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Abstract. Quantifying shape complexity is useful in several practical
problems in addition to being interesting from a theoretical point of view.
In this paper, instead of assigning a single global measure of complexity,
we propose a distributed coding where to each point on the shape domain
a measure of its contribution to complexity is assigned. We define the
shape simplicity as the expressibility of the shape via a prototype shape.
To keep discussions concrete we focus on a case where the prototype
is a rectangle. Nevertheless, the constructions in the paper is valid in
higher dimensions where the prototype is a hyper-cuboid. Thanks to the
connection between differential operators and mathematical morphology,
the proposed construction naturally extends to the case where diamonds
serve as the prototypes.

1 Introduction

Given an 8-connected digital binary pattern representing a digital shape as a
mapping Z

2 → {0, 1}, we are interested in quantifying, at each point on the
pattern, the likelihood that the point belongs to a maximal prototype shape
that fits the digital shape represented by the binary pattern in question. For the
prototype shape, the measure is expected to be uniformly zero over the shape.
The prototype shape serves as the simplest shape in a certain context.

The practical use of such a measure is two fold: First, if integrated over
the pattern, the resulting number can be used as a measure of the tileability
of the shape by the maximal prototype shape, which in turn can be used to
quantify shape’s complexity. Second, directly as a local measure, it can be useful
in identifying the locations to cut the shape so that the resulting pieces are
tileable by the maximal prototype. A perfectly tileable shape can be digitally
represented with maximum compression. By local culprits, we mean the points
where the measure is significantly low, as they are the points responsible for the
failure of tileability.

In this work, we focus on the case where the prototype shape is a rectangle.
Nevertheless, as we discuss in Sect. 4, by changing the underlying metric the
method naturally extends to the case where the prototype is a diamond. Though
we illustrate the method only on 2D shapes (not necessarily simply connected),
all discussions are valid in higher dimensions.

Quantifying rectangularity has practical uses in several applications e.g.
urban planning and landscape ecology [1]. Rectangularity measures are also used
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to improve over-segmented images [2]. In the literature, there are several global
measures for quantifying the conformity of a shape to a simple prototype [3–
5]. These global measures do not convey point-wise information. For circular
shapes defined in R

2, the method in [6] provide local information for quantifying
conformity to circles.

A related problem of recent interest is quantifying the complexity of high-
dimensional datasets for estimating their classification difficulty. Varshney and
Willsky [7] measured their classifiers in terms of level sets of the decision hyper-
surfaces’ geometrical complexity using ε-entropy. A growing number of works
emphasize the role of the shape of the decision hypersurface as a determinant
of either how complex the data is or how robust its classification by a certain
classifier. An interesting claim by Fawzi et al. [8] is that vulnerability to adver-
sarial attacks is related to positive curvature of the decision boundary. Fawzi et
al. further attributed the robustness of the popular deep networks to the flatness
of the shape of the produced decision boundaries.

Our construction relies on the connection between differential operators and
shape sets, the so-called structuring elements of the mathematical morphol-
ogy. Specifically, we resort to applying morphological derivatives to numerically
approximate the infinity-Laplacian as in [9]. Proper numerical realizations of
PDEs mimicking morphological process is an important issue. Among the recent
works is [10] where the flux-corrected transport scheme to the PDE implementa-
tion of erosions and dilations with arbitrary structuring elements is considered.

2 Method

For a shape A, we consider the following PDE with the infinity Laplacian:
(

Δ∞ − 1
ρ2

)
fA = −1 subject to fA

∣∣∣
∂A

= 0. (1)

In numerical solutions to (1), ρ is chosen to be equal to the shape radius, i.e. the
maximal value of L∞ (chessboard) distance transform. After obtaining fA, it is
normalized such that the maximum value of the field is 1. These ensure the scale
invariance of fA. To acquire numerical solutions, the approximation to Laplace
operator in L∞ [9],

Δ∞fS(x) ≈ max
y∈B(x)

fS(y) + min
y∈B(x)

fS(y) − 2fS(x) (2)

is used where B(x) denotes a unit ball centered at x. The numerical solution to
(1) can be acquired by using the scheme proposed in [5].

This equation is favorable for us because the level curves of fA roughly serve
as gradual transformation of the shape boundary ∂A towards a square under the
influence of the diffusion governed by the L∞ metric. The points at a system
governed by (1) generate and cumulate the values of the field, fA. For squares,
due to their isotropy in L∞, the total accumulated values of points equidistant
from the boundaries are the same. Therefore, for a square S, the value of the
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field at x depends only on the minimum distance of x to boundary (equivalently,
on its distance to the shape center, by which we mean the points attaining the
maximum distance transform value). The equidistant points form an equivalence
class. As a result, the problem of acquiring an analytic solution reduces to disjoint
one dimensional problems over regions of the square, which are continuous on
the intersection on the regions.

Consider the points P1 and P2 as given in Fig. 1. Since they are equidistant
from the boundaries, fS attains the same values at these two points by the above
reasoning. Furthermore, this is true for all points having the same y coordinates
in the shaded region R1. In this region, fS changes in the y direction only, i.e.
∂fS/∂x = 0. Analogous arguments apply for points in R2 where instead of y,
x coordinates determine the equivalence classes. By the continuity of the field
on the intersection of R1 and R2, the equivalence classes span both regions, and
each is a square by itself.
With these, (1) reduces to

∂2fS

∂y2
− 1

ρ2
fS = −1, for |y| ≥ |x|

∂2fS

∂x2
− 1

ρ2
fS = −1, for |y| ≤ |x|

subject to fS

∣∣∣
∂S

= 0.

(3)

In R1, for the homogeneous part fS,h = A exp{y/ρ}+B exp{−y/ρ}, and for the
inhomogeneous part fS,p = ρ2. Due to the symmetry of the boundary conditions,
the acquired solution is invariant under y �→ −y changes. This dictates A = B.
Applying the boundary condition we acquire

fS

∣∣∣
R1

= ρ2 − ρ2
e

e2 + 1

(
exp

{
y

ρ

}
+ exp

{
−y

ρ

})
.

Fig. 1. Square with sides aligned with grid axes
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Following the same steps, the solution in R2 is acquired. The joint solution is
given in the closed form as

fS(x, y) = ρ2 − ρ2
e

e2 + 1
×

(
exp

{
max {|x|, |y|}

ρ

}
+ exp

{−max {|x|, |y|}
ρ

})
.

(4)

Although this solution is derived for a square, it applies for rectangles as
well. This is because the equivalence classes of a square, which are again squares,
deform to rectangles: the distances to boundary and the shape center still add
up to ρ since the shape center is a line for a rectangle rather than a single point.
The validity of the acquired solution for the elongated unit-circle (rectangle in
this case) is due to L∞ norm, and in the general scheme does not hold. For
example, in the case of L2, an analytical solution for which is given in [6], circles
are the corresponding equivalence classes, yet, the solution for circles does not
apply for ellipses.

In the present form the solution is not translation invariant. To make it
so, implicit reference to the origin should be removed. This can be satisfied
by reformulating (4) in terms of L∞ distance transform since max {|x|, |y|} =
‖(x, y)‖∞. We acquire:

fS = ρ2 − ρ2
e

e2 + 1
(exp{t′∞} + exp{−t′∞}) (5)

where t′∞ = 1 − t∞/ρ, and t∞ refers to L∞ distance transform of S.
In Fig. 2, the difference between the normalized (i.e. has 1 as its maximum

value) numerical solution f̂S,numerical and the normalized analytical solution
f̂S,analytical for a square of side length 256 is displayed.

Fig. 2. f̂S,numerical (left) and the difference f̂S,numerical − f̂S,analytical (right)

The maxima of the non-normalized fields are 5766.3 and 5797.8, respectively.
However, the mean error between the normalized fields is

E =
∫ |f̂S,numerical − f̂S,analytical|

|S| = 0.001

This is an acceptable error rate, considering that numerical solution is acquired
to a first order approximation.
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To construct a measure valid for all shapes, we need (5) to extend beyond rect-
angles. Thankfully, the solution is in terms of the distance transform of the shape
and can be deployed as is as an extension of the field. Then for any shape A,

fA,assumed := ρ2 − ρ2
e

e2 + 1
(exp{t′∞} + exp{−t′∞}) .

With the choice that we have here, we can assign scores of contribution to com-
plexity to each point in the shape by simply subtracting the assumed extension
from the numerically acquired solution. Thus we define the complexity encoding
field dA as

dA := f̂A,numerical − f̂A,assumed.

This corresponds to measuring the error in assuming each point is coming from
a square of radius ρ in which the point is located ρ t′∞ away from the center.

Acquired fields, f̂A,numerical and dA, for a square with an appendage of size
64 × 128 on one side are shown in Fig. 3.

Fig. 3. A square with a rectangular appendage: f̂A,numerical (left) and dA (right)

This, being one of the simplest cases of complexity, is informative in under-
standing the behavior of the proposed field. High negative values occur around
the rectangular appendage. Pixels near boundary, be them of base square or
appendage, attain smaller values and would be disregarded in a thresholded
treatment of the field. The extrema is attained at the two center pixels in the
vertical direction along the edge of the square.

3 Illustrative Experiments

In all the experimental results depicting dAs, if the color bar is not shown, the
color scale is between 0 and −0.446 where the yellow denotes zero. In the first
experiment, we demonstrate the method on composite rectangles of constant
width. The size of the square is 64 × 64, i.e., one quarter of the previous square
used in Fig. 2. As shown in Fig. 4, these shapes have no pixels that increase the
complexity. Slight fluctuations in dA are due to the first order approximation to
fA,numerical.

In the second experiment, we apply the method to floor plans of increasing
complexity. Results are depicted in Fig. 5. The first floor plan is composed of



96 M. F. Arslan and S. Tari

Fig. 4. Composite rectangles of constant width

four identical rooms. This plan has no pixels that increase the complexity. As we
introduce missing or extra segments, respective locations start to attain negative
dA values. The last floor plan consists of multiple rooms of varying sizes. The
two rooms of the largest size are deemed as the simplest with dA values near
zero. dA attain higher negative values inside the smaller rooms. Note that the
measure dA is parameterless. As such it implicitly measures the deviation from
the rectangle that maximally fits into the shape due to the choice of ρ (Sect. 2).
Hence, smaller rooms are identified as parts of the plan that increase the plan’s
complexity.

Fig. 5. dAs (top row) for some floor plans (bottom row)

For specific purposes, however, one might be tolerant of the size or interested in
identifying complexity with reference to a prototype shape of certain size rather
than the maximal size. To this end, one can simply treat ρ as a parameter. In
that case positive values for dA arise in the central parts of larger rectangles.
This is illustrated in Fig. 6. The rightmost figure shows the original result from
Fig. 5, i.e., ρ′ = ρ. In the remaining two results, notice that dAs take both
negative and positive values as indicated by the color bars. In the leftmost figure,
ρ′ = 8ρ/9 coinciding with the width of the two identical square-shaped rooms
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on the right-side of the plan. Inside these two rooms dA is almost uniformly zero
as indicated by the color bar. Furthermore, the number of pixels where dA is
negative decreases.

Fig. 6. When the critical width ρ′ is treated as a parameter

In the third experiment, we explore quantifying the shape complexity with a
single value by using 1000 × mean(|dA|) rounded to the closest integer. Some
illustrative results are shown in Fig. 7.

Fig. 7. A variety of shapes of increasing complexity

In the final experiment we explore how we can simplify a complex shape towards
a rectangle. We had observed that the local extrema of dA are near the centers
of regions that increase complexity. Furthermore, at the extrema, the gradient
of fA,numerical indicates the position of such regions relative to the shape body.
Thus, the orthogonal direction to the gradient reveals the directions to cut in
order to acquire a more rectangular shape.

As a proof of concept, we developed a greedy iterative algorithm. It uses
both fields at each iteration step, dA providing information on the cut location
and fA,numerical providing information on the cut direction. For example, for
the square with an appendage (Fig. 3), the mean gradient of fA,numerical at the
two neighboring extrema of dA has no component in y direction. Therefore, the
shape is cut along the y direction from these extrema, separating the base square
and the appendage.

Illustrative cuts are shown in Fig. 8. When determining the direction nor-
mal to the gradient, the numerically computed direction is replaced with the
direction of closest axis if the angle between them is lesser than 2.86 degrees
(≈ arctan 0.05).
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Fig. 8. Iterative simplifications of various shapes towards a rectangle

4 Summary and Future Work

We proposed a new measure dA for distributed coding of the shape complexity.
Each pixel on the shape is assigned a value dA quantifying the pixel’s contri-
bution to overall complexity where the simplicity is understood as the express-
ibility of the shape in terms of an assumed prototype. Throughout the paper
we assumed that the prototype is a rectangle (or hyper-cuboid in higher dimen-
sions). We have performed proof of concept experiments to demonstrate the
practical applicability of the method.

To first order approximation, the proposed method relies on partial differ-
ential equations driven by the morphological Laplacian. An interesting future
research based on this would be changing the underlying metric and using a
corresponding structuring element that represents the unit circle of the chosen
metric. Then, the distance transform appearing in the analytical solution can
be computed, for example, in L1 to acquire a similar shape descriptor address-
ing rhombicity. In the numerical solution part, this can be imitated by using
a diamond structuring element instead of a square one. Sample results for L1

acquired in this way are displayed in Fig. 9.

Fig. 9. Extending the method to measure rhombicity
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