
A k-MCST Based Algorithm
for Discovering Core-Periphery

Structures in Graphs

Susheela Polepalli(B) and Raj Bhatnagar(B)

University of Cincinnati, Cincinnati, OH 45221, USA
polepasa@mail.uc.edu, bhatnark@ucmail.uc.edu

Abstract. Core-periphery structures are examples of meso-scale char-
acteristics of graphs. Most existing algorithms for core-periphery (CP)
structures work by first finding the dense cores of a network and then
discovering the peripheral nodes around them. Our algorithm presented
here seeks to query a graph to return the CP structures centered around
any selected query node. Our algorithm significantly reduces the com-
putational complexity of repeatedly querying the CP structures from
a network. Our algorithm repeatedly extracts minimum cost spanning
trees (MCSTs), first from the original network, and then successively
from the residual networks. From the union of these MCSTs, our algo-
rithm efficiently answers the queries for CP structures around nodes. We
validate our algorithm on example networks taken from two domains.

Keywords: Graph mining · Core-periphery structures · Community
detection

1 Introduction

The underlying data for a number of domains can be viewed in the form of
graph structures. This representation denotes entities as nodes, and strengths
of relationships among entities as edge labels. Most of the existing community
detection algorithms are based on one of the following main ideas: minimum cut
method, hierarchical clustering, Girvan–Newman algorithm [12], and modularity
maximization method. In all these algorithms a common theme is to identify
densely connected subgraphs of the complete graph.

Communities having core-periphery (CP) structures are observed in many
domains. They occur in the form of a densely connected core set of nodes, sur-
rounded by a layer of relatively loosely connected peripheral nodes, as introduced
by Borgatti and Everett in [2]. A number of approaches have attempted to find
CP structures using graph-based ideas of overlapping communities [4], connected
k-plexes [1], and random walk signatures [9]. There are quite a few applications
in social and scientific networks that require us to repeatedly query the networks
for CP community structures around specific individual nodes of the network.
We may want to ask for the social group around a single individual in a social
network or for the closest proteins to a specific protein in a biological network.

c© Springer Nature Switzerland AG 2021
K. Karlapalem et al. (Eds.): PAKDD 2021, LNAI 12712, pp. 358–370, 2021.
https://doi.org/10.1007/978-3-030-75762-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75762-5_29&domain=pdf
https://doi.org/10.1007/978-3-030-75762-5_29

k-MCST Algorithm for Discovering CP Structures in Graphs 359

These query nodes may or may not be parts of dense clusters of the complete
network. To address this need we reduce the size of the graph, by dropping
weaker edges, so that repeated query tasks are made computationally efficient.

To construct the CP structure from the reduced graph, we initialize the core
set by including in it all the immediate 1-hop neighbors of the query node. We
compute the edge density of this initial core and set it as the initial threshold
for edge density. Neighbors of the nodes that are already in the core are then
successively added to the core such that these node additions do not reduce the
edge density. We then adds layers of peripheral nodes that follow a similar closure
property on edge density, and the density thresholds decrease successively from
one peripheral layer to the next. Our algorithm uses the clustering coefficient of
each node, if needed, to identify nodes that have high connectivity around them.

2 Related Work

The work by Borgatti and Everett in [2] identified the CP structures as dense
blocks of 1’s, connected to sparser blocks, in graphs’ adjacency matrices. Exploit-
ing the properties of overlapping communities, J. Yang and J. Leskovec used
the idea of overlapping tiles [4] to identify CP structures. The algorithm
ClusterONE-CP [3] also works with overlapping communities discovered by the
clustering algorithm ClusterONE and analyzes the core and overlapping sec-
tions of communities to discover the CP structures. Silva et al. [8] have defined
core coefficients for nodes using closeness centrality and community modularity
metrics. Most of these algorithms seek to first identify densely connected cores
and then find nodes that are peripheral to these cores. One problem with algo-
rithms based on centrality and affinity metrics for nodes and edges is that each
core community may have a different average value for these centrality metrics.
Some of the algorithms will not be able to work with such variations of average
densities among cores across the whole graph. In our algorithm we achieve inde-
pendence from affinity variations by considering a few most significant of the
minimum cost spanning trees (MCSTs) extracted from the target graph. Each
MCST tends to select the highest affinity edges for each neighborhood. The
concept of Merged MCSTs was introduced in [7] where it was shown that the K-
merged MCST neighborhood graphs perform better than the k-nearest neighbor
graphs for capturing the notion of distance (or affinity) between pairs of nodes
in a graph. Two rounds of MCSTs were also used in 2MSTclus algorithm [5] to
extract separate but touching clusters. Use of k-MCSTs by our algorithm has,
therefore, precedence and also justification for their use in effectively capturing
inter-node similarities in graph clustering algorithms.

3 Our Approach

The first phase of our algorithm constructs the k-MCST graph from the original
graph. This is done by first determining the MCST of the graph and then drop-
ping from the graph all those edges that are included in the MCST. We again
find the MCST from the residual graph and repeat this process until we have

360 S. Polepalli and R. Bhatnagar

obtained k MCSTs. If the graph is not connected and has multiple components,
we can obtain and work with the Minimum Cost Spanning Forests (MCSFs).
We then merge the first k MCSTs to form the graph within which we will look
for the CP structures for query nodes. The resulting graph has the properties [7]
that it is k-connected, and contains only the highest affinity edges. This ensures
that each node is connected to at least k other nodes, and these k edges have
the strongest affinity in the neighborhood of this node.

3.1 Definitions

Structural Density ρ: We introduce a metric called structural density for a
cluster of nodes, defined as: ρ = Number of edges in the cluster

Number of possible edges in the cluster . When a set
of nodes is included in a cluster, all edges from the k-MCST that connect these
nodes among themselves are also included in the cluster.

Core-Periphery Structure: A core-periphery network for a query node N ,
derived from a k-MCST neighborhood graph, consists of a set of nodes consti-
tuting the core C, surrounded by its sets of nodes for peripheral layers (P1 U
P2 U ... PN). Let us say a core C is a set of nodes, and p is a node that is not
in C but has a direct edge to at least one node in C. Then considering all those
edges that can be included in C from the k-MCST, a core set of nodes C has
the following property: For each nodes p connected to C, the density ρ(C) ≥
ρ(C ∪ {p}). That is, C is that closed set of nodes to which no other immediate
neighboring node can be added without reducing its structural density.

We add a caveat here about a limiting situation for the above definition of
a core set. It is possible that the affinity values of the query node to its nearest
neighbors are the smallest in a very large neighborhood around it. This will result
in very large cores for such nodes, and in extreme cases the entire graph may be
included as core for a node. In real graphs such nodes are rare. To account for
such query nodes we may place a limit on the growth of a core set.

We consider a number of peripheral layers of nodes that surround the core.
Each successive layer’s affinity to the core nodes is weaker than that of the pre-
ceding layer. A node p belongs to the jth peripheral layer Pj when it has a direct
edge to at least one of the nodes in core set C and the following are satisfied:
for j == 1 : (1st peripheral layer) : ρ(C) > ρ(C ∪ {p}) ≥ Pj threshold and for
j > 1 : Pj-1 threshold > ρ(C ∪ {p}) ≥ Pj threshold.

3.2 Algorithm

Our methodology has the following two main phases. Phase 1: Construction of k-
MCST graph from the original graph. We also compute the clustering coefficient
of each node in the k-MCST graph to aid in choosing the nodes in the denser
parts of the graph, if needed. Phase 2: Construction of core-periphery structures
for query nodes guided by the structural density metric

Phase 1: We construct the k-MCST graph from the original graph as follows [7].
Let G = (V, E) denote the complete graph where the label for each edge rep-
resents the inverse of the affinity between its two nodes. MCST1 denotes the

k-MCST Algorithm for Discovering CP Structures in Graphs 361

set of edges of this graph’s MCST, that is, MCST1 = MCST (V,E). The sec-
ond MCST is computed from the graph that results after removing all edges of
MCST1 from the original graph. That is, MCST2 = MCST(V, (E − Edges-of-
MCST1)). Similarly, MCSTi denotes the set of edges of the MCST of G with
edges of

∑i−1
j=1 MCSTj removed from the original graph. We define the k-MCST

neighborhood graph as: k-MCST = (V,
∑k

i=1 MCSTi). Typically, a large num-
ber of weaker edges are discarded in this process. For the next phase of CP
construction we no longer consider the edge labels (affinity values) and work
only with the edge densities of the subgraphs.

Phase 2: Construction of CP Structures. We take the query node N and
grow its core subgraph around it. The main idea of constructing a core around
a seed node is to identify that closed set of nodes and edges, whose structural
density can not be either increased or maintained the same by adding any new
node. The main steps for growing the core are:

1. Take the query node N and add to it all its immediate neighbors, and also
all the edges from k-MCST that connect them. This is the starting core set
in the core growth process. We then compute the structural density ρtemp

for this core, and set it as the initial density threshold.
2. We now consider all those immediate 1-hop neighbor nodes of the nodes in

the core, that are not yet included in the core, and call this set L. We test
each member of L, one by one, to see if its addition to the core set increases
or decreases the value ρtemp. All those nodes from L that, individually, do not
decrease ρtemp, when potentially added to the current core, are marked for
addition to the core. After all nodes in L have been individually tested, the
marked nodes are added to the core. A new structural density is computed
for this new set of nodes. If this new density value is larger than rhotemp then
rhotemp is set to this new higher value; else, the old value of rhotemp is retained.

3. Step-2 above is performed repeatedly until there is no node in L that gets
marked for addition to the core. In this case the core growth process is stopped.

For any set of nodes L the process of adding nodes to the core is independent of
the order in which individual nodes in L are tested for their effect on structural
density.

In effect, a core set of nodes includes (i) the query node, (ii) all its 1-hop
neighbors, and (iii) all those nodes that are m hops away from the query node,
and when added to the core, maintain or exceed the edge density of the core
formed from nodes that are at least m-1 hops away. This results in cores that
bring in densely connected neighboring nodes irrespective of the number of hops
they may be away from the query node.

Defining Periphery Thresholds: We define the density thresholds for the
peripheral layers in terms of the density of the core. The first peripheral layer
threshold for a given core C is: Periphery1threshold = ρcore(1 − r). Here
r is a parameter by which the density threshold is reduced for each succes-
sive peripheral layer from that of the previous layer. That is, if r is set to
0.1 then the density threshold for the first peripheral layer is 0.9 times the

362 S. Polepalli and R. Bhatnagar

density of the core. The density thresholds for other outer peripheral layers
are obtained by successively reducing the threshold by the parameter (1 − r).
Peripheryjthreshold = ρcore(1 − j × r) where j is the peripheral layer number.

Identifying Peripheral Nodes: We essentially repeat the same process that
is used for core growth, but now use the lower density threshold of peripheral
layer (l-1), to add nodes to the first peripheral layer (l). Step-2 and step-3 of the
core growth process above are repeated but with the lower threshold. Once the
iterations of these steps are completed for a layer, we lower the threshold to that
for the next outer peripheral layer and repeat the process. From our results we
have seen that it is possible for a node three hops away from the query node to
be included in the core, but a node that is two hops away to be in the peripheral
layer. Details of this algorithm can be found in [14].

3.3 Complexity Analysis

In the first phase, the neighborhood graph is constructed by merging k MCSTs. For
generating k MCSTs, the time complexity is of the order of O(k(E log n)), where
E is the number of edges and n is the number of nodes in the graph. For identi-
fying nodes that are in the denser regions of the graph we compute the clustering
coefficient of each node in the k-MCST. The complexity of computing the cluster-
ing coefficients, using some good data structures to represent the graphs is, either
O(m2/n) or O(m1.48) [10] where m is the number of edges in the graph and n is the
number of nodes in the graph. Having significantly reduced the number of edges in
the k-MCST compared to the original graph, we have made the task of computing
clustering coefficients much less compute intensive. In the second phase, as each
node is connected to at least k nearest nodes, the time complexity for growing a
core and build peripheries for a given query node is O(knumber−of−layers). Since
we expect to query the k-MCST multiple times, complexity of this repetitive task
will be significantly reduced. The number of nearest neighbors of a node in the
k-MCST is, on average, equal to 2 ∗ k, but will be much higher in the complete,
unreduced graph. So, the complexity of our algorithm is significantly reduced for
the operations of computing clustering coefficients and for repeatedly computing
the CP structures from a k-MCST (Fig. 1).

Fig. 1. Original network: 5899 edges Fig. 2. 7-MCST network: 1645 edges

k-MCST Algorithm for Discovering CP Structures in Graphs 363

4 Experiments and Results on Real World Data Sets

4.1 Primary School Data Set

This data set is taken from a study of contact networks from a primary school
conducted by SocioPatterns [11]. It describes interactions among students and
teachers in a primary school for one day. Nodes represent students and teachers.
Edges represent cumulative interaction time spent between two people, measured
in seconds. Each node is also labeled by the class and gender of the person. The
network has 236 nodes and 5899 labeled edges.

k-MCST Generation: The edge weights here describe the amount of time
spent between two people. Since distance or cost for an edge is inverse of the
time spent, for our MCST algorithm we replace each edge label with the inverse
of the time spent between pairs of people. From this network, we constructed a
merged k-MCST graph for various values of k, and the one for k = 7 is shown
in Fig. 2. The number of edges in this 7-MCST network is only 27.8% of those
in the original network. This significantly reduces the complexity of computing
the clustering coefficients of nodes and also the CP structures.

CP Network for Node with Highest Clustering Coefficient: Among all
the students in the 7-MCST network, student #52 has the highest clustering
coefficient (0.92). The core-periphery structure for this student, obtained by our
algorithm, is shown in Fig. 6. The periphery thresholds are defined using the
reduction factor of r = 5%.

Fig. 3. Density values when each of 31 neighbors
is added to the core

The core for student #52
contains 10 students, (Core(52)
is shown in yellow nodes). There
are a total of 31 other nodes
that have at least one edge inci-
dent on at least one of the
core nodes. These 31 nodes
are tested for placement in the
next peripheral layer. The core
exhibits a high structural den-
sity (0.97) and is surrounded
by peripheral layers in decreas-
ing order of structural density.
Figure 3 shows the structural density of the (core+node) pairs when each of
these 31 nodes is tested for placement in the next peripheral layer. It is clear
from this plot that the nodes in the outer peripheral layers have decreasing
connectivity to the core.

CP Network for a Node with Low Clustering Coefficient: We con-
structed the core-periphery network for student #125 who has a very low clus-
tering coefficient (0.19) in the 7-MCST network. As this student is very sparsely
connected to his immediate neighbors, the structural density of his core social
network is very low. The algorithm then finds a large number of other sparsely

364 S. Polepalli and R. Bhatnagar

connected students who meet this low threshold and become members of his core
and periphery sets. That is, his core community consists of a large number of
students, each of whom is only lowly connected to others in the core community.
This core community has its peripheral layers at decreasing levels of edge den-
sities, and they are also highly populated due to low density thresholds (Figs. 4
and 5).

Fig. 4. CP structure of student
#125

Fig. 5. Cumulative density of CP structure of
student #125

This shows that a community for a query node with high clustering coeffi-
cient will include fewer but highly connected students, and when the clustering
coefficient of the query node is low, we are likely to get a loosely connected and
highly populated community.

Comparison with Ground Truth: Figure 6 here shows the CP structure for
student #52, with red border drawn around nodes representing students who
are from his own class (4A).

Fig. 6. Red bordered students are in the same class
as query node #52 (Color figure online)

All ten students in his
core are from his own class,
his teacher is in layer P1,
and some students from his
class occur in peripheral layer
P2 and p3. The numbers in
Table 1 show the distribution
of classes the students come from in each layer of the CP structure. This is very
much in line with the expectation that students interact more with their own
classmates and have fewer interactions with students from other classes. The
teachers were also included in the CP structure and the CP structure explains
the interaction of the students with their class teacher. The teacher is in the
first peripheral layer and this says that the student #52 interacts more with his
friends and less with his teacher.

k-MCST Algorithm for Discovering CP Structures in Graphs 365

Fig. 7. Green-bordered students are in the same
class as student #125 (Color figure online)

Similarly, as we analyze
the class distribution of stu-
dents in the CP structure of
student #125 shown in Fig. 7
and Table 2, it is seen that the
student’s core includes stu-
dents mostly his own class
(1A), and many other stu-
dents from 2nd, 3rd and 4th grades appear in his peripheral layers.

Though the strength of connectivity with each student is low, the structural
density of his core and peripheries is also lower, but he has his own CP structure
in the sense of communities for other students.

Table 1. Distribution of nodes in CP
structure of student #52

Node class Core P1 P2 P3 P4

4A 10 0 7 4 0

4B 0 0 2 1 4

5A 0 0 0 0 2

5B 0 0 0 1 5

3B 0 0 0 0 2

2B 0 0 0 0 2

Teachers 0 1 0 0 0

Table 2. Distribution of nodes in CP
structure of student #125

Node class Core P1 P2

1A 24 2 0

1B 2 9 12

2A 2 3 13

2B 4 7 13

3A 0 1 7

4A 0 0 2

4B 1 0 13

Teachers 1 1 2

Our algorithm is thus able to construct meaningful CP structure for any
node, from denser or sparser parts of the graph. This is in contrast to traditional
algorithms that find their cores in only the dense parts of the graphs.

4.2 Airport Network

This data set describes passenger traffic through a network of airports in year
2010. The data is taken from the Bureau of Transportation Statistics (BTS).

The data set includes 1574 airports as nodes and 28236 edges which are
labeled with the number of passengers traveling between pairs of airports. In this
data set, each edge represents the number of passengers who traveled between
two airports. The affinity between two airports is determined by the number of
passengers traveling between them.

366 S. Polepalli and R. Bhatnagar

Fig. 8. Core and periphery cities of CVG airport
(Color figure online)

A 5-MCST network retains
5396 edges, extracted from the
original data set containing
28236 edges. Using our algo-
rithm we then constructed the
core-periphery network for the
CVG airport as the query
node. CVG airport is an inter-
national airport located in
Hebron, Kentucky. The cities
in the core set when CVG air-
port is used as the query are
shown in Table 3. The set of
cities in the core for the same
query airport CVG has fewer members when we use the 3-MCST network. This
is shown in Table 4. The effect of k on the CP structures has been described
in the next subsection. The core and periphery cities are plotted on the map in
Fig. 8 and its properties are illustrated in Table 5. The yellow, pink and blue
nodes represent the core, periphery-1 and periphery-2 respectively.

Table 3. Core cities for CVG airport on
5-MCST network

Montreal, Canada Chicago, IL

Atlanta, GA Cincinnati, OH

Cleveland, OH Charlotte, NC

Knoxville, TN Asheville, NC

South Bend, IN Accra, Ghana

Dallas/Fort Worth, TX Evansville, IN

Fort Wayne, IN Ashland, WV

Salt Lake City, UT Detroit, MI

Orlando, Florida

Table 4. Core cities of CVG airport on
3-MCST network

Montreal, Canada Chicago, IL

Atlanta, GA Cincinnati, OH

Cleveland, OH Charlotte, NC

Knoxville, TN Asheville, NC

Table 5. Properties of each layer in core-periphery network of CVG airport

Layer #airports ρ(Layer) Avg. # passengers/day
(mean edge weight)

Avg. # passengers/day
from core to each
periphery layer

Core 16 0.35 633 –

P1 30 0.03 793 713

P2 408 0.007 167 267

k-MCST Algorithm for Discovering CP Structures in Graphs 367

4.3 Effect of Varying the Parameter k

The number of MCSTs included in the reduced graph, k, has significant impact
on the nature of CP structure obtained. Tables 6, and 7 below show the variation
in the characteristics of CP structures obtained for k = 3, 5, 7, and 9 for both
our data sets. An increase in the value of k results in more edges getting included
in the k-MCST graph. This causes cores to have higher edge densities, and some
nodes that were in peripheries for lower k’s increase their connectivity to the
cores and gets pulled into the core sets. We see that the choice of k affects the
sizes of the core sets and also the average affinity values within the nodes of the
core. Therefore, a choice of k must be made for each CP structure to identify
the cores of desired size and optimal average affinity value. A solution for this is
to maintain k-MCSTs for multiple values of k, process the query on all of them,
and choose the CP structure with optimal affinity values.

Table 6. Primary school data set: variation of CP structure of student 52

k #edges(k-MCST) ρ(core) Avg core
edge wght

Core list

3 705 0.57 14.11 34, 38, 47, 51, 52, 119, 176, 196

5 1175 0.82 12.6 34, 38, 47, 51, 52, 119, 176, 196

7 1645 0.93 11.97 34, 37, 38, 47, 49, 51, 52, 119, 176, 196

9 2115 0.95 9.33 34, 37, 38, 46, 47, 49, 50, 51, 52, 53,
54, 93, 119, 176, 185, 196

4.4 Validation of Use of k-MCSTs for CP Structures

One assumption we have made is that the CP structures discovered from the
reduced k-MCST graphs are as valid as those discovered from the complete
graphs. To validate this assumption we apply our algorithm to the original graph
and also to its reduced k-MCST graph and compare the resulting CP structures.

Table 7. Airport data set: variation in CP structure

k #edges in kMCST ρ(core) Avg # passengers/day
in core cities

core nodes

3 3822 0.36 529 8

5 5396 0.35 686 15

7 6675 0.35 1084 27

9 7755 0.35 893 38

We compute two different types of ratios from average affinity values corre-
sponding to the edges in: (i) Core vs. (Core + P1), (ii) Core vs. (Core + P1

368 S. Polepalli and R. Bhatnagar

+ P2), and (iii) Core vs. (Core + P1 + P2 + P3), etc. The ratios show how
much relatively weaker the peripheries are compared to the core’s own affinities.
The precise descriptions of the two ratios used are given in the following para-
graphs. These ratios are expected to decline as more and more peripheries are
included in the denominator. The individual ratio values represent the relative
distribution of the affinities across a core and its peripheries. The trend of these
ratios, along increasing inclusion of peripheries, reflects the way the peripheral
strengths decline as we move away from the core.

Fig. 9. Validation of core-periphery structure of student 52 (primary school)

We run our algorithm on the original complete graph and also on the reduced
k-MCST graph to construct CP structures. If these ratios show very similar val-
ues and very similar declining trend, then we can infer that the average affini-
ties of edges included in cores and peripheries are also very similar. Similar val-
ues and trends of the ratios will, therefore, show that the assumption of work-
ing with the k-MCSTs is justifiable. The names and precise descriptions of the
two ratios that we have used to characterize the CP-structures are: (i) Core-
periphery ratio, and (ii) Core-inter-periphery ratio. Given a core and its n periph-
ery layers, we define core-periphery ratio up to a particular periphery level k as:
Core-periphery ratiok = Win(Core)

Win(Core)+
∑n

k=1 Win(Peripheryk)
where 1 ≤ k ≤ n, and

Win(set of edges) is the sum of the weights in set of edges. That is, we sum the
edge weights for all edges included exclusively in the core, and then separately
in individual peripheral layers. The core-periphery ratio is defined as the ratio
of sum of core’s internal edge weights to the core and peripheries’ internal edge
weights only. This measure depicts the cohesiveness of core and peripheries as new
outer peripheral layers are added. As seen in Fig. 9 and Fig. 10 CP structures con-
structed from the k-MCST and the complete graph show very similar values and
decreasing trends. For the school data set the individual ratios are almost iden-
tical. For the airport data, the trend is the same but the individual values differ

k-MCST Algorithm for Discovering CP Structures in Graphs 369

because in this case, during the core generation phase, some very weak edges got
included in the core. We can thus see that the core-periphery networks generated
using our approach are not significantly affected by dropping the weaker edges and
retaining only the k-MCST graphs.

Now we consider the second metric for characterizing the CP structures.
Core exhibits properties of cohesiveness by having high intra-core affinity values
and low affinity values for the edges that connect the core nodes to peripheral
nodes. To study the relative weights of intra-core and inter-core-periphery edges
we introduce the measure called core-inter-periphery ratio. This is computed as:
Core-inter-periphery ratiok = Win(Core)

Win(Core)+
∑n

k=1 Interedge(Core,Peripheryk)

where 1 ≤ k ≤ n, Win(set of edges) is the sum of the weights in the set of
edges, and Interedge(C,Pj) is the sum of edge-weights connecting Core to Pj. As
periphery layers are added, we compute the successive core-inter-periphery ratio
and examine its trend. As seen in Figs. 9 and 11, the CP structures obtained
using k-MCST and the complete graph show very similar values and similar
decreasing trends.

Fig. 10. Core-periphery ratio validation Fig. 11. Core-inter periphery ratio vali-
dation.

This shows that the CP structures obtained from the k-MCSTs have essen-
tially the same characteristics as those that would have been obtained from the
complete graph. Details of this algorithm can be found in [14].

5 Conclusion

In this paper we have presented a new algorithm for constructing core-periphery
structures for individual query nodes from an edge-weighted undirected graph.
Our algorithm is tailored for applications where we may want to repeatedly
query a very large graph for CP structures surrounding individual nodes. Our
algorithm reduces the computational complexity for each CP query by signif-
icantly reducing the size of the graph to be processed, by retaining only the
strongest affinity edges. We have demonstrated the effectiveness of our algo-
rithm by executing it on a social network and on an airport passenger traffic
network. The ground truths from these domains validate the CP structures pro-
duced by our algorithm. Using two different validation measures, we have shown

370 S. Polepalli and R. Bhatnagar

that CP structures obtained from k-MCSTs and the original complete graphs
shows very similar trends in terms of structural and edge weight densities among
the cores and their peripheries.

References

1. Luo, F., et al.: Core and periphery structures in protein interaction networks. In:
BMC Bioinformatics, vol. 10, no. 4. BioMed Central (2009)

2. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw.
21(4), 375–395 (2000)

3. Sardana, D., Raj, B.: Core periphery structures in weighted graphs using greedy
growth. In: 2016 IEEE/WIC/ACM International Conference on Web Intelligence
(WI). IEEE (2016)

4. Yang, J., Leskovec, J.: Overlapping communities explain core-periphery organiza-
tion of networks. Proc. IEEE 102(12), 1892–1902 (2014)

5. Zhong, C., Miao, D., Wang, R.: A graph-theoretical clustering method based on
two rounds of minimum spanning trees. Pattern Recogn. 43(3), 752–766 (2010)

6. Zhong, C., Miao, D., Fränti, P.: Minimum spanning tree based split-and-merge: a
hierarchical clustering method. Inf. Sci. 181(16), 3397–3410 (2011)

7. Li, Y.: K-edge connected neighborhood graph for geodesic distance estimation and
nonlinear data projection. In: Proceedings of the 17th International Conference on
Pattern Recognition, 2004, ICPR 2004, vol. 1. IEEE (2004)

8. Silva, D., Rosa, M., Ma, H., Zeng, A.-P.: Centrality, network capacity, and modu-
larity as parameters to analyze the core-periphery structure in metabolic networks.
Proc. IEEE 96(8), 1411–1420 (2008)

9. Della Rossa, F., Dercole, F., Piccardi, C.: Profiling core-periphery network struc-
ture by random walkers. Sci Rep. 3(1), 1–8 (2013)

10. Schank, T., Wagner, D.: Approximating clustering coefficient and transitivity. J.
Graph Algorithms Appl. 9(2), 265–275 (2005)

11. Stehlé, J., et al.: High-resolution measurements of face-to-face contact patterns in
a primary school. PloS One 6(8), e23176 (2011)

12. Newman, M.E.J.: Fast algorithm for detecting community structure in networks.
Phys. Rev. E 69(6), 066133 (2004)

13. Ailem, M., Role, F., Nadif, M.: Graph modularity maximization as an effective
method for co-clustering text data. Knowl.-Based Syst. 109, 160–173 (2016)

14. Polepalli, S.: Discovery of core-periphery structures in networks using k-MSTs.
Diss. University of Cincinnati (2019)

	A k-MCST Based Algorithm for Discovering Core-Periphery Structures in Graphs
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Definitions
	3.2 Algorithm
	3.3 Complexity Analysis

	4 Experiments and Results on Real World Data Sets
	4.1 Primary School Data Set
	4.2 Airport Network
	4.3 Effect of Varying the Parameter k
	4.4 Validation of Use of k-MCSTs for CP Structures

	5 Conclusion
	References

