®

Check for
updates

Non-interactive Half-Aggregation
of EADSA and Variants
of Schnorr Signatures

Konstantinos Chalkias!®) | Francois Garillot', Yashvanth Kondi2,
and Valeria Nikolaenko!

! Novi/Facebook, Menlo Park, USA
2 Northeastern University, Boston, USA

Abstract. Schnorr’s signature scheme provides an elegant method to
derive signatures with security rooted in the hardness of the discrete log-
arithm problem, which is a well-studied assumption and conducive to effi-
cient cryptography. However, unlike pairing-based schemes which allow
arbitrarily many signatures to be aggregated to a single constant sized
signature, achieving significant non-interactive compression for Schnorr
signatures and their variants has remained elusive. This work shows how
to compress a set of independent EADSA /Schnorr signatures to roughly
half their naive size. Our technique does not employ generic succinct
proofs; it is agnostic to both the hash function as well as the specific
representation of the group used to instantiate the signature scheme.
We demonstrate via an implementation that our aggregation scheme
is indeed practical. Additionally, we give strong evidence that achiev-
ing better compression would imply proving statements specific to the
hash function in Schnorr’s scheme, which would entail significant effort
for standardized schemes such as SHA2 in EdDSA. Among the oth-
ers, our solution has direct applications to compressing Ed25519-based
blockchain blocks because transactions are independent and normally
users do not interact with each other.

Keywords: Schnorr - EADSA - Signatures - Aggregation

1 Introduction

Schnorr’s signature scheme [57] is an elegant digital signature scheme whose
security is rooted in the hardness of computing discrete logarithms in a given
group. Elliptic curve groups in particular have found favour in practical instanti-
ations of Schnorr as they are secured by conservative well-studied assumptions,
while simultaneously allowing for fast arithmetic. One such instantiation is the
EdDSA signature scheme [10], which is deployed widely across the internet (in
such protocols as TLS 1.3, SSH, Tor, GnuPGP, Signal and more).

Y. Kondi—did part of this work during an internship at Novi Financial/Facebook
Research.
© Springer Nature Switzerland AG 2021

K. G. Paterson (Ed.): CT-RSA 2021, LNCS 12704, pp. 577-608, 2021.
https://doi.org/10.1007/978-3-030-75539-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75539-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-75539-3_24

578 K. Chalkias et al.

However, the downside of cryptography based on older assumptions is that it
lacks the functionality of modern tools. In this work, we are concerned with the
ability to aggregate signatures without any prior interaction between the signers.
Informally speaking, an aggregate signature scheme allows a set of signatures to
be compressed into a smaller representative unit, which verifies only if all of
the signatures used in its generation were valid. Importantly, this aggregation
operation must not require any secret key material, so that any observer of a
set of signatures may aggregate them. Quite famously, pairing-based signatures
[12,14] support compression of an arbitrary number of signatures into a constant
sized aggregate. Thus far, it has remained unclear how to achieve any sort of
non-trivial non-interactive compression for Schnorr signatures without relying
on generic tools such as SNARKs.

In order to make headway in studying how to compress Schnorr signatures,
we loosely cast this problem as an issue of information optimality. We first recap
the structure of such a signature in order to frame the problem.

Structure of Schnorr signatures. Assume that we instantiate Schnorr’s signature
scheme in a group (G, +) with generator B € G of prime order ¢. A signer pos-
sesses a secret key sk € Z, for which the corresponding public key is pk = sk - B.
In order to sign a message m, the signer samples r < Z,, and computes R = r-B
and S = sk - H(R, pk,m) + r. The signature itself is ¢ = (R, S). This format
of Schnorr signature is employed in EADSA [10]. The original form of Schnorr
signatures are slightly different: o = (H(R, pk,m), S), the verification rederives
R and verifies the hash. Schnorr signatures of this format can be shortened by a
quarter via halving the output of the hash function [48,57], but this format does
not allow for half-aggregation, thus we are focusing on the Schnorr-type signa-
tures in the (R, S) format. We enumerate most of the popular Schnorr variants
in Appendix A.3 discussing compatibility with our aggregation approach.

In practice, the groups that are used to instantiate Schnorr signatures are
elliptic curves which are believed to be ‘optimally hard’, i.e. no attacks better
than generic ones are known for computing discrete logarithms in these curves
groups. As an example, the Ed25519 curve which requires 256 bits to represent
a curve point is believed to instantiate an optimal 128-bit security level. Con-
sequently, elliptic curve based Schnorr signatures are quite compact: at a \-bit
security level, instantiation with a 2A-bit curve yields signatures that comprise
only 4\ bits. Note that we ignore the few bits of overhead/security loss due to
the specific representation of the curve.

Schnorr Signatures are Not Information Optimal. Given a fixed public key, a
fresh Schnorr signature carries only 2A bits of information. Indeed for a 2\-bit
curve, there are only 22* pairs of accepting (R, S) tuples. It seems unlikely that
we can achieve an information-optimal representation for a single signature'.

! Even for shortened Schnorr signatures o = (H(R, pk,m),S), where the output of
the hash function is halved, signatures are at least 3\ bits, i.e. 50% larger than the
amount of information they carry.

Non-interactive Half-Aggregation of EADSA 579

However we can not rule out this possibility when transmitting a larger number
of signatures. Transmitting n Schnorr signatures at a A-bit security level naively
requires 4n\ bits, whereas they only convey 2n\ bits of information. Therefore
we ask:

How much information do we need to transmit in order to aggregate the
effect of n Schnorr signatures?

We specify that we are only interested in aggregation methods that are agnostic
to the curve and the hash function used for Schnorr - in particular aggregation
must only make oracle use of these objects. This is not merely a theoretical
concern, as proving statements that depend on the curve or code of the hash
function can be quite involved in practice.

Related work is covered in Appendix A where we discuss existing security
proofs for Schnorr signatures, multi-signatures, other variants of Schnorr and
prior work on non-interactive aggregation of signatures.

1.1 Owur Contributions

This works advances the study of non-interactive compression of Schnorr signa-
tures.

Simple Half-Aggregation. We give an elegant construction to aggregate n
Schnorr signatures over 2\ bit curves by transmitting only 2(n + 1)\ bits of
information - i.e. only half the size of a naive transmission. This effectively cuts
down nearly all of the redundancies in naively transmitting Schnorr signatures.
Our construction relies on the Forking Lemma for provable security and con-
sequently suffers from a quadratic security loss similar to Schnorr signatures
themselves. Fortunately, this gap between provably secure and actually used
parameters in practice has thus far not been known to induce any attacks. We
also show how this aggregation method leads to a deterministic way of verifying
a batch of Schnorr signatures.

Almost Half-Aggregation with Provable Guarantees. In light of the lossy
proof of our half-aggregation construction, we give a different aggregation scheme
that permits a tight reduction to the unforgeability of Schnorr signatures. How-
ever this comes at higher cost, specifically 2(n+e€)\ bits to aggregate n signatures
where € € O(A/log) is independent of n. This construction is based on Fis-
chlin’s transformation [28], and gives an uncompromising answer to the security
question while still retaining reasonable practical efficiency. More concretely the
compression rate of this construction passes 40% as soon as we aggregate 128
signatures, and tends towards the optimal 50% as m increases.

Implementations. We implement and comprehensively benchmark both con-
structions. We demonstrate that the simple half-aggregation construction is
already practical for wide adoption, and we study the performance of our almost
half-aggregation construction in order to better understand the overhead of prov-
able security in this setting.

580 K. Chalkias et al.

A Lower Bound. Finally, we give strong evidence that it is not possible to
achieve non-trivial compression beyond 2nA bits without substantially higher
computation costs, i.e. our half-aggregation construction is essentially optimal
as far as generic methods go. In particular, we show that aggregating Schnorr
signatures from different users (for which no special distribution is fixed ahead of
time) at a rate non-trivially better than 50% must necessarily be non-blackbox
in the hash function used to instantiate the scheme.

In summary, we propose a lightweight half-aggregation scheme for Schnorr
signatures, a slightly worse performing scheme which settles the underlying the-
oretical question uncompromisingly, and finally strong evidence that achieving
a better compression rate is likely to be substantially more computationally
expensive.

2 Proof-of-knowledge for a Collection of Signatures

In this section we first briefly recall the Schnorr and EdDSA signatures. We
then construct a three-move protocol for the proof of knowledge of a collection
signatures, we then discuss two ways to make it non-interactive with different
security /efficiency trade-offs.

2.1 Schnorr/EdDSA Signatures

We explore Schnorr signatures in the form that generalizes the EADSA signa-
tures [10]. We use EADSA, in particular Ed25519, for the purpose of benchmarks
as it is the most widely deployed variant of Schnorr today. The exact algorithm
for EADSA signatures can be found in the original paper or in the Appendix B.
Appendix A provides more information on other forms of Schnorr signatures.
We assume the scheme to be defined for a group G where the discrete log is
hard with the scalar field Z,, we will denote the designated base point of order
q to be B € G. We will use additive notation to represent the group operation.

Algorithm 1. Schnorr in (R, S)-format and EADSA signatures

KeyGen(): sample a random scalar s & Zq, output a secret key sk = s and a public
key pk = s - B.

Sign(sk,m): sample a random scalar r & Z4 (in EADSA r is deduced from the secret
key and the message), compute R = r- B and S = r + Ho(R, A, m) - s, output
o= (R,S).

Verify(m, pk,o): for 0 = (R, S) and pk = A accept if S- B = R+ Ho(R,A,m) - A.

Non-interactive Half-Aggregation of EADSA 581

2.2 Three-Move (Sigma) Protocol

The construction takes inspiration from the batching of Sigma protocols for
Schnorr’s identification scheme [33].

A Sigma protocol is a three-move protocol run by a prover P and a verifier
V for some relation R = {(z,w)}, for (x,w) € R, z is called an instance and
w is called a witness. R C {0,1}* x {0,1}*, where there exists a polynomial p
such that for any (r,w) € R, the length of the witness is bounded |w| < p(|z]).
Often-times, x is a computational problem and w is a solution to that problem.
In the Sigma protocol the prover convinces the verifier that it knows a witness
of an instance x known to both of them. The protocol produces a transcript
of the form (a, e, z) which consists of (in the order of exchanged messages): the
commitment a sent by P, the challenge e sent by V' and the response z sent by P.
The verifier accepts or rejects the transcript. A Sigma protocol for the relation
R with n-special soundness guarantees the existence of an extractor Ext which
when given valid transcripts (accepted by the verifier) with different challenges
(a,e1,21), (a,e2,22),...(a,en, z,) for an instance z, produces (with certainty) a
witness w for the statement, s.t. (x,w) € R. We will not be concerned with the
zero-knowledge property of the protocol for our application.

For a group G with generator B € G of order ¢ € Z, define the relation
RpL = {(pk,sk) € (G,Zg) : pk = sk- B}. Schnorr’s identification protocol [57] is a
two-special sound Sigma protocol for the relation Rp,: given two transcripts with
the same commitment and different challenges, the secret key (discrete logarithm
of pk) can be extracted. It is known how to compress n instances of Schnorr’s
protocol to produce an n-special sound Sigma protocol at essentially the same
cost [33], we use similar ideas to derive a Sigma protocol for the aggregation of
Schnorr signatures, i.e. for the following relation (with hash function Hy):

Rager = {(z,w) | z = (pky,ma, ..., pky,,mp), w = (01,...,04),
Verify(m;, pk;, 0;) = true for Vi € [n]} =
={(z,w) |z = (A1,m1,..., Ap,my),w = (R1,S1,...,Rn, Sn),
Si;+ B =R;+ Ho(R;, Aj,m;) - A; for i =1.n}

Theorem 1. Protocol 2 is an n-special sound Sigma protocol for Raggy.

Proof. Completeness is easy to verify. Extraction is always successful due to the
following: let F' € G[X] be the degree n — 1 polynomial where the coefficient
of z'~! is given by R; + H(R;, pk;,m;) - pk; for each i € [n]. Define f € Z,[X]
as the isomorphic degree n — 1 polynomial over Z, such that the coefficient of
271 in fis S; (the discrete logarithm of the corresponding coefficient in F).
Observe that f(z) - B = F(z) for each « € Z,. Given a transcript (a,e,2), Vx
accepts iff z - B = F(e), which is true iff z = f(e). Therefore n valid transcripts
(a,e1,21)y-..,(a,en,z,) define n distinct evaluations of f (which has degree
n — 1) allowing for recovery of coefficients [S;];c[n) efficiently. This is precisely

582 K. Chalkias et al.

Protocol 2. Sigma protocol for a collection of signatures Raggr

For instance x = {(pk; = Ai,m;)}i=; and witness w = {0y = (R, S:) }ie1
Prover Ps(z,w):
1. Commitment: a = [R1,..., Ry]
2. Challenge: ¢ & Zy v
3. Response: z = Zie[n] S; et
Verifier Vx(z, (a,e,2)): Output 1iff z- B = Eie[n] e " (R; + Ho(Ri, Ai,m;) - Ai)
Extractor Exts((a,er,z1),...,(a,en,2a)): Define the n xn matrix E = [el]; jc[n) and
the column vector Z = ([zi]ic[n))” . Output [S1,...,S.] = (E7'2)T.

the operation carried out by Exty, expressed as a product of matrices. Note that
E = [€]]; jen) is always invertible; each e; is known to be distinct, and so E is
always a Vandermonde matrix. a

2.3 Proof-of-knowledge

A proof-of-knowledge for a relation R = {(z,w)} is a protocol that realizes the
following functionality:

fR((x7w)’x) = (@7R($7w))

i.e. the prover and verifier have inputs (z,w) and z respectively, and receive
outputs @ and R(x,w) respectively. This definition is taken from Hazay and
Lindell [35,36] who show it to be equivalent to the original definition of Bellare
and Goldreich [5]. We additionally let a corrupt verifier learn aux(w) for some
auxiliary information function aux. As we do not care about zero-knowledge at
all (only compression) this can simply be the identity function, i.e. aux(w) = w.

Proofs-of-knowledge allow for the drop-in replacement mechanism that we
desire: instead of an instruction of the form “A sends n signatures to B” in a
higher level protocol, one can simply specify that “A sends n signatures to F%,
and B checks that its output from F is 17.

Among the several landmark transformations of a Sigma protocol into a
non-interactive proof [27,28,51], the most commonly used is the Fiat-Shamir
transform [27]: for a relation R a valid transcript of the form (a,e,z) can be
transformed into a proof by hashing the commitment to generate the challenge
non-interactively: proof = (a,e = Hj(a,x), z). Unfortunately, this transforma-
tion induces a security loss, applied directly to the n-sound Sigma protocol for
the relation Ragg from the previous section (Protocol 2), the prover will have to
be rewinded n times to extract the witness. This transformation however gives
a more efficient construction for non-interactive aggregation of signatures that
we discuss in Sect. 3.

To achieve tighter security reduction, we look into the literature on proof-of-
knowledge with online extractions [51]. There extractors can output the witness
immediately without rewinding, in addition to the instance and the proof the

Non-interactive Half-Aggregation of EADSA 583

extractors are given all the hash queries the prover made. We achieve a proof-of-
knowledge for the relation R,ger which immediately gives an aggregate signature
scheme whose security can be tightly reduced to unforgeability of Schnorr’s sig-
natures as we discuss in Sect. 3.3. We present both protocols in this Section.

Protocol 3. Non-interactive proof-of-knowledge for R,gg,

Parameters: A curve group G with generator B € G of order ¢ € Z. For instance
z = {(pk; = Ai,m;)}i=, and witness w = {o; = (S, Ri)}i—1 we define three
algorithms. Hash function Hi modeled as a Random-Oracle.

Prover P(z,w) — proof:

1. Compute the scalar e = Hy1(R1, A1, m1, ..., Rn, An,mp)
2. Compute the scalar Saggr = > 1, €™+ S;.
3. Output the proof oaggr = [R1,. .., Rn, Sager]-
Verifier Vro(z,proof = [Ry,..., Ry, Sager]) < 0/1:
1. Compute the scalar e = H1(R1, A1,m1,..., Rn, An,my).
2. I et (Ri + Ho(Rs, Ai,ms) - A;) = Saggr - B, output true,
3. otherwise output false.

2.3.1 Fiat-Shamir Transformation

Theorem 2. For every prover P that produces an accepting proof with probabil-
ity € and runtime T having made a list of queries Q to RO, there is an extractor
Ext that outputs a valid signature for each pk; € pk,gg, in time nT + poly(X), with
probability at least e — (n- Q)% /2", where h is the bit-length of the Hy ’s output.
It follows that the scheme (P,V,Ext) is a non-interactive proof-of-knowledge for
the relation Raggr in the random oracle model.

Proof. The extractor Ext runs the adversary n times programming the random
oracle to output fresh random values on each run, giving n proofs that can be
used to obtain n accepting transcripts (a,e;, z;) for i € [n] and invokes Exty
once they are found. Ext runs in time nT, and additionally poly(x) to run Exty;.
The extractor fails in case not all of the e; are distinct which happens with
probability at most (n - Q)%/2"*! by the birthday bound when we estimate the
probability of at least one hash-collision between the queries of n runs of the
adversary. O

Another form of the protocol with the challenges derived with independent
hashes allows for extraction of any single signature with a single rewinding.
This protocol is a foundation for the half-aggregation construction for Schnorr
signatures described in Sect. 3.3. To construct an extractor we use a variant of
the Forking Lemma. Originally the Forking Lemma was introduced in the work
of Pointcheval and Stern [53]. We use a generalized version described in [7].

584 K. Chalkias et al.

Protocol 4. Non-interactive proof-of-knowledge for R,gg

Parameters: A curve group G with generator B € G of order ¢ € Z. For instance
z = {(pk; = Ai,m;)}i=; and witness w = {o; = (S, Ri)}i=; we define three
algorithms. Hash function H1 modeled as a Random-Oracle.

Prover P(z,w) — proof:

1. For i € [n] compute the scalars e; = Hi(R1, A1, m1,..., Rn, An,mn, 1)
2. Compute the scalar Siggr = > i €i - Si.
3. Output the proof gager = [R1, ..., Rn, Sager]-

Verifier Vro(z,proof = [Ry,..., Rn, Sager]) < 0/1:

1. For i € [n] compute the scalars e; = H1(R1, A1,m1,..., Rn, An,mn, 7).
2. If Z?:l e (R,- + Ho(Ri, Ai,mi) . Ai) = Sager - B, output true,
3. otherwise output false.

[7] Generalized Forking Lemma. Fiz an integer ¢ > 1 and a set H of size
h > 2. Let A be a randomized algorithm. The algorithm A is given an input
in = (pk, h1,...,hy) and randomness y, it returns a pair, the first element of
which is an integer I and the second element of which is a side output proof:

(I, proof) «— A(in;y).

We say that the algorithm A succeeds if I > 1 and fails if [= 0. Let 1G be a
randomized input generator algorithm. We define the success probability of A as:

acc = Pr[I > 1;input & IG; (R, ..., hg) & H; (I, proof) & A(input, hq, ..., hy)].
We define a randomized generalized forking algorithm F 4 that depends on A:

F(input) forking algorithm:

Pick coins y for A at random

hi,... hg & H

(I,proof) := A(z,i, h1,..., hg;y)

If I =0 then return (0, L, 1)

Wy.. bl & H

(I',proof’) := A(z,i, h1,...,hr—1,hp, ..., hiy;y)

If (I =1 and hy # h}) then return (1, proof, proof’)
Else return (0, L, 1).

S I o e

Let frk =Prlb = 1;input & IG; (b, proof, proof’) & F (i, x)].

Then frk > acc- (% — %)
Theorem 3. For every prover P that produces an accepting proof for a col-
lection of n signatures with probability € and runtime T having made a list of
queries Q to RO (Hy), there is an extractor Ext that given i* € [n] outputs an

Non-interactive Half-Aggregation of EADSA 585

i*-th signature that is valid under pk;. for message m;- in time 2T - n, with
probability at least € - (¢/(n - Q) — 1/2"), where h is the bit-length of the Hy'’s
output.

Proof. The extractor will run the prover P for the same input twice to obtain
two proofs that differ on the last component:

proof = [R1, ..., Ry, Saggr] and proof’ = [Ry,..., Ry, Shoe]

aggr

it will then be able to extract a signature on pk;..

We first wrap the prover P into an algorithm A to be used in the Forking
Lemma. The algorithm A takes input in = ({(pk;,m;)}i=1,%", h1, ..., hy), for
qg=(Q+1) -n, and a random tape y, it runs the prover P and programs its H;
random oracle outputs as follows: on the input that was already queried before,
output the same value (we record all the past H; queries). In case the query can
not be parsed as (Ry, A1,m1,..., Rn, An,mn, j) € (Gx G x{0,1}*)" x [n] or in
case the public key A;« does not match the one in the input: A;~ # pk;., pro-
gram the oracle to the next unused value of y. Otherwise, if A;» = pk;. and the
query is of the form (Ri, Ai1,mq,...,Rp, Ap,my, j) € (G x G x {0,1}*)" x [n],
do the following: (1) for each ¢ € [n]\i* program the oracle on index i, i.e.
on input (Ry, A1, m1,...,Rp, An,mp,i), to the next unused value of y, (2)
program the oracle on index i*, i.e. on input (Ry, Ai,mq,..., Ry, Ap,mp,i*),
to the next unused value of h: h; and (3) record the index into the table
T[Rl, Al, miy..., Rn, An, Mp, Z*] =1.

Note that when the oracle is queried on some (Ry, A1, my, ..., Ry, Apymn, j),
all the related n queries are determined, those are queries of the form (Ry, A1, my,
cooy Ry Apymy,, i) for i € [n], so we program all those n queries ahead of time,
when a fresh tuple (Ry, A1, m1, ..., Ry, An,my) is queried to the Hy oracle (i.e.
on one real query, we program n related queries). The index ¢ recorded in the
table T is the potential forking point, so we program the queries (Ry, A1, m1, ...,
Ry, Ay,my, i) for i € [n]\i* first, to the values of y, making sure that those values
of y 2 are read before the forking point (the positions of y that are used here
are therefore the same between rewindings), we finally program (R;, Ay, mq, ...,
R, A,,m,,i*) to the next value of h (the potential forking point, therefore an
oracle query at this value may differ between rewindings). Note also that in the
process of programming we ignore the index j where the real query has been
asked, it is only being used to give back the correct programmed value.

When the prover outputs a proof = [Ry, ..., Ry, Sage|, the algorithm A per-
forms additional queries Hq(R1, A1, m1, ..., Rp, An,my, j) for all j € [n], making
sure those are defined, and if the proof is valid, it outputs I = T[R;, A1, mq, ...,
R, Ay, my,1*] and proof, otherwise it outputs (0, L).

Next we use the forking lemma to construct an algorithm F 4 that produces
two valid proofs proof and proof’ and an index I. Since the same randomness
and the same oracle values were used until index I, it must be the case that two
proofs satisfy:

2 An anonymous reviewer suggested a PRF could be used to derive the values of y
from a single seed in order to save space for an implementation of the reduction.

586 K. Chalkias et al.

prOOf = [Rh vy an Saggr]a Z €i (Rz + HO(Ria Ai7 mz) : Az) = Saggr . B, (1)
=1

proof’ = [Rl, ey Rn, Se/lggr]7 Z 6; (Rz + HO(Ri7 Ai7mi) : AZ) = S;ggr : B7
=1

where e;« # e}. and for Vi # i*e; = ¢},

since the latter are programmed before the forking point I. (2)

Subtracting the two equations (Eq.1 and Eq.2) we extracted a signature
(S = Sager — S;gg,, R;) on message m; under the public key A;.

The success probability of A is €, hence the probability of successful extrac-
tion according to the Forking Lemma is € (¢/(n- Q) — 1/2"). The extractor runs
the prover twice and on each one random oracle query programs at most n — 1

additional random oracle queries. a

Note that Ext extracts a single signature at a specified position. To extract
all of the n signatures, the prover needs to be rewinded n times.

Corollary 1. For every prover P that produces an accepting proof with probabil-
ity € and runtime T having made a list of queries Q to RO, there is an extractor
Ext that outputs a full witness (i.e. all valid signatures for all pk; € pkaggr) mn
time (n+ 1)Tn, with probability at least (- (e/(n- Q) — 1/2h))n, where h is the
bit-length of the Hy’s output. It follows that the scheme (P,V,Ext) is a non-
interactive proof-of-knowledge for the relation Raggr in the random oracle model.

2.3.2 Fischlin’s Transformation
Pass [51] was the first to formalize the online extraction problem in the random
oracle model and give a generic transformation from any 2-special sound sigma
protocol to a non-interactive proof-of-knowledge with online extraction. Intu-
itively, Pass’s transformation is a cut-and-choose protocol where each challenge
is limited to a logarithmic number of bits. The prover can therefore compute
transcripts for all of the challenges (since there are a polynomial number of
them), put the transcripts as leaves of the Merkle tree and compute the Merkle
root. The extractor will see all of the transcripts on the leaves since it can exam-
ine random-oracle queries. The prover may construct an actual challenge by
hashing the root of the tree and the original commitment, map the result to one
of the leaves and reveal the Merkle path as a proof of correctness which induces a
logarithmic communication overhead. Fischlin’s transformation [28] implements
essentially the same idea (albeit for a specific class of Sigma protocols) where
the transcripts for opening the cut-and-choose are selected at constant com-
munication overhead, however at the expense of at least twice the number of
hash queries in expectation. Roughly, the selection process works by repeatedly
querying (a, e;, z;) to RO until one that satisfies RO(a, e;, 2;) = 0¢ is found.

A proof-of-knowledge that permits an online extractor is very easy to use in a
larger protocol; it essentially implements an oracle that outputs 1 to the verifier

Non-interactive Half-Aggregation of EADSA 587

iff the prover gives it a valid witness. A reduction that makes use of an adversary
for a larger protocol simply receives the witness on behalf of this oracle, while
incurring only an additive loss of security corresponding to the extraction error.
This is the design principle of Universal Composability [17] and permits modular
analysis for higher level protocols, which in this case means that invoking the
aggregated proof oracle is “almost equivalent” to simply sending the signatures
in the clear.

We construct a non-interactive version of our aggregation protocol with ideas
inspired by Fischlin’s transformation, so that proofs produced by our protocol
will permit online extraction. There are various subtle differences from Fischlin’s
context, such as different soundness levels for the underlying and compiled pro-
tocols to permit compression, and the lack of zero-knowledge, and so we specify
the non-interactive protocol directly in its entirety below, and prove it secure
from scratch.

Protocol 5. Non-interactive proof-of-knowledge for Ragg,

Prover Pro(x,w) — proof:
1. Initialize an array of curve points, a = [Ru,..., Rn].
2. Initialize empty arrays of scalars: e = [1]" and z = [1]"; e,z € (Z4 U L)".
3. Setind=1,e=1.
4. While ind < r, do:
(a) Compute z =3, (15" et
(b) If RO(a, ind, e, z) = 0%:
— Set €ejng = € and Zing = 2
— Increment the ind counter and reset e = 1
(c) Else: increment e
5. Output the proof (a,e,z)
Verifier Vro(z, proof = (a, e, z)) «— 0/1:
1. Output 1 (accept) if both of the following equalities hold for every ind € [r]:

RO(a,ind, €ind, Zina) = 0 /\z.nd G = Z e,nd (Ri + H(Ri, pk;,m;) - pk;)
i€[n]

2. Output 0 (reject) if even one test does not pass.

The parameters ¢, are set to achieve A bits of security, and adjusted as a
tradeoff between computation and communication cost. In particular, the scheme
achieves (¢ —log,(n)) = A bits of security, proofs are of size n curve points and
r field elements, and take 7 - 2¢ hash queries to produce (in expectation).

Theorem 4. The scheme (P,V,Ext) is a non-interactive proof-of-knowledge for
the relation Raggr in the random oracle model. Furthermore for every prover P*
that produces an accepting proof with probability € and runtime T having made
a list of queries Q to RO, the extractor Ext given Q outputs a valid signature for

each pk; € pkygg, in time T + poly(X), with probability at least e — T - 27X,

588 K. Chalkias et al.

Proof.

Completeness. It is easy to verify that when P terminates by outputting a
proof, V' accepts this proof string. P terminates once it has found r indepen-
dent pre-images of 0° per RO; in expectation, this takes - 2¢ queries, which is
polynomial in A as £ € O(logA) and r € O(poly(X)). The prover therefore runs
in expected polynomial time.

Proof of Knowledge. The extractor Ext works by inspecting queries to RO to
find n accepting transcripts (a,e;, z;) and invoking Exty once they are found.
First note that Ext runs in at most |Q] < T steps to inspect queries to RO,
and additionally poly(\) to run Exty. We now focus on bounding the extraction
error. As Exty, works with certainty when given (a,e1, 21), ..., (a, e, 2,), it only
remains to quantify the probability with which Ext will succeed in finding at least
n accepting transcripts in the list of RO queries. The event that the extractor
fails is equivalent to the event that P* is able to output an accepting proof
despite querying fewer than n valid transcripts (prefixed by the same a) to RO;
call this event fail. Define the event fail, as the event that P* is able to output an
accepting proof (a, e, z) despite querying fewer than n valid transcripts (prefixed
specifically by a) to RO. Define faily jng as the event that P* queries fewer than
n valid transcripts to RO prefixed specifically by a,ind, for each ind € [r]. Let
Qind,15 - - -, Qind,m index the valid transcripts queried to RO with prefix a,ind.
The event failg ing occurs only when m < n, and so the probability that failg ing
occurs for a given ind can therefore be computed as follows:

Pr[fails ina] = Pr[RO(Qina.1) = 0° V- - V RO(Qina.m) = 0°] Z Pr[RO(Qina,;) = 0']

Jj€[m]

Vi 1 n 1
< > PrRO@inas) = 0= Y 5 = 5 = 3w

J€[n] J€ln]
Subsequently to bound fail, itself, we make the following observations:

— For fail, to occur, it must be the case that fail, jng occurs for every ind € [r].
This follows easily, because every transcript prefixed by a,ind is of course
prefixed by a.

— Bach event failging is independent as the sets of queries they consider are
prefixed by different ind values and so are completely disjoint.

The probability that fail, occurs can hence be bounded as follows:

1
Prlfaila] < Prffaila,1 A+ Afailo,] = [] Prifaila,] <] ey = 2~ (£-log(n)
i€(r] i€(r]

The parameters 7, are set so that r(¢ — log(n)) > A and so the above prob-
ability simplifies to 27*. As P* runs in time 7', in order to derive the overall
probability of the extractor’s failure (i.e. event fail) we take a union bound over
potentially 7 unique a values, finally giving us Pr[fail] < T'-27* which proves the
theorem. O

Non-interactive Half-Aggregation of EADSA 589

3 Non-interactive Half-Aggregation of Schnorr/EdDSA
Signatures

Following the definition of Boneh et al. [12], we say that a signature scheme
supports aggregation if given n signatures on n messages from n public keys
(that can be different or repeating) it is possible to compress all these signa-
tures into a shorter signature non-interactively. Aggregate signatures are related
to non-interactive multisignatures [38,46] with independent key generations. In
multisignatures, a set of signers collectively sign the same message, producing a
single signature, while here we focus on compressing the signatures on distinct
messages. Our aggregation could be used to compress certificate chains, signa-
tures on transactions or consensus messages of a blockchain, and everywhere
where a batch of signatures needs to be stored efficiently or transmitted over a
low-bandwidth channel. The aggregation that we present here can in practice be
done by any third-party, the party does not have to be trusted, it needs access
to the messages, the public keys of the users and the signatures, but it does not
need to have access to users’ secret keys.

The aggregate signature scheme consists of five algorithms: KeyGen, Sign,
Verify, AggregateSig, AggregateVerify. The first three algorithms are the same as
in the ordinary signature scheme:

KeyGen(1*): given a security parameter output a secret-public key pair (sk, pk).

Sign(sk, m): given a secret key and a message output a signature o.

Verify(m, pk, 0): given a message, a public key and a signature output accept or
reject.

AggregateSig((ma, pki, 1), ..., (Mn, pk,,0n)) — Oaggr: for an input set of n
triplets —message, public key, signature, output an aggregate signature oagg-

AggregateVerify((m1, pky), ..., (Mmn, pk,,), 0ager) — {accept/reject}: for an input
set of n pairs —message, public key— and an aggregate signature, output accept
or reject.

Some schemes may allow an aggregation of the public keys as well,
AggregatePK, but we do not focus on such schemes here.

We recall the EUF-CMA security and Strong Binding Security (SBS) of
the single signature scheme in Appendix C. Intuitively, EUF-CMA (existen-
tial unforgeability under chosen message attacks) guarantees that any efficient
adversary who has the public key pk of the signer and received an arbitrary num-
ber of signatures on messages of its choice: {m;,o;}~ ,, cannot output a valid
signature o* for a new message m* ¢ {m;}, (except with negligible proba-
bility). An SBS guarantees that the signature is binding both to the message
and to the public key, e.g. no efficient adversary may produce two public keys
pk, pk’, two signatures m,m’, s.t. (pk,m) # (pk’,m’) and a signature o that
verifies successfully under (pk,m) and (pk’, m').

3.1 Aggregate Signature Security

Intuitively, the aggregate signature scheme is secure if no adversary can produce
new aggregate signatures on a sequence of chosen keys where at least one of the

590 K. Chalkias et al.

keys is honest. We follow the definition of [12], the attacker’s goal is to produce
an existential forgery for an aggregate signature given access to the signing
oracle on the honest key. An attacker A plays the following game parameterized
by n, that we call chosen-key aggregate existential forgery under chosen-message
attacks (CK-AEUF-CMA).

GGABUFCMA () security game:

1. (pk*,sk®) < KeyGen()
2. ((my1,pky)s-- -, (Mp, pky,), Taggr) « APsene. (pk™),
3. accept if F € [n]st.pk® = pk; , and m; ¢ Lsig, and

Aggregateverify((mla pkl)a SR (mn> pkn), Uaggr)

Osign(sk*,m) constructs the set Lsign:

o « Sign(sk*,m); Lsign < Lsign Um; return o

In this game an attacker is given an honestly generated challenge public key
pk*, he can choose all of the rest public keys, except the challenge public key,
and may ask any number of chosen message queries for signatures on this key, at
the end the adversary should output a sequence of n public keys (including the
challenge public key), a sequence of n messages and an aggregate signature where
the message corresponding to the public key pk™ did not appear in the signing
queries done by the adversary. The adversary wins if the forgery successfully
verifies.

Definition 1. An attacker A, (t,€)-breaks a CK-AEUF-CMA security of aggre-
gate signature scheme if A runs in time at most t and wins the CK-AEUF-CMA
game with probability €. An aggregate signature scheme is (t,¢)-CK-AEUF-CMA-
secure if no forger (t,€)-breaks it.

More broadly, we say that an aggregate signature scheme is CK-AEUF-CMA-
secure if no polynomial-time (in the security parameter) adversary may break the
scheme other than with the negligible probability. Nonetheless, to instantiate the
scheme with some concrete parameters, we will use a more rigid definition stated
above. If the scheme is (t,€)-CK-AEUF-CMA-secure, we say that it provides
log, (t/€)-bits of security.

Note that the adversary has the ability to derive the rest of the public keys
from the honest key pk™ in hope to cancel out the unknown components in
the aggregate verification. Our constructions naturally prevent these attacks,
otherwise generic methods of proving the knowledge of the secret keys could be
used [46]. Note also that the original definition of Boneh et al. [12] places the
honest public key as the first key in the forged sequence, since their scheme is
agnostic to the ordering of the keys, our case is different and thus we give an
adversary the ability to choose the position for the honest public key in the
sequence.

In our constructions of aggregate Schnorr signatures we show that a valid
single-signature forgery can be extracted from any adversary on the aggregate
scheme.

Non-interactive Half-Aggregation of EADSA 591

The SBS definition translates to the aggregate signature defined as follows.
GGASBS () security game:

L ((mlv Pkl) (mna pk,,)a (mlv Pk)) (m/na Fl)kgz)a Uaggr) — ~’l4(n)v
2. accept, if [(m1, pky), - (1, Pky)] 7 [(m’l, pKy), -+ s (M, pki)] A
AggregateVerify((my, pkl), - (M, pK,,), Tager) A
/), 7(mpk) Uaggf)

AggregateVerify((m/, pk]
Definition 2. An attacker A, (t,€)-breaks a CK-ASBS security of aggregate
signature scheme if A runs in time at most t and wins the CK-ASBS game
with probability e. An aggregate signature scheme is (t,€)-CK-ASBS-secure if no
forger (t,€)-breaks it.

3.2 Half-Aggregation

The half-aggregation scheme for Schnorr’s/EAdDSA signatures runs the proof-of-
knowledge protocol (Protocol 4 from Sect. 2) to obtain a proof that would serve
as an aggregate signature. We present the construction for completeness here in
Algorithm 6.

Algorithm 6. Half-aggregation of EADSA signatures

AggregateSig((m17 pky, O-l)v EERE) (m’m Pk, on)) — Oaggr:

Parse the signature as the group element and the scalar: o; = (R;, S;).
Parse the public key as a group element: pk, = A;.

For ¢ € 1..n compute the scalars e; «— Hi(R1, A1,m1,..., Rn, Apn,mn, 7).
Compute an aggregate scalar Saggr = > .-, € - Si.

Output an aggregate signature caggr = [Ri, ..., Rn, Sager)-

AggregateVerify((m1, pk,), ..., (mn, pk,,), Cager) — 0/1:

Parse the aggregate signature as gaggr = [R1,- .., Rn, Sager|-
Parse each public key as a group element pk, = A;.
Compute e; «— Hi(R1, A1,m1,..., Rn, Ap,my, 1) for i € 1.n
If 377 e (Ri + Ho(Re, Ai, my) - Ag) = Sager - B, output true,
otherwise output false.

Note that the scheme of Algorithm 6 compresses n signatures by a factor of
24 O(1/n): it takes n signatures, where each of them is one group element and
one scalar, it compresses the scalars into a single scalar, therefore the resulting
aggregate signature is comprised of one scalar and n group elements, compared
to n scalar and n group elements before aggregation.

Note that the set of R-s can be pre-published as part of the public key or
part of previously signed messages, the aggregate signature becomes constant
size, but signatures become stateful, as it should be recorded which R-s have
already been used. Reuse of R leads to a complete leak of the secret key. Even
small biasis in R weakens the security of the scheme [1]. This approach departs

592 K. Chalkias et al.

from the deterministic nature of deriving nonces in EdADSA, loosing its potential
security benefits, though it will go unnoticed for the verifier.

Note also that for large messages the following optimized aggregation
could be used to speed-up the verifier: each e; could be computed as
e; = Hi(Hy(Ry,A1,m1),...,Ho(Rn, An,my), 1), since the verifier computes
Hy(R;, A;,m;) anyway, it can reuse those values to compute the coefficients
for the aggregation, thus making the length of the input to H; smaller. Though
this optimization will only work for the form of Schnorr signature where the
public key, A;, is hashed.

Theorem 5. If there is an adversary Advy that can (t,¢€)-break the CK-AEUF-
CMA security of the aggregate signature scheme in Algorithm 6, then this adver-
sary can be transformed into an adversary Advy that can (2tn, e-(e/(nt)—1/2"))-
break the EUF-CMA security of the underlying signature scheme, where h is the
bit-length of the Hy’s output.

The proof of this Theorem is very similar to the proof of Theorem 3 and can
be found in the full-version of this paper. The only caveat here is that to apply
the extractor from Theorem 3, it is required to know the index of pk* in a list of
public keys, but this index can be obtained from examining the position of pk*
in the random oracle queries to H;.

Theorem 6. No adversary running in time t may break the CK-ASBS secu-
rity of the aggregate signature scheme described in Algorithm 6, other than with
probability at most t2 /222 +1,

The proof of this Theorem can be found in Appendix D

Parameter selection and benchmarks. Theorem 5 has a quadratic security loss
in its time-to-success ratio: assuming that EUF-CMA provides 128-bits of secu-
rity (which is the case for example for Ed25519 signature scheme) the theorem
guarantees only 64-bits security for CK-AEUF-CMA with 128-bits H;-hashes;
and assuming that EUF-CMA provides 224-bits of security (which is the case for
example for Ed448 signature scheme) the theorem guarantees 112-bits security
for CK-AEUF-CMA with 256-bits H;-hashes®. A similar loss in the reduction
from single Schnorr/EdDSA signature security to a discrete logarithm problem
was not deemed to require the increase in the hardness of the underlying prob-
lems (i.e. the discrete logarithm problem). The proof that reduces security of
Schnorr/EdDSA to the discrete logarithm problem also uses the Forking Lemma,
but no attacks were found to exploit the loss suggested by such proof. Research
suggests that the loss given by the Forking Lemma is inevitable for the proof of
security of Schnorr/EdDSA signatures [29,58], whether it is likewise inevitable
for non-interactive half-aggregation of Schnorr/EdDSA signatures remains an
open question.

3 Note that additionally 2log,(n) + 1 bits of security will be lost due to n.

Non-interactive Half-Aggregation of EADSA 593

Table 1. For n individual signatures we compare batch-verification, aggregate-
verification and aggregation with 128,256,512-bits output for Hi, for Ed25519 sig-
natures. SHA-256 cropped to 128-bits used for 128-bits Hy, SHA-256 used for 256-bits
Hy, SHA-512 used for 512-bits Hy. The benchmarks are run using the ed25519-dalek
library.

n Sequential | Batch AggregateVerify AggregateSig
verification | verification | 128 256 512 128 256 512

16 0.8 ms 0.39 ms 0.37ms | 0.43ms |0.44ms |9.75us 10.6 us 16.98 ps
32 1.6 ms 0.75 ms 0.68ms |0.79ms |0.83ms | 19.25ps | 21.5us 33.02 pus
64 3.2ms 1.39ms 1.35ms |1.52ms | 1.58ms | 39.35us | 41.4pus 67.63 us
128 6.4 ms 2.73 ms 2.61lms | 2.95ms |3.04ms | 78.6us 84.9 us 134.44 ps
256 12.8 ms 4.86 ms 4.69ms | 5.41lms |5.54ms | 151.6us | 165.6 us | 260.36 pus
512 25.7ms 8.92 ms 8.00ms |9.86ms |9.54ms | 316.1us | 341.7ps | 526.50 us
1024 51.5ms 16.15 ms 15.25ms | 17.46ms | 18.31 ms | 613.5us | 657.9us | 1088.0 us
131072 | 6.595 | 1.985 1.71s | 211s |2.09s | 80.21ms|84.60ms | 133.96 ms

We benchmark [18] the scheme to understand the effect of using 128-bits of
H, output vs. 256-bits of H; output and present the results in Table1.* Note
that the performance loss in aggregate signature’s verification between the two
approaches is only about 15%, which might not justify the a use of smaller
hashes. We also benchmark the use of 512-bits hashes of H;, same-size scalar
are used in the EdDSA signature scheme, the advantage of this approach is
that the scalars generated this way are distributed uniformly at random (within
negligible statistical distance from uniform).

3.3 Half+4e-Aggregation

The half+e-aggregation scheme for EADSA /Schnorr’s signatures runs the proof-
of-knowledge protocol (Protocol 5 from Sect.2) to obtain a proof that would
serve as an aggregate signature. For completeness we present the constructions
in Algorithm 7.

Theorem 7. If there is an adversary Advy that can (t,¢€)-break the CK-AEUF-
CMA security of the aggregate signature scheme defined in Algorithm 7 making
Q oracle queries to Hy, then this adversary can be transformed into an adver-
sary Advy that can (t + poly()\),e —t - 27*)-break the EUF-CMA security of the
underlying signature scheme.

The theorem is a simple corollary of Theorem 4.

4 The ‘curve25519-dalek’ and ‘ed25519-dalek’ libraries were used for the benchmark of
this entire section, which ran on a AMD Ryzen 9 3950X 16-Core CPU. We used the
scalar u64 backend of the dalek suite of libraries, to offer comparable results across
a wide range of architectures, and the implementation does make use of Pippenger’s
bucketization algorithm for multi-exponentiation.

594 K. Chalkias et al.

Algorithm 7. Almost-half-aggregation of EADSA signatures

AggregateSig((m1, pky, 01), ..., (Mn, Pk, 0n)) — Cager:
: Let 0; = (R“Sz)
: Compute the hash hy, = H2(R1,--- , Ry).
Set the empty arrays of scalars e := [L]" and z :=[1]"; e,z € (ZoU L)".
Set the counter j := 1.
Set the scalar e := 1.
while 7 <r do
Compute z := " | S;- et
if Hy(ha,j,e,2) = 0° then
Set e; := e; set z; := z; increment the counter j; reset the scalar e = 1.
else
Increment the scalar e.
: Output the aggregate signature caggr = ([R1,- - , Rx], €,2).

SN I R

—_
Mo 9

AggregateVerify((m1, pk,), ..., (mn, pk,,), Cager) — 0/1:
1: Let Oaggr = ([R1,- - , Rul, €,2).
2: Compute hq = Ha(R1, -+, Ry).
3: Output 1 (accept) if both of the following equalities hold for every j € 1..r:

Hi(ha,j,ej,2;) =0° and z; -G = Ze;fl(Ri + Ho(Ri, pk;, ms) - pk;)

i=1

4: Output 0 (reject) if the test does not pass for some j.

Theorem 8. If there is an adversary Advy that can (t,¢€)-break the CK-ASBS-
CMA security of the aggregate signature scheme defined in Algorithm 7 making Q
oracle queries to Hy, then this adversary can be transformed into an adversary
Adv, that can (t + poly()), (€ — t - 272)2)-break the EUF-CMA security of the
underlying signature scheme.

The proof can be found in Appendix E

The security loss in this construction is much smaller, for example, the secu-
rity remains at 128-bits for 128-bits output Hj-hash for Ed25519 signature
scheme, and at 224-bits for 256-bits output H; for Ed448 signature scheme.
But the compression rate for this aggregate signature scheme here is worse than
for the previous scheme: the aggregated signature has n group elements, r full
scalars and r small scalars of length ¢ in expectation, therefore the size of the
signature is n group elements plus 7 - A + r - £ bits. If we set A\ and r to be con-
stants and increase n, set £ = logy(n) + A/r, the size of the aggregate signature
will be n group elements plus O(log(n)) bits, therefore the compression of the
aggregation approaches 50% as n grows.

In Appendix F we explain a methodology for picking parameters to optimize
for aggregator’s time. Table 2 shows a selection of values across different trade-
offs. Note that despite the aggregation time being rather slow, as the aggregator

Non-interactive Half-Aggregation of EADSA 595

has to do many oracle-queries, it is highly parallelizable which is not reflected
in our benchmarks: given M < r2¢ processors it is straightforward to parallelize
aggregation into M threads.

4 Deterministic Batch Verification of Schnorr Signatures

As another application of the proof-of-knowledge techniques we present deter-
manistic batch verification. Batch verification is a technique that allows to verify
a batch of signatures faster than verifying signatures one-by-one. Not all of the
Schnorr’s signatures’ variants support batch verification, only those that trans-
mit R instead of the hash H(..) do.

Bernstein et al. [10] built and benchmarked an optimized variant for batch
verification for EADSA signatures utilizing the state-of-the-art methods for
scalar-multiplication methods. To batch-verify a set of signatures (R;,S;) for
i = l..n corresponding to the set of messages {m;};—1. ., and the set of public
keys A;, they propose to choose “independent uniform random 128-bit integers

2

z;” and verify the equation

As we explain in the next paragraph with many real-world examples, it
is often dangerous to rely on randomness in cryptographic implementations,
particularly so for deployments on a cloud. It would thus be desirable to

Table 2. The compression rate, the computation cost (for aggregation and aggregate-
verification) for aggregating n Ed25519 signatures with SHA-256 hash function used
for Hi. The £ is set to be £ = log,(n) + 128/r. The benchmarks are run using the
ed25519-dalek library.

Compression | n r | AggregateVerify | AggregateSig
0.52 512 |16 | 134.11 ms 197.89s
1024 |32 | 516.55 ms 76.857s
0.53 256 |16 | 74.449 ms 62.649 s
512 |32 | 291.04 ms 25.272s
0.57 128 |16 |41.565ms 12.007s
256 |32 | 147.48 ms 6.1843s
0.63 32 | 8 5.7735ms 46.330s
64 |16 |23.007 ms 4.2622s
128 |32 | 82.235ms 1.3073s
0.77 16 | 8 |2.9823 ms 12.455s
32 |16 |10.377ms 1.2994 s

64 |32 | 42.807 ms 403.55 ms

596 K. Chalkias et al.

make protocols not utilize randomness in secure-critical components, such as
signature-verifications. We note that batch verification (Eq.3) is a probabilistic
version of the Algorithm 6 for verification of half-aggregation of EADSA sig-
natures. From the security proof of half-aggregation it therefore follows that
batch verification can be made deterministic by deriving scalars with hashes as
Z; = Hl(Rl,Al,ml, .- .,Rn,An,mn,i).

Note that particularly for Ed25519 signature scheme it is advised [19] to
multiply by a cofactor 8 in single- and batch- verification equations (when batch
verification is intended to be used).

Determinism’s Value in Blockchains The history of the flaws of widely-deployed,
modern pseudo-random number generator (PRNG) has shown enough variety in
root causes to warrant caution, exhibiting bugs [47,61], probable tampering [20],
and poor boot seeding [37]. Yet more recent work has observed correlated low
entropy events in public block chains [15,21], and attributed classes of these
events to PRNG seeding.

When juxtaposed with the convenience of deployment afforded by public
clouds, often used in the deployment of blockchains, this presents a new chal-
lenge. Indeed, deploying a cryptographic algorithm on cloud infrastructure often
entails that its components will run as guest processes in a virtualized envi-
ronment of some sort. Existing literature shows that such guests have a lower
rate of acquiring entropy [26,42], that their PRNG behaves deterministically on
boot and reset [25,55], and that they show coupled entropy in multi-tenancy
situations [40].

We suspect the cloud’s virtualized deployment context worsen the biases
observed in PRNG, and hence recommend the consideration of deterministic
variants of both batch verification and aggregation.

The kind of aggregated signature verification in this paper may also be avail-
able to deterministic runtimes, which by design disable access to random gen-
erator apis. One such example is DJVM [22], where a special Java ClassLoader
ensures that loaded classes cannot be influenced by factors such as hardware ran-
dom number generators, system clocks, network packets or the contents of the
local filesystem. Those runtimes are relevant for blockchains, which despise non-
determinism including RNG invocations to avoid accidental or malicious misuse
in smart contracts that would break consensus. Nonetheless, all blockchains sup-
port signature verification. A deterministic batch verifier would hence be very
useful in these settings, especially as it applies to batching signatures on different
messages too (i.e., independent blockchain transactions).

5 Impossibility of Non-interactive Compression by More
Than a Half

Given that we have shown that it is possible to compress Schnorr signatures
by a constant factor, it is natural to ask if we can do better. Indeed, the exis-
tence of succinct proof systems where the proofs are smaller than the witnesses

Non-interactive Half-Aggregation of EADSA 597

themselves indicates that this is possible, even without extra assumptions or
trusted setup if one were to use Bulletproofs [16] or IOP based proofs [8,9] for
instance. This rules out proving any non-trivial lower bound on the communica-
tion complexity of aggregating Schnorr’s signatures. However, one may wonder
what overhead is incurred in using such generic SNARKS, given their excellent
compression. Here we make progress towards answering this question, in partic-
ular we show that non-trivially improving on our aggregation scheme must rely
on the hash function used in the instantiation of Schnorr’s signature scheme.

We show in Theorem 9 that if the hash function used by Schnorr’s signature
scheme is modeled as a random oracle, then the verifier must query the nonces
associated with each of the signatures to the random oracle. Given that each
nonce has 2\ bits of entropy, it is unlikely that an aggregate signature non-
trivially smaller than 2nA can reliably induce the verifier to query all n nonces.

The implication is that an aggregation scheme that transmits fewer than 2nA
bits must not be making oracle use of the hash function; in particular it depends
on the code of the hash function used to instantiate Schnorr’s scheme. To our
knowledge, there are no hash functions that are believed to securely instantiate
Schnorr’s signature scheme while simultaneously allowing for succinct proofs
better than applying generic SNARKS to their circuit representations. Note that
the hash function must have powerful properties in order for Schnorr’s scheme
to be proven secure, either believed to be instantiating a random oracle [54] or
having strong concrete hardness [48]. Given that the only known techniques for
making use of the code of the hash function in this context is by using SNARKS
generically, we take this to be an indication that compressing Schnorr signatures
with a rate better than 50% will incur the overhead of proving statements about
complex hash functions. For instance compressing n Ed25519 signatures at a
rate better than 50% may require proving n instances of SHA-512 via SNARKSs.

For “self-verifying” objects such as signatures (aggregate or otherwise) one
can generically achieve some notion of compression by simply omitting O(log \)
bits of the signature string, and have the verifier try all possible assignments of
these omitted bits along with the transmitted string, and accept if any of them
verify. Conversely, one may instruct the signer to generate a signature such that
the trailing O(log \) bits are always zero (similarly to blockchain mining) and
need not be transmitted (this is achieved by repeatedly signing with different
random tapes). There are two avenues to apply these optimizations:

1. Aggregating optimized Schnorr signatures. One could apply these opti-
mizations to the underlying Schnorr signature itself, so that aggregating them
even with our scheme produces an aggregate signature of size 2n(A—O(log \))
which in practice is considerably better than 2nA as n scales. In the rest of
this section we only consider the aggregation of Schnorr signatures that are
produced by the regular unoptimized signing algorithm, i.e. where nonces
have the full 2n\ bits of entropy. This quantifies the baseline for the most
common use case, and has the benefit of a simpler proof. However, it is simple
to adapt our proof technique to show that aggregation with compression rate

598 K. Chalkias et al.

non-trivially greater than 50% is infeasible with this optimized Schnorr as
the baseline as well.

2. Aggregating unoptimized Schnorr signatures. One could apply this
optimization to save O(log \) bits overall in the aggregated signature. In this
case, O(log) is an additive term in the aggregated signature size and its effect
disappears as n increases, and so we categorize this a trivial improvement.

Proof Intuition. Our argument hinges on the fact that the verifier of a Fiat-
Shamir transformed proof must query the random oracle on the ‘first message’
of the underlying sigma protocol. In Schnorr’s signature scheme, this represents
that the nonce R must be queried by the verifier to the random oracle. It then
follows that omitting this R value for a single signature in the aggregate signature
with noticeable probability will directly result in an attack on unforgeability of
the aggregate signature.
We give this question a formal treatment in Appendix G.

Acknowledgement. The authors would like to thank Payman Mohassel (Novi/
Facebook) and Isis Lovecruft for insightful discussions at the early stages of this work;
and all anonymous reviewers of this paper for comments and suggestions that greatly
improved the quality of this paper.

Appendix A Related work

Appendix A.1 Security Proofs

Schnorr signatures were proposed by Claus Schnorr [57], and in the original paper
a compact version was proposed, which outputted signatures of size 3\, where
A is the provided security level (i.e. 128). In 1996, Pointcheval and Stern [53]
applied their newly introduced Forking Lemma to provide the first formal secu-
rity for a 2A-bit ideal hash assuming the underlying discrete logarithm is hard.
In [59] the first proof of Schnorr’s ID against active attacks is provided in the
GGM (Generic Group Model), but without focus on Fiat-Shamir constructions.

A significant contribution from Neven et al. [48] was to apply the GGM and
other results of [7] to prove security using a A-bit hash function. Briefly, in their
proof, hash functions are not handled as random oracles, but they should offer
specific properties, such as variants of preimage and second preimage resistance;
but not collision resistance. However, as we mention in Section A.3, most of the
real world applications do not assume honest signers, and thus non-repudiation
is an important property, which unfortunately requires a collision resistant Hy.

Finally, the works from Backendal et al. [2] clarified the relation between
the UF-security of different Schnorr variants, while in [31] a tight reduction of
the UF-security of Schnorr signatures to discrete log in the Algebraic Group
Model [30] (AGM)+ROM was presented.

Non-interactive Half-Aggregation of EADSA 599

Appendix A.2 Multi-signatures

One of the main advantages of Schnorr signatures compared to ECDSA is its
linearity which allows to add two (or more) Schnorr signatures together and
get a valid compact aggregated output indistinguishable from a single signature.
The concept of multi-signature is to allow co-signing on the same message. Even
if the messages are different, there are techniques using indexed Merkle tree
accumulators to agree on a common tree root and then everyone signs that
root. However, just adding Schnorr signatures is not secure as the requirement
to protect against rogue key and other similar attacks is essential, especially in
blockchain systems.

There is indeed a number of practical proposals that require two or three
rounds of interaction until co-signers agree on a common R and public key
A value [3,7,11,23,41,43,45,49,50,56,60]. One of the most recent is the com-
pact two-round Musig2 [49] which also supports pre-processing (before co-signers
learn the message to be signed) of all but the first round, effectively enabling
a non-interactive signing process. Musig2 security is proven in the AGM+ROM
model and it relies on the hardness of the OMDL problem.

Another promising two-round protocol is FROST [41] which has a similar
logic with Musig2, but it utilizes verifiable random functions (VRFs) and mostly
considers a threshold signature setting.

Note that even with pre-processing, Musig2 requires an initial setup with
broadcasting and maintaining state. Compared to half-aggregation which can
work with zero interaction between signers, Musig2 and FROST have a huge
potential for controlled environments (i.e., validator sets in blockchains), but
might not be ideal in settings where the co-signers do not know each other in
advance or when public keys and group formation are rotated/updated very
often.

Appendix A.3 Schnorr signature variants

There exist multiple variants of the original Schnorr scheme and the majority of
them are incompatible between each other. Some of the most notable differences
include:

— Hy is not binding to the public key and thus it’s computed as Hy(R||m)
instead of Hy(R||A||m) [32,57]. Note that these signatures are malleable as
shown in the EADSA paper (page 7, Malleability paragraph) [10].

— Hj changing the order of inputs in Hy, such as Hy(m||R). Note that protocols
in which m is the first input to the hash function require collision resistant
hash functions, as a malicious message submitter (who doesn’t know R), can
try to find two messages mo and m; where Hy(mg) = Ho(m1). This is the
main reason for which the Pure EADSA RFC 8032 [39] suggests Ho(R||A||m)
versus any other combination.

— Hy takes as inputs only the z-coordinate of R, such as the EC-SDSA-opt
in [32] and BIP-Schnorr [52].

600 K. Chalkias et al.

— send the scalar Hy instead of the point R. This variation (often referred to
as compact) was proposed in the original Schnorr paper [57] and avoids the
minor complexity of encoding the R point in the signature, while it allows for
potentially shorter signatures by 25%. The idea is that only half of the H
bytes suffice to provide SUF-CMA security at the target security level of 128
bits. While this allows 48-byte signatures, there are two major caveats:

e according to Bellare et al. [6] (page 39), the (R, S) version (mentioned as
BNN in that paper) achieves semi-strong unforgeability, while the origi-
nal 48-byte Schnorr only normal unforgeability. In short, because finding
collisions in a short hash function is easy, a malicious signer can break
message binding (non-repudiation) by finding two messages mo and m;
where truncated(H (R||A||mo)) == truncated(H (R||A||m1))

e as mentioned, collisions in 128-bit truncated Hy require a 64-bit effort.
But because the SUF-CMA model assumes honest signers, in multi-sig
scenarios where potentially distrusting signers co-sign, some malicious
coalition can try to obtain a valid signature on a message that an honest
co-signer did not intend to sign.

Due to the above, and because compact signatures do not seem to support
non-interactive aggregation or batch verification, it is clear that this work is
compatible with most of the (R,S) Schnorr signature variants, EADSA being
one of them. Also note that half-aggregation achieves an asymptotic 50% size
reduction and compares favorably against multiple compact Schnorr signatures.

Appendix A.4 Non-Schnorr schemes

Some of the best applications of non-interactive signature aggregation include
shortening certificate chains and blockchain blocks. Putting Schnorr variants
aside, there is a plethora of popular signature schemes used in real world appli-
cations including ECDSA, RSA, BLS and some newer post-quantum schemes
i.e., based on hash functions or lattices. Regarding ECDSA, although there
exist interactive threshold schemes, to the best of our knowledge there is no
work around non-interactive aggregation, mainly due to the modular inversion
involved [44]. Similarly, in RSA two users cannot share the same modulus N,
which makes interactivity essential; however there exist sequential aggregate
RSA signatures which however imply interaction [13]. Along the same lines,
we are not aware of efficient multi-sig constructions for Lamport-based post-
quantum schemes.

On the other hand, BLS is considered the most aggregation and blockchain
friendly signature scheme, which by design allows for deriving a single signa-
ture from multiple outputs without any prior interaction and without proving
knowledge or possession of secret keys [11]. The main practicality drawback of
BLS schemes is that they are based on pairing-friendly curves and hashing to
point functions for which there are on-going standardization efforts and limited
HSM support. Also, the verification function of a rogue-key secure BLS scheme
is still more expensive than Schnorr (aggregated or not) mainly due to the slower
pairing computations.

Non-interactive Half-Aggregation of EADSA 601

Appendix A.5 Schnorr batching and aggregation

Similar approaches to generating linear combinations of signatures have been
used for batch verification in the past as shown in Sect. 4. The original idea of
operating on a group of signatures by means of a random linear combination of
their members is due to Bellare et al. [4]. Other approaches consider an aggre-
gated signature from public keys owned by the same user, which removes the
requirement for rogue key resistance. For instance, in [33] an interactive batching
technique is provided resulting to faster verification using higher degree polyno-
mials.

Half-aggregation has already been proposed in the past, but either in its
simple form without random linear combinations [24] (which is prone to rogue
key attacks) or using non-standard Schnorr variants that are not compatible
with EADSA. I'-signatures [62] are the closest prior work to our approach,
also achieving half aggregation, but with a significantly modified and slightly
slower Schnorr scheme. Additionally, their security is based on the custom non-
malleable discrete logarithm (NMDL) assumption, although the authors claim
that it could easily be proven secure against the stronger explicit knowledge-of-
exponent assumption EKEA. On the other hand, we believe that our security
guarantees are much more powerful as they are actually a proof of knowledge of
signatures, which means that they can be used as a drop-in replacement in any
protocol (where having the exact original signature strings is not important),
without changing any underlying assumptions; and therefore be compliant with
the standards.

Appendix B EdDSA signatures

EdDSA signature [10] is originally defined over Curve25519 in its twisted
Edwards form and is often called Ed25519. The scheme provides ~ 128 bits
of security. The general name, EADSA, refers to instantiation of the scheme over
any compatible elliptic curve. Another notable instantiation is Ed448 [34,39]
offering ~ 224 bits of security. A concrete instantiation of the scheme would
depend on the elliptic curve and the security level. The Algorithm 8 is given in
the most general form.

Algorithm 8. EADSA Algorithm

KeyGen(1*): Sample uniformly random sk & {0,1}**. Expand the secret with a hash
function that gives 4\-bits outputs: (s, k) <« Hi(sk). Interpreting s as a scalar,
compute the public key pk = A, where A = s - B.

Sign((s, k), m): Generate a pseudorandom secret scalar r := Hz(k, m), compute a curve
point: R := r - B. Compute the scalar S := (r + Ho(R, A, M) - s) and output
oc=(R,S).

Verify(m, pk,o = (R, S)): Accept if S-B= R+ Ho(R,A, M) - A.

602 K. Chalkias et al.

Appendix C Single signature security

An attacker A plays the following game:
GEPFCMA() security game:

1. (pk™,sk™) «— KeyGen()
2. (m, o) «— A% (pk*)
3. accept if
m; & Lsign A Verify(m, pk™, o)

Osign(sk*,.)> the signing oracle, constructs the set Lsign:

1. On input m, compute o « Sign(sk*, m)
2. ESign — ACSign Uum
3. return o

Definition 3. An attacker A, (t,€)-breaks a EUF-CMA security of the signature
scheme if A runs in time at most t and wins the EUF-CMA game with probability
€. A signature scheme is (t,¢€)-EUF-CMA-secure if no forger (t,€)-breaks it.

Likewise, if the scheme is (¢,¢)-EUF-CMA-secure, we say that it achieves
log, (t/€)-bits security level.

Note also that there is an additional requirement on single signature security
which becomes increasingly important especially in blockchain applications is
Strong Binding [19], it prevents a malicious signer from constructing a signature
that is valid against different public keys and/or different messages. We define
the associated game:

GSBS() security game:

L. (pk,m,pk’,m’, o) « A()
2. accept if (pk,m) # (pk’,m’) A Verify(m,pk,o) A Verify(m/, pk’, o)

Definition 4. An attacker A, (t,€)-breaks SBS security of the signature scheme
if A runs in time at most t and wins the SBS game with probability €. A signature
scheme is (t,€)-SBS-secure if no forger (t,€)-breaks it.

Appendix D Proof of Theorem 6

Proof. By statistical argument we show that the adversary may only pro-
duce an SBS forgery with negligible probability. For a successful forgery
((A1,ma), ..o, (Ap,my), Oager) # ((A],m)), ... (A5, mb), Oaggr), all 2n underly-
ing signatures can be extracted: o1,...,0p,0%,...,0,. All of those signatures
have the same R components (since those are part of o,gg), but possibly differ-
ent S components. When a query is made to the random oracle Hy(R1, A1, my,
.oy Ry, Apymy, 1), denote the output by b}, where j is the incrementing counter
for the unique tuples (Ry, Ay, mq, ..., Ry, Ay, my) queried to the random oracle.
Denote by s! the discrete log of Ry + Ho(R;, A;,mi)A; (here we work under the

Non-interactive Half-Aggregation of EADSA 603

assumption that the discrete log can always be uniquely determined). Without
loss of generality we assume that the adversary verifies the forgery, therefore
for some two indices j* and j” (that correspond to the SBS forgery output by

the adversary) it must hold that the linear combination of the {sfl}?:l’s with
coefficients {h! }™_, is equal to the linear combination of {s] }" ,’s with coef-
ficients {h] }™_,. Having that in the RO-model, we can assume that the values

{h{l ~, and {h{u »_, are programmed to uniformly random independent val-
ues after the s’s values are determined. Each h randomizes the non-zero value
of s to an exponent indistinguishable from random, therefore creating a random
element as a result of a linear combination. Therefore the probability of a suc-
cessful forgery for the adversary must be bounded by the collision probability
Q?/(2-|G|), where Q < t is the number of H;-queries and |G| is the size of the

group (for prime order groups, or an order of a base point). O

Appendix E Proof of Theorem 8

Proof. From the forgery produced by the adversary Advi: ((mq,pky),
ooy (M, pky,), (MY, pKY), - oy (M G, PK),), Oager), We extract two sets of signa-
tures by running the extractor of Theorem 4: (o1,...,0,) and (of,...,00).
Those signatures have the same R-components (Ry,..., R,), but possibly differ-
ent S-components (51,57, ...,S,,5)) when aggregated those components pro-
duce the same signature o, therefore for some random e # €', it holds that
S Sietmt=3"" | S/ e"~! which may happen with probability at most 2
when (S1,...,5,) # (S1,...,5},). Assuming that (S1,...,S,) = (S1,...,50),
but [(mq,pky), ..., (Mg, pk,)] # [(m],pk),. .., (m),pk,)], as required for the
forgery of Advy to be successful, it follows that at some position i € [n]
where the equality breaks, a successful single SBS-forgery can be constructed:
(mi,Pki,m;7pk27Cf = (RlaSl)) 0

Appendix F Parameter selection for almost-half-
aggregation

In this section we explain a methodology of picking parameters for aggregation
scheme described in Algorithm 7.

However, as we explain next, it is more efficient to do the aggregation in
batches, i.e. aggregate some fixed constant number of signatures, choosing this
number to achieve a desired trade-off between compression rate, aggregation time
and verification time. The computational complexity of the aggregator is O(r-n-
2) and of the verifier is O(n-r). In fact, in this scheme the verifier is about /2 >
1 times less efficient than verifying signatures iteratively one-by-one, therefore
this compression scheme will always sacrifice verifier’s computational efficiency
for compressed storage or network bandwidth for transmission of signatures. The
aggregator’s complexity is by far greater than the verifier’s, we approximate it

604 K. Chalkias et al.

next through compression rate ¢ and batch size n. The compression rate can be
approximated as

c=(256-n+7r-256+7r-£)/(512-n)~ (n+7r)/(2n).

We can estimate the aggregator’s time through 7 = n(2c — 1) as O(n® - (2¢ —
1)-2*/n/(2¢=1)) For a fixed compression rate c it achieves minimum at a batch-
size n shown on Fig. 1 for A\ = 128. The verifier’s time can be estimated through
compression rate as O(n?(2c—1)), it is therefore most optimal to select an upper
bound on the batch size according to Fig.1 and lower the batch-size to trade-
off between aggregator’s and verifier’s runtime. We report optimal aggregation
times for the given compression rate in Fig.2 for Ed25519 signature scheme.
Amortized verification per signature is constant for constant r, amortized opti-
mal aggregation per signature is linear in the batch size n.

Appendix G Formal analysis for the impossibility of
non-interactive compression by more than a

half

This section expands on the impossibility of non-interactive compression by more
than half and extends Sect. 5. We first fix the exact distribution of signatures that
must be aggregated, and then reason about the output of any given aggregation

scheme on this input.
GenSigs(n, 17):

1. For each i € [n], sample (pk;,sk;) «+ KeyGen(1*) and r; + Fj, and compute
Ri =T;- B and g; = Ski . RO(pkl,R“O) + T
2. Output (pk;, Ri, 04)ie[n)

900
¢ n AggregateVerify AggregateSig
< 700 amortized amortized
8 0.55296 500 ps 39.7 ms
2500
= 0.6 148 562 ps 16.9 ms
9300
0.65 98 609 ps 9.4 ms
100 0.7 74 582 ps 12.7 ms
05 06 07 08 09 0.75 59 562 11 4.2 ms

Compression rate ¢

Fig. 1. Optimal batch size to achieve the Fig. 2. Aggregation and verification

minimum aggregation time. time amortized per signature. Param-
eters n,r are set to achieve the small-
est aggregation time: n is chosen from
Fig.1, » = 30.

Non-interactive Half-Aggregation of EADSA 605

The GenSigs algorithm simply creates n uniformly sampled signatures on the
message ‘0’

Theorem 9. Let (AggregateSig, AggregateVerify) characterize an aggregate sig-
nature scheme for KeyGen, Sign, Verify as per Schnorr with group (G, B,q) such
that |q| = 2\. Let Qv be the list of queries made to RO by

AggregateVerifyRO (AggregateSigRo ({pki, Ri, 0i}icin)))

where (pk;, Ri, 0)icn) < GenSigs(n, 1*). Then for any n, max((Pr[(pk;, R;,0) ¢
Qv|)icin)) is negligible in .

Proof. Let e = max((Pr[(pk;, Ri,0) & Qv])ie[n)), and let j € [n] be the corre-
sponding index. We now define an alternative signature generation algorithm as
follows,

GenSigs™(n, j, pk;, 1*):

—_

. For each i € [n]\j, sample (pk;,sk;) «— KeyGen(1*) and r; « Fj, and compute
R, =7r;- B and o; = sk; - RO(pkz,R“O) —+7r;

. Sample 0; «+ Fs and e; «— F

. SetRj:ai-B—ej-pkj

. Output (pkivRi70i)iE['rL]

=N

Observe the following two facts about GenSigs™: (1) it does not use sk;, and
(2) the distributions of GenSigs and GenSigs® appear identical to any algorithm
that does not query (pk;, R;,0) to RO. The first fact directly makes GenSigs*
conducive to an adversary in the aggregated signature game: given challenge
public key pk, simply invoke GenSigs™ with pk; = pk to produce (pk;, R, 7;)ig[n]

and then feed these to AggregateSig®. The advantage this simple adversary is
given by the probability that the verifier does not notice that that GenSigs™ did
not supply a valid signature under pk* to AggregateSig, and we can quantify this
using the second fact as follows:

Pr[AggregateVerifyR0 (AggregateSigR? (GenSigs™ (n, j, pk;, 1)) = 1]

= Pr[AggregateVerifyR© (AggregateSigR© (GenSigs(n, 1)) = 1] — Pr[(pk;, Ri,0) € Qy]
=1 — Pr[(pk;, Ri,0) € Qv]

=1-(1-¢)=¢

Assuming unforgeability of the aggregated signature scheme, & must be

negligible. O

References

1. Aranha, D.F., Orlandi, C., Takahashi, A., Zaverucha, G.: Security of hedged fiat-
shamir signatures under fault attacks. In: Eurocrypt (2020)

5 If necessary, intercept (pk;, R;,0) queried by AggregateSig to RO, and respond with
e; as set by GenSigs™.

606

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

K. Chalkias et al.

Backendal, M., Bellare, M., Sorrell, J., Sun, J.: The fiat-shamir zoo: relating the
security of different signature variants. In: Nordic Conference on Secure IT Sys-
tems, pp. 154-170. Springer (2018)

Bagherzandi, A., Cheon, J.-H., Jarecki, S.: Multisignatures secure under the dis-
crete logarithm assumption and a generalized forking lemma. In: ACM CCS (2008)

. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-

tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236-250. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFDb0054130

Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
Advances in Cryptology - CRYPTO’92. Lecture Notes in Computer Science, vol.
740, pp. 390-420. Springer, Heidelberg (1993)

Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based iden-
tification and signature schemes. J. Cryptol. 22(1), 1-61 (2009)

Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: ACM CCS (2006)

Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018,/046

Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Eurocrypt (2019)
Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: CHES (2011)

Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Asiacrypt (2018)

Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Eurocrypt (2003)

Boneh, D., Gentry, C., Shacham, H., et al.: A survey of two signature aggregation
techniques, Ben Lynn (2003)

Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Asiacrypt (2001)

Breitner, J., Heninger, N.: Biased nonce sense: Lattice attacks against weak
ECDSA signatures in cryptocurrencies. In: International Conference on Financial
Cryptography and Data Security, pp. 3-20. Springer (2019)

Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: IEEE S&P, pp. 315-334
(2018)

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

Chalkias, K., Garillot, F., Kondi, Y., Nikolaenko, V.: ed25519-dalek-fiat,
branch:half-aggregation (2021). https://github.com/novifinancial/ed25519-dalek-
fiat /tree/half-aggregation

Chalkias, K., Garillot, F., Nikolaenko, V.: Taming the many EDDSAS. Technical
Report, Cryptology ePrint Archive, Report 2020/1244 (2020). https://eprint.iacr.
org/2020/1244

Checkoway, S., et al.: A systematic analysis of the juniper dual EC incident. In:
ACM CCS (2016)

Courtois, N.T., Emirdag, P., Valsorda, F.: Private key recovery combination
attacks: on extreme fragility of popular bitcoin key management, wallet and cold
storage solutions in presence of poor RNG events (2014)

https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130
https://eprint.iacr.org/2018/046
https://github.com/novifinancial/ed25519-dalek-fiat/tree/half-aggregation
https://github.com/novifinancial/ed25519-dalek-fiat/tree/half-aggregation
https://eprint. iacr. org/2020/1244
https://eprint. iacr. org/2020/1244

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Non-interactive Half-Aggregation of EADSA 607

Djvm - the deterministic JVM library (2020)

Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE
Symposium on Security and Privacy (SP), pp. 1084-1101. IEEE (2019)

Dryja, T.: Per-block non-interactive Schnorr signature aggregation (2017)
Everspaugh, A., Zhai, Y., Jellinek, R., Ristenpart, T., Swift, M.: Not-So-Random
numbers in virtualized linux and the whirlwind RNG. In: 2014 IEEE Symposium
on Security and Privacy, pp. 559-574. IEEE (May 2014)

Fernandes, D.A.B., Soares, L.F.B., Freire, M.M., Inacio, P.R.M.: Randomness in
virtual machines. In: 2013 IEEE/ACM 6th International Conference on Utility and
Cloud Computing, pp. 282-286. IEEE (Dec 2013)

Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Crypto (1987)

Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Crypto (2005)

Fleischhacker, N., Jager, T., Schroder, D.: On tight security proofs for Schnorr
signatures. J. Cryptol. 32(2), 566-599 (2019)

Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Crypto (2018)

Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed elga-
mal encryption in the algebraic group model. In: Eurocrypt (2020)

Bundesamt fiir Sicherheit in der Informationstechnik (BSI). Elliptic curve cryptog-
raphy, Technical Guideline TR~03111 (2009)

Gennaro, R., Leigh, D., Sundaram, R., Yerazunis, W.S.: Batching Schnorr iden-
tification scheme with applications to privacy-preserving authorization and low-
bandwidth communication devices. In: Asiacrypt (2004)

Hamburg, M.: Ed448-goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625 (2015). http://eprint.iacr.org/2015/625

Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Techniques and Con-
structions, 1st edn. Springer-Verlag, Berlin (2010)

Hazay, C., Lindell, Y.: A note on zero-knowledge proofs of knowledge and the
ZKPOK ideal functionality. IACR Cryptol. ePrint Arch. 2010, 552 (2010)
Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your PS and
QS: detection of widespread weak keys in network devices. In: USENIX Security
Symposium (2012)

Ttakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignatures. In: NEC Research & Development (1983)

Josefsson, S., Liusvaara, I.: Edwards-curve digital signature algorithm (EdDSA)
(2017)

Kerrigan, B., Chen, Yu.: A study of entropy sources in cloud computers: random
number generation on cloud hosts. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS
2012. LNCS, vol. 7531, pp. 286—298. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33704-8_24

Komlo, C., Goldberg, I.: Frost: flexible round-optimized Schnorr threshold signa-
tures. IACR Cryptol. ePrint Arch (2020)

Kumari, R., Alimomeni, M., Safavi-Naini, R.: Performance analysis of linux RNG
in virtualized environments. In: ACM Workshop on Cloud Computing Security
Workshop (2015)

Ma, C., Weng, J., Li, Y., Deng, R.: Efficient discrete logarithm based multi-
signature scheme in the plain public key model. Designs Codes Cryptograph. 54(2),
121-133 (2010)

http://eprint.iacr.org/2015/625
https://doi.org/10.1007/978-3-642-33704-8_24
https://doi.org/10.1007/978-3-642-33704-8_24

608

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

K. Chalkias et al.

Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to bitcoin. Cryptology ePrint Archive, Report 2018/068 (2018).
https://eprint.iacr.org/2018/068

Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to bitcoin. Designs Codes Cryptograph. 87(9), 2139-2164 (2019)
Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures. In: ACM
CCS (2001)

Michaelis, Kai., Meyer, Christopher, Schwenk, Jorg: Randomly failed! the state
of randomness in current java implementations. In: Dawson, Ed (ed.) CT-RSA
2013. LNCS, vol. 7779, pp. 129-144. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36095-4_9

Neven, G., Smart, N.P., Warinschi, B.: Hash function requirements for Schnorr
signatures. J. Math. Cryptol. 3(1), 69-87 (2009)

Nick, J., Ruffing, T., Seurin, Y.: Musig2: Simple two-round Schnorr multi-
signatures. IACR Cryptol. ePrint Arch. Technical Report (2020)

Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: Musig-dn: Schnorr multi-signatures
with verifiably deterministic nonces. In: ACM CCS (2020)

Pass, R.: On deniability in the common reference string and random oracle model.
In: Crypto (2003)

Pieter, W., Jonas, N., Tim.: BIP: 340, Schnorr signatures for secp256k1 (2020)
Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Eurocrypt
(1996)

Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361-396 (2000)

Ristenpart, T., Yilek, S.: When good randomness goes bad: virtual machine reset
vulnerabilities and hedging deployed cryptography. In: NDSS (2010)

Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty
signatures against rogue-key attacks. In: Eurocrypt (2007)

Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161-174 (1991)

Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle
model. In: Eurocrypt (2012)

Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Euro-
crypt (1997)

Syta, E.: Keeping authorities “honest or bust” with decentralized witness cosigning.
In: IEEE S&P (2016)

Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys are
public: Results from the 2008 Debian OpenSSL vulnerability. In: ACM SIGCOMM
Internet Measurement Conference IMC (2009)

Zhao, Y.: Aggregation of gamma-signatures and applications to bitcoin. IACR
Cryptol. ePrint Arch. 2018, 414 (2018)

https://eprint.iacr.org/2018/068
https://doi.org/10.1007/978-3-642-36095-4_9
https://doi.org/10.1007/978-3-642-36095-4_9

	Non-interactive Half-Aggregation of EdDSA and Variants of Schnorr Signatures
	1 Introduction
	1.1 Our Contributions

	2 Proof-of-knowledge for a Collection of Signatures
	2.1 Schnorr/EdDSA Signatures
	2.2 Three-Move (Sigma) Protocol
	2.3 Proof-of-knowledge

	3 Non-interactive Half-Aggregation of Schnorr/EdDSA Signatures
	3.1 Aggregate Signature Security
	3.2 Half-Aggregation
	3.3 Half+-Aggregation

	4 Deterministic Batch Verification of Schnorr Signatures
	5 Impossibility of Non-interactive Compression by More Than a Half
	Appendix A Related work
	Appendix A.1 Security Proofs
	Appendix A.2 Multi-signatures
	Appendix A.3 Schnorr signature variants
	Appendix A.4 Non-Schnorr schemes
	Appendix A.5 Schnorr batching and aggregation

	Appendix B EdDSA signatures
	Appendix C Single signature security
	Appendix D Proof of Theorem 6
	Appendix E Proof of Theorem 8
	Appendix F Parameter selection for almost-half-aggregation
	Appendix G Formal analysis for the impossibility of non-interactive compression by more than a half
	References

