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Abstract. Accumulators provide compact representations of large sets
and compact membership witnesses. Besides constant-size witnesses,
public-key accumulators provide efficient updates of both the accumula-
tor itself and the witness. However, bilinear group based accumulators
come with drawbacks: they require a trusted setup and their performance
is not practical for real-world applications with large sets.

In this paper, we introduce multi-party public-key accumulators
dubbed dynamic (threshold) secret-shared accumulators. We present an
instantiation using bilinear groups having access to more efficient witness
generation and update algorithms that utilize the shares of the secret
trapdoors sampled by the parties generating the public parameters.
Specifically, for the q-SDH-based accumulators, we provide a maliciously-
secure variant sped up by a secure multi-party computation (MPC) pro-
tocol (IMACC’19) built on top of SPDZ and a maliciously secure thresh-
old variant built with Shamir secret sharing. For these schemes, a perfor-
mant proof-of-concept implementation is provided, which substantiates
the practicability of public-key accumulators in this setting.

We explore applications of dynamic (threshold) secret-shared accumu-
lators to revocation schemes of group signatures and credentials system.
In particular, we consider it as part of Sovrin’s system for anonymous
credentials where credentials are issued by the foundation of trusted
nodes.

Keywords: Multiparty computation · Dynamic accumulators ·
Distributed trust · Threshold accumulators

1 Introduction

Digital identity management systems become an increasingly important corner
stone of digital workflows. Self-sovereign identity (SSI) systems such as Sovrin1

1 https://sovrin.org/.
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are of central interest as underlined by a recent push in the European Union for
a cross-border SSI system.2 But all these systems face a similar issue, namely
that of efficient revocation. Regardless of whether they are built from signatures,
group signatures or anonymous credentials, such systems have to consider mecha-
nisms to revoke a user’s identity information. Especially for identity management
systems with a focus on privacy, revocation may threaten those privacy guaran-
tees. As such various forms of privacy-preserving revocations have emerged in
the literature including approaches based on various forms of deny- or allowlists
including [3,13,31] among many others.

One promising approach regarding efficiency is based on denylists (or
allowlists) via cryptographic accumulators which were introduced by Benaloh
and de Mare [11]. They allow one to accumulate a finite set X into a succinct
value called the accumulator. For every element in this set, one can efficiently
compute a witness certifying its membership, and additionally, some accumu-
lators also support efficient non-memberships witnesses. However, it should be
computationally infeasible to find a membership witness for non-accumulated
values and a non-membership witness for accumulated values, respectively. Accu-
mulators facilitate privacy-preserving revocation mechanisms, which is espe-
cially relevant for privacy-friendly authentication mechanisms like group sig-
natures and credentials. For a denylist approach, the issuing authority accu-
mulates all revoked users and users prove in zero-knowledge that they know
a non-membership witness for their credential. Alternatively, for a allowlist
approach, the issuing authority accumulates all users and users then prove in
zero-knowledge that they know a membership witness. As both approaches may
involve large lists, efficient accumulator updates as well as efficient proofs are
important for building an overall efficient system. For example, in Sovrin [37]
and Hyperledger Indy3 such an accumulator-based approach with allowlists fol-
lowing the ideas of [31] is used. Their credentials contain a unique revocation
ID attribute, iR, which are accumulated. Each user obtains a membership wit-
ness proving that their iR is contained in the accumulator. Once a credential is
revoked, the corresponding iR gets removed from the accumulator and all users
have to update their proofs accordingly. The revoked user is no longer able to
prove knowledge of a verifying witness and thus verification fails.

Accumulators are an important primitive and building block in many cryp-
tographic protocols. In particular, Merkle trees [44] have seen many applica-
tions in both the cryptographic literature but also in practice. For example,
they have been used to implement Certificate Transparency (CT) [38] where
all issued certificates are publicly logged, i.e., accumulated. Accumulators also
find application in credentials [13], ring, and group signatures [26,39], anony-
mous cash [45], among many others. When looking at accumulators deployed in
practice, many systems rely on Merkle trees. Most prominently we can observe
this fact in CT. Even though new certificates are continuously added to the log,

2 https://essif-lab.eu/.
3 https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/0011-cred-

revocation/README.html.

https://essif-lab.eu/
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the system is designed around a Merkle tree that gets recomputed all the time
instead of updating a dynamic public-key accumulator. The reason is two-fold:
first, for dynamic accumulators to be efficiently computable, knowledge of the
secret trapdoor used to generate the public parameters is required. Without this
information, witness generation and accumulator updates are simply too slow for
large sets (cf. [35]). Secondly, in this setting it is of paramount importance that
the log servers do not have access to the secret trapdoor. Otherwise malicious
servers would be able to present membership witnesses for every certificate even
if it was not included in the log.

The latter issue can also be observed in other applications of public-key accu-
mulators. The approaches due to Garman et al. [31] and the one used in Sovrin
rely on the Strong-RSA and q-SDH accumulators, respectively. Both these accu-
mulators have trapdoors: in the first case the factorization of the RSA modulus
and in the second case a secret exponent. Therefore, the security of the sys-
tem requires those trapdoors to stay secret. Hence, these protocols require to
put significant trust in the parties generating the public parameters. If they
would act maliciously and not delete the secret trapdoors, they would be able
to break all these protocols in one way or another. To circumvent this prob-
lem, Sander [47] proposed a variant of an RSA-based accumulator from RSA
moduli with unknown factorization. Alternatively, secure multi-party computa-
tion (MPC) protocols enable us to compute the public parameters and thereby
replace the trusted third party. As long as a large enough subset of parties is
honest, the secret trapdoor is not available to anyone. Over the years, efficient
solutions for distributed parameter generation have emerged, e.g., for distributed
RSA key generation [16,17,29], or distributed ECDSA key generation [41].

Based on the recent progress in efficient MPC protocols, we ask the following
question: what if the parties kept their shares of the secret trapdoor? Are the
algorithms of the public-key accumulators exploiting knowledge of the secret
trapdoor faster if performed within an (maliciously-secure) MPC protocol than
their variants relying only on the public parameters?

1.1 Our Techniques

We give a short overview of how our construction works which allows us to
positively answer this question for accumulators in the discrete logarithm setting.
Let us consider the accumulator based on the q-SDH assumption which is based
on the fact that given powers gsi ∈ G for all i up to q where s ∈ Zp is unknown,
it is possible to evaluate polynomials f ∈ Zp[X] up to degree q at s in the
exponent, i.e., gf(s). This is done by taking the coefficients of the polynomial, i.e.,
f =

∑q
i=0 aiX

i, and computing gf(s) as
∏q

i=0(g
si

)ai . The accumulator is built by
defining a polynomial with the elements as roots and evaluating this polynomial
at s in the exponent. A witness is simply the corresponding factor canceled out,
i.e., gf(s)(s−x)−1

. Verification of the witness is performed by checking whether
the corresponding factor and the witness match gf(s) using a pairing equation.

If s is known, all computations are more efficient: f(s) can be directly evalu-
ated in Zp and the generation of the accumulator only requires one exponentiation
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in G. The same is true for the computation of the witness. For the latter, the
asymptotic runtime is thereby reduced from O(|X |) to O(1). This improvement
comes at a cost: if s is known, witnesses for non-members can be produced.

On the other hand, if multiple parties first produce s in an additively secret-
shared fashion, these parties can cooperate in a secret-sharing based MPC pro-
tocol. Thereby, all the computations can still benefit from the knowledge of s.
Indeed, the parties would compute their share of gf(s) and gf(s)(s−x)−1

respec-
tively and thanks to the partial knowledge of s could still perform all operations
– except the final exponentiation – in Zp. Furthermore, all involved computa-
tions are generic enough to be instantiated with MPC protocols with different
trust assumptions. These include the dishonest majority protocol SPDZ [21,24]
and honest majority threshold protocols based on Shamir secret sharing [48].

1.2 Our Contribution

Starting from the very recent treatment of accumulators in the UC model [15]
by Baldimtsi et al. [4], we introduce the notion of (threshold) secret-shared accu-
mulators. As the name suggests, it covers accumulators where the trapdoor is
available in a (potentially full) threshold secret-shared fashion with multiple par-
ties running the parameter generation as well as the algorithms that profit from
the availability of the trapdoor. Since the MPC literature discusses security in
the UC model, we also chose to do so for our accumulators.

Based on recent improvements on distributed key generation of discrete loga-
rithms, we provide dynamic public-key accumulators without trusted setup. Dur-
ing the parameter generation, the involved parties keep their shares of the secret
trapdoor. Consequently, we present MPC protocols secure in the semi-honest
and the malicious security model, respectively, implementing the algorithms for
accumulator generation, witness generation, and accumulator updates exploiting
the shares of the secret trapdoor. Specifically, we give such protocols for q-SDH
accumulators [25,46], which can be build from dishonest-majority full-threshold
protocols (e.g., SPDZ [21,24]) and from honest-majority threshold MPC proto-
cols (e.g., Shamir secret sharing [48]). In particular, our protocol enables updates
to the accumulator independent of the size of the accumulated set. For increased
efficiency, we consider this accumulator in bilinear groups of Type-3. Due to
their structure, the construction nicely generalizes to any number of parties.

We provide a proof-of-concept implementation of our protocols in two MPC
frameworks, MP-SPDZ [36] and FRESCO.4 We evaluate the efficiency of our
protocols and compare them to the performance of an implementation, hav-
ing no access to the secret trapdoors as usual for the public-key accumulators.
We evaluate our protocol in the LAN and WAN setting in the semi-honest and
malicious security model for various choices of parties and accumulator sizes. For
the latter, we choose sizes up to 214. Specifically, for the q-SDH accumulator,
we observe the expected O(1) runtimes for witness creation and accumulator
updates, which cannot be achieved without access to the trapdoor. Notably, for

4 https://github.com/aicis/fresco.

https://github.com/aicis/fresco
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the tested numbers of up to 5 parties, the MPC-enabled accumulator creation
algorithms are faster for 210 elements in the LAN setting than its non-MPC
counterpart (without access to the secret trapdoor). For 214 elements the algo-
rithms are also faster in the WAN setting.

Finally, we discuss how our proposed MPC-based accumulators might impact
revocation in distributed credential systems such as Sovrin [37]. In this scenario,
the trust in the nodes run by the Sovrin foundation members can further be
reduced. In addition, this approach generalizes to any accumulator-based revo-
cation scheme and can be combined with threshold key management systems.
We also discuss applications to CT and its privacy-preserving extension [35].

1.3 Related Work

When cryptographic protocols are deployed that require the setup of public
parameters by a trusted third party, issues similar to those mentioned for public-
key accumulators may arise. As discussed before, especially cryptocurrencies had
to come up with ways to circumvent this problem for accumulators but also the
common reference string (CRS) of zero-knowledge SNARKs [14]. Here, trust in
the CRS is of paramount importance on the verifier side to prevent malicious
provers from cheating. But also provers need to trust the CRS as otherwise
zero-knowledge might not hold. We note that there are alternative approaches,
namely subversion-resilient zk-SNARKS [9] to reduce the trust required in the
CRS generator. Groth et al. [33] recently introduced the notion of an updatable
CRS where first generic compilers [1] are available to lift any zk-SNARK to
an updatable simulation sound extractable zk-SNARK. There the CRS can be
updated and if the initial generation or one of the updates was done honestly,
neither soundness nor zero-knowledge can be subverted. In the random oracle
model (ROM), those considerations become less of a concern and the trust put
into the CRS can be minimized, e.g., as done in the construction of STARKs [10].

Approaches that try to fix the issue directly in the formalization of accu-
mulators and corresponding constructions have also been studied. For example,
Lipmaa [42] proposed a modified model tailored to the hidden order group set-
ting. In this model, the parameter setup is split into two algorithms, Setup and
Gen where the adversary can control the trapdoors output by Setup, but can nei-
ther influence nor access the randomness used by Gen. However, constructions in
this model so far have been provided using assumptions based on modules over
Euclidean rings, and are not applicable to the efficient standard constructions
we are interested in. More recently, Boneh et al. [12] revisited the RSA accu-
mulator without trapdoor which allows the accumulator to be instantiated from
unknown order groups without trusted setup such as class groups of quadratic
imaginary orders [34] and hyperelliptic curves of genus 2 or 3 [27].

The area of secure multiparty computation has seen a lot of interest both
in improving the MPC protocols itself to a wide range of practical applications.
In particular, SPDZ [21,24] has seen a lot of interest, improvements and exten-
sions. This interest also led to multiple MPC frameworks, e.g., MP-SPDZ [36],



532 L. Helminger et al.

FRESCO and SCALE-MAMBA,5 enabling easy prototyping for researchers as
well as developers. For practical applications of MPC, one can observe first MPC-
based systems turned into products such as Unbound’s virtual hardware security
model (HSM).6 For such a virtual HSM, one essentially wants to provide dis-
tributed key generation [29] together with threshold signatures [22] allowing to
replace a physical HSM. Similar techniques are also interesting for securing wal-
lets for the use in cryptocurrencies, where especially protocols for ECDSA [32,41]
are of importance to secure the secret key material. Similarly, such protocols are
also of interest for securing the secret key material of internet infrastructure such
as DNSSEC [20]. Additionally, addressing privacy concerns in machine learning
algorithms has become increasingly popular recently, with MPC protocols being
one of the building blocks to achieve private classification and private model
training as in [50] for example. Recent works [49] also started to generalize the
algorithms that are used as parts of those protocols allowing group operations
on elliptic curve groups with secret exponents or secret group elements.

2 Preliminaries

In this section, we introduce cryptographic primitives we use as building blocks.
For notation and assumptions, we refer to the full version.

2.1 UC Security and ABB

In this paper, we mainly work in the UC model first introduced by Canetti [15].
The success of the UC model stems from its universal composition theorem,
which, informally speaking, states that it is safe to use a secure protocol as
a sub-protocol in a more complex one. This strong statement enables one to
analyze and proof the security of involved protocols in a modular way, allowing
us to build upon work that was already proven to be secure in the UC model.

The importance of the UC model for secure multiparty computation stems
from the arithmetic black box (ABB) [23]. The ABB models a secure general-
purpose computer in the UC model. It allows performing arithmetic operations
on private inputs provided by the parties. The result of these operations is then
revealed to all parties. Working with the ABB provides us with a tool of abstract-
ing arithmetic operations, including addition and multiplication in fields.

2.2 SPDZ, Shamir, and Derived Protocols

Our protocols build upon SPDZ [21,24] and Shamir secret sharing [48], con-
crete implementations of the abstract ABB. SPDZ itself is based on an additive
secret-sharing over a finite field Fp with information-theoretic MACs making
the protocol statistically UC secure against an active adversary corrupting all

5 https://homes.esat.kuleuven.be/∼nsmart/SCALE/.
6 https://www.unboundtech.com/usecase/virtual-hsm/.

https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://www.unboundtech.com/usecase/virtual-hsm/
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but one player. On the other hand, Shamir secret sharing is a threshold shar-
ing scheme where k ≤ n out of n parties are enough to evaluate the protocol
correctly. Therefore, it is naturally robust against parties dropping out during
the computation; however, it assumes an honest-majority amongst all parties
for security. Shamir secret sharing can be made maliciously UC secure in the
honest-majority setting using techniques from [18] or [40].

We will denote the ideal functionality of the online protocol of SPDZ and
Shamir secret sharing by FAbb. For an easy use of these protocols later in our
accumulators, we give a high-level description of the functionality together with
an intuitive notation. We assume that the computations are performed by n
(or k) parties and we denote by 〈s〉 ∈ Fp a secret-shared value between the
parties in a finite field with p elements, where p is prime. The ideal functionality
FAbb provides us with the following basis operations: Addition 〈a + b〉 ← 〈a〉 +
〈b〉 (can be computed locally), multiplication 〈ab〉 ← 〈a〉 · 〈b〉 (interactive 1-
round protocol), sampling 〈r〉 ←R

Fp, and opening a share 〈a〉. For convenience,
we assume that we have also access to the inverse function 〈a−1〉. Computation
of the inverse can be efficiently implemented using a standard form of masking
as first done in [5]. Given an opening of 〈z〉 = 〈r · a〉, the inverse of 〈a〉 is then
equal to z−1〈r〉. However, there is a small failure probability if either a or r is
zero. In our case, the field size is large enough that the probability of a random
element being zero is negligible.

There is one additional sub-protocol which we will often need. Recent
work [49] introduced protocols – in particular based on SPDZ – for group oper-
ations of elliptic curve groups supporting secret exponents and secret group
elements. For this work, we only need the protocol for exponentiation of a pub-
lic point with a secret exponent. Let G be a cyclic group of prime order p and
g ∈ G. Further, let 〈a〉 ∈ Fp be a secret-shared exponent.

ExpG(〈a〉, g) : The parties locally compute 〈ga〉 ← g〈a〉.

Since the security proof of this sub-protocol in [49] does not use any exclusive
property of an elliptic curve group, it applies to any cyclic group of prime order.

All protocols discussed so far are secure in the UC model, making them safe
to use in our accumulators as sub-protocols. Therefore, we will refer to their
ideal functionality as FABB+. As a result, our protocols become secure in the
UC model as long as we do not reveal any intermediate values.

2.3 Accumulators

We rely on the formalization of accumulators by Derler et al. [25]. We recall
definitions of static and dynamic accumulators in the full version.

2.4 Pairing-Based Accumulator

We recall the q-SDH-based accumulator from [25], which is based on the accumu-
lator by Nguyen [46]. The idea here is to encode the accumulated elements in a
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Gen(1κ, q) : Let BG = (p,G1,G2,GT , e, g1, g2) ← BGen(κ). Choose s ←R Z
∗
p and

return skΛ ← s and pkΛ ← (BG, (gsi

1 )q
i=1, g

s
2).

Eval((skΛ, pkΛ), X ) : Parse X ⊂ Z
∗
p. Choose r ←R Z

∗
p. If skΛ �= ∅, compute ΛX ←

g
r

∏
x∈X (x+s)

1 . Otherwise, expand the polynomial
∏

x∈X (x + X) =
∑n

i=0 aiX
i,

and compute ΛX ← ((
∏n

i=0 gsi

1 )ai)r. Return ΛX and aux ← (add ← 0, r, X ).
WitCreate((skΛ, pkΛ), ΛX , aux, x) : Parse aux as (r, X ). If x �∈ X , return ⊥. If

skΛ �= ∅, compute and return witx ← Λ
(x+s)−1

X . Otherwise, run (witx, . . .) ←
Eval((skΛ, pkΛ), X \ {x}; r), and return witx.

Verify(pkΛ, ΛX ,witx, x) : Return 1 if e(ΛX , g2) = e(witx, gx
2 · gs

2), otherwise return
0.

Add((skΛ, pkΛ), ΛX , aux, x) : Parse aux as (r, X ). If x ∈ X , return ⊥. Set X ′ ←
X ∪{x}. If skΛ �= ∅, compute and return ΛX ′ ← Λx+s

X and aux′ ← (r, X ′, add ←
1, ΛX , ΛX ′). Otherwise, return Eval((skΛ, pkΛ), X ′; r) with aux extended with
(add ← 1, ΛX , ΛX ′).

Delete((skΛ, pkΛ), ΛX , aux, x) : Parse aux as (r, X ). If x �∈ X , return ⊥. Set X ′ ← X \
{x}. If skΛ �= ∅, compute and return ΛX ′ ← Λ

(x+s)−1

X and aux′ ← (r, X ′, add ←
−1, ΛX , ΛX ′). Otherwise, return Eval((skΛ, pkΛ), X ′; r) with aux extended with
(add ← 0, ΛX , ΛX′).

WitUpdate((skΛ, pkΛ),witxi , aux, x) : Parse aux as (⊥, ⊥, add, ΛX , ΛX ′). If add =

0, return ⊥. Return ΛX · witx−xi
xi

if add = 1. If instead add = −1, return

(Λ−1
X ′ ·witxi)

(x−xi)
−1

. In the last two cases in addition return aux ← (add ← 0).

Scheme 1: q-SDH-based accumulator in the Type-3 setting.

polynomial. This polynomial is then evaluated for a fixed element and the result
is randomized to obtain the accumulator. A witness consists of the evaluation
of the same polynomial with the term corresponding to the respective element
cancelled out. For verification, a pairing evaluation is used to check whether the
polynomial encoded in the witness is a factor of the one encoded in the accumu-
lator. As it is typically more efficient to work with bilinear groups of Type-3 [30],
we state the accumulator as depicted in Scheme 1 in this setting. Correctness
is clear, except for the WitUpdate subroutine: To update witness witxi

of the
element xi after the element x was added to the accumulator ΛX to create the
new accumulator ΛX ′ = Λ

(x+s)
X , one computes:

ΛX · wit(x−xi)
xi

= Λ
(xi+s)·(xi+s)−1

X · Λ
(x−xi)·(xi+s)−1

X

= Λ
(x+s)·(xi+s)−1

X = Λ
(xi+s)−1

X ′

which results in the desired updated witness. Similar, if the element x gets
removed instead, one computes the following to get the desired witness:

(Λ−1
X ′ · witxi

)(x−xi)
−1

= Λ
−(xi+s)·(xi+s)−1·(x−xi)

−1

X ′ · Λ
(x+s)·(xi+s)−1·(x−xi)

−1

X ′

= Λ
(xi+s)−1·(x−xi)

−1·(x−xi+s−s)
X ′ = Λ

(xi+s)−1

X ′
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The proof of collision freeness follows from the q-SDH assumption. For com-
pleteness, we still restate the theorem from [25] adopted to the Type-3 setting.
For the proof, we refer to the full version.

Theorem 1. If the q-SDH assumption holds, then Scheme 1 is collision-free.

Remark 1. Note that for support of arbitrary accumulation domains, the accu-
mulator requires a suitable hash function mapping to Z

∗
p. For the MPC-based

accumulators that we will define later, it is clear that the hash function can be
evaluated in public. For simplicity, we omit the hash function in our discussion.

2.5 UC Secure Accumulators

Only recently, Baldimtsi et al. [4] formalized the security of accumulators in the
UC framework. Interestingly, they showed, that any correct and collision-free
standard accumulator is automatically UC secure. We, however, want to note,
that their definitions of accumulators are slightly different then the framework by
Derler et al. (which we are using). Hence, we adapt the ideal functionality FAcc

from [4] to match our setting: First our ideal functionality FAcc consists of two
more sub-functionalities. This is due to a separation of the algorithms responsible
for the evaluation, addition, and deletion. Secondly, our FAcc is simplified to our
purpose, whereas FAcc from Baldimtsi et al. is in their words “an entire menu of
functionalities covering all different types of accumulators”. Thirdly, we added
identity checks to sub-functionalities (where necessary) to be consistent with the
given definitions of accumulators.

The resulting ideal functionality can be found in the full version. Note that
the ideal functionality has up to three parties. First, the party which holds
the set X is the accumulator manager AM, responsible for the algorithms
Gen,Eval,WitCreate,Add and Delete. The second party H owns a witness and
is interested in keeping it updated and for this reason, performs the algorithm
WitUpdate. The last party V can be seen as an external party. V is only able to
use Verify to check the membership of an element in the accumulated set.

In the following theorem we adapt the proof from [4] to our setting:

Theorem 2. If ΠAcc = (Gen,Eval,WitCreate,Verify,Add,Delete,WitUpdate) is
a correct and collision-free dynamic accumulator with deterministic Verify, then
ΠAcc UC emulates FAcc.

For the proof we refer to the full version. As a direct consequence of Theorems
1 and 2, the accumulator from Scheme 1 is also secure in the UC model of [4]
since it is correct and collision-free:

Corollary 1. Scheme 1 emulates FAcc in the UC model.

3 Multi-Party Public-Key Accumulators

With the building blocks in place, we are now able to go into the details of
our construction. We first present the formal notion of (threshold) secret-shared
accumulators, their ideal functionality, and then present our constructions.
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For the syntax of the MPC-based accumulator, which we dub (threshold)
secret-shared accumulator, we use the bracket notation 〈s〉 from Sect. 2.2 to
denote a secret shared value. If we want to explicitly highlight the different
shares, we write 〈s〉 = (s1, . . . , sn), where the share si belongs to a party Pi. We
base the definition on the framework of Derler et al. [25], where our algorithms
behave in the same way, but instead of taking an optional secret trapdoor, the
algorithms are given shares of the secret as input. Consequently, Gen outputs
shares of the secret trapdoor instead of the secret key. The static version of the
accumulator is defined as follows:

Definition 1 (Static (Threshold) Secret-Shared Accumulator). Let us
assume that we have a (threshold) secret sharing-scheme. A static (threshold)
secret-shared accumulator for n ∈ N parties P1, . . . , Pn is a tuple of PPT algo-
rithms (Gen,Eval,WitCreate,Verify) which are defined as follows:

Gen(1κ, q) : This algorithm takes a security parameter κ and a parameter q.
If q �= ∞, then q is an upper bound on the number of elements to be
accumulated. It returns a key pair (ski

Λ, pkΛ) to each party Pi such that
skΛ = Open(sk1Λ, . . . , skn

Λ), denoted by 〈skΛ〉. We assume that the accumu-
lator public key pkΛ implicitly defines the accumulation domain DΛ.

Eval((〈skΛ〉, pkΛ),X ) : This algorithm takes a secret-shared private key 〈skΛ〉 a
public key pkΛ and a set X to be accumulated and returns an accumulator
ΛX together with some auxiliary information aux to every party Pi.

WitCreate((〈skΛ〉, pkΛ), ΛX , aux, x) : This algorithm takes a secret-shared private
key 〈skΛ〉 a public key pkΛ, an accumulator ΛX , auxiliary information aux
and a value x. It returns ⊥, if x /∈ X , and a witness witx for x otherwise to
every party Pi.

Verify(pkΛ, ΛX ,witx, x) : This algorithm takes a public key pkΛ, an accumulator
ΛX , a witness witx and a value x. It returns 1 if witx is a witness for x ∈ X
and 0 otherwise.

In analogy to the non-interactive case, dynamic accumulators provide additional
algorithms to add elements to the accumulator and remove elements from it,
respectively, and update already existing witnesses accordingly.

Definition 2 (Dynamic (Threshold) Secret-Shared Accumulator). A
dynamic (threshold) secret-shared accumulator is a static (threshold) secret-
shared accumulator with an additional tuple of PPT algorithms (Add,Delete,
WitUpdate) which are defined as follows:

Add((〈skΛ〉, pkΛ), ΛX , aux, x) : This algorithm takes a secret-shared private key
〈skΛ〉 a public key pkΛ, an accumulator ΛX , auxiliary information aux, as
well as an element x to be added. If x ∈ X , it returns ⊥ to every party Pi.
Otherwise, it returns the updated accumulator ΛX ′ with X ′ ← X ∪ {x} and
updated auxiliary information aux′ to every party Pi.

Delete((〈skΛ〉, pkΛ), ΛX , aux, x) : This algorithm takes a secret-shared private key
〈skΛ〉 a public key pkΛ, an accumulator ΛX , auxiliary information aux, as
well as an element x to be added. If x �∈ X , it returns ⊥ to every party Pi.
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Otherwise, it returns the updated accumulator ΛX ′ with X ′ ← X \ {x} and
updated auxiliary information aux′ to every party Pi.

WitUpdate((〈skΛ〉, pkΛ),witxi
, aux, x) : This algorithm takes a secret-shared pri-

vate key 〈skΛ〉 a public key pkΛ, a witness witxi
to be updated, auxiliary infor-

mation aux and an element x which was added to/deleted from the accumu-
lator, where aux indicates addition or deletion. It returns an updated witness
wit′xi

on success and ⊥ otherwise to every party Pi.

Correctness and collision-freeness naturally translate from the non-
interactive accumulators to the (threshold) secret-shared ones.

For our case, the ideal functionality for (threshold) secret-shared accumu-
lators, dubbed FMPC-Acc is more interesting. FMPC-Acc is very similar to FAcc

and can be found in the full version. The only difference in describing the ideal
functionality for accumulators in the MPC setting arises from the fact that we
now have not only one accumulator manager but n, denoted by AM1, . . . ,AMn.
More concretely, whenever a sub-functionality of FMPC-Acc – that makes use of
the secret key – gets a request from a manager identity AMi, it now also gets a
participation message from the other managers identities Aj for j �= i. Further-
more, the accumulator managers take the role of the witness holder. The party
V, however, stays unchanged.

3.1 Dynamic (Threshold) Secret-Shared Accumulator from the
q-SDH Assumption

For the generation of public parameters Gen, we can rely on already established
methods to produce ECDSA key pairs and exponentiations with secret expo-
nents, respectively. These methods can directly be applied to the accumulators.
Taking the q-SDH accumulator as an example, the first step is to sample the
secret scalar s ∈ Zp. Intuitively, each party samples its own share si and the
secret trapdoor s would then be s = Open(s1, . . . , sn). The next step, the calcu-
lation of the basis elements gsj

for j = 1, . . . , q, is optional, but can be performed
to provide public parameters, that are useful even to parties without knowledge
of s. All of these elements can be computed using ExpG and the secret-shared
s, respectively its powers. For the accumulator evaluation, Eval, the parties first
sample their shares of r. Then, they jointly compute shares of r ·f(s) using their
shares of r and s. The so-obtained exponent and ExpG produce the final result.

For witness creation, WitCreate, it gets more interesting. Of course, one could
simply run Eval again with one element removed from the set. In this case, we can
do better, though. The difference between the accumulator and a witness is that
in the latter, one factor of the polynomial is canceled. Since s is available, it is
thus possible to cancel this factor without recomputing the polynomial from the
start. Indeed, to compute the witness for an element x, we can compute (s+x)−1

and then apply that inverse using ExpG to the accumulator to get the witness.
Note though, that before the parties perform this step, they need to check if
x is actually contained in X . Otherwise, they would produce a membership
witness for a non-member. In that case, the verification would check whether
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f(s)(s+x)−1(s+x) matches f(s), which of course also holds even if s+x is not a
factor of f(s). In contrast, when performing Eval with only the publicly available
information, this issue does not occur since there the witness will not verify. Add
and Delete can be implemented in a similar manner. When adding an element
to the accumulator, the polynomial is extended by one factor. Removal of an
element requires that one factor is canceled. Both operations can be performed
by first computing the factor using the shares of s and then running ExpG.

Now, we present the MPC version of the q-SDH accumulator in Scheme 2
following the intuition outlined above. Note, that the algorithm for WitUpdate is
unlikely to be faster than its non-MPC version from Scheme 1. Indeed, the non-
MPC version requires only exponentiations in G1 and a multiplication without
the knowledge of the secret trapdoor. We provide the version using the trapdoor
for completeness but will use the non-MPC version of the algorithm in practical
implementations. Note further that we let Gen choose the bilinear group BG, but
this group can already be fixed a priori.

Gen(1κ, q) : BG = (p,G1,G2,GT , e, g1, g2) ← BGen(κ). Compute 〈skΛ〉 ←
sRand(Z∗

p). Compute h ← Open(g
〈skΛ〉
2 ). Return pkΛ ← (BG, h).

Eval((〈skΛ〉, pkΛ), X ) : Parse pkΛ as (BG, h) and X as subset of Z∗
p. Choose 〈r〉 ←

sRand(Z∗
p). Compute 〈q〉 ← ∏

x∈X (x + 〈skΛ〉) ∈ Z
∗
p and 〈t〉 ← 〈q〉 · 〈r〉. The

algorithm returns ΛX ← Open(g
〈t〉
1 ) and aux ← (add ← 0, X ).

WitCreate((〈skΛ〉, pkΛ), ΛX , aux, x) : Returns ⊥ if x /∈ X . Otherwise, 〈z〉 ← 〈(x +

〈skΛ〉)−1〉. Return witx ← Open(Λ
〈z〉
X ).

Verify(pkΛ, ΛX ,witx, x) : Parse pkΛ as (BG, h). If e(ΛX , g2) = e(witx, gx
2 · h) holds,

return 1, otherwise return 0.
Add((〈skΛ〉, pkΛ), ΛX , aux, x) : Returns ⊥ if x ∈ X . Otherwise set X ′ ← X ∪ {x}.

Return ΛX ′ ← Λx
X · Open(Λ

〈skΛ〉
X ) and aux ← (add ← 1, X ′).

Delete((〈skΛ〉, pkΛ), ΛX , aux, x) : If x /∈ X , return ⊥. Otherwise set X ′ ← X \ {x},

and compute 〈y〉 ← 〈(x + 〈skΛ〉)−1〉. Return ΛX ′ ← Open(Λ
〈y〉
X ) and aux ←

(add ← −1, X ′).
WitUpdate((〈skΛ〉, pkΛ),witxi , aux, x) : Parse aux as (add, X ). Return ⊥ if add = 0

or xi /∈ X . In case add = 1, return witxi ← witxxi
· Open(wit

〈skΛ〉
xi ) and aux ←

(add ← 0, X ). If instead add = −1, it compute 〈y〉 ← 〈(x + 〈skΛ〉)−1〉. Return

witxi ← Open(wit
〈y〉
xi ) and aux ← (add ← 0, X ).

Scheme 2: MPC-q-SDH: Dynamic (threshold) secret-shared accumulator from
q-SDH for n ≥ 2 parties.

Theorem 3. Scheme 2 UC emulates FAcc-MPC in the FABB+-hybrid model.

Proof. At this point, we make use of the UC model. Informally speaking, accu-
mulators are UC secure, and SPDZ, Shamir secret sharing, and the derived
operations UC emulate FABB+. Therefore, according to the universal composi-
tion theorem, the use of these MPC protocols in the accumulator Scheme 2 can
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be done without losing UC security. For a better understanding, we begin by
showing the desired accumulator properties for Scheme 2.

The proof of the correctness follows directly from the correctness proof from
Scheme 1 for the case where the secret key is known. Collision-freeness is also
derived from the non-interactive q-SDH accumulator. (It is true that now each
party has a share of the trapdoor, but without the other shares no party can
create a valid witness.) Since Verify is obviously deterministic, Scheme 2 fulfills
all necessary assumption of Theorem 2. After applying Theorem 2, we get a
simulator SAcc interacting with the ideal functionality FAcc. Since we now also
have to simulate the non-interactive sub-protocols, we have to extend SAcc. We
construct SAcc-MPC by building upon SAcc and in addition internally simulate
FABB+. As described in Sect. 2.2, the MPC protocols used in the above algo-
rithms are all secure in the UC model. Since we do not open any secret-shared
values besides uniformly random elements and the output or values that can
be immediately derived from the output, the algorithms are secure due to the
universal composition theorem. �
Remark 2. In Gen of Scheme 2 we explicitly do not compute hi ← gsi

1 . Hence,
using Eval without access to s is not possible. But the public key is significantly
smaller and so is the runtime of the Gen algorithm. If, however, these values
are needed to support a non-secret-shared Eval, one can modify Gen to also
compute the necessary values enabling trade-offs between an efficient Eval and
an inefficient Gen. Updates to this accumulator then still profit from the efficiency
of the secret shared trapdoor. Additionally, q gives an upper bound on the size
of the accumulated sets, and thus needs to be considered in the selection of the
curves even though the powers of g1 are not placed in the public key.

3.2 SPDZ vs. Shamir Secret Sharing

In this section, we want to compare two MPC protocols on which our MPC-q-
SDH Accumulator can be based on, namely SPDZ and Shamir secret sharing.
Both protocols allow us to keep shares of the secret trapdoor and improve per-
formance compared to the keyless q-SDH Accumulator. However, in relying on
these protocols for security, the trust assumptions of the MPC-q-SDH Accumu-
lator also have to include the underlying protocols’ trust-assumptions.

SPDZ is a full-threshold dishonest-majority protocol that protects against
n − 1 corrupted parties. Therefore, an honest party will always detect malicious
behavior. However, full-threshold schemes are not robust; if one party fails to
supply its shares, the computation always fails.

On the contrary, Shamir secret sharing is an honest-majority threshold pro-
tocol. It is more robust than SPDZ since it allows k ≤ n−1

2 corrupted parties
while still being capable of providing correct results. This also means, if some
parties (k ≤ n−1

2 ) fail to provide their shares, the other parties can still compute
the correct results without them. Thus, no accumulator manager on its own
is a single point of failure. However, if more than k parties are corrupted, the
adversaries can reconstruct the secret trapdoor and, therefore, compromise the
security of our MPC-q-SDH Accumulator.
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Table 1. Performance of the accumulator algorithms without access to the secret
trapdoors. Time in milliseconds averaged over 100 executions.

Accu. |X | Gen Eval WitCreate Add WitUpdate Delete WitUpdate

Scheme 1 210 649 1 117 1 116 1 116 0.6 1 120 0.7

214 9 062 116 031 115 870 115 575 0.6 116 154 0.7

Merkle-Tree 210 − 1.12 0.05a 1.12 0.05a 1.12 0.05a

214 − 15.53 0.83a 15.53 0.83a 15.53 0.83a

aAssuming that the full Merkle-tree is known as auxiliary data.

4 Implementation and Performance Evaluation

We implemented the proposed dynamic (threshold) secret-shared accumulator
from q-SDH and evaluated it against small to large sets.7 Our primary imple-
mentations are based on SPDZ with OT-based preprocessing and Shamir secret
sharing in the MP-SPDZ [36]8 framework. However, to demonstrate the usability
of our accumulator, we additionally build an implementation in the malicious
security setting with dishonest-majority based on the FRESCO framework. We
discuss the benchmarks for the MP-SPDZ implementation in this section. For a
discussion of the FRESCO benchmarks we refer the reader to the full version.

Remark 3. We want to note, that in our benchmarks we test the performance
of the MPC variant of WitUpdate from Scheme 2, even though in practice the
non-MPC variant from Scheme 1 should be used.

MP-SPDZ implements the SPDZ protocol with various extensions, as well
as semi-honest and malicious variants of Shamir secret sharing [18,19,40]. For
pairing and elliptic curve group operations, we rely on relic9 and integrate ExpG,
Output-G, and the corresponding operations to update the MAC described
in [49] into MP-SPDZ. We use the pairing friendly BLS12-381 curve [7], which
provides around 120 bit of security following recent estimates [6]. For complete-
ness, we also implemented the q-SDH accumulator from Scheme 1 and a Merkle-
tree accumulator using SHA-256. This enables us to compare the performance in
cases where the secret trapdoors are available in the MPC case and when they
are not. In Table 1, we present the numbers for various sizes of accumulated sets.

The evaluation of the MPC protocols was performed on a cluster with a
Xeon E5-4669v4 CPU, where each party was assigned only 1 core. The hosts
were connected via a 1 Gbit/s LAN network, and an average round-trip time
of <1 ms. For the WAN setting, a network with a round-trip time of 100 ms
and a bandwidth of 100 Mbit/s was simulated. We provide benchmarks for both
preprocessing and online phases of the MPC protocols, where the cost of the pre-
processing phase is determined by the number of shared multiplications, whereas
the performance of the online phase is proportional to the multiplicative depth
of the circuit and the number of openings.
7 The source code is available at https://github.com/IAIK/MPC-Accumulator.
8 https://github.com/data61/MP-SPDZ.
9 https://github.com/relic-toolkit/relic.

https://github.com/IAIK/MPC-Accumulator
https://github.com/data61/MP-SPDZ
https://github.com/relic-toolkit/relic
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Table 2. Number of Beaver triples, shared random values, and opening rounds required
by MPC-q-SDH.

Gen Eval WitCreate Add WitUpdate Delete WitUpdate

Beaver triplesa 0 |X | 1 0 0 1 1

Random values 1 1 1 0 0 1 1

Opening rounds 1 �log2(|X | + 1)� + 1 3 1 1 3 3
aNote, semi-honest Shamir secret sharing does not require Beaver triples.

4.1 Evaluation of MPC-q-SDH

In the offline phase of the implemented MPC protocols, the required Beaver
triples [8] for shared multiplication and the pre-shared random values are gen-
erated. A shared inverse operation requires one multiplication and one shared
random value. In Table 2, we list the number of triples required for each operation
for the MPC-q-SDH accumulator. Except for Eval they require a constant num-
ber of multiplications and inverse operations and, therefore, a constant number
of Beaver triples and shared random elements. In Eval, the number of required
Beaver triples is determined by |X |. Furthermore, Table 2 lists the number of
opening rounds (including openings in multiplications, excluding MAC-checks)
of the online phase of the MPC-q-SDH accumulator allowing one to calculate
the number of communication rounds for different sharing schemes.

As discussed in Remark 2, Gen is not producing the public parameters hi.
If Eval without MPC is desired, the time and communication of Eval for the
respective set sizes should be added to the time and communication of Gen to
obtain an estimate of its performance.

Dishonest-Majority Based on SPDZ. Table 3 compares the offline performance
of the MPC-q-SDH accumulator based on SPDZ in different settings. We give
both timings for the accumulation of |X | elements in Eval and the necessary
pre-computation for a single inversion, which is used in several other operations
(e.g., WitCreate). Additionally we also give the time for pre-computing a single
random element, which is required to generate the authenticated share of the
secret-key in Eval. Further note that batching the generation of many triples
together like for the Eval phase is more efficient in practice than producing a
single triple and as these triples are not dependent on the input, all parties can
continuously generate triples in the background for later use in the online phase.

In Table 4, we present the online performance of our MPC-q-SDH accumula-
tor based on SPDZ for different set sizes, parties, security settings, and network
settings. It can clearly be seen, that – except for the Eval operation – the run-
time of each operation is independent of the set size. In other words, after an
initial accumulation of a given set, every other operation has constant time. In
comparison, the runtime of the non-MPC accumulators without access to the
secret trapdoor, as depicted in Table 1, depends on the size of the accumulated
set. Our MPC-accumulator outperforms the non-MPC q-SDH accumulators the
larger the accumulated set gets. In the LAN setting MPC-q-SDH’s Eval is faster
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Table 3. Offline phase performance of different steps of the MPC-q-SDH accumulator
with access to the secret trapdoor based on MP-SPDZ. Time in milliseconds.

Operation |X| LAN setting WAN setting

n = 2 3 4 5 2 3 4 5

BaseOTs 210, 214 0.03 0.08 0.14 0.23 0.14 0.31 0.56 0.84

Semi-honest Inverse 210, 214 0.78 1.72 3.06 4.03 209.9 227.5 322.8 331.0

Gen 210, 214 0.44 1.21 1.76 3.01 207.7 223.6 325.9 332.0

Eval 210 189 397 706 959 4 695 8 215 13 680 25 725

214 4000 8 308 14 380 17 928 55 542 109 720 214 585 356 330

Malicious Inverse 210, 214 4.34 7.93 11.5 15.3 840.5 1 262 1 538 1 914

Gen 210, 214 2.56 4.23 6.80 9.32 841.3 1 235 1 540 1 856

Eval 210 1 601 2 849 4 345 6 227 25 737 45 254 87 328 141 181

214 31 099 62 978 89 132 145 574 412 747 682 033 1 364 660 2 236 860

than the non-MPC version for all benchmarked players, even in the WAN settings
it outperforms the non-MPC version in the two player case. For 214 elements,
it is even faster for all benchmarked players in all settings, including the WAN
setting. In any case, the witnesses have constant size contrary to the log2(|X |)
sized witnesses of the Merkle-tree accumulator.

The numbers for the evaluation of the online phase in the WAN setting are
also presented in Table 4. The overhead that can be observed compared to the
LAN setting is influenced by the communication cost. Since our implementation
implements all multiplications in Eval in a depth-optimized tree-like fashion, the
overhead from switching to a WAN setting is not too severe.

On the first look, one can observe an irregularity in our benchmarks. More
specifically, notice that for four or more parties, the maliciously secure evaluation
of the Eval online phase is consistently faster than the semi-honest evaluation
of the same phase. However, this is a direct consequence of a difference in how
MP-SPDZ handles the communication in those security models, where commu-
nication is handled in a non-synchronized send-to-all approach in the malicious
setting and a synchronized broadcast approach in the semi-honest setting. The
synchronization in the latter case scales worse for more parties and, therefore,
introduces some additional delays.

Finally, Table 5 depicts the size of the communication between the parties for
both offline and online phases. The communication of Eval has to account for a
number of multiplications dependent on X and therefore scales linearly with its
size. As we already observed for the runtime of MPC-q-SDH, also the communi-
cation of WitCreate, Add, Delete and WitUpdate is independent of the size of the
accumulated set, and additionally less than 200 kB for all algorithms. Combined
with the analysis of the runtime, we conclude that the performance of the oper-
ations that might be performed multiple times per accumulator is very efficient
in both runtime and communication. When compared to the performance of the
non-MPC accumulators in Table 1, we see that the performance of operations
that benefit from access to the secret trapdoor are multiple orders of magnitude
faster in the MPC accumulators and, in the LAN setting, even come close to the
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Table 4. Online phase performance of the MPC-q-SDH accumulator with access to
the secret trapdoor based on SPDZ implemented in MP-SPDZ, for both the LAN and
WAN settings with n parties. Time in milliseconds averaged over 50 executions.

Operation |X| Semi-honest Malicious

LAN setting WAN setting LAN setting WAN setting

n = 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

Gen 210 4 4 7 19 53 110 170 219 11 13 25 37 169 278 395 505

214 4 4 9 20 56 111 172 220 11 13 28 48 179 280 396 506

Eval 210 3 13 58 231 635 1 277 1 916 2 558 10 17 50 131 966 1 327 1 669 1 995

214 26 47 117 315 949 1 948 3 166 4 571 89 94 174 225 1 297 1 979 2 830 3 872

WitCreate 210 2 2 32 39 168 320 482 645 5 10 35 75 372 606 823 1 050

214 2 2 28 51 168 320 473 638 5 6 28 80 365 606 835 1 052

Add 210 2 2 8 17 47 107 166 213 5 5 17 31 170 273 388 499

214 2 2 5 14 50 108 170 214 5 5 17 42 173 271 383 491

WitUpdateAdd 210 2 2 5 30 60 108 154 214 5 7 12 34 159 276 390 495

214 2 2 3 20 60 107 152 217 5 6 10 54 154 275 390 500

Delete 210 2 2 21 58 156 319 488 639 5 10 47 78 379 598 818 1 034

214 2 2 23 55 158 318 489 642 5 6 38 87 385 603 822 1 033

WitUpdateDelete 210 2 2 52 47 165 320 475 643 5 10 26 100 374 604 828 1 044

214 2 4 43 57 162 323 475 639 5 10 35 74 365 599 827 1 048

Table 5. Communication cost (in kB per party) of the MPC-q-SDH accumulator with
access to the secret trapdoor based on SPDZ implemented in MP-SPDZ.

Operations |X | Semi-honest Malicious

Offlinea Online Offlinea Online

Gen 210, 214 20 0.10 86 0.24

Eval 210 12 571 66 79 549 66

214 200 823 1 049 1 271 484 1 049

WitCreate, Delete, WitUpdateDelete 210, 214 33 0.15 164 0.37

Add, WitUpdateAdd 210, 214 4 0.05 4 0.14
aIncludes BaseOTs for a new connection

performance of the standard Merkle-tree accumulator, for both the semi-honest
and malicious variant.

Honest-Majority Threshold Sharing based on Shamir Secret Sharing. In this
section, we discuss the benchmarks of our implementation based on Shamir
secret sharing. MP-SPDZ implements semi-honest Shamir secret sharing based
on [19] and a maliciously secure variant following [40]10. In Table 6, we present
the offline phase runtime, in Table 7 we show the runtime of the online phase,
and in Table 8 we depict the size of the communication between the parties for
the 3-party case.

10 A newer version of MP-SPDZ now implements maliciously secure Shamir secret
sharing following [18].
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Table 6. Offline phase performance of different steps of the MPC-q-SDH accumulator
with access to the secret trapdoor in the semi-honest (SH) and malicious threshold
setting implemented in MP-SPDZ. Time in milliseconds.

Operation |X | LAN setting WAN setting

n = 3 4 5 3 4 5

SH Inverse 210, 214 6 9 14 473 585 998

Malicious Inverse 210, 214 7 9 17 1 036 1 231 2 136

Gen 210, 214 6 11 17 1 008 1 256 2 233

Eval 210 20 29 48 1 232 2 089 2 629

214 218 245 510 3 431 8 130 8 519

The most expensive part of the SPDZ offline phase is creating the Beaver
triples required for the Eval operation. As Table 6 shows, this step is several
orders of magnitudes cheaper in the Shamir-based implementation. This is espe-
cially true in the semi-honest setting, in which no Beaver triples are required in
the Shamir-based implementation. The offline runtime of the other operations is
similar to the SPDZ-based implementations.

The Shamir-based implementation’s online runtime is slightly cheaper than
the runtime of the SPDZ-based implementation, except for the Eval operation.
However, the difference in runtime of the Eval operation is also not significant,
especially when considering the trade for the much cheaper offline phase.

Similar behavior can be seen for the communication cost, as depicted in
Table 8. Offline communication is several orders of magnitude smaller in the

Table 7. Online phase performance of the MPC-q-SDH accumulator with access to the
secret trapdoor in the threshold setting implemented in MP-SPDZ, for both the LAN
and WAN settings with n parties. Time in milliseconds averaged over 50 executions.

Operation |X| Semi-honest Malicious

LAN setting WAN setting LAN setting WAN setting

n = 3 4 5 3 4 5 3 4 5 3 4 5

Gen 210 5 5 7 109 111 118 7 7 14 112 119 228

214 5 5 7 110 111 120 7 7 14 113 120 230

Eval 210 5 6 9 1 278 1 314 2 474 9 9 16 1 285 1 422 2 578

214 33 40 77 1 788 2 776 3 831 80 84 161 2 018 3 938 4 636

WitCreate 210 2 2 3 317 319 440 3 3 5 324 336 648

214 2 2 3 318 321 443 3 3 5 323 332 642

Add 210 2 2 3 109 108 114 3 3 5 109 111 215

214 2 2 3 107 108 113 3 3 5 110 112 220

WitUpdateAdd 210 2 2 3 107 107 112 3 3 5 107 112 217

214 2 2 3 107 108 114 3 3 5 108 114 220

Delete 210 2 2 3 320 321 438 3 3 5 320 332 642

214 2 2 3 317 321 439 3 3 5 321 331 642

WitUpdateDelete 210 2 2 3 320 321 441 3 3 5 321 333 647

214 2 2 3 316 320 441 3 3 5 320 332 645
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Shamir-based implementation than in SPDZ, while online communication is sim-
ilar to the SPDZ based version. Only the Eval operation requires about twice as
much online communication in the Shamir-based implementation. To summarize,
our honest-majority threshold implementation based on Shamir secret sharing
provides much better offline phase performance, with similar online performance
compared to our dishonest majority full-threshold implementation.

4.2 Further Improvement

The maliciously secure MPC protocols we use in this work delay the MAC check
to the output phase after executing the Open subroutine. This means, it is pos-
sible for intermediate results to be wrong due to tampering of an attacker; how-
ever, since honest parties only reveal randomized values during the openings in
a multiplication, no information about secret values can be gained by attackers.

Similar to threshold signature schemes [20,28,32], the protocols can be opti-
mized by skipping the MAC checks at the end of WitCreate, Add, Delete, and
WitUpdate and use the Verify step of the accumulator to check for correctness
instead. The only feasible attack on this optimization is to produce invalid accu-
mulators/witnesses without leaking information on the secret trapdoor; however,
false output values can be detected during verification. Therefore, we can exe-
cute the semi-honest online phase and call Verify at the end, while still protecting
against malicious parties. This trades the extra round of communication in the
MAC check for an evaluation of a bilinear pairing (≈ 10ms on our benchmark
platform) which results in a further speedup, especially in the WAN-setting.

5 Applications

5.1 Credential Revocation in Distributed Credential Systems

As first application of MPC-based accumulators, we focus on distributed cre-
dential systems [31], and in particular, on the implementation in Sovrin [37]. In
general, anonymous credentials provide a mechanism for making identity asser-
tions while maintaining privacy, yet, in classical, non-distributed systems require

Table 8. Communication cost (in kB per party) of the MPC-q-SDH accumulator in
the 3-party threshold setting implemented in MP-SPDZ.

Operation |X | Semi-honest Malicious

Offline Online Offline Online

Gen 210, 214 0.26 0.20 0.65 0.20

Eval 210 0.26 66 459 131

214 0.26 1 049 7 340 2 097

WitCreate, Delete, WitUpdateDelete 210, 214 0.26 0.23 1.1 0.3

Add, WitUpdateAdd 210, 214 0 0.11 0 0.11
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a trusted credential issuer. This central issuer, however, is both a single point of
failure and a target for compromise and can make it challenging to deploy such
a system. In a distributed credential system, on the other hand, this trusted
credential issuer is eliminated, e.g., by using distributed ledgers.

We shortly recall how Sovrin implements revocation. When issuing a creden-
tial, every user gets a unique revocation identifier iR. All valid revocation IDs
are accumulated using a q-SDH accumulator which is published. Additionally,
the users obtains a witness certifying membership of its iR in the accumulator.
Whenever a user shows their credential, they have to prove that they know this
witness for their iR with respect to the published accumulator. When a new user
joins, the accumulator has to be updated. Consequently, all the witnesses have
to be updated as well, as otherwise they would no longer be able to provide a
valid proof. Similar, in the case that a user is revoked and thus removed from
the accumulator, all other users have to update their witnesses accordingly. Also,
the verifiers always have to check for updated accumulators.

Now, recall that the q-SDH accumulator supports all required operations
without needing access to the trapdoor. Hence, all operations can be performed
and, especially, the users can update their witnesses on their own if the corre-
sponding iRs are published on the ledger. While functionality-wise all operations
are supported, performance-wise a large number of users becomes an issue. With
potentially millions to billions of users, adding and deleting members from the
accumulator becomes increasingly expensive (cf. Table 1). Hence, at a certain
size, having access to the trapdoor would be beneficial. But, on the other side,
generating membership witnesses for non-members would then become possible.

The latter is also an issue during the setup of the system. Trusting one third
party to generate the public parameters of the accumulator might be undesired
in a distributed system as in this case. The special structure of the Sovrin ecosys-
tem with their semi-trusted foundation members, however, naturally fits to our
multi-party accumulator. First, the foundation members can setup the public
parameters in a distributed manner. Secondly, as all of them have shares of the
trapdoor, they can also run the updates of the accumulator using the MPC-q-
SDH-accumulator. Additionally, using a threshold secret sharing scheme can add
robustness against foundation members failing to provide their shares for compu-
tations. The change to this accumulator is completely transparent to the clients
and verifiers and no changes are required there. Furthermore, the Verify step of
the MPC-q-SDH-accumulator is equal to the Verify operation of the non-MPC
q-SDH-accumulator. Therefore, the same efficient zero-knowledge proofs [2] can
be used to prove knowledge of a witness without revealing it. These proofs are
significantly more efficient then proving witnesses of a Merkle-Tree-accumulator,
even when SNARK-friendly hash functions are used.

5.2 Privacy-Preserving Certificate-Transparency Logs

We finally look at the application of accumulators in the CT ecosystem. Certifi-
cate Authorities request the inclusion of certificates in the log whenever they sign
a new certificate. Once the certificate was included in the log, auditors can check
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the consistency of this log. Additionally, TLS clients also verify whether all cer-
tificates that they obtain were actually logged, thereby ensuring that log servers
do not hand out promises of certificate inclusion without following through.
Technically, the CT log is realized as a Merkle-tree accumulator containing all
certificates. As certificates need to be added continuously, it is made dynamic by
simply recalculating the root hash and all the proofs. Functionality wise, dynamic
accumulators would perfectly fit this use-case. However, their real-world perfor-
mance without secret trapdoors is not good enough – recalculating hash trees is
just more efficient. Knowledge of the secret trapdoors would however be catas-
trophic for this application, as the guarantees of the whole system break down:
log servers could produce witnesses for any certificate they get queried on, even
if it was never submitted to the log servers for inclusion.

In the CT ecosystem, the clients need to contact the log servers for the inclu-
sion proof, and therefore verifying certificates has negative privacy implications,
as this query reveals the browsing behavior of the client to the log server. Based
on previous work by Lueks and Goldberg [43], Kales et al. [35] proposed to
rethink retrieval of the inclusion proofs by employing multi-server private infor-
mation retrieval (PIR) to query the proofs. To further improve performance, the
accumulator is split into sub-accumulators based on, e.g., time periods. All sub-
accumulators are then accumulated in a top-level accumulator. Consequently,
the witnesses with respect to the sub-accumulator stay constant and can be
embedded in the server’s certificate and only the membership-proofs of the sub-
accumulators need to be updated when new certificates are added to the log.
Only these top-level proofs have to be queried using PIR, thus greatly improving
the overall performance, as smaller databases are more efficient to query.

However, one drawback of this solution is the increase in certificate size if
one were to include this static membership witness for the sub-accumulator in
the certificate itself. Kales et al. [35] propose to build sub-accumulators per
hour, which would result in sub-accumulators that hold about 216 certificates.
A Merkle-tree membership proof for these sub-accumulators is 512 bytes in size
when using SHA-256. In contrast, a membership proof for the q-SDH accumu-
lator is only 48 bytes in size (with the curve used in our implementation). A
typical DER-encoded X509 certificate using RSA-2048 as used in TLS is about
1–2 KB in size, meaning inclusion of the Merkle-tree sub-accumulator member-
ship proof would increase the certificate size by 25–50%, whereas the q-SDH
sub-accumulator membership proof only increases the size by 2.5–5%.

We can now leverage the fact that their solution already requires two non-
colluding servers for the multi-server PIR. These servers hold copies of the
Merkle-tree accumulator and answer private membership queries for the top-level
accumulator. Switching the used accumulators to our MPC-q-SDH accumulator
would give the benefit of small, constant size membership proofs, while still being
performant enough to accumulate and produce witnesses for all elements of a
sub-accumulator in one hour.
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