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General Chairs’ Preface

On behalf of the Organizing Committee, it is our great pleasure to welcome you to the
25th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD
2021). Starting in 1997, PAKDD has long established itself as one of the leading
international conferences in data mining and knowledge discovery. Held during May
11-14, 2021, PAKDD returned to India for the second time, after a gap of 11 years,
moving from Hyderabad in 2010 to New Delhi in 2021. Due to the unexpected
COVID-19 epidemic, the conference was held fully online, and we made all the
conference sessions accessible online to participants around the world.

Our gratitude goes first and foremost to the researchers, who submitted their work to
the PAKDD 2021 main conference, workshops, and data mining contest. We thank
them for the efforts in research, as well as in preparing high-quality online presentations
videos. It is our distinct honor that five eminent keynote speakers graced the confer-
ence: Professor Anil Jain of the Michigan State University, USA, Professor Masaru
Kitsuregawa of the Tokyo University, and also the National Institute of Informatics,
Japan, Dr. Lada Adamic of Facebook, Prof. Fabrizio Sebastiani of ISTI-CNR, Italy,
and Professor Sunita Sarawagi of IIT-Mumbai, India. Each of them is a leader of
international renown in their respective areas, and we look forward to their
participation.

Given the importance of data science, not just to academia but also to industry, we
are pleased to have two distinguished industry speakers. The conference program was
further enriched with three high-quality tutorials, eight workshops on cutting-edge
topics, and one data mining contest on the prediction of memory failures.

We would like to express our sincere gratitude to the contributions of the Senior
Program Committee (SPC) members, Program Committee (PC) members, and
anonymous reviewers, led by the PC co-chairs, Kamal Karlapalem (IIIT, Hyderabad),
Hong Cheng (CUHK), Naren Ramakrishnan (Virginia Tech). It is through their
untiring efforts that the conference have an excellent technical program. We are also
thankful to the other Organizing Committee members: industry co-chairs, Gautam
Shroff (TCS) and Srikanta Bedathur (IIT Delhi); workshop co-chairs, Ganesh
Ramakrishnan (IIT Mumbai) and Manish Gupta (Microsoft); tutorial co-chairs,
B. Ravindran (IIT Chennai) and Naresh Manwani (III'T Hyderabad); Publicity Co-Chairs,
Sonali Agrawal (IIT Allahabad), R. Uday Kiran (University of Aizu), and Jerry C-W
Lin (WNU of Applied Sciences); competitions chair, Mengling Feng (NUS); Pro-
ceedings Chair, Tanmoy Chakraborthy (IIIT Delhi); and registration/local arrangement
co-chairs, Vasudha Bhatnagar (University of Delhi), Vikram Goel (IIIT Delhi), Naveen
Kumar (University of Delhi), Rajiv Ratn Shah (IIIT Delhi), Arvind Agarwal (IBM),
Aditi Sharan (JNU), Mukesh Giluka (JNU) and Dhirendra Kumar (DTU).

We appreciate the hosting organizations IIIT Hyderabad and the JNU, Delhi, and all
our sponsors for their institutional and financial support of PAKDD 2021. We also
appreciate Alibaba for sponsoring the data mining contest. We feel indebted to the
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PAKDD Steering Committee for its continuing guidance and sponsorship of the paper
and student travel awards.

Finally, our sincere thanks go to all the participants and volunteers. There would be
no conference without you. We hope all of you enjoy PAKDD 2021.

May 2021 R. K. Agrawal
P. Krishna Reddy
Jaideep Srivastava



PC Chairs’ Preface

It is our great pleasure to present the 25th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2021). PAKDD is a premier international forum
for exchanging original research results and practical developments in the space of
KDD-related areas, including data science, machine learning, and emerging
applications.

We received 768 submissions from across the world. We performed an initial
screening of all submissions, leading to the desk rejection of 89 submissions due to
violations of double-blind and page limit guidelines. Six papers were also withdrawn
by authors during the review period. For submissions entering the double-blind review
process, each paper received at least three reviews from PC members. Further, an
assigned SPC member also led a discussion of the paper and reviews with the PC
members. The PC co-chairs then considered the recommendations and meta-reviews
from SPC members in making the final decision. As a result, 157 papers were accepted,
yielding an acceptance rate of 20.4%. The COVID-19 pandemic caused several chal-
lenges to the reviewing process, and we appreciate the diligence of all reviewers, PC
members, and SPC members to ensure a quality PAKDD 2021 program.

The conference was conducted in an online environment, with accepted papers
presented via a pre-recorded video presentation with a live Q/A session. The confer-
ence program also featured five keynotes from distinguished researchers in the com-
munity, one most influential paper talk, two invited industrial talks, eight cutting-edge
workshops, three comprehensive tutorials, and one dedicated data mining competition
session.

We wish to sincerely thank all SPC members, PC members, and external reviewers
for their invaluable efforts in ensuring a timely, fair, and highly effective PAKDD 2021
program.

May 2021 Hong Cheng
Kamal Karlapalem
Naren Ramakrishnan
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Abstract. Hypergraph is a complex data structure capable of express-
ing associations among any number of data entities. Overcoming the lim-
itations of traditional graphs, hypergraphs are useful to model real-life
problems. Frequent pattern mining is one of the most popular problems
in data mining with a lot of applications. To the best of our knowledge,
there exists no flexible frequent pattern mining framework for hyper-
graph databases decomposing associations among data entities. In this
work, we propose a flexible and complete framework for mining frequent
patterns from a collection of hypergraphs. We also develop an algorithm
for mining frequent subhypergraphs by introducing a canonical label-
ing technique for isomorphic subhypergraphs. Experiments conducted
on real-life hypergraph databases demonstrate both the efficiency of the
algorithm and the effectiveness of the proposed framework.

Keywords: Frequent pattern mining - Graph mining - Hypergraphs

1 Introduction

Graphs are being widely used to represent complex structures such as social
network, web, protein structures, chemical compounds, etc. It has the ability
to model complex pairwise relationships among various types of data entities.
However, in many real-life problems, relationships among data entities go beyond
pairs. Graphs fail to preserve any kind of associations involving more than two
entities. To illustrate this limitation, let us consider a problem of presenting col-
laborations of authors in a bibliography of a paper. A naive solution can be using
a graph where each vertex represents an author and vertices representing authors
collaborating in a paper are connected by edges. But from such a representation,
it cannot be determined whether a paper has contributions from any three or
more given authors. Hypergraph is a flexible data structure that overcomes this
limitation. A hypergraph consists of a set of vertices and a set of hyperedges
where a hyperedge can associate any number of vertices. In Fig. 1(a), we show
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a hypergraph presenting collaborations of authors in a bibliography of a paper.
Here the vertices vy, va, vs, vg4, vs and vg refers to six authors and hyperedges
e1, e and eg refers to three papers. For example, authors referred by vertices vy,
vg and w3 has collaborated in the paper referred by e;. Hypergraphs are being
used in various data mining and machine learning tasks as classification and
clustering [1,11,13].

Fig.1. (a) A hypergraph, (b) A subhypergraph pattern, (c¢) Another subhypergraph
pattern.

Extracting interesting patterns from a collection of data is a core problem of
data mining. Frequency is one of the mostly used parameters in pattern mining.
Frequent pattern mining can be applied to many real-life applications such as
clustering, classification, outlier analysis, etc. Various algorithms have been pro-
posed for mining frequent patterns from transactional itemset databases [2,9],
sequential databases [6,8] and graph databases [4,5,12]. A framework for fre-
quent hypergraph mining has been proposed in [3]. However, the proposed frame-
work is rigid as it avoids decomposing associations presented by any hyperedge.
Let us consider a hypergraph H, presented in Fig. 1(a); a subhypergraph pattern
hi, presented in Fig. 1(b); and another subhypergraph pattern hq, presented in
Fig. 1(c). Let each hyperedge represent a research paper containing vertices cor-
responding to authors collaborating in the paper. For example, the hyperedge e;
in hypergraph H expressed the collaborations of authors corresponding to ver-
tices v1, v and v3 in a paper. According to the framework in [3], hy is considered
only as a candidate pattern or subhypergraph of H but not hs as the hyperedge
€2 has been decomposed in hy. But the collaborations in ho of authors vy, v
and v3 in paper e1; vs and v4 in paper es is also expressed by H. Thus hs is
a potential interesting pattern for H and inflexible definition of subhypergraph
without decomposing hyperedges leads to loss of many interesting patterns.

In the current work, we establish a complete and flexible framework for min-
ing frequent patterns from a collection of hypergraphs. In our framework, the
definition of subhypergraph decomposes each hyperedge considering all the sub-
sets of vertices contained by it. This provides flexibility in the framework and
results in mining more useful patterns for real-life applications. We also propose
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an efficient algorithm named FHGM (Frequent HyperGraph Miner) for mining
frequent hypergraphs from a vertex and edge labeled hypergraph database. The
major challenge in frequent pattern mining is the explosion of candidate pattern
search space especially for complex types of data. Mining frequent patterns from
graph databases is more costly than sequential databases. For hypergraphs, the
search space explodes even more. Besides, finding subhypergraph isomorphism is
an NP-complete problem and so testing false candidates are costly. To cope with
these challenges, our algorithm constructs the search space in a depth first search
manner unlike Apriori [9] based algorithms. It helps to avoid costly level-wise
candidate generation process and minimizes false candidates. Another major
challenge of frequent hypergraph mining is the generation of isomorphic sub-
hypergraph candidates. To avoid testing and expanding duplicate isomorphic
subhypergraphs, we introduce canonical labeling of subhypergraph candidates.
Testing and expanding candidates associated with canonical label only helps
to skip redundant subhypergraph isomorphism tests. Furthermore, following the
widely used downward closure property to prune the search space, our algorithm
does not expand any infrequent candidates as any hypergraph extended from an
infrequent hypergraph will also be infrequent.
Our key contributions can be summarized as:

— We propose a flexible framework for frequent hypergraph mining.

— We develop an efficient algorithm named FHGM for extracting frequent
hypergraphs that constructs the search space avoiding level-wise candidate
generation.

— We devise a canonical labeling technique for hypergraph to define the repre-
sentative of the whole isomorphism class of a hypergraph to prune duplicate
isomorphic candidates.

The rest of the paper is organized as follows: Sect.2 defines the proposed
framework. In Sect. 3, we present our proposed methods. Section4 contains the
details of experiments and we conclude the paper in Sect. 5.

2 Proposed Framework

Let D be a set of labeled hypergraphs and L be the set of labels. A hypergraph H
can be represented with a 3-tuple, < Vg, Eg,lg >, where Vg is a set of vertices,
Ey is a set of hyperedges each containing the vertices that it connects, Iy :
Vg U Ey — Ly is a function that labels the vertices and hyperedges. In Fig. 2,
we show an example database of hypergraphs containing three hypergraphs Hi,
H> and Hj3 with labeled vertices and hyperedges. For example, the vertex v; and
the hyperedge e, in H; are labeled as a and p respectively. A subhypergraph
isomorphism from a subhypergraph h = < Vj,, Fj,l;, > to a hypergraph H =
< Vi, Eyg,lg > holds if there exists a function ¢ : V; U B}, — Vg U Eg, such
that,

(6(v))

1. Yo € Vi, lp(v) =l .
li(é(e)) and e C ¢(e).

2. Ve € Eh,lh(e) =
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Hy Ho H;

Fig. 2. A hypergraph database D

In Fig. 3, we present a subhypergraph h’. In Table 1, we show two subhyper-
graph isomorphism from h’; ¢; and ¢o, to hypergraphs H; and Hs respectively.
There exists no subhypergraph isomorphism from h’ to hypergraph Hj.

Table 1. Subhypergraph isomorphisms

Vertex/Hyperedge | ¢1(in Hi1) | ¢2(in Ha)
vy V1 v
V2 V2 Vg
vs3 vs vs
on on on
el e1 es
Fig. 3. A subhypergraph h’ e s o

Let @(h, H) be the set of all subhypergraph isomorphism from a subhyper-
graph h to a hypergraph H. The frequency support of a subhypergraph h in a
hypergraph H can be defined as,

1, if |®(h, H)| > 1
0, otherwise

sup(h,H) = { (1)

In our example database, the frequency support of a subhypergraph h in a
hypergraph H, sup(h’, H;) = 1 as there is a subhypergraph isomorphism from
I’ to hypergraph H;j. Similarly, sup(h’, Hy) = 1. But sup(h’, H3) = 0 as there
exists no subhypergraph isomorphism from h’ to hypergraph Hj.

The frequency support of a subhypergraph h in a hypergraph database D
can be defined as

sup(h, D) = > sup(h, H) (2)
HeD
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For example, the frequency support of the subhypergraph h’ of Fig.3 in
the hypergraph database D of Fig.2, sup(h/, D) = sup(h', Hy) + sup(h', Hy) +
sup(h',Hs) =14+14+0=2.

Frequent Hypergraph Mining Problem: Given a set of labeled hypergraphs

D and a user defined threshold §, frequent subhypergraph mining discovers all

subhypergraphs h, such that sup(h, D) > minsup where minsup = |D| x §. For
2

our example database D, if § is 5, then minsup = 3 x % = 2. Now h’ is a frequent

subhypergraph as sup(h’, D) > minsup.

3 Proposed Methods

In this section, we present our proposed algorithm named FHGM. To discover
all the frequent subhypergraphs, we have to develop a search space of candidate
subhypergraphs in such a way that all frequent subhypergraphs are enumerated.
For generating candidate subhypergraphs, starting from an empty hypergraph,
we extend each candidate subhypergraph in a depth first search fashion rather
than level-wise candidate generation which have been proven to be expensive in
terms of both runtime and memory for itemset, sequence and graph mining. A
naive way of extending a candidate can be adding vertex or a new hyperedge
to the existing subhypergraph in every possible way but it will generate large
number of duplicate subhypergraphs. In our algorithm, we identify each ver-
tex and hyperedge of all candidates with a unique discovery time value that is
assigned according to the order in which they have been added to the candidate.
We define the vertex and hyperedge with maximum discovery time value as last
vertex and last hyperedge respectively. For a candidate subhypergraph h, we can
denote them as last,(h) and last.(h) respectively. To minimize duplicate sub-
hypergraphs generation, FHGM extends the candidates in any of the following
ways possible:

— Hyperedge-extension: Adding a vertex to the last hyperedge. This ver-
tex can be a new vertex or one the the vertices that already exists in the
candidate.

— Hyperedge-append: Adding a new hyperedge containing only one of the
existing vertices.

We can present an extension using a 4-tuple <type, vertex, vertex label, edge
label>. For example, <e, 1, a, -> represents hyperedge-extension by adding
a vertex with label “a” and discovery time 1. On the contrary, <a, 0, b, p>
represents hyperedge-append by adding a new hyperedge with label “p” that
contains only one vertex with label “b” and discovery time 0. Now, we can
present each candidate subhypergraph with a sequence of extension tuples. In
Algorithm 1, we present the pseudocode for finding all possible extensions of a
candidate in a hypergraph database.

However, extending this manner can still generate duplicate isomorphic can-
didates. A solution to this problem can be keeping a list of candidates generated.
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Algorithm 1: Find Extensions

Input : h : a candidate subhypergraph, D: a set of hypergraphs
Output: E: the set of possible extensions

1 begin

2 E «— 0;

3 for He D do

4 if h =0 then

5 for e € Fy do

6 for v € e do

7 | E«— EU{<a,0,I1v),1(e)>}

8 else

9 for ¢ € &(h,H) do

10 for e € Ey do

11 for v € e do

12 ifed o' andv ¢ ¢ ' then

13 | E <« E U {<a, discovery(¢~"(v)), 1(v), I(e)>};
14 for v € ¢(last.(h)) do

15 if v¢ ¢! then

16 | E— E U {<e, discovery(last,(h)) + 1, I(v), ->};
17 else if ¢~ *(v) ¢ last.(h) then

18 ‘ E « E U {<e, discovery(¢~'(v)), 1(v), ->};

Whenever a new candidate is generated, it can be discarded if any isomorphic
candidate already exist in the list. But it requires a lot of hypergraph isomor-
phism tests which is costly. To solve this problem, we introduce canonical labeling
to candidates. We define a partial order among the isomorphic candidate and
extended the minimum isomorphic candidate as a representative of the whole
isomorphism class.

Given two extensions ext; =< t1,d1,ly,,le, > and exts =< ta,da, ly,, le, >,
let us define a partial order among extensions such that ext; < exts if and only
if one of the followings holds,

— t; = e and ty = a.

—t1 =aand to = a and di < ds.
—t1=aand to =a and d; =dy and l., <l,.
—ti=aand ty =aand d; =ds and [, =1, and l,, <l,,.
— t1 =eand ty = e and di < ds.

—t1 =eand g =e and dy =dg and l,,, <l,,.

Given two candidate subhypergraphs, we can define a partial order between
them by comparing their extension tuple by tuple according to the sequence.
Based on this order, we define the minimum sequence of extension tuples as
the canonical representative. FHGM extends a candidate if it is canonical and
discards others as they are isomorphic form of the canonical one. Algorithm 2
shows how to determine whether a candidate is canonical or not. Finally, we
utilize downward closure property by not extending any infrequent candidates
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as any candidate extended from an infrequent candidate will also be infrequent.
Pruning the search space using downward closure property helps to eliminate
many false candidates. We present the pseudocode of FHGM for mining frequent
subhypergraph in Algorithm 3.

Algorithm 2: Check Canonical

Input : C : a sequence of extension tuples

1 begin

2 h — GetHypergraph(C) // converts extensions to hypergraph
3 Ct — (Z);

4 for i — 1 to —C— do

5 E — FindExtensions(Get Hypergraph(Cy),{h});

6

7

8

9

if C[i] # min(F) then
return False;
Cyinsert(Cli));
return True;

Algorithm 3: FHGM
Input : h : a subhypergraph, D: a set of hypergraphs,
minsup: a support threshold // Initially h « ()

1 begin

2 E — FindExtensions(h, D),

3 for e € ' do

4 ht — extend(h, e);

5 if CheckCanonical(ht)= true and sup(ht, D) > minsup then
6 h: is a frequent subhypergraph;

7 FHGM (ht, D, minsup);

In Fig.4, we present a simulation of our proposed FHGM algorithm on
database D of Fig. 2. For the convenience of presentation, we have taken a high
value of § = 1 to limit candidate generation. For § = 1, minsup = 3 x 1 = 3.
Starting from an empty subhypergraph candidate Cj, we have extended each
candidate using Algorithm 1. We have presented each candidates in the search
tree using a sequence of extension tuples. We have skipped extending any non-
canonical candidates which are presented by dashed boxes. For example, we have
not extended candidate Ci3 as it is a non canonical representation. However, the
candidate C7g represents an isomorphic subhypergraph of the subhypergraph
presented by Ci3 and Ci¢ has been extended for being the canonical represen-
tation. The infrequent candidates are shown in dotted boxes. For example, the
candidate C7 is a canonical representation. But it has not been extended as
the frequency of Ci7 in D is 1 which fails to satisfy the minsup threshold. The
frequent candidates are shown in solid box. That means the subhypergraphs
corresponding to Cs, C3, Cs, C7, C19 and C14 are frequent in D with respect to
6=1.
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Fig. 4. Simulation of frequent hypergraph mining algorithm

4 Experiments

To evaluate the effectiveness and efficiency of our proposed algorithm, we have
conducted experiments. In this section, we discuss the experimental settings and
result analysis. We present the details of dataset extraction process in Sect. 4.1,
experimental result analysis in Sect. 4.2. To evaluate the framework, we analyze
hypergraph classification performance using frequent patterns in Sect. 4.3.

4.1 Dataset Description

We have extracted academic social networks data provided by ArnetMiner [10]
to build hypergraph databases. The ArnetMiner [10] dataset provides details of
research articles such as authors, domain, bibliography, and etc. We have built six
databases using papers from six different domains. From each domain, we have
randomly selected 1000 papers. For each paper, we have created a hypergraph
where the hyperedges represent the papers that have been cited and contains
vertices corresponding to the authors of the cited paper. In Table 2, we present
the statistical description of the databases.



Mining Frequent Patterns from Hypergraph Databases 11

Table 2. Statistical description of databases

Domain No. of Average no. | Average no. | Average No. of vertex
hypergraphs | of vertices of hyperedges | hyperedge labels
length
Data mining 1000 15.865 5.884 3.095 107
Machine learning 1000 11.895 5.146 2.653 96
Computer security 1000 17.051 6.488 3.053 92
Computer network 1000 17.048 5.852 3.227 110
Bioinformatics 1000 19.16 4.688 4.428 263
Distributed computing | 1000 14.584 5.013 3.275 127

4.2 Results and Discussions

For analyzing the performance of our proposed algorithm, we have conducted
experiments on our collected real-life datasets. We have implemented the FHGM
algorithm using Python 3.7 programming language. We have utilized an Intel
Core i7-6700k CPU @ 4.00 GHz with 16 GB RAM to conduct all the experiments.
As a baseline for comparison, we have considered a naive version of FHGM that
mines frequent subhypergraphs without pruning the search space using canonical
labeling. For performance evaluation metrics, we have included runtime and
the number of candidates generated. Higher number of candidates generation
indicates higher number of false candidates generation as well as weaker search
space pruning ability.

In Fig.5, we present the runtime of FHGM both with and without pruning
using canonical labeling on six real-life hypergraph databases. It is evident that
pruning using canonical labeling reduces the runtime substantially. The runtime
increases as the frequency threshold decreases. The increment in runtime is less
significant when pruning using canonical labeling is performed which results in
higher performance gap for lower frequency thresholds. For example, the runtime
increases by 53.91s when the frequency threshold reduces from 1.0% to 0.6% on
database Data Mining without pruning whereas the increment with pruning is
only 12.54s. In Table3, we present the number of candidates generated and
the number of frequent patterns. The number of candidates generated is higher
without pruning which is the reason behind longer runtime. The number of
frequent patterns also increases as the frequency threshold decreases.

4.3 Hypergraph Classification Using Frequent Patterns

To evaluate the effectiveness of our proposed frequent pattern mining frame-
work, we have implemented a hypergraph classification algorithm. The task is
to predict the domain of a paper given the hypergraph representation of the bib-
liography. For feature extraction, we have mined frequent subhypergraphs from
the six databases separately. We have followed elbow method on the number of
frequent patterns [7] to determine the frequency thresholds. Finally, we build a
feature vector for each hypergraph of size equal to the number of total mined
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Fig. 5. Runtime analysis of FHGM

frequent patterns. The i-th element of the vector is 1 if there exists a subhyper-
graph isomorphism from the i-th pattern to the hypergraph, and 0 otherwise. We
have utilized an ensemble classifier of Multi-layer Perceptron classifier (Neural
Network), SupportVector Machine, Decision Tree classifier, Naive Bayes classi-
fier, and K-NearestNeighbour classifier with max voting strategy. To split the
train set and test set, we have followed K-Fold stratified cross-validation tech-
nique(Nine folds for training and one fold for testing). For comparison, we have
considered another classifier that uses frequent patterns mined without decom-
posing hyperedges as proposed in [3] to build the feature vector. In Table4,
we present the classification accuracy for both the methods along with stan-
dard deviation. Significantly higher accuracy indicates the effectiveness of our
proposed framework to mine interesting patterns from hypegraphs.
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Table 3. Runtime and patterns statistics of FHGM

(a) Data mining

1) Without pruning With pruning Frequent patterns
Runtime(sec.) | Candidates | Runtime(sec.) | Candidates
0.9% | 71.626 19985 10.034 13155 371
0.8% | 75.742 21574 11.920 13911 445
0.7% | 104.241 29440 15.185 15514 629
0.6% | 120.555 34968 21.081 17243 813
(b) Machine learning
0.9% | 7.562 9347 4.072 8867 171
0.8% | 16.16 10540 5.204 9249 231
0.7% | 21.562 11846 6.188 9826 294
0.6% | 27.110 12961 8.962 10518 424
(c) Computer security
1.2% | 8.715 12916 6.464 12223 237
1.1% | 20.112 14549 8.209 12951 318
1.0% | 29.329 18366 11.380 14122 411
0.9% | 101.041 51535 14.532 16154 603
(d) Computer network
1.8% | 11.345 13623 2.990 11372 93
1.7% | 11.836 13908 3.273 11554 104
1.6% | 397.913 84111 6.012 12205 203
1.5% | 447.722 13830 7.888 12311 213
(e) Bioinformatics
1.9% | 1.586 12130 1.468 11862 32
1.8% | 2.305 13176 1.829 12289 46
1.7% | 4.614 17252 2.467 13134 63
1.6% | 9.693 21952 3.420 14014 93
(f) Distributed computing
1.8% | 10.154 12637 2.114 10405 60
1.7% | 10.526 12783 2.339 10501 67
1.6% | 389.831 94635 4.554 11112 158
1.5% | 410.713 94730 4.754 11202 162

Table 4. Classification accuracy

Features Without decomposing hyperedges

FHGM framework

Accuracy(%) | 33.15 £ 1.80

51.55 £ 1.57

13
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5 Conclusions

In this paper, we have proposed a complete framework for mining frequent pat-
terns from hypergraph databases that decomposes hyperedges to build patterns.
We have also developed an efficient algorithm named FHGM for mining fre-
quent patterns from a collection of hypergraphs. To cope with the exploding
search space, we have adopted search space pruning techniques in the algorithm.
We have introduced a canonical labeling technique for the whole isomorphic
class of a hypergraph for search space reduction. We have conducted experi-
ments on real-life datasets. Significantly lower runtime and reduced search space
demonstrates the efficiency of our algorithm whereas higher classification accu-
racy obtained by using frequent patterns as features indicates the effectiveness
of the framework to mine interesting patterns. More efficient methods for min-
ing using parallel processing, approximate methods can be considered as future
work.

Acknowledgement. This work is partially funded by (a) ICT Division, Government
of People’s Republic of Bangladesh; (b) NSERC (Canada); and (c¢) University of Man-
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Abstract. Graph is used to represent various complex relationships
among objects and data entities. One of the emerging and important
problems is graph classification that has tremendous impacts on various
real-life applications. A good number of approaches have been proposed
for graph classification using various techniques where graph embedding
is one of them. Here we propose an approach for classifying graphs by
mining discriminating frequent patterns from graphs to learn vector rep-
resentation of the graphs. The proposed supervised embedding technique
produces high-quality entire graph embedding for classification utilizing
the knowledge from the labeled examples available. The experimental
analyses, conducted on various real-life benchmark datasets, found that
the proposed approach is significantly better in terms of accuracy in
comparison to the state-of-the-art techniques.

Keywords: Pattern mining - Graph mining * Frequent pattern
mining - Discriminating pattern mining - Graph classification

1 Introduction

Graph is a widely used data structure for many domains such as social net-
work analysis, bioinformatics, and chemo-informatics. It has gained popularity
due to its ability to represent a variety of data types and complex relation-
ships between data entities. Graphs can also be used to represent sequences and
trees. With the colossal amount of graph data being accumulated worldwide
from various sources, graph classification has become an important problem in
the domain of Knowledge Discovery and Data Mining. It can be applied to
many real-world problems, namely predicting property of chemical compounds,
detecting anomalous activity in social networks, etc. However, many of the exist-
ing classification algorithms consider vector representation of data entities that
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encodes descriptive, discriminating features. The accuracy of any classification
algorithm depends primarily on the discriminating power of the features used.

Graph kernel-based approaches [13,14,19] have been proposed for accom-
plishing above mentioned or various data analytical tasks on graph dataset.
A graph kernel is a function that captures the similarity between two objects
or entities represented by graphs. The similarity is defined generally based on
the similarity between the elementary fragments of the objects such as random
walks or paths, fixed-sized sub-graphs, or rooted sub-trees. The kernel-based
approaches have some major limitations: (i) the fragments used as features are
not often discriminating as randomly sampled fragments are used as features;
(ii) these methods scale poorly to large datasets or large graphs as the number
of fragments escalates highly; and finally, (iii) the generated fragments are often
not large enough to distinguish between graphs well due to loss of connectivity
information.

Inspired by the success of word and document embedding techniques [6,8],
methods for embedding of substructures within a graph such as nodes, edges [5]
have been proposed. The approaches are effective for tasks like node classifica-
tion, link prediction, etc. For graph analysis tasks, such as graph classification
and clustering, simple aggregate functions like average is used on the embed-
dings of the substructures within a graph to obtain the entire graph embedding
which results in loss of structural information. To address the limitation, various
attempts have been made to obtain entire graph embedding directly. One such
approach is, Graph2vec [9], an unsupervised approach to learn graph embedding
from rooted sub-trees. GE-FSG [10], another similar unsupervised approach,
employs frequent subgraphs to learn entire graph embedding. A major drawback
of using Graph2vec and GE-FSG for graph classification is that they follow unsu-
pervised approaches without exploiting the knowledge of ground truths (labeled
examples) available while learning the embedding. As a result, it becomes hard
to determine the class from the embedding. Besides, in the case of GE-FSG,
frequent subgraphs may not be contained in many of the graphs as frequent
subgraphs mining with a significantly lower threshold is prohibited due to com-
putational complexity. For example, 191 graphs of 1000 graphs from benchmark
graph dataset IMDB-B do not contain any of the frequent subgraphs mined with
20% frequency threshold. In consequence, these graphs are characterized in the
embedding only by the absence of all feature subgraphs and such characteriza-
tion fails to help determine the class properly as these graphs belong to different
classes (123:68 in IMDB-B).

In the current paper, we propose a supervised entire graph embedding tech-
nique dedicated to graph classification. We develop an algorithm for extracting
discriminating frequent subgraphs as features. To ensure that each graph con-
tains a significant amount of feature subgraphs while overcoming the compu-
tational complexity, we adopt multi-phase frequent subgraph mining. We also
propose a measure for filtering non-discriminating candidate feature subgraphs
which utilizes the given classes of the labeled graphs. Then we employ the dis-
criminating subgraphs to learn graph embeddings which have turned out to be
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effective for classification even though we have used simple and shallow neural
network to learn the embeddings. Substantial improvement from other existing
approaches in classification accuracy along with visualization of the embeddings
demonstrate the effectiveness of our proposed feature extraction, representation
learning and classification methods for graphs. Our key contributions in this
work can be summarized as:

— We propose a supervised embedding method that produces entire graph
embedding for classification.

— We develop an algorithm for extracting discriminating feature subgraphs from
a graph dataset.

— We conduct extensive experiments on benchmark graph datasets and achieved
significant improvement in graph classification accuracy.

The rest of the paper is organized as follows: Sect. 2 describes the neural word and
document embedding methods related to our approach. In Sect. 3, we propose our
graph embedding method in detail. Section 4 contains details about experimental
setup, results and analysis. In Sect. 5, we discuss the future research scopes and
summarize our methods and analysis.

2 Background

In this section, we review two popular approaches for neural embedding of words
and documents respectively. These approaches are successfully being applied to
many natural language processing (NLP) tasks such as document classification,
word clustering, and etc. Continuous bag of words (CBOW) and Skip-gram
model [8] attempt to produce high-quality dense vector representation of words
that are able to capture semantic properties of a word. In both approaches,
the embedding of a target word is learned from the context. The context is
defined by the encompassing words. This model takes a corpus of sentences as
sequences of words. Given such a sequence {w1, wa,..., W¢,..., wr }, the m-length
context of a target word w; is defined by the words wWi_ ..., We_1, Wig1,...,
Witm. CBOW model tries to predict the target word given the context. Mathe-
matically, for each target word w; in a sequence, it maximizes the log-likelihood
log Pr(we|Wi—my ooy Wi—1, Wit 1, ooy Wit ). However, Skip-gram model adopts a
somewhat different approach. It tries to predict the context words given the
target word. That is, it maximizes 10g Pr(wWi_ym, o, We—1, Wi i1, -vey Wi pom |We).

PV-DBOW [6] is an approach for learning vector representation of entire
document from the words contained. The proposed model is an extension of
Skip-gram model. Here, the entire document is comparable to the target word,
and the words in the document is used as the context. Given a set of documents
D = {d;, da,..., dy,}, where each d€D is a sequence of words {w1, wa,.., W},
PV-DBOW outputs the embeddings of the documents in D. For each document
d € D, it maximises the following log likelihood Zg.:l log Pr(w,|d).
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3 The Proposed Method

This section presents the proposed graph classification method. After defining
the framework, we present the candidate feature subgraphs mining process in
Sect. 3.1, non-discriminating feature filtering process in Sect.3.2 and Sect. 3.3
explains the graph embedding learning technique.

Definition 1 Supervised Graph Embedding Learning Framework: Let
D be a set of labeled graphs and L be a set of labels for nodes and edges in D.
A labeled graph G € D can be represented by 3-tuple < V, E,l > where V is a
set of vertices; E C V x Vis a set of edges; I: VU E — L, is a function that
labels vertices and edges. The graphs in D can be divided into mutually exclusive
sets Dy and D, where for each graph in D, class labels are known and D = DU
D,. A function c: D; — C is given where C is the set of class labels. Given this
information, we have to learn a function f: D — R™ that maps each graph G €
D to a fized m-length vector. Finally, we have to predict the class label of each
graph G, € D,, that is, learning a function c,: D, — C.

3.1 Candidate Feature Subgraphs Mining

For extracting feature subgraphs to characterize the graphs, we have employed
frequent subgraph mining techniques. To enforce the constraint of coverage, we
define a minimum coverage threshold, min_cov. A graph is covered by a subgraph
if there exists at least one subgraph isomorphism from the subgraph to the graph.
Our goal is to find a set of feature subgraphs so that for each graph G € D, the
number of subgraphs that covers G is at least min_cov. Initially, we have mined
frequent subgraphs in multiple phases (k phases where k > 1). In each phase,
frequent subgraphs are mined from those graphs with min_cov threshold yet
to be fulfilled with a frequency threshold lower than the previous phase. We
have used gSpan [18] algorithm to mine frequent subgraphs. However, frequent
subgraph mining is expensive and not reasonable for executing a higher number
of phases. On the other hand, with a lower number of phases, it is likely that
min_cov threshold of many graphs may not be satisfied. Hence, in the next
step, we have mined the smallest subgraphs from those graphs by the number
of edges until their min_cov threshold is satisfied. The reason behind mining
smallest subgraphs is that their frequency will always be higher than the larger
subgraphs.

3.2 Filtering Candidate Feature Subgraphs

The number of candidate feature subgraphs extracted by frequent subgraph min-
ing and smallest subgraphs mining is often enormous. Using all these subgraphs
to learn embedding leads to higher computation cost. Note that all of the mined
subgraphs are not effective for learning embeddings, especially for classification.
To filter-out such non-discriminating subgraphs, we propose a feature selection
measure for subgraphs inspired by information-gain measure. The entropy value
of the set of graphs D, is defined as follows:
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Here, N; is the number of graph G € D; such that ¢(G) = i. Let g be a
subgraph and DY € Dy be a set of graphs such that each G; € Dy is covered by
g. Now, we define the gain of a subgraph g in D; as,

Gaing(Dy) = I

H(D: )+‘D DY« H(D - DY)

g ( )
D— D D Dt

Algorithm 1: Feature Subgraphs Extraction

Input : D = D;UD,: aset of graphs, k: number of phases, min_cov:
minimum coverage threshold, §: frequency threshold, A: frequency
threshold discount

Output: Dy: a set of feature subgraphs

1 begin
2 Dy — 0;
3 Candidates « 0;
4 for i <— 1 to k do
5 temp «— 0;
6 for G € D do
7 if Coverage(G, Candidates)< min_cov then
8 ‘ temp «— temp U {G};
9 if temp.length() < 1 then
10 ‘ Break;
11 FSGs < FindFSG(temp, ¢) // FindFSG mines frequent subgraphs
from temp with a frequency threshold §
12 Candidates < Candidates U FSGs;
13 0«— 06— A;
14 for G € D do
15 while Coverage(G, Candidates)< min_cov do
16 g = Find smallest subgraph by edge number in G which is not in
Candidates;
17 Candidates « Candidates U {g};
18 while True do
19 if Candidates = () then
20 ‘ Break;
21 g = Find subgraph in Candidates with maximum Gaing(D;) value ;
22 for G € D do
23 if Coverage(G, Dy )< min_cov and g€ G then
24 Dy — Dy U{g}
25 Break;
26 Candidates « Candidates - {g};

27 end
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To obtain the final set of feature subgraphs, we start with an empty set of
subgraphs D¢. We pick each candidate feature subgraphs in descending order
of gain value. The subgraph is added to Dy if it covers a graph whose coverage
threshold is not satisfied by the subgraphs in Dy.

Algorithm 1 presents a pseudo-code of our feature subgraphs extraction pro-
cess. At first, we generate candidate subgraphs by mining frequent subgraphs
in multiple phases (lines 4-13) and then the smallest subgraphs (lines 14-17).
Next, we pick subgraphs from candidates, based on the order of their gain value,
that covers any graph whose coverage falls below the threshold (lines 18-26).

3.3 Learning Embedding from Feature Subgraphs

Our graph embedding method is inspired by PV-DBOW [6] but we have followed
CBOW model rather than Skip-gram. We have designed a model that attempts
to predict the graph given the feature subgraphs covering it to learn the graph
embeddings. We define a partial ordering among the graphs in D and another
among the subgraphs in D;. Let G; be the t-th graph in D, g; be the j-th
subgraph in Dy and g;,, g, ..., g, be the subgraphs in Dy that cover G;. For
each Gy € D, we maximize log Pr(Gt|gt,, gty s g, )- Let W € RIPsIxm and
W’ € R™*IPl be two matrices. The i-th row of W corresponds to the vector
embedding of i-th subgraph in D; and j-th column of W’ corresponds to the
vector embedding of j-th graph in D. We learn W and W’ using back-propagation
algorithm. Our model is similar to the neural network model proposed in CBOW
model as shown in Fig. 1. It is a 3-layer neural network with a hidden layer.

e RIDsI W' e RmxIDI y € RIP!
-

heR™

Fig. 1. Graph embedding model

Let x; € RIPsl be a vector where the i-th element is 1 and all other elements
are 0. For each Gy € D, # = £ 3" | a, is the input vector of the model. The
values of the hidden layer is calculated as, h = W7Tz. The output layer is com-
puted as y = Softmax(u) where u = W’'Th. Here, y; represents the probability
of the predicted graph to be the G;. We can define the loss function to minimize
as follows,

(W W Z IOg PT’ Gt|gt17gt27' 7gt Z log yt (3)
GeD GeD

In this model, W and W’ are the parameters to optimize. We have used
Stochastic Gradient Descent algorithm for optimizing Eq. (3). Vector embedding



22 M. T. Alam et al.

of graph G; can be obtained as, f(G;) = w’y, the t-th column of W’. Finally, the
vector embeddings of the graphs in D; can be directly used to train a classifier
model and vector embeddings of the graphs in D, can be used to predict their
classes.

4 Experiments

In this section, we describe the experiments conducted for evaluating the pro-
posed graph classification technique. Details and characteristics of the datasets
are presented in Sect. 4.1. We define our evaluation criteria and experimental set-
tings in Sect. 4.2. Experimental results and comparative analyses are presented
in Sect.4.3. In Sect.4.4, we examine the sensitivity of the algorithm perfor-
mance towards parameter values. Section 4.5 shows the runtime analysis of our
algorithm. Finally, in Sect. 4.6, we analyze the effectiveness of our method using
visualization techniques.

4.1 Datasets

We have conducted our experiments on eight benchmark real-life datasets. These
datasets cover chemoinformatics, bioinformatics and social network domains.
D&D [4] is a graph dataset of protein structures divided into two classes: enzymes
or non-enzymes. The nodes represent amino acids and edges denote spatial close-
ness. ENZYMES [1] is a dataset obtained from the BRENDA enzyme database
in which the graphs correspond to protein tertiary structures. IMDB-B [19] is
a dataset from social network domain. Here, the nodes indicate actors/actresses
and edges represent their co-appearance in the same movie. The graphs are
labeled with two classes of genre (Action or Romance). Mutag [3] is a graph
dataset containing chemical compounds associated with class labels according
to their mutagenic effect on a specific bacteria. NCI1 and NCI109 [17] are two
chemical compound datasets screened for activity against ovarian cancer and
lung cancer cell lines. PROTEINS [1] contains graphs with nodes indicating
secondary structure elements and edges indicating neighborhood in amino-acid
sequence. PTC [16] is another chemical compound dataset with class labels
denoting carcinogenicity on rats.

4.2 Experimental Setup

To evaluate the effectiveness of the proposed algorithm, we have performed
graph classification on the aforementioned benchmark datasets. As a classifier, an
ensemble classifier of Multi-layer Perceptron classifier (Neural Network), Support
Vector Machine, Decision Tree classifier, Naive Bayes classifier, and K-Nearest
Neighbour classifier have been employed. We have adopted max voting strategy
to combine their votes. K-Fold stratified cross-validation method is employed
with nine folds for training and one fold for testing. For each dataset, the exper-
iment is repeated five times then the average accuracy is taken and the standard
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deviation is noted. All the experiments have been conducted on an Intel Core
i7-6700k CPU @ 4.00 GHz with 16 GB RAM and our algorithm is implemented
using Python 3.7 programming language. The major parameters in our model
are k: the number of phases, min_cov: minimum coverage threshold, §: frequency
threshold, A: frequency threshold discount and m: length of embedding vector.
We have determined §, the frequency threshold using elbow method on the num-
ber of frequent subgraphs as proposed in [12]. This base frequency threshold
value for each dataset is presented in Table 1. We have examined with parameter
values of min_cov € {10, 15, 20, 25, 30} and m € {2, 4, 8,..., 256}. Empirically,
we have derived that the parameter values: min_cov = 10, m = 64, k = 5, A
= 0.025 works well across all the datasets. We present the parameter sensitivity
analysis of the algorithm later in Sect. 4.4.

Table 1. Classification accuracy of our method and state-of-the-art methods on bench-
mark datasets.

Method D&D | Enzymes | IMDB-B | Mutag | NCI1 | NCI109 | Proteins | PTC

GK 78.45 |26.61 65.87 81.66 |62.28 |62.60 |71.67 57.26
(0.26) | (0.99) (0.98) (2.11) | (0.29) | (0.19) | (0.55) (1.41)
Deep GK | 73.50 |27.08 66.96 82.66 |62.48 |62.69 |71.68 57.32
(1.01) | (0.79) (0.56) (1.45) |(0.25) | (0.23) | (0.50) (1.13)

WL 77.95 |53.15 | 72.86 | 80.72 |80.13 |80.22 7292 | 56.97
(0.70) | (1.14) | (0.76) | (3.00) | (0.50) |(0.34) |(0.56) | (2.01)
PSCN 7712 | - 71.00 | 92.63 | 78.59 |- 75.89 | -
(2.41) |- (2.29) | (4.21) | (1.89) |- (2.76) |-
ECC 73.65 |50.00 | — 89.44 |83.80 |81.87 |- -
SAGPool |76.45 | — 7810 9042 |74.18 |74.06 | 71.86 | -
(0.97) | - (420) | (7.78) |(1.20) (0.78) | (0.97) |-

Graph2Vec | 58.64 |44.33 | 63.10  83.15 | 73.22 |74.26 | 73.30 | 60.17
(0.01) | (0.09) | (0.03) | (9.25) | (1.81) (1.47) | (2.05) | (6.86)
GE-FSG | 91.69 |49.33 | 73.00  84.74 84.36 8559 8179 | 62.57
(0.02) | (0.07) | (0.04) | (0.07) | (0.02) (0.01) | (0.04) | (0.09)

GSSNN 80.26 | — 80.10 96.77 | 80.75 |— 79.73 —
(2.50) | - (3.25) | (4.68) | (4.07) - (3.31) |-
GAT-GC - 5845 |- 90.44 |- - 7681 | -
- (6.35) |- (6.44) |- - (3.77) |-
GCKN |- - 7.8 97.2 839 |- 764 | 70.8
- - (2.6) | (2.8) |(1.6) - (3.9) | (4.6)
Ours 93.46 | 59.82 88.56 97.00 194.92 /97.40 |83.44 84.94

(0.54) | (0.16) | (0.34) | (0.53) | (0.21) (0.12) | (0.67) | (0.50)
5 0.30 |0.70 0.20 030 [020 020 |0.50 0.20
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4.3 Results and Discussions

We have compared the performance of our algorithm with several baseline
methods: Graphlet kernel (GK) [14], Deep GK [19], Weisfeiler-Lehman kernel
(WL) [13], PSCN [11], ECC [15], SAGPool [7], Graph2Vec [9], GE-FSG [10],
GSSNN [21], GAT-GC [20], and GCKN [2]. In Table1, we have presented the
accuracy (with standard deviation) of our model and other state-of-the-art meth-
ods. Accuracies of the baseline methods have been collected as reported in the
papers. The best accuracy achieved by the methods in consideration is marked
in bold. We can observe notable improvement in accuracy. Our method has out-
performed other approaches on seven datasets D&D, Enzymes, IMDB-B, NCI1,
NCT109, Proteins and PTC with significant gain. Despite, on dataset Mutag,
our model has been outperformed by GCKN on a small margin, small standard
deviation indicates our model to be more robust. This robustness is also visible
for other datasets.

4.4 Parameter Sensitivity

In this section, we explore how the accuracy of our algorithm is affected by differ-
ent choices of parameters. In Fig. 2, we demonstrate how classification accuracy
gets affected by different choices of frequency threshold. For both the datasets,
PTC and Enzymes, the accuracy is higher for lower frequency threshold. In our
algorithm, high frequency threshold leads to fewer large subgraphs mined for
feature subgraph candidates as large subgraphs tend to have a lower frequency
than small ones. So, the increment in accuracy with lower frequency threshold
shows the importance of capturing large structural information in embedding
for better graph classification. In Fig. 3, we present the classification accuracy
of our algorithm on datasets: PTC, Enzymes and IMDB-B for different choices
of embedding vector length while keeping values of other parameters fixed. For
relatively lower values of m (embedding vector length), with increment of vector
length, accuracy gets better. This is a reflection of the fact that with very low
vector size it is hard to capture effective feature representation. However, for rel-
atively higher values of m, we can observe that increment of vector length results
in worse accuracy for Enzymes which is due to over-fitting in embedding learn-
ing step. Figure4 shows classification accuracy for different values of min_cov
(Minimum coverage threshold). As the value of min_cov increases, less patterns
are filtered out and the accuracy decreases for datasets PTC and Enzymes. This
demonstrates the effectiveness of our proposed feature selection technique to fil-
ter out the non-discriminating subgraphs. However, for dataset IMDB-B, we can
observe that lower value of min_cov may filter out too many patterns and result
in low classification accuracy.
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4.5 Runtime Analysis
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For analyzing the runtime of the proposed algorithm we divide the algorithm in
three phases: Feature Mining, Filtering and Embedding as described in Sects.
3.1, 3.2 and 3.3 respectively. Runtime for each of these phases on benchmark
datasets is presented in Table 2. Across all datasets, feature mining phase takes
significantly more time than the other two phases.

Table 2. Runtime(in minutes) for different phases on benchmark datasets.

Phase D&D | Enzymes | IMDB-B | Mutag | NCI1 | NCI109 | Proteins | PTC
Feature mining | 28.13 | 61.88 1132.08 | 230.36 | 24.66 | 22.58 403.26 | 8.68
Filtering 0.74| 0.04 0.05 0.03| 0.63| 0.61 0.30 |0.02
Embedding 0.26 | 0.37 0.12 0.01| 213 | 2.12 0.27 0.53
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4.6 Visualization

To demonstrate how using discriminating subgraphs only improves the classifica-
tion accuracy, in this section, we present visualization of the graph embeddings
produced by the proposed method. We have used principal component analy-
sis for dimensionality reduction to visualize the vectors in R2. For comparison,
we have produced visualization for embeddings both with and without filter-
ing non-discriminating candidate feature subgraphs. In Fig.5, visualizations of
embeddings for dataset PTC and NC109 have been presented. Data points asso-
ciated with different classes are displayed in different colors. From Fig.5, it is
evident that embeddings produced using discriminating subgraphs only tend to
cluster better according to their classes. These well separable clusters make it
easy to distinguish between classes and result in better classification accuracy.
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Fig. 5. Visualization of embedding for datasets PTC and NC109

5 Conclusions

In this paper, we have proposed a supervised neural embedding-based graph clas-
sification algorithm. We have developed an algorithm for mining discriminating
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frequent subgraphs from a collection of graphs using our proposed feature selec-
tion measure. Utilizing the discriminating subgraphs, our proposed algorithm
produces entire graph embeddings that are easily separable between classes as
demonstrated through embedding visualization. We have conducted experiments
on benchmark graph datasets. Comprehensive analysis, comparing our method
against baseline methods, shows that our algorithm has outperformed others
with remarkable improvement in accuracy for graph classification. For future
work, developing efficient methods for mining discriminating feature subgraphs
faster, using deep neural network architecture can be considered.
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Abstract. In this uncertain world, data uncertainty is inherent in many
applications and its importance is growing drastically due to the rapid
development of modern technologies. Nowadays, researchers have paid
more attention to mine patterns in uncertain databases. A few recent
works attempt to mine frequent uncertain sequential patterns. Despite
their success, they are incompetent to reduce the number of false-positive
pattern generation in their mining process and maintain the patterns effi-
ciently. In this paper, we propose multiple theoretically tightened pruning
upper bounds that remarkably reduce the mining space. A novel hierar-
chical structure is introduced to maintain the patterns in a space-efficient
way. Afterward, we develop a versatile framework for mining uncertain
sequential patterns that can effectively handle weight constraints as well.
Besides, with the advent of incremental uncertain databases, existing
works are not scalable. There exist several incremental sequential pat-
tern mining algorithms, but they are limited to mine in precise databases.
Therefore, we propose a new technique to adapt our framework to mine
patterns when the database is incremental. Finally, we conduct exten-
sive experiments on several real-life datasets and show the efficacy of our
framework in different applications.

Keywords: Sequential pattern mining + Uncertain database *
Weighted sequential patterns - Incremental database

1 Introduction

Sequential Pattern Mining is an important and challenging data mining prob-
lem [11,13] with broad applications where the order of the itemsets or events
in a sequence is important. There are many applications such as environmen-
tal surveillance, medical diagnosis, security, and manufacturing systems etc.,
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where uncertainty is inherent in nature due to several limitations: (i) our limited
understanding of reality; (ii) limitations of the observation equipment; or (iii)
limitations of available resources for the analysis of data, etc. A large number
of approaches have been introduced in [1,5,7,8] to mine frequent itemsets from
uncertain databases. Algorithms proposed in [3,15] mine sequential patterns in
uncertain databases. However, in the real world, not all items are equally impor-
tant. For example, in biomedical data analysis, some genes are more vital than
others in causing a particular disease. Weighted pattern mining methods are
proposed in [6,14] for this task. Rahman et al. [12] handle weight constraints in
mining uncertain sequential patterns by maintaining weight and expected sup-
port threshold separately. Thus, it can efficiently mine sequences having high
frequencies with high weights but incompetent to mine sequences which have low
frequencies with high weights or high frequencies with low weights. Besides, exist-
ing uncertain sequential pattern mining methods have some vital limitations such
as: (i) generation of a huge number of false-positive patterns due to the pruning
upper bounds; (ii) inefficient maintenance of candidate patterns, which results
in costly support computation; and (iii) lack of a sophisticated weight upper
bound to mine weighted patterns efficiently while maintaining anti-monotone
property. To address these limitations, we propose multiple novel pruning upper
bounds that are theoretically tightened than respective upper bounds already
introduced in the literature and utilize a hierarchical index structure to maintain
potential candidate patterns in a space-efficient way.

Moreover, with the advent of modern technologies, most databases are
dynamic and incremental in nature. A large number of researches [2,4,9] have
been successful in incremental pattern mining. But none of the existing uncer-
tain sequential pattern mining algorithms are effective in handling the dynamic
nature because running batch algorithms from scratch after each increment is
not a feasible solution in the sense of time. To the best of our knowledge, our
proposed technique is the first work to mine sequential patterns in incremental
uncertain databases. In summary, our contributions in this work are as follows,

1. Three theoretically tightened upper bounds: expSup®®?, wgt®*?, wExpSup“*P
to reduce the search space of mining potential candidate patterns.

2. A novel hierarchical index structure, USeg-Trie, to maintain the patterns.

3. A faster method, SupCalc, to compute expected support of patterns.

4. An efficient algorithm, FUSP, to mine sequential patterns in uncertain
database.

5. An approach InUSP for incremental mining of uncertain sequential patterns.

Extensive experimental analysis validates the efficacy of our proposed methods
and shows that our methods consistently outperform other baseline approaches.

2 Background Study

Related Works. Among a plethora of research on sequential pattern mining,
GSP [13] works based on candidate generation and testing paradigm whereas
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Table 1. Initial database, DB Table 2. Weight table
Id | Uncertain sequence Item | Weight | Item | Weight
1 | (a:0.9, ¢:0.6) (a:0.7) (b:0.3)(d:0.7) a 0.8 b 1.0
2 | (a:0.6, c:0.4) (a:0.5) (a:0.4, b:0.3) c 0.9 d 0.9
3 | (a:0.3) (a:0.2, b:0.2) (a:0.4, b:0.3, g:0.5) e 0.7 f 0.9
4 |(a:0.1, ¢:0.1) (a:0.3, b:0.1, c:0.4) g 0.8
5 |(d:0.1) (a:0.4) (d:0.1) (a:0.5, c:0.6)
6 |(b:0.3) (b:0.4) (a:0.1) (a:0.1, b:0.2)

PrefizSpan [11] follows the divide-and-conquer approach to mine frequent
sequences in precise databases. PrefizSpan [11] expands patterns by recursively
projecting the database into smaller parts and mining local patterns in those
prefix-projected databases. Uncertain data has gained great attention in recent
years [1,6,10,12,15]. Inspired by PrefizSpan, U-PrefizSpan [10] mines proba-
bilistic frequent sequences whereas uWSequence [12] mines expected support-
based frequent sequences with weight constraints in uncertain databases. uWSe-
quence [12] uses expSupport'®® upper-bound to prune the mining space of
patterns. They use weight threshold as an extra level of filtering which is
not aligned with the concept of weighted support defined in [14] for precise
databases. Following [14], we introduce the concept of weighted expected sup-
port in uncertain sequential pattern mining that considers both expected sup-
port and weight of patterns simultaneously.Further, researchers proposed vari-
ous algorithms in [2,4,9] to handle increments in databases. IncSpan [2] intro-
duces the concept of buffering semi-frequent sequences (SFS) mined from initial
databases which may become frequent after future increments. WincSpan [4]
finds weighted sequential patterns in incremental precise databases. Despite the
promising significance of incremental uncertain sequential pattern mining in dif-
ferent applications, existing works are not capable to mine patterns efficiently.
Hence, we introduce a new concept of promising frequent sequences (PFS) to
improve the efficiency

Preliminaries. Let I = {i1, is,..., i} be the set of all items in a database.
An event e; = (i1, ia,...,ik) is a subset of I. A sequence is an ordered set
of events. For example, a=<(i2), (i1,5), (¢1)> consists of 3 consecutive events.
In uncertain sequences, items in each event are assigned with their existen-
tial probabilities such as « =<(ia: P;,), (i1: Piy, 5 Pig), (i1 Ps)>. An
uncertain sequential database is a collection of uncertain sequences shown in
Table 1. Support of a sequence « in a database is the number of data tuples
that contain « as a subsequence. In this paper, we follow the definition of
expected support (expSup) for a sequence (items within the sequence are inde-
pendent) which is defined in [12] as the sum of the maximum possible probabil-
ities of that sequence in each data tuple where the probability of a sequence is
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computed simply by multiplying the uncertainty value of its all items. A sequence
a can be extended with an item 7 in two ways: 1) i-extension, insert i to the
last event of «, and ii) s-extension, add i to o as a new event. Weight of a
sequence (sWeight) is the sum of its each individual item’s weight divided by
the length of the sequence [14] i.e., the total number of items in the sequence.
According to Table1 and Table2, for sequence o = <(a)(b)>, support of «
is 5, expSup(a) = max(0.9 x 0.3,0.7 x 0.3) + max(0.6 x 0.3,0.5 x 0.3) +
maxz(0.3 x 0.2,0.3 x 0.3,0.2 x 0.3) + (0.1 x 0.1)4+0+4 (0.1 x 0.2) =0.57, and
sWeight(a) = (0.8 4 1.0)/2 = 0.9 as per the definitions.

3 A Framework for Mining Uncertain Sequential
Patterns

In this section, we propose a new framework for mining sequential patterns
in uncertain databases efficiently with/without the weight constraints in min-
ing patterns followed by discussing the incremental mining approach when the
database would be of dynamic nature.

Definitions. max Pr is the maximum possible probability of a sequence a =<
(i1)(42)...(4o|) > in the whole database [12],

||

mazPr(e) = [[(Ppsja,_, (i) where ax_y =< (i1)..(ix—1) > (1)
k=1

where ﬁD Bla(i) = maximum possible probability of item 7 in a database DB | a
that is the projection of original database with « as current prefix [11]. Moreover,
[12] shows that the mazPr measure holds anti-monotone property. Similar to
maxPr, we define another measure maxzPrg(a) as the maximum probability of
a pattern « in a single data sequence S. According to Table 1, the mazPr(<
(¢)(a) >) = 0.6 x 0.7 = 0.54 and mazPr(< (ac) >) = 0.9 x 0.6 = 0.54; where for
the 1st data sequence, maxzPrg(<(a)(b)>) = max(0.9 x 0.3, 0.7 x 0.3) = 0.27.
We define an upper bound of expected support of a sequence « of length m as,

expSup? (o) = mazPr(om,—1) x Z mazPrs(im) (2)
VSE(DB|am—_1)

Lemma 1. For a sequence «, expSup®®P(a) > expSup(a) and expSup(a) >
expSup(a/),'where aCa';. expSup®®P(a) > expSup(al). If expSup®(a) < a
minimum threshold v holds, then expSup(a) < v and expSup(a’) < 7, Va Do
must be true. Thus it satisfies the anti-monotonicity constraints.

Lemma 2. For a sequence o, expSup®(a) < expSupport°P(a)talways holds.
Hence, expSup®P(«) significantly reduces the search space in mining patterns
and leads to a smaller number of false positive patterns than expSupport'°P(«).

! wWSequence[12] defines the upper bound of expected support as expSupport'?(a)
= mazPr(am—1) X maxPr(in) X sup;,, where sup;,, is the support count of iy,.
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Later on, we define few more definitions where each item has a weight to indicate
its importance. We will be consistent with weighted pattern mining in following
sections. Note that our framework is easily adaptable to mine patterns without
weight constraints that is discussed in the experiments section. Following the con-
cept of weighted support for precise database in [14], we define weighted expected
support of a sequence a as WES(a) = expSup(a) x sWeight(a). According to
Tables 1 and 2, WES(<(a)(b)>) = 0.57 x 0.9 = 0.513. A sequence « is called
weighted sequential pattern if W ES(«) meets a minimum threshold. This thresh-
old is defined to be minWES = min_sup X (size of the whole database) x
WAM x wgtFct. Here, min_sup is user given value in range [0,1] related to
a sequence’s frequency, WAM is weighted arithmetic mean of all item-weights
present in the database and defined as WAM = (3, ., w; X f;)/>_;c; fi, where
w; and f; are the weight and frequency of item ¢ in current database. Hence, the
value of WAM changes after each increment in the database. wgtFct is a user-
given positive value chosen to tune the mining of weighted sequential patterns.
Choice of min_sup and wgtFct depends on how much frequent and weighted
patterns are required in the respective applications.

However, the measure W ES does not hold anti-monotone property as any
item with higher weight can be appended to a weighted-infrequent sequence and
the resulting super-sequence may become weighted-frequent. So, to employ anti-
monotone property in mining weighted frequent patterns, we propose two other
upper bound measures, wgt®*? and wEzpSup®®?, which are used as upper bound
of weight and weighted expected support respectively. Upper bound of weight of
a sequence «, wgt®P(«) is defined as,

wgt(a) = max(meWpp(DBla), meW(a)) (3)

where maWpp(DB|a) is the mazimum weight of all frequent items in the a-
projected database and maWs(a) is the mazimum weight of all items in the
sequence a. To enforce the anti-monotone property of weighted frequent patterns
in precise databases, authors in [4,14] make an attempt to use the maximal
weight of all items in database as upper bound of weight of a sequence. It is
obvious to see that wgt®P of a sequence is always less than or equal to the
maximal weight of all items in database. As wgt®®®? becomes tighter, it generates
fewer false positive patterns compared to the existing methods.

Lemma 3. For any sequence o, wgt®® () is at least equal to the sWeight value
of a and all of its supersequences, o'. Because, wgt®®?(a) > sWeight(a) and
wgt®P(a) > wgt?(a ), where o C o ; .- wgt®™ (o) > sWeight(a ).

The proposed upper bound of weighted expected support is defined as,

wErpSup®™? (o) = expSup®P(a) x wgtP () (4)

Lemma 4. For a sequence «, if wEzpSup®®(a) < minWES, then none of

a and its supersequences can be weighted frequent. Because, wExpSup®®?(«) >
WES(a), and wExpSup®®(a) > WES(a ), for alla C « .
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According to Lemma 4, we can safely define our pruning condition to reduce the
search space of patterns in pattern-growth based mining as follows:

If for any k-sequence o, wExpSup®®(a) < minWES, then searching pos-
sible extension of « to (k+1)-sequence can be pruned, i.e., neither a nor any
super sequences of a would be frequent at all.

Moreover, Lemma 4 ensures that our proposed algorithms do not generate
any false negative patterns. However, as wExpSup®®?(«) > W ES(«), some pat-
terns may be discovered with wExpSup®?(a) > minWES but WES(a) <
minW ES. An extra scan of the database is required to remove them. We have
omitted proof of the lemmas due to space limitation.

3.1 USeq-Trie: Maintenance of Patterns

We use a hierarchical data structure, named as USeg-Trie, to store uncertain
sequences and update their weighted expected support efficiently. Each node in
the USeq-Trie represents an item in a sequence and will be created as either
s-extension or i-extension from its parent node. Recall that a sequence is an
ordered set of events, and an event is a set of items. In s-extension, the edge
label is added as a different event. In i-extension, it is added in the same event
as its parent. Each edge is labeled by an item. The edge labels in a path to
a node from the root form a pattern. For example, <(a)>, <(b)>, <(ab)>
<(c)>, <(b)(c)>, <(d)>, <(cd)> and <(c)(d)> are sequential patterns which
are stored into USeq-Trie shown in Fig.1. In this figure, the s-extensions are
denoted by the solid lines and i-extensions by dashed lines. For simplicity of the
figure, we are not showing edge labels here. Each node represents a (weighted)
frequent uncertain sequence and stores its (weighted) expected support. Now,
we present an efficient method, SupCale, to calculate expSup or WES for each
candidate pattern stored in a USeg-Trie.

the considering data sequence

—> s-extension
ka:O.S*b:0.7)| (a:0.9, b:0.6) kc:O.S)- —---» j-extension
a =<(&1) (e2) (e3) (eq) (es)>
mmm
WES(<(a)>) = 0+0.9°0.8 = 0.7~
[00]o0p8las]oo] o] e -vovos-o
WES(<(b)>)
WES(<(ab)>) (@b):0.49) =0+0.71.0=10.7,

WES(<

i = 0+0.0% 09+09/2 0.0

Fig. 1. An efficient way to compute WES of patterns stored into USeq-Trie

= 0+0.54*(0.8+1.0)/2 = 0.49

o) (o] ool o
of pattern s WES(<(B)(c)>)
=0+0.21%(1.0+0.9)2= 0.2

WES(<(c)(d)>)
= 0+40.27*(0.9+0.9)/2
=0.24



Uncertain Seq. Mining With Hier. Index Struct. 35

Support Calculation, SupCalc. It reads sequences from the dataset one by
one and updates the support of all patterns in USeq-Trie against them. For a
sequence o =< ejey..e, > (where e; is an event/itemset), the steps are following,

1. Define an array of size n at each node. For the root node, all values are 1.0.
At a particular node, the maximum expected support of pattern s from root
to that node is stored at proper indices of the node’s array - are the ending
positions of s as a sub-sequence in «. The values at other indices are 0.0.

2. While traversing the USeg-Trie in depth-first order: (i) For a node created by
a s-extension with an item iy, iterate over all events in o and calculate the
support of the current pattern s (ends with i in a new event) by multiplying
the probability of item 7; in current event e,, with the maximum probability
in the parent node’s array up to the event e,, ;. The resulting support is
stored at position m in the following node’s array. (ii) For i-extension, the
support will be calculated by multiplying the probability of the item i in e,
with the value at position m in the parent node’s array and stored at position
m in the following child node’s array. After that, the maximum value in the
resulting array multiplied by its weight will be added to the weighted expected
support of the current pattern at the corresponding node.

3. Use the resultant array to calculate the weighted expected support of all super
patterns while traversing the next child nodes.

Figurel shows the resulting USeq-Trie after updating WES for all the stored
patterns against a sequence, a=<(a:0.8)(b:0.7)(a:0.9,b:0.6)(¢c:0.3)(d:0.9)>.

Complexity of SupCale. It takes O(N X |al) for updating N number of nodes
against the sequence . Therefore, the total time complexity of actual support
calculation is O(|DB]| x N x k) where k is the maximum sequence length in
the dataset. It outperforms the procedure used in uWSequence [12] which needs
O(|DB| x N x k?) to calculate a sequence’s actual expected support. Moreover,
we can remove false-positive patterns and find frequent ones from the USeg- Trie
in O(N). Thus, the use of USeg-Trie has made our method efficient.

3.2 FUSP: Faster Mining of Uncertain Sequential Patterns

Inspired by PrefizSpan [11], we propose FUSP to mine weighted sequential pat-
terns in an uncertain database. It uses the wExpSup®?P measure and SupCalc
method to reduce the search space and improve the efficiency. The sketch of
FUSP algorithm is as follows.

1. Process the database such that the existential probability of an item in a
sequence is replaced with the maximum probability of all of its next occur-
rences in this sequence. This idea is similar to the preprocess function of
uWSequence [12]. This preprocessed database will be used to run the Pre-
fixSpan-like mining approach to find the candidates for frequent sequences.
While processing, sort the items in an event/itemset in lexicographical order.

2. Calculate WAM of all items present in the current database and calculate
the threshold of weighted expected support, min WES.
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3. Find length-1 frequent items and for each item, project the preprocessed
database into smaller parts and expand longer patterns recursively. Store the
potential candidates patterns into a USeq-Trie.

4. While growing longer patterns, extend current prefix o to o with an item 3
as s-extension or t-extension according to the pruning condition.

5. Use of wExpSup® value instead of actual support generates few false-
positive candidates. Scan the whole actual database, update weighted
expected supports and prune false-positive candidates based on their WES.

3.3 InUSP: Incremental Mining of Uncertain Sequential Patterns

Existing incremental works [2,4] follow the technique to lower the minimum sup-
port threshold by a user-given buffer ratio, u € [0,1], and find almost frequent
sequences called SFS - stating that most of the frequent patterns in the appended
database will either come from SFS or already frequent sequences (F'S) in the
initial database. Inspired by this concept, we use minWES = minWES x I
to find SFS where minWES’ < WES < minWES, along with F'S where WES
> minWES. However, we argue that SF'S is not necessarily enough to capture
new frequent patterns in future increments. Let us consider some cases: (a) an
increment to the database may introduce a new sequence which was initially
absent in both FS and SFS but frequently appeared in later increments; (b)
a sequence had become infrequent after an increment but could have become
semi-frequent or even frequent again after next few increments. There are many
real-life cases where new frequent patterns might appear in future increments due
to its seasonal behavior or different other characteristics. Existing approaches do
not handle these cases. To address these cases, we propose to maintain another
set of sequences denoted as Promising Frequent Sequences (PFS) which are nei-
ther globally frequent nor semi-frequent after each increment ADB introduced
into DB but their WES satisfy a user-specified threshold that can be defined as
LWES =~ x u x min_sup X |ADB| x WAM x wgtFct where v is a constant
factor, to find locally frequent patterns in ADB at a particular point. Here, the
globally frequent or semi-frequent implies when considering the size of the entire
database, and locally frequent when using the size of only one increment. Intu-
itively, we can say that locally frequent patterns may become globally frequent or
semi-frequent after next few increments. The patterns whose WES values do not
meet the local threshold LWES, are very unlikely to become globally frequent
or semi-frequents. Thus maintaining PFS may significantly increase the perfor-
mance of an algorithm in finding the almost complete set of frequent patterns
after each increment. Therefore, we devise InUSP to incorporate the concept of
PFS in mining patterns. Instead of performing FUSP from scratch after each
increment, InUSP works only on ADB. Initially, it runs FUSP once to find out
FS and SFS from initial database and uses USeq-Trie to store F'S and SFS. In
addition, a different USeq-Trie, which is initially empty, is used to store PF'S.
After each increment ADB, the steps of InUSP algorithm are as follows:

1. Update the values of database size, WAM, min WES, and minWES'.
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. Run FUWS only in ADB to find locally frequent sequences (LFS) against

a local threshold, LWES, and store them into USeq-Trie. Users can choose

LWES based on the aspects of application.

— if WES, < LWES, delete a’s information.

— else if WES, < minWES’, move a to PFS’.
— else if WES, < minWES, move o to SFS’.
— else move o to F'S’.

increment.
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Fig. 2. FUSP outperforms uWSequence in candidate pattern generation

Table 3. Runtime (seconds) comparison between uWSequence and FUSP

Sign dataset Kosarak dataset Fifa dataset

min_sup | uWSeq | FUSP | min_sup | uWSeq |FUSP | min_sup | uWSeq | FUSP
20% 717.69 |10.64 |0.25% | 5942.06 |348.32 |20% 1615.50 | 12.73
18% 1116.75 | 18.34 | 0.22% | 7102.27 |443.13 | 18% 2943.45 | 25.85
15% 2052.04 {32.64 | 0.2% 8581.56 |475.12 | 17% 4003.97 | 34.79
12% 4316.43 1 72.39 | 0.18% |14622.38659.30 | 16% 6114.34 | 56.05
10% 7275.41122.94 | 0.15% |33864.18 1029.70 | 15% 9033.86 | 74.95

4 Experimental Results

We have evaluated our algorithms using several real-life and popular datasets
such as Sign, Kosarak, Fifa, Leviathan, Retail, Foodmart, Chainstore, and Online
Retail from SPMF? data repository. We assigned probability and weight values

2 http://www.philippe-fournier-viger.com /spmf/index.php?link=datasets.php.
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to the items of these datasets as all of them were precise and none of them
contained weight information. We followed normal distribution with mean of
0.5 and standard deviation of 0.25 (for probabilities) or 0.125 (for weights) to
generate these values. We implemented our algorithms in Python programming
language and a machine with Core™ i5-9600U 2.90GHz CPU and 8GB RAM.

Performance of FUSP. We have compared with the recent algorithm, uWSe-
quence [12], which proposed a framework where the definition of weighted
sequential pattern in uncertain databases is different from ours. Furthermore,
uWSequence [12] outperforms existing methods for mining sequential patterns
also without weight constraints in uncertain databases. So, to show the efficiency
of FUSP in mining uncertain sequential patterns without weight constraints, we
have compared FUSP with the current best uWSequence by setting the weights
of all items to 1.0 which brings both algorithms under a unifying framework.

~-InUSP (Leviathan 3%)

00% £ WincSpan' @ InUSP 600 >¢WIncSpan' (Leviathan 3%)
00% 8 500 -&-WincSpan' (Retail 0.3%)
-8-InUSP (Retail 0.3%)
Za00 = WincSpan' (Foodmart 0.2%)
80% E ~InUSP (Foodmart 0.2%)
& 300
£
5 e
509 ol S I I ERNE B

1 /08 075 1 |08 075 1 | 085 075

Completeness of Result

Leviathan, 3% Retail, 0.3% Foodmart, 0.2%

Buffer Ratio, u ! O uffer Ratioo,.le oe
Fig.3. Completeness comparison Fig.4. Runtime comparison between
between WIncSpan' and InUSP W IncSpan' and proposed InUSP

(a) False Candidate Generation: Recall that both FUSP and uWSequence
work like PrefizSpan using some upper bound of actual expected support value
and thus, generate some false positive candidates. From Fig. 2, we can see that
FUSP generates a smaller number of false candidates for any support threshold
as it uses a tighter upper bound. For example, in the Sign (dense) dataset with
15% minimum support threshold, it generates 11 times fewer candidates com-
pared to uWSequence. In Kosarak (sparse) with 0.15% support threshold, FUSP
generates only 79.7% false candidates where for uWSequence, it is 97.4%.

(b) Runtime Analysis: FUSP needs to maintain a smaller number of can-
didate patterns in its mining process and uses a faster method to calculate
expected support of a pattern. Thus, it is a way faster than the uWSequence
for any support threshold. Results shown in Table 3 validates this claim. We can
see FUSP is 50-70 times faster in Sign dataset for different thresholds. Interest-
ingly, the difference in their runtime increases with the decrease in the threshold
parameter. We have found similar results also in other datasets.
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Performance of the Incremental Technique, InUSP. We have modified
the current best incremental solution, WincSpan [4] to work in uncertain data
by replacing the core PrefixSpan-like algorithm by FUSP so that both the pro-
posed InUSP and modified W IncSpan’ mine weighted sequential patterns from
uncertain database. The baseline approach is running FUSP from scratch in the
whole updated database after each increment. We define completeness of the
result from an incremental solution to be the percentage of patterns found with
respect to the result of the baseline. To use the datasets as incremental ones, we
used the first 50% of the dataset to be the initial part and then introduced 5
increments of random sizes®, unless mentioned otherwise.

(a) Analysis with respect to buffer ratio: Buffer ratio, 4 = 1.0 means
no buffer and lower values mean larger buffers to store semi-frequent sequences.
Thus, with lower u, incremental approaches generate and maintain more pat-
terns which help to increase the completeness of their result. However, due
to local mining in incremented portions and maintaining additional promising
sequences, InUSP always achieves more completeness than WiIncSpan'. For
the same reason, it also requires slightly more time than WIncSpan'. From
Fig.3 and Fig.4, we can see the trade-off between completeness and runtime.
We observe that difference in completeness is larger in datasets like Retail and
Foodmart (market-basket) where increments contain frequent items or introduce
new items frequently than datasets like Leviathan (word sequences) where the
initial database contains almost all of the frequent sequences. By repeating this
experiment in other datasets and by varying the support threshold, we find that
though InUSP consumes slightly more time, it outperforms WiIncSpan' in terms
of completeness of result in every dataset for any combination of ;1 and min_sup.
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18000 -e-Baseline Runtime 955
16000 >WiIncSpan' Runtime
14000 <InUSP Runtime
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Runtime (Seconds)

“¥WiIncSpan' (Chainstore)
65%  InUSP (Chainstore)
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-=InUSP (Online Retail)

6000

Completeness of Result

4000
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S A ‘0&@5} % ok 30k 50k 75k 100k 150k 200k
Dataset Size (Kosarak, 0.1% min_sup) Number of Sequences in initial dataset
Fig. 5. Comparison of scalability using Fig. 6. Change in completeness for dif-
Kosarak dataset ferent initial sizes of a dataset

(b) Scalability Analysis: To test scalability we have run InUSP, W IncSpan'
and the baseline approach in several large datasets introducing several incre-
ments. Figure5 shows the result for Kosarak dataset with min_sup = 0.1%.

3 For the Retail market-basket dataset, we used the first one-fifth transactions (1st
month) as the initial portion and then 4 increments to represent the next 4 months.
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InUSP and W IncSpan' requires slightly more time at the initial point as they
have to find and buffer the semi-frequent patterns for future use. After that,
at any point of dataset increment, both of them take significantly less time to
find the updated set of frequent sequences. Our proposed technique outperforms
the baseline approach in terms of scalability and although it takes slightly more
time than WiIncSpan', the difference is negligible as InUSP provides better
completeness.

(c) Varying Initial Size of Datasets: We considered different initial sizes for
this analysis and introduced required number of increments (each sized 50-80%
of the initial size) to use the full dataset. Figure 6 shows the result in Chainstore
and Online Retail dataset with min_sup = 0.05% for both. We have found that
the smaller the initial dataset, the more are the sequences to be found as new
patterns after the increments. The completeness of incremental approaches also
depends on the distribution of items among the increments. As a result, the
completeness of WIncSpan' is competitive only if the initial dataset contains
sufficient sequences compared to the total size of all future increments. However,
the completeness of InUSP is less affected by initial size as it also mines in the
incremented portions.

5 Conclusions

In this work, our proposed FUSP algorithm can mine sequential patterns in
uncertain databases with or without weight constraints. It uses multiple theo-
retically tightened upper bounds in pruning technique and hence, generates a
smaller number of false-positive patterns compared to the state-of-the-art works.
Furthermore, the use of a space-efficient data structure USeq-Trie for pattern
maintenance and an efficient method SupCalc for support calculation, has made
FUSP superior to other works in terms of runtime. In case of incremental mining,
the concept of promising frequent sequences lifts the effectiveness of our InUSP
algorithm. The experimental analysis shows that our proposed techniques can be
great tools for a lot of real-life applications such as medical records, sensor net-
work, user behavior analysis, privacy-preserving data mining, that use uncertain
sequential data. We hope that the concept of USeq-Trie structure and promis-
ing frequent sequences will help researchers to design efficient mining methods
in related fields (e.g., uncertain data streams, spatio-temporal data, etc.).
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Abstract. Random Forests are one of the most reliable and robust
general-purpose machine learning algorithms. They provide very com-
petitive baselines for more complex algorithms. Recently, a new algo-
rithm has been introduced into the family of decision tree learners —
Similarity Forests, aiming at mitigating some of the well-known deficien-
cies of Random Forests. In this paper we extend the originally proposed
Similarity Forests algorithm to one-class classification, multi-class clas-
sification, regression and metric learning tasks. We also introduce two
new criteria for split evaluation in regression learning. The results of
conducted experiments show that Similarity Forests can be a competi-
tive alternative to Random Forests, in particular, when high quality data
representation is difficult to obtain.

Keywords: Decision trees + Random forests - Similarity forests

1 Introduction

Despite current enchantment with deep neural networks, many traditional classi-
fication and regression algorithms can compete successfully with neural models.
Random Forests [6] stand out as an example of such methods. Over the years,
Random Forests have consistently outperformed other learners on a wide spec-
trum of datasets [10]*. One of the most notable features of Random Forests is
their resistance to over-fitting. Random Forests avoid over-fitting by combining
answers from many independently induced decision trees, and each individual
decision tree is built based on a subset of input features, thus forcing the model
to search for multiple relationships between input features and the target fea-
ture. Another advantage of Random Forests (especially when compared with
neural models) is the ability of the algorithm to produce a strong learner even
in the case of data scarcity. Random Forests can be built using relatively small
training sets, which makes them a perfect tool for tasks where the curating of
large quantities of labeled data is prohibitively expensive.

A feature of Random Forests which is often praised by machine learning
practitioners, is their versatility. The basic formulation of the algorithm can

1 Although it should be noted that methodological objections have been raised [22]
regarding this often cited study.
© Springer Nature Switzerland AG 2021
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be readily applied to classification and regression tasks [16], but a straightfor-
ward modification turns Random Forests into Isolation Forests, a simple yet
effective outlier detection mechanism [17]. Finally, Random Forests are among
few machine learning algorithms which are inherently interpretable [13]. Today,
when algorithmic fairness and machine learning interpretability are becoming
indispensable elements of machine learning workflows, this property of Random
Forests makes them the go-to algorithm for machine learning tasks.

However, Random Forests also suffer from certain deficiencies. First and fore-
most, the algorithm is fully dependent on the tabular representation of the
training data. This makes the algorithm unsuitable for tasks in which input
data structures are complex. This is not to say that Random Forests cannot
be applied to time-series forecasting [21], text classification [23], or genomics
data [8], but these applications require purposeful feature engineering to align
the data representation with Random Forests requirements.

Recently, a new decision tree induction algorithm has been proposed, which
addresses some of the deficiencies of Random Forests. Similarity Forests [19] can
be readily applied to any data, irrespective of its representation. More surpris-
ingly, the algorithm does not need to know this representation, as it utilizes only
pairwise object similarity. So, Similarity Forests can be used to perform classifi-
cation, regression, or metric learning tasks with any kernel similarity function.

The original paper introducing Similarity Forests focused only on binary
classification tasks. In this paper we present extensions of the original frame-
work for one-class and multi-class classification. We also introduce two new
inequality-based metrics that can be used to perform regression tasks with Sim-
ilarity Forests. Last, but not least, we introduce a new metric learning method
based on Similarity Forests and we test this method on a clustering task. For each
task we perform extensive experimental evaluation. We manage to reproduce the
original results of Sathe and Aggarwal to a certain degree, but we also point out
to scenarios where the authors have chosen a weaker baseline, thus producing a
misleadingly optimistic impression of Similarity Forests effectiveness.

The original contribution of this paper includes:

— the extension of Similarity Forests to one-class and multi-class classification,

— the extension of Similarity Forests to regression,

the introduction of a new metric learning method,

— the critical experimental comparison of Similarity Forests and Random
Forests on diverse datasets.

The code required to reproduce all experiments and the full implementation
of Similarity Forests compatible with the scikit-learn interface is available in
the GitHub repository?.

2 Related Work

Since their introduction [6], Random Forests have attracted intense attention
from the scientific community [4]. Much work has been directed at the evalu-

2 www.github.com/anonymous: anonymized for blind review.
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ation of the consistency of Random Forests [9], at the analysis of the bias in
Random Forests [2], at the analysis of feature importance measures for Random
Forests [1], and at the extension of the original algorithm to new domains.

Ishwaran and Lu develop a modification of Random Forests for survival anal-
ysis [15]. Isolation Forests, a version of Random Forests for one-class classi-
fication, are introduced in [17]. In [18] Lucas et al. present Proximity Forests,
distance-based Random Forests designed for the classification of time-series data.
Yet another version of the original algorithm, called Extremely Randomized
Trees [11], proposes to increase the generalizability of the algorithm by random-
izing both feature- and cut-point choice when constructing the tree. Random
Forests have even inspired the design of neural networks, leading to the concept
of a Neural Random Forest [5], a multi-layer neural network which reconstructs
a given ensemble of regression trees.

Comparison-based Random Forests [12] are an algorithm very similar to Sim-
ilarity Forests. The main concept is identical: to define an internal splitting node
of a tree by a pair of objects which belong to different classes, and to partition the
remaining objects based on pairwise similarities to splitting objects. The authors
start with the Classification and Regression Tree (CART) algorithm [7] and
develop a procedure of branch splitting based on comparisons between objects.
This procedure is less efficient than the 1-D projection proposed for Similarity
Forests. Also, our extension of Similarity Forests to regression tasks includes
efficient measures of split impurity, which is missing from [12].

3 Methods

3.1 Original Similarity Forests

Similarity Forests algorithm has been introduced by Sathe and Aggarwal in [19].
It is a decision tree induction algorithm, in which splitting points are based on
pairwise similarities of randomly selected objects. The algorithm begins with all
objects in a single partition and proceeds to recursively split partitions until the
stopping criteria are met. Below we present the description of the algorithm,
following the original notation presented in [19].

Consider a set of objects O1,0a,...,0, that can be represented in some
multidimensional space as vectors X1, Xo, ..., X,. The exact representation of
objects in this multidimensional space does not need to be known, only a simi-
larity measure is required. Selecting any two objects O; and O; defines a vector
pointing in space from X; to X j, and each hyper-plane perpendicular to this vec-
tor defines a split of the space into two partitions. The impurity of partitions can
be evaluated using traditional measures, such as the Gini index, the information
gain, or the gain ratio. For a given pair of objects (O;,0;) which defines the

current split, the hyper-plane moves along the vector of unit direction equal to
X=X
[1X; — X |l - B
objects Oy, are projected on this unit direction by the dot product of X; — X;
and the unit direction. The projection is defined as:

and evaluates the impurity of the splitting at each point. All remaining
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PUX) = (%= %) =50

><| ><:\

X X; — Xk X, - X X+ XX Skj — Ski — Sij + Sis

I1X5 = Xill N I1X5 = Xill

where S;; denotes the similarity between objects O; and O;. The denominator
can also be expressed in terms of object similarities using

1K, — Xill = JIXG 12 + X2 - 2K, - X, = /5 55, — 25,

but Sathe and Aggarwal notice that the value of the denominator is indepen-
dent of the object Oy being projected, so it only re-scales the position of P(X})
on the 1-dimensional line between O; and Oj, but it does not change the relative
ordering of the projected points. So, the projection P(X},) is proportional only
to four similarities: P(Xk) X Skj — Ski — Sij + Sis, and since S;; and Sj; are
constant for a given splitting point, the only values required to compute the pro-
jection P(X}) are Sk; and Sk;. The authors refer to Sy; — Sk; as the scaled and
translated proxy for the projection P(X}). When evaluating a splitting point
for the current partition, the algorithm randomly selects two objects O; and O,
and sorts the remaining objects Or{}'_, } in the order of (Si; — Sk;), computing
the weighted Gini index at each of the possible n + 1 splitting points. After
establishing the splitting point, the objects are partitioned by the hyper-plane
defined by the splitting point and the procedure continues recursively until the
desired depth of the tree is reached, or the size of the partition is too small to
consider splitting, or the partition is pure (i.e., consists of objects of the same
class). In the original paper the authors also experiment with a slightly modified
splitting procedure when, at each stage, instead of selecting random objects, the
pairs are always selected such that O; and O; belong to different classes. As the
authors note, this procedure leads to more discriminative splits.

Similarity Forests have several interesting properties, which make this
method an attractive alternative to Random Forests. Firstly, it is character-
ized by low computational complexity. Construction of a single split is linear in
the number of objects in the split. If the original dataset consists of n points,
and assuming that the height of the tree is of the order of O(nlogn) (i.e., the
tree is approximately balanced), the construction time of the Similarity Forests
is also of the order of O(nlogn). At inference, each object is compared against
O(logn) pairs of objects defining splitting points.

Another advantage of Similarity Forests is the fact that the representation X
of O; does not have to be known in advance. Also, if similarity metric is not avail-
able, the algorithm can use distances instead of similarities. Sathe and Aggarwal
propose to either use exact translation of distances to similarities using the
cosine law transformation (which is computationally expensive), or to approx-
imate similarities by squared distances. Furthermore, the algorithm uses only
pairwise comparisons between objects, thus allowing for the application of the
kernel trick [20].



46 S. Czekalski and M. Morzy

3.2 One-Class Classification

For the one-class classification problem (also known as the outlier detection prob-
lem) the adaptation of the original Similarity Forests algorithm is inspired by
the Isolation Forests algorithm [17] and its extensions [14]. We build a Similarity
Forests ensemble consisting of hundreds of independently induced trees. For each
object in the training set we record the level (i.e. distance from the root of the
tree) of the leaf into which the object has been separated. The intuition is that
if an object is typical, it should not be separated early during the tree induction
process. Similarly, if an object is an outlier, in many random splits the object
will be projected to one of the extremes on the 1-dimensional line defining the
split, thus becoming a part of a leaf node early in the induction process. In other
words, if few random hyper-planes are sufficient to isolate an object, it can be
considered an outlier.

3.3 Multi-class Classification

The original paper presented only the binary classification variant of Similarity
Forests. Obviously, this binary classifier can be trivially adapted to multi-class
setting using many techniques, such as Error Correcting Output Codes, or train-
ing a 1-versus-1 or 1-versus-all ensembles. Here we present a simple modification
of Similarity Forests which adapts this method to multi-class classification. The
algorithm proceeds as in the binary classification, but at each split only the first
object is chosen randomly. The second object is chosen from a different class,
and the best splitting point is determined based on the selected impurity met-
ric. The selection of the second object is then repeated for all remaining classes,
searching for the class which minimizes the impurity metric.

3.4 Regression

In addition to extending Similarity Forests for one-class and multi-class clas-
sification, we propose a simple modification which allows to use the algorithm
for regression. The only thing that has to change is the evaluation procedure
for potential splitting points. When we process a partition, as the first step we
compute the standard deviation of the target value within the partition. Then,
we randomly select the first object, and the second object is drawn only from
objects which differ from the first object’s target value by at least one standard
deviation.

Again, let us consider the set of objects O1,0a,...,0,, and let y1,y2,-..,Yn
denote the numerical target value associated with every object. Let us fur-
ther assume that the splitting point is defined by two objects O; and Oj,
and the remaining objects are projected onto the 1-dimensional line connect-
ing O; and O;. Let the projection P(X}) of the object Oy, define the parti-
tioning of the set of objects into two partitions Q = {O01,02,...O;} and
Q} = {Ok41, 042, ...0O,} laying on the 1-dimensional line to the left and to
the right of P(X}), respectively. We propose the following metrics to evaluate
the quality of splitting objects into partitions Q and QF:



Similarity Forests Revisited: A Swiss Army Knife for Machine Learning 47

— weighted variance: defined as Var(Q) = > (y;—9)?, wherey = & >
N 1Qf
:0,€Q :0;€Q
is the average label value of objects in the partition. We are minimizing the
weighted variance of the split, i.e., argmin, (£ Var(Qy) + =% Var(QFf)).
— Thiel index: defined as T(Q) = I—él > “in%, where y is the average label
1:0;€Q (
value of objects in the partition. The Thiel index measures the difference
between the maximum possible entropy of the partition and the observed
entropy of the partition. As in the case of variance, we are minimizing the
average Thiel index of normalized by the size of partitions, i.e., we are looking
for arg min, (£T(Qy) + =ET(QF)).
1
— Atkinson indez [3]: defined as A(Q) = 1—%(@ > \/@(1_6)) T=9 measures
:0;,€Q

not only the degree of inequality in the distribution, but it also indicates which

side of the distribution skews the distribution more. In this research we are

setting the inequality aversion parameter € of the original index to 0.5. As

with the Thiel index we are minimizing arg mink(%A(Q}) =k A(QF)).
3.5 Metric Learning

Another interesting application of Similarity Forests is the ability to model the
structure of the dataset in an unsupervised manner in order to learn a distance
metric in the data manifold. The method is straightforward and resembles the
approach used in one-class classification. An ensemble of trees is built, and all
training objects are partitioned by each tree. After Similarity Forests construc-
tion, for each pair of objects (O;, O;) the depth d(O;,O;) at which objects are
split between partitions in the tree ¢ is recorded. This procedure is repeated for
all T trees. The distance between objects is then calculated as follows:

1 T
S d(0:,05) S, di(0;,05)

The maximum distance d(O;, O;) = 1 is obtained if objects O; and O; always
split at the root of the tree. The distance is symmetrical, however, it does not
satisfy either the identity axiom (d(O;, O;) # 0) or the triangle inequality, so,
strictly speaking, this measure is not a proper metric.

d(0;,0;) =

4 Results

Table1 presents the set of benchmark datasets used to evaluate Similarity
Forests. We use the same datasets as [19] with the goal of reproducing their
results, and we add several new datasets to test Similarity Forests in more chal-
lenging classification tasks (high dimensional data, multi-class classification) as
well as to verify the usability of Similarity Forests in regression tasks.
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Table 1. Datasets used in the experiments

Name Task Rows | Features | Name Task Rows Features
Heart Binary 270 13 Asian religions | Multi-class 590 | 1023
Ionosphere scale | Binary 352 34 Glass Multi-class 214 9
Breast cancer Binary 683 10 Seed Multi-class 210 7
German numer | Binary 1000 24 Wine Multi-class 177 13
Madelon Binary 2000 500 Dna Multi-class 2000 180
Diabetes Binary 768 8 Segment Multi-class 2310 19
Australian Binary 690 14 Boston Regression 506 13
Splice Binary 1000 60 Mpg Regression 392 7
ala Binary 1605 119 Comp. hard Regression 209 8
Svmguide3 Binary 1234 22 Space ga Regression 3107 6
Liver disorders | Binary 345 5 Eunite2001 Regression 336 16
Fourclass Binary 862 2 Wine quality Regression 4898 11
Leukemia High dim 72 7129 Abalone Regression 4177 8
Duke High dim 44 7129 Concrete flow | Regression 103 8
Colon cancer High dim 62 2000 kdd 99 http One-class 58725 3
Arcene High dim | 200 | 10000 kdd 99 sf One-class 73237 21
Shuttle One-class | 4909 9 kdd 99 sa One-class | 100655 99

4.1 Classification

We split the presentation of results between four types of classification tasks: one-
class classification, binary classification, classification of high dimensional data,
and multi-class classification. We use boldface to denote cases when an algorithm
attains better results at the statistical significance level a = 0.05. We compare
Similarity Forests and Random Forests using accuracy, F; score, and the area
under the ROC curve (AUROC). For each test of statistical significance of the
difference of averages we report the p-value of the Student’s t-test performed
over 20 repetitions of each algorithm.

4.2 One-Class Classification

We test the effectiveness of Similarity Forests in the one-class classification task
by comparing it to a standard implementation of Isolation Forests algorithm.
Both methods use the same principle for classifying objects as outliers (the
average height at which an object is assigned to a leaf node), so the only difference
between the algorithms is the splitting procedure. The results of the comparison
are presented in Table 2. The results are equivocal, both algorithms perform very
similarly. Isolation Forests tend to achieve better accuracy and AUROC, while
Similarity Forests result in better recall and Fy score. Although the comparison
is far from conclusive, it is safe to assume that Similarity Forests present a viable
alternative to Isolation Forests in one-class classification.
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Table 2. Outlier detection results

Dataset Precision |Recall Fq AUROC p-val
SF |IF SF IF SF IF SF IF Precision | Recall Fq AUROC
kdd 99 http|1.00|1.00 |0.94|0.91 |0.97|0.95 |0.99 |0.990.333 4.70e—20 | 6.95e—20 | 1.23e—-13

kdd 99 sf 0.99/1.00|/0.92|0.88 |0.96|0.93 |0.94|0.93 | 7.44e-14 |6.71e-19 | 8.60e-18 | 1.69e-07
kdd 99 sa 0.98/0.99/0.96 |0.93 |0.97|0.96 [0.94 |0.96 | 1.01e-06 |2.62e—-11|9.92e-03|1.05e-03
Shuttle 0.99/0.99/0.92 |0.95|0.96 |0.97 0.98 0.99|4.71e-23 |2.99e-12|7.45e-13 | 1.54e-23

Table 3. Binary classification results

Dataset acc F1 AUROC p-val
SF |RF |SF |RF |SF |RF |acc F1 AUROC
Heart 0.89 0.85 |0.89/0.85 | 0.94|0.91 |9.02e-06 | 5.95e-06 | 5.09e-14

Tonoshphere scale | 0.96 | 0.94 | 0.96 | 0.93 | 1.00 | 0.99 | 1.49e-07 | 2.46e-07 | 2.21e-08
Breast cancer 0.97 096 |0.97/0.96 |1.00|1.00 | 1.17e—2 | 1.19e-02 | 2.82e—09
German numer 0.75 | 0.79]0.71 | 0.77 | 0.77 | 0.82 | 1.24e-11 | 2.26e-14 | 4.73e—-12

Madelon 0.56 | 0.65 | 0.56  0.65|0.59 |0.72|6.97e-17 | 9.47e-17 | 1.73e-22
Diabetes 0.74 10.74 |0.740.75 | 0.80 | 0.83 | 0.841 0.258 6.27e-15
Australian 0.85 | 0.87|0.850.87 |0.90 | 0.92 | 2.18e-05 | 1.78e—05 | 5.00e-09
Splice 0.83 |0.94/0.83/0.940.92 |0.98|1.71e-28 | 1.61e-28 | 1.16e-30
ala 0.81 |0.83 |0.77/0.81 | 0.88 | 0.88 | 7.95e-08 | 1.25e-13 | 0.179

svmguide3 0.80 |0.83 |0.76  0.81 |0.78 | 0.86 | 2.15e-14 | 9.78e-20 | 3.71e-20

Liver disorders 0.64 | 0.67|0.63|0.67|0.64 | 0.69 | 1.54e-04 | 9.78e—05 | 5.99e—-09

4.3 Binary Classification

Table 3 presents the results for binary classification. We use the same datasets
as the authors of the original publication, with the exclusion of the Mushroom
dataset (as this dataset is trivial for classification). We manage to reproduce
the results reported in [19] only partially. For instance, we obtain better accu-
racy for Random Forests on the Heart dataset (85% vs 79% reported by Sathe
and Aggarwal), the German numer dataset (79% vs 77%), but we also do not
manage to obtain 90% accuracy on the svmguided dataset. More disturbingly,
though, Random Forests outperform Similarity Forests on all datasets that we
add beyond the datasets used in the original publication. Thus, our evaluation
paints a less optimistic view of the efficacy of Similarity Forests. While it may
be competitive with SVM, it is usually outperformed by Random Forests as
measured by all scores.

4.4 High-Dimensional Classification

We have hypothesized that Similarity Forests may perform better for datasets
with a large number of features, where simple splits on single features performed
by Random Forests might be insufficient to discover the decision boundaries in
high dimensional space. However, the results presented in Table 4 do not support
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Table 4. High dimensional classification results

Dataset acc F1 AUROC p-val

SF RF |SF |RF |SF |RF |acc F1 AUROC
Leukemia 0.85/0.95|0.84 | 0.850.97 | 1.00 | 1.77e-10| 2.19e-10 | 2.09e—-12
Duke 0.87/0.90 | 0.88/0.87 [0.91 1.000.138 0.138 6.76e—14
Colon cancer |0.68]0.79|0.680.69 | 0.75 | 0.80 | 2.18¢-05 | 2.35e-05 | 2.58e—02
Arcene 0.780.82/0.78 | 0.78 | 0.85 | 0.89 | 1.76e—04 | 1.65e-04 | 2.51e-07
Fourclass 0.99/0.99 10.99/0.99 1.00 |1.00 |0.713 0.714 0.713
Asian religions | 0.68 | 0.70 | 0.65 | 0.68 | 0.94 | 0.93 | 0.0062 | 0.003 8.67e-14

Table 5. Multi-class classification results

Dataset |acc F1 AUROC p-val

SF |RF |SF |RF |SF |RF |acc F1 AUROC
Glass 0.78 10.84|0.76 | 0.84/0.93 | 0.96 | 1.14e-06 | 2.87e-08 | 1.15e-14
Seed 0.90 | 0.87 |0.90|0.87 | 0.98 | 0.98 |3.22e-05 | 3.60e—05 | 0.314
Wine 0.96 |0.94 | 0.96 0.94 | 0.99/0.99 |3.97e-02 | 3.96e-02 | 6.84e-08
dna 0.81 |0.93/0.80 |0.93|0.97 | 0.99 | 7.72e-34 | 1.59e-33 | 2.17e—28
Segment | 0.96 |0.97 | 0.96 | 0.97 | 0.99 | 0.99 3.43e—10|2.21e-10 | 4.28e-11

this hypothesis. Random Forests outperform Similarity Forests on all scores and
almost all examined datasets.

4.5 Multi-class Classification

Finally, we evaluate Similarity Forests on the multi-class classification task
(Table5). Although Random Forests still present a very strong baseline, the
results are less equivocal than in the case of binary or high dimensional clas-
sification. Even for datasets where Random Forests achieve better scores, the
differences are not large, and for some datasets Similarity Forests outperform
Random Forests on the accuracy, the F; score, and the AUROC. This result
strengthens, in our opinion, the claim that Similarity Forests are a viable alter-
native to Random Forests and should be considered as a go-to classification
algorithm.

4.6 Regression

In Table6 we compare the effectiveness of Similarity Forests with Random
Forests using the root mean squared error (RMSE) score. Both Similarity Forests
and Random Forests underwent a similar grid search optimization of hyper-
parameters. The maximum depth range was [8,10, 12,14, None], the splitting
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criteria were variance minimization, Theil index, and Atkinson index, the sim-
ilarity kernel for Similarity Forests was either dot product or radial basis func-
tion. Ensembles consisted of 25, 50, and 100 estimators. The Similarity Forests
~ parameter range was [0.0001,0.001,0.01,0.1].

Random Forests outperform Similarity Forests on almost all datasets, the
differences might not be large, but are statistically significant. It may be that the
advantage of having a single multi-task algorithm outweighs the loss of predictive
power, but we do not find sufficient evidence to claim that Similarity Forests
present a viable alternative to Random Forests with respect to regression.

4.7 Metric Learning

Table 6. Regression results Table 7. Datasets (metric learning)

Dataset RMSE p-val Name Rows | Features
SF RF Glass 214 9

Boston 3.860 | 2.966 | 2.64e-34 iris 150 4

mpg 2.429 2.396 |0.119 cpu 209 6

Computer hardware | 0.180 0.150 | 6.24e-18 e.coli 336 7

Space ga 0.123 | 0.122 | 7.67e-04 Segment | 2000 | 19

Eunite2001 24.719 | 23.535| 2.69¢-06 Vehicle | 846 |18

Wine quality 0.587 | 0.589 |3.51e-02 Wine 178 13

Abalone 2.241 | 2.225 | 2.68¢-08 Zoo 101 |16

Concrete flow 12.182 | 11.528 | 5.42¢-03

To check how well Similarity Forests can learn a meaningful structure of a
dataset, we use the learned distance metric to perform clustering using HDB-
SCAN, comparing the results to the traditional Euclidean distance. We use the
Clustering Benchmark datasets® described in Table7. To assess the quality of
clustering, Silhouette and Davies-Bouldin scores are recorded. We also present
a 2D PCA projection of obtained clusters for visual inspection (see Fig. 1, best
viewed in color). Similarity Trees are constructed using the linear dot prod-
uct kernel. The results reported in Table 8 are averaged over 20 runs over each
dataset. Similarity Forests distance usually produces better silhouette score, but
results in a worse Davies-Bouldain value. Best results were obtained when the
maximum depth of Similarity Forests has been constrained (which is reasonable,
usually only a few splits are required to separate main clusters in the data mani-
fold). In general, distance metric learned using Similarity Forests works well and
introduces non-linearity which results in better and more meaningful clusters.

3 https://github.com/deric/clustering-benchmark.
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Table 8. Clustering results

Dataset | SF silhouette | Eucl. Silhouette | SF Davies-Bouldain | Eucl. Davies-Bouldain
Glass 0.509 0.436 3.156 4.241
iris 0.556 0.525 3.118 0.481
cpu 0.382 0.280 1.507 1.872
e.coli 0.194 0.414 5.514 3.388
Segment | 0.590 —0.038 0.674 1.464
Vehicle | 0.097 0.218 6.162 3.199
Wine 0.197 0.142 2.660 1.361
Zoo 0.575 0.424 1.088 1.410

SimilarityForestCluster HDBSCAN SimilarityForestCluster HDBSCAN

o~

(a) segment dataset (b) vehicle dataset

Fig. 1. Visualization of clusters

5 Conclusions

Random Forests remain one of the most robust and efficient algorithms for clas-
sification and regression tasks. They provide a hard-to-beat baseline in many
practical applications. Despite their popularity and widespread use, they suf-
fer from strong dependence on the particularities of input representation. In
this paper we have advocated in favor of Similarity Forests, a recently proposed
decision tree induction algorithm which addresses some of the aforementioned
deficiencies. We describe the method, we present simple extensions which allow
to apply Similarity Forests to one-class, binary, and multi-class classification, as
well as regression. We perform an extensive comparison of Similarity Forests and
Random Forests for one-class, binary, high dimensional, and multi-class classi-
fication. Finally, we show how Similarity Forests can be used for unsupervised
metric learning. We believe that Similarity Forests present a viable alternative
to Random Forests and should become one of the default baseline algorithms in
every machine learning toolbox.
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Abstract. Cross-domain sentiment classification aims to solve the lack
of labeled data in the target domain by using the knowledge of the source
domain. Most existing approaches mainly focus on learning transferable
feature representations for knowledge transfer across domains. Few of
them pay attention to the feature discriminability, which contributes
to distinguish different sentiment polarity and improves the classifica-
tion accuracy. In this work, we propose discriminative representation
learning, which extracts transferable and discriminative features. Specif-
ically, we use spectral clustering to reduce the negative effect of low
prediction accuracy on the target domain. Centroid alignment enforces
samples of the same polarity with smaller distance in the feature space
and enlarges the difference between samples of different polarities. Then
intra-class compactness benefits true centroid by reducing samples dis-
tributed at the edges of the clusters. Experiments on the multiple public
datasets demonstrate that discriminative representation learning outper-
forms state-of-the-art methods.

Keywords: Discriminative representation learning + Cross-domain
sentiment classification - Domain adaptation - Clustering

1 Introduction

Sentiment classification, which aims to automatically identify the sentiment
polarity (e.g., positive or negative) of a document, has attracted more and more
research attention [8]. Traditional methods have been explored to learn good
feature representations of sample and achieve outstanding effect [13]. However,
these works are highly dependent on sufficient labeled data which needs time-
consuming and expensive manual annotation.

To solve the problem, cross-domain sentiment classification has been pro-
posed as a promising direction. Blitzer et al. [1] aims to find out the correla-
tion between pivots (domain-shared sentiment words) and non-pivots (domain-
specific sentiment words). However, these methods are complicated and the clas-
sification accuracy is low. Recently, deep neural networks are explored to auto-
matically obtain shared sentiment features across domains. Typically, adversarial
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learning methods [6] focus on extracting domain-invariant features whose dis-
tribution is similar in the source and target domains. It introduces a domain
classifier which can minimize the discrepancy between the source and target
domains by reversing the gradient direction of the neural network. This method
merely extracts the transferable features (domain-invariant features) and ignores
the feature discriminability which indicates the ability of separating different
sentiment polarity by a classifier trained over labeled dataset. Some methods
align the same polarity from different domains by assigning pseudo-labels to
target samples, to increase the feature discriminability. Nevertheless, the falsely-
pseudo-labeled samples can lead to serious bias that the centroid easily deviates
from the true position in mini-batch, especially for the low prediction accuracy
on the target samples.

In this paper, we propose discriminative representation learning (DRL) model
for cross-domain sentiment classification. DRL considers the feature discrim-
inability by aligning centroid and making intra-class distance more compact in
the source and target domains. Specifically, we cluster features of target samples
in mini-batch because of unlabeled data in the target domain. The cluster sen-
timent polarity is judged according to the centroid of source domain. Centroid
alignment of the same polarity achieves the level of sentiment polarity alignment
by minimizing the centroid distance. Centroid alignment of different polarities
make samples more separable by maximizing the centroid distance. However,
samples distributed at the edges of the clusters, or far from the high density
regions are easily misclassified. To solve this issue, we make each polarity more
compact by reducing the intra-class distance. In this way, the number of samples
that are far from each centroid will be greatly decreased. The main contributions
of our work are summarized as follows:

e As far as we know, we are the first to simultaneously learn transferable and
discriminative features in cross-domain sentiment classification.

e We propose the discriminative representation learning which produces trans-
ferable and distinguishable features. After clustering the unlabeled data on
target domain, it uses the centroid alignment and intra-class compactness to
learn better features for sentiment classification tasks.

e We conducted the comparative experiments on Amazon, IMDB, Yelp and
Airline datasets. Our method outperforms other state-of-the-art methods.

2 Related Work

Domain adaptation such as cross-domain sentiment classification has attracted
more and more research attention over the past decades. In supervised domain
adaptation, the training data consists of labeled source samples and a small
number of target domain samples. A common method is training the classifier
with labeled source samples and fine-tuning the classifier with labeled target
domain samples. Some unsupervised domain adaptation methods are proposed to
learning the domain-invariant features. The Structural Correspondence Learning
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(SCL) [1] is proposed to produce correspondences among the features across
domains. Using domain-independent words as a bridge, the Spectral Feature
Alignment (SFA) [12] solves the feature mismatch problem by aligning domain-
specific words. Unfortunately, the steps of these methods are cumbersome and
the domain-shared features is bad.

Recently, deep learning methods have obtained better feature representations
for cross-domain sentiment classification. The Stacked Denoising Auto-encoders
(SDA) [7] successfully learns hidden representations from different domains. The
Marginalized Stacked Denoising Autoencoder (mSDA) [3] addresses the problem
of high computational cost and lack of scalability to high-dimensional features.
The Domain-Adversarial training of Neural Networks (DANN) [6] which lever-
ages the adversarial mechanism to mix the source and target domains. The Hier-
archical Attention Transfer Network (HATN) [9] which transfers word-level and
sentence-level attentions. But these methods only focus on extracting the trans-
ferable information, which can lead to poorly separable features across domains.
To solve the above problem, we propose to produce more discriminative features
by aligning centroid and making intra-class distance more compact. In computer
vision applications, there are also some works which learn more discriminative
features [2].

3 Approach

In this section, we first illustrate the problem definition and overall framework,
followed by an overview of the domain adversarial network. Finally we introduce
the details of discriminative representation learning.

3.1 Problem Definition and Overall Framework

We assume that there are two domains Dy and D; which denote the source and
the target domain, respectively. We further suppose that we give a set of labeled

training data X! = {xt, yi}f\gl, where N! is the number of labeled data. Besides,
we give a set of unlabeled training data Xy = {x{ }jvz’l from the target domain,
where [V is the number of unlabeled data. N indicates the batch size during the
training stage and L is the feature dimension. The goal of cross-domain sentiment
classification is building a classifier based on labeled data in the source domain
and unlabeled data in the target domain.

We present an overview of the DRL model in Fig. 1 and describe the details of
the model. We first introduce general adversarial domain network which reduces
discrepancy between the source and target domains. However, this method does
not take the feature distinguishability into account. Thus we propose the discrim-
inative representation learning (DRL) which includes three parts, i.e., clustering,
centroid alignment and intra-class compactness. The first part clusters the unla-
beled data on target domain to calculate the centroid and intra-class distance.
The second part makes centroid distance of the same polarity samples closer and
enlarges the centroid distance between different polarities. The third part not
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Fig. 1. The architecture of the DRL, where ¥ is the predicted sentiment label and dis
the predicted domain label. y and d are the ground truth. GRL stands for the Gradient
Reversal Layer. Ls, Ly and Lg,; are losses.

only reduces the number of samples that are far from the high density region
but also obtains smaller intra-class distance for each polarity. In this way, we
can obtain transferable and discriminative features.

3.2 Domain Adversarial Network

Domain adversarial network [6] has been successfully applied to transfer learning
and the basic idea is to learn domain-invariant features. The adversarial learning
procedure contains two parts, i.e., a domain classifier d = D(f) is trained to
correctly distinguish the source domain from the target domain and a feature
encoder f = F(z) is trained to fool the domain classifier. The parameters of
domain classifier are updated by minimizing the loss of the domain classifier,
while the parameters of the feature encoder are updated by maximizing the
loss of domain classifier. To achieve this goal, the common method is Gradient
Reversal Layer (GRL) [6] which reverses the gradient in the training process. The
definition is R(f) = f, ag(ff) = —AI. In addition, the feature encoder f = F(x)
and the sentiment classifier y = G(f) are simultaneously learned by minimizing
the loss of the category classifier. The objective function of domain adversarial
network is as follows:

L= 5 3 UGGy e ) M

NN,

" L(Ga(Gy(@:)), dy) (2)

i=1

1

L= ——
¢ N+ N
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where Ly and Ly the sentiment classification loss and the domain loss, respec-
tively. The loss uses cross-entropy loss functions. d; is the domain label (0 and
1 indicate the source and target domains).

3.3 Discriminative Representation Learning

To learn the discriminative deep features, we propose the discriminative rep-
resentation learning method. In the following, we describe the details of this
method successively.

Clustering: We cluster the unlabeled data on target domain. Because general
clustering methods such as K-means are suitable for low-dimensional features
and poor clustering effect in high-dimensional space, we select the spectral clus-
tering [11]. However, we don’t know the sentiment polarity of the cluster. The
decision method can be formulated as follows:

[ esp —c1 <[l esp —ca ||, | €sn — €1 [[>]] €sn —c2 ||

= ¢ is positive centroid, cq is negative centroid 3)
| esp—c1 [[>] esp —c2 [, ]| €sn — €1 [[<][ €sn — €2 ||

= ¢ is negative centroid, co is positive centroid

where cq,cy are cluster centroids of target domain and the cgp,, ¢, are the
positive and negative centroids of source domain. If the c,, gives a closer distance
with ¢; than ¢y and cg, gives a closer distance with cy than ¢y, the decision
method assigns the positive centroid to ¢; and the negative centroid to cs. It
is similar when the c,, gives a closer distance with cy than c¢; and the c,,
gives a closer distance with ¢; than co. If cluster centroids does not satisfy
the above formula, the model will not be updated. To verify the performance
of spectral clustering, we compare with BERT-DRL? (assign pseudo labels to
target samples).

Centroid Alignment: The motivation of the centroid alignment is that the
samples from the same polarity should be mapped nearby in the feature space,
and the samples from the different polarities should stay as far away from each
other as possible. The centroid effectively represents a set of samples [10]. The
centroid distance can be formulated as follows:

de=Y |l e —cile (4)
=1

c C
du=1{ Y llei=cllz+ > lei—cil2/2} (5)
i,j=1,i#] 4,j=1,i#j
where ¢! and c! are the i-th polarity centroid in the source and target
domains, respectively. ¢ € {positive, negative} and c; denotes the i-th polar-
ity centroid in d domain, d € {s,t}. The centroid alignment loss L., can be

formulated as:
Lca == dc + (m - du) (6)
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The centroid alignment loss minimizes the centroid distance of same polarity
and enforces the centroid distance of different polarities at least m, where m is
the constraint boundary. Note that centroid alignment is similar with moving
average centroid alignment [15]. Both of them reduce the centroid distance of
the same polarity. The difference is that we also enlarge the difference across
different polarities.

Intra-class Compactness: Although centroid alignment produces more distin-
guishing features, samples distributed at the edges of the clusters are not reduced
and easily lead to the deviation of centroid. So we introduce the intra-class com-
pactness which makes each polarity more compact. The intra-class compactness
loss L;. can be formulated as follows:

Ns ne

1 o o
Lic:ds+dt:;2‘|ﬂ_cgl 2+EZ||ﬂ—Cf'||2 (7)

S =1 i=1

where fi fi € R’ denotes the i-th deep feature in the source and target
domains, respectively. c¢?* is the y;-th polarity centroid of the deep features,
y; € {positive, negative}. Finally, we propose the discriminative representation
learning loss as below:

Ldrl = Lic + Lca (8)

Our method can be easily implemented and embedded into modern deep
learning frameworks. Algorithm 1 describes the training procedure of DRL. Dif-
ferent from discriminative feature learning [2], which only utilizes the source
domain samples because of the unlableled target samples. We utilize the unla-
beled data by spectral clustering which avoids the negative effects of falsely-
pseudo-labeled samples.

Algorithm 1. Training procedure of DRL

Input: Labeled source domain S, unlabeled target domain 7', N is the batch size,
M is the total number of iterations, F' is feature encoder, G is sentiment classi-
fier.

1: Let t =0.

2: while t <M do

3 t=t4+1.

4: Sy = RandomSelect(S,N),T; = RandomSelect(T,N).
5:  Cluster target features f = F(T%).

6: Compute the current centroid csp, csn on St.

7 Determine the polarity of the cluster center ci, ca.
8: Compute the centroid alignment loss L.,

9:  Compute the intra-class compactness loss Li.

10:  Compute the discriminative representation learning loss L4,
11:  Update the model parameters by minimizing L,

12: end while
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Training Strategy: Our totally objective can be written as follows:
L= Ls + Ld + ﬂLdrl + ereg (9)

where (3 is trade-off parameter to balance the discriminative representation learn-
ing loss. p is the regularization parameter. The regularization term L,., prevents
the overfitting. DRL model minimize L except the GRL training part which
will be maximized. Additionally, all parameters are optimized by the adaptive
momentum algorithm.

4 Experiment

4.1 Dataset Preparation

We use Amazon reviews dataset [1] with same origin to evaluate the effective-
ness of our method. We select the data from five domains: Books (B), Dvd
(D), Electronics (E) and Kitchen (K), Video (V). Each domain contains 6000
labeled reviews with 3000 positive reviews (higher than 3 stars) and 3000 nega-
tive reviews (lower than 3 stars). We conduct 20 cross-domain sentiment classi-
fication tasks: B— D, B—-E,B—-K,B—-V,D—-B,D—ED—-K,D—
VE—-BE—-DE—-KE—-VK—-=BK—-=D K—-EK—-=V, V-8BV
— D,V — E, V — K. Furthermore, we randomly select 2800 positive and 2800
negative samples from the source domain as the training data, the rest from the
source domain as the validation data, and all samples from the target domain
for testing.

Moreover, to investigate the performance in different domains with the dif-
ferent origins. We randomly select samples from the IMDB (I), Yelp (Y) [14]
and Airline (A) datasets'. The number of positive and negative samples is equal
in the training and testing data. We construct 6 cross-domain sentiment classi-
fication tasks: I - Y, I - A Y -1, Y - A A —- I, A — Y. One issue is that
Yelp, IMDB and Airline datasets have 5, 10 and 2 sentiment labels, respectively.
To align the space of sentiment labels for domain adaptation, we select positive
reviews (higher than 3 stars for Yelp and 6 stars for IMDB) and negative reviews
(lower than 3 stars for Yelp and 6 stars for IMDB). Table 1 summarizes the all
datasets.

Table 1. Statistics of the experimental datasets

Domain | Books | Dvd | Kitchen | Electronics | Video | IMDB | Yelp | Airline
Train | 5600 |5600 | 5600 5600 5600 | 5600 | 5600 | 5600
Test 400 400 | 400 400 400 | 400 400 | 400

! https://github.com/quankiquanki/skytrax-reviews-dataset.
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4.2 Implementation Details

BERT is a large-scale language model with multiple layers of transformers and
can learn bidirectional representations [5]. In our experiment, we adopt the
BERT}4sc (uncased) to extract features. The maximum sequence length, batch
size, epoch and dropout is 256, 20 ,10 and 0.1 respectively. The learning rate
is 2e-5. The adaptation rate is increased as A = m, where p = %
The ¢t and T are current epoch and the maximum epoch, respectively. For the
hyper-parameter 3 , we select the optimal parameters on the experiments B —
K and K — B (Fig.3). Finally, We set § = 0.01 in all our experiments. The
average and the standard error of the accuracy are calculated over 5 runs with
different random seeds on each transfer task.

4.3 Benchmark Methods

We consider the following approaches for comparisons:

Table 2. Classification accuracy (%) on the Amazon reviews dataset.

ST | DANN HATN" |BERT BERT-JDDA | BERT-DRL? | BERT-DRL
BD|81.2+04 87.1£0.1|88.6£0.3|/89.5+£0.5 89.9+0.3 90.2£0.2
BE |76.5+0.7/84.4+£0.3{89.4+1.3/904+14 90.6 £0.7 90.9+0.4
B K |80.3+0.2/86.4+0.4]/90.54+0.4/91.44+0.6 92.34+0.3 92.5+0.2
BV |81.7£0.887.0£0.6|88.9£0.2|90.3+0.6 90.6 £0.4 91.1+0.4
DB |81.6+0.6|87.6+0.690.3+0.5]/91.4+0.2 91.0+0.4 91.5+0.2
DE|769+£04|852+£0.5|88.5+1.0{89.5+0.6 89.7+0.7 90.7 £ 0.5
DK|77.6£06|87.0£0.7/90.9£0.2|91.6£0.7 92.2£0.5 92.1+0.1

DV | 854+0.7/88.2+0.1/90.8+0.891.7+0.6 91.9+£0.7 92.4+0.3
EB|77.7£0.281.9£0.2|88.7£0.2|88.6 £0.2 89.1+0.5 89.2+0.3
ED |75.5+0.3/81.8+£0.5|86.4+0.6|87.1+0.6 87.5+0.4 87.8+0.3
EK | 85.0+£0.6/89.5+0.3/92.84+0.6/93.4+1.0 94.1+0.3 94.0£0.1

EV|76.1£1.080.8£0.2|87.3£0.5|87.6+£0.7 87.9+0.3 88.7+0.2
KB |79.0+£0.5]83.8+0.4]89.2+0.3/89.9+0.3 89.7+0.6 90.0£0.5
KD|783+£04|823£0.2|87.9+£0.4|87.9+0.7 88.1+0.2 88.2+0.4
KE|84.6+£0.2|87.5£0.3]/92.5£0.2|/92.9£0.6 92.8+0.6 93.5+0.2
KV |76.4+0.1/81.9+0.2|88.1+0.8|88.8+0.4 88.4+£0.3 89.0+0.5
VB|79.9+£0.786.6£0.4|88.7£0.7|89.8£0.6 90.5+0.3 91.1+0.3
VD|833+£0.386.8£0.3|89.7£0.5(90.4+0.4 89.7+0.3 90.9 £0.2
VE | 747+£0.3]81.5+0.2{89.44+0.7/90.7+0.3 90.7£0.5 91.2+0.3
VK|743+£0484.4£03]91.1£0.5[91.6+£0.3 91.7+0.4 92.1+0.1
Avg | 79.3 85.1 89.5 90.2 90.4 90.9
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DANN: it performs domain adaptation with the representation encoded in
a 5000-dimension feature vector [6].

HATN?": it extracts pivots and non-pivots by the hierarchical attention net-
work across domains [9)].

BERT: it fine-tunes vanilla BERT by source domain labeled data.
BERT-JDDA: JDDA [2] model based on BERT.

BERT-DRLP?: it assigns pseudo labels to target samples and uses all losses
on vanilla BERT.

BERT-DRL: it utilizes spectral clustering for target samples and uses all
losses on vanilla BERT.

Table 3. Classification accuracy (%) on the IMDB, Yelp and Airline datasets.

ST | DANN HATN" |BERT BERT-JDDA | BERT-DRL? | BERT-DRL
1Y |7244+£21/759+1.1/80.84+1.7|81.6+1.5 82.1+1.8 82.8+1.1
TA |746+18|77.1+09/80.1£2.1/80.6+1.8 81.24+2.3 82.7+0.9
YI |695+1.5|71.0£08|72.1£1.3|75.3£2.6 73.8£1.8 76.5+1.2
Y A|7424+22|7854+1.2/83.8+1.6(82.7£2.3 84.4+2.1 85.2+1.4
AT |63.7+£19/65.7+1.1|70.6£1.5|72.3+£2.4 73.1+14 74.3+0.8
AY |739+13|75.7£0.8|81.0£1.3|81.1£1.8 82.5+1.1 83.2+0.9
Avg | 714 74.0 78.1 78.9 79.5 80.6

We compare our method with other state-of-the-art methods on the Ama-
zon reviews dataset and the experimental results are shown in Table2. As can
be seen, BERT-DRL has achieved the best performances on most tasks. HATN"
achieves great improvements compared with traditional methods, which come to
85.1% on average. The vanilla BERT has achieved 89.5% on average by training
the source domain samples. It shows that bert model can produce good word
embedding vectors. The prediction accuracy on the target domain is high, so
the quality of pseudo labels is good. The performance of BERT-DRL? exceeds
BERT-DRL on some tasks (D — K, E — K). Comparing with BERT, BERT-
DRL exceeds 1.4% on average. It proves that discriminative representation learn-
ing loss can produce more distinguishing features. The BERT-DRL improves the
classification accuracy by 0.7% than BERT-JDDA. We cluster target domain
samples and calculate the DRL loss is very necessary.

However, the cross-domain sentiment classification tasks are same origin in
Table 2. To verify the effectiveness of our method on different origins, we con-
struct 6 new tasks. The classification accuracy on the IMDB, Yelp and Airline
datasets are shown in Table3. The DANN and HATN? without BERT achieve
71.4% and 74.0% on average, respectively. the performance of BERT-DRL still
outperforms BERT-JDDA and achieve 80.6% on average. The BERT-DRL and
BERT-DRLP? improve the classification accuracy by 2.5% and 1.4% than BERT,
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respectively. Comparing with BERT-DRL?, BERT-DRL improves the classifi-
cation accuracy substantially on hard transfer tasks. Since the discriminative
representation learning loss does not depend on the prediction accuracy of tar-
get domain samples but features of target domain samples generated by feature
encoder. We can train the model more effectively when features are easy to be
distinguished.

4.4 Feature Visualization

For more intuitive understanding our approach, we select all samples in the
source and target domains and visualize the feature of last layer as shown in
Fig.2. We perform the visualization on B — D and K — V tasks by t-SNE.
The samples of different polarities in source domain are well separated in vanilla
BERT (Fig.2b and Fig.2d). While the target domain samples with different
polarities are mixed together. It shows that the source domain samples are not
satisfy with the target domain classification. The samples from different domains
are mixed together through discriminative representation learning loss (Fig. 2a
and Fig. 2¢). The boundary of sentiment polarity classification is very clear. We
also quantitatively analyzed separability and compactness in Table 4. The intra-
class distance (ds and d; ) and centroid distance of the same polarity (d.) are
reduced and the centroid distance of the different polarities (d,,) is increased. For
compactness, the decrease is small for one sample, but the effect is obvious when
all samples are accumulated. All of the above observations can demonstrate that
BERT-DRL model is able to simultaneously learn more transferable and more
discriminative features.

Table 4. Separability and compactness on B — D and K — V tasks. Separability is
calculated by centroid distance. Compactness is represented by the average of intra-
class distances.

Separability | Compactness
de du ds di

B D | BERT 0.878 | 26.175 | 0.898 | 3.721
BERT-DRL  0.475 | 30.059 | 0.846 | 3.638
K V | BERT 1.625 28.794 | 1.188 | 4.053
BERT-DRL | 0.592 | 30.595 | 1.038 | 3.832

4.5 Parameter Sensitivity

We investigate the effects of the parameter § which balances the contributions of
discriminative representation learning in Fig. 3. The average is calculated over 5
runs with different random seeds. We find that the accuracy curve increases first
and then decreases as 3 increases. It shows that our proposed loss can improve
the performance of the model through appropriate parameters to obtain more
distinguished features.
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Fig. 2. The t-SNE visualization of the B — D task (a) (b) and K — V task (c¢) (d). The

red, blue, purple and green points denote the source positive, source negative, target
positive and target negative examples correspondingly. (Color figure online)
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Fig. 3. Parameter sensitivity analysis of our approach on B — V task and K — B task.

4.6 Ablation Studies

To analyze the effect of Domain-Adversarial training of Neural Networks
(DANN) [6], centroid alignment (CA) and intra-class compactness (IC), we con-
duct the ablation experiments on task B— D E—V, VD I —-A Y —1
and A — I in Table5. The experimental results show that DANN, CA and IC
are both beneficial to cross-domain sentiment classification.
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Table 5. Results of ablation study.

Model B —- D E—-V V —- D I— A Y -1 A—1

BERT-DANN 89.44+ 04 |87.8 4+ 0.4 90.1 £0.4/80.8+ 25 |73.7+28 |72.7+1.3
BERT-DANN-IC |89.8 + 0.6 |88.3 +0.390.4 +0.5|81.7+ 1.6 |76.2 4+ 1.1 |73.2+ 23
BERT-DANN-CA | 90.1 +£ 0.5 |88.5 £ 0.6 |90.6 +0.4|82.1 £14 |75.0+£ 20 |734 £ 1.5
BERT-DRL 90.2 + 0.2 | 88.7+ 0.2 | 90.9+0.2 | 82.7 £ 0.9 | 76.5 + 1.2 | 74.3 £+ 0.8

5 Conclusion

In this paper, we propose to improve the transfer performance by discriminative
representation learning for cross-domain sentiment classfication. It uses spectral
clustering to avoid the harmful effect of low prediction accuracy on the target
domain. Centroid alignment can map the sampels of same polarity to the neigh-
borhood in feature space and enforces the samples of the different polarities with
greater distance. Besides, the samples distributed at the edges of the clusters are
reduced and classification accuracy is improved by intra-class compactness. In
this way, we can product transferable and distinguishable features by introducing
our discriminative loss. Experiments on the Amazon, IMDB, Yelp and Airline
datasets demonstrate that DRL significantly outperforms the state-of-the-art
methods.
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Abstract. Graph Convolutional Networks (GCNs) have recently
achiev-ed impressive performance in different classification tasks. How-
ever, over-smoothing remains a fundamental burden to achieve deep
GCNs for node classification. This paper proposes Structure-Aware Deep
Graph Convolutional Networks (SAGCN), a novel model to overcome
this burden. At its core, SAGCN separates the initial node features from
propagation and directly maps them to the output at each layer. Further-
more, SAGCN selectively aggregates the information from different prop-
agation layers to generate structure-aware node representations, where
the attention mechanism is exploited to adaptively balance the infor-
mation from local and global neighborhoods for each node. Our exper-
iments verify that the SAGCN model achieves state-of-the-art perfor-
mance in various semi-supervised and full-supervised node classification
tasks. More importantly, it outperforms many other backbone models,
by using half the number of layers, or even fewer layers.

Keywords: Deep learning - Graph Convolutional Networks - Node
classification - Attention mechanism

1 Introduction

Graph Convolutional Networks (GCNs) [6] are an efficient variant of Convolu-
tional Neural Networks (CNNs) on graphs. A GCN learns representation for a
node by aggregating representations of its neighbors iteratively. In recent years,
GCNs and their variants have been successfully applied to a wide range of appli-
cations, including node classification [25], social analysis [8,15], biology [3,19],
recommender systems [4], and computer vision [11,24].

Despite their enormous success, most of the current GCN models are shallow.
Numerous recent models, such as GCN [6], GAT [21], and APPNP [7], achieve
their best performance with two-layer models. Such shallow architectures limit
their ability to extract information from high-order neighbors. Moreover, the
performance of these models degrades significantly when stacking multiple layers.
This phenomenon, called over-smoothing [9], states that representations from
different classes become inseparable due to repeated propagation.
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Recently, several works have tried to tackle over-smoothing problem. The
JKNet model [22] uses dense skip connections combining the output of each
layer to preserve the locality of the node representations. A further model, GCNII
[1] suggests that by utilizing residual connection to carry information about the
initial layer and the previous layer, one can relieve the impact of over-smoothing.
Most existing methods, however, still face two problems. First, these models do
not consider how to adequately preserve initial node features, which can lead to
the loss of information that is crucial for node classification. Second, they lack
the capability of adapting neighborhood ranges to nodes individually, which may
not dynamically aggregate neighborhood information with different weights.

In this paper, SAGCN, a structure-aware deep GCN model is proposed to
address the aforementioned issues and relieve over-smoothing. Unlike GCNII,
which combines information about the initial layer with propagation to achieve
this task, information from propagation is separated, and mapped directly to
the output at each layer. In this manner, SAGCN can both reduce the loss
of important information and alleviate over-smoothing. Furthermore, all layers
are stacked and an attention mechanism is applied to selectively aggregate the
information from different neighborhood ranges for each node. Extensive com-
putational experiments show that our model outperforms other state-of-the-art
models on both semi-supervised and full-supervised node classification tasks.

The key contributions of the present work are summarized as follows:

— A novel model named SAGCN is proposed to help improve classification accu-
racy, which can fully preserve initial node features by separating them from
propagation. Different from recent models, SAGCN adequately keeps the fea-
ture information that is critical for node classification.

— An attention mechanism is utilized, that can adaptively leverage the infor-
mation from local and global neighborhoods for each node, thus obtaining
structure-aware node representations. Compared to existing works, SAGCN
flexibly aggregates information from different neighborhood ranges for each
node rather than a fixed receptive field.

— Extensive experiments of both semi-supervised and full-supervised node clas-
sification tasks are conducted on real-world datasets. Results reveal that our
model significantly outperforms baseline models.

2 Related Work

2.1 Deep GCNs

In spite of fruitful progress in this field, most previous studies only focus on
shallow GCNs, while the deeper extension is seldom discussed. The first attempt
to build deep GCNs is dated back to the GCN paper [6], where the residual
mechanism is applied. The follow-up study PPNP [7] employs the relationship
between GCNs and PageRank to derive an improved propagation scheme. Oono
[13] generalizes the forward propagation of a GCN as a specific dynamical system,
and theoretically proves that the node features of deep GCNs will converge to
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a subspace and incur information loss. Over-smoothing is solved in DropEdge
[16] by randomly removing a certain number of edges from the input graph at
each training epoch. A recent method GCNII [1] incorporates initial residual and
identity mapping into GCN to facilitate the development of deep architectures.
The major difference between previous work and the present model is that we
apply an attention mechanism to flexibly leverage different neighborhood ranges
for each node, rather than aggregating information from a fixed receptive field.

2.2 Attention-Based GCNs

A separate line of techniques target the attention-based GCN model. For exam-
ple, GAT [21] utilizes attention mechanisms to learn the edge weights at each
layer based on node features. The method by Thekumparampil [20] replaces the
propagation layers with attention mechanisms to learn a dynamic and adaptive
local summary of the neighborhood. Jumping Knowledge Networks [22] employ
LSTM-attention to obtain adaptive node representations. Recently, DAGNN [10]
introduced an attention mechanism after the propagation to derive more dis-
criminative node embeddings. Compared with previous studies, not only do we
additionally introduce a smoothed representation of this layer, but also include
a large number of initial node representations in each layer of our model to get
better node embeddings for classification.

3 Preliminaries

3.1 Notations

A graph is formally defined as G = (V, &), where V is the set of nodes (vertices)
indexed from 1 to n, and £ CV x V is the set of edges between nodes in V.
The numbers of nodes and edges are n = |V| and m = |&|, respectively. In this
paper, we consider unweighted and undirected graphs. Topology information for
the whole graph is described by the adjacency matrix A € R"*", where A; ;)
= 1 if an edge exists between node i and node j, otherwise it is 0. The diagonal
matrix of node degrees is denoted as D € R"*", where D(; ;) = Zj A N;
denotes the neighboring nodes set of node 7. A graph has a initial node feature
matrix h(®) € R"*4 where each row hgo) € R? represents the feature vector of
node i and d is the dimension of node features.

3.2 Graph Convolutional Network (GCN)

The GCN was originally developed by Kipf & Welling [6]. The feed forward
propagation in GCN is recursively conducted as

HH) — (AH(”W(”) : (1)

where HO € R4 and H+D ¢ R™<4""™ 16 the input and output node rep-

resentation matrices of layer (I 4+ 1). A = D=/2AD~1/2 is the re-normalization
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of the adjacency matrix, where A = A+1 is the adjacency matrix with added self-
connections and D indicates the corresponding degree matrix of A. Adding an
extra self-loop, however, makes the features indistinguishable and hurt the clas-
sification accuracy according to another study [9]. In this paper, we use original
adjacency matrix A and the corresponding degree matrix D. W) ¢ R xd Y
is a layer-specific trainable weight matrix and ¢ is a non-linear activation func-
tion, such as ReLU [12]. It was originally applied for semi-supervised classifica-
tion tasks, where only partial nodes have training labels in a graph. Owing to
the propagation process, the representation of a labeled node carries informa-
tion from its neighbors that are usually unlabeled, thus training signals can be
propagated to the unlabeled nodes.

4 Proposed Model

This section shows the proposed model, with its architecture of as illustrated in
Fig. 1. Two components in the framework are described: (1) information propa-
gation and (2) layer aggregation.

- h((ir . —»h(l)—> 2 —_— e —_— —>
= % K3
b . g h? ) .’3‘ R KO .\!}2?//. —_— e - — A
LH(I) L

o
Input Graph I1=1
P LH (0)

att ¢‘ il l
S0 S1 B . SO T B 81.

9 . 5 . y
attention mechanism | «- weighted representations e |
Y.

IIout

Fig. 1. The overall architecture of our proposed model. It contains two major compo-
nents: information propagation and layer aggregation. In the figure, att is the attention
vector, which computes retainment scores for representation generating from various
receptive fields, and so, s1, sz represent the retainment scores of H®), H® and H®"),
respectively.

4.1 Information Propagation

In this iterative process, each iteration indicates that an additional hop of
information has been propagated on the graph. Due to the shallow architec-
ture of GCNs, the nodes on the graph cannot capture sufficient neighbor-
hood information. Nevertheless, the performance degrades greatly when multi-
ple layers are applied to leverage more neighborhood information. Several recent
works attribute this performance degradation to the over-smoothing issue. Over-
smoothing is indeed a challenging problem, however our model effectively relieves
it by two modifications: 1) The initial features h(® are separated from propaga-
tion; 2) A smoothed representation AH®O of this layer is additionally introduced.
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Formally, the I-th layer of SAGCN is defined as
HHD = o ((5AHU>W<” +(1-4) AHU)) + nh(°)> , 2)

where § and 7 are two hyper-parameters. The symmetrical normalization propa-
gation mechanism A =D 1/2AD /2 ig employed. It is important to note that
original adjacency matrix A is used instead of A. Most of the previous studies
add a self-connection to retain its information during layer-wise propagation.
However, it is stated in other works [9,25] that a self-connection is meaningless
and may even introduce extra noises. Correspondingly, the original node degree
matrix D is used instead of D in the present work. o is an activation function,
for which ReLU is used.

As mentioned above, initial node embeddings play an important role in the
classification task. A recent study [10] verifies that the exclusive application of a
Multi-Layer Perceptron to the original feature matrix h(®) performs well without
using any graph structure information. This shows that the original structure
of data is important for classification, thereby this work aims to fully preserve
it. Moreover, it has been observed that frequent interaction between different
dimensions of the feature matrix [7] degrades the performance of the model.
Unlike GCNII, which combines h(®) with propagation, our model reduces such
interactions by separating h(®) from propagation and mapping it directly to the
output. In this manner, SAGCN is capable of making full use of h(®) to improve
classification accuracy, and relieve the over-smoothing problem.

Furthermore, the additional introduction of smoothed representation AHO
assures that a deep model achieves at least the same performance as a shallow
one, facilitating its implementation. The principle of setting d is to ensure that
the decay of weight matrix W) adaptively increases as we stack more layers.
Notably, SAGCN ignores the weight matrix W) by setting sufficiently small §.
In our experiments, we set 0 following the design of GCNII (i.e., § = log (% + 1),
where X is a hyper-parameter).

4.2 Layer Aggregation

The hidden representation of the layers (e.g., H®, H®) is obtained through
information propagation. Many existing models aggregate information from a
fixed range of neighbors. Nevertheless, JKNet [22] shows that the same number
of iterations (i.e., layers) can lead to very different effects for different nodes in
the same graph and the range of effective information obtained by each node
is heavily affected by the graph structure. In order to get structure-aware node
representations for classification, we employ an attention mechanism to flexibly
leverage the information from different neighborhood ranges for each node. The
mathematical expression of this subsection is defined as

H = stack (H(O),H(l)’ ... ,H(L)) e R (I+D)xd. 3)

S = o(softmax (Hatt)) e R (DXL (4)
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S = reshape (S) € R+, ()

H,.,; = squeeze (QH) e R™*4, (6)

where att € R is a trainable attention vector; o is an activation function, for
which sigmoid is used; stack, reshape and squeeze are used to adjust the data
dimension, so it can be matched during computation.

As mentioned in Sect.4.1, H®) denotes the hidden representations derived
by extracting information from nodes that are I-hop away, thus H) captures
the information from the sub-tree of height [ with the target node as the root.
As the number of layers [ increase, more global information is propagated in H(®)
because the corresponding sub-tree is deeper. However, it is difficult to determine
an appropriate [. A small [ may fail to extract sufficient high-order neighbor-
hood features, while a large [ may bring too much global information leading
to a dilution of essential local information. Furthermore, each node has a dif-
ferent sub-tree structure rooted at this node (e.g., tree-like, expansion-like) and
the most appropriate receptive field for each node should be different. For this
reason, an attention mechanism is applied after the information propagation. A
trainable attention vector att is employed, which is shared by all nodes to gener-
ate retainment scores. These retainment scores measure how much information
of the corresponding representations obtained by different propagation layers
should be retained to generate the final representation for each node. By using
this attention mechanism, SAGCN selectively aggregates different propagation
layers according to their importance to generate an adaptive structure-aware
representation for each node.

5 Experiments

In this section, extensive experiments are conducted on both semi-supervised
and full-supervised tasks to evaluate the performance of the proposed SAGCN.

Table 1. Statistics of the datasets.

Dataset Classes | Nodes | Edges | Features
7 2708 | 5429 | 1433
Citeseer 6 3327 | 4732|3703
Pubmed 3 19717 | 44338 | 500
Chameleon | 4 2277 136101 | 2325

5

5

5

Cora

183 295 | 1703
183 309 | 1703
251 499 | 1703

Cornell

Texas

Wisconsin
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5.1 Datasets

Following previous pieces of work [18,21,23], we use three standard citation
network datasets Cora, Citeseer, and Pubmed for semi-supervised node classi-
fication. In these citation datasets, nodes and edges represent documents and
citation relations, respectively, between documents. The Chameleon [17], Cor-
nell, Texas, and Wisconsin [14] datasets are also included for full-supervised node
classification. These datasets are web networks, where nodes and edges represent
web pages and hyperlinks, respectively. The feature of each node is the bag-of-
words representation of the corresponding page. Some statistics of these datasets
are provided in Table 1.

5.2 Semi-supervised Node Classification

Ezxperimental Settings. To ensure a fair comparison, the standard fixed train-
ing/validation/testing split [23] is utilized for the semi-supervised node classi-
fication task on three datasets: Cora, Citeseer and Pubmed, with 20 nodes per
class for training, 500 nodes for validation and 1,000 nodes for testing. We use
the Adam SGD optimizer [5] and early stopping with a patience of 100 epochs
to train SAGCN.

Baselines. The following state-of-the-art models are used as baselines in our
experiments:

e GCN [6] is an efficient variant of convolutional neural networks which oper-
ates directly on graph-structured data.

e GAT [21] leverages masked self-attentional layers instead of a symmetrically
normalized adjacency matrix in the GCN model.

o APPNP [7] utilizes the relationship between GCN and PageRank to derive
an improved propagation scheme based on personalized PageRank.

e JKNet [22] is the first deep GCN model employing dense skip connections
to combine the output of each layer, preserving the locality of the node rep-
resentations.

e JKNet(Drop) [16] is an improved version of JKNet, which randomly
removes some edges from the graph to retard convergence speed of over-
smoothing.

e Incep(Drop) [16] is an improved version of IncepGCN that randomly
removes a certain number of edges to relieve the information loss caused
by over-smoothing.

e GCNII [1] is a state-of-the-art deep GCN model with initial residual and
identity mapping, which effectively relieves the problem of over-smoothing.

Hyper-parameter Settings. In our model, we set n = 0.7 and A = 2.0 on all
datasets. We tune the following hyper-parameters: (1) layers € {8, 16, 32}, (2)
learning rate € {0.001, 0.003, 0.004}, (3) hidden layer dimensions € {64, 256},
(4) dropout rate € {0.5, 0.8}, (5) weight decay for convolutional layers € {0.01,
0.02, 0.15}, and (6) weight decay for dense layers € {0.02, 0.005, 0.01}.
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Performance Comparison. The mean classification accuracy after 100 runs
for three citation datasets are summarized in Table2. We reuse the metrics
already reported in [2] for GCN, GAT, and APPNP, the best metrics reported
in [16] for JKNet, JKNet(Drop), Incep(Drop), and the metrics reported in [1] for
GOCNII. As shown in Table 2, our results successfully demonstrate that SAGCN
achieves new state-of-the-art performance across all three datasets. Notably, the
fact that deep models (e.g., GCNII) always work better than shallow models
(e.g., GCN and GAT) indicates that global and local information together help
boost performance. It is also worthwhile to note that we use half the num-
ber of layers to achieve even better results than the deep GCN model GCNII,
which benefits from the ability of our model to flexibly utilize local and global
information.

Table 2. Mean classification accuracy (%) of semi-supervised node classification. The
number in parentheses corresponds to the number of layers in the model.

Model Cora Citeseer | Pubmed
GCN 81.5 71.1 79.0
GAT 83.1 70.8 78.5
APPNP 83.3 71.8 80.1
JKNet 81.1 (4) |69.8 (16) | 78.1 (32)
JKNet(Drop) | 83.3 (4) |72.6 (16) | 79.2 (32)
Incep(Drop) |83.5 (64) | 72.7 (4) |79.5 (4)
GCNII 85.5 (64) | 73.4 (32) |80.3 (16)
SAGCN | 86.3 (32) 73.6 (16)|80.9 (8)

A Detailed Comparison with Other Deep Models. Table3 summarizes
the results for the deep models with various numbers of layers. We reuse the
best-reported results for JKNet, JKNet(Drop), Incep(Drop) and GCNIIL. It can
be observed that on three datasets, the performance of SAGCN consistently
improves as the number of layers are increased. Notably, SAGCN achieves state-
of-the-art results with half the number of layers than deep model GCNII. This
suggests that too many layers may lead to a dilution of local information that
is important for node classification.

5.3 Full-Supervised Node Classification

Ezxperimental Settings. Following the setting in [14], 7 datasets are used:
Cora, Citeseer, Pubmed, Chameleon, Cornell, Texas, and Wisconsin. For each
dataset, nodes of each class are randomly split into 60%, 20%, and 20% for
training, validation and testing, respectively, and the performance of all models
on the test sets are measured over 10 random splits, as suggested in [14].
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Table 3. Summary of classification accuracy (%) results with various depths.

Dataset Method Layers
2 4 8 16 32 64
GCN 81.1 804 69.5 64.9 60.3 28.7
GCN(Drop) |82.8 82.0 758 75.7 62.5 49.5
JKNet - 80.2 80.7 80.2 81.1 71.5
Cora JKNet(Drop) | - 83.3 82.6 83.0 825 832
Incep - 776 76.5 817 81.7 80.0
Incep(Drop) - 829 825 831 831 835
GCNII 82.2 82.6 84.2 846 854 855
SAGCN 74.5 80.3 82.6 83.8 86.3 -
GCN 70.8 67.6 30.2 183 25.0 20.0
GCN(Drop) |72.3 70.6 61.4 572 41.6 34.4
JKNet - 687 67.7 69.8 682 63.4
‘ JKNet(Drop) - 72.6 718 72.6 70.8 722

Citeseer

Incep - 693 684 702 68.0 67.5
Incep(Drop) - 727 714 725 726 T71.0
GCNII 68.2 68.9 70.6 729 734 734
SAGCN 64.0 66.2 70.2 73.6 - -
GCN 79.0 76.5 61.2 409 224 353
GCN(Drop) |79.6 79.4 78.1 785 77.0 61.5
JKNet - 780 781 726 724 745
Pubmed JKNet(Drop) | - 787 787 79.1 79.2 789
Incep - T OTT9 749 - -
Incep(Drop) - 795 786 79.0 - -
GCNII 777 78.2 788 80.3 79.8 80.1
SAGCN 77.8 80.0 80.9 - - -

Baselines. In addition to the previously mentioned baselines, three variants of
the state-of-the-art Geom-GCN model [14] are included on these datasets.

e Geom-GCN: This is a geometric aggregation scheme for graph neural net-
works, which can extract the discriminative structures and long-range depen-
dencies. Geom-GCN-I, Geom-GCN-P, and Geom-GCN-S are three variants
of Geom-GCN.

Hyper-parameter Settings. In SAGCN, we fix the n to 0.7 on all datasets.
We tune the following hyper-parameters: (1) layers € {8, 16, 32}, (2) learning
rate € {0.005, 0.01, 0.03}, (3) hidden layer dimensions € {64, 128}, (4) dropout
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rate € {0.4, 0.5}, (5) Lo regularization € {0.0002, 0.001, 0.005, 0.01}, and (6) A
€ {2.0, 2.5).

Performance Comparison. Table4 reports the mean classification accuracy
of each model. The metrics already reported in [1] are reused for GCN, GAT,
Geom-GCN, and GCNII. Notably, it is observed that SAGCN achieves better
performance over the current state-of-the-art models by significant margins of
0.8%, 1.6%, 5.7%, and 1.6% on the Chameleon, Cornell, Texas, and Wisconsin,
respectively.

Table 4. Mean classification accuracy (%) of full-supervised node classification.

Model Cora |Cite. | Pumb. | Cham. | Corn. | Texa. | Wisc.
GCN 85.77 |73.68 |88.13 |28.18 |52.70 1 52.16 |45.88
GAT 86.37 | 74.32 |87.62 |42.93 |54.32 |58.38 |49.41
Geom-GCN-I |85.19 |77.99|90.05 |60.31 |56.76 | 57.58 |58.24
Geom-GCN-P | 84.93 |75.14 |88.09 |60.90 |60.81 67.57 | 64.12
Geom-GCN-S | 85.27 | 74.71 |84.75 |59.96 |55.68 |59.73 |56.67
APPNP 87.87 |76.53 | 89.40 |54.30 |73.51 |65.41 |69.02
JKNet 85.25 | 75.85 | 88.94 |60.07 |57.30 |56.49 |48.82
JKNet(Drop) | 87.46 |75.96 | 89.45 |62.08 |61.08 |57.30 | 50.59
Incep(Drop) |86.86 |76.83 |89.18 |61.71 |61.62 |57.84 |50.20
GCNII 88.49 |77.13 |90.30 |62.48 |76.49 |77.84 |81.57
SAGCN 88.71|77.29 | 90.82 |63.33 |78.11 83.51|83.14

5.4 Ablation Study

The results of an ablation study are shown in Fig.2. We remove the attention
from SAGCN (denoted by “SAGCN-A”) and initial node features separating
from SAGCN (denoted by “SAGCN-S”), respectively, to see how its perfor-
mance changes. We make four observations from Fig. 2: 1) Applying an attention

® GCN © SAGCN-A ® SAGCN-S @ SAGCN

Accuracy (%)

w A O O N ®
O ©o © o o o

Cora

Layers

Citeseer

Layers

® GCN © SAGCN-A @ SAGCN-S @ SAGCN

80

Accuracy (%)
(2] ~ ~
[4)] o (4]

(2]
=]

Pubmed

®GCN © SAGCN-A © SAGCN-S ® SAGCN

2 4 8

Layers

Fig. 2. Ablation study on initial node features separating and attention.
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mechanism significantly improves the performance of the model. 2) Separating
initial node features from propagation increases the performance of the model
to varying degrees. 3) Employing both techniques simultaneously achieves the
best results on the three different datasets.

6 Conclusion

In this paper, we propose SAGCN, a novel deep GCN model that relieves the
over-smoothing problem. Differently from previous deep models like GCNII, we
separate initial node features from propagation to fully preserve the original
information that is important for node classification. We further employ an
attention mechanism that flexibly leverages different neighborhood ranges for
each node, leading to structure-aware node representations for classification.
Experiments show that our model can achieve new state-of-the-art performance
with half the number of layers, or even less, on various semi-supervised and
full-supervised node classification tasks.
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Abstract. In multi-class classification tasks, like human activity recog-
nition, it is often assumed that classes are separable. In real applications,
this assumption becomes strong and generates inconsistencies. Besides,
the most commonly used approach is to learn classes one-by-one against
the others. This computational simplification principle introduces strong
inductive biases on the learned theories. In fact, the natural connections
among some classes, and not others, deserve to be taken into account. In
this paper, we show that the organization of overlapping classes (multiple
inheritances) into hierarchies considerably improves classification perfor-
mances. This is particularly true in the case of activity recognition tasks
featured in the SHL dataset. After theoretically showing the exponential
complexity of possible class hierarchies, we propose an approach based
on transfer affinity among the classes to determine an optimal hierarchy
for the learning process. Extensive experiments show improved perfor-
mances and a reduction in the number of examples needed to learn.

Keywords: Activity recognition - Dependent concepts *
Meta-modeling

1 Introduction

Many real-world applications considered in machine learning exhibit dependen-
cies among the various to-be-learned concepts (or classes) [6,17]. This is partic-
ularly the case in human activity recognition from wearable sensor deployments
which constitutes the main focus of our paper. This problem is two-folds: the high
volume of accumulated data and the criteria selection optimization. For instance,
are the criteria used to distinguish between the activities (concepts) running and
walking the same as those used to distinguish between driving a car and being in
a bus? what about distinguishing each individual activity against the remaining
ones taken as a whole? Similarly, during the annotation process, when should
someone consider that walking at a higher pace corresponds actually to run-
ning? These questions naturally arise in the case of the SHL dataset [7] which
© Springer Nature Switzerland AG 2021
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exhibits such dependencies. The considered activities in this dataset are difficult
to separate due to the existence of many overlaps among certain activities. Some
of the important causes for these overlaps are: (1) the on-body sensors deploy-
ments featured by this dataset, due to sensors coverage overlaps, tend to capture
movements that are not necessarily related to a unique activity. Authors in [§],
for example, have exhibited such overlaps; (2) The difficulty of data annota-
tion during data collection conducted in real-world conditions. For instance, the
annotation issues can include the time-shift of a label with respect to the activ-
ity [19], as well as wrong or missing labels [13]. Similarly, long lines of research
in computer vision [20] and time-series analysis [13,19] raised these issues which
hinder the development and large-scale adoption of these applications.

To solve these problems, we propose an original approach for structuring
the considered concepts into hierarchies in a way that very similar concepts are
grouped together and tackled by specialized classifiers. The idea is that classifi-
cations at different levels of the hierarchy may rely on different features, or differ-
ent combinations of the same features [27]. Indeed, many real-world classification
problems are naturally cast as hierarchical classification problems [1,24,25,27]. A
work on the semantic relationships among the categories in a hierarchical struc-
ture shows that they are usually of the type generalization-specialization [27].
In other words, the lower-level categories are supposed to have the same general
properties as the higher-level categories plus additional more specific properties.
The problem at hand is twice difficult as we have to, first, find the most appro-
priate hierarchical structure and, second, find optimal learners assigned to the
nodes of the hierarchical structure.

We propose a data-driven approach to structure the considered concepts in a
bottom-up approach. We start by computing the affinities and dependencies that
exist among the concepts and fuse hierarchically the closest concepts with each
other. We leverage for this a powerful technique based on transfer which showed
interesting empirical properties in various domains [14,26]. Taking a bottom-
up approach allows us to leverage learning the complete hierarchy (including
the classifiers assigned to each non-leaf node) incrementally by reusing what was
learned on the way. Our contributions are as follows: (1) we propose a theoretical
calculation for computing the total number of tree hierarchical combinations (the
search space for the optimal solution) based on the given number of concepts;
(2) we propose an approach based on transfer affinity to determine an optimal
organization of the concepts that improves both learning performances and accel-
erates the learning process; (3) extensive experiments show the effectiveness of
organizing the learning process. We noticeably get a substantial improvement of
recognition performances over a baseline which uses a flat classification setting;
(4) we perform a comprehensive comparative analysis of the various stages of
our approach which raises interesting questions about concept dependencies and
the required amount of supervision.
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2 Problem Statement

In this section, we briefly review the problem of hierarchical structuring of the
concepts in terms of formulation and background. We then provide a complexity
analysis of the problem size and its search space.

2.1 Problem Formulation and Background

Let X C R” be the inputs vector' and let C be the set of atomic concepts
(or labels) to learn. The main idea of this paper comes from the fact that the
concepts to be learned are not totally independent, thus grouping some concepts
to learn them against the others using implicit biases considerably improves
the quality of learning for each concept. The main problem is to find the best
structure of concepts groups to be learned in order to optimize the learning of
each atomic concept. For this we follow the three dimensions setting defined
in [10], and we consider: (1) single-label classification as opposed to multi-label
classification; (2) the type of hierarchy (or structure) to be trees as opposed to
directed acyclic graphs; (3) instances that have to be classified into leafs, i.e.
mandatory leaf node prediction [17], as opposed to the setting where instances
can be classified into any node of the hierarchy (early stopping).

A tree hierarchy organizes the class labels into a tree-like structure to rep-
resent a kind of “IS-A” relationship between labels. Specifically, [10] points out
that the properties of the “IS-A” relationship can be described as asymmetry,
anti-reflexivity and transitivity [17]. We define a tree as a pair (C, <), where C
is the set of class labels and “<” denotes the “IS-A” relationship.

Let {(z1,¢1),...,(zNn,cN)} S X,C be a set of training examples, where
X and C are two random variables taking values in X x C, respectively. Each
z € X and each ¢ € C. Our goal is to learn a classification function f: X — C
that attains a small classification error. In this paper, we associate each node
i with a classifier M;, and focus on classifiers f(x) that are parameterized by
My, ..., M,, through the following recursive procedure [27] (check Fig.2):

initialize 7 :=0
f(z) = { while (Child(i) is not empty) i := argmax;c o a(s) M (@) (1)
return ¢ %Child(i) is the set of children for the node 4

In the case of the SHL dataset, for instance, learning train and subway or car and
bus before learning each concept alone gives better results. As an advantage, con-
sidering these classes paired together as opposed to the flat classification setting
leads to significant degradation of recognition performances as demonstrated in
some works around the SHL dataset [23]. In contrast, organizing the various
concepts into a tree-like structure, inspired by domain expertise, demonstrated

! In our case, we select several body-motion modalities to be included in our exper-
iments, among the 16 input modalities of the original dataset: accelerometer, gyro-
scope, etc. Segmentation and processing details are detailed in experimental part.
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significant gains in terms of recognition performances in the context of the SHL
challenge [12] and activity recognition in general [15,16].

Designing such structures is of utmost importance but hard because it
involves optimizing the structure as well as learning the weights of the clas-
sifiers attached to the nodes of that structure (see Sect. 2.2). Our goal is then
to determine an optimal structure of classes that can facilitate (improve and
accelerate) learning of the whole concepts.

2.2 Search Space Size: Complexity Analysis

A naive approach is to generate the lattice structure of concepts groups and
to choose the tree hierarchies which give the best accuracy of atomic concepts.
In practice, this is not doable because of the exponential (in the number of
leaf nodes) number of possible trees. We propose a recurrence relation involving
binomial coefficients for calculating the total number of tree hierarchies for K
different concepts (class labels).

Example 1. Assume we have 3 various concepts, and we are interested in count-
ing the total number of hierarchies for classifying these concepts. We consider
that we have three classes namely c;, co and c3, there exist 4 different tree hier-
archies for learning the classification problem as following: (1) (¢1cacs) the tree
has one level and the learning process takes one step. Three concepts are learned
while each concept is learned separately from the others (flat classification), (2)
((c1e2)c3) the tree has two levels and the learning process takes two steps: at the
first level, it learns two concepts (atomic ¢z and two atomics ¢; and ¢y together).
At the second level it learns separately the two joined concepts ¢; and co of the
first level, etc. and (3) (c1(cz ¢3)) and (4) ((c1e3)c2).

Theorem 1. Let L(K) be the total number of trees for the given K number of
concepts. The total number of trees for K + 1 concepts satisfies the following
recurrence relation: L(K +1) = (Klil)L(K)L(l) +2 Efi_OQ (T)L(z—l— 1)L(K —14).
(See Appendiz A in the supplementary material for complete proof).

3 Proposed Approach

Our goals are to: (i) organize the considered concepts into hierarchies such that
the learning process accounts for the dependencies existed among these con-
cepts; (ii) characterize optimal classifiers that are associated to each non-leaf
node of the hierarchies. Structuring the concepts can be performed using two
different approaches: a top-down approach where we seek to decompose the
learning process; and a bottom-up approach where the specialized models are
grouped together based on their affinities. Our approach takes the latter direc-
tion and constructs hierarchies based on the similarities between concepts. This
is because, an hierarchical approach as a bottom-up method is efficient in the
case of high volume SHL data-sets. In this section, we detail the different parts
of our approach which are illustrated in Fig.1. In the rest of this section, we
introduce the three stages of our approach in detail: Concept similarity analysis,
Hierarchy derivation, and Hierarchy refinement.
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Fig. 1. Our solution involves several repetitions of 3 main steps: (1) Concept similarity
analysis: encoders are trained to output, for each source concept, an appropriate repre-
sentation which is then fine-tuned to serve target concepts. Affinity scores are depicted
by the arrows between concepts (the thicker the arrow, the higher the affinity score).
(2) Hierarchy derivation: based on the obtained affinity scores, a hierarchy is derived
using an agglomerate approach. (3) Hierarchy refinement: each non-leaf node of the
derived hierarchy is assigned with a model that encompasses the appropriate repre-
sentation as well as an ERM which is optimized to separate the considered concepts.

3.1 Concept Similarity (Affinity) Analysis

In our bottom-up approach we leverage transferability and dependency among
concepts as a measure of similarity. Besides the nice empirical properties of this
measure (explained in the Properties paragraph below), the argument behind it
is to reuse what has been learned so far at the lower levels of the hierarchies.
Indeed, we leverage the models that we learned during this step and use them
with few additional adjustments in the final hierarchical learning setting.

Transfer-Based Affinity. Given the set of concepts C, we compute during this
step an affinity matrix that captures the notion of transferability and similarity,
among the concepts. For this, we first compute for each concept ¢; € C an encoder
fo' (parameterized by 6) that learns to map the ¢; labeled inputs, to Z,,. Learn-
ing the encoder’s parameters consists in minimizing the reconstruction error, sat-
isfying the following optimization [22]: argming ¢ By oo x,0le=c, £(gg: (f5" (), 7),
where gg; is a decoder (parameterized by #) which maps back the learned rep-
resentation into the original inputs space. We propose to leverage the learned
encoder, for a given concept ¢;, to compute affinities with other concepts via fine-
tuning of the learned representation. Precisely, we fine-tune the encoder f,fi to
account for a target concept c¢; € C. This process consists, similarly, in minimiz-
ing the reconstruction error, however rather than using the decoder gg; learned
above, we design a genuine decoder g;? that we learn from the scratch. The corre-
sponding objective function is argming g E; oo x cje=c; £(gg7 (fg' (x)), ). We use
the performance of this step as a similarity score from c¢; to ¢; which we denote
by pe,—e¢; € [0,1]. We refer to the number of examples belonging to the concept
¢; used during fine-tuning as the supervision budget, denoted as b, which is used
to index a given measure of similarity. It allows us to have an additional indi-

cator as to the similarity between the considered concepts. The final similarity
Qpe;—re; +6°D

e . We set a and 3 to be equal to %

score is computed as
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Properties. In many applications, e.g. computer-vision [26] and natural language
processing [14], several variants of the transfer-based similarity measure have
been shown empirically to improve (i) the quality of transferred models (wins
against fully supervised models), (ii) the gains, i.e. win rate against a network
trained from scratch using the same training data as transfer networks’, and
more importantly (iii) the universality of the resulting structure. Indeed, the
affinities based on transferability are stable despite the variations of a big corpus
of hyperparameters. We provide empirical evidence (Sect. 4.2) of the appropri-
ateness of the transfer-based affinity measure for the separability of the similar
concepts and the difficulty to separate concepts that exhibit low similarity scores.

3.2 Hierarchy Derivation

Given the set of affinity scores obtained previously, we derive the most appro-
priate hierarchy, following an agglomerative clustering method combined with
some additional constraints. The agglomerative clustering method proceeds by a
series of successive fusions of the concepts into groups and results in a structure
represented by a two-dimensional diagram known as a dendrogram. It works
by (1) forming groups of concepts that are close enough and (2) updating
the affinity scores based on the newly formed groups. This process is defined
by the recurrence formula proposed by [11]. If defines a distance between a
group of concepts (k) and a group formed by fusing ¢ and j groups (ij) as
di(ijy = idri + ady; + Bdij + y|dk; — dy;|, where d;; is the distance between
two groups ¢ and j. By varying the parameter values oy, o5, 3, and -y, we expect
to get clustering schemes with various characteristics.

In addition to the above updating process, we propose additional constraints
to refine further the hierarchy derivation stage. Given the dendrogram produced
by the agglomerative method above, we define an affinity threshold T such that
if the distance at a given node is d;; > 7, then we merge the nodes to form a
unique subtree. In addition, as we keep track of the quantities of data used to
train and fine-tune the encoders during the transfer-based affinity analysis stage,
this indicator is exploited to inform us as to which nodes to merge. Let 7 be
the derived hierarchy (tree) and let ¢ indexes the non-leaf or internal nodes. The
leafs of the hierarchy correspond to the considered concepts. For any non-leaf
node ¢, we associate a model M; that encompasses (1) an encoder (denoted in
the following simply by Z; in order to focus on the representation) that maps
inputs X to representations Z; and (2) an ERM (Empirical Risk Minimizer) [21]
f+ (such as support vector machines SVMs) that outputs decision boundaries
based on the representations produced by the encoder.

3.3 Hierarchy Refinement

After explaining the hierarchy derivation process, we will discuss: (1) which
representations are used in each individual model; and (2) how each individual
model (including the representation and the ERM weights) is adjusted to account
for both the local errors and also those of the hierarchy as a whole.



Hierarchical Learning of Dependent Concepts for HAR 85

Which Representations to Use? The question discussed here is related to the
encoders to be used in each non-leaf node. For any non-leaf node ¢ we distinguish
two cases: (i) all its children are leafs; (ii) it has at least one non-leaf node. In the
first case, the final considered ERM representation, associated with the non-leaf
node, is the representation learned in the concept affinity analysis step (first-
order transfer-based affinity). In the second case, we can either fuse the nodes
(for example, in a case of classification between 3 concepts, we get all 3 together
rather than, first {1} vs. {2,3}, then {2} vs. {3}), or keep them as they are
and leverage the affinities based on higher-order transfer where, rather than
accounting for a unique target concept, the representation is then fine-tuned.
Figure 2 illustrates how transfers are performed between non-leaf nodes models.
We index the models with the encoder M| z,;. In the case of higher-order transfer,

Fig. 2. Transfers are performed between non-leaf nodes models. The hierarchy in (a)
can be kept as they are merged to form the hierarchy in (b). (b): a high-order transfer
between the concepts ¢;, ¢j, and ¢ is performed. (¢): no transfers can be made.

Adjusting Models Weights. Classifiers are trained to output a hypothesis based
on the most appropriate representations learned earlier. Given the encoder (rep-
resentation) assigned to any non-leaf node t, we select a classifier f := argmin fer
R(f,2) where R(f,21) == 57 2y cox.Cleechita) Ba~zio[L(c, f(2))] and H is
the hypothesis space. Models are adjusted to account for local errors as well as
for global errors related to the hierarchy as a whole. In the first case, the loss is
defined as the traditional hinge loss used in SVMs which is intended to adjust
the weights of the classifiers that have only children leaves. In the second case,
we use a loss that encourages the models to leverage orthogonal representations
(between children and parent nodes) [27].

4 Experiments and Results

Empirical evaluation of our approach are performed on three steps: we evalu-
ate classification performances in the hierarchical setting (Sect. 4.1); then, we
evaluate the transfer-based affinity analysis step and the properties related to
the separability of the considered concepts (Sect. 4.2); finally, we evaluate the
derived hierarchies in terms of stability, performance, and agreement with their
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counterparts defined by domain experts (Sect. 4.3)2. Training details can be
found in Appendix B and evaluation metrics are detailed in Appendix C.

SHL Dataset [7]. It is a highly versatile and precisely annotated dataset dedi-
cated to mobility-related human activity recognition. In contrast to related rep-
resentative datasets like [2], the SHL dataset (26.43 GB) provides , simultane-
ously, multimodal and multilocation locomotion data recorded in real-life set-
tings. Among the 16 modalities of the original dataset, we select the body-motion
modalities including: accelerometer, gyroscope, magnetometer, linear accelera-
tion, orientation, gravity, and ambient pressure. This makes the data set suit-
able for a wide range of applications and in particular transportation recognition
concerned with this paper. From the 8 primary categories of transportation, we
are selected: 1:Still, 2: Walk, 3:Run, 4:Bike, 5:Car, 6:Bus, 7:Train, and 8:Subway
(Tube).

4.1 Evaluation of the Hierarchical Classification Performances

In these experiments, we evaluate the flat classification setting using neural net-
works which constitute our baseline for the rest of the empirical evaluations.
To compare our baseline with the hierarchical models, we make sure to get the
same complexity, i.e. comparable number of parameters as the largest hierar-
chies including the weights of the encoders and those of the ERMs. We also use
Bayesian optimization based on Gaussian processes as surrogate models to select
the optimal hyperparameters of the baseline model [9,18]. More details about
the baseline and its hyperparameters are available in the code repository [9].

Per-Node Performances. Figure3 shows the resulting per-node performances,
i.e. how accurately the models associated with the non-leaf nodes can predict the
correct subcategory averaged over the entire derived hierarchies. The nodes are
ranked according to the obtained per-node performance (top 10 nodes are shown)
and accompanied by their appearance frequency. It is worth noticing that the
concept 1:still learned alone against the rest of the concepts (first bar) achieves
the highest gains in terms of recognition performances while the appearance
frequency of this learning configuration is high (more than 60 times). We see
also that the concepts 4:bike, 5:car, and 6:bus grouped together (5th bar) occur
very often in the derived hierarchies (80 times) which is accompanied by fairly
significant performance gains (5.09 & 0.3%). At the same time, as expected, we
see that the appearance frequency gets into a plateau starting from the 6th bar
(which lasts after the 10th bar). This suggests that the most influential nodes
are often exhibited by our approach.

Per-Concept Performances. We further ensure that the performance improve-
ments we get at the node levels are reflected at the concept level. Experimental

2 Software package and code to reproduce empirical results are publicly available at
https://github.com/sensor-rich /hierarchical SHL.
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Fig. 3. (a) Per-node performance gains, averaged over the entire derived architectures
(similar nodes are grouped and their performances are averaged). The appearance
frequency of the nodes is also illustrated. Each bar represents the gained accuracy
of each node in our hierarchical approach. For example, the 8th bar corresponds to
the concepts 2:walk-3:run-4:bike grouped together. (b) Recognition performances of
each individual concept, averaged over the entire derived hierarchies. For reference, the
recognition performances of the baseline model are also shown.
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results show the recognition performances of each concept, averaged over the
whole hierarchies derived using our proposed approach. We indeed observe that
there are significant improvements for each individual concept over the baseline
(flat classification setting). We observe that again 1:still has the highest classi-
fication rate (72.32 £ 3.45%) and an improvement of 5 points over the baseline.
Concept 6:bus also exhibits a roughly similar trend. On the other hand, concept
T:train has the least gains (64.43 +4.45%) with no significant improvement over
the baseline. Concept 8:subway exhibits the same behavior suggesting that there
are undesirable effects that stem from the definition of these two concepts.

4.2 Evaluation of the Affinity Analysis Stage

These experiments evaluate the proposed transfer-based affinity measure.
We assess, the separability of the concepts depending on their similarity
score (for both the transfer-affinity and supervision budget) and the learned
representation.

Appropriateness of the Transfer-Based Affinity Measure. We reviewed above
the nice properties of the transfer-based measure especially the universality and
stability of the resulting affinity structure. The question that arises is related
to the separability of the concepts that are grouped together. Are the obtained
representations, are optimal for the final ERMs used for the classification? This
is what we investigate here. Figure 4b shows the decision boundaries generated
by the considered ERMs which are provided with the learned representations
of two concepts. The first case (top right), exhibits a low-affinity score, and
the second case (bottom right) shows a high-affinity score. In the first case, the
boundaries are unable to separate the two concepts while it gets a fairly distinct
frontier.

Impact on the ERMs’ Decision Boundaries. We train different models with vari-
ous learned representations in order to investigate the effect of the initial affinities
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Fig. 4. (a) Non-leaf node grouping concepts ¢; and c;. (b) Decision boundaries gener-
ated by the ERM of the non-leaf node using an encoder (representation) fine-tuned to
account for (top) the case where ¢; and ¢; are dissimilar (low-affinity score) and (bot-
tom) the case where ¢; and ¢; are similar (high-affinity score). (¢) Decision boundaries
obtained by SVM-based classifiers trained on the representations Z; as a function of
the distance between the concepts (y-axis) and the supervision budget (x-axis).

(obtained solely with a set of 100 learning examples) and the supervision budget
(additional learning examples used to fine-tune the obtained representation) on
the classification performances of the ERMs associated with the non-leaf nodes
of our hierarchies. Figure 4c shows the decision boundaries generated by various
models as a function of the distance between the concepts (y-axis) and the super-
vision budget (x-axis). Increasing the supervision budget to some larger extents
(more than ~300 examples) results in a substantial decrease in classification per-
formances of the ERMs. This suggests that, although our initial affinity scores
are decisive (e.g. 0.8), the supervision budget is tightly linked to generalization.
This shows that a trade-off (controlled by the supervision budget) between sep-
arability and initial affinities arises when we seek to group concepts together.
In other words, the important question is whether to increase the supervision
budget indefinitely (in the limits of available learning examples) in order to find
the most appropriate concepts to fuse with, while expecting good separability.

4.3 Universality and Stability

We demonstrated in the previous section the appropriateness of the transfer-
based affinity measure to provide distance between concepts as well as the exis-
tence of a trade-off between concepts separability and their initial affinities. Here
we evaluate the universality of the derived hierarchies as well as their stabil-
ity during adaptation with respect to our hyperparameters (affinity threshold
and supervision budget). We compare the derived hierarchies with their domain
experts-defined counterparts, as well as those obtained via a random sampling
process. Figure5 shows some of the hierarchies defined by the domain experts
(first row) and sampled using the random sampling process. For example, the
hierarchy depicted in Fig. 5d corresponds to a split between static (1:still, 5:car,
6:bus, T:train, 8:subway) and dynamic (2:walk, 3:run, 4:bike) activities. The dif-
ference between the hierarchies depicted in Fig.5a and 5b is related to 4:bike
activity which is linked first to 2:walk and 3:run then to 5:car and 6:bus. A pos-
sible interpretation is that in the first case, biking is considered as “on feet”
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Table 1. Summary of the recognition
performances obtained with our proposed
approach compared to randomly sampled
and expert-defined hierarchies.

Fig. 5. Examples of hierarchies: Method | Agree | Perf. avg.+ std.
(a) defined via domain expertise, Expertise | — 7932 + 0.17

(b-c) derived using our approach, 1
and (d) randomly sampled. Con- Random | 0.32 | 48.17 + 5.76

cepts 1—38 from left to right. Proposed | 0.77 | 75.92 £ 1.13

activity while in the second case as “on wheels” activity. What we observed is
that the derived hierarchies tend to converge towards the expert-defined ones.

We compare the derived hierarchies in terms of their level of agreement. We
use for this assessment, the Cohen’s kappa coefficient [4] which measures the
agreement between two raters. The first column of Table 1 provides the obtained
coefficients. We also compare the average recognition performance of the derived
hierarchies (second column of Table1). In terms of stability, as we vary the
design choices (hyperparameters), defined in our approach, we found that the
affinity threshold has a substantial impact on our results with many adjustments
involved (12 hierarchy adjustments on avg.) whereas the supervision budget has
a slight effect, which confirms the observations in Sect. 4.2.

5 Conclusion and Future Work

This paper proposes an approach for organizing the learning process of depen-
dent concepts in the case of human activity recognition. We first determine a
suitable structure for the concepts according to a transfer affinity-based mea-
sure. We then characterize optimal representations and classifiers which are then
refined to account for both local and global errors. We provide theoretical bounds
for the problem and empirically show that using our approach we are able to
improve the performances and robustness of activity recognition models over a
flat classification baseline. In addition to supporting the necessity of organizing
concepts learning, our experiments raise interesting questions for future work.
Noticeably, Sect. 4.2 asks what is the optimal amount of supervision for deriving
the hierarchies. Another future work is to study different approaches for search-
ing and exploring the search space of different hierarchical types (lattices, etc.).

Appendix A

Proof. Theorem 1. It can be explained by observing that, for K + 1 concepts
containing K existed concepts c1,---cx and a new added concept 7y, we can
produce the first level trees combinations as below. Notice that each atomic
element o can be one of the cq,---cxg concepts. In order to compute the total
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number of trees combinations, we show what is the number of tree combinations
by assigning the K concepts to each item:

K concepts
— (v( 9---0 )): the number of trees combinations by taking the concept labels
into the account are: (IO()L(I) x 2 x L(K); the reason for multiplying the
number of trees combinations for K concepts to 2 is because while the left
side contains an atomic 7y concept, there are two choices for the right side

of the tree in the first level: either we compute the total number of trees
K concepts

for K concepts from the first level or we keep the first level as a ©0---0
atomics and keep all K concepts together, then continue the number of K

trees combinations from the second level of the tree.
K —1concepts

= ((yo)( 50 )): similar to the previous part we have (If)L(Z) x2x L(K —
1) trees combinations by taking the concepts labels into the account. (If)
indicates the number of combinations for choosing a concept from the K
concept and put it with the new concept separately. While L(2) is the number
of trees combinations for the left side of tree separated with the new concept

i K —2concepts
_ ((700)( 0---0 ))7
K —1concepts
~((v 970 )o): (*,)L(K)L(1) in this special part, we follow the same
formula except the single concept in the right side has only one possible
combination in the first level equal to L(1).

All in all, the sum of these items calculates the total number of tree hierarchies
for K + 1 concepts.

The first few number of total number of trees combinations for 1,2,3,4,5,6,
7,8,9,10,--- concepts are: 1, 1, 4, 26, 236, 2752, 39208, 660032, 12818912,
282137824, ---. In the case of the SHL dataset that we use in the empirical
evaluation, we have 8 different concepts and thus, the number of different types
of hierarchies for this case is L(8) = 660, 032.

Appendix B Training Details

We use Tensorflow for building the encoders/decoders. We construct encoders by
stacking Convld/ReLU/MaxPool blocks. These blocks are followed by a Fully
Connected/ReLU layers. Encoders performance estimation is based on the vali-
dation loss and is framed as a sequence classification problem. As a preprocessing
step, annotated input streams from the huge SHL dataset are segmented into
sequences of 6000 samples which correspond to a duration of 1 min. given a sam-
pling rate 100 Hz. For weight optimization, we use stochastic gradient descent
with Nesterov momentum of 0.9 and a learning-rate of 0.1 for a minimum of
12 epochs (we stop training if there is no improvement). Weight decay is set
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to 0.0001. Furthermore, to make the neural networks more stable, we use batch
normalization on top of each convolutional layer. We use SVMs as our ERMs in
the derived hierarchies.

Appendix C Evaluation Metrics

In hierarchical classification settings, the hierarchical structure is important and
should be taken into account during model evaluation [17]. Various measures
that account for the hierarchical structure of the learning process have been
studied in the literature. They can be categorized into: distance-based; depth-
dependent; semantics-based; and hierarchy-based measures. Each one is display-
ing advantages and disadvantages depending on the characteristics of the con-
sidered structure [5]. In our experiments, we use the H-loss, a hierarchy-based
measure defined in [3]. This measure captures the intuition that “whenever a
classification mistake is made on a node of the taxonomy, then no loss should
be charged for any additional mistake occurring in the sub-tree of that node.”
L (g,y) = vazl{g)l # vy NU; = y;,J € Anc(i)}, where § = (91,---gn) is the
predicted labels, y = (y1,---yn) is the true labels, and Anc(i) is the set of
ancestors for the node .
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Abstract. Most existing short text classification models suffer from
poor performance because of the information sparsity of short texts and
the polysemous class-bearing words. To alleviate these issues, we pro-
pose a context-sensitive topic memory network (cs-TMN) by learning
context-sensitive text representations and content-aware extended topic
knowledge. Different from TMN that utilizes context-independent word
embedding and extended topic knowledge, we further employ context-
sensitive word embedding, comprised of local context representation and
global context representation to alleviate the polysemous issue. Besides,
extended topic knowledge matched by context-sensitive word embed-
ding is proven content-aware in comparison with previous works. Empir-
ical results demonstrate the effectiveness of our cs-TMN, outperform-
ing state-of-the-art models on short text classification on four public
datasets.

Keywords: Short text classification - Context-sensitive text
representations - Topic knowledge

1 Introduction

Short text classification, widely applied to question answering, dialogue systems,
sentiment analysis and others, is one of the most important tasks in natural
language processing. Many models designed for text classification, like support
vector machines (SVM) [27] and neural networks [10,11,29], have been proposed
and achieved promising results, but these models inevitably underperform when
being directly applied to the short text classification due to the information
sparsity.

Recently, many novel methods have been proposed to classify short texts.
On one hand, to alleviate the problem of polysemy, some researchers [20,21]
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proposed to learn context-sensitive word embedding by leveraging local con-
textual information or global topic information. Nonetheless, these models are
incapable of representing the interactions among the words, topics and contexts
clearly, thereby under-utilizing topic knowledge. On the other hand, in order to
solve the information sparsity of short text, some researchers [4,19] applied topic
models to derive latent topics, and then employed topic knowledge as features
to enrich the representations of short texts from extra large corpora.

More recently, topic memory network (TMN), proposed by [31], jointly
explored topic inference and text classification with memory networks in an
end-to-end manner. Their model achieved the state-of-the-art results on differ-
ent short text datasets. This model, however, has two limitations. Firstly, it
utilizes the context-independent word representation, leading to the issue of pol-
ysemous word confusion. Moreover, due to the polysemy of class-bearing words,
the topic memory mechanism sometimes cannot match to the extended latent
topic knowledge accurately.

In this paper, to address the aforementioned limitations of TMN, we develop
a context-sensitive topic memory network (cs-TMN) and demonstrate that sig-
nificant improvements can be achieved by using context-sensitive word repre-
sentations. It can not only effectively address the polysemy of class-bearing
words, but also help to match content-aware extended topic knowledge. Our
cs-TMN first encodes the short text into local context representations via a self-
attention mechanism [25] or bidirectional encoder representation from Trans-
formers (BERT) [5]. Inspired by the success of neural topic model (NTM) [16],
we employ it to capture the co-occurrence of words and text topic representation,
thereby discovering latent topics. The context-sensitive word representations are
then obtained by leveraging local context representation and the relevant global
topic information mapping using a word-topic attention mechanism. Finally, cs-
TMN employs context-sensitive text representation and a topic memory mech-
anism to match the content-aware extended topic knowledge. In other words,
topic information is applied to cs-TMN in two aspects. One is to apply global
topic information of text to help establish context-sensitive word embedding;
the other is to apply content-aware topic knowledge as extended features of
classification. The contributions of this paper can be summarized as follows:

(1) We propose a novel short text classification model that employs context-
sensitive word embedding comprised of local context and global context repre-
sentation.

(2) We demonstrate that context-sensitive word embeddings can alleviate the
polysemy issue effectively and gain better extended topic knowledge for short
texts.

(3) Our cs-TMN achieves state-of-the-art performance on four commonly
used short text datasets and shows robustness across languages.

2 Framework Overview

In real-world scenarios, short texts suffer from information sparsity, and many
class-bearing words being polysemous or ambiguous. For instance, in the
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Fig. 1. Overview of cs-TMN consisting of five modules: 1) neural topic model, 2) local
context representation, 3) global context representation, 4) extended topic memory
map, and 5) the classifier.

sentence “He would go to her birthday party.”, the word “party” may refer
to a social event under the topic “activity”, or a political organization under the
topic “politics”. In short text classification, due to the problem of polysemy and
information sparsity, previous methods may classify this sentence as relating to
political events rather than relating to entertainment activities. To address those
issues, our cs-TMN firstly generates the context-sensitive word embedding which
can express the specific meaning of polysemous words in a sentence more accu-
rately. Moreover, cs-TMN matches the content-aware topic knowledge features
with context-sensitive word embeddings. The overall framework is illustrated in
Fig. 1.

2.1 Neural Topic Model

In cs-TMN, we utilize topic information from two aspects: the global topic infor-
mation of words, which represents the global semantic information, and the
extended features of texts, such as other topic words that are not in the original
text but play an important role in the classification task. Specifically, following
TMN, we employ a neural topic model (NTM) [16,22] to induce latent topics.

Different from the TMN, inspired by NTM-R [6], which achieves substantially
higher topic coherence, the objective function of our NTM is defined as:

Lytyvi—-r = LnTtm + AC (1)

where L s is the loss function of NTM and C'is topic coherence regularization.
Specifically, Lyrps is defined as:

Lyrm = DKL(Q(Z)||p(Z|37)) - Eq(z)[p(x‘z)] (2)
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where ¢(z) denotes a standard normal prior N(0; I). Here, p(z|z) and p(z|z) are
probabilities describing the encoding and decoding processes, respectively. The
Dkr(-]]) is the Kullback-Leibler divergence and the C' is defined as:

F=W°?E)T" (3)
S=EF (4)
C=>(S"ow?), (5)

where E € RIVI*4 is the pre-trained word embedding matrix for the vocabulary,
F € R™T is the W?-weighted centroid (topic) vector, and S € RIVIXT is the
cosine similarity matrix between word vectors and topic vectors. Here, d is the
dimension of the embedding space. Due to the space limitation, we leave out the
derivation details and refer the readers to [6,16].

2.2 Local Context Representation

We evaluate and compare two local context representations within the cs-TMN
framework: the self-attention mechanism vs. BERT.

We apply self-attention [25] to obtain the local context representations of the
input sentence. Formally, given an input text X = xg, 1, ..., T,, where n is the
text length, each hidden state in the r-th layer is constructed by attending to
the states in the (r — 1)-th layer, where the first layer is the word embedding
layer. Specifically, the (r — 1)-th layer H"~! € R"*4 is first transformed into the
queries Q@ € R™*?, the keys K € R"*¢ and the values A € R"*? with three
separate weight matrices. The r-th layer is calculated as:

H" = Attention(Q, K, A) = ATT(Q,K)A (6)

where ATT() is a dot-product attention model, defined as:

T

ATT(Q,K) = softmax(QK

Nz ) (7)

where V/d is the scaling factor.

In addition, we also attempt to experiment with the state-of-the-art BERT
model [5], to generate word vectors since BERT representation is expected
to further enhance the performance of our cs-TMN. Specifically, we employ
a pre-trained BERT model to predict text category, and we take the word
vectors obtained by all BERT hidden layers as local context representation
L =ly,l4,...,l,, which are taken as the context-sensitive representations.

2.3 Global Context Representation and Context-Sensitive Word

Embedding

In order to take advantage of global topic information, which could disam-
biguate polysemous words, we employ a word-topic attention mechanism to
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match related topics. Specifically, we assume that after the local context repre-
sentation module, we will obtain the local context representation of all n words,
where n equals the length of the short text. For the global context g; of each
word, we have:

T
gi = Z aikty (8)
=1

air = softmax(tgl;) (9)

where t;, is vector representation of the k-th topic, i.e., the k-th row of topic-
word weight matrix W?. The a4 is the similarity of local context representation
l; and each latent topic.

After obtaining the global information of n words, we add the local context
vector of word [; and the global topic vector of word g;:

¢ =1li+gi (10)

where ¢; is the context-sensitive word embedding of the word 1.

2.4 Exploiting Content-Aware Topic Knowledge

We apply a topic memory mechanism [23,28] to map the content-aware topic
knowledge as the extended features for classification. Specifically, after obtaining
the topical-word weight matrix W¢ using NTM, we input this matrix into two
ReLU-activated neural perceptrons and output two memory matrices, a source
memory O and a target memory M. We first compute the match score between
the k-th topic of source memory and the context-sensitive embedding of the i-th
word as:

Py, ; = sigmoid(W?con(Oy; U;) + b*) (11)

where the con(-;-) operation [4,8] denotes the concatenation of two matrices,
U = [cg...¢;...c,] is the embedded sentence X (in the word sequences form), and
W* and b® are parameters to be learned. Then, we design the integrated memory
weights as:

ok =0k +7>  Pri (12)

where v is the pre-defined coefficient. Finally, we obtain the output representa-
tion Ry = ¢ M), of the topic memory mechanism and R € R"*? can represent
other topic words which are beneficial to text classification. The concatenation of
R and U, i.e., the context-sensitive word sequence, further serves as classification
features.



98 Z. Ye et al.

2.5 Classifier and Training

We use the convolutional neural network (CNN) as the final classifier. Specif-
ically, after exploiting extended topic knowledge, the concatenation of topic
knowledge R and context-sensitive word sequences U further serves as feature
inputs to the CNN to obtain the final text category. Topic discovery is induced
jointly with text classification in an end-to-end manner, and the loss function of
the overall framework to combine the two effects is defined as:

Ligss = LNtym—-r + ALcLs (13)

where Ly — g denotes the loss of NTM-R in Eq. (6), Lo s represents the cross-
entropy to reflect classification loss, and A is the trade-off parameter to control
the balance between topic model and classification.

3 Experiments

3.1 Datasets

We conduct experiments on four different short text datasets: SearchSnippets,
StackOverflow, Biomedical, and Weibo. The dataset details are described as
follows:

SearchSnippets. This dataset contains Google search snippets released by [19].
There is a total of eight ground-truth labels, e.g., business, engineering, and
sport.

StackOverflow. This dataset is extracted from competition data released by
Kaggle. Following [30], in our experiment, we randomly sample 18,000 question
titles from 20 different tags, e.g., excel, svn, and ajax.

Biomedical. We use the challenge data related to biomedicine released on
BioASQ, an internationally renowned biomedical platform. Following [30], we
randomly select 18,000 paper titles from 20 different MeSH5 major topics, e.g.,
chemistry, cats, and lung.

Weibo. To evaluate cs-TMN on a different language other than English, we
use Chinese microblog (Weibo) data to conduct the experiment. We experiment
with the raw dataset [9] with 50 distinct categories in total.

Table 1 lists the statistics information of these four datasets. Since Search-
Snippets, StackOverflow and Biomedical were already preprocessed by [19] and
[30], we did not process these datasets further. For Weibo data, short texts were
converted into sequences of words using the Jieba Chinese word segmentation
module.! Tt should be noted that the average length of Weibo is the number of
words in Chinese.

! https://github.com/fxsjy /jieba.
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Table 1. Statistics of the experimental datasets. EN denotes English and ZH denotes
simplified Chinese.

Dataset #Docs | #Classes | Average length | Vocabulary size
SearchSnippets (EN) | 12,332 | 8 17.0 7,334
StackOverflow (EN) | 18,000 |20 7.3 6,123
Biomedical (EN) 18,000 | 20 16.1 5,722
Weibo (ZH) 30,000 |50 7.3 10,001

3.2 Experimental Methods

We compare our approach with five widely used short text classification methods.
The comparative baseline models along with cs-TMN are described as follows:

SVM-based methods. We use the popular baseline SVM+BOW proposed by
[27].

AttBiLSTM. The model is a widely used neural classifier from [32].

CNN-based models. CNN [11] is another widely used neural classifier. We
employ the pre-trained CNN+ELMo [18] and CNN+NTM as two different base-

lines.

TMN. The TMN [31] jointly learns the topic inducing module and classification
module, and it is a state-of-the-art model on short text classification, acting as
a strong baseline in our comparison.

BERT. We fine-tune BERT on each of our datasets with a small learning rate
and its output is considered as the text category.

cs-TMN. Our proposed model uses context-sensitive word embeddings and the
content-aware topic knowledge as extended features. In our experiments, we
apply the self-attention mechanism (cs-TMN-Self shown in Table2) and BERT
(cs-TMN-BERT shown in Table2) to generate the local context representation
respectively.

3.3 Experiment Settings

In our experiment, we randomly select 90% of the samples as the training set
and the remaining 10% as the test set for all the datasets. We use pre-trained
embeddings to initialize all word embeddings. Specifically, for datasets Search-
Snippets, StackOverflow, and Biomedical, we use pre-trained GloVe embeddings
[17] with a dimension of 200. For Weibo, we use pre-trained word2vec embed-
dings obtained from large Chinese corpora [13] with a dimension of 300. For the
final classifier, we employ a one-layer CNN with three kernels. The kernel sizes of
CNN layer are set to d, 2d, and 3d, respectively, where d is the word embedding
dimension. The number of feature maps of the CNN is set to 500. In the training
process, we train cs-TMN for at most 800 epochs, and an early-stop strategy is
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adopted to avoid overfitting [2]. For the BERT model, we adopt a pre-trained
uncased BERT Base model for English datasets, while for the Chinese Weibo
dataset, we apply a pre-trained BERT-Base Chinese model.?

3.4 Experimental Results

As can be seen from the experimental results in Table2, both cs-TMN-Self
(self-attention based local embeddings) and cs-TMN-BERT (BERT based local
embeddings) perform better than all other models in these four short text
datasets.

Our cs-TMN gains significant improvements in short text classifica-
tion. According to Table 2, we can conclude that compared with TMN, cs-TMN
yields a significant improvement of about 2% on F1 and accuracy on English
dataset Biomedical, and Chinese dataset Weibo. In particular, for StackOver-
flow, the improvement is up to 7%. The experimental results fully show that the
ability of cs-TMN to classify short texts has been greatly improved due to the
context-sensitive word embedding, which can not only solve the problem of the
polysemy of class-bearing words in the text but also improve the matching effect
of relevant extended topic knowledge features. In addition, it also proves that
cs-TMN makes more comprehensive use of the latent topic information than
TMN. The specific ablation study is shown in Sect. 3.5.

Context-sensitive word representation and content-aware topic knowl-
edge can improve the classification accuracy. We can find that for four
experimental datasets (especially for Weibo), cs-TMN outperforms CNN+ELMo
and BERT. This suggests that compared with existing multi-sense word embed-
ding approaches, the proposed context-sensitive word embedding comprised
of global topic information and local context representation is more effective.

Table 2. The comparison of different models w.r.t accuracy (Acc) and weighted average
F1.

Models SearchSnippets | StackOverflow | Biomedical Weibo

Acc |F1 Acc |F1 Acc |F1 Acc |F1
SVM+BOW 0.210 |0.080 |0.232 |0.231 |0.202 |0.200 |0.102 |0.039
AttBiLSTM 0.943 |0.943 |0.801 [0.801 |0.698 |0.699 |0.547 |0.547
CNN+NTM 0.945 1 0.945 0.816 |0.817 |0.713 |0.715 |0.556 | 0.556
CNN+ELMo |0.937 [0.940 |0.825 0.828 |0.714 |0.719 |0.553 |0.558
BERT 0.964 |0.967 |0.903 [0.903 |0.742 |0.742 |0.602 |0.602
TMN 0.964 | 0.964 0.830 10.831 |0.724 |0.723 |0.595 | 0.586
cs-TMN-Self 0.967 | 0.967 0.841 10.841 |0.734 |0.734 |0.611 | 0.601
cs-TMN-BERT | 0.967 | 0.968 | 0.908|0.908 |0.745 0.745 | 0.624 | 0.624

2 https://github.com/google-research/bert.


https://github.com/google-research/bert

Improving Short Text Classification 101
It also proves that content-aware topic features can improve the classification
accuracy of short text. In addition, cs-TMN jointly generates context-sensitive
word embedding and text classification with neural networks in an end-to-end
manner, which is more efficient and effective.

Local context representation generated by pre-trained BERT
improves the model. From Table2, we see that local context representa-
tion generated by pre-trained BERT word vectors is more effective and greatly
improves the classification ability of ¢s-TMN, especially in the StackOverflow
dataset.

3.5 Ablation Study

In order to explore the influence of different components of our cs-TMN, we per-
form corresponding ablation experiments and the results are shown in Table 3.
Specifically, “cs-TMN w/o local” indicates that when constructing context-
sensitive word embedding, only global context representation is employed, and
the local context representation is removed. “cs-TMN w/o global” indicates that
when constructing context-sensitive word embedding, only local context rep-
resentation is employed. From Table3, both modules are demonstrated to be
necessary and removing any module deteriorates the performance as cs-TMN
without local representation shows similar performance as TMN. Specifically, on
dataset SearchSnippets, cs-TMN w /o local even perform worse than TMN, and
the possible reason could be that there are fewer labels and the dataset is rela-
tively simple. Finally, cs-TMN_CI represents extended topic knowledge matching
in the same way as TMN, that is, using context-independent word embedding
to match the corresponding extended topic knowledge. It can be found that
using context-sensitive as opposed to context-independent word embedding gains
better extended topic knowledge for short text. In addition, for “cs-TMN w/o
global”, cs-TMN_CI, and cs-TMN, we employ the self-attention mechanism and
BERT to generate the local context representation, respectively.

Table 3. Experimental results of the ablation study w.r.t. accuracy.

Models SearchSnippets | StackOverflow | Biomedical ‘Weibo
TMN 0.964 0.830 0.724 0.595
¢s-TMN w/o local |0.957 0.839 0.721 0.602
cs-TMN w/o global | 0.956 | 0.958% |0.833" |0.905% |0.727% | 0.739% |0.602F |0.615%
cs-TMN_CI 0.965% | 0.961% |0.841T |0.905% | 0.7267 | 0.740f |0.605% |0.617%
cs-TMN 0.9671 | 0.967% | 0.841%7 | 0.908% | 0.7347 | 0.745% | 0.6117 | 0.624F

Self-attention based and BERT based local embeddings are denoted as t and § respectively.
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3.6 Visualization of Matching Mechanism for Content-Aware Topic
Knowledge

In order to understand the matching mechanism of our cs-TMN and TMN in an
intuitive way, we create heat maps of the weight matrix (Fig.2) and top-5 words
of some selected topics (Table4). From Fig. 2, it shows that the matching mech-
anisms of cs-TMN and TMN can match the corresponding topic information
effectively. However, for cs-TMN, the context-sensitive word embedding of pol-
ysemous words can match to the content-aware topic knowledge, while context-
independent word embedding of TMN cannot. For example, from Fig.2 and
Table 4, we can find that for cs-TMN, the polysemous word “party” is matched
with topic 6 of “entertainment activity” and not matched with topic 4 of “poli-
tics”. On the contrary, for TMN, the polysemous word “party” is matched topic
4 and not matched with topic 6, which causes extra noises.

Table 4. Top-5 words of some selected topics corresponding to Fig. 2.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 | Topic 6 Topic 7 Topic 8 | Topic 9
e-business | Application ‘Welfare Labour Fracking | Athletics | Civilized | Club Arty
Client Load Attachment | Policy Coal Game Facility Party Culture
Churn Programming | Shape Independent | Mining Play Service Activity | Soul

4 Related Work

Recently, many researchers employed deep learning methods for short text clas-
sification [7,12,26] which achieved promising performance. Some previous works
further applied topic representation [4,19,21] to improve the classification of
short text. Besides, pre-trained topic mixtures [4,19] learned by latent dirich-
let allocation (LDA) were leveraged as part of features to alleviate data spar-
sity issues. Combining word embedding and the neural topic model, TMN [31]
achieved state-of-the-art performance on short text classification. However, with
context-independent word embedding, it suffers from the polysemy issue of class-
bearing keywords. Although cs-TMN is largely inspired by TMN, it differs in the
following respects. First, cs-TMN generates context-sensitive representation by
local context representation and global topic information while TMN employs
context-independent word embedding. Second, we not only use global topic infor-
mation to help establish context-sensitive word representation but also apply
content-aware topic knowledge as extended features for classification.

In order to obtain the context-sensitive word embedding, [1] represented each
word with a Gaussian mixture density, where the mean of a mixture compo-
nent is given by the sum of n-grams. [24] proposed to learn multiple embed-
ding vectors for polysemous words from a probabilistic perspective, by designing
an expectation-maximization algorithm. [21] proposed a model to learn topic-
enriched multiprototype. Some researchers [14,15] combined topic vectors and
word vectors via a neural network, and concatenated pre-trained topic vectors
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with the word vectors to represent word prototypes. More recently, BERT pro-
posed by [5], achieved state-of-the-art performance in a series of NLP tasks. We
also try to apply the vectors obtained by BERT’s hidden layers as local context
representation. Different from previous models, cs-TMN applies both local con-
text representation and global topic information to obtain context-sensitive word
embedding. Finally, unlike approaches that are dependent on external knowledge
bases [3,26], cs-TMN does not require additional knowledge, and topic informa-
tion is extracted through the task-specific dataset.

.
™ - - -

birthday birthday
party £ - party 4
5

tpicl  topicz  topic3  topics topic opico  toplc7  topics  topic9 topicl  topic2  topicd  topid  opicS  topk6  topic7  lopk8  topicd

(a) Matching of cs-TMN (b) Matching of TMN

Fig. 2. Visualization of attention weights for one selected example.

5 Conclusions and Future Work

In this paper, we have proposed a novel context-sensitive Topic Memory Net-
work (cs-TMN), which utilizes the latent topic knowledge discovered by neural
topic networks. The model applies context-sensitive embedding and extends the
features with content-aware topic knowledge to improve short text classification
accuracy. In future work, we will try to address multi-label classification tasks
and test larger datasets to further verify the robustness of the model.
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Abstract. In this paper, we present a new method that views offline
handwritten chinese character recognition (HCCR) as a Re-identification
(ReID) task. We introduce a print dataset as the target that needs to
be retrieved, and make the test set of offline HCCR as the object of
interest. According to RelD’s scene, the goal is to find the most similar
print sample as the prediction result for each object of interest. We also
employ triplet loss for metric learning, and train model together with
cross-entropy loss, which has a good effect on improving performance.
Compared with the classification model, the experimental results show
that our method achieves much better results in few-shot learning, whose
dataset is randomly selected from overall datasets. When the training set
used is 5% of HWDBI1.1, the gap between them even reached 9.8%. At
the same time, it also obtains an accuracy of 97.69% on ICDAR-2013
offline HCCR competition dataset.

Keywords: HCCR - Few-shot learning + RelD - Metric Learning -
ResNet

1 Introduction

Handwritten Chinese character recognition (HCCR) has received extensive
research and attention in recent decades. With the development of deep learning,
this task has made breakthrough progress in method and performance. HCCR is
divided into online HCCR and offline HCCR according to the dataset collection
method. The handwritten text processed by offline HCCR is two-dimensional
pictures of the handwritten text collected by image capture devices such as
scanners or cameras, while the handwritten text processed by online HCCR is
text signal obtained by using physical devices such as digital handwriting pad.
The former is still hard to identify because of the following reasons, and some
samples of different writing styles and indistinguishable samples are shown in
Fig. 1.
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Fig. 1. Samples of different writing styles (left part) and several pairs of indistinguish-
able samples (right part).

1. Handwritten writing is random and irregular, and everyone has a different
writing style, which can’t meet the requirements of print.

2. Many Chinese characters are hard to distinguish because the majority of the
Chinese are similar in appearance.

3. Online HCCR can obtain the writing track information through timing sam-
pling, but the offline HCCR samples are only two-dimensional images, so it
is more difficult to achieve good performance.

In order to address these problems, we propose a method, which establishes a
relationship between handwriting and print with the thought of Re-identification
(ReID). RelD is widely regarded as a sub-problem of image retrieval. It’s a
task that uses computer vision technology to determine whether there is spe-
cific pedestrian in an image or video sequence. For example, given a monitored
pedestrian image, retrieve the pedestrian image under cross-devices. It hasn’t yet
been used in HCCR, previous attempts [3,12,27,29] either only consider the loss
function and template separately, or have not obtained particularly good result
on the overall datasets. Moreover, they regard offline HCCR as a classification
task and only use a multi-classification model to train them, which requires a
large number of image samples for Chinese characters with many categories.

Our method introduces the print, and establishes a relationship with hand-
written through the RelD thought. We view print as the gallery in RelD and
handwritten as the query in RelD. For each query object, find the most similar
object in gallery. Cross-entropy loss [18] and triplet loss [19] are both adopted to
train the model. We also show the few-shot learning performance of our proposed
method, and the shot percentages are 5%, 10% 30% and 60%. In the following,
we’ll call these shots small-scale datasets. Experiments show that our method
is much better than classification method that just use cross-entropy loss. The
model is evaluated on ICDAR-2013 offline HCCR competition dataset. And the
results also illustrate the robustness of our method.

The rest of this paper is organized as follows. Related works are reviewed
in Sect.2. Section3 are the details of our proposed method. Experiments are
described in Sect. 4, and Sect. 5 gives the conclusion of our work.

2 Related Work

2.1 Re-identification

Re-identification is a retrieval task, which is to find the same person images
from a dataset collected by different cameras for each query pedestrian image
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[2,24,31,32,35]. Many deep learning methods have been proposed in ReID which
can be divided into two major directions. Some works [21,25,33] extract features
on entire images by using classification models. They treat each person ID as a
category and train the RelD model as image classification. These works usually
use the pre-trained parameters on ImageNet [11] to initialize their models. There
are also some works focus on local features and divide the whole image into
several parts (by Hand-crafted Splitting [26], Semantic Segmentation [10], etc.),
and extract features for each part separately. Obviously, the former method
which we select is more suitable for offline HCCR, because the class can only be
recognized from the information of an entire image. Hermans et al. [9] finds that
triplet loss significantly increases the performance of RelD, so we have a try to
apply it in our method.

Most of the datasets of ReID such as DukeMTMC-reID [17] and Market-
1501 [31] include three parts: train, query and gallery. Correspondingly, we use
the train dataset of HCCR datasets and the print, the test dataset of HCCR
datasets, the print. And the print are the images that generated by font files.
The dataset will be described in detail in Sect. 4.1.

2.2 Offline HCCR

HCCR has been studied in the past fifty years, and a large number of methods
have been proposed to improve the accuracy of recognition. Traditional methods
for offline HCCR are often based on three steps: shape normalization [1], fea-
ture extraction [13] and classification [14]. With the rapid development of deep
learning, it has played an important role in HCCR. It has also proved that deep
learning methods far surpass traditional methods. Multi-column Deep Neural
Network (MCDNN) [4] is the first method of deep learning for HCCR, which
obtains an error rate of 4.21% on the ICDAR-2013 dataset (the same dataset as
below works). The GoogLeNet [36] is the first model beyond human-level, and
the accuracy of ensemble model reached 96.74%. The difference between inter-
class and intra-class of the samples is considered in [3,29], where Cheng et al.
[3] introduces the triplet ranking into deep learning, which achieves an accuracy
of 97.07%. And Zhang et al. [29] achieves an accuracy of 97.03% by using center
loss in deep network. Zhang et al. [30] obtains a new highest accuracy of 97.37%
by integrating the traditional normalized cooperative direction decomposition
feature map (directMap) with the deep convolutional neural network (convNet),
and adding an adaptation layer. Template images are introduced in [12], this
paper proposes a method for training Siamese neural network and gets an accu-
racy of 92.31%. Wang et al. [22] uses the radical-level composition of Chinese
characters and get an accuracy of 96.97%.

According to the above descriptions, most of the previous works consider
HCCR as a multi-classification task, so they only design a multi-class classifier
to solve it. But this approach requires a large number of data samples to get
good results. In other methods, either only add template images, or just the
loss function is considered. There isn’t a way to combine them to achieve better
results. Therefore, with the help of RelD’s thought, we establish a relationship
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between handwritten and print, and introduce cross-entropy loss and triplet
loss functions to learn more accurate features. This method achieves a higher
accuracy than previous related methods.

3 Method Description

3.1 Proposed Architecture

We select the ResNet-50 [7] as backbone because of its outstanding performance
on ImageNet, and take handwritten images and print images together as the
input of the network. According to [16], we add a batch normalization layer (BN)
before the last fully connected layer (FC), and set the last stride of ResNet-50 to
1, which achieves better results. The final model architecture is shown in Fig. 2,
and only cross-entropy loss is employed in classification model. In training phrase
of overall network, cross-entropy loss and triplet loss are both employed. One
of the differences of them is that the features triplet loss uses are from the last
pooling layer, while cross-entropy loss’s features are from the last fully connected
layer. In evaluation phrase, we also use the features which are extracted from
the last pooling layer. In order to obtain the results, distance metric learning
methods, Euclidean and cosine measures, are employed to calculate the distance
between handwritten features and print features. More details can be seen in
next subsection.

loss

|
|
|

Cross-entropy ||
|
|
|
| Training phrase
|

Avg pool
S
7 Triplet loss
ResNet50
Input convl~conv5_x
last stride = 1 Cosine/
osine
Euclidean [—» Results Evaluation
metric

Fig. 2. Overall network

3.2 Loss Function

Our method applies two different loss functions, which have different effective
effects on the performance of the model. The total loss is defined as Eq. 1, where
L and Ly wil be introduced below.

Etotal = Ecl + ACtl (1)
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Cross-Entropy Loss. Cross-entropy loss measures the performance of classi-
fication tasks whose output is a probability value between 0 and 1. It increases
as the predicted probability deviates from the actual label. In multi-class classi-
fication tasks, it can be defined as Eq. 2.

C

Lo = Z —Yo,c log (po,c) (2)

c=1

where C' is the number of classes, p is predicted probability that observed sample
o belongs to the category. y is the indicator variable (0 or 1), if the category is
same as the sample o’s category, it is 1, otherwise it is 0. By applying cross-
entropy loss to train the model, it will tend to make the predicted output better
fit to the ground truth.

Triplet Loss. Unlike the classification loss, the triplet loss requires three input
samples, and an input triple includes a pair of positive samples and a pair of
negative samples. It is expressed as Eq. 3.

»Ctl = da,p - da,n + « (3)

where d, , represents the distance between the anchor sample a of a specific class
and a positive sample p of the same class, and d, ,, is the distance between the
anchor sample a and a negative sample n of any other classes. Each image and
the images with its own ID form positive samples, and the images with other
IDs form negative samples. « is a margin that is enforced between positive and
negative pairs. In this paper, cosine distance is used to calculate d, , and dg r,
and « is set to 0.3. As illustrated in [19], the triplet loss can shorten the distance
between positive sample pairs, and push the distance between negative sample
pairs, so it can also make the Chinese character images of the same category form
clusters in the feature space to better achieve the purpose of image retrieval.

3.3 Evaluation

Distance Metric. The distance metric is used to calculate the distances
between the features extracted from input samples to predict the most simi-
lar sample for each query image. Euclidean and cosine measures are tried to be
used in experiments. The results comparison can be viewed in Sect. 4.3.

Evaluation Metric. Cumulative matching characteristics (CMC) [23] is the
most widely used measurements in RelD evaluation. Only Rank-1 in CMC is
selected in our experiments because the main factor is the accuracy of the classi-
fication results for HCCR. Rank-1 represents the accuracy of the first retrieved
target of query images, it can be represented as follows Eq.4 and 5.

Rankl = = > R(Lg L)) (4)
QI =%
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, 1, L,=1L:
R<Lq,L;>={O’ i (5)
9 q q

where @ is the query images, L, is the label for a query image ¢, and Lfl represents
the class of the image ranked i-th in similarity to q in its query results (for
example, Lcll is the class of the most similar image to q in its query results).

4 Experiments

In this section, we show that our proposed method achieves competitive results
compared to other methods on HWDB datasets. We have also verified that this
method is more robust than the model only uses classification, and it has a

strong performance on few-shot learning. Finally, we provide an ablation result
of image preprocessing, loss function, distance metrics and other settings.

il g %
T E L] F

Fig. 3. Samples of the print.

4.1 Datasets

We use the datasets HWDB1.0-1.1 [15] to train the model, which is collected by
National Laboratory of Pattern Recognition(NLPR) and Institute of Automa-
tion of Chinese Academy of Sciences(CASIA). ICDAR-2013 offline HCCR com-
petition dataset [28], the most common benchmark for offline HCCR, is used
to evaluate the model. We merge HWDB1.0 and HWDBI1.1 according to the
classes of HWDBI1.1 to ensure that the merged dataset and ICDAR-2013 have
the same class labels.

The dataset of RelD is divided into three parts, including train, query and
gallery, so we first generate a print dataset (corresponding to 3755 classes) that
consists of 10 fonts every class (stzhongs.ttf, stxinwei.ttf, stxingka.ttf, stxihei.ttf,
stsong.ttf, stliti.ttf, stkaiti.ttf, sthupo.ttf, stfangso.ttf, dengl.ttf). Examples of
print are shown in Fig.3. Then put them into train and gallery. At the same
time, the train set of HWDB is also added in train, and the test set of HWDB
(training phrase) or ICDAR-2013 (evaluation) is put in query. Our goal is to find
the most similar sample in the gallery as the prediction result for each query
sample.
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When we conduct few-shot learning experiments on small-scale datasets, we
randomly select several proportion of datasets in train and test of the HWDB1.1.
For example, when the proportion is 5%, the train datasets is composed by
randomly selecting 12 samples from each class of HWDBI1.1 training set. And
the sub test dataset is always the same (randomly select 10 samples from each
class of HWDBI1.1 test dataset). The number of class is always 3755, which is
the level-1 set of GB2312-80. More detailed information is showed in Table 1.

Table 1. Offline Handwritten Chinese character recognition datasets.

Dataset Writers | Total Train/Test Class
HWDBL.0 420 1,656,675 | 1,246,991/309,684 | 3740
HWDBI1.1 300 1,121,749 | 897,758/223,991 | 3755
ICDAR-2013 60 224,419 |n/a 3755
5% sub HWDB1.1 | 300 82,610 |45,060/37,550 3755
10% sub HWDB1.1 | 300 127,670 |90,120/37,550 3755
30% sub HWDBI.1 | 300 307,910 |270,360/37,550 3755
60% sub HWDB1.1 | 300 578,270 | 540,720/37,550 3755
Print n/a 37,550 |n/a 3755

4.2 Training Strategy

We implement the proposed models using Pytorch and conduct all experiments
on GeForce GTX 1080 Ti. The classification model and our proposed model are
trained separately, but they have the same backbone.

Classification Model. We resize the images to 64 x 64, and we use stochastic
gradient descent (SGD) with the momentum of 0.9 for training. The learning rate
is set to 0.01 and the batch size is 128. In order to deal with the overfitting of this
model, we add dropout with the 0.5 probability before the last fully connected
layer. The model is initialized with pre-trained parameters on ImageNet [5]. We
also find if we initialize the model with the trained parameter of our proposed
model, the performance can get better.

Our Proposed Model. We resize the images to 128 x 128. As used in many
RelD papers [6,8,16,20], we also apply random padding with 10 pixels on each
border and random erasing with 0.5 probability in the image preprocessing for
training and only image resize is employed in the test phase. Experiments show
that they all have a positive influence on the results. The optimizer this model
uses is Adam, and its batch size is set to 1024. For triplet loss, we select 4
samples for each class, so it will have 256 classes and 4 images per class in every
batch. The learning rate adjustment strategies we use include warm up and
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MultiStepLR [16]. During the first 10 epochs, the learning rate will gradually
increase from 3.5 x 107° to 3.5 x 10™%, and then it will become 3.5 x 10~° and
3.5 x 1076 in steps 40 and 90 respectively. By the way, the model is always
initialized with pre-trained parameters on ImageNet [5].

4.3 Results

We first evaluate our method by comparing the results on small-scale datasets.
As mentioned above, for classification model, the sub train dataset is randomly
selected from HWDBI1.1 train dataset according to a specific ratio, and the
test dataset is composed by randomly selecting 10 samples from each class of
HWDBI1.1 test dataset. For our proposed model, the print is the gallery and it
is also put into the train dataset. And ICDAR-2013 is always used to evaluate
their performance. As the Table 2 shows that our method has better performance
than classification method. And when the size of training set is smaller, the gap
between these two methods gets bigger. Their accuracy differs by about 9.8%
when the ratio is 5%. The experimental results demonstrate that our method
has better robustness.

Table 2. Results of our method and classification model on small-scale datasets.

Dataset Classification Acc (%) | Our method Acc (%)
5% sub HWDB1.1 |85.82 95.63
10% sub HWDBI1.1 | 90.84 96.33
30% sub HWDB1.1 | 94.50 97.05
60% sub HWDB1.1 | 95.68 97.39
100% HWDBI1.1 96.19 97.55
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Fig. 4. Result samples

The experiments on total dataset are also conducted. We use the HWDB1.0
and HWDBI1.1 for training, and ICDAR-2013 for evaluation. Similar to small-
scale datasets’ experiments, the print is still used as gallery and put in train
dataset. Examples of evaluation result are shown in Fig.4. It shows the top 10
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results of each query sample. The first row is an example of wrong results and
the others are correct examples. From the first row of Fig. 4, we can see that the
handwritten sample is hard to distinguish, which leads to multiple prediction
results. Although these results are incorrect, they all look similar to the sample.
Table 3 shows the results and the comparison with other models’ performances.
As we can see, the accuracy of our proposed work is 97.55% when the training
data is HWDBI1.1, and it is 97.69% when training data is HWDB1.041.1. Some
works [12,27] also introduce extra dataset as template. The method Xiao et al.
[27] proposed is to calculate template feature distance by using template dataset
which is different from our method. Li et al. [12] is to predict the similarity
between handwritten and print, and their work get a good result on new classes
that don’t appear in training set, while the performance on total dataset is
92.31%. Similar to our work, Cheng et al. [3], Zhang et al. [29] respectively use
triplet loss and center loss to distinguish the learning of inter-class and intra-
class information. The difference between our methods is that they still use
classification prediction in the testing phase. And compared to other ResNet-
based models, we add a batch normalization (BN) layer between the final fully
connected layer and the last pooling layer, which has a positive effect on results.

Table 3. Results on ICDAR-2013 Offline HCCR competition Dataset. * indicates
whether extra data samples are added during the experiment, such as the print.

Method Acc (%) | Training Data Ensemble | Extra*
Human Performance [28] 96.13 n/a n/a n/a
HCCR-Gabor-GoogLeNet [36] 96.35 HWDBI1.0+1.1 | No No
HCCR-Gabor-GoogLeNet-Ensemble [36] | 96.74 HWDB1.0+1.1 | Yes No
STN-Residual-34 [34] 97.37 HWDB1.0+1.1 No No
DCNN-Similarity ranking [3] 96.44 HWDBI1.1 No No
DCNN-Similarity ranking [3] 97.07 HWDB1.0+1.1 No No
DirectMap+ConvNet+Adaptation [30] | 97.37 HWDBI1.0+1.1 | No No
ResNet+Center loss [29] 97.03 HWDB1.0+1.1 No No
Deep Template Matching [12] 92.31 HWDB1.0+1.1 No Yes
Template-Instance loss [27] 97.45 HWDB1.0+1.1 | No Yes
Our Method 97.55 HWDBI1.1 No Yes
Our Mthod 97.69 HWDB1.0+1.1 | No Yes

4.4 Ablation Experiment

In order to demonstrate the influences of different model settings and modules,
we also conduct ablation experiments on image preprocessing, distance metric,
loss function and whether to add the BN layer. A comparison of these methods on
5% sub HWDB1.1 dataset is shown in Table 4. The first line of Table 4 is the opti-
mal setting of the model parameters, and the ablation experiments is performed
by changing a single parameter and comparing their results. As Table4 shows,
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we can know that cosine distance metric is better than Euclidean, this might
because cosine distance pays more attention to the relative differences between
dimensions and is more suitable for distinguishing the similarity between the
Chinese character features, while the Euclidean distance mainly measures the
differences in values. The BN layer added before the last fully connected layer
also plays an important role, and the difference is nearly 1%. The effects of these
two loss functions are almost the same, but they can get better results by using
together. Triplet loss better constrains the distance between intra-class and inter-
class, while cross-entropy loss pays more attention to whether the results of each
class classification is close to the ground truth. Random erasing and Random
padding all have good performance, probably because they have a good effect
on alleviating overfitting caused by so many classes.

Table 4. Ablation experiment results for parameters.

Random erasing | Random padding | Cosine | Euclidean | Add BN | Cross-entropy | Triplet | Acc (%)
v v v v v v 95.63
v v v v v 95.58
v v ' v v 95.48
v v v v v v 95.27
v v v v v 94.89
v v v v v 94.69
v v v v 94.59

5 Conclusion

In this paper, we propose a new method for offline handwritten Chinese charac-
ter recognition by learning from Re-identification’s method, and achieve a good
performance. We generate print as the gallery dataset, and find the most similar
gallery image for each handwritten test sample, so the relationship is established
between the handwritten and the print. We also use triplet loss for metric learn-
ing, and train the network together with cross-entropy loss. Experiments show
that the performance of our proposed method on few-shot learning is signifi-
cantly improved compared to the classification model. Moreover, the result on
the ICDAR-2013 exceeds the previous related works, the highest is 97.69%.
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Abstract. Speech emotion recognition (SER) plays a vital role in natu-
ral interaction between humans and machines. However, due to the com-
plexity of human emotions, the features learned in existing researches
contain a large amount of redundant information that has nothing to do
with emotions, which reduces the performance of SER. To alleviate the
problem, in this paper we propose a novel model, named as Upgraded
Attention-based Local Feature Learning Block (UA-LFLB). Concretely,
the LFLB is used to extract deep local sequence features and as input to
the UA mechanism to capture the salient features of the discourse level
with contextual information. In doing this, more accurate and discrimi-
native features can be learned, which greatly reduces redundant informa-
tion in the features. To evaluate the feasibility of the proposed model, We
conduct experiments on a widely used emotional database. Experimental
results show that the proposed model outperforms the state-of-the-art
methods on the IEMOCAP database and achieving 9% improvement in
terms of average accuracy.

Keywords: Speech emotion recognition - Convolutional neural
network - Bidirectional long short-term memory - 3D attention
mechanism

1 Introduction

SER plays an important role in human-computer interaction (HCI) [5,19,20],
which can help computers perceive human purpose and make users feel a natural
interactive experience. It has been applied in many real-world scenarios [17],
such as psychology, robotics engineering, automotive systems, and call centers
[1,3,7,13,15]. In recent years, deep neural networks (DNN) has been widely used
in SER. For example, Mao et al. [10] used convolutional neural networks (CNN)
to extract salient features of emotions for SER and achieved good performance
on several public corpora. The CNN model has two training processes. First, the
model is trained to learn local invariant features with unlabeled data. Second, the
learned local invariant features are fed into the feature extractor to learn salient
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features. Chen et al. [4] proposed a 3D convolutional recurrent neural network
(CRNN) based on the attention mechanism for SER. The log-Mel spectrogram
and the deltas and delta-deltas of the spectrogram are used as input to the
model to reduce the influence of speaker-related features. Overall, the high-
level features captured by deep learning are better than the results obtained
by traditional low-level features. Haomeng et al. [11] proposed the dilated CNN
with residual block and BiLSTM based on the attention mechanism to capture
significant emotional features.

Since the features captured in the above researches contain a large number
of redundant features that are not related to emotions, the performance of SER
is reduced. In this paper, we propose an UA-LFLB model. The model can not
only reduce the interference of redundant features, but also capture the contex-
tual salient features. Concretely, the LFLB composed of Convolutional layers,
Batch Normalization (BN) layers, and Leaky-Relu activation functions learns
local sequence features from the input signal. Then, the UA composed of bidi-
rectional long short-term memory (BiLSTM) and 3D attention obtains salient
features with contextual information by calculating the weight values of the fea-
tures. Hence, the UA-LFLB network can learn discriminative features from the
input signal for SER.

The contributions of this paper can be summarized as below.

We propose a novel model: UA-LFLB. It can be divided into two main mod-
ules, one is the segment-level local feature learning block, and the other is the
discourse-level salient feature learning block. Combining these two modules
for SER can enhance the discrimination of features.

We utilize the UA mechanism that can learn significant features with con-
text relevance and ignore the interference of irrelevant emotional information.
This mechanism combines the BiLSTM layer and 3D Attention. The BiLSTM
obtains past and future information and captures contextual relevance. Then,
the 3D Attention focuses attention on significant emotional features by cal-
culating the weight values of features.

* We evaluate our method on the public dataset IEMOCAP. The results show
that the performance of our proposed model has been significantly improved
compared with the state-of-the-art models.

The structure of this paper is organized as follows: Sect. 2 briefly discusses
the previous work of SER. Section 3 details our approach. Section 4 presents the
visualization of our experimental results. Section 5 summarizes the paper.

2 Related Work

In recent years, SER has become one of the hot topics of researchers in the field
of signal processing [8,18,21]. Researchers are gradually paying attention to how
to extract salient features from speech and use these features to improve recog-
nition performance. Nowadays, with the rapid development of DNN, researchers
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have attempted to use DNN to learn deep emotional features for SER. Com-
pared with traditional machine learning methods, deep learning can learn more
discriminative features.

Huang et al. [6] used semi-CNN to learn salient features. This method
includes two stages. One was to use unlabeled samples to learn candidate fea-
tures. The other was to use objective functions to enhance feature saliency,
orthogonality, and discrimination. Mirasamadi et al. [12] combined DNN and
recurrent neural network (RNN) with local attention. By calculating the weight
coefficients of different features, the model can automatically focus on the parts
of prominent emotional features. Schmidt et al. [16] used a deep belief network to
learn emotional features from the magnitude spectra. Experimental results show
that compared with traditional acoustic features, it has better recognition per-
formance. The deep belief network is very useful for identifying music emotions.
Mustageem et al. [14] designed a framework that using a key sequence segment
selection based on redial based function network (RBFN). They used the short
time fourier transform (STFT) algorithm to convert the selected sequence into
a spectrogram and passed it to the CNN model to extract discriminative salient
features from the speech spectrogram. Zhao et al. [22] investigated that the over-
all performance of the 2D CNN network is better than the 1D CNN network.
Zheng et al. [24] established a CNN model to process labeled data. Experimen-
tal results show that the method is better than support vector machine (SVM)
classification. Zhao et al. [23] proposed attention-based BILSTM+RNN and full
convolutional network to solve the problem of speech emotion feature extraction
to automatically learn the best spatio-temporal representation of speech signals.
Finally, input the learned features into the DNN for emotion prediction. To
reduce the interference of redundant information in the features on classification
results. We use the LFLB to extract local sequence features and use the UA
mechanism to capture salient discourse-level features.

3 Methodology

In this section, we introduce the UA-LFLB model for SER. First, we generate 3D
static data as the input of UA-LFLB model. Then, we introduce the architecture
of UA-LFLB, followed by a dropout layer, a dense layer, and a softmax classifier.
The overall framework of our model is shown in Fig. 1.

3.1 3D Static Data

We extract 3D static representations from speech raw signal as the input of
the model to reduce the impact of speaker-related information (e.g. speaking
styles). It is composed of the Log-Mel spectrum, the deltas and delta-deltas of
the spectrogram. The deltas and delta-deltas can not only reduce the interference
of irrelevant information, but also perceive emotional changes to capture more
emotional information. The waveform and spectrogram of speech are shown in
Fig. 2.
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UA-LFLB model
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Fig. 1. Framework of upgraded attention-based local feature learning block (UA-
LFLB).
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Fig. 2. Voice waveform and spectrogram of the Angry, Happy, Neutral, and Sad
emotional state in IEMOCAP database.

The spectrogram represents the short-term power spectrum of an audio clip,
which has been proven to be an effective distinguishing feature in emotion recog-
nition. It can be observed from Fig.2 that the signal strength of different fre-
quency bands of the voice changes along the time axis. The horizontal stripes in
the figure reflect the strong energy in the voice. We also find that the frequency
of happy emotion and neutral emotion 8192 Hz at the same time distribution.
Their emotional signal intensity distribution is similar.
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3.2 Local Feature Learning Block (LFLB)

Given the 3D static data, the LFLB is used to extract local sequence features
for SER. The module mainly contains 6 LFLBs of size 32, 32, 64, 64, 128, 128,
and one 2D Max-Pooling layer. The 2D max-Pooling layer is used to reduce the
dimensionality of features and prevent model overfitting. Each LFLB includes
one 2D convolutional layer, one BN layer, and one leaky-relu activation function.
The model is shown in Fig. 3.

Local Feature Learning Block

T 2FB
(32)

T 2-LFLB — 2-LFLB |
(64) (128)

Max-Pooling

2D
Convolution

Bat.ch _ Leaky
Normalization Relu

Fig. 3. Framework of the local feature learning block

The 2D convolution layer can be written as:

2(z,y) = i(z,y) x w(z,y)

c d . (1)
=Y Y ila,b) xw(z —a,y —b),

a=—cb=—d

where i(x, y) is the input signal, w(z, y) is the convolution kernel of size ¢, z(z, y)
is the convolution result of the input signal and convolution kernel, the size is ¢
x d. We input the value of z(z,y) into the convolution layer to obtain sequence
features:

2L =0l + Z 21 x wlwy, (2)
y

where z! is the 2-th output feature of layer [, z.~1 represents the x input feature
of layer [ — 1, wiy represents the convolution kernel between the x-th feature and
the y-th feature of the [-layer. The convolutional layer can be used as a local
feature extractor. Then, we input the output z!, of the convolution layer into the
BN layer to standardize the activation of each batch of convolution layers. The

BN layer can be defined as:

1
By — H
ZL = BN(Z) = y(Z2—=—L0) + 3, 3
where p and o2 represent the mean value and variance of the a-th output value
in the [ layer, respectively. The ¢ and ( represent the parameters that can be
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adjusted in the training process. Then, we input the value processed by the
BN layer into the leaky-relu activation function. The leaky-relu function can be
expressed as:

9z, 4z >0
px:{qj ’ . (4)
a Gz <0

The leaky-relu solves the situation where the input value of relu is negative and
the first derivative is zero, avoiding the phenomenon that neurons may die. In
the end, we can obtain the 128-dimensional frame-level local feature sequence.

3.3 Upgrade Attention Mechanism (UA)

To focus attention on useful features, in this paper, we use the UA mechanism to
learn salient and discriminative features that contain context information. The
UA mechanism includes the BiLSTM layer and 3D attention mechanism. The
structure of the UA mechanism is shown in Fig. 4. First, we use the BiLSTM layer
to associate context information. So far, the features learned are still segment
level. It is more useful to obtain the speaker’s emotional state according to
the utterance. Then, we input the obtained segment-level features into the 3D
attention mechanism and combine the time step information to calculate the
attention value of each feature to obtain the discourse-level salient features.
Finally, we pass the salient features into a Dropout layer to prevent over fitting
and a Dense layer with a size of 4 units.

Upgrade Attention mechanism

BiLSTM Attention_3D_Block

|
AttentionL3D_Bluck
I

Dropout

Multiply

Fig. 4. Framework of the upgrade attention mechanism

Permute

Dense

The BiLLSTM layer obtains the past and future information by hiding the con-
nections between the layers in reverse order and automatically ignores irrelevant
information. The calculation process of the BILSTM layer is as follows:

h; = fa(hiflafl_;;) + 3, (5)
hi = fo(his, ;) + 24, (6)

hi = (hi +h;), (7)
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where f, and f, | are LSTMs with parameter o forward and backward, h; repre-
sents the hidden state of time step 7, x; represents the i-th spectral feature in

the audlo signal, h means forward propagation, h means backward propagation,

(hi + hi) is the hidden representation of the forward and backward LSTM.

The 3D attention learns significant features by calculating and comparing
the attention values of the features. First, the input is a three-dimensional array
including BatchSize, TimeStep, and HiddenVector. Second, we use the permu-
tation function to transpose the input features to get the required dimensions.
Third, we connect a Dense layer, which includes a softmax activation function.
It can calculate the weight value of each dimension of HiddenVector in each
TimeStep. Each feature has its attention weight value. The core of the Dense
layer is to select the vector dimension that has the greatest impact on the final
classification result. Fourth, we get the weight matrix through the permuta-
tion function. Finally, the original input of the model is multiplied with the
obtained weight matrix to complete the distribution of the feature attention
weight value. Different from the traditional Attention mechanism that directly
performs weighted summation to obtain features. We use transposition, softmax,
and flatten to filter features based on the degree of contribution to the model.

4 Experiments

In this section, we evaluate the UA-LFLB model on IEMOCAP dataset. First,
we briefly introduce the details of the experimental implementation. Then, the
parameters of the UA-LFLB model are optimized and we compare the perfor-
mance with the previous models. Finally, the t-distributed stochastic neighbor
embedding (t-SNE) technology is used to visualize the features to evaluate the
performance of the model.

4.1 Implementation Details

The experiment is carried out on the IEMOCAP [2] dataset. The IEMOCAP is
a dataset composed of a male and a female dialogue form. There are five groups
of conversations. During the conversation, the motion capture equipment will be
worn to record facial expressions and head Data on posture and hand movements.
To be consistent with the previous research [4], we only consider four emotions:
1) angry, 2) happy, 3) neutral, and 4) sad. We use the 10-fold cross-validation
technique and split the dataset into a training set, validation set, and test set to
perform the model.

To verify the performance of the model, we choose unweighted accuracy rate
(UAR), Precision, Recall, and F1 score as the evaluation measure. The UAR
is the unweighted average of recalls for a specific category. The Precision rep-
resents how many of the samples predicted to be positive are true positive sam-
ples. In this paper, it is abbreviated as Pre. The Recall refers to the proportion
of positive examples that have been correctly determined to the total positive
examples. The F'1 score is a harmonic average of model precision and recall.
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We set the sampling rate of the sound wave 16000 Hz. The signal is divided
into the same length of 3s for better parallel acceleration. The utterance of less
than 3s is filled with zeros. Based on suggestions from previous work [4], we
use openEAR toolkit to extract log-Mels from the audio signal and we set the
window size to 25 ms and the offset to 10 ms. The number of CNN layers is set
as 6. The first CNN layer has 32 filters and the input size is (100, 34, 1). Our
input consists of data processed by 34 filter banks, which are replaced with 100-
point height and width. This means that the data will be convolved with the
convolution kernel in the input volume. The remaining CNN layers have 32, 64,
64, 128, and 128 filters respectively. The kernel size of each CNN layer is 3 x 3,
and the step size is (1, 1). The model is implemented with Keras toolkit and
Adam optimizer.

4.2 Parameter Optimization

We choose different batch-size and learning rates for experiments. We mainly
optimize the parameters of the two sets of experiments, the difference is whether
the model has 3D attention and BiLSTM. The optimization result is shown in
Table 1.

Table 1. The performance of the model was evaluated on the IEMOCAP dataset
with different batch-size, learning rates. Notes: BS stands for batch-size, LR stands for
learning rates.

Model BS | LR (%) | UAR (%) | Pre (%) | F1 (%)

Proposed model (with 3D attention + BiLSTM) 32 | 0.001 74.18 73.63 72.60
0.0001 | 84.25 83.88 83.35

0.00001 | 80.08 80.15 79.15

64 | 0.001 73.50 73.59 72.58

0.0001 | 83.95 83.82 83.30

0.00001 | 77.8 76.95 77.10

Proposed model (without 3D attention + BiLSTM) | 32 | 0.001 74.02 73.35 72.17
0.0001 | 82.83 82.53 82.40

0.00001 | 79.03 79.08 78.45

64 | 0.001 73.16 73.24 71.78

0.0001 | 82.80 82.50 81.85

0.00001 | 76.43 76.78 76.70

From Table 1, we can observe that when the learning rate is 0.0001 and the
batch size is 32, the model with 3D attention and BiLSTM has better per-
formance. Compared with the model without 3D Attention and BiLLSTM, the
UAR, Precision, and F1 scores are improved by 1.42%, 1.35%, and 0.95%,
respectively. The reason is that the 3D attention mechanism based on BiLLSTM
can learn salient features with contextual information for SER.

Since when the model contains 3D attention and BiLSTM, and the learning
rate and batch size are 0.0001 and 32 respectively, the model performs better.
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To verify the model’s ability to correctly recognize emotions, we show the recog-
nition rate of the model in terms of emotion. As shown in Table 2.

Table 2. Emotion recognition result in IEMOCAP dataset

Emotion | Recall | Pre | F1
Angry 1091 ]0.89 0.90
Happy [0.69 |0.68]0.69
Neutral [0.86 |0.91 0.88
Sad 0.90 0.84]0.87
Average |0.84 |0.83/0.84

It can be seen from Table 2, the average recognition rate of emotion is around
84%. To further verify the recognition performance of the model, we generate a
confusion matrix of emotions. The confusion matrix shows the correct prediction
rate and false mixing rate of different emotions, as shown in Fig. 5.

confusion matrix

hap -

Actual

neu -

sad

T T
N
_69 &,Q & &
Predicted

Fig. 5. The confusion matrix of the model on the IEMOCAP dataset. The experimental
parameters are set to the batch size is 32 and the learning rate is 0.0001.

From Fig.5, we can observe that the recognition rates of angry, neutral,
and sad emotions are higher, reaching 91%, 86%, and 90%, respectively. The
recognition rate of happy emotion is 69%, which is low compared with the other
three emotions. It is observed that happy emotion is easily confused with other
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emotions such as neutral emotion. The reason may be that the signal strengths
of happy emotions and neutral emotions reach similar frequencies at the same
time.

4.3 Performance Comparison

To verify the performance of the UA-LFLB model, we selected several repre-
sentative works with similar structures to the proposed model. The results are
shown in Table 3.

Table 3. The recognition rate of IEMOCAP dataset is compared with the existing
models using the 10 fold cross-validation. Notes: \ indicates that the evaluation index
has not been used in previous work.

Network UAR ) | Fliw) | Prey)
3D ACRNN [4] (2018) 64.74 \ \
3Dilated CNN [11] (2019) 1 69.32 |\ \
RBFN+BIiLSTM [14] (2020) | 72.25 74.00 | 74.00
UA-LFLB (ours) 84.25 | 83.35 83.88

From Table 3, we can observe that the average recognition rate of the pro-
posed UA-LFLB model is improved by 9% compared with the previous models.
The improvement of recognition performance is attributed to the model pro-
posed in this paper that can capture the salient features with context relevance.
To alleviate the problem of a low recognition rate caused by a large amount of
irrelevant information in the extracted features, we propose a UA-LFLB model
based on [4]. The comparative experiment is shown in Table 4.

Table 4. Compare the proposed model and [4] with the 10-fold cross-validation on the
IEMOCAP dataset to compare the recognition accuracy.

Model Hap(%) Ang(%) NGU(%) Sad(%)
3D ACRNN [4] (2018) 1 29.95 | 70.47 | 66.52 | 84.32
UA-LFLB (ours) 69.00 | 91.00 |86.00 |90.00

From Table 4 we can observe that the identification performance of the pro-
posed model is better than the 3D attention-based convolutional recurrent neural
networks (ACRNN) [4] model. The recognition rates of angry, happy, natural,
and sad emotions increased by 20.53%, 39.05%, 19.48%, and 5.68%, respectively.
The recognition rate of happy emotion has been greatly improved. This indicates
that the LFLB can extract deep local sequence features. Then, the obtained local
features are used as the input of the UA mechanism. This mechanism can cap-
ture the contextual relevance of the features and learn the salient features of the
discourse level by calculating the weight of the features.
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4.4 Feature Visualization

The t-SNE [9] is mainly used for the visualization of high-dimensional data
to evaluate the algorithm performance or verify the effectiveness of algorithms
through visual observation. The visualization of emotional features on the IEMO-
CAP dataset is shown in Fig. 6.

Proposed Model(no 3D Attention + BiLSTM) Proposed Model(with 3D Attention + BiLSTM)

."s‘ : "’;‘ i w»
- ’3{:&“’-‘3"”

-40

(a) Without 3D Attention + BiLSTM (b) With 3D Attention + BiLSTM

Fig. 6. t-SNE visualization of features on IEMOCAP dataset

As can be seen from Fig. 6, there are four different color coordinate points
distributed in the two-dimensional map, which represent four different emotional
characteristics. When the proposed model without 3D Attention and BiLSTM,
there is a large amount of overlap in the distribution of clustering features,
resulting in fuzzy emotional features, as shown in Fig. 6(a). When the proposed
model includes 3D Attention and BiLLSTM, the overlap of features is signifi-
cantly reduced, shown in Fig. 6(b). The experimental result shows that the UA
mechanism composed of 3D Attention and BiLSTM can make the features more
prominent and improve the recognition performance of the model.

5 Conclusion

In this paper, we propose a UA-LFLB model to learn context-related salient
features to reduce the interference of irrelevant emotional information in the
features. The LFLB can extract deep local sequence features. The UA is com-
posed of BiLSTM and 3D attention. Based on local features, the BiLSTM can
capture context information, while 3D attention can focus attention on salient
features by calculating the weight value of features. The experimental results
show that compared with the baseline methods, the average accuracy rate is
increased by 9%. In the future, we will extract features from multiple modalities
to increase the diversity and completeness of features. We will also improve the
loss function to make the distance between the same features more concentrated,
and the distance between the different features more scattered. This will greatly
reduce the overlap of features and enhance the discrimination of features.
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Abstract. Deep Neural Networks, often owing to the overparameteri-
zation, are shown to be capable of exactly memorizing even randomly
labelled data. Empirical studies have also shown that none of the stan-
dard regularization techniques mitigate such overfitting. We investigate
whether choice of loss function can affect this memorization. We empir-
ically show, with benchmark data sets MNIST and CIFAR-10, that a
symmetric loss function as opposed to either cross entropy or squared
error loss results in significant improvement in the ability of the net-
work to resist such overfitting. We then provide a formal definition for
robustness to memorization and provide theoretical explanation as to
why the symmetric losses provide this robustness. Our results clearly
bring out the role loss functions alone can play in this phenomenon of
memorization.

Keywords: Memorization + Deep networks - Random labels -
Symmetric losses

1 Introduction

Deep Neural Networks have been remarkably successful in a variety of classi-
fication problems involving image, text or speech data [12,18,20,21,24]. This
is remarkable because these networks often have a large number of parameters
and are trained on data sets that are not large enough for the sizes of these
networks. This raises many questions about the (unreasonable) effectiveness of
deep networks in applications and whether they can go wrong on some kind of
data sets.

In an interesting recent study, [25] showed that standard deep network archi-
tectures are highly susceptible to extreme overfitting. They show that when one
randomly alters class labels in the training data, these networks can learn the
random labels almost exactly (with the gradient based learning algorithm driv-
ing the training error to near zero). It is seen that this memorization of the
training examples cannot be mitigated through any of the standard regulariza-
tion techniques such as weight decay or dropout. These results seem to imply
that the usual complexity measures of statistical learning theory are inadequate
to understand the learning dynamics of deep neural networks. In a further study,
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[1] investigates this phenomenon more closely. While their study also confirms
this memorization, they formulate some characterizations under which the learn-
ing dynamics of a network differ for the two cases of learning from real data and
random data. Their study suggests that the data may be playing a vital role in
resisting brute-force memorization by a network. While these studies experiment
with many scenarios of regularization techniques and randomization of data, the
role that the loss function itself can play in this has not been investigated. Moti-
vated by this, here we present some experiments to show that a loss function
can also play a significant role in preventing a network from memorizing data.

Neural networks are universal approximators [8] and networks with sufficient
parameters have the capacity to exactly represent any finite amount of data
[25]. Such results show that there exist parameter values that can represent any
arbitrary function. However, as discussed in [1], what a network learns depends
on the parameter values that a gradient-based learning algorithm can reach
starting from some random initial parameter values. This learning dynamics is
certainly affected, among other factors, by the loss function because the loss
function determines the topography of the empirical risk, which is minimized by
the learning algorithm. Hence, it would be interesting to investigate whether it
is possible to have loss functions that can inherently resist (to some degree) the
memorization of data by a network.

Here we present some experimental results for benchmark datasets, MNIST
[14] and CIFAR-10 [11], with labels randomly changed with different probabili-
ties. We see that for varying probabilities of random labelling, networks trained
with standard loss functions such as categorical cross entropy (CCE) or mean
square error (MSE) exhibit memorization by reaching close to zero training error.
Then, we investigate learning these same networks using a special class of loss
functions — symmetric loss functions. We specifically use the so-called robust log
loss (RLL) [13] — which is obtained by modifying CCE — though we also com-
ment on other similar loss functions. We show that keeping everything else in
the training algorithm same but changing the loss function alone results in the
network significantly resisting overfitting. With these loss functions the training
error saturates at a level much above zero (depending on the amount of random
label flipping). We also see that the learning dynamics with these symmetric loss
functions resembles more of what one expects with the clean, real data. It was
suggested in [1] that, with real data, the networks try to fit the patterns in the
data rather than memorizing the data, while with randomly flipped labels the
networks seem to be using brute-force memorization. We show that with fairly
high (though less than 100%) randomization of labels in training data, networks
trained with CCE or MSE loss seem to be using brute-force memorization while
the same networks trained with the symmetric loss, RLL, seem to be resisting
such memorization by trying to fit mainly the clean part of the data. This ade-
quately demonstrates that the loss function also has an important role to play
in resisting this type of memorization of data.

We also present some theoretical justification (using the known properties of
these symmetric losses) for the ability of these loss functions to resist overfitting.
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For the case of random label flipping, we formally define what can be called
resisting of overfitting or memorization. Using this, we explain why symmetric
loss functions can resist brute-force memorization in these scenarios. The analysis
we present provides some theoretical justification for the empirically observed
performance with RLL. We discuss the implications of this and speculate on how
loss functions may be crucial in realizing better learning dynamics.

1.1 Related Work

Memorization in deep networks got a lot of attention recently due to [25] which
showed that SGD-based training of neural networks drives the training set accu-
racy to 100% even in case of randomly labelled data with none of the standard
regularization methods being helpful for avoiding this memorization. They spec-
ulate on the implications of this for characterizing the generalization abilities of
networks. In further studies, [1,7] characterize the behaviour of neural networks
on real and randomly-labelled data experimentally and find that deep networks
learn simpler patterns first before starting to memorize the data. They also claim
that explicit regularization such as dropout can actually help resist memoriza-
tion to some extent. [3] shows that memorization is necessary for generalization
for some types of distributions which has been tested empirically by [4]. How-
ever, none of these studies investigate whether the loss function has a role in
memorization and that is what is explored in this paper

There are many works that attempt comparative study of loss functions
for classification tasks. [9] shows, with extensive empirical experiments on a
variety of data sets, that MSE performs better than CCE thus challenging the
conventional wisdom of the superiority of CCE loss for classification tasks. [2]
argue that CCE is favourable (compared to MSE) for multi-class settings but
propose a technique that makes performance of MSE comparable to that of
CCE. [19,22] find MSE has comparable or better performance than hinge loss for
several tasks. [16] show that minimizers of risk obtained in case of MSE and hinge
loss are the same for overparameterized linear models under certain conditions.
These and other similar works compare different loss functions for classification
and regression tasks from the point of view of generalization whereas our work
looks at the role loss functions can play in affecting the degree of memorization
in overparameterized networks.

The problem of learning under label noise, that is, learning when training
data has random labeling errors, has also been extensively studied in recent
years. (See, e.g., [5,6,15,17,23]). In tackling label noise the focus is mostly on
algorithms that deliver good performance by, e.g., sample reweighting, label
cleaning, loss correction, etc. In this work our focus is on the inherent robustness
of a loss function and not on any algorithmic modifications to take care of label
noise.

The main contributions of the paper are as follows: We consider some scenar-
ios of network architectures and randomization of training labels under which
deep networks are earlier demonstrated to be susceptible to memorization.
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We show through empirical studies that training the same network with a dif-
ferent loss function, namely, RLL, can significantly resist this memorization as
compared to training with standard CCE or MSE. Our experiments adequately
demonstrate that the loss function has a crucial role and supports our viewpoint
that it is important to study such properties of loss functions. We propose a for-
mal definition for the ability of a network to resist overfitting of the kind studied
[1,25]. Using this definition, for these scenarios of random label flipping on train-
ing data, we provide theoretical justification for the observed performance with
the symmetric loss functions.

The rest of the paper is organized as follows: In Sect. 2, we present our empir-
ical studies with the CCE, MSE, & RLL loss functions. Section 3 presents our
theoretical analysis. Conclusions are presented in Sect. 4.

2 Role of Loss Function in Resisting Memorization

We experiment with two network architectures. One is an Inception-like network
architecture (referred to as Inception-Lite in this paper) which is same as that
used in [25] for demonstrating memorization in deep networks. The second is
ResNet-32 (and ResNet-18 for MNIST) architecture as used in [23].

In this section we present results with three loss functions. Two are the
standard loss functions used with neural networks, namely, CCE and MSE, and
the third is a symmetric loss, viz. RLL. Since we are considering classification
problems, for all the networks we assume a softmax output layer. For an input, x,
let g(x) denote the vector output of the network with components gi(x). When
X belongs to class k, the label would be the one-hot vector €* where ef = 1 and

=0, Vj # k. Let K denote the number of classes. With this notation, the
three loss functions can be defined as follows:

Lcocr(g( Z ef log (g:(x)) = —log(gk(x))
Larsp(g(x).e") = Z (9:(6¢) - e§>2

Lanu(g0.0%) = log (“2 ) = log(a + 9u(x) + 3 - lox(a -+ 45)
J#k

where o > 0 is a parameter of the RLL.

We can get some insights on behaviour of RLL versus CCE as follows: When x
is in class-k, gr(x) is the posterior probability assigned to class-k by the network.
If this is high, then the CCE loss, which is — log(gx(x), is low. However, the CCE
loss is unbounded because, in principle, g (x) can be arbitrarily small. Disregard-
ing the constant term, the RLL takes —log(a+gx (X)) +3_; 41 7 log(a+g;(x))
as its value. Since we are using log(a + g;(x)) rather than log(g;(x)), the loss
is now bounded. More importantly, the loss is essentially determined through a
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kind of comparison of the posterior probability assigned to class-k by the net-
work against the average probability assigned to all other classes. (The constant
term in RLL is there only to ensure that the loss is non-negative). As we shall
see, this gives some amount of robustness in the risk minimization resulting in
RLL exhibiting good resistance to memorization.

We train all the networks to minimize empirical risk (with each of the loss
functions). We employ mini-batch based stochastic gradient descent (SGD) for
Inception-Lite & ResNet-32 (for CIFAR-10) and Adam [10] for ResNet-18 (for
MNIST). For Inception-Lite, we use a constant step-size of 0.01 in each epoch
which is reduced by a factor of 0.95 after each epoch for 100 epochs whereas a
constant step-size of 0.1 is used for ResNet-32 which is reduced by a factor of 0.1
after 100 and 150 epochs. ResNet-32 & ResNet-18 are trained for 200 epochs.
The ResNet-18 is trained with a step-size of 0.001. Inception-Lite is trained for
100 epochs because the training accuracies saturate by then. Inception-Lite and
ResNet-18 are trained without weight decay whereas ResNet-32 is trained with
a weight decay of 0.0001.

CIFAR-10 and MNIST benchmark datasets are used for the experiments. As
explained earlier, we study the memorization by the networks through randomly
altering the class labels in the training set. For this, independently for each
example, we retain the original label with probability (1 —#) and change it with
probability 7. When the label is changed, it is changed to one of the other classes
with equal probability. We experiment with n = 0,0.2,0.4, and 0.6. (Note that
1 = 0 corresponds to the clean or original training data). By varying 1 we can
change the amount of pattern information present in training data and hence can
study whether a loss function can result in learning this information. Here, we
are considering 10-class classification task. Our randomization of labels is such
that up to n < 0.9, in an expectation sense, for any class-j, the number of data
points in the training set that are correctly labelled as class-j would be more
than the number of data points of a class-i, i # j, incorrectly labelled as class-j.
Hence, at n well below 0.9 there should be scope for learning the underlying
patterns and not overfitting the randomized training data.

CIFARLO - RESNET - CCE CIFARIO - RESNET - MSE CIFARLO - INCEPTION-LITE - CCE CIFAR10 - INCEPTION-LITE - MSE

T 26 51 76 101 136 151 176 200 T 26 51 76 101 136 151 176 201 1 E3 51 76 101 1 26 51 76 101
epochs epochs epochs epachs

(a) CCE (b) MSE (c) CCE (d) MSE

Fig. 1. Training set accuracies for ResNet-32 ((a) & (b)) & Inception-Lite ((c) & (d))
trained on CIFAR-10 with CCE and MSE losses for for n € {0.,0.2,0.4,0.6}
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MNIST - RESNET - CCE MNIST - RESNET - MSE

noise_rate

train. accuracy (%)
cooo
arvo

train. accuracy (%)

20
1 26 51 76 101 126 151 176 201 1 26 51 76 101 126 151 176 201
epochs epochs

(a) CCE (b) MSE

Fig. 2. Training set accuracies for ResNet-18 trained on MNIST with CCE and MSE
losses for different levels of label noise

CIFAR10 - RESNET - RLL MNIST - RESNET - RLL CIFAR10 - INCEPTION-LITE - RLL

train. accuracy (%)
train. accuracy (%)
train. accuracy (%)

1 26 51 76 101 126 151 176 201 1 26 51 76 101 126 151 176 201 1 26 51 76 101
epochs

(a) ResNet — 32 (b) ResNet — 18 (c) Inception — Lite

Fig. 3. Training set accuracies for networks trained on CIFAR-10 ((a) & (c)) & MNIST
((b)) with RLL for € {0.,0.2,0.4,0.6}

Figure 1 shows the training accuracies achieved with ResNet-32 and Incep-
tionLite when we train the network with CCE & MSE for various values of 7
on CIFAR-10 while Fig. 2 shows training accuracies of ResNet-18 with CCE and
MSE for MNIST. As can be seen from the figures, for all values of 7 the training
error goes down close to zero though it takes a few epochs more with higher val-
ues of 17. The only exception is when ResNet-18 is trained on MNIST with MSE;
but even here the training accuracy reaches a high value. This is consistent with
the results reported in [1,25]. (Note that [25] show training set performances only
for n = 1 and do not experiment with varying levels of noise as was done here.)
Note that at n = 0.2, 80% of training samples of a class are correctly labelled
and hence would contain the patterns that the network would have learnt when
trained with clean data. However, the network ends up learning a function that
can exactly reproduce the training set labels. This seems to indicate that with
these loss functions the topography of the empirical risk function is such that
the learning dynamics takes the network to a point that fits the random labels
exactly. The brute-force memorization manifests itself in these networks trained
with CCE even at moderate levels of label randomization.

These results may be contrasted with those presented in Fig.3 which are
obtained when the same networks are trained with RLL for different values of
n on MNIST & CIFAR-10. As can be seen from the figures, the training set
accuracy achieved by RLL for non-zero values of 7 is always well below that
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achieved on clean data. This shows that the network does not blindly learn to
reproduce the training set labels. This is significant because this shows that when
we keep everything else same and change only the loss function, the learning
dynamics now seem to be able to resist brute-force memorization. Also, for
n = 0.2 and n = 0.4 the difference in training-accuracy on clean and noisy
data is almost equal to the noise-rate thus suggesting that this loss function
seems to be able to disregard data that are wrongly labelled.

We now take a closer look to understand the kind of classifier learnt by
RLL under noisy data. Let {Xi7yi}f:1 denote the original training data and
let {X;, y}}le denote the noisy or randomly-labelled data given to the learning
algorithm. Let h(X) denote the actual class label predicted by the network for
X (which is determined by max(g;(X)) where g(X) is the output of softmax
layer). Then the training accuracy, say Ji, is defined by

L
1
Ji=5 > Iinxo=i)
=1

where I 4 is indicator of A. This is the accuracy defined with respect to the labels
as given in the training set. We define another accuracy, Ja, by

L
1
o= D I =u)
i=1

Js is the accuracy with respect to original, uncorrupted training set. This accu-
racy indicates how well the network, learned with randomly-altered labels, would
be able to reproduce the original clean labels of the training data.

CIFARL0 - INCEPTION-LITE - CCE CIFARLO - INCEPTION-LITE - RLL MNIST - RESNET - MSE MINIST - RESNET - RLL

1 26 51 3 101 T 26 51 76 100 T 26 s1 76 101 136 151 176 201 T 26 51 76 101 126 151 176 200
epochs epochs. epochs epochs

(a) CCE (b) RLL (c) MSE (d) RLL

Fig. 4. J; and J; accuracies for Inception-Lite ((a) & (b)) & ResNet-18 ((c) & (d))
trained on CIFAR-10 and MNIST resp. for n € {0.,0.2,0.4,0.6} (Solid lines show Ji
accuracy; dashed lines show J2 accuracy)

We show in Fig.4 the accuracies J; and Jy for networks learned with the
different loss functions for different values of 1. As can be seen from Figs. 4a &
4c for networks trained with CCE and MSE losses, the J; accuracy (dashed line)
is always well below the J; accuracy (solid line). This is as expected because, as
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CIFAR10 - INCEPTION-LITE - NORM_MSE MNIST - RESNET - NORM_MSE CIFAR10 - INCEPTION-LITE - NORM_MSE MNIST - RESNET - NORM_MSE

1 2 51 76 101 T 26 s1 76 101 126 151 176 201 1 26 51 76 101 T 26 51 76 101 126 151 176 201
s epochs.

(a) Norm.MSE (b) Norm.MSE (¢) Norm.MSE (d) Norm.MSE

Fig. 5. Train. accuracy and J; & J» accuracies for Inception-Lite ((a) & (c)) & ResNet-
18 ((b) & (d)) trained on CIFAR-10 and MNIST resp. for n € {0.,0.2,0.4,0.6} (Solid
lines show Ji accuracy; dashed lines show J» accuracy)

seen earlier, the training accuracy, which is equal to J1, is close to 100%. However,
for networks learned with RLL (Fig. 4b & 4d), it is the J; (dashed line) accuracy
that is always higher than the J; accuracy (solid line). As a matter of fact, for
7n = 0.2,0.4, the Jy accuracy of the networks learned using RLL is close to the
training accuracy achieved with clean data. This suggests that this loss function
is able to disregard the randomly altered labels and help the network learn a
classifier that it would have learned with clean data.

There is another interesting point about this figure. The figure shows how
the J; and J, accuracies evolve with epochs. As can be seen from the figure, the
networks learned using CCE with noisy data seemed to have initially tried to
learn the patterns and thus the Js accuracy is higher in the early epochs. But
eventually the network ‘flips’ and overfits to the random labels in training data.
However, this ‘flip’ never happens for networks trained using RLL; through all
the epochs, the Jy accuracy stays higher.

All the empirical results presented in this section amply demonstrate that
a loss function can play a significant role in mitigating the memorization effect
observed with deep neural networks. In the next section, we present some theo-
retical analysis that explains, to some extent, the results presented in this section.

3 Robustness of Symmetric Loss Functions

In [25], for networks learned using training data with random labels, the accuracy
obtained on part of the original data is taken as test error for the purpose of
discussing the generalization abilities. However, this may be somewhat of an
inaccurate nomenclature. Normally the test error is error on new data but drawn
from the same distribution as that from which training data is drawn.

We will now present another way of formalizing this. For this section we
assume class labels, y;, take values in Y = {1,---, K} rather than being one-
hot vectors. Let S = {Xi,yi}le be the original training data and we assume
it is drawn d according to a distribution D. The training data with randomly
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altered labels is denoted by S, = {X;, 9 }¢_,, where, for each i,

=~ )Y with probability 1 —n
Yi=\jey—{y} with probability L

That is, g; is same as y; with probability (1 — n) and takes each of the other
possible labels with equal probability. We denote the distribution from which S,
is drawn as D, and it is related to D as given above.

When one is empirically investigating memorization of random labels, one is
using training data drawn according to distribution D,, but is interested in test
error according to distribution D. Because of the special relationship between
the two distributions, we are asking whether it is possible for the network learned
using data drawn from D, to do well on data drawn from D. As a matter of
fact, we want it to do well on data only from D; we do not want it to learn
distribution D,,.

Let h and h,, denote the classifier function (network) learned by an algorithm
when given S and 9), as training data, respectively. We can say that an algorithm
resists memorization if

Prob(x ,)~p[M(X) = y] = Prob(x y)~p[h,(X) = 9]

What this means is that the accuracy on the original data achieved by the
network learnt with noisy data is same as that of network learnt with original
clean data. This is the ideal case where random altering of labels would have
no effect on the classifier learnt. Note that the RHS above is what we called Js
accuracy in the previous section.

The standard algorithm employed for training all networks is empirical risk
minimization. The above property can be established for risk minimization if the
loss function satisfies a special property called symmetry [6].

Definition: A loss function L is called symmetric if it satisfies

K
> L(g(X),4) =C, Vg, X

Jj=1

where C'is a finite constant. That is, given any network (or function) g and any
input X, if we sum the loss values over all class labels, it should give the same
constant.

Theorem 1. Let £ be a symmetric loss, D and D" be as defined above. Assume
n < % Let y, and g, denote the original and noisy label corresponding to a
pattern X. The risk of h over D and over D7 is Rz (h) = Ep[L(h(X),y,)] and
R} (h) = Epn[L(h(X),Js)] respectively. Then, given any two classifiers h; and
ha, if Rz(h1) < Rz (hs), then R (k1) < R} (h2) and vice versa.
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Proof. (This follows easily from the proof of Theorem 1 in [6].) Given the way
the randomized labels are generated, we have

R} (h) = Ex.5, L(M(X), )
= ]ExEyﬂXEﬂx\X,yzﬁ(h(X)agw)

= ExEy,x (1= mL(h(X),y.) + == > L(W(X),i)
1#Ya

= (1= mRe(h) + 75 (C = Re(h)

-9 (1—“{) Re(h)

where C' is the constant in the symmetry condition on the loss function and K
is the number of classes. Since n < %, we have (1 — Iz’—lfl) > 0. Hence, the
above shows that whenever Rp(h1) < Rg(ha), we get R}(h1) < R}(h2) and

vice versa. This completes the proof.

Theorem 1 shows that the symmetric loss maintains the risk ranking of differ-
ent networks regardless of random flipping of labels (as long as 7 < %) This
implies that any local minimum of risk under randomly flipped labels would also
be a local minimum of risk under original labels if the loss function is symmetric.

The loss function RLL satisfies the symmetry condition [13]. Thus, if we
are using RLL, then any local minimum of risk under D,, would also be a local
minimum of risk under D. Even though this result is only for minima of risk, one
can expect local minima of empirical risk under random label flips to be good
approximators of local minima of empirical risk with clean, original samples.
This explains the empirical results presented in the previous section regarding
the ability of RLL to resist memorization.

There are other losses that satisfy the symmetry condition, e.g., 0-1 loss,
mean absolute value of error (MAE), etc.

It is easy to verify that neither CCE nor MSE satisfy the symmetry condition.
Though the symmetry of loss is only a sufficient condition for robustness, this
may provide an explanation of the overfitting observed with these loss functions
when the labels are randomly flipped.

As is easy to see, the symmetry condition implies that the loss function is
bounded. Given a bounded loss function we can satisfy the symmetry condition
by ‘normalizing’ it. Given a bounded loss L, define L by

Lo(X).J) = s

It is easy to see that L satisfies the symmetry condition. As mentioned ear-
lier, CCE loss is unbounded and hence normalization would not turn it into a
symmetric loss. However, we can normalize MSE loss.

In Fig.5 we show results obtained using normalized MSE. Once we normal-
ize MSE, it no longer fits the data with random labels perfectly; the training
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accuracy now saturates at a value below 100% and thus it behaves more like
RLL now.

The empirical results presented in the previous section adequately demon-
strate that the loss function can play a crucial role in mitigating the tendency of
deep networks to memorize the training examples. The analysis presented here
provides an explanation for this ability of RLL to resist such memorization. As
a mater of fact, if the loss function is symmetric it would have such robustness
and we can normalize a bounded loss to have such robustness.

4 Conclusions

Many recent studies have shown that overparameterized deep networks seem to
be capable of perfectly fitting even randomly-labelled data. This phenomenon of
memorization in deep networks has received a lot of attention because it raises
important questions on how to understand generalization abilities of deep net-
works. In this paper we have shown through empirical studies that changing the
loss function alone can significantly change the memorization in such deep net-
works. We showed this with the symmetric loss functions and we have provided
some theoretical analysis to explain the empirical results. The results presented
here suggest that choice of loss function can play a critical role in overfitting
by deep networks. We feel it is important to further investigate the nature of
different loss functions for a better understanding of generalization abilities of
deep networks.
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Abstract. How can we accurately classify feature-based data such that
the learned model and results are more interpretable? Interpretability is
beneficial in various perspectives, such as in checking for compliance with
exiting knowledge and gaining insights from decision processes. To gain
in both accuracy and interpretability, we propose a novel tree-structured
classifier called Gaussian Soft Decision Trees (GSDT). GSDT is charac-
terized by multi-branched structures, Gaussian mixture-based decisions,
and a hinge loss with path regularization. The three key features make it
learn short trees where the weight vector of each node is a prototype for
data that mapped to the node. We show that GSDT results in the best
average accuracy compared to eight baselines. We also perform an abla-
tion study of the various structures of covariance matrix in the Gaussian
mixture nodes in GSDT and demonstrate the interpretability of GSDT
in a case study of classification in a breast cancer dataset.

Keywords: Gaussian Soft Decision Trees - Interpretable machine
learning - Feature-based classification - Tabular data - Gaussian
mixtures

1 Introduction

The interpretability of a model and its predictions is often an important factor
in choosing machine learning models in various domains. Interpretable machine
learning allows us to understand a decision process or the cause of a decision
that can advance our understanding of the problem at hand [13,18]. Furthermore,
in specific domains such as biology and medicine, there are numerous feature-
based data where each feature is meaningful and conveys unique information.
These data require interpretable models, which is why less accurate models with
interpretable structures such as decision trees are still being widely used.
Decision trees and linear models are representative models where the decision
process and the importance of features are intrinsically human-understandable,
but have limited representation power. Recent advancement of decision trees is
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(a) Identity. (b) Only diagonal. (c¢) Low-Rank Perturbed.

Fig.1. Comparison of Gaussian covariances of various structures on a synthetic
dataset. Each point represents a data example with its label as a color, and each
ellipse represents a leaf distribution learned by GSDT. The diagonal covariance with
low-rank perturbations in (¢) matches the true distribution better than the (a) identity
and (b) diagonal covariances, resulting in higher accuracy. (Color figure online)

soft decision trees (SDT) [6] that improve the representation power of decision
trees by performing soft decisions using all input features at each node. How-
ever, the interpretability of an SDT is limited, because it requires a large depth
to learn complex decision rules, involving many branches for interpreting each
prediction. Unlike decision trees that use only one feature at each branch with
a hard threshold, the large depth of SDTs leads to a complex decision process
that is difficult to interpret even with the tree structure.

In this work, we propose Gaussian Soft Decision Trees (GSDT), our novel
tree model that parameterizes each tree node as a Gaussian mixture, boosting
the limited accuracy of previous tree-structured models without sacrificing the
interpretability. Each edge in GSDT represents a multivariate Gaussian distri-
bution parameterized by the learnable mean and covariance, which summarizes
the examples that pass through it as an interpretable prototype. This makes it
possible for GSDT to naturally adopt a multi-branched structure where each
edge is learned and interpreted independently of the other edges in the branch.
As a result, GSDT shows at least 4.8% higher average accuracy and 4x smaller
depth compared to SDT-based models in six feature-based datasets. GSDT
outperforms even black box models such as random forests and multilayer per-
ceptrons that are not interpretable but have large representation power.

The contributions of this work are summarized as follows:

— Model: We propose GSDT, our novel tree-structured model that supports
high interpretability as well as high accuracy by modeling the internal nodes
as Gaussian mixtures. We propose various options of modeling the Gaussian
covariance and compare them as in Fig. 1.

— Experiments: We demonstrate the superior performance of GSDT by
extensive experiments on six feature-based datasets, where both interpretabil-
ity and classification accuracy are important.
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— Case study: We analyze the structure and learned parameters of GSDT
and shows its superior interpretability by demonstrating the decision process
on an actual example on a breast cancer dataset with visualizations.

The rest of this paper is organized as follows. We introduce related works in
Sect. 2. We propose GSDT in Sect. 3 with theoretical analysis in Sect. 4. We show
experimental results in Sect.5 and conclude at Sect.6. The codes and datasets
are publicly available at https://github.com/leesael/ GSDT.

2 Related Works

Soft Decision Trees. Soft decision trees (SDT) [11] are tree-structured models
that perform soft decisions. The internal nodes of SDTs are generalized linear
classifiers [12] that pass input features through the tree structure, and the leaves
learn fixed distributions over classes. With the improved representation power
and interpretable nature, SDTs have been applied for various applications such
as generative learning [10] and distilling the knowledge of deep neural networks
[6]. EDIiT [21] is a variant of SDTs, which improves the interpretability of SDTs
by imposing sparsity on tree nodes and weight vectors.

Hierarchical Gaussian Mixture Models. Hierarchical Gaussian mixture
models (HGMM) [5,15,19] are Gaussian mixture models (GMM) structured as
a tree. HGMMSs improve the efficiency of GMMs by stacking multiple layers of
Gaussian components, instead of increasing the number of components horizon-
tally. However, such models use all Gaussian components for the prediction of
each example x, making it difficult to interpret the decision process; it is required
to examine all components in the model for explaining each decision.

Kernel Methods. Various machine learning algorithms adopt kernel functions
to generalize linear decisions by mapping input features to another space where
clear separations of classes are possible [1,9]. SVM with the radial basis function
(RBF) kernel [2] is one of the most famous kernel methods, which learns a
decision boundary based on the Euclidean distance between features. Kernel
logistic regression [22] generalizes logistic regression by applying kernel functions
to the weight vectors instead of examples. Kernel methods improve the accuracy
of linear models, but degrade the interpretability due to the nonlinearity.

3 Proposed Approach

We introduce Gaussian Soft Decision Trees (GSDT), our novel tree model that
makes Gaussian mixture-based decisions at the internal nodes to maximize the
accuracy while gaining in interpretability.


https://github.com/leesael/GSDT
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3.1 Overview

GSDT is represented as a multi-branched tree of depth d, where each node has
b children. Each internal node ¢ computes the probability of passing a feature x
to its child node j as a function f;; such that the sum of outgoing probabilities
is one. GSDT passes x through all branches in the tree until it reaches the %1
leaf nodes where the arrival probability vector r(x) is computed. In other words,
r;(x) represents the probability of x arriving at leaf node j and is computed as
the multiplication of all decision probabilities in the path from the root.

Each leaf node j has a probability distribution q; € RY!, where ) is the set
of target classes, which does not change for the input x once it is learned. The
k-th element of q;, which is the prediction for class k € Y, is defined as

~exp(ugr)
O ey expu) .
where u; is a parameter vector that represents an unnormalized probability. In
other words, each leaf learns fixed knowledge as a result of training based on the
examples that are passed to that leaf with high arrival probabilities.
The parameters in all internal and leaf nodes are learned by a gradient-based
approach for minimizing the following loss function:

h(xy) = Y ri(0)las(uy,y), (2)

JENa

where Ny is the set of all leaf nodes, and lis(u;, y) is a loss function that measures
the difference between the prediction at node j and the true label y.

In the inference phase, GSDT chooses the path that leads to the leaf node
j having the maximum arrival probability r;(x) and returns the distribution q;
it has learned during the training. Interpreting the single most probable path is
more straightforward than interpreting all possible paths at each prediction. The
complexity of the inference is also reduced from O(b?) (considering all branches)
to O(d). This is the main difference from HGMM [5,15,19] and ensemble mod-
els [12] that involve all experts in a tree or a forest at every prediction to boost
the performance, making the decision processes not interpretable.

3.2 Gaussian Decisions

The main characteristic of GSDT is the modeling of decisions as Gaussian mix-
tures. Each node i models its child j as a Gaussian distribution A/ (uj, 3;), where
p; and 3; are learnable mean and covariance, respectively. It then computes the
likelihood of x being sampled from the distribution A of each child j and passes
x to the next layer following the computed likelihoods.

In other words, the probability f;; of passing x to node j from node % is

o expl£(0, |x)
T ) = S een(C(6r | )

3)
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where L(0; | x) is the log likelihood of x being generated from N (u;, X;), which
is defined as follows:

L(0;|x)= —% ((X — ,uj)TEj*l(x — ;) + logdet(%;) + dlog(27r)) .4

However, it is computationally expensive to learn the full covariance matrix
3, for all nodes due to the inverse and determinant operations in Eq. (4), as 3;
is a m X m matrix where m is the number of features. Thus, we introduce two
simpler structures for learning the covariance matrices.

Diagonal Covariance. A naive approach is to assume a diagonal covariance
for every node and determine its elements by a vector o ; such that o;; = X4 for
all t. Since o; should contain only positive values, we introduce a free parameter
& ; and apply the softplus function [4] as follows:

Egdiagonal) — diag(d’j); (5)

where o; = log(1+exp(a,)), and diag(-) makes a diagonal matrix from a vector.
This approach is the simplest but neglects the correlations between features.

Diagonal Covariance with Low-Rank Perturbations. A more principled
approach is to generalize the diagonal covariances by adding low-rank perturba-
tions [17] with a small number of parameters by the choice of a rank k:

Bperwbed) _ giag(a,) + UUT, (6)

where U € R™*F is a rectangular matrix learned as a free parameter, k is given
as a hyperparameter, and o; is the same as in Eq. (5). It efficiently makes the
covariance matrix have non-diagonal entries for feature correlations only by the
additional mk parameters included in the U matrix.

log det(3;) and the inverse Ej_l are computed efficiently thanks to the matrix
determinant lemma and the Woodbury matrix identity, respectively [7]:

log det(3;) = logdet(I,, + UTA7'U) + log det(A), (7)
T =AT AU+ UTATIU)TTUTATY, (8)

where A = diag(o;), and I, € R™*™ and I € RF¥** are identity matrices with
different sizes. Equations (7) and (8) are easily differentiable with respect to both
A and U, allowing the updates of parameters in gradient-based optimization.

3.3 Training with Path Regularization

The training process of GSDT consists as three parts: parameter initialization,
a loss function for each leaf node, and regularization for better performance.
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Initialization. We initialize the leaf and internal nodes with different strategies
considering the property of GSDT. For the leaf nodes, we randomly initialize
the logit u; of every node i following the standard normal distribution N (0, 1).
For the internal nodes, we set the Gaussian mean p,; of every node ¢ to zero to
allow examples to be equally distributed to all leaf nodes at the early iterations
of training. This allows the predictions of leaf nodes to have a sufficient variance
needed to guide the training of internal nodes while minimizing the randomness
of internal nodes whose parameters should be tuned carefully.

Loss Function. We use the hinge loss [3] as the function lqs of Eq. (2), which
is typically used by maximum-margin classifers, as follows:

las(uj,y) = Y max(0, 1+ wjp — ujy), (9)
ke\{y}

where Y is the set of labels. The hinge loss gives a zero if uj, +1 < u;y. In other
words, it maximizes the score u;, for the target class y, but stops the training if
it reaches a reasonably good performance. Unlike the cross entropy loss [8], the
hinge loss improves the robustness by allowing GSDT to focus on learning the
leaf nodes whose predictions are inaccurate.

Path Regularization. We propose to add path regularization to encourage
GSDT to utilize more leaf nodes instead of a few dominant ones. The regularizer
measures the negative entropy of the arrival probability vector r(B) as

I(B) = Z r;(B)logr;(B) where r(B) = |Tl§'| Z r(x), (10)

JENa

where r(x) is the vector representation of arrival probabilities of x, and B is a
training batch. The regularizer [),(B) forces GSDT to distribute the examples in
each batch equally to all leaves to minimize the negative entropy. We add I, (B)
to the overall objective function of GSDT with a regularization strength .

Post-optimization of Leaf Nodes. GSDT uses gradient-based optimization
to minimize the objective function, instead of the EM algorithm commonly used
with the Gaussian mixture models. To accommodate for possible weaknesses in
the gradient-based approach, we apply additional post-optimization at each leaf
as described in Algorithm 1. This step allows the leaf Gaussians to be closer to
the examples that they represent, with respect to both mean and covariance. All
parameters of GSDT are fine-tuned according to the change of leaf nodes.

4 Theoretical Analysis

We compare our GSDT with previous tree models, especially soft decision trees
(SDT) that adopt the binary structure with linear decisions, with respect to the
multi-branched structure and the nonlinearity of decisions.
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Algorithm 1: Post-optimization of the leaf Gaussians of GSDT.

Input: A trained GSDT M, a set D of training features, a learning rate « for
the covariances, and the number n of iterations

1: for leaf node j in M do

2:  X; — {x €D]|argmaxyry(x) =j}

3 ,LL]- — Exer X

4: forie€[l,n] do

5: I+ sum((2; — cov(X;))?)

6: Ej<—2j—a-8l/82j

7 end for

8: end for

9: Fine-tune the whole parameters of M for a fixed number of epochs

Multiple Branches. Our Gaussian decisions make it possible to adopt multi-
ple branches at each node without affecting the interpretability of the decision
tree structure. This is because the learned distribution N'(p;, ;) of each node j
is itself interpretable regardless of the other children in the same branch. Specif-
ically, pr; summarizes the examples that pass through node j as an interpretable
prototype, while 33; takes into account the different effect of each feature in the
split; small o, represents that the k-th feature is dominant in determining the
score, as a small change of zj can change the score greatly.

The main advantage of such multi-branched structures is that one can reduce
the depth of a tree while maintaining a similar number of leaf nodes, improving
the interpretability of individual decisions; a tree depth directly tells the number
of decisions that need to be interpreted to explain each prediction. However, such
generalization to multi-branched structures is not straightforward in linear tree
models such as SDTs. Consider a linear decision function f;; that is represented
as a multinomial logistic classifier:

exp(x—rwij + b”)
>k exp(xTwip, + big)’

fiz(x) = (11)
where w;; and b;; are the weight and bias for path (i, j), respectively. This is a
direct extension of SDTs into the multi-branched structure.

The main limitation of this approach is that the weight w;; for each child j
should be interpreted in relation to the other weights, unlike the binary version
where a single weight w; is a complete explanation for node . In other words,
a positive weight w;; > 0 does not guarantee the positive correlation between x
and f;;(x), since the other weights in the branch can have more strong weights;
what matters is the relative size compared to the other children in that branch.
Thus, one needs to examine all weights in that branch for interpreting a decision,
which significantly drops the interpretability of the model.
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Table 1. Classification accuracy for feature-based classification. The best performances
are in bold, and the second-best ones are underlined. GSDT shows the highest accu-
racies in five datasets compared with eight strong baselines.

Model Brain Breast Breast-wis  Diabetes Heart Hepatitis
LR 63.4 £ 0.0 655 +00 97.1+0.0 76.0+ 0.0 86.9 + 0.0 77.4 £ 0.0
SVM-lin | 61.0 £ 0.0 62.1 £ 0.0 97.1 £0.0 76.6 + 0.0 83.6 £ 0.0 77.4 £ 0.0
SVM-rbf | 58.5 £ 0.0 70.7 £ 0.0 97.1 £ 0.0 76.0 £+ 0.0 86.9 + 0.0 77.4 £ 0.0

DT 70.5 £ 0.7 68816 96.0+09 69.7+16 67.2+16 700=+6.9
SDT 66.8 + 5.0 73.3 £5.2 979+ 0.0 76.04+ 0.7 80.7 £2.7 67.3 4.7
EDiT 585 £ 0.0 75.0+26 971 +02 746 +15 85.2+23 778+ 3.8
MLP 734+ 1.7 73.3+23 98.6+0.2 750+08 805+15 64.2+ 3.0
RF 68.0 £ 2.3 76.6 0.8 98.1+0.3 73.4+07 848+ 08 703 %24

GSDT 73.5 + 1.5 77.2 + 1.7 98.8 + 0.6 76.0 £ 0.9 86.9 + 1.2 78.2 + 3.1

Number of Parameters. GSDT has a similar number of parameters to a
binary SDT assuming the same number of leaf nodes, when the rank & of low-
rank Gaussian covariances is fixed as a small constant. An SDT has O(n(m+y))
parameters, where n is the number of leaf nodes, m is the number of features,
and y is the number of classes, respectively. The number of parameters in GSDT
is given formally as Lemma 1.

Lemma 1. The number of parameters of GSDT is O(n(mk-+vy)), where m, n,
and y are the numbers of features, leaf nodes, and classes, respectively, assuming
that every node has the same number of children, and k is the rank of low-rank
perturbations of Gaussian covariances.

Proof. Let d be the depth of GSDT. Each internal node has n'/? children, and
the overall number of branches in the tree is Y%, n#/4 = (n — 1)/(1 — n~1/4),
which is O(n). Since each branch involves m(k + 1) parameters in the mean and
covariance, the number of parameters in all internal decisions is O(nmk).

This shows that GSDT efficiently models the decision process by hierarchical
Gaussian mixtures with a few additional parameters from SDTs. The rank k is
set to 1 or 2 in our experiments, since small k is sufficient to model the relations
between features for learning non-diagonal covariance matrices.

5 Experiments

We compare GSDT with baseline models for feature-based classification on six
datasets. We also demonstrate the interpretability of GSDT in a case study and
compare the different approaches for modeling Gaussian covariances.
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5.1 Experimental Settings

Datasets. We use six public feature-based datasets that are generated from the
bio and medical domains, where interpretability is a crucial factor. Brain-tumor!
is used to find a brain tumor from the information of a patient. Breast-cancer?
and Breast-cancer-wisconsin® are used to predict breast cancers from clinical
cases. Diabetes? is used to predict the status of a patient from diabetes. Heart-
disease® is used to find the presence of heart disease in a patient. Hepatitis® is
used to predict whether a patient lives or dies from the hepatitis disease.

Baselines. We compare GSDT with baseline models that have been used widely
for classification tasks. Our main competitors are models that provide direct
interpretability. Logistic regression (LR), support vector machines (SVM), and
decision trees (DT) make interpretable decisions but have low accuracy in over-
all [1]. We implement two kinds of SVMs with the linear and RBF kernels,
respectively. Soft decision trees (SDT) [11] and EDiT [21] improve decision trees
by adopting soft decisions at internal branches, but weaken the interpretability.
We also consider popular black box models that are not interpretable such as
random forests (RF) and multilayer perceptrons (MLP) for completeness.

Implementation. We split each dataset randomly into training and testing by
the 8:2 ratio. We run eight experiments for each model and report the average
and standard deviation of classification accuracy on the test data. Some models
have zero standard deviations as they are learned to find the global optima.

We use Scikit-learn implementations [20] of most baselines except SDTs and
EDiT that we have implemented by PyTorch along with GSDT. We set the tree
depth of SDTs and EDiT to 8 as in their original papers. On the other hand, we
set the tree depth and the number of children of GSDT to 2 and 6, respectively.
We set the strength A of path regularization to 0.001 and the number n of post-
optimization updates to 10. We set the rank k of Gaussian covariances to 1 or 2
based on the datasets. We use the Adam optimizer [14] for training.

5.2 Classification Accuracy

Table 1 compares the accuracies of GSDT and the baselines on the six datasets.
GSDT achieves at least the second-best accuracy in all datasets, outperforming
all baselines and even the black box models by the average accuracy: the accuracy
of GSDT is 4.1 and 5.5 points higher than that of the RF and MLP, respectively.
This shows the effectiveness of GSDT for feature-based classification, which can

! https://www.kaggle.com/pranavraikokte/braintumorfeaturesextracted.

2 https://archive.ics.uci.edu/ml/datasets/Breast-+Cancer.

3 https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+-(original).
4 https://www.kaggle.com/uciml/pima-indians-diabetes-database.

5 https://archive.ics.uci.edu/ml/datasets/Heart+Disease.

5 https://archive.ics.uci.edu/ml/datasets /Hepatitis.


https://www.kaggle.com/pranavraikokte/braintumorfeaturesextracted
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Hepatitis
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Fig. 2. The structure of simple GSDT trained for the Breast-cancer-wisconsin dataset
having nine features and two labels. Each node is a Gaussian mixture that contains
two Gaussian distributions with separate mean and covariance, but we represent only
the mean vectors for simplicity. GSDT passes the example x to the third leaf through
two Gaussian mixtures, classifying it as benign.

avoid overfitting by our regularized training while having enough representation
power for learning complex decision rules even with a few tree layers.

We compare the SDT-based models from the result: SDT, EDiT, and GSDT.
The accuracy of EDiT is similar to that of SDTs, as it focuses on improving the
interpretability of SDTs rather than its representation power; an SDT is better
at Brain-tumor, while EDiT is better at Heart-disease and Hepatitis. The core
structure of EDIT is the same as SDT's, and thus it shares the same limitations
that we aim to address in this work. GSDT achieves the highest accuracy among
the three models, effectively improving the performance of SDTs.

5.3 Interpretability

Figure 2 shows the learned structure of GSDT of depth two, having two children
at each branch, trained for the Breast-cancer-wisconsin dataset. The dataset has
nine features that represent the cell characteristics of tissue images extracted
from breast cancer patients to classify them into benign or malignant. The root
node softly passes x to the right child by the probability of 72%, and the arrived
node passes x again to the left leaf node, classifying it as benign. Since examples
take a single path during inference, which is represented by a Gaussian node, it
is straightforward to interpret both the structure and decisions.

Figure 3 illustrates the learned distributions and decisions of GSDT as 2D
scatter plots. The same Breast-cancer-wisconsin dataset is used, but we run the
t-SNE algorithm [16] before the training for clear visualization. Figure 3a shows
test examples that are categorized into two classes. The root node first divides
the examples into two clusters based on the Gaussian likelihoods in Fig. 3b. The
distribution of the right child of the root has the largest covariance in the figures,
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Fig. 3. Gaussian distributions learned by GSDT for the Breast-cancer-wisconsin
dataset. The test examples are divided first by the root and then by the internal
nodes, based on the likelihoods of Gaussian distributions. The ellipses represent the
covariance matrices, and the blurry points represent examples that reach at each node
only at the training time, not at the inference time. (Color figure online)

reflecting the uncertainty of the decision. In Figs. 3¢ and 3d, each of the internal
nodes splits examples to the leaf nodes for the final prediction.

Each distribution reflects the property of a decision in its mean vector and
covariance matrix. Specifically, the mean vector works as an interpretable proto-
type that summarizes the examples that pass through that node, which is itself
interpretable regardless of the other nodes. The blue and red distributions (and
the orange and green distributions) have similar roles at the different branches,
which is to classify the examples as benign (and malignant).

5.4 Ablation Study

We compare various options of modeling the Gaussian covariance in Fig.1 by
generating a synthetic dataset consisting of two-dimensional features. GSDT
with the identity covariance works well in Fig. 1a, but the centers of Gaussians
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are different from those of true data because the covariance cannot be changed
during training; the distributions have moved due to the bias of data. The diag-
onal covariance in Fig. 1b works also well, but the covariance matrices cannot
reflect the long shape of true clusters. Our choice of the covariance, which is to
combine the diagonal entries with the low-rank perturbations, reflect accurately
the property of original data. Moreover, the diagonal covariance with low-rank
perturbations is able to capture both positive and negative correlations as seen
by the yellow and green clusters, respectively, without limitations.

6 Conclusion

In this work, we have proposed Gaussian Soft Decision Trees (GSDT), a novel
tree-structured classifier that models the internal nodes as Gaussian mixtures.
Each edge in GSDT represents a multivariate Gaussian distribution parameter-
ized by the learnable mean and covariance, which summarizes the examples that
pass through it as an interpretable prototype. This makes it possible for GSDT
to adopt a multi-branched structure where each edge is learned and interpreted
independently of the other edges in the branch. Our experiments on six feature-
based datasets show that GSDT achieves at least 4.8% higher average accuracy
than models based on soft decision tree (SDT), while having a depth 4x smaller
than that of SDTs. We also visualize the learned structure and decision process
of GSDT to demonstrate its interpretability on an actual feature-based dataset
of the biomedical domain as a case study.
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Science Research Program through the National Research Foundation of Korea
(2018R1A1A3A0407953, 2018R1A5A1060031).
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Abstract. Graph Convolutional Networks (GCN) and their variants
have achieved brilliant results in graph representation learning. However,
most existing methods cannot be utilized for deep architectures and can
only capture the low order proximity in networks. In this paper, we have
proposed a Residual Simple Graph Convolutional Network (RSGCN),
which can aggregate information from distant neighbor node features
without over-smoothing and vanishing gradients. Given that node fea-
tures of the same class have certain similarity, a weighted feature propa-
gation is considered to ensure effective information aggregation by giving
higher weights to similar neighbor nodes. Experimental results on sev-
eral datasets of node classification demonstrate the proposed methods
outperform the state-of-the-art methods in terms of effectiveness and
efficiency.

Keywords: Graph convolutional networks - Graph representation
learning - Feature propagation - Node classification

1 Introduction

The goal of graph representation learning is to represent nodes on the graph
by low-dimensional dense vectors while maintaining the property characteristics
of nodes and the structural features of graphs. Graph convolutional networks
(GCN) [5], a variant of Convolutional Neural Networks (CNNs), have shown
efficacious performance in graph representation learning. GCN can learn appro-
priate node representation by aggregating neighbor node information. Moreover,
in order to capture the high-order similarity of nodes, a non-linear transforma-
tion is introduced in each layer of GCN propagation [8,17]. Recently, GCN have
been widely utilized in graph structure data researches, such as node classifi-
cation [9], node clustering [21], graph classification [10], and link prediction [6].
In addition, researchers have successfully applied GCN and subsequent variants
to their application areas, such as knowledge graph [13], computer vision [11],
natural language processing [18], and recommendation system [19].
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In GCN, because each layer of graph convolution needs to aggregate features
from the connected node, the dependence relationship between nodes should be
known before model training. This makes the optimization method of min-batch
no longer applicable to GCN, which will make GCN training very difficult.

Considering these limitations of GCN, many researchers have made some
improvements to solve the above problems. In [2], the authors introduced Graph-
SAGE, a general inductive manner for learning node representation on large
graph structure data. This method randomly sampled a fix-sized neighborhood
for each node and aggregated node features from this neighborhood by a spe-
cific aggregator. Moreover, in order to resolving dependence relationship between
nodes, Zeng et al. [20] constructed mini-batch by sampling the training graph
and built a complete GCN on the sampled subgraph for each iteration. Although
the large graph structure data can be processed by these methods, it is hard to
stack more layers to obtain high-order node information.

Inspired by the great success of residual connections, dense connections and
dilated convolution in deep learning, Li et al. [7] adapted these ideas into GCN
to solve the vanishing gradients problem and proposed Deep Graph Convolu-
tional Networks (DeepGCNs). Although DeepGCNs can extract deeper node
information in the graph and have several advantages over previous methods.
Unfortunately, it consumes bulky computing resources and prodigious time in
the inference process, which means its application to large graph structure data
would be difficult. The large graph structure data are very common in practical
applications. However, previous works fail to efficiently aggregate deeper node
information and separate dependence relationship between nodes during training
processes in large graph structure data.

To build a high-efficiency graph representation learning model and separate
dependence of nodes during training processes, a Residual Simple Graph Con-
volutional NetWork (RSGCN) by removing the non-linear activation function
of DeepGCNs is proposed. In RSGCN;, residual feature propagation enables the
model to learn higher order node information and restrain the over-smoothing of
the graph. Furthermore, as average aggregation confuses the importance of dif-
ferent classes to nodes itself, we propose a weighted feature propagation model
RSGCN+ to learn the important information from similar nodes. RSGCN+
ensures effective information aggregation by giving higher weights to similar
neighbor nodes, which is measured by the cosine similarity between node fea-
tures. Finally, our models can learn accurate node representation. The major
contributions of this paper are summarized as follows.

— A Residual Simple Graph Convolutional Network (RSGCN) is proposed by
removing the non-linear activation function of DeepGCNs. With the residual
feature propagation, RSGCN can aggregate information from distant neigh-
bor node features without over-smoothing and vanishing gradients. More
importantly, RSGCN can achieve high effectiveness and efficiency during
training process.

— Given that node features of the same class have certain similarity, we pro-
pose a weighted feature propagation model RSGCN+ to ensure effective
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information aggregation by giving higher weights to similar neighbor nodes,
which further improves the node representation and the robustness of the
model.

— To verify the performance of the proposed methods, three standard bench-
mark datasets for citation networks are taken as the comparing experiments.
The results demonstrate that our models obtain significant improvements for
the semi-supervised node classification tasks in the terms of both prediction
accuracy and the training efficiency.

2 Preliminaries and Related Work

2.1 Primary Definition

Given an undirected attributed graph G = (V,A), where V = {v; }i=1,.n
represents the nodes and A = {a;;} € R™"*" is the adjacency matrix of the graph
G. If there is an edge between node v; and node v;, then a;; = 1, otherwise it
equals to 0. For ease of notation, the neighbor set of node v; can be denoted as
A; = [jlaij = 1]. Note that A = A + I denotes the adjacency matrix A with
self-loops and the degree matrix D = diag{d,,ds, ...,d,} € R"*™ is a diagonal
matrix where the i-th value on the diagonal d; = > ; Gij 1s equal to the degree

of the i-th node of matrix A. For the semi-supervised node classification tasks,
we observe the labels of a subset of the nodes in the graph G. The goal of node
classification is to predict the unknown node labels based on the graph structure
and node features we known the labels.

2.2 Graph Convolutional Network

For each node v; € V, h{ represents initial node representation, which is d-
dimensional feature vector z; € R%. Then, GCN can learn node representation
for each node based on node initial features and graph structure. Specifically, for
each node v; in the graph convolution layer, the node representation is updated
recursively with the following three steps: feature propagation, linear transfor-
mation, and non-linear activation.

Feature Propagation. For each node v;, the feature propagation step aggre-
gates the node information from node itself representation h¥ at previous layer
k and graph neighbors A;,

1
h (kD) — ‘ ) (1)

) ¢ 2ig hy
di+1 ;\/(di+1)(dj+1) !

where d; denotes the degree of node v;. Besides, the update of entire graph
g 1 7~ 1
can be expressed as a simple matrix operation. The symbol S = D72 AD™2
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represents the “normalized” adjacency matrix with added self-loops. Thus, the
update process in Eq. (1) for all nodes can be expressed as,

H+D = sH® (2)

Intuitively, this step makes each node aggregate information from connected
node and eventually has a positive influence on node classification tasks. Theo-
retically, feature propagation output layer is regarded as the Laplacian smooth-
ing of the node features at the previous layer [8,15].

Linear Transformation and Non-linear Activation. After feature propa-
gation, linear transformation and non-linear activation is identical to a standard
multilayer perceptron. In a GCN layer, there is a learned weight W* as linear
transformation after the feature propagation, which can transform node repre-
sentation linearly. Finally, a non-linear activation produces the node representa-
tion of the (k + 1)-th layer as,

HE+D — o (I:I(k+1)wk) (3)

where o(+) is a non-linear activation function.

2.3 Simplifying Graph Convolutional Network

Recently, considerable literature has grown up around the theme of simplifying
GCN in order to reduce training time and memory. A Simple Graph Convolu-
tional Network (SGCN) is proposed [16], which removes the non-linear activation
function in Eq. (3) as,

H® =ss.. . SHOW'W!. Wk (4)

where WOW! ... WP* can be rewritten as a single matrix W and the repeated
multiplication with the matrix S can be simplified to a single matrix S*. The
above linear matrix multiplication turns to,

H® = sS"HOW (5)

With the simplification of SGCN, k times feature propagation S* can be cal-
culated before training, and the parameters are much less than GCN, which
makes it easy to apply SGCN to large graph structure data. Many experiments
show that removing the non-linear activation function in GCN does not have a
negative impact on performance in many graph tasks. However, [16] shows that
SGCN has the best node classification performance at feature propagation depth
of 2 or 3. When feature propagates for too many times, the node representation
information propagated to well-connected node rapidly increase. This leads to
the over-smoothing issue, which means the features of each node are mixed by
too many neighbors and lose locality.
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2.4 Deep Graph Convolutional Networks

In GCN, the depth has a crucial function: after k layers each node can aggre-
gate feature information from the nodes that are k-hops away in the graph.
However, GCN with deep layers will lead to vanishing gradients, which makes
accuracy drop sharply in classification tasks. Inspired by the success of the Deep
CNNs technology, DeepGCNs [7] employed residual/dense connections to solve
the above problem.

ResNet [3] can alleviate the problems of vanishing gradients and network
degradation caused by increasing depth in deep neural networks. The node rep-
resentation of the (k + 1)-th layer in ResGCN can be defined as:

HiE = o (SHOW!) +H®) 6)
where W has the same dimension as H(®). Although DeepGCNs can effectively
stack more layers, and the performance does not decline severely with depth
increasing like GCN, it consumes abundant computing resources and prodigious
time in the training process. Thus, it is difficult to apply it to large graph struc-
ture data.

3 Owur Proposed Methods

In this section, we propose Residual Simple Graph Convolutional Network
(RSGCN), a model of node representation learning that extracts deep node
information. The overall architecture of the proposed models is shown in Fig. 1,
which can be summed as two processes: (1) For mitigating over-smoothing,
we propose residual feature propagation RSGCN (dashed-blue) to retain more
node itself information. (2) On the basis of residual feature propagation, we
adjust the final node features by adding weighted feature propagation RSGCN-+
(dashed-red).

|
________________________________________________ 1D Vector add
IResidual Feature Propagation 'O Unknown label node
1 . !
K=1 K=2 K=k He)
1O | Known label node
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g O
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Fig. 1. Outline of our models framework.
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3.1 Residual Feature Propagation

Considering that non-linear activation functions have almost no benefit in the
node representation, we can simplify ResGCN by removing the non-linear acti-
vation functions. Hence, Eq. (6) can become as follows:

H ™ = sHYW + =YY (7)

In order to better mine the node feature information and simplify the model,
we move the linear transformation to the end of each layer, so Eq. (7) could be
changed to Eq. (8).

HYY = (s + ) HEWF (8)

where I € R™*" denotes the identity matrix. The node representation of the
k-th layer can be defined as:

HY = (S+D(S+1)...(S+HHOW WY . wF (9)

where WO W', .. W* can be rewritten as a single matrix W and the repetitive
multiplication operation of the matrix S + I can be simplified to a single matrix
(S+ I)k. The node representation of residual feature propagation can be defined
as: o
oY = s+ " H W (10)
In residual feature propagation, their node features of inputs are added to
the inputs of the next feature propagation, which means that node features can
be well preserved. In this way, RSGCN enables more feature propagation, which
can aggregate information from more distant neighbor nodes with weaker over-
smoothing impact. In addition, as residual feature propagation can be calculated
before training, the scale of parameters in RSGCN is lessened and the training

efficiency is raised vastly. Thus, the matrix H%C) can be expanded as:

. (©)
S .+1)H W (11)

Hy) = (8" + s

In general, lower order neighbor nodes contain more important information,

whereas higher order neighbor nodes may contain some noisy information. In

addition, STH(®) contains the information about the 1 to i-hop neighbors node

features and initial node features. Equation (11) represents that the more distant

neighbor node features are given smaller weights, which enables the node to
aggregate less noisy information.

3.2 Weighted Feature Propagation

Currently, most graph neural networks use mean aggregation to learn node rep-
resentation. Valid information and noise are treated equally, which may hurt
the performance of models. The graph attention network [14] introduces the
attention mechanism into the GCN by assigning a learned weight parameter
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for neighbor nodes of each node. The huge performance improvement in node
classification tasks illustrates that assigning a suitable weight to neighbor node
is a better way of feature propagation. However, the attention mechanism sig-
nificantly increases parameters of model, thus it is difficult to apply it to large
graph structure data. Therefore, we can change our mind to consider assigning
a weight to neighbor nodes based on their initial features before training.

On condition that the node features of the same class have more similarity,
cosine similarity is utilized as a criterion for determining the similarity of two
node features. The cosine similarity matrix ® can be defined as:

d
szl TpYp
i = i d d
Zp:l Tp Zp:l Yp

where z,, is the p-th feature of v; and y is the p-th feature of v;. In order to
balance the cosine similarity scale, we normalize them by using the softmax
function by row. Hence, the node weight matrix can be defined as:

exp(@ij)
>i—1exp(©;;)
In order to retain more information from the node itself features, we borrowed

the idea of residual feature propagation into the weighted feature propagation.
The weighted feature propagation can be defined as:

HY = @+ 1D"H W (14)

) (12)

P, = (13)

By using residual feature propagation to obtain the final node features, RSGCN
can learn part of the useful information from the node features and the graph
structure. In addition, weighted feature propagation can extract further useful
information about neighbor nodes and reduce the influence of irrelevant neighbor
node. This information may contain some information that is not contained in
the residual feature propagation. In order to preserve the useful features of both
two feature propagation, we merge them in a stacked manner. Therefore, the
final weighted feature propagation can be defined as:

HY —H +HY) (15)

The weighted feature propagation can assign a weight to neighbor node based
on their similarity to node itself features. Although weighted feature propaga-
tion increases some memory to some extent, the neighbor node features can be
aggregated more efficiently and rationally. In addition, weight feature propaga-
tion can be completed before training, and weighted feature propagation can be
performed separately for each node, which is ideal for large graph structure data.

3.3 Classifier

Similar to common classification tasks, we can use a softmax function as a classi-
fier after feature propagation and linear transformation. For a node classification
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task with C classes, the class prediction Y € R"*C in RSGCN of k times feature
propagation can be defined as:

Y = softmax (Hgﬂ)) (16)

where softmax(xz) = exp(z)/ ZCC:1 exp(z.). For multi-class node classification
tasks, we generally take cross entropy as the loss function.

4 Experiments and Discussions

4.1 General Setting

Datasets. Cora, Citeseer, and Pubmed [5] are employed to evaluate the semi-
supervised node classification task, which are the standard benchmark datasets
for citation networks. The statistics of datasets are summarized in Table 1. The
above dataset composed of diverse scientific publications are classified into dif-
ferent classes. Each publication in the dataset is described by a 0/1-valued word
vector indicating the absence/presence of the corresponding word from the dic-
tionary. And the edges in the datasets represent the citation relationship between
articles. In order to obtain unbiased and objective results, we have leveraged
10%—-20%-70% train-validation-test settings.

Comparison Algorithms. We compared the proposed RSGCN and RSGCN+
with many state-of-the-art methods, including DeepWalk [12], GCN [5], SGCN
[16], FastGCN [1], GraphSAGE [2], and DeepGCNs [7]. Since GraphSAGE and
DeepGCNs have a variety of models, we choose GraphSAGE-mean and ResGCN
with good effects as representatives.

Experimental Implementation. The parameters of compared methods are
adjusted as the suitable ones according to their papers. On all citation networks
datasets, RSGCN is trained for 200 epochs using Adam optimizer [4] with learn-
ing rate 0.2. And the setting of hyper parameters like the feature propagation
depth and weight decay are manually adjusted according to the validation set
results. We select the model with the best performance of validation sets dur-
ing the training to test the performance of test sets. RSGCN+ has the same
parameters setting as RSGCN.

Table 1. Dataset statistics of the citation networks

Dataset Cora | Citeseer | Pubmed
#Nodes | 2708 | 3327 19717
#Edges 5429 | 4732 44338
#Features | 1433 | 3703 500
#Classes 7 6 3
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Table 2. Test Micro-F1 Score (%) averaged over 10 runs. The best and second values
are marked by the bold font and underlines.

Method Cora | Citeseer | Pubmed
DeepWalk [12] | 73.51 | 55.06 79.36
GCN [5] 83.01 | 72.03 86.41
SGCN [16] 83.35 | 71.71 85.60

FastGCN [1]  |80.36 | 70.15 | 85.42
GraphSAGE [2] | 81.26 |71.30 | 85.63
ResGCN [7]  |82.85 71.94  86.30
RSGCN 84.06 | 73.06 | 86.33
RSGCN+ 85.10 | 74.06 | 86.95

4.2 Results and Discussion

Performance. For accuracy comparison of DeepWalk, GCN, SGCN, FastGCN,
GraphSAGE, ResGCN, RSGCN on all three datasets, the highest Micro-F1 of
each model are summarized in Table 2. Table 2 shows that the performance of
RSGCN is superior to GCN and its variants on the citation networks. In par-
ticular, on the Cora and Citeseer datasets, RSGCN has 1% improvement in
Micro-F1 score than GCN. On the Pubmed dataset, RSGCN has similar per-
formance to GCN result. The improvement of RSGCN performance comes from
two aspects. On the one hand, RSGCN can propagate feature more times than
GCN, which allows each node to aggregate feature information from more distant
neighbor nodes. On the other hand, RSGCN has fewer parameters compared to
GCN. This means that RSGCN has a strong generalization capability and suffers
less from overfitting. Furthermore, RSGCN+ achieve the higher Micro-F1 score
than RSGCN on the citation datasets. It proves that the RSGCN+ is a high-
performance graph model and has the capability to enhance model effectiveness
by weighted feature propagation.

Efficiency. In Table 3, we show the time to train comparison methods and our
models for 200 epochs on the citation networks and the number of layers is set
to be 2 for all models. In particular, RSGCN and RSGCN+ take into account
the time of residual feature propagation and weighted feature propagation. The
training time is measured by a PC Server equipped with an Intel(R) Xeon(R)
CPU E5-2620 V4 @2.10GHz, NVIDIA TITAN V, and 64 GB RAM.

Table3 shows RSGCN is faster than comparison methods. RSGCN
achieves 80.2%/75.9%/78.3% improvement of time in training of the
Cora/Citeseer/Pubmed dataset than GCN. As for other methods besides SGCN,
feature propagation in each epoch with enormous parameters make training inef-
ficient. Since SGCN with only one learned parameter matrix performs less than
satisfactory, the providing source code uses two learned parameters matrix to
obtain accurate classification performance. However, our models perform well
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Table 3. Training time (seconds) on citation networks averaged over 10 runs. The
values of brackets represent performance improvement compared to GCN method.

Method Cora Citeseer Pubmed
GCN [5] 3.99 4.15 4.51

SGCN [16] 1.24 1.73 1.74
FastGCN [1] | 2.15 2.32 2.63
GraphSAGE [2] | 8.35 8.79 9.12

ResGCN [7] 12.64 46.15 21.78
RSGCN 0.79 (1 80.2%) | 1.00 (1 75.9%) | 0.98 (1 78.3%)
RSGCN+ 2.07 (1 52.0%) | 3.15 (1 24.1%) | 4.08 (1 9.5%)

using one learned matrix and therefore faster than SGCN. RSGCN+ consumes
more time due to calculating cosine similarity, which is still faster than GCN.

(a) Cora 075 (b) Citeseer 090 () Pubmed
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Fig. 2. Training processes of all models compared with Micro-F1 score on (a) Core,
(b) Citeseer, and (c¢) Pubmed.

Because FastGCN and GraphSAGE will be affected by random sampling, the
training has greater volatility, so they are not recorded in Fig.2 and Fig. 3. The
Micro-F1 score at a training process is depicted in Fig. 2. Figure 2 illustrates the
relationship between the Micro-F1 score and the epoch on the Cora, Citeseer, and
Pubmedand datasets. One can see that the proposed RGSCN and RSGCN+ not
only achieve the highest Micro-F1 score in the validation set, but also require
fewer epochs to converge than traditional GCN. During the training process,
RSGCN and RSGCN+ demonstrate high efficiency, which shows good industrial
conversion application prospects.

Training Depth Analysis. Figure3 shows the performance in test sets of
GCN, SGCN, ResGCN, RSGCN, RSGCN+ measured by Micro-F1 score with
different depth on three citation datasets. For the case of 1 to 3 depth, the Micro-
F1 score of above methods increases with more layers added, which suggests
that deeper feature propagation may be useful. From Fig. 3, RSGCN achieve the
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Fig. 3. Performance in test sets of five models measured by Micro-F1 score with dif-
ferent depth on (a) Core, (b) Citeseer, and (c) Pubmed.

best classification performance at depth between 4 and 6, while others achieves
the best classification performance at depth between 2 and 3. Due to gradient
vanishing problem caused by the deep network and the over-smoothing caused
by the feature propagation, GCN performance decreases sharply at depth of
4. In addition, the performance of ResGCN also starts to decrease sharply at
depth of 7 because enormous parameters in the ResGCN lead to over-fitting.
With increasing depth of model, the effect of SGCN, RSGCN, and RSGCN+ on
classification performance is less pronounced. This is largely due to the fact that
SGCN, RSGCN, and RSGCN+ have fewer parameters and not over-fitting. Due
to the slower feature convergence, the performance of RSGCN in shallow layers
is slightly inferior to other models. However, the performance of RSGCN, and
RSGCN+ is still better than SGCN. An explanation is that the residual feature
propagation in RSGCN can effectively slow down the smoothness, which also
gives RSGCN some edge in depth.

5 Conclusion

In this paper, we have proposed a Residual Simple Graph Convolutional Network
(RSGCN), which can aggregate information from distant neighbor node features
without over-smoothing and vanishing gradients. Given that node features of the
same class have certain similarity, a weighted feature propagation is considered
to ensure effective information aggregation by giving higher weights to similar
neighbor nodes. Experimental results indicate that the proposed method per-
forms better than compared methods on both accuracy and training efficiency
in terms of quantitative assessments.
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Abstract. Speech classification has been widely used in many speech-
related applications. However, the complexity of speech classification
tasks often exceeds the scope of non-experts, the off-the-shelf speech
classification methods are urgently needed. Recently, the automatic
speech classification (AutoSpeech) without any human intervention has
attracted more and more attention. The practical AutoSpeech solution
should be general and can automatically handle classification tasks from
different domains. Moreover, AutoSpeech should improve not only the
final performance but also the any-time performance especially when the
time budget is limited. To address these issues, we propose a three-stage
any-time learning algorithm framework called Progressive AutoSpeech
for automatic speech classification under a given time budget. Progres-
sive AutoSpeech consists of the fast stage, enhancement stage, and explo-
ration stage. Each stage uses different models and features to ensure gen-
eralization. Additionally, we automatically construct ensembles of top-k
prediction results to improve the robustness. The experimental results
reveal that Progressive AutoSpeech is effective and efficient for a wide
range of speech classification tasks and can achieve the best ALC score.

Keywords: Automatic speech classification - Deep learning -
Any-time learning

1 Introduction

Deep learning has achieved great success in speech-related applications such as
speaker verification, language identification, and emotion classification. Since the
complexity of these tasks often exceeds the scope of non-experts, it leads to an
ever-growing demand for off-the-shelf speech classification methods that can be
easily used without expert knowledge.

Automatic machine learning (AutoML) aims at automating the process of
applying machine learning to real-life problems [8]. Meanwhile, the automatic
© Springer Nature Switzerland AG 2021
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speech classification (AutoSpeech) without any human intervention has attracted
more and more attention from both academic researchers and industrial practi-
tioners. In practice, AutoSpeech solutions should fulfill following requirements:

1. Strong anytime performance: In practical application scenarios, the avail-
able time budget is always limited. Thus, the AutoSpeech method should be
able to yield good models with a small time budget.

2. Strong final performance: As the time budget increases, the AutoSpeech
method should be able to yield better prediction performance.

3. Generalization ability: Speech-related classification tasks may come from
different domains. There is no single model that can solve all tasks. The
AutoSpeech strategy should be able to deal with different speech classification
tasks in a unified framework.

According to these requirements, a novel metric called ALC (Area under
Learning Curve) was proposed [13,24]. ALC considers the whole learning trajec-
tory, instead of the traditional metric that focuses on the converged performance
only. Both the NeurIPS 2019 AutoSpeech challenge and the InterSpeech 2020
AutoSpeech challenge adopt the ALC metric. Formally, the ALC metric of the
AutoSpeech problem can be stated as follows:

Definition 1. Given a training dataset Dyyqin and a test dataset Diest, at each
timestamp t,let s(t) denote the normalized AUC (i.e., 2¥AUC-1 ) of the most
recent prediction on Diest. To normalize time to the [0, 1] interval, the time t is

transformed by t(t) = %, where T is the time budget and ty is a reference
time amount. The AutoSpeech problem aims to mazimize the area under the

learning curve using the formula:

ALC = / ' s(t)di(t) = / L (bt
0 0 (1)

_ 1 /T s(t) &t
log (1+T/to) Jo t+to

Figure 1 shows an example of the ALC learning curve. According to Definition
1, we can see that s(t) is weighted by 1/(¢ + to), giving stronger importance to
predictions made at the beginning of the learning curve. Thus, it is encouraged
to train a model with good any-time performance.

In this paper, we propose a three-stage progressive AutoSpeech framework!
to maximum the ALC metric under a given time budget. Progressive AutoSpeech
consists of the fast stage, enhancement stage, and exploration stage. The fast
stage encourages any-time learning and aims to generate good prediction results
as early as possible. Thus, the traditional machine learning model is employed
in the fast stage. Next, the enhancement stage that contains a complex neural
network model is responsible for quick performance boosting. To ensure the

! Progressive AutoSpeech won the first place in the NeurIPS 2019 AutoSpeech chal-
lenge and the second place in the Interspeech 2020 AutoSpeech challenge.
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Fig. 1. An example of the ALC learning curve

generalization ability for different speech classification tasks, we employ multiple
other deep neural network models that differ from the enhancement stage. Once
the enhancement stage is ineffective for a specific task, the exploration stage can
be used to improve the performance. Thus, as the training process progresses,
the prediction performance can be continuously improved. Moreover, we leverage
meta-learning to select suitable models for each stage.

Additionally, we dynamically construct an ensemble of top-k prediction
results to further improve the final performance and robustness. The experi-
mental results reveal that Progressive AutoSpeech is effective and efficient for a
wide range of speech classification tasks and can achieve the best ALC score.

2 Related Work

Researchers have been working in the area of speech classification for many years.
Traditional ML approaches including Gaussian Mixture Model [22] and Support
Vector Machine [11] are widely used in speech classification tasks. With the rise of
deep learning in recent years, deep neural networks have been applied to process
speech classification tasks. The commonly-used features in the deep learning
based approaches are the low-dimensional representations extracted from the raw
audio such as Mel-spectrogram (Mel) [23], Mel Frequency Cepstrum Coefficients
(MFCCs) [17], and Short Time Fourier Transform (STFT) [20].

Due to the short-term and long-term temporal relationship in the speech
data, the Recurrent Neural Network (RNN) has received much attention in many
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speech classification tasks such as emotion classification [14] and audiobook genre
classification [4]. The Long Short-Term Memory (LSTM) model has also been
proposed to address speech recognition [12] and music genre classification [9].
The LSTM model can be combined with the attention mechanism to handle the
language recognition task. The attention mechanism assigns a higher weight to
the important part of speech [9,18].

Another commonly-used deep learning model for speech classification is the
Convolutional Neural Network (CNN). Due to the great success achieved by
CNNs on image classification, many image processing models and methods have
been applied to speech classification tasks such as tone classification [10] and
urban sound classification [5]. The Convolutional Recurrent Neural Network
(CRNN) models have been proposed for sound event detection [2], bird audio
classification [1], and music emotion recognition [15]. Moreover, the popular
ResNet model can also be used for speech classification and has achieved excel-
lent performance on many tasks [16].

Although RNN and CNN models can be used in speech classification, they
usually perform well on the tasks from specific domains, lacking the generaliza-
tion for cross-domain speech classification. Moreover, the existing models only
focus on the final performance without considering the time cost.

Update dynamically ensemble set (top k prediction result )
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repeated
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Fig. 2. Workflow of progressive AutoSpeech

3 Progressive AutoSpeech

In this section, we propose a general algorithm framework called Progressive
AutoSpeech for automatic speech classification with limited time budget, which
can achieve good any-time and final performance simultaneously. As shown in
Fig. 2, the workflow of Progressive AutoSpeech consists of three stages: fast stage,
enhancement stage, and exploration stage.

According to the definition of the ALC metric, the predictions made at the
beginning of the learning curve play an important role. Training deep learning
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models is often time-consuming. Thus, the fast stage employs a traditional ML
model along with the sampling technique to produce prediction results as early as
possible. The following enhancement stage aims to achieve performance boosting
by using the deep neural network model. To speed up the training process, the
incremental speech truncation technique is proposed. The exploration stage uses
multiple other deep neural network models that differ from the enhancement
stage to improve the upper bound of the prediction performance. Additionally,
if the model in the enhancement stage is ineffective for a specific task, the explo-
ration stage can improve the prediction performance by exploring more models.
The switching between different stages is adaptively determined.

Moreover, we leverage meta-learning [3] to select suitable models for each
stage. Specifically, we first calculate the average rank for all available models
including traditional ML models and complex deep neural network models over
all offline datasets. Then, the traditional ML model that ranks first among all
traditional ML models is selected as the model in the fast stage. Moreover,
the deep neural network model that achieves better performance on most of
the offline datasets is employed in the enhancement stage for fast performance
boosting. The model sequence in the exploration stage contains other neural
networks whose average ranks are close to the model in the enhancement stage.

Furthermore, we employ the ensemble technique to further improve the
robustness. The ensemble set contains top-k prediction results on the test dataset
from each stage. As the training process progresses, we dynamically update the
ensemble set and generate the ensemble prediction result at each time of predic-
tion. Next, we introduce each stage in detail.

3.1 Fast Stage

Since the AutoSpeech problem encourages any-time learning by maximizing the
ALC score, the time when the first prediction results appear is very important.
Also, the performance of the first prediction cannot be very bad. Thus, we train
a traditional ML model for the first prediction. According to meat-learning, we
select the linear regression model in the fast stage.

Incremental Sampling: To speed up the training process, we sample from
the training set without replacement. The sample size 14qmpie can be calculated
by Eq. 2, where n.ss denotes the number of classes, k the sample size for each
class, and n,;;, the minimum sample size for each training of LR. We set k = 3
and N, = 200 respectively.

Nsample = mal’(nclass * ka nmzn) (2)

Since the sampling process is incremental, we do not put the sampled data back
into the training set. Each time we train the LR model, we use both the newly
sampled data and the last sampled data.
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Feature Engineering: Because we need the first prediction results as early
as possible, we only truncate at most the first five seconds of the raw audio
to extract features. In this stage, we extract Mel-spectrogram [23] from the
raw speech. The Mel-spectrogram is a spectrogram where the frequencies are
converted to the mel scale. Each Mel-spectrogram extracted from a single speech
sample is a two-dimensional array. Since the LR model only supports a one-
dimensional array as input, we need to transform the 2-D Mel-spectrogram array
into a 1-D array. Specifically, we first calculate the mean value and the standard
deviation of each row in the 2-D Mel-spectrogram array, then we concatenate
these mean values and standard deviations as a 1-D array. Finally, the 1-D array
is standardized as the input feature of the LR model. Since the Mel-spectrogram
features of the last sampled data have been extracted, we only need to extract
features for the newly sampled data.

Once the number of LR models trained in the fast stage reaches the given
value, we switch to the enhancement stage.

3.2 Enhancement Stage

From the enhancement stage, we focus on improving the prediction accuracy
as much as possible by employing the deep neural network models. As shown
in Sect. 4.3, the Thin-Resnet model can achieve better performance on most of
the offline datasets. Thus, in the enhancement stage, we select the Thin-Resnet
model [25] with meta-learning.

Incremental Truncation: As can be seen in Sect. 4.1, the length of raw audio
usually differs a lot and the length of each raw audio in the same dataset also
varies greatly. In the fast stage, we just truncate up to the first five seconds
of raw audio. This is very fast and convenient. However, it will drop too much
information from raw audio and cannot utilize the whole raw audio. To make full
use of raw audio, we perform incremental data truncation in the enhancement
stage. At the beginning of the enhancement stage, we truncate raw audio from
a shorter length, and as the training progresses, we truncate longer and longer
raw audio in each epoch. In our experiments, we truncate the raw audio from 5s
to 35s. If the truncation length is longer than that of the raw audio, we simply
copy the raw audio to meet the truncation requirements. If the short audio is
effective for classification, then we can get good prediction results in the early
stage of training. Otherwise, we can use more and more information in the raw
audio as the truncation length continues to increase.

Feature Engineering: In this stage, we extract STFT [20] from the original
audio. STFT represents a signal in the time-frequency domain by computing
Discrete Fourier transforms (DFT) over short overlapping windows. We sepa-
rate a complex-valued spectrogram D into magnitude S and phase P. Thus,
D = § x P. The phase component is dropped and the magnitude component
is standardized as the input features for the thin-Resnet model. Additionally,



174 G. Zhu et al.

to make the training process faster, we do not use all STFT features of the
truncated speech data as the input of the model. We randomly intercept the
STFT features for at most 2.5s. Moreover, we reverse the STFT features with
a 30% probability. These data augmentation strategies can not only speed up
the training process but also greatly improve data utilization and randomness,
leading to better generalization.

Adaptive Termination: The termination of the enhancement stage should
satisfy one of the following conditions:

1. Although thin-Resnet performs well on most datasets, it may perform poorly
on the datasets from specific domains. If this situation occurs, we need to
terminate this stage as early as possible. Specifically, after several consecutive
training processes, if the prediction performance of the thin-Resnet model
cannot exceed that of the LR model, we directly switch to the next stage.

2. When the thin-Resnet model converges, continuing training may lead to over-
fitting. Thus, we need to stop training timely. The convergence condition is
that there is no significant performance gain for multiple consecutive times
of training processes.

3.3 Exploration Stage

When the enhancement stage is terminated, we enter the exploration stage,
where we use a sequence of deep neural networks to further strengthen the final
performance for different types of speech classification tasks. The model sequence
that contains LSTM, Bi-directional LSTM, and CRNN is trained repeatedly
until the time budget is reached. Similar to the enhancement stage, we also
adopt the incremental enhancement technique.

In this stage, we extract MFCCs from the raw audio. MFCCs are commonly
used as features in speech recognition systems [7], such as the systems which
can automatically recognize numbers spoken into a telephone. MFCCs are also
increasingly finding uses in music information retrieval applications such as genre
classification, audio similarity measures. Moreover, MFCCs are the most popular
acoustic features used in speaker identification [17]. MFCCs take into account
human perception for sensitivity at appropriate frequencies by converting the
conventional frequency to Mel Scale.

When the AUC of one model on the validation set is not rising for three
consecutive times, we will switch to the next model.

3.4 Dynamic Result Ensemble

Each stage may train multiple models with different training sets or different
network architectures. To further improve robustness and avoid overfitting, we
adopt a simple and fast ensemble method. Specifically, during the training pro-
cess of each stage, if one model can achieve better prediction performance on the
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validation dataset, then we use that model to predict the test dataset and add
the prediction results into the ensemble set. Thus, the ensemble set that contains
the top-k prediction results is dynamically updated. Every time the prediction
on the test dataset is required, we access the ensemble set and calculate the
average ensemble prediction.

4 Experiments

4.1 Datasets

We evaluated the performance of Progressive AutoSpeech on 10 speech datasets
from different domains. The meta-features of these datasets are shown in Table 1.
From Table 1, we can see that the meta-features such as the number of classes,
the number of instances, maximum length, and minimum length differ a lot.

All the audios are first converted to single-channel, 16-bit streams at a 16 kHz
sampling rate for consistency, then they are loaded by librosa and dumped to
pickle format. Also, the speech datasets contain both long audios and short
audios without padding.

Table 1. Meta-features of speech datasets from different domains

Dataset | Domain | Source Train/Test | Class Maximum/Minimum | Maximum | Minimum | 95%
name number number class number length(s) length(s) Length(s)
data01 Speaker VoxCeleb [16] | 1650/3300 | 330 5/5 1.00 1.00 1.00
data02 Emotion | Berlin 346/162 7 50/7 8.98 1.23 5.16
emotional
speech (see
footnote 1)
data03 Accent Speech sccent 164/308 11 20/10 55.00 18.45 45.00
archive
data04 Genre Uspop2002 [6] 343/739 20 20/12 30.00 30.00 30.00
data05 | Language | CSS10 [21] 132/151 10 23/5 2.00 2.00 2.00
data06 Speaker Librispeech 3000/3000 | 100 115/7 73.16 3.96 19.08
(19]
data07 Emotion | Berlin 428/107 7 81/37 6.79 1.23 4.52
emotional
spccch2
data08 Accent Speech accent 796,/200 3 407/104 91.33 16.46 40.63
archive
data09 Genre Uspop2002 [6] 939/474 20 49/28 5.00 5.00 5.00
datal0 Language | CSS10 [21] 199/597 10 25/16 16.39 2.08 10.05

2 http://www.expressive-speech.net/.

3 http://accent.gmu.edu.
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Table 2. Performance comparison with the ALC and accuracy metric

Method dataO1 data02 data03 data04 data05

ALC |ACC |ALC |ACC |ALC |ACC |ALC |ACC |ALC |ACC
LR+Mel 0.7015 |0.0198 |0.8429 |0.4838 |0.156 |0.1179 |0.5944 |0.1738 |0.9366 |0.4537
CNN2D+MFCCs 0.4473 |0.0292 |0.8452 |0.6827 |0.0432 |0.0998 |0.4807 |0.2335 |0.7374 |0.3805
CRNN2D+MFCCs 0.4677 |0.0613 [0.8571 |0.7603 |0.0659 |0.1121 |0.5749 |0.3831 |0.8666 |0.7248
BiLSTM+MFCCs 0.5604 |0.1218 |0.7718 |0.6418 |0.0136 |0.0967 |0.6338 |0.4456 |0.8928 |0.785
LSTM+MFCCs 0.558 |0.1144 [0.8147 |0.656 |0.0616 |0.1106 |0.6528 |0.4886 |0.9057 |0.8318

ThinResnet+STFT 0.5735 [0.2102|0.8099 |0.8914 |0.2106 |0.1929|0.6238 |0.7189 |0.8844 |0.9404
ProgressiveAutoSpeech|0.8237|0.2082 |0.9579|0.8928/0.2447(0.1893 |0.7973|0.7215|0.9829/0.9426

Method data06 dataO7 data08 data09 datal0

ALC |ACC |ALC |ACC |ALC |ACC |ALC |ACC |ALC |ACC
LR+Mel 0.7943 |0.2493 |0.7405 |0.4581 |0.4371 |0.5325 |0.6016 |0.2057 |0.9723 |0.7091
CNN2D+MFCCs 0.5895 |0.219 |0.7962 |0.5342 |0.3887 |0.5436 |0.4309 |0.1831 |0.8885 |0.7804
CRNN2D+MFCCs 0.6462 |0.5016 [0.8128 |0.7174 |0.5878 |0.705 |0.5021 |0.2724 |0.8798 |0.9897
BiLSTM+MFCCs 0.6786 |0.4654 |0.7199 |0.5271 |0.4475 |0.6013 |0.5319 |0.3174 |0.8909 |0.992
LSTM+MFCCs 0.7198 |0.6203 |0.7489 |0.5662 |0.4729 |0.6151 |0.5575 |0.3421 |0.8964 |0.9921

ThinResnet+STFT 0.6788 |0.8704 |0.8317 |0.8094/0.6636 |0.8206|0.618 |0.5178/0.8563 |0.9927
ProgressiveAutoSpeech|0.9388/0.8747|0.924 |0.8044 |0.7516/0.8153 |0.7456|0.5163 |0.9847|0.9928

4.2 Experimental Setting

We employed the ALC and accuracy metrics to evaluate all speech classification
models. We sampled 20% of the training set as the validation set. We used sklearn
to implement the Logistic Regression model. Moreover, we used TensorFlow to
implement all deep neural network models. For all deep learning models, the loss
function is the cross-entropy. The learning rate of the Adam optimizer is 0.001.
The batch size is 32. We trained deep learning models on a Tesla K80 GPU and
the time budget is set to 1800s. Each experiment is run three times and the
average result is calculated.

4.3 Comparison with Baselines
The commonly-used baselines for the speech classification task are as follows.

— LR+Mel: We extracted Mel-spectrogram as features and ran the Logistic
Regression model with the max iteration of 1000.

— LstmAttention+MFCCs: LstmAttention model consists of an LSTM
layer, an Attention layer, and two dense layers. We extracted MFCCs as
features.

— BiLstmAttention+MFCCs: BiLstmAttention model consists of a bidirec-
tional LSTM layer, an Attention layer, and two dense layers. We extracted
MFCCs as features.

— CRNN+MFCCs: CRNN model consists of four conv blocks, two GRU lay-
ers, and a dense layer. We extracted MFCCs as features.

— CNN+MFCCs: CNN model consists of five conv blocks, and two dense
layers. We extracted MFCCs as features.
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— ThinResnet+STFT: ThinResnet model consists of ConvBlock and Identi-
tyBlock [25]. We extracted STFT as features.

These baselines represent the models employed in each stage of Progres-
sive AutoSpeech. Moreover, these baselines and Progressive AutoSpeech use the
same speech truncation and data augmentation techniques. We evaluated all
methods in terms of both the ALC and the accuracy metrics. Table 2 shows the
experimental results. Progressive AutoSpeech can achieve the best ALC score in
all datasets due to its strong any-time performance and generalization ability.
Moreover, Progressive AutoSpeech outperforms other methods in terms of accu-
racy. Note that the ThinResnet+STFEFT method also has excellent accuracy in
most datasets. Because of this, we selected the ThinResnet+STFT model in the
enhancement stage. Due to the instability of the result ensemble, the accuracy
performance of Progressive AutoSpeech may worse than the ThinResnet+STFT
method. But, the performance gap is very small.

4.4 Ablation Study

Performance of Each Stage: For comparison, we further evaluated the per-
formance of each single stage of Progressive AutoSpeech. In fact, each single
stage can be equivalent to a specific speech classification model. Table 3 shows
the ALC score of the fast stage, enhancement stage, and exploration stage. Pro-
gressive AutoSpeech combines the advantage of each stage and thus achieves the
best ALC score in all datasets. The fast stage can get the prediction results as
early as possible. The enhancement stage and exploration stage are responsible

Table 3. Ablation study

Method data0l |data02 data03 |data04 |data05
EnhancementStage 0.6734 |0.8823 0.2223 |0.6589 |0.9174
ExplorationStage 0.5492 |0.8571 |0.0782 |0.6019 |0.906

FastStage 0.7189 |0.8119 |0.1369 |0.5483 |0.9312

ProgressiveAutoSpeech-Truncatebs |0.8167 |0.957 0.217 |0.7476 |0.9831
ProgressiveAutoSpeech-Truncatel5s|0.7948 |0.9517 |0.1951 |0.7452 |0.981
ProgressiveAutoSpeech-TruncatelOs|0.8051 |0.9572 |0.181 |0.7501 |0.9823

ProgressiveAutoSpeech 0.8237/0.95790.2447|0.7973|0.9829
Method data06 |data07 |data08 |data09 |datalO
EnhancementStage 0.7567 |0.865 |0.6865 |0.6607 |0.8922
ExplorationStage 0.7127 |0.8201 |0.4722 |0.5517 |0.8938
FastStage 0.9063 |0.6038 0.4395 |0.6039 |0.9821

ProgressiveAutoSpeech-Truncatebs |0.9315 |0.9169 |0.7377 |0.7469 0.9825
ProgressiveAutoSpeech-Truncatel5s|0.9292 | 0.9135 |0.7406 |0.7413 |0.9833
ProgressiveAutoSpeech-TruncatelOs |0.9349 |0.9208 |0.7349 |0.7448 |0.9845
ProgressiveAutoSpeech 0.9388/0.924 | 0.7516|0.7456 |0.9847
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for improving the prediction performance as much as possible. Therefore, com-
bining all stages not only produces prediction results faster but also achieves
better any-time performance and final performance for different cross-domain
speech classification tasks.

Evaluation of Incremental Truncation: We disabled the incremental data
truncation technique and truncated the raw audio for 5s, 10s, and 15s respec-
tively. From Table3, we can see that Progressive AutoSpeech outperforms the
fixed truncation methods in most datasets except for data05 and data09. In these
two datasets, the length of each raw audio is less than or equal to 5s. Thus, the
ProgressiveAutoSpeech-Truncatebs method can capture all information of the
two datasets without overfitting.

4.5 Scalability of Time Budget

We further evaluated the scalability of time budget. Because the gap between
some ALC scores is too small, we performed Min-Max scaling for ALC scores
under different time budgets on each dataset to better show the trend of change.
From Fig. 3, we can see that the performance of Progressive AutoSpeech is get-
ting better and better with the continuous increase of time budget, which indi-
cates that Progressive AutoSpeech has good scalability of time budget.
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Fig. 3. Scalability of time budget

5 Conclusion and Future Work

In this paper, we proposed a general, three-stage AutoSpeech framework called
Progressive AutoSpeech to maximum the ALC metric under a given time bud-
get. Progressive AutoSpeech consists of the fast stage, enhancement stage, and
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exploration stage. Moreover, we leveraged meta-learning to select suitable mod-
els for each stage. The experimental results reveal that Progressive AutoSpeech
is effective and efficient for a wide range of speech classification tasks and can
achieve the best ALC score.

In the future, we plan to integrate more models and features for AutoSpeech
and further perform automatic data argumentation for speech-related tasks.
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Abstract. Samples with ground truth labels may not always be avail-
able in numerous domains. While learning from crowdsourcing labels
has been explored, existing models can still fail in the presence of sparse,
unreliable, or differing annotations. Co-teaching methods have shown
promising improvements for computer vision problems with noisy labels
by employing two classifiers trained on each others’ confident samples in
each batch. Inspired by the idea of separating confident and uncertain
samples during the training process, we extend it for the crowdsourcing
problem. Our model, CrowdTeacher, uses the idea that perturbation in
the input space model can improve the robustness of the classifier for
noisy labels. Treating crowdsourcing annotations as a source of noisy
labeling, we perturb samples based on the certainty from the aggregated
annotations. The perturbed samples are fed to a Co-teaching algorithm
tuned to also accommodate smaller tabular data. We showcase the boost
in predictive power attained using CrowdTeacher for both synthetic and
real datasets across various label density settings. Our experiments reveal
that our proposed approach beats baselines modeling individual anno-
tations and then combining them, methods simultaneously learning a
classifier and inferring truth labels, and the Co-teaching algorithm with
aggregated labels through common truth inference methods.

Keywords: Crowdsourcing + Noisy labels + Input space perturbation

1 Introduction and Background

Labeled data is essential to guarantee the success of increasingly more complex
classifiers. Unfortunately obtaining large quantities of high-quality labels can
be cost-prohibitive for several fields. For example, in the medical domains, it
may take a clinician several hours to annotate the health records of hundreds of
patients. One alternative is to gather labels using crowdsourcing, where remotely
located workers are utilized to perform the task of labeling the data. Although
these crowdworkers individually may not be as accurate as an expert, construct-
ing the true label from their aggregated opinions can approximate the accuracy
of an expert. However, the subjectivity of annotators and their different qualifi-
cations introduce noise to the labeling process. To model this noise, most studies
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either focus on modeling the reliability of annotators and their correlation and
reflecting it in the label aggregation phase or combining classifier training with
learning the annotators’ trust parameters. Yet, learning through crowdsourcing-
based models can still fail in the presence of differing annotations and unreliable
users [13].

A promising direction for dealing with noisy labels for training complex clas-
sifiers is Co-teaching [5]. Under the Co-teaching paradigm, two peer neural net-
works are trained separately and specific samples are exchanged between the
networks to reduce the error of the two models and yield a more accurate model.
As a result, Co-teaching methods have shown great promise for computer vision
problems with noisy labels. Co-teaching can naturally counteract crowdsourcing
noise since it filters out noisy samples in the beginning and only adds them at
later training stages when they will be valuable. However, Co-teaching treats
each sample with the same weight. This can cause the classifier to incorrectly
learn from samples that may have fewer annotations or diverging human labels.

To address this limitation, we propose to leverage the certainty of samples
from the label aggregation phase to inform the selection process of Co-teaching,
which has not been studied before. Our model, CrowdTeacher, uses a perturba-
tion scheme based on the uncertainty of the samples to improve the robustness of
the Co-teaching framework. Given the availability of samples’ uncertainty from
the label aggregation step, our model uses this information to counter the inher-
ent noise by perturbing the input space. In addition, the framework prioritizes
the more confident samples of the classifier during the learning process. Thus,
we tackle the problem of classification with features and crowdsourcing labels
using three mechanisms:

e Estimation of the features’ distributions to generate synthetic data which is
then used to perturb each sample in an additive manner, proportional to its
estimated label’s uncertainty.

e Enhancing Co-teaching by knowledge distillation, i.e. a student-teacher model
of a simple and a complex network to accommodate smaller tabular data.

e Utilization of the perturbed samples as input to the above classifier to further
differentiate uncertain and certain training points based on their loss in each
epoch

Next, we formally define the problem and summarize and delineate where
and how CrowdTeacher ties into the relevant literature in crowdsourcing, data
augmentation, and learning with noisy labels.

1.1 Problem Definition: Classification with Crowdsourcing
Annotations

In practice, there are numerous applications in which the ground truth of a
classification task is not available, or disputed. For instance in medicine, mul-
tiple pathologists do not always necessarily agree on the malignancy status of
a tumor in an image [8], or multiple nurses do not all agree on the presence of



CrowdTeacher 183

Table 1. Summary of notations.

Symbol | Description

N Number of samples

R Number of annotators

K Number of classes

o Perturbation lction

Xir Training feature matrix

A Answer matrix of all annotators
S Synthetic feature matrix

Xir Perturbed training samples feature matrix
F. Set of continuous features

Fy Set of all discrete features

P Class probability matrix

ci Certainty of i-th

hospital-acquired bedsores for a patient given their charts [15]. Similarly, obtain-
ing ground truth from experts to train reliable classifiers can be expensive, as in
the case of content filtering and regulation of posts on social media, which are
distributed among multiple non-expert annotators to obtain some good quality
labels [9]. Formally, we define learning with crowdsourcing labels as follows:

Definition 1. (Classification with Crowdsourcing Annotations) Consider a set
of R annotators labeling N samples with K possible classes. Given an answer
matriz A € RVN*E where each element a,, indicates the label for sample n
provided by annotator r, and the training feature matriz X, € RN*M the goal
18 to train a classifier that accurately predicts the true labels for the test data
using only its feature matriz X;s.

We use K to denote number of classes. Simulated data from the synthesizer
used f/oi perturbation is shown by S and the perturbed samples are denoted
with X4,.. The set of continuous and discrete features are shown by F,. and Fj
respectively. Table 1 summarizes the notations used throughout this paper.

1.2 Related Works

Classification with noisy answers or multiple crowdsourced labels overlaps with
three other areas: learning with crowdsourcing labels, data augmentation and
synthetic data generation for robust learning, and selective gradient propagation.

Learning with Crowdsourcing Labels. Here we summarize the three main
high-level approaches for learning with multiple annotations.
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Sequential. This approach first uses a truth inference method to estimate the
ground truth for training samples. The estimated label is then used to train a
classifier. A recent survey extensively comparing these models has shown the
overall efficiency and utility of the D&S method [14]. Our proposed model falls
into this category, however, we introduce ideas from the two other overlapping
areas to further improve the predictive performance of this basic classifier.

Simultaneous. The second perspective jointly tackles the problem of learning
classifier parameters and the estimated ground truth of the samples. Albar-
gouni et al. uses the Expectation-Maximization (EM) algorithm and Maximum
a posteriori estimation to iteratively compute these two sets of parameters until
convergence [1]. Yet, this method is computationally challenging especially for
more complex classifiers.

Individual Annotator’s Label Modeling. The last set of research works
entail learning a model for each individual labeler. Dr. Net was proposed to
learn a classifier to reproduce the labels of each annotator and is composed of two
phases, individual annotator modeling and learning labelers’ averaging weights
for the final prediction [4]. To overcome the computational challenge of simul-
taneous learning and Dr. Net, multiple crowd-layer variants were introduced to
remove the computational burden of the EM loop [11], by first estimating the
ground truth of samples and then attempting to replicate the individual anno-
tator’s labels using a very simple neural network. Unfortunately, such models
require significant samples to properly learn a robust classifier.

Data Augmentation and Synthetic Data Generation for Robust Learn-
ing. To overcome the obstacle of noisy labels or features, perturbation schemes
and data augmentations have been investigated. In computer vision, data aug-
mentation is done by applying operations like cropping and rotation to com-
bat potential mislabelled training data [2,12,17]. Another line of work achieves
robustness against noisy data by generating data synthesizers that achieves the
same predictive performance as using the real data. Xu et al. have extended
data augmentations to tabular data with heterogeneous feature types using
Generative Adversarial Networks and Variational Autoencoders [16]. However,
such synthesizers are modeled independent of the labels or the conflicting
annotations.

Selective Gradient Propagation. To counter noisy labels and memorization
effects in neural networks, the Co-teaching algorithm adaptively changes both
the number of and the set of participating samples used in stochastic gradient
descent epochs for two differently-initialized classifiers [5]. For each epoch, Co-
teaching chooses a different number of samples with the lowest loss (as a proxy
for clean data) and updates each classifier using the clean samples of the other
network. This is in contrast to using all the samples or the clean samples of
the classifier itself that may result in memorization and early overfitting which
prohibits learning a generalizable classifier. A parallel can be drawn to similarly
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Algorithm 1. CrowdTeacher.

Input: Training Features X, Answer matrix A, Perturbation Fraction «
Output: Model
Train synthesizer to generate synthetic data:
Data_sampler «— Synthesizer(Xer)
Generate N samples from resulting sampler: S « Data_sampler(N)
Run truth inference method to get class probabilities:
P — D&S_Algorithm(A)
/* Generate perturbed samples Xy, */
fori=1,---,N do
Set sample’s certainty using Eq. (1)
Sample s; from 10% closest samples of synthetic samples S to x; using KNN
/* Generate continuous features */
for j € F. do
| Generate feature Z;; according to Eq. (2)

/*Generate discrete features*/
Calculate f; using Eq. (3) _ _ _
Sample discrete features to perturb: Fg from Fy such that |Fy | = fg
for j € F; do
Generate single feature value z;; according to Eq. (4
3

Train Co-teaching Algorithm on Perturbed Samples:
Model — Co-teaching(Xsr)

deal with the inherent noisiness of aggregated crowdsourcing labels. Co-teaching
mechanism of prioritizing a smaller set of confident samples in the initial stages
of learning, and gradually incorporating more of the uncertain samples in later
epochs can be leveraged for problem of classification with crowdsourcing labels.

2 Methodology

Our idea is to enhance the Co-teaching framework to account for the uncer-
tainty associated with the estimated truth label of the sample. We introduce a
perturbation-based scheme to the Co-teaching framework so the trained model
will be more robust to sparsity and unreliability in the annotations. For each
mini-batch update of Co-teaching, synthetic samples are generated and used to
perturb each sample dependent on the uncertainty of the estimated truth label.
Thus a sample that has more certainty in the label will be perturbed more
whereas a sample that has fewer annotations is likely to have less perturbation.
The perturbed sample is then used to train the classifier.

2.1 Generating Synthetic Samples

To improve the robustness of the Co-teaching framework, CrowdTeacher gener-
ates synthetic samples of the data which are then used to perturb the samples
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to train the classifier. Any data synthesizer with reasonable data generation per-
formance can be used. For the purpose of our paper, we focus on three data
synthesizers: Conditional GAN (CTGAN) [16], TVAE [16] and Gaussian copula
[10]. CTGAN can handle mixed feature types (discrete and continuous) and has
been shown to perform competitively with other GAN-based, VAE-based, and
Bayesian network-based data synthesizer for vision benchmark datasets [10]. It
is worthwhile to note that the data synthesizer is not tied to the learning task
and can be used as a stand-alone tool.

To generate synthetic data within CrowdTeacher, the training feature matrix
X, is fed to the synthesizer. For CTGAN synthesizer, the discrete features Fy
are specified explicitly since they are modeled differently compared to the contin-
uous features F,. Once the synthesizer has estimated the data distribution, any
number of samples can be drawn. For CrowdTeacher, we generate the synthetic
set S € RV*M with N synthetic samples once and assume each synthetic sample
can serve as a unique perturbation source. Although S is drawn once and is the
same size as our training data to minimize the computational footprint of our
model, the synthetic set can be re-drawn at each mini-batch of the Co-teaching
framework with a larger number of samples.

2.2 Sample-Specific Perturbations

The generated synthetic samples, S, fail to account for the uncertainty associated
with the estimated sample label as the synthetic samples are only dependent on
original training data. Thus, we introduce a mechanism to leverage the uncer-
tainty that arises from the truth inference method to individually perturb each
sample. For the purpose of illustration and experimentation, we focus on the
D&S algorithm [3], but note that CrowdTeacher can be used with any robust
truth inference method that quantifies the label uncertainty for each sample.
The D&S algorithm takes as an input the matrix of annotations (A) and models
annotators by a confusion matrix to capture their chance of mistaking one class
for another or correctly reporting them in addition to the class priors. D&S out-
puts a matrix P € RV*X where the Pj; element denotes the probability that
sample ¢ is of class k. The certainty of each sample, ¢;, is then defined as the
maximum probability across all the classes:

cizrglea;({(Pi ) YieN (1)

Choosing an Appropriate Simulated Sample for Perturbation. Given
the data synthesizer can generate synthetic samples that are quite different from
the original data point and can lead to more uncertainty with respect to the truth
label, we use k-nearest neighbors (KNN) to identify reasonable close samples
from S. For each sample, KNN is run to find the top 10% closely simulated
samples. A simulated data point, s;, is then randomly chosen from this top 10%
and used to perturb the original point.

Perturbation. Each sample z; is perturbed using the simulated data point
s; according to the uncertainty, ¢; and a user-specified perturbation fraction
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a € [0,1] to obtain the perturbed sample Z,. Let s;; represent the jth feature of
sample s;. If the j** feature is continuous, the value for the synthetic, perturbed
sample Z;; is a convex combination of the original and simulated sample:

51‘]' = (1 - aci)xij + (OéCi)Sij, Vie N, VjeF, (2)

For the discrete features, we use ¢; and « to calculate the number of discrete
features to swap. Let |Fy| denote the number of discrete features in the dataset,
then the number of discrete features to swap for each sample z;, f is calculated
as:

14 = round(ac| Fy|) (3)

Then f} features are randomly selected for perturbation from the original dis-
crete feature set and denoted as F, ;p. For each feature, j in this perturbation set,
the feature values are replaced with the synthetic sample value s;;.

T;j=si, Vi€EN, Vje F;'p (4)

2.3 Knowledge Distillation-Based Co-teaching for Smaller Tabular
Data

To combat the large performance variations associated with running the Co-
teaching algorithm on smaller-sized tabular data, we incorporated the student-
teacher idea from knowledge distillation [6]. Thus instead of two peer networks
with the same architecture, we used one simple and one complex network such
that the number of hidden units of the simpler network is half of the other one.
Empirical results showed these modifications helped with both the convergence
of the two networks in achieving more similar evaluation metrics and overall
better performance across different synthetic datasets.

3 Experiments

3.1 Baseline Methods

The best performing methods from crowdsourcing studies (see Sect. 1.2) are cho-
sen as comparison models. The original Co-teaching algorithm and Co-teaching
using only uniformly perturbed input are also used to illustrate the advantage
of certainty-aware perturbation. All methods employ the same base classifier,
a neural network with one hidden layer of W units. Sequential methods
share the same truth inference method (D&S) and are marked with *.

— Naive baseline* (Base_clf) [3]: Base classifier trained with D&S labels.

— Simultaneous Expectation Maximization (S-EM) [1]: An algorithm that
jointly learns the classifier and annotators’ parameters using EM algorithm.

— Dr. Net [4]: An individual annotation based model that separately learns each
annotator’s labels and their weights.
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— Crowdlayer (CL.MW and CL_VW) [11]: An algorithm that estimates ground
truth first and replicates each annotator’s labels via a simple final layer. This
final layer is removed at test time. The number of parameters for the last
layer determines the Crowdlayer variant. We evaluated the vector of weights
(VW) and matrix of weights (MW) variants.

— Vanilla Co-teaching® (V_Coteach) [5]: The original Co-teaching algorithm
trained with D&S labels.

— Co-teaching with uniform perturbation® (P_Coteach): The Co-teaching algo-
rithm trained on D&S labels and synthetic samples.

— CrowdTeacher*: Our proposed method with the Co-teaching algorithm
trained on D&S labels and sample-specific certainty-informed perturbed
samples.

We conducted our experiments using these baseline models. Since S-EM and
Dr. Net constantly performed poorly compared to the other baselines, we omitted
them from the plots for better readability. The Python implementation for all
our experiments is publicly available on GitHub!.

3.2 Annotation Simulation

For our experiments, we set the number of annotators to be 5 (R = 5). To simu-
late the annotators’ behavior, we consider two parameters: (1) mean reliability,
or the average likelihood of the annotators to label a positive sample correctly
and (2) variability in annotators’ expertise or the difference in their qualities. We
set the distribution of samples having 1 to 5 labels as [7, 0.55(1—7), 0.27(1 —7),
0.13(1 — 7), 0.05(1 — 7)] and vary the parameter 7 for our experiments. Note
that 7 determines the average number of labels per sample.

Conventionally, the Beta distribution is used to generate each annotator’s
reliability. After determining each annotator’s reliability, its labels are created
by randomly choosing (100-reliability) percent of positive cases and switching
their labels into negative 0. Flipping negative samples to positive occurs at 0.01
times this rate. Samples not assigned to specific annotators are marked with —1
in the answer matrix (A). The exact parameters used for simulating annotations
in each experiment are summarized in the GitHub repository.

3.3 Datasets

Synthetic Datasets: To test the performance of our framework on a non-
specific dataset for which the ground truth is known, we generated synthetic
data to mimic real-world features and a range of annotator reliabilities.

Statistical Distribution Families: Families of continuous and discrete distribu-
tions were used to generate the synthetic data. In particular, we used Normal,
Beta, Wald, Laplace, Binomial, Multinomial, Geometric and Poisson distribu-
tions. The corresponding distribution parameters for a feature within each family

! https://github.com/manisci/CrowdTeacher.
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are randomly chosen from a specified range. 5 features were chosen from each
family for a total of 40 features.

Output: The ground truth labels are determined based on a polynomial combi-
nation of feature values. Each feature’s coefficient value is chosen randomly. To
assign labels and model class balance (% of positive samples), outputs falling in
percentiles below the level of balancedness are assigned to the positive class.

Noise Level: Two versions of labels are generated. Labels for a specified per-
centage of samples are flipped to obtain the noisy truth used for annotation
generation. However the true labels before flipping are used for evaluation pur-
poses. This resembles the availability of noisy labels in practice.

PUI Dataset: Determining whether a patient has developed a pressure ulcer
injury (bedsore) is a complex clinical decision that requires considerable nursing
expertise. Early detection of PUI is extremely useful since it is preventable with
proper care. However, even highly trained nurses do not agree on the existence or
severity of PUI cases. Training a classifier that utilizes a limited set of annotated
health records from multiple nurses can revolutionize nursing care through use in
similar clinical settings. We use the MIMIC-IIT dataset [7], a publicly available
dataset which holds information of patients admitted to intensive care units
(ICU) of a populated tertiary care hospital from 2001 to 2012. We identified
hospital stays of individuals over 20 years old with length of stays between 2d
and 120d. A hospital stay was considered positive if there was a presence of the
ICD-9 diagnosis code associated with pressure ulcer and there was a mention of
PUI in the notes. A hospital stay was negative if there was no indication of PUI
in both the ICD-9 codes or the notes. A total of 10518 samples were identified,
31% of which are positive.

4 Results

Since the datasets are imbalanced, we evaluate all the models based on the area
under the precision recall curve (AUPRC). AUPRC offers a holistic picture of
CrowdTeacher’s predictive performance, independent of the classification thresh-
old choice. We split each dataset into 80% training & 20% test. The AUPRCs in
plots are averaged across multiple seeds. We also confirmed CrowdTeacher per-
formance on AUROC metric, but omit the results due to limited space.

4.1 Synthetic Dataset

Sensitivity to Choice of Synthesizer: To analyze the effect of using differ-
ent synthesizers on CrowdTeacher performance, we compared the average gain
obtained by using CrowdTeacher with CTGAN, TVAE, and Gaussian copula
synthesizers compared to using the next two top-performing baseline methods
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of P_Coteach and V_Coteach, respectively shown by circle and cross mark-
ers in Fig. 1b. Firstly, we can see that Gaussian copula has the greatest gain
among the three synthesizers. However, employing the two other synthesizers
for CrowdTeacher would still be beneficial in terms of predictive performance
in many of the sparsity settings. Given the promising performance of Gaussian
copula synthesizer, we use Gaussian copula for all the remaining experiments.

Sensitivity to Perturbation Fraction (a): To understand the impact of
the perturbation fraction, a, we varied it between [0.01, 0.2] and evaluated the
performance of CrowdTeacher and P_Coteach (the two perturbation-based meth-
ods). Figure la shows the average AUPRC of P_Coteach and CrowdTeacher as
« increases with the average number of labels set to 2.34. It is observed that
CrowdTeacher constantly outperforms P_Coteach regardless of the chosen per-
turbation fraction indicating its robustness. From the results, there is an optimal
range of a to achieve the greatest benefit from CrowdTeacher and that either a
very low (a < 0.05) or very high (« > 0.2) perturbation fraction decreases the
usefulness of CrowdTeacher but does not diminish it. Given these results, the
remainder of our experiments uses o = 0.11.

(a) Perturbation fraction. (b) Different synthesizers.
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Fig. 1. CrowdTeacher Sensitivity to perturbation fraction and synthesizer choice (in
Fig. 1b circles/crosses show gain w.r.t. P_Coteach/V_Coteach accordingly)

Predictive Performance: Figure 2a shows the performance of baseline crowd-
sourcing and Co-teaching variants against CrowdTeacher across various sparsity
settings on the synthetic dataset. Confirming intuition, all methods experience
an increase in AUPRC since the average number of labels per sample increases,
which exposes methods to less noisy annotation. All Co-teaching based meth-
ods (CrowdTeacher, V_Coteach, and P_Coteach) constantly outperform both
crowdlayer variants and also Dr.Net and S-EM. The last two always performed
the worst and therefore were excluded from these plots. Even though the base
classifier performance improves with more labels, its performance gap with Co-
teaching based methods remains large in all sparsity settings. Across a wide
range of label sparsities, using CrowdTeacher results in a significant boost in
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AUPRC, compared to the other two Co-teaching based methods, even with as
low as only 1.68 labels per sample. Also, we can observe that V_Coteach per-
forms worse than P_Coteach in very sparse settings (average number of labels <
2.1), but as the number of labels increases it catches up with P_Coteach and even
surpasses it at higher densities. Another interesting observation is that beyond
an average of 2 labels per sample, all three methods reach a plateau and only
improve negligibly in response to an increased number of labels.

(a) Synthetic dataset. (b) PUI dataset.
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Fig. 2. CrowdTeacher Performance on Synthetic and PUI data as average number of
labels per sample increases, averaged on 10 and 4 initializations respectively.

4.2 PUI Dataset

To challenge CrowdTeacher’s performance under more chaotic distributions of
real data, we tested it on the bedsore detection task with 10k samples. Figure 2b
shows how the performance of the chosen methods changes as the average number
of labels per sample goes up. We observed similar patterns to synthetic dataset
here too in terms of Co-teaching variants’ overall predictive advantage over other
methods, however, the gap between Co-teaching variants and other methods
is less substantial. The range of AUPRC of all models on this dataset proves
that this is a much harder learning problem, yet CrowdTeacher is able to beat
P_Coteach and V_Coteach at multiple points, especially at lower sparsities, which
are actually more practical for obtaining labels for hospital-acquired bedsores,
while at other sparsity points it has comparable performance to these methods.

5 Conclusion

We proposed CrowdTeacher, a novel Co-teaching based approach that leverages
certainty of samples from truth inference algorithms to apply sample-specific
perturbations on training points, and combines it with Co-teaching algorithm to
further rectify noisy annotations and incorporate that knowledge in the training
process. Our proposed approach bridges overarching themes and ideas from data
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augmentation, crowdsourcing, and learning with noisy labels and is agnostic to
the truth inference method and the synthesizer used. To illustrate the predictive
benefits of CrowdTeacher over similar methods, we conducted experiments on
both synthetic and real dataset of different scales, and our results for both tasks
(including a real-world medical classification task) confirmed CrowdTeacher’s
performance edge for learning with crowdsourced labels. We also successfully
employed Co-teaching mechanism primarily tested on images, for tabular data.
For our future work, we plan to propose new perturbation schemes to introduce
more variety for perturbations of a given sample during training, and extend our
current framework to semi-supervised learning.
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Abstract. Multi-view graph-based clustering aims to partition samples
via fusing similarity graphs from different views into a unified graph. The
clustering performance relies on the accuracy of similarity measurement.
However, most existing methods utilize a single metric whose similarity
measurement can be easily corrupted by noises thus lacking high accu-
racy and generalization capability. We propose an effective multi-metric
similarity graph refinement and fusion method for multi-view clustering.
We construct multiple similarity graphs for each view by different metric,
exploit a novel refined similarity through symmetric conditional proba-
bility to preserve the important similarity information and finally adap-
tively fuse multiple refined similarity graphs to an informative unified
one. Extensive experiments on eight benchmark datasets have validated
the effectiveness and superiority of our proposed method comparing to
thirteen state-of-the-art methods.

Keywords: Multi-metric - Similarity graph fusion - Symmetric
conditional probability - Multi-view clustering

1 Introduction

Clustering aims to partition objects into different groups such that objects in
the same groups are similar. Many graph-based clustering methods partition
the data based on the similarity matrix. The similarity matrix, similarity mea-
surement among samples, plays a crucial role in affecting the clustering perfor-
mance. Similarity can be constructed by various metrics. The kernel is one of
the popular similarity measurements, which is wildly used in spectral clustering.
However, the performance of spectral clustering highly dependent on the choice
and parameter of the kernel matrix. For instance, how to select a proper stan-
dard deviation parameter for the Gaussian kernel is an open problem [21]. Then,
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multiple kernel learning (MKL) is developed to pick or combine the candidate
kernels. In addition to the kernel matrix, the similarity can be constructed by
subspace clustering based on self-representation.

Although these approaches are effective, the information provided by single-
source data is limited or insufficient. In real-world applications, each object has
a variety of relationship graphs as each object can be sampled in different views
and the sampled data of each view can form a graph. Multi-view graph-based
clustering [9,11,13,15,22] aim to partition data into different groups by making
use of complementary information from multiple similarity graphs. They fuse
multiple similarity graphs from all view into a unified similarity graph. The
weights of these similarity graphs can be automatically learned, manually set, or
without consideration. Some of these methods [4,15] perform similarity fusion
and clustering simultaneously.

These methods have made significant progress in multi-view clustering. How-
ever, for most of them, the clustering performance is affected by similarity mea-
surement which is easily corrupted by noises. Similarity refinement is in demand
to attain accurate similarity. Besides, most of them tend to utilize a single met-
ric to attain similarity matrix for each view. A single metric does not fit various
feature type well and lacks generalization capability. To overcome these limita-
tion, we propose an effective and adaptive multi-metric refined similarity fusion
method. Firstly, we generate multiple similarity graphs with multiple metrics
and exploit a novel symmetric conditional probability to attain refined similar-
ity. Then, we fuse refined similarity graphs of all views under different metric
into an informative unified similarity graph. Meanwhile, we directly learn the
clustering membership. Our main contributions are as follows:

1 We exploit a novel similarity refinement and multiple metrics to improve the
accuracy and generalization of measuring similarity.

2 We propose an effective and adaptive multi-metric similarity fusion method
where graph fusion and clustering promote mutually.

3 Extensive experimental results demonstrate that our method outperforms
several state-of-the-art multi-view clustering methods.

The remainder of the paper is organized as follows. Section 2 briefly reviews
related works for multi-view clustering. Section 3 introduces the proposed model.
Section 4 demonstrates the extensive experimental results. Section 5 presents the
conclusion of this paper.

2 Related Work

Our method falls into multi-view graph-based clustering. The multi-view graph-
based clustering method fuses multiple graphs constructed for each view into a
unified graph. For example, similarity network fusion (SNF) [13] fuses the simi-
larity networks, obtained from each of their respective data types, by propagating
similarity through the common neighborhood. Neighborhood-based multi-omics
clustering (NEMO) [11] fuses multiple graphs to a unified graph by average strat-
egy, where relative similarity is defined based on the neighborhood. Multiview
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consensus graph clustering (MCGC) [22] learns a consensus graph by minimizing
disagreement between different views and constraining the rank of the Laplacian
matrix. Auto-weighted multiple graph learning (AMGL) [7] and graph-based
system for multi-view clustering (GBS) [16] firstly learn the similarity matrix of
each view from data and then performs graph fusion and data clustering. These
methods divide the construction of graph and graph fusion into two indepen-
dent processes without adaptive interaction. In contrast, graph-based multi-view
clustering (GMC) [15] weights each view automatically, learns the graph of each
view and the fusion graph jointly, and produces the final clusters directly after
fusion.

In addition to multi-view graph-based clustering, there are three categories
of multi-view clustering methods: 1) Co-training style clustering; 2) multi-kernel
clustering; 3) and multi-view subspace clustering.

Co-training style clustering applies a co-training strategy to multi-view data.
Co-regularized multiview spectral clustering [3] (Co-reg) utilizes the eigenvectors
from one view to guide the graph constructions in the other views. Consequently,
the clusterings of multiple views tend towards consensus. Co-training for multi-
view spectral clustering [2] (Co-training) co-regularizes the clustering hypotheses
to make the clusterings in different views agree with each other. The multi-kernel
clustering method predefines a group of candidate kernels and then combines or
picks these kernels. For example, cancer integration via multi-kernel learning
(CIMLR) [10] learns a similarity matrix with block structure by combining mul-
tiple Gaussian kernels of each view, corresponding to the different and comple-
mentary representations of the data. The multi-view subspace clustering is based
on self-representation where each data point can be expressed by a linear com-
bination of the data points themselves [19]. The self-representation matrix with
different regularizations is constructed from samples and then used to construct
the similarity matrix. For example, Low-rank representation (LRR) [5] subspace
clustering and sparse subspace clustering (SSC) [1] pursue a sparse and low rank
representation, respectively. Low-rank and sparse subspace clustering (LRSSC)
[17] takes the advantages of LRR and SSC in preserving the self-expressiveness
property and graph connectivity at the same time.

3 Methodology

3.1 Construction of Multiple Similarity Graphs via Different Metric

Given a multi-view dataset X = {X® X@ X ™)} of n, views, X =
{X](z)T e rRrY j»vzl consists N samples with p(?) features in the i-th view. For
each view, we use different metrics to measure the sample similarity, yielding
multiple similarity graphs. Let W(")(@) denote the similarity matrix in the v-th

view measured by ¢g-th metric, with each entry defined by

WO (i, 5) = d(x", X") (1)
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3.2 Measurement of Sample Similarity via Symmetric Conditional
Probability

Based on original similarity W (*)(9) we propose a novel similarity refinement to
retain only the highly proximal samples while filtering out the weak ones. Such
operation is valuable to elucidate the sample-wised similarity by diminishing the
distance deterioration caused by noises or outliers [8,13]. The similarity between
the sample x; and sample x; is the conditional probability P(j|i) that z; would
pick z; as its top k% neighbor if neighbors are picked in proportion to their
probability density under a Gaussian distribution centered at x;. Conversely, one
can also compute the similarity between x; and x; via its conditional probability
P(i]j). Then the overall refined similarity between x; and z; is calculated by
their mean conditional probabilities

. P(ilg) + P(j]¢
M{(i,j) = M (2)
where
P(jli) = S W) 1(j rank to top k%)
and
P(ilj) = W) - 1(4 rank to top k%).

B ZTopk% W(]v k)

Here, 1 is the indicator function.

3.3 Fusion of Multiple Similarity Graphs Through Directly
Learning Cluster Membership

We propose a multi-metric similarity graph fusion theme as follow:

Juin 1§ =33 w@OMOO|2 1 NS - HET| 3)
D v=1¢g=1

st. Hec {0,1},H1=1,w'1l=1,w >0,

where w( (@ and M®(@ are the weight and refined similarity matrix of the
v-th view data under the g-th metric, respectively. H € RY*® is the cluster
assignment matrix, where C' is the number of clusters. A is the tuning parame-
ter. The first term is used to adaptively fuse multiple refined similarity matrices
from different metric and view to a unified one S. Our method can pick up or
integrate different metrics and consider the differences of view through automat-
ically learned weights. The second term is used to directly learn the clustering
membership by minimizing the difference between the fused similarity matrix S
and the pairwise similarity matrix of clustering result H. Furthermore, S will
be constrained as a low-rank block diagonal matrix because, in an ideal case,
HHT is strictly block diagonal matrix.
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The first constraint in problem (3) can be relaxed from binary values to
real values with U = ﬁ and the second constraint is relaxed to U'U = I..

Therefore, the problem (3) is relaxed to the following optimization problem:

SH{lJlI:UHS - Zzw(v)(q)M(v)(q)”% LIS - UUT| "
T v=1g¢g=1

st. U'U=I,w'1=1w>0.

Once we have the clustering assignment matrix U, we apply k-means to cluster
the samples into different groups. Since k-means is sensitive to the initialization,
a discretization method [12] has been used to remedy this drawback.

3.4 Optimization Algorithm

We optimize three variables in Eq. (4) by alternating optimization strategy.
In the first step, by fixing both S and w, (4) is reduced to

min A|lS UU'|% st.U'U=1I. (5)

The problem (5) is minimized when U is an orthogonal basis of the eigenspace
associated with the C largest eigenvalues of S.
In the second step, by fixing both U and w, (4) is reduced to

min S =3 > w@MO@|G 4+ S - UUT||E. (6)
v=1g¢g=1

Setting the partial derivative of Eq. (6) with respect to S to zero. S is updated

as follows: n
S © w®@MOW@ L A\UUT

S = v=1 q=
14+ A
In the third step, by fixing both U and S, (4) is reduced to

(7)

min S =Y Y wOMO@|L st w'l=1,w>0. (8)

v=1g¢g=1
We vectorize each matrix M ()@ into m (@ ie.,
W@ — [mgv)(q);mév)(q); .“mgu)(q)} e RVNx1 (9)

where mgv)(q) denotes the i-th column of M(")(9). Therefore, the similarities

of from all views and measure functions can be gathered into matrix M =
[ WM W), gp@)(@] ¢ RNNxmne and § denotes the vector of S. The
problem (8) becomes:

min||§ — Mw|% st.w'l=1w>0, (10)
w
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and then transformed into:

minw' Aw — wa st.w'l=1,w >0, (11)

where A = MTM and f= 2M7s. It is a constrained least square problem and
can be efficiently solved by standard quadratic programming methods.

Algorithm 1. The algorithm for solving the proposed method
Require: X = {X "} {{M(“)(‘”}Z;l}gil, A, the number of clusters C
: Initialize: w = -1, § =Y""v, Zil wW DM@ U =0

nyng’

while not converge do
Fix S, w, and update U by solving (5)
Fix U, w, and update S by solving (7)
Fix U, S, and update w by solving (11)

end while

: Apply k-means clustering to U

Ensure: The clustering result

NPT

The above three steps are iteratively solved and updated until convergence.
The convergence condition is that relative change in consecutive rounds is lower
than a threshold (”Stﬁ’ét_ﬂstﬂ + HUt‘Tll]J‘U‘“) < 1072. The complete algorithm is
summarized in Algorithm 1. Given N is the number of samples, P is the total
number of the feature of all views and n, is the number of metric functions.
Initializing all similarity matrices M ()@ requires O(N?. P ng). Updating
U needs to calculate the eigenvectors of S. It takes O(C - N?). Updating S
takes O(N?). The update of weights w takes O((n, - ny)?). K-means clustering
takes O(t - C? - N), where t is the number of iterations in k-means. The total
computational complexity of our method is O(N? - P -n,+T - (C- N* + N? +
(ng-ny)?) +t-C?. N), where T is number of iterations.

4 Experiments

4.1 Experiment Setting

We use eight benchmark datasets to evaluate the performance of our method.
These datasets are as follows: Hdigit!, 100leaves?, Caltech 1013, Pascals [18],
NGs*, BBCSport®, MSRCV1 [20] and 3-sources®. The statistics of these data
sets are summarized in Table 1.

! https://cs.nyu.edu/roweis/data.html.

2 https://archive.ics.uci.edu/ml/datasets/One-hundred+plant-+species-+leaves+
data+-set.

3 http://www.vision.caltech.edu/archive.html.

* http://lig-membres.imag.fr/grimal /data.html.

5 http://mlg.ucd.ie/datasets/bbc.html.

5 http://mlg.ucd.ie/datasets/3sources.html.
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http://mlg.ucd.ie/datasets/bbc.html
http://mlg.ucd.ie/datasets/3sources.html
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To evaluate the performance of the proposed method, we compare it with
thirteen state-of-the-art methods, including five single-view clustering methods
and eight multi-view clustering methods. SP [6], SSC [1], LRR [5], LRSSC [17]
and SIMLR [14] are the single view methods. These method are performed with
the best single view. Also, we compare our method with eight state-of-the-art
multi-view clustering methods that have been mentioned at the related works of
Sect. 2: Co-reg [3], Co-training [2], AMGL [7], NEMO [11], GMC [15], MCGC
[22], SNF [13] and CIMLR [10]. The comparative methods are searched gridwise
to achieve the best performances. For our method, we use four different met-
rics, including Gaussian similarity, Pearson correlation, Spearman correlation
and Cosine similarity. Parameters k and X are tuned from the set {1, 3, 5, 7, 9}
and {1, 5, 10}, respectively. For evaluation metrics, we utilize the normalized
mutual information (NMI), accuracy (ACC), and adjusted rand index (ARI) to
comprehensively evaluate the clustering performance. For all of them, a higher
value indicates better clustering performance. Throughout the experiments, we
perform ten times for all methods. The means and standard deviations are com-
puted and recorded for performance comparison. The Gaussian kernel is used
to compute the sample similarity when needed. The standard deviation of the
Gaussian kernel is set to be equal to the median of the pair-wise Euclidean
distances between the samples.

4.2 Experiment Results

We report the performances of all methods on eight benchmark datasets in
Tables 2 and 3. The best result is in bold to highlight. Overall, our method is
superior to the state-of-art multi-view methods in most of datasets. Although
our method presents a similar performance as GMC or CIMLR in Hdigit and
100leaves datasets, our method achieves the best performance in another six
datasets. Especially, our method achieves significant improvements of approxi-
mately 5%, 9%, and 13% over the most competitive method GMC in Caltech
101, Pascals, and 3-sources, in terms of NMI, respectively. NEMO is similar to

Table 1. Statistical information on the datasets

Dataset # of instances | # of views | # of classes | Feature type

Hdigit 2000 2 10 Continuous, sparse
100leaves 1600 100 Continuous, dense
Caltech 101 | 1474 7 Continuous, dense
Pascals 1000 20 Continuous, sparse
NGs 500 Continuous, sparse

BBCSport 282
MSRCV1 210

3-sources 169

Discrete, sparse

Wl Wl Wl w N oYW

5
5
7 Continuous, dense
6

Continuous, sparse
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Table 2. Clustering performances on benchmark datasets

Dataset View Method NMI ACC ARI
Hdigit Single SP 0.480 (0.006) | 0.555(0.007) 0.360 (0.008)
SSC 0.481 (0.000) | 0.444 (0.000) | 0.300 (0.000)
LRR 0.037 (0.003) | 0.104 (0.001) | 0.000 (0.000)
LRSSC 0.376 (0.001) | 0.444 (0.004) |0.251 (0.002)
SIMLR 0.740 (0.017) | 0.727 (0.025) | 0.636 (0.026)
Multiple | Co-reg 0.844 (0.001) | 0.844 (0.001) | 0.692(0.002)
Co-training | 0.820 (0.006) | 0.899 (0.011) | 0.806 (0.010)
NEMO 0.655 (0.000) | 0.561 (0.000) | 0.477 (0.000)
GMC 0.985(0.000) | 0.994(0.000) | 0.987 (0.000)
MCGC 0.619 (0.000) | 0.569 (0.000) | 0.396 (0.000)
SNF 0.979 (0.000) | 0.992 (0.000) | 0.981 (0.000)
CIMLR 0.816 (0.009) | 0.693 (0.020) | 0.655 (0.027)
AMGL 0.950 (0.042) | 0.945 (0.093) | 0.925 (0.106)
Ours 0.982 (0.000) | 0.993 (0.000) | 0.984 (0.000)
100leaves Single SpP 0.775 (0.004) | 0.561(0.013) 0.441 (0.009)
ssc 0.742 (0.000) | 0.509 (0.000) | 0.374 (0.000)
LRR 0.668 (0.003) | 0.405 (0.011) | 0.263 (0.007)
LRSSC 0.515 (0.003) | 0.213 (0.003) | 0.077 (0.004)
SIMLR. 0.779 (0.018) | 0.541 (0.036) | 0.212 (0.057)
Multiple | Co-reg 0.913(0.004) | 0.783(0.016) | 0.724(0.015)
Co-training | 0.920 (0.003) | 0.786 (0.007) | 0.741 (0.008)
NEMO 0.748 (0.001) | 0.471 (0.001) | 0.348 (0.002)
GMC 0.930 (0.000) | 0.824 (0.000) | 0.497 (0.000)
MCGC 0.526 (0.013) | 0.262 (0.012) | 0.015 (0.002)
SNF 0.969 (0.002) | 0.935 (0.003) | 0.909 (0.004)
CIMLR 0.993(0.002) | 0.977(0.009) | 0.968 (0.014)
AMGL 0.901 (0.019) | 0.749 (0.046) |0.446 (0.131)
Ours 0.972 (0.000) | 0.913 (0.000) | 0.894 (0.000)
Caltech 101 | Single | SP 0.505 (0.001) | 0.402 (0.001) | 0.300 (0.000)
SsC 0.428 (0.000) | 0.560 (0.000) | 0.258 (0.000)
LRR 0.100 (0.003) | 0.339 (0.0143) | 0.083 (0.010)
LRSSC 0.541 (0.001) | 0.595 (0.0040) | 0.401 (0.004)
SIMLR 0.631 (0.000) |0.417 (0.000) |0.365 (0.000)
Multiple | Co-reg 0.487(0.003) 0.394(0.002) 0.281(0.002)
Co-training | 0.512 (0.007) | 0.422 (0.010) | 0.322 (0.010)
NEMO 0.509 (0.000) | 0.523 (0.000) | 0.342 (0.000)
GMC 0.662 (0.000) | 0.692 (0.000) | 0.594 (0.000)
MCGC 0.509 (0.000) | 0.571 (0.000) | 0.399 (0.000)
SNF 0.637 (0.000) | 0.647 (0.000) | 0.504 (0.000)
CIMLR 0.613 (0.000) | 0.495 (0.000) | 0.405 (0.000)
AMGL 0.557 (0.033) | 0.637 (0.047) | 0.414 (0.038)
Ours 0.712(0.000) | 0.701(0.000) | 0.609 (0.000)
Pascals Single | SP 0.627(0.007) | 0.598(0.014) | 0.444(0.011)
ssc 0.512 (0.000) | 0.462 (0.000) | 0.298 (0.000)
LRR 0.470 (0.010) | 0.409 (0.016) | 0.264 (0.012)
LRSSC 0.474 (0.006) | 0.397 (0.011) | 0.219 (0.012)
SIMLR 0.557 (0.013) | 0.522 (0.026) | 0.331 (0.027)
Multiple | Co-reg 0.650 (0.006) | 0.620 (0.014) | 0.475(0.007)
Co-training | 0.641 (0.002) | 0.609 (0.007) |0.463 (0.004)
NEMO 0.609 (0.000) | 0.511 (0.000) | 0.344 (0.000)
GMC 0.578 (0.000) | 0.464 (0.000) | 0.204 (0.000)
MCGC 0.500 (0.000) | 0.398 (0.000) | 0.177 (0.000)
SNF 0.635 (0.002) | 0.591 (0.007) | 0.441 (0.006)
CIMLR 0.571 (0.010) | 0.516 (0.030) | 0.366 (0.023)
AMGL 0.565 (0.011) | 0.467 (0.019) | 0.258 (0.030)
Ours 0.669(0.000) | 0.638(0.000) | 0.495 (0.000)




202 W. Rong et al.

Table 3. Clustering performances on benchmark datasets

Dataset View Method NMI ACC ARI
NGs Single | SP 0.048 (0.010) | 0.230(0.034) | 0.007 (0.009)
ssc 0.130 (0.000) | 0.350 (0.000) | 0.056 (0.000)
LRR 0.049 (0.011) | 0.220 (0.016) | 0.001 (0.003)
LRSSC 0.704 (0.000) | 0.880 (0.000) | 0.728 (0.000)
SIMLR 0.477 (0.000) | 0.622 (0.000) | 0.427 (0.000)
Multiple | Co-reg 0.091 (0.01) 0.252 (0.009) | 0.008 (0.003)
Co-training | 0.442 (0.014) | 0.514 (0.025) | 0.237 (0.012)
NEMO 0.131 (0.000) | 0.358 (0.000) | 0.095 (0.000)
GMC 0.939 (0.000) | 0.982 (0.000) | 0.955 (0.000)
MCGC 0.064 (0.000) | 0.220 (0.000) | 0.001 (0.000)
SNF 0.563 (0.000) | 0.506 (0.000) | 0.296 (0.000)
CIMLR 0.119 (0.000) | 0.354 (0.000) | 0.076 (0.000)
AMGL 0.417 (0.017) | 0.526 (0.037) | 0.251 (0.015)
Ours 0.960(0.000) | 0.988(0.000) | 0.970 (0.000)
BBCSport | Single | SP 0.237(0.006) | 0.451(0.016) | 0.141(0.010)
ssc 0.150 (0.000) | 0.376 (0.000) | 0.054 (0.000)
LRR 0.048 (0.004) | 0.351 (0.002) | 0.009 (0.006)
LRSSC 0.409 (0.002) | 0.621 (0.000) | 0.353 (0.001)
SIMLR 0.588 (0.000) | 0.794 (0.000) | 0.629 (0.000)
Multiple | Co-reg 0.288 (0.012) | 0.520 (0.017) | 0.216 (0.024)
Co-training | 0.424 (0.012) | 0.577 (0.016) | 0.336 (0.014)
NEMO 0.060 (0.000) | 0.408 (0.000) | 0.039 (0.000)
GMC 0.801 (0.000) | 0.886 (0.000) | 0.790 (0.000)
MCGC 0.093 (0.000) | 0.316 (0.000) | —0.018 (0.000)
SNF 0.157 (0.000) | 0.390 (0.000) | 0.018 (0.000)
CIMLR 0.448 (0.000) | 0.716 (0.000) | 0.499 (0.000)
AMGL 0.133 (0.037) | 0.376 (0.025) | 0.020 (0.012)
Ours 0.812(0.000) | 0.887(0.000) | 0.826 (0.000)
MSRCV1 | Single |SP 0.544 (0.015) | 0.700 (0.015) | 0.460 (0.021)
ssc 0.580 (0.000) | 0.695 (0.000) | 0.495 (0.000)
LRR 0.506 (0.015) | 0.569 (0.011) | 0.403 (0.012)
LRSSC 0.599 (0.010) | 0.719 (0.007) | 0.521 (0.012)
SIMLR 0.703 (0.021) | 0.794 (0.044) | 0.614 (0.028)
Multiple | Co-reg 0.722 (0.010) | 0.837(0.007) | 0.661(0.013)
Co-training | 0.681 (0.007) | 0.764 (0.008) | 0.606 (0.008)
NEMO 0.632 (0.000) | 0.676 (0.000) | 0.520 (0.000)
GMC 0.771 (0.000) | 0.748 (0.000) | 0.640 (0.000)
MCGC 0.634 (0.002) | 0.668 (0.002) | 0.446 (0.004)
SNF 0.718 (0.000) | 0.757 (0.000) | 0.629 (0.000)
CIMLR 0.733 (0.010) | 0.706 (0.018) | 0.580 (0.006)
AMGL 0.674 (0.038) | 0.684 (0.088) | 0.512(0.092)
Ours 0.793(0.000) | 0.819 (0.000) | 0.716(0.000)
3-sources | Single SP 0.473(0.036) 0.496(0.015) 0.240 (0.036)
ssc 0.174 (0.000) | 0.408 (0.000) | 0.097 (0.000)
LRR 0.124 (0.006) | 0.381 (0.003) | 0.038 (0.005)
LRSSC 0.482 (0.015) | 0.608 (0.021) | 0.399 (0.017)
SIMLR 0.462 (0.030) | 0.466 (0.011) | 0.298 (0.025)
Multiple | Co-reg 0.528 (0.014) | 0.556 (0.021) | 0.315 (0.009)
Co-training | 0.569 (0.009) | 0.576 (0.014) | 0.388 (0.018)
NEMO 0.210 (0.000) | 0.325 (0.000) | 0.054 (0.000)
GMC 0.627 (0.000) | 0.692 (0.000) | 0.443 (0.000)
MCGC 0.173 (0.000) | 0.367 (0.000) | —0.012 (0.000)
SNF 0.418 (0.000) | 0.497 (0.000) | 0.175 (0.000)
CIMLR 0.468 (0.000) | 0.521 (0.000) | 0.284 (0.000)
AMGL 0.121 (0.021) | 0.336 (0.018) | —0.019 (0.013)
Ours 0.770(0.000) | 0.793(0.000) | 0.665 (0.000)
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our method but it only uses Gaussian kernel to constructs similarity. With the
power of multiple metrics, our method performs better than NEMO with a wide
margin. For example, it achieves average improvements of approximately 32%,
22%, 82%, 75%, and 56% over NEMO in Hdigit, 100leaves, NGs, BBCSport and
3-sources, respectively. The performance of our method using multiple views of
features is better than that of only considering one single view of feature, indi-
cating that it can effectively fuse useful information of multiple views to improve
the clustering performance, as shown in Table 6.

The superior performances of our method lie in three aspects. Firstly, our
method can automatically learn the weights of similarity graphs constructed by
multiple metrics. Hence it is fit to the data of a variety of features, such as dense
and sparse features. To verify the effectiveness of the multiple metrics, we com-
pare the clustering performances between our methods using single metric and
multiple metrics. Our method with single metric only uses the Gaussian simi-
larity. As shown in Table 4, our method using multiple metrics outperforms that
using a single metric. Especially, owing to complementary information provided
by other metrics, our method achieves overwhelming performance in datasets
with sparse features, such as BBCSport, 3-sources, and NGs. Secondly, the noise
of the similarity graph, caused by weak similarities, is substantially reduced
by our proposed similarity refinement through symmetric conditional probabil-
ity. We compare the clustering performances between our methods with refined
similarity and no-refined similarity to validate the necessity of the proposed sim-
ilarity measurement, as shown in Table 5. From the results, our method achieves
better clustering performance due to our proposed similarity refinement. After
utilizing similarity refinement, the within-class similarity is strengthened and
between-class noise is substantially reduced (see Suppl.Table 1, available at
https://github.com/scutbioinformatic/MMRSGF). Thirdly, our method directly
learns the clustering membership and enforces the final similarity matrix to be a
block diagonal matrix simultaneously. It is clear that the final similarity matrix
of our method reveals a clear diagonal block structure, which contributes to
enhancing the clustering performance.

On all datasets, the algorithm reaches the convergence status within 5 itera-
tions (see Suppl.Fig. 1). In our method, there are two free parameters, i.e., k, A

Table 4. Clustering performances comparison between our method using single metric
and multiple metrics

Dataset Hdigit 100leaves Caltech 101 Pascals
Single metric 0.971 (0.000) | 0.961 (0.001) |0.646 (0.000) | 0.637 (0.000)
Multiple metrics | 0.982(0.000) | 0.972(0.000) | 0.712(0.000) | 0.669(0.001)
Dataset NGs BBCSport MSRCV1 3-sources
Single metric 0.367 (0.000) | 0.484 (0.000) |0.706 (0.000) | 0.403 (0.000)
Multiple metrics | 0.960(0.000) | 0.812(0.000)  0.783(0.000) | 0.770(0.000)
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similarity of our method

Table 6. Clustering performances comparison between our method using single view

Dataset Hdigit 100leaves Caltech 101 Pascals
No-refined similarity | 0.481 (0.000) |0.940 (0.000) |0.316 (0.000) | 0.575 (0.000)
Refined similarity 0.982(0.000) | 0.972(0.001) | 0.712(0.000) | 0.669(0.000)
Dataset NGs BBCSport MSRCV1 3-sources

No-refined similarity

Refined similarity

0.891 (0.000)

0.960(0.000)

0.700 (0.000)

0.812(0.000)

0.486 (0.000)

0.793(0.000)

0.610 (0.000)
0.770(0.000)

and multiple views

Dataset

Hdigit

100leaves

Caltech 101

Pascals

Single view

Multiple views

0.622 (0.000)
0.982(0.000)

0.853 (0.000)
0.972(0.001)

0.620 (0.000)
0.712(0.000)

0.647 (0.000)
0.669(0.000)

Dataset

NGs

BBCSport

MSRCV1

3-sources

Single view

Multiple views

0.612 (0.000)
0.960(0.000)

0.640 (0.000)
0.812(0.000)

0.648 (0.000)
0.793(0.000)

0.715 (0.000)
0.770(0.000)

in Eq.(3). Suppl.Fig. 2 and Suppl.Fig. 3 demonstrate the sensitivity of the
parameters k and A on eight datasets, respectively. Our method is robust with
respect to the parameters A and k.

5 Conclusions

We propose an effective and adaptive multi-metric refined similarity graph fusion
method for multi-view clustering. Our main novelty is making use of different
metric to construct similarity graphs, exploiting a novel similarity refinement to
preserve the reliable important similarity information, and then fusing refined
similarity graphs from all views and metrics to a unified one. The proposed
method fuses useful information of multiple view and directly learns the clus-
ter membership to improve the clustering performance. In addition, it has two
free but insensitive parameter, which greatly relieves the burden of parameter
tuning. The experimental results on eight datasets demonstrate the effectiveness
and superiority of our proposed model, compared with thirteen state-of-the-art
methods.
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Abstract. For deep neural networks (DNNs), a high model accuracy
is usually the main focus. However, millions of model parameters com-
monly lead to high space overheads, especially parameter redundancy. By
maintaining network weights with less bit-widths, network quantization
has been used to compress DNNs for lower space costs. However, exist-
ing quantization methods cannot well optimally balance the model size
and the accuracy, thus they suffer from the accuracy loss more or less.
Besides, though few of existing quantization techniques can adaptively
determine layers quantization bit-widths, they either give little consider-
ation on the relations of different DNN layers, or are designed for special
hardware environment that are not universal in broad computer fields.
To overcome these issues, we propose an adaptive Hierarchical Cluster-
ing based Quantization (aHCQ) framework. The aHCQ can find a largely
compressed model from the quantization of each layer and take only little
loss on the model accuracy. It is shown from the experiments that the
aHCQ can achieve 11.4x and 8.2x model compression rates with only
around 0.5% drop of the model accuracy.

Keywords: Deep neural network - Hierarchical clustering + Network
quantization - Compression rate

1 Introduction

Nowadays deep neural networks (DNNs) are ubiquitous in many learning tasks,
and particularly popular for image classification, where large images usually lead
to large NN models. Due to millions of network parameters, DNNs unfortunately
suffer from high model storage sizes.

Model quantization has been widely used to maintain network weights with
shorter bit-widths [1,19]. One of the commonly used quantization approaches is
weights rounding. The main idea of the approach is to round each weight into
low bit-width. The most straightforward weights rounding in [2, 3] simply rounds
each float weight to 16 bits and 8 bits respectively. Ternary Neural Network
[11] on the other hand represents each weight by either +1, 0 or —1, and the
Binarized Neural Network [12] represents each weight by +1 or —1. The QIL
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framework in [6] adjusts the [min, max] weights range for weights rounding. Yang
et al. [2] propose to round the weights into low bit-widths by sigmoid functions.
These weight rounding approaches can lead to high compression rate and shorten
running time. However, they inevitably damage the model structure through the
simplification of the weights of models, leading to the drop of accuracy.

Compared to weights rounding, weights sharing methods can better keep the
weights information so as to better preserve the model accuracy. The main idea of
the weights sharing is to group weights into a few clusters so that each weight can
be represented by its cluster index with lower bit-width. In the weights sharing,
two data structures are obtained, which are the code book for storing the cluster
indexes to which the weights belong, and the centroids for storing the mean of
each cluster. The idea of weights sharing was first introduced by Song, et al. in
[5], and was extended by plenty of works [4,9]. Basically, previous works used
k-means clustering to share weights (namely k-means weights sharing), where
they simply picked the initial centroids that evenly divide the range [min, maz]
of original weights. The initialization issue and the local optimal problem lead
to the loss of accuracy also.

Instead of quantizing layers by a fixed bit-width, an adaptive quantization
framework that employs various bit-widths to different layers can adaptively
keep the model accuracy with a relatively small model size. The quantization
bit-width margin for each layer is mathematically determined by loss functions
all at once in [10]. However, it is pointed out in [14] that if one layer is quan-
tized, the other layers weights’ optimal distribution would be changed, as well as
their quantization bit-widths margins. The recent works [7,8] exploit reinforce-
ment learning such as DDPG and DQN to learn an optimal quantization bit-
width for each DNN’s layer. However, these frameworks are designed for special
hardware environments (e.g., FPGA) and heuristic metrics from weights (i.e.,
weights input/output channels number, weights change after high bit-widths
quantization) to offer meaningful rewards, which are not universal quantization
algorithms.

Nevertheless, all these quantization works suffer from the following issues.

Issue 1: Existing quantization techniques suffer from the accuracy loss more or
less. The key point of the issue therefore is to find the optimal balance between
the model size and the accuracy loss, i.e., largely compress the model while
keeping the accuracy as high as possible.

Issue 2: Existing adaptive quantization methods cannot well determine the
optimal bit-widths for DNN layers. They either give little consideration on the
relations of different DNN layers (The change of the weights on one layer globally
affects the other layers), or are designed for special hardware environment that
are not universal in broad computer fields.

To tackle the two issues, we propose an adaptive Hierarchical Clustering based
Quantization (aHCQ) framework. For each layer in the DNN, the aHCQ adap-
tively determines the quantized bit-width by monitoring the accuracy loss of
DNN during quantization, where a hierarchical clustering quantization is per-
formed. To solve Issue 1, compared with existing quantization techniques (e.g.
k-means weights clustering), the aHCQ uses an improved weights sharing method
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to preserve the weights distribution so as to better maintain the model accuracy.
To solve Issue 2, the aHCQ quantizes a DNN layer by layer and adaptively
decides each layer’s quantization bit-width by directly monitoring the accuracy
loss of DNN during the quantization procedure, but not by heuristic metrics.

The experiments demonstrate that our proposed aHCQ framework guaran-
tees model accuracy loss no more than the given accj,ss, as well as achieves
higher accuracy with same model size compared with other quantizaton tech-
niques. Experiments show that our aHCQ can achieves 11.4x and 8.2x model
compression rates with only 0.5% cost on the model accuracy.

2 An Adaptive Hierarchical Clustering Based
Quantization (aHCQ) Framework

We introduce the adaptive Hierarchical Clustering based Quantization (aHCQ)
framework for DNNs in this section. The aHCQ intends to find a largely com-
pressed model while keeping the model accuracy as high as possible. To achieve
this goal, the aHCQ adaptively determines the quantization bit-width for each
layer by globally considering the whole model. For each layer, the quantization is
constrained by a threshold on the accuracy loss, which is determined by model
accuracy obtained from the whole model on part of the training set and the
pre-trained model accuracy. With the quantization bit-width determined, the
hierarchical clustering is employed in the weights sharing method for each layer.

We firstly introduce the weights sharing method and the hierarchical agglom-
erative clustering in the following part of the section. Then, the details of the
aHCQ framework are presented.

2.1 Weights Sharing and the Hierarchical Agglomerative Clustering

Weights sharing is a quantization technique [4,5]. In Fig. 1, we illustrate how the
weights sharing technique quantizes a 3 x 3 = 9 weight-matrix from b; = 32 bits
to 2 bits.

The weights sharing method usually consists of two steps. The first step is
the clustering quantization and the second step is the centroids re-training for
fine-tuning the weights quantization.

Step 1. Weights Clustering. This step is to cluster the weights in W into
several groups whose labels can be represented by lower bit-width integers. In
this way the original weights matrix can be quantized to a code book matrix B,
whose shape is the same as the W and elements are lower bit-width labels of the
corresponding weights, and an array of centroids O. The ith element of the O is
the centroid of the ith group. In Fig. 1, the number of groups is 4 so all labels
can be represented by a 2 bits integer. And O is composed of the centroids of the
4 groups. The clustering method in this step is usually the k-means clustering.

Step 2. Centroids Re-training. In order to fine tune the centroids O, the
centroids re-training step is performed. After the clustering quantization, the
original weight matrix W is approximated by Wy, which can be acquired by O
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Fig. 1. The weights sharing method: How to quantize a weights matrix from 32 bits
into 2 bits?

and B (restore weights in Step 2.1). To compensate the accuracy loss brought by
the quantization, the centroids O are retrained. The weights on the correspond-
ing DNN layer are updated by the W,, and the DNN is inferred on the data set
and a back-propagation approach (i.e., SGD) is exploited to find the gradients
Gw of the W,. The gradients of each group are summed up to have centroid
gradients Go (Step 2.8). Finally, with a given learning rate Ir, the operation
O'=0 —Ir x Go (Step 2.4) is performed to update the centroids.

As a classic clustering algorithm, it is natural that k-means is chosen to
cluster the weights in previous works [4,5,9]. The k-means weight sharing method
is relatively fast. However, it suffers from centroids initialization problem, which
could lead to high accuracy loss. Besides, the number of clusters (i.e., 2°) in the
k-means is set as a parameter, where the b, is not adaptively determined. Unlike
the k-means clustering, Hierarchical Agglomerative Clustering (HAC) has better
ability to discover the data structure. We denote the size of the dataset as V.
Starting from N clusters, the main idea of the HAC is to gradually merge the
closest two in all clusters at a time, until all the clusters have been merged into
a single cluster. The merge of two closest clusters is calculated by an average
linkage in this paper. In the algorithm, the merge can be stopped at any number
of clusters.

One of the advantages of the HAC compared with the k-means is that it
has no initialization problem, which may lead to local optimal. Another benefit
is that the clustering results with different number of clusters can be obtained
from one run of the HAC. The cost of the two advantages is the high time
complexity of the HAC. For a data set with N items, the time complexity of a
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usual implementation of the HAC can lead to O(N?). In terms of keeping the
advantage and overcoming the disadvantage of the HAC, we introduce the adap-
tive Hierarchical Clustering based Quantization (aHCQ) framework. In order to
reduce the time complexity of the HAC, the weights are sorted firstly and the
merge is between the neighbor clusters. Thereby, the time complexity is reduced
to O(N?). Furthermore, the bit-width (corresponds to the number of clusters)
for each layer in the DNN model is adaptively determined by considering the
relationship with other layers. The bit-width is dynamically changed according
to the accuracy change of the whole model during the quantization.

2.2 Details of the aHCQ Framework

The proposed aHCQ framework is designed based on the weights sharing method
and adaptive quantization. Taking the model weights (W) of each layer in a
network and a target accuracy loss (accoss) as inputs, the aHCQ framework
outputs a quantized weights matrix, which is represented by a code book B and
a centroid list O.

To overcome the high time complexity from the distance calculation on pairs
of clusters, the aHCQ ensures each weights cluster only needs a limited num-
ber of linkage comparisons with other clusters in each merging loop by sorting
the weights at the beginning. In this way, we can reduce the running time from
O(N3) into O(N?). Besides, the input accjyss is to help decide each layers’ quan-
tization bit-width by directly monitoring the accuracy loss in each merging loop.
The adaptively determined bit-widths therefore promise the model accuracy.

An example on how to quantize one layer in a DNN is illustrated in Fig. 2.
A 3 x 3 weights matrix W and a target accuracy loss accj,ss are the inputs.
Besides, the total number of layers in the DNN is represented by n and the
training data set for the model is denoted as Dyyqin-

The aHCQ firstly sorts the weights in W ascendingly to get a sorted weights
list W,.. At the beginning, each weight is considered as a cluster. The merge
step is then performed on pairs of clusters. Since the clusters are ordered, the
merge is conducted on their neighbors. To merge two neighbor clusters (say
—0.02 and 0.08), we make sure that the distance between such clusters must be
smaller than the one between each of such clusters (say —0.02) and its alter-
native neighbor (say —0.31), if any. That is, since both ||(—0.02) — (0.08)|]2 <
[[(=0.02) — (—0.31)||2 and [|(—0.02) — (0.08)||2 < |/(0.23) — (0.08)||> hold, we
then merge —0.02 and 0.08, but not —0.02 and —0.31. Those neighbor clusters
marked by solid arrows are merged. One unique property of this improved algo-
rithm is that these clusters, after merging, still preserve ascending order. In this
way, we do not need to re-sort clusters in the next merging loop, thus leading
to higher efficiency. The clustering results Cyy contains the centroids O and the
code book B.

The merge between pairs of clusters needs a stopping criterion. Note that
there are totally n layers, and the overall accuracy loss is accoss. As a result, the
average accuracy loss for each layer’s weights is simply set as #“le==. Therefore,
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Fig. 2. The adaptive Hierarchical Clustering Quantization (aHCQ) framework. The
quantization steps on an individual DNN layer are described.

the stopping criterion is set as the number of clusters (i.e., the bit-widths) that
leads the accuracy loss on the layer d,.. be larger than M

As for the accuracy loss on the layer §,.. that caused by the quantization,
it is obtained from the difference of the accpqse and the acceyq;, which are the
model accuracy trained from the training data set (Dirqin) and a small part of
it (D.). The D, is randomly chosen from the training data set Dypqin with a
proportion of v (10% by default).

When the stopping criterion is met (0qcc > *“2==), the clustering results O
and B are obtained. The centroids O is re-trained to compensate the accuracy
loss (see Fig. 1). Suppose there are ¢ clusters of the O list, the quantization bit-
width for the layer is [loga(c)]. As shown in Fig.2, the weights matrix W is
clustered into four clusters, where 2-bits can represent code book B.

Considering the efficiency of the aHCQ on large data sets, a pre-processing
step is added to speed up the aHCQ. The idea of the pre-processing step is
to perform a rough compression on the original weights matrix. Generally, the
bit-widths from 32 to 8 bits rarely reduce the model accuracy. Therefore, the
pre-processing is to run the aHCQ once with a hard bit-widths setting. Given
the target 8-bit-widths, the number of clusters is then 28 = 256, which is set as
the stopping criterion.
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Table 1. The settings and parameters of the networks including the number of layers,
the batch size, the momentum, the learning rate and the model size.

Network Layers number n | Batch size | Momentum | Learning rate | Model size
LeNet [16] 5 128 0.9 0.05 243 KB
AlexNet [17] 8 128 0.9 0.05 217 MB
ResNet18 [18] | 18 64 0.9 0.1 42.6 MB
ResNet34 [18] | 34 64 0.9 0.1 81.2 MB

3 Experiments

3.1 Experiments Settings

The experiments are conducted on two datasets which are the CIFAR-10 and
CIFAR-100 [15]. The two datasets both consist of 60,000 32 x 32 color images
with 50,000 training images and 10,000 test images. The CIFAR-10 has 10 classes
while the CIFAR-100 has 100 classes.

Four DNNs have been chosen to be quantized in the experiments, which are
the LeNet [16], AlexNet [17], ResNet18 [18] and ResNet34 [18]. LeNet is a classic
shallow neural network containing a small number of weights. AlexNet contains
five convolutional (Conv) layers and three fully connected (FC) layers, where
FC layers contain quite a large number of weights. Compared with the AlexNet,
ResNet18/34 contains more Conv layers but less FC layers, thus we can deepen
the depths of the models as well as reduce the model sizes. Except for the input
and output layers, ResNet18/34 consist of several blocks which contain multiple
sequential convolutional layers. Commonly, the quantization operation of DNNs
do not include the first convolutional layer and the last fully connected layer
[11]. The settings of the networks are shown in Table 1.

Besides, we choose top-1 and top-5 accuracy as evaluation metrics. Top-
k accuracy refers to the accuracy rate at which the top k& ranked categories
include the actual result, and we use accuracy to represent top-1 accuracy for
simplification. In Sect. 2.2, v of the training data set are randomly chosen as the
evaluation data set to help monitor the accuracy loss, which is set as 10% in the
experiments. Because of the length of the article, this paper omits the compar-
ative experiments with v as 5%, 10% and 20% respectively. The experimental
results show that the aHCQ can attain highest model compression rate under
the same accyyss settings on CIFAR-10 and 4 models in Table 1.

The experiments are conducted on the hardware with Ubuntu 16.04 LTS(x64)
as the operating system, Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz, 32 GB
memory and a 11 GB GeForce GTX 1080 Ti graphics card.

3.2 Comparison on the aHCQ and Other Weights Sharing

In this section, we compare the aHCQ with the k-means and HAC weights
sharing. For a fair comparison, the quantization bit-width of the aHCQ has been
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Fig. 3. Comparison of accuracy change during quantization and time consumption
between our aHCQ, HAC and k-means weights sharing on CIFAR-10. Here ResNet18
Block i refers to first convolutional layer of ith block.

fixed as the same as that in the k-means and the HAC. We choose four layers
of the AlexNet and the ResNet18, and we set the quantization bit-width b; as 4
and 2 bits respectively. We choose the 2nd, 3rd, 4th and 5th convolutional layers
in AlexNet as well as the first convolutional layers of four blocks in ResNet18
as target layers, on the dataset CIFAR-10. The model accuracy and the time
consumption of the methods on different models are compared.

As shown in Fig. 3, the aHCQ has comparable performance with the HAC
weights sharing on model accuracy, both of which are better than the k-means
weights sharing. It further verifies that the hierarchical clustering can better
discover the weights structure than the k-means. In general, the accuracy loss of
2-bits quantization is higher than that of 4-bits. Therefore, the bit-width has to
be well determined for controlling the accuracy loss of the whole model.

Time consumption here refers to the running time on the weights clustering
step (step 1 in Fig.1) in the weights sharing method. The running time of the
aHCQ is much less than the HAC with the improvements performed, e.g., the
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Table 2. Experiments on the pre-processing step of the aHCQ on four DNNs, where
the bit-width for each layer is 8. R refers to the results of the original model and @
refers to that of quantized model. The accuracy and compression rate are compared.

Dataset Network | Top-1 acc (R/Q) (%) | Top-5 acc (R/Q) (%) | Compression rate
CIFAR-10 | LeNet 65.92% / 66.96% -/- x3.5

AlexNet | 73.67% / 73.68% -/- x3.8

ResNet18 | 92.60% / 92.63% -/- x3.9

ResNet34 | 93.01% / 93.02% /- 3.9
CIFAR-100 | AlexNet | 56.52% / 56.56% 79.07% / 80.12% x3.8

ResNet18 | 74.23% / 74.26% 92.13% / 92.22% x3.9

ResNet34 | 75.62% / 75.48% 92.41% / 92.37% 3.9

sorting procedure. Theoretically, the time complexity of the k-means is O(N),
which is the most efficient among the three methods. However, the consumption
time at this stage is very trivial compared to the quantization on the whole
model. The running time of the k-means on the ResNet18 into 4-bits is larger
than that into 2-bits. The higher bit-width indicates larger number of clusters
and the time complexity of the k-means is proportional to the number of clusters.

3.3 Results for Preprocessing Step of aHCQ

In the aHCQ framework, a pre-processing step has been introduced to enhance
the efficiency. The pre-processing step is to hardly compress each layer from
32-bits into 8-bits. We show that the pre-processing step brings little effect on
the accuracy from Table 2. The experiments are performed on the four networks
trained on the CIFAR-10 and CIFAR-100. The top-1 accuracy and top-5 accu-
racy on the original models (R) and quantized models (@) are compared. Basi-
cally, top-5 accuracy is not commonly used to measure the accuracy of CIFAR-
10. As a result, the top-5 accuracy of four models is omitted on CIFAR-10 in
this table. It is shown that there is little accuracy loss of the quantized model.
The accuracy even increases because the quantization has reduced the redun-
dancies among the model. Therefore, with a 3.5-3.9 compression rate achieved,
the pre-processing step brings little on the accuracy loss.

3.4 Results for Adaptability of aHCQ

As a parameter in the aHCQ), the accyyss is tested in the experiment, where the
accless 18 set in the range of [0.0%, 1.8%)] with 0.2% as an interval. The experi-
ment is performed on the ResNet18/34 on data CIFAR-10 and CIFAR-100. The
actual accuracy loss is calculated from the accuracy difference of the quantized
model and the original model. For each setting of the accj,ss, a compression
rate is obtained after the quantization. It is shown from Fig.4 that the aHCQ
guarantees the actual accuracy loss is always less than the accj,ss while high
compression rates can be achieved. It also shows that the aHCQ can adaptively
quantize the networks.
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Fig. 4. The experiment on the setting of accioss. The compression rates and the actual
accuracy loss of the DNNs after the aHCQ quantization are obtained at each setting
of the accioss.

3.5 Results for aHCQ Compared with Benchmarks

We compare the aHCQ with the state-of-art DNN quantization methods in
the experiment, where the Resnet18/34 are selected on dataset CIFAR-10
and CIFAR-100. The existing quantizatin methods can be categorized as non-
adaptive and adaptive. For non-adaptive methods, the bit-width of each layer are
the same. Here the non-adaptive methods include the SLQ/MLQ [9] (SLQ/MLQ-
1 means quantizing DNNs with ¢ bit-width by improved k-means weights shar-
ing), TWN [11] (rounding DNNs weights into 2 bits), QIL [6] (adjusting quan-
tization intervals to improve the TWN) and Deep Compression [4] (DC, which
quantizes convolutional layers into 8 bits and fully connected layers into 5 bits).
For adaptive quantization methods, the Adaptive Quantization framework (AQ)
[10] is compared. The AQ uses the loss function gradients to iteratively determine
the quantization bit-width margin for each layer’s weights.

The accuracy of the models that have been quantized with different compres-
sion rates are shown in Fig. 5. Compared with the non-adaptive methods (TWN,
QIL, MLQ-2, SLQ-3 and DC), our aHCQ can preserve the model accuracy under
basically same compression rate, as well as achieve adaptability. Besides, com-
pared with the AQ, the aHCQ’s compression-accuracy curves are all above these
of AQ, which means our aHCQ’s trade-off between accuracy and compression
rate is better than that of AQ overall. Besides, the aHCQ method perform-
ing slightly better than the MLQ-2 when compression rate is around 15x is
acceptable, because the aHCQ framework mainly focus on how to adaptively
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Fig. 5. The comparison on different DNN quantization methods. aHCQ compared with
commonly used methods.

find proper bit-width for each layer. In conclusion, the aHCQ achieves higher
accuracy with same model size compared with other quantizaton techniques.

4 Conclusion

In this paper, we propose an adaptive hierarchical clustering quantization
(aHCQ) framework that can compress the weights of the network models while
largely preserve the model accuracy. A hierarchical agglomerative clustering algo-
rithm has been introduced on the weights quantization of each layer, which
promises less accuracy loss happened during the quantization. Meanwhile, the
quantized bit-width for each layer is determined adaptively according to the
accuracy loss happened locally from each layer and globally at the whole net-
work. The experiments demonstrate that the aHCQ achieves a high compression
rate of the model with quite less model accuracy loss.
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Abstract. Constrained clustering has been intensively explored in the
data mining. Popular clustering algorithms such as k-means and spec-
tral clustering are combined with prior knowledge to guide the cluster-
ing process. Recently, constrained clustering with deep neural network
gains superior performance by jointly learning cluster-oriented feature
representations and cluster assignments simultaneously. However, these
methods face a common issue that they have poor performance when
only minimal constraints are available because of their single way to
mine constraint information. In this paper, we propose an end-to-end
clustering method that learns unsupervised information and constraint
information in two consecutive modules: an unsupervised clustering mod-
ule to obtain feature representations and cluster assignments followed
by a constrained clustering module to tune them. The constrained clus-
tering module is composed of a Siamese or triplet network to maintain
consistency with constraints. To capture more information from minimal
constraints, the consistency is maintained from two perspective simulta-
neously: embedding space distance and cluster assignments. Extensive
experiments on both pairwise and triplet constrained clustering validate
the effectiveness of the proposed algorithm.

Keywords: Constrained clustering - Semi-supervised clustering -
Deep clustering - Metric learning

1 Introduction

Clustering with deep neural networks has extensively explored due to the inher-
ent property of highly non-linear transformation of DNNs. These methods effec-
tively combine the neural network with popular clustering algorithms, such as
k-means [7,14,22], spectral clustering [17], subspace clustering [10], agglomer-
ative clustering [23] to joint dimensionality reduction and clustering-oriented
representation learning. These unsupervised methods refer to unlabeled data,
however, some prior knowledge such as pairwise constraints or triplet constraints
could be obtained automatically in many clustering tasks.
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Constrained clustering is a kind of task that few auxiliary information is
provided to guide clustering. Some constrained clustering methods are explored
with pairwise constraints (must-link and cannot-link) [8,16]. SDEC [16] decreases
the embedding distance between must-link pairs and increases distance between
cannot-link pairs. But the distance in the embedding space between cannot-link
pairs have already been large at the beginning of training due to the good sepa-
ration of the pre-trained network, which leads to the inefficiency of its objective.
Hsu et al. [8] present their objective on softmax output with KL divergence
but abandon the contribution of instances without constraints. Zhang et al. [25]
explore more complex constraints. They enforce the must-link pairs with similar
assignment probability and cannot-link pairs oppositely. But when the number
of constraints is not enough to mitigate the negative effect of imbalance (which
means very few must-link assignments can be referred to, e.g. approximately
10% in Fashion dataset), this method that only mines constraint information
from the perspective of cluster assignments is sensitive to the reduction of the
number of constraints. For these reasons, these methods face a common issue
that they have poor performance when the number of constraints is small.

In this paper, we propose a Constrained Deep Clustering method (CDC) that
aims to maintain consistency with constraints. To be effective even if minimal
constraints are available, our method learns unsupervised information and con-
straint information in two consecutive modules: an unsupervised clustering mod-
ule followed by a constrained clustering module. Inspired by the metric learning,
we construct the network based on a Siamese network or triplet network in the
constrained clustering module. For the purpose of capturing more information
from minimal constraints, the consistency is maintained from two perspective
simultaneously: embedding space distance and cluster assignments. The model
is trained by cosine function as the similarity metric avoiding the inefficiency
when embedding distance between cannot-link pairs is large and weighted cross
entropy objective to tune cluster assignments. The main contributions of this
paper are summarized as follows:

— We propose an end-to-end clustering method that learns unsupervised infor-
mation and constraint information in two consecutive modules: an unsuper-
vised clustering module to obtain feature representations and cluster assign-
ments followed by a constrained clustering module to tune them.

— We propose effective objective function to maintain consistency with con-
straints from two perspective: embedding space distance and cluster assign-
ments.

— Extensive experiments are conducted on both image and text datasets. The
results show competitive performance on both pairwise and triplet con-
strained clustering, validating the effectiveness of CDC algorithm.

2 Related Work

Deep clustering is a category of clustering in recent years that combine deep
neural network to learn cluster-friendly features. There are approaches [6,7,21,
22] obtaining feasible feature space based on autoencoder (AE). Other novel
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methods adopt deep generative model to perform clustering task, such as VAE-
based [5,11] and GAN-based [3,15,24] methods. In addition, some clustering
methods recently has shifted to handle high-dimensional data, including spectral
clustering [9,17] and subspace clustering [10,26,27].

Constrained clustering has been widely studied to lead an auxiliary guidance
to clustering. Some methods explore strategies for improving clustering perfor-
mance with pairwise constraints [1,2,18,19]. Other methods with deep neural
network gains better performance. Hsu et al. [8] view the outputs of the softmax
layer as the distribution of possible clusters given a sample and evaluate the sim-
ilarity with KL divergence. Zhang et al. [25] explore more complex constraints
generated from new types of side information. Although these methods capture
the point that similar samples should output similar assignment distribution,
there is no work noticing consistency of embedding space distance and cluster
assignments simultaneously.

3 Proposed Method

Consider a task about clustering a data set X containing n unlabeled instances,
each sample {xz; € Rd}?:l should be assigned to one of k clusters. Except these
unlabeled data, two types of user-specified prior information is also provided
to guide the clustering process, including pairwise constraints and triplet con-
straints. A pairwise constraint indicates that a pair of samples {(z;, x;) : z;, x; €
X} have a relationship of must-link (z; and z; belong to the same clusters) or
cannot-link (z; and z; belong to different clusters). A triplet constraint consists
of a triple of samples {(Z, zp, x,) : T, 2p, z,, € X}, where the positive sample z,,
is closer to the anchor Z than the negative sample x,, in the embedding space.

We propose to find a non-linear mapping fg : X — Z that transforms the
original data into latent space Z, in which the embedding distance is consis-
tent with the original semantic distance and cluster assignments are consistent
with constraints. The model contains two consecutive modules: the unsupervised
clustering module followed by our constrained clustering module. The whole
structure of CDC is illustrated in Fig. 1.

We introduce the referred method in unsupervised clustering module in
Sect. 3.1. Then we propose two types of constrained clustering module with pair-
wise constraints and triplet constraints respectively in Sect. 3.2 and Sect. 3.3.

3.1 Unsupervised Clustering Module

The first module aims to learn cluster-oriented feature representations. We refer
the DEC [21] to learn feature representations and cluster assignments.

The DEC method initializes the centroids {u; ?:1 through k-means on
the embedding space of the autoencoder pre-trained by a stacked autoencoder
(SAE), then computes the soft assignments ¢;; as:

_oatl

Ol e 1

i = =% 57 N_oil; (1)
Z]"=1(1+Hzi*ﬂj’u fa)” 2
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Initialization Self-training
Process Process

Unsupervised Clustering Module

Consistency Constraint
_ Learning Generation

Constrained Clustering Module

Unsupervised Process - Tune Process Positive Relationship  ------- Negative Relationship

Fig. 1. The process of CDC algorithm. The method learns unsupervised information
and constraint information in two consecutive modules: an unsupervised clustering
module to obtain feature representations and cluster assignments followed by a con-
strained clustering module to tune them.

where ¢;; measures the similarity between embedded data z; and centroids p;
with Student’s t-distribution being the kernel, « is a constant, e.g. a = 1.

The auxiliary distribution P is defined to refine the cluster assignments . By
squaring the soft assignments g;; and then normalizing it, p;; is formulated as:

4/ 2 g
- .
Zj':l (qizj// > Gig)

The loss function is defined as the reconstruction loss added to the KL divergence
between soft assignments ) and auxiliary distribution P as follows:

i
L=KLP|Q)+Lr= Zi Zj pi; log qJ + Zi s — @42 (3)
iJ

(2)

Dij =

The clusters are iteratively refined during this self-training process. Constrained
clustering module inherits the parameters and centroids and then learn from
pairwise constraints or triplet constraints.

3.2 Clustering with Pairwise Constraints

The pairwise constraints are learned in our constrained clustering module based
on a Siamese architecture, which is a popular network in metric learning. Two
samples with pairwise constraints are required as inputs at the same step. Each
group of inputs can be expressed as a triad ((z1,22),y), where y is an indicator
that y = 1 when given z; and xy with must-link relationship while y = 0 with
cannot-link constraint. The structure of pairwise constrained clustering module
is illustrated in Fig.2. For the purpose of maintaining consistency with con-
straints, we define the objective function in two parts: embedding space distance
and cluster assignments.
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(Lo )

I
Objective

Must-link

Cannot-link

Fig. 2. The structure of constrained clustering module on pairwise constrained clus-
tering based on a Siamese network. Constrained pairs are transformed into embedded
features Z; and Zs. Soft assignments Q1 and Q)2 are normalized to compute assignment
objective. The shared parameters are optimized by Eq. (7).

Consistency of Embedding Space Distance. The main idea of this part is
to seek a mapping that transforms pairs of inputs into a embedding space, in
which a similarity measure approximates the semantic information in the original
space. To this end, the distance loss for all m groups of ((z1,x2),y) is defined
as:

1 m ; NG ; NG
Law === (0ol 47) - 1=y o 200)) . (@)
where zgi) and zéi) are corresponding embedded features of the i*" group of
inputs, o(-) is a similarity function, A\; and Ay are trade-off parameters. In sum-
mary, the embedded features with the same label prefer larger similarity, while

points with different labels obtain smaller similarity by minimizing the objective
function.

Consistency of Cluster Assignments. The main idea of this part is to tune
cluster assignments with given constraints. Soft assignments are learned from its
high confidence assignments in the unsupervised clustering module. We expect
to tune cluster assignments to maintain the consistency with constraints. Specif-
ically, must-link pairs are expected to have similar cluster assignments distribu-
tion, while assignment differences of cannot-link pairs are strengthened. The
assignment loss is formulated as:

1 m i i i i i i i i
Lassign = —— Do <y< Mgw log(af” - a8”) + (1 — y@)w® log(1 — ¢f” - of ))> )

This process is treated as a binary classification problem that whether or not
two constrained samples belong to the same cluster. The inner product of corre-
sponding normalized soft assignments qgl) and qél) reflects the probability that
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two inputs zgi) and xéi) are assigned into the same cluster. By minimizing the
cross entropy loss, the must-link pairs prefer to be allocated into the same cluster
and the cannot-link pairs are the opposite. In addition, we introduce a weight w
to pay more attention to those pairs whose distances in the embedding space are
not consist with constraints. Precisely speaking, the weights increase for those
must-link pairs with large differences in embedded features and those cannot-link
pairs with small differences. The weight formulas are defined as:

1 .
14 e—d if(x1,22) D € must — link,
w® = 54 o o (6)
o if(x1,22)" € cannot — link,
2(1+ ed?)

where d(V) = oz||z§l) - zéZ)Hz reflects the difference between a pair of embedded
features, « is an adjustment parameter to control the distance. We set a = 0.01
in all experiments because the great masses of samples are well-separated. The
weight w is a monotonically increasing function for must-link, while monotoni-
cally decreasing function in the opposite case.

In summary, we define the objective function in constrained clustering mod-
ule for pairwise constraints as:

Lpai'r = Ldist + Lassign + Lrecoru (7)

1 ™G i
L'r‘econ = E Zi:l y( )(”‘Tl - {I?/1||2 + ||[IJ2 - x/2H2)( )7 (8)

where Lyccon 18 the sum of reconstruction losses of two instances, which is added
to the must-link cases to avoid a large scale cluster.

3.3 Clustering with Triplet Constraints

Triplet constraints are weaker constraints and easily accessible with only a
trained embedding space. They could replace the stronger constraints in some
constrained clustering tasks that lack ground truth labels or partition-based
constraints, e.g. pairwise constraints. Different from these stronger constraints
coming from specific partitions, triplet constraints convey the differences in dis-
tance level.

We construct a triplet network for training triplet constraints. As we can
see in Fig. 3, a triple of samples (Z,x,,x,) are input to the network simulta-
neously. The similarities o(Z, z,,) and o(Z, z,) are calculated in the embedding
space output by the network with shared parameters. The objective function in
constrained clustering module for triplet constraints is formulated as:

Ltrip = max(a(z, Z’ﬂ) - 0'(3, Zp) + m, 0)7 (9)

where 0(Z, z,) and o(Z, z,) represent similarities between positive and negative
samples against the anchor respectively. Those positive samples are pulled close
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.

Similarity
Metric
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Metric

Positive ltem Anchor Item Negative Item

Fig. 3. The structure of constrained clustering module on triplet constrained clustering
based on a triplet network. A triple of samples are input into the network at the same
step. The similarities are obtained in the embedding space. Parameters are shared
among the triplet network and are optimized by Eq. (9).

to their anchor and negative samples are separated from them. A hyperparameter
margin m is introduced as a threshold that tries to widen the gap in o(Zz, 2,,) and
0(Z, zp). Due to the partition uncertainty of triplet constraints, some cases cannot
be avoided that some positive samples and their anchors come from different
classes, or some negative samples have the same labels with their anchors, which
we call imperfect triplet constraints. The margin m also works by preventing x,,
being too close or x,, being too separated from T in these cases. The parameter
study about m is illustrated in Sect. 4.4.

In summary, our method learns feature representations and cluster assign-
ments in the unsupervised clustering module and then tunes them in the
constrained clustering module in one epoch. The procedure is summarized in
Algorithm 1.

4 Experiments

4.1 Datasets

To verify the effectiveness and efficiency of the proposed CDC on constrained
clustering tasks, we evaluate it on five benchmark datasets:

— MNIST [12]: A dataset composed of 70000 handwritten digits of 10 types.
Each sample is a 28 x 28 gray image.

— Fashion-MNIST [20]: A dataset of Zalando’s article images with the same
size as MNIST. Each sample is a 28 x 28 gray image, divided into 10 classes.

— USPS: A handwritten digits dataset that contains 9298 images (7291 for
training, 2007 for test) with size of 16 x 16 pixels.
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Algorithm 1. Constrained Deep Clustering (CDC)

Input: Dataset X, pairwise or triplet constraint dataset )~(7 number of clusters k.
Output: Embedded features Z and cluster assignment vector s.

Initialization: Pre-train the stacked denoising autoencoder layer by layer to obtain
Z. Obtain k initial centers {41;}5—; with k-means in space Z.

1: while not reach the maximum epochs do

2: Unsupervised clustering module:

3 for every mini-batch data in X do

4 Obtain z; = fg(z;) through the encoder.

5: Compute ¢;; and p;; according to Eq. (1, 2).
6: Update 6 and {y;}5_, by minimizing Eq. (3).
7 Constrained clustering module:
8 for every mini-batch data in X do

9: Obtain (z1, 2z2) or (Z, zp, zn) through Siamese or triplet network.

10: Update 0 and {u; }?:1 by minimizing pairwise loss or triplet loss Eq. (7, 9).
11: Obtain Z and s; = arg max; gi; for all instances.

12: if stopping criterion is met then

13: Stop training.

— KMNIST [4]: Kuzushiji-MNIST is a dataset which focuses on cursive
Japanese, composed of 28 x 28 images of 10 types. Train and test set sizes
are 6,000 and 1,000 per class.

— Reuters10K [13]: A subset consist of 10000 examples of Reuters. Each sam-
ple is composed of the 2000 most frequently occurring word stems in an
English news story.

All datasets are preprocessed for each element before being fed into the algo-
rithms. Precisely, we normalize all datasets to approach Z||z;||3 to 1 for each
z; € R%in X.

4.2 Experimental Setting

The structure of the encoder network is set in the same way as DEC [21],
SDEC [16] and FDCC [25] to be comparable with them. Concretely, we set
the encoder network with dimensions of d - 500 - 500 - 2000 - 10 and the decoder
with a symmetrical structure, where d is the dimension of input data. All layers
are fully connected and activated by ReLLU function except for the input, output,
and embedding layers.

The parameters and centroids are initialized with a SAE and k-means in
the same way as DEC [21]. Cosine similarity cos(a,b) = W is selected in
Eq. (4, 9) for all experiments. In each iteration, we train the network with Adam
optimizer. The learning rate and batch-size are set to 0.001 and 256 respectively.
We investigate the influence of trade-off parameter in Eq. (5) with grid search
and set it as 10. The whole training process will stop when breaks the threshold
in stopping criterion § = 0.001 or reach the maximum epoch.
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Table 1. Clustering performance of pairwise constraints in terms of accuracy (ACC %)
and normalized mutual information (NMI %) over 5 datasets. The results of baseline
models are obtained by running the released code except the ones marked by (*), which
are reported from the corresponding papers. The mark (-) represents that the result is
unavailable.

Dataset ~ MNIST Fashion USPS | KMNIST | Reuters10K
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means 53.09 49.87 46.14 50.85 42.55 37.95 2852 10.89 50.38 48.61

SAE-KM 85.23 80.76 58.03 60.57 68.75 65.99 47.16 39.10 76.53 56.61

DEC 86.59 83.73 56.62 62.21 75.81 76.91 48.64 40.79 72.17 53.08
IDEC 88.72  86.47 58.48 62.47 72.20 72.66 48.89 40.89 75.27 54.16
FCSP 62.80*% 58.70% 41.70% 46.20% - - - - - -

COP-KM 81.60* 77.30*% 54.80* 58.90* 71.85 70.24 46.78 38.53 70.42 51.83
MPC-KM 84.60* 80.80* 58.90* 61.30* 75.61 74.36 49.75 41.82 73.08 55.06
SDEC 85.02 81.69 59.62 63.89 75.84 76.96 50.05 42.18 75.31 55.24
FDCC 96.29 90.72 66.29 67.08 80.54 76.62 56.90 42.88 77.90 58.42
CDC 96.69 91.92 76.88 72.13 82.71 77.26 71.78 55.38 88.20 69.88

4.3 Experimental Results

Evaluation of Experiments on Pairwise Constraints. Our method is
compared with both unsupervised clustering algorithms and constrained clus-
tering methods. Unsupervised algorithms include k-means [14], k-means on
latent feature space obtained by SAE (SAE-KM), DEC [21] and IDEC [6].
Constrained clustering algorithms include flexible CSP [19], COP-kmeans [18],
MPC-kmeans [2], SDEC [16] and FDCC [25].

For the purpose of simulating human-guided constraints, we construct con-
straints from existing labeled data sets. We pick a set of randomly selected pair-
wise samples from training set and generate must-link or cannot-link constraints
according to their ground truth labels. The number of constraints N is set to
3600 on MNIST, Fashion and KMNIST that accounts for merely 0.0002% of
the number of possible constraints C2, and 1000 on USPS and Reuters10K that
accounts for 0.0038% and 0.002% respectively. Besides, transitive constraints are
also added to the known constraints. For instance, given must-link (a,b), (a, c)
and cannot-link (a,d), we can easily deduce addable constraint: must-link (b, ¢)
and cannot-link (b, d), (¢, d). This conduction may cause an explosion of the con-
straint quantity when N is large, but can be ignored with a small amount of
constraints.

The evaluation of ACC and NMI are reported in Table 1. As we can see, the
performance of CDC outperforms the unsupervised algorithms with just minimal
pairwise constraints. This shows that our algorithm of maintaining consistency
with constraints has a positive effect on clustering. The constrained methods
below are set with the same ratio of number of constraints as ours for fair com-
parison. The results show obvious improvement, especially on Fashion, KMNIST
and Reuters10K, validating the superiority of CDC algorithm.
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Fig. 4. Clustering ACC and NMI on MNIST and Fashion with different numbers of
triplet constraints.

Evaluation of Experiments on Triplet Constraints. We evaluate the clus-
tering performance of our method on triplet constraints by comparative experi-
ment with FDCC [25] that put forwards triplet constraints first. To be compara-
ble fairly with it, we introduce the same embedding space to compute Euclidean
Metric among triples. Figure 4 plots the results of comparative experiment with
different numbers of constraints. The results show clearly that the increase
of constraint number reflects positive feedback in performance. On MNIST,
minimal constraints bring about obvious improvement and then performance
becomes stable, which means enough prior information has been captured. On
Fashion-MNIST, the performance enhances continuously and leads to a sharp
improvement in range [3000, 6000]. Comparing with FDCC, our method brings
slight improvements on MNIST and obvious enhancement on Fashion-MNIST.
The results validate the effectiveness of our algorithm for weak constraint
information.

4.4 Parameter Analysis

We evaluate the performance with different settings of m in Eq. (9) by grid
search in range [0.3,0.6]. Figure 5 shows the parameter study results on Fashion-
MNIST. Two interesting observations can be obtained: (1) The larger m pro-
duce better performance than a smaller one when given less constraints. (2)
As the number of constraints increases, the results of larger m are not signifi-
cantly improved or even decreased. The first observation can be explained that
our objective tends to widen the difference in the similarity between positive
and negative samples against the anchor, larger m enforces larger threshold to
be broken down, which can promote the optimization when constraints are not
enough. The second consequence occurs because our method learns enough infor-
mation when more constraints are provided, a smaller m reduce the inefficiency
of imperfect triplet constraints, which we illustrate in Sect. 3.3.
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ACC with different settings of m NMI with different settings of m
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Fig. 5. The performance of our method across different settings of m on Fashion.

5 Conclusion

In this paper, we propose a Constrained Deep Clustering method (CDC) that
aims to maintain consistency with constraints. The CDC method learns unsu-
pervised information and constraint information in two consecutive modules.
Effective objective function are proposed to maintain the consistency from two
perspective simultaneously: embedding space distance and cluster assignments.
Extensive experimental results on both pairwise and triplet constrained cluster-
ing validate the effectiveness of our method even if only minimal constraints are
provided. Our future work will be explored from the perspective of exploring
more complex similarity metric or addressing the imbalance of the constraints.
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Abstract. In multi-label learning, feature and instance selection rep-
resent two effective dimensionality reduction techniques, which remove
noise, irrelevant and redundant entries from original data for easy later
analysis, such as clustering and classification. Label selection also plays a
fundamental role in the pre-processing step since label-noises could neg-
atively affect the performance of the underlying learning algorithms. The
literature has been mainly limited to feature and/or instance selection,
but has somewhat overlooked label selection. In this paper, we intro-
duce, for the first time, a combination of the three selection techniques
(feature, instance and label) for multi-label learning. We propose an effi-
cient convex optimization based algorithm that evaluates the usefulness
of features, instances and labels in order to select the most relevant
ones, simultaneously. Experimental results on some known benchmark
datasets are presented to demonstrate the performance of the proposed
method.

Keywords: Multi-label learning - Feature selection - Instance
selection + Label selection - Optimization

1 Introduction

In multi-label learning, data might be determined by multiple features and
instances, and simultaneously associated with multiple labels. For example, in
image annotation, images are usually represented by multiple features and, at
the same time, associated with multiple semantic labels [13]. In text categoriza-
tion, each document can be represented by a set of instances and is assigned to
multiple categories [25,30]. In bio informatics, a gene may have many functions,
simultaneously [20].

Due to the curse of the large dimensionality of such data, which are only likely
to grow further both in terms of the sample size as well as the number of classes,
the performance of multi-label learning algorithms would be strongly influenced
[17]. Hence, selecting the most meaningful features or instances become a crucial
pre-processing steps for these algorithms [22]. In fact, feature selection (F'S) aims
© Springer Nature Switzerland AG 2021
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to select the most informative feature subsets from the original set, whereas
instance selection (IS) is a procedure that reduces noise or outlier data points.

Many works have been carried out in this context, for example Huang
et al. [12] proposed JFSC, a method which can perform joint feature selection
and classification for multi-label learning . Zhang et al. [33] proposed MSFS, a
multi-view multi-label sparse feature selection that exploits both label correla-
tions and view relations for hierarchical multi-view multi-label feature selection.
Jian et al. [15] introduced MIFS, a novel multi-label informed feature selection
framework that exploits label correlations to select discriminative features across
multiple labels. In [1], authors applied two new instance selection methods, based
on the adaptation of single-label classification algorithms to multi-label learn-
ing: LSBo and LSSm. It should be noted that feature selection and instance
selection are often addressed separately, while few works combine both tasks
in single-label scenario [5,6,16,26], and to our knowledge no work has been
proposed in multi-label scenario. In addition, all works cited evaluate the corre-
lation between features and labels associated with for each instance in order to
remove only unnecessary features or instances. Unfortunately, labeled data are
often noisy and as it often exhibit dependencies, the performance of the under-
lying learning algorithms could be negatively affected [14]. For that reason, it
seems evident that label selection step may greatly contribute to improving per-
formance. To the best of our knowledge, the literature was mainly limited to
feature and/or instance selection, but there is no work that directly selects the
best labels from the original labelset, while considering feature and instance
selection simultaneously.

In this paper, we propose a novel unified framework called mFILS that com-
bines the three selection tasks (features, instances and labels) for multi-label
learning. The framework is based on I3 ;-norm regularization which is performed
to evaluate the usefulness of features, instances and labels in order to select the
most relevant ones, simultaneously.

We summarize the technical contributions of this paper as follows:

1. We propose a novel framework mFILS for multi-label triple selection of fea-
tures instances and labels, simultaneously.

2. We apply 2 ;-norm regularization to promote sparsity and remove irrelevant
information.

3. We conduct experiments on some known benchmark datasets to validate our
proposal with different scenarios.

2 Proposed Method: mFILS

In a multi-labeled dataset, we have n instances {x1,xXa,...,x,} and k differ-
ent labels {c1, ¢, ..., cp}. We assume that X = [x1,X9,...,X,] € R"™™ be the
instance matrix and Y = [y;,¥a, - ¥,] € {0,1}"%* be the label matrix. m and
k represent the size of feature vectors and the number of class labels, respec-
tively. y; = [vi1, Yi2s -, yir] € {0,1}F is a binary vector, where y;; = 1 if x; is
associated with the label ¢; and y;; = 0, otherwise. The Frobenius norm of a
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matrix X is denoted as || X ||[p= /> iy Z;"Zl 7, and its Iy 1-norm is denoted
as || X [lz1= Y, A/ Z;nzl xzzj

According to [10], the multi-labeled output space Y can be decomposed to
a product of two low-dimensional nonnegative matrices V and B. The nonnega-
tive constraint is imposed on the decomposition phase since the latent semantic
matrix obtained later will be more physically interpretable [7,18].

Let V € R"*! be the low-dimensional latent semantics matrix and B € R/**
be the coefficient matrix of latent semantics. Mathematically, the decomposition
is done by minimizing the following reconstruction error:

in || Y- VB|Z 1
min || Y — VB & (1)

In addition to the Eq. (1) that will guide the feature selection process, our
goal is to select the most effective labels from the original label-set in order to
reduce its size (matrix Y) and facilitate the learning task. We use the coefficient
matrix B to weight the labels. Thus, the Eq. (1) can be formulated as follows:

in||Y—-VB]|? B 2
rg;gll VB % 46 || B ||l21 (2)

0 is a regularization parameter, used to control the sparsity of B and ||
B ||2,1 is the I3 1-norm of B. Then, we employ the Eq. (3) to ensure that local
geometry structures are consistent between the input space X and the reduced
low-dimensional semantics V. To be specific, if two instances are close to each
other in X, they should also show the similar characteristic in V.

1 n n
3 D> 08i(Vie = V)2 =Tr(VI(Z - S)V) = Tr(V'LV) (3)
i=1 j=1
where S;; denotes the similarity matrix. V; is the latent semantics of y;. Z
is a diagonal matrix with Z;, = Z?Zl Sij. L = Z — S is the graph laplacian
matrix. We model the affinity graph S by Eq. (4) according to [4],

lxi=xj012

S, ={¢ €2 if x; € Np(z;) or xj € Ny(x;) (4)

0 otherwise,

where N,(x) denotes the p-nearest neighbors of instance x. By integrating
the local geometric structure of the data, the Eq. (2) becomes:

min || Y - VB 1% +aTr(VILV) +6 | B |

2,1 ()

where o represents a regularization parameter, used to control local geometry
structures.

Our second main goal in this paper is to incorporate instance selection with
feature and label selection. Therefore, we evaluate the usefulness of the features,
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instances and labels at the same time and we select the most relevant ones
simultaneously.

First, feature selection term based on ls ;-norm regularization can be given
by Eq. (6) [21]. Note that the latent semantics matrix V replaces Y since it is
more able to reflect the label information.

min | XW =V |7 +A | W 2, (6)

where W € R™*! and | W ||2,; are the feature coefficient matrix and the
l3,1-norm of W, respectively. A is a regularization parameter, used to control the
sparsity of W.

Afterwards, we incorporate a new unknown variable A into the Eq. (6) for
weighting the instances, in addition to W (associated with features). This new
variable is a strong indicator of anomalies in a dataset [27].

Let A = WTXT — VT _ E, be a residual matrix where E is a random
matrix, generally assumed to be a multi-dimensional normal distribution [27].
Each column of A corresponds to a data instance, and a large norm of A(:, i)
indicates an important deviation of the i** data instance, potentially to be an
irrelevant instance [26]. Therefore, the residual matrix A can be used to realize
instance selection.

Note that the residual matrix idea is inspired by the works in [24,27].

By incorporating the instance selection, the Eq. (6) becomes:

21 +7 | A

: _ AT _ 2
min | XW — AT =V [ 42| W| 2,1 (7)

|| A |l2,1 is the Iz ;-norm of A, and « is introduced to control the sparsity of
A.

Based on the different aforementioned equations, the objective function of
mFILS can be finally defined as follows (Eq. (8)):

: AT 2 T _ 2
wiin I XW = AT =V [} +aTr(VILV) + 3] Y = VB |7

+A || W |

21 7 [[ Al +0 [ B2

where ( is used to balance the contribution of feature learning and label
decomposition.

Our mFILS framework is now suitable for the simultaneous triple selection
of features instances and labels.

Since the objective function of mFILS is not convex with respect to W, A,
V and B, jointly, and not smooth due to the /3 ;-norm regularization term, it
is therefore difficult to resolve it. To settle this problem, we rely on the work
of Nie et al. [21]. We relax the terms || W |21, || A |l21 and || B |21 by
2Tr(WTDW), 27r(ATA™T) and 277(BTJIB), respectively. D, T and J are a
diagonal matrices with its diagonal elements dd;; = m, tty; =

1
. ) . 2MAT
and JJu = B2 respectlvely.
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Thus, we can rewrite the objective function shown in Eq. (8) as follows:

: T 2 T 2
W-—AT - ~ VB
witin | XW = ATV [} +aTr(VILV) + 8] Y - VB |}

+2\Tr(WIDW) + 29Tr(ATAT) + 26Tr(B*IB)

For minimizing Eq. (9), we adopt an alternating optimization over W, A, 'V
and B, by solving the following problems:

Problem 1: Deriwative w.r.t W by fixing A, V and B to find the solution for
W (for feature selection). The optimization problem for updating W becomes:

min || XW — AT —V ||Z 20T (W DW) (10)
The derivative w.r.t W is given as:
%ﬁv = 2[XT(XW) - X" (AT + V) + \DW]. (11)

Problem 2: Derivative w.r.t A by fixing W, V and B to find the solution for
A (for instance selection). The optimization problem for updating A becomes:

min || XW — AT —V ||% +29Tr(ATAT) (12)

The derivative w.r.t A is given as:

oL

TA = 2[AT — (XW — V) +4TAT]. (13)

Problem 3: Deriwvative w.r.t 'V by fixing W, A and B to find the solution for
V (for latent label space). The optimization problem for updating V becomes:

min | XW — AT -V |2 +aTr(VILV) + 5| Y - VB | % (14)

The derivative w.r.t V is given as:

%ﬁ =2[(AT + V- XW) + oLV + (VB - Y)B"]. (15)

Problem 4: Derivative w.r.t B by fixing W, A and V to find the solution for
B (for label selection). The optimization problem for updating B becomes:

min 3 || Y - VB |2 +26Tr(BTIB) (16)

The derivative w.r.t B is given as:

oL
o5 = 20V (VB ~Y) +6JB]. (17)



238 D. E. K. Mansouri and K. Benabdeslem

To ensure the nonnegative constraints of matrices V and B, we use the
projected gradient descent method [19] to project the updated solution of the
gradient descent to a bounded region. Depending on these, the update rule of
the alternating algorithm for mFILS can be summarized as follows:

W =W — ¢y 2&
A:=A—da(5)"

(18)
V=PIV — ¢y 5]

B := P[B - ¢p 5]

where P[H] represents a box projection operator that maps the update H to
a bounded region in order to ensure the nonnegativity:

700 otherwise,

and ¢w, ¢4, ¢y and ¢p are stepsizes for the different rules in Eq. (18).
It is crucial to choose suitable stepsizes for the gradient descent update rules
in Eq. (18), to accelerate the convergence rate and to reduce the running time
of mFILS. In this paper, we employ Armijo rule [15] to adaptively determine
stepsizes éw, ¢4, ¢y and ¢p in each iteration. We summarize all the above
mathematical developments on Algorithm (1).

Algorithm 1. mFILS

Input: Data matrix X € R™™; Label matrix Y € {O,l}"Xk; Parameters:
a767)\77767§'

Output: Top ranked features, instances and labels.

1: Initialize W, V and B randomly (V and B are initialized to be nonnegative);
Initialize A to zero-matrix; initialize D, T and J as identity matrices;

repeat

determine step sizes ¢w, ¢pa, ¢y and ¢p with Armijo rule;

Update the matrices W, A, V and B according to Eq. 18 )

Update the matrices D, T and J as dd;; =

: WG i = AT i =
STBCTR respectively.

until Convergence

Rank the features according to || W(j,:) ||2 in descending order (j = 1..m).

Rank the instances according to || A(:, %) ||2 in ascending order (i = 1..n).

: Rank the labels according to || B(:,!) ||2 in descending order (I = 1..k).

S L X

—_
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3 Experiments

3.1 Datasets and Compared Methods

Experiments are performed on six benchmark datasets, including: birds [3],
CAL500 [29], enron [11], genbase [8], medical [23] and scene [2], to validate
the performance of mFILS. All datasets are available in MULAN Project!.

As long as there is no method that makes the triple and simultaneous selec-
tion of instances, features and labels in multi-label setting, we compare our
mFILS with the six competitive state-of-the-art feature selection/extraction
methods for multi-label classification, including: Fisher Score (F-score) [9], CoSe-
lect [26], Robust Feature Selection (RFS) [21], Multilabel Dimensionality Reduc-
tion via Dependence Maximization (MDDM) [32], Multi-label Informed Feature
Selection (MIFS) [15] and (MDFS) Embedded multi-label feature selection tech-
nique with manifold regularization [31].

3.2 Experimental Setting

The necessary parameters for implementing mFILS include «,3,A,v and
6. We use a grid search strategy to adjust these parameters from
{1072,1072,101, 1,10, 10?}. To model the local geometric structures, £ and p are set
to 1 and 5, respectively. Five-fold cross-validation is performed to split of training
and testing sets. The number of selected features is varied from 5% to 30% of the
total number of features. As for the numbers of selected instances and labels, we
set them at 70% and 30%, respectively. The performance of the selected feature,
instance and label subsets were evaluated using Binary Relevance (BR) with
Ridge classifier [28]. We employ four evaluation metrics widely used in multi-label
learning for comparison, including: Area Under the Receiver Operating Charac-
teristic curve metric (AUC), Macro-average, Micro-average and Hamming loss
[28]. Note that, the higher the AUC, Macro-Average, and Micro-Average values
are, the better the classification performance is. For Hamming loss, a lower value
indicates a better classification performance.

3.3 Results

In this section, we present and discuss the obtained results. We evaluate mFILS
by incorporating the instance and label selections into the feature selection pro-
cess. As a reminder, the numbers of selected instances and labels are set at 70%
and 30%, respectively. Table1 and Figs. (1, 2, 3) show the results of the clas-
sification performance comparison of mFILS in terms of AUC, Macro-average,
Micro-average and Hamming on six aforementioned datasets. We can make the
following observations.

— In terms of average rank, across all datasets and with different numbers of
selected features, our mFILS ranks first followed by MIFS. It means that the

! http://mulan.sourceforge.net/datasets.html.
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idea of decomposing the label information into a low-dimensional semantic
space places mFILS and MIFS in the foreground. The superior performance
of mFILS compared to MIF'S is explained by the fact of modifying the feature
selection term in Eq. (6) and the latent semantics term of multi-label infor-
mation in Eq. (1), by adding the functions of instance and label importance
(see Eq. (8)).

— In terms of most evaluation metrics, and on at least five out of six of datasets,
mFILS consistently outperforms other methods. Some degradation in perfor-
mance are reported with “scene” dataset where mFILS is ranked second after
CoSelect.

In summary, in view of the very favorable results of the mFILS method, we
can safely conclude that our framework is competitive with the other compared
methods.

Table 1. Performance comparison in terms of AUC of different methods on six datasets.
The last row illustrates the average ranking of each method. The best results are bold
face.

Datasets F-score CoSelect RFS MDDM MIFS MDFS mFILS

Birds 78.95 £0.00/58.31 £0.03 |79.13 £0.01|77.19 £0.01|80.46 +0.02|68.41 +0.01/81.89 +0.00
CAL500 80.51 £0.00/50.19 £0.09 |80.56 £0.00(80.81 £0.00(80.36 +0.00|{59.00 +0.07/81.12 +0.00
Enron 84.73 +£0.02|78.75 £0.06 |83.57 £0.01(83.79 £0.01|86.01 +0.00|{61.08 +0.02/87.99 +0.00
Genbase 87.72 £0.02|81.84 £0.03 |90.42 £0.00|48.55 £0.23|90.36 +0.03|93.07 +0.09/94.24 +0.04
Medical 89.80 £0.00|74.01 £0.05 |81.30 £0.02|77.60 £0.07/90.50 £0.00|84.95 +0.03|91.94 +0.02
Scene 68.55 £0.08/92.43 £0.03|86.87 £0.00|71.55 £0.05|88.92 +0.04|83.33 +0.01{90.10 +0.03
Average rank|4.33 5.66 3.83 5 3 5 1.16

(a) birds (c) enron
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Fig. 1. Macro-average (/') v.s. percentage of selected features.
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Fig. 3. Hamming loss (\,) v.s. percentage of selected features.

In the following, we study the impact of changing the number of selected
labels on the performance of our proposed method. We vary the number of
selected labels from 20% to 100% of the total number of labels, and we set the
number of selected features and instances at 30% and 70%, respectively. Recall
that in previous experiments, we varied the number of selected features from 5%
to 30% of the total number of features and set the number of selected instances
and labels to 70% and 30%, respectively. Based on Fig. 4, we can conclude that
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Fig. 4. Impact of label selection on the performance of mFILS with 30% of best features
and 70% of best instances.

as the number of selected labels increases, the corresponding accuracy of our
proposed method keeps practically stable. i.e., we can easily achieve better per-
formance with a reduced number of labels.

4 Conclusion and Future Works

In this paper, a novel method that includes the instance and label selections
in the feature selection process, called mFILS, has been proposed. The method
is based on the latent semantics principle of multi-labels and /5 ;-norm regu-
larization. With the help of these two principles, noise, irrelevant and redun-
dant data presented at the level of features, instances or labels are considerably
reduced. Extensive experiments on different benchmark datasets up to date show
that, mFILS achieves significant and competitive performance compared to other
state-of-the-art methods.

In future works, we will extend mFILS to consider regression problems. We
will also consider the triple selection with multi-view data that can help handle
noisy and partial data for single-view triple selection.
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Abstract. As Artificial Intelligence (AI) is used in more applications,
the need to consider and mitigate biases from the learned models has
followed. Most works in developing fair learning algorithms focus on the
offline setting. However, in many real-world applications data comes in
an online fashion and needs to be processed on the fly. Moreover, in
practical application, there is a trade-off between accuracy and fairness
that needs to be accounted for, but current methods often have multiple
hyper-parameters with non-trivial interaction to achieve fairness. In this
paper, we propose a flexible ensemble algorithm for fair decision-making
in the more challenging context of evolving online settings. This algo-
rithm, called FARF (Fair and Adaptive Random Forests), is based on
using online component classifiers and updating them according to the
current distribution, that also accounts for fairness and a single hyper-
parameters that alters fairness-accuracy balance. Experiments on real-
world discriminated data streams demonstrate the utility of FARF.

1 Introduction

Al-based decision-making systems are routinely being used across a wide
plethora of online (e.g., the targeting of products, the setting of insurance rates)
as well as offline services (e.g., the issuing of mortgage approval, the allocation of
health resource). As Al becomes integrated into more systems, various Al-based
discriminatory incidents have also been observed and reported [3,18,24].

A large number of methods have been proposed to address this issue, ranging
from discrimination discovery to discrimination elimination and interpretation
in order to provide ethical and accurate decisions [28,30]. These studies have
© Springer Nature Switzerland AG 2021
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typically adopted one or more of the three following strategies: i) Pre-processing
solutions aim to eliminate discrimination at the data level, including the most
popular ones massaging [21] and reweighting [9]. ii) In-processing approaches
mitigate bias by modifying the algorithm design [4,22]. As a recent example,
the Bayesian probabilistic modeling is leveraged to account for fairness [15]. iii)
Post-processing techniques consist of a-posteriori adjusting the output of the
model [18,19]. For instance, the decision boundary for the protected group is
shifted based on the theory of margins for boosting [14].

However, most of these methods tackle fairness as a static problem, i.e., that
all the data is available at training time. This does not satisfy situations that
may require online learning due to a continuously drifting data distribution, or
can not computationally afford to process all of their data in memory [29]. There
is very little work in the area of online learning that includes any definition of
fairness as a goal of the method [20,27]. Our work seeks to fill this void.

Current methods also lack a mechanism for easily adjusting the trade-off that
exists between accuracy and fairness [23]. For instance, the “business necessity”
clause [2] states that a certain degree of disparate impact discrimination can be
allowed for the sake of meeting certain performance-related business constrains,
on the condition that such decision-making causes the least disparate impact
when fulfilling the current business needs. If an initial model fails to meet the
discrimination or accuracy requirement for practical use, we would prefer there
exist a single parameter with a direct and predictable impact on this trade-off.
However, current studies solely focus on preserving prediction performance while
minimizing discrimination, and do not allow for fine-grained control between
fairness and accuracy [3,30].

To overcome these issues we propose FARF, an online statistical parity aware
Random Forest (RF) model. Like prior online RF algorithms, it is built from a
sampling approach for the ensemble creation. In creating this fair variant of RF,
we develop a number of contributions: i) We study a new research direction of
fairness-aware learning considering concept and fairness drift. We then propose
FARF, a fairness-aware and fairness-updated ensemble method to tackle online
fairness. ii) We study another research direction of fairness-aware learning with
customized control, and design a clear mechanism for fine-grained fairness con-
trol, providing more flexibility than state of the art. iii) We theoretically analyze
the inadequacy of current sampling approaches in fairness studies and introduce
a new effective sampling direction with experimental verification. iv) Extensive
experimental evaluation on real-world datasets demonstrates the capability of
the proposed model in online settings.

2 Problem Definition

An online stream D consists of a sequence of instances arriving over time, poten-
tially infinite. One instance z; at time step ¢ in D is described in a feature space
A ={A4,..., A, } within respective domains dom(A;) and its class label C;. An
online classifier is trained incrementally by taking instances up to time t to pre-
dict Ci41 for the unlabeled instance arriving at time step ¢ + 1. Once Cyyq is
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predicted, the actual class label of z;11 becomes available and can be used for
model update, known as prequential evaluation [16].

We assume one of the attributes A is a special attribute S, referred to as
sensitive attribute (e.g., gender) with a special value s € dom(S) referred to as
sensitive value (e.g., female), from which the discriminated group is defined. For
simplicity, we consider binary classification tasks assuming dom(C) € {+,—}
and S also is binary with dom(S) € {p,u} (i.e., protected and unprotected
respectively). Four fairness related groups can therefore be distinguished com-
bining S and C. These groups are p*,p~ and u™,u~ representing protected
group (e.g., female) receiving positive and negative classification and unprotected
group (e.g., male) receiving positive and negative classification, respectively.

Although more than twenty notions have been proposed to measure the dis-
criminative behavior of AI models [26], formalizing fairness is a hard topic per
se, and there is no consensus which measure is more versatile than others [3].
In addition, what constitutes “fair” or “discriminative” is dependent on many
factors and context, as well as philosophical questions that have been researched
long before the AT communities’ interest [7]. In this work, we adopt the statistical
parity because American user studies have found that it is a measure compatible
with many users’ intuition of what constitutes a “fair” decision [25], expecting a
wide spectrum of applications of our method. Briefly, statistical parity examines
whether the probability of being granted for a positive benefit (e.g., the provision
of health care) is the same for both protected and unprotected groups. While
statistical parity is designed for offline fairness, the discriminative behavior of
the AT model up to time ¢ in the online setting, which we term as accumulated
statistical parity, can be analogically defined as:

. u; P
Disc(Dy) = — - - (1)
Uy + U Dy T Dy

where u,", u;, p;7 and p; are up to time ¢ the number of individuals from
respective groups.

People from the protected group can claim they are discriminated up to
time ¢ when more of them are rejected a benefit comparing to the people of
the unprotected group. The aim of online fairness-aware learning is therefore
to provide real time accurate but also fair predictions from the massive data
streams, where D needs to be processed on the fly without the need for storage
and reprocessing, and data distribution including Dise(D;) could also evolve
over time.

3 The Fair and Adaptive Random Forests

Ensemble learning combines multiple base learners to generate more robust
descriptions. Three common strategies are bagging, boosting and random forests.
Specific to online learning, there are multiple versions of bagging and boosting
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that are part of the state of the art ensemble methods for evolving online learn-
ing [6,11], while random forests for non-stationary data stream are currently rep-
resented by [1,17], which also show random forests approaches have a superior
performance comparing to bagging and boosting methods. One possible reason is
that training on sampled data and selected features for splitting generalize more
than adding more random weights to instances by bagging and adding weights
to incorrectly classified instances by boosting. In this paper, we follow the idea
of online random forests [1,17] as a powerful tool to increase the generalization
and fairness when constructing an ensemble of classifiers.

Specifically, the proposed Fair and Adaptive Random Forests (FARF) is an
adaptation of the classical random forest algorithm [8], and can also be viewed
as an updated and fairness-aware version of the previous attempts to perform
this adaptation [1,17]. In comparison to these attempts, FARF proposes a the-
oretically sound and fairness-oriented sampling (Sect. 3.2), an updated adaptive
strategy (Sect.3.3) as well as employing a fairness-aware base learner also for
ensemble diversity (Sect.3.1) to cope with discriminatory evolving data streams
collectively. The following subsections elaborate these three improvements one
by one.

3.1 Diversified Fairness-Aware Base Learner

Most of the existing online ensemble approaches [1,17] induce their base learners
based on the Hoeffding Tree (HT) algorithm [13], which exploits the fact that
an optimal splitting attribute can be determined by a small sample and the
learned model is asymptotically nearly identical to that of a conventional non-
incremental learner. However, such induction is based on the information gain
(IG) aiming to optimize for predictive performance and does not account for
fairness. In our previous work [27], the fair information gain (FIG) is proposed
as an alternative tree splitting criterion to address the discrimination issue of
1G, formally put,

IG(D, A), if FG(D,A)=0

FIG(D,A) = {IG(D7A) x FG(D, A), otherwise 2)

where fairness gain (FG) measures the discrimination difference due to the
splitting and is formulated as:

FG(D,A) =|Disc(D)| = Y |Disc(D,)] (3)
veEdom(A)

where D is the collection of instances and A represents the attribute that under
evaluation, D,,v € dom(A) are the partitions induced by A, and the resultant
discrimination value is assessed according to Eq. (1). In FIG, multiplication is
favoured, when combining IG and F'G as a conjunctive objective, over other
operations for example addition as the values of these two metrics could be in
different scales, and in order to promote fair splitting which results in a reduction
in the discrimination after split, i.e., F'G is a positive value.
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In FARF, other than the discrimination reduction merit similar to the previ-
ous fairness-driven IG reformulation efforts [22,27], such splitting criterion also
detects local discrimination to increase diversity for the sake of maximizing the
accumulated fairness. Specifically, each partition induced by the attribute A con-
tributes equally to the accumulated fairness of A regardless the number and size
of branches. In the context of ensemble learning, diversity of the each individual
classifier plays a key role. Increasing diversity by eyeing on local discrimina-
tion, i.e., identifying certain attribute values with a high discrimination rate but
small in representation size, could therefore induce diversified base classifiers,
reflecting different discrimination representation and improving the final ensem-
ble capability. Such emphasis can also be regarded as selecting those attributes
that otherwise would not be used for splitting thus adding more randomization
for the construction of the tree.

This diversified fairness-aware learner therefore learns different attribute
value level discrimination during the tree construction to maximize the accu-
mulated fairness, and is used as the base learner of FARF. To align with such
diversity-promoting strategy, different from the base learner of the previous
ensemble approaches [1,17], FARF also does not perform early tree pruning
for its base learners, and a random subset of fair features are selected for new
split attempts to further encourage diversity.

3.2 Fairness-Aware Sampling

In batch random forests, each base classifier is trained on a bootstrap of the entire
training set. However, such bootstrap replicates sampling strategy is infeasible in
online setting as each training instance needs to be processed once “on arrival”
without reprocessing. Oza et al. [6] simulate the construction of bootstrap repli-
cates in online context by sending K copies of each training instance to update
the base classifier accordingly, where K is a suitable Poisson random variable.
Considering the arbitrary length of online stream, we follow [6] that found setting

K = Poisson(6) (4)

to have the best accuracy by increasing diversity of the base learners. Oth-
ers have consistently found this approach effective in accuracy and computing
requirements [17]. Then the latest arriving instances can be classified by voting
of the base learners, the same way in online and batch random forests. We will
propose two different methods of altering the sampling of K to encourage fair
tree induction.

Sampling techniques have been studied in recent fairness-aware learning
approaches to alleviate discrimination [4,19]. In these studies, they exclusively
concentrate on over-sampling the protected positive group through differ-
ent heuristics. However, we argue that such interventions are insufficient espe-
cially in online setting for two reasons. First, the protected positive group is
normally the under-represented minority. Solely focusing on sparse representa-
tion might not have significant bias mitigation effect. Such ineffectiveness is fur-
ther exacerbated in online setting as instances from the protected positive group
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could discontinue for a certain period of time. Second, over-sampling protected
positive group in random forest can be regarded as minority over-sampling
with replacement. Previous research has noted that it does not significantly
improve minority class recognition [10]. We interpret the underlying effect in
terms of spreading the decision regions of protected positive group to mitigate
biases. Essentially, as protected positive group is over-sampled by increasing
amounts, the effect is to learn qualitatively similar but more specific regions that
overfit the protected positive group rather than spreading its decision boundary
into the unprotected positive group region.

Therefore, instead of over-sampling protected positive group, our ensemble
learning method under-samples the unprotected positive group to miti-
gate the discrimination. We design the update rule for instance weight for sam-
pling as:

Disc(Dy) x K, if 2, € ut&Disc(Dy) > 0

fairK(z,) = {K7 otherwise (5)

where Disc(D;) measures the accumulated discrimination up to the current
instance at time ¢ in the stream and K is the Poisson weight defined in Eq. (4).
When the current accumulated discrimination is positive (Disc(D;) > 0), i.e.,
protected group has been discriminated, and the current instance is a member
of unprotected positive group, the sampling weight fair K (x;) is down-scaled for
the current instance x;, making it to be Disc(D;) proportional of Poisson weight
K. When there is no membership discrimination against the protected group or
the current instance belongs to unprotected group, fairK (z:) is equivalent to
the Poisson weight K. This allows our models to learn a more effective decision
surface for the unprotected group, while avoiding prior shortcomings to sampling
based fairness.

Other than exclusively focusing on over-sampling the protected positive
group, the previous fair sampling studies also require additional neighborhood
information through KNN [4] and clustering [19]. On the contrary, sampling
in our work is directly defined in terms of the targeting discrimination. While
enjoying simplicity, this also opens the door to flexible control on the degree of
fairness. Specifically, we present a second method of altering the sampling ratio
K that allows the user to control a trade off between model accuracy and fairness
by manually customizing the re-scaling ratio in fair K to manage the trade-off.
This is done with a fixed under-sampling weight « that is incorporated into an
alternative equation customK as:

ax K, if v, € u™
K, otherwise

(6)

where « is the tunable parameter adjusting the sampling ratio. Note that like
fair K, the under-sampling only occurs for positive instances of the unprotected
group. Such flexible control on the degree of fairness instantiates application-
wise fairness-aware learning to accommodate scenarios such as the “business
necessity” clause [2].

customK (x;) = {
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3.3 FARF Algorithm

Online fairness additionally requires learning algorithms process each instance
upon arrival as well as dealing with non-stationary data distribution indicating
concept drifts and fairness implications. That is to say, the relationship between
sensitive attribute and class variable might also change over time. A stream
classifier pays attention to the boundary evolution but ignores fairness drift.
To this end, FARF encapsulates the capability of fairness drift detection and
adaptation as well as standby trees and weighted voting to address online fairness
comprehensively.

Ensemble learning has been used as a powerful tool by resetting under-
performing base learners to adapt to change quickly. The conventional approach
resets base learners the moment a drift is detected [6]. However, such reseting
could be ineffective since the reseted learner cannot have a positive impact on
the ensemble process as it has not been well trained. To this end, FARF employs
a more permissive threshold to detect potential drifts and builds standby trees
for ensemble members who detect such drifts. The standby trees are trained
along the ensemble without intervening the ensemble prediction, and appear on
the stage when they outperform their respective ensemble members.

The ensemble design of FARF also offers space for different change detec-
tors being incorporated. One possible detector is ADWIN [5], which recomputes
online whether two “large enough” subwindows of the most recent data exhibit
“distinct enough” averages, and the older portion of the data is dropped when
such distinction is detected. Different from the previous non-stationary stud-
ies [11,17], FARF employs ADWIN to detect changes in accuracy but also fair-
ness, reflecting both concept and fairness drifts. That is to say drift is detected
when either of them evolves.

FARF also weights the prediction of each base learner in proportion to their
prequential evaluation [16] fairness since its last reset, reflecting the tree per-
formance on the current fairness distribution. Such weighting scheme enjoys the
merit of free of predefined window or fading factor to estimate fairness as in other
stream ensembles [1,17] (their estimation focus is accuracy to reflect concept
drift though). Note that FARF prioritizes fairness over accuracy by weighting
and replacing ensemble members according to fairness. Algorithm 1 shows the
sketch of FARF.

For each new instance (line 2), FARF first decides its weight according to
fairness-aware sampling based on its fairness information and the accumulated
discrimination up to the current instance (line 5-7). When customizable fairness
is deployed, the weight is set according to customized sampling ratio (line 3-4).
FARF then trains each ensemble member (line 9) with this weight (line 10).
When a change is detected (line 11) in one ensemble member who does not have
a standby tree (line 12), a respective standby tree is created (line 13), otherwise
performances between the ensemble member and its respective standby tree are
compared (line 15) to decide ensemble membership replacement if needed (line
16). All standby trees are also trained along the ensemble (line 21-22). The
weighted vote can be performed at anytime to predict the class of an instance
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Algorithm 1: FARF Leaning Algorithm
Input: a discriminated data stream D, the number of base models M, optional
sampling ratio «
Init base models h,, for all m € {1, 2, ..., M}
for each instance x; in D do

1

2

3 if o specified then

4 ‘ wy «— customK (z) according to Equation (6);
5 else

6 Calculate Disc(D;) according to Equation (1);
7 wy +— fairK (z,) according to Equation (5);

8 end

9 for m=1, 2, ..., M do
10 Update h,, with z; with weight wy;
11 if ADWIN detects a change in fairness or accuracy in h,, then
12 if standby learner h,, = () then

13 ‘ Build a new diversified fair standby learner h.,;
14 else

15 if |Disc(hm)| > |Disc(hy,)| then

16 ‘ Replace hn, with hl,;

17 end

18 end

19 end
20 end
21 for all b}, do
22 ‘ Update h,, with x; with weight w;;
23 end
24 end

25 anytime output: h(x¢) = argmazeec Som_, W (hm(x:) = pm(c))

(line 25). Note that the replacement and voting could also be performed from
the accuracy perspective, i.e., replacing the ensemble member when its error is
higher and weighted vote on accuracy instead. FARF does fairness replacement
and voting in order to prioritize fairness at these steps.

4 Experimental Evaluation

In the case of static datasets and evaluation, accepted benchmarks for evalu-
ating fairness mitigating approaches are limited in number [3]. With respect
to the highly under-explored online fairness, this challenge is further magnified
by the drift and the demanding requirement of the number of instances con-
tained therein. We evaluate our approach on the datasets used in the recent
works of this research direction [20,27], the Adult and the Census datasets [12]
both targeting the learning task of determining whether a person earns more
than 50K dollars per annum. We follow the same options in our experiments
for fair comparison including the selection of sensitive attribute “gender” with
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female being the sensitive value and processing them in sequence. One difference
is that instead of randomizing the order, we order the datasets by the “race”
attribute for both datasets to better simulate concept drift and possibly increase
the learning bias. The previous discussed prequential evaluation is employed for
evaluation.

4.1 Benchmark Performance

This section first investigates the theoretically designed fairness-aware and
fairness-updated capabilities of FARF. For comparison, we implemented two
recently proposed fair online learners, FEI [20] and FAHT [27]. While the paper
of FEI did not compare with any baselines, FAHT studied two. We compare with
these two baselines therein as well, namely the Hoeffding Tree (HT) and KHT in
which the fairness-aware splitting criterion proposed in [22] is embedded into HT.
We also trained the state of the art concept-adapting ensemble learner ARF [17]
as another baseline. Other competing fairness methods, including recent pro-
posed fairness ensemble methods which require multiple full data scan, are not
considered as none of them can be transferred to online settings. All methods
are trained the same way for fair comparison. Relevant results on all datasets
are shown in Table 1. Note that since accuracy can be misleading for imbalanced
class distributions, we also report Kappa statistics [16].

Table 1. The predictive performance-vs-discrimination between FARF and baseline
models. Best results in bold, second best in italics.

Metric Adult dataset Census dataset
Methods Disc% | Acc% | Kappa% | Disc% | Acc% | Kappa%
HT 24.14 82.16 68.15 6.61 93.11 87.54
KHT 24.24 82.43 67.2 6.74 93.26 87.12
FAHT 17.20 | 81.62 70.48 3.63 93.06 88.14
ARF 24.17 84.51 78.15 6.64 94.18 90.41
FEI 23.06 74.27 54.27 6.64 80.06 84.27
FARF 8.89 84.19 77.54 0.07 | 94.83 90.33

As shown in Table 1 our new FARF method dominates all other baselines in
terms of minimizing discrimination, and is best of second-best by both Accuracy
and Kappa scores in all other cases. We note that when second best FARF is
still highly competitive, being at most 0.78% within the top performer. This is
a desirable trade-off since FARF reduced the discrimination score by a factor of
1.9x and 51.8x for Adult and Census dataset, respectively.

4.2 Accuracy-Fairness Control

The design of FARF provides a clear mechanism to manage the trade-off between
fairness and accuracy. This can be necessary when an initial model does not meet
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one of these requirements, allowing the end-user to make adjustments. FARF
controls thus with the o parameter. As « is in proportion to accuracy, increasing
its value leads to a higher accuracy at the expense of a higher discrimination.
Such expected trend is clear from the results visualized in Fig.1. Clients can
therefore accommodate their needs according to their respective constraints.
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Fig. 1. The predictive performance and accumulated discrimination trade-off fined-
grained by the tunable parameter a ranging from 0.3 to 1.5 with step size 0.3.

The x-axis of the above figure is with respect to the amount of discrimination
that is present (larger values indicate more discrimination), and the y-axis is the
predictive accuracy (larger is more accurate). With respect to both accuracy
and Kappa scores we see a monotonic behavior with respect to the a parameter.
This means it behaves as we desire: a simple and direct relationship controlling
the trade-off between accuracy and statistical parity. This makes it easy to use,
compared to most methods that have multiple parameters that all need to be
adjusted to achieve a satisficing trade-off [23].

4.3 Justification of Sampling Component in FARF

Recent fairness-aware learning approaches employ sampling techniques to mit-
igate bias, which exclusively focus on over-sampling protected positive group
through different heuristics. We theoretically discussed the drawbacks of these
methods (c.f., Sect.3.2). This section provides experimental justification and
verifies our choice to instead under sample the protected positive group and
that it is critical to our results. We perform two ablations to confirm this by
replacing our sampling with: 1) over-sampling protected positive group, and 2)
over-sampling protected positive group and under-sampling unprotected positive
group. All other components of our approach remain the same so that we can
isolate our sampling approach as the critical factor in results. These two types of
ensemble are denoted as FARFS™ and FARFS™ T respectively in comparison
with RF, which refers to random forests without sampling intervention, and our
proposed FARF. The results are shown in Table 2.



FARF: A Fair and Adaptive Random Forests Classifier 255

Table 2. The predictive performance-vs-discrimination comparison between different
sampling strategies. Best results in bold second best in italics.

Metric Adult dataset Census dataset
Methods Disc% | Acc% | Kappa% | Dis% | Acc% | Kappa%
RF 16.32 84.31 78.05 1.34 94.13 90.37
FARFS™ 19.36 83.26 73.47 1.10 94.17 90.24
FARFS—T 10.53 | 81.64 72.49 0.45 93.95 89.15
FARF 8.89 84.19 77.54 0.07 | 94.83 90.33

As can be seen FARF is the only method that consistently obtains accuracy
near that of an unconstrained Random Forest. At the same time, neither app-
roach is able to reach discrimination rates as low as FARF. This shows that
over-sampling approaches of prior fairness studies are not as effective as our
under-sampling based approach.

5 Conclusions

Our work has proposed the first online version of Random Forests with fairness
constraints. Our design includes a mechanism for altering the trade off between
accuracy and fairness so that users can adjust it easily toward their specific
applications. In doing so we have show positive results compared to alternative
methods available, without compromising on the desirable properties of online
Random Forests.
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Abstract. We propose a novel sparse spectrum approximation of Gaus-
sian process (GP) tailored for Bayesian optimization (BO). Whilst the
current sparse spectrum methods provide desired approximations for
regression problems, it is observed that this particular form of sparse
approximations generates an overconfident GP, i.e., it produces less epis-
temic uncertainty than the original GP. Since the balance between the
predictive mean and variance is the key determinant to the success of
BO, the current methods are less suitable for BO. We derive a new reg-
ularized marginal likelihood for finding the optimal frequencies to fix
this overconfidence issue, particularly for BO. The regularizer trades off
the accuracy in the model fitting with targeted increase in the predictive
variance of the resultant GP. Specifically, we use the entropy of the global
maximum distribution (GMD) from the posterior GP as the regularizer
that needs to be maximized. Since the GMD cannot be calculated ana-
lytically, we first propose a Thompson sampling based approach and then
a more efficient sequential Monte Carlo based approach to estimate it.
Later, we also show that the Expected Improvement acquisition function
can be used as a proxy for it, thus making the process further efficient.

1 Introduction

Bayesian optimization (BO) is a leading method for global optimization for
expensive black-box functions [1-3]. It is widely used in hyperparameter tun-
ing of massive neural networks [4], some of which can take days to train. It has
also been used for optimization of physical products and processes [5] where
one experiment can cost days, and experiments can also be expensive in terms
of material cost. However, there could be scenarios when a large number of
observations is available from priors or during the experiments. For example, in
transfer learning, where many algorithms [6,7] pool existing observations from
source tasks together for use in the optimization of a target task. Then even
though the target function is expensive, the number of observations can be large
if the number of source tasks is large and/or the number of observations from
each source is large. Another scenario where we may have a large number of
observations is when we deal with optimization of objective functions which are
not very costly. For example, consider the cases when BO is performed using
simulation software. They are often used in the early stage of a product design
© Springer Nature Switzerland AG 2021
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process to reduce a massive search space to a manageable one before real prod-
ucts are made. Whilst evaluation, a few thousands may be feasible, but millions
are not because each evaluation can still take from several minutes to hours. We
term this problem as a semi-expensive optimization problem. Such a problem
cannot be handled by the traditional global optimizers which often require more
than thousands of evaluations. Bayesian optimization will also struggle, because
its main ingredient, Gaussian process (GP) does not scale well beyond few hun-
dreds of observations. In this paper, we address the scalability issue of GP for
BO in such scenarios where a large number of observations appear naturally.

The scalability issue for Bayesian optimization has been previously addressed
in two main ways: 1) by replacing GP with a more scalable Bayesian model, e.g.
using Bayesian neural network [8] or random forest [9], or 2) by making sparse
approximation of the full GP. The latter is often desirable as it still maintains
the principled Bayesian formalism of GP. There are many sparse models in the
literature, such as fully independent training conditional (FITC) [10,11] which
induces pseudo inputs to approximate the full GP, and variational approxima-
tion (VFE) [12] which learns inducing inputs and hyperparameters by minimiz-
ing the KL divergence between the true posterior GP and an approximate one.
Another line of work involves approximating a stationary kernel function using a
sparse set of frequencies in its spectrum domain representation, e.g., sparse spec-
trum Gaussian process (SSGP) [13]. These methods suffer from either variance
underestimation (i.e. overconfidence) [10,13] or overestimation [12] and thus may
hamper BO as the balance between predictive mean and variance is important
to the success of BO. Recently, [14] has proposed variational Fourier features
(VFF), which combines variational approximation and spectral representation
of GP together and plausibly can approximate both mean and variance well.
However, it is difficult to extend VFF to multiple dimensional problems, since
a) the number of inducing variables grows exponentially with dimensions if the
Kronecker kernel is used, or b) the correlation between dimensions would be
ignored if an additive kernel is used. We also note that there has been a push to
scale GP inference to millions of data points using modern hardware [15]. How-
ever, it remains computationally demanding and vulnerable to kernel matrix
ill-conditioning, thus infeasible for practical use.

In this paper, we aim to develop a sparse GP model tailored for Bayesian
optimization. The main intuition that drives our solutions is that while being
overconfident at some regions is not very critical to BO when those regions have
both low predictive value and low predictive variance. However, being overcon-
fident in the regions where either predictive mean or predictive variance is high
would be quite detrimental to BO. Hence, a targeted fixing may be enough to
make the sparse models suitable for BO. An overall measure of goodness of GP
approximation for BO would be to look at the global maximum distribution
(GMD) [16,17] from the posterior GP and check its difference to that of the full
GP. Fixing overconfidence in the important regions may be enough to make the
GMD of the sparse GP closer to that of the full GP. The base method in our
work (SSGP) is known to underestimate variance, which is why we need max-



Sparse Spectrum Gaussian Process for Bayesian Optimization 259

imizing the entropy of GMD. Following this idea, we add entropy of the GMD
as a new regularizer that is to be maximized in conjunction with the marginal
likelihood so the optimal sparse set of the frequencies are not only benefit for
model fitting, but also fixes the overconfidence issue from the perspectives of the
Bayesian optimization.

We first provide a Thompson sampling approach to estimate the maximum
distribution for the sparse GP, and then propose a more efficient sequential
Monte Carlo based approach. The latter approach provides efficiency as many
Monte Carlo samples can be reused during the optimization for the optimal
frequencies. Later, we empirically show that expected improvement acquisition
function can be used as a proxy of the maximum distribution, significantly
improving the computational efficiency. We demonstrate our method on two syn-
thetic functions and two real world problems, one involving alloy design using a
thermodynamic simulator and another involving hyperparameter optimization
in a transfer learning setting. In all the experiments our method provides supe-
rior convergence rate over standard sparse spectrum methods. Additionally, our
methods also performs better than the full GP when the covariance matrix faces
ill-conditioning due to large number of observations placed close to each other.

2 Background

We consider the maximization problem x* = argmax, ¢y f(x), where f : & — R,
X is a compact subspace in R?, and z* is the global maximizer.

2.1 Bayesian Optimization

Bayesian optimization includes two main components. It first uses a probabilistic
model, typically a GP, to model the latent function and then constructs an
acquisition function that determines the next sample point.

Gaussian process [18] provides a distribution over the space of functions and
it can be specified by a mean function p(z) and a covariance function k(x, ).
A sample from a GP is a function f(x) ~ GP(u(x), k(x,z’)). Without loss of
generality, we often assume that the prior mean function is zero function and
thus GP can be fully defined by k(zx,z’). The squared exponential kernel and
the Matérn kernel are popular choices of k.

In GP, the joint distribution for any finite set of random variables are multi-
variate Gaussian distribution. Given a set of noisy observations D; = {x;, y; }!_,
where y; = f; +&; with g; ~ N(0,02), the predictive distribution of y;41 in
GP follows a normal distribution p(fi1|Ds, Zi11) = N ((Ts41), 02 (2441)) with
(@) = k7 [K+ 021] 'Y and 02 (@e41) = k(wig1, ®e41) kT [K+ 021] 'k,
where k = [k(zir1,@1), -, k(@ry1, )], K is the Gram matrix, and Y =
{yitizi-

The posterior computation of GP involves the inversion of the Gram matrix
and it is very costly for a large number of observations. Sparse approximation is
the usual way to reduce the computational cost with slight reduction in modeling
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accuracy. We focus on the SSGP for optimization purpose due to its simplifica-
tion and scalability, details of which is discussed in the following subsection.

Once the GP has been built to model the latent function, we can construct
acquisition functions by combining the predictive mean and variance of the pos-
terior GP to find the next query. Some popular acquisition functions include
Expected Improvement (EI) [1], and GP-UCB [19]. We use EI function since it
can work well without human efforts.

2.2 Sparse Spectrum Gaussian Process

Sparse Gaussian process often introduce inducing points to approximate the
posterior mean and variance of full GP whilst sparse spectrum Gaussian process
uses optimal spectrum frequencies to approximate the kernel function. Briefly,
according to the Bochner’s theorem [20], any stationary covariance function can
be represented as the Fourier transform of some finite measure o3p(s) with p(s)
a probability density as

k(s ;) = / 2mie” @) g2 5) s, (1)
]RD

where the frequency vector s has the same length D as the input vector . In
other words, a spectral density entirely determines the properties of a stationary
kernel. Furthermore, Eq. (1) can be computed and approximated as

2 m
2 2misTa; 27r7istj * | Uf T
k(i ;) = 07y {e (e ) } ~ Z‘:cos [27rsr (x; — mj)] (2)

o CORC) ®)

The Eq.(2) can be obtained by Monte Carlo approximation with symmetric
sets {s;, —s, }; sampled from s, ~ p(s), where m is the number of spectral

frequencies (Fourier features). Equation (3) holds with the setting
d(x) = [cos(2msT @), sin(2nsTx),--- , cos(2msl @), sin(2rws? )T, (4)

which is a column vector of length 2m containing the evaluation of the m pairs
of trigonometric functions at . The posterior mean and variance are derived as

((@i41) = d(@i1)TATIBY, 0P (@yy1) = 0p + 0nd(@es1) AT G(i41), (5)

where @ = [p(x1), ... ,¢(x¢)] € RZ™* and A = ST + ";Zi I5,,. We maximize
¥
the log marginal likelihood logp(Y'|©) =

— L[YTY ~YT'¢TA lpY] - L |A| + mlo mon _ ! og2ro? (6)
207, 28 & of 2 &M n

to select the optimal frequencies, where © is the set of all hyperparameters
in the kernel function and the frequencies. By using m optimal frequencies to
approximate the full GP, SSGP holds the computational complexity O(tm?),
and provides computational efficiency if m < t.
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3 Bayesian Optimization Using Regularized Sparse
Spectrum Gaussian process

The naive SSGP can be directly used for Bayesian optimization by replacing the
full GP. However, it leads to overconfidence on the GMD of interest in BO. We
illustrate the overconfidence of SSGP in Fig. 1a and b, where we compared the
GMD of SSGP to that of full GP and found the GMD of SSGP (the lower graph
of 1b) is narrower and sharper than that of full GP (the lower graph of 1a).

To overcome this overconfidence on GMD, we propose a novel sparse spec-
trum Gaussian process model tailoring for BO. Our approach involves maximiz-
ing a new loss function to select the optimal spectrum frequencies. We design
the loss function to include the marginal likelihood in the SSGP and a regular-
ization term, which has the goal of minimizing the difference between the GMD
of the full GP and that of the proposed sparse spectrum model. We denote our
proposed model as the regularized SSGP (RSSGP). For the sake of convenience,
we denote the GMD of the full GP as p(x*) and that of RSSGP as g(x*).

We first discuss the choice for our regularizer. Whilst the KL divergence
Dkr(q]||p) seems to be the solution to measure difference between two distri-
butions, it is not feasible in our cases as we cannot access p(x*). Nevertheless,
the property that the SSGP tends to be over-fitting implies that the entropy
of the GMD in SSGP would be smaller than that of the full GP. Therefore, we
can use the entropy of g(x*), or H[g(x*)] as the regularization term in the loss
function that needs to be maximized. In this way, the resultant sparse GP would
minimize the difference between ¢(x*) and p(a*). Formally, the loss function in
RSSGP is defined as

L =1logp(Y'|©) + AlogH [q(=")] , (7)

where the first term is the log marginal likelihood as Eq. (6) in the SSGP, the
second term is the entropy of g(x*) and A is the trade-off parameter. Now we
can obtain @ by maximizing the loss function

O = argmaxlogp(Y'|0) + MogH [g(x")] . (8)

The questions break down to that how g(x*) can be computed and how ¢(x*) is
relevant to spectrum frequencies. Next, knowing there is no analytical form for
q(x*), we propose two methods to estimate g(x*). One is Thompson sampling
and the other is a sequential Monte Carlo approach that takes less computa-
tion. We also propose a significantly computationally-efficient approximation by
treating the EI acquisition function as a proxy of g(x*).

3.1 Thompson Sampling Based Approach

We show how to approximate g(x*) by following the work of [17]. In Thomp-
son sampling (Tis)7 we use a linear model to approximate the function f(x) =
#(x)T0, where 8 «~ N(0,1) is a standard Gaussian. Giving observed data D,



262 A. Yang et al.

(a) full GP (b) SSGP (c) RSSGP

2 .
1 eame

0 2 4 6 8 10 2 2

/\ H[GMD] = 4.8471
4 6

]
|

[—P(x*) distribution
—— MC approximation

—P(x’) distribution
——TS approximation |

0

2

1

0
0.4 0.5 0.5
LA o

° 0.5 1 15 2 25 3 35 4 0.5 1 15 2 25 3 35 4

[ 2 3 6 8 10 x x

(d) RSSGP using EI as a (e) MC approximation (f) TS approximation
proxy

Fig. 1. (a)—(c) The visualization of overconfidence of SSGP on the GMD. The upper
graphs show 200 posterior samples of Sinc function, modeled by (a) full GP, (b) SSGP
with 30 optimal frequencies, and (c¢) RSSGP with 30 optimal frequencies. The red circle
denotes observation and the blue circle denotes the maximum location of a posterior
sample. The lower graphs illustrate the resultant GMD respectively. The H[GMD] is
the entropy of the GMD. We can see the GMD of RSSGP is closer to that of full GP
than SSGP. (d) RSSGP with 30 optimal frequencies by using the EI function as a proxy
to the regularization. Its GMD is at the middle and the EI function is at the bottom.
(e) MC approach and (f) TS approach to approximate the reference p(x™) distribution
within the same running time. (Color figure online)

the posterior of 8 conditioning D; is a normal N(A~'®”Y, A~152), where A
and @ have already been defined in Eq. (5). Note that ¢(x) is a set of random
Fourier features in the original TS while it is a set of m pairs of symmetric
Fourier features (Eq. (4)) in our framework.

To estimate the GMD in RSSGP, we let ¢; and 6; be a random set of m pairs
of features and corresponding posterior weights. Both are sampled according
to the generative process above and they can be used to construct a sampled
function fi(x) = ¢;(x)70;. We can maximize this function to obtain a sample
x;. Once we have acquired sufficient samples, we use histogram based method to
obtain the probability mass function (PMF) over all «*, denoted as F(*). Then
we estimate the entropy via H [¢(x*)] = — ZiL:1 F(zf)logF (x}), where L is the
number of samples. Since our RSSGP uses Fourier features ¢(x) to approximate
a stationary kernel function, and ¢(x*) also changes with applying different
Fourier features, therefore we can obtain the optimal features by maximizing the
combined term £ in Eq. (7). As a result, the selected optimal features in RSSGP
are not only take care of posterior mean approximation, but also maximize the
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entropy of g(*). This is the key why we choose SSGP as our base sparse method.
Sparse models like FITC and VFE are not capable with this idea since we cannot
relate their sparse sets to their GMDs due to insufficient research in this area.

We illustrate the GMD of RSSGP in Fig. 1c. We can see that it is closer
to the GMD of the full GP than that of SSGP. The GMDs in Fig.1la —d are
estimated via TS.

3.2 Monte Carlo Based Approach

The estimation of ¢(x*) by TS often requires thousands of samples, one of which
involves the inversion of a m x m matrix. Inspired by a recent work [21] employ-
ing sequential Monte Carlo algorithm to approximate the GMD, we develop an
significant efficient approach to estimate ¢(x*) in our RSSGP.

We start with n, particles at positions Z!,...,Z". Then we assign each
particle a corresponding weight w1, ..., wp,. Ultimately, these particles are sup-
posed to converge to the GMD. At each iteration, we can approximate the g(a*)

through kernel density estimation

~ Z:L:pl wik(wv :El)
- >ty wi 7

where k(x, ') is the approximated kernel function using m features as in Eq. (3).

All the particles are sampled from the flat density distribution v(x) = 8 at
the beginning, so that they are randomly distributed across the input space and
the constant 3 is nonzero. To obtain the maximum position, we will challenge
existing particles. We first sample a number of n. challenger particles from a
proposal distribution v’(x) and denote them as Z¢,,...,Zc,, . To challenge an
existing particle e.g. &', we need to set up the joint distribution over Z'and
all challenger particles, which is a multivariate Gaussian distribution. We can
subsequently generate a sample [f;, fo,,- -, fc, |7 from the joint distribution.
If the maximum value in the sample is greater than f;, we replace &' with the
corresponding challenger particle. Otherwise, we retain .

The challenger particle has an associated weight, which is often set as the
ratio of the initial distribution over the proposal distribution. To speed up con-
verge, we use the proposal distribution v/(2) that is the mixture of the initial
distribution and the current particle distribution as

9)

v'(x) = (1 - a)v(z) + ag(z* = x), (10)

where ¢(x* = ) is estimated through Eq. (9) and « is trade-off parameter (e.g.,
0.5 in our experiments). To generate a challenger particle :Eicl, we first select
one of the existing particles e.g. &' according to the particle weights. Based on
Eq. (10), we then can sample Z{, from k(x,Z') with the probability a or from
the flat density distribution v(x) with the probability 1—c«. Hence, the challenger
particle has a weight as

(11)
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Algorithm 1. Sparse spectrum Gaussian process for Bayesian optimization
l:ffor n =1, 2,...t do

2:  Optimize Eq.(8) to obtain hyerpararameters and optimal features,

3: Fit the data D; with RSSGP,

4:  Suggest the next point ;11 by maximising :+1 = argmaxagr(x|D:),

5:  Evaluate the function value y;41,
6

7:

Augment the observationsD; = D¢ U (Te41, Ye+1)-
end for

Based on this, we will challenge every particle once. After each round, the sys-
tematic re-sampling [22] will be employed to make sure that all particles have
the same weight for the next round. This process stops till sufficient rounds.
Thereafter, we calculate the PMF of the particles and then estimate its entropy.

The Monte Carlo (MC) approach does not require a large matrix inversion or
nonlinear function optimization for the purpose of ¢(z*) approximation. More-
over, during the optimization process, g(x*) does not vary a lot with the change
of @. Therefore, most of the particles can be reused in the process, significantly
reducing computation cost.

We demonstrate the superiority in Fig.1. We denote the GMD estimated
from 50,000 TS samples of a full GP posterior on a 1d function as our reference
p(x*), showing as blue lines in Fig. le and f. We give the same running time
(0.5s) to T'S and MC approaches to approximate the reference p(x*) respectively,
showing as red lines in the figures. We can see that our MC approach successfully
approximate the reference p(x*) while TS is not desirable.

3.3 Expected Improvement Acquisition Function as a Proxy

To further reduce the computation, we propose to use EI function as a proxy for
g(x*). This choice is reasonable in sense that they both measure the belief about
the location of the global maximum, It can be seen from Fig. 1d that the GMD
of full GP and the EI resembles closely. We can expect that this approximation
setting has a similar performance of capturing ¢(x*) information as RSSGP
with TS does, which is justified in Fig. 1c—d. Since EI is a function, we firstly
use histogram based method to acquire the PMF of EI and then calculate the
entropy. In most of the cases we find the approximation works well.

We use stochastic gradient descent to optimize Eq. (8) although alternatives
are available. The proposed method is described in Algorithm 1.

4 Experiments

In this section, we evaluate our methods on optimizing benchmark functions, an
alloy design problem and hyperparameter tuning of machine learning problems
by transfer learning. We compare the following probabilistic models used for
Bayesian optimization: 1. Full Gaussian process (Full GP), 2. Sparse spectrum
Gaussian process (SSGP), 3. Our method 1: RSSGP using MC estimation for
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q(x*) (RSSGP-MC), 4. Our method 2: RSSGP using EI approximation for
q(x*) (RSSGP-EI), 5. VFF using additive kernel (VFF-AK), 6. VFF using
Kronecker kernel (VFF-KK)

In all settings, we use EI as the acquisition function in BO and use the opti-
miser DIRECT [23] to maximize the EI function. We include both RSSGP-MC
and RSSGP-EI in synthetic experiments. We later only use RSSGP-EI due to its
computational advantage and the similar performance with RSSGP-MC. Given
d-dimensional optimization problems and m frequencies, the size of inducing
variables would be (2m) * d for VFF-AK and (2m)? for VFF-KK [14]. Thus,
VFF-KK becomes almost prohibitively expensive for d > 2 and a large m.

4.1 Optimizing Benchmark Functions
We test on the following two benchmark functions:

— 2d Ackley function. The search space is [—10, 10]?;
~ 6d Hartmann function. The search space is [0, 1]5.

We run each method for 50 trials with different initializations and report
the average simple regret along with its standard error. The simple regret
is defined as r; = f(z*) — f(x™), where f(x*) is the global maximum and
(&) = max ,¢cqq,,,) f() is the best value till iteration ¢. We use the squared
exponential kernel in our experiments. In terms of kernel parameters, we use the
isotropic length scale, p; = 0.5,Vl, signal variance UJ% = 2, and noise variance
02 = (0.01)2. We empirically find that the proposed algorithms perform well
when the regularization term has the more or less scale with the log marginal
likelihood. Hence, we set the trade-off parameter A = 10 for all of our methods.

For the 2d Ackley function, we start with 20 initial observations and use 20
frequencies in all sparse GP models. The experimental result is shown in Fig. 2a.
The Full GP setting performs the best, and both of our approaches (e.g., RSSGP-
MC and RSSGP-EI) perform better than SSGP. RSSGP-EI performs slightly
worse than RSSGP-MC since it only provides a rough approximation to the true
global maximum distribution but holds simplicity. VFF-KK performs well in a
low dimensional problem whilst VFF-AK performs worst. The use of additive
kernel which does not capture the correlation between dimensions may result in
a bad performance.

For the 64 Hartmann function, we start with 150 initial observations and
use 50 frequencies in all spectrum GP models. Similar results as the 2d Ackley
function can be seen in Fig.2b. We did not run VFF-KK on this case due to a
huge size of inducing variables mentioned before.

4.2 Alloy Optimization

In the joint project with our metallurgist collaborators, we aim to design an alloy
with a micro-structure that contains as much fraction of FCC phase as possible.
We use a thermodynamic simulator called ThermoCalc [24]. Given a compo-
sition of an alloy, the simulator can compute thermodynamic equilibrium and
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Fig. 2. (a)—(b) Simple regret vs iterations for the optimization of benchmark functions.
The plots show the mean of minimum reached and its standard error at each iteration.
(c) Alloy optimization at 15 dimensions. The plot shows the mean of maximal FCC
reached and its standard error at each iteration. (d)—(f) Hyperparameter tuning for
the SVM by transfer learning. We use 2700 observations from source tasks and 3
observations from target task. The plots show the mean of maximal accuracy reached
till the current iteration and its standard error.

predict the micro-structure of the resultant alloy using CALPHAD [25] method-
ology. In this experiment, the search space is a 15 dimensional combination of the
elements: Fe, Ni, Cr, Ti, Co, Al, Mn, Cu, Si, Nb, Mo, W, Ta, C, N. For each com-
position, ThermoCalc provides the amount of FCC in terms of volume fraction.
The best value of volume fraction is 1. Since ThermoCalc takes around 10 min
per composition to compute volume fraction, it fits perfectly in our notion of
semi-expensive functions. We use 500 initial points and 50 frequencies and run
5 different trials with different initial points. The results in Fig.2c shows BO
with RSSGP-EI performs the best over all three methods. We found that the
covariance matrix of the full GP quickly became ill-conditioned in the presence
of a large number of observations, and hence, fails to be inverted properly, being
ended up harming the BO.

4.3 Hyperparameter Tuning by Transfer Learning

Transfer learning in the context of Bayesian optimization pools together obser-
vations from the sources and the target to build a combined covariance matrix
in the GP. In this case when the number of sources is large or/and the number
of existing observations per source is large, the resultant covariance matrix can
be quite huge, demanding a sparse approximation. We conduct experiments for
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tuning hyperparameters of support vector machine (SVM) classifier in a transfer
learning setting. We use the datasets: LiverDisorders, Madelon, Mushroom and
BreastCancer from UCI repository [26] and construct three transfer learning sce-
narios. For each scenario, we use 3 out of 4 datasets as the source tasks, and the
rest one as the target task. We randomly generate 900 samples of hyperparam-
eters and the corresponding accuracy from each source task. We also randomly
generate 3 initial samples from the target task. As a result, we have 2703 initial
observations to build the combined covariance matrix. Following the framework
[27], where the source points are considered as noisy observations for the target
function, we add a higher noise variance (3 times of that in target observations)
to 2700 source observations. This allows us to use the same covariance function
to capture the similarity between the observations from both source and target
tasks. We optimize two hyperparameters in SVM which are the cost parame-
ter (C) and the width of the RBF kernel (). The search bounds for the two
hyperparameters are C' = 10* where A\ € [~3,3], and v = 10¥ with w € [-3,0],
respectively, and we optimize A and w. We run each scenario 30 trials with dif-
ferent initializations. The results are showed in Fig. 2d—f. We can see that in all
scenarios BO with RSSGP-EI outperforms the naive SSGP. We note that the
covariance matrix of full GP does not suffer from ill-conditioning since the source
observations have a higher noise. Therefore, we can see the Full GP case works
well from the results.

5 Conclusion

In this paper we propose a new regularized sparse spectrum Gaussian process
method for Bayesian optimization applications. The original SSGP formulation
results in an overconfident GP. BO using such GP may fare poorly as the cor-
rect uncertainty prediction is crucial for the success of Bayesian optimization.
We propose a modification to the marginal likelihood in the original SSGP by
adding the entropy of the GMD induced by the posterior GP as a regularizer.
By maximizing the entropy of the GMD along with the marginal likelihood, we
alm to obtain a sparse approximation which is more aligned with the goal of
BO. We show that an efficient formulation can be obtained by using a sequential
Monte Carlo approach to approximate the GMD. We also experimented with
the expected improvement acquisition function as a proxy for the GMD. Exper-
iments on benchmark functions and two real world problems show superiority of
our approach over the vanilla SSGP method at all times and even better than
the usual full GP based approach at certain scenarios.
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Abstract. Document-level relation extraction is a challenging task in
Natural Language Processing, which extracts relations expressed with
one or multiple sentences. It plays an important role in data mining
and information retrieval. The key challenge comes from the indirect
relations expressed across sentences. Graph-based neural networks have
been proved effective for modeling structural information among the doc-
ument. Existing methods enhance the graph models by using either the
attention mechanism or the iterative path reasoning, which is not enough
to capture all the effective structural information. In this paper, we pro-
pose a densely connected graph attention network based on iterative
path reasoning (IPR-DCGAT) for document-level relation extraction.
Our approach uses densely connected graph attention network to model
the local and global information among the document. In addition, we
propose to learn dynamic path weights for reasoning relations across sen-
tences. Extensive experiments on three datasets demonstrate the effec-
tiveness of our approach. Our model achieves 84% F1 score on CDR,
which is about 16.3%—22.5% higher than previous models with a signifi-
cant margin. Meanwhile, the results of our approach are also comparably
superior to the state-of-the-art results on the GDA and DocRED dataset.

Keywords: Relation extraction - Densely connected graph attention
network - Iterative path reasoning

1 Introduction

Relation extraction (RE) aims to identify the relations of entities from the plain
text. It is important for many downstream NLP tasks, such as data mining
and information retrieval [21]. Most previous RE approaches [11,19,26] extract
relations within one sentence. However, it is also common that two entities may
express some relation across sentences [2]. Recently, document-level RE [2,25]
that requires intra- and inter-sentence RE has gained increasing attention. The
key challenge is to extract relations indirectly expressed across several sentences.
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Input:

[1]Washington Place (William Washington House) is one of the first homes built by freed slaves after the
Emancipation Proclamation of 1863 in Hampshire County, West Virginia, United States.

[2]Washington Place was built by William and Annie Washington in north Romney between 1863 and 1874
on land given to Annie by her former owner, Susan Blue Parsons of Wappocomo plantation.

Intra-sentence RE: Inter-sentence RE:
Entity: Emancipation Proclamation, United States Entity: Susan Blue Parsons, United States
Relation: country Relation: country of citizenship
Supporting sentences: [1] Supporting sentences: [1]v [2]

Fig. 1. Example of document-level RE from DocRED [25].

We further illustrate the challenge of inferring the different types of relations
by giving an example in Fig. 1. There are two sentences in this excerpt, in which
entities are represented with different colors. The relation between Emancipation
Proclamation and United States can be identified through the first sentence,
which is an example of intra-sentence RE. However, we need to consider two
sentences together to infer the relation between entities Susan Blue Parsons and
United States. These two entities are connected through entity Washington Place.
By considering the relatedness of Susan Blue Parsons and Washington Place in
the first sentence and the connection of United States and Washington Place
in the second sentence, our approach can infer the indirect relation expressed
between Susan Blue Parsons and United States.

Previous approaches tackle the document-level RE with sequential methods
[4,10] or graph-based neural network models [17,20]. The graph-based neural
networks are capable of modeling structural information between sentences over
long distances [6,17], so that they can perform better than sequential methods.
Recent approaches further enhance the graph-based models by using convolution
network [28], attention mechanism [13] or iterative path reasoning algorithms [2].
However, they only capture the structural information from one aspect and fail
to model all effective connections within the graph. In addition, the methods
described above either rely on an external parser to learn the attention among
different entities, which suffer errors from the parser [13] or regard the weights
of different rounds in iterative path reasoning as the same, which should be
considered contextually [2]. Intuitively, the more distant path information should
have less impact when performing path reasoning.

To address above challenges, we propose a novel approach - IPR-DCGAT:
an iterative-path-reasoning based densely connected graph attention network
model, for document-level RE. We construct the heterogeneous graph for each
document based on three types of nodes, i.e., entities, mentions and sentences.
To model the local and global information of the graph, we propose the densely
connected graph attention network (DCGAT) to compute attention weights of
adjacent nodes when updating node representations. Besides, our approach fur-
ther captures the structural information across sentences through a multiround
iterative path reasoning algorithm. We also empirically find that including the
entity type and co-reference information is essential for inter-sentence RE.
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We conduct extensive experiments on three datasets for document-level RE.
Our approach achieves new state-of-the-art results on two public biomedical-
domain datasets - CDR [9] and GDA [24] as well as the result of our method
is comparably superior to other current state-of-the-art methods in a general-
domain dataset DocRED [23]. Our contributions are summarized as follows:

— We propose IPR-DCGAT - a novel approach for document-level RE, which
combines the advantages of both attention mechanism and path reasoning for
capturing structural information of the document graph.

— We innovatively apply dense connectivity to graph attention network in het-
erogeneous graph for better modeling useful information. Meanwhile, we
investigate some other related structures such as GCN to verify the valid-
ity of our structure.

— Our iterative path reasoning algorithm with varied path weights further
enhance relation inferring across sentences. Experiments show that using dif-
ferent weights in multiple iterations is effective.

2 Related Work

Previous researches on RE mainly focus on the extraction at the intra-sentence
RE. Researchers have proposed a series of supervised approaches such as CNN
[11], CNN with max-pooling [27]. In recent years, graph neural network attracts
tremendous attention and has been applied in various NLP applications such
as RE. Miwa et al.(2016)’s proposed model [12] depends on external grammar
tools to construct the shortest dependency path (SDP) between two entities in
a sentence. Then Christopoulou et al.(2018) [3] further improve performance by
a walk-based graph independent of external grammar tools.

However, such kind of methods are hard to be performed well in inter-
sentence RE, because this task requires better extraction of structure feature
[2,13]. Recently, many methods based on graph have also been developed to
address it. The original models [6,17] consider words as nodes and the con-
nections between them as edges while updating node representations during
training. Then Christopoulou et al.(2019) [2] propose an edge-oriented neural
network model. The model constructs heterogeneous types of nodes and edges
to generate graph of the document, so as to infer the relation between entity
pairs through updating edge representations. The researchers [13] then integrate
the meta dependency paths using external tools to improve performance. Mean-
while, Zeng et al.(2020) [28] also innovatively propose the double graph based
reasoning architecture from another perspective of heterogeneous graph struc-
ture. There are also some models [15,29] that take two different submodels to
improve performance according to the characteristics of different types of RE.

The existing works have some limitations. Some approaches [2,13] extract
structured information from only one aspect such as structured attention or
iterative algorithm. Some other models [10,29] use different models for inter-
and intra-sentence RE with external knowledge and tools. Combining the sur-
rounding information from the two perspectives by DCGAT and iterative path



272 H. Zhang et al.

reasoning algorithm, our model architecture has a stronger expression ability to
collect and synthesize inter-sentence information.

3 Proposed Model

[1]Washington Place (William Washington House) is one of the first homes ... after the Emancipation Proclamation of 1863 in ... United States.
[2]Washington Place was built by William and Annie Washington ... on land given to Annie by her former owner , Susan Blue Parsons ... .
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Fig. 2. The overall model architecture. The model consists of four modules, i.e.,
Encoder Layer for encoding tokens by each sentence, Node Construction for construct-
ing the nodes of graphs, Edge Construction for edges similarly and Inference Layer.

Figure 2 shows the overall framework of our model. We will elaborate on the
details of each module later. Significantly, the key to document-level RE is how
to extract structured information. Attention Layer and Weighted Walk Layer in
our model can enhance information extraction from two aspects.

3.1 Task Modeling

Formally, we define the task as follows. Given a document, it consists of n sen-
tences D = {s1, S2,..., S}, each sentence contains different numbers of words
s; = {w1, wa, ..., wqli € [1,n]}. Meanwhile, the document contains multiple enti-
ties E = {e1, e, ...,€;} , each entity e; has k mentions e; = {my, ma,...,myli €
[1,4]}. A relation list R = {r1, 79, ...,r; } is also provided. We should infer the rela-
tion of specified entity pair (e;, e;) in the relation list R. In order to express the
difference between entities and mentions, we give an example that as “Obama”
is a unique concept-level entity, it can be mentioned in different ways, such as
“President of the United States”, “Obama”, “Michelle’s husband”, and etc.

3.2 Encoder Layer

Firstly, we encode the sentences in the document via a encoder to obtain each
word vector w; combined with the context. In this paper, we adopt BiLSTM
[18] as the encoder. The inputs of the encoder respectively are word embedding
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d,,, co-reference embedding d,,, entity type embedding d.,. d,, marks different
mentions to the same entity while d., maps the entity categories (e.g. PER,
LOC) of the words. We concatenate these three kinds of embeddings, denote
the intermediate variable as y; = [dy,;dp,;de,] where the square bracket [ ; ]
shows the concatenation of vectors. Then ~; is fed into BiLSTM to get the final
representation w; for each word as the following equation:

higepe = LSTMiese(hig1) tefes Vi)
hi,right - LSTMTight(h(i—l)Jighta ’-YZ) (1)
Wi = [hygere; Ny rignt]

It’s worth noting that we directly fixed them after initialization in this work.

3.3 Node Construction

After the word vectors W = [wy, wa, ..., w,] of the document are obtained, we
construct the heterogeneous graph [2] with different kinds of nodes and edges of
the document. Firstly, we conduct Node Construction.

Initial Node Layer. There are three types of nodes in our heterogeneous
network, i.e., sentence nodes s, mention nodes m, and entity nodes e, while
the corresponding representations are denoted as ng, n,,, n., respectively. The
representation of a mention node is the average of the words that form the
mention. Sentence nodes are in the same way. The representation of an entity
node is computed as the mean of the representations of mentions which belong to
the specified entity. To distinguish between the three node types, we concatenate
type embedding t., t,,, ts at the end of the original representation. Thus we give
the final representations for the three types of nodes:

n, = [a‘ngiEm(wi);tm]v ne = [a‘ngiEe(nm); te]’ ns = [anw,v,GS(Wi);ts] (2)

Attention Layer. For document-level RE, especially inter-sentence RE, the
association between nodes is particularly important. Inspired by DCGCN [5],
we introduce an Attention Layer to update the node representation such that it
contains more information about its neighbors.

The inputs of Attention Layer are adjacency matrix A € R™ ™ and the
initial node representations N’ = {n/, nj, ...,n/,|n} € R%}. The outputs are the
updated values N = {ny,ns,...,n,|n; € R?}. The principle of adjacency matrix
is as follows [2]: any two sentence nodes; any two mention nodes in the same
sentence; the mention node and entity node when the former is an instance of
the latter; the mention node and sentence node when the words of mention are
contained in the sentence; the entity node and sentence node when an instance
of the entity appears in the sentence. The information can be obtained directly
or indirectly from the data set. We consider that these node pairs are related
and concatenate to one at the corresponding position of adjacency matrix A.
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Dense connectivity allows nodes to receive information not only from the
latest layer, but also from all the preceding layers. Meanwhile, each intermediate
layer is specified to a very small size for learning different sets of feature maps
at different locations [5]. Thus, assume that Attention layer has t sub_layers,
let hf € R%emr be the output and gi? € RIF(F=)xdiemp he the input for the
i'* node in the k" sub_layer where dyem, = d/t. Particularly, g} is the initial
node representation. g¥ is the concatenation of initial node representation and
the outputs of the previous hidden layers {h;, h?, ..., hf_l} as shown below:

g = [nj;h};..;hi ')k € [2,4] (3)

Then vector a¥ € R2dtemr and weight matrix W¥ € Rtemp X [dt(k=1)xdremy]
are introduced for implementing self-attention mechanism. We compute the coef-
ficient efj to represent the importance of the j* node to the i*" node as follows:

ey = a* [Wrgl; Whej] (4)

It is worth noting that if A;; is 0, the coefficient efj should be set to 0. The
resulting coefficient is then nonlinearly activated by LeakyRelu and normalized
by softmax to get the final coefficient afj between the % and j* node. The
specific equation is as follows:

ok — eXp(LeakyRelu(efj)) 5
7 Ynmerexp(LeakyRelu(ef )

where 4/~ expresses the node set.
Thus we can get the new node representations hf € Rem» for the ™" node:
hi = o(Zje.ral;Whel) (6)
where o expresses the activation function.
Finally, we add the concatenation of all outputs of the sub_layers and the
initial node representation together, then take a linear conversion to obtain the
updated node representation. W¢ is the learned weight for linear conversion.

n; = W°([hj;h?;...;h!] + n)) (7)

3.4 Edge Construction

Next, we build edge construction with the updated node representations.

Initial Edge Layer. We construct the edges according to heuristic rules for
constructing adjacency matrix. An edge is added between adjoining nodes in
adjacency matrix A. Edge representation is the concatenation of the represen-
tations of the corresponding node pair. Our edges are divided into five types
based on their node types, i.e., Mention-Mention edge E,,,,, Mention-Sentence
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edge E,,s, Mention-Entity edge E,,., Sentence-Sentence edge E4; and Entity-
Sentence edge E.;. The Entity-Entity edge E.. will be generated in the next
subsection Weighted Walk Layer. Distance between different mentions in the
same sentence or different sentences plays a role in RE, so the corresponding
edge adds embedding d;,.,, or dss. The edge representations are as follows:

E. = [ne;ns]; E,. = [nm;ns]; E, e = [nm;ne];

(®)

Emm = [nm; Ny dmm]a Ess = [1’13; ng; dss]

Weighted Walk Layer. Attention Layer is mainly responsible for fusion of
information between node and its first-order neighbor nodes, however, it is nec-
essary to extract further information for inter-sentence RE at the document
level. Therefore, we obtain more information in Weighted Walk Layer inspired
by Christopoulou et al.(2019) [2]. We divide it into two stages, generating stage
and aggregating stage.

— Generating Stage Denote the intermediate nodes between of the i** and

j*" node as Niemp = {n1,1n2,...0n,, }. We utilize edge E;;, and Ey; to generate
the new representation of edge E;7. It is implemented by einsum operation
® and a learned matrix W according to the equation below:

E?:je’w == Enk ENtempU((WEik) @ Ek]) (9)

— Aggregating Stage After obtaining new representation, we take linear
interpolation between old and new representation using coefficient 3 to control
the contribution of old one. The final representation is computed as follows:

E;; = BE; + (1 - B)E;Y (10)

Intuitively, we analyse the relation of an entity pair usually starting with
content that is close to the entity pair. The information obtained from a long
distance is relatively insignificant in the final generated edge representation.
That is to say, the weight W of different iteration rounds should be different,
whereas the previous work [2] was handled with the same weight.

3.5 Inference Layer

We incorporate a softmax classifier to predict relation between entity pair (e;, e;)
using the generated edge Ene,.,,nej by the following equation:
y = softmax(WE,,, ., +b) (11)

J

where W is the weight and b is the bias. We adopt the cross entropy loss function.
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4 Experiment

Dataset. Our experiment employs two datasets in biology spheres. One is a
human annotated dataset CDR [9] while another is a distantly supervised dataset
GDA [24]. We also apply one generic dataset DocRED [25] built by Wikipedia
and Wikidata. The statistics for these datasets are shown in Table 1.

Implementation Details. Firstly, we utilize the GENIA Sentence Splitter4
and GENIA tagger to get the processed data following the paper [2]. During
training, we use early stopping to identify the best training epoch and employ
Adam [7] to optimize our model with 8; = 0.9, B2 = 0.999. Learning_rate is
0.001, weight deacy is 0.0001 and gradient clipping is 10. CDR, GDA, DocRED
employ PubMed pre-trained embeddings [1], randomly initialized word embed-
dings, and GloVe embeddings [16] respectively. In Weighted Walk Layer, the
value of the coefficient (3 is different for CDR, GDA and DocRED. The first
two are 0.8, while DocRED is 0.9. Finally, due to the uneven distribution of
DoCRED, we utilize weighted cross entropy. Table2 shows some other hyper-
parameters.

Table 1. Statistics for datasets. Table 2. Hyper-parameters list.
CDR | GDA DocRED Hyperparameters name Value
Documents | 1,500 | 30,192 | 5,053 Batch size 3
Relations |2 2 97 DCGAT/DCGCN dropout 0.5
Entities 10,225 | 146,198 | 98,610 Classifier dropout 0.3
Mentions | 28,848 | 557,128 | 132,375 Co-reference/distance dimension | 10
Facts 3,116 | 46,343 | 63,427 Node/Entity type dimension 10
Inference iterations
DCGAT/DCGCN layers

Evaluation Metrics. We evaluate the performance of CDR and GDA on
the overall, intra- and inter-sentence RE in terms of F1, precision, recall values
which are marked as F'1, P and R, respectively. For DocRED, we report the F1
excluding those relational facts shared by the training and dev/test sets [25],
denoted as Ign F1. Different metrics are adopted to facilitate direct comparison
with previous experimental results of these data sets. For different datasets, we
also list current state-of-the-art results and the baselines when the datasets are
presented. The experimental results fluctuate within a small range. We repeat
each experiment five times and report the highest value. The results of the test
set in DocRED are submitted online'. We also make the source code available?.

! https://competitions.codalab.org/competitions/20717.
2 https://github.com/zhanghongya0727 /TPR-DCGAT.
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5 Results

Overall Comparison

Table 3 depicts the performance of our proposed model (IPR-DCGAT) on various
datasets. In Table 3(a), our model can achieve 84.0% F1 on test set, outperform
all available models by a wide margin of 16.3%—22.5% on the whole. F1 on Intra-
and inter-sentence improve 17.6% and 24.7% respectively which proves that our
model is not only effective for intra-, but also more effective for inter-sentence
RE. We also report the results on GDA and DocRED. Compared with CDR,
GDA is larger but the proportion of inter-sentence RE is smaller [2]. Thus, the
effect of Attention Layer and the iterative algorithm for inter-sentence RE will
be compromised. However, it still exceeds the best results available by 1.1% as
shown in Table 3(b). Table 3(c) shows the comparisons with baseline and state-
of-the-art models on DocRED. Significantly, it is a new relation(NA) if entities
express no specific relation, and NA accounts for up to 97%. In such a complex
situation, our model obtains a 4.4%/3.9% F1 improvement compared with the
best baseline(Contex Aware). Even our model exceeds the performance of the
model using Bert by 1.3%/1.4%, which shows strong capturing capability.

Table 3. Main results on various datasets
(a) Results on the test set of CDR

model Overall{%} Intra {%} Inter{%}
P R F1 P R F1 P R F1
Zheng et al.[29] * 56.2 | 67.9 | 61.5 - - - - - -
Nguyen et al.[14] 57.0 | 68.6 | 62.3 - - - - - -
Peng et al.[15] * 62.1|64.2|63.1 | - - - - - -
Christopoulou et al. [2] | 62.1 | 65.2 | 63.6 | 64.0 | 73.0 | 68.2 | 56.0 | 46.7 | 50.9
Nan et al. [13] - - 648 | - - |es8.9| - - |s88.1
Li et al.[10] * 60.8 | 76.4 | 67.7 | 67.3 | 52.4 | 58.9 - - -
IPR-DCGAT 89.6 | 79.0 | 84.0 | 91.2 | 82.2 | 86.5 | 85.4 | 71.5 | 77.8
The methods with * utilize additional training data or tools.
(b) Results on the test set of GDA (c) Results on DocRED
Model F1{%} Model Dev / Test{%}
Overall | Intra | Inter F1 IngF1
EoG [2] 81.5 | 85.2 | 50.0 CNN [25]1 43.5/42.3 | 41.6/40.3
EoG(Full) [2] 80.8 | 84.1 | 54.7 BiLSTM [25] 50.9/51.1 | 48.9/48.8
EoG(Nolnf) [2] 74.6 79.1 | 49.3 Contex Aware [25]F | 51.1/50.7 | 48.9/48.4
LSR [13] 82.2 | 85.4 | 51.1 BERT [23] 54.2/53.2 -
IPR-DCGAT 82.6 85.9 | 52.9 HIN-GloVe [21] 53.0/53.3 | 51.1/51.2
LSR-GloVe [13] 55.2/54.2 | 48.8/52.2
GAIN-GloVe [28] | 55.3/55.1 | 53.1/52.7
IPR-DCGAT 55.5/54.6 | 52.1/52.8

The results with | are baselines from [25].

Analysis on Attention Layer. Firstly, we report the performances of several
contrastive settings in Table4, i.e., IPR-BASELINE, IPR-GCN, IPR-GAT, IPR-
DCGCN. They do not include Attention Layer or realize it separately through



278 H. Zhang et al.

GCN [8], GAT [22] and DCGCN [5]. The performances of IPR-GCN and IPR-
DCGCN are 0.9% and 0.7% lower than IPR-GAT and IPR-DCGAT. This indi-
cates that assigning different weights to each node based on the features of its
neighbors is effective for that the strength of association between different nodes
is generally not the same empirically. Meanwhile, almost all results are better
than BASELINE, which proves that the effectiveness of Attention Layer. IPR-
DCGAT is 0.6% higher than IPR-GAT and IPR-DCGCN is 0.8% higher than
GOCN. It shows dense connectivity can learn a better structural representation [5].

Table 4. Analysis on attention layer

Model Overall{%} Intra {%} Inter{%}

P R F1 |P R F1 P R F1
IPR-DCGAT 89.679.0 84.0 |91.2/82.2|86.5 |[85.4|71.5|77.8
IPR-BASELINE | 89.2 | 77.9|83.1 |90.0|83.0 86.4 | 86.8|65.8|74.9

IPR-GCN 86.279.2|82.5 |87.8|84.0/85.8 |81.968.0|74.3
IPR-DCGCN 90.0 | 77.5|83.3 |91.5|82.586.8 |85.7]|65.8|74.5
IPR-GAT 89.578.1/83.4 91.3/83.1|87.0 84.4|66.1|74.2

Analysis on Weighted Walk Layer. The impact of Weighted Walk Layer is
shown in Fig. 3. We do not add Attention Layer here to avoid confusing effects.
Adding Weighted Walk Layer can improve the performance by 3.8%. Compared
with the inspired method [2] which used the same learnable parameter , we
believe that the contents learned in different iterations are diverse. It has been
proved effective that the improved model has a 0.9% higher F1 and the result
of inter-sentence RE is improved more than that of inter-sentence RE.

Table 5. Ablation analysis on CDR

g 85.7 86.4
%0 79.8 822 83.1 84

. =: 22| Model F1{%}
£ Overall | Intra | Inter
S [PR-DCGAT | 84.0 | 86.5  77.8
b _distance | 83.3 | 86.4 | 75.5

Overall Inter Intra - entity type 82.4 86.0 73.2

#IPR-DCGAT(no Walk Layer) ® [PR-DCGAT(same parameters) ® [PR-DCGAT - co-reference | 68.8 73.0 57.8

Fig. 3. Analysis on weighted walk layer - all 67.3 724 | 543

Ablation Study. For ablation experiments, weighted Walk Layer and Atten-
tion Layer have been discussed in detail above. For other components, it can
be seen from Table5 that removing the distance, entity type and co-reference
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embedding will lead the worse results. Each component plays a greater role in the
inter- than intra-sentence RE. Entity type embeddings can cause a 0.5% drop
in intra- while a 4.6% drop in inter-sentence. The effect of co-reference embed-
dings surprisingly brings 13.5%/20.0% improvements. This phenomenon only
appears in CDR, while other datasets are not so obvious in the same experimen-
tal configuration. It also leads to the most significant improvement in CDR. We
consider the reason is that CDR is a smaller, manually annotated data set with
fewer types of relations and a balanced distribution. The above aspects cause
the effect brought by the addition of co-reference embeddings will be relatively
obvious. For GDA, the large size makes the impact of data scale on the result
more important. Distant supervision also introduces some noise. While the co-
reference information has already been applied in previous papers referencing
DocRED. The performance degradation caused by removing all components is
less than the sum of removing one of them separately, indicating that there may
be overfitting.

[1]Neuropsychiatric behaviors in the MPTP marmoset model of Parkinson's disease.

[5]The levodopa - treated MPTP - lesioned marmoset was used as a model of neuropsychiatric symptoms in PD patients.

[7] METHODS : Marmosets were administered 1 - methyl - 4 - phenyl - 1,2, 3, 6 - tetrahydropyridine for five days , resulting
in stable parkinsonism.

[8]Animals were evaluated for parkinsonian disability (...).

[1]A case of isotretinoin embryopathy with bilateral anotia and Taussig - Bing malformation .
[2]We report a newborn infant with multiple congenital anomalies ( ... ) due to exposure to isotretinoin within the first trimester .

[1]Cardiovascular dysfunction and hypersensitivity to sodium pentobarbital induced by chronic barium chloride ingestion .
[11]Overall, (...)suggest the existence of a heretofore undescribed cardiomyopathic disorder induced by chronic barium exposure

Fig. 4. Some errors in CDR

Case Study. Finally, we summarize several typical errors in Fig. 4. From the
first one, entity parkinsonian disability does not appear in a single sentence with
any other entity, making it difficult to capture the connection between them.
The second is the confusion between entities. Entity isotretinoin embryopathy
and isotretinoin are two completely different entities whose words are similar.
The last type is that the distance between entity pair is too long. The ability to
capture structured information will be weakened with the increase of distance.

6 Conclusion

We introduce a novel heterogeneous graph network (IPR-DCGAT) for better
document-level RE. It not only adopts DCGAT to update representations of
nodes, but also update the representations of edges with a two-step iterative algo-
rithm. This model outperforms new state-of-the-art results in various datasets.
We will further improve the model to solve some problems mentioned above.
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China (Grant No.2018YFB0204300).
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Abstract. This research proposes a global forecasting and inference
method based on recurrent neural networks (RNN) to predict policy
interventions’ causal effects on an outcome over time through the coun-
terfactual approach. The traditional univariate methods that operate
within the well-established synthetic control method have strong linear-
ity assumptions in the covariates. This has recently been addressed by
successfully using univariate RNNs for this task. We use an RNN trained
not univariately per series but globally across all time series, which allows
us to model treated and control time series simultaneously over the
pre-treatment period. Therewith, we do not need to make equivalence
assumptions between distributions of the control and treated outcomes
in the pre-treatment period. This allows us to achieve better accuracy
and precisely isolate the effect of an intervention. We compare our novel
approach with local univariate approaches on two real-world datasets
on 1) how policy changes in Alcohol outlet licensing affect emergency
service calls, and 2) how COVID19 lockdown measures affect emergency
services use. Our results show that our novel method can outperform the
accuracy of state-of-the-art predictions, thereby estimating the size of a
causal effect more accurately. The experimental results are statistically
significant, indicating our framework generates better counterfactual pre-
dictions.

Keywords: Global forecasting - Causal inference - Counterfactual
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1 Introduction

Causal inference determines causal relationships of interventions and effects, and
measures the impact of interventions. It is important in situations where fully
randomized control trials (A/B testing) are too costly, ethically questionable,
or otherwise not possible. The insights drawn from causal inference analysis are
useful to understand why and how effects happen, and enable targeted inter-
ventions and robust predictions. Causal inference has important applications in
policy-making, as well as in marketing, advertisement targeting, and other areas.

The base idea is that an intervention affects only part of the overall amount
of observable instances, known as the treated instances, so that the remaining
instances can be used as the control group that is not impacted by the interven-
tion. For example, a policy change (e.g., about COVID19 lockdowns, Alcohol
licenses issued, or others), could have affected only certain counties, not oth-
ers. This is the base idea behind the Rubin Causal model [24] and is called
the “potential outcome” approach. In this approach, the difference between the
counterfactual prediction and the true values is considered as an estimation of
the causal effect. Here, the counterfactual prediction refers to the prediction
under the assumption of absence of intervention, for treated instances in the
post-intervention period.

Using the Rubin Causal model premise, numerous strategies have been devel-
oped in the literature to conduct causal inference analysis. This includes the
regression discontinuity methods [17], the differences-in-differences methods [3],
the synthetic control methods [1], the network settings methods [9], and the
observational combined methods [2]. In these methods, to compute the coun-
terfactual prediction, usually a time series forecasting model is trained on parts
of the dataset that have not been affected by the intervention (pre-intervention
period), and is then applied to parts that have been affected (post-intervention
period). Recently, deep neural network based counterfactual prediction meth-
ods have been introduced [12,14,20,21,25]. These studies argue that the non-
parametric nature of deep learning models obviate the nonlinear, non-convex
limitations of the traditional counterfactual prediction methods.

Nonetheless, the underlying forecasting methods used in the current coun-
terfactual prediction frameworks are mostly univariate models. In contrast, the
state of the art in time series forecasting has moved from such local, per-series
univariate modelling to global forecasting models (GFM) that learn across many
time series [4,19]. Compared to univariate forecasting models that treat each
time series separately, GFMs are unified forecasting models that are trained
across sets of many time series. This allows the GFMs to exploit the cross-series
information available in a set of time series. The application of GFMs to conduct
causal analysis, using the notion of Granger Causality [13], has already proven
useful [5]. We say that a variable Y; “Granger causes” X;y; if making Y; avail-
able as an input to the forecasting of X;;; yields a more accurate forecast. It
indicates that Y contains useful information, not found in the other inputs to
the forecasting procedure, that helps to explain the behaviour of X. However,
when using Granger Causality analysis, in practice it is usually not possible to
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include all the relevant external variables for model training [22]. Therefore, we
focus our work on the application of the counterfactual prediction approach to
perform causal impact analysis.

In this work, we propose Deep Counterfactual Prediction Net (DeepCPNet),
a GFM-based counterfactual prediction method that performs causal analysis.
To the best of our knowledge, this is the first study that employs a GFM-based
methodology to conduct causal inference using the counterfactual approach.
Compared to univariate approaches [23,26], GFMs are better suited for making
counterfactual prediction, as they learn across multiple time series simultane-
ously. In univariate approaches, training during the pre-treatment period takes
into consideration only the combination of control unit time series as covariates,
having then to transfer the learned parameters (e.g., network weights) to the
treated time series in the post-intervention period to predict the counterfactual.
With a global approach, when we add the treated unit before the intervention
effect to the training phase, we are able to add more information to the mod-
elling and therewith the forecasting without the effects of the intervention and
there