
Signed Diffie-Hellman Key Exchange
with Tight Security

Jiaxin Pan(B), Chen Qian, and Magnus Ringerud

Department of Mathematical Sciences,
NTNU – Norwegian University of Science and Technology, Trondheim, Norway

{jiaxin.pan,chen.qian,magnus.ringerud}@ntnu.no

Abstract. We propose the first tight security proof for the ordinary
two-message signed Diffie-Hellman key exchange protocol in the random
oracle model. Our proof is based on the strong computational Diffie-
Hellman assumption and the multi-user security of a digital signature
scheme. With our security proof, the signed DH protocol can be deployed
with optimal parameters, independent of the number of users or sessions,
without the need to compensate any security loss. We abstract our app-
roach with a new notion called verifiable key exchange.

In contrast to a known tight three-message variant of the signed
Diffie-Hellman protocol (Gjøsteen and Jager, CRYPTO 2018), we do
not require any modification to the original protocol, and our tightness
result is proven in the “Single-Bit-Guess” model which we known can be
tightly composed with symmetric cryptographic primitives to establish
a secure channel.

Keywords: Authenticated key exchange · Signed Diffie-Hellman ·
Tight security

1 Introduction

Authenticated key exchange (AKE) protocols are protocols where two users can
securely share a session key in the presence of active adversaries. Beyond pas-
sively observing, adversaries against an AKE protocol can modify messages and
adaptively corrupt users’ long-term keys or the established session key between
users. Hence, it is very challenging to construct a secure AKE protocol.

The signed Diffie-Hellman (DH) key exchange protocol is a classical AKE
protocol. It is a two-message (namely, two message-moves or one-round) protocol
and can be viewed as a generic method to transform a passively secure Diffie-
Hellman key exchange protocol [14] into a secure AKE protocol using digital
signatures. Figure 1 visualizes the protocol. The origin of signed DH is unclear
to us, but its idea has been used in and serves as a solid foundation for many
well-known AKE protocols, including the Station-to-Station protocol [15], IKE
protocol [19], the one in TLS 1.3 [32], and many others [7,18,22,23,25].

c© Springer Nature Switzerland AG 2021
K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 201–226, 2021.
https://doi.org/10.1007/978-3-030-75539-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_9

202 J. Pan et al.

Fig. 1. Our signed Diffie-Hellman key exchange protocol and the tight variant of
Gjøsteen and Jager [18]. The functions H and G are hash functions. Operations marked

with a gray box are for our signed DH protocol, and dashed boxes are for Gjøsteen
and Jager’s. Operations without a box are performed by both protocols. All signatures
are verified upon arrival with the corresponding messages, and the protocol aborts if
any verification fails.

Tight Security. Security of a cryptographic scheme is usually proven by con-
structing a reduction. Asymptotically, a reduction reduces any efficient adver-
sary A against the scheme into an adversary R against the underlying com-
putational problem. Concretely, a reduction provides a security bound for the
scheme, εA ≤ � ·εR, where εA is the success probability of A and εR is that of R.
We say a reduction is tight if � is a small constant and the running time of A is
approximately the same as that of R. For the same scheme, it is more desirable
to have a tight security proof than a non-tight one, since a tight security proof
enables implementations without the need to compensate a security loss with
increased parameters.

Multi-challenge Security for AKE. An adversary against an AKE pro-
tocol has full control of the communication channel and, additionally, it can
adaptively corrupt users’ long-term keys and reveal session keys. The goal of an
adversary is to distinguish between a (non-revealed) session key and a random
bit-string of the same length, which is captured by the Test query. We follow
the Bellare-Rogaway (BR) model [5] to capture these capabilities, but formalize

Signed Diffie-Hellman Key Exchange with Tight Security 203

it with the game-based style of [21]. Instead of weak perfect forward secrecy, our
model captures the (full) perfect forward secrecy.

Unlike the BR model, our model captures multi-challenge security, where an
adversary can make T many Test queries which are answered with a single
random bit. This is a standard and well-established multi-challenge notion, and
[21] called it “Single-Bit-Guess” (SBG) security. Another multi-challenge notion
is the “Multi-Bit-Guess” (MBG) security where each Test query is answered
with a different random bit. Although several tightly secure AKE protocols
[2,18,28,35] are proven in the MBG model, we stress that the SBG model is
well-established and allows tight composition of the AKE with symmetric cryp-
tographic primitives, which is not the case for the non-standard MBG model.
Thus, the SBG multi-challenge model is more desirable than the MBG model.
More details about this have been provided by Jager et al.[21, Introduction] and
Cohn-Gordon et al. [10, Section 3].

The Non-tight Security of Signed DH. Many existing security proofs of
signed DH-like protocols [7,22,23] lose a quadratic factor, O(μ2S 2), where μ and
S are the maximum numbers of users and sessions. In the SBG model with T
many Test queries, these proofs also lose an additional multiplicative factor T .

At CRYPTO 2018, Gjøsteen and Jager [18] proposed a tightly secure variant
of it by introducing an additional message move into the ordinary signed DH
protocol. They showed that if the signature scheme is tightly secure in the multi-
user setting then their protocol is tightly secure. They required the underlying
signature scheme to be strongly unforgeable against adaptive Corruption and
Chosen-Message Attacks (StCorrCMA) which is a notion in the multi-user setting
and an adversary can adaptively corrupt some of the honest users to see their
secret keys. Moreover, they constructed a tightly multi-user secure signature
scheme based on the Decisional Diffie-Hellman (DDH) assumption in the random
oracle model [4]. Combining these two results, they gave a practical three message
fully tight AKE. We note that their tight security is proven in the less desirable
MBG model, and, to the best of our knowledge, the MBG security can only
non-tightly imply the SBG security [21]. Due to the “commitment problem”, the
additional message is crucial for the tightness of their protocol. In particular,
the “commitment problem” seems to be the reason why most security proofs for
AKEs are non-tight.

1.1 Our Contribution

In this paper, we propose a new tight security proof of the ordinary two-message
signed Diffie-Hellman key exchange protocol in the random oracle model. More
precisely, we prove the security of the signed DH protocol tightly based on the
multi-user security of the underlying signature scheme in the random oracle
model. Our proof improves upon the work of Gjøsteen and Jager [18] in the
sense that we do not require any modification to the signed DH protocol and our
tight multi-challenge security is in the SBG model. This implies that our analysis
supports the optimal implementation of the ordinary signed DH protocol with
theoretically sound security in a meaningful model.

204 J. Pan et al.

Our technique is a new approach to resolve the “commitment problem”. At
the core of it is a new notion called verifiable key exchange protocols. We first
briefly recall the “commitment problem” and give an overview of our approach.

Technical Difficulty: The “commitment problem”. As explained in [18],
this problem is the reason why almost all proofs of classical AKE protocols are
non-tight. In a security proof of an AKE protocol, the reduction needs to embed
a hard problem instance into the protocol messages of Test sessions so that
in the end the reduction can extract a solution to the hard problem from the
adversary A. After the instance is embedded, A has not committed itself to which
sessions it will query to Test yet, and, for instance, A can ask the reduction
for Reveal queries on sessions with a problem instance embedded to get the
corresponding session keys. At this point, the reduction cannot respond to these
Reveal queries. A natural way to resolve this is to guess which sessions A
will query Test on, and to embed a hard problem instance in those sessions
only. However, this introduces an extremely large security loss. To resolve this
“commitment problem”, a tight reduction should be able to answer both Test

and Reveal for every session without any guessing. Gjøsteen and Jager achieved
this for the signed DH by adding an additional message.

In this paper, we show that this additional message is not necessary for tight
security.

Our Approach: Verifiable Key Exchange. In this work we, for simplicity,
use the signed Diffie-Hellman protocol based on the plain Diffie-Hellman protocol
[14] (as described in Fig. 1) to explain our approach. In the technical part, we
abstract and present our idea with a new notion called verifiable key exchange
protocols. Our approach is motivated by the two-message non-tight AKE in [10].

Let G := 〈g〉 be a cyclic group of prime-order p where the computational
Diffie-Hellman (CDH) problem is hard. Let (gα, gβ) (where α, β $← Zp) be an
instance of the CDH problem. By its random self-reducibility, we can efficiently
randomize it to multiple independent instances (gαi , gβi), and, given a gαiβi , we
can extract the solution gαβ .

For preparation, we assume that a Test session does not contain any forg-
eries. This can be tightly justified by the StCorrCMA security of the underlying
signature scheme which can be implemented tightly by the recent scheme in [12].

After that, our reduction embeds the randomized instance (gαi , gβi) into each
session. Now it seems we can answer neither Test nor Reveal queries: The
answer has the form K := H(ctxt, gxy), but the term gxy cannot be computed
by the reduction, since gx is from either adversary A or the CDH problem
challenge. However, our reduction can answer this by simulating the random
oracle H. More precisely, we answer Test and Reveal queries with a random
K , and we carefully program the random oracle H so that adversary A cannot
detect this change. To achieve this, when we receive a random oracle query
H(ctxt,Z), we answer it consistently if the secret element Z corresponds to the
context ctxt and ctxt belongs to one of the Test or Reveal queries. This check
can be efficiently done by using the strong DH oracle [1].

Signed Diffie-Hellman Key Exchange with Tight Security 205

The approach described above can be abstract by a notion called verifiable
key exchange (VKE) protocols. Roughly speaking, a VKE protocol is firstly
passively secure, namely, a passive observer cannot compute the secret session
key. Additionally, a VKE allows an adversary to check whether a session key
belongs to some honestly generated session, and to forward honestly generated
transcripts in a different order to create non-matching sessions. This VKE notion
gives rise to a tight security proof of the signed DH protocol. We believe this is
of independent interest.

On the Strong CDH Assumption. Our techniques require the Strong CDH
assumption [1] for the security of our VKE protocol. We refer to [11, Appendix
B] for a detailed analysis of this assumption in the Generic Group Model (GGM).
Without using the GGM, we can use the twinning technique [9] to remove this
strong assumption and base the VKE security tightly on the (standard) CDH
assumption. This approach will double the number of group elements. Alterna-
tively, we can use the group of signed Quadratic Residues (QR) [20] to instantiate
our VKE protocol, and then the VKE security is tightly based on the factoring
assumption (by [20, Theorem 2]).

Real-World Impacts. As mentioned earlier, the signed DH protocol serves as
a solid foundation for many real-world protocols, including the one in TLS 1.3
[32], IKE [19], and the Station-to-Station [15] protocols. We believe our approach
can naturally be extended to tighten the security proofs of these protocols. In
particular, our notion of VKE protocols can abstract some crucial steps in a
recent tight proof of TLS 1.3 [11].

Another practical benefit of our tight security proof is that, even if we imple-
ment the underlying signature with a standardized, non-tight scheme (such as
Ed25519 [8] or RSA-PKCS #1 v1.5 [31]), our implementation does not need to
lose the additional factor that is linear in the number of sessions. In today’s
Internet, there can be easily 260 sessions per year.

1.2 Protocol Comparison

We compare the instantiation of signed DH according to our tight proof with the
existing explicitly authenticated key exchange protocols in Fig. 2. For complete
tightness, all these protocols require tight multi-user security of their underlying
signature scheme. We implement the signature scheme in all protocols with the
recent efficient scheme from Diemert et al. [12] whose signatures contain 3 Zp

elements, and whose security is based on the DDH assumption. The implementa-
tion of TLS is according to the recent tight proofs in [11,13], and we instantiate
the underlying signature scheme with the same DDH-based scheme from [12].

We note that the non-tight protocol from Cohn-Gorden et al. [10], whose
security loss is linear in the number of users, has better communication efficiency
(2, 0, 0). However, its security is weaker than all protocols listed in Fig. 2, since
their protocol is only implicitly authenticated and achieves weak perfect forward
secrecy.

206 J. Pan et al.

Fig. 2. Comparison of AKE protocols. We denote Comm. as the communication com-
plexity of the protocols in terms of the number of group elements, hashes and Zp

elements (which is due to the use of the signature scheme in [12]). The column Model
lists the AKE security model and distinguishes between multi-bit guessing (MBG) and
the single-bit-guessing (SBG) security.

We detail the comparison with JKRS [21]. Using the DDH-based signature
scheme in [12], the communication complexity of our signed DH protocol is
(2, 0, 6), while that of JKRS is (5, 1, 3). We suppose the efficiency of our protocol
is comparable to JKRS.

Our main weakness is that our security model is weaker that of JKRS. Namely,
ours does not allow adversaries to corrupt any internal secret state. We high-
light that our proof does not inherently rely on any decisional assumption. In
particular, if there is a tightly multi-user secure signature scheme based on only
search assumptions, our proof directly gives a tightly secure AKE based on search
assumptions only, which is not the case for [21].

Open Problems. We do not know of any tightly multi-user secure signature
schemes with corruptions based on a search assumption, and the schemes in
[30] based on search assumptions do not allow any corruption. It is therefore
insufficient for our purpose, and we leave constructing a tightly secure AKE
based purely on search assumptions as an open problem.

2 Preliminaries

For n ∈ N, let [n] = {1, . . . ,n}. For a finite set S, we denote the sampling of a
uniform random element x by x $← S. By �B� we denote the bit that is 1 if the
evaluation of the Boolean statement B is true and 0 otherwise.

Algorithms. For an algorithm A which takes x as input, we denote its com-
putation by y ← A(x) if A is deterministic, and y $← A(x) if A is probabilistic.
We assume all the algorithms (including adversaries) in this paper to be proba-
bilistic unless we state it. We denote an algorithm A with access to an oracle O

by AO.

Games. We use code-based games [6] to present our definitions and proofs.
We implicitly assume all Boolean flags to be initialized to 0 (false), numerical
variables to 0, sets to ∅ and strings to ⊥. We make the convention that a

Signed Diffie-Hellman Key Exchange with Tight Security 207

procedure terminates once it has returned an output. GA ⇒ b denotes the
final (Boolean) output b of game G running adversary A, and if b = 1 we say
A wins G . The randomness in Pr[GA ⇒ 1] is over all the random coins in
game G . Within a procedure, “abort ” means that we terminate the run of an
adversary A.

Digital signatures. We recall the syntax and security of a digital signature
scheme. Let par be some system parameters shared among all participants.

Definition 1 (Digital Signature). A digital signature scheme SIG := (Gen,
Sign,Ver) is defined as follows.

– The key generation algorithm Gen(par) returns a public key and a secret key
(pk, sk). We assume that pk implicitly defines a message space M and a
signature space Σ.

– The signing algorithm Sign(sk,m ∈ M) returns a signature σ ∈ Σ on m.
– The deterministic verification algorithm Ver(pk,m, σ) returns 1 (accept) or 0

(reject).

SIG is perfectly correct, if for all (pk, sk) ∈ Gen(par) and all messages m ∈ M,
Ver(pk,m,Sign(sk,m)) = 1.

In addition, we say that SIG has α bits of (public) key min-entropy if an
honestly generated public key pk is chosen from a distribution with at least α bits
min-entropy. Formally, for all bit-strings pk′ we have Pr[pk = pk′ : (pk, sk) $←
Gen(par)] ≤ 2−α.

Definition 2 (StCorrCMA Security [12,18]). A digital signature scheme SIG is
(t , ε, μ,Qs ,QCor)-StCorrCMA secure (Strong unforgeability against Corruption
and Chosen Message Attacks), if for all adversaries A running in time at most
t, interacting with μ users, making at most Qs queries to the signing oracle
Sign, and at most QCor (QCor < μ) queries to the corruption oracle Corr as
in Fig. 3, we have

Pr[StCorrCMAA ⇒ 1] ≤ ε.

Fig. 3. StCorrCMA security game for a signature scheme SIG. A has access to the
oracles O := {Sign,Corr}.

Security in the Random Oracle Model. A common approach to analyze
the security of signature schemes that involve a hash function is to use the ran-
dom oracle model [4] where hash queries are answered by an oracle H, where H is

208 J. Pan et al.

defined as follows: On input x , it first checks whether H(x) has previously been
defined. If so, it returns H(x). Otherwise, it sets H(x) to a uniformly random
value in the range of H and then returns H(x). We parameterize the maxi-
mum number of hash queries in our security notions. For instance, we define
(t , ε, μ,Qs ,QCor,QH)-StCorrCMA as security against any adversary that makes
at most QH queries to H in the StCorrCMA game. Furthermore, we make the
standard convention that any random oracle query that is asked as a result of
a query to the signing oracle in the StCorrCMA game is also counted as a query
to the random oracle. This implies that Qs ≤ QH.

Signature Schemes. The tight security of our authenticated key exchange
(AKE) protocols are established based on the StCorrCMA security of the under-
lying signature schemes. To obtain a completely tight AKE, we use the recent
signature scheme from [12] to implement our protocols.

By adapting the non-tight proof in [17], the standard unforgeability against
chosen-message attacks (UF-CMA) notion for signature schemes implies the
StCorrCMA security of the same scheme non-tightly (with security loss μ). Thus,
many widely used signature schemes (such as the Schnorr [33], Ed25519 [8] and
RSA-PKCS #1 v1.5 [31] signature schemes) are non-tightly StCorrCMA secure.
We do not know any better reductions for these schemes. We leave proving the
StCorrCMA security of these schemes without losing a linear factor of μ as a
future direction. However, our tight proof for the signed DH protocol strongly
indicates that the aforementioned non-tight reduction is optimal for these prac-
tical schemes. This is because if we can prove these schemes tightly secure, we
can combine them with our tight proof to obtain a tightly secure AKE with
unique and verifiable private keys, which may contradict the impossibility result
from [10].

For the Schnorr signature, we analyze its StCorrCMA security in the generic
group model (GGM) [29,34]. We recall the Schnorr signature scheme below and
show the GGM bound of its StCorrCMA security in Theorem 1.

Let par = (p, g , G), where G = 〈g〉 is a cyclic group of prime order p with
a hard discrete logarithm problem. Let G : {0, 1}∗ → Zp be a hash function.
Schnorr’s signature scheme, Schnorr := (Gen,Sign,Ver), is defined as follows:

Gen(par):

01 x $← Zp

02 X := gx

03 pk := X
04 sk := x
05 return (pk, sk)

Sign(sk,m):
06 parse x =: sk
07 r $← Zp ; R := gr

08 h := G(pk,R,m)
09 s := r + x · h
10 return (h, s)

Ver(pk,m, σ):
11 parse (h, s) =: σ
12 parse X =: pk
13 R = gs · X−h

14 return �G(R,m) = h�

Theorem 1 (StCorrCMA Security of Schnorr in the GGM). Schnorr’s sig-
nature SIG is (t , ε, μ,Qs ,QCor,QG)-StCorrCMA-secure in the GGM and in the
programmable random oracle model, where

ε ≤ (QG + μ + 1)2

2p
+

(μ − QCor)
p

+
QGQs + 1

p
, and t ′ ≈ t .

Signed Diffie-Hellman Key Exchange with Tight Security 209

Here, QG is the number of group operations queried by the adversary.

The proof of Theorem1 is following the approach in [3,24]: We first define
an algebraic interactive assumption, CorrIDLOG, which is tightly equivalent
to the StCorrCMA security of Schnorr, and then we analyze the hardness of
CorrIDLOG in the GGM. CorrIDLOG stands for Interactive Discrete Logarithm
with Corruption. It is motivated by the IDLOG (Interactive Discrete Logarithm)
assumption in [24]. CorrIDLOG is a stronger assumption than IDLOG in the sense
that it allows an adversary to corrupt the secret exponents of some public keys.
Due to space limit, we leave the detailed proof of Theorem 1 in our full version.

3 Security Model for Two-Message Authenticated Key
Exchange

In this section, we use the security model in [21] to define the security of two-
message authenticated key exchange protocols. This section is almost verbatim
to Sect. 4 of [21]. We highlight the difference we make for our protocol: Since
our protocols do not have security against (ephemeral) state reveal attacks (as
in the extended Canetti-Krawczyk (eCK) model [26]), we do not consider state
reveals in our model.

A two-message key exchange protocol AKE := (GenAKE, InitI,DerR,DerI) con-
sists of four algorithms which are executed interactively by two parties as shown
in Fig. 4. We denote the party which initiates the session by Pi and the party
which responds to the session by Pr . The key generation algorithm GenAKE out-
puts a key pair (pk, sk) for one party. The initialization algorithm InitI inputs the
initiator’s long-term secret key ski and the responder’s long-term public key pkr ,
and outputs a message mi and a state st. The responder’s derivation algorithm
DerR takes as input the responder’s long-term secret key, the initiator’s public
key pki and a message mi . It computes a message mr and a session key K . The
initiator’s derivation algorithm DerI inputs the initiator’s long term key ski , the
responder’s long term public key pkr , the responder’s message mr and the state
st. Note that the responder is not required to save any internal state information
besides the session key K .

Fig. 4. Running an authenticated key exchange protocol between two parties.

We give a security game written in pseudocode. We define a model for explicit
authenticated protocols achieving (full) forward secrecy instead of weak forward

210 J. Pan et al.

secrecy. Namely, an adversary in our model can be active and corrupt the user
who owns the Test session sID∗, and the only restriction is that if there is no
matching session to sID∗, then the peer of sID∗ must not be corrupted before
the session finishes.

Here explicit authentication means entity authentication in the sense that
a party can explicitly confirm that he is talking to the actual owner of the
recipient’s public key. The key confirmation property is only implicit [16], where
a party is assured that the other identified party can compute the same session
key. The game IND-FS is given in Figs. 5 and 6.

Fig. 5. Game IND-FS for AKE. A has access to oracles O := {SessionI,SessionR,DerI,
Reveal,Corr,Test}. Helper procedures Fresh and Valid are defined in Fig. 6. If
there exists any test session which is neither fresh nor valid, the game will return b.

Execution Environment. We consider μ parties P1, . . . ,Pμ with long-term
key pairs (pkn , skn), n ∈ [μ]. Each session between two parties has a unique
identification number sID and variables which are defined relative to sID:

– init[sID] ∈ [μ] denotes the initiator of the session.
– resp[sID] ∈ [μ] denotes the responder of the session.

Signed Diffie-Hellman Key Exchange with Tight Security 211

Fig. 6. Helper procedures Fresh and Valid for game IND-FS defined in Fig. 5. Proce-
dure Fresh checks if the adversary performed some trivial attack. In procedure Valid,
each attack is evaluated by the set of variables shown in Table 1 and checks if an allowed
attack was performed. If the values of the variables are set as in the corresponding row,
the attack was performed, i.e. attack = true, and thus the session is valid.

– type[sID] ∈ {“In”, “Re”} denotes the session’s view, i.e. whether the initiator
or the responder computes the session key.

– I [sID] denotes the message that was computed by the initiator.
– R[sID] denotes the message that was computed by the responder.
– state[sID] denotes the (secret) state information, i.e. ephemeral secret keys.
– sKey[sID] denotes the session key.

To establish a session between two parties, the adversary is given access to oracles
SessionI and SessionR, where the first one starts a session of type “In” and
the second one of type “Re”. The SessionR oracle also runs the DerR algorithm
to compute it’s session key and complete the session, as it has access to all the
required variables. In order to complete the initiator’s session, the oracle DerI

has to be queried.
Following [21], we do not allow the adversary to register adversarially con-

trolled parties by providing long-term public keys, as the registered keys would
be treated no differently than regular corrupted keys. If we would include the key
registration oracle, then our proof requires a stronger notion of signature schemes
in the sense that our signature challenger can generate the system parameters
with some trapdoor. With the trapdoor, the challenger can simulate a valid sig-
nature under the adversarially registered public keys. This is the case for the
Schnorr signature and the tight scheme in [12], since they are honest-verifier
zero-knowledge and the aforementioned property can be achieved by program-
ming the random oracles. However, for readability, we treat the registered keys
as corrupted keys.

212 J. Pan et al.

Finally, the adversary has access to oracles Corr and Reveal to obtain
secret information. We use the following boolean values to keep track of which
queries the adversary made:

– corrupted[n] denotes whether the long-term secret key of party Pn was given
to the adversary.

– revealed[sID] denotes whether the session key was given to the adversary.
– peerCorrupted[sID] denotes whether the peer of the session was corrupted

and its long-term key was given to the adversary at the time the session key
is computed, which is important for forward security.

The adversary can forward messages between sessions or modify them. By that,
we can define the relationship between two sessions:

– Matching Session: Two sessions sID and sID′ match if the same parties are
involved (init[sID] = init[sID′] and resp[sID] = resp[sID′]), the messages sent
and received are the same (I [sID] = I [sID′] and R[sID] = R[sID′]) and they
are of different types (type[sID] �= type[sID′]).

Our protocols use signatures to preserve integrity so that any successful no-
match attacks described in [27] will lead to a signature forgery and thus can be
excluded.

Finally, the adversary is given access to oracle Test, which can be queried
multiple times and which will return either the session key of the specified ses-
sion or a uniformly random key. We use one bit b for all test queries, and store
test sessions in a set S. The adversary can obtain information on the interac-
tions between two parties by querying the long-term secret keys and the session
key. However, for each test session, we require that the adversary does not issue
queries such that the session key can be trivially computed. We define the prop-
erties of freshness and validity which all test sessions have to satisfy:

– Freshness: A (test) session is called fresh if the session key was not revealed.
Furthermore, if there exists a matching session, we require that this session’s
key is not revealed and that this session is not also a test session.

– Validity: A (test) session is called valid if it is fresh and the adversary
performed any attack which is defined in the security model. We capture this
with attack Table 1.

Attack Tables. We define validity of different attack strategies. All attacks
are defined using variables to indicate which queries the adversary may (not)
make. We consider three dimensions:

– whether the test session is on the initiator’s (type[sID∗] =“In”) or the respon-
der’s side (type[sID∗] =“Re”),

– all combinations of long-term secret key reveals, taking into account when a
corruption happened (corrupted and peerCorrupted variables),

– whether the adversary acted passively (matching session) or actively (no
matching session).

Signed Diffie-Hellman Key Exchange with Tight Security 213

Table 1. Distilled table of attacks for adversaries against explicitly authenticated two-
message protocols without ephemeral state reveals. An attack is regarded as an AND
conjunction of variables with specified values as shown in the each line, where “–”
means that this variable can take arbitrary value and F means “false”.

A gets (Initiator, Responder) co
rr

u
p
te

d
[i

∗]

co
rr

u
p
te

d
[r

∗]

p
ee

rC
o
rr

u
p
te

d
[s

ID
∗]

ty
p
e[

sI
D

∗]

|M
(s

ID
∗)

|

0. multiple matching sessions – – – – >1

1.+2. (long-term, long-term) – – – – 1

5.+6. (long-term, long-term) – – F – 0

This way, we capture all kind of combinations which are possible. From the 6
attacks in total presented in Table 2, two are trivial wins for the adversary and
can thus be excluded:

– Attack (3.)+(4.): If there is no matching session, and the peer is corrupted,
the adversary will trivially win, as he can forge a signature on any message
of his choice, and then compute the session key.

Other attacks covered in our model capture forward secrecy (FS) and key com-
promise impersonation (KCI) attacks. An attack was performed if the variables
are set to the corresponding values in the table.

However, if the protocol does not use appropriate randomness, it should not
be considered secure. Thus, if the adversary is able to create more than one
matching session to a test session, he may also run a trivial attack. We model
this in row (0.) of Table 2.

Note that we do not include reflection attacks, where the adversary makes
a party run the protocol with himself. For the KEDH protocol, we could include
these and create an additional reduction to the square Diffie-Hellman assumption
(given gx , to compute gx

2
), but for simplicity of our presentation we will not

consider reflection attacks in this paper.

How to read the tables. As an example, we choose row (5.) of Table 2.
Then, if the test session is an initiating session (namely, type[sID∗] = “In”), the
responder is not corrupted when the key is computed, and there does not exist a
matching session (namely, |M(sID∗)| = 0), this row will evaluate to true. In this
scenario, the adversary is allowed to query both long-term secret keys. Note that
row (6.) denotes a similar attack against a responder session. Since the session’s
type does not change the queries the adversary is allowed to make in this case,
we merge these rows in Table 1. For the same reason, we also merge lines (1.)
and (2.).

214 J. Pan et al.

Table 2. Full table of attacks for adversaries against explicitly authenticated two-
message protocols. The trivial attacks where the session’s peer is corrupted when the
key is derived, and the corresponding variables are set to T, are marked with gray .
The ⊥ symbol indicates that the adversary cannot query anything from this party, as
he already possesses the long-term key.

A gets (Initiator, Responder) co
rr

u
p
te

d
[i

∗]

co
rr

u
p
te

d
[r

∗]

p
ee

rC
o
rr

u
p
te

d
[s

ID
∗]

ty
p
e[

sI
D

∗]

|M
(s

ID
∗)

|

0. multiple matching sessions – – – – >1

1. (long-term, long-term) – – – “In” 1

2. (long-term, long-term) – – – “Re” 1

3. (long-term, ⊥) – T T “In” 0

4. (⊥, long-term) T – T “Re” 0

5. (long-term, long-term) – – F “In” 0

6. (long-term, long-term) – – F “Re” 0

The purpose of these tables are to make our proofs precise, by listing all the
possible attacks. We note that while in our case it would have been possible to
simply write out the attacks, the number of possible combinations get too large
if state-reveals are considered. As we adopt our model from [21], which does
include state-reveals, we stuck to their notation.

For all test sessions, at least one attack has to evaluate to true. Then, the
adversary wins if he distinguishes the session keys from uniformly random keys
which he obtains through queries to the Test oracle.

Definition 3 (Key Indistinguishability of AKE). We define game IND-FS
as in Figs. 5 and 6. A protocol AKE is (t , ε, μ,S ,T ,QCor)-IND-FS-secure if for
all adversaries A attacking the protocol in time t with μ users, S sessions, T
test queries and QCor corruptions, we have

∣
∣
∣
∣
Pr[IND-FSA ⇒ 1] − 1

2

∣
∣
∣
∣
≤ ε.

Note that if there exists a session which is neither fresh nor valid, the game
outputs the bit b, which implies that Pr[IND-FSA ⇒ 1] = 1/2, giving the adver-
sary an advantage equal to 0. This captures that an adversary will not gain any
advantage by performing a trivial attack.

Signed Diffie-Hellman Key Exchange with Tight Security 215

4 Verifiable Key Exchange Protocols

A key exchange protocol KE := (InitI,DerR,DerI) can be run between two (unau-
thenticated) parties i and r , and can be visualized as in Fig. 4, but with differ-
ences where (1): parties does not hold any public key or private key, and (2):
public and private keys in algorithms InitI,DerR,DerI are replaced with the cor-
responding users’ (public) identities.

The standard signed Diffie-Hellman (DH) protocol can be viewed as a generic
way to transform a passively secure key exchange protocol to an actively secure
AKE protocol using digital signatures. Our tight transformation does not modify
the construction of the signed DH protocol, but requires a security notion (i.e.
One-Wayness against Honest and key Verification attacks, or OW-HV) that is
(slightly) stronger than passive security: Namely, in addition to passive attacks,
an adversary is allowed to check if a key corresponds to some honestly generated
transcripts and to forward transcripts in a different order to create non-matching
sessions. Here we require that all the involved transcripts must be honestly gen-
erated by the security game and not by the adversary. This is formally defined
by Definition 4 with security game OW-HV as in Fig. 7.

Fig. 7. Game OW-HV for KE. A has access to oracles O := {SessionI,SessionR,DerI,
KVer}.

Definition 4 (One-Wayness against Honest and key Verification
attacks (OW-HV)). A key exchange protocol KE is (t , ε, μ,S ,QV)-OW-HV
secure, where μ is the number of users, S is the number of sessions and QV

216 J. Pan et al.

is the number of calls to KVer, if for all adversaries A attacking the protocol
in time at most t, we have

Pr[OW-HVA ⇒ 1] ≤ ε.

We require that a key exchange protocol KE has α bits of min-entropy, i.e.
that for all messages m ′ we have Pr[m = m ′] ≤ 2−α, where m is output by either
InitI or DerR.

4.1 Example: Plain Diffie-Hellman Protocol

We show that the plain Diffie-Hellman (DH) protocol over prime-order group [14]
is a OW-HV-secure key exchange under the strong computational DH (StCDH)
assumption [1]. We use our syntax to recall the original DH protocol KEDH in
Fig. 8.

Let par = (p, g , G) be a set of system parameters, where G := 〈g〉 is a cyclic
group of prime order p.

Definition 5 (Strong CDH Assumption). The strong CDH (StCDH)
assumption is said to be (t , ε,QDh)-hard in par = (p, g , G), if for all adver-
saries A running in time at most t and making at most QDh queries to the DH
predicate oracle Dha , we have:

Pr
[

Z = Ba

∣
∣
∣
∣

a, b $← Zp ; A := ga B := gb

Z $← ADha (A,B)

]

≤ ε,

where the DH predicate oracle Dha(C ,D) outputs 1 if D = C a and 0 otherwise.

Fig. 8. The Diffie-Hellman key exchange protocol, KEDH, in our syntax definition.

Lemma 1. Let KEDH be the DH key exchange protocol as in Fig. 8. Then KEDH

has α = log2 p bits of min-entropy, and for every adversary A that breaks the
(t , ε, μ,S ,QV)-OW-HV-security of KEDH, there is an adversary B that breaks the
(t ′, ε′,QDh)-StCDH assumption with

ε′ = ε, t ′ ≈ t , and QDh = QV + 1. (1)

Signed Diffie-Hellman Key Exchange with Tight Security 217

Proof. The min-entropy assertion is straightforward, as the DH protocol gener-
ates messages by drawing exponents x , y $← Zp uniformly as random.

We prove the rest of the lemma by constructing a reduction B which inputs
the StCDH challenge (A,B) and is given access to the decisional oracle Dha . B
simulates the OW-HV security game for the adversary A, namely, answers A’s
oracle access as in Fig. 9. More precisely, B uses the random self-reducibility of
StCDH to simulate the whole security game, instead of using the InitI and DerR
algorithms. The most relevant codes are highlighted with bold line numbers.

Fig. 9. Reduction B that breaks the StCDH assumption and simulates the OW-HV
game for A, when A = ga and B = gb for some unknown a and b.

We show that B simulates the OW-HV game for A perfectly:

– Since X generated in line 26 and Y generated in line 37 are uniformly random,
the outputs of SessionI and SessionR are distributed as in the real protocol.
Note that the output of DerI does not get modified.

– For KVer(sID,K), if K is a valid key that corresponds to session sID, then
there must exist sessions sID1 and sID2 such that type[sID1] = “In” (defined
in line 24) and type[sID2] = “Re” (defined in line 34) and

K = (B · gα[sID2])(a+α[sID1]) = Y a · Y α[sID1]. (2)

218 J. Pan et al.

where I [sID] = I [sID1] = A · gα[sID1] (defined in line 26) and R[sID] =
R[sID2] = Y := B · gα[sID2] (defined in line 37). Thus, the output of
KVer(sID,K) is the same as that of Dha(Y ,K/Y α[sID1]).

Finally, A returns sID∗ ∈ [cntS] and a key K ∗. If A wins, then
KVer(sID∗,K ∗) = 1 which means that there exists sessions sID1 and sID2

such that type[sID1] = “In”, type[sID2] = “Re” and

K∗ = g(a+α[sID1])(b+α[sID2]) = gab ·Aα[sID2] ·Bα[sID1]gα[sID1]α[sID2] = gab ·Aα[sID2] ·Y α[sID1],

where Y = R[sID2] = B · gα[sID2]. This means B breaks the StCDH with gab =
K ∗/(Y α[sID1] · Aα[sID2]) as in line 08, if A break the OW-HV of KEDH. Hence,
ε = ε′. The running time of B is the running time of A plus one exponentiation
for every call to SessionI and SessionR, so we get t ≈ t ′. The number of calls
to Dha is the number of calls to KVer, plus one additional call to verify the
adversary’s forgery, and hence QDh = QV + 1.

Group of Signed Quadratic Residues. Our construction of a key exchange proto-
col in Fig. 8 is based on the StCDH assumption over a prime order group. Alter-
natively, we can instantiate our VKE portocol in a group of signed quadratic
residues QR

+
N [20]. As the StCDH assumption in QR

+
N groups is tightly implied

by the factoring assumption (by [20, Theorem 2]), our VKE protocol is secure
based on the classical factoring assumption.

5 Signed Diffie-Hellman, Revisited

Following the definition in Sect. 3, we want to construct a IND-FS-secure authen-
ticated key exchange protocol AKE = (GenAKE, InitI,DerI,DerR) by combining a
StCorrCMA-secure signature scheme SIG = (Gen,Sign,Ver), a OW-HV-secure key
exchange protocol KE = (Init′

I
,Der′

I
,DerR

′), and a random oracle H. The con-
struction is given in Fig. 10, and follow the execution order from Fig. 4.

Fig. 10. Generic construction of AKE from SIG, KE and a random oracle H.

We now prove that this construction is in fact a secure AKE protocol.

Signed Diffie-Hellman Key Exchange with Tight Security 219

Theorem 2. For every adversary A that breaks the (t , ε, μ,ST ,QH, ,
QCor)-IND-FS-security of a protocol AKE constructed as in Fig. 10, we can con-
struct an adversary B against the (t ′, ε′, μ,Qs ,Q ′

Cor
)-StCorrCMA-security of a

signature scheme SIG with α bits of key min-entropy, and an adversary C against
the (t ′′, ε′′, μ,S ′,QV)-OW-HV security of a key exchange protocol KE with β bits
of min-entropy, such that

ε ≤ 2ε′ +
ε′′

2
+

μ2

2α+1
+

S 2

2β+1

t ′ ≈ t , Qs ≤ S , Q ′
Cor

= QCor

t ′′ ≈ t , S ′ = S , QV ≤ QH.

Proof. We will prove this by using the following hybrid games, which are illus-
trated in Fig. 11.

Game G0: This is the IND-FS security game for the protocol AKE. We assume
that all long term keys, and all messages output by InitI and DerR are distinct. If a
collision happens, the game aborts. To bound the probability of this happening,
we use that SIG has α bits of key min-entropy, and KE has β bits of min-
entropy. We can upper bound the probability of a collision happening in the
keys as μ2/2α+1 for μ parties, and the probability of a collision happening in
the messages as S 2/2β+1 for S sessions, as each session computes one message.
Thus we have

Pr[IND-FSA ⇒ 1] = Pr[GA
0 ⇒ 1] +

μ2

2α+1
+

S 2

2β+1
. (3)

Game G1: In this game, when the oracles DerI and SessionR try to derive a ses-
sion key, they will abort if the input message does not correspond to a previously
sent message, and the corresponding signature is valid w.r.t. an uncorrupted
party (namely, A generates the message itself).

This is the preparation step for reducing an IND-FS adversary of AKE to an
OW-HV adversary of KE. Note that in this game we do not exclude all the non-
matching Test sessions, but it is already enough for the “IND-FS-to-OW-HV”
reduction. For instance, A can still force some responder session to be non-
matching by reusing some of the previous initiator messages to query SessionR,
and then A uses the non-matching responder session to query Test.

The only way to distinguish G0 and G1 is to trigger the new abort event in
either line 19 (i.e. AbortDerR) or line 39 (i.e. AbortDerI) of Fig. 11. We define the
event AbortDer := AbortDerI ∨ AbortDerR and have that

∣
∣Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣ ≤ Pr[AbortDer].

To bound this probability, we construct an adversary B against the
(t ′, ε′, μ,Qs ,Q ′

Cor
)-StCorrCMA-security of SIG in Fig. 12.

We note that AbortDer is true only if A performs attacks 5 + 6 in Table 1
which may lead to a session without any matching session. If AbortDer = true

220 J. Pan et al.

Fig. 11. Games G0-G2. A has access to oracles O := {SessionI,SessionR,DerI,
Reveal,Corr,Test}, where Reveal and Corr are simulated as in the original
IND-FS game in Fig. 5. Game G0 implicitly assumes that there is no collision between
long term keys or messages output by the experiment.

then Σ is defined in lines 26 and 42 of Fig. 12 and Σ is a valid StCorrCMA forge
for SIG. We only show that for the case when AbortDerR = true here, and the
argument is similar for the case when AbortDerI = true. Given that AbortDerR
happens, we have that Ver(pki ,X , σi) = 1 and peerCorrupted[sID] = false. Due
to the criteria in line 40, the pair (X , σi) has not been output by SessionI on
input (i , r) for any r , and hence (i ,X) has never been queried to the Sign

′

oracle. Therefore, B aborts A in the IND-FS game and returns (i ,X , σi) to the
StCorrCMA challenger to win the StCorrCMA game. Therefore, we have

Pr[AbortDerR] ≤ ε′, (4)

Signed Diffie-Hellman Key Exchange with Tight Security 221

Fig. 12. Adversary B against the (t ′, ε′, μ,Qs ,Q
′
Cor

)-StCorrCMA-security of SIG. The
StCorrCMA game provides oracles Sign′,Corr

′. The adversary A has access to oracles
O := {SessionI,SessionR,DerI,Reveal,Corr,Test,H}, where Reveal and Test

remain the same as in Fig. 4. We highlight the most relevant codes with bold line
numbers.

which implies that
∣
∣Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣ ≤ Pr[AbortDerI] + Pr[AbortDerR] ≤ 2ε′. (5)

The running time of B is the same as that of A, plus the time used to run the
key exchange algorithms Init′

I
,DerR

′,Der′
I
and the signature verification algorithm

222 J. Pan et al.

Ver. This gives t ′ ≈ t . For the number of signature queries we have Qs ≤ S , since
SessionR can abort before it queries the signature oracle, and the adversary can
reuse messages output by SessionI. For the number of corruptions, we have
Q ′

Cor
= QCor.

Game G2: The Test oracle always returns a uniformly random key, independent
on the bit b.

Since we have excluded collisions in the messages output by the experiment,
it is impossible to create two sessions of the same type that compute the same
session key. Hence, an adversary must query the random oracle H on the correct
input of a test session to detect the change between G1 and G2 (which is only in
case b = 0). More precisely, we have Pr[GA

2 ⇒ 1 | b = 1] = Pr[GA
1 ⇒ 1 | b = 1]

and

∣
∣Pr[GA

2 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣ =

1
2

∣
∣Pr[GA

2 ⇒ 1 | b = 0] + Pr[GA
2 ⇒ 1 | b = 1]

− Pr[GA
1 ⇒ 1 | b = 0] − Pr[GA

1 ⇒ 1 | b = 1]
∣
∣

=
1
2

∣
∣Pr[GA

2 ⇒ 1 | b = 0] − Pr[GA
1 ⇒ 1 | b = 0]

∣
∣ .

(6)

To bound Eq. (6), we construct an adversary C to (t ′′, ε′′, μ,S ′,QV)-break the
OW-HV security of KE. The input to C is the number of parties μ, and system
parameters par. In addition, C has access to oracles Session

′
I
,Session′

R,Der
′
I

and KVer.
We firstly show that the outputs of SessionI, SessionR and DerI (simulated

by C) are distributed the same as in G1. Due to the abort conditions introduced
in G1, for all sessions that has finished computing a key without making the
game abort, their messages are honestly generated, although they may be in a
different order and there are non-matching sessions. Hence, SessionI, SessionR

and DerI can be perfectly simulated using Session
′
I
, Session′

R and Der
′
I
of the

OW-HV game and the signing key.
It is also easy to see that the random oracle H simulated by C has the same

output distribution as in G1. We stress that if line 66 is executed then adversary
A may use the sID to distinguish G2 and G1 for b = 0, which is the only case for
A to see the difference. At the same time, we obtain a valid attack Σ := (sID,K ∗)
for the OW-HV security. Thus, we have

∣
∣Pr[GA

2 ⇒ 1 | b = 0] − Pr[GA
1 ⇒ 1 | b = 0]

∣
∣ ≤ ε′′.

As before, the running time of C is that of A, plus generating and verifying
signatures, and we have t ′′ ≈ t . Furthermore, S ′ = S , as the counter for the
OW-HV game increases once for every call to SessionI and SessionR.

Signed Diffie-Hellman Key Exchange with Tight Security 223

Fig. 13. Reduction C against the (t ′′, ε′′, μ,S ′,QV)-OW-HV-security of KE. The
OW-HV game provides oracles O

′ := {Session′
I
,Session′

R,Der
′
I
,KVer}. The adver-

sary A has access to oracles O := {SessionI,SessionR,DerI,Reveal,Corr,Test,H},
where Reveal,Corr and Test are defined as in G2 of Fig. 11. We highlight the most
relevant codes with bold line numbers. The center dot ‘·’ in this figure means arbitrary
value.

224 J. Pan et al.

At last, for game G2 we have Pr[GA
2 ⇒ 1] = 1

2 , as the response from the
Test oracle is independent of the bit b. Summing up all the equations, we obtain

ε ≤
∣
∣
∣
∣
Pr[IND-FSA ⇒ 1] − 1

2

∣
∣
∣
∣

=
∣
∣
∣
∣
Pr[GA

0 ⇒ 1] +
μ2

2α+1
+

S 2

2β+1
− Pr[GA

2 ⇒ 1]
∣
∣
∣
∣

=
∣
∣
∣
∣
Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1] + Pr[GA

1 ⇒ 1] − Pr[GA
2 ⇒ 1] +

μ2

2α+1
+

S 2

2β+1

∣
∣
∣
∣

≤ ∣
∣Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣ +

∣
∣Pr[GA

1 ⇒ 1] − Pr[GA
2 ⇒ 1]

∣
∣ +

μ2

2α+1
+

S 2

2β+1

≤ 2ε′ +
ε′′

2
+

μ2

2α+1
+

S 2

2β+1
,

and t ′ ≈ t , Qs ≤ S , Q ′
Cor

= QCor, t ′′ ≈ t , S ′ = S , QV ≤ QH.

Acknowledgement. We thank the anonymous reviewers for their many insightful
suggestions to improve our paper.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 12

2. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 26

3. Bellare, M., Dai, W.: The multi-base discrete logarithm problem: tight reductions
and non-rewinding proofs for Schnorr identification and signatures. Cryptology
ePrint Archive, Report 2020/416 (2020). https://eprint.iacr.org/2020/416

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

6. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

7. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security:
an efficient and generic construction in the standard model. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 477–494. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 21

8. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol.
6917, pp. 124–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23951-9 9

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://eprint.iacr.org/2020/416
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9

Signed Diffie-Hellman Key Exchange with Tight Security 225

9. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

10. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 25

11. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. ACNS 2021 (2021). https://eprint.iacr.org/2020/1029

12. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: PKC 2021 (2021). https://ia.cr/2021/235

13. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically-sound crypto-
graphic parameters for real-world deployments. J. Cryptol. (2020). https://eprint.
iacr.org/2020/726

14. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

15. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Crypt. 2(2), 107–125 (1992)

16. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key
exchange: a formal treatment and implications for TLS 1.3. In: 2016 IEEE Sym-
posium on Security and Privacy, pp. 452–469. IEEE Computer Society Press, May
2016

17. Galbraith, S.D., Malone-Lee, J., Smart, N.P.: Public key signatures in the multi-
user setting. Inf. Process. Lett. 83(5), 263–266 (2002). https://doi.org/10.1016/
S0020-0190(01)00338-6

18. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 4

19. Harkins, D., Carrel, D.: The internet key exchange (IKE). RFC 2409 (1998).
https://www.ietf.org/rfc/rfc2409.txt

20. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03356-8 37

21. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key
exchange, revisited. In: EUROCRYPT 2021 (2021). https://ia.cr/2020/1279

22. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

23. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Authenticated confidential channel
establishment and the security of TLS-DHE. J. Cryptol. 30(4), 1276–1324 (2017)

24. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 2

25. Krawczyk, H.: SIGMA: the “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-030-26954-8_25
https://eprint.iacr.org/2020/1029
https://ia.cr/2021/235
https://eprint.iacr.org/2020/726
https://eprint.iacr.org/2020/726
https://doi.org/10.1016/S0020-0190(01)00338-6
https://doi.org/10.1016/S0020-0190(01)00338-6
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://www.ietf.org/rfc/rfc2409.txt
https://doi.org/10.1007/978-3-642-03356-8_37
https://ia.cr/2020/1279
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24

226 J. Pan et al.

26. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

27. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1343–1360. ACM Press, October–
November 2017

28. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: ASIACRYPT 2020 (2020). https://
ia.cr/2020/1088

29. Maurer, U.: Abstract models of computation in cryptography (invited paper). In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12.
Springer, Heidelberg (2005). https://doi.org/10.1007/11586821 1

30. Pan, J., Ringerud, M.: Signatures with tight multi-user security from search
assumptions. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020,
Part II. LNCS, vol. 12309, pp. 485–504. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-59013-0 24

31. PKCS #1: RSA Cryptography Standard. RSA Data Security, Inc., June 1991
32. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446

(Proposed Standard (2018). https://tools.ietf.org/html/rfc8446
33. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–

174 (1991)
34. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,

W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

35. Xiao, Y., Zhang, R., Ma, H.: Tightly secure two-pass authenticated key exchange
protocol in the CK model. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006,
pp. 171–198. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3 9

https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://ia.cr/2020/1088
https://ia.cr/2020/1088
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-030-59013-0_24
https://doi.org/10.1007/978-3-030-59013-0_24
https://tools.ietf.org/html/rfc8446
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-030-40186-3_9

	Signed Diffie-Hellman Key Exchange with Tight Security
	1 Introduction
	1.1 Our Contribution
	1.2 Protocol Comparison

	2 Preliminaries
	3 Security Model for Two-Message Authenticated Key Exchange
	4 Verifiable Key Exchange Protocols
	4.1 Example: Plain Diffie-Hellman Protocol

	5 Signed Diffie-Hellman, Revisited
	References

