the live video comment generating task by considering
multi-modality property.

However, other properties, such as interactivity and diversity, are ignored.
As viewers can post comments on videos and other viewers can see these com-
ments, their comments often contain interactivity. The interactions are various
such as replying others comments, posting video type related memes, talking to
the uploaders, etc. These kinds of interaction make the live video comment gen-
erating task different from aforementioned traditional multi-modality tasks. As
the large group of viewers makes comments crowd-sourced, it is also challenging
to handle this task due to the diversity of comments. Table 1 shows some diverse
comments and reveals the differences between interactive comments posted at
different time in a live comment video1. The first three comments are posted
when the video is just uploaded and viewers are celebrating the upload of this
video. However, the last two are posted in years later and viewers are talking
about the sequels of this video. It is obvious that viewers are more likely to
celebrate the upload when the video is just uploaded than years later.

To handle these properties, some aspects must be taken into consideration.
In live comment videos, each comment has two different time attributes, the
1 https://www.bilibili.com/video/BV1Cs411z7fx.

https://www.bilibili.com/video/BV1Cs411z7fx

692 Z. Zeng et al.

Fig. 1. PLVCG model. The lower left is the encoder module. The green boxes denote
the input of the encoder and the purple box denotes the transformation of inputs. E()
denotes embedding layer. The right is the PLVCG decoder module for pretraining and
generation task. The red arrow denotes the video type classification layer. The upper
left is the PLVCG decoder module for comment discrimination. (Color figure online)

post time and video time. The post time is the real world time denote when the
viewer posted this comment in the video. And the video time is the time when
comment is shown in the video timeline. Previous works [4,9]? use all surrounding
comments regardless of these attributes. However, most of the viewers often post
comments without knowing the succeeding content and it is also impossible for
them to get future comments. As mentioned above, people in different real-world
time may interact differently. As a result, using all surrounding comments like
pervious works do may generate comments with wrong interaction. Thus, it is
important to take post time of comment into consideration.

Another attribute that can influence the interaction of comments is the video
type label, which is also ignored by pervious works. Video type label is important
side information about the video. Different types of videos often have different
comments and different interactions, yet comments in same video type diverse
less. For example, videos labeled with “food” are more likely to talk about cook-
ing and memes about foods than videos labeled with “piano”. By incorporating
the prediction of video type labels, models can generate more informative and
content related comments rather than general and popular comments.

In this paper, we propose a pre-training based encoder-decoder joint model
called PLVCG (Pretraining based Live Video Comments Generating) model to
solve live video comment generating task. Our model is composed of a bidirec-
tional encoder and an auto-regressive left-to-right decoder. The PLVCG model
first uses a pretraining method to jointly learn the diverse context comments
and the relationship between comments and video types. Then we propose two
fine-tuning tasks to learn both comment generating and discriminate if the given
context and comments are corresponded. By introducing a video classification
objective in decoder, we incorporate video type labels and learn the diversity
related to video types. And by only considering comments that posted before

PLVCG: A Pretraining Based Model for Live Video Comment Generation 693

target comment, our model learns the interactions related to time. Finally, our
PLVCG model generates real-time comments by introducing a prompt token
which helps the model to generate more diverse comments.

We evaluate our model on a large-scale real-world dataset [9,13] and the
results show that the proposed PLVCG model outperforms the state-of-the-art
methods with a significant improvement. The main contributions of this paper
are threefold:

– We take the challenge of interactivity and diversity into consideration and
introduce the post time and video type labels to deal with these challenges
in the live video comment generating task.

– We propose a pretraining based live video comment generation model to cap-
ture the correlation between video context and comments as well as generate
comments with a bidirectional encoder and an auto-regressive decoder.

– Experiments on a large scale dataset show our model outperforms the state-
of-the-art methods on live video comment ranking and generating tasks signif-
icantly and achieves real-time live video comment generating by introducing
prompt tokens.

2 Related Work

Live Video Comment Learning. There have been some efforts in live video
comment learning. [1] recommends personalized key frames using both comments
and video frames. [5] leverages live video comments to predict the popularity of
videos. In video shots annotating task, [14] proposes a summarization model
using key sentences to annotate video shots. On the other hand, [8] proposes
a supervised model to annotate video shots with labels. [16] annotates videos
with both genre labels and keywords by combining video labels and comments.
Most of these works focus on annotating and classifying video shots using live
video comment and can’t learn the natural language structure and interactivity
of comments.

Live Video Comment Generating. There have been some efforts focus on
live video comment generating. [9] implements a transformer based encoder-
decoder model to generate live video comments, using both visual frames and
surrounding context comments. [17] solves comments matching task with co-
attention mechanism. [13] points out the discrepancies in [9] and proposes an
alternative baseline implementation in solving this task. [4] introduces audio
modality into the task. Their multimodal matching transformer model first learns
representations of each modality iteratively as well as the relationships among
them and then gets matching scores of comments. However, as a matching model,
it can’t generate comments auto-regressively. These approaches mainly focus
on the multi-modality of the task and ignore the interactivity and diversity of
comments, which makes them hard to generate video content related real-time
comments.

694 Z. Zeng et al.

3 PLVCG Model

3.1 Problem Formulation

Given a live comment video V , a video time stamp t, a comment post time p
and some context comments set C, the model is required to generate a comment
y that posted in real-world time p and video time t. Different from [4,9,17] that
use all surrounding comments in the video as context, to ensure the generation
of real-time comments, we only use a part of comments that posted earlier than
p and at video time earlier than t. As a result, we denote C = {c1, ..., cn},
cip < p and cit < t for i = 1...n, where cp denotes the post time of comment
c and ct denotes the video time of comment c. As the videos are always too
long to take the whole video into account, we reserve m frames and n comments
which are closest to video time stamp t as the input. The m frames are denoted
as I = {I1, ...Im}. By feeding these m frames and n comments into PLVCG
encoder, our model aims to generate a new comment y = {y1, ..., yk}, where k is
the number of tokens in comment that generated by PLVCG decoder.

3.2 PLVCG Encoder Module

The lower left part of Fig. 1 illustrates the architecture of our PLVCG encoder
module. We follow the standard bidirectional sequence-to-sequence Transformer
architecture in [12] and we also follow [6] to change ReLU activation functions
to GeLUs. To incorporate visual frames into our encoder, we first apply a con-
volution layer to encode each frame Ii into vector vi. These visual vectors are
treated as “visual tokens” sequence. For the text comment, our encoder mod-
ule concatenates each token in every comment sentence as the textual sequence.
Then we concatenate “visual tokens” sequence with the textual sequence and
introduce a special token [VIS] to separate these two sequences. We also leverage
special token [SEP] to separate sentences in context comments sequence.

After the concatenation, we feed the token sequence into our encoder module
and the textual tokens are embed to vectors by an embedding layer. We use the
last hidden state h of the encoder module as the final representation of visual
and textual context:

vi = CNN(Ii) (1)
h = Transformer(v1, ..., vm, [V IS], c1, ..., cn) (2)

3.3 PLVCG Decoder Module

For the decoder module, we introduce two objectives to learn live video com-
ments, the generation objective and the classification objective. The basic archi-
tecture of decoder uses the left-to-right auto-regressive transformer, which is
based on BART model [6]. We also introduce two special tokens [BOS] and
[EOS] to denote the beginning and ending of the target ground-truth com-
ment sentence. The target ground-truth comment sequence can be denoted as

PLVCG: A Pretraining Based Model for Live Video Comment Generation 695

T = {t0, t1, ..., td, td+1}, where d denotes the length of target comment, t0 denotes
the [BOS] token and td+1 denotes the [EOS] token. The differences between our
model and BART model are: (1) The first token of the target ground-truth
comment is provided for the decoder module as the prompt token to generate
target comment. The output of the first token is not used to predict this token
and other generated tokens are used in the generation objective. (2) As the first
token is given, we utilize the output of the first token ([BOS] token) to predict
the type label of current video as the classification objective.

The structure of our decoder module is shown in Fig. 1. Due to the strong
interactivity and huge diversity of live video comments, a large amount of com-
ments can be suitable for the context comments and visual frames. Some popular
and general comments can appear in most of the video clips without anomaly.
As a result, the decoder module tends to generate popular and general com-
ments and this makes the generated comments uninformative. To deal with this
challenge, the first method let the generation process prompted by a meaningful
token rather than a [BOS] token. This guarantees the decoder to generate more
informative comments.

Different types of video always have different topics as well as interactions
and videos in same type are more likely to have similar comments. Follow this
intuition, we introduce the second objective. It forces the decoder module to learn
the type of video by the encoder outputs. This also helps the rest of the module
improve the prediction of generating tokens by the classification information.

To achieve these objectives, we introduce a classification layer after the out-
put of first token g0 to get the classified video type label l. The rest of the outputs
{g1,gk} in decoder module are followed by a linear module to generate tokens
{y1, ...yk} as the generated comment:

g0, g1, ..., gk−1 = Transformer(h, t0, t1, ..., td, td+1) (3)
l = Classfication(g0) (4)

y1 = t1 (5)
y2, ..., yk = Linear(g1, ..., gk−1) (6)

where t0 and td+1 denotes [BOS] and [EOS] token respectively. The final
generated comment sequence y is the concentration of the prompt token t1 and
generated tokens y2, ..., yk.

4 Training PLVCG

4.1 Pre-training PLVCG

To learn the diversity of comments, we introduce a pretraining step follows the
implement in [6]. The transformation of the context in this step can increase
the diversity of context and is helpful for learning the diversity of comments.
We choose the text infilling transformation as our implementation. In this trans-
formation, our pre-training model first samples a number of text spans in the

696 Z. Zeng et al.

context comments and the span length is sampled by a Poisson distribution.
For each span, words in the span are replaced with a special token [MASK].
0-length spans are also acceptable and replacing these spans means the insertion
of [MASK] token. Figure 1 also shows the transformed context of the encoder
module. For the input of decoder module, the target comment is not transformed
and follows the description of the decoder module to train with both video type
classification objective and comment generation objective.

4.2 Comment Generation Task

On account of the decoder of PLVCG model is an auto-regressive decoder,
the fine-tuning in comment generation task can be done directly. The input
of encoder module is the concentration of visual tokens and textual comment
tokens without transformation. The decoder objectives are also same as what is
described in Decoder Module Section. For testing, we adopt beam search method
and generate comments auto-regressively. A prompt token is given as the first
token to handle the diversity of comments as mentioned above.

4.3 Comment Discrimination Task

Previous works [9,13,17] use the generation losses of candidate comments to rank
them. In this work, we further introduce a downstream fine-tuning application
after the generating step to learn whether the candidate comments correspond
to the given context.

The structure of decoder in this task is shown in the right part of Fig. 1.
The input of the encoder is also the concentration of visual tokens and textual
comment tokens. Given the output of the encoder and a candidate comment, the
decoder module should discriminate if the given candidate comment corresponds
to the context. As shown in upper left part of Fig. 1, different from the generation
task, the output of the [EOS] token is followed by a binary classification layer
and we do not use the video type classification objective.

To train a ground-truth comment, we also sample 4 comments randomly from
other videos as the negative samples. As for the candidate comment ranking
task, rather than using generation loss, we calculate the logit of each candidate
comment from the classification layer as its ranking score. In our model, this
task is trained after the aforementioned comment generation task to get a better
performance.

5 Experiment

5.1 Dataset

We evaluate our model on Live Comment Dataset provided by [9]. However, it is
found that there are overlapped comments across the training and testing set in
the original Live Comment Dataset [13]. Thus we follow the new dataset built by

PLVCG: A Pretraining Based Model for Live Video Comment Generation 697

[13] which removes redundant videos from the raw dataset. And we also follow
the same partition as in [9]. Finally the fixed dataset contains 2118 videos and
882056 comments.

We present the influence of post time and video time on similarities. For
each video, we first sort comments by post time and video time separately. Then
we equally split the sorted comments into 10 clusters. We calculate the average
similarity of each cluster in train dataset. The comments clustered by post time,
video time and randomly are 0.175, 0.134 and 0.120. It is obvious that comments
clustered by post time and video time are more similar than those clustered
randomly. Therefore, taking post time into account is helpful for model to learn
time related interactions. To incorporate post time into our dataset, we only
pick comments posted before target comment as the context. We also measure
the diversity of the live video comments in supplementary material.

5.2 Evaluation Metrics

The interactivity and diversity of video comments make it hard to find out all
possible references. In this paper, we follow the previous works [3,9] to formulate
the task into a ranking task. Consequently, we adopt Recall@k (R@k), Mean
Recall (MR) and Mean Reciprocal Rank (MRR) to evaluate the perfor-
mance of our model. In this task, the model is given both visual and textual
context sequence and asked to rank 100 candidate comments to find the most
related comments. The candidate set consists of four kinds of comments: (1)
Ground-truth: 5 ground-truth comments that are posted by human viewers
from corresponding video. (2) Plausible: 20 comments that are most similar to
the title of the corresponding video. (3) Popular: 20 most popular comments in
the training dataset. (4) Random: randomly selected comments from training
set.

Another task of the experiment is the generation task. We use Bilingual
Evaluation Understudy (BLEU) [10] to evaluate this task. It is one of the
most important metrics in Natural Language Generation task, and evaluates
the correspondence between generated and reference sentences. To show the real
effectiveness, we skip the prompt token and use following generated tokens to
calculate these metrics.

5.3 Baseline Models

– LiveBot [9] applies a unified transformer model that uses linear structure to
capture the dependency on visual clips, context comments and target com-
ments.

– LiveBot-reimp [13] provides a reproducible implementation of the Livebot
model and fixes some issues in the implement of Livebot model.

– Match T-CFA [4] incorporates not only visual and textual modalities, but
also audio modality. This model matches video contexts and candidate com-
ment to pick related comments and can not generate comments.

698 Z. Zeng et al.

– Random get a random rank for 100 candidate comments for rank task and
random comment begin with prompt token for generation task.

Table 2. The comparison of modality and performance of different models on the Live
Comment Dataset. Tx, Vi, Au and Ty refer to textual, visual, audio, and type R@k,
BLEU and MMR: higher is better; MR: lower is better.

Model Tx Vi Au Ty R@1 R@5 R@10 MR MRR BLEU BLEU2 BLEU4

Random 4.85 22.03 38.73 17.88 0.157 1.42% 1.49% 0.51%

LiveBot � � 18.01 38.12 55.78 16.01 0.275 – – –

LiveBot-reimp � � 14.79 33.45 48.93 17.45 0.257 2.37% 2.69% 0.82%

Match T-CF � � 22.77 46.71 62.87 11.19 0.3519 – – –

Match T-CFA � � � 23.52 46.99 64.24 11.05 0.360 – – –

PLVCG-NT � � 15.80 48.60 66.65 9.57 0.318 1.83% 2.69% 0.38%

PLVCG � � � 21.69 52.91 72.55 8.37 0.349 2.79% 2.81% 1.20%

PLVCG-Large � � � 26.77 59.58 75.27 7.19 0.422 2.85% 2.82% 1.28%

5.4 Experiment Settings

Follow [9], the vocabulary of all the models are set to 30000 and the visual frames
are preprocessed by a pretrained resnet with 18 layers. For the textual context,
each comment is related to at most n = 8 comments whose post time and video
time are both earlier than the target comment rather than 8 surrounding com-
ments as previous works do [9,13]. As for visual frames, we follow previous works
to use m = 5 frames. The dimension of the model as well as the embedding size
is set to 512 for both textual and visual tokens in our base model and 1024 in
our PLVCG-Large model. For the encoder and decoder, both of them have 6
layers and 8 heads. We use AdamW optimizer to train all the pretraining and
fine-tuning process and the hyper-parameters are default. We set the learning
rate α = 1 × 10−5 and the dropout rate p = 0.1. In the pretraining transforma-
tion, we set the λ = 3 for the Poisson distribution. Finally, the beam size is set
to 5 for the beam search generation. The pretraning and generation tasks are
trained in 10 epochs and the discrimination task is trained in 2 epochs.

5.5 Experiment Results

Table 2 shows the overall results of baseline models and our models. For LiveBot
[9] and LiveBot-reimp model [13], they only use visual and textual contexts
and ignore the post time and video types. This makes their models hard to
rank diverse comments and their R@10 and MR metrics are close to random
method. For the generation task, this model gets comparable result in BLEU2
but get worse in BLEU4. Matching T-CFA model [13] considers not only visual
and textual contexts but also audio information. However, their Match T-CF

PLVCG: A Pretraining Based Model for Live Video Comment Generation 699

model which only uses visual and textual modalities performs as good as well.
This means that the contribution of audio information is weak. In addition,
their model can only match comments and don’t have the ability to generate
comments auto-regressively. As for our models, the PLVCG-NT model does not
incorporate video type data and classification objective into training steps, but
also achieves a better performance in some rank metrics. As for the PLVCG base
and PLVCG-Large model, they leverage both video type labels and post time and
outperforms the state-of-the-art models significantly. The PLVCG-Large model
achieves +3.25 on R@1, +12.59 on R@5, +11.03 on R@10 and −3.86 on MR.
For the generation task, our PLVCG-Large model also performs better than
LiveBot-reimp model especially on BLEU4, which means our model captures
more long-term information. The PLVCG-Large model performs better than the
PLVCG model because our model jointly process visual and textual contexts
and 512 dimension encoder output vector leads to the loss of information.

Table 3. Result of human evaluation.

Model Fluency Relevance Informativeness

LiveBot-reimp 4.03 3.63 3.28

PLVCG-Large 4.28 3.89 3.34

Ground-Truth 4.75 4.42 3.71

5.6 Human Evaluation

To represent the performance of the generation task, we follow the LiveBot model
to evaluate the outputs by humans. We choose three aspects to evaluate the
generated comments: Fluency measures how fluent the comments are. The more
fluent the comments are, the more possible they are commented by a human.
Relevance measures the relevance between generated comments and the videos.
Informativeness is designed to judge how much information the generated
comments carry, general and popular comments always have less information.
We randomly pick 100 instances from test set and three human annotators are
asked to score both generated and ground-truth comments. A 0–5 number is
used to denote the score, the higher the better. Table 3 shows the results and
our model outperforms the LiveBot model in all three metrics. Both scores of
fluency are over 4 for two models which means the generated comments are fairly
fluent for human viewers. However the relevance scores of two models are much
lower than the ground-truth score. This is because the model sometimes predicts
the type of the videos wrongly and generate comments about other comments.
The scores of informativeness are all lower than 4 which denotes there are often
general and popular comments in both generated and ground-truth comments.

700 Z. Zeng et al.

Table 4. Examples of the generated comments, the first bold words of the ground-
truth comments are given to both models as the prompt token. The prompt tokens
and comments are translated to English by the authors.

5.7 Case Study

To further represent the performance of our PLVCG model, we compare some
comments generated by our model and baseline models as a case study in Table 4.
On account of the Matching Transformer-CFA model can only match comments
rather than generating comments auto-regressively, we only compare with the
LiveBot-reimp model. Both of the two models are given a token as a prompt
token and use a beam search method with beam size 5 to generate comments.

For the first example, the given video clip is at the very beginning of the
video and the ground-truth comment says “I’m at the top” which means he is
the very first viewer. The LiveBot model generates some irrelevant comments
after the prompt tokens. But our model generates “I’m at the top 400!!”, which
means he is the first 400 viewers to watch this video. This is more reasonable
and closer to the ground-truth comment. In the second example, our model
successfully generates the question which has the same meaning of the ground-
truth comment. And both of the model capture the video content is about type
“food”. The last example shows the importance of video type labels. The ground-
truth comment is “A basin of cats” which means the cats are so soft that can
just fit the basin. By learning the video type is “cat” from context, our model
successfully generate “A basin of cats”, however the LiveBot model can only
generate “A basin of water” without consideration of video types.

6 Conclusion

In this paper, we proposed a pretraining based live video comment generation
model for real-time live video comment generating task. Our model combines
a bidirectional encoder module to extract context information and a left-to-
right auto-regressive decoder module to classify the video types and generate

PLVCG: A Pretraining Based Model for Live Video Comment Generation 701

comments. In addition, our model also considers the post time of comments to
deal with comments interaction and achieves real-time comment generating. The
introduce of the video type labels also helps in generating more video related
comments. We evaluate our PLVCG model in a large-scale live video comment
dataset. The results show that our model outperforms the state-of-the-art meth-
ods significantly. However, as the data amount of live comments is too huge, the
index to present the popularity of each comment from live video comment ser-
vice providers is unavailable. So how to evaluate the popularity of the generated
comments is still a problem to be solved in the future.

References

1. Chen, X., Zhang, Y., Ai, Q., Xu, H., Yan, J., Qin, Z.: Personalized key frame
recommendation. In: Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 315–324 (2017)

2. Chen, Y., Gao, Q., Rau, P.L.P.: Watching a movie alone yet together: understand-
ing reasons for watching Danmaku videos. Int. J. Hum.-Comput. Interact. 33(9),
731–743 (2017)

3. Das, A., et al.: Visual dialog. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 326–335 (2017)

4. Duan, C., Cui, L., Ma, S., Wei, F., Zhu, C., Zhao, T.: Multimodal matching trans-
former for live commenting. arXiv preprint arXiv:2002.02649 (2020)

5. He, M., Ge, Y., Wu, L., Chen, E., Tan, C.: Predicting the popularity of DanMu-
enabled videos: a multi-factor view. In: Navathe, S.B., Wu, W., Shekhar, S., Du,
X., Wang, X.S., Xiong, H. (eds.) DASFAA 2016. LNCS, vol. 9643, pp. 351–366.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32049-6 22

6. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461 (2019)

7. Li, X., Song, J., Gao, L., Liu, X., Huang, W., He, X., Gan, C.: Beyond RNNs:
positional self-attention with co-attention for video question answering. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8658–8665
(2019)

8. Lv, G., Xu, T., Chen, E., Liu, Q., Zheng, Y.: Reading the videos: temporal labeling
for crowdsourced time-sync videos based on semantic embedding. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

9. Ma, S., Cui, L., Dai, D., Wei, F., Sun, X.: LiveBot: generating live video comments
based on visual and textual contexts. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 6810–6817 (2019)

10. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pp. 311–318 (2002)

11. Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: VideoBERT: a joint
model for video and language representation learning. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 7464–7473 (2019)

12. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

13. Wu, H., Jones, G.J., Pitie, F.: Response to LiveBot: generating live video comments
based on visual and textual contexts. arXiv preprint arXiv:2006.03022 (2020)

http://arxiv.org/abs/2002.02649
https://doi.org/10.1007/978-3-319-32049-6_22
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/2006.03022

702 Z. Zeng et al.

14. Xu, L., Zhang, C.: Bridging video content and comments: Synchronized video
description with temporal summarization of crowdsourced time-sync comments.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

15. Yu, Y., Kim, J., Kim, G.: A joint sequence fusion model for video question answer-
ing and retrieval. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11211, pp. 487–503. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01234-2 29

16. Zeng, Z., Xue, C., Gao, N., Wang, L., Liu, Z.: Learning from audience intelligence:
dynamic labeled LDA model for time-sync commented video tagging. In: Cheng,
L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11303, pp. 546–559.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04182-3 48

17. Zhang, Z., Yin, Z., Ren, S., Li, X., Li, S.: DCA: diversified co-attention towards
informative live video commenting. In: Zhu, X., Zhang, M., Hong, Yu., He, R.
(eds.) NLPCC 2020. LNCS (LNAI), vol. 12431, pp. 3–15. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60457-8 1

18. Zhou, L., Palangi, H., Zhang, L., Hu, H., Corso, J.J., Gao, J.: Unified vision-
language pre-training for image captioning and VQA. In: AAAI, pp. 13041–13049
(2020)

https://doi.org/10.1007/978-3-030-01234-2_29
https://doi.org/10.1007/978-3-030-01234-2_29
https://doi.org/10.1007/978-3-030-04182-3_48
https://doi.org/10.1007/978-3-030-60457-8_1

Inducing Rich Interaction Structures
Between Words for Document-Level

Event Argument Extraction

Amir Pouran Ben Veyseh1, Franck Dernoncourt2, Quan Tran2,
Varun Manjunatha2, Lidan Wang2, Rajiv Jain2, Doo Soon Kim2,

Walter Chang2, and Thien Huu Nguyen1(B)

1 Department of Computer and Information Science,
University of Oregon, Eugene, OR, USA
{apouranb,thien}@cs.uoregon.edu

2 Adobe Research, San Jose, CA, USA
{franck.dernoncourt,qtran,vmanjuna,lidwang,rajijain,dkim,

wachang}@adobe.com

Abstract. Event Argument Extraction (EAE) is the task of identi-
fying roles of entity mentions/arguments in events evoked by trigger
words. Most existing works have focused on sentence-level EAE, leaving
document-level EAE (i.e., event triggers and arguments belong to differ-
ent sentences in documents) an under-studied problem in the literature.
This paper introduces a new deep learning model for document-level
EAE where document structures/graphs are utilized to represent input
documents and aid the representation learning. Our model employs dif-
ferent types of interactions between important context words in docu-
ments (i.e., syntax, semantic, and discourse) to enhance document rep-
resentations. Extensive experiments are conducted to demonstratethe
effectiveness of the proposed model, leading to the state-of-the-art per-
formance for document-level EAE.

Keywords: Event Argument Extraction · Document structures

1 Introduction

Event Extraction (EE) is an important and challenging task in Information
Exaction (IE) that aims to identify instances of events (i.e., change of states
of real-world entities) in text. To this end, two subtasks should be solved: (1)
Event Detection (ED) to recognize event-triggering expressions (verbal predi-
cates or nominalizations, called event triggers/mentions), and (2) Event Argu-
ment Extraction (EAE) to identify entity mentions that are involved in events
(event participants and spatio-temporalattributes, collectively known as event
arguments). This work focuses on EAE, a relatively less-explored task for EE
(compared to ED). Technically speaking, our EAE task takes as inputs an event
trigger and an argument candidate (entity mention), seeking to predict the role
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 703–715, 2021.
https://doi.org/10.1007/978-3-030-75765-6_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_56&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_56

704 A. P. B. Veyseh et al.

that the argument candidate plays in the event mention associated with the trig-
ger. A well performing EAE system will benefit various downstream applications
such as Knowledge Base Construction and Question Answering.

Most of the recent work on EAE employs deep learning models to
achieve state-of-the-art performance [17]. Unfortunately, these models are often
restricted to sentence-level EAE where event triggers and arguments appear in
the same sentence. In real world scenarios, arguments of an event might have
been presented in sentences other than the sentence that hosts the event trigger
in the input document. For instance, in the EE dataset of the DARPA AIDA pro-
gram (phase 1)1, 38% of arguments has been shown to be outside the sentences
containing the corresponding triggers, i.e., in the document-level context [3]. As
such, it is of paramount importance to develop models that can extract argu-
ments of event mentions over the entire documents to provide a more complete
view of information for events in documents.

A major challenge in document-level EAE involves long document context
that hinders the ability of models to effectively identify important context words
(among long word sequences) and link them to event triggers and arguments for
role prediction. Recently, a promising approach to address this document context
modeling issue has been explored for other related tasks in IE [10,14,15] where
document structures (i.e., direct interactions between parts of documents) are
employed to facilitate the connections and reasoning between important context
words for a prediction problem.

Thus, one simple solution towards utilizing document structures for EAE is to
exert one of the existing document-level models that has been designed for other
related tasks. However, in this work, we show that such prior models have critical
constraints that should be addressed to better serve EAE. As such, the existing
document-level models have only exploited some (typically one) specific types of
information/heuristics to form the edges in document structures, thus failing to
leverage a diversity of useful information to enrich document structures in EAE.
This is unfortunate as multiple information sources are often required simul-
taneously to capture necessary interaction information between nodes/words
and improve the coverage/performance for EAE models. For instance, consider
the following document: “The foundation said that immediately following the
Haitian earthquake, the Embassy of Algeria provided an unsolicited lump-sum
fund to the foundation’s relief plan. This was a one-time, specific donation to
help Haiti and it had donated twice to the Clinton Foundation before”. In this
two-sentence document, an EAE system needs to recognize the entity mention
“Embassy of Algeria” as an argument (of role Giver) for the event mention asso-
ciated with the trigger word “donated”. To perform this reasoning, the models
can utilize the coreference link between “Embassy of Algeria” and the pronoun
“it” (i.e., discourse information) that can be directly connected with the trig-
ger word “donated” via an edge in the syntactic dependency tree of the second
sentence. Alternatively, if the coreference link cannot be obtained (e.g., due to
errors in the coreference resolution systems), EAE models can rely on the close

1 https://tac.nist.gov/2019/SM-KBP/data.html.

https://tac.nist.gov/2019/SM-KBP/data.html

Text Structures for Event Argument Extraction 705

semantic similarity between “donated” and “provided an unsolicited lump-sum
fund” that can be further linked to “Embassy of Algeria” via a dependency
edge in the first sentence. As such, document-level models might need to jointly
capture the information from syntax, semantic, and discourse structures to suf-
ficiently encode necessary interactions between words for EAE.

Motivated by this intuition, we propose to combine different information
sources to generate effective document structures for our EAE problem, focusing
on the knowledge from syntax (i.e., dependency trees), discourse (i.e., corefer-
ence links), and semantic similarity. Importantly, for the semantic similarity, in
addition to using contextualized representation vectors to compute interaction
scores between words as in prior work [10], we propose to further leverage exter-
nal knowledge bases to enrich document structures for EAE. As such, we link
the words in the documents to the entries in some external knowledge bases and
exploit the entry similarity in such knowledge bases to obtain word similarity
scores for the structures. To our knowledge, this is the first work to employ
external knowledge bases to compute document structures for an IE task in the
literature.

Given various document structures, how can we effectively combine these
structures for EAE? Our main principle for this goal is motivated from the run-
ning example where the role reasoning process for the event trigger and argument
candidate involves a sequence of interactions with multiple other words, possibly
using different types of information at each interaction step, e.g., syntax, dis-
course or semantic information (called heterogeneous interaction types). To this
end, we propose to employ Graph Transformer Networks (GTN) [18] to facili-
tate the implementation of this multi-hop heterogeneous reasoning idea. More
specifically, GTNs fulfill the multi-hop heterogeneous reasoning by multiplying
weighted sums of different initial document structures to generate rich combined
structures. Finally, the resulting combined structures will be used to learn rep-
resentation vectors for EAE based on graph convolutional networks (GCN). To
our knowledge, this is also the first work that introduces GTN and GCN for
document structure computation and representation learning in document-level
EAE.

We evaluate the proposed model on two benchmark datasets; one for
document-level EAE [3] and one for the closely related task of implicit seman-
tic role labeling. Our experiments demonstrate the effectiveness of the proposed
model, establishing new state-of-the-art results on both benchmark datasets.

2 Model

We formulate document-level EAE as a multi-class classification problem. The
input to the models is a document D = w1, w2, . . . , wN which consists of multiple
sentences, i.e., Si’s. To be comparable with previous work [3], we also use a
golden event trigger, i.e., the t-th word of D (wt), and an argument candidate,
i.e., the a-th word of D (wa), as the inputs (wt and wa can occur in different
sentences). The goal of EAE is to predict the role of the argument candidate

706 A. P. B. Veyseh et al.

wa in the event evoked by wt. Here, the role might be None, indicating that wa

is not a participant in the event mention wt. Our model for EAE involve three
major components: (i) Document Encoder to transform the words in D into
high dimensional vectors, (ii) Structure Generation to generate initial document
structures for EAE, and (iii) Structure Combination to combine the structures
and learn representation vectors for role prediction. We provide details for these
components below.

2.1 Document Encoder

In the first step, we transform each word wi ∈ D into a representation vector xi

that is the concatenation of the following two vectors:

(i) The pre-trained word embedding of wi: Here, we consider both non-
contextualized embeddings, i.e., GloVe and contextualized embeddings, i.e.,
BERT in the experiments. In particular, for BERT, as wi might be split
into multiple word-pieces, we use the average of the hidden vectors for the
word-pieces of wi in the last layer as the word embedding vector for wi. Fol-
lowing [3], we employ the BERTbase version that divides D into segments
of 512 word-pieces to be encoded separately. In our experiments, we fix the
parameters of the BERTbase.

(ii) The position embeddings of wi: These vectors are obtained by looking up the
relative distances between wi and the trigger and argument words (i.e., i− t
and i−a respectively) in a position embedding table. This table is initialized
randomly and updated in the training process. Position embedding vectors
are important as they notify the model about the positions of the trigger
and argument words.

Given the vector sequence X = x1, x2, . . . , xN to represent the words in D,
we further send it to a bidirectional long short-term memory network (LSTM)
to generate a more abstract vector sequence H = h1, h2, . . . , hN . Here, hi is
the hidden vector for wi that is obtained by concatenating the corresponding
forward and backward hidden vectors from the bidirectional LSTM. We will use
the hidden vectors in H as the inputs for the next computation. Note that we
do not include the sentence boundary information of D into the hidden vectors
H so far as it will be addressed in our document structures later.

2.2 Structure Generation

The goal of this section is to generate initial document structures that will be
combined to learn representation vectors for document-level EAE in the next
step. Formally, a document structure in our work involves an interaction graph
G = {N , E} between the words in D, i.e., N = {wi|wi ∈ D}. As such, the
document structure G can be represented via a real-valued adjacency matrix
A = {aij}i,j=1..N where the value/score aij reflects the importance (or the level
of interaction) of wj for the representation computation of wi for EAE. As pre-
sented in the introduction, we simultaneously consider three types of information

Text Structures for Event Argument Extraction 707

to form the edges E (or compute the interaction scores aij) in this work, includ-
ing syntax, semantics, and discourse. We describe initial document structures
based on these information types in the following.

Syntax-Based Structures: The motivation for this type of document struc-
tures is based on sentence-level EAE where dependency parsing trees of input
sentences have been used to reveal important context, i.e., via shortest depen-
dency paths to connect event triggers and arguments, and guide the interaction
modeling between words for argument role prediction. As such, we expect depen-
dency trees for sentences in D can also be exploited to provide useful information
for document structures for EAE. In particular, we propose to leverage depen-
dency relations/connections between pairs of words in D to compute the inter-
action scores adep

ij in the syntax-based document structure Adep = {adep
ij }i,j=1..N

for D. Here, two words are more important to each other for representation
learning if they are connected in dependency tress. To this end, we first obtain
the dependency tree Ti for each sentence Si in D using an off-the-shelf depen-
dency parser2. Afterward, to connect the dependency trees Ti for the sentences,
following [5], we create a link between the root node of a tree Ti for Si with
the root node of the tree Ti+1 for the subsequent sentence Si+1. The resulting
graph with linked trees Ti is denoted by TD. In the next step, motivated by
shortest dependency paths in sentence-level EAE, we retrieve the shortest path
PD between the nodes for wt and wa in TD. Finally, we compute the interac-
tion score adep

ij by setting it to 1 if (wi, wj) or (wj , wi) is an edge in PD, and 0
otherwise.

Semantic-Based Structures: These document structures aim to evaluate the
interaction scores in the structures based on the semantic similarity between
words (i.e., two words are more important for the representation learning of
each other if they are more semantically related). As such, we consider two
complementary approaches to capture the semantics of the words in D for
semantic-based structure generation, i.e., contextual semantics and knowledge-
based semantics.

First, in contextual semantics, we seek to reveal the semantic of a word via
the context in which it appears. This suggests the use of the contextualized rep-
resentation vectors hi ∈ H (obtained from the LSTM model) to capture contex-
tual semantics for the words wi ∈ D and produce the contextual semantic-based
document structure Acontext = {acontext

ij }i,j=1..N for D. Accordingly, to com-
pute the semantic-based interaction score acontext

ij for wi and wj , we employ the
normalized similarity score between their contextualized representation vectors:

ki = Ukhi, qi = Uqhi

acontext
ij = exp(kiqj)/

∑

v=1..N

exp(kiqv)
(1)

where Uk and Uq are trainable weight matrices, and the biases are omitted in
this work for brevity.

2 We use the Stanford Core NLP Toolkit to parse the sentences in this work.

708 A. P. B. Veyseh et al.

Second, in knowledge-based semantics, our goal is to employ the external
knowledge of the words from knowledge bases to capture their semantics. We
expect that such external knowledge can provide a complementary source of
information for the contextual semantics of the words (i.e., external knowledge
vs internal context), thereby enriching the document structures for D. To this
end, we propose to utilize WordNet, a rich knowledge base for word meanings, to
obtain external knowledge for the words in D. Essentially, WordNet involves a
network that connects word meanings (i.e., synsets) according to various seman-
tic relations (e.g., synonyms, hyponyms). Each node/synset in WordNet is associ-
ated with a textual glossary to provide expert definition about the corresponding
meaning.

Our first step to generate knowledge-based document structures for D is to
map each word wi ∈ D to a synset node Mi in WordNet that can be done with a
Word Sense Disambiguation (WSD) tool. In this work, we use WordNet 3.0 and
the state-of-the-art BERT-based WSD tool in [1] to perform such word-synset
mapping. Afterward, to determine knowledge-based interaction scores between
two words wi and wj in D, we can leverage the similarity scores between the
two linked synset nodes Mi and Mj in WordNet. As such, to leverage the rich
information embedded in the synset nodes Mi, we introduce two versions of
knowledge-based document structures for D based on the glossaries of the synset
nodes and the hierarchy structure in WordNet:

(1) The glossary-based structure Agloss = {agloss
ij }i,j=1..N : Here, for each word

wi ∈ D, we first retrieve the glossary GMi from the corresponding linked
node Mi in WordNet (GMi can be seen as a sequence of words). A repre-
sentation vector V Mi is then computed to capture the semantic informa-
tion in GMi, by applying the max-pooling operation over the pre-trained
GloVe embeddings of the words in GMi. Finally, the glossary-based inter-
action score agloss

ij for wi and wj is estimated via the similarity between
the glossary representations V Mi and V Mj (with the consine similarity):
agloss
ij = cosine(V Mi, V Mj).

(2) The WordNet hierarchy-based structure Astruct = {astruct
ij }i,j=1..N : The

interaction score astruct
ij for wi and wj in this case relies on the structure-

based similarity of the linked synset nodes Mi and Mj in WordNet. Accord-
ingly, we employ the Lin similarity measure for the synset nodes in WordNet
for this purpose: astruct

ij = 2∗IC(LCS(Mi,Mj))
IC(Mi)+IC(Mj)

where IC and LCS represent the
information content of the synset nodes and the least common subsumer
of the two synsets in the WordNet hierarchy (most specific ancestor node),
respectively.

Discourse-Based Structures: Besides the typical lengths of the input texts,
a key difference between document-level and sentence-level EAE involves the
presence of multiple sentences in document-level EAE where discourse informa-
tion (i.e., where the sentences span and how they relate to each other) is helpful
to understand the input documents. The goal of this part is to leverage such
discourse structures to provide complementary information for the syntax- and

Text Structures for Event Argument Extraction 709

semantic-based document structures for EAE. To this end, we propose to exploit
two following types of discourse information to generate discourse-based docu-
ment structures for EAE: (1) the sentence boundary-based document structure
Asent = {asent

ij }i,j=1..N : This document structure concerns the same sentence
information of the words in D. The intuition is that two words in the same
sentence would involve more useful information for the representation compu-
tation of each other than those in different sentences. To implement this intu-
ition, we compute Asent by setting the sentence boundary-based score asent

ij to
1 if wi and wj appear in the same sentence in D and 0 otherwise; and (2)
the coreference-based document structure Acoref = {acoref

ij }i,j=1..N : Instead of
considering within-sentence information as in Asent, this document structure
exploits relations/connections between sentences (cross-sentence information) in
D. To this end, we consider two sentences in D as being related if they contain
entity mentions that refer to the same entity in D (coreference information)3.
Given such a relation between sentences, we consider two words in D to be more
relevant to each other if they appear in related sentences. To this end, for the
coreference-based structure, acoref

ij is set to 1 if wi and wj appear in different,
but related sentences; and 0 otherwise.

2.3 Structure Combination

Up to this point, we have generated six different document structures for
D (i.e., A = [Adep, Acontext, Agloss, Astruct, Asent, Acoref]). As these document
structures are based on complementary types of information (called struc-
ture types), this section aims to combine them to generate richer document
structures for EAE. Our key intuition to achieve such a combination is to
note that each importance score av

ij in one of the structures Av
ij (v ∈ V =

{dep, context, gloss, struct, sent, coref}) only considers the direct interaction
between the two involving words wi and wj (i.e., not including any other words)
according to one specific information type v. As motivated in the introduction,
we expect each importance score in the combined structures to further condition
on interactions with other important context words in D (i.e., in addition to the
two involving words) where each interaction between a pair of words can flexibly
use any of the six structure types (multi-hop and heterogeneous-type reason-
ing). To this end, we propose to use Graph Transformer Networks (GTN) [18]
to enable such a multi-hop and heterogeneous-type reasoning in the structure
combination for EAE.

In particular, to enable multi-hop reasoning paths at different lengths, we first
add the identity matrix I (of size N × N) into the set of initial document struc-
tures A = [Adep, Acontext, Agloss, Astruct, Asent, Acoref , I] = [A1, . . . ,A7]. The
GTN model is then organized into C channels for structure combination, where
the k-th channel contains M intermediate document structures Qk

1 , Q
k
2 , . . . , Q

k
M

of size N × N . As such, each intermediate structure Qk
i is computed by a

3 We use the Stanford Core NLP Toolkit to determine the coreference of entity men-
tions.

710 A. P. B. Veyseh et al.

linear combination of the initial structures in A using learnable weights αk
ij :

Qk
i =

∑
j=1..7 αk

ijAj . Here, due to the linear combination, the interaction scores
in Qk

i are able to reason with any of the six initial structure types in V (although
such scores still consider the direct interactions of the involving words only).
Afterward, the intermediate structures Qk

1 , Q
k
2 , . . . , Q

k
M in each channel k are

multiplied to generate the final document structure Qk = Qk
1 ×Qk

2 × . . .×Qk
M of

size N × N (for the k-the channel). As shown in [18], the matrix multiplication
enables the importance score between a pair of words wi and wj in Qk to condi-
tion on the multi-hop interactions/reasoning between the two words and other
words in D (up to M − 1 hops due to the inclusion of I in A). The interactions
involved in one importance score in Qk can also realize any of the initial structure
types in V (heterogeneous reasoning) due to the flexibility of the intermediate
structure Qk

i .
Given the rich document structures Q1, Q2, . . . , QC from the C channels,

GTN then feed them into C graph convolutional networks (GCN) [6] to induce
document structure-enriched representation vectors for argument role prediction
in EAE (one GCN for each Qk = {Qk

ij}i,j=1..N). As such, each of these GCN
models involve G layers that produces the hidden vectors h̄k,t

1 , . . . , h̄k,t
N at the

t-th layer of the k-th GCN model for the words in D (1 ≤ k ≤ C, 1 ≤ t < G):

h̄k,t
i = ReLU(Uk,t

∑

j=1..N

Qk
ij h̄

k,t−1
j∑

u=1..N Qk
iu

) (2)

where Uk,t is the weight matrix for the t-th layer of the k-th GCN model and
the input vectors h̄k,0

i for the GCN models are obtained from the contextualized
representation vectors H (i.e., h̄k,0

i = hi for all 1 ≤ k ≤ C, 1 ≤ i ≤ N).
In the next step, the hidden vectors in the last layers of all the GCN models

(at the G-th layers) for wi (i.e., h̄1,G
i , h̄2,G

i , . . . , h̄C,G
i) are concatenated form

the final representation vector h′
i for wi in the proposed GTN model: h′

i =
[h̄1,G

i , h̄2,G
i , . . . , h̄C,G

i].
Finally, to predict the argument role for wa and wt in D, we assemble a rep-

resentation vector R based on the hidden vectors for wa and wt from the GTN
model via: R = [h′

a, h
′
t,MaxPool(h′

1, h
′
2, . . . , h

′
N)]. This vector is then sent to a

two-layer feed-forward network with softmax in the end to produce a probability
distribution P (.|D, a, t) over the possible argument roles. We then optimize the
negative log-likelihood Lpred to train the model: L = − log P (y|D, a, t) where
y is the golden argument role for the input example. We call the proposed
model the Multi-hop Reasoning for Event Argument extractor with heteroge-
neous Document structure types (MREAD) for convenience.

3 Experiments

Dataset and Parameters: We evaluate the document-level EAE models in
this work on RAMS, a recent dataset introduced in [3] for document-level EAE.

Text Structures for Event Argument Extraction 711

RAMS contains 9,124 annotated event mentions across 139 types for 65 argu-
ment roles, serving as the largest available dataset for document-level EAE. We
use the official train/dev/test split and evaluation script for RAMS provided by
[3] to achieve a fair comparison. In addition, we evaluate the models on the BNB
dataset [4] for implicit semantic role labelling (iSRL), a closely related task to
document-level EAE where the models need to predict roles of argument can-
didates for a given predicate (arguments and predicates can appear in different
sentences in iSRL). In our experiments, we use the version of BNB prepared by
[3] (with the same data split and pre-processing script) for a fair comparison.
This dataset annotates 2,603 argument mentions for a total of 12 argument roles
(for 1,247 predicates/triggers). We use the development set of the RAMS dataset
to fine-tune the hyper-parameters of the proposed model MREAD.

Results: We compare our model MREAD with two categories of baselines on
RAMS:

(1) Structure-free: These baselines do not exploit document structures for EAE.
In particular, we compare MREAD with the RAMSmodel model in [3] and
the Head-based model in [19]. Here, RAMSmodel currently has the state-
of-the-art (SOTA) performance for document-level EAE on RAMS.

(2) Structure-based: These baselines employ some forms of document struc-
tures (mostly based on syntax and semantic information) to learn repre-
sentation vectors for input documents. Note that as none of the prior work
has explored document structure-based models for document-level EAE, we
compare MREAD with the existing document structure-based models for
a related task of document-level relation extraction (DRE) in IE. As such,
the following SOTA models for DRE are considered in this category: (i)
iDepNN [5]; (ii) GCNN [14]: This baseline generates document structures
based on both syntax and discourse information (e.g., dependency trees,
coreference links). Note that although GCNN also considers more than one
source of information for document structures as we do, it fails to exploit
semantic-based document structures (for both contextual and knowledge-
based semantics) and lacks effective mechanisms for structure combination
(i.e., not using GTN); (iii) LSR [10]; and (iv) EoG [2].

In addition to the standard decoding (i.e., using argmax with P (.|D, a, t)
to obtain the predicted roles), following [3], we also consider the decoding set-
ting where the models’ predictions are constrained to the permissible roles for
the event type e evoked by the trigger wt. Tables 1 and 2 show the the mod-
els’ performance on the RAMS test set using BERT and GloVe embeddings,
respectively. There are several observations from these tables. First, the proposed
model MREAD significantly outperforms all the baselines in both the standard
and type constrained decoding regardless of the used embeddings (BERT or
GloVe). This consistent performance improvement is significant with p < 0.01
and clearly demonstrates the effectiveness of MREAD for document-level EAE.
Second, except for iDepNN, all the structure-based models significantly outper-
form the structure-free baselines. This finding is significant especially considering

712 A. P. B. Veyseh et al.

Table 1. Performance on the RAMS test set using BERT.

Model Standard decoding Type constrained

P R F1 P R F1

RAMS 62.8 74.9 68.3 78.1 69.2 73.3

Head-based 71.5 66.2 68.8 81.1 66.2 73.0

iDepNN 65.8 68.0 66.9 77.1 67.7 72.1

EoG 71.0 71.7 71.4 82.4 69.2 75.2

GCNN 72.2 72.8 72.5 85.1 69.4 76.5

LSR 72.6 73.6 73.1 83.9 71.4 77.2

MREAD (ours) 75.7 75.3 75.5 88.2 72.1 79.3

Table 2. Performance on the RAMS test set using GloVe.

Model Standard decoding Type constrained

P R F1 P R F1

RAMS 66.3 69.8 68.0 77.4 68.8 72.9

Head-based 70.2 63.4 66.6 74.6 65.3 69.6

iDepNN 65.7 65.4 65.5 75.7 63.2 68.9

EoG 69.2 69.0 69.1 81.3 68.0 74.1

GCNN 71.1 70.9 71.0 83.7 68.1 75.1

LSR 72.5 72.0 72.2 82.9 70.3 76.1

MREAD (ours) 73.6 73.5 73.5 86.7 71.0 78.1

that the structure-based models are not originally designed for document-level
EAE, thereby clearly showing the benefits of document structures for document-
level EAE. Finally, compared to GCNN and EoG that also consider multiple
sources of information as our model, MREAD achieves substantially better per-
formance, suggesting the advantages of contextual and knowledge-based struc-
tures along with multi-hop heterogeneous reasoning in our EAE problem.

Finally, we evaluate the performance of MREAD on the BNB dataset for
iSRL. As we use the data version prepared by [3] that involves a different
train/dev/test split from the original BNB dataset in [4], we directly use the
RAMSmodel model in [3] as our baseline for a fair comparison. In addition, we
report the performance of the structure-based baselines (iDepNN, GCNN, LSR,
and EoG) for a complete view. Table 3 shows the performance of the models on
the BNB test dataset (using BERT embeddings). As can be seen, MREAD is
also better than all the baseline models substantially and significantly (p < 0.01),
further confirming the benefits of our proposed model in this work.

Text Structures for Event Argument Extraction 713

Table 3. Performance on the BNB test set for iSRL.

Model P R F1

RAMS – – 76.6

iDepNN 80.0 75.1 77.5

EoG 78.5 74.4 76.4

GCNN 81.0 73.9 77.3

LSR 80.3 74.1 77.1

MREAD (ours) 82.9 75.0 78.8

Ablation Study: Our proposed model combines different types of document
structures (i.e., six types in A) using GTN to enable multi-hop and heterogeneous
reasoning for document-level EAE. This section studies the contribution of the
proposed document structures and structure combination in MREAD by evaluat-
ing the performance of the ablated versions of the model on the development set
of the RAMS dataset. In particular, the following ablated models are examined:
(i) MREAD-Av: In this group of ablated models, we eliminate each of the doc-
ument structures in A from MREAD and evaluate the performance of the model
with the remaining structures (e.g., MREAD-Adep, MREAD-Asent, etc.), (ii)
MREAD-GTN: In this ablated model, the GTN architecture is excluded from
MREAD, so the GCN models are directly and separately applied to each docu-
ment structure in A. (iii) MREAD-Multi-hop: This ablated model is to show
the effectiveness of multi-hop heterogeneous reasoning/interaction for EAE. As
such, this model avoids the multiplication of the intermediate structures Qk

i in
each channel of GTN, and directly runs the GCN models over the intermediate
document structures Qk

i (i.e., the final structures Qk are not produced).

Table 4. Performance of the models on the RAMS development set using BERT
embeddings and standard decoding.

Model P R F1

MREAD 75.5 76.5 76.0

MREAD-Adef 73.5 74.9 74.2

MREAD-Acontext 72.7 73.5 73.1

MREAD-Agloss 74.6 73.4 74.0

MREAD-Astruct 74.1 74.3 74.2

MREAD-Asent 72.8 73.2 73.0

MREAD-Acoref 73.2 74.9 74.1

MREAD-GTN 72.1 73.7 72.9

MREAD-Multi-Hop 73.2 74.6 73.9

714 A. P. B. Veyseh et al.

Table 4 presents the performance of the models on the RAMS development
set. As can be seen from the table, the removal of any document structures in A
would significantly hurt the performance of MREAD, thus confirming the effec-
tiveness of the introduced document structures for EAE. Also, the significantly
better performance of MREAD over MREAD-Multi-hop suggests that the mul-
tiplication of the intermediate structures in the channels of GTN is helpful to
generate richer structures for EAE (i.e., by enabling multi-hop heterogeneous
reasoning/interactions of words).

4 Related Work

Most of prior work on EE has focused on sentence-level EAE [7–9,11–13].
Recently, some work has considered document-level EAE, featuring [3] as the
most related work to our problem. However, the model proposed by [3] (i.e.,
RAMSmodel) does not consider document structures to improve the performance
for document-level EAE as we do in this work. Our work is also related to the
recent document structure-based models for other NLP tasks [2,15,16]. How-
ever, compared to our proposed model, these prior works on document struc-
tures fail to exploit external knowledge to generate the structures and do not
involve mechanisms to combine multiple structures for multi-hop heterogeneous
reasoning.

5 Conclusion

This work presents a novel deep learning model for document-level EAE. To
facilitate the interaction of important context words in the documents for EAE,
our model leverages multiple sources of information, including the novel employ-
ment of external knowledge bases, to generate document structures to provide
effective knowledge for representation learning in EAE. Also, for the first time
in EAE, graph transformer networks are employed to produce richer document
structures. The experiments confirm the benefits of the proposed model, yielding
to SOTA performance on benchamrk datasets.

Acknowledgments. This research has been supported by Vingroup Innovation Foun-
dation (VINIF) in project VINIF.2019.DA18 and Army Research Office (ARO) grant
W911NF-17-S-0002. This research is also based upon work supported by the Office of
the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA), via IARPA Contract No. 2019-19051600006 under the Better
Extraction from Text Towards Enhanced Retrieval (BETTER) Program. The views
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of ARO, ODNI, IARPA,
the Department of Defense, or the U.S. Government.

Text Structures for Event Argument Extraction 715

References

1. Blevins, T., Zettlemoyer, L.: Moving down the long tail of word sense disambigua-
tion with gloss informed bi-encoders. In: ACL (2020)

2. Christopoulou, F., Miwa, M., Ananiadou, S.: Connecting the dots: document-level
neural relation extraction with edge-oriented graphs. In: EMNLP (2019)

3. Ebner, S., Xia, P., Culkin, R., Rawlins, K., Van Durme, B.: Multi-sentence argu-
ment linking. In: ACL (2020)

4. Gerber, M., Chai, J.Y.: Semantic role labeling of implicit arguments for nominal
predicates. In: Computational Linguistics (2012)

5. Gupta, P., Rajaram, S., Schütze, H., Runkler, T.: Neural relation extraction within
and across sentence boundaries. In: AAAI (2019)

6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

7. Lai, V.D., Nguyen, T.N., Nguyen, T.H.: Event detection: gate diversity and syn-
tactic importance scores for graph convolution neural networks. In: EMNLP (2020)

8. Le, D.M., Nguyen, T.H.: Fine-grained event trigger detection. In: EACL (2021)
9. Li, Q., Ji, H., Huang, L.: Joint event extraction via structured prediction with

global features. In: ACL (2013)
10. Nan, G., Guo, Z., Sekulic, I., Lu, W.: Reasoning with latent structure refinement

for document-level relation extraction. In: ACL (2020)
11. Nguyen, T.H., Cho, K., Grishman, R.: Joint event extraction via recurrent neural

networks. In: NAACL-HLT (2016)
12. Nguyen, T.M., Nguyen, T.H.: One for all: neural joint modeling of entities and

events. In: AAAI (2019)
13. Ben Veyseh, A.P., Nguyen, T.N., Nguyen, T.H.: Graph transformer networks with

syntactic and semantic structures for event argument extraction. In: EMNLP Find-
ings (2020)

14. Sahu, S.K., Christopoulou, F., Miwa, M., Ananiadou, S.: Inter-sentence rela-
tion extraction with document-level graph convolutional neural network. In: ACL
(2019)

15. Thayaparan, M., Valentino, M., Schlegel, V., Freitas, A.: Identifying supporting
facts for multi-hop question answering with document graph networks. In: The
Thirteenth Workshop on Graph-Based Methods for Natural Language Processing
at EMNLP (2019)

16. Tran, H.M., Nguyen, M.T., Nguyen, T.H.: The dots have their values: exploiting the
node-edge connections in graph-based neural models for document-level relation
extraction. In: EMNLP Findings (2020)

17. Wang, X., et al.: HMEAE: hierarchical modular event argument extraction. In:
EMNLP-IJCNLP (2019)

18. Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer networks.
In: NeurIPS (2019)

19. Zhang, Z., Kong, X., Liu, Z., Ma, X., Hovy, E.: A two-step approach for implicit
event argument detection. In: ACL (2020)

Exploiting Relevant Hyperlinks
in Knowledge Base for Entity Linking

Szu-Yuan Cheng1,2, Yi-Ling Chen1(B), Mi-Yen Yeh2, and Bo-Tao Lin1,2

1 National Taiwan University of Science and Technology, Taipei, Taiwan
{M10715090,yiling,M10815065}@mail.ntust.edu.tw

2 Institute of Information Science, Academia Sinica, Taipei, Taiwan
miyen@iis.sinica.edu.tw

Abstract. In this study, we propose a new model aiming to enhance
the quality of entity linking by exploiting highly relevant hyperlinks in
knowledge base for entity disambiguation. We find that most existing
studies do not filter the corresponding hyperlinks for each entity, where
using the irrelevant ones may introduce noises and lower the linking
accuracy. To address this issue, we design and combine the hyperlink
extraction stage and the hyperlink attention stage to learn more suitable
hyperlinks in the document-level disambiguation. In addition, we also
enhance the context-level disambiguation by utilizing additional entity
descriptions and work on retrieving high-quality candidate set for enti-
ties at the beginning of our model. Experimental results show that our
proposed model outperforms the state-of-the-arts on various benchmark
datasets, and even being competitive to the models that rely on addi-
tional information.

Keywords: Entity linking · Entity disambiguation · Hyperlink
extraction · Knowledge base

1 Introduction

Entity Linking (EL) is the task of aligning textual mentions of entities with a
unique identity in a given knowledge base (KB), which plays an important role
in natural language understanding such as information extraction [1], semantic
parsing [12], and question answering [25]. Such a task is challenging due to the
mentions are usually ambiguous because different named entities may have the
same surface form. For example, a mention “Brazil” can represent the Federative
Republic of Brazil or Brazil national football team due to the different context
“Rio is the second-most populous municipality in Brazil” and “Brazil has the
best performance in the World Cup.”

Usually, the process of entity disambiguation may contain three parts: can-
didate selection, context-level disambiguation, and document-level disambigua-
tion. The candidate selection process aims to find the most relevant candidate
entities of mentions for the model to make further inferences. The context-level
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 716–729, 2021.
https://doi.org/10.1007/978-3-030-75765-6_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_57&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_57

Exploiting Relevant Hyperlinks in Knowledge Base for Entity Linking 717

Fig. 1. An illustrating example of EL using hyperlinks. Candidate entities list (in the
cylinder) contains the candidates for a mention. Red rounded rectangles are the target
entities. The rectangle connected to a certain entity contains the hyperlinks in the KB
corresponding to that entity. The solid red path shows the correct entity linking result,
while the dashed orange path indicates the wrong one. (Color figure online)

disambiguation aims to extract the information based on words that surround
the mentions. However, such disambiguation may not perform well when the
context does not have enough information. The document-level disambiguation
tries to find out the topical coherence between all mentions in the same docu-
ment. Most of the previous works [6,7,15,24] use entity embeddings, which are
compact semantic meanings of entities from the KB information, to calculate
the pairwise scores between all candidate entities and predict answers.

Since a KB may contain numerous entities, hyperlinks of entities in the KB
provide additional help for the entity linking model to understand the seman-
tic meaning of entities. However, we find that most existing EL models cannot
utilize the KB information precisely when trying to find the topical coherence
between mentions in the document-level disambiguation. Using irrelevant hyper-
link information may increase noises and hurt the accuracy of EL models.

Figure 1 is an illustrating example, and suppose we want to link the three
entities in the given text (i.e., the three red-colored phrases in the example sen-
tence) to their corresponding identities. The mention “West Germany” may link
to Republic of Germany, Germany national football team, and Germany national
basketball team. We can find that Germany national football team has many
hyperlinks in the KB, including “Germany”, “football”, “Olympic”, “FIFA”,
and “Olympic Games”. Using the relevant hyperlinks1 “football” and “FIFA”
can help the model accurately refer Argentina to Argentina national football
team by the strong coherence between Germany national football team and
Argentina national football team. However, when using irrelevant hyperlinks
such as “Olympic” and “Olympic Games”, the model may be misled and make

1 The number of relevant hyperlinks can be different in different situations.

718 S.-Y. Cheng et al.

a wrong inference by aligning the mention “Argentina” to Argentine Olympic
Committee (as the dashed orange path in Fig. 1).

Moreover, we notice that previous studies do not emphasize candidate selec-
tion. The existing approaches simply select candidates of a mention by context-
independent scores and ignore the coherence between the mentions, which may
cause more irrelevant candidates being selected and introduce noises to the EL
model.

To address these problems, in this study, we make the following contribu-
tions. First, we propose to use the hyperlink extraction stage, which is able to
calculate and capture the semantic meaning of the context surrounding a men-
tion. Our model computes the coherence between the context and the candidate
hyperlinks, and using an attention mechanism to choose the relevant hyperlinks
for an entity.

Second, since different mentions in a document may not all have the same top-
ical coherence, we propose to use a hyperlink attention stage to let our document-
level disambiguation choose the most relevant linked entities and enhance the
linking accuracy. In contrast to [24], which simply uses all of the hyperlinks for
each entity to compute the coherence between entities, our model can figure out
the most relevant hyperlinks to decrease the noises and categorize the semantic
meaning of different domain entities more accurately.

Last but not least, for the candidate selection of each mention, we consider
the topical coherence between candidate entities and the mention by computing
their cosine similarity. Such a strategy produces better candidate sets and further
boosts the linking accuracy.

We evaluate our model on various benchmark datasets. The experimental
results show that by well leveraging the diverse domain expertise from the hyper-
links in KB, our model is able to precisely categorize the entities and learn the
knowledge across different domains, leading to better linking quality on datasets
of various domains. When compared with baselines, our model has 3%–21%
higher F1 score on average, and our model even outperforms the models that
rely on additional information.

2 Preliminaries and Related Works

Given a set of mentions M “ {m1,m2, ...,mK} in document D, where each
mention mk P D has a candidate entity set Ck “ {e1k, e2k, ..., eT

k } selected from
the KB, the task of Entity Linking (EL) aims to link each mention mk to its
corresponding entity e∗

k or predict “NIL” if there is no target entity in the KB.
Previous solutions of the EL task usually involve three parts: candidate selection,
context-level disambiguation, and document-level disambiguation. In the follow-
ing, We will introduce the main concept of each part and show the potential
problems encountered by the existing solutions.

A mention may have a lot of candidate entities in the given KB. To increase
both the efficiency and accuracy of the EL model for aligning mentions to correct
entities, candidate selection is required. Specifically, candidate selection is to

Exploiting Relevant Hyperlinks in Knowledge Base for Entity Linking 719

Fig. 2. Neural attention mechanism for context-level disambiguation.

find a proper reduced candidate set Δ(mk) of a given mention mk. A common
and heuristic way for previous studies [7,15,24] is to select the top 30 candi-
dates based on the context-independent scores p̂(ei

k|mk), which is generated by
averaging the probabilities from Wikipedia, a large Web corpus [22], and YAGO
dictionary [11]. Then, it further selects 7 candidates, including the top 4 enti-
ties based on p̂(ei

k|mk) and the top 3 entities based on the local context-entity
similarity function

s(ei
k) “

∑

wj
kPck

ŵj
k

ᵀ
êi

k, (1)

where ŵj
k and êi

k are the word and entity embeddings, and wj
k is the local context

around mk.
On the other hand, context-level disambiguation aims to use the local

contexts surrounding the mentions and ignore the coherence between mentions
to link decisions. For each mention mk and its corresponding local context ck, the
context-level disambiguation calculates the score function Ψ(ei

k,mk) by finding

e∗
n “ arg max

ei
nPCn

Ψ(ei
n, cn), (2)

for each n P {1, ...,K} and i P {1, ..., T}. The previous work [18] uses binary
classification to disambiguate entities into commonness and relatedness, while
[2] uses several ranking algorithms to order the entities. Other works like [23] and
[8] use entity embeddings to compute the coherence scores between mention and
entities, and [7] proposes a neural attention mechanism (as shown in Fig. 2) to
compute the score, and this mechanism is used in many related studies [15,24].
Mention mk is surrounded by context ck “ {w1

k, w2
k, ..., wN

k } and has a reduced

720 S.-Y. Cheng et al.

candidate set Δ(mk) generated by candidate selection. Each word wi
k P ck and

candidate entity ei
k P Δ(mk) are mapping to their pre-trained embeddings ŵi

k

and êi
k. The relevance score between candidate entities and context words is

calculated as follows:
r(ŵi

k) “ max
ej
kPΔ(mk)

ŵi
k

ᵀ
Aêj

k, (3)

where A is a parameterized diagonal matrix. Top S words are the related words
to candidate entities, which are transformed to the relevant scores as below:

a(ŵi
k) “ exp[r(ŵi

k)]
∑

̂

wj
kP topS(ck)

exp[r(ŵj
k)]

. (4)

The weighted entity-mention score is then calculated as

Ψ(ei
k,mk) “

∑

̂

wj
kP topS(ck)

a(ŵj
k)ŵj

k

ᵀ
Bêi

k, (5)

where B is another learnable diagonal matrix. However, this disambiguation
may highly depend on the performance of entity embeddings and hence become
unstable.

Document-level disambiguation aims to capture the coherence score
between entities, which can be denoted by Φ(E ,D), where E “ {e1, e2, ..., ek}.
The previous studies [7–9,21,23] and [15] use the coherence score function that
sums up the scores of all entity pairs. The disadvantage of this kind of methods
is its NP-hard complexity. However, [7] and [15] use loopy belief propagation
(LBP) to compute an approximate inference answer to overcome this problem.
The related study [6] is the first one to consider EL as a sequential decision prob-
lem, and the authors implement a reinforcement learning algorithm to learn the
relation between mentions. There is another study [24] lets the proposed model
only require one pass through all mentions to reduce the computational effi-
ciency. However, this model requires an additional pre-trained NER type system
that may cause an over-fitting problem in the in-domain datasets. The EL model
then tackles the problem as follows:

E∗ “ arg max
EPC1ˆ...ˆCK

K∑

n“1

Ψ(ei
n, cn) ` Φ(E ,D). (6)

In order to compute the score functions between mention and entities, pre-
vious studies employ a variety of techniques. Some of the approaches use fea-
ture engineering to define useful features. The previous work [21] exploits TF-
IDF summary to compute the cosine similarity between the Wikipedia title
and surrounding hyperlinks of context as their context-level features. For their
document-level features, they use link information between Wikipedia pages to
measure semantic relatedness. Other work [3] extracts high precision textual

Exploiting Relevant Hyperlinks in Knowledge Base for Entity Linking 721

relations from the text and determines the semantic relation weights by combin-
ing type and confidence of the relation with the confidence in relations retrieved
from an external KB by using the mention pairs as a query. Others use rep-
resentation learning to replace feature engineering. These approaches often do
not use any handcrafted features and compute their score functions with pre-
trained embeddings of words (e.g., [17,19]) and entities (e.g., [7,10,13,16,20,23]).
The previous study [10] learns representations by leveraging large scale annota-
tions of Wikipedia. Some related works like [13,23], and [16] pre-train the entity
embeddings based on the skip-gram model and directly model the semantic relat-
edness between KB entities. The related study [7] develops an effective method
to bootstrap entity embeddings from entity pages and the local context of their
hyperlink annotations. Another study [20] enhances the embeddings of entities
and words in a common vector space with web corpus co-occurrence statistics.

3 Methodology

The structure of our model is shown in Fig. 3. We first introduce how we lever-
age the entity description to help the context-level disambiguation. Second, we
introduce our proposed hyperlink extraction stage and hyperlink attention stage
to extract relevant hyperlinks for entities and choose the coherent entities in
the document-level disambiguation. Furthermore, we show how we improve the
candidate entity selection for a mention by using cosine similarity. Finally, we
illustrate how to combine these main components and produce the results of our
proposed EL model.

3.1 Context-Level Disambiguation

Different from the previous work [7], our context-level disambiguation uses not
only the entity embeddings but the entity description. Apart from the entity
embeddings, there are many other valuable information in the KB. To let our
model learn more about entities, we use the entity embeddings and the entity
description to enrich our context-level disambiguation. Each entity has descrip-
tion words in the KB dei

k
“ {s1

ei
k
, s2

ei
k
, ..., sN

ei
k
}. We use the first R words and

average their embeddings as the entity description embeddings d̂ei
k

and then
calculate the weighted description-mention score Ψ(dei

k
,mk). Our context-level

disambiguation score is then calculated as

ΨCL(ei
k,mk) “ αΨ(dei

k
,mk) ` βΨ(ei

k,mk), (7)

where α and β are learnable linear weights.

722 S.-Y. Cheng et al.

Fig. 3. The structure of our EL model.

3.2 Document-Level Disambiguation

In document-level disambiguation, we consider EL as a sequential decision prob-
lem, and our basic idea is to use the relevant hyperlinks to empower the decision.

Formally, we denote the entity hyperlinks by hk´1 “ {l̂1k´1, l̂
2
k´1, ..., l̂

Q
k´1}, where

each l̂ik´1 represents a hyperlink embedding vector. Intuitively, some hyperlinks
in hk´1 are irrelevant to mention mk.2 As illustrated in the Hyperlink Extraction
Stage of Fig. 4, a single-layer neural network f computes the context embedding
vector for mention mk, where xk is a concatenation of the left and right aver-
age embeddings of words of the mention. We then calculate the score between a
context embedding vector and a hyperlink as follows:

w(l̂ik´1) “ l̂ik´1 · f(mk, xk). (8)

Hyperlink extraction stage then chooses top q relevant hyperlinks and uses soft-
max function to transform the scores as

b(l̂ik´1) “ exp [w(l̂ik´1)]
∑

̂

ljk´1P topq(hk´1)
exp [w(l̂jk´1)]

, (9)

and the final weighted hyperlink embedding is

̂hk´1 “
∑

̂lik´1P topq(hk´1)

b(l̂ik´1) · l̂ik´1. (10)

2 For example, in Fig. 1, hk´1 can be (Germany, football ,FIFA, etc.), and mk can be
“Argentina”.

Exploiting Relevant Hyperlinks in Knowledge Base for Entity Linking 723

Fig. 4. The architecture of our document-level disambiguation. We compute the
weighted hyperlink embeddings in the Hyperlink Extraction Stage and then use the
attention mechanism in the Hyperlink Attention Stage to choose the relevant hyper-
links (the red words show the differences from the context-level disambiguation). (Color
figure online)

Next, our document-level disambiguation uses the neural attention mech-
anism to highlight the important entities between previously linked entities’
hyperlink set Hk´1 “ {ĥ1, ĥ2, ..., ̂hk ´ 1} and candidate entities ei

k (see the
Hyperlink Attention Stage in Fig. 4). The calculation of relevance score for each
ĥi is

v(ĥi) “ max
ej
kPΔ(mk)

ĥi

ᵀ
P êj

k, (11)

where P is a learnable diagonal matrix. The weight of linked entity hyperlink
is high if it is strongly related to candidate entities. We apply a threshold δ to
select the relevant linked entity hyperlinks and use softmax function on these
weights. We then define the reduced linked entity hyperlinks as

Hk´1 “ {ĥi P Hk´1|v(ĥi) ě δ}. (12)

After that, the final attention weights are calculated as

d(ĥi) “ exp [v(ĥi]∑
̂hjPHk´1

exp [v(ĥj)]
. (13)

Finally, the document-level disambiguation score is explicitly

Φ(ei
k,Hk´1) “

∑

̂hiPHK´1

d(ĥi)ĥi

ᵀ
Uêi

k, (14)

where U is another parameterized diagonal matrix.

724 S.-Y. Cheng et al.

Table 1. Statistics of the datasets used in the experiments. Gold recall is the percentage
of ground truth entities contained in candidate set of mentions.

Dataset # docs # mentions Mentions per doc Gold recall

AIDA-Train [11] 946 18448 19.5 –

AIDA-A(valid) [11] 216 4791 22.1 96.8%

AIDA-B(test) [11] 231 4485 19.4 98.7%

MSNBC [5] 20 656 32.8 98.5%

AQUAINT [18] 50 727 14.5 94.5%

ACE2004 [21] 36 257 7.1 91.4%

CWEB [9] 320 11154 34.8 91.3%

WIKI [9] 320 6821 21.3 92.9%

3.3 Candidate Selection

Before the context-level disambiguation and document-level disambiguation, we
aim to prepare a better set of candidate entities from all possible candidates in
the KB. For each candidate ei

k of mention mk, we first compute the candidate
score as

R(ei
k) “

∑

m �“k
mPD

∑

̂

ej
mPCm

sim(êi
k, êj

m), (15)

where sim is cosine similarity.
To construct the reduced candidate set Δ(mk), we first select the top 10

entities based on p̂(ei
k|mk) and the top 20 entities based on the candidate score

R(ei
k). Then, in order to optimize for model’s memory and decrease the noises

for the model, we measure the local context-entity similarity (Eq. (1)) and keep
only 7 of these entities, including the top 4 entities based on p̂(ei

k|mk) and the
top 3 entities based on s(ei

k).

3.4 Result Generation

After introducing the main components in our model, in the following, we
will describe how to combine the aforementioned components and produce
the results. For a given mention-candidate pair (mk, ei

k), our model first gen-
erates context-level disambiguation score ΨCL(ei

k,mk), document-level disam-
biguation score Φ(ei

k,Hk´1), and context-independent score log p̂(ei
k|mk). Then,

as shown in Fig. 3, the model combines these scores and outputs the probability
Oθ(ei

k|mk). Specifically, the model uses a two-layer feedforward neural network
to rank the model and minimize the max-margin loss defined as

L(θ) “
∑

DPD

∑

mkPD

∑

ei
kPΔ(mk)

g(mk, ei
k),

g(mk, ei
k) “ max(0, γ ´ Oθ(e∗

k|mk) ` Oθ(ei
k|mk)),

(16)

where θ includes the model parameters and e∗
k is the ground-truth entity.

Exploiting Relevant Hyperlinks in Knowledge Base for Entity Linking 725

4 Experiments

4.1 Experiment Setup

We conduct experiments on the commonly-used open benchmark datasets, of
which the origins and statistics are available in Table 1. The parameter settings
in our experiments are as follows. We set the dimensions of both word and
entity embeddings to 300. For the word embeddings, we use Word2vec by [17]
and GloVe by [19]. For the entity embeddings, we adopt the one developed by
[7]. Word2vec is used in context-level disambiguation and candidate selection.
GloVe is used in document-level disambiguation for computing f in Eq. (6).
Hyper-parameters of the context-level disambiguation are: N “ 50, R “ 50,
S “ 5. For the document-level disambiguation, the length of words used in
function f is set to 4 and the probability of dropout is set to 0.3, q “ 20,
δ “ 0.5, and γ “ 0.01. For the candidate selection, the length of words N “ 40.
When training the model, we use the Adam [14] optimizer with the learning
rate equal to 5e´5 and apply early stopping (i.e., we stop learning if validation
accuracy does no increase after 200 epochs). Validation accuracy is computed
after every 3 epochs. After the F1 score on the validation set reaches 90.8%,
the learning rate is reduced to 1e´5. Furthermore, in order to avoid providing
biased results, we run our model for multiple times and show the 95% confidence
interval of the standard micro F1 score.

4.2 Results

We compare our model with the following existing EL systems, including the
rank model in [21] and probability graph models in [7,9,11], and [15]. Table 2
shows the F1 scores of all the methods on the in-domain dataset AIDA-B. Note
that the methods in [6] and [24] both use additional information: the former
uses additional Wiki training data crawled by themselves, and the latter uses a
NER-type system to enhance their performance. Therefore, their performances
are mainly provided as references, since our model and the models in [7,9,11,21],
and [15] do not use these kinds of additional information.

In Table 3, we show micro F1 scores on 5 out-domain test sets. Our model
achieves the highest F1 scores on AQUAINT and CWEB. Please note that,
although we do not use additional information as some previous studies (i.e.,
[6] and [24]), we still have the highest average F1 scores (88.49) among all the
baselines on the five out-domain datasets.

726 S.-Y. Cheng et al.

Table 2. F1 scores of all methods on AIDA-B dataset for the in-domain KB. The
overall best score is underlined and the score of the best result only using AIDA-Train
as the training set is in bold face.

Methods AIDA-B

AIDA-Train

Chisholm and Hachey (2015) [4] 88.7

Guo and Barbosa (2018) [9] 89.0

Globerson et al. (2016) [8] 91.0

Yamada et al. (2016) [23] 91.5

Ganea and Hofmann (2017) [7] 92.2

Le and Titov (2018) [15] 93.1

Our model 93.01 ˘ 0.15

AIDA-Train + extra Wiki [6] 94.3

AIDA-Train + NER [24] 94.6

Table 3. F1 scores of all methods on out-domain datasets. The best results only using
AIDA-Train as the training set are in bold face.

Methods MSNBC AQUAINT ACE2004 CWEB WIKI Average

AIDA-Train

Hoffart et al. (2011) [11] 79 56 80 58.6 63 67.32

Ratinov et al. (2011) [21] 75 83 82 56.2 67.2 72.68

Cheng and Roth (2013) [3] 90 90 86 67.5 73.4 81.38

Guo and Barbosa (2018) [9] 92 88 87 77 84.5 85.7

Ganea and Hofmann (2017) [7] 93.7 88.5 88.5 77.9 77.5 85.22

Le and Titov (2018) [15] 93.9 88.3 89.9 77.5 78.0 85.51

Our model 93.86 ˘ 0.2 93.09 ˘ 0.2 90.87 ˘ 0.5 82.11 ˘ 0.1 82.51 ˘ 0.0 88.49

AIDA-Train + extra Wiki

[6] 92.8 87.5 91.2 78.5 82.8 86.56

AIDA-Train + NER

[24] 94.6 87.4 89.4 73.5 78.1 84.6

4.3 Discussions

Here we further analyze how our method can outperform others from three
aspects: the effect of entity description, the impact of different mention linking
orders, and the impact of different entity candidate selections.

Different from previous methods for context-level disambiguation that use
only the entity embeddings to capture the information from the surrounding
context, we additionally consider the entity description in the KB. To evaluate
whether the entity description contributes to disambiguation, we compare the
performance between the model with and without adding the entity descrip-
tion. As shown in Fig. 5(a), if we use entity description in our context-level
disambiguation, the performance has more improvements on the datasets with
lower accuracy, which means if entity embeddings are not well-trained, entity

Exploiting Relevant Hyperlinks in Knowledge Base for Entity Linking 727

(a) Analysis on the effectiveness
of entity description.

(b) Comparisons of different link-
ing orders.

(c) Comparisons of different can-
didate selection strategies.

Fig. 5. Comparative analysis of different model components.

description can bring useful information and effectively improve the model per-
formance. However, our context-level disambiguation shows a relatively low per-
formance on MSNBC with entity description. The main reason is that the men-
tions in MSNBC have well-trained entity embeddings. Thus, the entity descrip-
tion might introduce some noise information to the model, which leads to a lower
performance.

Since we consider EL as a sequential decision problem, the linking order also
plays an important role in the prediction. In our study, we have evaluated five
different linking orders, which are described as follows: Original links all of the
mentions with their original orders in the document; Random links mentions with
random orders; Size links the mentions with smaller candidate sizes first (if their
candidate sizes are the same, Size links the one with the highest context-level
disambiguation score); Gap links the mentions with context-level disambiguation
score gap between the highest score and the second highest score; Bidirectional
links the mentions with the average scores of normal orders and reverse orders.
Figure 5(b) shows the performance comparison on the AIDA-B and the ACE2004
datasets. Overall, Bidirectional contains information for both sides, which leads
to the best performance among all the linking orders.

In previous studies [7,15,24], they select the top 30 entities as the initial can-
didates for entity linking using the context-independent score p̂(ei

k|mk). How-
ever, such score ignores the same mention that may come from documents of
different topics and thus selects the wrong entities. By contrast, our model uses
cosine similarity to choose the relevant candidates by Eq. (15). Figure 5(c) shows
that our method of selecting candidates outperforms the previous one on all the
datasets, except on MSNBC having the same gold recall. This is because both
of the methods already achieve the highest gold recall on MSNBC.

5 Conclusions

In this paper, we propose a model that adopts a new design of candidate selection
and effectively utilizes highly relevant entity hyperlinks in the KB. Our model
combines the hyperlink extraction stage and the hyperlink attention stage in

728 S.-Y. Cheng et al.

the document-level disambiguation, in order to precisely extract the coherence
between entities and hyperlinks. Compared to other existing EL systems which
do not filter the corresponding hyperlinks for each entity, our model is able to
locate and leverage more suitable hyperlinks and thereby enhance the linking
accuracy. The experimental results show that our proposed model outperforms
the state-of-the-arts on various benchmark datasets, and even being competitive
to the models that rely on additional information.

References

1. Berant, J., Liang, P.: Semantic parsing via paraphrasing. In: Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Long
Papers), vol. 1, pp. 1415–1425 (2014)

2. Chen, Z., Ji, H.: Collaborative ranking: a case study on entity linking. In: Proceed-
ings of the 2011 Conference on Empirical Methods in Natural Language Processing,
pp. 771–781. Association for Computational Linguistics, Edinburgh, Scotland, UK,
July 2011. https://www.aclweb.org/anthology/D11-1071

3. Cheng, X., Roth, D.: Relational inference for wikification. In: Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing, pp. 1787–
1796 (2013)

4. Chisholm, A., Hachey, B.: Entity disambiguation with web links. Trans. Assoc.
Comput. Linguist. 3, 145–156 (2015)

5. Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data.
In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL), pp. 708–716. Association for Computational Linguistics, Prague, Czech
Republic, June 2007. https://www.aclweb.org/anthology/D07-1074

6. Fang, Z., Cao, Y., Li, Q., Zhang, D., Zhang, Z., Liu, Y.: Joint entity linking with
deep reinforcement learning. In: The World Wide Web Conference, pp. 438–447.
ACM (2019)

7. Ganea, O.E., Hofmann, T.: Deep joint entity disambiguation with local neural
attention. In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 2619–2629 (2017)

8. Globerson, A., Lazic, N., Chakrabarti, S., Subramanya, A., Ringgaard, M., Pereira,
F.: Collective entity resolution with multi-focal attention. In: Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Long
Papers), vol. 1, pp. 621–631 (2016)

9. Guo, Z., Barbosa, D.: Robust named entity disambiguation with random walks.
Semant. Web 9(4), 459–479 (2018)

10. He, Z., Liu, S., Li, M., Zhou, M., Zhang, L., Wang, H.: Learning entity representa-
tion for entity disambiguation. In: Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Short Papers), vol. 2, pp. 30–34 (2013)

11. Hoffart, J., et al.: Robust disambiguation of named entities in text. In: Proceedings
of the 2011 Conference on Empirical Methods in Natural Language Processing, pp.
782–792 (2011)

12. Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., Weld, D.S.: Knowledge-based
weak supervision for information extraction of overlapping relations. In: Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, vol. 1, pp. 541–550. Association for Computational
Linguistics (2011)

https://www.aclweb.org/anthology/D11-1071
https://www.aclweb.org/anthology/D07-1074

Exploiting Relevant Hyperlinks in Knowledge Base for Entity Linking 729

13. Hu, Z., Huang, P., Deng, Y., Gao, Y., Xing, E.: Entity hierarchy embedding. In:
Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing (Long Papers), vol. 1, pp. 1292–1300 (2015)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

15. Le, P., Titov, I.: Improving entity linking by modeling latent relations between
mentions. In: Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Long Papers), vol. 1, pp. 1595–1604 (2018)

16. Li, Y., Zheng, R., Tian, T., Hu, Z., Iyer, R., Sycara, K.: Joint embedding of hierar-
chical categories and entities for concept categorization and dataless classification.
In: Proceedings of COLING 2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pp. 2678–2688 (2016)

17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

18. Milne, D., Witten, I.H.: Learning to link with wikipedia. In: Proceedings of the
17th ACM Conference on Information and Knowledge Management, pp. 509–518
(2008)

19. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

20. Radhakrishnan, P., Talukdar, P., Varma, V.: ELDEN: improved entity linking using
densified knowledge graphs. In: Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, vol. 1 (Long Papers), pp. 1844–1853 (2018)

21. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and global algorithms for
disambiguation to wikipedia. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, vol. 1,
pp. 1375–1384. Association for Computational Linguistics (2011)

22. Spitkovsky, V.I., Chang, A.: A cross-lingual dictionary for English wikipedia
concepts. In: Proceedings of the Eighth International Conference on Language
Resources and Evaluation (LREC 2012), pp. 3168–3175 (2012)

23. Yamada, I., Shindo, H., Takeda, H., Takefuji, Y.: Joint learning of the embedding
of words and entities for named entity disambiguation. In: Proceedings of The 20th
SIGNLL Conference on Computational Natural Language Learning, pp. 250–259
(2016)

24. Yang, X., et al.: Learning dynamic context augmentation for global entity linking.
In: Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 271–281 (2019)

25. Yih, W.T., Chang, M.W., He, X., Gao, J.: Semantic parsing via staged query graph
generation: question answering with knowledge base. In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Long Papers),
vol. 1, pp. 1321–1331 (2015)

http://arxiv.org/abs/1412.6980

TANTP: Conversational Emotion
Recognition Using Tree-Based Attention
Networks with Transformer Pre-training

Haozhe Liu, Hongzhan Lin, and Guang Chen(B)

School of Artificial Intelligence, Beijing University of Posts and Telecommunications,
Beijing, China

{liuhaozhe,linhongzhan,chenguang}@bupt.edu.cn

Abstract. Conversational emotion recognition has gained significant
attention in data mining and text mining recently. Most existing methods
only consider the utterance in conversations as a temporal sequence and
ignore the fine-grained emotional clues in the compositional structure,
where the non-ignorable semantic transitions and tone enhancement are
implied. Consequently, such models hardly capture accurate semantic
features of the utterance, which results in the accumulation of incorrect
emotional features in the memory bank. To address this problem, we
propose a novel framework, Tree-based Attention Networks with Trans-
former Pre-training (TANTP), which incorporates contextual represen-
tations and recursive constituency tree structure into the model architec-
ture. Different from merely modeling the utterance in light of the time
order, TANTP could effectively capture compositional emotion seman-
tics of utterance features for the memory bank, where complex semantic
transitions and emotional progression are difficult to be revealed by previ-
ous conventional sequential methods. Experimental results conducted on
two public benchmark datasets demonstrate that TANTP could achieve
superior performance compared with other state-of-the-art models.

Keywords: Conversational emotion recognition · Tree-based attention
networks · Transformer · Compositional emotion semantics

1 Introduction

With the increasing popularity of conversational AI research, emotion recogni-
tion in the conversation has become indispensable in the field of data mining. It
can be used to study financial volatility and develop emotional human–computer
chatting systems. Text conversation is one of the important ways for humans to
portray complex emotions. So in this paper, we center on the emotion recognition
task in textual conversations. Emotion recognition in the conversation aims to
detect the exact emotion states of speakers from their conversation. It is natural
for humans to recognize underlying emotions in their verbal interactions. But
machines have a hard time to recognize complex emotions within text features.
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 730–742, 2021.
https://doi.org/10.1007/978-3-030-75765-6_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_58&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_58

TANTP 731

All right,see you Monday.

We're not even shoo ng them
anymore?!!

Neural

Surprise

Like they're taking it off the air?

Surprise

...

Time We're not even shooƟng them anymore?!!

Cons tuency Tree

Fig. 1. The emotional clues of the utterance “We’re not even shooting them any-
more?!!” can be deeply explored through learning sentiment semantic compositionality.

One of the key challenges is how to extract the correct state referring to previous
text information like utterance in the on-going and real-time regimes.

In conversational emotion recognition (CER), the semantic extraction of his-
torical discourse is crucial since there is no future semantic environment. Thus,
it is often necessary to construct a memory bank for identifying emotions, which
is usually constructed hierarchically and depends on the representations of the
token and utterance level. For CER, although most pioneering works [1–4] have
earned remarkable performance, there are still two limitations. (1) At the token
level, such models do not consider how to catch interactions between tokens so
that it loses contextual information. (2) At the utterance level, these methods
solely utilize convolutional neural networks (CNNs) [5] or gated recurrent units
(GRUs) [6] to model the utterance according to the time order, largely ignoring
or oversimplifying the structural information linked with constituency structure.
These limitations will lead to the accumulation of incorrect semantic features in
the memory bank. As a result, it is almost impossible for us to exploit the precise
interactive information of the historical features from the memory bank. There-
fore, it is vitally important to exactly derive emotion semantics at the token and
utterance level, which determines the result of the CER task at the source.

To address these limitations, we present a new approach TANTP via tree-
based attention networks with Transformer pre-training. At the token level, we
obtain context-sensitive and emotionally rich embeddings by the Transformer [7–
9] that is fine-tuned in the emotion recognition task. Context-sensitive embed-
dings can disambiguate homonyms, express semantic and syntactic patterns.
More importantly, at the utterance level, our approach focuses more on captur-
ing compositional semantic features of the utterance for the memory bank by
the tree-based attention networks. We found the tree-based attention networks
based on the structure of the binary constituency parse tree [10,11], which has
been shown conducive to provide useful clues for modeling compositional emo-
tion semantics. The utterance structure that expresses negations or emphases
can be discovered straightforwardly by the binary constituency parse tree. As
illustrated in Fig. 1, we can see the utterance “We’re not even shooting them any-
more?!!” consists of two parts which are connected by “not”, and it reveals the

732 H. Liu et al.

semantic transition. Besides, the phrase “not even...anymore” that often appears
in daily discourses has great effects on enhancing the emotional tone. It makes
the inference that the emotion of the utterance is “surprise” more reasonable,
while previous methods usually neglect it due to the certain distance among the
phrase in time order. On the whole, TANTP can dig up semantic transitions
and tone enhancement from more fine-grained compositional structures, which
is hard to manipulate merely with traditional encoders like CNNs or GRUs.
With the contextual information obtained by the fine-tuned Transformer and
the binary constituency parse tree, we can better learn the composition mean-
ing of the utterance and provide more accurate emotional representation for
the memories-summarizing stage. Then, we can adopt self-attention networks
to derive accurate interactive information of the historical features from the
memory bank. To summarize, this paper makes the following contributions:

• We propose a novel framework towards conversational emotion recognition,
which can exactly catch context-sensitive representations and compositional
emotion semantics of utterances to improve the token-level and utterance-
level features for the memory bank.

• We build the tree-based attention networks on top of Transformer to excavate
more fine-grained emotional features like semantic transitions and emotional
progression from the compositional structure. To our best knowledge, this is
the first paper reflecting on the compositional structure of the utterance in
conversational emotion recognition.

• Our experimental results on two public benchmark datasets outperform other
state-of-the-art baselines on the conversational emotion recognition task.

2 Related Works

This section firstly reviews the recent progress of CER. Earlier research [12] is
conducted to engineer new features, which annotated and detected emotions in
call center dialogues using unigram topic modeling. Most previous automatic
methods [13,14] intend to detect emotions by employing a range of features
crafted from call center dialogues, like lexicon-based methods and audio features.
These methods typically require heavy preprocessing and feature engineering.

In recent years, deep learning methods [1,15–17] have demonstrated state-of-
the-art performances on emotion detection in conversational videos and multi-
turn Tweets. DialogueRNN [2] is built on RNNs that keeps track of the indi-
vidual party states throughout the conversation and uses this information for
the emotion recognition task. AGHMN [4] uses Hi-GRU [18] and Attention
GRU to produce utterance features and summarize the memories, respectively.
HiTransformer-s [19] proposes a hierarchical transformer to refine the representa-
tions of tokens and utterances. KET [3] and COSMIC [20] incorporate knowledge
into emotion detection in textual conversations.

Tree-based attention is proposed to integrate tree structures into self-
attention [21,22]. Our proposed method is a substantial extension of tree-based
attention to combine the syntactic structure with contextualized representation
[19] for the semantic composition [23] in CER.

TANTP 733

Self-AƩenƟon

Trm Trm Trm Trm

Trm Trm Trm Trm

...

...

Ei,1 Ei,2 Ei,n-1 Ei,n

Ti,1

...

...Ti,2 Ti,n-1 Ti,n

Token Inputs at Time i

Tree-based AƩenƟon

...
st-k si st

...
ht-k+1 hi

...

...

...

ConsƟtuency
Tree

Leaf Level

Child Level

AƩenƟon GRU
rt

st-k+1

ht-k

st-1

ht-1

Summary

query

...

...

Fig. 2. The overall architecture of TANTP, including the submodules: Embedding
Layer, Tree-Based Attention Layer, Self-attention Layer and Attention GRU. TANTP
captures the compositional semantic features si of the utterance by the tree-based
attention networks on top of the Transformer. Then, a memory bank Bt that contains
K historical utterances is built up for more precise contextual information of the query
utterance st. Furthermore, hi, i ∈ [t−K, t−1] which contains the interactive information
between historical utterances is acquired by the self-attention mechanism. Finally, the
vector representation rt of the query utterance is reconstructed by Attention GRU
based on the memory bank and itself, which is used to predict the emotion label of the
query utterance.

3 Methodology

3.1 Task Definition

A conversation consists of different utterances spoken by different speakers.
Suppose that Ct = {x1, x2, · · · , xt} represents a t-turn conversation, which is
made up of t utterances. An utterance is composed of a sequence of tokens,
xi =

{
ei
1, e

i
2, . . . , e

i
n

}
, where ei

l represents the l-th token of the i-th utterance
and n is the length of the utterance, i ∈ [1, t] and l ∈ [1, n]. The CER task is to
identify the emotion label of the query utterance xt taking care of the utterances
before xt to a certain degree. Our model can recognize the emotion label of the
query utterance based on the historical information in a conversation.

3.2 Architecture

Our core idea is to enhance representation learning of utterance indicative fea-
tures by selectively attending over the corresponding semantic composition,
which deeply explores speaker opinions and refines representation of the cur-
rent utterance following the propagation conversation structure. In this section,
we will introduce the architecture of the model as illustrated in Fig. 2 in detail.

Embedding Layer. As aforementioned, most traditional CER approaches usu-
ally get static word embedding like GloVe or Word2Vec for each token. However,

734 H. Liu et al.

it did not perform better in the word-level embedding phase due to the fact that
the embedding of each token is fixed and does not change with different semantic
features in different contexts. In order to overcome this shortcoming, our model
uses transformer-based pre-training models such as BERT [8] or RoBERTa [9]
to acquire context-dependent embedding for each token. To derive the token-
level emotionally rich features, we can fine-tune the RoBERTa Large model in
the emotion label prediction task. Then we feed the sequence of tokens {ei

l}n
l=1

given the utterance xi into the fine-tuned model to attain the 1024-dimensional
word embedding {T i

l }n
l=1 for each token, denoting the representation of the token

ei
l from pre-trained Transformers as T i

l :

T i
l = F(Ei

l), (1)

where F(·) means the pre-trained Transformer, Ei
l is the summation of the token

embedding and the positional embedding for the token ei
l.

Tree-Based Attention Layer. As shown in Fig. 1, an utterance can be mod-
eled in the form of a tree structure according to its constituencies. All the leaf
nodes of the binary constituency parse tree represent the tokens in the utterance.
In this module, we aim to attain the root node representation, which contains
the compositional semantic features of the utterance, through the tree-based
attention at the leaf and child level.

Leaf Level. For the current utterance xi = {ei
l}n

l=1, we can get the representation
of the l-th leaf (token) node, denoted as f i

l = T i
l from previous section. Each

parent node that only has two child nodes could be related to two or more leaf
nodes directly or indirectly. The representation of each parent node could be
initialized by the leaf nodes covered by the node itself. For clarity’s sake, we
take the root node as an example, which is related to all leaf nodes. We could
simply compute the vector representation vi of the root node by summing up
all the representations of leaf nodes and taking the average:

vi =
1
n

n∑

l=1

f i
l . (2)

However, the compositional information gained in such a way is not sufficient.
Therefore, we generate the representation qi of the root node by summing up
representations of all leaf nodes according to the attention weights allocated to
them based on their impact on the average representation. The calculation of
the attention weight allocated to the l-th leaf node is thus:

ci
l = Atten(vi, f i

l)

= tanh
(

1
α

SeLU
(
(W1 × vi)

T × W3 × SeLU
(
W2 × f i

l

))
)

,
(3)

ai
l =

exp
(
ci
l

)

∑n
k=1 exp

(
ci
k

) , (4)

TANTP 735

where W1, W2 and W3 are trainable weight matrices and α is a hyper-parameter.
Then we can compute the weighted sum representation of the root node:

qi =
n∑

l=1

ai
l · f i

l . (5)

The initial representation pi of the root node could be acquired by concatenating
the weighted sum qi and the averaged sum vi. Similarly, the representations
pleft and pright, which are the two child nodes of the root node in the binary
constituency parse tree, can be initialized in the same manner based on the
representations of the leaf nodes covered by each node itself respectively.

Child Level. At the leaf level, we have initialized the representations of the root
node and its child nodes. And the representation of the root node can be further
enhanced by pondering the relationship between the child nodes of the root node
and itself:

ui = aleft · pleft + aright · pright + aroot · proot, (6)

where a1eft, aright and aroot are the attention weights as followed:

aleft, aright, aroot = Softmax (cleft, cright, croot) , (7)

in which c1eft, cright and croot are computed following Eq. 3:

c1eft = Atten(proot,p1eft),
cright = Atten(proot,pright),
croot = Atten(proot,proot).

(8)

The representation si of the utterance xi can be refined by concatenating the
weighted sum representation ui and pi.

Self-attention Layer. In a conversation, the emotion label of a query largely
depends on its historical utterances. To make full use of the historical informa-
tion, it is crucial to build a memory bank Bt for the query. Suppose that st is
the refined representation of the query utterance from the tree-based attention
layer, which has a memory bank containing K utterances. Since these K utter-
ances are extracted from a conversation in order, there are implicative emotion
clues under them. We propose to use the self-attention mechanism [7] to gain
interactive information of the historical features and update the memory bank.
The fusion representations hi, i ∈ [t−K, t−1] of these utterances in the memory
bank are generated by the following:

g (si, sj) = sis
T
j , (9)

aij =
exp (g (si, sj))

∑t−1
j′=t−K exp (g (si, sj′))

, (10)

oi =
t−1∑

j=t−K

aijsj , (11)

736 H. Liu et al.

hi = oi + si, (12)

where j ∈ [t − K, t − 1], Bt = {ht−k, . . . , ht−1} is the memory bank of st with
interactive information of K utterances.

Attention GRU for Final Prediction. The fusion representations from the
self-attention layer are fed into an Attention GRU network [4] to take the mem-
ory bank into consideration for the final prediction of the query utterance. An
attention weight of each historical utterance in the memory bank to the query
need to be allocated as follows:

ak =
exp

(
s�

t Bt,k

)

∑K
k′=1 exp

(
s�

t Bt,k′
) . (13)

These attention weights are used to update the internal state h̃t of a normal
GRU by the following:

hk = ak ◦ h̃k + (1 − ak) ◦ hk−1. (14)

The final hidden state of AGRU ct=hK which considers not only the impact of
different utterances in the memory bank on the query, but also the positional
information of these utterances is the contextual representation of the query. We
generate the query’s final representation rt by fusing its contextual representa-
tion and the representation of itself:

rt = st + ct. (15)

Finally, we feed the representation rt of the query to the softmax layer to predict
the emotion label:

ŷt = softmax (Wrrt + br) . (16)

To solve the imbalance problem of different kinds of emotion labels, we optimize
the model parameters by using a weighted categorical cross-entropy. Thus the
loss function is defined as:

loss = − 1
∑L

i=1 Ni

L∑

i=1

Ni∑

j=1

ω (cj)
|C|∑

c=1

yc
j log2

(
ŷc

j

)
, (17)

1
ω(c)

=
Iβ
c

∑|c|
c′=1 Iβ

c′
, (18)

where Ic denotes the total number of utterances with emotion label c, β is a
hyper-parameter.

4 Experiments

4.1 Datasets

We experiment on two benchmark datasets: EmoryNLP [15] and MELD [24]
which are both multi-party datasets and annotated from the TV show Friends.

TANTP 737

Table 1. Statistics of EmoryNLP and MELD datasets.

Dataset #Utter. (Train/Val/Test) #Conv. (Train/Val/Test) #Classes

EmoryNLP 7551/954/984 659/89/79 7

MELD 9989/1109/2610 1038/114/280 7

But their annotation principles and emotion label types are not the same. Both
datasets are split into three parts: “train”, “test”, and “val”. We show the full
statistics of EmoryNLP and MELD in Table 1.

• EmoryNLP [15] is a dataset based on the show Friends. Utterances are
labelled on seven emotion types including neutral, sad, mad, scared, pow-
erful, peaceful, and joyful.

• MELD [24] is a dataset that comes from the Friends TV series with numerous
speakers in a conversation. Each utterance has one of the seven emotion labels.
They are anger, disgust, sadness, joy, neutral, surprise, and fear.

4.2 Implementation Details

Adam [25] is adopted as the optimizer, and the initial learning rate is 5 × 10−4.
We clip the gradients of model parameters and set the clipping threshold to 5.
The hyper-parameters α and β equal 4 and 0.5, respectively. The window size
K equals 10 that is the average length of a conversation in the dataset. And the
number of training epochs is 20. Our model uses transformer-based pre-training
models such as BERT1 or RoBERTa2 to obtain context-sensitive embedding for
each token. To better capture the emotion features of the token, we fine-tune
the RoBERTa Large model3 in the emotion label prediction task.

4.3 Results and Discussion

Baselines. We compare our model with the following baselines:

• CNN [5] is a single-layer convolutional neural network model that is trained
on the utterances for the emotion class prediction.

• DialogueRNN [2] uses separate GRUs to model context, speakers, and emo-
tion features to track the states of various parties throughout the conversa-
tion.

• KET [3] learns structured conversation representations via hierarchical self-
attention and leverages external, context-aware, and emotion-related knowl-
edge entities from knowledge bases.

1 https://github.com/hanxiao/bert-as-service.
2 https://github.com/pytorch/fairseq/tree/master/examples/roberta.
3 https://github.com/declare-lab/conv-emotion.

https://github.com/hanxiao/bert-as-service
https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://github.com/declare-lab/conv-emotion

738 H. Liu et al.

• AGHMN [4] proposes to use Hi-GRU and attention GRU to produce utter-
ance features and summarize the memories appropriately to retrieve relevant
information for emotion detection in textual conversations.

• HiTransformer-s [19] proposes a hierarchical transformer framework to extract
features of tokens and utterances for the contexts of the utterance.

• COSMIC [20] is the state-of-the-art model for conversational emotion detec-
tion, which models various aspects of commonsense knowledge by considering
mental states, events, actions, and cause-effect relations.

Main Results. In the experiment, weighted accuracy (WA) and weighted F1
(WF1) are evaluation metrics that take the imbalance proportion of emotion
labels into account. From Table 2, compared with other baseline methods, we can
see our model earns remarkable performance on both EmoryNLP and MELD.
For EmoryNLP, our model obtains a 1.73% improvement on WA compared with
RoBERTa AGHMN and 1.06% higher than COSMIC on WF1. We argue that
the tree-based attention networks can accurately unearth the emotion venation
from the more fine-grained structure information that concentrates on negations
and emphases in the utterance as shown in Fig. 1. We can regard this fine-
grained structure information as syntactic guidance that leads our model to
capture the emotion kernel of the utterance. For MELD, our model obtains a
1.96% improvement compared with RoBERTa AGHMN on WA and is almost
comparable but slightly worse than COSMIC in terms of WF1. It is probably
because COSMIC explicitly introduces external commonsense knowledge from
the knowledge base. Exploring emotional clues from the conversation itself is
intrinsically more difficult for models to implicitly catch some of the complex
interactions towards a better understanding of the emotional dynamics and other
aspects of a conversation.

Ablation Study. To illustrate the reliability of the tree-based attention net-
works, we conduct the ablation study on both datasets. The result is shown in
Table 3. TANTP w/o Tree is the model without tree-based attention networks,
TANTP w/o Child level is the model without child-level attention networks and
TANTP w/Att replaces tree-based attention networks with self-attention net-
works. We suppose the reasons for the outcome are that (1) TANTP w/o Child
level is harder to grasp the semantic transitions than TANTP because it ignores
the contrast between the two child leaves. (2) For TANTP w/Att, self-attention
networks consider the interactive information between the tokens that make up
an utterance compared with TANTP w/o Tree, and TANTP focuses more on
compositional semantic features of the utterance which take an important part
in conversational emotion recognition. FR-TANTP w/Att is slightly higher than
FR-TANTP in terms of WA on EmoryNLP, but in general tree-based attention
networks perform better and more robust than self-attention networks.

TANTP 739

Table 2. Experimental results on EmoryNLP and MELD. The best results are high-
lighted in bold.

Methods EmoryNLP MELD

WF1 WA WF1 WA

CNN 32.59 − 55.02 −
Dialogue RNN 31.70 − 57.03 −
AGHMN 33.57 39.84 58.10 60.30

KET 34.39 − 58.18 −
HiTransformer-s − 37.98 − −
RoBERTa 37.29 − 62.02 −
RoBERTa Dialogue RNN 37.44 − 63.61 −
RoBERTa AGHMN 38.25 40.85 63.53 63.52

COSMIC 38.11 − 65.21 −
TANTP 39.17 42.58 64.69 65.48

Table 3. Ablation study on TANTP model. “B/R/FR-” means the model is
BERT/RoBERTa/Fine-tuned RoBERTa-based, respectively.

Methods EmoryNLP MELD

WF1 WA WF1 WA

B-TANTP w/o Tree 32.86 40.04 57.79 61.80

B-TANTP w/o Child level 35.47 37.6 59.72 60.58

B-TANTP w/Att 33.09 39.13 56.82 57.32

B-TANTP 36.68 39.43 60.91 61.87

R-TANTP w/o Tree 34.25 39.84 58.44 60.80

R-TANTP w/o Child level 36.35 37.09 59.44 59.73

R-TANTP w/Att 34.81 39.63 58.29 61.19

R-TANTP 36.69 40.45 61.5 62.76

FR-TANTP w/o Tree 37.60 39.94 64.20 64.64

FR-TANTP w/o Child level 39.01 42.07 63.45 63.29

FR-TANTP w/Att 38.50 42.78 64.03 64.21

FR-TANTP 39.17 42.58 64.69 65.48

Effect of Pre-trained Transformers. Different pre-trained Transformers are
adopted to attain context-dependent features for each token. BERT Large and
RoBERTa Large are pre-trained models, and Fine-tuned RoBERTa Large has
been fine-tuned in emotion label prediction tasks. Table 3 shows that Fine-tuned
RoBERTa Large model extracts more accurate emotion-rich features than the
other two pre-trained Transformers. It also depicts the effectiveness of tree-based
attention networks regardless of embedding methods.

740 H. Liu et al.

Fig. 3. The attention weights of memories to the queries in a conversation from MELD.
(a) is the part of a conversation. There are three emotion labels after an utterance:
the first is gold truth, the second is predicted from FR-TANTP and the last is from
FR-TANTP w/o Tree. R: Rachel, J: Joey, P: Phoebe. (b) and (c) are attention wights
maps learned from FR-TANTP and FR-TANTP w/o Tree, respectively. The darker
the color, the greater the weight. The height is the number of utterances in (a). The
width is the context window size K.

Case Study. In Fig. 3, we visualize the attention weights of memory banks
to the queries in a conversation. Each row represents the attention weights of a
memory bank to the query. Take the last utterance as an example, the true emo-
tion label is “surprise”, and our model FR-TANTP gives the correct prediction,
but FR-TANTP w/o Tree makes a mistake. We can find the reason from (b)
and (c) in Fig. 3 where FR-TANTP pays more attention to the utterances that
promote Joey to be surprised step by step. However, FR-TANTP w/o Tree only
takes note of the utterances closer to the query in time and could not seize the
emotional shift for “surprise”. Besides, FR-TANTP w/o Tree allocates indistin-
guishable attention weight to each utterance which cannot take full advantage
of important utterances. Therefore, our model can better capture the composi-
tional emotion semantics of the utterance for the memory bank so that it can
better mine the clues between the discourse itself and historical information.

5 Conclusion

In this work, to improve the utterance-level and token-level features and avoid
the accumulation of the incorrect emotion semantics in the memory bank, we
propose a novel framework (TANTP) using tree-based attention networks with
Transformer pre-training for conversational emotion recognition. The tree-based
attention networks can better tap the compositional semantic features of an
utterance and the context-dependent features can be extracted with pre-trained
Transformers. Experiments on two public benchmarks have shown that our
model could outperform other state-of-the-art baseline approaches.

References

1. Hazarika, D., Poria, S., Zadeh, A., Cambria, E., Morency, L.-P., Zimmermann, R.:
Conversational memory network for emotion recognition in dyadic dialogue videos.
In: Proceedings of NAACL-HLT, pp. 2122–2132 (2018)

TANTP 741

2. Majumder, N., Poria, S., Hazarika, D., Mihalcea, R., Gelbukh, A., Cambria, E.:
DialogueRNN: an attentive rnn for emotion detection in conversations. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence (2019)

3. Zhong, P., Wang, D., Miao, C.: Knowledge-enriched transformer for emotion detec-
tion in textual conversations. arXiv preprint arXiv:1909.10681 (2019)

4. Jiao, W., Lyu, M.R., King, I.: Real-time emotion recognition via attention gated
hierarchical memory network (2020)

5. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

6. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In: EMNLP, pp. 1724–1734

7. Vaswani, A., et al.: Attention is all you need. In: Advances in neural information
processing systems (2017)

8. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

9. Liu, Y., et al.: RoBERTa: a robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

10. Gildea, D.: Dependencies vs. constituents for tree-based alignment. In: Proceedings
of the 2004 Conference on EMNLP, pp. 214–221 (2004)

11. Wang, W., Knight, K., Marcu, D.: Binarizing syntax trees to improve syntax-
based machine translation accuracy. In: Proceedings of the 2007 Joint Conference
on EMNLP-CoNLL, pp. 746–754 (2007)

12. Devillers, L., Vasilescu, I., Lamel, L.: Annotation and detection of emotion in
a task-oriented human-human dialog corpus. In: Proceedings of ISLE Workshop
(2002)

13. Lee, C.M., Narayanan, S.S.: Toward detecting emotions in spoken dialogs. IEEE
Trans. Speech Audio Process. 13(2), 293–303 (2005)

14. Devillers, L., Vidrascu, L.: Real-life emotions detection with lexical and paralin-
guistic cues on human-human call center dialogs. In: Ninth International Confer-
ence on Spoken Language Processing (2006)

15. Zahiri, S.M., Choi, J.D.: Emotion detection on tv show transcripts with sequence-
based convolutional neural networks. arXiv preprint arXiv:1708.04299 (2017)

16. Chatterjee, A., Gupta, U., Chinnakotla, M.K., Srikanth, R., Galley, M., Agrawal,
P.: Understanding emotions in text using deep learning and big data. Comput.
Hum. Behav. 93, 309–317 (2019)

17. Poria, S., Majumder, N., Mihalcea, R., Hovy, E.: Emotion recognition in conversa-
tion: research challenges, datasets, and recent advances. IEEE Access 7, 100943–
100953 (2019)

18. Jiao, W., Yang, H., King, I., Lyu, M.R.: HiGRU: hierarchical gated recurrent units
for utterance-level emotion recognition. arXiv preprint arXiv:1904.04446 (2019)

19. Li, Q., Chunhua, W., Wang, Z., Zheng, K.: Hierarchical transformer network for
utterance-level emotion recognition. Appl. Ences 10(13), 4447 (2020)

20. Ghosal, D., Majumder, N., Gelbukh, A., Mihalcea, R., Poria, S.: COSMIC: com-
monsense knowledge for emotion identification in conversations. arXiv preprint
arXiv:2010.02795 (2020)

21. Wang, Y.-S., Lee, H.-Y., Chen, Y.-N.: Tree transformer: Integrating tree structures
into self-attention. arXiv preprint arXiv:1909.06639 (2019)

22. Yin, D., Meng, T., Chang, K.-W.: SentiBERT: A transferable transformer-
based architecture for compositional sentiment semantics. arXiv preprint
arXiv:2005.04114 (2020)

http://arxiv.org/abs/1909.10681
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1708.04299
http://arxiv.org/abs/1904.04446
http://arxiv.org/abs/2010.02795
http://arxiv.org/abs/1909.06639
http://arxiv.org/abs/2005.04114

742 H. Liu et al.

23. Pelletier, F.J.: The principle of semantic compositionality. Topoi 13(1), 11–24
(1994)

24. Poria, F., Hazarika, D., Majumder, N., Naik, G., Cambria, E., Mihalcea, R.:
MELD: a multimodal multi-party dataset for emotion recognition in conversations.
In ACL, pp. 527–536 (2019)

25. Kingma, D., Ba J.: ADAM: A method for stochastic optimization. Computer Ence
(2014)

Semantic-Syntax Cascade Injection Model
for Aspect Sentiment Triple Extraction

Wenjun Ke1,2, Jinhua Gao1(B), Huawei Shen1,2, and Xueqi Cheng1

1 CAS Key Laboratory of Network Data Science and Technology,
Institute of Computing Technology, Chinese Academy of Sciences,

Beijing 100190, China
{gaojinhua,shenhuawei,cxq}@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. Aspect sentiment triple extraction aims to extract all
aspects, opinions, and sentiments in a sentence and pair them into
triples. The main challenge lies at mining the dependency between the
aspect and corresponding opinion with the specific sentiment. Existing
methods capture the dependency via either pipeline framework or col-
lapsed sequence labeling model. However, the pipeline framework may
suffer from error propagation, while collapsed tags cannot deal with com-
plex pairing situations where the overlap or long dependency exists. In
this paper, we propose a novel semantic-syntax cascade injection model
(SSCIM) to address above issues. SSCIM adopts a cascade framework
with joint training schema, where its lower layer extracts the aspects and
injects those aspects into the upper layer to extract opinion and senti-
ment simultaneously. Such design is inspired by the fact that the senti-
ment is often conveyed in opinions, and the joint training schema alle-
viates error propagation effectively. Moreover, a novel semantic-syntax
information injection gate (IIG) is designed to bridge the upper and lower
layers of our model, enabling SSCIM to better capture the dependency
between aspects and opinions. Experimental results on four benchmark
datasets demonstrate the superior performance of the proposed model
over state-of-the-art baselines.

Keywords: Aspect sentiment triple extraction · Cascade pointer
network · Semantic-syntax information injection gate

1 Introduction

Aspect-based sentiment analysis (ABSA) is capable of mining the fine-grained
sentiment towards the specific aspect. The aspect extraction (AE), opinion
extraction (OE), and sentiment classification (SC) are the three fundamental
subtasks of ABSA. For example, given a review sentence, “The sauce is delicious
and the crust is bad.” AE and OE aim at extracting the aspect (“sauce” and
“crust”) and opinion (“delicious” and “bad”), respectively, while SC infers the
polarity of each aspect as “positive” and “negative”.
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 743–755, 2021.
https://doi.org/10.1007/978-3-030-75765-6_59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_59&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_59

744 W. Ke et al.

Considering the interaction among AE, OE and SC tasks, some multi-task
learning schemas of ABSA have been adopted. Specifically, as shown in Fig. 1,
these techniques can be grouped into three categories: aspect extraction alone
(AE) [9,10], aspect and opinion co-extraction (AE+OE) [2,13,19] and aspect
sentiment triple extraction (AE+OE+SC) [11,15]. This paper focuses on the
aspect sentiment triple extraction task, which is a newly proposed task [11]. This
task aims to extract not only the aspects and the corresponding sentiments, but
also the opinion spans that convey the sentiment, enabling more fine-grained
aspect sentiment analysis.

Fig. 1. An application example of aspect extraction methods.

Recently, two representative techniques, i.e., the pipeline framework [11] and
the collapsed labeling model [15], have been applied for this task. The pipeline
framework extracts aspects, opinions, and sentiments independently in the first
stage and pairs them into triples in the second stage. However, error propaga-
tion might emerge due to inaccurate extraction of aspect and opinion
spans in the first stage. On the other hand, the collapsed labeling model for-
malizes the task into a sequence tagging problem based on a designed collapsed-
tagging schema. For example, the aspect “place” in Fig. 1 is labeled as B+

3,3,
where the superscript and subscript denote the polarity and offset of the corre-
sponding opinion, respectively. However, this model cannot handle com-
plex pairing situations, e.g. overlaps or long offsets between aspects
and opinions. As shown in Fig. 1, a single collapsed-label cannot handle over-
lapping relations between one aspect (“service”) and two corresponding opinions
(“prompt” and “courteous”). Moreover, a longer offset between aspect and opin-
ion could increase the number of collapsed labels, resulting in sparse labels.

To alleviate the disadvantages of above representative techniques, we propose
a novel semantic-syntax cascade injection model (SSCIM) for aspect sentiment
triple extraction. SSCIM adopts a cascade framework to extract aspects and
opinions jointly, thus reducing the error propagation. Specifically, the lower layer
of the cascade network is designed for extracting aspects, while the upper layer
aims to extract opinions and sentiment (OE+SC), considering the sentiment is

SSCIM for Aspect Sentiment Triple Extraction 745

often conveyed in opinions. Moreover, we design a semantic-syntax information
injection gate (IIG) to bridge the lower and upper layers. IIG can capture the
interaction between aspects and opinions, and inject the aspect feature effectively
into corresponding opinions. Experiments on four benchmark datasets demon-
strate the superior performance of our approach. Further analysis also shows that
our approach can explicitly encode semantic-syntax correlation between aspects
and opinions, assisting in handling complex paring situations.

2 Related Work

Related work can be grouped into three categories: aspect extraction alone,
aspect and opinion co-extraction, and aspect sentiment triple extraction.

Recent models for aspect extraction have widely adopted deep neural net-
works as building blocks, including recurrent neural networks (RNN) [6], con-
volutional neural networks (CNN) [16], graph neural networks (GNN) [18],
sequence-to-sequence models [10], and pre-training language models [5]. Kati-
yar et al. [6] adopted deep bidirectional LSTMs for aspect extraction. Ye et
al. [16] introduced dependency tree-based convolution to obtain syntax informa-
tion for aspect extraction. Zhang et al. [18] adopted the graph neural network to
model the dependency relationship between words. Ma et al. [10] formalized the
aspect extraction task as a sequence-to-sequence learning task. Besides, to alle-
viate the lack of labeled data, some scholars proposed methods such as sample
generation [7] and semi-supervised learning [8] for data enhancement.

Inspired by the fact that opinions can act as clues for aspect extraction,
some methods [2,13,19] have been proposed to extract aspects and opinions
simultaneously. On the one hand, some methods extract aspects and opinions
independently without pairing them. Wang et al. [13] proposed a multi-layer
attention network to propagate information between aspects and opinions. On
the other hand, some other methods perform pair-wise extraction of aspects and
opinions. Chen et al. [2] applied an opinion entity extraction unit and relation
detection unit to extract aspects and opinions synchronously. Zhao et al. [19]
proposed a multi-task learning framework to identify aspects and opinions from
the perspective of relation extraction jointly.

Aims to provide a nearly complete solution, the aspect sentiment triple
extraction task has been proposed recently [11,15]. Two major frameworks are
the pipeline model [11] and the sequence tagging model with collapsed labels [15].
However, the pipeline-based model might propagate the error of the previous
stage to the next one, while collapsed label approaches suffer from sparse label
problem and can not solve overlapping cases. Therefore, the aspect sentiment
triple extraction task needs further research.

Different from these works, which often neglect dependencies between opin-
ions and aspects, we propose a cascade framework to extract aspects and opin-
ions jointly. Moreover, a novel semantic-syntax information injection gate can
strengthen the ability to capture interactions between aspects and opinions.

746 W. Ke et al.

3 Method

The task of aspect sentiment triple extraction can be formalized as follows: given
a review sentence S = {wi}ni=1 of length n, the goal is to extract all m groups
aspect sentiment triples T = {< aj , oj , sj >}mj=1, where aj , oj , sj represent the
jth aspect, opinion and sentiment, respectively. Note that both aspect aj and
opinion oj can be either a word or a phrase in the sentence, thus we can have
aj ⊂ S and oj ⊂ S. Generally, the sentiment polarity si can be categorized into
three types: negative, neutral and positive.

Fig. 2. The overview of SSCIM.

The overall architecture of SSCIM is shown in Fig. 2. SSCIM adopts the
cascade pointer network architecture that consists of two layers. The lower layer
and the higher layer are designed to extract aspects and opinion-sentiments pairs,
respectively. Especially, the connection between two layers of the cascade pointer
network is controlled by a semantic-syntax information injection gate (IIG),
which can adjust the proportion of aspect information injected into each token.
Furthermore, the training process of SSCIM exploits a joint learning paradigm
to avoid error propagation. The inference process employs a two-stage strategy
which first predicts all the aspects and then feeds each aspect into the model to
obtain the corresponding opinions and sentiments.

3.1 Cascade Pointer Network

One of the most challenging subtasks of aspect sentiment triple extraction is to
pair the aspect and opinion effectively.

SSCIM for Aspect Sentiment Triple Extraction 747

To this end, a cascade framework, which is composed of encoding layer, aspect
extraction layer and opinion-sentiment co-extraction layer, is proposed to model
the probability of aspect sentiment triple p(a, o, s) as p(a, o, s) = p(a) ∗ p(o, s |
a). p(a) represents the probability of aspect a, and p(o, s | a) represents the
conditional probability of opinions and sentiments for the given aspect a.

Encoding Layer. For each token wi, the word embedding ei ∈ R
dw can be

obtained from embedding lookup matrix Mw ∈ R
|Vw|×dw , where dw is the embed-

ding dimension and |Vw| denotes the vocabulary size. The context features of
the sentence S can be denoted as ha = {ha

i |i = 1, 2, . . . , n}. Bi-LSTM is used for
encoding the context features ha

i ∈ R
dh as follows:

ha
i =

−−−−→
LSTMw

(
ei, h

a
i−1

) ⊕ ←−−−−−
LSTMw

(
ei, h

a
i+1

)
(1)

where
−−−−−→
LSTMw(·) and

←−−−−
LSTMw(·) represent the forward LSTM unit and back-

ward LSTM unit, respectively. ⊕ denotes the concatenate operation and dh is
the dimension of the hidden state of LSTM. Note that the pre-trained language
model BERT can also be applied to encode the context feature.

Aspect Extraction Layer. We formalize the aspect extraction task into a
sequence labeling task, which aims to extract all aspects in the form of span.
Compared to CRF, pointer network can reduce the search space via labeling
only the head and tail position of aspect. Specifically, each token feature ha

i is
fed into the softmax function to obtain the distribution pai ∈ R

2, indicating the
probability of being the head or tail aspect pointer. The cross-entropy is used to
generate the loss of aspect extraction, which can be formalized as:

Lossa = − 1
n

n∑

i=1

ya
i · log pai (2)

where ya
i ∈ R

2 stands for the one-hot ground truth distribution. Note that,
to deal with sentences with different length, the result is divided by the sentence
length n to calculate the average loss.

Opinion-Sentiment Co-Extraction Layer. We design three tagging mod-
ules to extract opinion spans with positive, neutral and negative polarities,
respectively. Formally, the aspect-specific feature ha = {ha

1 , h
a
2 , . . . , h

a
n} would

be injected into its context to produce the aspect-aware context representation
ho = {ho

1, h
o
2, . . . , h

o
n}. Then, each aspect-aware context token feature ho

i ∈ R
dh is

fed into the linear transformation layer with three binary sequence labeling lay-
ers to predict the polarity distributions of positive po,+i ∈ R

2, neutral po,∼i ∈ R
2,

and negative po,−i ∈ R
2. Similar to the aspect extraction layer, the loss could be

calculated as the sum of three polarities:

748 W. Ke et al.

Loss o-s = − 1
n

(
n∑

i=1

yo,+
i · log po,+i +

n∑

i=1

yo,∼
i · log po,∼i +

n∑

i=1

yo,−
i · log po,−i

)

(3)
where yo,∗

i ∈ R
2 presents the one-hot ground truth distribution for a polarity.

3.2 Semantic-Syntax Information Injection Gate

We design a novel semantic-syntax information injection gate (IIG) to inject
aspect feature into each token of the sentence for opinion-sentiment co-
extraction. The key motivation of IIG is that the aspect information can help
infer opinion spans, both semantically and syntactically. On one hand, seman-
tic similarity should be taken into consideration. For example, “food” is more
likely to be modified by “delicious”, while “restaurant” is more likely to be mod-
ified by “comfortable”. On the other hand, the syntactic relation generated by
dependency parsing, e.g. “nsubj”, “amod”, have proved to be an effective clue to
explore the pairing of aspect and opinion [20]. Thus our proposed IIG captures
both semantic and syntax correlation to weight the portion of aspect information
that should be injected.

Semantic Correlation. A max pooling layer is used to extract the most signif-
icant features qa ∈ R

dh of the aspect span. Due to the proven powerful expressive
ability of biaffine scorer [4], it is employed to capture the semantic correlation
cosemantic

i ∈ R between the aspect and each token as follows:

cosemantic
i = σ

(
(Wsemha

i + bsem)T qa
)

= σ
(
(Wsemha

i)
T

qa + (bsem)T qa
)

(4)

where Wsem ∈ R
dh×dh and bsem ∈ R

dh are linear transformation parameters
that should be learned. σ is the sigmoid function.

Syntax Correlation. The Stanford neural parser [1] is applied to obtain the
dependency tree of input sentence to model the propagation chain from context
to aspect. As a result, the dependency path, like “cool

nsubj−→ place” in Fig. 2, is
used to characterize the syntax correlation between token and aspect.

The dependency path patha
i is composed of m dependency relationships ri,k.

For example, the path between the token “very” and the aspect “salad” in Fig. 2
can be expressed as “nsubj− → advmod+ → self”, where “+” and “−” rep-
resent the direction between token and aspect. Besides, the relation “self” is
to introduced modify the aspect itself. To model the dependency path patha

i ,
we first embed each dependency relation ri,k into a dr-dimension vector. Then
a unidirectional

−−−−→
LSTMp(·) is utilized to encode the features sai ∈ R

dh , which
can be transformed into the syntax correlation cosyntaxi ∈ R between token and
aspect.

cosyntaxi = σ (Wsynsai + bsyn) (5)

SSCIM for Aspect Sentiment Triple Extraction 749

Information Injection Gate. The information injection gate is developed to
obtain the correlation coi ∈ R:

coi = λcco
semantic
i + (1 − λc)co

syntax
i (6)

where λc ∈ [0, 1] is a given parameter that controls the weight of the semantic
and syntactic correlation. Finally, the injected proportion of aspect feature con-
veyed in coi can be used to produce the aspect-aware context feature ho

i ∈ R
dh :

ho
i = coi ∗ qa + ha

i (7)

3.3 Training and Inference

Joint Training. SSCIM adopts the cascade network [14], which extracts all
aspects firstly, and feeds each aspect into the opinion-sentiment co-extraction
layer to obtain opinions and sentiments. Accordingly, to ensure that all aspect
sentiment triples can be trained, we extract multiple training samples for sen-
tences with multiple aspects, where each sample x contains only one aspect and
its corresponding opinion and sentiment. The ground truth y of the sample x is
the result of sequence labeling in accordance with the requirements of Sect. 3.1.
Finally, SSCIM is trained jointly with the L2-regularization:

Loss =
∑

(x,y)∈D

[Lossa(x, y) + λ1 Losso−p(x, y)] + λ2‖θ‖2 (8)

where D denotes the constructed dataset. The loss function is composed of
three parts: the loss of aspect extraction, the loss of opinion-sentiment joint
extraction, and the regularization term of parameters. The coefficients λ1 and
λ2 need to be set manually.

Model Inference. The inference adopts a two-stage strategy. When processing
a review sentence, the inference extracts all aspects in the first stage. Then, each
aspect is fed to the second stage to obtain its opinions and sentiments. Moreover,
the margin of the pointer network can be located only if the corresponding
predicted value is higher than a given threshold ξ̂.

4 Experiment

4.1 Datasets and Settings

Since the aspect sentiment triple extraction is a relatively new task, Peng et
al. [11] labeled the pairing relationship between aspects and opinions based on
the original datasets from SemEval 2014 task 4, SemEval 2015 task 12, and
SemEval 2016 task 5, and constructed the aspect sentiment triples. However, Xu
et al. [15] pointed out that the dataset provided by Peng et al. [11] eliminates
the overlap of opinions; that is, multiple aspects are modified by one opinion.

750 W. Ke et al.

Table 1. The dataset statistics

Dataset Rest14 Lap14 Rest15 Rest16

#S pos neu neg #S pos neu neg #S pos neu neg #S pos neu neg

Train 1266 1692 166 480 906 817 126 517 605 783 25 205 857 1015 50 329

Dev 310 404 54 119 219 169 36 141 148 185 11 53 210 252 11 76

Test 492 773 66 155 328 364 63 116 322 317 25 143 326 407 29 78

Therefore, we choose datasets provided by Xu et al. [15] as our benchmarks. The
dataset statistics is shown in Table 1.

The proposed SSCIM model is implemented with Pytorch 1.6.0 of NVIDIA
TESLA T4 platform and uses the Stanford neural parser to generate the depen-
dency tree. Two types of word embeddings are used: GloVe [12] and BERT [3],
i.e., SSCIMGloVe, SSCIMBERT. Dependency relations, e.g. nsubj and amod, are
randomly initialized and updated during training. The model is trained by the
Adam optimizer with the learning rate 2e−5. The batch size of SSCIMGloVe and
SSCIMBERT are set into 32 and 8 respectively. The maximum epoch number is
set into 100 and 30 towards SSCIMGloVe and SSCIMBERT.

In the experiment, the dimension of the
−−−−→
LSTMw(·) and

←−−−−
LSTMw(·) hidden

state is set to 200, and the dimension of the
−−−−→
LSTMp(·) is set to 100. The dimen-

sion of dependency relation dr is 300. The parameter λc that controls the weight
of the semantic and syntax is set as λc = 0.5 and the inference threshold ξ̂ is
0.5. In the Loss calculation, we set λ1 = 1, λ2 = 0.01.

4.2 Our Model and Baselines

To evaluate the performance of SSCIM, representative neural models are chosen
as our baselines. The following baseline models consist of three folds: pipeline
models with two-stage strategy, joint models with joint learning strategy, and
variant models of our approach SSCIM for ablation studies.

Pipeline Models. We choose the four widely-used model with pipeline struc-
ture in the experiment. CMLA+ [15] applies attention mechanism to obtain the
dependencies between words at its first stage; REINANTE+ [15] is designed
with weak supervision; Li-unified-R+ [15] applies the unified tagging scheme
and two-stage framework; Peng et al. [11] adopts the two-stage framework with
the fused feature by GCN and RNN.

Joint Models. We employ seven joint models that are designed with various
strategies as baselines. CMLA-MTL [17] extends the original CMLA [13] model
in a joint manner; HAST-MTL [17] extends the aspect-opinion co-extraction
system HAST [9] by multi-task learning schema; OTE-MTL [17] extracts
aspects and opinions independently, and mined the sentiment by modeling the
interaction between aspects and opinions with a combined loss; JETt

GloVe [15]

SSCIM for Aspect Sentiment Triple Extraction 751

applies a position-aware tagging scheme to decode the aspect with correspond-
ing opinions and sentiments; JETo

GloVe [15] employs a tagging scheme on the
opinion span to indicate its aspects and sentiments; JETt

BERT [15] applies the
pre-trained language model BERT for contextualized word representation based
on JETt

GloVe; JETo
BERT [15] adopts the model BERT on the basis of JETo

GloVe.

Our Model and Variants. To investigate the performance of our medel com-
prehensively, we adopt our model with GloVe and BERT. Thus, we have the fol-
lowing variant models: SSCIMGloVe is our model with the GloVe embeddings;
SSCIMBERT is our model with the pre-training model BERT; SSCIMBERT

w/o IIG is the model removing semantic-syntax information injection gate
and injecting the aspect feature into each token with the same weight based
on SSCIMBERT. SSCIMBERT w/o Semantic adjusts the IIG on the base
model SSCIMBERT, which removes the use of semantic information while only
remaining the syntax information. SSCIMBERT w/o Syntax abandons the
use of syntactic information to weight the correlation between the aspect and
its corresponding context, while retaining only semantic information.

We leverage precision (P), recall (R) and F1 score to assess the performance
of models. Note that a correct triple means that its aspect range, opinion range
and sentiment polarity are all correct at the same time.

4.3 Main Result

Table 2. The experiment results (%). The results with ∗ are retrieved from Xu et al.’s
work [15], with # are from the execution of our implementation based on [17], with †

are from the execution of author provided code [17].

Model Rest14 Lap14 Rest15 Rest16

P R F1 P R F1 P R F1 P R F1

CMLA+∗ 39.18 47.13 42.79 30.09 36.92 33.16 34.56 39.84 37.01 41.34 42.10 41.72

RINANTE+∗ 31.42 39.38 34.95 21.71 18.66 20.07 29.88 30.06 29.97 25.68 22.30 23.87

Li-unified-R∗ 41.04 67.35 51.00 40.56 44.28 42.34 44.72 51.39 47.82 37.33 54.51 44.31

Peng et al.∗ 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21

CMLA-MTL# 45.34 44.45 44.89 34.93 36.64 35.76 37.87 40.19 39.00 45.21 47.90 46.52

HAST-MTL# 55.05 48.12 51.35 49.10 28.10 35.74 40.48 39.15 39.80 49.01 48.12 48.56

OTE-MTL† 65.13 54.19 59.16 47.91 41.12 44.26 55.01 46.83 50.59 57.58 52.40 54.87

JETt∗
GloVe 66.76 49.09 56.58 52.00 35.91 42.48 59.77 42.27 49.52 63.59 50.97 56.59

JETo∗
GloVe 61.50 55.13 58.14 53.03 33.89 41.35 64.37 44.33 52.50 70.94 57.00 63.21

JETt∗
BERT 63.44 54.12 58.41 53.53 43.28 47.86 68.20 42.89 52.66 65.28 51.95 57.85

JETo∗
BERT 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83

SSCIMGloVe (ours) 61.55 68.11 64.66 48.56 62.29 54.57 50.31 66.80 57.40 66.87 64.01 65.41

SSCIMBERT (ours) 67.56 73.74 70.51 59.44 62.29 60.83 54.78 64.95 59.43 69.92 68.29 69.09

Table 2 shows that our model SSCIMBERT significantly outperforms the baseline
models in all datasets while SSCIMGloVe also achieves considerable performance.

752 W. Ke et al.

Specifically, for F1 score, SSCIMBERT exceeds the strongest baseline model
JETo

BERT by 8.11%, 9.79%, 1.90%, 5.26% on Rest14, Lap14, Rest15, Rest16
datasets respectively, which fully demonstrates the superiority of our model. In
addition, in comparison with baselines, our model performs better in the recall,
because semantic-syntax information injection gate (IIG) can enhance the pair-
ing relationship between aspects and opinions explicitly, and extract more triples
with overlapping aspects or opinions.

4.4 Ablation Experiments

The results of ablation experiments are shown in Table 3. First of all, SSCIMBERT

w/o IIG achieves the worst performance by injecting aspect feature to each
context token in the same weight. This shows that semantic-syntax correla-
tion can provide important clues for the dependency between aspects and opin-
ions. Even so, SSCIMBERT w/o IIG still achieves better results than pipeline
baselines, which also verifies the advantages of joint learning paradigm. Another
observation is that SSCIMBERT w/o Semantic achieves better performance than
SSCIMBERT w/o Syntax in most datasets (except Rest14), which indicates that
syntax information is a key element of IIG. However, the language expressions
of Rest14 may be somehow informal, reducing the effect of dependency parsing
and affecting the performance of SSCIMBERT w/o Semantic.

Table 3. Results of the ablation experiments (%).

Model Rest14 Lap14 Rest15 Rest16

P R F1 P R F1 P R F1 P R F1

SSCIMBERT w/o Semantic 61.44 65.23 63.28 60.98 55.45 58.08 53.16 58.45 55.68 64.66 69.07 66.79

SSCIMBERT w/o Syntax 65.77 73.64 69.48 55.08 52.83 53.93 50.82 57.53 53.97 55.84 59.53 57.63

SSCIMBERT w/o IIG 49.28 61.97 54.9 44.63 59.89 51.14 44.64 63.51 52.43 56.38 66.15 60.88

SSCIMBERT (ours) 67.56 73.74 70.51 59.44 62.29 60.83 54.78 64.95 59.43 69.92 68.29 69.09

4.5 Further Analysis

Overlapping Triples Analysis. Statistics show that there is a large amount
(more than 30%) of overlap in all datasets, which brings great challenges. Com-
pared with the baselines, the performance of our model keeps ahead and achieves
a relatively stable and decent F1 score in Fig. 3a when processing overlap triples.

Offset Between Aspect and Opinion. We conduct experiments with dif-
ferent offsets on Rest14. It can be seen from Fig. 3b that the performance of
all models decreases with the increase of offset, which demonstrates that it is
hard to pair the triples with a long distance between aspect and corresponding
opinion. Even so, SSCIMBERT still outperforms other baselines with all offsets,
and the overall performance decline trend is relatively stable. This may benefit
from the use of semantic-syntax correlation, helping identify longer dependency.

SSCIM for Aspect Sentiment Triple Extraction 753

Fig. 3. The performance of SSCIMBERT, OTE-MTL, JETt and JETo under different
settings. (a) shows the performance of overlapping cases; (b) shows the performance of
different offsets; and (c) shows the performance with different proportion of semantic
feature.

Analysis of IIG. To verify the effect of semantic-syntax information injection
gate, we adjust the proportion of semantic feature λc from 0.1 to 0.9. Accordingly,
the corresponding proportion of syntax is from 0.9 to 0.1 on four datasets. As
shown in Fig. 3c, our approach SSCIMBERT achieves the highest F1 value with
a ratio between 0.3 and 0.7, verifying the effectiveness of fusing syntactic and
semantic information. The model especially achieves the best performance on
Rest14 with a semantic feature proportion of 0.7, which is higher than the other
datasets. As mentioned in Sect. 4.3, the possible reason is that the syntax feature
of Rest14 is less important because of its arbitrary expression.

5 Conclusion

We analyze the major challenges of the aspect sentiment triple extraction task
and propose a novel semantic-syntax cascade injection model (SSCIM). On one
hand, our work devotes to alleviate the propagation error by adopting the joint
learning schema within a cascade framework. On the other hand, we design a
novel semantic-syntax information injection gate (IIG) to capture the depen-
dency between aspects and opinions. Experimental results show that SSCIM
can extract triple with effective paring ability, thus achieving better performance
than state-of-the-art baselines.

Acknowledgments. This paper is funded by the National Natural Science Founda-
tion of China under Grant Nos. 91746301 and 62002347. Huawei Shen is also funded
by Beijing Academy of Artificial Intelligence (BAAI) and K.C. Wong Education Foun-
dation.

References

1. Chen, D., Manning, C.D.: A fast and accurate dependency parser using neural
networks. In: Proceedings of EMNLP, pp. 740–750 (2014)

754 W. Ke et al.

2. Chen, S., Liu, J., Wang, Y., Zhang, W., Chi, Z.: Synchronous double-channel recur-
rent network for aspect-opinion pair extraction. In: Proceedings of ACL, pp. 6515–
6524 (2020)

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of NAACL, pp.
4171–4186 (2019)

4. Dozat, T., Manning, C.D.: Deep biaffine attention for neural dependency parsing.
In: Proceedings of ICLR (Poster) (2017)

5. Hu, M., Peng, Y., Huang, Z., Li, D., Lv, Y.: Open-domain targeted sentiment
analysis via span-based extraction and classification. In: Proceedings of ACL, pp.
537–546 (2019)

6. Katiyar, A., Cardie, C.: Investigating LSTMS for joint extraction of opinion entities
and relations. In: Proceedings of ACL, pp. 919–929 (2016)

7. Li, K., Chen, C., Quan, X., Ling, Q., Song, Y.: Conditional augmentation for aspect
term extraction via masked sequence-to-sequence generation. In: Proceedings of
ACL, pp. 7056–7066 (2020)

8. Li, N., Chow, C.-Y., Zhang, J.-D.: EMOVA: a semi-supervised end-to-end moving-
window attentive framework for aspect mining. In: Lauw, H.W., Wong, R.C.-W.,
Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI),
vol. 12085, pp. 811–823. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-47436-2 61

9. Li, X., Bing, L., Li, P., Lam, W., Yang, Z.: Aspect term extraction with history
attention and selective transformation. In: Proceedings of IJCAI, pp. 4194–4200
(2018)

10. Ma, D., Li, S., Wu, F., Xie, X., Wang, H.: Exploring sequence-to-sequence learning
in aspect term extraction. In: Proceedings of ACL, pp. 3538–3547 (2019)

11. Peng, H., Xu, L., Bing, L., Huang, F., Lu, W., Si, L.: Knowing what, how and
why: a near complete solution for aspect-based sentiment analysis. In: Proceedings
of AAAI, pp. 8600–8607 (2020)

12. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of EMNLP, pp. 1532–1543 (2014)

13. Wang, W., Pan, S.J., Dahlmeier, D., Xiao, X.: Coupled multi-layer attentions for
co-extraction of aspect and opinion terms. In: Proceedings of AAAI (2017)

14. Wei, Z., Su, J., Wang, Y., Tian, Y., Chang, Y.: A novel cascade binary tagging
framework for relational triple extraction. In: Proceedings of ACL, pp. 1476–1488
(2020)

15. Xu, L., Li, H., Lu, W., Bing, L.: Position-aware tagging for aspect sentiment triplet
extraction. In: Proceedings of EMNLP, pp. 2339–2349 (2020)

16. Ye, H., Yan, Z., Luo, Z., Chao, W.: Dependency-tree based convolutional neural
networks for aspect term extraction. In: Kim, J., Shim, K., Cao, L., Lee, J.-G.,
Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10235, pp. 350–362.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57529-2 28

17. Zhang, C., Li, Q., Song, D., Wang, B.: A multi-task learning framework for opinion
triplet extraction. In: Proceedings of EMNLP, pp. 819–828 (2020)

18. Zhang, J., Xu, G., Wang, X., Sun, X., Huang, T.: Syntax-Aware Representation
for Aspect Term Extraction. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L.,
Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11439, pp. 123–134. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-16148-4 10

https://doi.org/10.1007/978-3-030-47436-2_61
https://doi.org/10.1007/978-3-030-47436-2_61
https://doi.org/10.1007/978-3-319-57529-2_28
https://doi.org/10.1007/978-3-030-16148-4_10

SSCIM for Aspect Sentiment Triple Extraction 755

19. Zhao, H., Huang, L., Zhang, R., Lu, Q., et al.: Spanmlt: a span-based multi-task
learning framework for pair-wise aspect and opinion terms extraction. In: Proceed-
ings of ACL, pp. 3239–3248 (2020)

20. Zheng, Y., Zhang, R., Mensah, S., Mao, Y.: Replicate, walk, and stop on syntax: An
effective neural network model for aspect-level sentiment classification. Proceedings
of AAAI 34, 9685–9692 (2020)

Modeling Inter-aspect Relationship
with Conjunction for Aspect-Based

Sentiment Analysis

Haoliang Zhao, Yun Xue(B), Donghong Gu, Jianying Chen, and Luwei Xiao

Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum
Materials, School of Physics and Telecommunication Engineering, South China

Normal University, Guangzhou 510006, China
xueyun@scnu.edu.cn, {gu dh105,gochenjianying}@m.scnu.edu.cn

Abstract. Aspect-based sentiment analysis is currently a main focus
within the domain of sentiment analysis, whose target is to identify the
sentiment polarities of specific aspect terms. The ongoing research is
absent of exploiting the inter-aspect relationship while mainly focus on
modeling the aspect terms and its context independently. To address
this problem, we propose a model integrating the conjunction informa-
tion and the sentiment of the preceding aspect term. As such, the inter-
aspect relation between adjacent aspect terms can be precisely modeled
and applied to sentiment classification. Experimental results on SemEval
2014 and MAMS show that our model outperform the baseline methods,
especially dealing with the multi-aspect terms, which establishes a strong
evidence of the effectiveness of the proposed method.

Keywords: Aspect-based sentiment analysis · Conjunction ·
Inter-aspect relationship

1 Introduction

Aspect-based sentiment analysis (ABSA), yields fine-grained sentiment informa-
tion which is useful for applications in various domains [13]. In general, sentiment
polarity classification is a most significant and challenging issue in ABSA tasks.
Basically, an aspect term can be a word or a phrase which delivers attributes
of the target entity in the sentence. On the tasks of ABSA, it is often the case
that multiple aspects are performed within one single sentence (Table 1). For
instance, in the sentence “Definitely try their Pizzas and Wines–although their
desserts are not-to-shabby either.”, the sentiment polarities for aspects “pizzas”,
“wines” and “desserts” are positive, positive and negative, respectively.

Encouragingly, the advancing in ABSA tasks are largely promoted by the
flourish of deep neural networks, specifically due to its use end-to-end training
without any prior knowledge. To the best of our knowledge, recurrent neural
networks (RNNs), specifically integrating with attention mechanisms, are cur-
rently widespread in dealing with such issues, with recent publications report
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12713, pp. 756–767, 2021.
https://doi.org/10.1007/978-3-030-75765-6_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75765-6_60&domain=pdf
https://doi.org/10.1007/978-3-030-75765-6_60

Modeling Inter-aspect Relationship with Conjunction 757

Table 1. Reviews from MAMS dataset [3], containing aspect term, polarity and con-
junction

Additive conjunction

S1: I love the complementary hot salsa and fresh chips that they put on the table.

Term : hot salsa

Polarity : positive
Conjunction : and

Term : chips

Polarity : positive

S2: The atmosphere is cheesy as well as the crowd.

Term : atmosphere
Polarity : negative

Conjunction : as well as
Term : crowd

Polarity : negative

Contrasting conjunction

S3: The decor isn’t quite like Shun Lee but the service will definitely make up for
any shortcoming.

Term : decor

Polarity : negative
Conjunction : but

Term : service

Polarity : positive

S4: Definitely try their Pizzas and Wines - - although their desserts are

not-to-shabby either.

Term : Pizzas, Wines

Polarity : positive
Conjunction : although

Term : desserts

Polarity : negative

the superiority [8,16]. As a most commonly used RNN method, long short-term
memory (LSTM) layer aims to capture the semantic information as well as the
sentiment in sequence. The attention weights of the contexts is assigned by using
the attention mechanism. Notwithstanding, the sequential processing manner is
characterized by large numbers of parameters and computational resources.

In contrast, since the sentiment of aspect term is conditioned by the specific
opinion words, convolutional neural networks (CNNs) is more capable to extract
the informative n-gram features as aspect sentential representations. A notably
example is the Gated Convolutional network with Aspect Embedding (GCAE)
established by Xue and Li [18]. The integration of CNN and gating mechanisms
results in a far less training time and lower computational cost than LSTM based
networks but a higher accuracy. Despite the innovation of GCAE, a fine-grained
analysis of the contexts for each aspect term is absent. In line with the state-of-
arts, the employment of position information [1], as well as attention mechanisms
[16] can cater to the demand of maintaining more related information.

In most cases, because of more than aspect terms in one sentence, the effects
of sentiment information on each other is inevitable. Previous work is absent
of focusing on the sentiment relation among adjacent aspect terms. [1,8,16,18]
On this occasion, the inter-aspect sentiment relation is pronounced. Accord-
ing to [1], the adjacent aspects have to be given more attention than others.
That is, this important relationship is performed from one aspect term to the
subsequent. Even though LSTM models are taken to process the inter-relation
between aspects for sentiment classification [2,9], a more delicate analysis for
the conjunction of aspect terms is desired for aspect sentiment identification.
In NLP domain, conjunctions play a pivot role in identifying the sentiment
information, based on which the prediction of aspect term sentiment is effec-
tively facilitated. Theoretically, two different kinds of conjunctions, i.e. additive

758 H. Zhao et al.

conjunctions and contrasting conjunctions are highlighted [10]. The former con-
tain conjunctions like “and”, “as well as”, “also” and etc. While the latter contain
those like “but”, “however”, “although” and etc. More concretely, the additive
conjunction always comes with aspect terms of similar sentiment polarities (S1 in
Table 1) while contrasting conjunction with the opposite ones (S3 in Table 1). As
a result, the conjunctive words, in the sentence of one aspect conjunct another,
can be employed to facilitate the sentiment classification.

In this work, we propose an inter-aspect relationship with conjunction
(IARC) model, targeting at address the inter-aspects relationship in ABSA tasks.
The aspect terms from one sentence are transformed into aspect-specific senten-
tial representations. The improved GCAE model, by integrating attention mech-
anism and position information, is applied to obtain the representation of aspect
and its contexts. Both the sentiment of the former aspect and the conjunction
between them are taken to further predicting the sentiment of the target aspect
term, thus to improve the model efficiency and improving the working accuracy.
Specifically, the contribution of this work is threefold:

1. Revising GCAE model: The integration of attention mechanism and posi-
tion information into GCAE optimize the capturing of aspect representation,
especially for multi-aspect terms within one sentence.

2. Conjunction information fusion: The inter-aspect relation is modeled by using
the sentiment of the adjacent aspect terms and the conjunctive word. In such
manner, the sentiment of the target aspect term is presented.

3. Working performance evaluation: Experimental results on three datasets ver-
ify the effectiveness of IARC, indicating that our model is a competitive
alternative to the state-of-arts.

2 Related Work

Compared to document level and sentence level, ABSA tasks refer to the senti-
ment associated with aspects of the entity, which allows for a more detailed anal-
ysis that utilizes more information provided by the text. Previous research com-
bining deep-learning methods and attention mechanisms has primarily focused
on obtaining the representation of specific aspect [8,16]. As reported in [1], the
position embedding, converted from the position information, is concatenated to
the word embedding as the input of the Bi-GRU based network. In such work
the relation between aspect term and its context is enhanced. Sixing Wua et al.
apply information of conjunctions to capture the relations between clauses for
the purpose of representation establishing [17]. Notably, a substantial number of
RNN-based algorithms receive great attention [1,14]. Despite this, CNN-based
models also show the effectiveness. Xue and Li [18] employ CNN for modeling
the aspect and sentiment information and the gating unit for selecting the sen-
timent information. Similarly, Li et al. propose a CNN layer to extract salient
features from word representations [6].

More recently, the inter-aspect relation is studied extensively. Researchers
tend to generate more accurate sentential representations relative to each aspect

Modeling Inter-aspect Relationship with Conjunction 759

for sentiment classification [2,9]. The RNN-based approaches, however, merely
concentrate on capturing the sequence information of different aspect terms in
one sentence, together with the attention mechanism modeling their relation.
Besides, Jiang et al. develop a capsule network to model the complicated rela-
tionship between aspects and contexts, in which each sentence contains multi-
ple aspects of different sentiment polarities [3]. Based on the memory network,
Lin et al. [7] integrate aspect semantic parsing information into it and apply
the attention mechanism to exploit inter-aspect information of target aspect. In
comparison to the aforementioned methods, graph convolutional network (GCN)
is both creative and practical in dealing with graph data containing rich relation
information [19,20]. For instance, Zhao et al. [20] construct GCN-based model
to effectively capture the sentiment dependencies between multi-aspects in one
sentence.

3 Methodology

We describe the proposed approach IARC for aspect-level sentiment analysis in
this section. The architecture of IARC model is presented in Fig. 1. The details
of each part are described as follows.

3.1 Problem Definition and Notations

For a given sentence S = [w1, w2, ..., wL] ∈ R
dm×L , each word embedding wi

indicates a dem-dimensional vector by looking up in a pretrained word embedding
matrix of GloVe [11]. Within the sentence, there are M aspect terms, which are
A1, A2, ..., AM . Each aspect term Ai = [wki

, ..., wki+mi−1] (1 ≤ ki ≤ L and
0 � mi � L− ki +1) contains one or more consecutive words from the sentence.
The task is to classify the sentiment polarity of aspect term in the sentence.

3.2 Input Layer

The sentence embeddings, as well as the aspect embeddings within it, are sent
to the model as the inputs. As shown in Fig. 1, the attention mechanism and the
position information are carried out on word embeddings, respectively. Multi-
worded aspect terms are computed by the CNN layer, which results in aspect
representation ai ∈ R

dem of ith aspect term Ai.
The attention mechanism aims at computing the interaction between the

aspect term and its context, and thus to determine the contribution of different
words to the aspect. In line with the sentence S and the ith aspect representation
ai, the attention weight of each word is presented as:

f (wj , ai) = tanh (wjWmai + bm) (1)

αij =
exp (f (wj , ai))

∑L
k=1 exp (f (wk, ai))

(2)

760 H. Zhao et al.

Fig. 1. Architecture of IARC. Our model firstly maps context and target words into
continuous low dimensional word vectors as the input embeddings. Then the GCAE
model is operated on these word embeddings to extract the aspect-specific sentential
representation (for more details of GCAE see for example [18]). Specifically, atten-
tion mechanism and position information are also employed to obtain a more accurate
representation. The inter-aspect relationship is determined with the integration of con-
junction information. Finally, sentiment polarity is predicted through softmax layer.

together with
vatt
ij = αijwj (3)

where αij is the attention weight of jth word to aspect term in the sentence,Wm

and bm are weight matrix and bias respectively. Thus the embeddings with more
related information is transformed to V att

i = [vatt
i1 , vatt

i2 , · · · , vatt
iL] ∈ R

dem×L.
On the other hand, the position embeddings, based on the each word’s rel-

ative distance to the aspect term, is concatenated to the word embeddings. We
shall define the position index as the relative distance of each word in the sen-
tence to the aspect term. Subsequently, a position matrix P ∈ R

dp×L for posi-
tion embedding establishing is randomly initialized and updated during training.
According to Eq. (4), by calculating the position index of every other word, the
position embedding matrix Pi = (pi1, pi2, · · · , piL) ∈ R

dp×L is obtained based
on the position index sequence from P .

oj =

⎧
⎨

⎩

|j − ts| , j < ts
0, ts ≤ j ≤ te

|j − te| , j > te

(4)

where oj is the position index of the jth word in sentence while ts and te indi-
cate the starting and ending indices of the aspect term, respectively. Let vpos

ij =
wj⊕pij be the position representation. Then the embeddings, with position infor-
mation integrated, can be written as V pos

i = [vpos
i1 , vpos

i2 , · · · , vpos
iL] ∈ R

(dem+dp)×L.

Modeling Inter-aspect Relationship with Conjunction 761

3.3 Aspect-Specific Sentential Representations Modeling

The outcomes from the input layer are taken to model the aspect-specific sen-
tential representation of each aspect term in sentence order. At this stage, two
GCAE models are employed to separately deal with V att

i and V pos
i . It is clear

however that the matrices V att
i and V pos

i represent distinguishing information in
the sentence. Thereby, the corresponding feature vectors xatt

i and xpos
i can be:

xatt
i = GCAE

(
V att
i , ai

)
(5)

xpos
i = GCAE (V pos

i , ai) (6)

Note that both xatt
i ∈ R

dn and xpos
i ∈ R

dn denote the feature vector of
aspect term ai. The former contains more semantic and sentiment information
in relation to the context while the latter incorporates the semantic information
from the neighboring words.

Notwithstanding, there still exist some defects in the representations: the
attention network tends to assign more attention weights to the domain-specific
words rather than the sentiment-related words [15]; merely depending on the
position information is absent of reliability while dealing with multiple aspect
terms. On this occasion, considering the defects from both parts, we shall thus
generate the hidden representation of the contexts, which is:

xco
i = tanh

(
xatt
i Wco1 + xpos

i Wco2 + bco
)

(7)

where Wco1 ∈ R
dn×dco and Wco2 ∈ R

dn×dco stand for the projection parameter
matrices updated during training and bco ∈ R

dco is the bias.
Accordingly, the aspect-specific sentential representation Xi of the specific

aspect term is obtained, i.e.

Xi =
[
xatt
i ;xpos

i ;xco
i

] ∈ R
2dn+dco (8)

So is each aspect term in the sentence with the same manner.

3.4 Conjunction-Based Inter-aspect Relationship Modeling

After the aspect-specific sentential representation derived, the interaction of
adjacent aspect terms is also considered. As such, the conjunctions are between
two aspect terms are analyzed for sentiment identification. As pointed out in
[15], both additive conjunction information and contrasting conjunction infor-
mation has to be taken into account whilst specific conjunction words of these
two categories are presented in Table 2.

A conjunction matrix, derived from the average initialization of conjunction
word vectors in Table 2, is defined as E ∈ R

c×dc where c denotes the category and
dc is the word vector dimension. Furthermore, the sentiment information of the
adjacent aspect term is incorporated as well because the sentiment of an aspect
influences the succeeding one in line with the presence of conjunction [2]. We then
construct a randomly initialized sentiment matrix G ∈ R

k×dk with k indicating

762 H. Zhao et al.

Table 2. Conjunction classification

S.no. Conjunction class Examples

1 Additive conjunction And, or, as well as, also, further, moreover

2 Contrasting conjunction But, however, instead, except, while, though,
although, yet

the number of sentiment polarities and dk representing the sentiment vector
dimension. Instead of directly using the aspect-specific sentential representation,
the preceding aspect term is employed for its sentiment polarity predicting, which
is delivered as the sentiment vector in G ∈ R

k×dk . Therefore, the inter-aspect
representation rconji , with both conjunction information and adjacent aspect
term sentiment integrated, is given by

rconji =
{

relu (Wagi + Wadead) , c = 1
relu (Wagi + Wcoeco) , c = 2 (9)

where Wa ∈ R
dk×dt , Wad ∈ R

dc×dt and Wco ∈ R
dc×dt is the parameter matrix,

gi ∈ R
dk is the sentiment vector of the preceding aspect term, ead ∈ R

dc and
eco ∈ R

dc represent the additive conjunction and contrasting conjunction, respec-
tively. That is, c=1 is applied to the condition of additive conjunction between
two aspect terms while c=2 to that of contrasting conjunction.

3.5 Final Classification

In this layer, the aforementioned aspect-specific sentential representation Xi

and the inter-aspect representation rconji are concatenated and fed into softmax
classifier for sentiment polarity distribution identification, which is

ŷi = softmax
(
Ws

[
Xi; r

conj
i

]
+ bs

)
(10)

where Ws and bs are parameters to be learned in the softmax layer.

3.6 Model Training

The training process is conducted on by using the categorical cross-entropy,
which is expressed as:

loss = − 1
m

m∑

i=1

n∑

j=1

yi,j log (ŷi,j) + λ ‖θ‖2 (11)

where m is the number of aspect terms in the sentence, n is the number of
sentiment polarities. The parameter yi stands for the real sentiment distribution
of ith aspect term and ŷi,j is the predicted one on jth sentiment polarity. Besides,
λ is the weight of L2 regularization term.

Modeling Inter-aspect Relationship with Conjunction 763

Table 3. Samples of SemEval 2014 Dataset and MAMS.

Datasets Positive Negative Neutral

Train Test Train Test Train Test

Restaurant 2164 728 807 196 637 196

Laptop 994 341 870 128 464 169

MAMS 3380 400 2764 329 5042 607

4 Experiments

4.1 Experimental Setting

We carry out our experiments on two publicly available datasets: SemEval-2014
ABSA dataset [12] and Multi-Aspect Multi-Sentiment (MAMS) dataset [3]. The
SemEval-2014 ABSA dataset can be subdivided into user reviews on both laptop
and restaurant domains with each review having a list of aspect terms and
corresponding polarities. For the MAMS dataset, there exist over two aspect
terms of distinguishing sentiment, together with their sentiment polarities as
well. Details of each dataset is exhibited in Table 3.

The initialization of word embeddings in all datasets is performed using 300-
dimensional word vectors pretrained by Glove [11]. All the parameter matrices
involved are generated within the distribution U (−0.1, 0.1) randomly and the
bias set as 0. The position embedding, whose dimension is set as 150, is randomly
initialized. The batch size for the three datasets is 32 and the kernel sizes are 3,
4 and 5 for the convolution layer. The learning rate is 0.001. Besides, the Adam
optimizer is adopted [5]. The L2 regularization weight is set as 10−5. All the
models are run 5 times on the test datasets with their average results reported.

4.2 Model Comparisons

In order to evaluate the performance of IARC, we compare our model against
several baseline models. Concretely, the baselines can be categorized into
two classes, namely single-aspect models and inter-aspect models. The former
(including TextCNN [4], ATAE-LSTM [16], GCAE [18], IAN [8], MemNet [14],
PBAN [1] and CapsNet [3]) deals with aspect term and the latter (including
IARM [9] and SDGCN [20])also has the capability of tackling the inter-aspect
relation. Concretely, among all the RNN-attention models, PBAN exploits the
position information of the aspect terms while IARM addresses inter-aspect
relation using recurrent memory networks with multihop attention mechanism.
In terms of CNN-based models (i.e. TextCNN and GCAE), GCAE specifically
employ gating mechanisms to capture the aspect related features. By contrast,
CapsNet is an instance of capsule network whilst SDGCN tackles inter-aspect
relation with the integration of GCN and bidirectional attention mechanism.

The accuracy of each dataset is presented in Table 4. Our model is competi-
tive in all evaluation settings and outperforms baselines in laptop and MAMS.

764 H. Zhao et al.

Table 4. Experimental results on semEval-2014 restaurant and laptop review dataset
and MAMS datasets. Best scores are in bold.

Method Restaurant Laptop MAMS

Single-aspect models TextCNN 75.93 – 52.69

ATAE-LSTM 77.28 68.70 77.05

GCAE 75.93 72.56 77.59

IAN 78.60 72.10 76.60

MemNet 80.95 72.21 64.57

PBAN 81.16 74.12 78.74

CapsNet 80.79 – 79.78

Inter-aspect models IARM 80.0 73.80 –

SDGCN 82.95 75.55 79.19

IARC 81.16 76.33 80.76

For single-aspect models, TextCNN has the worst performance due to its
failing to utilize the aspect term information. Among all the attention-based
networks, i.e. ATAE-LSTM, MemNet, IAN and PBAN, PBAN is the best-
performing method in this group. One possible explanation is that the position
information is also taken in PBAN, which facilitates the capture of semantic
information of aspect terms. Besides, the CapsNet also gets a comparable out-
come to PBAN. The main reason is that the capsule network is effective in
capturing the relation between aspect term and its contexts. As a CNN-based
model, GCAE performs better than TextCNN to a large extent, since the gate
mechanism can be applied to select aspect-related sentiment features. Clearly,
since our model is built on convolutional layers and gating units, with the inte-
gration of position information, attention mechanism and the inter-aspect rela-
tionship, it is reasonable to expect a better result, as it is the case. One can
see that, for most baseline models, the classification accuracy on MAMS is less
competitive than that on SemEval-2014. In order to resolve more aspect terms
with various sentiment polarities in MAMS, the analysis of relation between
adjacent aspect terms is of great significance. In contrast with the inter-aspect
models, IARC is a competitive alternative in modeling the inter-aspect rela-
tionship. Current inter-aspect models mainly concentrate on the aspect-specific
sentential representation within the context. Neither IARM nor SDGCN makes
use of the conjunction words and the sentiment of the preceding aspect term.

Table 5. Result of ablation study for dataset.

Datasets Restaurant Laptop MAMS

GCAE 77.28 72.56 77.588

IARC/inter+conj 79.91 74.99 79.27

IARC/conj 80.89 75.21 80.09

IARC 81.16 76.33 80.76

Modeling Inter-aspect Relationship with Conjunction 765

Table 6. Statistics of single aspect and multi-aspect in semEval 2014 datasets; n = 1:
single aspect, n > 1: multi-aspect.

Domain Train Test

N = 1 N > 1 N = 1 N > 1

Restaurant 1009 2599 285 835

Laptop 918 1396 259 379

Table 7. Performance of different methods for single aspect and multi-aspect; n=1:
single aspect, n>1: multi-aspect.

Model Restaurant Laptop

N=1 N>1 N=1 N>1

IARC/inter+conj 80.00 79.64 75.68 74.41

IARC 79.85 81.58 76.06 75.73

4.3 Ablation Study

An ablation study is performed to determine the significance of the different com-
ponents in IARC. The classical GCAE is taken as the base model. According to
Table 5, the removal of conjunction information (labeled as “IARC/conj”) as well
as conjunction information and inter-aspect sentiment (labeled as “IARC/inter+
conj”) still results in a better performance than GCAE, which indicates the
importance of attention mechanism and position information in interpreting the
relation between aspect and the contexts. The “IARC/conj” model has a higher
testing accuracy than the “IARC/inter+conj” model to confirm the effectiveness
of inter-aspect sentiment. In contrast, our model performs notably better than
the others. That is, the employment of both conjunction words and the adjacent
aspect term sentiment is practical in sentiment prediction of the aspect term.

4.4 Effect on Single Aspect and Multi-aspect

To further verify the working performance of IARC, we divide the SemEval-
2014 dataset into single-aspect samples and multi-aspect samples; see Table 6.
The IARC model and “IARC/inter+conj” model are implemented on the four
datasets, respectively, whose testing accuracy is presented in Table 7.

It can be observed that the outcomes of the two methods on single aspect
samples are comparative. However, there is a considerable performance gap
between IARC model and “IARC/inter+conj” model on multi-aspect sam-
ples sentiment classification. In comparison with the laptop reviews, a greater
improvement appears in the restaurant dataset. For one thing, the multi-aspect
samples account for a higher proportion in the restaurant dataset; for another,
the sentences containing conjunctions in multi-aspect samples occupy 77.13%
in restaurant reviews, which is higher than that of 72.82% in laptop reviews.
Accordingly, it is beneficial to utilize inter-aspect relationship and conjunction
information in multi-aspect term sentiment analysis (Table 8).

766 H. Zhao et al.

Table 8. Examples of aspect term sentiment prediction. Each aspect term is high-
lighted with different colors to indicate the sentiment where yellow stands for the
positive, green for neutral and blue for negative.

ID sentence GCAE PBAN SDGCN IARC

1

The [food]a1 was definitely good, but when all

was said and done, I just couldn’t justify it for the

[price]a2 (including 2 [drinks]a3 , $100/person)

a1 ; a2 ;

a3

a1 ; a2 ;

a3

a1 ; a2 ;

a3

a1 ; a2 ;

a3

2

The [food]a1 and [service]a2 was top notch, only

the complain is that this place is so small that some

[seats]a3 are not made for a big [guy]a4

a1 ; a2 ;

a3 ; a4

a1 ; a2 ;

a3 ; a4

a1 ; a2 ;

a3 ; a4

a1 ; a2 ;

a3 ; a4

3
got the [guac]a1 but no [drinks]a2 until it was all

gone (approximately 20 minutes later).
a1 ; a2 a1 ; a2 a1 ; a2 a1 ; a2

4
I’m not a fan of any of their [appetizers]a1 or

[Thai food]a2 , but their [Japanese food]a3 is great.

a1 ; a2 ;

a3

a1 ; a2 ;

a3

a1 ; a2 ;

a3

a1 ; a2 ;

a3

4.5 Case Study

In this section, we give some instances and visualize their working principle on
how to predict the sentiment polarities of aspect terms. The actual sentiment
and predicted outcomes of the four models are exhibited, respectively. For the
first sentence, the aspect “drink” is mis-identified by GCAE and PBAN due
to its lack of context. By adopting the multi-aspects terms relationship, IARC,
as well as SDGCN, achieves a decent outcome. In sentence 2, the sentiment of
aspect “service” is identified by that of its adjacent aspect “food” within the
same context, which is the same case for “guy” and “seats”.

On the other hand, IARC obtains the best and most consistent results in
multi-aspect terms with conjunctions. The contrasting conjunction “but” in sen-
tence 3 and the additive conjunction “or” in sentence 4 are taken to improve the
predicting accuracy. Specifically, as presented in sentence 4, it is more clear to
identify the sentiment of aspect “Thai food” based on the sentiment of aspect
“appetizers” and the conjunction information from conjunctive word “or”.

5 Conclusion

In this work, we propose a CNN-based model with the integration of inter-aspect
relationship and conjunction information for aspect-level sentiment analysis. By
improving the current GCAE model, attention mechanism and position informa-
tion are employed to deal with multi-aspects, and thus to obtain a more precise
aspect-specific sentential representation. Furthermore, the inter-aspect relation-
ship between adjacent aspect terms is considered. Both conjunction information
and the sentiment of the preceding aspect term are integrated and exploited for
aspect term modeling and sentiment prediction. As a result, the sentiment classi-
fication accuracy, especially for multi-aspect-sentences, is improved significantly.
Experiments on SemEval2014 and MAMS verify that the proposed model is the
best alternative comparing to the state-of-arts.

Modeling Inter-aspect Relationship with Conjunction 767

References

1. Gu, S., Zhang, L., Hou, Y., Song, Y.: A position-aware bidirectional attention
network for aspect-level sentiment analysis. Proc. COLING 2018, 774–784 (2018)

2. Hazarika, D., Poria, S., Vij, P., Krishnamurthy, G., Cambria, E., Zimmermann,
R.: Modeling inter-aspect dependencies for aspect-based sentiment analysis. Proc.
NAACL 2018, 266–270 (2018)

3. Jiang, Q., Chen, L., Xu, R., Ao, X., Yang, M.: A challenge dataset and effective
models for aspect-based sentiment analysis. Proc. EMNLP-IJCNLP 2019, 6281–
6286 (2019)

4. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

6. Li, X., Bing, L., Lam, W., Shi, B.: Transformation networks for target-oriented
sentiment classification. arXiv preprint arXiv:1805.01086 (2018)

7. Lin, P., Yang, M., Lai, J.: Deep mask memory network with semantic dependency
and context moment for aspect level sentiment classification. In: IJCAI (2019)

8. Ma, D., Li, S., Zhang, X., Wang, H.: Interactive attention networks for aspect-level
sentiment classification. arXiv preprint arXiv:1709.00893 (2017)

9. Majumder, N., Poria, S., Gelbukh, A., Akhtar, M.S., Cambria, E., Ekbal, A.: Iarm:
inter-aspect relation modeling with memory networks in aspect-based sentiment
analysis. Proc. EMNLP 2018, 3402–3411 (2018)

10. Mukherjee, S., Bhattacharyya, P.: Sentiment analysis in twitter with lightweight
discourse analysis. Proc. COLING 2012, 1847–1864 (2012)

11. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. Proc. EMNLP 2014, 1532–1543 (2014)

12. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I.,
Manandhar, S.: Semeval-2014 task 4: aspect based sentiment analysis. In: Proceed-
ings of the 8th International Workshop on Semantic Evaluation (SemEval 2014),
pp. 27–35 (2014)

13. Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE Trans.
Knowl. Data Eng. 28(3), 813–830 (2015)

14. Tang, D., Qin, B., Liu, T.: Aspect level sentiment classification with deep memory
network. arXiv preprint arXiv:1605.08900 (2016)

15. Wang, J., et al.: Human-like decision making: Document-level aspect sen-
timent classification via hierarchical reinforcement learning. arXiv preprint
arXiv:1910.09260 (2019)

16. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based lstm for aspect-level
sentiment classification. Proc. EMNLP 2016, 606–615 (2016)

17. Wu, S., Xu, Y., Wu, F., Yuan, Z., Huang, Y., Li, X.: Aspect-based sentiment
analysis via fusing multiple sources of textual knowledge. Knowl.-Based Syst. 183,
104868 (2019)

18. Xue, W., Li, T.: Aspect based sentiment analysis with gated convolutional net-
works. arXiv preprint arXiv:1805.07043 (2018)

19. Zhang, C., Li, Q., Song, D.: Aspect-based sentiment classification with aspect-
specific graph convolutional networks. arXiv preprint arXiv:1909.03477 (2019)

20. Zhao, P., Hou, L., Wu, O.: Modeling sentiment dependencies with graph convolu-
tional networks for aspect-level sentiment classification. Knowl.-Based Syst. 193,
105443 (2020)

http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1805.01086
http://arxiv.org/abs/1709.00893
http://arxiv.org/abs/1605.08900
http://arxiv.org/abs/1910.09260
http://arxiv.org/abs/1805.07043
http://arxiv.org/abs/1909.03477

Author Index

Aakur, Sathyanarayanan N. I-164
Abdolazimi, Reyhaneh I-472
Ackermann, Klaus II-282
Agarwal, Mohit III-272
Agarwal, Mudit II-448
Agarwal, Shivali I-333
Agarwal, Sonali III-390
Aggarwal, Manasvi I-554
Ahmed, Chowdhury Farhan II-3, II-16, II-29
Ahsan Ali, Amin III-90
Alam, Md. Tanvir II-3, II-16
Alam, Mirza Mohtashim III-77
Ali, Amin Ahsan III-351
Alizadeh, Pegah II-79
Amin, M. Ashraful III-90
Ashraful Amin, M. III-351
Asoodeh, Shahab I-447
Atarashi, Kyohei II-346
Awal, Md Rabiul I-701
Azad, Amar Prakash III-285

Bagavathi, Arunkumar I-164
Ban, Zhijie III-67
Bandara, Kasun II-282
Bandyopadhyay, Sambaran I-554
Bansal, Rachit I-188
Barddal, Jean Paul II-549
Barrus, Clark I-668
Bedathur, Srikanta I-305
Benabdeslem, Khalid II-233
Bergmeir, Christoph II-282
Bhatnagar, Raj I-358
Bhattacharya, Indrajit I-305
Bhowmick, Plaban Kumar I-655
Bifet, Albert II-245
Biswas, K. K. III-272
Bondu, Alexis I-804
Boullé, Marc I-804
Braytee, Ali III-233

Cai, Hongmin II-194
Cameron-Muller, Frances I-277
Campbell, Sam II-282
Candan, K. Selçuk II-485

Cano, Alberto I-616
Cao, Huiping II-473
Cao, Rui I-701
Cao, Yanan I-408
Ceh-Varela, Edgar II-473
Chai, Zi I-251
Chakraborty, Tanmoy I-188, III-103
Chalapathy, Raghav I-277
Chan, Jeffrey II-510
Chang, Liang II-386
Chang, Walter II-703
Chaudhuri, Ritwik I-15
Chauhan, Arun I-129, II-423
Chelladurai, Jeshuren I-225
Chen, ChenGuang I-459
Chen, Enhong II-436
Chen, Fang I-263, I-488, III-298
Chen, Guang II-730
Chen, Jianying II-756
Chen, Jinglei I-78
Chen, Ling I-528
Chen, Min II-640
Chen, Ming-Syan I-176
Chen, Xi I-213, II-93
Chen, Xiaoyin III-338
Chen, Yi-Ling II-716
Chen, Yizheng I-53
Chen, Yizhou I-383
Chen, Zhenyi I-421
Chen, Zhiguang I-104
Cheng, Feng II-168
Cheng, Jiayang III-416
Cheng, Szu-Yuan II-716
Cheng, Xueqi I-78, II-664, II-743
Choudhari, Jayesh I-305
Christen, Peter II-321
Chu, Victor W. I-566
Chu, Yu I-779
Cui, Li III-416
Cui, Yi II-219
Czekalski, Stanisław II-42

Dai, Qiong II-54
Das, Partha Pratim I-655

770 Author Index

Dasgupta, Anirban I-305
de Souza Britto Jr., Alceu II-549
Deng, Chufu I-104
Deng, Kai II-537
Deng, Yuxin III-141
Dernoncourt, Franck II-703
Ding, Tianyu II-67
Domeniconi, Carlotta I-91
Dong, Hao III-181
Dong, Xinzhou II-373
Dong, Yuyang III-219
Du, Lan II-334
Du, Shaohua II-676
Du, Yi III-181
Duan, Nan III-325

Enomoto, Masafumi III-219

Fang, Jinyun II-411
Fatemi, Bahareh III-128
Fernando, Subha III-194
Fu, Hao I-754
Fujita, Sumio III-259

Galárraga, Luis I-320
Gampa, Phanideep III-259
Gandomi, Amir H. I-263
Gao, Jianqi I-346
Gao, Jinhua II-664, II-743
Gao, Junruo II-588
Gao, Neng II-690
Gao, Tingran I-447
Gao, Yingxue II-118
Gay, Dominique I-804
Gel, Yulia R. I-201
Gionis, Aristides I-395
Grecov, Priscila II-282
Gruenwald, Le I-668
Gu, Donghong II-756
Gui, Ning III-29
Guo, Cheng II-411, II-461
Guo, Jun II-106
Guo, Ting I-263, I-488
Gupta, Manish I-686
Gupta, Saranya I-333
Gupta, Suneet Kr. III-272
Gupta, Sunil II-257
Gupta, Viresh III-103

Halder, Sajal II-510
Hamidi, Massinissa II-79
Han, Tianshuo II-67
Hanselle, Jonas I-152
Hao, Bin II-461
Hayakawa, Yuta I-791
He, Jiaojiao III-29
He, Ming II-67
He, Wenqian I-117
He, Xiaofeng III-377
He, Zhenying I-421
Ho, Joyce II-181
Hong, Yunsen II-652
Hou, Chenping I-590
Hou, Lei III-155
Hu, Jiaxin II-207
Hu, Linmei III-325
Hu, Nan III-377
Hu, Yucheng II-436
Huang, Bert II-600
Huang, Jiajin II-537
Huang, Shao-Lun I-213
Huang, Weipeng III-206
Huang, Wen II-398
Huang, Yalou I-117
Huang, Yihua II-168, II-640
Huang, Zhen II-269
Hüllermeier, Eyke I-152
Hurley, Neil J. III-206

Iftikhar, Masooma II-358
Indla, Vennela I-164
Indla, Vineela I-164
Ishihata, Masakazu II-346

Jagadish, D. N. I-129
Jain, Rajiv II-703
Jiang, Lei II-54
Jin, Beihong II-373
Jin, Jiaqi II-411
Jin, Xu I-117

Kan, Zhigang II-295
Kang, Zhezhou I-408
Kar, Debanjana III-285
Karsoum, Somayah I-668
Karypis, George I-541, II-561, III-16
Kashima, Hisashi II-498
Ke, Wenjun II-743
Khalique, Vijdan I-40

Author Index 771

Khan, Siamul Karim I-642
Khoa, Nguyen Lu Dang I-277
Kim, Doo Soon II-703
Kiran, Rage Uday I-53
Kitagawa, Hiroyuki I-40
Klami, Arto I-578
Kong, Yan I-238
Korycki, Łukasz I-629
Kou, Ziyi I-642
Krawczyk, Bartosz I-616, I-629
Kudenko, Daniel I-603
Kumar, Shobhan II-423
Kwon, Junbum I-566

Labille, Kevin II-398
Laitonjam, Nishma III-206
Le, Tuan II-473
Leal, Eleazar I-668
Lee, Huikyo I-201
Lee, Roy Ka-Wei I-701
Lee, Vincent C. S. I-140
Lehmann, Jens III-77
Lemaire, Vincent I-804
Leung, Carson K. II-3, II-16, II-29
Li, Beibei II-373
Li, Boyu I-263
Li, Cheng II-257
Li, Ding I-383
Li, Dongsheng II-269, II-295
Li, Duantengchuan II-156
Li, Gang I-434
Li, Hui II-652
Li, Juanzi III-155
Li, Jun II-588
Li, Kuilin I-104
Li, Lin I-779
Li, Mao-Lin II-485
Li, Shu I-434
Li, Shuang III-246, III-312
Li, Wenzhong I-383
Li, Xin III-141, III-155
Li, Xinxin II-524
Li, Xuan II-575
Li, Yayong I-528
Li, Ying II-627
Li, Yinzhe III-67
Li, Zhenzhen II-269
Li, Zhidong III-298
Li, Zhixin II-386
Li, Zhiyong II-93

Liang, Tao I-408
Liang, Wenxin III-116
Liao, Zihan III-116
Lim, Kwan Hui II-510
Lin, Bei III-29
Lin, Bo-Tao II-716
Lin, Chen II-652
Lin, Chia-Chih I-176
Lin, Hongzhan II-730
Lin, Jerry Chun-Wei I-53
Lin, Ke II-156
Lin, Mingkai I-383
Lin, YouFang II-676
Liu, Fangbing III-3
Liu, Feng II-269, II-295
Liu, Guiquan I-754
Liu, Han III-116
Liu, Haozhe II-730
Liu, Linfeng III-16
Liu, Mingming I-117
Liu, Qi II-436
Liu, Qingyun I-434
Liu, Shenghua I-78
Liu, Tingwen I-817
Liu, Wei III-233
Liu, Xiaochen I-421
Liu, Ye II-93
Liu, Yilin I-66
Liu, Yiqun II-461
Liu, Yue III-246, III-312
Liu, Yujia I-459, I-728
Liu, Yuyang II-588
Louis, Anand I-447
Lu, Chenhao I-53
Lu, Sanglu I-383
Luan, Tianxiang I-590
Lubman, Dan II-282
Luo, Binli III-29
Luo, Kaiwen II-640
Luo, Minzhong I-3
Luo, Tingjin I-590
Luo, Xiangfeng I-346
Lyu, Zhiheng III-155

Ma, Huifang II-386
Ma, Liheng I-514
Ma, Meng I-501
Ma, Shaoping II-461
Ma, Weizhi II-461
Mahbubur Rahman, A. K. M. III-351

772 Author Index

Mahmud, Saif III-351
Mahto, Lakshman I-129
Mai, Chengcheng II-640
Mandal, Atri I-333
Manjunatha, Varun II-703
Mansouri, Dou El Kefel II-233
Manwani, Naresh II-448
Mavromatis, Costas I-541
McBride, Ryan II-652
Meng, Xianwei I-754
Meng, Zizhuo III-298
Merrillees, Maximillian II-334
Mishra, Prakamya III-55
Mitrović, Sandra I-701
Mohapatra, Prateeti I-333
Molaei, Soheila III-128
Moon, Md Hasibul Haque II-29
Morales, Xavier I-714
Morzy, Mikołaj II-42
Mu, Jie II-219, III-116
Mukherjee, Kushal I-15
Murty, M. Narasimha I-554

Nai, Ke II-93
Nanayakkara, Charini II-321
Narayanam, Ramasuri I-15
Narayanan, Sai I-164
Nasalwai, Nikhil III-390
Nayyeri, Mojtaba III-77
Nejdl, Wolfgang II-245
Nguyen, Hoan III-16
Nguyen, Thien Huu II-703
Nidhi, I-188
Ning, Yue III-403
Ning, Zhiyuan III-181
Nong, Wei III-377
Nyberg, Otto I-578

Okadome, Takeshi III-219
Osmani, Aomar II-79
Oyamada, Masafumi III-219

Paka, William Scott I-188
Pan, Mao II-411
Pan, Shirui I-140, III-128
Pandey, Shalini II-561
Park, Eunkyung I-566
Patel, Deep II-131
Pelgrin, Olivier I-320
Peng, Huailiang II-54

Piao, Guangyuan III-206
Pinnaparaju, Nikhil I-686
Polepalli, Susheela I-358
Poursafaei, Farimah I-27
Prenkaj, Bardh I-91
Preti, Giulia I-395
Punn, Narinder Singh III-390

Qi, Ji I-238
Qiao, Linbo II-295
Qiao, Ziyue III-181
Qin, Jin II-537
Qiu, Mengchuan II-168
Qiu, Xueming II-640

Rabbany, Reihaneh I-27, I-514
Rahman, A. K. M. Mahbubur III-90
Rahman, Md Mahmudur II-29
Ramachandran, Akhilesh I-164
Ramnath, Vishalini Laguduva I-164
Rana, Santu II-257
Ranbaduge, Thilina II-321
Rao, Weixiong II-207
Rath, Bhavtosh I-714
Ravindran, Balaraman I-225
Romero-Soriano, Adriana I-514
Rong, Wentao II-194
Rosenblum, David S. II-612
Roy, Amit III-90
Roy, Kashob Kumar II-29, III-90
Rozenshtein, Polina I-395

Sael, Lee II-143
Sakai, Tomoya II-498
Salim, Flora D. I-741
Samanta, Suranjana III-285
Samarawickrama, Jayathu III-194
Samiullah, Md. II-3, II-16
Santhiappan, Sudarsun I-225
Santosh, T. Y. S. S. I-655
Sanyal, Debarshi Kumar I-655
Sarvari, Hamed I-91
Sastry, P. S. II-131
Schweitzer, Haim III-42
Scott, Deborah II-282
Segovia-Dominguez, Ignacio I-201
Sengamedu, Srinivasan III-16
Sengupta, Shubhashis I-188
Sha, Chaofeng III-364
Shang, Tianqi II-524

Author Index 773

Shang, Yanmin I-408
Shen, Huawei I-78, II-664, II-743
Shi, Chuan III-325
Shi, Jinqiao I-817
Shi, Kaijie III-155
Shi, Xiaoyu II-524
Shimosaka, Masamichi I-791
Siahroudi, Sajjad Kamali I-603
Sonbhadra, Sanjay Kumar III-390
Song, Binheng III-155
Song, Hui III-364
Song, Xin I-459, I-728
Sotoodeh, Mani II-181
Srivasatava, Jaideep II-561
Srivastava, Jaideep I-714
Stilo, Giovanni I-91
Su, Danning III-377
Su, Xiao II-627
Sun, Xiaobing I-78

Takenouchi, Takashi II-498
Takeoka, Kunihiro III-219
Talukdar, Partha I-447
Tan, Jianlong II-54
Tang, Hengzhu I-408
Tang, Xijia I-590
Tanimoto, Akira II-498
Tao, Guihua II-194
Termier, Alexandre I-320
Thanthriwatta, Thilina II-612
Tian, Wenjie III-246, III-312
Tissera, Dumindu III-194
Tong, Lingling I-408
Tonmoy, M. Tanjid Hasan III-351
Tornede, Alexander I-152
Tran, Quan II-703
Tsang, Ivor III-168
Tsubouchi, Kota I-791
Tu, Chenyang II-690

Vahdati, Sahar III-77
Vallam, Rohith D. I-15
Varma, Vasudeva I-686
Velegrakis, Yannis I-395
Venkatesh, Svetha II-257
Veyseh, Amir Pouran Ben II-703
Viniski, Antônio David II-549
Vithanage, Kasun III-194

Wagh, Rishabh I-201
Wan, Guihong III-42
Wan, Huaiyu II-676
Wan, Xiaojun I-251
Wan, Yi I-66
Wang, Chen III-168
Wang, Dong I-66, I-642
Wang, Haiyang I-459, I-728
Wang, Hao I-346
Wang, Lidan II-703
Wang, Lin I-117
Wang, Ping I-501
Wang, Qing II-358, III-3
Wang, Qingxian II-524
Wang, Sheng III-338
Wang, Wenjie II-168
Wang, X. Sean I-421
Wang, Xiaofan II-308
Wang, Yang I-263, I-488, III-298
Wang, Zhen I-53
Wang, Zhenghua I-290
Wang, Zhihai I-766
Wang, Zhihao III-141
Wang, Zhiyong III-298
Wang, Zhong I-754
Wang, Zifeng I-213
Wang, Zihan II-436
Wang, Zijian I-346
Weeraddana, Dilusha I-277
Wei, Yunhe II-386
Weiss, Jeremy C. II-245
Wen, Rui I-213, II-93
Wen, Yujin I-66
Wever, Marcel I-152
Wijesinghe, Rukshan III-194
Wong, Raymond K. I-566
Wu, Chengkun I-290
Wu, Fan II-156
Wu, Kun III-403
Wu, Xintao II-398
Wu, Yunfeng II-575
Wu, Zhihao II-676
Wu, Zhonghai II-627
Wu, Zonghan I-140

Xavier, Alex III-194
Xiao, Jing I-53
Xiao, Luwei II-756
Xiao, Yanghua II-652, III-416
Xiao, Yufeng II-118

774 Author Index

Xie, Maoqiang I-117
Xie, Qing I-779
Xiong, Li II-181
Xiong, Shengwu III-338
Xu, Bin I-238
Xu, Bo III-364
Xu, Chengjin III-77
Xu, Chuanfu I-290
Xu, Guandong I-779
Xu, Honggang III-141
Xu, Jie III-298
Xu, Zhuoer II-168
Xue, Cong II-690
Xue, Hao I-741
Xue, Taofeng II-373
Xue, Yun II-756

Yadati, Naganand I-447
Yaghoobzadeh, Yadollah III-77
Yan, Keping II-106
Yang, Ang II-257
Yang, Cheng III-325
Yang, Chunfeng II-436
Yang, Deqing III-416
Yang, Mengyue II-588
Yang, Sen II-295
Yang, Shuangji III-377
Yang, Tianchi III-325
Yang, Yang I-371
Yang, Yifan I-213
Yao, Sirui II-600
Yazdi, Hamed Shariat III-77
Ye, Yuyang II-436
Ye, Zhihao II-93
Yeh, Mi-Yen II-716
Yin, Jie I-528, III-168
Yoo, Jaemin II-143
Yu, Runlong II-436
Yu, Yang I-754
Yuan, Chunfeng II-168
Yuan, Jidong I-766
Yuan, Xu III-403

Zafarani, Reza I-472
Zaidi, Nayyar A. I-434
Zare, Hadi III-128
Zeng, Kang I-728
Zeng, Zehua II-690
Zhai, Qi II-295
Zhan, De-Chuan I-371

Zhang, Daniel (Yue) I-642
Zhang, Hongya II-269
Zhang, Huawei II-156
Zhang, Ji I-53
Zhang, Jiabao I-78
Zhang, Li II-575
Zhang, Luhao III-325
Zhang, Mengfei II-411
Zhang, Min II-461
Zhang, Minjun III-364
Zhang, Panpan I-817
Zhang, Ruoyi II-386
Zhang, Shaokang II-54
Zhang, Taolin III-377
Zhang, Wenbin II-245
Zhang, Xianchao II-219, III-116
Zhang, Xiangliang II-245
Zhang, Xiuzhen II-510
Zhang, Yang I-642
Zhang, Yue I-766
Zhang, Ziheng II-93
Zhao, Bo II-640
Zhao, Bowen I-238
Zhao, Haoliang II-756
Zhao, Huan II-118
Zhao, Jiapeng I-817
Zhao, Qiming I-78
Zhao, Qinpei II-207
Zhao, Ruizhuo II-664
Zhao, Xiangsan III-364
Zhen, Zhiwei I-201
Zheng, Weiguo I-421
Zheng, Yefeng I-213, II-93
Zheng, Yizhen I-140
Zhou, Bin I-459, I-728
Zhou, Da-Wei I-371
Zhou, Ming III-325
Zhou, Weiqing II-106
Zhou, Xiaowei III-168
Zhou, Yuanchun III-181
Zhu, Dong I-290
Zhu, Guanghui II-168
Zhu, Renbo I-501
Zhu, Xingquan I-488
Zhuang, Ruoyu I-78
Zhuo, Enhong II-194
Zhuo, Wei II-373
Zilic, Zeljko I-27
Zong, Linlin II-219

	General Chairs’ Preface
	PC Chairs’ Preface
	Organization
	Contents – Part II
	Classical Data Mining
	Mining Frequent Patterns from Hypergraph Databases
	1 Introduction
	2 Proposed Framework
	3 Proposed Methods
	4 Experiments
	4.1 Dataset Description
	4.2 Results and Discussions
	4.3 Hypergraph Classification Using Frequent Patterns

	5 Conclusions
	References

	Discriminating Frequent Pattern Based Supervised Graph Embedding for Classification
	1 Introduction
	2 Background
	3 The Proposed Method
	3.1 Candidate Feature Subgraphs Mining
	3.2 Filtering Candidate Feature Subgraphs
	3.3 Learning Embedding from Feature Subgraphs

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Results and Discussions
	4.4 Parameter Sensitivity
	4.5 Runtime Analysis
	4.6 Visualization

	5 Conclusions
	References

	Mining Sequential Patterns in Uncertain Databases Using Hierarchical Index Structure
	1 Introduction
	2 Background Study
	3 A Framework for Mining Uncertain Sequential Patterns
	3.1 USeq-Trie: Maintenance of Patterns
	3.2 FUSP: Faster Mining of Uncertain Sequential Patterns
	3.3 InUSP: Incremental Mining of Uncertain Sequential Patterns

	4 Experimental Results
	5 Conclusions
	References

	Similarity Forests Revisited: A Swiss Army Knife for Machine Learning
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Original Similarity Forests
	3.2 One-Class Classification
	3.3 Multi-class Classification
	3.4 Regression
	3.5 Metric Learning

	4 Results
	4.1 Classification
	4.2 One-Class Classification
	4.3 Binary Classification
	4.4 High-Dimensional Classification
	4.5 Multi-class Classification
	4.6 Regression
	4.7 Metric Learning

	5 Conclusions
	References

	Discriminative Representation Learning for Cross-Domain Sentiment Classification
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Problem Definition and Overall Framework
	3.2 Domain Adversarial Network
	3.3 Discriminative Representation Learning

	4 Experiment
	4.1 Dataset Preparation
	4.2 Implementation Details
	4.3 Benchmark Methods
	4.4 Feature Visualization
	4.5 Parameter Sensitivity
	4.6 Ablation Studies

	5 Conclusion
	References

	SAGCN: Towards Structure-Aware Deep Graph Convolutional Networks on Node Classification
	1 Introduction
	2 Related Work
	2.1 Deep GCNs
	2.2 Attention-Based GCNs

	3 Preliminaries
	3.1 Notations
	3.2 Graph Convolutional Network (GCN)

	4 Proposed Model
	4.1 Information Propagation
	4.2 Layer Aggregation

	5 Experiments
	5.1 Datasets
	5.2 Semi-supervised Node Classification
	5.3 Full-Supervised Node Classification
	5.4 Ablation Study

	6 Conclusion
	References

	Hierarchical Learning of Dependent Concepts for Human Activity Recognition
	1 Introduction
	2 Problem Statement
	2.1 Problem Formulation and Background
	2.2 Search Space Size: Complexity Analysis

	3 Proposed Approach
	3.1 Concept Similarity (Affinity) Analysis
	3.2 Hierarchy Derivation
	3.3 Hierarchy Refinement

	4 Experiments and Results
	4.1 Evaluation of the Hierarchical Classification Performances
	4.2 Evaluation of the Affinity Analysis Stage
	4.3 Universality and Stability

	5 Conclusion and Future Work
	References

	Improving Short Text Classification Using Context-Sensitive Representations and Content-Aware Extended Topic Knowledge
	1 Introduction
	2 Framework Overview
	2.1 Neural Topic Model
	2.2 Local Context Representation
	2.3 Global Context Representation and Context-Sensitive Word Embedding
	2.4 Exploiting Content-Aware Topic Knowledge
	2.5 Classifier and Training

	3 Experiments
	3.1 Datasets
	3.2 Experimental Methods
	3.3 Experiment Settings
	3.4 Experimental Results
	3.5 Ablation Study
	3.6 Visualization of Matching Mechanism for Content-Aware Topic Knowledge

	4 Related Work
	5 Conclusions and Future Work
	References

	A Novel Method for Offline Handwritten Chinese Character Recognition Under the Guidance of Print
	1 Introduction
	2 Related Work
	2.1 Re-identification
	2.2 Offline HCCR

	3 Method Description
	3.1 Proposed Architecture
	3.2 Loss Function
	3.3 Evaluation

	4 Experiments
	4.1 Datasets
	4.2 Training Strategy
	4.3 Results
	4.4 Ablation Experiment

	5 Conclusion
	References

	Upgraded Attention-Based Local Feature Learning Block for Speech Emotion Recognition
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 3D Static Data
	3.2 Local Feature Learning Block (LFLB)
	3.3 Upgrade Attention Mechanism (UA)

	4 Experiments
	4.1 Implementation Details
	4.2 Parameter Optimization
	4.3 Performance Comparison
	4.4 Feature Visualization

	5 Conclusion
	References

	Memorization in Deep Neural Networks: Does the Loss Function Matter?
	1 Introduction
	1.1 Related Work

	2 Role of Loss Function in Resisting Memorization
	3 Robustness of Symmetric Loss Functions
	4 Conclusions
	References

	Gaussian Soft Decision Trees for Interpretable Feature-Based Classification
	1 Introduction
	2 Related Works
	3 Proposed Approach
	3.1 Overview
	3.2 Gaussian Decisions
	3.3 Training with Path Regularization

	4 Theoretical Analysis
	5 Experiments
	5.1 Experimental Settings
	5.2 Classification Accuracy
	5.3 Interpretability
	5.4 Ablation Study

	6 Conclusion
	References

	Efficient Nodes Representation Learning with Residual Feature Propagation
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Primary Definition
	2.2 Graph Convolutional Network
	2.3 Simplifying Graph Convolutional Network
	2.4 Deep Graph Convolutional Networks

	3 Our Proposed Methods
	3.1 Residual Feature Propagation
	3.2 Weighted Feature Propagation
	3.3 Classifier

	4 Experiments and Discussions
	4.1 General Setting
	4.2 Results and Discussion

	5 Conclusion
	References

	Progressive AutoSpeech: An Efficient and General Framework for Automatic Speech Classification
	1 Introduction
	2 Related Work
	3 Progressive AutoSpeech
	3.1 Fast Stage
	3.2 Enhancement Stage
	3.3 Exploration Stage
	3.4 Dynamic Result Ensemble

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setting
	4.3 Comparison with Baselines
	4.4 Ablation Study
	4.5 Scalability of Time Budget

	5 Conclusion and Future Work
	References

	CrowdTeacher: Robust Co-teaching with Noisy Answers and Sample-Specific Perturbations for Tabular Data
	1 Introduction and Background
	1.1 Problem Definition: Classification with Crowdsourcing Annotations
	1.2 Related Works

	2 Methodology
	2.1 Generating Synthetic Samples
	2.2 Sample-Specific Perturbations
	2.3 Knowledge Distillation-Based Co-teaching for Smaller Tabular Data

	3 Experiments
	3.1 Baseline Methods
	3.2 Annotation Simulation
	3.3 Datasets

	4 Results
	4.1 Synthetic Dataset
	4.2 PUI Dataset

	5 Conclusion
	References

	Effective and Adaptive Refined Multi-metric Similarity Graph Fusion for Multi-view Clustering
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Construction of Multiple Similarity Graphs via Different Metric
	3.2 Measurement of Sample Similarity via Symmetric Conditional Probability
	3.3 Fusion of Multiple Similarity Graphs Through Directly Learning Cluster Membership
	3.4 Optimization Algorithm

	4 Experiments
	4.1 Experiment Setting
	4.2 Experiment Results

	5 Conclusions
	References

	aHCQ: Adaptive Hierarchical Clustering Based Quantization Framework for Deep Neural Networks
	1 Introduction
	2 An Adaptive Hierarchical Clustering Based Quantization (aHCQ) Framework
	2.1 Weights Sharing and the Hierarchical Agglomerative Clustering
	2.2 Details of the aHCQ Framework

	3 Experiments
	3.1 Experiments Settings
	3.2 Comparison on the aHCQ and Other Weights Sharing
	3.3 Results for Preprocessing Step of aHCQ
	3.4 Results for Adaptability of aHCQ
	3.5 Results for aHCQ Compared with Benchmarks

	4 Conclusion
	References

	Maintaining Consistency with Constraints: A Constrained Deep Clustering Method
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Unsupervised Clustering Module
	3.2 Clustering with Pairwise Constraints
	3.3 Clustering with Triplet Constraints

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setting
	4.3 Experimental Results
	4.4 Parameter Analysis

	5 Conclusion
	References

	Data Mining Theory and Principles
	Towards Multi-label Feature Selection by Instance and Label Selections
	1 Introduction
	2 Proposed Method: mFILS
	3 Experiments
	3.1 Datasets and Compared Methods
	3.2 Experimental Setting
	3.3 Results

	4 Conclusion and Future Works
	References

	FARF: A Fair and Adaptive Random Forests Classifier
	1 Introduction
	2 Problem Definition
	3 The Fair and Adaptive Random Forests
	3.1 Diversified Fairness-Aware Base Learner
	3.2 Fairness-Aware Sampling
	3.3 FARF Algorithm

	4 Experimental Evaluation
	4.1 Benchmark Performance
	4.2 Accuracy-Fairness Control
	4.3 Justification of Sampling Component in FARF

	5 Conclusions
	References

	Sparse Spectrum Gaussian Process for Bayesian Optimization
	1 Introduction
	2 Background
	2.1 Bayesian Optimization
	2.2 Sparse Spectrum Gaussian Process

	3 Bayesian Optimization Using Regularized Sparse Spectrum Gaussian process
	3.1 Thompson Sampling Based Approach
	3.2 Monte Carlo Based Approach
	3.3 Expected Improvement Acquisition Function as a Proxy

	4 Experiments
	4.1 Optimizing Benchmark Functions
	4.2 Alloy Optimization
	4.3 Hyperparameter Tuning by Transfer Learning

	5 Conclusion
	References

	Densely Connected Graph Attention Network Based on Iterative Path Reasoning for Document-Level Relation Extraction
	1 Introduction
	2 Related Work
	3 Proposed Model
	3.1 Task Modeling
	3.2 Encoder Layer
	3.3 Node Construction
	3.4 Edge Construction
	3.5 Inference Layer

	4 Experiment
	5 Results
	6 Conclusion
	References

	Causal Inference Using Global Forecasting Models for Counterfactual Prediction
	1 Introduction
	2 Methodology
	2.1 Counterfactual Prediction
	2.2 DeepCPNet Forecast Engine
	2.3 Placebo Tests

	3 Experimental Setup
	3.1 Datasets
	3.2 Error Metrics for Performance Measuring
	3.3 Benchmarks and DeepCPNet Variants

	4 Results and Discussion
	5 Conclusions
	References

	CED-BGFN: Chinese Event Detection via Bidirectional Glyph-Aware Dynamic Fusion Network
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Representation Stage
	3.2 Fusion Stage
	3.3 Sequence Tagger Stage

	4 Experiments
	4.1 Experiment Setup
	4.2 Baselines
	4.3 Overall Results
	4.4 Effect of Glyph Embedding
	4.5 Effect of Context Encoding
	4.6 Effect of Fusion Methods
	4.7 Effect of Auxiliary Task Training Objectives

	5 Conclusion
	References

	Learning Finite Automata with Shuffle
	1 Introduction
	2 Preliminaries
	2.1 SOA, Shuffle Unit and Precise Representation of Sample

	3 Finite Automata with Shuffle
	4 Learning FA(&)
	5 Evaluation
	6 Conclusion
	References

	Active Learning Based Similarity Filtering for Efficient and Effective Record Linkage
	1 Introduction
	2 Related Work
	3 Active Learning Based Similarity Filtering
	3.1 Problem Definition
	3.2 Binning Based Filtering
	3.3 Calculating Optimal Bin Similarity Thresholds
	3.4 Bin Scoring Functions

	4 Experimental Evaluation
	5 Conclusions and Future Work
	References

	Stratified Sampling for Extreme Multi-label Data
	1 Introduction
	2 Related Works
	3 Overview of XML Datasets
	4 Stratified Sampling Algorithm
	5 Partitioning Results
	6 Bias in Estimated Performance
	7 Conclusion
	References

	Vertical Federated Learning for Higher-Order Factorization Machines
	1 Introduction
	2 Preliminary
	2.1 Vertical Federated Learning
	2.2 Higher-Order Factorization Machines

	3 Vertical Federated Learning for HOFMs
	3.1 VFL-HOFMs by Local ANOVA Kernel Aggregation
	3.2 VFL-HOFMs by LAKA with Anonymization Using Clustering Techniques

	4 Experiments
	4.1 Settings
	4.2 Results

	5 Conclusion
	References

	dK-Projection: Publishing Graph Joint Degree Distribution with Node Differential Privacy
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Sensitivity Analysis
	5 Proposed Approach
	5.1 Stable-Edge-Removal Graph Projection
	5.2 Releasing dK-Distribution via Projection

	6 Experiments
	6.1 Experimental Setup
	6.2 Results and Discussion

	7 Conclusions and Future Work
	References

	Recommender Systems
	Improving Sequential Recommendation with Attribute-Augmented Graph Neural Networks
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 The Murzim Model
	4.1 Constructing Item and Attribute Graphs
	4.2 Generating Node Embeddings
	4.3 Generating Sequence Embedding
	4.4 Generating Prediction and Model Loss

	5 Experiments and Analyses
	5.1 Experimental Setup
	5.2 Performance Comparison
	5.3 Online Test

	6 Conclusion
	References

	Exploring Implicit Relationships in Social Network for Recommendation Systems
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notations and Problem Statement
	3.2 User Overlapping Community Detection Based on Social Information

	4 Bayesian Personalized Recommendation Method Fusing Social Information
	4.1 Item Ranking Based on Social Feedback
	4.2 User Ranking Based on Social Information
	4.3 Personalized Ranking that Fuses Item Feedback and Social Information
	4.4 Sampling Strategy

	5 Experiments and Results
	5.1 Experimental Settings
	5.2 Recommendation Performance

	6 Conclusion
	References

	Transferable Contextual Bandits with Prior Observations
	1 Introduction
	2 Related Work
	3 Background
	4 T-LinUCB
	4.1 Problem Overview
	4.2 Algorithm Design
	4.3 Regret Analysis

	5 Experimental Evaluation
	5.1 Experiment Setup
	5.2 Experimental Results

	6 Conclusions
	References

	Modeling Hierarchical Intents and Selective Current Interest for Session-Based Recommendation
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Method
	4.1 Embedding Layer
	4.2 General Intent Abstractor
	4.3 Selector-GRU
	4.4 Preference Generation
	4.5 Prediction Layer

	5 Experiments
	5.1 Evaluation Setup
	5.2 Performance Comparison with Baselines
	5.3 Ablation Analysis
	5.4 Case Study

	6 Conclusion
	References

	A Finetuned Language Model for Recommending cQA-QAs for Enriching Textbooks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Analysis and Preprocessing
	3.2 Text Summary Generation
	3.3 Term Array Generation
	3.4 Text Enrichment - Finding the Enriched Data

	4 Experimental Results and Discussion
	5 Conclusion and Future Scope
	References

	XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction
	1 Introduction
	2 Related Work
	3 Extreme Cross Network (XCrossNet)
	3.1 Problem Statement
	3.2 Feature Crossing
	3.3 Feature Concatenation
	3.4 Feature Selection

	4 Experiments
	4.1 Experimental Setup
	4.2 Overall Performance (RQ1)
	4.3 Feature Dimensionality Imbalance Study (RQ2)
	4.4 Hyper-parameter Study (RQ3)

	5 Conclusion
	References

	Learning Multiclass Classifier Under Noisy Bandit Feedback
	1 Introduction
	2 Multiclass Classification
	3 Learning Using Noisy Bandit Feedback
	4 Experimentation
	5 Conclusion and Future Work
	References

	Diversify or Not: Dynamic Diversification for Personalized Recommendation
	1 Introduction
	2 Related Work
	3 Diversity Measurement
	4 Large-Scale Log Based Diversity Analysis
	4.1 Data Preparation
	4.2 Analysis on Impression-Level Behaviors

	5 Dynamic Diversification Recommendation Model
	5.1 Problem Formulation
	5.2 Model Overview
	5.3 Diversity Integrated Sequence Modeling Part
	5.4 Time Gap Integrated Sequence Modeling Part
	5.5 Sequence Modeling Part
	5.6 Dynamic Diversification Prediction Part

	6 Experiment
	6.1 Experimental Settings
	6.2 Results and Analysis.
	6.3 Influence of Time Window
	6.4 Case Study

	7 Conclusion and Future Work
	References

	Multi-criteria and Review-Based Overall Rating Prediction
	1 Introduction
	2 Related Work
	2.1 MCRS with User Preferences
	2.2 Multi-criteria Review-Based RS
	2.3 Multi-Task Learning (MTL)

	3 Proposed Approach
	3.1 Problem Definitions
	3.2 MMCRR Model
	3.3 Associated Task
	3.4 Main Task
	3.5 Model Optimization

	4 Experimental Settings
	4.1 Datasets
	4.2 Baselines
	4.3 Hyperparameters

	5 Experimental Results
	5.1 Model Performance
	5.2 Effect of Parameter
	5.3 Effect of Loss Functions
	5.4 Performance of the Main Task
	5.5 Metrics for Aspect Ratings

	6 Conclusions
	References

	W2FM: The Doubly-Warped Factorization Machine
	1 Introduction
	1.1 Space Warping and Kernels
	1.2 Factorization Machines with Polynomial Kernels
	1.3 Our Contributions: Doubly-Warped FMs

	2 Related Works
	2.1 Factorization Machines and Variants
	2.2 Input Warping in Other Domains

	3 Preliminaries
	3.1 Domain Warping
	3.2 Factorization Machines

	4 Doubly-Warped Factorization Machines
	4.1 Double Warping
	4.2 Low Rank Approximation
	4.3 Model Parameters and the Learning Process
	4.4 Summary: Double Warping in W2FM

	5 Variants of W2FM
	5.1 Identity Initialization (W2FMI)
	5.2 Shared Warping (W2FMSW,W2FMISW)
	5.3 Term Reduction (W2FMTR, W2FMITR)
	5.4 Neural Warping

	6 Experiments
	6.1 Results and Analysis

	7 Conclusions
	References

	Causal Combinatorial Factorization Machines for Set-Wise Recommendation
	1 Introduction
	2 Problem Setting
	3 Related Work
	4 Causal Combinatorial Factorization Machines for Set-Wise Recommendation
	4.1 Model: Combinatorial Factorization Machines
	4.2 Debiased Loss with Causal Inference Techniques
	4.3 Optimizing the Item Set to Recommend Using a Model

	5 Experiments
	5.1 Sequential Display Setting
	5.2 Simultaneous Display Setting

	6 Summary
	References

	Transformer-Based Multi-task Learning for Queuing Time Aware Next POI Recommendation
	1 Introduction
	2 Related Works
	3 Preliminary and Problem Statement
	4 Proposed TLR-M Model
	4.1 Algorithm

	5 Experiments
	5.1 Datasets and Baseline Algorithms
	5.2 Performance Evaluation
	5.3 Results and Discussion

	6 Conclusion
	References

	Joint Modeling Dynamic Preferences of Users and Items Using Reviews for Sequential Recommendation
	1 Introduction
	2 Related Work
	2.1 Review-Based Recommender
	2.2 Sequential Recommender

	3 Proposed Model
	3.1 The Overview Architecture
	3.2 The Embedding Layer
	3.3 The Semantic Extracting Layer
	3.4 The Dynamic Feature Learning Layer
	3.5 The Output Layer

	4 Experiments
	4.1 Experimental Settings
	4.2 Results

	5 Conclusion
	References

	Box4Rec: Box Embedding for Sequential Recommendation
	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Deep Set Learning

	3 Model
	3.1 FPMC: A Basic Model
	3.2 Box Block: A Basic Component
	3.3 Box4Rec: Prediction Method

	4 Recommendation Strategies
	5 Experiments
	5.1 Experimental Details
	5.2 Performance Comparison
	5.3 Studies of Box4Rec

	6 Conclusions
	References

	UKIRF: An Item Rejection Framework for Improving Negative Items Sampling in One-Class Collaborative Filtering
	1 Introduction
	2 Related Work
	2.1 One-Class Collaborative Filtering
	2.2 OCCF Techniques

	3 Unknown Items Rejection Framework (UKIRF)
	3.1 Similarity-Based Rejection Strategies

	4 Experimental Setup
	4.1 Datasets
	4.2 Baselines
	4.3 Assessment

	5 Results and Analysis
	6 Conclusion
	References

	IACN: Influence-Aware and Attention-Based Co-evolutionary Network for Recommendation
	1 Introduction
	2 Related Work
	3 Notations, Definitions, and Preliminaries
	4 Proposed Method
	4.1 Model Details
	4.2 Network Training

	5 Experimental Settings
	5.1 Performance Comparison (RQ1)
	5.2 Analysis of IACN (RQ2)

	6 Conclusion and Future Work
	References

	Nonlinear Matrix Factorization via Neighbor Embedding
	1 Introduction
	2 Related Work
	2.1 Dynamic Routing of CapsNet
	2.2 Collaborative Filtering

	3 Capsule Matrix Factorization
	3.1 Input Layer
	3.2 Neighborhood Layer
	3.3 Weight Construction Layer
	3.4 Propagation Layer
	3.5 Embedding Loss for Latent Factor

	4 Experiment
	4.1 Experiment Setup
	4.2 Rate Prediction Accuracy
	4.3 Parameter Analysis

	5 Conclusion
	References

	Deconfounding Representation Learning Based on User Interactions in Recommendation Systems
	1 Introduction
	2 Related Work
	3 Method
	3.1 Problem Formulation
	3.2 User Intent Representation Generating
	3.3 Item Representation Generating
	3.4 Learning Strategy

	4 Experiments
	4.1 Experimental Settings
	4.2 Overall Comparison
	4.3 Ablation Study

	5 Conclusions
	References

	Personalized Regularization Learning for Fairer Matrix Factorization
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Data Biases and Regularization
	4.1 Data Biases
	4.2 Validation
	4.3 Relation to Regularization

	5 Personalized Regularization Learning
	5.1 Personalized Regularization Learning
	5.2 Leveraging ALS
	5.3 Data Split
	5.4 Interpretability

	6 Experiments
	6.1 Datasets
	6.2 Baselines
	6.3 Specifications and Results

	7 Discussion
	References

	Instance Selection for Online Updating in Dynamic Recommender Environments
	1 Introduction
	2 Instance Selection in Online Recommendation
	2.1 Profile-Based Selection
	2.2 SPL-Based Selection

	3 Experiments
	3.1 Performance Comparison
	3.2 Sensitivity of Parameters
	3.3 Case Study

	4 Related Work
	5 Conclusion
	References

	Text Analytics
	Fusing Essential Knowledge for Text-Based Open-Domain Question Answering
	1 Introduction
	2 Related Work
	2.1 Text-Based Question Answering
	2.2 Knowledge Base Question Answering

	3 Our System: KF-QA
	3.1 Overview
	3.2 Knowledge-Aware Encoder
	3.3 Ranker and Reader
	3.4 Training

	4 Experiments
	4.1 Setup
	4.2 Overall Performance
	4.3 Ablation Study: Ranker Performance
	4.4 Case Study

	5 Conclusion
	References

	TSSE-DMM: Topic Modeling for Short Texts Based on Topic Subdivision and Semantic Enhancement
	1 Introduction
	2 Our TSSE-DMM Model
	2.1 Topic Subdivision
	2.2 Semantic Enhancement
	2.3 Model Inference

	3 Experiments
	3.1 Datasets and Experiment Setup
	3.2 Qualitative Analysis
	3.3 Quantitative Analysis

	4 Related Work
	5 Conclusions
	References

	SILVER: Generating Persuasive Chinese Product Pitch
	1 Introduction
	2 Persuasion Rule Derivation
	2.1 Features
	2.2 Labeling Rules

	3 SILVER: Ensemble-Rerank
	4 Experiments
	4.1 Experimental Setup
	4.2 Competitors
	4.3 Objective Evaluation
	4.4 Evaluation by Human

	5 Related Work
	6 Conclusion
	References

	Capturing SQL Query Overlapping via Subtree Copy for Cross-Domain Context-Dependent SQL Generation
	1 Introduction
	2 Related Work
	3 Task Formulation
	4 Model
	4.1 Model Architecture
	4.2 Utterance and Interaction Encoder
	4.3 Schema Embedding
	4.4 SemQL Tree Encoder
	4.5 SemQL Tree Decoder
	4.6 Model Learning

	5 Experiment
	5.1 Dataset and Experimental Settings
	5.2 Baselines
	5.3 Main Results
	5.4 Ablation Study

	6 Conclusion
	References

	HScodeNet: Combining Hierarchical Sequential and Global Spatial Information of Text for Commodity HS Code Classification
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The HScodeNet Model
	4.1 Hierarchical Sequence Learning (HSL) Module
	4.2 Text Graph Learning (TGL) Module
	4.3 Feature Fusion and Classification
	4.4 Label Correlation Loss (LCL) Function

	5 Experiments
	5.1 Datasets
	5.2 Settings
	5.3 Baselines
	5.4 Experimental Results and Analyses

	6 Conclusion
	References

	PLVCG: A Pretraining Based Model for Live Video Comment Generation
	1 Introduction
	2 Related Work
	3 PLVCG Model
	3.1 Problem Formulation
	3.2 PLVCG Encoder Module
	3.3 PLVCG Decoder Module

	4 Training PLVCG
	4.1 Pre-training PLVCG
	4.2 Comment Generation Task
	4.3 Comment Discrimination Task

	5 Experiment
	5.1 Dataset
	5.2 Evaluation Metrics
	5.3 Baseline Models
	5.4 Experiment Settings
	5.5 Experiment Results
	5.6 Human Evaluation
	5.7 Case Study

	6 Conclusion
	References

	Inducing Rich Interaction Structures Between Words for Document-Level Event Argument Extraction
	1 Introduction
	2 Model
	2.1 Document Encoder
	2.2 Structure Generation
	2.3 Structure Combination

	3 Experiments
	4 Related Work
	5 Conclusion
	References

	Exploiting Relevant Hyperlinks in Knowledge Base for Entity Linking
	1 Introduction
	2 Preliminaries and Related Works
	3 Methodology
	3.1 Context-Level Disambiguation
	3.2 Document-Level Disambiguation
	3.3 Candidate Selection
	3.4 Result Generation

	4 Experiments
	4.1 Experiment Setup
	4.2 Results
	4.3 Discussions

	5 Conclusions
	References

	TANTP: Conversational Emotion Recognition Using Tree-Based Attention Networks with Transformer Pre-training
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Task Definition
	3.2 Architecture

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Results and Discussion

	5 Conclusion
	References

	Semantic-Syntax Cascade Injection Model for Aspect Sentiment Triple Extraction
	1 Introduction
	2 Related Work
	3 Method
	3.1 Cascade Pointer Network
	3.2 Semantic-Syntax Information Injection Gate
	3.3 Training and Inference

	4 Experiment
	4.1 Datasets and Settings
	4.2 Our Model and Baselines
	4.3 Main Result
	4.4 Ablation Experiments
	4.5 Further Analysis

	5 Conclusion
	References

	Modeling Inter-aspect Relationship with Conjunction for Aspect-Based Sentiment Analysis
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Definition and Notations
	3.2 Input Layer
	3.3 Aspect-Specific Sentential Representations Modeling
	3.4 Conjunction-Based Inter-aspect Relationship Modeling
	3.5 Final Classification
	3.6 Model Training

	4 Experiments
	4.1 Experimental Setting
	4.2 Model Comparisons
	4.3 Ablation Study
	4.4 Effect on Single Aspect and Multi-aspect
	4.5 Case Study

	5 Conclusion
	References

	Author Index

