
A Deep Hybrid Pooling Architecture
for Graph Classification with Hierarchical

Attention

Sambaran Bandyopadhyay1,2(B), Manasvi Aggarwal2,
and M. Narasimha Murty2

1 IBM Research AI, New Delhi, India
2 Indian Institute of Science, Bangalore, Bengaluru, India
sambaran@alum.iisc.ac.in,{manasvia,mnm}@iisc.ac.in

Abstract. Graph classification has been a classical problem of interest
in machine learning and data mining because of its role in biological
and social network analysis. Due to the recent success of graph neural
networks for node classification and representation, researchers started
extending them for the entire graph classification purpose. The main
challenge is to represent the whole graph by a single vector which can be
used to classify the graph in an end-to-end fashion. Global pooling, where
node representations are directly aggregated to form the graph represen-
tation and more recently hierarchical pooling, where the whole graph is
converted to a smaller graph through a set of hierarchies, are proposed
in the literature. Though hierarchical pooling shows promising results
for graph classification, it looses a significant amount of information in
the hierarchical architecture. To address this, we propose a novel hybrid
graph pooling architecture, which finds the importance of different hier-
archies of pooling and aggregates them accordingly. We use a series of
graph isomorphism networks, along with a bi-directional LSTM with self
attention to implement the proposed hybrid pooling. Experiments show
the merit of the proposed architecture with respect to a diverse set of
state-of-the-art algorithms on multiple datasets.

Keywords: Graph Neural Network · Hierarchical graph
representation · Graph pooling · Self attention

1 Introduction

Graphs are important data types to represent different kinds of relational objects
such as molecular structures, protein-protein interactions and information net-
works [12,16]. A graph is represented by G = (V,E), where V is the set of
nodes and E is the set of edges. Real-world graphs often come with a set of
attributes, where each node vi ∈ V is also associated with an attribute (or fea-
ture) vector xi ∈ R

D. Graph classification, i.e., predicting the class label of an
entire graph, is a classical problem of interest to the machine learning and data
c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12712, pp. 554–565, 2021.
https://doi.org/10.1007/978-3-030-75762-5_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75762-5_44&domain=pdf
https://doi.org/10.1007/978-3-030-75762-5_44

A Deep Hybrid Pooling Architecture for Graph Classification 555

mining community. Different practical applications such as finding anti-cancer
activity, solubility, or toxicity of a molecule can be addressed by classifying the
entire graph [9]. Graph classification is tackled as a supervised task. More for-
mally, given a set of M graphs G = {G1, G2, · · · , GM}, and a subset of graphs
Gs ⊆ G with each graph Gi ∈ Gs labelled with Yi ∈ Lg (the subscript g stands
for ‘graphs’), the task is to predict the label of a graph Gj ∈ Gu = G \ Gs using
the structure of the graphs and the node attributes, and the graph labels from
Gs. This leads to learning a function fg : G �→ Lg. Here, Lg is the set of discrete
labels for the graphs. Graph kernel algorithms [13,16] remained to be the stat-
of-the-art for a long time for graph classification. Graph kernels typically rely on
different types of hand crafted features such as the occurrence of some specific
subgraph patterns in a graph.

Recently, graph neural networks (such as graph convolution network) and
and node embedding techniques [1,4,7,17] are able to achieve promising results
for node classification and representation. They map the nodes of the graph from
non-Euclidean to Euclidean space by using both the link structure and the node
attributes, and consequently use the vector representation for node classification
in an end-to-end (or integrated) fashion. The main challenge to extend these
approaches from node representation to graph representation is to design an
intelligent node aggregation technique which can map a graph to a smaller graph
(also known as graph pooling). There exist two types of graph pooling strategies
in the literature. First, global pooling uses simple aggregation (such as averaging
or concatenating) techniques on the embeddings of all the nodes to get a single
vector representation of the graph [3]. Global pooling strategy works better for
smaller graphs where aggregating all the nodes with a single function makes
more sense. Second, hierarchical pooling recursively maps the input graph into
a smaller graph (which may even contain a single node) and finally uses some
aggregation technique [20].

Graphs exhibit hierarchical structures by default [2]. Nodes are the entities
at the lowest of this hierarchy. Multiple nodes may form a sub-community and
few sub-communities may for a community. In contrast to text documents where
words, sentences and paragraphs form the hierarchy, hierarchical structure of a
graph is latent in nature. Hierarchical graph neural networks, such as DIFF-
POOL [20], jointly discover the hierarchical nature of the graph using graph
pooling and finally convert it to a single node which is used to classify the entire
graph. But different entities in the hierarchy do not play equal role to deter-
mine the label of a graph. For example, some intermediate level in the hierarchy
may contain more useful information for classifying the graph rather than the
final layer. This is true even for document classification, where importance of all
the words and sentences are not the same to classify the entire document [19].
Besides, hierarchical pooling for graphs, though performs better, looses a signifi-
cant amount of information in the multiple hierarchies of the pooling layers [10].
For example, if the graph after the final pooling layer contains a single node [20],
then it is difficult for that node to encode all the structural information of the
entire input graph in it.

556 S. Bandyopadhyay et al.

To address the above challenges, we propose a novel graph pooling technique
for graph classification, by mixing hierarchical and global pooling. Our algorithm
(referred as HybridPool) maps the input graph to consecutive smaller graphs in
multiple hierarchies (or levels) and then employs a global pooling across the
multiple hierarchies (or levels). We observe that these graph hierarchies in the
pooling network form a sequence. As the importance of different hierarchies are
unknown, we use a bi-directional LSTM [5] with self-attention to weight them
accordingly. Following are the contributions we make in this work.

– We propose a novel hybrid graph pooling algorithm HybridPool which
employs multiple layers of graph convolution to create multiple hierarchies
(or levels) of smaller graphs from an input graph, and then use bi-directional
LSTM with self-attention to get the final representation of the entire graph.
In contrast to existing literature, HybridPool learns different weights for dif-
ferent intermediate entities of a hierarchical representation of a graph and
aggregates them globally for the entire graph classification. We use cross
entropy loss of graph classification to jointly learn all the parameters of the
entire network using back propagation.

– We conduct thorough experimentation on real-world graph datasets and
achieve competitive performance with respect to state-of-the-art graph clas-
sification algorithms.

2 Proposed Solution: HybridPool

In this section, we describe the proposed algorithm HybridPool for graph clas-
sification.

Fig. 1. Architecture of a HybridPool Network for graph classification

A Deep Hybrid Pooling Architecture for Graph Classification 557

2.1 Overview of the Architecture

Before going to the details of the individual layers, we present a high level
overview of HybridPool. Figure 1 shows the architecture of a HybridPool net-
work with R = 4 level graphs. The first level is an input graph from the set
of graphs G. Next level graphs form different hierarchies in the graph, such as
sub-communities, communities etc. Let us denote these level graphs (i.e., graphs
at different levels) by G1, · · · , GR. In level graph Gr, number of nodes is Nr, and
the dimension of a feature vector for a node is K (except the input level graph
G1 which has D dimensional feature vector for each node). There is a GNN layer
between level graph Gr (i.e., the graph at level r) and level graph Gr+1. This
GNN layer comprises of an embedding layer which generates the embedding of
the nodes of Gr and a pooling layer which maps the nodes of Gr to the nodes
of Gr+1. A GIN [17] embedding layer and a pooling layer together convert a
graph to a smaller (having lesser number of nodes) graph. We discuss the details
of them in next two subsections. We refer the GNN layer between level graph
Gr and Gr+1 by rth layer of GNN, ∀r = 1, 2, · · · , R − 1. The last level graph
GR contains only one node, whose feature summarizes the entire input graph.
Pleas note, number of nodes N1 in the first level graph depends on the input
graph, but we keep the number of nodes Nr in the consequent level graphs Gr

(∀r = 2, · · · , R) fixed for all the input graphs (in a graph classification dataset),
which helps us to build the next stages of the network conveniently as discussed
below. Different level graphs can have different interpretation. In Fig. 1, each
node in level graph 2 roughly represents a sub-community of the input graph,
each node in level graph 3 can represent a community of the input graph, and
finally the node in level graph 4 represents the whole input graph.

As mentioned in Sect. 1, the last level graph (for example, level graph 4
with two nodes in Fig. 1) is meant to encode all the structural and attribute
information of the input graph at level 1. But as discussed before, due to the
loss of some information in the formation of each level graph, the last level graph
may not be able to preserve the intrinsic properties of the input graph to classify
it. Besides, it is possible that the label information of the input graph depends
directly on the overall sub-community structure or the community structure of
the input graph, which are more prominent in some intermediate level graphs.
So, we propose to learn the importance of different level graphs in the training
phase. We use a bidirectional LSTM (BLSTM), which captures the ordered
dependency of different level graphs. The use of bidirectional LSTM instead of
a regular LSTM ensures the explicit modeling of a level graph as a function of
the level graphs, both up and down in the hierarchy. First to obtain a summary
vector for each level graph, we use a readout function. More precisely, a readout
function takes the embeddings of all the nodes from a level graph and map
them to a single vector which is invariant to the ordering of the nodes inside
a level graph. The output of readout functions (one summary vector for each
level graph as shown in Fig. 1) is fed to BLSTM. A self attention layer is used
after the BLSTM layer to determine the importance of individual level graphs
and aggregate them accordingly. Finally, this representation is fed to a dense

558 S. Bandyopadhyay et al.

neural network with a softmax layer at the end to classify the entire graph. This
completes one forward pass of the proposed HybridPool network.

Please note that the upper layers of HybridPool network resemble a hier-
archical pooling structure (DIFFPOOL [20]) where an input graph is pooled
to smaller graphs recursively. But there are crucial design differences between
DIFFPOOL and the upper layers of the architecture adopted by us. First, DIFF-
POOL uses GCN [7] as the embedding and pooling mechanisms. We use GIN
[17] as the embedding and pooling mechanisms. The representation power of
GIN is theoretically more than GCN. Second, DIFFPOOL always needs to have
only a single node in the last level of the hierarchy to represent the whole graph
by the features of that single node. But we may have more than one node in
the last level, as the final graph representation is not obtained directly from the
hierarchical structure. Rather, we use readout functions to compute a summary
vector from each level graph and they are fed to BLSTM and the self-attention
layers to compute the graph representation in HybridPool. Further, experimental
comparison with DIFFPOOL, both for graph classification and model ablation
study in Sect. 3 shows the merit of such a design adopted by us.

Hybrid Nature of the Pooling Strategy in HybridPool: The pooling
strategy adopted by us is a mixture of hierarchical and global pooling strate-
gies. The upper layers of HybridPool is a hierarchical graph pooling strategy, as
discussed in the last paragraph. Lower layers which consist of the readout func-
tions, bidirectional LSTM and self attention resemble a global pooling structure,
as features from all the nodes in a level graph are directly aggregated and pro-
cessed further to compute the final graph representation. That is why we call
the proposed architecture HybridPool. Individual components of HybridPool are
discussed below.

2.2 GIN Embedding Layer

This subsection defines the embedding layer (referred as GIN Emb. in Fig. 1)
used in HybridPool algorithm. We use the GNN discussed in Graph Isomorphism
Network (GIN) [17] as that is theoretically shown to be maximally powerful
GNN to represent graphs, but still simple in nature. For a graph G = (V,E),
with adjacency matrix A ∈ R

N×N and node attribute matrix X ∈ R
N×D, the

l-th layer of GIN can be defined as:

hl+1
v = MLP l

(
(1 + εl)hl

v +
∑

u∈N (v)

hk
u

)
(1)

Here, hl+1
v ∈ R

K is the hidden representation of the node v in l + 1th layer
of GIN and K is the feature dimension of the hidden layers of GCN. N (v) is
the neighbors of the node v in G. ε is a parameter of GIN which determine
the importance of a node’s own representation with respect to the aggregated
representation of its neighbors. The initial representations H0 of the nodes are
initialized with their respective features, H0 = X.

A Deep Hybrid Pooling Architecture for Graph Classification 559

For most of the datasets in Sect. 3, our GIN embedding layer consists of 1 or
2 layered deep GCN. The rth GIN embedding layer (between level graph r and
r + 1) is defined as:

Zr = GINr,embed(Ar,Xr) (2)

Here, Zr ∈ R
Nr×K is the final embedding matrix of the nodes of rth level graph

Gr.

2.3 GIN Pooling Layer

We again use the same GIN proposed in [17] and as discussed in Sect. 2.2 as
the GIN pooling layer (denoted as GIN Pool. in Fig. 1) of HybridPool. But the
goal of pooling layer is to map the nodes from a previous level graph to next
level graph, its output feature dimension is different from that of the embedding
layer. Also we use a softmax layer after the final layer of GIN in the pooling
layer as defined below.

Pr = softmax(GINr,pool(Ar,Xr)) (3)

Here, (i, j)th element of Pr ∈ R
Nr×Nr+1 gives the probability of assigning node

vr
i in Gr to node vr+1

j in Gr+1. The softmax in the pooling is applied row-wise.

2.4 Formulation of a Level Graph

Level graph 1 in the architecture of HybridPool is the input graph itself. This
subsection discusses the formation of level graph Gr+1 from Gr using the GIN
embedding layer and the GIN pool layer. The adjacency matrix Ar+1 of Gr+1 is
constructed as:

Ar+1 = PT
r ArPr ∈ R

Nr+1×Nr+1 (4)

Similarly, feature matrix Xr+1 of Gr+1 is constructed as:

Xr+1 = PT
r Zr ∈ R

Nr+1×K (5)

The matrix Pr contains information about how nodes in Gr are mapped to the
nodes of Gr+1, and the adjacency matrix Ar contains information about the
connection of nodes in Gr. Eq. 4 combines them to generate the link struc-
ture between the nodes (i.e., the adjacency matrix Ar+1) of Gr+1. Node feature
matrix Xr+1 of Gr+1 is also generated similarly. Please note, G1 is the input
graph. For the intermediate level graphs, the number of nodes is determined by
pooling ratio p as:

Nr+1 = pNr , ∀ 1 ≤ r ≤ R − 1 (6)

Pooling ratio p ∈ (0, 1) is a hyper-parameter of HybridPool. We vary the pooling
ratio from 0.05 to 0.5, depending on the size of input graph.

560 S. Bandyopadhyay et al.

2.5 Attending the Important Hierarchies

In the above subsections, we discussed the generation of different level graphs
from the input and their corresponding node features. As discussed in Sect. 1,
graphs exhibit hierarchical structure and importance of different hierarchies are
different to determine the label of the entire graph. So a simple global pool on
all the nodes in the hierarchy may not be able to capture the varying importance
across the levels of the hierarchy. This would become more evident on the model
ablation study in Sect. 2.7.

In this subsection, we aim to determine the importance of different nodes
in level graph 2 onward, for classifying the entire input graph. We employ a
Bidirectional Long Short Term Memory Recurrent Neural Networks (BLSTM)
and an attention layer for this purpose. BLSTM is proposed to handle the prob-
lem of vanishing gradients for recurrent neural networks [5] and they have been
applied successfully to multiple NLP and sequence modeling tasks. In contrast
to an LSTM, a bidirectional LSTM (or BLSTM) [21,22] processes data in both
directions with two separate hidden layers, which are then fed forward to the
same output layer. As shown in Fig. 1, we use a readout function to obtain the
summary of a level graph. The readout function takes the GIN embeddings Zr

(from Eq. 2) of all the nodes of a level graph (except for the last level) and out-
puts a single vector. For the last level graph, there is no GIN embedding layer
to generate the node embeddings. Also typically the number of nodes in the last
level graph is really small. So instead of adding another GIN encoder, we use the
readout function on the node feature matrix XR (from Eq. 5) to generate the
summary vector xGR

. The readout function needs to be invariant to the ordering
of the nodes in a graph. There are different types of readout functions proposed
in the context of graph neural networks. They can be some simple aggregators
such as sum (or mean) of the node embeddings [17], or attention-based node
aggregators [10]. We use a simple readout function which just computes the sum
of the node embeddings to obtain a summary vector of a level graph. This is
because we further process those summary embeddings with the BLSTM and
self-attention as discussed next. If we denote the summary vector of the level
graph Gr as sr ∈ R

K , then

sr =

⎧
⎪⎪⎨
⎪⎪⎩

Nr∑
i=1

(Zr)i,: 1 ≤ r ≤ R − 1

NR∑
i=1

(XR)i,: otherwise
(7)

Though nodes within a level graph do not have any fixed order, but levels
graphs themselves have an explicit hierarchical order. For example, a node can
be a part of sub-community, the sub-community can be a part of a community,
and so on. We use a BLSTM to explicitly capture this ordering of the level
graphs. For each level graph Gr, 1 ≤ r ≤ R, we feed its summary vectors sr to
the BLSTM as shown in Fig. 1. The BLSTM provides the forward-LSTM and
backward-LSTM hidden representations hf

r and hb
r for each level graph Gr. We

A Deep Hybrid Pooling Architecture for Graph Classification 561

concatenate and map them to K dimensional space as hr = σ(WL[hf
r ||hb

r]), ∀
1 ≤ r ≤ R, where WL ∈ R

K×2K and σ is an activation function. We discuss the
attention layer next.

Attention mechanism has been used in node embedding in multiple works
[8,15,18]. Here we propose to use a self attention mechanism over all the hid-
den representations hr,i ∈ R

K to determine their importance in the final graph
representation. Let us use H to denote the matrix containing each hr,i as a row.
The self attention mechanism is defined below:

e = softmax(Hθ), h = HT e ∈ R
K (8)

Here, θ ∈ R
K is a trainable attention vector. Intuitively, each element of this

vector determines the importance of a feature dimension of the node represen-
tations of the level graphs. So e in turn contains the normalized attention score
(importance) of the individual nodes of level graphs from 2 onward. Finally, h is
the final vector representation of the input graph, which is the sum of the rep-
resentations of the nodes of the level graphs from 2 onward, weighted by their
normalized attention score. The final graph representation h is fed to a dense
neural network, followed by a softmax layer to classify the graph. Backpropaga-
tion algorithm with ADAM optimization technique [6] by minimizing the cross
entropy loss of graph classification on the training set Gs is used to learn all the
parameters of the architecture in an end-to-end fashion.

2.6 Run Time Complexity of HybridPool

There are different components of HybridPool. The runtime of a GIN depends on
the size of the trainable parameter matrix and the number of nodes. For an input
graph with N nodes, the total runtime for GIN embedding and pooling layers are

O(NDKR) and O(NDN2 + N
R−1∑
r=2

NrNr+1) respectively, where D is the input

node feature dimension, K is the dimension of final graph representation, R is
the number of level graphs and Nr is the number of nodes in rth level graph.

Computation of the summary vectors of all the level graphs takes O(K
R∑

r=2
Nr)

time. Next, Bidirectional LSTM and self attention layers take O(KR) time.
Hence, the runtime to process an input graph in HybridPool is O(NDKR +

NDN2 + N
R−1∑
r=2

NrNr+1 + K
R∑

r=2
Nr). For all the experiments, values of Nr,

r > 1 and number of levels R are small. So, HybridPool is scalable even for large
graph classification datasets. Also note that some of the steps above are easy to
run in parallel, which can reduce the runtime further.

2.7 Variants of HybridPool: Model Ablation Study

HybridPool has multiple components and layered architecture. So, estimating
the importance of individual components of this architecture is necessary. To
give more insight about it, we present the following two variants of HybridPool.

562 S. Bandyopadhyay et al.

– MaxPool: Here we replace the BLSTM and the attention layer of HybridPool
with a maximum function max

r>1,i
{Xr,i} ∈ R

K , which selects the maximum value

for each feature dimension from all the nodes. Please note, Xr,i denotes the
K dimensional embedding of the ith node in level graph r > 1 (Eq. 5). In
contrast to HybridPool, MaxPool has a static rule which selects the most
important node for each feature dimension. max

r>1,i
{Xr,i} is fed to the dense

layer followed by a softmax.
– BLSTMPool: Here we remove the self attention layer from HybridPool.

Instead, the concatenated hidden states from the final cells of the bidirectional
LSTM is directly fed to the dense layer followed by a softmax for graph
classification. Please note, BLSTMPool does not give different importance to
different nodes in the level graphs.

It is to be noted that, above two architectures are simpler compared to
HybridPool, as they miss one or more components from it. Thus, by comparing
the performance of HybridPool with both of them in Sect. 3, we are able to show
the significance of different components of HybridPool.

Table 1. Different datasets used in our experiments

Dataset #Graphs #Max Nodes #Labels #Attributes

MUTAG 188 28 2 NA

PTC 344 64 2 NA

PROTEINS 1113 620 2 1

NCI1 4110 111 2 NA

NCI109 4127 111 2 NA

IMDB-BINARY 1000 136 2 NA

IMDB-MULTI 1500 89 3 NA

REDDIT-M-12K 11929 3782 11 NA

3 Experimental Evaluation

In this section, we conduct thorough experimentation to validate the merit of
HybridPool for graph classification. We also experimentally show more insights
about the proposed architecture.

3.1 Datasets and Baselines

We use 5 bioinformatics graph datasets and 3 social network datasets to evalu-
ate the performance of graph classification. These datasets are MUTAG, PTC,
PROTEINS, NCI1, NCI09 and IMDB-MULTI. The details of these datasets can
be found at (https://bit.ly/39T079X). Table 1 contains a high-level summary of

https://bit.ly/39T079X

A Deep Hybrid Pooling Architecture for Graph Classification 563

Table 2. Classification accuracy (%) of different algorithms (23 in total) for graph
classification on 8 benchmark datasets. NA denotes the case when the result of a
baseline algorithm could not be found on that particular dataset from the existing
literature. The last row ‘Rank’ is the rank (1 being the highest position) of our proposed
algorithm HybridPool among all the algorithms present in the table.

Algorithms MUTAG PTC PROTEINS NCI1 NCI109 REDDIT-M-12K IMDB-B IMDB-M

GK 81.39± 1.7 55.65± 0.5 71.39± 0.3 62.49± 0.3 62.35± 0.3 31.82± 0.08 NA NA

RW 79.17± 2.1 55.91± 0.3 59.57± 0.1 NA NA NA NA NA

PK 76± 2.7 59.5± 2.4 73.68± 0.7 82.54± 0.5 NA NA NA NA

WL 84.11± 1.9 57.97± 2.5 74.68± 0.5 84.46±0.5 85.12±0.3 39.03 NA NA

AWE-DD NA NA NA NA NA 39.20± 2.09 74.45± 5.8 51.54± 3.6

AWE-FB 87.87± 9.7 NA NA NA NA 41.51± 1.98 73.13± 3.2 51.58± 4.6

node2vec 72.63± 10.20 58.85± 8.00 57.49± 3.57 54.89± 1.61 52.68± 1.56 NA NA NA

sub2vec 61.05± 15.79 59.99± 6.38 53.03± 5.55 52.84± 1.47 50.67± 1.50 NA 55.26± 1.54 36.67± 0.83

graph2vec 83.15± 9.25 60.17± 6.86 73.30± 2.05 73.22± 1.81 74.26± 1.47 NA 71.1± 0.54 50.44± 0.87

InfoGraph 89.01± 1.13 61.65± 1.43 NA NA NA NA 73.03± 0.87 49.69± 0.53

DGCNN 85.83± 1.7 58.59± 2.5 75.54± 0.9 74.44± 0.5 NA 41.82 70.03± 0.9 47.83± 0.9

PSCN 88.95± 4.4 62.29± 5.7 75± 2.5 76.34± 1.7 NA 41.32± 0.32 71± 2.3 45.23± 2.8

DCNN NA NA 61.29± 1.6 56.61± 1.0 NA NA 49.06± 1.4 33.49± 1.4

ECC 76.11 NA NA 76.82 75.03 41.73 NA NA

DGK 87.44± 2.7 60.08± 2.6 75.68± 0.5 80.31± 0.5 80.32± 0.3 32.22± 0.10 66.96± 0.6 44.55± 0.5

DiffPool NA NA 76.25 NA NA 47.08 NA NA

IGN 83.89± 12.95 58.53± 6.86 76.58± 5.49 74.33± 2.71 72.82± 1.45 NA 72.0± 5.54 48.73± 3.41

GIN 89.4± 5.6 64.6± 7.0 76.2± 2.8 82.7± 1.7 NA NA 75.1± 5.1 52.3± 2.8

1-2-3GNN 86.1± 60.9± 75.5± 76.2± NA NA 74.2± 49.5±
3WL-GNN 90.55± 8.7 66.17±6.54 77.2± 4.73 83.19± 1.11 81.84± ± 1.85 NA 72.6± 4.9 50± 3.15

MaxPool 90.28± 4.98 63.00± 7.03 74.23± 3.10 80.33± 2.08 78.56± 2.00 43.12± 4.01 74.01± 3.08 47.73± 5.53

BLSTMPool 90.44± 5.09 61.92± 9.61 75.1± 2.93 81.10± 1.99 79.81± 1.21 45.99± 3.72 74.98± 3.64 50.60± 3.43

HybridPool 92.02±4.63 65.99± 5.47 78.34±2.37 82.76± 1.95 80.58± 2.15 48.21±3.61 76.39±5.93 52.60±4.01

Rank 1 2 1 3 3 1 1 1

these datasets. We compare the performance of our proposed algorithms with
a diverse set of state-of-the-art baseline algorithms for graph classification. The
twenty baselines algorithms can broadly be classified into three groups: Graph
Kernel Based Algorithms, Unsupervised Graph Representation Algorithms and
Graph Neural Network based Algorithms. Additionally, we also show the clas-
sification results for the two simpler variants of HybridPool - MaxPool and
BLSTMPool. Comparison to these variants experimentally show the marginal
contribution of different components of HybridPool. To obtain the results of
existing baseline algorithms on different graph classification datasets, we check
the respective papers and state-of-the-art papers from the literature [11], and
report the best classification accuracy available. Thus, we avoid any degradation
of the performance of baselines due to insufficient parameter tuning.

3.2 Performance Analysis for Graph Classification

Table 2 shows the graph classification performance of all the baselines, our pro-
posed algorithm HybridPool and its two simpler variants. We have grouped the
algorithms according to their types in both the tables. We marked the places
to be NA where the performance of some baseline algorithm is not present on a
particular dataset for graph classification in the existing literature. Otherwise,
all the results are obtained from the state-of-the-art research papers [11,17] and

564 S. Bandyopadhyay et al.

best accuracy is reported when multiple of such results are present. As the num-
ber of algorithms presented in each of the tables are large in number, we also
show the rank (1 being the best) of HybridPool among all the algorithms. For
the bioinformatics graph datasets, HybridPool is able to improve the state-of-
the-art for MUTAG and PROTEINS dataset. For PTC dataset, HybridPool is
able to reach very close to 3WL-GNN, which is a very recently proposed graph
neural network technique for graph classification. For NCI1 and NCI109, WL ker-
nel consistently outperform other algorithms. For the social network datasets,
HybridPool improves the state-of-the-art performance on all of REDDIT-M-
12K, IMDB-B and IMDB-M. 3WL-GNN and GIN also perform well among the
baselines.

Also, we can see that in most of the cases the HybridPool is able to outper-
form MaxPool and BLSTMPool. Moreover, the performance of BLSTMPool is
better than MaxPool, except on PTC. Note that, MaxPool does not have the
BLSTM layer and the self attention layer of HybridPool. Similarly, BLSTM-
Pool does not have the self attention layer of HybridPool. Thus the relative
performance of these three algorithms show the marginal positive contribution
of both the BLSTM layer and the self attention layer to boost the performance
of HybridPool. In addition, the overall standard deviation of accuracies of the
HybridPool is at par or often less than many of the baseline algorithms. This
shows the stability of HybridPool.

4 Discussion and Future Work

Graph neural network is an important area of research in machine learning and
data mining. In this paper, we introduce a novel graph pooling strategy by com-
bining global and hierarchical pooling techniques for a graph. Experimentally, we
are able to improve the state-of-the-art performance on multiple graph datasets.
Our framework can be extended in two ways. First, one can replace the GIN
update rule inside the embedding and pooling layers of HybridPool with other
types of node aggregation strategies [4,7]. Second, one can try different types of
attention mechanisms [14] in our framework.

References

1. Bandyopadhyay, S., Lokesh, N., Murty, M.N.: Outlier aware network embedding
for attributed networks. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 12–19 (2019)

2. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction
of missing links in networks. Nature 453(7191), 98 (2008)

3. Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular
fingerprints. In: Advances in Neural Information Processing Systems, pp. 2224–
2232 (2015)

4. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, pp. 1025–1035
(2017)

A Deep Hybrid Pooling Architecture for Graph Classification 565

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (2017)

8. Knyazev, B., Taylor, G.W., Amer, M.: Understanding attention and generalization
in graph neural networks. In: Advances in Neural Information Processing Systems,
pp. 4204–4214 (2019)

9. Lee, J.B., Rossi, R., Kong, X.: Graph classification using structural attention. In:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1666–1674. ACM (2018)

10. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: International Conference
on Machine Learning, pp. 3734–3743 (2019)

11. Maron, H., Ben-Hamu, H., Serviansky, H., Lipman, Y.: Provably powerful graph
networks. In: Advances in Neural Information Processing Systems, pp. 2153–2164
(2019)

12. Morris, C., et al.: Weisfeiler and leman go neural: higher-order graph neural net-
works. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 4602–4609 (2019)

13. Shervashidze, N., Schweitzer, P., Leeuwen, E.J.V., Mehlhorn, K., Borgwardt, K.M.:
Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12(Sep), 2539–2561 (2011)

14. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

15. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018). https://openreview.net/forum?id=rJXMpikCZ

16. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph
kernels. J. Mach. Learn. Res. 11(Apr), 1201–1242 (2010)

17. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural net-
works? In: International Conference on Learning Representations (2019). https://
openreview.net/forum?id=ryGs6iA5Km

18. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.I., Jegelka, S.: Repre-
sentation learning on graphs with jumping knowledge networks. In: International
Conference on Machine Learning, pp. 5449–5458 (2018)

19. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1480–1489 (2016)

20. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: Advances in Neural
Information Processing Systems, pp. 4800–4810 (2018)

21. Yu, Z., et al.: Using bidirectional LSTM recurrent neural networks to learn high-
level abstractions of sequential features for automated scoring of non-native spon-
taneous speech. In: 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), pp. 338–345. IEEE (2015)

22. Zhou, P., et al.: Attention-based bidirectional long short-term memory networks
for relation classification. In: Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (vol. 2: Short Papers), pp. 207–212 (2016)

http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

	A Deep Hybrid Pooling Architecture for Graph Classification with Hierarchical Attention
	1 Introduction
	2 Proposed Solution: HybridPool
	2.1 Overview of the Architecture
	2.2 GIN Embedding Layer
	2.3 GIN Pooling Layer
	2.4 Formulation of a Level Graph
	2.5 Attending the Important Hierarchies
	2.6 Run Time Complexity of HybridPool
	2.7 Variants of HybridPool: Model Ablation Study

	3 Experimental Evaluation
	3.1 Datasets and Baselines
	3.2 Performance Analysis for Graph Classification

	4 Discussion and Future Work
	References

