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Abstract. This work addresses texture synthesis by relying on the local
representation of images through their patch distributions. The main
contribution is a framework that imposes the patch distributions at sev-
eral scales using optimal transport. This leads to two formulations. First,
a pixel-based optimization method is proposed, based on discrete optimal
transport. We show that it generalizes a well-known texture optimiza-
tion method that uses iterated patch nearest-neighbor projections, while
avoiding some of its shortcomings. Second, in a semi-discrete setting, we
exploit differential properties of Wasserstein distances to learn a fully
convolutional network for texture generation. Once estimated, this net-
work produces realistic and arbitrarily large texture samples in real time.
By directly dealing with the patch distribution of synthesized images, we
also overcome limitations of state-of-the-art techniques, such as patch
aggregation issues that usually lead to low frequency artifacts (e.g. blur-
ring) in traditional patch-based approaches, or statistical inconsistencies
(e.g. color or patterns) in machine learning approaches.

1 Introduction

General Context. Among the boiling topic of image synthesis, exemplar-based
texture synthesis aims at generating large textures from a small sample. This
is of great interest in various fields ranging from computer graphics for cinema
or video games to image or artwork restoration. The exemplar texture is often
assumed to be perceptually stationary, i.e. with no large geometric deformations
nor lighting changes.

Representing an image with its set of patches, which are small sub-images
of size s × s, is particularly well suited in this stationary setting. Patches take
profit of the self-similarities contained in natural images, and are at the core of
efficient image restoration methods [2,8,13]. Patch representation has proven to
be fruitful for designing texture synthesis methods ranging from simple itera-
tive copy/paste or nearest-neighbor procedures [3,12] to methods that aim at
imposing the patch distribution using optimal transport [4,7,14].
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These patch-based approaches generally suffer from three main practical lim-
itations. First, the patches are often processed independently and then combined
to form a recomposed image [4,14]. The overlap between patches leads to low
frequency artifacts such as blurring. Second, the optimization has to be per-
formed sequentially in a coarse-to-fine manner (both in image resolution and
patch size) starting from a good initial guess. Last, global patch statistics must
be controlled along the optimization to prevent strong visual artifacts [7,10].

In this work, we circumvent these limitations and introduce a framework
for synthesizing a texture such that its patch distributions at different scales
are close, in an optimal transport sense, to the one of the exemplar image. We
demonstrate that patches are sufficient features for texture synthesis when used
in an appropriate optimal transport framework, as illustrated in Fig. 1. Actu-
ally, even if deep features representations have shown impressive performances
for image synthesis [5,9], patch-based methods are still competitive when only a
single image is available for training [1,17], both considering the computational
cost and the visual performance. Moreover, deep learning methods are still dif-
ficult to interpret, whereas patch-based models offer a better understanding of
the synthesis process and its cases of success and failure.

Our framework is naturally adapted to the training of a generative network
with the semi-discrete formulation of optimal transport. To this end, we rely
on feed-forward convolutional neural networks proposed in [1,17,19] for tex-
ture and image generation. Training a texture generator with our optimal trans-
port approach allows to generate on-the-fly arbitrarily large textures. Finally, an
interesting by-product of the proposed method is that it defines a discrepancy
measure between two textures by computing the mean of the optimal transport
cost between patch distributions at various scales.

Overview of the Paper. The goal of the method is to synthesize a texture whose
multi-scale patch distributions are close in an optimal transport sense to the
ones of the target texture. Consider a target texture image v ∈ Km with m
pixels taking values in K ⊂ Rd bounded1. We define the collection of its patches
{P1v, . . . , Pmv} as the set of all sub-images of size p = s × s extracted from
v. For the sake of simplicity, we use periodic boundary conditions so that the
number of patches is exactly m. Then we define the empirical patch distribution
of v by ν = 1

m

∑m
i=1 δPiv. Our objective is therefore to prescribe the statistics of

the patch distribution of the synthesized textures, in order to match the target
distribution ν. To do so, we propose one framework for synthesizing a single
texture image u (Sect. 3) and one for learning a generative model gθ�ζ (Sect. 4),
where the push-forward of a measure ζ is defined by gθ�ζ(B) = ζ(g−1

θ (B)) for any
borel set B. In both cases, we force the patch distribution μt of the synthesized
textures (depending on a variable t which is either the image u or the parameters
θ) to be close to the empirical patch distribution ν for the optimal transport cost

OTc(μt, ν) = inf
π∈Π(μt,ν)

∫

c(x, y)dπ(x, y), (1)

1 For color images we generally have d = 3 and K = [0, 1]3.
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Fig. 1. Two synthesis examples illustrating the drawbacks that are overcome with
our optimal transport framework on patches (Algorithm 1). Contrary to the method
TexOptim from [12], our method respects the statistics from the exemplar image and
unlike the method of Gram-VGG from [5], it does not suffers from color inconsistency
artifacts.

where c : Kp × Kp → R is a Lipschitz cost function and Π(μt, ν) is the set of
probability distributions on Kp × Kp having marginals μt and ν. When using
c(x, y) = ‖x−y‖2, as done for experiments in this work, OTc corresponds to the
square of the Wasserstein-2 distance. Minimizing with respect to t the optimal
transport cost from Eq. (1) appears to be a hard task. Therefore, considering the
discrete nature of ν, we propose to take advantage of the semi-discrete formula-
tion of the optimal transport cost (see [16])

OTc(μt, ν) = max
ψ∈Rm

F (ψ, t) :=
∫

ψc(x)dμt(x) +
1
m

m∑

j=1

ψj (2)

where the c-transform of ψ writes in this case ψc(x) = minj [c(x, Pjv) − ψj ].
Estimating the variable t, i.e. the image u or the generator’s parameters θ,
amounts to solving the following minimax problem

min
t

max
ψ

F (ψ, t). (3)

For fixed t, the function ψ �→ F (ψ, t) is concave and an optimal ψ∗ can be
approximated with an averaged stochastic gradient ascent as proposed in [6].

When the variable t is an image, we propose in Sect. 3 to perform a gradi-
ent descent, which outcome is illustrated in Fig. 1. A stochastic gradient-based
algorithm is then proposed in Sect. 4 to learn a generative model using a convo-
lutional neural network. Both approaches exploit the property, demonstrated in
Sect. 2, that the gradient of the optimal transport ∇tOTc(μt, ν) coincides with
the gradient ∇tF (ψ∗, t) of the function F at an optimal value ψ∗.
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2 Gradient of Optimal Transport

This section is devoted to the computation of the gradient with respect to the
parameter t of the optimal transport cost OTc(μt, ν) in the considered semi-
discrete case. We show, under hypotheses on the patch distribution μt, that
∇tOTc(μt, ν) = ∇tF (ψ∗, t) with ψ∗ ∈ arg maxψ F (ψ, t), when both terms exist.
More precisely, we consider μt = 1

n

∑n
i=1(Pi ◦ gt)�ζ to be the patch distribution

of a generative model gt�ζ, where ζ is a fixed probability measure on Z ⊂ Rr

and gt(·) = g(t, ·) is defined with a measurable function g : T × Z → Kn where
T ⊂ Rq is the open set of parameters. For a given z, gt(z) is an image whose
patches are Pigt(z) = (Pi ◦ gt)(z). This encompasses the image optimization
problem of Sect. 3 using gt�ζ = δt. The function F defined in (2) then becomes

F (ψ, t) =
1
n

n∑

i=1

EZ∼ζ

⎡

⎣ψc(Pi ◦ gt(Z)) +
1
m

m∑

j=1

ψj

⎤

⎦ . (4)

In order to solve the related minimax problem (3), we need the gradients of F
with respect to ψ and t. The function F is concave in ψ and its gradient has been
studied in [6]. To compute the gradient with respect to t, one has to deal with the
points of non-differentiability of ψc(x), that reads ψc(x) = minj [c(x, Pjv) − ψj ]
in the semi-discrete case. To that end, we introduce the open Laguerre cells

Lj(ψ) = {x | ∀k 
= j, c(x, Pjv) − ψj < c(x, Pkv) − ψk} . (5)

The set of points where ψc is differentiable coincides with ∪jLj(ψ), whose com-
plement is negligible if c is a 
p cost. In order to avoid points living in this
complementary set, we introduce the following hypothesis.

Hypothesis 1. g satisfies Hypothesis 1 at (t, ψ) if ζ
(
(Pi ◦ gt)−1{∪jLj(ψ)}

)
= 1

for any patch position i, that is, for a given variable t, the generated patches are
almost surely within the Laguerre cells defined by ψ.

Note that Hypothesis 1 is satisfied for any ψ if c(x, y) = ‖x − y‖p
p and if, for any

i, (Pi ◦ gt)�ζ is absolutely continuous with respect to the Lebesgue measure.
We also introduce a regularity hypothesis for the generative model gt to

control its variations and differentiate under expectation.

Hypothesis 2. There exists K : T × Z → R+ such that for all t, there exists
a neighborhood V of t such that ∀ t′ ∈ V and ∀ z ∈ Z

‖g(t, z) − g(t′, z)‖ ≤ K(t, z)‖t − t′‖ (6)

with K verifying for all t, EZ∼ζ [K(t, Z)] < ∞.

Now, we show the following theorem that ensures the differentiability of F with
respect to the parameter t.
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Theorem 1. Assume c to be C 1. Let g satisfy Hypothesis 2. Let t0 be a point
where t → gt(z) is differentiable ζ(z)-a.e. and let g satisfy Hypothesis 1 at (t0, ψ).
Then t �→ F (ψ, t) is differentiable at t0 and

∇tF (ψ, t0) =
1
n

n∑

i=1

EZ∼ζ

[
(∂tg(t0, Z))T ∇ψc(Pig(t0, Z))

]
(7)

with ∇ψc(Pig(t0, z)) = ∇xc(Pig(t0, z), Pσ(i)v) where σ(i) is the unique index
such that Pig(t0, z) ∈ Lσ(i)(ψ) (which exists ζ(z)-almost surely).

Proof. Since ψc is differentiable on ∪jLj(ψ), Hypothesis 1 implies that for
any i, ψc(Pigt(z)) is differentiable at t0 for ζ-almost every z with gradient
∂tg(t0, z))T ∇ψc(Pig(t0, z)). Since the derivatives of c are bounded by a con-
stant C and since g satisfies Hypothesis 2, we get a neighborhood V of t0 such
that for any t ∈ V and any z, ‖(∂tg(t, z))T ∇ψc(Pig(t, z))‖ ≤ K(t0, z)C with
E[K(t0, Z)] < ∞. Differentiating under the expectation yields the final result. ��

Finally, we relate the gradient of F to the gradient of the optimal transport.

Theorem 2. Let t0 such that t �→ OTc(μt, ν) and t �→ F (ψ∗, t) are differentiable
at t0 with ψ∗ ∈ arg maxψ F (ψ, t0) then

∇tOTc(μt0 , ν) = ∇tF (ψ∗, t0) (8)

Proof. Let fix ψ∗ ∈ arg maxψ F (ψ, t0). The function h(t) = F (ψ∗, t)−OTc(μt, ν)
is differentiable at t0 and maximized at t0, therefore we get ∇th(t0) = 0. ��

3 Image Optimization

In this section we introduce a pixelwise optimization algorithm that minimizes a
optimal transport cost between patch distributions. This discrete optimal trans-
port problem is covered by the framework of Sect. 2 by taking gu(z) = z − u for
all z and ζ = δ0, so that gu�δ0 = δu. Then we relate this algorithm to the texture
optimization framework of [12] and propose a multi-scale extension to account
for different scales in the sample texture to synthetize. Finally, we illustrate the
experimental stability and convergence of the proposed framework.

3.1 Mono-Scale Texture Synthesis Algorithm

Let u ∈ Rn be the image to synthesize with n pixels and μu = 1
n

∑n
i=1 δPiu

its patch distribution. In order to prescribe to u the patch distribution ν of the
exemplar image v, we aim at solving

min
u∈Rn

OTc (μu, ν) = min
u∈Rn

max
ψ∈Rm

F (ψ, u), (9)

where

F (ψ, u) =
1
n

n∑

i=1

ψc(Piu) +
1
m

m∑

j=1

ψj and ψc(Piu) = min
j

[c(Piu, Pjv) − ψj ] .
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Note that the problem is quite similar to [7] where the primal formulation
of optimal transport between discrete patch distributions is however considered.
As in [12], the authors resort to an alternative minimization scheme requiring
to solve an optimal assignment problem at each step, which turns out to be
computationally prohibitive. To solve the minimax problem (9), we also propose
an iterative alternate scheme in u and ψ, starting with an initial image u0.
However, for the discrete case of optimal transport being considered, the authors
of [6] show that an optimal potential ψ∗ can be estimated with a gradient ascent
on ψ. Therefore, for a fixed uk, we perform a gradient ascent with respect to ψ to
obtain an approximation ψk+1 of ψ∗ ∈ arg maxψ F (ψ, uk). A gradient descent
step is then realized on u, using the gradient of F with respect to u given in
Theorem 1. Note that if ψ∗ is an optimal potential and if we are at a point of
differentiability of the OTc, Theorem 2 relates this gradient of F to the gradient
of OTc. Realizing a gradient step in this direction thus corresponds to performing
a gradient descent step for the optimal transport.

Using the quadratic cost c(x, y) = 1
2‖x− y‖2, as in the experiments, we have

∇uF (ψk+1, uk) =
1
n

(
n∑

i=1

PT
i Piu

k −
n∑

i=1

PT
i Pσk+1(i)v

)

, (10)

at a point (ψk+1, uk) where we can uniquely define

σk+1(i) = arg min
j

1
2
‖Piu

k − Pjv‖2 − ψk+1
j . (11)

Notice that Pj is a linear operator whose adjoint PT
j maps a given patch q to an

image whose j-patch is q and is zero elsewhere. Therefore
∑n

i=1 PT
i corresponds

to an uniform patch aggregation. To simplify, we consider periodic conditions for
patch extraction, so that

∑n
i=1 PT

i Pi = pI, where p = s × s denotes the number
of pixels in the patches. Hence, from (10) and considering a step size η n

p , η > 0,
the update of u through gradient descent writes

uk+1 = (1 − η)uk + ηvk, (12)

where vk = 1
p

∑n
i=1 PT

i Pσk+1(i)v is the image formed with patches from the
exemplar image v which are the nearest neighbors to the patches of uk in the
sense of (11). The gradient step then mixes the current image uk with vk. In the
case ψ = 0, the minimum in (11) is reached by associating to each patch of uk

its 
2 nearest neighbor in the set {P1v, . . . , Pnv}, as similarly done in [12].
This image synthesis process is illustrated in Fig. 2, with a comparison of

image synthesis for various patch sizes. As expected, this method cannot take
into account variations that may occur at scales larger than s. We therefore
propose a multi-scale extension in the next section.

3.2 Multi-scale Texture Synthesis

In order to deal with various texture scales, we extend our method in a multi-scale
fashion. In [7], a coarse-to-fine greedy strategy is used, where the optimization
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Fig. 2. Influence of patch-size s for the pixel optimization method Alg. 1 with L = 1.

Algorithm 1. Multi-scale Texture synthesis
Input: target image v, initial image u0, learning rates ηu and ηψ, number of iterations
Nu and Nψ, number of scales L
Output: image u
u ← u0 and ψl = 0 for l = 1 . . . L
for k = 1 to Nu do

for l = 1 to L do
estimate ψk

l with Nψ iterations of gradient ascent of learning rate ηu

Gl(u
k, ψk

l ) ← ST
l ∇uFvl(ψk

l , Sl(u
k))

end for
uk+1 ← uk − ηu(k)

∑L
l=1 Gl(u

k, ψk
l )

end for

is performed iteratively at a smaller resolution, before upscaling the solution to
the next scale. This strategy is employed on both image resolution and patch size
in [12]. In this work, we propose to solve the optimal transport problem at different
scales simultaneously.

We first create a pyramid of down-sampled and blurred images. For each
scale l = 1, . . . , L, we use a linear blurring and down-sampling operator Sl that
computes a reduced version ul = Slu of u of size n/2l−1×n/2l−1. The multi-scale
texture synthesis is obtained by minimizing

L(u) =
L∑

l=1

max
ψl

Fvl
(ul, ψl), (13)

where Fvl
(ul, ψl) = 1

n

∑n
j=1 mini [c(Pjul, Pivl) − (ψl)i] + 1

m

∑m
i=1(ψl)i. As for

the single-scale case, an alternate scheme is considered to minimize L. The
gradient descent update of u combines gradient at multiple scales: ∇uL(u) =
∑L

l=1 ST
l ∇uFvl

(ul, ψl). The multi-scale process is summarized in Algorithm 1.

3.3 Experiments

In all experiments, we consider L = 4 scales and patches of size s = 4. We use
auto-differentiation from the Pytorch package and gradient descent is performed
with the Adam optimizer [11] with learning rate 0.01. We use Nψ = 10 iterations
for the estimation of ψ at each step. The process takes approximately 3 min to
run 500 iterations for synthesizing a 256 × 256 image on a GPU Nvidia K40m.
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Fig. 3. Algorithm 1 is run for the same 100 × 100 sample (a) with two initial images
(b). Both results in faithful 200 × 200 synthesis (c) in k = 500 iterations and the loss
L(uk) (13) shows a monotone convergence behaviour (d).

Figure 1 shows examples of synthesized textures with Algorithm 1 and com-
parisons with a patch-based method [12] and the state-of-the art method [5] pre-
scribing deep neural features from VGG-19 [18]. While it is already known that the
approach of [5] might have color inconsistencies [15], it mostly suffers here from the
small resolution of the input, which makes difficult the extraction of deep features.

Contrary to our method and [5], the approach of [12] does not rely on statis-
tics and does not respect the distribution of features from the original sam-
ple. Therefore, it must be initialized with a good guess (permutation of patch)
instead of any random image. Additionally, it requires to sample large patches
(from s = 32 to s = 8) on a sub-grid to enforce local copy and avoid blurring. We
illustrate in Fig. 3 the stability of our method with respect to the initialization.
Faithful textures are obtained from any initialization (column b): random image
(first row) or another texture (second row).

With our Algorithm1, the optimization nevertheless has to be done each time
a new image is synthesized. In order to define a versatile algorithm that generates
new samples on-the-fly, we rely on generative models in the next section.

4 Training a Convolutional Generative Network

In this section, we consider the problem of training a network to generate images
that have a prescribed patch distribution at multiple scales. Then we present
some visual results together with a comparison with existing methods. Finally
we discuss quantitative evaluation of texture synthesis methods and we pro-
pose a framework to derive a multi-scale optimal transport loss between patch
distributions that can be used as an evaluation score for texture synthesis.
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4.1 Proposed Algorithm for Semi-discrete Formulation

We now consider a generator gθ defined through a function g that is assumed to
satisfy Hypothesis 2, which guarantees the existence of gradients in Theorem 1.
The optimal transport formulation is now semi-discrete (in comparison with the
previous discrete case). We then propose a stochastic alternate algorithm for
training the generator gθ.

From Theorem 2, the gradient of the optimal transport can be expressed
with the gradient of the function F . Since this gradient writes as an expectation
from Theorem 1, we perform a stochastic gradient descent considering the term
inside the expectation in (7) as a stochastic gradient. In the semi-discrete case,
an optimal potential ψ∗ can also be approximated with an averaged stochastic
gradient ascent [6]. This leads us to propose Algorithm 2 for minimizing the
following loss w.r.t. parameters θ:

L(θ) =
L∑

l=1

max
ψl

Ez∼ζ [Fvl
(ψl, (gθ(z))l)] . (14)

In practice, for each iteration k and at each layer l we first update the corre-
sponding potential ψl with an averaged stochastic gradient ascent as proposed
in [6]. Then we sample an image and perform a stochastic gradient step in θ. In
order to test our framework, the function gθ has the same convolutional archi-
tecture as the one used for texture generation in [19]. This network has been
designed to synthesize textures by minimizing the Gram-VGG loss introduced
in [5]. We next demonstrate that we are able to learn the parameters of such a
generative network by only enforcing the patch distributions at various scales.

In our PyTorch implementation , we use the Adam optimizer [11] to estimate
the parameters θ. We run the algorithm for 10000 iterations with a learning-rate
ηθ = 0.01. An averaged stochastic gradient ascent with 100 inner iterations is
used for computing ψ∗. In this setting, 30 min are required to train our generator
with a GPU Nvidia K40m.

Algorithm 2. Learning a texture generator with stochastic gradient descent
Input: target image v, initial weight θ0, learning rate ηθ, number of iterations Nu

and Nψ, number of scales L
Output: generator parameters θ
for k = 1 to Nu do

for l = 1 to L do
estimate ψk

l with Nψ iterations of averaged stochastic gradient ascent
sample z from ζ
update Gl(θk) with Adam [11] step using ∇θFvl(ψ

k
l , (gθk(z))l)

end for
θk+1 ← θk − ηθ(k)

∑L
l=1 Gl(θ

k)
end for
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Fig. 4. Texture synthesis from a generative network trained on a single 256×256 sample
(a). Comparison of our multi-scale approach (b) using 4 × 4 patches (see Alg. 2) with
TexNet [19] (using VGG-19 features), SinGAN [17], PSGAN [1] and TexTo [14].

4.2 Experimental Results and Discussions

Figure 4 gives a comparison of our results with four relevant synthesis meth-
ods from the literature. We first consider the Texture Networks (TexNet)
method [19], which trains a generative network using VGG-19 feature maps
computed on a sample texture. Note that the very same convolutional architec-
ture has been used for our model. We also compare to SinGAN [17] (a recent
generative adversarial newtork (GAN) technique generating images from a single
example relying on patch sampling), to PSGAN [1] (a previous approach that
similarly adapts the GAN framework to the training of a single image) and to
TexTo [14] (which also constrains patch distributions with optimal transport but
in an indirect way). We used Pytorch implementations of SinGAN, PSGAN, and
TexNet, with their default parameters.

The results obtained with our Alg. 2 are visually close to the ones from
TexTo [14]. However, the patch-aggregation step from TexTo makes the results
blurrier than our method which inherently deals with the aggregation issue.
Although TexNet [19] produces textures that look sharper than our results, it
may fail to reconstruct larger structures as in the fourth image. Observe that
patch-based networks TexTo and SINGAN create less visual artifacts (checker-
board patterns due to VGG pooling, false colors, etc.). Dealing with patch
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Table 1. Evaluation of texture synthesis from Fig. 4 for various discrepancy measures,
emphasizing best result and second best (lower is better). The average score (Avg)
is computed over all images. SIFID [17] is computed from first max pooling Inception
features. VGG Gram norm [5] is computed from cross-correlation of VGG features
as used by [19]. The proposed distance is based on multi-scale patch optimal transport.

distributions can lead to local copy of large-scale structures as we can easily see
in the second row of Fig. 4. Although similar large scale structures are copied,
they are not exact copy/pastes of the same area from the exemplar texture and
local changes can be observed within these similar patterns. Moreover, this phe-
nomenon also appears for other methods, particularly in SINGAN and PSGAN.

4.3 Evaluation of Texture Synthesis Methods

Evaluating texture synthesis methods is a complex and open question. The visual
quality is subjective and for now, there is no widely accepted perceptual met-
ric. For quantitative evaluation, several metrics have been proposed, such as
SIFID [17] (Single Image Fréchet Inception Distance) or the metric given by
the feature correlations of VGG [5]. Using our framework, we also propose a
new evaluation metric that measures the Wasserstein distance between patch
distributions at each scale. Table 1 presents the scores for these three metrics for
textures from Fig. 4.

As expected, each method performs better for its associated metric. Our
two algorithms and TexTo present the lowest scores for the proposed optimal
transport loss, whereas TexNet [19] obtains the best results with the metric based
on VGG features or the inception network. Our algorithms reach competitive
scores for all these metrics and achieve the best results for two of the four
proposed textures with Alg. 1. Let us mention however that the considered
metrics are not always directly correlated to perception: in the last texture of
Fig. 4, TexNet presents smaller values for both SIFID and VGG scores, whereas
the synthesized texture does not match the input one in term of large-scale
coherence.
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