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Abstract. In this work we extend the spectral total-variation frame-
work, and use it to analyze and process 2D manifolds embedded in 3D.
Analysis is performed in the embedding space - thus “spectral arith-
metics” manipulate the shape directly. This makes our approach highly
versatile and accurate for feature control. We propose three such meth-
ods, based on non-Euclidean zero-homogeneous p-Laplace operators.
Each method satisfies distinct characteristics, demonstrated through
smoothing, enhancing and exaggerating filters.
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1 Introduction

In 1995 Taubin [22] proposed to utilize the shape-induced Laplacian eigenfunc-
tions as a basis for shape filtering, in an analogue manner to classical signal
processing techniques. A transform is computed by projecting the shape onto
the basis, where filtering is obtained by weighted reconstruction via this basis.
Many variations of this method were utilized for different tasks (e.g. [21]). Over
time, the Laplace-Beltrami became the standard Laplacian of choice, for spectral
applications, and in general [24]1.

Nonlinear spectral processing has been developed in recent years for image
analysis and manipulation. Spectral total-variation (TV) was introduced in
[13,14] facilitating nonlinear edge-preserving filtering. Essentially, the idea is
to decompose a signal into nonlinear spectral elements related to eigenfunctions
of the total-variation subgradient. The method is based on evolving gradient
descent with respect to the TV functional (TV-flow [1]). The spectral elements
decay linearly in this flow. Different decay rates correspond to different scales

1 Such an adaptation of [22] can be found e.g. in [23], which proposed a computa-
tionally efficient shape filtering, and demonstrated some core filtering capabilities:
Shape exaggeration, detail enhancement, shape smoothing and regularization.
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Fig. 1. Bust of Queen Nefertity reconstructed and filtered via Directional Shape TV
(M3)

(in the case of a single eigenfunction the rate is exactly the eigenvalue). Theoret-
ical underpinning was performed for the spatial discrete case [7] and continuous
case [5]. For the one-dimensional TV setting, it was shown that the spectral
elements are orthogonal to each other. Various applications were suggested for
image enhancement, manipulation and fusion [2,15]. Only recently, in 2020, a
spectral TV framework for shape processing was proposed, for the first time, by
Fumero et al. [12]. They advocate applying spectral TV to the normals of the
shape, thus gradients are calculated on the normals’ domain (unit sphere), and
spectral processing of the embedded shape is done implicitly.

Burger et al. [7] generalized the concepts of spectral TV to decomposi-
tions based on general convex absolutely one-homogeneous functionals. Decom-
positions based on minimizations with the Euclidean norm, as well as with
inverse-scale-space flows [6] were also proposed. The space-continuous setting
was recently analyzed in [5]. A common thread related to gradient flows of one-
homogeneous functionals is that they are based on zero-homogeneous operators.

In this work we propose three new methods, extending nonlinear spectral pro-
cessing of shapes using zero-homogeneous flows. We modify existing Laplacian-
based flows of shapes such that they will comply with the prerequisites of non-
linear spectral processing. We demonstrate how each flow induces distinct spec-
tral properties. On one hand, our work extends ideas from [12] to other zero-
homogeneous flows. On the other hand - we examine a complementary approach,
as our proposed spectral processing methods are performed explicitly on the
shape in its embedding space.
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2 Background

2.1 Differential Operators on Manifolds

Continuous Formulation. In this work, the processed shape is assumed to be a
smooth 2D manifold embedded in 3D, denoted by M , represented as S(ω1, ω2) =
(x(ω1, ω2), y(ω1, ω2), z(ω1, ω2)), i.e. S : Ω ⊂ R

2 → M . Let f : S → R, and
f̃ = f ◦ S(ω1, ω2) i.e. f̃ : Ω → R. For instance, we can map each point q =
S(ω1, ω2) ∈ M to x(ω1, ω2). This function is termed the x-coordinate function.
If f is the x-coordinate function, then f̃ maps each point ω1, ω2 to x(ω1, ω2).
Let TqM be the plane tangent to M at point q ∈ M , it can be shown that
∂S
∂ω1

, ∂S
∂ω2

∈ R
3, denoted Sω1 , Sω2 , at point q span TqM . M is equipped with a

metric g,

g(ω1, ω2) =
(

ST
ω1

Sω1 ST
ω1

Sω2

ST
ω2

Sω1 ST
ω2

Sω2

)
, (1)

which, given that Sω1 , Sω1 are linearly independent, can be shown to be positive
semi-definite and invertible. g induces the inner product 〈a, b〉g = aT gb = AT B,
where A,B ∈ TqM are the mapping of a, b ∈ Ω, considering mapped vectors to
be velocities of mapped routes. The squared-root determinant satisfies the “area
elements”

√|g|dudv. The gradient operator ∇gf(q) = g−1∇ω1,ω2 f̃(ω1, ω2) sat-
isfies 〈∇gf(q),w〉 = lim

h→0

f(q+hw )−f(q)
h , and the divergence ∇g ·F = 1√

|g|∇ω1,ω2 ·
(
√|g|F̃ ) is obtained as an adjoint of ∇g(f). Full details are available at [10].

Finally, the P-Laplace-Beltrami is defined by,

Δg,Pf := ∇g · (|∇gf |P−2∇gf). (2)

For P = 2 the Laplace-Beltrami is obtained. Other special cases we will discuss
are P = 3, and P = 1.

Discretization. We use the discretization framework of [16]. M is approximated
as a triangulated mesh and f as a function on vertices. Discrete matrix operators
are derived, including [

√|g|·] as mass matrix denoted [M ], [∇g] denoted [G] and
[
√|g| · ∇g·] denoted [D]. Thus ∇g· is descretized as [M−1][D]. We remark that
both [G] and [M−1][D] satisfy linearity, are Hermitian conjugate of one another,
and [M−1][D][G] is a common discretization of the Laplace-Beltrami operator.
Finally, a semi-discrete diffusion process of f on M can be formulated as,

∂u(t)
∂t

= [M−1][D][G] · u(t), u(0) = f. (3)

2.2 Vectorial Total Variation

Total variation (TV) has been used extensively for the past three decades
in image processing and computer vision (see [8,9] for theory and applica-
tions). For smooth functions, the TV functional over the domain Ω ⊂ R

n

is TV (u) =
∫

Ω
|∇u(x)|dx, where x = {x1, ·, xn}. When dealing with a vec-

torial function (of several channels) it is desired to take into account the



Nonlinear Spectral Processing of Shapes via Zero-Homogeneous Flows 43

inter-component correlations. A common definition for vectorial TV (see e.g.
[3]) is: V TV (u) =

∫
Ω

√∑
c |∇uc(x)|2 dx, where uc is channel c = 1, ·, C in

u = {u1, ·, uC}. The gradient descent flow evolves each channel by the VTV
flow: ∂uc

∂t = ∇ · ( ∇uc√∑
c̃ |∇uc̃|2 ). Note, as in the scalar TV-flow, this flow is zero-

homogeneous.

2.3 Laplacian-Based Flows

Mesh smoothing is often achieved by some form of a discrete diffusion process.
A plethora of such algorithms were proposed, here we present the three most
relevant to this paper.

Heat Flow. The simplest of the three, often termed Heat Flow, smooths each
coordinate function via Eq. (3), where [M ], [D], [G] are induced by the initial
shape’s metric, denoted g0 and are fixed throughout the process. The smoothed
shape is given by the final three smoothed coordinate functions.

Mean Curvature Flow. The most notable shape smoothing process, Mean
Curvature Flow (MCF) is derived as an area minimizing process. A common
implementation of it resembles the heat flow method, however, at each time step
the operator matrices [M ], [D], [G] are re-calculated according to the present
metric of the smoothed shape, denoted gt [19].

Conformalized Mean Curvature Flow. In [17] cMCF was introduced as a
modified version of MCF. The metric is updated at each time step, but unlike
MCF, the metric is conformalized to the initial shape’s metric. This conformal-

ized metric, g̃t =
√

|g−1
0 gt|g0, induces the “conformalized Laplace-Beltrami”.

Proposed implementation is similar to the former whereas [M ] is updated w.r.t
gt while [D], [G] are fixed w.r.t g0. cMCF is significantly more immune to singu-
larities than MCF, making it more suitable for editing surface extremities such
as head and limbs of humanoid models. Adding rescaling for numerical stability,
the shape converges to a sphere (not a point). In [17] they demonstrate that the
resulting smoothed shape admits a conformal mapping of the initial shape.

2.4 TV Mesh Processing

A suitable TV flow for M is a nontrivial task, as its immediate representa-
tion S(u, v) = x(u, v), y(u, v), z(u, v) is a vectorial function of correlated compo-
nents. We briefly summarize two methods relevant to our work, related to graph
smoothing and to spectral processing of normals.

P-Laplace Flows on Weighted Graphs. Elmoataz et al. [11] proposed a gen-
eralization of TV regularization of functions on weighted graphs. Their discrete
gradient and divergence operators, induced by the graph topology, provide a non-
Euclidean P-Laplace. Treating mesh triangle sides as graph edges, P-Laplace
mesh smoothing was proposed. Shape’s inter correlations were accounted via
combined gradient magnitude as in VTV.
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Normal TV: Flow and Shape Spectral Analysis. Recently, in [12] a spectral
TV framework for shape analysis was suggested. The authors proposed spectral
TV analysis of the shape’s normals, followed by shape-from-normals reconstruc-
tion. This achieves rotation invariance while operating on a fixed metric (the
unit-sphere). Another interesting property of this implicit approach is the con-
vergence to a plain, which is a translation of normals converging to a point. They
show the method is compatible with a range of applications.

3 Proposed Methods

We propose a general framework for nonlinear spectral filtering of shapes
(meshes). First, we present our zero-homogeneous framework. Then we suggest
three methods which utilize this framework to filter shapes. Each method is
inspired by a different flow: Heat Flow, cMCF and MCF. The shape is rep-
resented in its embedding space, allowing excellent feature control as spectral
manipulations directly manipulate embedded structures.

Spectral Processing via (Any) Zero-Homogeneous Flow. Let X be a
space of functions on a general Euclidean space. Let p : X → X be a zero-
homogeneous operator, i.e.,

p(αf) = sign(α)p(f), α ∈ R, f ∈ X. (4)

We examine the following zero-homogeneous flow,

ut = −p(u(t)), u(0) = f0 ∈ X, t ≥ 0, (5)

where ut = ∂u
∂t . We assume the flow exists and that the solution is unique. We

also assume the second time-derivative of u exists (in the distributional sense)
a.e. and define φ : t → X by,

φ(t) = t · utt. (6)

Let f0 be an eigenfunction with respect to p, with a positive eigenvalue, i.e.
∃λ ∈ (0,Λ < ∞) : p(f0) = λ · f0, then

u(t) = (1 − λt)+f0, (7)

satisfies Eq. (5), where (q)+ = max(0, q). This can be verified by taking the time
derivative on both sides and using the zero-homogeneity of p. We note that since
we are examining smoothing processes, p in general is a positive semidefinite
operator, 〈f, p(f)〉 ≥ 0, ∀f ∈ X. Thus the eigenvalues are positive. In the case
of negative eigenvalues, the flow diverges (but for a finite stopping time can
still have a solution). Thus, for eigenfunctions of positive eigenvalues we get
φ(t) = δ(t − 1

λ )f0, i.e. φ’s energy is concentrated in a single scale (“frequency”)
which corresponds to the eigenvalue of f0, λ = 1

t . For a general f0 ∈ X, this
motivates the interpretation of φ as a spectral transform of f0, where the spectral
components are positive eigenfunctions of p, in a similar manner to [5,7,13].
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We can compute the reconstruction formula, for a general stopping time T ,
using integration by parts (and assuming ut(0) is bounded), by

∫ T

0

φ(t) dt = tut|T0 −
∫ T

0

ut dt = Tut(T ) − u(T ) + f0 = −Tp(u(T )) − u(T ) + f0.

Denoting the residual R = Tp(u((T )) + u(T ), the following reconstruction iden-
tity holds f0 =

∫ T

0
φ(t) dt + R. Similar to gradient flows of one-homogeneous

functionals, which are a special case of zero-homogeneous flows, this spectral
framework resembles in some sense classical Fourier analysis, e.g. - we can filter
f0 using a transfer function (window) H : R+ → R as follows:

ffiltered
0 =

∫ T

0

H(t)φ(t) dt + R, (8)

where for H(t) ≡ 1 (“All-pass filter”) we obtain the reconstruction formula.
This is the core capability we use for shape processing in all three methods
proposed below. Note that contrary to previous studies, the above properties
rely on very mild assumptions regarding the flow. We do not assume the flow
minimizes a one-homogeneous functional (and for a finite stopping time, even
strict convergence is not necessary, as all diverging components are in R and the
reconstruction formula is valid). Our findings are straightforward extensions of
observations done in [7], where further discussion takes place, including other key
properties, such as orthogonality of the spectral components and decomposition
into eigenfunctions by the flow in certain settings.

Modifying Flows for Nonlinear Spectral Processing. Our framework
requires a zero-homogeneous flow evolving on a fixed metric (to induce spec-
tral linear decay). Examining Heat Flow, MCF and cMCF we find that none of
these flows is zero-homogeneous, and Heat Flow is the only one performed on a
fixed metric. Hence, adaptations of these flows are required.

Technical Briefing. A 2D manifold M embedded in 3D is given by its 3 coor-
dinate functions S0(ω1, ω2) = x0(ω1, ω2), y0(ω1, ω2), z0(ω1, ω2) where ω1, ω2 ∈
Ω ⊂ R

2, inducing the intrinsic metric g0. M is discretized as a triangular mesh,
and S0 as the vertex coordinates. Gradient and divergence operators ∇g0 ,∇g0 ·
on M are discretized as in [16]. In all modifications of Eq. (2), if P < 2 we
replace the magnitude by

√|∇gf |2 + ε2 for stability. Our flows are implemented
using semi-implicit time steps, and differ by their operator. The evolving shape
at time t is denoted S(t), and c(t) denotes any of S(t)’s evolving coordinate
functions x(t), y(t), z(t).

3.1 Naive Method: Unpaired Coordinate Spectral TV

The naive approach utilizes a modification of Heat Flow for our framework. Heat
Flow processes each coordinate function independently via Eq. (3), utilizing the
Laplace-Beltrami on the fixed metric g0 throughout the flow. Thus it satisfies
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a fixed metric, but it is not zero-homogeneous, and a modification is required.
By replacing the Laplace-Beltrami with the 1-Laplace-Beltrami of Eq. (2) zero-
homogeneity is achieved, which results in the operator −pNaive(c) := Δg0,1c,
and a per-coordinate flow is defined by setting p(u(t)) = −pNaive(c(t)) in Eq.
(5). Each channel evolves separately, hence the name “unpaired coordinates”.
We can now perform nonlinear spectral filtering as in Eq. (8), demonstrated in
Fig. 2. While processing each of c = x, y, z independently is sub-optimal, this
approach has good feature control, as spectral decomposition is applied directly
to the embedded shape.

3.2 Method 1 (M1): Shape Spectral TV

Here we take into account shape coordinate inter-correlations, i.e. we go from
coordinate to shape processing. We apply a vectorial flow (as in VTV) on meshes,
previously suggested by [11], which results in the operator,

− pM1(c) := ∇g0 ·
⎛
⎝ ∇g0c√∑

c̃=x,y,z |∇g0 c̃|2

⎞
⎠ . (9)

Note that the metric is fixed as g0. We can also verify that the operator is zero-
homogeneous. The flow is followed by per-coordinate spectral processing as in
Eq. (6), (8) - thus x, y, z inter-correlation is preserved. We obtain good explicit
feature control (see Fig. 2).

Fig. 2. [Please zoom in] Filtering is applied to the embedded shape, thus magnification
and summation of filter-bands magnifies and sums features directly. As t grows, choos-
ing H(t) greater or less than 1, results in amplification or attenuation of finer details.
This can be observed in the model’s contour and hair-strands. M1 does not cause the
shape to be axis-aligned (squaring effect), as in the naive approach.
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3.3 Method 2 (M2): Conformalized P-Laplace

Here we modify cMCF [17] to our framework, using our conformalized P-
Laplace described below. Our flow inherits cMCF’s limb-head smoothing capa-
bilities (Fig. 3), which we then use for shape filtering. The metric of cMCF,

g̃t =
√

|g−1
0 gt|g0, is not fixed, and the operator driving the flow, the conformal-

ized Laplace-Beltrami,
√

|g0|
|gt| ∇g0 · ∇g0 , depends on the evolving shape’s metric

gt. To achieve a fixed metric, we re-interpret |gt| as an operator on a fixed metric
g0. This is valid since the diffused shape defines both the diffused function as
well as the evolving metric. This affects homogeneity, as shown below. We define
the conformalized P-Laplace as,

Δ̃g,P(c) :=

√
|g0|
|gt| ∇g0 · (|∇g0c|P−2∇g0c). (10)

By Eq. (1) we have that |gt| is absolutely 4-homogeneous, hence Δ̃g,P is P − 3
homogeneous,

Δ̃g,P(αc) =

√
|g0|

|α|4|gt|∇g0 · (|α|P−2|∇g0c|P−2)α∇g0c =
α

|α|4−P Δ̃g,P(c).

Thus we choose Δ̃g,3 as a zero-homogeneous modification of the conformalized
Laplace. Once again inter-correlations are accounted for, as in [11], yielding the
operator,

− pM2(c) :=

√
|g0|
|gt| ∇g0 ·

⎛
⎝√ ∑

c̃=x,y,z

|∇g0 c̃|2∇g0c

⎞
⎠ (11)

The flow is followed by nonlinear spectral filtering, Eq. (8). Editing extremities,
a capability inherited from our conformal 3-Laplace flow, is demonstrated in
Fig. 4, where extremities are in the form of human limbs and head.

Fig. 3. M2 conformalized P-Laplace flows. P = 2 is an unscaled version of cMCF.
P = 1 is a new conformalized shape TV flow. For P = 3 the flow is zero-homogeneous.
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Fig. 4. Shape exaggeration by M2 spectral filtering. The filter inherits its properties
from the conformalized 3-Laplace flow (Fig. 3), which translates to interesting limb-
head editing. Isometry robustness is demonstrated as well.

3.4 Method 3 (M3): Directional Shape TV

Mesh TV smoothing typically preserve pointy surface points, e.g. tip of chin [12]
or ears [11]. Here we propose a method that preserves edges, e.g. muscle contour,
similarly to TV processing of images. While M1 and M2 utilized modifications
of Heat Flow and cMCF, M3 draws inspiration from MCF.

MCF already has a thoroughly researched fixed-metric zero-homogeneous
modification: The TV flow as applied to gray-scale images [18]. For a surface rep-
resented as S = (x, y, f(x, y)), this modification entails constraining the evolved
shape to be of the form S(t) = (x, y, f(x, y, t)). This is enforced by constrain-
ing each point on the surface to evolve in direction ẑ (perpendicular to the x, y
plane). We note that unconstrained MCF would necessarily violate this form of
S(t), as it theoretically converges to a singular point.

Our third method aims to generalize the above direction-constraint to general
shapes, hence the name “directional”. The x, y domain is generalized to be an
over-smoothed version of the initial shape which we denote Ŝ. Each p ∈ S is
mapped to a p̂ ∈ Ŝ. The direction of evolution is fixed as d̂ = α S−Ŝ

|S−Ŝ| , where α

is a sign indicator which makes sure d̂ points “outwards”. Finally, the evolving
initial surface is represented as f0 = α|S−Ŝ|. Note that S = Ŝ+f0d̂. This method
is a generalization in the following sense: Consider the form S = (x, y, f(x, y)),
choosing Ŝ = (x, y, 0), we have that d̂ = ẑ, and α|S − Ŝ| = (0, 0, f(x, y)).

We advocate the choice of Ŝ as a cMCF smoothed version of S, because
cMCF was shown to provide a conformal mapping from S to Ŝ. By construction
- the metric is fixed and inter-correlations are accounted for. The proposed zero-
homogeneous operator (acting on a scalar-valued function u) is,
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− pM3(u) := ∇g0 · ∇g0u

|∇g0u| , (12)

where u(t) is the evolution of f0 at time t, which results in ∂S
∂t = ∇g0 · ∇g0u

|∇g0u| d̂,
satisfying the imposed directionality. Finally, f0 is filtered as in Eq. (8), and a
filtered shape is obtained by Ŝ + ffilteredd̂. Being closely related to spectral TV
on images, this method preserves detail well, as demonstrated in Figs. 1, 5, 6.
Though inspired by MCF, the proposed flow is substantially different.

Fig. 5. Shape exaggeration by M3. This filter applies edge preserving smoothing while
admitting the requirements for the caricaturiazation task, as posed by [20].

Fig. 6. M3 filtering has distinctive detail-preserving capabilities. All our methods can
utilize rough time discretization for runtime efficiency at the expense of reconstruction
error - here M3 takes approximately 30 s. The Laplace-Beltrami filtering requires SVD
for 2000 eigenvectors of the [17 · 103 × 17 · 103] sparse operator matrix, which took us
approximately 5 h to obtain (2.5 orders of magnitude slower).
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4 Discussion and Conclusion

We propose a general methodology for shape processing based on nonlinear
spectral filtering. In this framework we use smoothing flows which satisfy two
requirements: zero-homogeneity, and a fixed metric. We process the shape in its
embedding space, providing unmediated nonlinear spectral representations and
accurate and meaningful filtering capabilities.

To showcase the general concept, three methods are proposed, where spectral
processing is done via the same mechanism, Eqs. (6) and (8). M1 is arguably the
natural setting for shape spectral TV, and is the most robust and easy to handle.
M2 enables the flexible amplification of surface extremities. M3 best entails the
well known characteristics of spectral TV on images (such as edge preservation).
This is accomplished by restricting the direction of the evolution, generalizing a
key component of the TV and Mean Curvature Flow duality. While possessing
visibly distinct properties, all three methods demonstrate good smoothing and
detail enhancement capabilities. Robustness to pose variations is demonstrated
as well.

With respect to processing time, we note that these methods are fairly fast. In
order to filter by linear eigenfunctions, one first needs to compute the basis for the
specific shape. This entails solving SVD of the Laplace-Beltrami operator, which
is significantly more costly than our proposed methods (e.g. the computations
for Fig. 6 are 30 s for M3 vs. 5 h for Laplace-Beltrami filtering).

The characteristics of the proposed nonlinear spectral methods are distinct
and can carry-over to various applications. Our findings on zero-homogeneous
processing are not restricted to shape analysis, and can be implemented even in
new neural-network architectures that comply with our requirements. 2
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