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Abstract. Alzheimer’s disease (AD) is a progressive brain disorder that causes
neurons to degenerate and die as the disease progress. AD is the most common
cause of dementia, accounting for 60% to 80% of all cases, and has been recog-
nized as a public health problem by the World Health Organization. In this study,
we propose a method to aid in the diagnosis of AD that automatically extracts and
classifies image features of the white matter (WM), gray matter (GM), and cere-
brospinal fluid (CSF) tissues from the hippocampal regions. Our method uses the
features as input to support vector machine (SVM) classifiers to perform the MR
image classification in CN×AD and CN×MCI cases. For that, we preprocess all
ADNI images and define the regions of interest for analysis. Then, we extract the
GM,WM, and CSF tissues using an automated brain tissue segmentation method.
Considering the intensities inside both hippocampal regions and each segmented
tissue, we extract five statistical metrics from the voxel intensities inside each
hippocampal region to use as features. Then, we train SVM classifiers with dis-
tinct kernels using a ten-fold nested cross-validation to perform the classification.
From the classification experiments, the highest obtained AUC values for the CN
× MCI and CN × AD classification cases were 0.814 and 0.922, respectively.
It is important to emphasize that we obtained these results using an automated
pipeline, with no human intervention, and a relatively small set of features.
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1 Introduction

Alzheimer’s disease (AD) is a progressive brain disorder that causes neurons to degener-
ate anddie as the disease progress.AD is themost commoncause of dementia, accounting
for 60% to 80% of all cases, and has been recognized by the World Health Organization
(WHO) as a public health problem. In fact, projections from the WHO estimate that 50
million people have dementia, and every year there are nearly 10 million new cases. The
total number of people with dementia can reach 82 million in 2030 and as high as 152
million in 2050 [1].

Some AD studies presented in the literature have reported that early signs of this
diseasemay be detected 10 to 20 years before symptoms arise [2–4], with structural brain
changes that do not noticeably affect the patient. After many years of brain damage, the
individuals will start to experience noticeable symptoms, such as memory loss and
language problems. The observed symptoms associated with AD are caused by the
damage and death of neurons (neurodegeneration), with other brain changes, including
inflammation and atrophy [2].

Since there is no single test for AD, doctors use various approaches and tools tomake
the diagnosis. They often apply tests for assessing the individual abilities in solving
problems and retrieving memories and using family history and reports from relatives
or caregivers to determine changes in the individual’s skills and behavior. Magnetic
resonance imaging (MRI) has played an important role in the diagnosis of AD, since
this imaging modality provides images with very rich anatomical details that allow the
assessment of atrophies and other brain changes resulting from the disease.

Based on the above-described scenario, it is latent the need for modern solutions
to take on the challenge of diagnosing AD. There are many works proposed in the
literature [5–11] addressing the problem of classification of MR images in one of the
three diagnostic groups: cognitively normal (CN), mild cognitive impairment (MCI),
and AD. The MCI group corresponds to an intermediate stage of the disease, in which
the individuals present minor cognitive issues but with a high probability of evolving to
AD.

In this study, we propose a computerizedmethod to assist in the diagnosis of AD.Our
method automatically extracts and classifies image features of the white matter (WM),
gray matter (GM), and cerebrospinal fluid (CSF) tissues from the hippocampal regions
and use them as input to support vector machine (SVM) classifiers to performMR brain
image classification in the cases CN × AD and CN × MCI.

The rest of this paper is organized as follows. Section 2 describes all the image
datasets used, Sect. 3 provides a description of all methods and processes used in this
work, and Sect. 4 presents the relevant experimental results. Finally, Sect. 5 presents a
conclusion and summarizes future possibilities.

2 Image Datasets

In this study, we use two image datasets; the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [12] and the Neuroimage Analysis Center (NAC) [13].
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The ADNI dataset contains images obtained over 50 sites across the USA and
Canada1. Due to the size and diversity of the images in this dataset, image specifications
will be omitted here. However, as we will discuss in Sect. 3.1, proper standardization
steps were conducted to overcome this issue. For this study, we use only images acquired
using the MPRAGE sequence2 from patients with MMSE information and age ranging
between 70 and 85 years, distributed among three diagnostic groups, i.e., CN, MCI, and
mild-AD. Considering these restrictions, we randomly select a total of 762 images, one
image for each subject, in which the numbers of CN, MCI, and mild-AD subjects are
302, 251, and 209, respectively.

The NAC dataset consists of 149 3-D triangular meshes of distinct brain structures;
they are all spatially aligned to a T1-weighted (T1-w) image of a healthy 42-year-old
male subject. This dataset provides the binary masks used to delimit the hippocampal
regions in this study.

3 Methods

Figure 1 illustrates the general frameworkof the proposedmethod. First,wepreprocessed
all ADNI images and defined the regions of interest (ROI)s - the hippocampal regions
in this study. Next, we extracted the GM, WM, and CSF tissues in the intracranial
brain region using the fully automated brain tissue segmentation package FMRIB’s
Automated Segmentation Tool (FAST). Then, considering the intensities of the voxels
in the hippocampal regions of each segmented tissue,we extracted five statisticalmetrics,
i.e., sum, mean, variance, skewness, and kurtosis to use as image features. Finally, we
train SVM classifiers with distinct kernels using a ten-fold nested cross-validation to
perform the brain MR image classification.

Fig. 1. Overview of the proposed method.

3.1 Preprocessing

In the preprocessing stage, all ADNI images were first processed for noise reduction
using the Non-Local Means technique [14], following by bias field correction with the

1 https://adni.loni.usc.edu/about/centers-cores/study-sites/.
2 These MPRAGE files are considered the best in the quality ratings and have undergone
preprocessing steps - https://adni.loni.usc.edu/methods/mri-tool/mrianalysis/.

https://adni.loni.usc.edu/about/centers-cores/study-sites/
https://adni.loni.usc.edu/methods/mri-tool/mrianalysis/
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N4-ITK technique [15] and image intensity standardization using the proposed method
in [16], with the T1-w NAC template image [13] as a reference. After that, the spa-
tial alignment of all study images (ADNI) was conducted using affine transformations
implemented in the Nifty-Reg image registration tool [17]. Similar to the image intensity
standardization stage, the T1-w NAC template image was used as the reference image.
Finally, brain extraction was performed on all images using the ROBEX [18] technique.

3.2 Hippocampal Extraction

To extract each study image’s hippocampal ROIs, we first spatially aligned (registered)
the NAC T1-w template image with the study image using a deformable transformation
[19]. In this case, theNACT1-w imagewas used as amoving image and each study image
was treated as a fixed image. Then, the obtained deformable transformation was applied
to hippocampus mesh models to define the ROIs. Finally, we dilated the hippocampus
binary masks (obtained from the mesh models) using the dilatation morphological oper-
ator [20, 21] with a sphere structuring element of radius four to encompass surroundings
hippocampal structures.

3.3 Automatic Tissue Segmentation

The proper segmentation of the brain tissues is crucial since the segmented images will
be used as sources of information for the feature extraction procedure. Therefore, we
used the fully automated brain tissue segmentation software FAST [22] (version 4.1),
which is considered the state-of-art on tissue segmentation [23] and is available on
the FSL package3. The FAST implementation is based on a Hidden Markov Random
FieldModel, optimized using the Expectation-Maximization (EM) algorithm.A detailed
description of the algorithm is available in [22]. The input image required by the FAST
is a skull stripped MR image, which we obtained as a result of the preprocessing step
using the ROBEX [18] technique. The outputs are an intensity non-uniformity corrected
version of the input image and the segmented GM,WM, and CSF brain tissues. Figure 2
illustrates an example of an input MR image (first line) and the output image (second
line) showing the segmented brain tissues. The segmentation data are color-coded as
follows: WM is colored white, GM is light gray, and CSF is dark gray.

3.4 Feature Extraction

In this study, feature extractionwas performed for each individual brain tissuewithin each
hippocampal region. For that, both the resulting binary GM, WM, and CSF segmented
images and the left (LH) and right hippocampal (RH) binary masks were used to define
the regions to compute the features, i.e., GM ∩ LH, GM ∩ RH, WM ∩ LH, WM ∩ RH,
CSF ∩ LH, and CSF ∩ RH. Then, we analyzed the voxel intensities inside each mask
in order to describe their intensity distributions. Our analyses extracted the sum of the
voxel intensities and the first four statistical moments, i.e., mean, variance, skewness,
and kurtosis, resulting in 30 features.

3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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Fig. 2. Segmentation result of the three main brain tissues.

3.5 MR Image Classification

For the image classification in CN × MCI and CN × AD groups, we used the extracted
features (30 in total) to train SVM classifiers with four different kernels, linear, radial
basis function (RBF), polynomial, and sigmoid. Furthermore, since we have a slightly
unbalanced dataset, we have automatically adjusted the model weights to be inversely
proportional to class frequencies in the input data using the class_weight4 parameter
from the scikit-learn python library.

We adopted four metrics for performance evaluation, including the area of the
receiver operating characteristic (ROC) curve - AUC, accuracy (ACC), balanced accu-
racy (BACC), and F1-score. A detailed description of these metrics can be found in [24].
Also, we considered the images from the subjects with a cognitive condition (MCI or
AD) as positives samples and the images of CN subjects as negative.

We conducted the classification experiments using a ten-fold nested cross-validation.
For each SVM kernel, we used a coarse to fine grid search to determine the best C
parameter value that maximizes the AUC. The coarse-grid search was performed within
a range of values [−5; 10] and steps of 0.5, and the finer search was conducted in the
neighborhood of the best coarse-grid parameter, C,with a grid range of values [2(log2C)−2;
2(log2C)+2.1] and incremental steps of 0.25.

4 Results

The highest obtained AUC values for the MR image classification experiments for the
CN × MCI and CN × AD classification cases were 0.814 and 0.922, respectively. Table
1 presents the average classification results of the ten-fold nested cross-validation for
the four SVM kernel functions used on the experiments mentioned above.

4 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Table 1. Average± Std classification of the nested ten-fold cross-validation for each tested SVM
kernel function.

Kernel AUC ACC BACC F1-score
SVM – Linear 0.814 ± 0.048 0.743 ± 0.045 0.744 ± 0.048 0.726 ± 0.057

CN × MCI
SVM – Polynomial 0.814 ± 0.049 0.738 ± 0.045 0.739 ± 0.048 0.72 ± 0.058

SVM – RBF 0.804 ± 0.055 0.725 ± 0.063 0.724 ± 0.064 0.701 ± 0.074

SVM – Sigmoid 0.814 ± 0.055 0.718 ± 0.062 0.715 ± 0.065 0.686 ± 0.077

SVM – Linear 0.906 ± 0.061 0.83 ± 0.083 0.829 ± 0.086 0.799 ± 0.098

CN × AD
SVM – Polynomial 0.909 ± 0.058 0.834 ± 0.085 0.833 ± 0.088 0.803 ± 0.1

SVM – RBF 0.922 ± 0.054 0.845 ± 0.06 0.839 ± 0.062 0.81 ± 0.073

SVM – Sigmoid 0.9 ± 0.066 0.828 ± 0.074 0.826 ± 0.078 0.794 ± 0.089

5 Conclusions

As presented in the previous section, the classification results for the CN × AD case
were better than the CN × MCI case, presenting higher metrics for all SVM kernels.
These results can be explained due to the AD continuum phases, named the preclinical
(CN), the MCI, and the AD. All these phases occur sequentially in the given order;
therefore, the measurable brain changes in the AD brain are more intense than MCI [2].
Thus, the brain differences among CN and AD are more distinct than CN and MCI. Our
method achieved average AUC values of 0.814 and 0.922 for the CN × MCI and CN
× AD classifications, respectively, and accuracy of 0.743 and 0.845 for the same cases.
These results are comparable to the state-of-art accuracy results, which vary among 75–
80% for the CN × MCI case and 88–92% for the CN × AD case [25–28]. It is also
important to emphasize that these results were obtained from a fully automated pipeline,
with no human intervention, and with a relatively simple and small set of features. In
addition, the size of the dataset used in this study is larger than most published works.
Another aspect of the proposed method is that it can be used alongside other methods
to build a broader and more comprehensive approach, using it as a complementary tool.
Despite the results, further research must be conducted to explore new features capable
of classifying more difficult cases such as MCI and AD groups.
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